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Preface

This book is devoted to the quantum theory of atoms and ions. It deals with the
properties of atoms and ions, interactions between these atomic particles, and
collisional processes involving them. The goal is to present and demonstrate the
basic concepts of atomic physics and provide the reader with various atomic data.
The book is intended for both students and postgraduate students studying atomic
physics, and for specialists in physics, chemistry, and the other sciences, using
information concerning atomic particles in practice.On one hand, the book outlines
the basic concepts of atomic physics and the physics of atomic collisions. At the
same time, it contains data which are necessary for the analysis of processes and
phenomena in adjacent areas of physics and chemistry. Thus, this book can be used
both as a textbook and as a reference book.

The text of the book contains two levels of complexity. In themain text the author
tried to use simple and convincing methods to explain the fundamental properties
of atomic particles and the processes involving them. Certain detailed aspects are
placed as separate problems at the end of the chapters and can be omitted by the
general reader.

The basis of the content of the book is the quantum mechanics of nonrelativistic
atomic particles. The book consists of two parts. The first part is devoted to the
properties of free atoms and atomic ions considered as quantum systems consisting
of a heavy Coulomb center and electrons. The concept of a self-consistent atomic
field and the shell model of atoms are a central part of the description of these
systems. This allows us to give a logical and consistent description of the structure
and properties of atoms and ions. At the same time, this gives relatively simple
and reliable models for the analysis of the properties of atomic particles. As a
result, we have a simple way of describing the basic concepts of atomic physics
and obtaining transparent models for solving certain problems. The style of the
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first part of the book is similar to that in [1]–[4]. This is based on the author’s
book [5].

The second part of the book deals with the interactions and collisions between
particles. The style of this part resembles [6]. In this part the interaction between
atomic particles is described, and the analysis is given for bound atom–atom and
atom–ion systems, such as molecules, clusters, and solids. Problems of atomic
collisions are also considered. However, the author does not try to give a strict
description of these problems. The goal of the second part of the book is to demon-
strate that specific features of the interactions inside free atomic particles influence
the character of the interaction between particles and atomic transitions result-
ing from interparticle collisions. Then, concentrating on certain principal limiting
cases, we can extract those which are important with regard to both methodology
and application. In addition, we are free from describing the formalism of the more
complicated cases of the theory. Thus, we are well-positioned to choose the prob-
lems which are of importance for applications and can be described in a physically
transparent way.

For example, resonant collisional processes provide us with the connection be-
tween interatomic interaction and collision-induced transitions between atomic
states. These processes are characterized by large cross sections, and their analysis
is important for the corresponding applied problems. These resonant processes are
also of interest from a methodological point of view: Due to large cross sections,
they proceed at large interatomic distances where the interaction between particles
is relatively weak. This allows us to construct a strict mathematical theory of the
resonant processes, where a small parameter is an inverse value of the cross sec-
tion. On this basis, we obtain a connection between the interactions and the cross
sections. Then one can explore the character of competition for the interactions
and mixing of certain processes, such as the mixing of a charge exchange process,
the processes of rotation of atomic momenta during collisions, and the processes
of transitions between states of multiplet structure. As a result, we construct a
bridge between the properties of the corresponding atomic particles, the character
of their interaction in the molecule, and the rates of transitions which are caused
by these interactions during collisions.

Thus, the second part of the book contains separate problems of the interac-
tions and collisions of atomic particles. On one hand, these problems explore the
connection between the properties of free atomic particles and the properties of
systems of bound atoms, or rates of transitions between states of these particles
during collisions. On the other hand, the results of this analysis are of interest
for applications. For this purpose, some information in the form of the numerical
data in tables, figures, and spectra is included in this part of the book. References
indicating the books which contain a more detailed description of certain aspects
of the considered problems are given at the end of the book.

Although the analysis of the properties of atomic particles and processes in-
volving these particles is based on analytical methods, this does not contradict
the numerical methods which can employ understanding of the problems in more
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complicated cases. The analytical methods under consideration can be algorithms
for numerical calculations in general cases.
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Part I

Quantum Mechanics and the
Structure of Atoms and Ions



CHAPTER 1

The Development and
Concepts of Atomic Physics

1.1 The History of the Creation of Atomic Concepts

The creation of atomic physics was a long process of the study and understanding
of some physical phenomena and objects. It is of interest that the character of
the investigations of macroscopic objects which led to an understanding that the
surrounding world is a matter of which elements are atoms. This understanding
opened a new era of physics and science. Therefore, we describe below the history
of the creation of atomic concepts. Just as the description of atomstructures allowed
us to construct quantum mechanics and introduce new concepts that, in principle,
gave a new point of view on the surrounding world. But the creation of atomic
physics corresponds to the usual development of science, when new concepts
and new standpoints for objects and phenomena arise from the accumulation of
separate facts and from the study of separate aspects of the problem. Therefore, it
is useful to retrace the ways of creation of atomic physics in order to understand
its connection with the other fields of physics.

One can follow several lines of the study of matter which have led to the creation
of atomic physics. The first is the chemistry and physics of gases which led us to
the conclusion that the elements of gases are atoms or molecules and gave methods
for their study. The second line reflects the investigations of electrical processes
and phenomena. In this way, the prospective experimental methods of the study of
matter were developed. In the end, on the basis of these methods, the conclusion
was arrived at that atoms consist of electrons and ions, and reliable methods of the
investigation of electrons and ionswere developed. The third line of investigation of
atomic matter is connected with radiation and its interaction with atomic particles.
The study of the spectra of atomic particles and the character of the interaction
of radiation with atomic particles allowed us to understand the quantum nature of
atomic particles. It is necessary to add to this a new understanding of nature, due
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to the discovery of radioactivity and X-rays. Alongside the principal significance
of these phenomena, they gave new methods for the study of matter. Finally,
joining all these lines and methods has led to the creation of reliable models of
atomic particles. This gave a new understanding of the nature of the surrounding
world. Hence, we consider below, in detail, the evolution along each of the above
lines.

1.2 The Atomic Concept of Gases

The development of the related fields of physics consisted of many steps, each of
which gave a certain contribution to the understanding of the surrounding world.
We start with an analysis of the problems of the physics and chemistry of gases
which influenced the creation of atomic physics from 1738, when Daniel Bernoulli
(Switzerland) worked out a quantitative theory of gases. In 1789 the French scien-
tist, Antoine Laurent Lavoisier, had formulated in his book the concept of chemical
elements and established the method of verification of the law of matter conser-
vation in chemical reactions. In 1799 Joseph Louis Prust from France established
the law of the definite proportions of elements in chemical compounds. From his
point of view, the chemical constituents of a sample are conserved as a result of its
formation or decomposition. The following step was made by the English teacher
John Dalton who, in 1803, introduced atomic weights. He had formulated the law
of multiplied proportions in chemical compounds that was the basis of his theory
of matter. According to his conclusion, if the reaction of two substances A and B
can result in the formation of different substances, then the masses of A and B in
these products correspond to the used masses of the initial substances.

In 1808 Joseph Louis Gay-Lussac (France) suggested the law of combining vol-
umes of gases. According to this law, if two gases A and B are joined to a third gas
C, then the ratios of the volumes of A, B, and C, being taken at the same tempera-
ture and pressure, must correspond to the ratios of simple integers. This led to some
contradiction with the Dalton law. In 1811 the Italian physicist L.R.A. Avogadro
overcame this contradiction. Let us consider this contradiction for the example of
the formation of water from hydrogen and oxygen. Within the framework of the
Dalton law, one elementary particle of water consists of two elementary particles
of hydrogen and one elementary particle of oxygen. According to the Gay-Lussac
law, which takes into account a number of molecules in a certain volume, one
elementary particle of water—a water molecule—is formed from one elementary
particle of hydrogen and one-half an elementary particle of oxygen. Avogadro sug-
gested the concept of “elementary molecules” (or atoms), “constituent molecules”
(ormolecules of elements), and “integralmolecules” (ormolecules of compounds).
He postulated thatmatter consists of small particles—molecules. From the analysis
of the reaction of the formation of water and ammonia he concluded that gaseous
oxygen and nitrogen exist in the form of diatomic molecules. The Avogadro law, in
the form “at the same temperature and pressure equal volumes of all gases contain
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the same number of molecules,” was of importance for the future. From this it
follows that 1 mole of any substance contains the same number of molecules. This
value, which equals 6.022 · 1023, is called the Avogadro number.

Although the Avogadro concept was not accepted by his contemporaries, the
idea that matter consists of molecules, and that molecules of compounds include
atoms of elements, became widely spread. In 1813 the Swedish chemist Johns
Jacob Berzelius introduced the symbols of chemical elements which are still used.
Other steps in the atomic concept of matter were to be of importance in the fu-
ture. Although the atomic concept in gaseous laws was a rather convenient work
hypothesis than a new understanding of the nature of matter, it was principally
for the development of physic and chemistry of gases. More detailed measure-
ments of atomic masses proved the correctness of the above laws, and the atomic
concept was widely used for the analysis of chemical compounds and chemical
reactions. Thus, the study of the physics and chemistry of gases led to the creation
of the atomic concept of gases which was useful for an explanation of the observed
gaseous laws.

The above chain of laws which has followed from experimental research led to
a work hypothesis that gases consist of individual particles—molecules. Although
this hypothesis was discussed earlier, it can be considered as a guess. But after
the establishment of the gaseous laws, the real basis for such an understanding of
their nature arose. In order to show the state of the gaseous theory at that time,
we present in Table 1.2 the values of the atomic weights of some elements, which
were given by Berzelius in 1818, and their contemporary values.

The establishment of the gaseous laws and their usage led to the dissemination of
the atomic concepts for the analysis of the various properties of gases. Keeping in
mind gases as systems of free atomic particles was profitable for an explanation of
the equation of the gas state and such phenomena as diffusion, thermal conductivity
and viscosity of gases, propagation of sound in gases, etc.On the basis of the atomic
concept, the kinetic theory of gases was created by R.J.E. Clausis (Germany), J.M.
Maxwell (England), L. Boltzmann (Austria), etc. This theory uses the distributions
of molecules on velocities in gases for the analysis of gaseous properties and
transport phenomena. The advantage of the kinetic theory of gases was the cogent

Table 1.1. Atomic masses of elements
which were obtained by Berzelius (AB ),
and their contemporary values (A).

Element AB A

C 12.12 12.011
N 14.18 14.007
O 16.00 15.999
S 32.6 32.06
Cl 35.47 35.453
Cu 63.4 63.54
Pb 207.4 207.2
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argument for confirmation of the atomic structure of matter. In order to understand
this, let us consider in detail some elements of the kinetic theory of gases.

The kinetic theory of gases is based on the hypothesis that a gas consists of
molecules whose collisions determine various gaseous properties. As an example,
let us calculate the pressure of a resting gas within the framework of the kinetic
theory of gases. The pressure is the force which acts on a unit area of an imaginary
surface in the system. For an evaluation of this force note that if an element of this
surface is perpendicular to the x-axis, the flux of molecules, with velocities in an
interval from vx to vx +dvx through the surface, is equal to dJ � vxf dvx , where
f is the distribution function. Elastic reflection of a molecule from this surface
leads to the inversion of vx , i.e., vx →−vx , as a result of this reflection. Therefore,
a reflecting molecule of mass m transfers to the surface the momentum 2mvx . The
force which acts on this surface is the momentum variation per unit time. Hence,
the gaseous pressure, the force acting per unit area, is equal to:

p �
∫

2mvx · vxf dvx � m

∫
v2
xf dvx � mN

〈
v2
x

〉
, (1.1)

whereN is the number density ofmolecules, and the angle bracketsmean averaging
over the velocities of atomic particles. We take into account that the pressures from
both sides of the area are identical.

On the basis of the Maxwell distribution of molecules on velocities, one can
connect the mean square of molecule velocity with the gaseous temperature T .
This relation has the form

m
〈
v2
x

〉 � kT , (1.2)

where k is the Boltzmann constant. Thus, on the basis of the kinetic theory of
gases, we obtain the state equation of an atomic gas in the form p/N � kT , which
can be written in the form

pV � nRT, (1.3)

where V is the gas volume, n is the number of moles in this volume, and R is
universal constant. Relation (1.3) is a generalized form of the Boyle–Mariott law.

Note that the form of equation (1.2) becomes possible, after J.R. Mayer (Ger-
many) and J.P. Joule (England) proved in 1842–1843 that the mechanical and
thermal energies can be transformed to each other with conservation of the total
energy, and after W. Thomson (Lord Kelvin, Ireland) introduced the absolute tem-
perature in 1848. Then the right-hand side of equation (1.3) can be connected with
the heat capacity of the gas. Indeed, the kinetic energy of molecules of the gas is

E � NV

〈
mv2

2

〉
� 3kT

2
NV,

where NV is the number of molecules in a given volume. This gives, for the heat
capacity of a monatomic gas,

CV �
(
dE

dT

)
V

� 3

2
kNV. (1.4)
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The heat capacity of 1 mole is equal to 3R/2 for a monatomic gas. Hence the
measurement of the gas heat capacity allows us to determine the universal constant
R which is equal to R � 22.41 l/mol. Thus the kinetic theory of gases allows us
to understand the properties of gases more throughly and led to a generalization
of the gaseous laws.

Note that our consideration does not determine the parameters of individual
molecules. All the above gaseous laws result from the action of many molecules,
and these laws do not allow us to determine the Avogadro constant. This can be
obtained only from the analysis of the parameters of kinetic processes. In this con-
nection, is the important discovery of the English botanist Brown in 1827 when he
observed a chaotic motion of small pollen grains suspended in water. The chaotic
character of motion relates to all types of small particles suspended in liquid. The
Brownian movement or diffusion of particles is explained as a result of collisions
with surrounding molecules. In rare gases the diffusion motion can be simpler
because of the separation of successive collisions with gaseous molecules. The
parameter of this motion is expressed through the mean free path of molecules—a
distance which a molecule passes through between neighboring collisions with
other molecules. If we accept the model of billiard balls for molecules, the mean
free path λ is equal to λ � (Nσ )−1, where N is the number density of molecules,
σ � πr2 is the cross section of collisions, so that r is the sum of radii of the col-
liding molecules. Hence, one can evaluate the parameters of individual molecules
on the basis of measured diffusion coefficients. This also relates to the thermal
conductivity coefficient, viscosity coefficient, and other transport coefficients for
other transport processes. Joseph Loshmidt (Germany) was the first who, in 1865,
estimated the Avogadro number (at first it was called the Loshmidt value) and
the diameter of molecules on the basis of the kinetic theory of gases. In addition,
he introduced one more fundamental constant—the Loshmidt number, which is
the number of molecules in 1 cm3 of a gas at temperature 20◦ C at atmospheric
pressure. At first the accuracy of the determination of these values was low. For
example, in 1875 Maxwell, on the basis of the diffusion coefficients for twenty
pairs of gases, found the Loshmidt number to be 1.9 · 1019 cm−3 instead of its
contemporary value of 2.7 · 1019 cm−3. The precise determination of the Avo-
gadro number was made later, in 1908, by J.B. Perrin (France) who studied the
sedimentation equilibrium of small particles, of equal size and mass, suspended
in water. These particles were prepared by the centrifuge separation of particles
of different sizes. As a result, at that time, Perrin obtained a very precise value of
the Avogadro number. Thus, the kinetic theory of gases allowed us to generalize
the gaseous laws and to determine the parameters of individual molecules. It was
shown that the atomic concept is not only a convenient method for the analysis, but
that atoms and molecules are real objects. Therefore, the kinetic theory of gases
proved the atomic nature of matter.

Another evolution of the atomic concepts in chemistry has led to the creation
of the idea of the chemical valence of elements. In 1863 J.A.R. Newlands (Eng-
land) postulated the law of octaves according to which the chemical properties of
elements are characterized by periodicity. In 1869 D.I. Mendeleev (Russia) sug-
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gested the periodical system of elements. This gave impetus to the development
of the chemistry of elements and was further useful for the understanding of the
atom nature after creation of the atom model. Thus the development of the atomic
concepts in gases was twice of importance. First, this concept allows one to create
a new description for some properties of gases and therefore was fruitful for the
understanding of the gaseous nature. Second, the laws of the chemical transforma-
tion of substances resulting from chemical reactions have obtained a simple and
strict form on the basis of the atomic concepts of matter.

1.3 The Physics of Electrical Phenomena and
Electricity Carriers

The research on electrical processes was of importance for the understanding of
the atom’s nature. Finally, these investigations showed that the charge carriers—
the electron and the ion—are constituents of the atom. We start with the electrical
studies which influenced creation of atomic physics from 1705, when F. Hauks-
bee (England) made the first powerful electrostatic generator that allowed him to
observe electrical breakdown in air and also to produce electrical discharges in
air which are accompanied by air glowing. This was the first step in the study of
electrical gas discharges. Note that gas discharge is a form of passage of electric
currents through a gas, and that this current is created by electrons and ions. Hence,
the investigation of electric gas discharges must lead to the study of the elemen-
tary carriers of electric currents—electrons and ions, which are the constituents of
atoms. During the gas discharge investigations Stephen Gray from England dis-
covered the property of conductivity in 1731. In 1734 C.F. de Cisternay Dufay
(France) showed the existence of two types of electrification and suggested two
types of electrical flows. In addition, he observed that the air conductivity near
hot objects was evidence of air conductivity at high temperatures. In 1745 E.J.
Von Kleist (Germany) and P. Van Musschenbroek (Netherlands) independently
invented an electric capacitor which was called the “Leyden jar.” The investiga-
tions of American scientist Benjamin Franklin were of great importance. In 1752
he proved on the basis of experiments that lightning has an electrical nature and
can be considered as an electrical current propagating in the atmosphere air. He
considered this phenomenon as an electrical flow between charged objects. These
first studies of electricity flows through the atmosphere showed that electrical con-
ductivity results from the flow of electrical charges. Subsequent research allowed
us to ascertain the nature of the carriers of charges that was of importance for the
construction of the atom model.

The principal information for the understanding of the structure of atomic matter
followed from the investigations of electrolysis by Michael Faraday (England) in
1833–1834. The obtained laws of the electrolysis can be expressed by the formula

q � Fm/A, (1.5)
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where q is the value of electricity passing through the electrolyte, m is the mass
of substance which is formed on an electrode, and A is the chemical equivalent
of the substance (its atomic weight). The proportionality coefficient is called the
Faraday constant which is equal to F � 9.649 · 104 C/mole. As a matter of fact,
this coefficient is the ratio of the charge of an ion which partakes in the electrolysis
to its mass. Alongside the established fundamental laws of electrolysis, Faraday
introduced new terms such as “ion,” “anode” (away down inGreek), and “cathode”
(a way up in Greek) for the analysis of the passage of electricity through matter.
In due course these terms migrated to the physics of gaseous discharge and later
became general terms in physics and chemistry. On the basis of the subsequent
investigation of electrolysis, Stoney (England) estimated in 1874 the value of
the elementary charge quanta which are transported during electrolysis. Stoney
suggested “electron” as a name for the charge quanta. Note that an electron obtains
its name as a result of the electrolys investigations, while electrons are not present
in this phenomenon in a free state.

The development of the techniques of gaseous discharge played a key role in
the understanding of the nature of electricity carriers. An important technique was
the creation of an inductive coil by Rumkopf in 1851 that gave the possibility
of obtaining high voltages in a simple way. Alongside this, the development of
pump techniques allowed one to work with discharges of low pressure. In 1851
J. Pluecker (Germany) discovered specific rays emitted from the cathode which
were later called cathode rays. Just as in a gas discharge of low pressure, electrons
emitted by the cathode can be accelerated up to relatively high energies because
their collisions with gaseous molecules are rare. Therefore, in future the discharge
of low pressure allowed one to study the properties of electrons.

The specifics of cathode rays are such that they turned under the action of a
magnetic field and caused the fluorescence of substances on which surfaces they
are directed. According to subsequent studies, objects which are found in the way
of cathode rays give a shadow. This testified to the propagation of cathode rays
along straight trajectories. In 1871 C.F. Varley (England) proved that these rays
are negatively charged. In 1876 Eugene Goldstein (Germany) discovered rays of
positive charge which are called Kanalstrahlen. Investigating cathode rays resulted
from the discharge of a high voltage and a low gaseous pressure, Kruks (England)
found in 1887 that cathode rays are forced to rotate blades of the electrometer if
the blades are located on the trajectory of the cathode rays. This confirmed the
corpuscular nature of these rays. Finally, all these facts allowed us to determine
the nature of particles which are constituents of the cathode rays.

Note that the experimental research with charged particles is simpler than with
neutral particles because of the possibility of acting by external electric and mag-
netic fields on charged particles. The experiments with cathode rays led to the
discovery of electrons and to the determination of its parameters. This was made
by J.J. Thomson (England) in his classical work for the deflection of cathode rays
by electric and magnetic fields. These fields are located in a space where acceler-
ating fields are absent, i.e., electrons reach a certain velocity and move with this
velocity to a target (see the device scheme in Fig. 1.1). The deflection angle or
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Figure 1.1. The Thomson device for the study of cathode rays. 1, cathode; 2, anode; 3,
governed electrode; 4, plates of a declined capacitor; and 5, rule for the measurement of the
deflection of a cathode ray.

the displacement distance of a target under the action of a transversal electric field
depend on the electron velocity. If the magnetic field is directed perpendicular
to the ray and to the transversal electric field, it causes a ray deflection in other
directions. The measurement of two deflections allows us to determine both the
electron velocity and the ratio of the electron charge to its mass.

Later (in 1907–1911) J.J. Thomson used this method for the study of rays of
positive charges. Positive ions which are formed in gas discharges move to the
cathode and their action on the cathode causes the emission of electrons. This
mechanism can be different depending on the type of discharge. For example, in
glow discharge collisions of accelerated ions with the cathode cause the emission
of secondary electrons. If the cathode has a hole, part of the ions can be extracted.
Using the accelerating electric field and the deflecting electric and magnetic fields,
J.J. Thomson determined the ratio of charge to mass for ions of different gases.
From this it followed that the mass of the hydrogen ion, which is the lightest one
among positive ions, is 1836 times more than the electron mass. The Thomson
method becomes the basis of the mass spectrometer operation.

Alongside the measurement of the ratio of charge to mass for an electron, other
electron parameters and properties were of interest. In 1883 T.A. Edison (USA)
discovered that a heated incandescent filament in vacuum emits a current of nega-
tive charges, and in 1887 Heinrich Hertz (Germany) discovered the photoelectric
effect when electric current results from the irradiation of a metallic surface. In
1888 Wilhelm Hallwachs (Germany) proved that negative charges are emitted as
a result of the photoelectric effect. In 1899 P.E.A. Von Lenard (Hungary) showed
for the photoelectric effect, and J.J. Thomson for the Edison effect, that in both
cases electrons are emitted. This gave the method of the independent determina-
tion of electron parameters. In 1902 P. Lenard discovered that the photoelectric
effect has a threshold as a function of the light frequency, and the energy of re-
leased electrons does not depend on the light intensity. According to the Einstein
theory of the photoelectric effect, which he suggested in 1905, the threshold of
this phenomenon corresponds to the photon energy which is equal to the electron
binding energy. Then, measuring the energy of released electrons as a function
of a frequency of incident light, one can establish the connection between photon
and electrical energies which are expressed in electronvolts. According to this def-
inition, an electronvolt is the energy which an electron obtains after the passage
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of 1 volt. On the basis of measurement of the power of a light source, and the
power of the flux of released electrons, one can establish the connection between
the mechanical, electrical, and photon energies. In principle, this approach allows
one to determine the electron charge and mass.

But the determination of the electron charge was made by another method. In
1909 R.A. Millican (USA) found the electron charge on the basis of measurement
of a free fall of small oil drops which move in air in an external electric field. Drops
were extracted from a mist, which was formed by spraying oil through a nozzle,
and these drops have both positive and negative charge. Under these conditions,
the drops conserve their charge and mass for a long time. Because of a small size
of the drops, their descent down was observed with a microscope, and the time of
passage of an individual drop between two lines of a microscope with a certain
distance between them was measured. Hence, the velocity of the descent of a drop
can be determined and is connected with the drop radius.

This process was observed between two horizontal metallic plates to which an
electric voltage was applied. The velocity of an individual drop was determined,
and later an electric field was switched on. The electric field strength was increased
until the drop stopped in mid-air. This means that the force on the drop from the
electric field equalizes the force from its weight. This position of a drop can last
long enough (up to several hours) which gave the possibility of determining a
drop charge precisely enough. Thus, the two measuring parameters, the free-fall
velocity and the equalized electric field strength, allowed one to determine the
drop charge. As a result, a drop charge occurred which was the whole value of an
elemental charge. This elemental charge was accepted to be the electron charge.

Measurement of the electron charge removes the deficit of information con-
cerning electrons and ions. Together with the atomic data, this gave the possibility
of constructing different models of the atom consisting of electrons and ions. All
the atom models before the Bohr model were based on the classical behavior of
electrons and hence were wrong. Construction of the realistic atom model must
use the radiative properties of atoms which are determined by the quantum nature
of atoms. These studies are considered below.

1.4 Blackbody Radiation and the Radiative Properties
of Atoms

The quantum nature of atoms was understood on the basis of the analysis of
its radiative properties. Let us consider the main steps of this study within the
framework of its importance for the problems of atomic physics. The basis of
such investigations was the spectral method which was created as early as the
seventeenth century. In 1666 Newton had separated the Sun’s light into its spectral
components as a result of the passage of light through a prism. This method led
to a new understanding of the properties of radiation through to the nineteenth
century.
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In 1802Wollaston (England) had shown that the spectra of different light sources
(Sun, flame, and electric spark) are different. In 1814 Fraunhofer (Germany) sepa-
rated the dark lines of absorption in the solar spectrum. The principal results were
obtained in 1859 by G.R. Kirchhoff (Germany) who postulated the connection be-
tween the processes of emission and the absorption of radiation. This connection
was expressed in the Kirchhoff law which is as follows: “The ratio of the radiant
emittance of a surface to its absorptance is the same at a given temperature and
is equal to the radiant emittance of a blackbody at the same temperature.” This
led him to the concept of blackbody radiation. Establishment of the connection
between the processes of absorption and the emission of light led to the creation
of methods of spectral analysis. The first success of this method was the discovery
in 1860 of two new elements—rubidium and cesium—on the basis of the spectral
methods.

Along with the development of spectral methods, a new understanding of ra-
diation due to the blackbody concept was of importance. This followed from the
concept of a blackbody irradiation. Developing this concept, J. Stephan (Poland)
in 1879 postulated the so-called “Stephan–Boltzmann law” according to which the
flux of a blackbody summarized over a spectrum is proportional to T 4, where T is
the blackbody temperature. Boltzmann obtained this result from thermodynamic
consideration. In 1893 Wilhelm Wien (Germany) gave the spectral dependence for
the radiation of a blackbody at long wavelengths, and in 1900 J.W. Strutt (Lord
Rayleigh, England) and J.H. Jeans (England) obtained this dependence for the
limit of short wavelengths. Considering the electromagnetic field of radiation as
a system of oscillators, Max Planck (Germany) tried to connect these two limited
cases. In order to escape an “ultraviolet catastrophe,” which corresponds to an
increase of the spectral power of radiation as the wavelength decreases, he intro-
duced a discrete energy for photons. This refers to the following relation for the
energy of an oscillator of a frequency ν:

E � hν, (1.6)

where h is a constant called the Planck constant. As for the spectral distribution
of a blackbody, this operation allowed one to describe it for all of the spectrum.
But the introduction of this constant meant essentially more because this gave the
beginning of quantum mechanics.

Note that the Planck constant and the electron charge allow us to connect electric
and spectral units, i.e., electronvolt and cm−1. In particular, there is the following
expression for the photoelectric effect:

eV � h(ν − νo),

where νo is the threshold frequency of the electromagnetic waves, ν is their fre-
quency, and V is the electric potential which stops electrons. Measuring V (ν) for
a given surface, one can connect the above values. This connection has the form

1 eV � 8066 cm−1.
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The introduction of the Planck constant in physics was of importance for both
the creation of atomic physics and quantum mechanics. Along with this, a detailed
study of atomic spectra and their analyses was of importance for atomic physics.
In 1885 Balmer (Norway) found a simple approximation for the wavelength of a
sequence of spectral lines of the hydrogen atom which is given by the formula

λ � Cn2/(n2 − 4), (1.7)

where C is a constant of this sequence. Further this formula was represented in
the form

1/λ � A− B/n2, (1.8)

whereA andB are constants, and similar dependencies for the spectra of other ele-
ments were found. In 1890 J.R. Rydberg gave a generalization for the wavelengths
of a series of spectral lines on the basis of the expression

ν � 1/λ � A− Ry/(n+ α)2, (1.9)

where ν is the frequency of a given transition, n is the number of the line in a given
series, A, α are parameters which depend on both the element and on a spectral
series, and Ry � 109, 737 cm−1 is the so-called Rydberg constant. In 1908 Ritz
generalized this formula by usage of the following expression, for the parameter
A,

A � Ry/(m+ β)2, (1.10)

where the parameter β depends on an element and includes a certain set of serials,
and m is an integer. In 1908 Pashen found, for the hydrogen case,

ν � Ry(m−2 − n−2), (1.11)

where m and n are integers. Although all these expressions are empirical, they are
based on experimental data and generalize the results of experiments. In addition,
due to a high accuracy of spectral measurements, these relations include much
information on atom properties. This information was of importance in checking
the atomic models.

1.5 Radioactivity and X-Rays

In 1895 W.C. Roentgen (Germany) discovered X-rays, and in 1896 A.H. Becquerel
(France) discovered the radioactivity of uranium. Although these great discoveries
did not directly influence the creation of the atom model and the quantum theory of
matter, they promote the development of physics, including atomic physics. Along
with a general value of these discoveries for the understanding of the surrounding
world and for the main behavior in it, they were of importance for atomic physics
because they gave new instruments for the analysis of atomic particles. Below we
reflect on this aspect of these discoveries.
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Let us start from the phenomenon of radioactivity. In 1897 E. Rutherford found
that the radiation of decaying uranium consists of two parts—soft or alpha-rays and
hard or beta-rays. In 1900 A.H. Becquerel showed that beta-rays are like cathode
rays, i.e., they are a flux of electrons. Next, it was discovered that uranium decay
was accompanied by the formation of helium. In 1908 W. Ramsay and F. Soddy
found helium in a remarkable amount in all radium compounds, and in 1909
E. Rutherford and T. Royds ascertained that alpha-particles are double-charged
helium ions. In addition, in 1900 P. Villard (France) showed that gamma-rays are
formed at some radioactive decays. Gamma-rays are a flux of ultra-short radiation.

Thus, particles of high energy result from radioactivity decay. Therefore, fluxes
of these particles can be used for the analysis of atomic matter. In 1911–1913,
E. Rutherford and E. Marsden studied the passage of the flux of alpha-particles
formed in uranium radioactive decay through thin foils. According to the results,
the character of the scattering of alpha-particles did not correspond to the existing
models of the atom at that time. For example, in the most popular model of that
time, the Thomson model, the positive charge of the atom has the form of a liquid
drop in which electrons are floating. Then the oscillations of electrons in this liquid
drop determine the observed spectrum of atom radiation. Within the framework of
this and similar models one can expect that the scattering of a fast charged particle
colliding with the atom occurs mostly at small angles. But in reality scattering at
large angles was observed.

On the basis of these data, Rutherford has suggested a new atom model where a
point positive charge located at the atom center occupies a small part of the atom
volume, and electrons are distributed over all of the atom volume. Then electrons
do not partake practically in the scattering of alpha-particles which is determined
mainly by the Coulomb interaction between an alpha-particle and a positive ion.
Rutherford calculated the differential cross section for the scattering of two charged
particles, and now such a process is called Rutherford scattering. In 1913 Geiger
and Marsden (England) studied the scattering of alpha-particles on their passage
through thin foils of silver and gold in order to test the Rutherford theory, and
their results confirmed the Rutherford conclusions. Note that the Rutherford atom
model contradicts the nature of a classical atom of this structure. Indeed, such a
classical atom has a limited lifetime because of the radiation of moving electrons
in the field of the positive ion. But this model which followed from experimental
results became the basis for the creation of a realistic atom model by Nils Bohr.

Another great discovery at the end of the nineteenth century, X-rays, also in-
troduced a contribution to the creation of atomic physics. X-rays are formed as a
result of bombardment of the anode by electrons in gas discharges of low pressure
and of high voltage which are used for the generation of cathode rays. Because
of a small gaseous pressure, collisions of electrons with atoms are seldom in such
discharges. Therefore the electron energy can reach eV, where e is the electron
charge and V is the discharge voltage which is several tens of kilovolts in such
discharges. Within the framework of the contemporary standpoint that X-rays are
electromagnetic waves, it follows from high-electron energy that the wavelength
of X-rays is enough small. In particular, assuming that all the electron energy trans-



1.6 The Bohr Atom Model 15

fers to a photon which is formed as a result of the bombardment of a surface, we
obtain by analogy with formulas (1.4), (1.5) the following relation E � eV � hν,
i.e., the frequency of the generated radiation ν satisfies the relation

ν ≤ eV/h.

For example, for V � 50 kV this formula gives that the wavelength of X-
rays, in this case, is more than 0.25 nm. This value is of the order of atomic size
and, therefore, at the scattering on condensed substances the photon “fills” their
structure. Using this consideration and testing the wave nature of X-rays, Max von
Laue (Germany) in 1912 studied the diffraction of X-rays on the crystal lattices of
NaCl andKCl. This experiment not only confirmed thatX-rays are electromagnetic
waves, but also gave a new method for the analysis of crystals. In 1913 W.H. Bragg
and W.L. Bragg constructed an X-ray spectrometer on the basis of X-ray scattering
resulting from the passage through crystals. This device was of importance for the
study of the interaction of X-rays with atomic systems, and with its help some
aspects of the internal structure of atoms were understood. Thus the investigations
of radioactivity and X-rays have prepared the ground for a detailed study and
understanding of the nature of atomic matter.

1.6 The Bohr Atom Model

The discovery of the electron stimulated the development of atomic physics. It
was clear that the atom consists of a heavy positive nuclei and electrons that led
to the creation of various atomic models constructed on the basis of this concept.
The most popular was the Thomson atom model which describes an atom as a
positive spherical liquid drop inside which electrons move along ring trajectories.
It was postulated that each ring can include a certain number of electrons. Such a
model was capable of explaining the chemical and physical properties of atoms.
According to this model, atoms with the same number of electrons in the largest
rings have similar physical and chemical properties. At a certain number of elec-
trons in a ring, the electron distribution becomes unstable due to interaction with
another atom, and this atom can be lost or obey electrons depending on a number of
electrons in the rings. In this way was explained the observed valence of atoms. In
addition, the vibrational properties of electrons in this atom are responsible for its
spectrum. Thus, in spite of the imperfections of this model, the chemical valence
of atoms and their physical properties are connected within the framework of this
model with the distribution of electrons inside the atom. This was an important
step in the understanding of the nature of atomic matter.

Along with the other first atomic models, Nagaoki (Japan) suggested in 1904 a
planet atom model which is close to the contemporary standpoint. In this model
the positive nucleus occupies the atom center, and the electrons rotate around it
along classical trajectories. The charge of the electrons equalizes the nuclei positive
charge so that the atom is neutral. But this model was wrong within the framework
of the classical laws, because, rotating electrons emit radiation and lost energy.
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Hence, such an atom is unstable, and the model was not developed in its initial
form in spite of its closeness to contemporary representations. The Rutherford
atom model was not a development of this model, but resulted from experimental
analysis. Therefore, it differs from the Nagaoki atom model in some detail.

The atom model which was suggested by Nils Bohr (Denmark) in 1913 began a
new era in atomic physics. Bohr found the right way to overcome some contradic-
tions which arose because a sum of results for the atom nature cannot be explained
by classical considerations. Within the framework of contemporary knowledge,
the Bohr postulates of its first atom model can seem to be inconsistent. But with
time this model took a more convincing and consistent form, and can explain new
observational facts. The main idea of the Bohr model contradicted the classical
representations of that time, but this idea just happened to be the advantage of this
model. Therefore below we concentrate on this idea.

The Bohr considerations during the creation of its models were as follows.
The classical atom models as the Thomson model using three-dimensional
parameters—an atom size a, the electron mass m, and an electron charge e. One
can construct a value with any dimensionality from these parameters. In particular,
a typical frequency of an atom spectrum is of the order of em−1/2a−3/2 which cor-
responds to a real spectrum. Among different atom models we must make a choice
in favor of the Rutherford model because it uses additional observational facts. But
the Rutherford model does not contain an atom size in its basis. Hence, in order
to make a consistent atomic model, it is necessary to add to the Rutherford model
one more dimension parameter. Bohr chose as this parameter the Planck constant,
and by analogy with the Planck operation requires that the electron momentum
expressed in the corresponding units is a whole number for the hydrogen atom.
This gives certain stationary states of the electron and leads to a hydrogen atom
spectrum which corresponds to the observed one.

These considerations were realized in the following way. The classical atomic
electronmoves along elliptic trajectories in theCoulombfield of the positive nuclei.
According to the Keppler law, the frequency of rotation of the electron on such an
orbit ν is connected with the electron binding energy W (i.e., the energy required
for removal of the electron to infinity) by the relation

ν2 � 2

π2
· W

3

me4
. (1.12)

In this formula the charges of the electron and nuclei e are identical, i.e., this
formula corresponds to the hydrogen atom. Because of the quantum character of
motion, the connection between the binding energy W and the frequency of the
orbital motion ν is given by the Plank formula, which Bohr has written in the form,

W � nhν

2
, (1.13)

where n is an integer. The numerical coefficient between the above values was
chosen such that it can also give the correct spectrum of the hydrogen atom. From



1.7 Corroboration of the Bohr Atom Model 17

formulas (1.12) and (1.13) it follows that

W � me4

2h̄2n2
, (1.14)

where h̄ � h/(2π ).
As is seen, the assumption of the quantum character of electron motion on the

basis of formula (1.13) has led to a discrete set of the electron binding energies.
For justification of his concept, Bohr used some assumptions which were the basis
of the atom description and were also called the Bohr postulates. These Bohr
postulates were formulated in 1913 in the following way:

(1) An elemental system with moving electrons around the nuclei emits radiation
only during the transitions between stationary states in contrast to the classical
electrodynamics when radiation is emitted continuously.

(2) The dynamical equilibrium of this system is submitted to classical laws when
classical laws are not valid for transitions between stationary states.

(3) The radiation that resulted from the transitions between stationary states is
monochromatic. The change of the energy of system E and the radiation
frequency ν are connected by the relation E � hν. Only in the region
of small frequencies does the transition frequency correspond to classical
electrodynamics.

The atomBohrmodelwas of importance both for the creation of a self-consistent
atom model and quantum mechanics. It is not without reason that the Bohr postu-
lates are called the “old quantum theory.” This means that the Bohr atom model
was an intermediate step on the way to the creation of contemporary quantum
mechanics.

1.7 Corroboration of the Bohr Atom Model

At the first stage the Bohr model seemed to be semiempirical, and its main ad-
vantage was an ability to explain various experimental facts. But with time it
was transformed into the harmonious and self-consistent theory. In addition, this
model was confirmed by new experimental facts. Let us pause at some of them
starting from the study of the X-ray spectra of elements. In reality, the generation
of X-rays as a result of bombardment of a surface by an electron beam has the fol-
lowing character. Fast electrons excite the internal electrons of surface atoms, and
the radiative transitions of these atoms to the ground state cause the radiation of
short-wave photons. C.G. Barkla (England) in 1908 concluded, on the basis of ab-
sorption experiments, that the secondary X-rays of various elements can be divided
into groups which he called the K-, L-, and M-series of X-rays. In 1913 H.G.J.
Moseley (England) made more detailed experiments for the analysis of X-rays and
obtained spectrograms of X-rays for some elements from calcium to nickel for K-
and L- series. He shown that the characteristic frequency of K- and L-radiation is
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determined by the charge of its positive ion Z and can be written in the form

ν1/2 � a(Z − b),

where the parameters a, b depend on the series and number of the line. For
short-range radiation this formula has the form

ν � 3

4
Ry(Z − 1)2, (1.15)

whereRy is the Rydberg constant. Thus Moseley concluded on the basis of exper-
iments the existence of an atom fundamental value which increases monotonically
from element to the following one. He stated that this value can only be the nuclei
charge. Therefore, this analysis allows one to show the internal atom structure.

Developing the Moseley investigations, Kassel (England) in 1914 showed that
the Moseley results correspond to the Rutherford–Bohr atom model. Locating
electrons in the atom on individual orbit-rings, he concluded that the Kα-radiation
corresponds to the transition from the state-ring with n � 2 to the ring with n � 1,
the Kβ-series corresponds to the transition between n � 3 and n � 1, and the
Lα-series corresponds to the transition between n � 3 and n � 2. In this case
the combination principle must be fulfilled, which is similar to the corresponding
principle for spectral lines and has the form

νKβ
− νKα

� νLα
. (1.16)

Experimental data confirmed this lawwith an admissible accuracy. Thus, theMose-
ley law and its development corroborated the validity of the Rutherford–Bohr
atom model for internal electrons. These investigations exposed the internal atom
structure and were of importance for the understanding of the atom’s nature.

The most importance for corroboration of the Bohr atom model were the results
of the experiment by James Franck and Gustav Hertz (Germany) which they made
in 1915. They constructed a specific gas discharge with the use of a discharge
tube whose cathode had a hole, so that part of the electrons could penetrate to
the other side of the cathode. These electrons were accelerated by a voltage V

between the cathode and one more electrode—an anode. Further electrons were
gathered by a collector, and the electron current between the cathode and collector
was measured. A discharge tube was filled with mercury vapor at a low pressure.
At the first stage of study, the authors wanted to lock the electron current to the
collector. Then measurement of the ion current would allow one to determine the
threshold of the formation of electrons and ions. But this was not realized. Then the
electric current versus the voltage between the cathode and anode was measured.

Assuming that the anode does not influence the number of electrons which
penetrate through the cathode, one can obtain that, in the absence of collisions in
the tube, the electron current is proportional to the electron velocity, i.e., V 1/2,
where V is the electric potential between electrodes. In reality, a stronger elastic
scattering of slow electrons on atoms compared to fast ones makes this dependence
a stronger one. Let us take the vapor pressure such that the elastic collisions of
electrons with atoms are weak. The cross section of the excitation of the resonance
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Figure 1.2. The dependence of the collector current I on the accelerating voltage V in the
Frank–Hertz experiment.

state of the mercury atom has maximum at energy εo which is close to the threshold
energy. Assuming the cross section of atom excitation to be more than the elastic
cross section of electron–atom scattering, one can obtain an oscillation form for
the current–voltage dependence (see Fig. 1.2). The first local minimum occurs at
the voltage which leads to the electron energy near εo because electrons which
reach this energy, lose it as a result of an inelastic collision with a mercury atom.
These electrons do not make a contribution to the electron current. The following
local minimum occurs at the energy near 2εo due to the loss of two electrons. This
local minimum is expected to be weaker than the first one.

Although by mistake, the authors identified the measured excitation energy with
the ionization potential of the mercury atom, this experiment was of importance
because it allowed us to determine the connection between atomic parameters by a
new method. The measured value εo occurred at 4.9 eV and its error was estimated
as 0.1 eV. The measured energy was close to the photon energy of wave length
253.6 nm that was observed in the mercury atom spectrum and corresponds to the
excitation from the ground state of the mercury atom. Such a coincidence induced
the authors to make a direct experiment for the simultaneous determination of “the
ionization potential” and the frequency of photons resulted from this process. The
experiment was made in a quartz pipe with a platinum incandescent filament and
a platinum anode. Mercury introduced into this pipe was heated to a temperature
of 150◦ C for the formation of vapor. Radiation of vapor was detected by a UV-
spectrometer. As the voltage between the wire and anode reached approximately
4.9 eV, photons of a wavelength of 253.6 nm were detected. At lower voltages
these photons were not observed. Thus, this experiment established the connection
between the electron units of energy (electronvolt) and the radiative ones. Note that
the above picture of the process is rough enough and is not universal. Therefore
the method of the first experiment was not used for the determination of the atomic
parameters. Nevertheless, at that time, this experiment confirmed the correctness
of the Bohr atom model because it showed the quantum character of the electron
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binding energy, and the second experiment gave a direct connection between the
electron and photon units of energy.

Another argument in favor of the Bohr model was the experiment by Theodor
Lyman (USA) in 1916. He found a new series of spectral lines of the hydrogen
atom which was predicted by the Bohr theory and corresponds to transitions from
its ground state. This series is called the “Lyman series.” The development of the
Bohr theory allowed us to explain the splitting of spectral lines in electric and
magnetic fields (the Zeeman, Pashen, and Stark effects), the structure of more
complex atoms, and other observed facts of the atom structure. Thus, the Bohr
model became the turning point in the evolution of atomic physics.

1.8 The Development of the Bohr Atom Model

The Bohr atom model gave a lift to the development of atomic physics, and in
this improved form it allowed us to explain the various details of atomic spectra.
According to one of the Bohr postulates, the electron rotation momentum in the
hydrogen atom is the quantum value which is a divisible quantity with respect to
h/(2π ) � h̄. On the basis of the Bohr model, it explained the Zeeman experiment
for the splitting of the spectral lines of atoms in a magnetic field. But this effect
was also described by Lorenz on the basis of the classical motion of the electron in
a magnetic field. This means that the Zeeman effect has a classical nature. Further,
the problem of the quantum character of the electron momentum arose from the
analysis of the multiplet structure of atomic spectra. In order to show the behavior
of the electron moment, Otto Stern (Germany) suggested in 1921 the experiment
scheme in which results were obtained in 1922 together with Walter Gerlach. This
experiment was of importance, and we consider it below.

The experiment by Stern andGerlachwas based on the following considerations.
If the atommagneticmoment is the quantumvalue, its projection onto themagnetic
field direction is a discrete value. Then, if an atom with a magnetic moment moves
in a nonuniformmagnetic field, the force acted on the atom, due to nonhomogeneity
of the magnetic field, depends on the moment projection. Creating this force to be
directed perpendicularly with respect to the motion of an atomic beam, one can
separate the beam into several beams. If a plate is placed in the way of the beam,
the trace of the beam will have the form of separate spots which are spread due to
different atom velocities in the beam. In the case of the classical behavior of the
atom magnetic moment the trace on a plate must have the form of a band with the
maximum thickness corresponding to the initial direction of the beam.

This experiment was made for a beam of silver atoms. This beam was split
into a nonuniform magnetic field with a force which was directed perpendicular
to the beam. As a result, a beam was split in two parts after passage of the re-
gion of a nonuniform magnetic field. The beam created two spots on a plate, and
the minimum was observed in the initial beam direction. This proved the quan-
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tum nature of the atom magnetic moment, but the problem appears to be more
complex.

A more detailed analysis showed that the magnetic momentum of silver atoms is
not due to the rotation of electrons in the Coulomb field of the nucleus. Thus, along
with the evidence of the quantum nature of the atom magnetic momentum, this
experiment also testified to the existence of an internal magnetic momentum of the
electron—the electron spin. The existence of the electron spin also followed from
the analysis of the multiplet structure of atomic spectra and the behavior of atomic
spectra in amagnetic field. Electron spinwas included in theoretical atomic physics
by George Eugene Uhlenbeck and Abraham Goudsmith (Netherlands) in 1925.

In 1925 Wolfgang Pauli (Switzerland) suggested the exclusion principle for
atomic electrons. According to this principle, which is usually known as the Pauli
exclusion principle, two electrons cannot be found in the same state. The electron
state means the electron position in a space and a direction of its spin. In the
one-electron model, where interactions in an atom are reduced to an effective
interaction of each electron with the atomic core, this principle states that all the
atomic electrons are characterized by different quantum numbers. One of these
quantum numbers is the electron spin. The Pauli exclusion principle is connected
with the statistics of Fermi–Dirac for particles having a semi-integer spin. This
requires that the total wave function of electrons must be antisymmetric with
respect to the transposition of two electrons (i.e., by exchange of their positions
in a space and exchange by spins), so that the wave function changes sign at such
a transposition. From this follows the repulsion of two electrons in an atom at
their approach. Such an interaction is called the exchange interaction and is of
importance for atom properties. The contemporary description of the physics of
the atom is based on the Bohr concepts of quantum atomic physics and the Pauli
exclusion principle, so that in this book we will use them for a description of the
properties of atoms and ions.

The Pauli exclusion principle gave the possibility of analyzing many-electron
atoms which were outside the Bohr model of the one-electron atom. This, together
with the vector model of summation of electron momenta including the electron
spins, allowed one to create the self-consistent strict theory of atomic spectra
which can confirm and explain the observational data. Up to the end of 1925, the
construction of the atom model was finished. At that time all the principal elements
of the atom nature which are the basis of the contemporary physics of atoms and
atomic particles were understood.

Since the process of the creation of the atomic theory was based on rich experi-
mental material, atomic physics was of importance for the creation of the quantum
theory. In 1926 the formalism of quantum mechanics was formulated in both ma-
trix form or operator mathematics, and in the form of the Schrödinger equation.
In any case, the check on the validity of the methods of quantum mechanics was
made on the basis of the properties of atomic objects. Agreement of the evidence
for atomic properties and the atomic theory allowed one, in the end, to change the
Bohr postulates by the logical, self-consistent and strict quantum theory of atomic
particles. Thus, the development of the atomic theory was of interest not only for
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atomic objects. It played a key role in the creation of quantum physics that is one
of the important advantages of science of twentieth century.

1.9 The Quantum Mechanics of Atoms

Now let us formulate the contemporary understanding and description of the
physics of atomic particles. We introduce the mathematical formalism of quantum
mechanics which will be used throughout this book. Its basis is the Schrödinger
equation for the electron wave function 	 which has the form

Ĥ	 � E	, (1.17)

where Ĥ is the atom Hamiltonian, 	 is the atom wave function, and E is the atom
energy which is the eigenvalue of the Schrödinger equation. Considering the atom
as a system of electrons which are placed in the Coulomb field of the nucleus of
infinite mass we have, for the atom Hamiltonian,

Ĥ �
∑
i

(
− h̄2

2m

i

)
−
∑
i

Ze2

ri
+
∑
i,k

e2

|ri − rk| , (1.18)

where h̄ is the Plank constant, m, e are the electron mass and charge, Z is the ratio
of the nucleus charge to the electron charge, ri is the coordinate of the ith electron
with the nucleus as the origin, and 
i is the Laplacian of the ith electron. The first
term of the Hamiltonian (1.18) corresponds to the kinetic energy of electrons, the
second term describes the interaction of electrons with the nucleus Coulomb field,
and the third term accounts for the interaction between electrons. Equation (1.17)
with the Hamiltonian (1.18) gives the total information about the atom.

The Pauli exclusion principle is of importance for atomic properties. It prohibits
the location of two electrons in the same state and leads to the following symmetry
of the wave function of electrons

	(r1, σ1; r2, σ2; . . . , ri , σi ; . . . , rk, σk; . . . , rn, σn)

� −	(r1, σ1; r2, σ2; . . . , rk, σk; . . . , ri , σi ; . . . , rn, σn), (1.19)

where ri is the coordinate of ith electron, σi is its spin projection onto a given
direction, and relation (1.19) accounts for the symmetry properties of a system
of Fermi particles such that transposition of two particles changes the sign of the
wave function. This form of wave function creates an additional interaction in the
atom which is called an exchange interaction and will be the object of subsequent
analysis. In particular, from this relation it follows that if two electrons with an
identical spin state are located in the same point of space, thewave function is equal
to zero. The Schrödinger equation (1.17) with the electron Hamiltonian (1.18), and
the symmetry of the wave function (1.19) which follows from the Pauli exclusion
principle, is the basis for further analysis of the physics of atoms and ions.
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1.10 Radiative Transitions between Discrete States
of Atoms

The radiative properties of atoms are a matter of principle for the physics of atoms.
Atomic spectra determine the positions of excited levels of atoms and ions with
high accuracy. This gives much information concerning atomic particles. Hence,
the parameters of atomic radiative transitions play a key role in the analysis of the
physics of atoms. Below we obtain an expression for the rate of radiative transition
between two discrete atomic states which will be used for subsequent analysis.

A radiative transition between two atom states is a result of the interaction
between the related atomand electromagnetic field of radiation. Let us consider this
process within the framework of the perturbation theory assuming the interaction
between the atom and radiation field as a perturbation. This is valid if a typical
time of transition between states of the atomic system is large compared to typical
atomic times. This criterion is fulfilled if radiation fields are not strong and do not
exceed typical atomic fields. For spontaneous radiation it is valid. In addition, the
small parameter e2/

(
h̄c
)
is of importance for radiative transitions. This means that

typical atomic velocities are small compared to the light velocity, and due to this
criterion an atom is a nonrelativistic system. The simplest form of the interaction
operator between the atom and radiation field is the following:

V � −ED, (1.20)

where E is the strength of the radiation electromagnetic field and D is the operator
of the atom dipole moment. This is the strongest interaction between the atom and
the field. We start from the analysis of the absorption process

Aj + h̄ω→ Af , (1.21)

where the subscripts mean atom states. Below we determine the rate of this process
by standard methods. Take the time dependence of the electric field strength as
E � Eω cosωt , where ω is the frequency of the electromagnetic field. Using the
standard nonstationary perturbation theory, we present the atom wave function in
the form

	 � ψj exp(−iεj t/h̄)+ cf · ψf exp(−iεf t/h̄),

where ψj and ψf are eigenfunctions of the nonperturbed Hamiltonian Ĥo with
eigenvalues εj and εf , and cf � 1. Then from the Schrödinger equation,

ih̄
∂	

∂t
� (Ĥo + V )	,

there follows the equation for the transition amplitude

ih̄ċf � Vjf exp(−iωot) �
〈
j
∣∣EωD

∣∣f 〉 exp(−iωot),

where h̄ωo � εf − εj , and the matrix element is taken between the initial (j ) and
final (f ) atomic states of the process (1.21). Note that in this bookwe denotematrix
elements as

∫
ψ∗j (r)âψj (r) dr by (â)jf or 〈j |â|f 〉, what is more convenient. The
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obtained expression yields, for the probability |cf |2 of the process for large times
t 
 ω−1, ∣∣cf ∣∣2 � 1

h̄2

∣∣〈j ∣∣EωD
∣∣f 〉∣∣2 sin2 [(ω − ωo) t/2]

(ω − ωo)
2

We neglect (ω + ωo)−1 compared to (ω − ωo)−1 because ω ≈ ωo. In the limit
ω → ωo one can introduce the delta-function δ(x) which satisfies the following
relations

δ(0) � ∞; δ(x � 0) � 0;
∫ ∞

−∞
δ(x) dx � 1.

Then the probability of the related transition per unit time is equal to

wjf �
∣∣cf ∣∣2
t

� π

2h̄
|〈i |EωD| f 〉|2 δ

[
h̄ω − (εf − εi

)]
.

The radiation energy per unit time is〈
E2

8π

〉
+
〈
H 2

8π

〉
�
〈
E2

4π

〉
� E2

ω

8π
,

where the angle brackets mean averaging over time. Let us introduce a number of
photons in one state nω and connect it with the average field energy, assuming the
radiation field to be concentrated in an interval dω. We have

E2
ω

8π
� h̄ω · nω · 2dk

(2π )3
� nω · ω

3 dh̄ω

π2c3
,

where k is the wave vector of the electromagnetic wave. We account for two
polarizations of the electromagnetic wave and the dispersion relations for it ω �
kc, where c is the light velocity. On the basis of this relation we obtain, for the
probability of photon absorption per unit time after averaging over frequencies,

wjf � 4ω3

h̄c3
· nω · |〈i |Ds| f 〉|2 , (1.22)

where s is a unit vector which characterizes a photon polarization (Eω � sEω).
Averaging over polarizations of the radiation field and summation over the final
atom states leads to the following expression for the radiation rate:

wjf � 4ω3

3h̄c3
· |〈i |D| f 〉|2 gf · nω, (1.23)

where gf is the statistical weight of the final state.
Usually the rates of the radiative transitions are expressed through the Einstein

coefficients A and B which are introduced by the relations

w(j, nω → f, nω−1) � A·nω; w(f, nω → j, nω+1) � 1

τfj
+B·nω, (1.24)

where τfj is the radiative lifetime of a state f with respect to the spontaneous
radiative transition to a state j . Note that formula (1.23) gives the expression forA.
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From the condition of the thermodynamic equilibrium of photons with atom states
i and f , which reflects the detailed balancing principle for radiative transitions in
atoms, it follows that

1

τfj
� B � gj

gf
A, (1.25)

where gj , gf are the statistical weights of the lower and upper states of transition.
This leads to the following expressions for the Einstein coefficients:

A � 4ω3

3h̄c3
· |〈j |D| f 〉|2 gf ; B � 4ω3

3h̄c3
· |〈j |D| f 〉|2 gj . (1.26)

Along with the value of the rate of radiative transitions, formulas (1.23), (1.26)
lead to selection rules, i.e., we choose states between which radiative transitions
are possible. The relevant case corresponds to the strongest interaction between
radiation and the atomic systems. It chooses the so-called “dipole permitted radia-
tive transitions” or “dipole transitions.” The matrix element of the operator of the
atom dipole moment is not zero for these transitions, and they are the main part
of the observed spectra of atoms and ions. We further consider various cases of
dipole radiative transitions for atomic particles.

1.11 Radiative Transitions of Atoms Involving
Continuous Spectra

Along with the radiative transitions between discrete states of atomic particles,
radiative processeswith formation or loss of electrons are of interest.As an example
of such processes, we consider below the atom photoionization process which
proceeds according to the scheme

h̄ω + A→ A+ + e. (1.27)

The energy conservation law during this process has the form

h̄ω � J + h̄2q2

2m
, (1.28)

where h̄ω is the photon energy, J is the atom ionization potential, the atom ion-
ization potential h̄2q2/2m is the energy of a released electron so that the electron
momentum is p � h̄/q, and q is the electron wave vector. The characteristic of
this process is the cross section of the process which is the ratio of the probabil-
ity of this transition per unit time to the flux of incident photons cNω, i.e., the
photoionization cross section is

dσion � Aof nω/(cNω),

where nω is a number of photons of a given frequency located in one state,Nω is the
number density of these photons, c is the light velocity, and Aof is the probability
of the related process per unit time which is given by formula (1.26).
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Let us use a standard method in order to tranfer from the discrete spectra of
photons and electrons to continuous spectra. Introduce a volume � which is large
compared to a typical atomic volume, and locate inside this volume the atom
and photons. Then the total number of photons in this volume, in an interval of
frequencies from ω to ω + dω, is equal to

�Nω � 2
∫
dr dk

(2π)3
nω � �

ω2 dω

π2c3
nω,

where the factor 2 accounts for two possible photon polarizations, � � ∫ dr, and
k is the photon wave vector which is connected to the photon frequency by the
dispersion relation ω � kc. Thus, we have, for the photoionization cross section,

dσion � Aof

π2c2

ω2 dω
,

where Aof is the probability of transition per unit time from the initial atom state
o in the group of states of continuous spectra which are considered to be discrete
due to the introduction of a finite system volume �. Let us summarize the cross
section over the final states based on formula (1.26) for the rate of transition. We
have

dσion � 4π2ω

3h̄c dω

∑
f

|〈o |D| f 〉|2 .

Summation over the final states of a free electron has the form∑
f

�
∫

dr dq d�q

(2π)3
� �

q2 dq d�q

8π3
,

where d�q is a solid angle which characterizes the direction of a released electron.
The energy conservation law (1.28) gives q dq � mdω/h̄. Next, thewave function
of the released electron in the main part of an introduced volume has the form
�−1/2 exp(iqr). It is convenient to define the matrix element 〈o |D|q〉 such that
the wave function of the released electron has the form of a plane wave eiqr.
Transition to this wave function requires us to multiply the above expression for
the cross section by the factor 1/�. Thus, we obtain the following expression for
the photoionization cross section:

dσion � mqω

6πch̄2
|〈o |D|q〉|2 d�q. (1.29)

Note that the internal states of a formed ion and electron correspond to the internal
quantum numbers of the atom initial state.

Problems

Problem 1.1. Consider an atom within the framework of the one-electron atom
model according to which an atom includes one valent electronmoving in a spheri-
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cal symmetric self-consistent field of the atomic core. Find the sums
∑

f ωn
if

∣∣rif ∣∣2
for several values n, where h̄ωif is the difference of the energies for these two
states and r is the electron radius-vector.

This problem allows us to demonstrate the generalmethods of quantummechanics.
The transition from classical to quantum mechanics corresponds to the change
of a physical parameter by its matrix element. Correspondingly, some relations
of classical mechanics are the same in matrix form in quantum mechanics. In
particular, let us prove that the relation having the form dx/dt � px/m in classical
mechanics corresponds to the relation −iωif xif � (p̂x)if in quantum mechanics,
where p̂x � h̄/i · ∂/∂x is the operator of the linear electron momentum. Indeed,
the Hamiltonian of the electron located in the field of the atomic core has the form

Ĥ � − h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
+ V (r) � 1

2m

(
p̂2
x + p̂2

y + p̂2
z

)+ V (r),

and the family of eigenfunctions of the Hamiltonian ψj satisfies the Schrödinger
equation Ĥψj � εjψj . We introduce ωjf as (εj − εf )/h̄. Hence,

h̄ωjf xjf � εjxif − εf xif �
〈
j
∣∣Ĥx

∣∣f 〉− 〈j ∣∣xĤ ∣∣f 〉
� − h̄2

2m

〈
j

∣∣∣∣x ∂2

∂x2
− ∂2

∂x2
x

∣∣∣∣ f 〉 � − h̄2

m

〈
j

∣∣∣∣ ∂∂x
∣∣∣∣ f 〉 � − ih̄

m

(
p̂x

)
jf

,

i.e., (
p̂x

)
jf
� −imωjf xjf .

Below we also use the regular summation of the matrix elements, so that∑
f ajf bfj � (ab)jj . On the basis of the above relations we have∑

f

(xjf )2 � (x2)jj � 1
3 (r

2)jj . (1.30)

Next, ∑
f

ωjf (xjf )2 � i

m

∑
f

(p̂x)if xjf � i

m
(p̂xx)jj .

In the same way we obtain∑
f

ωjf (xjf )2 � −
∑
f

ωfj (xjf )2 � − i

m
(xp̂x)jj .

Summation of these relations yields∑
f

ωjf (xjf )2 � i

2m
(p̂xx − xp̂x)jj � h̄

2m
. (1.31)

Take the subsequent relation∑
f

ω2
jf (xjf )2 � 1

m2

∑
f

(p̂x)jf (p̂x)fj � 1

m2
(p̂2

x)jj .
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Because of the spherical symmetry of this problem (p̂2
x)jj � (p̂2

y)jj � (p̂2
z )jj , we

have (p̂2
x)jj � (2m/3)(εj − Vjj ), where Vjj � 〈j |V | j〉. Thus, we have∑

f

ω2
jf (xjf )2 � 2

3m
(εj − Vjj ). (1.32)

For the next sum
∑

f ω3
jf (xjf )2 we use the classical relation md2x/dt2 � F �

−∂V/∂x, so that the matrix form of this expression is the following:

ω2
jf xjf �

1

m

(
∂V

∂x

)
jf

.

Hence ∑
f

ω3
jf (xjf )2 � i

m2

∑
f

(
p̂x

)
jf

(
∂V

∂x

)
fj

� i

m2

(
(p̂x)

∂V

∂x

)
jj

� − i

m2

(
∂V

∂x
p̂x

)
jj

� i

m2

(
(p̂x)

∂V

∂x
− ∂V

∂x
p̂x

)
jj

� h̄

2m2

(
∂2V

∂x2

)
jj

� h̄

6m2
(
V )jj .

From the Poisson equation it follows that 
V � 4πe2ρ(r), where ρ(r) is the
charge density of the atomic core. Thus, we find∑

f

ω3
jf (xjf )2 � 2πh̄

3m2
〈j |ρ(r)| j〉 .

In particular, if the field of the atomic core is determined by the Coulomb field of
the nucleus of a charge Z, i.e., ρ(r) � Zδ(r), this relation is transformed to∑

f

ω3
jf (xjf )2 � 2πh̄

3m2

∣∣ψj (0)
∣∣2 , (1.33)

where ψj (r) is the wave function of the related state.
The last evaluated sum is∑

f

ω4
jf (xjf )2 � 1

m2

∑
f

(
∂V

∂x

)
jf

(
∂V

∂x

)
fj

� 1

m2

〈
j

∣∣∣∣∣
(
∂V

∂x

)2
∣∣∣∣∣ j
〉

� 1

3m2

〈
j
∣∣(∇V )2

∣∣ j 〉 . (1.34)

Note that near the nucleus ∇V � Zer/r3, where Z is the nucleus charge, so that
this matrix element is ∼ r−4 at small r . Hence, if the wave function of a related
state j is const at small r , this sum diverges. Practically, this sum does not diverge
if the electron angular momentum is not zero.

Problem 1.2. In the classical limit find the radiation intensity resulting from the
interaction of an atomic particle with the field of another particle.
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Using formulas (1.25), (1.26) we have, for the intensity of radiation as a result of
the interaction of an atomic particle with the field of a structureless particle, when
the internal state of the radiating particle is not changed (gf � 1)

Ij �
∑
εj>εf

h̄ω

τfj
�
∑
εj>εf

4ω4

3c3
|〈j |D| f 〉|2 � 4

3c3

∑
εj>εf

∣∣∣∣〈j ∣∣∣∣d2D
dt2

∣∣∣∣ f 〉∣∣∣∣2 ,
where we use the relation for matrix elements

〈
j
∣∣d2D/dt2

∣∣ f 〉 � −ω2 〈j |D| f 〉.
Summation is made over states whose energy is less than the energy of the initial
state.

We use that, in the classical limit, transitions proceed in close states by energy.
Hence, the sum is symmetric with respect to εj > εf and εj < εf , so that∑

εj>εf

∣∣∣∣〈j ∣∣∣∣d2D
dt2

∣∣∣∣ f 〉∣∣∣∣2 � 1

2

∑
f

∣∣∣∣〈j ∣∣∣∣d2D
dt2

∣∣∣∣ f 〉∣∣∣∣2 � 1

2

〈
j

∣∣∣∣∣
(
d2D
dt2

)2
∣∣∣∣∣ j
〉
.

Next, in the classical limit the diagonal matrix element of an operator coincides
with its physical value, i.e., we have, for the radiation intensity,

I � 2

3c3

(
d2D
dt2

)2

. (1.35)



CHAPTER 2

The Hydrogen Atom

2.1 The System of Atomic Units

The goal of this book is to analyze the properties of atomic particles as systems
consisting of heavy charged nuclei and electrons. Because atoms and ions are
quantum systems, their description is based on the Schrödinger equation for atomic
electrons. Let us start from the simplest atomic system—the hydrogen atom. This
system consists of one bound electron which is located in the Coulomb field of a
charged nucleus. At first, for simplicity, we assume the nuclear mass to be infinite.
Then the behavior of one bound electron is described by the following Schrödinger
equation:

− h̄2

2m

	 − e2

r
	 � ε	, (2.1)

where r is the distance of the electron from the center, h̄ is the Plank constant, e
is the electron charge, m is the electron mass, and ε is the electron energy which
is the eigenvalue of this equation.

Equation (2.1) contains the three-dimensional parameters: h̄ � 1.05457 ·
10−34 J · s, e � 1.60218 · 10−19 C, and m � 9.10939 · 10−31 kg. One can compose
only one combination of any dimensionality from these parameters. Values of var-
ious dimensionalities constructed from the above parameters form the so-called
system of atomic units. Some values of the system of atomic units are given in Ta-
ble 2.1. This system is convenient for the analysis of atomic particles because their
parameters usually are of the order of typical atomic values or expressed through
them. Hence, atomic units will be used throughout most of this book. In particular,
note that a typical atomic velocity is of the order of e2/h̄ � 2 · 106 m/s, that is,
remarkably smaller that the light velocity c � 3 · 108 m/s. This means the possi-
bility in the first approach of neglecting the relativistic effects for the description



2.2 Electron States of the Hydrogen Atom 31

Table 2.1. The system of atomic units.

Parameter Symbol, expression Value

Length ao � h̄2/(me2) 5.2918 · 10−11 m

Velocity vo � e2/h̄ 2.1877 · 106 m/s

Time τo � h̄3/(me4) 2.4189 · 10−17 s

Frequency νo � me4/h̄3 4.1341 · 1016 s−1

Energy εo � me4/h̄2 4.3598 · 10−18 J

Power εo/τ � m2e8/h̄5 0.180 W

Electric potential ϕo � me3/h̄2 27.212 V

Electric field strength Eo � me5/h̄4 5.1422 · 1011 V/m

Linear momentum po � me2/h̄ 1.9929 · 10−24 kg ·m/s

Number density No � a−3
o 6.7483 · 1030 m−3

Volume Vo � a3
o 1.4818 · 10−31 m3

Cross section σo � a2
o 2.8003 · 10−21 m2

Rate constant ko � voa
2
o � h̄3/(m2e2) 6.126 · 10−15 m3/s

Electric current I � e/τ � me5/h̄3 6.6236 · 10−3 A

Particle flux jo � Novo � m3e8/h̄7 1.476 · 1037 m−2s−1

Electric current density io � eNovo � m3e9/h̄7 2.3653 · 1018 A/m2

Energy flux J � εoNovo � m4e12/h̄9 6.436 · 1019 W/m2

of atomic particles until the relevant properties are determined by valent electrons.
This corresponds to the usage of a small parameter

α � e2

h̄c
� 0.007295 � (137.036)−1. (2.2)

The small parameter (2.2) is named the constant of fine structure. This small
parameter allows us to consider the hydrogen atom as a nonrelativistic system.

2.2 Electron States of the Hydrogen Atom

The electron states of the hydrogen atom include both a spatial electron distribution
and its spin state. In the nonrelativistic approach the electron spin state does not
correlate with its spatial distribution. Therefore spin coordinates of the electron
are not included in the Schrödinger equation (2.1). This allows one to describe the
electron spin state by a spin projection onto a given direction σ � ± 1

2 . Then the
spin state does not depend on a spatial wave function of the electron.
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The variables of the Schrödinger equation (2.1) are separated into spherical
coordinates. Then the spatial electron wave function has the form

	(r, θ, ϕ) � R(r)Ylm(θ, ϕ), (2.3)

where the origin is located in the nucleus, r is a distance of the electron from the
center, θ is the polar angle, and ϕ is the azimutal angle. The angular wave function
satisfies the Schrödinger equation

∂

∂ cos θ

(
sin2 θ

∂Ylm

∂ cos θ

)
+ 1

sin2 θ

∂2Ylm

∂ϕ2
+ l(l + 1)Ylm � 0 (2.4)

and is given by the expression

Ylm(θ, ϕ) �
[
2l + 1

4π

(l −m)!

(l +m)!

]1/2

Pm
l (cos θ ) exp(imϕ). (2.5)

Here the electron angular momentum l can be a whole number

l � 0, 1, 2, . . . , (2.6)

and the momentum projection m can have the following values:

m � −l,−(l − 1), . . . , l − 1, l. (2.7)

In formula (2.5) Pm
l (cos θ} is the Legendre function and the electron angular wave

function is normalized in the following way:∫ +1

−1

∫ 2π

0
|Ylm(θ, ϕ)|2 d cos θdϕ � 1. (2.8)

The angular wave functions are given in Table 2.2 for small values of l and m.
Note that the requirement of the whole value for the quantum number m can be
obtained from expression (2.5) for the angular wave function and from the physical
condition Ylm(θ, ϕ) � Ylm(θ, ϕ+2π). Then l is introduced as a possible maximum
m in accordance with (2.7), and l can have only positive whole values.

Being expressed in atomic units, l is the orbital electron moment and m is its
projection onto a given direction. It is of importance that l and m are quantum
numbers of the electron, i.e., they can have only certain values. The radial elec-
tron wave function according to equation (2.1) and expansion (2.3) satisfies the
Schrödinger equation

1

r

d2

dr2
(rR)+

[
2ε + 2

r
− l(l + 1)

r2

]
R � 0. (2.9)

Note that the usage of atomic units in equation (2.9) simplifies the obtained
expression.

The analysis of this equation allows one to determine the energy spectrum of the
electron. In bound states the electron motion is restricted by a finite space region.
Hence, at large distances from the atom center one can neglect the two last terms
of equation (2.9). Then from the solution of the modified equation it follows that
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Table 2.2. The angular wave function of the hydrogen atom.

l m Ylm(θ, ϕ)

0 0
1√
4π

1 0

√
3

4π
· cos θ

1 ±1 ±
√

3

8π
· sin θ · exp(±iϕ)

2 0
1

4

√
5

π
·
(

3

2
cos2 θ − 1

)

2 ±1 ±
√

15

8π
· sin θ · cos θ · exp(±iϕ)

2 ±2
1

2

√
15

8π
· sin2 θ · exp(±2iϕ)

3 0
1

4

√
7

π
· (5 cos3 θ − 3 cos θ )

3 ±1 ±1

8

√
21

π
· sin θ · (5 cos2 θ − 1) exp(±iϕ)

3 ±2
1

4

√
105

2π
· sin2 θ cos θ · exp(±2iϕ)

3 ±3 ±1

8

√
35

π
· sin3 θ · exp(±3iϕ)

4 0

√
9

4π
·
(

35

8
cos4 θ − 15

4
cos2 θ + 3

8

)

4 ±1 ±3

8

√
5

π
· sin θ · (7 cos3 θ − 3 cos θ) · exp(±iϕ)

4 ±2
3

8

√
5

2π
· sin2 θ · (7 cos2 θ − 1) · exp(±2iϕ)

4 ±3 ±3

8

√
35

π
· sin3 θ · cos θ · exp(±3iϕ)

4 ±4
3

16

√
35

2π
· sin4 θ · exp(±4iϕ)
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the strongest dependence of the wave function on a distance r has the form

R ∼ exp[±
√

(−2ε)r].

Because the region of the electron motion is restricted, it is necessary to conserve
only the sign minus in this expression at ε < 0 (the electron energy is negative).
Based on this, let us represent the radial electron wave function in the form

R(r) � 1

r
exp

[
−
√

(−2ε)r
]
f (r), (2.10)

so that the function f (r) satisfies the equation

f ′′ − 2
√

(−2ε)f ′ + 2

r
f − l(l + 1)

r2
f � 0. (2.11)

Because the wave function is finite at large distances from the center, we have
that the function f (r) can grow at large r not sharper than a power function.
Assume

f ∼ rn, r →∞. (2.12)

Then from equation (2.11) it follows that

ε � − 1

2n2
, (2.13)

and equation (2.11) takes the form

f ′′ − 2

n
f ′ + 2

r
f − l(l + 1)

r2
f � 0. (2.14)

Note that the normalization condition of the wave function has the form∫ ∞

0
R2(r)r2 dr � 1.

From this it follows that function f (r) must be finite at r → 0. This allows one to
neglect the second and third terms of equation (2.11) compared to the first term of
this equation in the limit r → 0. A general solution of the obtained equation has
the form, at small r ,

f � C1r
l+1 + C2r

−l .

The above condition gives C2 � 0. This leads to an additional requirement for the
function f (r) and the parameter n. Indeed, from this it follows that function f (r)
has the form of a polynomial, and n must be whole, so that

f (r) �
n∑

k�l+1

akr
k,

where ak are numerical coefficients. From this it follows that

n ≥ l + 1. (2.15)
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For instance, in the simplest case l � 0, equation (2.14) takes the form

f ′′ − 2

n
f ′ + 2

r
f � 0,

and its solution for a normalized wave function is

f � Cr, n � 1; f � C(r2 − 2r), n � 2, etc.

where C is the normalization constant. In a general case the radial wave function
of the electron in the hydrogen atom has the form

Rnl(r) � 1

nl+2

2

(2l + 1)!

√
(n+ l)!

(n− l − 1)!
(2r)l

× exp
(
− r

n

)
F

(
−n+ l + 1, 2l + 2,

2r

n

)
, (2.16)

where F is the degenerated hypergeometric function. The expressions of the radial
wave function of the electron for the hydrogen atom are given in Table 2.3 for the
lowest electron states.

Let us sum up the above results. Because n is a whole number, the electron
energy takes discrete values according to formula (2.13). Then the lower energetic
state of the hydrogen atom corresponds to n � 1, l � 0, ε � −1/2, in accordance
with formulas (2.6), (2.13), and (2.15). The lowest atomic state is called the ground
atomic state. From this it follows that the electron binding energy for the ground
state of the hydrogen atom is equal to me4/(2h̄2) � 13.6 eV. The spatial state of
the electron in the hydrogen atom is characterized by three quantum numbers n,
l, m. These numbers, together with the spin projection onto a given direction σ ,
are called the electron quantum numbers. The number n is called the principal
quantum number; the numbers n and l are whole positive numbers and, according
to formulas (2.6), (2.7), (2.15), we have n ≥ l + 1; l ≥ |m|. Usually the electron
state in the hydrogen atom is characterized only by the quantum numbers n and l,
because the states of the hydrogen atom are degenerated for the quantum numbers
m and σ , i.e., the same electron energy corresponds to different values of m and
σ at the same values of n and l. Therefore for notation of the electron states of
the hydrogen atom only the quantum numbers n and l are used usually. Then the
principal quantum number is given first, and then the notations s, p, d, f, g, h, etc.,
are given for states with l � 0, 1, 2, 3, 4, 5. For example, the ground state of the
hydrogen atom is denoted as 1s (n � 1, l � 0), and the notation 5g corresponds
to n � 5, l � 4.

Thus, the electron states of the hydrogen atom are degenerated because dif-
ferent values of m and σ correspond to the same electron energy. The degree of
degeneration, i.e., the number of states with the same energy, is equal to

2
n−1∑
l�0

(2l + 1) � 2n2, (2.17)
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Table 2.3. Radial wave functions Rnl of the hydrogen atom.

State Rnl

1s 2 exp(−r)

2s
1√
2

(
1− r

2

)
exp(−r/2)

2p
1√
24

r exp(−r/2)

3s
2

3
√

3

(
1− 2r

3
+ 2r2

27

)
exp(−r/3)

3p
2

27

√
2

3
· r
(
1− r

6

)
exp(−r/3)

3d
4

81
√

30
· r2 exp(−r/3)

4s
1

4

(
1− 3r

4
+ r2

8
− r3

192

)
exp(−r/4)

4p
1

16

√
5

3
· r ·

(
1− r

4
+ r2

80

)
exp(−r/4)

4d
1

64
√

5
· r2 ·

(
1− r

12

)
exp(−r/4)

4f
1

768
√

35
· r3 · exp(−r/4)

where 2l + 1 is a number of projections of the orbital momentum onto a given
direction and 2 is the number of spin projections onto a given direction. Relativistic
interactions can lead to the partial elimination of degeneration. The above wave
functions allow one to obtain the average parameters of various states of the hydro-
gen atom. Table 2.4 contains analytical expressions for some average parameters
and Table 2.5 gives numerical values for the parameters of the lowest states of the
hydrogen atom.

2.3 Fine Splitting of Levels of the Hydrogen Atom

Let us consider the splitting of levels of the hydrogen atom resulting from the
simplest relativistic interaction in the atom—the interaction of the electron spin and
orbital motion of the electron. This interaction is called the spin-orbit interaction
and the corresponding splitting of levels is named the fine splitting of levels. The
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Table 2.4. Average values of degrees from the electron radius-vector in the hydrogen atom
〈rn〉 � ∫∞0 R2

nl(r)r
n+2 dr .

Parameter Expression

〈r〉 1

2
· [3n2 − l(l + 1)

]
〈
r2
〉 n2

2
· [5n2 + 1− 3l(l + 1)

]
〈
r3
〉 n2

8
· [35n2(n2 − 1)− 30n2(l + 2)(l − 1)+ 3(l + 2)(l + 1)l(l − 1)

]
〈
r4
〉 n4

8
· [63n4 − 35n2(2l2 + 2l − 3)+ 5l(l + 1)(3l2 + 3l − 10)+ 12

]
〈
r−1
〉 1

n2

〈
r−2
〉 1

n3(l + 1/2)〈
r−3
〉 1

n3(l + 1) · (l + 1/2) · l〈
r−4
〉 3n2 − l (l + 1)

2n5 · (l + 3/2) · (l + 1) · (l + 1/2) · l · (l − 1/2)

Table 2.5. Average parameters of the hydrogen atom.

State 〈r〉 〈r2〉 〈r3〉 〈r4〉 〈r−1〉 〈r−2〉 〈r−3〉 〈r−4〉
1s 1.5 3 7.5 22.5 1 2 — —

2s 6 42 330 2880 0.25 0.25 — —

2p 5 30 210 1680 0.25 0.0833 0.0417 0.0417

3s 13.5 207 3442 6.136·104 0.111 0.0741 — —

3p 12.5 180 2835 4.420·104 0.111 0.0247 0.0123 0.0137

3d 10.5 126 1701 2.552·104 0.111 0.0148 0.0247 5.49·10−3

4s 24 648 18720 5.702·105 0.0625 0.0312 — —

4p 23 600 16800 4.973·105 0.0625 0.0104 5.21·10−3 5.49·10−4

4d 21 504 13100 3.629·105 0.0625 0.00625 1.04·10−3 2.60·10−4

4f 18 360 7920 1.901·105 0.0625 0.00446 3.72·10−4 3.7·10−5
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spin-orbit interaction results from the interaction of the spin magnetic moment
and a magnetic field which is due to the electron motion in an electrical field. The
corresponding interaction potential is

V̂ � − eh̄

mc
ŝĤ, (2.18)

where ŝ is the electron spin operator, eh̄/2mc is the Bohr magneton, so that
2eh̄ŝ/mc is the electron magnetic momentum, andH is the magnetic field strength.

The magnetic field strength in the frame of axes where the electron is at rest is
given by the Lorenz formula

Ĥ � 1

c
[Ev̂] � 1

c

[
er
r3
× p̂

m

]
� eh̄

mc

l̂
r3

,

where E � er/r3 is the electric field strength which is created by the central
charge on a distance r from it and v̂, p̂, l̂ are the operators of the electron velocity,
momentum, and orbital momentum, respectively. From this it follows that for the
interaction operator,

V̂ � −
(
eh̄

mc

)2 1

r3
· l̂ŝ.

The above consideration is not consistent because we based it on classical laws
for the analysis of a quantum system. It leads to an error in the numerical factor
of the resultant expression. The consistent, but more cumbersome method for
obtaining this expression from the relativistic quantum equation of the electron
motion changes the numerical factor in the above expression

V̂ � −1

2

(
eh̄

mc

)2 1

r3
l̂ŝ. (2.19)

As a matter of fact, formula (2.19) describes the interaction of two magnetic
momenta and has the form V̂ � −m̂1 · m̂2/r

3, where m̂1 � eh̄l̂/(2mc) is the
operator of the magnetic moment due to the orbital motion of the electron, and
m̂2 � eh̄ŝ/(mc) is the operator of the magnetic moment due to the electron spin.
Thus the spin-orbit interaction can be represented as an interaction of magnetic
momenta. From (2.19) it follows that the ratio of the spin-orbit splitting and a
typical electron energy is of the order of the square of the small parameter (2.2),
i.e., this ratio is of the order of 10−4. Taking into account the interaction (2.19),
we obtain, as a new quantum number the total electron momentum which is a sum
of the orbital and spin momenta,

ĵ � l̂+ ŝ.

Thus, instead of the set of electron quantum numbers lmsσ (s � 1/2 is the
electron spin) we obtain the new set of quantum numbers jmj ls, where mj is
the projection of the total electron momentum onto a given direction. Because the
maximum projection of the total electron momentum mj is l + 1/2 or l − 1/2,
depending on the mutual direction of the electron spin and orbital momentum, we
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have j � l± 1/2. In the representation of the total electron momentum, the mean
value of the operator l̂ŝ follows from the relation〈

ĵ2
〉
�
〈
l̂2
〉
+ 2

〈
l̂ŝ
〉
+ 〈ŝ2〉 ,

where the angle brackets mean the averaging over this state. From this we obtain

2
〈
l̂ŝ
〉
� j (j + 1)− l(l + 1)− s(s + 1).

Because j � l ± 1/2, the spliting of the level of a state with the orbital electron
momentum l is equal


εf � 2l + 1

4

(
eh̄

mc

)2 〈 1

r3

〉
.

On the basis of the expression
〈
1/r3

〉 � [n3(l + 1)(l + 1/2)l]−1 for the hydrogen
atom we obtain for the fine splitting of levels of the hydrogen atom in atomic units


εf �
(
e2

h̄c

)2
1

2n3l(l + 1)
. (2.20)

Thus, the fine splitting of levels of the hydrogen atom is determined by the
interaction of the spin and orbital momenta of the electron. It is absent for states
with zero orbital momentum and drops with increase both the principal quantum
number and orbital momentum. For the hydrogen atom state with n � 2, l � 1 this
splitting is maximal and its ratio to the ionization potential of the hydrogen atom
in the ground state is equal to [e2/(h̄c)]2/4 � 1.33 · 10−5. This proves a weakness
of the relativistic interactions for the hydrogen atom.

2.4 The Lamb Shift

The other type of relativistic interaction which causes the splitting of the hydrogen
atom levels l � 0 and l � 1 (j � 1/2) is determined by the interaction of electron
motion in an electric field of the central charge with the electromagnetic field of a
vacuum. This splitting is called the Lamb shift. The principal significance of the
Lamb shift is such that itwas one of the first real confirmations of the vacuumnature
and allows one to present a vacuum as a set of zero oscillations of electromagnetic
waves.

Let us determine the shift of the energy of a bound electron as a result of an
electron “trembling” under the action of zero vibrations of the vacuum. Denote by
δr a shift of the electron coordinate under the action of a vacuum field. Then the
corresponding change of the Hamiltonian δĤ describing the electron behavior is

δĤ �
∑
i

∂V̂

∂xi
δxi + 1

2

∑
i,k

∂2V̂

∂xi∂xk
δxiδxk,
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where V̂ is the interaction potential of the electron and the atomic core, and xi , xj
are components of the vector r.

Because the electron shift is a random value, its average value is equal to zero:
〈δxi〉 � 0, 〈δxiδxk〉 � 0, if i � k. The symmetry of the system gives 〈δx2

i 〉 �
δr2/3, and in the first order of the perturbation theory the electron energy shift 
ε

is equal to


ε � 1

6

〈∑
i

∂2V̂

∂r2

〉 〈
δr2
〉
.

The Poisson equation for the electric potential of the core ϕ has the form 
ϕ �
4πρ(r), where ρ(r) is the nucleus density. Taking ρ � Zδ(r), where Z is the core
charge, and accounting for V̂ � −ϕ we obtain


ε � −2π

3
Z |ψ(0)|2 〈δr2

〉
(2.21)

As is seen, the Lamb shift in the related approach of the perturbation theory
takes place only for zero orbital momentum of the electron because, in other cases,
ψ(0) � 0. Hence below we are restricted by the case l � 0 and use the expression
for the electron wave function at the origin |ψ(0)|2 � Z3/(πn3), that gives


ε

Jn
� 4

3

Z2

n

〈
δr2
〉
,

where Jn � Z2/(2n2) is the ionization potential for a given state.
An action of the vacuum electromagnetic field is included in the term 〈δr2〉.

Because the electron “trembling” due to each frequency is random, we have
〈δr2〉 � ∑

ω〈δr2
ω〉, where δrω is the electron vibration amplitude under the ac-

tion of electromagnetic waves of frequency ω. Assuming ω 
 ωo, where ωo is a
typical atomic frequency, we have the following equation for the electron motion

m
dδrω
dt2

� Eωe
iωt ,

where Eω is the electric field strength. From this it follows that

|δrω|2 � |Eω|2 /ω4 and
〈
δr2
〉 �∑

ω

|Eω|2
ω4

.

A number of states of the vacuum electromagnetic field per unit of phase space is
equal to

dn � 2
dk dr
(2π )3

� ω2 dω dr
π2c3

,

where k � ω/c is the wave vector of the electromagnetic wave and dr is the space
element. From this we have 〈

δr2
〉 � ∫ |Eω|2 dω dr

π2c3ω2
.
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Since |Eω|2 dr/(4π ) is the energy density for electromagnetic oscillations
of a given frequency and h̄ω/2 is the energy of zero oscillations, we have
|Eω|2 dr/(4π ) � h̄ω/2, and this gives〈

δr2
〉 � 2

πc3

∫
dω

ω

This integral has a logarithmic divergence. Since we used the motion equation of
a free electron for a bound one, it is necessary to use a typical atomic frequency
ω ∼ ωo as the lower limit; the upper limit we take from the relation h̄ω ∼ mc2,
because the virtual electron transition under the action of such a frequency leads to
an increase in the electron mass, i.e., the oscillation amplitude is less than the used
one. Thus with the logarithmic accuracy, we have, for the Lamb shift of s-level of
the hydrogen atom or hydrogenlike ion (in the usual units),


ε

Jn
� 8Z2

3πn

(
e2

h̄c

)3
[
ln

(
h̄c

Ze2

)2

+ C

]
.

This used method does not allow us to determine the numerical coefficientC which
is of the order of unity and is small compared to the logarithmic term. Table 2.6
lists values ofC for the excited states obtained on the basis of the accurate method.
On the basis of the Table 2.6 data, the above formula for the Lamb shift of the
hydrogen atom or hydrogenlike ion can be written in the form


ε

Jn
� 8Z2

3πn

(
e2

h̄c

)3

[7.6− 2 lnZ] . (2.22)

The accuracy of this formula for the hydrogen atom and helium ion is
approximately 1%. Note that the Lamb shift for the hydrogen atom with n � 2
is 0.0353cm−1 and corresponds to the difference of energies of 2s1/2 and 2p1/2-
levels, while the spin-orbit splitting respects to the distance 0.366cm−1 between
the levels 2p1/2 and 2p3/2.

2.5 Superfine Splitting and the Isotope Shift of Levels
of the Hydrogen Atom

The superfine splitting of atomic levels corresponds to the interaction of the orbital
electron momentum and the nucleus spin. As a result of this interaction, the total
atom momentum F becomes a quantum atomic number which is a sum of the total
electron momentum j and nucleus spin I . The superfine splitting is determined

Table 2.6. Values of the numerical parameter C for excited states of the hydrogen atom.

n 1 2 3 4 ∞
A −2.351 −2.178 −2.134 −2.116 −2.088
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by the interaction of the electron magnetic moment μe and the nuclear magnetic
moment μi . This interaction can be estimated as V ∼ μeμi/r

3. This gives an
estimate for the superfine splitting


εsf ∼
〈

1

r3

〉
eh̄

mc

eh̄

Mc
, (2.23)

where M is the nuclear mass. As is seen, the superfine splitting contains an addi-
tional small parameterm/M and is, by three–four orders of magnitude, lower than
the fine splitting of atomic levels. If the electron orbital moment is zero, we have
a “contact” interaction of momenta, and the above estimation contains a factor
a−3
o instead of 1/r3. In addition, the quadrupole nuclear moment can be essential

in some cases of electron–nucleus interaction. Usually the superfine splitting of
levels is small compared to the fine one, i.e., this interaction conserves the electron
quantum numbers of more strong interactions.

Alongwithmagnetic interactions, the isotope shift of levels can be of importance
for their positions. The essential part of the isotopic shift is due to a finite nuclear
mass. Indeed, the reduced mass of the electron and nucleus, which must be used
in the Schrödinger equation (2.1) instead of the electron massm, is equal tom(1−
m/M). This must be included in all the expressions for electron energies, instead
of the electron mass m, that lead to the isotopic shift of levels of the order of

ε ∼ εm/M , where ε is a typical atomic energy.

The difference of the wavelengths for identical radiative transitions and different
nuclei-isotopes is equal to λ1 − λ2 � λ(m/M1 − m/M2), where λ1, λ2 are the
transition wavelengths for the related isotopes, M1, M2 are the nuclear masses in
these cases, and λ is the wavelength of the transition for an infinite nuclear mass.
In the case of a proton and deuteron m/M1 − m/M2 � 2.72 · 10−4. This shift
characterizes the relative difference of the wavelengths for identical transitions.
The other mechanism of the isotope shift is determined by a nucleus size. But this
effect is essential only for heavy atoms. Note that because nuclei-isotopes have
different nuclear momenta, this leads to a different superfine splitting of levels.
Thus, this leads to a superfine structure of levels.

2.6 Radiative Transitions of the Hydrogen Atom and the
Grotrian Diagrams

The radiation spectrum of atomic particles contains essential information about
the character of the interaction in the atom because of the high accuracy of the
wavelengths of radiative transitions. The probability of a spontaneous radiative
transition per unit time is given by formula (1.26):

Bfj � 1

τfj
� 4ω3

h̄c3

∣∣(Dx)fj
∣∣2 gj , (2.24)
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whereω is the transition frequency,Dx is the projection of the operator of the dipole
moment onto the direction of radiation polarization, gj is the statistical weight of
the final state, and the matrix element is taken between the initial and final states
of the transition. This formula accounts for the first term of expansion of this rate
over a small parameter v/c, where v is a typical electron velocity. Hence, restricted
by dipole radiative transitions, we extract the strongest radiative transitions for a
nonrelavitistic atomic system. Being guided by such systems, we are restricted by
the dipole radiative transitions, and we will consider as forbidden other types of
interactions in atomic systems which are weak compared to the dipole interactions
for nonrelavitistic systems.

Let us analyze the selection rules for the dipole radiative transitions of the
hydrogen atom. The operator of the electron dipole moment is er, where r is
the radius-vector of the electron. Then the selection rules are determined by the
properties of the matrix element for the angular wave function (2.5), and give


l � ±1, 
m � 0,±1. (2.25)

The observational spectrum of radiation and absorption of the hydrogen atom
respects to the above selection rules.

The convenient characteristic of a radiative transition is the oscillator strength,
which is introduced on the basis of the following formula (in usual units),

fjf � 2mω

3h̄
|〈j |D| f 〉|2 gf . (2.26)

It is of importance that the oscillator strength is a dimensionless parameter which
satisfies the sum rule. In the case of the hydrogen atom this rule has the form (1.31)∑

f

fjf � 1, (2.27)

where summation is made over both the discrete and continuous states of an elec-
tron in the Coulomb field of the nucleus. The oscillator strength is connected with
the Einstein coefficient Af i � 1/τf i by the relation

fjf � 1.499 · 10−14Bfjλ
2 gf

gj
. (2.28)

Table 2.7 gives quantities of the oscillator strength and radiative lifetimes τfj �
1/Bfj for transitions between the lowest states of the hydrogen atom.

It is convenient to give the positions of atomic levels together with the radiation
and absorption atomic spectrum on the basis of the diagram in Fig. 2.6 for the
hydrogen atom. Such a diagram extracts levels of the same symmetry so that the
corresponding atomic states are characterized by the same quantum numbers. This
diagram is called the Grotrian diagram and is used for the analysis of atomic states.
The Grotrian diagram separates atomic states in groups with identical quantum
numbers and includes information about both low atomic states and the radiative
transition involving them.Therefore,wewill useGrotrian diagrams for the analysis
of various atoms.



44 2. The Hydrogen Atom

Fi
gu

re
2.

1.
T
he

G
ro

tr
ia

n
di

ag
ra

m
fo

r
th

e
hy

dr
og

en
at

om
.



2.7 Classical Electron in the Coulomb Field 45

Table 2.7. Parameters of radiative transitions of the hydrogen atom.

Transition fjf τfj , ns Transition fjf τfj , ns

1s–2p 0.4162 1.6 3p–4s 0.032 230

1s–3p 0.0791 5.4 3p–4d 0.619 36.5

1s–4p 0.0290 12.4 3p–5s 0.007 360

1s–5p 0.0139 24 3p–5d 0.139 70

2s–3p 0.4349 5.4 3d–4p 0.011 12.4

2s–4p 0.1028 12.4 3d–4f 1.016 73

2s–5p 0.0419 24 3d–5p 0.0022 24

2p–3s 0.014 160 3d–5f 0.156 140

2p–3d 0.696 15.6 4s–5p 0.545 24

2p–4s 0.0031 230 4p–5s 0.053 360

2p–4d 0.122 26.5 4p–5d 0.610 70

2p–5s 0.0012 360 4d–5p 0.028 24

2p–5d 0.044 70 4d–5f 0.890 140

3s–4p 0.484 12.4 4f–5d 0.009 70

3s–5p 0.121 24 4f–5g 1.345 240

2.7 Classical Electron in the Coulomb Field

Let us consider the behavior of an electron in a bound or free state when its energy
is small compared to a typical atomic energy. This corresponds to both highly
excited hydrogen atom and to a free slow electron which moves in the Coulomb
field. In both cases the electron behavior is described by classical laws. The electron
wave functions in these cases are used for determination of the cross section of
transitions in these states. Below we determine the wave function of the electron
in the classical region of its motion. For a highly excited atom this is given by
formula (2.16) which has the form, in the limit n→∞ in the region r � n2 (we
assume the nucleus charge to be unity),

Rnl(r) � 1

nl+2

2

(2l + 1)!

√
(n+ l)!

(n− l − 1)!
(2r)l exp

(
− r

n

)

× F

(
−n+ l + 1, 2l + 2,

2r

n

)

�
√

2

n3r
J2l+1

(√
8r
)
. (2.29)
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From this we have in the region (l+ 1/2)2 � r � n2, where the electron binding
energy is small compared to theCoulomb interaction potential between the electron
and nucleus

Rnl(r) � 21/4

π1/2n3/2r3/4
cos

[√
8r − (2l + 1)

π

2
− π

4

]
. (2.30)

The classical region of the electron motion is r1 ≤ r ≤ r2, where r1, r2 are the
turning points. Their positions are determined by the expressions r1,2 � n2 ±√
n2 − l(l + 1). In this region the electron wave function has the form

Rnl(r) � 21/2

π1/2n3/2r
· cos

⎡⎣∫ r

r1

dr ′

√
2

r ′
− 1

n2
− (l + 1/2)2

r ′2
− π

4

⎤⎦
� 21/2

π1/2n3/2r
· cos�, (2.31)

� �
√

2r − r2

n2
−
(
l + 1

2

)2

+ n arcsin

[
r − n2

n
√
n2 − (l + 1/2)2

]

−
(
l + 1

2

)
arcsin

⎛⎝ n[r − (l + 1
2 )

2}
r

√
n2 − (l + 1

2

)2
⎞⎠+ (n− l − 1)

π

2
.

Considering the motion of a free electron, let us expand its wave function ψq on
spherical angular functions

ψq � 1

2q

∞∑
l�0

il(2l + 1)eiδlRql (r)Pl(cos θqr), (2.32)

where q is the electron wave vector, δl is the scattering phase, and θqr is the angle
between the vectors q and r. Using the normalization condition for the electron
wave function ∫

ψq(r)ψ∗q′ (r) � (2π )3δ(q− q′),

we have the following normalization condition for radial wave functions∫ ∞

0
Rql(r)Rq ′l(r)r

2 dr � 2πδ(q − q ′).

In the absence of an interaction between the electron and nucleus, the expansion
of this function has the form of a plane wave

ψq(r) � eiqr �
√

π

2qr

∞∑
l�0

il(2l + 1)Jl+1/2(qr)Pl(cos θqr). (2.33)
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Because in the limit x → ∞ we have Jl+1/2(x) � √2/(πx) sin(x − πl/2), the
radial wave function has the form, far from the center,

Rql(r) �
√

π

2qr
Jl+1/2(qr) � 2

r
sin(qr − πl/2). (2.34)

In a general case, the radial wave function of a free electron which moves in the
Coulomb field of a nucleus center has the form

Rql(r) �
√

8πq

1− exp(−2π/q)
·

l∏
s�1

√
s2 + 1/q2

· (2qr)l

(2l + 1)!
· eiqr · F

(
i

q
+ l + 1, 2l + 2, 2iqr

)
. (2.35)

Far from the scattered Coulomb center (qr 
 1/q, qr 
 l + 1) this function is
transformed into

Rql(r) � 2

r
cos

[
qr + 1

q
ln(2qr)− π

2
· (l + 1)− π

4
+ δl

]
, (2.36a)

where the scattering phase δl for an electron in the Coulomb field is δl � arg(l +
1− i/q). Near the Coulomb center q2 � 1/r we have

Rnl(r) �
√

4πq

r
· J2l+1(

√
8r), (2.36b)

and in the limiting case l + 1/2 � r � 1/q2 this formula gives

Rnl(r) �
(

8q2

r3

)1/4

cos
[√

8r − (2l + 1)
π

2
− π

4

]
. (2.37)

Comparing the expressions for the radial wave function of the electron in the
bound and free states, we obtain the following formula for their ratio in the region
where the Coulomb potential is higher than both the binding energy of the bound
electron and the energy of the free electron (1/r 
 q2, 1/n2):

Rql(r)/Rnl(r) �
√

2πqn3. (2.38)

This formula is useful for the comparison of parameters which characterize tran-
sitions with the formation of highly excited and ionized states of the hydrogen
atom.

2.8 Photoionization of a One-Electron Atom

The spherical symmetry of the electron wave function in atoms simplifies the anal-
ysis of various processes in them and allows us to exclude angular wave functions
from consideration. The radial wave function of a free electron determines the ma-
trix elementswhich are responsible for the radiative transitions between an electron
bound and free states. As an example of this let us consider the photoionization
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process. If one valent electron partakes in this process, the total cross section of
this process is equal to, according to formula (1.29),

σion � qω

6πc

∫
|〈γ l |r|q〉|2 d�q,

where l is the angular momentum of the electron in the initial state, γ includes
other quantum numbers of the electron, q is the wave vector of the electron in the
final state, and the wave function of the released electron tends to eiqr far from the
atomic core. Using the expansion (2.31) for the final electron state, we express this
cross section through the matrix elements of radial wave functions. The electron
wave function of the initial state has the form

ψl(r) � Rl(r) ·
√

2l + 1

4π
Pl(cos θrs),

where θrs is the angle between vectors r and a direction s onto which the projection
of the electron momentum is equal to zero.

Let us fulfill the integration over angles. We have∫
|〈γ l |r|q〉|2 d�q �

∫
dr dr′rr′ψl(r)ψl(r′)ψq(r)ψ∗q (r′) d�q

� 2l + 1

4π
·
∫

r3 dr(r ′)3 dr ′ cos�rr′Rl(r)Rl(r
′)

· Pl(cos θrs)Pl(cos θr′s) · 1

4q2

×
∑
p,n

(2p + 1)(2n+ 1)ip−nei(δp−δn)Rqp(r)Rqn(r
′)

· Pp(cos θqr)Pn(cos θqr′ ) d�q.

Using the theorem of summation of the Legendre polynomials and the condition
of their orthogonality, we have∫

Pp(cos θqr)Pn(cos θqr′ ) d�q � 4π

(2n+ 1)
δnpPn(cos θrr′ ),

where δnp is the Kronecker delta symbol, and we obtain the following relation:∫
|〈γ l |r|q〉|2 d�q �

∫
d�r d�r′ ·

∑
n

(2l + 1)(2n+ 1)

· |Knl|2 cos θrr′Pl(cos θrs)Pn(cos θr′s).

Here the following notation is used for the matrix element from radial wave
functions:

Knl � 1

2q

∫ ∞

0
r3 drRl(r)Rqn(r). (2.39)

Based on the recurrent relation (2n+ 1)xPn(x) � (n+ 1)Pn+1(x)+ nPn−1(x),
we divide the integral into two parts. Using once more the theorem of summation
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of the Legendre polynomials and the condition of their orthogonality, we find∫
|〈γ l |r|q〉|2 d�q � (4π )2

(2l + 1)

[
lK2

l,l−1 + (l + 1)K2
l,l+1

]
.

From this it follows that for the photoionization cross section

σion � 8πqω

3c(2l + 1)

[
lK2

l,l−1 + (l + 1)K2
l,l+1

]
. (2.40)

Thus, we express the photoionization cross section through the matrix elements
(2.39) which are taken on the radial wave functions of the valent electron only.

2.9 Hydrogenlike Ions

As a matter of fact, the above analysis for the hydrogen atom is suitable for hydro-
genlike ions whose nuclear chargeZ differs from 1. Then it is necessary to change
the parameter e2 in equation (2.1) by Ze2. Making this change in the resultant
expressions, one can transfer from the hydrogen atom to the hydrogenlike ions.
In particular, the electron energy (2.13) in the hydrogenlike ions is, in accordance
with formula (2.13),

ε � −Z2me4

2h̄2n2
. (2.41)

Because we use atomic units, it is possible to transfer in the above expressions to
hydrogenlike ions by the change r → r/Z. As for the behavior of a free electron in
the Coulomb field of a nucleus, the change of the nucleus charge corresponds to the
transformation q → qZ. For example, the electron wave function of the 1s-state
which is given in Table 2.3 for hydrogenlike ions is R10 � 2Z3/2 exp(−Zr), and
the average size of the electron orbit for 1s-state is equal to 〈r〉 � 3/(2Z) according
to the data of Table 2.5. In the same way, one can find other atomic parameters of
hydrogenlike ions and obtain the dependence of these parameters on the nucleus
chargeZ. In particular, the fine and superfine splitting of levels according to (2.20),
(2.23) is
ε ∼ Z4, theLamb shift (2.22) is∼ Z4, the radiative lifetimeof an excited
state due to a one-photon dipole radiative transition is, according to (2.24), ∼ Z4,
etc.

Note that a different Z-dependence for some parameters can lead to a quality
change of atomic properties with an increase in Z. For example, the radiative
lifetime of the 2s-state, which is determined by the two-photon decay of the state, is
equal for the hydrogen atom 0.122 s and remarkably exceeds the radiative lifetime
of the 2p-state which is 1.6 · 10−9 s. Hence the 2s-state is a metastable one. In
the case of multicharged hydrogenlike Fe-ions (Z � 26) the lifetime of the 2s-
state is 3.5 · 10−10 s, while 3.5 · 10−15 s is the lifetime of the 2p-state. For the
multicharged hydrogenlike uranium ions (Z � 92) these lifetimes are respectively
equal, 5.1 ·10−15 s and 2.1 ·10−17 s. At is seen, now the 2s-state is not a metastable
one.
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Problems

Problem 2.1. Determine the shift of the electron energy of the hydrogenlike ions
if the nucleus charge Z is not concentrated in a point, but is distributed uniformly
in a ball of radius ro.

The electric field strength of a uniform charged ball of radius ro is equal to,
according to the Gauss theorem,

E � −Zern/r3
o , r < ro; E � −Zen/r2, r > ro.

where n is the unit vector directed along a line joining the electron and nucleus.
Then the interaction energy between the electron and positive nucleus charge,
which is distributed in a ball of radius ro, is equal to, at a distance r from the
center,

V � −Ze2

ro
·
(

3

2
− r2

2r2
o

)
, r ≤ ro; V � −Ze2

r
, r ≥ ro.

Let us calculate the energy shift within the framework of the perturbation theory
if the zero-th approximation of the perturbation theory corresponds to location of
the nuclear charge at the ball center. Then the perturbation operator in this problem
is equal to

δV � −3Ze2

2ro
+ Ze2r2

2r3
o

+ Ze2

r
, r ≤ ro.

From this we obtain the shift of the electron energy for the first order of the
perturbation theory


ε �
∫

δV |ψ |2 dr � |ψ(0)|2
∫

δV dr � Ze2r2
o

10
|ψ(0)|2 ,

whereψ(0) is the electron wave function in the center. In particular, for the ground
state of the hydrogenlike ions we have ψ(0) � 2(Z/ao)3/2, where ao is the Bohr
radius. This gives


ε � 2

5

Z4e2

ao

(
ro

ao

)2

� 4

5
J

(
Zro

ao

)2

,

where J � Z2e2/2ao is the ionization potential of the ground state of the hydro-
genlike ions. The size of a light nuclei is of the order of ro ∼ 10−13 cm, and hence
the relevant correction is 
ε/J ∼ 10−9 ÷ 10−10. Therefore, for light nuclei, this
correction is small compared to the other effects.

Problem 2.2. Determine the splitting of levels 2s and 2p of the hydrogen atom
in a constant electric field if this splitting remarkably exceeds the fine structure
splitting of the levels, and the level splitting is linear with respect to the electric
field strength.

An electric field eliminates the degeneracy which takes place for states with a
given principal quantum number by neglecting the relativistic effects. Our goal is
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to find the electron eigenwave functions for the hydrogen atom, with respect to the
Hamiltonian,

Ĥ � Ĥo + V,

where Ĥo is the Hamiltonian of the electron in the hydrogen atom and the operator
V is responsible for the interaction of the electron with the electric field and is
equal to V � Er cos θ , whereE is the electric field strength, and r , θ are spherical
electron coordinates. Let us take as a basis the wave functions of the hydrogen
atom for n � 2 in terms of the quantum numbers lm and calculate the matrix
elements for the operator V between these wave functions. Because of the parity
with respect to the polar angle θ and the dependence on the azimutal angle ϕ,
only one matrix element between the states lm � 10 and 00 is not zero. Thus, the
following functions are the eigenfunctions of the Hamiltonian Ĥ :

	1 � 1√
2
(ψ00 + ψ10), 	2 � 1√

2
(ψ00 − ψ10),

	3 � ψ11, 	4 � ψ1,−1.

The matrix element 〈ψ00 |V |ψ10〉 � −3E. This gives for the energy of the related
levels

ε1 � −1

8
− 3E, ε2 � −1

8
+ 3E, ε3,4 � −1

8
.

Note that this result is valid if the fine splitting of levels is small. This criterion
has the following form in the usual units (
εf � 0.365 cm−1): E 
 104 V/cm.

Let us represent the expressions of the wave functions for m � 0. We have

	1 � 1

4
√
π
e−r/2

(
1− r − z

2

)
, 	2 � 1

4
√
π
e−r/2

(
1− r + z

2

)
.

It is convenient to introduce the parabolic coordinates

ξ � r + z, η � r − z, dr � (ξ + η) dξ dη dϕ/4.

The above wave functions have the following form in these coordinates:

	1 � 1

4
√
π

exp

(
−ξ + η

4

)(
1− η

2

)
,

	2 � 1

4
√
π

exp

(
−ξ + η

4

)(
1− ξ

2

)
.

As is seen, for the considering problem the variables are separated into parabolic
coordinates. Introducing

	k � 1√
4π

Xk(ξ )Yk(η),

we have, for the related states,

X1 � 1√
2
e−ξ/4, Y1 � 1√

2
e−η/4

(
1− η

2

)
,
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X2 � 1√
2
e−ξ/4

(
1− ξ

2

)
, Y2 � 1√

2
e−η/4.

Separation of the variables into parabolic coordinates is the general property of
the hydrogen atom located in an external electric field. Then the splitting of the
energetic levels is linear with respect to the electric field strength. This is called
the linear Stark effect.

Problem 2.3. The hydrogen atom is located in a weak electric field. Using
parabolic coordinates, determine the splitting of levels in the linear approximation
with respect to the electric field. One can neglect the relativistic effects.

The electron Hamiltonian in atomic units has the form

Ĥ � −1

2

− 1

r
− Ez,

where r is the electron distance from the center, z is its projection onto the direction
of the electric field, and E is the electric field strength. Introduce the parabolic
coordinates

ξ � r + z, η � r − z, dr � (ξ + η) dξ dη dϕ/4.

Since


 � 4

ξ + η

∂

∂ξ

(
ξ
∂

∂ξ

)
+ 4

ξ + η

∂

∂η

(
η
∂

∂η

)
+ 1

ξη

∂2

∂ϕ2
,

one can separate the variables into parabolic coordinates. Then write the electron
wave function in the form

	 � 1√
2π

X(ξ )Y (η)eimϕ.

Substituting this expression in the Schrödinger equation Ĥ	 � ε	 and separating
the variables in this equation, we have

d

dξ

(
ξ
dX

dξ

)
+
(

1

2
εξ + β1 − m2

4ξ
+ E

4
ξ 2

)
X � 0;

d

dη

(
η
dY

dη

)
+
(

1

2
εη + β2 − m2

4η
− E

4
η2

)
Y � 0.

Here β1, β2 are the separation constants which are connected by the relationship

β1 + β2 � 1.

Because dr � (ξ + η) dξ dη dϕ/4, we have from the normalization condition,

1

4

∫ ∞

0
X2(ξ )ξ dξ

∫ ∞

0
Y 2(η) dη + 1

4

∫ ∞

0
X2(ξ ) dξ

∫ ∞

0
Y 2(η)η dη � 1.

Obtaining the eigenvalues β1, β2 for each Schrödinger equation and using the
relationship between these values, one can determine the discrete spectrum of
these values. First let us consider this problem in the absence of an electric field.
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The analysis of the spectrum of equations for X(ξ ) and Y (η) is analogous to the
analysis of the Schrödinger equation (2.9). Introduce a parameter γ by the relation
ε � −γ 2/2. For the analysis of the Schrödinger equation for X(ξ ) let us write the
electron wave function in the form

X(ξ ) � exp(−γ ξ/2)ξm/2u(ξ ),

where m is the modulus of the magnetic quantum number. This form of the wave
function accounts for the character of its damping at large ξ and uses the require-
ment of a discrete spectrum of β1. On the basis of the above expansion we have
the following equation for the function u(ξ ):

ξ
d2u

dξ 2
+ (m+ 1− ξ )

du

dξ
+
(
β1

ξ
− m− 1

2

)
u � 0.

The second condition for the wave function X(ξ ) follows from the normalization
relation according to which at small ξ the wave functionX(ξ ) cannot grow stronger
than ξ−1/2. Correspondingly, u(ξ ) grows, at small ξ , stronger than ξ−(m+1)/2. Let
us present this function as

u(ξ ) � ξν
n1∑
k�0

akξ
k.

At small ξ we have u(ξ ) � aoξ
ν . Substituting this in the expression for u(ξ ) and

being restricted by the main term of the expansion on ξ , we obtain

ν(ν +m) � 0.

Solving this equation we find ν � 0 for m � 0 and ν � 0, ν � −m for m �
0. Since ν < (m + 1)/2, the solution ν � −m does not satisfy the physical
requirements for m > 0. Thus the only solution of this equation is ν � 0. Thus
the function u(ξ ) is

u(ξ ) �
n1∑
k�0

akξ
k.

From the physical requirements it follows that this series is finite, because in the
opposite case this series would diverge at large ξ in the exponential way. Let us
consider the case of large ξ . Restricting by the main term u(ξ ) ∼ ξn1 , we obtain

n1 � β1/γ − (m+ 1)/2.

This relation gives the discrete spectrum of the Schrödinger equation for X(ξ ).
The constant β1 is the eigenvalue of this equation, and the quantum number n1

characterizes the state which is described by the Schrödinger equation for ξ in the
absence of an electric field. The second Schrödinger equation for Y (η) is analogous
to the equation for X(ξ ). Introducing the quantum number n2 for the equation for
Y (η) we have, by analogy with the previous formula,

n1 � β2/γ − (m+ 1)/2.
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The electron principal quantum number is n � 1/γ . From the condition β1+β2 �
1, and from expressions for β1 and β2 we have

n � n1 + n2 +m+ 1.

Let us analyze the results obtained. The variables in the Schrödinger equation for
the hydrogen atom are separated in parabolic coordinates. The parabolic quantum
numbers n1, n2 pass a series of whole numbers from 0 up to n−m− 1. The total
number of states with a given value n of the principal quantum number is equal to

2
n−1∑
m�1

(n−m)+ n � n2,

where m is the modulus of the magnetic quantum number, and n is a number of
states for m � 0. From comparison with formula (2.17) it follows that the number
of states for a quantum number n in the case of parabolic coordinates is the same as
in the case of spherical coordinates. But the eigenwave functions for the parabolic
coordinates differ from those corresponding to spherical coordinates. They have
no spherical symmetry, but can be constructed as a combination of spherical wave
functions. An example of such a type is considered in the previous problem for
n � 2.

The normalized eigenfunctions of the bound electron of the hydrogen atom in
parabolic coordinates are given by the following expressions

	(ξ, η, ϕ) � eimϕ

√
2π

√
2

n2
exp

(
−ξ + η

2n

)
·
(
ξη

n2

)m/2

un1m

(
ξ

n

)
un2m

(η
n

)
,

where

ukm(x) � (k!)1/2

[(k +m)!]3/2
· Lm

k+m(x) � 1

m!

[
(k +m)!

k!

]1/2

F (k,m+ 1, x),

where Lm
k+m(x) is the Lagger polynomial, and F (−k,m + 1, x) is the hypergeo-

metric function. Note that herem is the modulus of the magnetic quantum number,
i.e., m ≥ 0.

Now let us determine the splitting of levels of the hydrogen atom in a constant
electric field. It is convenient to use parabolic coordinates because even in the
presence of an electric field the variables are separated into parabolic coordinates.
This means that energy levels of the hydrogen atom which are split in an exter-
nal electric field are characterized by parabolic quantum numbers in contrast to
spherical coordinates. In particular, this follows from the analysis of the previous
problem where the eigenwave function of the excited hydrogen atom located in an
electric field is a combination of spherical wave functions of the hydrogen atom.

The interaction operator of the hydrogen atom with an electric field is equal to
V̂ � −Ez � −E(ξ − η)/2. In the first approach of the perturbation theory the
energy of states is equal to

εnn1n2m � −
1

2n2
− E

2
〈nn1n2m |ξ − η| nn1n2m〉 .
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Calculating the matrix element, we obtain

εnn1n2m � −
1

2n2
− 3

2
En(n1 − n2).

In particular, for the case n � 2 which was considered in the previous problem
we have the following states: n1 � 1, n2 � m � 0; n2 � 1, n1 � m � 0; and
two states n1 � n2 � 0, m � 1. Levels of the last two states are not shifted in the
linear approach at small electric field strengths, and the shift for the first two states
is equal to ±3E in accordance with the result of the previous problem.

Problem 2.4. Determine the rate of decay of an excited hydrogen atom in an
external electric field.

The bound state of an electron of the hydrogen atom in an electric field is not
stable. Indeed, there is a region, at large distances from the center in the direction
of the electric field, where the electron has a continuous spectrum. Transition of
the electron in this region (see Fig. 2.2) leads to decay of the bound state. Thus the
energy level of the electron which is located in the field of the Coulomb center has
a finite width. This width is determined by the time of the electron transition in the
region of continuous spectrum. According to Fig. 2.2 where the cross section of
the potential energy in a space is given, this region starts from the distance in the
direction of the electric field zo � |ε| /E, where ε is the electron binding energy
and E is the electric field strength. Within the framework of quantum mechanics,
this transition is a tunnel transition as follows from Fig. 2.2. Below we determine
the time of this transition and hence the width of the electron level.

For this goal we use the Schrödinger equation for the electron wave function in
parabolic coordinates which was given in the previous problem. We take another
form of expansion of the wave function which is more convenient for this problem

	 � eimϕ

√
2π
· �(ξ )F (η)√

ξη
.

Figure 2.2. The cross section of the electron potential energy for U (R) for the hydrogen
atom in a constant electric field.
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Correspondingly, the Schrödinger equation for these functions has the form

d2�

dξ 2
+
(
−γ 2

4
+ β1

ξ
− m2 − 1

4ξ 2
+ E

4
ξ

)
� � 0,

d2F

dη2
+
(
−γ 2

4
+ β2

η
− m2 − 1

4η2
− E

4
η

)
F � 0,

where the electron energy is given by the formula ε � −γ 2/2, and the separation
constants β1, β2 in accordance with the results of the previous problem are equal
to

β1 � γ

(
n1 + m+ 1

2

)
, β2 � γ

(
n2 + m+ 1

2

)
,

which correspond to the electron energy

εnn1n2m � −
1

2n2
− 3

2
En(n1 − n2),

i.e., γ � 1/n+ 3
2En2(n1 − n2).

The probability of the electron transition through a barrier per unit time is equal
to

w �
∫
S

j dS,

where

j � i

2

(
	
∂	∗

∂z
−	∗ ∂	

∂z

)
is the electron flux through the barrier, and S is the cross section of the barrier.
We use that for small electric field strengths the main contribution to the electron
current gives a small region of the barrier cross section near zo. Use the cylindrical
coordinates ρ, z, ϕ in this region and ρ � z. Under this condition the connection
between the cylindrical and parabolic coordinates has the form

ξ � r + z ≈ 2z, η �
√
ρ2 + z2 ≈ ρ2

2z
≈ ρ2/ξ.

The element of the barrier surface is equal to

dS � ρ dρ dϕ � ξ

2
dη dϕ.

Substituting these formulas into the expression for the rate of decay of this state,
we have

w �
∫ ∞

0

F 2(η)dη

η

i

2

(
�
d�∗

dξ
−�∗

d�

dξ

)
.

Using expressions for the electron wave functions which are obtained in the
previous problem, we get

w � i

2

(
�
d�∗

dξ
−�∗

d�

dξ

)
.
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In the region near the center, where one can neglect the action of the electric field,
the wave function �(ξ ) is

� �
√

2

n
· 1[

n1 ! (n1 +m)!
]1/2 · (ξ

n

)n1+(m+1)/2

exp

(
− ξ

2n

)
.

For the analysis of the solution for the Schrödinger equation for the wave func-
tion �(ξ ), we find the expression for this wave function in the vicinity of the
point ξo which separates a classically available region from a region where the
location of a free classical electron is forbidden. The position of the point ξo is
given by the equation p (ξo) � 0, where p is the classical electron momentum
which, in accordance with the Schrödinger equation for � (ξ ), is determined by
the expression

p2 � −γ 2

4
+ β1

ξ
− m2 − 1

4ξ 2
+ E

4
ξ.

The quasi-classical solutions of the Schrödinger equation �′′ + p2� � 0, right
and left from the turning point, have the form

� � iC√
p
· exp

(
i

∫ ξ

ξo

p dξ − iπ

4

)
, ξ > ξo;

� � iC√
p
· exp

(
−
∫ ξ

ξo

|p| dξ
)
, ξ < ξo.

Substituting the first of these expressions into the formula for the decay rate, we
obtain

w � |C|2 .
Thus, the probability of the electron tunnel transition per unit time is expressed

through the wave function amplitude on the boundary of the region of the free elec-
tron motion. In order to determine this value, it is necessary to join the expressions
for the wave function near the center and near the boundary of the classical region.
In the case of small electric field strengths there is a broad region of ξ where, on
one hand, we can neglect the action of the electric field and, on the other hand,
the classical expression for the wave function is valid. Joining in this region the
expression for the wave function in neglecting the electric field with the classical
wave function, we find the value C and, correspondingly, the rate of atom decay

w � γ 3
(
4γ 3/E

)2n1+m+1

(n1 +m)!n1!
· exp

(
−2γ 3

3E

)
.

On one hand, in the region where the solutions are joined we neglect the action
of the electric field that corresponds to the condition ξ � ξo � γ 2/E and, on the
other hand, in this region we use the quasi-classical wave function that is valid,
if γ 2/4 
 β1/ξ . This leads to the following criterion of validity of the above
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expression for the decay rate

E � γ 4

β1
.

Thus at small values of the electric field strength E the probability of the atom
decay per unit time depends exponentially on the value 1/E. Note that in the
previous problem we obtained the expansion of the value γ over a small parameter
E. In this case it is necessary to use two expansion terms of γ over E, because the
second term of the expansion of γ determines the numerical coefficient for w. In
this approximation we have

2γ 3

3E
� 2

3n3E
+ 3(n1 − n2),

and the probability of decay of the hydrogen atom per unit time in a weak electric
field is equal to:

w �
(

4
3n3E

)2n1+m+1

n3 (n1 +m)!n1!
· exp

(
− 2

3n3E
+ 3n2 − 3n1

)
.

In particular, from this formula it follows for the rate of decay for the hydrogen
atom in the ground state,

w � 4

3E
· exp

(
− 2

3E

)
.

Problem 2.5. Determine the relative intensities of the radiative transitions from
the hydrogen atom state with the quantum numbers nlm in states with quan-
tum numbers n′l′ and different electron momentum projections m′ onto a given
direction.

According to formula (1.22), the intensities of radiative transitions in the hydrogen
atom case are proportional to the value |〈nlm|z|n′l′m′〉|2, where z is the electron
coordinate in the direction of the photon polarization. Representing the electron
wave function in the form (2.3) and integrating over angles, we find the matrix
elements which determine the related radiative transitions∣∣〈nlm |z| n′, l + 1,m

〉∣∣2 � (l + 1)2 −m2

(2l + 3)(2l + 1)

∣∣〈nl |r| n′, l + 1
〉∣∣2 ,

∣∣〈nlm |z| n′, l − 1,m
〉∣∣2 � l2 −m2

(2l + 1)(2l − 1)

∣∣〈nl |r| n′, l − 1
〉∣∣2 ,∣∣〈nlm |x + iy| n′, l + 1,m+ 1

〉∣∣2 � (l +m+ 2)(l +m+ 1)

(2l + 3)(2l + 1)

∣∣〈nl |r| n′, l + 1
〉∣∣2 ,∣∣〈nlm |x + iy| n′, l − 1,m+ 1

〉∣∣2 � (l −m)(l −m− 1)

(2l + 1)(2l − 1)

∣∣〈nl |r| n′, l − 1
〉∣∣2 ,∣∣〈nlm |x − iy| n′, l + 1,m− 1

〉∣∣2 � (l −m+ 2)(l −m+ 1)

(2l + 3)(2+ 1)

∣∣〈nl |r| n′, l + 1
〉∣∣2 ,
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∣∣〈nlm |x − iy| n′, l − 1,m− 1
〉∣∣2 � (l +m)(l +m− 1)

(2l + 1)(2l − 1)

∣∣〈nl |r| n′, l − 1
〉∣∣2 ,

where 〈
nl|r|nl′〉 � ∫ ∞

0
Rnl(r)Rn′l′ (r)r

3 dr,

and the radial wave functions Rnl(r) are given by formula (2.16). These relations
allow us to obtain the distribution on polarizations and final states for transitions
with a given photon energy. In particular, from this it follows that∑

m′

∣∣〈nlm |r| n′, l + 1,m′
〉∣∣2 � l + 1

2l + 1

∣∣〈nl |r| n′, l + 1
〉∣∣2 ,

∑
m′

∣∣〈nlm |r| n′, l − 1,m′
〉∣∣2 � l

2l + 1

∣∣〈nl |r| n′, l − 1
〉∣∣2 .

This proves that the lifetime of an excited state nlm of the hydrogen atom with
respect to radiative transition in a lower state does not depend on the momentum
projection m′ onto a given direction.

Problem 2.6. Determine the photoionization cross section of a hydrogenlike ion
near the threshold.

The photoionization cross section is given by formula (2.40) and has the following
form in the relevant case:

σion � 8πqω

3c
K2

0,1,

where ω � Z2/2+ q2/2 and q � Z. The radial wave function of the initial state
is Ro � 2Z3/2e−Zr and the radial wave function of a free electron state is

Rq1(r) � 2

3

√
2πqZre−iqrF

(
i
Z

q
+ 2, 4, 2iqr

)
.

In the limit of small q the matrix element is equal to

K01(q) � 1

3

√
2πqZ2

∫ ∞

0
r4dre−ZrF

(
i
Z

q
+ 2, 4, 2iqr

)
� 8

√
2πq

Z3
· F
(
i
Z

q
+ 2, 5, 4,

2iq

Z

)
� 8i

Z2e2

√
π

2q
,

where we use the relation for the hypergeometric functions

F (α, β, γ, x) � (γ − α)

γ
· (1− x)αF

(
α, γ − β, γ + 1,

x

x − 1

)
+ α

γ
· (1− x)−αF

(
α + 1, γ − β, γ + 1,

x

x − 1

)
,

and are restricted by the first term of the expansion of the obtained expression over
a small parameter q/Z. Substitution of the expression for the matrix element in
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the formula for the photoionization cross section which now has the form

σion � 4πqZ2

3c
K2

0,1,

leads to the following value of the threshold cross section:

σion � 29π2

3e4Z2c
,

where e is the base of the natural logarithm. One can see that this threshold cross
section does not depend on the energy of a released electron and is equal to 6.3 ·
10−18 cm2 for the hydrogen atom.

Problem 2.7. Determine the cross section of a radiative attachment of a slow
electron to a nucleus of charge Z with the formation of a hydrogenlike ion in the
ground state.

The relevant process proceeds according to the scheme

e + A+Z → A+(Z−1) + h̄ω,

where A+Z is a nucleus of charge Z. This is the inverse process with respect to
the photoionization process, so that the rates of both processes are connected by
the principle of detailed balance. The condition of equilibrium of these processes
leads to the following relation between the cross sections of photoionization σion

and photorecombination σrec:

c
2 dk dr
(2π )3

gaσion � v
dq dr
(2π )3

gegiσrec,

where k is the photon wave vector, q is the electron wave vector, v is the electron
velocity, c is the light velocity, ge � 2, and gi , ga are the statistical weights of the
electron, ion A+Z and ion A+(Z−1). This relation corresponds to the equilibrium,
so that in some volume containing one photon and one atom, the numbers of
transitions per unit time with ionization and recombination must be coincided.
Then taking into account the energy conservation law (1.27) and the dispersion
relation ω � kc between the photon frequency ω and wave vector k, we obtain

σrec � gi

ga

k2

q2
· σion.

Now we have ga � 2, gi � 1, and on the basis of the threshold value of the
photoionization cross section which was obtained in the previous problem we have

σrec � 256π2Z2

3e4c3q2
,

where e is the base of the natural logarithm. Using the numerical values of the
parameters of this formula, we obtain (in atomic units)

σrec � 6 · 10−6Z
2

q2
.
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Problem 2.8. Determine the average coefficient of the photorecombination of the
electrons and nuclei of a charge Z under the assumption that a hydrogenlike ion
is formed in the ground state and under the Maxwell distribution of electrons on
velocities when the average velocity of electrons is relatively small.

The photorecombination coefficient of electrons and ions is equal to

α � 〈vσrec〉 ,
where v is the electron velocity, σrec is the photorecombination cross section,
and the angle brackets mean averaging over the Maxwell distribution function of
electrons on velocities. In the case of slow electrons one can use the result of the
previous problem for the recombination cross section, so that the recombination
coefficient is equal to

α � 256π2Z2

3e4c3

〈
1

q

〉
.

Since for the Maxwell distribution function we have〈
1

q

〉
�
√

2

πTe
,

where Te is the electron temperature, the recombination coefficient takes the form

α � 256π
√

2πZ2

3e4c3
√
Te

� αoZ
2T −1/2

e ,

where e is the base of the natural logarithm, so that αo � 1.5 · 10−13 cm3/s if Te is
expressed in eV.



CHAPTER 3

Two-Electron Atoms and Ions

3.1 The Pauli Exclusion Principle and Symmetry of the
Atomic Wave Function

The atom is a quantum system consisting of a charged nucleus and electrons.
Because of a large nuclear mass compared to the electron mass, one can assume the
nuclearmass to be infinite. Then an atom is a systemconsisting of aCoulomb center
and electrons, and atom states are determined by the electron behavior in the field
of the Coulomb center. The Pauli exclusion principle is of importance for the atom
structure. This principle follows from the Fermi–Dirac statistics for electrons and
prohibits location of two electrons in the same state. The Pauli exclusion principle
leads to an additional interaction in the related electron system. Indeed, if a new
electron is added to an atomic core, it cannot be located near an atomic nucleus
where other atomic electrons are found. Hence an atom occupies a more larger
size than in the case without this principle. The additional interaction between
electrons due to the Pauli exclusion principle is called the exchange interaction.

The mathematical formulation of the Pauli exclusion principle consists of the
requirement that the electron wave function would be antisymmetric with respect
to the transposition of electrons, which is given by formula (1.19):

	(r1, σ1, . . . , rk, σk, . . . , rm, σm, . . . , rn, σn)

� −	(r1, σ1, . . . , rm, σm, . . . , rk, σk, . . . , rn, σn), (3.1)

where rk is the coordinate of the k-electron, σk is the projection of the electron spin
onto a given direction, and the atom consists of n electrons. From relation (3.1) it
follows that if states of m and k-electrons are the same (i.e., rk � rm, σk � σm),
then the wave function and, respectively, the electron density, are equal to zero.
Thus, the peculiarity of an electron system is such that the interaction potential of
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an electron with an atomic core depends on the positions of the other electrons,
i.e., the exchange interaction of electrons in an atom is of importance. Note that in
a system of many electrons collective effects such as plasma waves can occur. But
the Pauli exclusion principle states that collective phenomena are weak because of
the positions of individual electrons are separated. Therefore, the best model for
atomic electrons is a one-electron approach when the wave function of an atom is a
sum of products of one-electron wave functions. Then the interaction of an atomic
electron with an atomic core includes the exchange interaction of this electron with
other electrons due to the Pauli exclusion principle and an electrostatic interaction
of this electron with the atomic core. Below we consider this approach for two
electron systems—the helium atom and heliumlike ions.

3.2 The Helium Atom

The helium atom or heliumlike ions consist of a heavy nucleus of a positive charge
Z and two electrons. We assume one electron to be found in a state described by a
wave function�, and the state of the other electron is described by a wave function
ϕ. Then in the one-electron approach the electron wave function of this system has
the form, accounting for the Pauli exclusion principle,

	(1, 2) � 1√
2
·
∣∣∣∣∣ �(1) �(2)

ϕ(1) ϕ(2)

∣∣∣∣∣ , (3.2)

where the argument shows an electron which is described by this wave function.
The wave function of an individual electron is a product of space and spin wave
functions. Consider the case when the spatial electron wave functions are identical.
Denoting the coordinate wave function by ψ(r) and the spin wave functions by η

we have, for the total wave function,

	(1, 2) � 1√
2
·
∣∣∣∣∣ ψ(r1)η+(1) ψ(r2)η+(2)

ψ(r1)η−(1) ψ(r2)η−(2)

∣∣∣∣∣ � ψ(r1)ψ(r2)S(1, 2), (3.3)

where

S(1, 2) � 1√
2
· [η+(1)η−(2)− η−(1)η+(2)

]
,

where r1, r2 are the space coordinates of the electrons, η+(i), η−(i) are the spin
wave functions of the ith electron with the spin projection onto a given direction
1
2 or − 1

2 respectively, and S(1, 2) is the antisymmetric spin wave function of
electrons which corresponds to the total spin of electrons S � 0. This form of the
wave function is called the Slater determinant.

Let us consider the Schrödinger equation for the two-electron atom and formu-
late the basic mathematical approaches which are useful for the analysis of this
and more complicated atoms. If the atom is found in the ground or lower excited
states, the variation method is useful for calculation of the atom energy. This is as
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follows. Let 	k be eigen-wave functions of the atom and let εk be the correspond-
ing values of the energy, so that Ĥ is the Hamiltonian of the electrons. Then the
above wave functions satisfy the Schrödinger equation

Ĥ	k � εk	k,

and the values 	o, εo correspond to the ground state of the related atom. Take a
wave function 	 which is close to 	o but differs from it. Let us expand the wave
function 	 over the eigenwave functions of the Hamiltonian Ĥ ,

	 �
∑
k

ak	k,

and the normalization condition gives∑
k

|ak|2 � 1.

From this, on the basis of the condition of orthogonality of functions 	k , we have

〈	Ĥ	〉 �
∑
k

|ak|2 εk � εo +
∑
k

|ak|2 (εk − εo).

From this it follows that the functional 〈	Ĥ	〉 with any function 	 exceeds the
energy of the ground state εo. Then among a certain class of wave functions with
varying parameters the best wave function is such it that leads to the minimum of
〈	Ĥ	〉. This is the basis of the variational principlewhich allows one to determine
the wave function and the energy for the atom ground state with high accuracy.
For the analysis of the first excited state it is required that a trial function should
be orthogonal to the wave function 	o of the ground state. In this way, one can
spread the variational method for the first excited states of the considering atom.

Let us use the variational method for determination of the energy of the ground
state of the helium atom or heliumlike ions. Take, as a test wave function, a product
of one-electron functions of a hydrogenlike ion with a varying charge

	 � C exp[−Zef (r1 + r2)], (3.4)

where C � Z6
ef/π

2 is the normalization constant and r1, r2 are the distances from
the center for the corresponding electron. We use the atomic system of units. Write
the Hamiltonian of the heliumlike ion in the form

Ĥ � −1

2

1 − 1

2

2 − Z

r1
− Z

r2
+ 1

|r1 − r2| � Ĥo + V1 + V2, (3.5)

where

Ĥo � −1

2

1 − 1

2

2 − Zef

r1
− Zef

r2
,

V1 � − (Z − Zef )

r1
− (Z − Zef )

r2
, V2 � 1

|r1 − r2| . (3.6)

The test wave function is the eigenfunction with respect to the Hamiltonian
Ĥo, so that Ĥo	 � −Z2

ef	. According to the virial theorem, or as a result of
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direct evaluation, one can find the average value 〈Zef/r〉 for the hydrogenlike ion
with a charge Zef which is equal to Z2

ef . From this it follows that 〈	 |V1|	〉 �
−Zef (Z−Zef ). For the calculation of the matrix element from the last term let us
expand it over the Legendre polynomials

|r1 − r2|−1 �
∞∑
n�0

rn<

rn+1
>

Pn(cos θ),

where θ is the angle between vectors r1 and r2 and r> and r< correspond to the
larger and smaller values among r1 and r2. Because the wave function does not
depend on angles, the integral is determined by the first expansion term, and this
matrix element is equal to〈
	

1

|r1 − r2|	
〉
� 2

Z6
ef

π2
·
∫ ∞

0
exp(−2Zefr1)4πr

2
1 dr1

∫ ∞

r1

4πr2 dr2 � −5

8
Zef .

The factor 2 is due to the separation of the space into two regions: r2 > r1 and
r2 < r1, and each of these regions gives the same contribution into the integral
because of the symmetry of the problem. Thus we have, for the electron energy,

ε � −Z2
ef + 2Zef (Zef − Z)+ 5

8
Zef � −Zef ·

(
2Z − 5

8
− Zef

)
.

The condition of the energy minimum gives the optimal values of the parameters.
We have

Zef � Z − 5

16
; ε � −Z2

ef � −Z2 + 5

8
Z − 25

256
. (3.7)

Let us determine the ionization potential of a heliumlike ion or helium atom.
Note that after the release of one electron the second electron is found in the ground
state of the hydrogenlike ion with the nuclear charge Z, so that its binding energy
according to formula (2.41) is Z2/2. Thus the first ionization potential J of the
heliumlike ion is

J � −ε − Z2

2
� Z2

2
− 5

8
Z + 25

256
. (3.8)

Table 3.1 gives a comparison of formula (3.8) with the precise values of the ioniza-
tion potential. As is seen, the variation principle, in spite of its simplicity, allows
one to determine the ionization potential with satisfactory accuracy.

Let us estimate the difference between the trial wave function and the precise
function on the basis of the above results. For this goal we expand the trial wave
function (3.4) over the system of eigenfunctions {	k} of the Hamiltonian of the

Table 3.1. The ionization potentials of the helium atom and heliumlike ions.

Atom, ion He Li+ Be++ C4+ O6+

Accurate J , eV 24.56 75.64 153.9 392.3 739.3

Formula (3.8) for J in eV 23.07 74.08 152.3 390.4 737.3
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atom Ĥ , so that we have Ĥ	m � εk	k , where εk are the precise energies of the
atomic states. We have

	 � ao	o +
∑
k �0

ak	k.

If the test wave function	 is close to the precise wave function of the ground state
	o, the coefficient ao would be close to 1 and

∑
k �0 |ak|2 � 1 − |ao|2 would be

small. For estimation of these values we use the expression

〈	Ĥ	〉 �
∑
k

|ak|2εk � εo +
∑
k

|ak|2(εk − εo).

For simplicity, we assume that the test wave function, being expanded over the
eigenwave function of the Hamiltonian along with the wave function of the ground
atomic state, contains an admixture of the first excited state only. This means that
only ao and a1 are not zero and from the above expression for the energy we obtain

a2
1 �


E

ε1 − ε2
,

where 
E � 〈	Ĥ	〉 − εo is an error in the determination of the atom energy.
Note that because the wave functions of the relevant state are real, the values ao
and a1 are also real.

Let us estimate from this, for example, the degree of coincidence of the best
wave function (3.4) with the accurate wave function for Be++. As follows from
the data of Table 3.1, in this case 
E � 1.7 eV, and the excitation energy of the
lower state (state 21S) is equal to 122 eV. This gives a2

1 � 0.014 and a1 ≈ 0.1.
The total binding energy of two electrons of the beryllium ion is εo � 322 eV.
As is seen, the variation method in the simplest form allows us to determine the
electron energy with an accuracy of 0.5%, and the admixture of the excited states
to the wave function is about 10%. This gives an estimation of the accuracy of the
used variation method.

3.3 Self-Consistent Electric Field in Two-Electron
Atoms

The variation method allows us to choose the best wave function with respect to
the real one from a relevant class of wave functions. Symmetric combinations of
one-electron wave functions are chosen as a trial wave function in the simplest
versions of the method. These one-electron wave functions are eigenfunctions
of the Hamiltonian which is a sum of one-electron Hamiltonians. In particular,
the wave function (3.4) is the eigenfunction of a Hamiltonian which is a sum of
one-electron Hamiltonians. Usage of this function is analogous to a change of
the electron–electron interaction potential 1/

∣∣r1 − r2

∣∣ by an effective interaction
potential (Z−Zef ) ·

(
1/r1+1/r2

)
, i.e., the interaction of two electrons is changed

by an effective shield of the nucleus charge. Thus, the introduction of a test wave
function as a product of one-electron wave functions is analogous to the usage of



3.3 Self-Consistent Electric Field in Two-Electron Atoms 67

an effective self-consistent interaction potential instead of a real one. The form
of this effective interaction potential is determined by the form of the test wave
functions.

The introduction of an effective interaction potential can be made in a general
form without the use of a certain type of a self-consistent field. Let us make this
for the helium atom in the ground state assuming a wave function ψ(r) to be
corresponding to each electron. Then the interaction potential between electrons,
which acts on the first electron and is averaged over coordinates of the second
electron, has the form ∫

1

|r1 − r2| |ψ(r2)|2 dr2.

Changing by this expression the interaction potential acted on the first electron,
we obtain the following Schrödinger equation:[

−1

2

+ Z

r1
+
∫

1

|r1 − r2| |ψ(r2)|2 dr2

]
ψ(r1) � εψ(r1), (3.9)

where the energy 2ε is equal to the total energy of two electrons.
Equation (3.9) is called the Hartri equation. In this equation the interaction

potential between electrons is changed by a self-consistent potential which is ob-
tained by averaging of the interaction potential of electrons over coordinates of the
second electron. In this equation we assume the wave function of each electron to
be identical. If these functions are different and they are denoted as ψ(r) and ϕ(r),
the corresponding Hartri set of equations takes the form[

−1

2

+ Z

r
+
∫

1

|r−r′|
∣∣ϕ(r′)

∣∣2dr′]ψ(r) � ε1ψ(r),[
−1

2

+ Z

r
+
∫

1

|r − r′|
∣∣ψ(r′)

∣∣2dr′]ϕ(r) � ε2ϕ(r). (3.10)

The total electron energy is equal, in this case, to ε1 + ε2.
The method of changing the interaction potential between electrons by a self-

consistent interaction potential is called the Hartri approach. This approximation
does not account for the symmetry of the wave function. In order to take into
account the wave function symmetry, we represent the spatial wave function of
two electrons in the form

	(r1, r2) � 1√
2
· [ψ(r1)ϕ(r2)± ψ(r2)ϕ(r1)] ,

and assume the functionsψ(r) and ϕ(r) to be orthogonal, i.e.,
∫
ψ∗(r)ϕ(r)dr � 0.

In addition, the wave functions ψ(r) and ϕ(r) are normalized∫
ψ∗(r)ψ(r)dr �

∫
ϕ∗(r)ϕ(r)dr � 1.

For simplicity, below we take the functions ψ(r) and ϕ(r) to be real. Let us take
the Hamiltonian of electrons in the form [see formula (3.5)]:

Ĥ � −1

2

1 − 1

2

2 − Z

r1
− Z

r2
+ 1

|r1 − r2| � ĥ1 + ĥ2 + 1

|r1 − r2| ,
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where

ĥ1 ≡ ĥ(r1) � −1

2

1 − Z

r1
, ĥ2 ≡ ĥ(r2) � −1

2

2 − Z

r2
.

Substituting the total wave function into the Schrödinger equation Ĥ	 � ε	,
multiplying the Schrödinger equation subsequently by ϕ(r2) or ψ(r2), and inte-
grating over coordinates of the second electron, we obtain the following set of
equations:

ĥψ(r)+
[∫

ϕ(r′)ĥϕ(r′)dr +
∫

1

|r − r′|ϕ
2(r′)2dr′

]
ψ(r)

±
[∫

ϕ(r′)ĥψ(r′)dr′ +
∫

1

|r − r′|ϕ(r′)ψ(r′)dr′
]
ϕ(r) � εψ(r),

ĥϕ(r)+
[∫

ψ(r′)ĥψ(r′)dr′ +
∫

1

|r − r′|ψ
2(r′)dr′

]
ϕ(r)

±
[∫

ψ(r′)ĥϕ(r′)dr +
∫

1

|r − r′|ψ(r′)ϕ(r′)dr′
]
ψ(r) � εϕ(r). (3.11)

The set of equations (3.11) introduces a self-consistent atomic field simultaneously
with taking into account the symmetry of the wave function. As follows from this
set of equations, the different one-electronwave functions correspond to symmetric
and antisymmetric wave functions. This set of equations corresponds to the so-
called Hartri–Fock approach. It accounts for the exchange interactions in the atom
along with the one-electron electrostatic interactions. Therefore, the Hartri–Fock
approach describes the real atomswell and is the basis of the numerical calculations
for atomic systems.

From the analysis of the set of equations (3.11) it follows that if the electrons
of two-electron atoms are found in different states, the atom energy depends on
the symmetry of the wave function. Indeed, according to the Pauli exclusion prin-
ciple, the total wave function of the electrons is antisymmetric with respect to
the transposition of electrons. The total wave function is a product of the spin
and spatial wave functions. The spin wave function of two electrons is symmetric
with respect to the transposition of spins if the total electron spin is equal to one
and is antisymmetric if the total spin is zero. Therefore, the spatial wave function
is symmetric with respect to the transposition of electron coordinates if the total
electron spin is zero, and is antisymmetric if the total electron spin is one. Since
the energy of the two-electron atom depends on the symmetry of the spatial wave
function of electrons, the energy depends on the total atom spin. Thus, although
the Hamiltonian of electrons does not depend on electron spins, the spin state of
the electrons influences the total electron energy through the wave function sym-
metry. The difference of the energies of states for a two-electron atom with the
same one-electron states, but different values of the total spin, is called the ex-
change splitting of electron levels. Note that the exchange interaction potential in
light atoms remarkably exceeds the relativistic interactions which depend on the
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spin states. The reason is that the exchange interaction does not include the small
parameter (2.1)—the constant of fine structure.

Let us use the above analysis for the helium atom state with the electron shell
1sns. There are two such atomic states with total spins S � 0 and S � 1. Since the
states with S � 1 electrons have an identical direction of spins, according to the
Pauli exclusion principle the second electron is repulsed from the region where the
first electron is located, because two these electrons cannot be located at the same
space point. In the state with S � 0, such a prohibition is absent, and an external
electron shields an internal electron in the most degree than in the state with S � 1.
Hence, the states with S � 1 are characterized by more high ionization potentials
than those with S � 0 (see also Fig. 3.3 where the Grotrian diagram for the helium
atom is given). As is seen, the nature of the exchange splitting of levels does not
connect with the relativistic effects.

3.4 Self-Consistent Electric Field for
Many-Electron Atoms

The above concept of a self-consistent field can be spread for many-electron atoms.
Then an effective interaction between electrons also has a one- and two-electron
character. Let us consider a many-electron atom on the basis of the self-consistent
field concept. For this atom the electron Hamiltonian (1.18) can be divided into
parts in the following way:

Ĥ �
n∑

j�1

ĥj +
n∑

j�1

Uj +
n∑

j,k�1

vjk, (3.12)

where

ĥj � −1

2

j + V (rj ), Uj � −Z

rj
− V (rj ), vjk � 1

|rj − rk| .

The operator ĥj includes the kinetic energy of a j -electron and its interaction with
a self-consistent field, the last term accounts for the interaction between electrons.

Let us introduce the atom wave functions as a combination of one-electron
wave functions. Then, due to the symmetry (1.19) with respect to the transposition
of electrons, the atom wave function can be written in the form of the Slater
determinant

	 � 1√
n

∣∣∣∣∣∣∣∣∣
ψ1(1)χ1(1) ψ1(2)χ1(2) . . . ψ1(n)χ1(n)

ψ2(1)χ2(1) ψ2(2)χ2(2) . . . ψ2(n)χ2(n)

. . . . . . . . . . . .

ψn(1)χn(1) ψn(2)χn(2) . . . ψn(n)χn(n)

∣∣∣∣∣∣∣∣∣ , (3.13)

where ψ is the spatial wave function, χ is the spin wave function, the subscript
means the electron state, and the argument indicates the number of an electron to
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which the wave function corresponds. The wave function in the form of the Slater
determinant changes the sign as a result of the transposition of both electrons and
states. Assume that we choose the optimal one-electron wave functions which are
eigenfunctions of the Hamiltonians ĥj . Let us determine, on the basis of these
functions, the atom energy which has the form

E � 〈	∣∣Ĥ ∣∣	〉 � n∑
j�1

εj +
n∑

j�1

〈j |U |j〉 −
n∑

j,k�1

〈jk|v|kj〉ajk. (3.14)

Summation in the last term is made over all j and k; the matrix elements of formula
(3.14) have the form

〈j |U |j〉 �
∫

ψ∗j (r)U (r)ψj (r) dr;

〈jk|v|kj〉 �
∫

ψ∗j (r)ψ∗k (r′)v(r, r′)ψk(r)ψj (r′) dr dr′.

The value ajk is equal to zero, if the spin projections are different for states j

and k; this value is one, if the spin projections are coincident for these states. We
obtain formula (3.14) on the basis of (3.12) and (3.13) by taking into account the
orthogonality of the one-electron wave functions, i.e.,∫

ψ∗j (r)ψk(r) dr � δjk.

The structure of expression (3.14) for the atom energy is such that only one- and
two-electron interactions are present in the approach of a self-consistent field for a
many-electron system. The first and second terms account for the electron energy if
electrons are located in a self-consistent field which is averaged over the positions
of other electrons. The last term is called the exchange interaction potential and
is a result of the Pauli exclusion principle. This interaction reflects the character
of the symmetry of the wave function (1.19) with respect to the transposition of
electrons.

Thus, the above formalism allows us to describe a many-electron atomic sys-
tem on the basis of the self-consistent field concept and the exchange interaction
between electrons. Using the one-electron approximation, one can reduce the prob-
lem to the two-electron approximation. Let us determine the ionization potential of
an atomic particle within the framework of this concept. Assuming that the wave
function of electrons of the atomic core does not change as a result of the release of
a valent electron we obtain, from formula (3.14) for the atom ionization potential,

J � E(n− 1)− E(n) � εj + 〈j |U |j〉 − 2
n−1∑
k�1

〈jk|v|kj〉, (3.15)

where summation in the last term is made over electrons with the same spin pro-
jection that has the removed electron j . This form of the atom ionization potential
reflects the character of the interaction of atomic electrons.
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Table 3.2. The dependence on Z for some parameters of multicharged heliumlike ions.

Parameter Z-dependence

Ionization potential Z2

Exchange interaction Z

Spin-orbit interaction Z4

Rate of one-photon dipole radiation Z4

Rate of two-photon dipole radiation Z8

3.5 Heliumlike Ions

Heliumlike ions have two electrons located in the Coulomb field of a nucleus
charge Z. Above we considered some examples of these ions, now we concentrate
on multicharged helium ions in the case ofZ 
 1. Table 3.2 gives the dependence
of some parameters of these ions on Z. Because of a different Z-dependence for
some parameters, the interaction character varies with an increase Z. Indeed, the
role of relativistic interactions grows with an increase inZ, whereas the role of the
exchange interactions drops. Table 3.3 contains examples which confirm this fact.
As is seen from Table 3.3, the relative contribution of the relativistic interactions
to the electron energy increases with the growth of Z, while the contribution of
exchange interactions decreases.

As for the radiative transitions of multicharged heliumlike ions, the rates of
forbidden transitions increase more strongly with an increase in Z than those for
the permitted transitions. Some examples for radiative transitions from the lowest
excited states to the ground state are given in Table 3.4. Note that if we approximate
Z-dependence for the rate of the radiative transitions at large Z as Zn, then the
exponent is equal to n � 3.6 for the transition 21P → 11S, n � 5.8 for the
transition 21S → 11S, n � 7.3 for the transition 23S → 11S, and n � 9.5 for
the transition 23P → 11S. Because of the different Z-dependencies for forbidden
and permitted transitions, for large Z the terms “forbidden” and “permitted” lost
their meaning. In particular, as follows from Table 3.4, the radiative lifetimes of
levels 23P and 21P have the same order of magnitude at large Z, while they differ
by several orders of magnitude at small Z.

Table 3.3. Relative values of the exchange and spin-orbit interactions in heliumlike ions.
Here εex(23S) is the excitation energy of the metastable state 23S, 
 is the difference of
excitation energies for levels 21S and 23S, and
ε(23P2−23P0) is the fine splitting of levels
23P2 − 23P0. The ratios are given in percent.

Ion Li+ Ne+8 Ca+18 Zn+28 Zr+38 Sn+48

Z 3 10 20 30 40 50


/εex(23S), % 3.2 1.1 0.60 0.42 0.38 0.29


ε(23P2 − 23P0)/εex(23S),% 0.001 0.025 0.14 0.35 0.61 1.1
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Table 3.4. Times of radiative transitions for heliumlike ions.

Ion Li+ Ne+8 Ca+18 Zn+28 Zr+38 Sn+48

Z 3 10 20 30 40 50

τ (23S → 11S), s 49 9.2 · 10−5 7.0 · 10−8 1.1 · 10−9 6 · 10−11 6 · 10−12

τ (21S → 11S), s 5.1 · 10−4 1.0 · 10−7 1.2 · 10−9 1.0 · 10−10 2 · 10−11 4 · 10−12

τ (23P → 11S), s 5.6 · 10−5 1.8 · 10−10 2.1 · 10−13 8.1 · 10−15 1.4 · 10−15 5 · 10−16

τ (21P → 11S), s 3.9 · 10−11 1.1 · 10−13 6.0 · 10−15 1.3 · 10−15 5 · 10−16 2 · 10−16

Problems

Problem 3.1. Determine the ionization potential of the heliumlike ion in the
ground state considering the interaction between electrons as a perturbation.

Use the electron Hamiltonian in the form (3.5):

Ĥ � −1

2

1 − 1

2

2 − Z

r1
− Z

r2
+ 1

|r1 − r2| � Ĥo + V,

where

V � 1

|r1 − r2|
is taken as a perturbation. Then the nonperturbed wave function is a product of the
one-electron wave functions of the ground state of the hydrogenlike ion with the
nucleus charge Z:

	 � ψ(r1)ψ(r2), ψ(r) � Z3/2

√
π
· exp(−Zr).

The wave function 	 is the eigenfunction of the Hamiltonian Ĥo, so that Ĥo	 �
−Z2	. Then in the first order of the perturbation theory we have, for the electron
energy,

ε � 〈	Ĥ	〉 � −Z2 +
〈
	

∣∣∣∣ 1

|r1 − r2|
∣∣∣∣	〉 .

The average value of the potential of the electron–electron interaction is evaluated
above and is equal to 〈

	

∣∣∣∣ 1

|r1 − r2|
∣∣∣∣	〉 � −5

8
Z.

This gives, for the total electron energy of the heliumlike ion,

ε � −Z2 + 5

8
Z.
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From this it follows that, for the ionization potential of the heliumlike ion in the
ground state,

J � −Z2

2
− ε � Z2

2
− 5

8
Z.

In particular, in the case of the helium atom, we have that this formula gives a
lower value compared to the result (3.8) of the variation method. The difference
of these ionization potentials is 25

256 � 2.66 eV. Thus, the perturbation theory leads
to a lower value of the ionization potential, and the perturbation theory is worse
for the analysis of the ground state of the helium atom than the variation method
in the simplest form.

Problem 3.2. Calculate the energy of heliumlike ions in the ground state within
the framework of the perturbation theory where the nonperturbed wave functions
correspond to the hydrogenlike ion with an effective charge. Prove that, if the
effective charge is obtained on the basis of the variation method, the energy change
for the first order of the perturbation theory is zero.

Take the wave function (3.4),

	 � C exp[−Zef (r1 + r2)], C � Z6
ef/π

2,

as a nonperturbed wave function. This is the eigenfunction of the Hamiltonian

Ĥo � −1

2

1 − 1

2

2 − Zef

r1
− Zef

r2
.

Let us present the Hamiltonian in the form (3.5), (3.6):

Ĥ � Ĥo + V,

where

V � − (Z − Zef )

r1
− (Z − Zef )

r2
+ 1

|r1 − r2| .

On the basis of the above matrix elements we have, in the first order of the
perturbation theory,

〈	V	〉 � −2Zef (Z − Zef )+ 5

8
Zef � −2Zef ·

(
Z − Zef − 5

16

)
.

From this it follows that if we take the value of Zef on the basis of the variation
method (Z � Zef − 5/16), this expression is zero. This proves that the wave
function with this value of Zef is the closest to the accurate wave function of the
heliumlike ions among the hydrogenlike wave functions.

Problem 3.3. Determine the ionization potential of the helium atom in the ground
state and the heliumlike lithium ions by the variation principle. Take the test wave
function in the form 	 � C[exp(−αr1 − βr2)− exp(−βr1 − αr2)], with varying
parameters α and β.



Problems 75

The electron energy

ε � 〈	Ĥ	〉
〈		〉

is expressed through a set of standard integrals. Evaluation of these integrals leads
to the electron energy

ε � −Z(α + β)+ αβ +
(α−β)2

2 + αβ

α+β + α2β2

(α+β)3 + 20α3β3

(α+β)5

1+ 64α3β3

(α+β)6

.

The minimum of this expression for the helium atom gives the values of the param-
eters α � 1.189 and β � 2.183. This leads to the following value of the ionization
potential J � 23.83 eV. Note that in the case of the use of one varying parameter
(α � β � 1.6875) the ionization potential is equal to 23.06 eV, while its accurate
value is 24.56 eV. In the case of the lithium ion we have that the energy minimum
corresponds to the values of the parameters α � 2.08 and β � 3.29. This yields,
for the ionization potential of the lithium ion, J � 74.80 eV. The variation of
one parameter gives (α � β � 2.6875) the ionization potential 74.08 eV, and its
accurate value is 75.64 eV.

As follows from the above analysis, usage of the second varying parameter leads
to a decrease in the error in the ionization potential. In both cases β > Z, i.e., the
parameters α and β are not an effective charge which acts on the corresponding
electron. Note that in both cases the value (α + β)/2 is close to Zef—an effective
charge which is the varying parameter for the wave function with one varying
parameter.

Problem 3.4. Determine the asymptotic expression for the wave function of the
valent electron on the basis of the wave function of the previous problems.

The electron radial wave function at large distances from the center satisfies the
Schrödinger equation

− 1

2r
· d2

dr2
(rψ)− 1

r
ψ � −γ 2

2
, rγ 
 1, rγ 2 
 1,

where γ 2/2 � J is the ionization potential of the atom. The solution of this
equation has the form

ψ � Ar1/γ−1e−rγ , rγ 
 1, rγ 2 
 1.

This problem consists of the calculation of the parameterAwhich characterizes
the amplitude of electron location outside the atomic core. We evaluate this value
on the basis of the following considerations. The test wave function of the variation
method is close to the accurate function in a regionwhere electrons are located. The
electron energy is determined only by this region. Hence, the test wave function
cannot give the accurate asymptotic expression. Nevertheless, there is a region
where the electron density is not small, but where the asymptotic expression for
the electron density is valid. Joining the test and asymptotic wave functions in
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this region, one can find the parameter A. The accuracy of this operation is the
higher, the more accurate the test function. Correspondingly, the more accurate
the test wave function, the wider is the region where the test and asymptotic wave
functions are close.

We introduce the electron number density for a two-electron atom as

ρ(r) �
∫

	2(r, r′)(r ′)2 dr ′,

and this is normalizedby the condition
∫
ρ(r)r2 dr � 2.The asymptotic expression

for the electron density is

ρ(r) � 2A2r−0.511e−2.687r .

We first use for electrons the hydrogenlike wave function of Problem 3.2,

	(r, r ′) � C exp
[−Zef (r + r ′)

]
, C � Z6

ef/π
2,

where r , r ′ are the distances of the electrons from the nucleus, and Zef � 27/16
follows from the variation principle for the helium atom in the ground state. This
wave function gives, at a large distance r from the center,

ρ(r) � 2
∫ ∞

0

∣∣	(r ′, r)
∣∣2 (r ′)2 dr ′ � 8Z3

ef exp(−2Zefr) � 38.4 exp(−3.375r),

and the comparison of this formula with the asymptotic expression of the electron
density gives, for the asymptotic coefficient,

A2
1(r) � 19.2r0.511 exp(−0.688r).

This value is denoted by 1 in Fig. 3.2.
On the basis of the expression of the wave function which is used in the previous

problem we have

ρ(r) � 4 ·
[

1

α3β3
+ 64

(α + β)6

]−1

·
[
e−2αr

β3
+ 16e−(α+β)r

(α + β)3
+ e−2βr

α3

]
.

Using the numerical values of the previous problem, we obtain

ρ(r) � 3.817e−2.378r + 16.57e−3.372r + 23.62e−4.366r .

Comparing this expression with the asymptotic one we obtain, for the asymptotic
coefficient,

A2
2(r) � r0.511

(
1.908e0.309r + 8.286e−0.685r + 11.81e−1.679r

)
In order to determine the error in the valueA, let us use the asymptotic expression

of the electron wave function in accounting for two terms of expansion. Then the
asymptotic expression for the wave function has the form

ψ � Ar1/γ−1e−rγ ·
(
1+ a

r

)
, where a � − 1

2γ
·
(

1

γ
− 1

)
.
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Figure 3.2. The asymptotic coefficient A of the electron wave function of the helium atom
according to the results of Problem 3.4.

Then, repeating the above operations, we obtain, for the asymptotic coefficient in
the first approximation,

A2
3 �

A2
2

1+ 0.095/r
,

where the value A2
2 was calculated above. Figure 3.2 contains the values A1, A2,

A3 as a function of r . One can see that the functions A2(r) and A3(r) vary weakly
near the maximum of these functions, and that the function A2(r) has a maximum
at r � 1.65, while the function A3(r) has a maximum at r � 1.55 for A1(r).
The function (3.9) has a maximum at r � 0.75. Averaging these functions in the
distance range r � 0.4÷ 2.6, we find that the asymptotic coefficient according to
formula (3.10) is A2 � 2.98± 0.05 in this region and according to formula (3.11)
it is A3 � 2.87± 0.07, so that on the basis of these data we have

A � 2.9± 0.1.

The use of the hydrogenlike wave functions of electrons gives A1 � 2.8± 0.3 in
this range, i.e., the error in the case of the use of a simple wave function increases
several times. This example shows that the identical wave functions of valent
electrons lead to a remarkable error for the asymptotic coefficient.
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Problem 3.5. Determine the ionization potential of the helium atom and the
lithium ion in the metastable state 1s2s(23S) on the basis of the variation method
with the use of the hydrogen wave functions such that the 1s-electron is located
in the Coulomb field of the nucleus charge, and the effective charge acted on the
second electron is varied.

Because the spin wave function for the relevant state with S � 1 is symmetric with
respect to transposition of the spins, the spatialwave function is antisymmetricwith
respect to transposition of the electron coordinates. Therefore, the spatial electron
wave function can be represented in the form

	 � ψ(r1)ϕ(r2)− ψ(r2)ϕ(r1)√
2(1− S2)

,

where ψ is the wave function of the 1s-electron and ϕ is the wave function of the
2s-electron. These wave functions are described by the expressions

ψ(r) �
(
Z3

π

)1/2

exp(−Zr), ϕ(r) �
(
α3

8π

)1/2 (
1− αr

2

)
exp

(
−αr

2

)
,

where Z is the nucleus charge and α is the effective charge of the atomic core.
The overlapping integral from these wave functions is equal to S � 〈ψϕ〉 �
(2x)3/2(x − 1)/(x + 1/2)4, where x � Z/α 
 1.

It is essential that the 23S-state is the lowest energetic state among the states with
antisymmetric coordinate wave functions. This is orthogonal to the wave function
of the ground state due to the symmetry of the spin function. This fact simplifies
the procedure, because in the case of the 21S-state it is necessary to use such test
spatial wave functions which are ortogonal to the wave function of the ground
state. Divide the Hamiltonian into parts in the following way:

Ĥ � −1

2

1 − 1

2

2 − Z

r1
− Z

r2
+ 1

|r1 − r2| � ĥ1 + ĥ2 − Z − α

r2
+ 1

|r1 − r2| ,

where

ĥ1 � −1

2

1 − Z

r1
, ĥ2 � −1

2

2 − α

r2
.

On the basis of the relations(
−1

2

− Z

r

)
ψ(r) � −Z2

2
ψ(r),

(
−1

2

− α

r

)
ϕ(r) � −α2

8
ϕ(r),

we obtain, for the energy of the related state,

ε � 〈[ψ(r1)ϕ(r2)− ψ(r2)ϕ(r1)]Ĥ [ψ(r1)ϕ(r2)]〉
1− S2

� −Z2

2
− α2

8
− (Z − α)

1− S2
(A− BS)+ K − L

1− S2
,
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where

A �
〈
ϕ

∣∣∣∣1r
∣∣∣∣ϕ〉 , B �

〈
ϕ

∣∣∣∣1r
∣∣∣∣ψ〉 ,

K �
〈
ψ(r1)ϕ(r2)

∣∣∣∣ 1

|r1 − r2|
∣∣∣∣ψ(r1)ϕ(r2)

〉
,

L �
〈
ψ(r1)ϕ(r2)

∣∣∣∣ 1

|r1 − r2|
∣∣∣∣ψ(r2)ϕ(r1)

〉
.

Calculation of these matrix elements by the standard methods gives

A � α

4
, B � α

2

(2x)3/2(x − 1/2)

(x + 1/2)3
, L � αx3

8
· (20x3 − 30x + 13)

(x + 1/2)7
,

K � α

4
·
[
1− 4x + 1

4(x + 1/2)3
+ 5x + 1

4(x + 1/2)4
− 3(6x + 1)

32(x + 1/2)5

]
.

In particular, in the case x � 1 (i.e., Z � α), these integrals are equal to

A � Z

4
, B � 4

√
2

27
Z � 0.210Z,

K � 17

81
Z � 0.210Z, L � 16

729
Z � 0.0219Z.

The above expressions give, for the electron energy,

ε � −Z2

2· ·
[
1+ 1

4x2
+ x − 1

2x2
· 1− 16x3(x − 1)(x − 1/2)/(x + 1/2)7

1− 8x3(x − 1)2/(x + 1/2)8

]
+ Z

4x
[
1− [8x3(x − 1)2/(x + 1/2)8]

]
·
[
1− 4x+1

4(x+1/2)3
+ 5x+1

4(x+1/2)4
− 3(6x+1)

32(x+1/2)5
− x3(20x2−30x+13)

2(x+1/2)7

]
.

This expression must be optimized over parameter x. Table 3.5 contains the results
which follow from such an optimization. The ionization potential of the atom is
equal to J � −ε − Z2/2. There are, in parentheses, the accurate values of the
ionization potential for the helium atom and heliumlike ions.

As is seen, the use of the variation method with a variation of one parameter
leads to an error in the energy of electrons of the order of 0.1 eV. This error is
lower than in the case of the helium atom or heliumlike ions in the ground state

Table 3.5. Parameters from the optimization of the wave function of the metastable helium
atom or heliumlike ions.

Atom, ion Z xmin αmin −ε, eV J , eV

He(23S) 2 1.289 1.552 58.96 4.53(4.79)

Li+(23S) 3 1.167 2.571 138.85 16.40(16.62)

Be++(23S) 4 1.118 3.578 252.78 35.08(35.30)
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where this error is of the order of 1 eV. The reason of this fact is such that in the
relevant case the electron orbits are separated, and hence the electron correlation
is not so essential for the electron energy. This allows us to find a closer function to
the accurate function by the use of one varying parameter. Note that in the relevant
case we vary an effective charge of the atomic core in which field the excited
electron is located. From the data in Table 3.5 it follows that the shielding of the
nucleus field by a 1s-electron is close for the relevant cases. Indeed, the action
of the internal electron on the excited electron is identical to the presence of the
negative charge near the center of the value 0.448e for the helium atom, 0.429e
for the lithium ion, and 0.422e for the two-charged beryllium ion.

Problem 3.6. Within the framework of the perturbation theory determine the ex-
change splitting of the 23S- and 21S-states for the helium atom and heliumlike
ions.

In the relevant case the electron shell has the configuration 1s2s, and the coordinate
wave function of electrons has the form

	 � ψ(r1)ϕ(r2)± ψ(r2)ϕ(r1)√
2(1± S2)

,

where ψ is the wave function of the 1s-electron, ϕ is the wave function of 2s-
electron, r1, r2 are the coordinates of the electrons, and S � 〈ϕ | ψ〉 is the
overlapping integral (see Problem 3.5). The electron Hamiltonian has the form

Ĥ � −1

2

1 − 1

2

2 − Z

r1
− Z

r2
+ 1

|r1 − r2| � Ĥo + 1

|r1 − r2| ,

where the last term is considered as the perturbation. The wave functions ψ and ϕ

are the eigenfunctions of the Hamiltonian

Ĥo	 � (−Z2/2− Z2/8)	,

and the overlapping integral is equal to zero. Thus, the electron energy of the
relevant states is

ε � −5

8
Z2 +

〈
	

∣∣∣∣ 1

|r1 − r2|
∣∣∣∣	〉 .

This gives

ε � −5

8
Z2 +K ± L,

where

K �
〈
ψ(r1)ϕ(r2)

∣∣∣∣ 1

|r1 − r2|
∣∣∣∣ψ(r1)ϕ(r2)

〉
,

L �
〈
ψ(r1)ϕ(r2)

∣∣∣∣ 1

|r1 − r2|
∣∣∣∣ψ(r2)ϕ(r1)

〉
.

The plus sign corresponds to the 21S-state and the minus sign refers to the 23S-
state. Values of the integrals were calculated in the previous problem and now they
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Table 3.6. Ionization potentials of the excited helium atom and heliumlike ions.

State He Li+ Be++

21S 0.99(3.97) 11.68(14.72) 29.19(32.25)

23S 3.38(4.79) 15.27(16.62) 33.96(35.30)

are equal to

K � 17

81
Z, L � 16

729
Z.

This gives the ionization potential for the first order of the perturbation theory

J � −ε − Z2

2
� Z2

8
− 17

81
Z ± 16

729
Z,

where the minus sign corresponds to the 21S-state and the plus sign refers to
23S-state. Table 3.6 gives values of the ionization potentials calculated on the
basis of this formula. The accurate values of the ionization potentials are given in
parentheses.

As is seen, the relevant version of the perturbation theory leads to the error for
the 23S-state approximately 1.3–1.6 eV, while the variation method of the previous
problem gives an error of 0.2–0.3 eV. The reason for a high error in the perturbation
theory is explained by neglecting the shielding of the external electron by the
internal one. This effect is stronger for the 21S-state. For this reason the error in
the case of the 21S-state is higher and is about 3 eV. As is seen, the perturbation
theory is not suitable even for a rough estimation of the ionization potential of the
21S helium state.

Problem 3.7. Within the framework of the perturbation theory determine the ion-
ization potential of the helium atom or heliumlike ions in the 21S-state. Assume
that the nonperturbed state corresponds to the location of the 1s-electron in the
Coulomb field of charge Z, and charge Z − 1 acts on the 2s-electron.

From the results of the previous problem it follows that the shielding of the external
electron by the internal one is of importance. In the previous problem we neglected
this effect, and in this problemwe assume the total shielding of the external electron
by the internal one. Using the expressions of Problem 3.5 we have, for the electron
energy of the 21S-state,

ε �
〈[
ψ(r1)ϕ(r2)+ ψ(r2)ϕ(r1)

]
Ĥ
[
ψ(r1)ϕ(r2)

]〉
1+ S2

� −Z2

2
− α2

8
− (Z − α)

1+ S2
(A+ BS)+ K + L

1+ S2
,

where the definition of the integrals of this expression is given in Problem 3.5.
On the basis of the expressions of these integrals in Problem 3.5 we have, for the
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electron energy,

ε � −Z2

2
·
⎡⎣1+ 1

4x2
+ x − 1

2x2
·
1+ 16x3(x−1)(x−1/2)

(x+1/2)7

1+ 8x3(x−1)2

(x+1/2)8

⎤⎦
+ Z

4x
·
⎡⎣1− 4x+1

4(x+1/2)3 + 5x+1
4(x+1/2)4 − 3(6x+1)

32(x+1/2)5 + x3(20x2−30x+13)
2(x+1/2)7

1+ 8x3(x−1)2

(x+1/2)8

⎤⎦ .

The results for the ionization potentials are given in Table 3.7. We use, in Table
3.7, both the total shielding of an external electron (α � Z − 1, x � Z/(Z − 1))
and its partial shielding of the nucleus charge which is taken as the same as in the
case of the 23S-state of Problem 3.5. As is seen, the real values of the ionization
potentials are located between the calculated values. This means that the shielding
in the case of the 21S-state is more than in the case of the 23S-state. The error is of
the order of 1 eV and is more than in the case of the variation method in Problem
3.5 for the 23S-state. This is clear because the variation method for optimization
over the shielding charge is used.

Problem 3.8. Determine the exchange splitting of levels of the helium atom and
heliumlike ions for the electron shell 1s2s within the framework of the perturbation
theory. Ascertain the dependence of this splitting on the nucleus charge in the limit
of large Z.

The exchange splitting of levels in this case is the difference of energies of the
21S- and 23S-states. According to the formulas of Problem 3.5, this value is equal
to


 � ε(21S)− ε(23S)

� − (Z − α)

1+ S2
(A+ BS)+ K + L

1+ S2
+ (Z − α)

1− S2
(A− BS)− K − L

1− S2
,

where the definitions of the integrals and their values are given in Problem 3.5.
Because the overlapping integral is small S � 1, this formula takes the form


 � 2L− 2(Z − α)(B − AS)S − 2KS2.

Note thatZ−1 < α < Z. The lower limit corresponds to the total shielding of the
external electron by the internal electron, and the upper limit corresponds to the
absence of this shielding. First let us analyze this expression in the limit of largeZ.

Table 3.7. The ionization potentials in eV for the 21S-states of the helium atom and
heliumlike ions.

Atom, ion Total shielding Partial shielding (Problem 3.5) Accurate values

He 4.60 3.00 3.97

Li+ 15.66 13.61 14.72

Be++ 33.30 31.08 32.25
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Table 3.8. Parameters of the potential of exchange interaction for the electron shell 1s2s.

Atom, ion α 
, eV αac 
ac, eV

He 1.55 1.52 1.40 0.82

Li+ 2.57 2.78 2.40 1.90

Be++ 3.58 4.00 3.40 3.05

The strongest dependence onZ contains the first term of this formula which varies
proportional to Z at large Z; the second term does not depend on Z, and the third
term is ∼ 1/Z. Hence in the limit of large Z this formula gives 
 � 32Z/729.
If we express 
 in eV, this formula gives 
 � 1.2Z (eV). Table 3.8 lists values
of the exchange splitting of levels with the use of values for the effective charge
α which was obtained in Problem 3.5 for the 23S-state by the variation method.
Table 3.8 also contains accurate values of the exchange splitting 
ac and values of
the parameter α(αac) which lead to the observational values. As is seen, the value
Z−αac in all cases is equal to 0.6, while for the 23S-states it lies between 0.42 and
0.45 (see Table 3.5). This shows that the effective shielding charges are different
for the 21S- and 23S-states.

The above analysis for the energy levels of the helium atom in the ground
and lowest excited states gives a general presentation about the validity of the
perturbation and variation methods for calculation of the positions of their energy
levels. On the basis of this analysis one can conclude that the perturbation theory is
not reliable for this goal, while the variation method can provide suitable accuracy
for the positions of the energy levels.

Problem 3.9. Determine the cross section of photoionization of the helium atom
and heliumlike ions for large photon energy compared to the atom ionization
potential.

We use formula (2.40) for the cross section of one-electron photoionization by
taking into account two facts. First, two electrons can take part in this process
independently, so that it is necessary to multiply the cross section (2.41) by two.
Second, the state of the combined electrons is changed as a result of the release
of other electrons. Hence, an additional factor occurs in formula (2.41) which is
the projection of the wave function of the final state of the combined electron onto
the wave function of its initial state. As a result, the photoionization cross section
(2.41) has the form

σion � 16πqω

3c
K2

01S
2,

where K01 is the matrix element for the radial wave functions of the released
electrons and the overlapping integral S is equal in the relevant case

S � 4Z3/2Z
3/2
ef

∫ ∞

0
r2 dr exp[−(Z + Zef )r] � 8Z3/2Z

3/2
ef

(Z + Zef )3
.
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According to formula (3.7), below we take Zef � Z− 5
16 , and the factor S is equal

to

S �
(

1− 5

16Z

)3/2 (
1− 5

32Z

)3

.

In particular, for the helium atom S � 0.99, and this value is taken to be unity for
the heliumlike positive ions.

The matrix element for the radial wave functions is equal to

K01 � 1

2q

∫ ∞

0
r3 drRo(r)Rq1(r),

where, according to (2.32),

Rq1(r) �
√

2πq

r
J3/2(qr) � 2

r

[
cos(qr)− sin(qr)

qr

]
.

Evaluating the matrix element for large q, we take the integral by parts and express
it through the parameters of the wave function of the initial state at r � 0. Indeed,
we have

K01 � 1

q

∫ ∞

0
r2 drRo(r)

[
cos(qr)− sin(qr)

qr

]
� 1

q5

[
d2(rRo)

dr2
− d3(r2Ro)

dr3

]
r�0

.

Using the radial function of the initial state in the formRo(r) � 2Z3/2
ef exp(−Zefr),

where Zef � Z − 5
16 , we find K01 � 8Z5/2

ef /q5. From this we have for the cross
section of photoionization, taking into account a high-photon energy (ω � q2/2 

Z2

ef ),

σion � 512π

3cq7
Z5

ef .

In particular, for the helium atom this formula has the form

σion � σo
Z5

ef

q7
,

where σo � 1.1 · 10−16 cm2, if q is expressed in atomic units, and q 
 Zef .



CHAPTER 4

Light Atoms

4.1 Quantum Numbers of Light Atoms

The atom is a system of bound electrons located in the Coulomb field of a heavy
nucleus. The energy levels of this quantum system are determined by the Coulomb
interaction of electronswith the center, theCoulomb interaction between electrons,
and the exchange interaction between electrons due to the Pauli exclusion principle.
Restricted by these interactions, we neglect the relativistic effects. This is valid
for atoms with a small charge Z of the nucleus. We call atoms the light ones if
the relativistic interactions in them are small compared to the electrostatic and
exchange ones. Light atoms are the object of this chapter.

The Hamiltonian of the electrons of a light atom has the form (1.18),

Ĥ � −1

2

∑
i


i −
∑
i

Z

ri
−
∑
i,j

1

|ri − rj | . (4.1)

Here and below we use atomic units i, j are numbers of electrons, ri is the coordi-
nate of the ith electron, and Z is the nucleus charge. Introduce the eigenfunctions
	n of the Hamiltonian which are solutions of the Schrödinger equation

Ĥ	n � εn	n, (4.2)

where n is the number of the state, and εn are the eigenvalues of this equation.
Let us introduce quantum numbers of a light atom such that the operators of the
corresponding physical values commute with the Hamiltonian. Such operators are
the total spin and total orbital momentum of electrons. We prove this below.

The operator of the total electron spin is equal to

Ŝ �
∑
i

ŝi , (4.3)
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where ŝi is the operator of the spin of the ith electron. If the wave function of elec-
trons is antisymmetric with respect to the transposition of electrons, the function
Ŝ	 satisfies this condition also. In addition, the atom Hamiltonian does not depend
on electron spins, so that the total spin of the electrons is the quantum number of
the light atom, i.e., each atom state is characterized by the total atom spin S and
by its projection MS onto a given direction.

The operator of the total atom orbital momentum is

L̂ �
∑
j

l̂j , l̂j �
[
r̂j × p̂j

]
, (4.4)

where l̂j is the operator of the orbital momentum for the ith electron, p̂j �
−i(∂/∂rj ) is the operator of the linear momentum of the j th electron, and the
brackets mean the vector product of vectors. The function L̂	 �∑j l̂j	 satisfies
the condition (3.1), if this condition is fulfilled for the 	-function due to the sym-
metry of the operator L̂ �∑j l̂j with respect to transposition of the electrons. Let

us determine the commutator {L̂Ĥ }. If this commutator is zero, the eigenfunction
of the Hamiltonian is, simultaneously, the eigenfunction of the operator L̂, i.e.,
the total orbital momentum of the atom L is its quantum number. The operator
L̂ �∑j l̂j commutes with the first term of the Hamiltonian (4.1). This commutes
with the second term of this formula because the orbital momentum conserves in
a central force field. Thus

{L̂Ĥ } �
∑
i,j

{
L̂,

1

|ri − rj |
}
.

Let us take the z-projection of this commutator and extract one term from this
formula. We have {

L̂z,
1

|rk − rj |
}
�
{
l̂zk + l̂zj ,

1

|rk − rj |
}
,

because the operator of the momenta of the other electrons does not depend on
the coordinates of the kth- and j th-electrons. The operator of the electron orbital
moment is l̂z � xp̂y − yp̂z, where p̂ � −i∇, and the distance between electrons
is

|rk − rj | �
[
(xk − xj )

2 + (yk − yj )
2̄ + (zk − zj )

2
]1/2

,

where xk , yk , zk are the components of the radius-vector of the kth-electron. On
the basis of these expressions we have{

l̂zk + l̂zj ,
1

|rk − rj |
}

� (l̂zk + l̂zj )
1

|rk − rj |
� −i

(
xk

∂

∂yk
− yk

∂

∂xk
+ xj

∂

∂yj
− yj

∂

∂xj

)
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×
[
(xk − xj )

2 + (yk − yj )
2̄ + (zk − zj )

2
]1/2

� i

[
xk(yk − yj )− yk(xk − xj )+ xj (yj − yk)− xj (yj − yk)

][
(xk − xj )2 + (yk − yj )2̄ + (zk − zj )2

]3/2 � 0.

Thus {L̂zĤ } � 0 and, because the z-direction is random, we have {L̂Ĥ } � 0.
From this it follows that the eigenfunction of the Hamiltonian, which satisfies the
Schrödinger equation (4.2), is simultaneously the eigenfunction of the operator
of the total orbital momentum of the L̂-electrons. Therefore, the eigenstate of the
light atom is characterized by a certain orbital momentum L and its projection
ML onto a given direction. Because the atomic field does not include a certain
direction, the atomic states are degenerated with respect of the projection of the
total orbital momentum of the ML-electrons.

Thus, neglecting the relativistic interaction, one can characterize an atom as
a system of bound electrons in a central Coulomb field by the quantum numbers
LSMLMS , and the states of this systemare degeneratedwith respect to the quantum
numbers ML and MS , i.e., each state is degenerated (2ML + 1)(2MS + 1) times.
Therefore, the atomic terms are characterized by the quantum numbers L and S

only. In this case the atom states with the orbital momentum L � 0, 1, 2, 3, 4, 5,
etc., are denoted by the letters S, P , D, F , G, etc. The atom spin is given in the
form of the value 2S + 1 (a number of spin projections) left above from the letter
of the orbital momentum. For example, the notation of the atomic term 2P means
that the atomic orbital momentum is L � 1 and its spin is S � 1/2.

4.2 The Atom Shell Model

The quantum numbers of atoms LSMLMS help us to classify some states of the
atom. But the formal description of the problem in the form of the Schrödinger
equation (4.2) does not allow us to obtain information about the related atom
because the variables in this equation are not separated. For this goal it is convenient
to use a simple model which was used in the previous chapter for two-electron
atoms. Introducing a self-consistent field, we change the Hamiltonian of electrons
(4.1) by amodel onewhich includes a self-consistent field. ThismodelHamiltonian
has the form

Ĥ �
∑
i

[
−1

2

i + V (ri)

]
, (4.5)

where V (ri) is the potential of the self-consistent field. The Hamiltonian (4.5)
allows us to separate variables in the Schrödinger equation (4.2), and the equations
for individual electrons take the form[

−1

2

i + V (ri)

]
ψi(ri) � εiψi(ri), (4.6)
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where ψi(ri) is the wave function of the ith electron and εi is the energy of this
electron. The electron state in a central force field V (ri) is characterized by its or-
bital momentum l and the momentum projectionm onto a given direction. Because
of the atom symmetry, degeneration with respect to m takes place.

Let us determine the number states of an individual electron by analogy with
the hydrogen atom, taking into account the lower state with a given l, a principal
quantum number n � l + 1. Then, if one chooses the effective potential of the
self-consistent field V (r) in equation (4.6) as the Coulomb one, the electron states
with the same n and different l will have the same energy. Because the basis of the
self-consistent field potential V (r) is the Coulomb interaction, the introduction of
the principal quantum number of electrons in this way provides a correct sequence
for the series of the energy levels. In this case the higher n is, the higher lies the
energy level. Thus, introducing an effective self-consistent atomic field, we obtain
that a state of an individual electron in the atom is characterized by the quantum
numbers nlmσ , where m is the projection of the electron orbital momentum onto
a given direction, and σ � ± 1

2 is the spin projection. The energy of an individual
electron is degenerated with respect to the quantum numbers m and σ because of
the radial symmetry of the effective self-consistent field.

Now let us construct the state and wave function of atomic electrons on the
basis of the above one-electron states. Then place electrons in one-electron states
and use the Pauli exclusion principle, so that two electrons cannot be located in
the same state. Symmetrizing the total wave function of electrons as a product
of one-electron functions, we obtain this wave function. Because the states with
the lowest energy are of interest, this operation corresponds to filling some cells
with certain quantum numbers. Let us make this procedure. The lowest state by
the energy of electrons has the quantum numbers n � 1, l � m � 0. There are
two such states which differ by the spin projection onto a given direction. These
states are denoted by 1s, and two electrons in these states are denoted as 1s2. The
helium atom in the ground state has such a structure of the electron shell.

The following two states by energy are characterized by the quantum numbers
n � 2, l � m � 0, and these states are denoted as 2s2. The successive six states
are characterized by the quantum numbers of electrons n � 2, l � 1, m � 0, ±1.
Although in the case of the Coulomb interaction the electron states with n � 2 and
l � 0, 1 have the same energy, one can conclude for a real self-consistent field that
the state l � 0 is characterized by a higher electron binding energy than the state
l � 1, because an electron is located closer to the nucleus where the shielding by
other electrons is weaker. The above operation corresponds to the distribution of
electrons over states with different quantum numbers nl. The group of states with
the same nl is named an electron shell, and the related atomic model is called the
electron shell model. The following notations are used in this case. The principal
quantum number of the electron state n is given as a number, the electron orbital
momentum is denoted by a letter, so that notations s, p, d , f , g, h correspond to
the states l � 0, 1, 2, 3, 4, 5, and a number of electrons with the same nl is given
as a superscript. For example, the state of the sulphur atom S(1s22s22p63s23p4)
means that this atom has two electrons on the shell n � 1, l � 0, two electrons
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on the shell n � 2, l � 0, six electrons on the shell n � 2, l � 1, two electrons
on the shell n � 3, l � 0, and the unfilled valent shell of this atom contains four
electrons with the quantum numbers n � 3, l � 1. Often, when interactions or
processes involving atoms are determined by valent electrons, it is convenient to
take into account only the valent electron shell. Then for the above example we
have S(3p4).

The electron shell of an atom includes only part of the quantum numbers which
are used for the description of an atom state. Several different levels of the energy
which are described by additional quantum numbers correspond to unfilled atomic
shells. The simplest example of such a type is He(1s2s). Two states 23S and 21S

of a different energy relate to this electron shell. They differ by the total spin
of electrons. The shell atom model is useful for the classification of atom states
and understanding the atom nature. This model can be used for the evaluation of
energies of light atoms.

4.3 Parentage Scheme of Atoms

The shell atom model corresponds to a one-electron description of the atom. Then
the wave function of atomic electrons is the combination of the products of one-
electron wave functions. These combinations can be taken on the basis of the
symmetry (3.1) of the electron wave function. In reality the radial symmetry of
atomic fields and the character of summation of the momenta of individual elec-
trons in the total atom momenta simplifies this combination. Often the related
properties of the atom are determined by valent electrons only. Then it is con-
venient to extract the wave function of one of the valent electrons from the total
wave function of electrons. The operation of the extraction of the wave function
of one valent electron from the total electron wave function of the atom is called
the parentage scheme of the atom. On the basis of the total symmetry of the atom
electron system this operation can be made on the basis of the formula

	LSMLMS
(1, 2, . . . , n) � 1√

n
P̂

∑
L′M ′

LS
′M ′

Smσ

GLS
L′S ′ (l, n),

[
l L′ L

m M ′
L ML

]⎡⎣ 1

2
S ′ S

σ M ′
S MS

⎤⎦ψl 1
2mσ (1) ·	L′S ′M ′

LM
′
S
(2, . . . , n), (4.7)

where n is the number of valent electrons. The operator P̂ transposes the positions
and spins of a test electron which is described by argument 1 and the atomic elec-
trons,LSMLMS are the quantumnumbers of the atom,L′S ′M ′

LM
′
S are the quantum

numbers of the atomic core, l 1
2mσ are the quantum numbers of an extracted va-

lent electron, and GLS
L′S ′ (l, n) is the so-called fractional parentage coefficient or the

Racah coefficient which is responsible for the connection of an electron with the
atomic core in the formation of the atom. It is of importance that as a result of
the removal of one valent electron from the atom the atomic core can be found in
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Table 4.1. Fractional parentage coefficients for valent s- and p-electron shells. The electron
shell and the state term for the atom and atomic core are indicated.

Atom Atomic core GLS
L′S′ Atom Atomic core GLS

L′S′

s(2S) (1S) 1 p3(2P ) p2(1S)
√

2/3

s2(1S) s(2S) 1 p4(3P ) p3(4S) −1/
√

3

p(2P ) (1S) 1 p3(2D)
√

5/12

p2(3P ) p(2P ) 1 p3(2P ) −1/2

p2(1D) p(2P ) 1 p4(1D) p3(4S) 0

p2(1S) p(2P ) 1 p3(2D)
√

3/4

p3(4S) p2(3P ) 1 p3(2P ) −1/2

p2(1D) 0 p4(1S) p3(4S) 0

p2(1S) 0 p3(2D) 0

p3(2D) p2(3P ) 1/
√

2 p3(2P ) 1

p2(1D) −1/
√

2 p5(2P ) p4(3P )
√

3/5

p2(1S) 0 p4(1D) 1/
√

3

p3(2P ) p2(3P ) −1/
√

2 p4(1S) 1/
√

15

p2(1D) −√5/18 p6(1S) p5(2P ) 1

a finite number of states. Table 4.1 lists the values of fractional parentage coeffi-
cients for s- and p-electron shells. In the case of d- and f -electrons, removal of
one valent electron can lead to different states of the atom with the same values,
L and S. Then the atom state is described by one more quantum number v—the
state seniority.

Fractional parentage coefficients satisfy some relations. In particular, from the
condition of normalization of the wave function it follows that∑

L′S ′v

[
GLS

L′S ′ (l, n, v)
]2 � 1. (4.8)

The number of electrons of a filled electron shell equals 4l + 2. There is some
analogy between removal of one vacancy from a shell containing n+ 1 vacancies
and 4l + 3 − n electrons, and the case of removal of one electron from the shell
containingn electrons. This correspondence is expressed in the form of the formula

GLS
L′S ′ (l, n, v) � (−1)L+L

′+S+S ′−l−1/2 ·
[

n(2S ′ + 1)(2L′ + 1)

(4l + 3− n)(2S + 1)(2L+ 1)

]1/2

·GLS
L′S ′ (l, 4l + 3− n, v). (4.9)

Themathematical formalismbased on the use of theClebsh–Gordan coefficients
and the fractional parentage coefficients possesses a central place in the atom
theory. This formalism allows one to take into account the symmetry of atomic
particles for the analysis of their properties. In particular, it gives the selection rule
for radiative transition. The rate of radiative transition between two atomic states
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Figure 4.1. The distribution in the electron shell of valent p-electrons for atoms of the
fourth group of the periodical system of elements for states with maximum spin (circles)
and maximum orbital momentum (crosses).

is proportional to the square of the matrix element of the dipole moment operator
between states of transition. Within the framework of the scheme of the light atom,
this transition is possible between states with 
S � 0 and 
L � 0,±1.

The above analysis allows us to construct the Grotrian diagrams in total analogy
with the hydrogen atom for various light atoms (see Figs. 4.1–4.7). These diagrams
show the positions of low states of atoms and the parameters of intense radiative
transitions. Taking into account the radiative transitions for the excited states of
atoms, one can divide these states into two groups. Lower excited states of atoms,
fromwhich is possible a radiative transition to the ground state are called resonantly
excited atomic states. If a radiative transition is forbidden from the lower excited
state to the ground one, this is a metastable excited state. Metastable states are
characterized by high lifetimes in gaseous and plasma systems. Below (in Chapter
6) we give some examples of these states.

Figure 4.2. Parameters of the metastable states of the carbon atom. These states are
characterized as the same electron shell as the ground state.
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Figure 4.3. Parameters of the metastable states of the silicon atom. These states are
characterized by the same electron shell as the ground state.

Figure 4.4. Parameters of the metastable states of the oxygen atom. These states are
characterized by the same electron shell as the ground state.

4.4 Asymptotic Behavior of Atomic Wave Functions

The parentage scheme allows us to separate one valent electron from other elec-
trons. Now we use it in the case when the distance of one valent electron from
the nucleus remarkably exceeds an average atom size. Then the parentage scheme
gives a correct description of an atom, while above we considered it as a convenient
atom model. Let us present in the related case the wave function of an extracted
electron of formula (4.7) in the form

ψl 1
2mσ � Rl(r)Ylm(θ, ϕ)χσ ,

whereRl is the radial wave function, Ylm(θ, ϕ) is the electron angle wave function,
and χσ is the electron spin function. In the course of the removal of an electron
from the atom, only the radial wave function varies. Hence, below we concentrate
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Figure 4.5. Parameters of the metastable states of the sulfur atom. These states are
characterized by the same electron shell as the ground state.

Figure 4.6. Parameters of the metastable states of the selenium atom. These states are
characterized by the same electron shell as the ground state.

Figure 4.7. Parameters of the metastable states of the tellurium atom. These states are
characterized by the same electron shell as the ground state.
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our attention on this electron wave function. Let us find the asymptotic expression
for the radial wave function. Because at large distances from the atom an exchange
interaction is not essential, we neglect this. Next, the self-consistent field potential
far from the atom coincides with the Coulomb field of the atomic core. Thus, the
Schrödinger equation for the radial function of a test valent electron has the form

1

r
· d2

dr2
(rRl)+

[
ε − 2

r
+ l(l + 1)

r2

]
Rl(r) � 0. (4.10)

Introducing the energy parameter by the relation ε � −γ 2/2, we obtain the
asymptotic solution of this equation at large r ,

Rl(r) � Ar1/γ−1e−rγ , rγ 
 1; rγ 2 
 1. (4.11)

The coefficientA is determined by the electron behavior in an internal atom region
where the related electron is located and formula (4.11) is violated. This coefficient
can be obtained by comparison of the asymptotic wave function (4.11) with that at
moderate distances from the nucleus, as it is made in Problem 3.4 for the helium
atom in the ground state. Indeed, the numerical methods of the solution of the
Schrödinger equation allow us to determine the electron wave function in a region
where electrons are mostly located. Such a solution leads to an error at large
distances from the nucleus, because these positions of the electrons give a small
contribution to the atom energy. An increase in the accuracy of the electron wave
function makes it correct in a widre region of electron distances from the center.
Then there is a region of distances of the test valent electron from the center where,
on one hand, the asymptotic expression (4.11) is valid and, on the other hand, a
numerical wave function is correct. Comparing these functions, one can find the
parameter A. An example of the determination of parameter A by this method for
the helium atom is given in Problem 3.4. Table 4.2 contains values of parameter
A obtained in this way by using the results of the Hartri–Fock calculations.

Note that if the Coulomb interaction with the atomic core takes place in the basic
region of the electron location, i.e., equation (4.10) is valid for all the distances of
the electron from the center, we have the following expression for the asymptotic
coefficient for the valent s-electron

A � γ 3/2(2γ )
1
γ

�
(

1
γ

) . (4.12)

4.5 Fine Splitting of Levels of Light Atoms

Within the framework of the related scheme, relativistic interactions in the atom
are weak. Hence, the state of the atom is characterized, in the first place, by the
structure of its electron shell, and also by a certain orbitalL and spin S momenta of
the atom. For the related scheme of the atom shell model, electron states with the
same shell structure and different values of L and S are separated by energy, due
to exchange interaction which is determined by the symmetry of the electron wave
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Table 4.2. Asymptotic parameters of valent electrons.

Atom, state Shell γ A Atom, state Shell γ A

He(1S) 1s2 1.344 2.87 (A) K(2S) 4s 0.565 0.52 (C)

Li(2S) 2s 0.630 0.82 (B) Ca(1S) 4s2 0.670 0.95 (C)

Be(1S) 2s2 0.828 1.62 (B) Cu(2S) 4s 0.754 1.29 (A)

B(2P ) 2p 0.781 0.88 (C) Zn(1S) 4s2 0.831 1.69 (C)

C(3P ) 2p2 0.910 1.30 (C) Ga(2P ) 4p 0.664 0.60 (C)

N(4S) 2p3 1.034 1.5 (C) Ge(3P ) 4p2 0.762 1.29 (C)

O(3P ) 2p4 1.000 1.3 (C) As(4S) 4p3 0.850 1.58 (C)

F(2P ) 2p5 1.132 1.59 (C) Se(3P ) 5p4 0.847 1.52 (C)

Ne(1S) 2p6 1.228 1.75 (C) Br(2P ) 4p5 0.932 1.83 (B)

Na(2S) 3s 0.615 0.74 (B) Kr(1S) 4p6 0.932 2.22 (B)

Mg(1S) 3s2 0.750 1.32 (B) Rb(2S) 5s 0.554 0.48 (C)

Al(2P ) 3p 0.663 0.61 (C) Sr(1S) 5s2 0.647 0.86 (C)

Si(3P ) 3p2 0.774 1.10 (C) Ag(2S) 5s 0.746 1.18 (C)

P(4S) 3p3 0.878 1.65 (C) Cd(1S) 5s2 0.813 1.6 (C)

S(3P ) 3p4 0.873 1.11 (C) In(2P ) 5p 0.652 0.58 (C)

Cl(2P ) 3p5 0.976 1.78 (C) Sn(3P ) 5p2 0.735 1.02 (C)

Ar(1S) 3p6 1.076 2.11 (B) Sb(4S) 5p3 0.797 1.67 (C)

Te(3P ) 5p4 0.814 1.65 (C) Au(2S) 6s 0.823 1.57 (A)

I(2P ) 5p5 0.876 1.94 (C) Hg(1S) 6s2 0.876 1.96 (A)

Xe(1S) 5p6 0.944 2.4 (C) Tl(2P ) 6p 0.670 0.55 (C)

Cs(2S) 6s 0.535 0.42 (C) Pb(3P ) 6p2 0.738 1.09 (C)

Ba(1S) 6s2 0.619 0.78 (B) Bi(4S) 6p3 0.732 1.43 (C)

function. The group of states of identical L and S is called “the electron term” of
the electron system. Until we neglect the relativistic interactions, the energy levels
of one electron term are degenerated. Thus, the concept of the light atom requires
the weakness of relativistic interactions compared to exchange interactons. Action
of the relativistic effects on the light atom can be taken into account on the basis of
the perturbation theory within the framework of the above concept. The strongest
relativistic interaction is the spin-orbit interaction. The corresponding splitting of
the electron term is called fine splitting. Below we estimate the fine splitting of
levels for a light atom.

The operator of the spin-orbit interaction has the form

V̂ � −aL̂Ŝ, (4.13)
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and for the hydrogen atom the coefficient a is given by formula (2.19). Change
the Coulomb field in the hydrogen atom by a self-consistent one, V in other atoms
leads to the following expression for this value, if we take into account partaking
of all the valent electrons in this interaction:

a � 1

2c

∑
k

〈
1

rk

dV

drk

〉
, (4.14)

where k is an electron number.
If we add the interaction operator (4.13) to the Hamiltonian of electrons (4.1),

we obtain that the accurate quantum number is now the total electron momentum
(see Problem 4.3):

Ĵ � L̂+ Ŝ. (4.15)

From this relation it follows that〈
2L̂Ŝ

〉 � 〈Ĵ2
〉− 〈L̂2

〉− 〈Ŝ2
〉 � J (J + 1)− L(L+ 1)− S(S + 1).

The spin-orbit interaction leads to the splitting of an atomic term into several
sublevels. The distance between neighboring sublevels is equal to

εJ − εJ−1 � −a

2
J (J + 1)+ a

2
(J − 1)J � −aJ, (4.16)

i.e., this difference is proportional to J . This relationship for light atoms is known
as the Lande rule.

In accordance with the character of the summation of momenta, the quantity J

takes the values

J � |L− S|, |L− S| + 1, . . . , L+ S.

Hence each electron term is split into 2 min(L, S)+1 levels as a result of spin-orbit
interaction. A certain value of the quantum number J corresponds to each sublevel.
Hence, the eigenstates of the atom are characterized by the quantum numbers
LSJMJ , where MJ is the projection of the total momentum of electrons onto a
given direction. Each of the states has a (2J+1)-multiplied degeneration. Note that
the number of degenerated levels in the absence of the relativistic interactions is∑

J (2J +1) � (2L+1)(2S+1). Notation of the total atom momentum is given as
the subscript below the notation of the orbital moment. For example, 2P3/2 means
that this state of the atom is described by the quantum numbers S � 1/2, L � 1,
J � 3/2.

Note that the Lande rule is valid for the case ofLS-coupling when the relativistic
interactions are small compared to the exchange interactions. Then, in the case of
several fine states, a certain relation takes place for the distances between levels
which correspond to different total electron momenta. Table 4.3 contains some
examples of fine splitting for the ground states of atoms and ions whose ground
term is 4F . Let us denote the difference of energies of the 4F3/2- and 4F9/2-levels
by 
f . Then, within the framework of the scheme of LS-coupling, the distance
between 4F3/2 and 4F5/2 is equal to 5

21
f , and the distance between the 4F3/2- and
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Table 4.3. Positions of sublevels of fine structure (in cm−1) for some atoms and ions whose
electron term of the ground state is 4F .

Atom Shell ε (4F3/2) ε (4F5/2) ε (4F7/2) ε (4F9/2)

V 3d34s2 0 137 324 553

(132) (316)

Co 3d74s2 1809 1407 816 0

(1378) (775)

Rh 4d85s 3473 2598 1530 0

(2646) (1488)

Ti+ 3d24s 0 94 226 393

(94) (225)

Zr+ 4d25s 0 315 763 1323

(315) (756)

Ru+ 4d75s2 3105 2494 1523 0

(2366) (1331)

4F7/2-levels is 4
7
f . Values calculated on the bases of these formulas are given in

Table 4.3 in parentheses, and comparison of the calculated and real values of the
fine splitting of levels allows us to estimate the validity of theLS-coupling scheme
for these cases. Note the competition between s- and d-shells in the related case.
Nevertheless, the LS-coupling scheme for the summation of electron momenta
describes the observed positions of the levels of fine structure. As is seen from the
data of Table 4.3, the Lande rule is better valid, the lighter the atom or ion is.

The fine atom structure is detected in the spectra of absorption and radia-
tion of atoms. Hence it gives some information about atoms. Because of the
fine splitting of levels, atomic spectra include series of closed spectral lines
which are called multiplets. Let us find the relation between the intensity of in-
dividual spectral lines—multiplets. These values are proportional to the value
|〈SJMJ |D|S ′J ′MJ ′ 〉|2. The electron wave function of the state described by the
quantum numbers LSJMJ is expressed through wave functions of the states of
the quantum numbers LSMLMS by the Clebsh–Gordan coefficients, which are
responsible for the summation of the orbital and spin atom momentum into the
total atom momenta

	LSJMJ
�

∑
ML,MS

[
L S J

ML MS MJ

]
	LSMLMS

.

Averaging over the initial states of the transition and summarizing over the final
states of the transition we obtain, for the relative probability of a transition between
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the states of a given fine structure

w(γLSJ → γ ′L′S ′J ′) � (2L+ 1)(2J ′ + 1)

{
L′ 1 L

J S J ′

}2

wo, (4.17)

where γ , γ ′ are quantumnumberswhich are not connectedwith atommomenta, the
brackets mean the 6j -symbol of Wigner, and wo does not depend on the quantum
numbers L′, S ′, J ′ of the final state. The probability of transition is not zero, if

J − J ′ � 0,±1. (4.18)

This is the selection rule for radiative transitions. The relative probability of
transition is normalized by the condition∑

J ′
w(γLSJ → γ ′L′S ′J ′) � w(γLS → γ ′L′S ′). (4.19)

Let us introduce the oscillator strength as

fjk � 2(εk − εj )gk|〈j |Dx |k〉|2,
where j , k are the initial and final states of transition, and gk is the statistical weight
of the final state. Usually the oscillator strength is averaged over initial states of
the transition and is summed up over the final states. Then the relation between
the oscillator strengths in the absence of the fine splitting and in its presence has
the form

f (γLS → γ ′L′S ′) �
∑
J,J ′

(2J + 1)

(2S + 1)(2L+ 1)
f (γLSJ → γ ′L′S ′J ′),

and from the definition of this value it follows that

f (γLS → γ ′L′S ′) � − (2L′ + 1)

(2L+ 1)
f (γ ′L′S ′ → γLS).

From relations (4.14), (4.16) it follows that

f (γLSJ → γ ′L′S ′J ′) � (2J + 1)(2J ′ + 1)

(2S + 1)

{
L′ 1 L

J S J ′

}2

f (γLS → γ ′L′S ′).

(4.20)
This formula yields the relative intensity for separate lines of a certain multiplet.

In particular, Table 4.4 gives the relative intensities of spectral lines for the radiative
transition 2P → 2D which is the ratio of the oscillator strength f (γLSJ →
γ ′L′S ′J ′) tof (γLS → γ ′L′S ′). Bydefinition, the sumof these oscillator strengths
is equal to unity.

Thus, the hierarchy of the interactions in light atoms leads to certain quantum
numbers of the atom. In the related case the exchange splitting of atom levels
is large compared to the spin-orbital interactions. Then, by neglecting the spin-
orbital interactions, the atom quantum numbers areLMLSMS . Taking into account
the spin-orbital interactions within the framework of the perturbation theory, we
obtain LSJMJ as the atom quantum numbers. This character of interaction in the
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Table 4.4. The relative intensity of multiplets in the radiative transition 2P → 2D.

Transition Relative oscillator strength
2P1/2 → 2D3/2 1/3
2P3/2 → 2D3/2 1/15
2P3/2 → 2D5/2 3/5

atom and summation of atom momenta into the total momentum J is called the
LS-coupling scheme. Note that if we increase the relativistic interactions such that
this scheme of summation of atom momenta does not work, the total number of
electron states for a given electron shell is conserved. Hence, if the LS-coupling
scheme is used beyond the limits of its validity, it is necessary to consider the
LS-numbers as a form of designation of the electron states, but not as quantum
numbers.

4.6 Periodic System of Elements and Atoms with
Valent s-Electrons

The electrons of unfilled electron shells or the electrons of external shells are called
valent electrons. Atoms with an identical orbital momentum of valent electrons
and the same number of valent electrons, we call atoms with identical valent shells.
One can expect that atoms with identical valent shells have the same properties
related to their chemistry and spectrum. This fact is the basis of systematization of
elements in the form of the periodic system of elements. Each of the eight groups
of the periodic system of elements includes atoms with valent s- and p-electrons.
These groups form columns in the periodic system of elements. Along with atoms
with valent s- and p-electrons, which form the main groups of elements, atoms
with valent d-electrons are included in the periodic system of elements. If such
atoms have no analogy with atoms of filling s- and p-shells, they form their own
subgroups. Atoms with filling f -shells are taken out of the periodic table and form
an additional table of lanthanides and actinides.

Thus, the periodic system of elements reflects the fact that atoms with identical
valent shells have identical properties. This confirms the atomshellmodel andgives
the way for systematization of atoms of various elements. Below we analyze the
analogy of the atom spectral properties for atoms with valent s- and p-electrons.
Atoms of the first group of the periodic system of elements have one valent s-
electron. This group includes hydrogen, atoms of alkali metals Li, Na, K, Rb, Cs,
and atoms of coin metals Cu, Ag, Au. The ground state of these atoms corresponds
to the term 2S1/2, the first excited state 2P1/2 corresponds to the transition of the
valent electrons in the p-state. Hence, the first excited state of atoms of the first
group is the resonance one, so that a dipole radiative transition is possible between
this and the ground state. Table 4.5 lists the parameters of the first excited state of
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atoms of the alkali metals. Note that the oscillator strength of absorption has the
following form in this case

f (s → p) � 2
ε

3
|〈s|r|p〉|2.

This formula is written in atomic units; 
ε is the difference of energies of these
states, r is the electron radius-vector, and summation over all states of the related
p-state is made in this formula. Neglecting the fine splitting of levels and taking
into account the expression for the oscillator strength

f (s → p) � f (2S1/2 → 2P1/2)+ f (2S1/2 → 2P3/2),

we have

f (2S1/2 → 2P1/2) � 1

2
f (2S1/2 → 2P3/2) � 1

3
f (s → p).

Table 4.5 contains τ—the lifetime of the state 2P1/2 which is close to that of
2P3/2. Analyzing the spin-orbit splitting of levels of the lowest excited states for
atoms of the first group, we take into account that this splitting is determined by
one electron. Then let us use for this goal formula (2.20) with an effective charge
Zef of the atomic core by a change the parameter e2 in formula (2.20) by the value
Zefe

2. Comparing the formula with measured values, one can find this effective
charge Zef , which determines the fine splitting. As follows from the data of Table
4.5, the fine splitting of heavy alkali atoms is determined by the location of the
valent electron inside the previous shell.

Atoms of the coin metals Cu, Ag, Au, which are located in the first group of
the periodic system of elements, have partially the same properties as alkali metal
atoms until these properties are determined by the valent s-electron. But the d-
electrons of the previous shell have a relatively small excitation energy and give
a contribution to the spectrum of these atoms. This fact is demonstrated by Table
4.6 where the energies are given for the lowest excited states of these atoms. As is

Table 4.5. Parameters of the resonantly excited states of atoms of the first group of the
periodic system of elements with a valent ns-shell.

Atom H Li Na K Rb Cs

n 1 2 3 4 5 6

εex(2P1/2), eV 10.20 1.85 2.10 1.61 1.56 1.39

εex(2P3/2), eV 10.20 1.85 2.10 1.62 1.59 1.45

λ(2S1/2 → 2P1/2), nm 1215.7 6707.9 5895.9 7699.0 7947.6 8943.5

λ(2S1/2 → 2P3/2), nm 1215.7 6707.8 5890.0 7664.9 7800.3 8521.1

f (p→ s) 0.416 0.741 0.955 1.05 0.99 1.2

τ , ns 1.6 27 16 26 29 30


ε(2P1/2 − 2P3/2), cm−1 0.365 1.35 17.2 57.6 237.6 554.1

Zef 1 1.4 2.6 3.5 5.0 6.2
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Table 4.6. Parameters of atoms of coin metals (J is the ionization potential, τ is the radiative
lifetime of s-state, εex is the excitation energy of the corresponding state).

Atom Cu Ag Au

Shell 3d104s 4d105s 5d106s

J , eV 7.726 7.576 9.226

τ , ns 7 7 6

εex(3d94s2, 2D5/2), eV 1.389 3.749 1.136

εex(3d94s2, 2D3/2), eV 1.642 4.304 2.658

εex(3d104p, 2P1/2), eV 3.786 3.664 4.632

εex(3d104p, 2P3/2), eV 3.816 3.778 5.105

Table 4.7. Parameters of the lowest states for atoms of the second group of the periodic
system of elements.

Atom Be Mg Ca Zn Sr Cd Ba Hg

Ground state 21S0 31S0 41S0 41S0 51S0 51S0 61S0 61S0

Excited shell 2s2p 3s3p 4s4p 4s4p 5s5p 5s5p 6s6p 6s6p

ε(3P0), eV 2.72 2.71 1.88 4.01 1.78 3.73 1.52 4.67

ε(3P1), eV 2.72 2.71 1.89 4.03 1.80 3.80 1.57 4.89

ε(3P2), eV 2.72 2.72 1.90 4.08 1.85 3.94 1.68 5.464

ε(1P1), eV 5.28 5.11 2.93 5.80 2.69 5.42 2.24 6.78

λ(1S0 → 3P0), nm — 457.11 657.28 307.59 689.26 326.11 791.13 253.65

λ(1S0 → 1P0), nm 234.86 285.21 422.67 213.86 460.73 228.80 553.55 184.95

τ (1P0), ns 1.9 2.0 4.6 5.0 1.4 1.7 8.4 1.3


ε(3P0 − 3P1), cm−1 0.64 20.1 52.2 190 187 542 371 1767

seen, the excitation energy of the d-electron is lower than or is comparable to that
of the valent s-electron.

Atoms of the second group of the periodic system of elements have the valent
shell s2, so that in the lowest excited state one electron tranfers to p-state. The
heliumatom is an exclusion from this, and its lowest excited states relate to the elec-
tron shell He(1s2s). The lowest excited states of the helium atom are metastable
states, and the excitation energy for the state He(23S) is equal to 19.82 eV, the ex-
citation energy of the metastable state He(21S) is equal to 20.62 eV. The following
state of the helium atom He(23P ) can decay as a result of the emitting of a dipole
photon with transition in the state He(23S), i.e., this state is a resonantly excited
one with the radiative lifetime 98 ns. The resonantly excited state He(21P ), which
decays with the emitting of a dipole photon and transition in the ground state, has
the excitation energy 21.22 eV and the radiative lifetime 0.56 ns. Table 4.6 con-
tains parameters of the lowest excited states for other atoms of the second group
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of the periodic system of elements. The absence of a monotonous dependence of
excitation energies on the atom number testifies to the influence of internal shells
on atom parameters, especially if the atom has the previous d10-shell. In addition,
the excitation of a valent electron in a p-state can compete with its excitation
in a d-state. For example, the excitation energies of the states 4s4d(3D1,2,3) and
4s4d(1D2) of the calcium atom are lower than that for the resonantly excited state
4s4p(1P1) which is included in Table 4.7. The lowest excited states of the barium
atom Ba(6s5d, 3D1,2,3) and Ba(6s5d, 1D2) are characterized by the excitation en-
ergies 1.12, 1.14, 1.19, and 1.41 eV, respectively. The barium atom states of Table
4.7 have a higher excitation energy.

4.7 Atoms with Valent p-Electrons

Now let us consider atoms of the third group of the periodic system of elements
whose valent shell contains one p-electron. The ground state of these atoms is
2P1/2, the first excited state is 2S1/2 which corresponds to transition of the valent
electron from the np to the (n + 1)s-electron shell. An exception to this rule is
the boron atom whose first excited states corresponds to the transition from the
electron shell 2s22p to the shell and states (2s2p2)4P1,2,3. Table 4.8 gives some
parameters for the ground, 2P1/2,3/2, and resonantly excited, 2S1/2, states of atoms
of the third group of the periodic system of elements. One can see that the fine
splitting of the ground state of the related atoms is created by the location of the
valent electron in the internal shells.

Atoms with p2, p3, and p4 valent shells have several terms corresponding to
the lowest state of the electron shell. At the beginning we considered atoms with a
p2-shell which are characterized by the statistical weightC2

6 � 15. One can obtain
all these states by the distribution of electrons over cells with different momenta
and spin projections, as is shown in Fig. 4.1. According to the Pauli exclusion
principle, only one electron can be placed in one cell. Let us arrange electrons
over the states. First we extract the state with the maximum orbital moment (it is

Table 4.8. Parameters of the lowest states for atoms of the third group of the periodic system
of elements.

Atom B Al Ga In Tl

Ground shell 2p 3p 4p 5p 6p

Excited shell 3s 4s 5s 6s 7s

εex, eV 4.96 3.14 3.07 3.02 3.28


ε(2P1/2 − 2P3/2), cm−1 15.2 112 896 2213 7793

Zef 2.5 4.2 7.0 8.8 12

λ(2P1/2 − 2S1/2), nm 249.68 394.40 403.30 410.18 377.57

τ (2S1/2), ns 3.6 6.8 6.2 7.4 7.6
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marked by open circles in Fig. 4.1). Take a direction of the quantum axis such that
the projection of the orbital momentum of each electron onto this axis is equal
to one. Then the projection of the total atom orbital momentum onto this axis
equals 2, and the total spin projection is zero. Thus the term of this state is 1D, and
the statistical weight of this state (the number of projections of the atom orbital
momentum) equals 5. Now let us construct the state with the maximum projection
of total spin. We obtain that the spin projection is one and that the total orbital
momentumprojection is also one. Thus this state corresponds to the term 3P , which
includes nine states with different projections of the total orbital momentum and
spin. Hence, the extracted terms 1D and 3P include 14 (5+9) states from the total
number of 15. It is necessary to add one more term 1S to these terms, i.e., the terms
of atoms of the fourth group of the periodic system of elements with the valent
shell p2 are 3P , 1D, 1S.

The energetic sequence of these terms is determined by theHund rule.According
to this rule, the lowest state, by energy, has the maximum spin. The lowest state
among the terms with identical spins has the maximum electron momentum. Thus
the order of terms for atoms of the fourth group of the periodic system of elements
is 3P , 1D, 1S. Table 4.9 gives the energetic parameters of the lowest states for
atoms of the fourth group of the periodic system of elements, and Figs. 4.2 and
4.3 contain the spectral parameters of the carbon and silicon atoms.

Atoms of the sixth group of the periodic system of elements have the same order
of electron terms as atoms of the fourth group, because the shell in this case can
be constructed from two p-holes. Then the order of terms is 3P , 1D, 1S, but the
order of states of fine structure is reversible with respect to atoms of the fourth
group so that the lowest state is 3P2. Table 4.10 presents energetic parameters of
the lowest states for atoms of the sixth group of the periodic system of elements,
and Figs. 4.4–4.7 give the spectral parameters of these states. Note that in the case
of the tellurium atom, the order of levels of fine structure violates both, due to the
strong relativistic interactions and to the interaction of external and internal shells.

Now let us consider atoms of the fifth group of the periodic system of elements
with the valent shell p3. The statistical weight or total number of states for this
shell is equal to C3

6 � 20. In order to find these states, let us distribute electrons
on shells as was made for atoms of the fourth group of the periodic system of

Table 4.9. Energetic parameters of the lowest states for atoms of the fourth group of the
periodic system of elements.

Atom C Si Ge Sn Pb

Shell 2p2 3p2 4p2 5p2 6p2

εex(1D), eV 1.26 0.78 0.88 1.07 2.66

εex(1S), eV 2.68 1.91 2.03 2.13 3.65

εex(3P1), cm−1 16.4 77.1 557 1692 7819

εex(3P2), cm−1 43.4 223 1410 3428 10650
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Table 4.10. Energetic parameters of the lowest states for atoms of the sixth group of the
periodic system of elements.

Atom O S Se Te

Shell 2p4 3p4 4p4 5p4

εex(1D), eV 1.97 1.14 1.19 1.31

εex(1S), eV 4.19 2.75 2.78 2.88

εex(3P1), cm−1 158 396 1990 4751

εex(3P2), cm−1 227 574 2534 4706

Figure 4.8. The distribution in the electron shell of valent p-electrons for atoms of the
fifth group of the periodical system of elements for states with maximum spin (circles) and
maximum orbital momentum (crosses).

elements. The state with the maximum projection of the total spin is indicated in
Fig. 4.8 by crosses. This state has the spin projection 3/2 and the orbital momentum
projection 0 onto a given direction, i.e., it corresponds to the term 4S. The state
with the maximum projection of the orbital momentum is shown in Fig. 4.8 by
open circles. This corresponds to the term 2D. Hence, the extracted terms 4S, 2D

include 14 (4 + 10) states from 20. One more term is characterized by the spin
projection 1/2 and the orbital momentum projection 0 or 1. Evidently, it is the term
2P which includes six states. Thus the terms of the shell p3 are 4S, 2D, 2P . These
terms are written in the order of their energetic levels in accordance with the Hund
rule. Table 4.11 contains energetic parameters of the lowest states for atoms of
the fifth group of the periodic system of elements, and Figs. 4.9 and 4.10 contain
spectral parameters of the lowest states of the nitrogen and phosphorus atoms.

Atoms of the seventh group of the periodic system of elements (atoms of halo-
gens) have the valent shell p5 (or one p-hole). Therefore the term of the ground
state of the halogen atoms coincides with that of the atoms of the third group of
the periodic system of elements, but the sublevels of fine structure have the inverse
sequence. The ground state of halogen atoms is 2P3/2, the lowest excited state
corresponds to the electron shell p4s. Table 4.12 gives parameters of the lowest
states of halogen atoms.
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Table 4.11. Energetic parameters of the lowest states for atoms of the fifth group of the
periodic system of elements.

Atom N P As Sb Bi

Shell 2p3 3p3 4p3 5p3 6p3

εex(2D5/2), eV 2.38 1.41 1.31 1.06 1.42

εex(2P1/2), eV 3.58 2.32 2.25 2.03 2.68


ε(2D5/2 − 2D3/2), cm−1 8.7 15.6 322 1342 4019


ε(2P1/2 − 2P3/2), cm−1 0.39 25.3 461 2069 10927

Figure 4.9. Parameters of the metastable states of the nitrogen atom. These states are
characterized by the same electron shell as the ground state.

Figure 4.10. Parameters of the metastable states of the phosphine atom. These states are
characterized by the same electron shell as the ground state.
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Table 4.12. Energetic parameters for halogen atoms.

Atom F Cl Br I

Shell 2p5 3p5 4p5 5p5

J , eV 17.42 12.97 11.81 10.45

Lowest excited term 2p43s, 4P5/2 3p44s, 4P5/2 4p45s, 4P5/2 5p46s, 4P5/2

εex(4P5/2), eV 12.70 8.92 7.86 6.77


ε(2P3/2 − 2P1/2), cm−1 404 881 3685 7603

Table 4.13. Parameters of the lowest excited states of inert gas atoms.HereJ is the ionization
potential, εex is the excitation energy from the ground state, λ is the wavelength of the
corresponding transition, and τ is the radiative lifetime of the indicated state.

Atom Ne Ar Kr Xe

J , eV 21.56 15.76 14.00 12.13

Excited shell 2p53s 3p54s 4p55s 5p56s

εex(3P2), eV 16.62 11.55 9.92 8.32

εex(3P1), eV 16.67 11.62 10.03 8.44

εex(3P0), eV 16.72 11.72 10.53 9.45

εex(1P1), eV 16.82 11.83 10.64 9.57

λ(1S0 → 3P1), nm 743.72 1066.6 1235.8 1469.6

τ (3P1),ns 25 10 4.5 3.6

λ(1S0 → 1P0), nm 735.90 1048.2 1164.8 1295.6

τ (1P1), ns 1.6 2.0 4.5 3.5

Atoms of the eighth group of the periodic system of elements, or atoms of inert
gases, have the closed electron shell p6, so that the ground state of the atoms of
inert gases is 1S0. These atoms are characterized by large ionization potentials and
excitation energies (see Table 4.13). The first excited states correspond to the valent
electron shell p5s. Although we use for these states the notations corresponding
to the scheme of LS-coupling, this scheme is not correct for the excited atoms of
inert gases (see also Chapters 5 and 6), so that in this case the values L and S are
designations of states only. This will be considered in detail in the next chapter.

4.8 Systematization of the Electron Structures of Atoms

Thus, the shell concept of the atom structure allows us to analyze the general
properties of the atoms of various elements and their spectra. Let us sum up this
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analysis. We are restricted by atoms with valent s- and p-electrons which form
the basic groups of the periodic system of elements and include about half of the
existing elements. These elements are met more often than other elements in nature
and laboratory systems. This justifies our choice.

Some properties of the analyzed atoms are marked in Table 4.14. Note that
though the used scheme of LS-coupling is often not grounded, our general con-
clusions are valid. In other words, if the relativistic interactions are not small
compared to the exchange ones, and L, S are not quantum numbers, our general
conclusions remain. In particular, the total electron momentum which is the sum
of the total orbital and spin momenta continues to be a quantum number. Along
with this, the number of levels is independent of the scheme of momentum sum-
mation, but the notation of levels by quantum numbers L, S is only the form to
denote a state and has no physical sense, in contrast to the case of the validity
of LS-coupling. Violation of the used scheme of LS-coupling proceeds when the
atom structure becomes complicated. An increase of the orbital momentum of the
valent electrons favours to this. Table 4.15 contains statistical parameters of the
electron shells which are characteristics of the atom complexity.

If a given electron shell has several electron terms, the choice of the ground
state term is made on the basis of the Hund rule. According to the Hund rule, the
energies of states with the same electron shell are placed in the order of decrease of
the total atom spin, so that the ground state has the maximum total electron spin.
States of the same electron spin are placed in the order of decrease of the total
orbital momentum, so that the lowest state by energy has the maximum orbital
momentum. The Hund rule follows from the character of the exchange interaction
within the limits of one electron shell. The order of sublevels of fine structure is the
following. If the shell is filled by less than half, the lowest state of fine structure has
the minimum total electron momentum J . If the shell is filled by more than half,
the lowest sublevel is characterized by the maximum total momentum J . Though
this rule is considered as a semiempirical one, it follows from the character of the
interaction in the atom.

Table 4.14. General properties of atoms of the periodic system of elements (m denotes a
metastable state and r relates to a resonantly excited one).

Number of group Valent shell Fine structure Lowest excited state

1 s − r

2 s2 − m

3 p + m, r

4 p2 + m

5 p3 − m

6 p4 + m

7 p5 + m, r

8 p6 − m, r
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Table 4.15. Electron states of atoms with filling shells.

Configuration of shell Number of terms Number of levels Statistic weight

s 1 1 2

s2 1 1 1

p, p5 1 2 6

p2, p4 3 5 15

p3 3 5 20

d, d9 1 2 10

d2, d8 5 9 45

d3, d7 8 19 120

d4, d6 18 40 210

d5 16 37 252

f, f 13 1 2 14

f 2, f 12 7 13 91

f 3, f 11 17 41 364

f 4, f 10 47 107 1001

f 5, f 9 73 197 2002

f 6, f 8 119 289 3003

f 7 119 327 3432

Problems

Problem 4.1. The atom valent shell contains two electrons. Express the two-
electron wave function of the atom through a one-electron wave function within
the framework of the LS-coupling scheme.

The atom state is characterized by the quantum numbersLSMLMS , whereL is the
orbital momentum of the atom, S is its total spin, and ML, MS are the projections
of the orbital momentum and spin onto a given direction. Using the character of
summation of electron momenta in the total atom momentum we have, for the
electron wave function in this case,

	LSMLMS
(1, 2) �

∑
m1σ1m2σ2

[
l l L

m1 m2 ML

]⎡⎣ 1

2

1

2
S

σ1 σ2 MS

⎤⎦
× ψl 1

2m1σ1
(1) · ψl 1

2m2σ2
(2).

Here l is the electron orbital momentum, arguments of the wave functions mark
electrons to which they correspond, and the subscripts of the wave functions are
quantum numbers of the states. Each one-electron wave function is normalized by
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unity. Because of the property of the Clebsh–Gordan coefficients

∑
m1m2

[
l l L

m1 m2 ML

]2

� 1,

the two-electron wave function is also normalized by one.
The wave function of the system of two electrons requires the fulfillment of

condition (3.1) according to which the transposition of two electrons leads to a
change of its sign. For the same electron momenta the electron transposition is
analogous to the operation m1σ1 ⇀↽ m2σ2. Using the property of the Clebsh–
Gordan coefficients[

l l L

m1 m2 ML

]
� (−1)2l−L

[
l l L

m2 m1 ML

]
.

From this it follows that if two electrons located in the same state with the orbital
moment l, the value 2l − L+ 1− S, must be even, as follows from the condition
(3.1). Thus, two-electron states of the considering electron shell exist only with
even quantity L+ S. In particular, condition (3.1) prohibits terms 3D, 3S, 1P for
the electron shell p2. Hence only 15 states 3P , 1D, and 1S can exist in this case,
while without condition (3.1) 36 states become possible.

Let us construct two-electron wave functions as a product of spatial ϕlm(r) and
spin ησ one-electronwave functions.We have, for the two-electronwave functions,

	LSMLMS
(1, 2) � �LML

(r1, r2) · χSMS
(1, 2),

where

�LML
(r1, r2) �

∑
m1,m2

[
l l L

m1 m2 ML

]
ϕlm1 (r1)ϕlm2 (r2),

χSMS
(1, 2) �

∑
σ1,σ2

⎡⎣ 1

2

1

2
S

σ1 σ2 MS

⎤⎦ ησ1 (1)ησ2 (2).

The spin wave functions of two electrons have the form

χ00 � 1√
2

[
η+(1)η−(2)− η−(1)η+(2)

]
; χ11 � η+(1)η+(2);

χ10 � 1√
2

[
η+(1)η−(2)+ η−(1)η+(2)

]
; χ1,−1 � η−(1)η−(2).

The total orbital moment can change from 0 up to 2l. In particular, Table 4.16
contains the Clebsh–Gordan coefficients which determine the two-electron wave
functions in the case l � 1.

Table 4.16 contains values of the Clebsh–Gordan coefficients for the positive
values of m1 and ML. In the case of negative values of these quantities one can
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Table 4.16. The Clebsh–Gordan coefficients C �
[

1 1 L

m1 m2 M

]
.

L M m1 m2 C

0 0 0 0 − 1√
3

0 0 1 −1 1√
3

1 0 0 0 0

1 0 1 −1 1√
2

1 1 1 0 1√
2

2 0 0 0
√

2
3

2 0 1 −1 1√
6

2 1 1 0 1√
2

2 2 1 1 1

use the following relations:[
l l L

m1 m2 ML

]
� (−1)2l−L

[
l l L

−m1 −m2 −ML

]

� (−1)2l−L
[

l l L

m2 m1 ML

]
.

Problem 4.2. Determine the order of the electron terms and relative distance be-
tween their levels for an atomwith the valent electron shellp2 within the framework
of the LS-coupling scheme.

Using the two-electron wave function of the previous problem, we calculate the
energy of the corresponding term

εLS � 〈LSMLMS |Ĥ |LSMLMS〉.
Here the Hamiltonian of the electrons has the form

Ĥ � −1

2

1 −−1

2

2 + U (r1)+ U (r2)+ 1

|r1 − r2| � ĥ1 + ĥ2 + 1

|r1 − r2| ,

where r1, r2 are the coordinates of the corresponding electrons and U (r) is the po-
tential of the self-consistent central field. Because the Hamiltonian of the electrons
does not depend on spins, we have

εLS � 〈LML|Ĥ |LML〉,
and the one-electron matrix element is equal to 〈ϕlm′ |ĥ|ϕlm〉 � εoδmm′ . This gives

εLS � 2εo +
〈
�LM

∣∣∣∣ 1

|r1 − r2|
∣∣∣∣�LM

〉
,
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and we change the notationML byM . Thus the exchange splitting of levels within
the limits of one shell is determined by the matrix element from the operator
1/|r1 − r2|.

Let us extract the angular wave function from the one-electron wave function
ϕlm(r) � Rl(r)Ylm(θ, ϕ), and use the relation

1

|r1 − r2| �
∑
n

rn<

rn+1
>

· 4π

2n+ 1

∑
q

Ynq(θ1, ϕ1)Y
∗
nq(θ2, ϕ2),

where r> � max(r1, r2), and r< � min(r1, r2). Thus, we have〈
�LM

∣∣∣∣ 1

|r1 − r2|
∣∣∣∣�LM

〉
�
∑
n

anFn, Fn �
∫

rn<

rn+1
>

R2
l (r1)r

2
1 dr1R

2
l (r2)r

2
2 dr2,

and

an � 4π

2n+ 1

∑
q

∑
m1,m2,m

′
1,m

′
2

[
l l L

m1 m2 M

][
l l L

m′1 m′2 M

]
· 〈lm1|Ynq(θ1, ϕ1)|lm′1

〉 〈
lm2|Ynq(θ1, ϕ1)|lm′2

〉
.

Using the expression for the matrix element

〈lm|Ynq(θ1, ϕ1)|lm′〉 �
√

2n+ 1

4π
·
[

l n l

m q m′

]
·
[

l n l

0 0 0

]
,

we obtain

an �
[

l n l

0 0 0

]2 ∑
m1,m2,m

′
1,m

′
2,q

[
l l L

m1 m2 M

]

·
[

l l L

m′1 m′2 M

]
·
[

l n l

m1 q m′1

]
,

[
l n l

m′2 q m2

]
� (−1)2l+L+n · (2l + 1) ·

[
l n l

0 0 0

]2

·
{

l l L

l l n

}
,

where { }means the 6j -symbol of Wigner. Because l is the whole number, n is an
even number, so that we obtain

an � (−1)L(2l + 1) ·
[

l n l

0 0 0

]2

·
{

l l L

l l n

}
.

Since [
l 0 l

0 0 0

]
� 1 and

{
l l L

l l 0

}
� (−1)L · 1

2l + 1
,

we have a0 � 1.
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Table 4.17.

Atom δ γ

C 0.47 0.002

O 0.47 0.004

Si 0.40 0.006

S 0.41 0.015

Ge 0.41 0.042

Se 0.38 0.072

Sn 0.45 0.11

Te 0.37 0.16

Pb 0.66 0.26

In the case of the p2-shell it is necessary to account for two terms in the sum

because

[
1 n 1

0 0 0

]
is not equal to zero only for n � 0 and n � 2. Therefore,

the expression for the atom energy has the form

εLS � 2εo + F0 + a2F2.

The values of a2 for L � 0, 1, 2 are equal, respectively, to 2
5 , − 1

5 , and 1
25 . From

this it follows that the lowest state by energy for the considering electron shell
corresponds to the electron term 3P . The energies of the states of this shell are
equal to

ε(1D) � ε(3P )+ 6

25
F2; ε(1S) � ε(3P )+ 3

5
F2.

From this we obtain the following relation for the relative positions of the energy
levels of a given electron shell:

δ � ε(1D)− ε(3P )

ε(1S)− ε(3P )
� 0.4.

Table 4.17 yields values of the parameter δ for atoms with p2- and p4-electron
shells. We use the average energy of excitation of the three lowest levels 
εP as
the energy of the electron term 3P , the fourth level is taken as the electron term
1D, and the fifth level is taken as the electron term 1S. Alongside this parameter,
the ratio of the fine splitting to the exchange interaction

γ � 
εP

ε(1S)− ε(3P )

is given in Table 4.17. The last relation allows us to ascertain the role of the
spin-orbit interaction for a given atom.

Problem 4.3. Determine the quadrupole moment of an atom with a pn nonfilled
shell within the framework of the LS-coupling scheme.
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The atomic quadrupole moment is

Q � 2e
∑
i

〈
r2
i P2 cos θi

〉 � 2e
∑
i

li(li + 1)− 3m2
i

(2li − 1)(2li + 3)
r2
i ,

where e is the electron charge, ri , θi are the spherical coordinates of the ith electron,
and li ,mi are themomentumof this electron and its projection on the field direction.
Since

m∑
l�−m

[
l(l + 1)− 3m2

] � 0,

the filled electron shells do not give a contribution to the atom quadrupole moment,
and this is determined by the valent electrons.

Using expression (4.7) for the atomic wave function we obtain, for the atomic
quadrupole moment after summation over the spin projections,

Q(LSML) � n
∑
lsμ

qμ
∣∣GLS

ls (le, n)
∣∣2 [ le l L

μ ML − μ ML

]2

,

where L, ML, S are the orbital momentum, its projection on the field direction,
and the atom spin, respectively, le is the momentum of the valent electron, μ is
its projection of the field direction, n is the number of identical valent electrons, l
and s are the orbital momentum and spin of the atomic core, and the one-electron
quadrupole moment is equal to

qμ � 2e
le(le + 1)− 3μ2

(2le − 1)(2le + 3)
r2,

and the value r2 relates to a valent electron. Considering the case of a pn-electron
shell, we have

Q(pn, LSML) � 2n

5
er2

∑
lsμ

(2− 3μ2)
∣∣GLS

ls (pn)
∣∣2 [ 1 l L

μ ML − μ ML

]2

.

From this formula one can find the general properties of the atomic quadrupole
moment. The first property

Q(pn, LS,ML) � Q(pn, LS,−ML),

which follows from the transformation μ, ML → −μ, −ML in the above ex-
pression for the atomic quadrupole moment. The second property of the atomic
quadrupole moment uses the analogy between an electron and a hole. This gives

Q(pn, LS,ML) � −Q(p6−n, LS,ML).

Note that the quadrupole momenta of one electron and one hole with identical
quantum numbers have a different sign. This can be explained by a different charge
sign for an electron and a hole. The third property relates to summation over
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Table 4.18. Values Q(pn, LS,ML)/r2 for the ground states of atoms with pn-shells.

State p 2P p2 3P p3 4S p4 3P p5 2P

ML � 0 4/5 −4/5 0 4/5 −4/5

|ML| � 1 −2/5 2/5 — −2/5 2/5

projections of the atomic momentum which is analogous to an average over the
field direction and gives ∑

ML

Q(pn, LS,ML) � 0.

The above formula for the atomic quadrupole momentum allows one to deter-
mine this value for atoms containing several electronswith nonzeromomentum in a
nonfilled shell. In particular, Table 4.18 contains the reduced quadrupole momenta
of atoms in the ground states with a nonfilled p-shell.

Problem 4.4. Prove that if the spin-orbit interaction in the atom corresponds to
the interaction of an electron spin with the orbital momentum of the same electron,
then the total electron momentum, which is the sum of the total electron orbital
momentum and total spin, is conserved.

The operator of the spin-orbit interaction in the related case has the form

V̂ � −a
∑
i

l̂i ŝi .

Here i is the electron number and the coefficient a is equal to

a � 1

2

(
eh̄

mc

)2 〈1
r
· dU
dr

〉
,

whereU (r) is the potential of a self-consistent field. Let us evaluate the commutator
between the above operator of the spin-orbit interaction and the operator of the
total electron momentum

Ĵ � L̂+ Ŝ �
∑
i

l̂i +
∑
i

ŝi .

Because the operator of the total momentum of a given electron commutes with
that of another electron, we have{

Ĵ, V
}
� −A

∑
i

{
l̂i + ŝi , l̂i ŝi

}
.

Let us take the x-component of one term of this formula. Using the commuting
relations for one electron

{l̂x , l̂y} � il̂z; {l̂x , l̂z} � −il̂y ; {ŝx , ŝy} � iŝz; {ŝx , ŝz} � iŝy,

we obtain {l̂x + ŝx , l̂ŝ} � il̂zŝy − il̂y ŝz + il̂y ŝz − il̂zŝy � 0. Thus, for an individual

electron, the commutator is
{
l̂i + ŝi , l̂i ŝi

}
� 0. Therefore, this sum is equal to zero,
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and the total momentum of atom electrons is a quantum number if the spin-orbit
interaction occurs independently for each electron.

Problem 4.5. Express the oscillator strength of an atom with one valent electron
through the matrix element of its distance from the nucleus within the framework
of the LS-coupling scheme.

We use the general expression for the oscillator strength, which for a one-electron
atom has the form

f (γ, l → γ ′, l′) � 2ω

3

∑
m′
|〈γ lm|r|γ ′l′m′〉|2,

where r is the electron radius-vector and γ lm are the quantum numbers of the
valent electron. Note that the averaging over photon polarizations and summation
over projections of the electron momentum in the final state correspond to the
averaging over projections of the orbital momentum in the initial state. Use the
properties of the related matrix element∑

m′
|〈γ lm|r|γ ′l′m′〉|2 � lmax

2l + 1
|〈γ l|r|γ ′l′〉|2,

where lmax is the maximum value among l and l′. Then we have, for the oscillator
strength,

f (γ, l → γ ′, l′) � 2ωlmax

3(2l + 1)

∣∣〈γ l|r|γ ′l′〉∣∣2 .
This yields, for the oscillator strength of transition between states of a given fine
structure, as follows from formula (4.14):

f (γ, l, j → γ ′, l′, j ′) � (2l + 1)(2J ′ + 1)

⎧⎨⎩ l′ 1 l

j
1

2
j ′

⎫⎬⎭
2

· f (γ, l → γ ′, l′)

� 2ω

3
lmax(2j

′ + 1) ·
⎧⎨⎩ l′ 1 l

j
1

2
j ′

⎫⎬⎭
2

· |〈γ l|r|γ ′l′〉|2.

Problem 4.6. Within the framework of the parentage scheme express the cross
section of atom photoionization through the one-electron matrix elements.

The photoionization cross section is given by formula (1.28) and has the form, in
atomic units,

σion � qω

6πc

∫
|〈LS|D|L′S ′,q〉|2 d�q,

where the parameters L, S characterize the initial atom state, the parameters L′, S ′

correspond to the atom core, and q is the wave vector of a released electron. Let us
use the parentage scheme (4.7) of the atom and express the matrix element through
the one-electronmatrix elements. The atomdipolemoment operator isD �∑j rj ,
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where the sum is taken over the valent electrons. Take the wave function of the
initial state in the form (4.7) in accordance with the parentage scheme. The wave
function of the final state we take in the identical form

	 � 1√
n
P̂ψq(1)	L′S ′ (2, 3, . . . , n),

and for simplicitywe assume that thewave functions of the atomic core are identical
for the initial and final states. Then we obtain, for the matrix element,〈

LS |D|L′S ′,q〉 � √nGLS
L′S ′

[
l L′ L

m M ′ M

]
〈lm|r|q〉,

whereM is the projection of the atommomentum,M ′ is the projection of the atomic
core momentum, and m is the free electron momentum onto a given direction.

Let us average the square of the matrix element over the initial state and sum
up over the final states. Then we have

∣∣〈LS |D|L′S ′,q〉∣∣2 � n(GLS
L′S ′ )

2 · 1

2L+ 1

∑
m,M ′,M

[
l L′ L

m M ′ M

]2

|〈lm|r|q〉|2

� n(GLS
L′S ′ )

2 · 1

2l + 1

∑
m

|〈lm|r|q〉|2.

This gives, for the cross section of photoionization,

σion � ω

6πc
· n

2l + 1

∑
m

q(GLS
L′S ′ )

2 ·
∫ ∑

m

|〈lm |r|q〉|2 d�q.

Note that the integral inside the sum does not depend on m because the integra-
tion over the electron directions of a free electron motion leads to averaging over
the momentum projection of a valent electron in the initial electron state. Express-
ing the integral through the one-electron matrix elements according to formula
(2.40) we obtain, for the cross section of a light atom within the framework of the
parentage scheme,

σion � 8πω

3c
· n

2l + 1

∑
L′S ′

q(GLS
L′S ′ )

2 · [lKl−1 + (l + 1)Kl+1
]
,

where summation is made over possible channels of the atom decay, and the matrix
element Kl is given by formula (2.39),

Kl±1 � 1

2q

∫ ∞

0
r3drRl(r)Rl±1(q, r),

where Rl(r) is the radial wave function of the bound electron and Rl±1(q, r) is
the radial wave function of the released electron whose wave vector is q and the
angular momentum is l ± 1.



CHAPTER 5

The Structure of Heavy Atoms

5.1 Atoms with Valent d- and f -Electrons

The shell model of atoms is based on a certain hierarchy of interactions inside
atoms. The Pauli exclusion principle and a self-consistent atomic field are the ba-
sis of the atom shell structure. This allows us to characterize an atom state by a
configuration of its shell. An exchange interaction within a valent electron shell
leads to the splitting of levels inside a noncompleted shell. This exchange inter-
action is determined by a symmetry of the electron wave function and makes the
total orbital atom momentumL, and the total atom spin S, to be quantum numbers
of the atom. Correlation interactions between electrons, as well as relativistic in-
teractions, are assumed to be weaker than the exchange interactions. They lead to
the splitting of levels with given values of L and S. The total electron momentum
of the atom J arises due to the relativistic interactions in the atom. Thus, the elec-
tron state of a light atom is characterized by quantum numbers which describe the
configuration of its electron shell, by the total orbital atom momentum L, the total
atom spin S, and the total atom momentum J which is a sum of the orbital and
spin atom momenta. In this scheme of summation of electron momenta in the total
atom momentum J , the LS-coupling scheme, the orbital momenta of individual
electrons are summed up in the total orbital momentum of the atom L, spins of
electrons are summed up into the total atom spin S and, further, the total orbital
and spin momenta of the atom are summed up in the total electron momentum of
the atom J . This scheme of summation of electron momenta takes place for light
atoms.

Let us use this scheme for atoms with valent d-electrons. Although this model
may be not realistic for these atoms, it allows us to analyze their specifics. Table 5.1
lists the electron terms of atoms with valent d-electrons within the framework of
the atom shell model and the LS-coupling scheme. These terms correspond to the
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lowest configuration of the electron shell. There areCn
10 (a number of combinations

from 10 to n) states of the electron shell dn. As follows from Table 5.1, the atomic
structure in this case is more complex than in the case of the p-shell. In contrast to
the s- and p-electron shells, in some cases there are two different terms with the
same quantum numbersL and S (then its number is given in parentheses). In order
to distinguish these states, an additional quantum number is introduced which is
called the seniority and is denoted by v. Let us demonstrate the introduction of
this quantum number on a simple example of the state 1S for the electron shell d4.
We now compose the electron wave function for this atom state as a combination
of the products of two-electron wave functions, and the separation of electrons in
pairs is made in such a way that the total spin momentum of each electron pair
is equal to zero. Then the wave functions for each pair of electrons correspond
to the states 1S, 1D, 1G, and these states are the same for both pairs because the
total orbital momentum of four electrons is equal to zero. In this way we must
refuse from the state 1S for an electron pair, because the Pauli exclusion principle
forbids us to have this state for each electron pair. Thus we have to compose the
wave function of the state 1S of four electrons from the combinations of the two-
electron wave functions d2(1D), d2(1D) and d2(1G), d2(1G). One can compose
two such combinations, i.e., there are two states d4(1S), which can be distinguished
by the seniority quantum numbers v � 0 and v � 2. The parity of the quantum
number of seniority coincides with the parity of the number of electrons in the
shell. The maximum value of the seniority quantum number does not exceed the
number of electrons in the shell.

Classifying atoms and distributing them over the periodical system of elements,
we used assumptions which are valid for light atoms. These assumptions of the
LS-coupling scheme are not well fulfilled for heavy atoms because the energies of
electrons placed on the d- and f -shells are close to those of the next s- or p-shells;
in addition, the relativistic interactions for heavy atoms cannot be small compared
to exchange interactions. Nevertheless, the simple scheme of the atom construction
through a sequence of electron shells is convenient in this case, although it requires

Table 5.1. Electron terms of atoms with the filling electron shell dn.

n Electron terms
Total number

of states
Number of

electron terms

0, 10 1S 1 1

1, 9 2D 10 2

2, 8 1S, 3P , 1D, 3F , 1G 45 9

3, 7 2P , 4P , 2D(2), 2F , 4F , 2G, 2H 120 19

4, 6 1S(2), 3P (4), 1D(2), 3D, 5D,
1F , 3F (2), 1G(2), 3G, 3H , 1J 210 40

5 2S, 6S, 2P , 4P , 2D(3), 2F (2),
4F , 2G(2), 4G, 2H , 2J 252 37
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Table 5.2. The ground state of atoms with an unfilled d-shell.

Unfilled
electron shell

Term of the
ground state Atoms with this shell in the ground state

d 2D3/2 Sc(3d),Y(4d),La(5d),Lu(5d),Ac(6d),Lr(6d)

d2 3F2 Ti(3d2), Zr(4d2), Hf(5d2), Th(6d2)

d3 4F3/2 V(3d3), Ta(5d3)

d4 5D0 W(5d4)

d5 6S5/2 Mn(3d5),Tc(4d5),Re(5d5)

d6 5D4 Fe(3d6), Os(5d6)

d7 4F9/2 Co(3d7), Ir(5d7)

d8 3F4 Ni(3d8)

d9 2D5/2 —

Table 5.3. The ground state of atoms with an unfilled f -shell.

Unfilled
f -shell

Term of the
ground state Atoms with this shell in the ground state

f 2F5/2 —

f 2 3H4 —

f 3 4I9/2 Pr(4f 3)

f 4 5I4 Nd(4f 4)

f 5 6H5/2 Pm(4f 5)

f 6 7F0 Sm(4f 6), Pu(5f 6)

f 7 8S7/2 Eu(4f 7), Am(5f 7)

f 8 7F6 —

f 9 6H15/2 Tb(4f 9), Bk(5f 9)

f 10 5I8 Dy(4f 10), Cf(5f 10)

f 11 4I15/2 Ho(4f 11), Es(5f 11)

f 12 3H6 Er(4f 12), Fm(5f 12)

f 13 2F5/2 Tm(4f 13), Md(5f 13)

some correction. Further we consider atoms with d- and f -valent shells within the
framework ofLS-coupling (see Tables 5.2 and 5.3). Then the choice of the ground
state is based on the Hund rule, as above. Let us demonstrate this in the example
of atoms with d4-electron shells.

For the determination of possible states of the atom with d4-electron shells it
is necessary to compose a scheme as in Fig. 4.8 and place four electrons in free
cells. According to the Hund rule, the lower state by energy is characterized by
the maximum total spin among the possible spins, and has the maximum orbital
momentum among states with maximum spin. Then it is convenient to choose
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an axis where all the electron spins are directed in the same way, so that the
total electron spin and its projection are equal to 2 for the electron shell d4. The
maximum projection of the orbital momentum is 2 (2+ 1+ 0− 1) as well as the
total orbital momentum. Next, if the shell is filled by less than halves, according to
the Hund rule, the total atom momentum which is the sum of the spin and orbital
momenta, is minimal among the possible total momenta. If the electron shell is
filled by more than halves, this momentum is maximal from the possible total
value of spin and orbital atom momenta. Thus, for the related electron shell the
term of the ground state is 5D0. In the case of the electron shell d6, according to
the Hund rule, the spin and orbital momentum remain the same, but the order of
the sequence of the fine structure of levels is changed. Therefore, the term of the
ground state for the electron shell d6 is 5D4. Note that the use of notations of the
LS-coupling for atomic states is often a convenient form of writing, but not for
notations of the real quantum numbers of the atom.

The analysis of the excited states of atoms with unfilled d- and f -shells is more
complex than in the case of the p-shell. This is connected with both an increase
of the momentum of valent electrons and also with the competition of different
electron shells. The last fact does not allow us to prognosticate the behavior of the
excited levels within the framework of a simple scheme. As a demonstration of
this fact, we consider the lower excited states of atoms with the electron shell nd,
(n+ 1)s2 (see Table 5.4). In this case, the excitation corresponds to reconstruction
of the electron shell because the states with different electron shells are close by
energy. In addition, for the yttrium atom, levels of the electron shell 4d25s are
close to the levels of the states with the electron shell 5s25p. Indeed, the excitation
energy of the yttrium atom in the state 5s25p(2P1/2) is equal to 1.30 eV, and the
excitation energy of the state 5s25p(2P3/2) is equal to 1.41 eV, i.e., this doublet is
overlapped with the multiplet 5d25s (see Table 5.4).

The other example of the closeness of energies for different electron shells
is given in Table 5.5 where atoms with the filling 3d-shell are considered. The
previous electron shell of these atoms is 4s2. Table 5.5 contains values of the
excitation energy ε for states of the lowest electron shell 4s3dn+1, if the ground state

Table 5.4. States of atoms with the electron shell nd , (n+ 1)s2, and the excitation energies
ε for states with the electron shell nd2, (n+ 1)s.

Atom Sc Y La

Electron shell of the ground state 3d4s2 4d5s2 5d6s2

Fine splitting of the ground state (2D3/2 − 2D5/2}, eV 0.021 0.066 0.13

Electron shell of excited states 3d24s 4d25s 5d26s

ε(4F3/2), eV 1.43 1.36 0.33

ε(4F5/2), eV 1.43 1.37 0.37

ε(4F7/2), eV 1.44 1.40 0.43

ε(4F9/2), eV 1.45 1.43 0.51
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of the atom corresponds to the electron shell 4s23dn. The ionization potentials for
the ground states of the atoms J are given for comparison. In all cases the excitation
energy of a new electron shell is remarkably less than the atom ionization potential.
This means competition of the electron shells in the course of atom excitation. Note
that the 3d-shell is the lowest shell by energy among the d- and f -electron shells.
Hence, the competition of electron shells in the course of filling of the d- and
f -electron shells is significant. For example, the electron shell of the ground state
of the zirconium atom is 5s24d2. One would expect that the following atom has the
electron shell 5s24d3, while the electron shell of the ground state of the niobium
atom is 5s4d4. This effect is stronger for atoms with an f -electron shell. For
example, the atoms of europium, gadolinium, and terbium, which are a sequence
of atoms with an increase in the number of electrons, have the electron shell of the
ground states 4f 7, 4f 75d , and 4f 9, respectively.

The above examples confirm the closeness of different electron shells for atoms
with filling d- and f -electron shells. This leads to the violation of simple schemes
for the construction of the ground states of atoms. For this reason a universal
scheme of the sequence of excited states of such atoms does not exist.

5.2 The Thomas–Fermi Atom Model

The closeness of different electron shells complicates the description of the proper-
ties of heavy atoms which are determined by valent electrons. On the contrary, the
analysis of the properties which are determined by internal electrons is simplified.
Indeed, an internal region of the atom, where the electron density is determined by
several electron shells, can be analyzed on the basis of statistical methods. Statis-
tical methods are the basis of the Thomas–Fermi atom model which accounts for
the self-consistent field of internal electrons in average. This model is correct for

Table 5.5. Parameters of atoms with the filling d-electron shell.

Atom Shell of ground state J , eV Excited shell ε, eV

Sc 4s23d 6.56 4s3d2 1.43

Ti 4s23d2 6.82 4s3d3 0.81

V 4s23d3 6.74 4s3d4 0.26

Cr 4s23d4 6.77 4s3d5 0.96

Mn 4s23d5 7.43 4s3d6 2.11

Fe 4s23d6 7.90 4s3d7 0.86

Co 4s23d7 7.86 4s3d8 0.43

Ni 4s23d8 7.64 4s3d9 0.025

Cu 4s3d10 7.73 4s23d9 1.39
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the internal region of a heavy atom where the electron density is large. We describe
this atom model below.

The phase volume of electrons in a given space point is equal to

2
dpdr
(2πh̄)3

� p2dp dr

π2h̄3 ,

where the factor 2 accounts for two projections of the electron spin, p is the
electron momentum, and dr is the space element. From this it follows that, for
a degenerated electron gas, the electron number density N is connected with its
maximum momentum po by the relation

N �
∫

p2 dp

π2h̄2 �
p3
o

3π2h̄2 . (5.1)

Then the implied assumption has the form (we use atomic units below):

poro 
 1, (5.2)

where ro is a typical size on which the number density of electrons and other atomic
parameters vary remarkably.

The maximum electron momentum po and the potential of the self-consistent
field ϕ are connected by the relation

p2
o

2
� eϕ. (5.3)

The electric field potential satisfies the boundary condition ϕ � 0 far from the
nucleus r → ∞, where the electron density tends to zero, and hence po → 0.
The potential of the self-consistent electron field of an atom satisfies the Poisson
equation


ϕ � 4πN. (5.4)

For convenience we change the sign of this equation compared to that used in
electrostatics. Expressing the right-hand side of equation (5.4) in accord with
formulas (5.1), (5.2),weobtain the equation for the potentialϕ of the self-consistent
field


ϕ � 8
√

2

3π
ϕ3/2. (5.5)

This equation is called the Thomas–Fermi equation. It is convenient to use the
reduced variables

x � 2

(
4

3π

)2/3

Z1/3r � 1.13Z1/3r; ϕ � Z

r
χ (x). (5.6)

Because the potential of the self-consistent field does not depend on angular vari-
ables, so that 
ϕ � (1/r)(d2/dr2) (rϕ), and the Thomas–Fermi equation (5.5)
can be transformed to the form

x1/2 d
2χ

dx2
� χ3/2. (5.7)
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Since the potential of the self-consistent field coincides with the Coulomb field
of the nucleus charge near the nucleus ϕ � Z/r , the boundary condition near the
center has the form

χ (0) � 1. (5.8a)

The other boundary condition corresponds to the absence of the electric charge far
from the center

χ (∞) � 0. (5.8b)

The numerical solution of equation (5.7) with the boundary conditions (5.8) is
given in Table 5.6. In particular, χ ′(0) � −1.588, i.e., the electric potential of the
self-consistent field near the center has the form

ϕ(r) � Z/r − 1.794Z4/3. (5.9)

The second term of this expression is the electric potential which is created by
atomic electrons in the atom center.

The Thomas–Fermi atom model is valid in the atom region where the electron
density is high enough in accordance with the criterion (5.2). Since an atom size
is of the order of the Bohr radius, and the electron number density in the region of
location of the valent electrons is of the order of unity, the Thomas–Fermi model
is not valid in this region. Hence, this model can be used only in an internal region
of the atom. A typical size of this model is equal to Z−1/3 according to formula
(5.6). Thus, a small parameter of the Thomas–Fermi model is

Z−1/3 � 1. (5.10)

Fulfillment of this criterion provides the validity of the Thomas–Fermi model for
internal electrons.

TheThomas–Fermimodel allowsus to determine the parameters of a heavy atom
which are given by internal electrons. In particular, let us find the dependence of
the total electron energy of an atom on the atom charge Z within the framework
of the Thomas–Fermi model. The total electron energy is equal to

ε � T + U, (5.11)

where T is the total kinetic energy of electrons and U is the potential electron
energy which is the sum of the interaction potentials of electrons with the nucleus
and between electrons

U � U1 + U2 � −
∫

Z

r
N (r) dr + 1

2

∫
N (r)
|r − r′| dr dr

′. (5.12)

Let us determine the dependence of each of these terms on Z by taking into
account that each integral is determined by an atom region x ∼ 1(r ∼ Z−1/3).
In this region a typical electron number density is N ∼ Z2, a typical electron
momentum is p ∼ po ∼ N−1/3 ∼ Z2/3, and a typical volume of this region is
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Table 5.6. The potential of the self-consistent electric field for the Thomas–Fermi atom
model.

x χ (x) −χ ′(x) x χ (x) −χ ′(x)

0 1.000 1.588 2.4 0.202 0.0900

0.02 0.972 1.309 2.6 0.185 0.0793

0.04 0.947 1.199 2.8 0.170 0.0702

0.06 0.924 1.118 3.0 0.157 0.0625

0.08 0.902 1.052 3.2 0.145 0.0558

0.10 0.882 0.995 3.4 0.134 0.0501

0.2 0.793 0.794 3.6 0.125 0.0451

0.3 0.721 0.662 3.8 0.116 0.0408

0.4 0.660 0.565 4.0 0.108 0.0369

0.5 0.607 0.489 4.5 0.0919 0.0293

0.6 0.561 0.429 5.0 0.0788 0.0236

0.7 0.521 0.380 5.5 0.0682 0.0192

0.8 0.485 0.339 6.0 0.0594 0.0159

0.9 0.453 0.304 6.5 0.0522 0.0132

1.0 0.424 0.274 7.0 0.0461 0.0111

1.2 0.374 0.226 7.5 0.0410 0.095

1.4 0.333 0.189 8.0 0.0366 0.081

1.6 0.298 0.160 8.5 0.0328 0.070

1.8 0.268 0.137 9.0 0.0296 0.060

2.0 0.243 0.118 9.5 0.0268 0.053

2.2 0.221 0.103 10 0.0243 0.048

∫
dr ∼ 1/Z. From this it follows that the electron kinetic energy is

T ∼
∫

p2

m
N dr ∼ Z7/3. (5.13)

The energy of the interaction of electrons with the nucleus is

U1 ∼
∫

Ze2

r
N dr ∼ Z7/3.

The energy of the interaction between electrons is equal to

U2 � 1

2

∫
e2N (r)
|r − r′|dr dr

′ ∼ Z7/3.

As follows from this, the total binding energy of electrons varies with the nucleus
charge as Z7/3, i.e., the binding energy per one electron is of the order of Z4/3.
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Note that this value is of the order of Z2 for electrons which are located near the
nucleus, and does not depend on Z for valent electrons.

5.3 Exchange Interaction in Heavy Atoms

Considering the self-consistent field within the framework of the Thomas–Fermi
atom model, we neglect the exchange interaction of electrons, assuming it to be
small. Now we calculate the exchange interaction of electrons for the Thomas–
Fermi atom. The exchange interaction potential which acts on the j -electron is
given by formula (3.15):

Vex(j ) � −2
∑
k

〈
jk

∣∣∣∣ 1

|r − rk|
∣∣∣∣ kj〉 ,

where the summation is made over atomic electrons whose spin projection coin-
cides with that of the test electron j , r is the coordinate of the test electron, and rk
is the coordinate of other electrons with the same spin projection.

The wave functions for electrons for the Thomas–Fermi atom are plane waves,
and their wave vector lies in the interval 0 < qk < qF , where qF is the Fermi
wave vector which in atomic units coincides with the Fermi momentum po—the
boundary momentum of electrons in a degenerated electron gas. Let us place the
electrons in unit volume because the final result does not depend on a fictitious
volume in which electrons are located. Then the electron wave function has the
form ψ � exp(iqr), so that the exchange interaction potential is equal to

Vex(j ) � −2 ·
∫

exp
[
i(qj − qk)(r − r′)

] · ∣∣r − r′
∣∣−1 · dqk

(2π )3
dr′,

where qj is the wave vector of the test electron, and we take into account only
atomic electrons with the same spin projection as the test electron. The average
exchange potential is

〈Vex(j )〉 �
∫ po

0
Vex(j )

3q2
j dqj

p3
o

� −3po

2π
. (5.14)

An estimate of this integral can be obtained in a simple way, because from
its expression it follows that it is proportional to po. If we include the exchange
interaction potential in the Thomas–Fermi equation, we obtain so-called Thomas–
Fermi–Dirac equation which partially takes into account the exchange interaction
of electrons. But the correction due to this exchange potential is small in the basic
atom region where the Thomas–Fermi model is valid. Indeed, in this region χ ∼ 1,
i.e., r ∼ Z−1/3. Then the kinetic energy per electron (and, correspondingly, the
self-consistent field potential) is of the order of p2

o ∼ N−2/3 ∼ Z4/3. The average
exchange interaction potential per one electron according to formula (5.14) is of
the order of po ∼ N−1/3 ∼ Z2/3. Thus, in the region of validity of the Thomas–
Fermi atom model, the exchange interaction potential gives a small contribution
to the self-consistent field potential.
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5.4 Schemes of Summation of Electron Momenta
in Atoms

Analyzing the properties of a light atom, we neglected the relativistic effects in
the zeroth approach of the perturbation theory, and this was taken into account as
a perturbation in the first approximation. In addition, we assumed the exchange
interaction of electrons for the same electron shell to be small compared to the
electrostatic interaction. This was the basis of the shell model of the atom. Then
at the first stage we take the parameters of the electron shell of the atom as its
quantum numbers. Next, we include the exchange interactions inside the valent
electron shell that allow us to characterize the atomic states by the total orbital
momentum L and spin momentum S as quantum numbers of the atom. At the
following stage of consideration, we include the relativistic interactions which
are small compared to the exchange interactions. Then along with the quantum
numbers L, S, we obtain the total atom momentum J as its quantum number.
This relation between the related types of interaction in the case of two electrons
corresponds to the summation of two orbital momenta of electrons into the total
orbital momentum of the atom L and the summation of two electron spins into
the total spin of the atom S. This is the LS-coupling scheme of the summation of
electron momenta in atoms.

If relativistic interaction is compared to an electrostatic splitting of levels, the
values L and S are not quantum numbers. But the total atom momentum is the
quantum number both in the case of weak and strong relativistic interactions.
Therefore, depending on the relation between the electrostatic and relativistic in-
teractions, different methods are possible for summation of electron momenta into
the total atom momentum. Below we consider the possible schemes of summation
of electron momenta in the total atomic moment. They can be as follows in the
case of two electrons

l1 + l2 �: L, s1 + s2 � S, S + L � J (LS-coupling),

l1 + s1 � j1, l2 + s2 � j2, j1 + j2 � J (jj -coupling),

l1 + l2 �: L,L+ s1 � K, K + s2 � J (LK-coupling),

l1 + s1 � j1, j1 + l2 � K, K + s2 � J (JK-coupling).

Each of these summation schemes is valid in the case that if the interaction po-
tential, which is responsible for summation of momenta in the third sum, is small
compared to the other potentials of interaction, so that one can choose the inter-
mediate momenta as quantum numbers. In particular, in the case of LS-coupling,
the spin-orbital interaction is small compared to the electrostatic and exchange
interactions. Hence L and S are quantum numbers in this case. In reality, the basic
relativistic interactions in atoms are interactions of the orbital and spin of the same
electron, or the interaction of two orbital momenta as well as two spins of different
electrons. This means that the combinations l̂1ŝ1, l̂2ŝ2, l̂1 l̂2, ŝ1ŝ2 are the strongest
ones in the Hamiltonian of electrons. This condition chooses two of four possible
schemes of summation: LS- or jj -coupling. If relativistic interactions are com-
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pared to electrostatic or exchange splitting of levels, an intermediate case between
LS- and jj -coupling takes place.

5.5 Filling of Electron Shells for jj -Coupling

Let us consider an atom in which the spin-orbit relativistic interaction, which is de-
termined by the term a l̂ŝ in the electron Hamiltonian, exceeds both the electrostatic
interaction of levels which is given by the terms l̂2/2r2 in the atom Hamiltonian
and the exchange interactions which are characterized by a certain symmetry of
the wave function of valent electrons. In this case the total atomic momentum can
be composed as a sum of the total momenta of individual electrons, and the total
momentum of each electron is the sum of its orbital momentum and spin. In the
case of jj -coupling the scheme of construction of the atom electron shell differs
from that for LS-coupling. Below we demonstrate this scheme for the filling of a
p-shell of atoms.

Table 5.7 lists the results of the construction of terms in the case of the filling
of p-electron shells within the framework of LS- and jj -schemes. Let us analyze
the peculiarities of the jj -coupling scheme. p-Electrons have total momentum
1/2 or 3/2, and the electron terms of atoms are characterized by the same total
electron momentum for both LS- and jj -coupling. The lowest electron states of
the atom have the maximum number of electrons with the total momentum 1/2.
Note that from the Pauli exclusion principle it follows that the maximum number
of electrons with total momentum 1/2 is equal to 2, and the maximum number of
electrons with total electron momentum 3/2 is equal to 4 in accordance with the
total number of momentum projections onto a given direction. Compose the wave
function of two electrons with the same total momentum j within the framework
of the jj -coupling scheme. This has the form

	JM (1, 2) � P̂
∑
m,m′

[
j j J

m m′ M

]
ψjm(1)ψjm′ (2), (5.15)

where P̂ is the operator of the transposition of electrons, J , M are the total mo-
mentum of electrons and its projection onto a given direction, and m, m′ are the
projections of momenta of individual electrons onto this direction. Analyzing the
wave function (5.15), note that the transposition of two electrons leads to the
change of the wave function sign, and the transposition of the two first columns of
the Clebsh–Gordan coefficient requires us to multiply this expression by (−1)2j−J .
From this it follows that the value 2j − J must be odd because, in the other case,
the transposition of two electrons and the transposition of columns of the Clebsh–
Gordan coefficient yields 	 → −	, i.e., 	 � 0. Thus, we obtain that the total
momentum of the shell [1/2]2 is zero and cannot be one, and the total momentum
of the shell [3/2]2 may be 0 or 2, and cannot be 1 or 3. The prohibition of the state
with the total momentum J � 2j follows directly from the Pauli exclusion princi-
ple because, in the opposite case for a certain direction of the axis, we obtain that



128 5. The Structure of Heavy Atoms

Table 5.7. Electron shells of atoms with p-valent electrons.

LS-shell LS-term J jj -shell J

p 2P 1/2 [1/2]1 1/2
2P 3/2 [3/2]1 3/2

p2 3P 0 [1/2]2 0
3P 1 [1/2]1[3/2]1 1
3P 2 [1/2]1[3/2]1 2
1D 2 [3/2]2 2
1S 0 [3/2]2 0

p3 4S 3/2 [1/2]2[3/2]1 3/2
2D 3/2 [1/2]1[3/2]2 3/2
2D 5/2 [1/2]1[3/2]2 5/2
2P 1/2 [1/2]1[3/2]2 1/2
2P 3/2 [3/2]3 3/2

p4 3P 2 [1/2]1[3/2]3 2
3P 0 [1/2]2[3/2]2 0
3P 1 [1/2]1[3/2]3 1
1D 2 [1/2]1[3/2]3 2
1S 0 [3/2]4 0

p5 2P 3/2 [1/2]2[3/2]3 3/2
2P 1/2 [1/2]1[3/2]4 1/2

p6 1S 0 [1/2]2[3/2]4 0

two electrons have the same projection j of the total momentum. The character of
summation of momenta chooses certain states for the total momentum. If electrons
have total momenta j and j ′, their total momentum ranges from

∣∣j − j ′
∣∣ to j + j ′.

Thus, the symmetry of the total wave function of electrons and the character of
summation of momenta chooses certain states of the total system of electrons and
leads to the prohibition of some states of the system. Note once more that the
expression for the two-electron atom wave function of a certain total electron mo-
mentum as a product of one-electron wave functions has the identical form within
the framework of both LS- and jj -coupling schemes (see also Table 5.7).

The real character of the coupling of electron momenta in atoms follows from
the analysis of the positions of the electron levels. We demonstrate this in the
example of the electron shell p2. Both LS- and jj -coupling schemes give the
same sequence for the total momentum of electrons, which is J � 0, 1, 2, 2, 0. If
the LS-scheme is valid and the exchange interaction dominates in the atom, the
three lowest levels are close and are separated from the other two levels by J � 2
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and J � 0. In particular, in the carbon case, the excitation energies for the above
states are 0, 0.002, 0.005, 1.264 and 2.654, eV, respectively, which corresponds to
the LS-coupling scheme.

If the jj -scheme is valid, the lowest atom states are grouped in a singlet
([

1
2

]2)
and two doublets

([
1
2

][
3
2

]
and

[
3
2

]2)
. For example, in the case of the Pb atom with

the electron shell 6p2 the energies of the lowest levels are 0, 0.969, 1.320, 2.660,
and 3.653 eV. As is seen, the LS-coupling scheme is not valid in this case, and
the jj -coupling scheme is suitable for the lowest doublet. Thus, the LS-coupling
scheme is working for light atoms and an intermediate coupling scheme describes
heavy atoms. Accounting for the total electron momentum is the atom quantum
number for any relationship between the exchange and spin-orbit interactions, we
shall use further the notations of the LS-coupling scheme and keep in mind that
although this scheme is not valid for heavy atoms, the sequence of levels according
to the total electron momentum becomes correct.

5.6 Excited States of the Atoms of Inert Gases

Let us consider the peculiarities of summation of electron momenta into the total
atomic momentum in the example of excited inert gas atoms. First, consider the
lowest group of excited atoms of inert gases which have the electron shell np5(n+
1)s. An inert gas ion has the electron shell np5 and ground state 2P3/2. Denote
by 
f the fine splitting of ion levels, i.e., the distance between levels of the ion
states 2P3/2 and 2P1/2, and this will be used as a typical energy of the spin-orbital
interaction for excited atoms. There are four different energy levels for the lowest
atomic states. If we use the scheme of LS-coupling, these states are 3P2, 3P1,
3P0, 1P1. In accordance with the Hund rule, we set these states in turn of atom
excitation. Within the framework of the jj -coupling scheme, this sequence of
states is the following: s

[
3
2

]
2, s
[

3
2

]
1, s

′[ 1
2

]
0, s

′[ 1
2

]
1. These notations are close to

the usual notations of summation of momenta for the case of jj -coupling which
usually has the form

[
j1, j2

]
J

and we denote that summation of momenta j1 and
j2 yields the total momentum J . The so-called Pashen notations are used often for
the excited atoms of inert gases due to their simplicity. Then the relevant states in
turn of the excitation of the atom are denoted as 1s5, 1s4, 1s3, and 1s2. Below we
take the level 1s5 as zero and denote the difference of the excitation energies of
this and the other state as ε4, ε3, and ε2, i.e., ε2 is the difference of energies for
levels 1s2 and 1s5 (see Fig. 5.1). Table 5.8 contains some parameters of the lower
excited states for atoms of inert gases. We briefly analyze these data below.

One can extract two terms in the Hamiltonian Ĥ � −a l̂ŝ1 − bŝ1ŝ2 for this
modeling of the relevant levels (see Problem 5.5). Here l̂ is the operator of the
orbital momentum of the hole, ŝ1 is the spin operator of the hole, and ŝ2 is the
spin operator of the excited valent s-electron. If a 
 b, jj -coupling is valid. Then
the total momentum of the hole is the quantum number. In addition, in this case,
ε2− ε3 � 
f , ε4 � 
f , and ε2, ε3

∼� 
f . As follows from the data of Table 5.8,
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Figure 5.1. Notations of the first excited levels of the atoms of inert gases.

Table 5.8. Energies of the Lower Excited States of Atoms of Inert Gases

Atom 
f , cm−1 ε3/
f ε4/
f (ε2 − ε3)/
f 
ε2p/
f

Ne 780.3 0.996 0.54 0.09 6.0

Ar 1432.0 0.984 0.43 0.10 3.2

Kr 5370.1 0.972 0.18 0.13 1.4

Xe 10537 0.866 0.11 0.11 1.2

these relations are roughly fulfilled, i.e., jj -coupling is valid in this case. Note
that the states, of this group are separated from the following excited states, which
were denoted by Pashen as 2p-levels, and their electron shell is np5(n+ 1)p.

The excited state (n + 1)s of the valent electron is a resonantly excited one
because the radiative transition np→ (n+1)s is permitted in the dipole approach.
But only two of the four states of this group are resonantly excited states. For the
extraction of the resonantly excited states, let us represent the wave function of
electrons for the excited atom in the form

	JM �
∑

m,σ1,σ2

⎡⎣ 1

2
1 j

σ1 m− σ1 m

⎤⎦⎡⎣ 1

2
j J

σ2 m M

⎤⎦ψmχσ1ησ2 , (5.16)

Where σ1, σ2, m − σ1 are projections of the spin of the atom core, the spin of
the valent electron and the orbital momentum of the atomic core onto a given
direction, respectively, j is the total momentum of the atomic core, and J is the
total atom momentum. Although this expression is written within the framework
of jj -coupling, it is valid in a general case because the total atom momentum J is
a quantum number. Separating the atom into the atomic core and valent electron,
present the wave function of the ground atom state as the product of their spin
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and spatial wave functions. In a general case this is not correct, but because the
electron shell is filled for the ground atom state, spins of the valent electron and
atomic core have opposite directions, i.e., their total spin is zero. This allows one
to present the total wave function for the ground atom state as a product of the
spatial and spin wave functions of electrons, that is, the atom wave function for
the ground state has the form

� � ϕo · 1√
2
(χ+η− − χ−η+), (5.17)

where χ+, χ−, η+, η− are the spin wave functions of the atomic core and valent
electron with the spin projection±1/2 onto a given direction, respectively and ϕo

is the spatial wave function for the ground state of the system of the atomic core
and valence electron. We use in formula (5.17) that the total spin of the atom in
the ground state is equal to zero. The probability of the radiative transition per
unit time is proportional to the square of the matrix element of the dipole moment
operator which does not depend on electron spins. Hence, it is convenient to project
the wave function of the excited state (5.16) upon the spin wave function of the
ground state (5.17). This gives

〈	JM | �〉 � 1√
2

⎛⎜⎝
⎡⎢⎣

1

2
1 j

1

2
M M + 1

2

⎤⎥⎦
⎡⎢⎣

1

2
j J

−1

2
M + 1

2
M

⎤⎥⎦

−

⎡⎢⎣
1

2
1 j

−1

2
M M − 1

2

⎤⎥⎦
⎡⎢⎣

1

2
j J

1

2
M − 1

2
M

⎤⎥⎦
⎞⎟⎠ .(5.18)

Below we show that this value is equal to zero for the states 1s3 and 1s5. Let us
take, for the lowest excited states 1s5 or [ 3

2 ]2, such an axis for which M � 2. Then
all the Clebsh–Gordan coefficients except the last one are equal to zero because
their momentum projections exceed their values. Then the matrix element is zero.
This results from the symmetry of the wave function. Indeed, the wave function
(5.16) for M � 2 has the form 	22 � ψ+1χ+η+, i.e., the total spin function of the
valent electron and atomic core corresponds to their total spin S � 1, while it is
equal to zero for the ground atom state. For the states 1s5 or [ 1

2 ]0 formula (5.18)
has the form

〈	00 | �〉 � 1√
2

⎛⎜⎝
⎡⎢⎣

1

2
1

1

2
1

2
0

1

2

⎤⎥⎦
⎡⎢⎣

1

2

1

2
0

−1

2

1

2
0

⎤⎥⎦

−

⎡⎢⎣
1

2
1

1

2

−1

2
0 −1

2

⎤⎥⎦
⎡⎢⎣

1

2

1

2
0

1

2
−1

2
0

⎤⎥⎦
⎞⎟⎠ . (5.19)
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As is seen, the second term of this expression is equal to the first one and eliminates
it. Thus, the states 1s5 and 1s3 are metastable states and the radiative transition
from these states in the ground state is prohibited (see also Problem 5.6).

Let us consider the next group of excited states for the atoms of inert gases with
the electron shell np5(n+ 1)p. The total number of different levels for this group
of states is 10. Within the framework of LS-coupling these states are

3D3,
3D2,

3D1,
3P2,

3P1,
3P0,

3S1,
1D2,

1P1,
1S0.

If we use the notation of jj -coupling, these states are

[3/2, 3/2]3, [3/2, 3/2]2, [1/2, 3/2]2, [3/2, 1/2]2, [3/2, 3/2]1,

[1/2, 3/2]1, [3/2, 1/2]1, [1/2, 1/2]1, [3/2, 3/2]0, [1/2, 1/2]0.

Thus, we have, in this case, one state with the total electron momentum 3, three
states with the total momentum 2, four states with the total momentum 2, and
two states with the total electron momentum 0. The value 
ε2p of Table 5.8 is
the difference of the energies of extreme levels of this group. This shows that for
Ne, Ar, and Kr atoms the electrostatic and exchange interactions are compared
to the fine splitting of the ion levels (see also Problem 5.5). In these cases both
the LS-coupling and jj -coupling schemes cannot describe these states, i.e., they
are suitable only for a rough description. Hence, experimental information for the
positions of levels and other parameters of these states can be a basis for different
realistic models.

Figures 5.2–5.5 contain parameters of the relevant excited states and radiative
transitions with their participation. Pashen notations and designations of LS- and
jj -couplings are used. The radiative lifetimes are given in these figures inside
triangles, radiative transitions are shown by arrows, in discontinuity of these ar-
rows the waves lengths of these transitions are given in Å, and the frequencies of
transitions are given in parentheses and are expressed in 106s−1.

5.7 Grotrian Diagrams for Atoms with Filling d- and
f -Electron Shells

The above analysis shows the complexity of the spectra of atoms with unfilled d-
and f -shells. First, such electron momenta lead to a large number of electron terms
for this configuration of the electron shell. Second, this effect is reinforced due to
the competition of different electron shells. The closeness of the excitation energies
for different electron shells does not allow one to describe excited electron terms
on the basis of a simple model due to the excitation of certain valent electrons.
Third, the complexity of spectra is due to the disturbance of simple schemes of
summation of electron momenta into the total momentum of the atom. All this
hampers the extraction of multiplet levels corresponding to certain electron terms.
These facts are responsible for a complex spectrum of these atoms in contrast
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Figure 5.2. Parameters of the excited states of the neon atom.

Figure 5.3. Parameters of the excited states of the argon atom.
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Figure 5.4. Parameters of the excited states of the krypton atom.

Figure 5.5. Parameters of the excited states of the xenon atom.
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to atoms with s- and p-electron shells. In addition, they hamper decoding of the
spectra of atoms and ions as well as their interpretation.

It is convenient to represent the spectra of atoms by filling d- and f -electron
shells on the basis of the Grotrian diagrams. Then it is necessary to extract all
the quantum numbers of the atom. One of them is the parity of the state. This
is characterized by the parity of the electron wave function for the reflection of
electrons with respect to the plane which is perpendicular to the quantum axis
and passes through the atom center. In the case of LS-coupling, the atom parity is
determined by these quantum numbers, and introduction of the atom parity does
not give new information. In particular, the parity of one electron is (−1)l , i.e.,
s-, d-, g-electron states are even and p-, f -states are odd. For complex atoms
the parity of states remains a quantum number. It is essential that dipole radiative
transitions are permitted only between states with different parities, because the
operator of the dipole moment of the atom is odd with respect to this operation.
This makes it convenient to use the parity of states for classifications of atomic
states. Thus, one can divide atomic states into even and odd states, and the radiative
transitions inside one group are forbidden. Usually, the levels of complex atoms
are denoted within the framework of the scheme of LS-coupling, and numbers the
L, S are used only as a form of notation. Then states with the same numbers L and
S are denoted for even states by the letters a, b, c, d , etc., as they are excited, and
by the letters x, y, z, v, w for odd states.

5.8 Correlation and Collective Effects in Atoms

Analyzing an atom as a physical system, consisting of a heavy Coulomb center
and bound electrons, we use a one-electron model for its description. Within the
framework of this model, we change the action of other electrons and the Coulomb
center on a test electron by a self-consistent field, which does not depend on the
coordinates of other electrons and also takes into account the exchange interaction
between electrons. This model distributes electrons over electron shells so that
because, for a spherical self-consistent field, each shell is characterized by the
principal quantum number and angular electron momentum and, according to the
Pauli exclusion principle, only one electron can be found in one state of each
electron shell, so that this state is also described by the projection of the angular
momentum and spin onto a given direction. In this way, we neglect the relativistic
interactions, correlation effects, and collective effects in atoms. Let us consider
errors due to such approximations.

As for the relativistic effects, they are mostly connected with spin-orbit interac-
tion. If we restrict the spin-orbit interaction in atoms, one can construct the strict
atom theory for different relations between the exchange and spin-orbit interac-
tions. Above we considered some examples of this. Briefly, we have a different
way of obtaining the total momentum of electrons depending on these interactions.
When the exchange interaction dominates, we get the LS-coupling scheme of the
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atom, where the angular electron momenta are summed into the total atom angular
momentum, spins of individual electrons are summed into the atom total spin, and
then the total atom angular momentum and spin are summed into the total atom
momentum. The LS-coupling scheme is typical for light atoms. On the contrary,
for heavy atoms the jj -scheme is preferable for summation of electron momenta.
In this case the angular momentum and spin of an individual electron are summed
into the total momentum of an individual electron, and then the total momenta of
electrons are summed into the total atom momentum. This scheme is more suitable
for heavy atoms. Note two peculiarities of these schemes. First, when an electron
shell is completed, i.e., its total momentum is zero, both schemes are equivalent.
Second, when we have a filling shell, a number of electron states for this shell is
identical for both schemes of summation of momenta. These peculiarities allow us
to use the electron shell model outside the limits of the validity of theLS-coupling
scheme. Thus, these relativistic interactions can be taken into account in the atom
model without complication.

Neglecting the correlation effects, we assume the atom wave function to be
a product of one-electron wave functions with their transposition property due
to the Pauli exclusion principle. Owing to correlation effects the electron shell
model is violated because the electron wave function cannot be constructed from
one-electron functions, and below we estimate the accuracy of the one-electron
approximation for atoms. We take this error on the basis of the data of Table 3.1
and Problem 3.3 for the helium atom. In this case, taking the best atom wave
function consisting of one-electron exponential wave functions with the same
degrees of exponents, we have the error 1.5 eV for the ionization potential. When
the exponents of the one-electron functions are different (Problem 3.3), this error is
0.7 eV. Evidently, one can expect an error to be of this order ofmagnitude, ifwe take
the best combination of one-electron wave functions, that is, these functions are
solutions of the Hartri–Fock equation. Taking the error in the ionization potential
in this case to be ∼ 0.3 eV and a typical excitation energy of the helium atom to
be ∼ 30 eV for states which are responsible for the correlation effect, we obtain
the admixture of excited states into the wave function of the ground state of the
helium atom to be ∼ 10%. This means that the admixture of two-electron wave
functions in the total wave function of the ground state is ∼ 10%.

Note that the correlation effect is stronger when interacting electrons have close
space distributions, and the relative role of these effects is enforced as electrons
are excited. Nevertheless, from the above estimations one can take roughly an
admixture of a two-electron wave function into the wave function of two electrons
to be∼ 10%. From this it follows that one can neglect the correlation effects when
we construct the atom scheme. But these effects are of importance for accurate
evaluation of the atom energy and atom wave function. Especially, the correlation
interaction is significant for the evaluation of parameters which are determined by
two-electron interactions. An example of this is the width of the autoionization
level of the system A(nl + nl) → A(n′l′) + e. As a result of this process, one
bound electron transfers into the lower state in the field of an atomic core, and the
second electron releases.
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As for the collective effects, they are important for a classical system of electrons
in a plasma. The spread collective phenomenon consists of the excitation of plasma
waves, i.e., oscillations of the electron component as a whole. In an atom, such
excitations are forbidden because of the Pauli exclusion principle which does not
allow for electrons to transfer into occupied states. This is valid for an atom in
the ground state. Under strong excitations, plasma collective excitations can exist
in the atom, in principle. But this requires a strong excitation of the atom with
the participation of many electrons, when the excitation energy exceeds the atom
ionization potential by several orders of magnitude.

Problems

Problem5.1. Determine the total electron energy of a heavy atom, the total kinetic
energy of electrons, the interaction energy of electrons with the nucleus and energy
of interaction between electronswithin the framework of the Thomas–Fermimodel.

The total electron energy is given by formula (5.11): ε � T +U and, according to
the virial theorem for a system of particles with the Coulomb interaction, we have
2T + U � 0. This gives

ε � −T � U

2
.

The average kinetic energy of electrons at a given point is equal to〈
p2

2m

〉
�
∫ po

0

p2

2
dp � 3

5
· p

2
o

2
.

We use that the electron distribution in the momentum space corresponds to the
internal part of the Fermi sphere p ≤ po. From this, on the basis of formulas (5.3),
(5.4), (5.6), we have

T �
∫

3

5
· p

2
o

2
N (r) dr � 3

5
·
∫

ϕ

ϕ

4π
dr � 3

5
· Z

7/3

b

∫
χχ ′′ dx,

where b � 1

2
·
(

3π

4

)2/3

� 0.885.

The integral is equal to∫ ∞

0
χ ′′χ dx � −χ (0)χ ′(0)−

∫ ∞

0

[
χ ′
]2
dx � −χ ′(0)−

∫ ∞

0

[
χ ′
]2
dx.

Thus we obtain, for the total kinetic energy of electrons within the framework of
the Thomas–Fermi model,

T � 3

5
· Z

7/3

b
·
[
1.588−−

∫ ∞

0

[
χ ′
]2
dx

]
� 0.769Z7/3.
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The potential energy of electrons U is the sum of the energy of interaction of
electrons with the nucleus

U1 � −
∫

Z

r
N dr,

and the energy of interaction between electrons

U2 �
∫

1

|r − r′|N (r)N (r′) dr dr′.

As is seen, the value ∫
1

|r − r′|N (r′) dr′

is the electric potential which is created by electrons in a point r, i.e.,∫
1

|r − r′|N (r′) dr′ � Z

r
− ϕ.

This gives

U2 � −1

2
ϕN (r) dr + 1

2

∫
Z

r
N (r) dr � −1

2

∫
ϕN (r) dr − U1

2
.

Because the expression for the total kinetic energy has the form

T �
∫

3

5
· p

2
o

2
N (r) dr � 3

5
·
∫

ϕN (r) dr,

we have U2 � −5T/6 − U1/2. According to the virial theorem we obtain U �
U1+U2 � −2T . Thus we have the following relations: U1 � −7T/3, U2 � T/3.
As is seen, the energy of interaction between electrons is seven times less than the
interaction energy of electrons with the nucleus.

Let us calculate the energy of interaction of electrons with the nucleus. We have

U1 � −
∫

Z

r
N (r) dr � −

∫
Z

r


ϕ

4π
dr � Z

d

dr
(rϕ)|r�0

� Z7/3

b
χ ′(0) � −1.794Z7/3.

From this we have, for the other energetic parameters of the Thomas–Fermi atom,

T � −3

7
U1 � 0.769Z7/3, ε � −T � −0.769Z7/3,

U2 � −U1

7
� 0.256Z7/3, U � −2T � −1.538Z7/3.

In addition, we have the following relation for the Thomas–Fermi reduced function∫ ∞

0

[
χ ′
]2
dx � −2

7
χ ′(0) � 0.454.
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Problem 5.2. The Tietz approximation for the Thomas–Fermi function has the
form χ (x) � (1+ ax)−2. Determine the parameter a from the condition that this
function leads to the correct total number of atomic electrons.

We use the integral relation
∫
N (r) dr � Z. This gives the following relation for

the Thomas–Fermi function:∫ ∞

0

√
xχ3/2(x) dx � 1.

Then the Tietz approximation gives a � 0.536.
Note that the Tietz approximation is working in the region where the electrons

are mainly located. In the region near the nucleus this approximation leads to
remarkable errors. For instance, in this approximation χ ′(0) � −1.072, while its
accurate value is−1.588. On the contrary, the value of the integral

∫∞
0 [χ ′]2 dx �

0.429, which is close to its accurate value of 0.454 (see Problem 5.1). For the total
kinetic energy of electrons which is proportional to the value−χ ′(0)−∫∞0 χ ′]2 dx,
theTietz approximation takes the resultwhich is in 1.76 less than the accurate value.

Problem 5.3. Determine the shift of the energy of a K-electron as a result of
the shielding of a K-electron by atomic electrons within the framework of the
Thomas–Fermi model.

The first order of the perturbation theory gives, for the shift of the energy of
K-electron,


ε �
∫
|ψ(r)|2ϕ dr � V (0),

where r is the coordinate of the K-electron, ψ(r) is its wave function, the ϕ is
the electric potential which is created by other electrons. We consider ϕ as a
perturbation and assume that it varies weakly on distances of the order of the size
of the orbit of the K-electron. Indeed, the size of the K-orbit is of the order of
1/Z, and a typical size of the Thomas–Fermi model is of the order of Z−1/3, i.e.,
the small parameter of the using perturbation theory is Z−2/3 � 1.

On the basis of the results of Problem 5.1, we have

V (0) � −
∫

ϕN dr � 1.794Z4/3,

so that the energy of the K-electron, by accounting for the related shift, has the
form

ε � −Z2

2
+ 1.794Z4/3.

As is seen, the correction due to the shielding of electrons is relatively small and
corresponds to expansion over a small parameter Z−2/3. Note that this effect is
stronger than the influence of the second K-electron. Indeed, accounting for the
action of the second K-electron within the framework of the variation method
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yields, according to formula (3.8) for the ionization potential of the K-electron,

J � Z2

2
− 5Z

8
+ 25

256
,

i.e., shielding due to the second K-electron leads to the shift of its energy by the
value 5Z/8. This gives us that the correction to the electron energy due to external
electrons is 0.35/Z1/3, i.e., the action of external electrons is more remarkable
than that from the second K-electron.

Summing up the above results, we obtain the following expression for the
ionization potential of the K-electron:

J � 1

2
(Z − σ )2,

where the shielding charge created under the action of other atomic electrons is
equal to

σ � 1.794Z1/3 + 5/8.

Problem 5.4. Determine minimum values of the nucleus charge Z at which elec-
trons with an orbital moment l occur in the electron shell of the ground atom state.
Use the Thomas–Fermi atom model.

The equation for the radial wave function of a valent electron R(r) by analogy
with equation (2.9) has the form

1

r
· d

2(rR)

dr2
+
[
2ε − 2ϕ(r)− l(l + 1)

r2

]
R � 0,

where r is an electron distance from the center, ε is the electron energy, and ϕ(r)
is the potential of a self-consistent field. An electron state is bound if, in some
distance region,

2ε − 2ϕ(r)− l(l + 1)

r2
> 0.

We have for the bound state ε < 0, i.e.,−2r2ϕ(r) > l(l+ 1). Taking the Thomas–
Fermi self-consistent field and using the variables of formulas (5.6) we have, from
this relation,

1.77Z2/3xχ (x) > l(l + 1).

Taking the maximum of the function xχ (x), which is equal to 0.486 at x � 2.1
(see Table 5.6), we obtain the criterion

0.86Z2/3 > l(l + 1).

According to this formula, d-electrons occur in the shell of the ground state of
elements starting from Z � 18, f -electrons can occur at Z � 52, and g-electrons
occur at Z � 112. In reality, the first d-electron is observed in the electron shell of
the ground atom state at Z � 21 (Sc), and their first f -electron occurs at Z � 58
(Ce). As is seen, the above simple analysis gives correct estimate.
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Problem 5.5. Take the Hamiltonian for the first excited states of inert gas atoms
in the form Ĥ � −a l̂ŝ1 − bŝ1ŝ2, where l̂ is the atomic core orbital momentum
operator, ŝ1 is the spin operator of the atomic core, and ŝ2 is the spin operator of
an excited electron. Determine the relative positions of the lowest excited states if
one electron transfers from a p-shell to the lowest excited s-shell.

The first term of this Hamiltonian accounts for the spin-orbit interaction for the
atomic core, and the sign of this term allows us to further consider a p-hole as
a p-electron. The second term corresponds to the exchange interaction between
internal electrons and the excited electron. First let us consider the limiting cases.
Neglecting the exchange interaction (b � 0), we obtain two levels of fine structure
with the total momenta of the atomic core j � 1/2, 3/2, and the distance between
them, 
f � 3

2a, corresponds to the spin-orbit splitting of the atomic core. The
lowest state relates to j � 3/2 in accordance with the chosen sign of this term.
Neglecting the spin-orbit interaction (a � 0), we obtain two levels with the total
electron spin S � 0, 1.The lowest state corresponds to S � 1, and the distance
between levels is 
ex � b.

Taking into account both terms of the Hamiltonian, we have that the total mo-
mentum Ĵ � l̂ + ŝ1 + ŝ2 (̂l is the operator of the core angular momentum) is the
quantum number because this operator commutes with the Hamiltonian. The total
number of states is the product of the number of projections of the atomic core
orbital momentum (3), atomic core spin (2), and excited electron spin (2), i.e., the
total number of states is equal to 12. These states relate to the total momentum
J � 0, 1, 2, and there are two different levels for J � 1. As is seen, the total
number of projections of the total momentum, i.e., the total number of states, is
equal to 12.

In order to find the positions of the related four energy levels, it is necessary
to construct the wave functions of these states from wave functions of the orbital
momenta and spins. Denote by ψm the wave function of the atomic core with a
projection m of the orbital momentum onto a given direction. Correspondingly,
the wave functions χ+, χ− correspond to the spin projections 1/2 and −1/2 of
the atomic core onto a given direction, and the wave functions η+, η− describe
the spin states of the excited electron with the spin projections 1/2 and−1/2. The
atom wave function is a product of the above wave functions, and we have 12
different combinations of such products. Our task is to find eigenfunctions of the
Hamiltonian that require us to fulfill some operations with operators of the angular
momentum and spins. We have the following relations for the orbital momentum
operator:

l̂zψm � mψm, l̂+ψ−1 �
√

2ψ0; l̂+ψ0 �
√

2ψ1; l̂+ψ1 � 0;

l̂−ψ−1 � 0; l̂−ψ0 �
√

2ψ−1; l̂−ψ1 �
√

2ψ0,

where l̂+ � l̂x + il̂y , l̂− � l̂x − il̂y , and we use l � 1. The identical relations we
have for spin operators

ŝ1zχ+ � 1

2
χ+; ŝ1zχ− � −1

2
χ−; ŝ1+χ+ � 0;
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ŝ1−χ+ � χ−; ŝ1+χ− � χ+; ŝ1−χ− � 0,

and the same relationswehave for the operator ŝ2.Here ŝ+ � ŝx+iŝy ; ŝ− � ŝx−iŝy .
Let us denote the wave function of an atom state by the total momentum J and

its projection M by 	JM . Take the state with J � 2, M � 2 whose wave function
is 	22 � ψ1χ+η+ and calculate the energy of this state. We have

Ĥ	22 � −al̂zŝ1z	22 − bŝ1zŝ2z	22 � ε5	22,

where the energy of this state ε5 (we denote this in Pashen notation as 1s5) is equal
to

ε5 � −a

2
− b

4
.

This energy corresponds to states with J � 2 and any momentum projection onto
a given direction.

Next, we construct the wave function of the state with J � 0, as a result of
summation of the orbital moment l̂ and the total spin ŝ1 + ŝ2, which has the form

	00 � 1√
3
ψ1χ−η− + 1√

3
ψ−1χ+η+ − 1√

6
ψ0χ+η− − 1√

6
ψ0χ−η+.

We have

l̂ŝ1	00 � −	00; ŝ1ŝ2	00 � 1

4
	00, and Ĥ	00 � ε3	00.

The energy of this state as the eigenvalue of the Hamiltonian is equal to

ε3 � a − b

4
.

In order to determine the energies of states with J � 1, let us consider states
with the moment projection M � 1. The wave functions of these states can be
constructed from ϕ1 � ψ0χ+η+, ϕ2 � ψ1χ−η+, ϕ3 � ψ1χ+η−. Extract from
these functions the wave function for the state J � 2, M � 1, which has the form

�1 � 	21 � 1√
2
ϕ1 + 1

2
ϕ2 + 1

2
ϕ3.

We obtain

l̂ŝ1	21 � 1

2
	21; ŝ1ŝ2	21 � 1

4
	21, and Ĥ	21 � ε5	21.

The energy ε5 is the eigenvalue for this wave function and is given by the above
formula. Taking two other wave functions to be normalized to unity, orthogonal
to this function, and orthogonal each to other, we get

�2 � − 1√
2
ϕ1 + 1

2
ϕ2 + 1

2
ϕ3; �3 � 1√

2
ϕ2 − 1√

2
ϕ3.

Next, we have

l̂ŝ1�2 � −1

2
�2 − 1√

2
�3; l̂ŝ1�3 � − 1√

2
�3,
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and ŝ1ŝ2�2 � 1

4
�2, ŝ1ŝ2�3 � −3

4
�3.

Calculating the matrix elements of the Hamiltonian on the basis of these relations,
we obtain the following secular equation for the eigenvalues of the Hamiltonian:∣∣∣∣∣∣∣∣

a

2
− b

4
− ε

a√
2

a√
2

3

4
b − ε

∣∣∣∣∣∣∣∣ � 0.

The solution of this equation gives the state energies

ε2,4 � 1

4
(a + b)± 1

4

√
9a2 − 4ab + 4b2.

In the limiting case b � 0, when one can neglect the exchange interaction, we have
ε4 � −a/2, ε2 � a (i.e., ε4 � ε5 and ε2 � ε3). In the other limiting case a � 0,
when one can neglect the spin-orbit interaction, we have ε4 � −b/4, ε2 � 3b/4,
i.e., ε4 � ε5 � ε3 and the exchange splitting is equal to b.

Let us take the position of the lowest excited level of an inert gas atom as zero
(ε5 � 0). Then from the obtained formulas it follows for positions of the other
energy levels that

ε2,4 � 3

4
a + 1

2
b ± 1

4

√
9a2 − 4ab + 4b2; ε3 � 3

2
a.

Table 5.9 contains the results which follow from comparison of this formula with
the positions of energy levels ε2, ε3, ε4 for real inert gas atoms. In this Table 
f

is the fine splitting of levels for the corresponding free ion. As is seen, this value
is close to ε3 (see also Table 5.8). The exchange interaction splitting b according
to the above formulas is equal to b � ε4 + ε2 − ε3. As follows from the data of
Table 5.9, the exchange splitting depends slowly on the atom type. Table 5.9 also
gives the value

√
9a2/4+ b2 − ab which, according to the obtained formulas, is

equal to the difference ε2 − ε4. Comparison of these values and also of 
f with
ε3 � 3a/2 for real atoms shows that the above Hamiltonian includes the main part
of the interaction in the lower excited atoms of inert gases.

Note that along with the positions of the 1s2 and 1s4 energy levels, the above
operations allow us to find the expressions for the wave functions of these states.

Table 5.9. Parameters of the first excited states of inert gas atoms (all the parameters are
expressed in cm−1).

Atom 
f ε3 b ε4 − ε2

√
9a2/4+ b2 − ab x c2

3

Ne 780 777 1487 1430 1430 −1.67 0.071

Ar 1432 1410 1453 1649 1653 −0.72 0.207

Kr 5370 5220 1600 4930 4923 0.038 0.481

Xe 10537 9129 1967 9140 8674 0.16 0.423
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Indeed, representing the wave functions, 	2 and 	4, of these states in the form

	2 � c2�2 + c3�3, and 	4 � −c3�2 + c2�3,

and from the Schrödinger equation Ĥ	2,4 � ε	2,4 we have the set of equations
for the coefficients of the wave function expansion(〈

�2Ĥ�2
〉− ε

)
c2 +

〈
�2Ĥ�3

〉
c3 � 0,〈

�3Ĥ�2
〉
c2 +

(〈
�3Ĥ�3

〉− ε
)
c3 � 0.

Here we account for the wave functions �i and the coefficients ci are real
values. This is the secular set of equations for the determination of energy lev-
els. Simultaneously, this allows us to find the expansion coefficients. Indeed,
introducing

x �
〈
�2Ĥ�2

〉− 〈�3Ĥ�3
〉〈

�3Ĥ�2
〉 � 1

2
√

2

(
1− 2b

a

)
� 1

2
√

2

(
1− 3b


f

)
,

and accounting for the normalization condition c2
2 + c2

3 � 1, we get

c2
2,4 �

√
1+ x2 ± x

2
√

1+ x2
.

Table 5.9 contains values of these parameters for excited atoms under considera-
tion.

Problem 5.6. Determine the relative lifetimes of the four lowest states of inert
gas atoms if the radiative transitions proceed between the valence electron shells
np6 and np5(n + 1)s. Use the results of the previous problem and neglect the
energy difference between states of the excited states in the analysis of radiative
transitions.

Above is shown (formulas (5.18), (5.19)) that only two states from four of the lowest
excited atom shells are connected with the ground state by the dipole radiative
transitions. Now we obtain this result in a direct way from the expression for the
intensity of the dipole radiative transitions. Use formula (1.25), (1.26) according
to which the radiative lifetime of an excited state is proportional to the square of
the matrix element of the dipole moment operator

1

τf
∼ |〈0|D|f 〉|2,

where the indices 0, f refer to the ground and related excited states. In accordance
with the notation of the previous problem and formula (5.17), we present the wave
function of the ground atom state in the form

	0 � ϕ0 · 1√
2

(
χ+η− − χ−η+

)
,

where χ , η are the spin wave functions of the core and test valent electron, and ϕ0

is the total spatial wave function of the core and test electron for the ground atom
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state. The wave function of the lowest excited state with the projection of the total
momentum 2 onto a given direction has the form

	5 � ψ1χ+η+,

where ψ1 is the spatial wave function of the core and test electron that has the
projection one of the angular momentum onto a given direction. As is seen, the
matrix element 〈	0|D|	5〉 � 0, because of the orthogonality of the spin wave
functions (compare this with formula (5.18)).

Taking the expression for the wave function of the state 1s3 from the previous
problem as

	2 � 1√
3
ψ1χ−η− + 1√

3
ψ−1χ+η+ − 1√

6
ψ0χ+η− − 1√

6
ψ0χ−η+,

one can see that the matrix element 〈	0|D|	3〉 � 0, because of the orthogonality
of the spin wave functions of the core and test electron (compare thus with formula
(5.19)). Thus the states 1s5, 1s3 are metastable states and are characterized by an
infinite radiative lifetime with respect to dipole radiation.

For the analysis of the radiative lifetimes of the states 1s4 and 1s2, let us use
expressions for the wave functions of the states 1s5, 1s4, 1s2 with the momentum
projection M � 1. These have the form

�1 � 	21 � 1√
2
ϕ1 + 1

2
ϕ2 + 1

2
ϕ3;

�2 � − 1√
2
ϕ1 + 1

2
ϕ2 + 1

2
ϕ3; �3 � 1√

2
ϕ2 − 1√

2
ϕ3.

Write the dipole moment operator in the form

D �
∑
m

(
i sin θm cosϕm + j sin θm sin ϕm + k cos θm

)
rm,

where i, j, k are the unit vectors directed along the x-, y-, z-axes respectively, and
the subscript m corresponds to mth electron whose spherical coordinates are rm,
θm, ϕm. Using the expressions of previous Problem for the basis wave functions

ϕ1 � ψ0χ+η+, ϕ2 � ψ1χ−η+, ϕ3 � ψ1χ+η−,

we obtain, for the matrix elements,

〈	0|D|ϕ1〉 � 0; 〈	0|D|ϕ2〉 � C
(−i+ ij

)
; 〈	0|D|ϕ3〉 � C

(
i− ij

)
.

Thus, the rate of the radiative transition is proportional to the amplitude of the
wave function �3 into the wave function of the excited state. From this we get, for
the ratio of the radiative lifetimes of the resonantly excited states,

τ (1s2)

τ (1s4)
� c2

2

c2
3

�
√

1+ x2 − |x|√
1+ x2 + |x| .

Table 5.10 contains the radiative lifetimes, τ (1s2) and τ (1s4), of the resonantly
excited states of inert gas atoms, the ratio of these quantities, and that according to
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Table 5.10. Radiative lifetimes for the lower resonantly excited states of inert gas atoms.

Atom Ne Ar Kr Xe

τ (1s2), ns 1.6 2.0 3.2 3.5

τ (1s4), ns 25 10 3.5 3.6

τ (1s2)/τ (1s4) 16 5 1.1 1.0

c2
2/c

2
3 13 3.8 1.1 1.4

formulas of the previous problem when the excitation state is described by the ex-
change and spin-orbital interaction potentials. One can see that related interactions
are responsible for the properties of the lower excited states of inert gas atoms.



CHAPTER 6

Excited Atoms

6.1 Metastable and Resonantly Excited Atoms

The lowest excited states of atoms can be divided into two groups: metastable
and resonantly excited states. Resonantly excited atoms can emit photons and
transfer to the ground state as a result of the dipole interaction with radiation
fields. For metastable states this radiation transition is prohibited, and the radiative
lifetime for metastable states is several orders of magnitude more than that for
resonantly excited states. Hence, metastable atoms can be accumulated in gases,
while resonantly excited atoms decay fast. Quenching of resonantly excited atoms
generates resonant photons which have a relatively small free path length in a gas
consisting of atoms of this sort, because such photons are absorbed effectively
by other atoms of this sort in the ground state. Thus, metastable and resonantly
excited atoms differ strongly in their behavior in gaseous and plasma systems.
With an increase in the excitation energy this difference between the excited states
disappears because an excited atom can transfer in different atomic states with a
lower energy as a result the dipole radiation.Hence, the separation of excited atomic
states in metastable and resonantly excited states corresponds to only the first
excited states. Note that the strongly excited states of atoms form a special group of
highly excited or Rydberg states of atoms whose radiative lifetime is intermediate
between metastable and resonantly excited states. Next, the prohibition of the
radiative transition from an excited state to the ground state can be abolished
in the following orders of the perturbation theory, constructed on the basis of a
weak interaction between an atom and radiation field. Therefore the lowest excited
states of some atoms can have an intermediate nature between metastable and
resonantly excited states. For these states the radiation dipole transition in lower
states is prohibited, but the radiative lifetime is not so large. It especially relates to
heavy atoms for which relativistic interactions are remarkable and the competition
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Table 6.1. Parameters of the metastable states of atoms; εex is the excitation energy of the
state, λ is the wavelength of radiative transition to the ground state, and τ is the radiative
lifetime of the metastable state.

Atom, state εex, eV λ, nm τ , s Atom, state εex, eV λ, nm τ , s

H(22S1/2) 10.20 121.6 0.12 P(32D5/2) 1.41 878.6 5 · 103

He(23S1) 19.82 62.56 7900 P(32P1/2,3/2) 2.32 1360 4

He(21S0) 20.62 60.14 0.02 S(31D2) 1.15 1106 28

C(21D2) 1.26 983.7 3200 S(31S0) 2.75 772.4 0.5

C(21S0) 2.68 462.4 2 Cl(32P1/2) 0.109 11100 80

N(22D5/2) 2.38 520.03 1.4 · 105 Se(41D2) 1.19 1160 1.4

N(22D3/2) 2.38 519.8 6.1 · 104 Se(41S0) 2.78 464.0 0.1

N(22P1/2,3/2) 3.58 1040 12 Br(41P1/2) 0.46 2713 0.9

O(21D2) 1.97 633.1 100 Te(51D2) 1.31 1180 0.28

O(21S0) 4.19 557.7 0.76 Te(51S0) 2.88 474.0 0.025

F(22P1/2) 0.050 24700 660 I(52P1/2) 0.94 1315 0.14

P(32D3/2) 1.41 880.0 3 · 103 Hg(63P0) 4.67 265.6 1.4

of different electron shells partially abolishes the prohibition for the radiative
transition in the ground state. Below we leave such atom states aside.

6.2 Generation and Detection of Metastable Atoms

Table 6.1 contains the parameters of some of the metastable states of atoms.
Metastable atoms are formed in a gas or weakly ionized plasma under the action
of electric fields, UV-radiation, electron beams, and other ways of the excitation
of gaseous systems. As a result of the relaxation of such a system, some excited
atoms transfer to metastable states, and metastable atoms are accumulated in the
gas due to a high lifetime. For example, under optimal conditions of operation of
an He–Ne laser, the number density of metastable helium atoms He(23S1) in a gas-
discharge plasma is of the order of 1012 cm−3, when the number density of helium
atoms is of the order of 1017 cm−3, and the electron number density is of the order
of 1011 cm−3. Thus, the number density of metastable atoms in this gas-discharge
plasma is higher than the electron number density. A higher value of metastable
helium atoms is observed in a cryogenic gaseous discharge (∼ 1013–1014cm−3)
where relaxation processes,which lead to the decay ofmetastable states, areweaker
due to a low temperature.

An effective method of generation of some metastable atoms is based on the
photodissociation of certain molecules. In spite of small efficiency, this method is
characterized by high selectivity. As an example, consider the photodissociation
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process of ozone

O3 + h̄ω→ O
(
1D
)+ O2

(
1
g

)
. (6.1)

According to measurements, in the region of wavelengths λ � 254–310 nm, the
quantum yield of this channel is equal to unity. The reason is such that in this
range of wavelengths the exciting term of the ozone molecule is the repulsive
one which corresponds to the channel (6.1) of dissociation of the ozone molecule.
Process (6.1) determines the presence of the metastable atoms O(1D) in the Earth’s
stratosphere at altitudes of 20–30 km where the number density of these metastable
oxygen atoms is of the order of 102 cm−3. For the generation of the metastable
oxygen atoms O(1S) on the basis of this process, UV-radiation with wavelengths
of 105–130 nm is used. Along with the ozone molecule, the photodissociation of
the molecules CO2 and NO2 is used for the generation of the metastable oxygen
atoms O(1S), where the quantum yield of the metastable oxygen atoms O(1S) can
reach unity. The photodissociation method is used for the generation of different
metastable atoms. Metastable bromine atoms Br(42P1/2) are formed as a result
of the photodissociation of the molecules CF3Br, for formation of the metastable
iodine atoms I(52P1/2) the photodissociation of molecules CF3I, C2F5I, C3F7I is
used. These processes of generation of metastable iodine atoms are the basis of
the iodine laser which operates due to the transition

I(52P1/2)→ I(52P3/2)+ h̄ω. (6.2)

In this laser the energy of a pulse UV-lamp is transformed into the energy of laser
radiation, and this process is characterized by high yield parameters.

Various methods are used for the detection of metastable atoms. If these atoms
are located in an atomic beam, a convenient method of measurement of their flux

Table 6.2. Radiative transitions for detection of the metastable atoms of inert gases (the
notations of excited states for the scheme of LS-coupling are used for the helium atom, for
other inert gas atoms the Pashen notations are used; λ is the wavelength of the transition,
and Af i is the Einstein coefficient for this transition).

Atom,state Transition λ, nm Af i, 107 s−1

He(23S) 23S1 → 23P1 1083 1.02

He(23S) 23S1 → 33P1 388.9 0.95

He(23S) 23S1 → 43P1 318.8 0.56

He(21S) 21S0 → 21P1 2058.2 0.20

He(21S) 21S0 → 31P1 501.6 1.34

He(21S) 21S0 → 41P1 396.5 0.69

Ne(1s5) 1s5 → 2p9 640.2 5.1

Ar(1s5) 1s5 → 2p9 811.5 3.5

Kr(1s5) 1s5 → 2p9 811.3 3.1

Xe(1s5) 1s5 → 2p9 904.5 1.0
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is the determination of a current of electron emission as a result of the interaction
of this beam with a metallic surface. If the excitation energy of metastable atoms
exceeds thework function ofmetals, the quenching ofmetastable atoms due to their
interaction with a metallic surface leads to the release of electrons. If metastable
atoms are found in a gas, they can be quenched by admixtures located into the gas.
The atoms or molecules of admixtures are excited in collisions with metastable
atoms, and a part of the excitation energy of metastable atoms is transferred to
admixture particles during quenching. The intensity of emission of these excited
particles characterizes the number density of the metastable atoms. This method
is convenient for determination of the relative number density of metastable atoms
in a gas when this value varies in time.

For determination of the absolute values of the number densities of metastable
atoms in a gas, the method of absorption is used for a resonant radiation with
respect to metastable atoms. This radiation transfers metastable atoms into more
excited states. Hence, measurement of the absorption coefficient for this resonance
radiation allows one to determine the number density of metastable atoms. With
the use of contemporary experimental techniques, this method is convenient if the
number density of metastable atoms exceeds 107–108 cm−3. Table 6.2 represents
the parameters of radiative transitions which are used for determination of the
number density of the metastable atoms of inert gases.

6.3 Metastable Atoms in Gas Discharge and Gas Lasers

Let us consider the basic processes involving metastable atoms which take place in
gaseous and plasma systems. The Penning process is of principle for the generation
of electrons in some gas discharge plasmas. An example of this process is

Ne(1s5)+ Ar → Ne+ Ar+ + e. (6.3)

The excitation energy of the metastable state exceeds the ionization potential of
an admixture atom, so that the excitation energy is consumed in this process for
the ionization of an admixture atom. Hence, if a discharge is burnt in a gas with a
high ionization potential of atoms, an admixture with a small ionization potential
of atoms can change the parameters of the discharge because now, instead of the
atom ionization, it is enough to transfer it into the metastable state. In this case
the change of parameters of the gas discharge is observed at the concentrations of
admixture atoms of the order of 0.01–0.1%.

The presence of metastable atoms can influence the spectroscopy of an excited
atom if quenching of the metastable atoms proceeds through formation of the
excited atoms of an admixture, and further these atoms emit radiation. This process
is the basis of the operation of the He–Ne laser which uses the process of excitation
transfer from metastable helium atoms to neon atoms

He
(
23S

)+ Ne
(
2p6

)→ He
(
11S0

)+ Ne
(
2p54s

)
;

He
(
21S

)+ Ne
(
2p6

)→ He
(
11S0

)+ Ne
(
2p55s

)
. (6.4)
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Here the electron terms of the helium atom and electron shells of the neon atom
are shown for the relevant processes. Because the final state of the electron shell of
the neon atom can correspond to several electron terms, the He–Ne laser generates
radiation at various wavelengths. The highest intensities correspond to transitions
with wavelengths of 3.39μ and 0.633μ from the electron shell 2p54s and 1.15μ
from the electron shell 2p55s.

There is a group of lasers which are similar to the He–Ne laser, and the first stage
of processses in these lasers is the formations of heiium metastable atoms. Let us
consider such lasers whose first stage is the formation of helium metastable atoms.
One can extract from among these lasers which are used helium with an admixture
of metallic vapor (Cd, Hg, Au, Zn, etc.). These lasers are operated on transitions
between the excited states of ions. For example, a Cd laser can emit radiation due
to several transitions, and the most intense transitions are the following:

Cd+(4d104f, 2F5/2 → 4d105d, 2D3/2), λ � 533.7 nm, (6.5a)

Cd+(4d95s2, 2D5/2 → 4d95p2, 2P3/2), λ � 441.6 nm. (6.5b)

The initial excited state of the cadmium ion is formed as a result of the excitation
transfer process

He(23S)+ Cd → He+ (Cd+)∗ + e. (6.6)

Metastable atoms are characterized by a large radiation lifetime. Hence in
gaseous and plasma systems their lifetime is determined by the collision and trans-
port processes. These atoms are accumulated in gases in relatively high amounts,
and their quenching allows one to transfer the excitation energy to other degrees
of freedom. This fact is used in the above gaseous lasers. In this case, metastable
states are not the upper states of a laser transition because of a high radiative life-
time. One can decrease this value as a result of the formation of a bound state
with other atomic particles. Then the prohibition of radiation is partially abolished
due to the interaction between bound atomic particles. For example, the radiative
lifetime of the oxygen metastable atom O(1S) is equal to 0.8 s, while the radiative
lifetime of the molecule ArO(1S) is equal to 3.8 ·10−3 s, and the radiative life time
of the molecule XeO(1S) is equal to 3 ·10−4 s. This fact is used in lasers which use
the molecules ArO, KrO, XeO with a small dissociation energy for the emission
of laser radiation in the vicinity of the transition O(1S0)→ O(1D2)+ h̄ω, and also
in lasers with the molecules KrSe, XeSe which are working in the vicinity of the
transitions

Se(1S0)→ Se(1D2)+ h̄ω and Se(1S0)→ Se(3P1)+ h̄ω.

6.4 Resonantly Excited Atoms in Gases

The resonantly excited states of atoms are characterized by small radiative lifetimes
(see Table 6.3), because the dipole radiative transition is permitted from these states
to the ground state. These states are effectively excited in a weakly ionized plasma
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by electron impact. Further resonantly excited states decay as a result of quenching
in collisions with atomic particles or by means of the emission of radiation. The
radiation of these atoms is used in the gas-discharge sources of light. This principle
is used, in particular, in mercury lamps.

Processes involving resonantly excited atoms are used in various devices includ-
ing lasers. In such lasers it is used that the resonantly excited states of atoms are
formed in collisions with electrons more effectively than in other states. This leads
to the creation of an inverse population of levels. But since the lifetime of the res-
onantly excited states is relatively small, such lasers operate in a pulse regime. As
an example, we consider the copper laser. The ground state of this atom is charac-
terized by the electron shell 3d104s, and the resonantly excited state corresponds
to the transition of the valent electron from the 4s- to 4p-state. The excitation
energy of the electron state 42P1/2 is equal to 3.79 eV, and for the electron state
42P3/2 the excitation energy is 3.82 eV. Metastable states of the copper atom with
the electron shell 3d94s2 have a lower excitation energy. The excitation energy of
state 32D5/2 is equal to 1.39 eV, and for state 32D3/2 it is equal to 1.64 eV. The
copper laser is operated from both a gaseous discharge and electron beam. Then
the resonantly excited states are formed by electron impact more effectively than
metastable states and are used as the upper levels of laser transitions. This laser,
as other lasers of this type (the nitrogen laser, the laser on the vapor of lead and
thallium, and ion lasers such as argon and krypton lasers), operates in the pulse
regime.

In accordance with the nature of the resonantly excited states, a convenient
method of their excitation consists of the irradiation of a gas or vapor by resonant
radiation. This method is known as optical pumping and, it gains new applications
with the creation of lasers. This method is also used for the generation of the
so-called photoresonant plasma. In this case, a small volume of gas or vapor is
irradiated from a pulse light source such that the wavelength of the generated
photons coincides with that of the spectral lines of this gas. Then the photons
are effectively absorbed by gaseous atoms, and further collisions of the excited
atoms lead to atom ionization and the formation of free electrons. The photon
source can be tuned not only to transitions from the ground state of gaseous atoms,
but also to transitions between excited states or states of its ion. Then an initial
formation of these excited atoms or ion states is required. This process leads to
the transformation of the energy of incident radiation into the plasma energy. As
a result, a photoresonant plasma with specific properties is formed in some space
element, and the character of evolution of this plasma is used. The other application
of optical pumping consists of the creation of new lasers with larger wavelengths
than that of incident radiation.

Newphenomena occur if a polarized light source is used for optical pumping. Let
us consider the process of the irradiation of an atomic gas when atoms are excited
by a polarized resonance radiation, and subsequently excited atoms return to the
ground state by emitting photons. Since the probability of the radiation of each
excited atomdoes not depend on a photon direction and its polarization, the process
of the emission of photons does not change the average atom momentum, while
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the absorption process influences this value. As a result, the average momentum of
gaseous atoms varies. This phenomenon is known as the atom alignment process
or optical alignment. As an example of optical alignment, consider this process in
a cell with rubidium vapor 87Rb. The nuclear momentum of this isotope is equal
to 3/2, the atom spin in the ground state is 1/2, and the atom orbital momentum
is equal to zero in the ground state. Hence, the atom ground state level is split
into two superfine levels, so that the total atom momentum, which is a sum of the
electron spin and nucleus momenta, is equal to F � 1 for the lower superfine state
and to F � 2 for the upper superfine state. As a result of the exposure of atoms by
resonant circularly polarized radiation, the projection of the total atom momentum
onto the photon direction increases by one after the absorption of each photon (at
the corresponding choice of the polarization direction). Hence, if we neglect the
relaxation processes which lead to the randomizing of the momentum direction,
in the end we can obtain the vapor with an identical direction of atom momenta.
When this condition is reached, the absorption coefficient for the polarized light
decreases. This change of the absorption coefficient can be evidence of the optical
alignment of atoms.

The optical alignment of atoms is used in various methods and devices. One
of these is the rubidium maser which operates between states of the superfine
structure of 87Rb atoms. According to the above consideration, optical pumping
increases the atom momentum, i.e., as a result of this process a number of atoms
with the moment F � 2 becomes more than that in the equilibrium case. Because
the level with F � 2 is the upper one, this process leads to creation of the inverse
population of superfine levels. This provides the operation of a quantum generator.
The rubidium maser is the main element of the corresponding quantum standard
of frequency.

The phenomenon of the optical alignment of atoms is the basis of operation
of magnetometers. As an example, we consider a magnetometer whose working
gas is helium 4He (the abundance of this isotope is practically 100%, the nuclear
momentum is equal to zero). Gas discharge is burnt in a cell filled with helium
so that a remarkable amount of metastable atoms He(23S) are formed in this
cell (the number density of metastable atoms is of order of 1010 cm−3, while the
number density of atoms in the ground state is of the order of 1016 cm−3). These
metastable atoms are irradiated by resonant polarized light which transfers them
to the state 23P . Further atoms He(23P ) emit photons and return in the metastable
state He(23S). As a result, metastable helium atoms obtain a primary direction of
the electron spin which is determined by the direction of incident radiation.

If this gas discharge cell is located in a magnetic field, the metastable level is
split into three levels depending on their spin projection onto the magnetic field di-
rection, and the difference of the level energies is proportional to the magnetic field
strength. Transitions between these levels can result from radiofrequency electro-
magnetic waves which are in resonance with magnetic sublevels. The process of
absorption of the radiowave leads to the establishment of equilibrium distribution
over magnetic sublevels, while optical pumping violates the equilibrium distribu-
tion. Therefore, the absorption of a radiofrequency signal causes an increase in
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Table 6.3. Parameters of the lowest resonantly excited states of some atoms; εex is the
excitation energy of the state, λ is the wavelength of radiative transition to the ground state,
and τ is the radiative lifetime of the lowest resonantly excited state.

Atom, state εex, eV λ, nm τ, ns Atom, state εex, eV λ, nm τ , ns

H(21P1) 10.20 121.567 1.60 Zn(41P1) 5.796 228.8 1.4

He(21P1) 21.22 58.433 0.555 Ga(52S1/2) 3.073 403.41 7.1

He(31P1) 23.09 53.703 1.72 Kr(1s4) 10.03 123.58 3.5

Li(22P1/2) 1.85 670.791 27.3 Kr(1s2) 10.64 116.49 3.2

Li(22P3/2) 1.85 670.776 27.3 Rb(52P1/2) 1.560 794.76 29

Ne(1s4) 16.671 74.372 25 Rb(52P3/2) 1.589 780.03 27

Ne(1s2) 16.848 73.590 1.6 Sr(53P1) 1.798 689.26 2.1 · 104

Na(32P1/2) 2.102 589.59 16.4 Sr(51P1) 2.690 460.73 6.2

Na(32P3/2) 2.104 589.00 16.3 Cd(53P1) 3.801 326.1 2400

Mg(31P1) 4.346 285.21 2.1 Cd(51P1) 5.417 228.80 1.7

Al(42S1/2) 3.143 394.51 6.8 In(62S1/2) 3.022 410.29 7.6

Ar(1s4) 11.62 106.67 10 Xe(1s4) 8.44 146.96 3.6

Ar(1s2) 11.83 104.82 2.0 Xe(1s2) 9.57 129.56 3.5

K(42P1/2) 1.610 769.90 27 Cs(62P1/2) 1.386 894.35 31

K(42P3/2) 1.617 766.49 27 Cs(62P3/2) 1.455 852.11 31

Ca(43P1) 1.886 657.28 4 · 105 Ba(63P1) 1.57 791.13 300

Ca(41P1) 2.933 422.67 5.2 Ba(61P1) 2.24 553.55 8.5

Cu(42P1/2) 3.786 327.40 7.0 Hg(63P1) 4.887 253.7 118

Cu(42P3/2) 3.817 324.75 7.2 Hg(61P1) 6.704 184.9 1.6

Zn(43P1) 4.006 307.6 2.5 · 104 Tl(72S1/2) 3.283 37.57 7.6

the absorption coefficient for optical pumping. The determination of a resonance
frequency in this system gives the distance between magnetic sublevels, and cor-
respondingly yields the value of the magnetic field. This method allows one to
measure magnetic fields of very small strength, up to 10−7Oe.

For the above version of the optical magnetometer, the resonant frequency of
an electromagnetic field is determined on the basis of the dependence on the fre-
quency of the radiowave for the absorption coefficient of optical pumping which
causes transitions the between excited atom states. Optical pumping violates a ran-
dom distribution for magnetic sublevels of the ground atom state, and this causes
variation in the absorption coefficient of an optical signal. Another version of this
method uses resonant transitions from the ground atom state. This takes place in
the method of the Double Radio-optical Resonance which was first realized in
1952 by Brossel and Bitter (France) for mercury atoms. A cell contains a mercury
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vapor including even isotopes so that their nuclear momentum is zero. This vapor
is excited by circularly polarized light with wavelength 253.7 nm which trans-
fers mercury atoms from the ground state 61S0 into the resonantly excited state
63P1.Since the atom orbital momentum in the ground state is zero, the circular
polarized radiation excites atoms in the state with momentum projection M � 1.
Hence, the decay of excited atoms creates a polarized radiation in each direction.
One can vary the distribution of atoms over momentum projections applying a
constant magnetic field which splits the magnetic sublevels, or by variation of an
alternating (radiofrequency) magnetic field which causes transitions between the
magnetic sublevels. Measurement of the resonant frequency for a magnetic field
signal, which causes the strongest transitions between magnetic sublevels, allows
one to determine the magnetic field strength in this case.

The interaction of polarized resonant radiation with atoms leads to various
phenomena which, along with the above devices, give information about atomic
parameters, their processes of their interaction and collision. The use of polarized
radiation is the basis of various methods which allows one to measure the atomic
characteristics.

6.5 Detection of Individual Atoms

Due to the small width of spectral lines resulting from the radiation of excited
atoms in gaseous or plasma systems, the spectral lines related to atoms of different
elements can be separated. This is the basis of a strong method of the identifi-
cation of excited atoms on the basis of their spectra. The measurement of the
radiation spectrum of a hot gas, vapor, or plasma allows one to determine the con-
tent of various elements in this system. One can trace the history of this method
from 1860–1861, when Bunsen and Kirchhoff discovered cesium and rubidium
on the basis of the analysis of their spectra. Add to this another historical example
when in 1871 Lokier (France) discovered one more element—helium—due to its
spectral line in the radiation of the Sun. The method of spectral emission was
further developed and became the main diagnostic method in metallurgy. Within
the framework of this method, a small amount of a metallic object is introduced
into an arc discharge in the form of dust or solution. Then the atoms of iron and
other metals are evaporated and excited in an arc plasma. This analysis is based
on comparison of the intensities for certain spectral lines of this plasma, and the
ratio of these intensities yields the relative concentrations of different admixtures
to iron in the sample analyzed. This method allows one to determine reliably the
content of admixtures up to their concentrations of 10−5–10−3 with respect to iron.

The optohalvanic method of determination of the admixture concentration is
more precise. It uses the measurement of electric current through a plasma which
is under the action of tuned monochromatic radiation whose frequency varies
continuously. If this radiation is found in resonance with atoms in the ground or
excited states, absorption of this radiation influences the electric current through
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the plasma. Then the electric current, as a function of the frequency of laser ra-
diation, contains some narrow resonances and downfalls corresponding to certain
transitions between the atomic states. The positions of these peculiarities in the
electric current and their intensities give information about the content of admix-
tures in the plasma. Thismethod is used both for a gas discharge plasma and flames,
and allows one to determine the concentration of admixtures of the concentration
up to 10−11. The difficulty of this method is in the establishment of the numerical
connection between current variations and the concentration of the corresponding
elements, because this connection depends on many factors.

Below we present the two-step ionization method for the detection of individual
atoms. Due to the transformation of atoms of a certain sort into ions, this method is
characterized by high selectivity and sensitivity. The first stage of the method is the
excitation of a certain atom state by resonance radiation, and the second stage is the
photoionization of formed excited atoms. Because of the small photon energy, the
radiation does not act on atoms of other types in a gas. As a demonstration of the
possibilities of this method, we describe in detail the first version of this method
which was developed by Hurst, Naifi, and Yang from the Oak Ridge National
Laboratory in 1977. Then cesium atoms were detected in gaseous systems. The
excitation of cesium atoms in the state 72P3/2 was made by laser radiation with
the wavelength 455.5 nm. Because the cross section of this transition exceeds the
photoionization cross section of the excited atom by several orders of magnitude,
for the second stage a lamp of a wide spectrum was used. The ionization potential
of the excited cesium state 72P3/2 is equal to 1.17 eV. Cesium ions formed in the
above two-step process are detected by the ion detector. This method allowed one
to detect one cesium atom among 1019 other atoms or molecules. This sensitivity
is higher by several orders of magnitude, than if we had tried to remove one person
from among all the Earth’s inhabitants. Note that the method of two-step ionization
is suitable for the detection of elements with a low-ionization potential.

6.6 Properties of Highly Excited Atoms

Highly excited states are a specific group of atom states. They are sometimes called
Rydberg states. A valent electron of a highly excited atom has a weak bond with
the atomic core and can be ionized as a result of the collision with atomic particles
or underaction of an external field. The radiative lifetime of highly excited atoms
is remarkably large due to the weak interaction of the valent electron with the
atomic core, and this parameter for highly excited atoms is intermediate between
the resonantly excited and metastable atoms.

In order to describe a highly excited atom, take the interaction potential between
a valent electron and an atomic core in the form

U (r) � −e2

r
+ V (r), (6.7)
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where r is the distance of the electron from the center, and V (r) is the potential of a
short-range interaction of the electron and atomic core. This interaction is essential
only in the region where electrons of the atomic core are located. If we neglect the
short-range interaction, the ionization potential of a highly excited atom coincides
with that of an excited hydrogen atom which is equal to, according to formula
(2.13),

Jn � Ry

n2
,

where Ry is the Rydberg constant—the ionization potential of the hydrogen atom
in the ground state, and n is the principal quantum number of the electron. Taking
into account the short-range interaction within the framework of the perturbation
theory, we have

Jn � Ry

n2
+ 〈V (r)〉.

The last term is equal to the order of magnitude 〈V (r)〉 ∼ V (a) ·w where V (a) ∼
Ry is a short-range interaction at distances of the order of atomic sizes, and w ∼
n−3 is the probability of location of the valent electron in the region of the atomic
core. Accounting for n
 1, represent this formula in the form

Jn � Ry

(n− δl)2
� Ry

n2∗
, n∗ � n− δl. (6.8)

The parameter δl , which characterizes a shift of the level under the action of a short-
range interaction of the excited electron and atomic core, is called the quantum
defect. The value n∗ is called the effective principal quantum number.

The quantum defect decreases strongly with an increase in the electron orbital
momentum l, because the higher the electron orbital momentum, the less the prob-
ability for the electron to locate near the atomic core. Next, the quantum defect
increases with an increase in the nucleus charge because an increase in the atomic
number leads, on one hand, to an increase in the short-range interaction and, on
the other hand, shifts the electron quantum number for the ground atom state. For
example, the ionization potential of the cesium atom is equal to 3.89 eV which
corresponds to n∗ � 1.87 according to formula (6.8) for the ground atom state
where n � 6. Hence the quantum defect of the ground state is equal to δl � 4.13.
This varies weakly with excitation of the atom, so that one can expect that the
quantum defect of the highly excited cesium atom is about 4 for the s-electron.
This is confirmed the data of Table 6.4 where values of the quantum defects for
the alkali metal atoms are represented.

Analyzing the radiative properties of the highly excited atoms, note that radia-
tive transitions in closed excited states by energy give a small contribution to the
radiative lifetime of this state, i.e., the radiative lifetime of a highly excited state is
determined mainly by transitions to low lying levels. Because the probability per
unit time for the radiative transition wrad to a low lying level is proportional to the
probability of the location of a highly excited electron in a region of the order of
an atom size, we have wrad ∼ n−3

∗ . Thus we have, for the radiative lifetime of a
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Table 6.4. Quantum defect of alkali metal atoms.

Electron state Li Na K Rb Cs

s 0.40 1.35 2.16 3.13 4.05

p 0.047 0.855 1.72 2.64 3.56

d 0.001 0.015 0.24 1.35 2.47

f 0 0 0.009 0.016 0.032

Table 6.5. The parameter of the radiative lifetime τl(ns) for highly excited atoms of alkali
metals.

Electron moment Li Na K Rb Cs

s 0.84 1.36 1.21 1.18 1.3

p 3.4 2.7 3.9 2.9 3.4

d 0.47 0.93 2.6 1.4 0.7

f 1.1 1.0 0.76 0.66 0.67

highly excited atom,

τnl � τl

n3∗
, (6.9)

where τl does not depend on n∗. Table 6.5 contains values of the parameter τl for
alkali metal atoms.

6.7 Generation and Detection of Highly Excited Atoms

The first stage of the investigations of highly excited atom methods of their gener-
ation included processes of the charge exchange of ions on atoms or molecules, the
process of the excitation of atoms by electron impact, and the process of molecule
dissociation accompanied by excitation of its fragments. In all these processes, the
relative probability of the formation of highly excited atoms is proportional to the
factor n−3, that is, the probability of location of an excited electron in the region
of the atomic core. Hence the probability of the formation of a highly excited state
is small in these processes, and a mixture of excited atoms with different n can
be formed as a result of these processes. The contemporary method of the gener-
ation of highly excited atoms uses a dye-laser which allows one to obtain excited
atoms in a given state only. As a result, we have a mixture of atoms where the
main part of the atoms is found in the ground state, and a small part of the atoms
is found in a given excited state. Atoms of other highly excited states are practi-
cally absent in this mixture. One- and two-photon absorption processes are used
for the generation of highly excited atoms. One can extract from these processes
two-photon processes when absorbed photons move in opposite directions. Then
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the Doppler shift of one absorbed photon is compensated for by the Doppler shift
due to the absorption of the other photon. This leads to the identical absorption
of atoms moving with different velocities, i.e., the Doppler shift of the spectral
lines is eliminated and the absorption spectral line becomes narrow. This method,
called the two-photon spectroscopy without Doppler broadening, is spread for the
generation and detection of highly excited atoms.

The detection of highly excited atoms can be made from the analysis of their
radiation spectrum. But an increase in the principal quantum number of an excited
electron leads to a strong decrease in the radiation intensity, so that this method
is applied for small n (usually n ≤ 20). The other method of detection of a
highly excited atom is based on ionization of the atom and the registration of a
formed ion. Different collision methods of the ionization of highly excited atoms
are possible for their detection, such as collisions with electrons in a thermoionic
detector and collisions with atoms and interaction with a metallic surface. But
because these methods are not selective with respect to atomic states, they are not
widely practiced. The selective method of the detection of highly excited atoms
uses the ionization of these atoms in a constant electric field of moderate strength.
In particular, in a typical scheme of the study of highly excited atoms, an atomic
beam with an admixture of highly excited atoms passes between the plates of a
capacitor of a certain electric field strength in this region.

Let us analyze the ionization process of highly excited atoms in a constant
electric field. Then the potential acting on a weakly bound electron in the main
region of its location is equal to

U � −e2

r
− eEz, (6.10)

where E is the electric field strength, and z is the projection of the electron radius-
vector r on the electric field direction. The first term corresponds to the interaction
of the electron with the Coulomb field of the atomic core and the second term
corresponds to the interaction with the electric field. Figure 6.1 gives the cross
section of this interaction potential. As is seen, this interaction potential creates a
barrier which locks the electron into the atom region. The maximum decrease in
the barrier takes place in the plane of the nucleus and field (x � y � 0), and is
Umax � −2e3/2E1/2. Let us introduce the critical electric field strength Ecr, such
that the barrier disappears at the plane x � y � 0. Then we obtain, on the basis
of formula (6.8),

Ecr � Eo

16n4∗
, (6.11)

where Eo � 5.1 · 109 V/cm is the atomic value of the electric field strength (see
Table 2.1). One can expect that at fields of the order of Ecr the decay time of a
highly excited atom in the electric field is of the order of a typical atomic time for
an excited electron, which is τn ∼ τo/n

3 where τo � 2.4 · 10−17 s is the atomic
time.
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Figure 6.1. The scheme of the detector of infrared radiation. A beam of sodium atoms passes
through a gap in the camera with the temperature of the walls at 14 K. Then the atom beam
is excited by two laser beams and (1) it moves in the region of action of an external source of
infrared radiation (2). Next, this beam moves between plates of the capacitor in an external
electric field which has such strength that the atoms Na(23P ) are ionized, while the atoms
Na(22D) are not. Forming ions are collected by a collector.

Let us make numerical estimations for n � 20–30. Formula (6.11) gives Ecr ≈
104 V/cm, i.e., these fields can be reached under laboratory conditions. Next, τn ≈
(2–6) · 10−13 s. A typical time of location of a highly excited atom in the field
region, if it moves with an atomic beam between the capacitor plates, is τdr ∼
l/v ∼ 10−6 s, if we take the beam velocity v ∼ 105 cm/s and a field size l ∼ 1mm.
Because of τdr 
 τn, this corresponds to the used electric field strengthsE < Ecr.

Let us determine a typical time of the atom decay, if the electric field strength
is close to the critical one Ecr − E � Ecr. Then the time of the tunnel electron
transition is equal to

τ ∼ τon
3 exp

(
−C

h̄
·
√
m
U ·
z

)
,

where C is a numerical factor which is determined by a barrier shape, 
U is the
minimum difference of the potential energy and the level energy, and 
z is the
width of a barrier region where the potential energy exceeds the energy of the level.
We have


U � 2e3/2E1/2
cr − 2e3/2E1/2 � e3/2 · Ecr − E

E
1/2
cr

and 
z � e1/2Ecr − E

Ecr
.

Then, using formula (6.11), we obtain

τ ∼ τon
3
∗ exp

[
an∗(Ecr − E)

Ecr

]
, (6.12)

where the numerical factor in this formula is a ∼ 10. The probability of the decay
of a highly excited atom after passage through the field region is equal to

W � 1− exp
(
−τdr

τ

)
.
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Let us make estimates for the parameters n � 30, τdr � 10−6 s, a � 10. Determine
the interval of the electric field values at which the decay probability varies from
10% to 90%. We obtain that this leads to variation of (Ecr−E)/Ecr from 4% to 5%.
In this example, variation of the decay probability of the highly excited atom from
20% to 80% corresponds to variation of the electric field strength by 0.4%, i.e., the
value (Ecr−E)/Ecr varies in the limits from 4.5% to 4.9%. Note that the transition
from the state with n � 30 to the state with n � 31 corresponds to a decrease in
Ecr by 12%. Thus, because of a strong dependence of the decay probability on the
electric field strength, the excited atom decay proceeds in a narrow range of the
electric field strengths.

This is the result of the principle which is the basis for the identification of
highly excited atom states. In the related example, the relative variation of the
electric field strength, which corresponds to the transition from an almost total
conservation of excited atoms of a given state up to their almost total decay, is
approximately 1%. An electric current resulting from the ionization of atoms in a
given state occurs in this range of variation of the electric field. The electric field
corresponding to the decay of the state with the nearest value of n differs from this
one by approximately 10%. Thus two neighboring excited states with the same
electron momentum can be selected reliably. Moreover, this method allows one to
separate states with the same n, but different l for l � 0, 1, 2. Thus the ionization
of highly excited atoms in a constant electric field is the reliable method for the
identification of states of highly excited atoms.

6.8 Radiation of a Classical Electron in the Coulomb
Field of a Nucleus

If a classical electron moves in the Coulomb field of a nucleus, the action of this
field creates an acceleration of the electron and causes the emission of radiation.
If this electron is found in a bound state, i.e., we have a highly excited atom, this
effect leads to the radiative transition of the atom in less excited states. For a free
electron this process can lead to capture in bound states, i.e., to recombination. Let
us determine the cross section of the related process for a free electron. This cross
section can be represented in the form

dσ

dω
�
∫ ∞

0
2πρ dρBω, (6.13)

where dσ corresponds to an interval of frequencies of emitted photons from ω to
ω+ dω, ρ is the impact parameter of collisions, and Bω is the radiation power per
unit frequency. We use the general expression for the probability of radiation per
unit time (1.26) and change the matrix elements by their Furie components in the
classical limit. Then we have

Bω ∼ h̄ω

ω
wf i ∼ ω3

c3
r2
ω, (6.14)
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where rω is the Furie component from the electron coordinate.
Note that a strong interaction of the electron with the Coulomb center takes

place at small impact parameters. The law of energy conservation for the electron
energy has the form

ε � v2
∞
2
� v2

2
− Z

r
+ l2

r2
,

where ε is the electron energy, v∞ is its velocity far from the Coulomb center, v
is the electron velocity at a distance r from the center, l � ρv∞ is the rotation
momentum of the electron which is large compared to that in the classical limit.
Neglecting the electron energy far from the center compared to the interaction
energy in the region of radiation, we find, from this relation for the distance of
closest approach ro at a given impact parameter ρ,

ro ∼ l2/Z ∼ ρ2ε/Z.

The size of an interaction region which is responsible for the emission of photons
of a frequencyω is given by the estimate ro ∼ v/ω, and the electron velocity in this
region is determined by interaction with the Coulomb center, so that v ∼ √Z/ro.
From this it follows that

ω ∼ Z1/2r−3/2
o , i.e., ro ∼ Z1/3ω2/3.

This leads to the following estimate for the impact parameters of collisions which
give the main contribution to the radiation of photons of a frequency ω,

ρ2 ∼ Zro

ε
∼ Z4/3

εω2/3
.

Next,

rω ∼ ro

ω
∼ Z1/3

ω5/3
;

from this we find, for the cross section of the emission of photons of a given
frequency ω,

dσ

dω
∼ ρ2Bω ∼ ρ2ω2r2

ω

c3
∼ Z2

c3εω
. (6.15)

This formula gives the dependence of the radiation cross section on the parameters
of the problem. A stricter, but cumbrous analysis of this problem allows one to
determine a numerical coefficient for this formula. With this numerical coefficient
the above formula has the following form, in usual units,

dσ

dω
� 8πZ2e6

3
√

3mc3εh̄ω
. (6.16)

This formula describes the radiation of a classical electron which is free at the
start. At the end of the process, the electron can be both free and in a bound state.
Hence, formula (6.16) corresponds to both bremsstrahlung and to recombination
radiation.
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Let us analyze the criterion of the validity of this formula. We assume the related
effect to be classical, so that in the radiation region the interaction potential is small
compared to the quantum value. This gives Z/ro � Z2, i.e., ro 
 Z−1. Since
ro ∼ Z1/3

ω2/3 , from this it follows that

ω � Z2. (6.17)

The other criterion requires large electron momenta of collisions for the clas-
sical character of electron motion. This gives l ∼ ρ

√
ε 
 1, and since

ρ ∼ Z2/3ω−1/3ε−1/2, from this we again obtain the criterion (6.17). Along with
these assumptions, we used a close approach to the center during the electron
motion. This gives ro � ρ, and leads to the following criterion:

ω 
 ε3/2/Z. (6.18)

Thus, formula (6.16) is valid for small electron velocities compared to the typical
atomic velocities and corresponds to large frequencies of emitting radiation.

Let us use formula (6.5) for the deduction of the cross section of capture of a
slow electron on a highly excited level as a result of photon emitting. The energy
conservation law in this process has the form

ω � ε + Z2

2n2
,

where ω is the photon energy and ε is the initial electron energy. From this it
follows that dω � |Z2dn/n3|. Let us define the photorecombination cross section
with the formation of an atom in a state with the principal quantum number n as

σrec(n) � dσ

dn
.

Then formula (6.16) gives

σrec(n) � 8πZ4

3
√

3c3εωn3
. (6.19)

Using the connection between the cross sections of photoionization and photore-
combination as reversible processes (see Chapter 2), we get from this, for the
cross section of photoionization of a highly excited state with a principal quantum
number n, if this process proceeds under the action of a photon of a frequency ω,

σion(n) � 8πZ4

3
√

3cω3n5
. (6.20)

Formulas (6.19), (6.20) are called the Kramers formulas. In order to estimate
their accuracy, we use formula (6.19) in the case of photorecombination with the
participation of a slow electron and the formation of a hydrogenlike ion in the
ground state. Then this formula yields (n � 1, ε � q2/2, ω � Z2/2):

σrec(n) � 32πZ2

3
√

3c3q2
, (6.21)
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where q is the wave vector of the incident electron. Although this case is found
beyond the limits of the validity of the Kramers formulas, its result differs from
the accurate result by 25%.

6.9 Application of Highly Excited Atoms

Various precise devices can be constructed on the basis of highly excited atoms.
Below we consider in detail one type of detector of submillimeter radiation. It was
constructed in Germany in the 1980s and gives a representation of the possibilities
of measuring techniques by using highly excited atoms. The concept of this device
is based on transitions between highly excited atom states under the action of
thermal radiation. Then, on the basis of measurement of the rates of transitions
between highly excited states, one can determine the intensity of thermal radiation.
In this version of the device, which will be described below, a sodium atomic beam
is excited by two dye lasers. One of these lasers with lengthwave λ � 589 nm
creates resonantly excited atoms as a result of the transition 32S1/2 → 32P1/2. The
second laser with wavelength about 415 nm transfers excited atoms in the state
22D. After this a beam of atoms with an admixture of highly excited atoms passes
through a region where it interacts with a thermal radiation, and then is directed to
the region of an electric field where highly excited atoms are detected. The atom
beam is surrounded by walls with a low temperature (14 K) in order to escape the
excitation of highly excited atoms by background thermal radiation. The scheme
of this device and levels of transition are shown in Fig. 6.2.

Let us give some parameters of the device. Approximately 0.1% of the atoms
are transferred into the state 22D, and the initial flux of highly excited atoms in
the beam is of the order of 1011 s−1. The radiative lifetime of Na(22D) is about
10−5 s, so that at used drift time through the device approximately 5% of the
excited atoms reach the region of the electric field. The transition 22D → 23P
(95 GHz) was used for the analysis of the action of thermal radiation. Then the

Figure 6.2. The scheme of the excited levels of the sodium atom which are used for operation
of the detector of infrared radiation.



6.10 The Cooling of Atoms 165

Figure 6.3. The dependence of the yield signal of the detector of infrared radiation depending
on the temperature of the radiation source.

electric field was taken in such a way that it must decompose the highly excited
atoms 23P and cannot act on the highly excited atoms 22D. The rate of transition
22D → 23P under the action of thermal radiation at room temperature is about
1300 s−1. For an external source with temperature 300 K this corresponds to the
flux of atoms in the state 23P at approximately 105 s−1. The quantum efficiency of
this device is 3·10−3, i.e., approximately 300 excited atoms per second are detected
if the temperature of the thermal source is 300 K. This detailed description of the
device allows one to understand the complexity and possibilities of contemporary
measuring techniques on the basis of highly excited atoms (see also Fig. 6.3).

6.10 The Cooling of Atoms

Optical pumping allows one to govern the behavior of atoms under the action
of resonant radiation. Above we described some schemes of devices which use
excited atoms through optical pumping. Below we concentrate on the problem
of the cooling of atoms where superlow temperatures are reached on the basis of
optical pumping combined with other methods with atom participation. We start
from the Doppler cooling of atoms within the framework of a simple scheme,
where free atoms are irradiated by a monochromatic laser radiation from six sides,
so that for each axis of the rectangular coordinate system two laser beams move
in direct and opposite directions. For a description of the real character of the
interaction of these laser beams with individual atoms we assume the width of the
spectral line of laser radiation to be zero in the scales under consideration, and
these lines are shifted into the red side in comparison with the resonant line.

In this process the atom obtains the momentum 
p � h̄k � h̄ω/c as a result of
the absorption of one photon, where k is the photon wave vector, c is the speed of
light, and ω � kc is the radiation frequency. When the laser line is shifted to the
red side with respect to the atom resonant line, the radiation is mostly absorbed by
the laser beam moving toward the atom and, because the direction of the emitting
photon is random, the atom is decelerated as a result of the absorption and radiation
of one laser photon. The ratio of the probabilities to absorb the photon from two
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laser beams moving in opposite directions is

(
ω − kvx)2 + �2/4

(
ω + kvx)2 + �2/4
, (6.22)

where
ω is the difference between the frequencies of the resonant atom transition
and the laser spectral line, vx is the projection of the atomvelocity onto the direction
of the laser beams, and� is the width for the spectral line of the resonant transition.
Evidently, the minimum atom velocity corresponds to the minimal spectral line
width which is the radiative width of the spectral line � � 1/τ , where τ is the
radiative lifetime. From this it follows that the minimum temperature of cooling
due to this method is TDop ∼ �. This accurate analysis gives the Doppler limit
TDop � �/2. In particular, in the sodium case this limit is TDop � 240μK, which

corresponds to the root mean square velocity of the sodium atoms 
vD �
√
v2 �

30 cm/s.
Note that this limit for alkali metal atoms is approximately two orders of

magnitude higher than the limit due to the recoil of the absorbed atom. In-
deed, the variation of the atom velocity as a result of photon absorption is

vR � h̄k/M � h̄ω/(Mc), where M is the atom mass. The energy which gives
the restless atom as a result of photon absorption is

ER � M
v2
R

2
� (h̄k)2

2M
. (6.23)

Usually the temperature TR � 2ER is called the recoil temperature limit. In the
sodium case we have 
vR � 3 cm/s, ER � 2.4μK, and the temperature which is
limited by the atom recoil is TR � 2ER � 5μK. Because the thermal velocity of
sodium atoms at room temperature is 5.0 ·104 cm/s, the number of absorption acts
to stop atoms must exceed 104.

In the above consideration of the Doppler cooling, we assume the intensity
of the laser beams to be relatively small, so that, depending on the tuning, the
radiation acts on atoms in some range of velocities. As a result, the radiation
decelerates atoms in this velocity range and compresses the velocity distribution
function, transforming it into a narrow peak. Far from this velocity range the
velocity distribution function of atoms does not vary because these atoms do not
interact with laser radiation. Hence, in the case of the use of weak laser intensities,
when the radiation acts on the individual atoms independently, only a portion of
the atoms interacts with the laser radiation and, finally, the velocity distribution
function obtains a resonance in the range of a strong interaction. Under these
conditions, the atoms are not stopped in this scheme.

In real schemes, other mechanisms occur for the interaction of laser beams
with atoms which, in combination with the Doppler cooling, allow us to reach the
Doppler limit of the atom temperature. Usually atoms are irradiated by laser beams
from six sides. The absorption and reabsorption of resonant radiation strongly
influences the atom’s behavior in the irradiation region. For example, themaximum
absorption cross section of the sodium atom under optimal conditions, when the
broadening is determined by the radiative lifetime of the excited state, is equal to
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σmax � 3λ2/(2π ) � 1.6 · 10−9 cm2, where λ � 589 nm is the wavelength of the
sodium resonant radiation and 3 is the ratio of the statistical weights for the upper
and lower states of the radiative transition. Under the typical number density of
atoms∼ 107 cm−3 the mean free path of resonant photons is of the order of 100 cm,
i.e., the atom gas is transparent for photons for the typical size of an irradiated zone
(∼ 1 cm) where six laser beams are crossed. On the contrary, the mean free path
of atoms is relatively small even at low fluxes of resonant photons. For example, a
low laser intensity 1 W/cm2, which corresponds to the flux of the resonant photons
3 · 1018 cm−2 s−1 for sodium, and the absorption act under optimal conditions is
characterized by the rate 5 ·109 s−1. Because the thermal velocity of sodium atoms
at room temperature is 5 ·104 cm/s, this leads to the mean free path of atoms of the
order of 0.1μm.Of course, this is the lower estimate for themean free path of atoms
under the action of the resonant photons of a given intensity, but from this it follows
that under typical conditions atoms are closed in the region where laser beams are
crossed. Thus, the laser resonant radiation creates, for atoms, a viscous medium
which is called the optical molasses. A strong interaction between atoms through
this viscousmediumallowsone to reach theDoppler limit for the atom temperature.

The disadvantage of this method is such that the absorption rate varies signifi-
cantly in the course of the stopping of atoms from thermal velocities. In order to
improve the laser action on atoms, one can use “chirping” by variation of the laser
frequency in time or space. The last effect is partially fulfilled in magneto-optical
traps, where the shift of the resonant frequency varies in space due to the spatial
variation of the magnetic field.

One more cooling mechanism within the framework of the above scheme takes
place for a polarized laser beam. If the alkali metal atom in the ground state is
located in the field of the linearly polarized radiation of high intensity, then the
electron level is split into two levels depending on the spin projection onto the
direction of the electric field of this electromagnetic wave. For the linear polariza-
tion of two beams moving in opposite directions, the polarization of the total field
of the electromagnetic waves varies in space and, simultaneously, the splitting of
energy levels varies in space as it shown is Fig. 6.4. The rate of excitation correlates
with the spin projection, and this correlation depends on the tuning of laser signals
with respect to the resonant transition.When the laser radiation frequency is shifted
to the red side with respect to the resonant frequency, the dominant processes for
absorption of the atom in the ground electron state, and for its emission from the
resonantly excited state, are shown in Fig. 6.4. These processes lead to an additional
cooling of atoms. The cooling due to polarization gradients is called the Sisuphus
effect. This effect allows one to reach the temperature of the recoil limit.

The other problem is to keep cool atoms in some space region because even
gravitational forces influence their motion. In particular, the restless sodium atoms
reach the recoil velocity
vR through time t � g/
vR ∼ 0.003 s (g is the free-fall
acceleration). In order to keep the atoms in some space region, various traps are
used. Usually they are based on some spatial configurations of magnetic fields and
are called magneto-optic traps. Because of the slowness of captured atoms, the
depth of the potential well for these atoms is correspondingly small.
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Figure 6.4. The Sisyphus effect of cooling as a result of the interaction of two counter-
propagating laser beams with ortogonal linear polarization. (a). The resultant polarization
is spatially modulated with a period λ/2, so that on a distance λ/4 it changes from σ+

to σ− and vice versa. (b). The ground state of atoms with the total electron momentum
1/2 is split under the action of the radiation field, and the spliting is spatially modulated.
The correlation causes the emission process near the potential hills, while the absorption
proceeds near the potential wells. As a result, the atom is cooled because of the optical
pumping.

The recoil limit is not of principle, though the above cooling schemes do not
achieve temperatures below the recoil limit since the atom cooling results from
the absorption of individual photons. In order to provide the so-called “subrecoil
cooling,” it is necessary to use the simultaneous absorption of two photons having
close energies and moving in opposite directions. Two methods are now used for
this goal. The first one, “Velocity Selective Coherent Population Trapping” uses
the interference of two laser signals of close energies. As a result, the atom in
the ground state transfers between the magnetic sublevels or levels of superfine
structure. Due to the tuning of laser signals, the interaction of laser signals with
atoms decreases with a decrease in their velocity, so that the atoms of zero velocity
do not partake in these processes. The second method of subrecoil cooling, Raman
cooling, is based on the character of stimulated Raman transitions. These methods
are the second stage of cooling, and its first stage leads to the recoil limit by means
of the above methods. As a result of two-photon transitions, with a small variation
of the atom electron energy, the recoil is small which decreases the limiting atom
temperature. These methods use fine aspects of the interaction of the interference
of photons during their interaction with an individual atom, so that we leave them
outside this consideration. The temperatures which are reached by the methods of
subrecoil cooling, as a result two-photon transitions, are of the order of several nK.

Cold atoms may be used in various fine devices. As an example, below we con-
sider atomic clocks. In standard schemes, the atomic clocks contain twomicrowave
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resonators which are excited by the same generator. An atomic beam crosses these
resonators subsequently, and the frequencies of signals are compared due to the
microwave transitions between the superfine atomic states. The smaller the atomic
velocity, the narrower the resonance line which determines the stability of the
atomic clocks.

The main scheme of the atomic clocks, based on slow atoms from the laser
cooling, uses the so-called “Zacharias atomic fountain.” In this scheme slow atoms
are located in a magneto-optic cavity and are thrown up under the action of a laser
pulse. When the atoms move up and down, they pass through the resonator cavity
twice and interactwith the resonator at these times.The comparisonof the transition
frequencies at these times allows us to determine them with high accuracy. This
methodprovides a higher stability of atomic clocks in comparisonwith the previous
method using a thermal beam of atoms, because time between two signals is now
longer by two orders of magnitude than in the case of a thermal beam. As a result,
this method provides a high stability of atomic clocks (10−15–10−16).

Of course, the above description does not pretend to give the state of the prob-
lem of the stopping and cooling of atoms by resonant radiation. This problem
includes many other ideas, concepts, and applications. Our goal is to give a general
representation of this problem.

Problems

Problem 6.1. Determine the wave function of a highly excited electron in the main
region of its location and the average size of the highly excited atom for the case
l � n.

The radial wave function of the electron satisfies equation (2.9):

d2

dr2
[rR(r)]+

[
2ε + 2

r
− l(l + 1)

r2

]
[rR(r)] � 0,

where ε � 1/(2n2
∗) is the electron energy and n∗ is the effective principal quantum

number of the electron. Writing this equation in the form

d2

dr2
[rR(r)]+ p2(r) [rR(r)] � 0,

we have that the classical electron momentum is positive at r1 < r < r2, where

r1,2 � n2
∗ ± n∗ ·

√
n2∗ − l(l + 1).

Thus the region of classical motion of the electron is r1 < r < r2, and beyond
this region the electron wave function decreases in an exponential way. Then
we assume that the electron is located only in the region r1 < r < r2. The
quasi-classical solution of the Schrödinger equation in this region has the form

f � rR(r) � C√
p
· sin

(∫ r

r1

p dr + π

4

)
, p2(r) � − 1

n2∗
+ 2

r
− l(l + 1)

r2
,
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where we account for f (r1) � 0. One can determine the normalization constant C
by taking into account that the wave function has a large number of knots (∼ n).
Then changing sin2 ϕ in the normalization integral by 1/2 we obtain, in accordance
with formula (2.31),

C � 1

n
3/2
∗
·
√

2

π
.

In the case l � nwe have r1 � 0, r2 � 2n2, so that introducing the new variable
t � √r/(n∗

√
2) with the range of its variation 0 < t < 1, we obtain

rR(r) � Ct1/2

(1− t2)1/4
sin ϕ.

Here

ϕ �
∫ r

0

√
2/r − n−2∗ dr − π/4 � 2n∗

(
t
√

1− t2 + arcsin(t + δ)
)
,

where the phase δ is of the order of one. Thus the quasi-classical wave function of
an excited electron can be taken in the form

rR(r) �
√

2

π
· t1/2

n∗(1− t2)1/4
· sin

[
2n∗

(
t
√

1− t2 + arcsin t
)]

, 0 < t < 1.

The above quasi-classical expression for the electron wave function allows one
to determine the mean parameters of the excited electron. In particular, from this
it follows that

〈r〉 � 〈n|r|n〉 � 3n2
∗/2;

〈
r2
〉 � 〈n ∣∣r2

∣∣ n〉 � 5n4
∗/2,

which coincides with the data of Table 2.5 for the excited hydrogen atom.
The obtained expression for the electron wave function of a highly excited atom

in a classical region of electron motion also allows one to obtain the quasi-classical
expression in the classical forbidden region of electron coordinates. We have, for
n
 l,

R(r) � C

2r
√|p| · exp

(
−
∫ r

r1

|p| dr
)
, C �

√
2

π

1

n
3/2
∗

,

|p(r)| �
√

1

n2∗
− 2

r
, r1 � 2n2

∗.

Problem 6.2. Obtain the quasi-classical asymptotic expressions for the electron
angular wave function for l 
 1.

Let us first consider the case m � 0. Then, according to formula (2.5), the angular
wave function has the form

Ylo �
√

2l + 1

4π
Pl(cos θ ),
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and our goal is to obtain asymptotic expressions for the Legendre polynomials
Pl(cos θ ). This function satisfies the Schrödinger equation

d

d cos θ
(1− cos2 θ )

d

d cos θ
Pl(cos θ)+ l(l + 1)Pl(cos θ ) � 0.

It is convenient to represent this equation in the form

d2

dθ2
Pl + ctgθ

d

dθ
Pl + l(l + 1)Pl � 0.

By the introduction of the new variable f (θ ) � √sin θPl(cos θ), we transform the
equation to the form

d2f

dθ2
+
[(

l + 1

2

)2

+ 1

4 sin2 θ

]
f � 0.

This can be represented in a quasi-classical form

d2f

dθ2
+ p2f � 0,

where the value

p �
√√√√[(l + 1

2

)2

+ 1

4 sin2 θ

]
is the effective electron momentum. The condition of the validity of the quasi-
classical approach d(1/p)/dθ � 1 corresponds to the conditions

lθ 
 1, (π − θ)l 
 1.

In this range of the argument values the quasi-classical solution of the above
equation is

Pl(cos θ) � C
sin [(l + 1/2)θ + δ)]√

sin θ
.

In order to determine constants in this solution, let us consider the accurate equation
for small angles

d2

dθ2
Pl + 1

θ

d

dθ
Pl + (l + 1/2)2Pl � 0.

Here we change l(l + 1) to (l + 1/2)2. The solution of this equation, accounting
for Pl(0) � 1, has the form

Pl(cos θ ) � Jo [(l + 1/2)θ] ,

where Jo is the Bessel function. At small values of the argument this expression
has the following asymptotic form:

Pl(cos θ ) �
√

2

πl
· sin [(l + 1/2) θ + π/4]√

θ
.
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This solution must coincide with the quasi-classical solution in the region of the
validity of both solutions 1/l � θ � 1. This comparison allows us to determine
the coefficients in the quasi-classical expression for the Legendre polynomial

Pl(cos θ) �
√

2

πl
· sin [(l + 1/2)θ + π/4)]√

sin θ
.

Now let us consider the casesm � 0 andm� l. Then the angular wave function
is given by formula (2.5) and has the form

Ylm �
√

2l + 1

4π
Pm
l (cos θ )eimϕ,

and the asymptotic expression for Pm
l (cos θ ) can be found by the above method

and has the form

Pm
l (cos θ ) �

√
2

πl
· sin[(l + 1/2)θ +mπ/2+ π/4)]√

sin θ
, l 
 m, lθ 
 1.

Problem 6.3. Determine the decay rate for an excited atom in a constant electric
field.

This problem is identical to Problem 2.5 for the decay of an excited hydrogen
atom in a constant electric field. But in this case an excited electron is located
in a spherical self-consistent field of the atomic core. Hence, the electron state is
characterized by the quantum numbers nlm, and the electric field does not mix
states of different l. Thewave function of the excited electron satisfies the following
Schrödinger equation: [

−1

2

+ U (r)− Ez

]
	 � ε	,

where E is the electric field strength, and the electron energy is ε � −γ 2/2.
At distances r near the atomic core one can neglect the electric field, so that the
electronwave function has the form	 � Rl(r)Ylm(θ, ϕ)where r, θ, ϕ are spherical
coordinates, and the radial wave function satisfies the following equation:

d2

dr2
[rRl(r)]−

[
γ 2 − 2U (r)+ l(l + 1)

r2

]
[rRl(r)] � 0.

Far from the atomic core the self-consistent field is transformed into the Coulomb
field [U (r)→−1/r], and the radial wave function is

Rl(r) � Ar1/γ−1e−rγ ,

where A is the asymptotic coefficient (see Chapter 4).
It is convenient to introduce parabolic coordinates in the region where the

electron penetrates the barrier. By analogy with Problem 2.5, we have

ξ � r + z, η � r − z; 	 � eimϕ

√
2π
· �(ξ )F (η)√

ξη
,
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and the Schrödinger equation is transformed to the form

�′′ +
(
−γ 2

4
+ β1

ξ
− m2 − 1

4ξ 2
+ E

4
ξ

)
� � 0;

F ′′ +
(
−γ 2

4
+ β2

η
− m2 − 1

4η2
− E

4
η

)
F � 0.

These equations follow from the initial Schrödinger equation if we change the self-
consistent field potential U (r) by the Coulomb potential (−1/r). The separation
constants are connected by the relation β1 + β2 � 1.

Let us connect the parabolic and spherical coordinates near the axis which is
directed along the electric field and passes through the atomic center. We have

r � (ξ + η)/2 ≈ ξ ; η �
√
ρ2 + z2 − z ≈ ρ2/(2z) � rθ2/2 � ξθ2/4.

The use of the expression for the Legendre function at small angles

Pm
l (cos θ ) ≈ (l +m)!

2mm!(l −m)!
· sinm θ, θ � 1,

leads to the following expression for the angular wave function

Ylm(θ, ϕ) �
[
(2l + 1)(l +m)!

2(l −m)!

]1/2

· θm

2mm!
· e

imϕ

√
2π

.

This gives, for the asymptotic expression of the wave function in the region rγ 2 

1, θ � 1:

	 � A· e
imϕ

√
2π
·
(
ξ

2

)1/γ−1−m/2

·e−γ ξ/2·
(η

2

)m/2
·e−γ η/2· 1

m!
·
[
(2l + 1)(l +m)!

2(l −m)!

]1/2

.

Using this wave function in the Schrödinger equation for �(ξ ) and F (η), we find
the separation constants for the related region

β1 � 1− γ

2
(m+ 1), β2 � γ

2
(m+ 1).

The probability of the electron transition through the barrier is equal to

w �
∫
S

j ds, j � i

2
· (	∇	∗ −	∗∇	),

where j is the electron flux through the surface S which is perpendicular to the
electric field direction. We have ds � ρ dρ dϕ, and because η �

√
ρ2 + z2− z ≈

ρ2/(2z), this gives ds � ξ

2 dη dϕ. We use the fact that the wave function F (η) is
the same both before and after the barrier. In addition, the integralw is determined
by the spatial region near the axis. From this it follows that

w �
∫

j
ξ

2
dη dϕ � m!

γ m
· i
2

(
�
d�∗

dξ
−�∗

d�

dξ

)
.
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In the spatial region, where one can neglect the action of the electric field, the wave
function �(ξ ) has the form

�(ξ ) � A ·
(
ξ

2

)1/γ−1−(m+1)/2

· e−γ ξ/2 · 1

m!
·
[
(2l + 1)(l +m)!

2(l −m)!

]1/2

.

Let us consider quasi-classical solutions near the boundary of the classical region
ξo � γ 2/E. In the classical region of the electron motion ξ > ξo the wave function
�(ξ ) has the form

�(ξ ) � i
C√
p
· exp

(
i

∫ ξ

ξo

p dξ − i
π

4

)
, ξ > ξo.

In the classical forbidden region of the electron motion this wave function is

�(ξ ) � C√|p| · exp

(
−
∫ ξ

ξo

|p| dξ
)
, ξ < ξo,

where

p2 � −γ 2

4
+ β1

ξ
− m2 − 1

4ξ 2
+ E

4
ξ.

Using the expression for the wave function in the classical region of the electron
motion we have, for the frequency of the atom decay,

w � m!

γ m+1
· |C|2.

Thus, our goal is to determine the coefficient C. Then let us compare the above
expressions for the wave function �(ξ ) in the region 1/γ 2 � ξ � ξo, where, on
one hand, one can neglect the electric field and, on the other hand, the asymptotic
expression for the wave function is valid. We have

|p|2 � γ 2

4
− β1

ξ
− E

4
ξ � E

4
· (ξ − ξo) ·

(
1− 4β1

Eξξo

)
, ξo � γ 2

E
− 4β1

γ 2
,

and the second term in the expression for ξo is small compared to the first one.
Thus we have, for the integral,∫ ξ

ξo

|p| dξ �
√
E

2
·
∫ ξ

ξo

√
ξo − ξ

(
1− 2β1

Eξξo

)
dξ � 1

3

γ 3

E
−1

2
γ ξ−β1

γ
ln

(
4γ 2

Eξ

)
.

Using in this expression β1/γ � ξ � ξo, we obtain the following form for the
quas-iclassical wave function before the barrier:

�(ξ ) � C ·
√
γ

2
·
(
Eξ

4γ 2

)β1/γ

exp

(
γ 3

3E
− γ ξ

2

)
.

Comparing this with the asymptotic expression of the wave function in the region
of a small electric field, we find the coefficient C,

C � A ·
√
γ

2
·
(

2γ 2

E

)β1/γ

exp

(
− γ 3

3E

)
· 1

m!
·
[
(2l + 1)(l +m)!

2m(l −m)!

]1/2

.



Problems 175

From this we obtain the following expression for the decay probability per unit
time

w � A2

2
·
(

2γ 2

E

)2/γ−m−1

exp

(
−2γ 3

3E

)
· (2l + 1)(l +m)!

(2γ )m(l −m)!m!
. (6.24)

Note that this expression is obtained under other conditions compared with
Problem 2.5. In this case, an excited atom state is characterized by the spheri-
cal quantum numbers nlm, while under the conditions of Problem 2.5 parabolic
quantum numbers are the atom quantum numbers. Hence, the results of these two
problems coincide only in the case of one state, when the degeneration of levels is
absent. In particular, for the hydrogen atom in the ground state (γ � 1, l � m � 0,
A � 2), this formula gives

w � 4

3E
· exp

(
− 2

3E

)
, (6.25)

which coincides with the result of Problem 2.4. The other common case corre-
sponds to the states n1 � n2 � 0,m � n − 1 for parabolic quantum numbers
and to l � m � n − 1 for spherical quantum numbers. These quantum numbers
correspond to the same state. If the electron is located in the Coulomb field, i.e.,
for the hydrogen atom, the radial wave function of the relevant state is

Rl(r) �
(

2

n

)3/2

· 1√
2n!

·
(

2r

n

)n−1

· e−r/n,

so that

C � 1√
2n!

·
(

2

n

)n+1/2

.

From this we obtain, for the decay rate the same formula as in Problem 2.5,

w � 1

n2n!
·
(

4

n3E

)n

exp

(
− 2

3n3E

)
. (6.26)

Note that the result of this problem corresponds to relatively small fields when
the level splitting due to the electric field is small compared to distances between
these levels. The result of Problem 2.4 corresponds to the opposite criterion. This
result is suitable for states with l � 0, 1.

Problem 6.4. Find the electric field strengths of the disappearance of the spectral
lines of sodium of 474.8 nm and 475.2 nm which correspond to the transitions
72S1/2 → 32P1/2,3/2. The radiative lifetime of the state Na

(
72S1/2

)
is equal to

τrad � 2.7 · 10−7 s and the ionization potential of this state is 0.43 eV.

The disappearance of these spectral lines is due to decay of the excited atoms
in the electric field. The electric field strength of the disappearance of spectral
lines we found from the relation wτrad ∼ 1, where w is the decay rate for the
excited state and τrad is the radiative lifetime of the excited state. Because of the
strong dependence of the decay rate on the electric field strength, below we use
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this relation in the form wτrad � 1. According to the expression of the previous
problem, the rate of ionization of the s-electron is equal to

w � A2

2
·
(

2γ 2

E

)2/γ−1

exp

(
−2γ 3

3E

)
.

The asymptotic coefficient A for the bound s-electron can be found from the
assumption that in the main region of the electron’s location its interaction with
the atomic core is the Coulomb interaction. This leads to formula (4.12) which has
the form

A2 � γ (2γ )2/γ

�2(1/γ + 1)
.

In the case under consideration we have the following parameters: γ � 0.178;
τrad � 1.12 · 1010; and A2 � 1.25 · 10−12. The equation wτrad � 1 takes the form
2.6 · 1011 · x10.25e−x � 1 where x � 2γ 3/E. The solution of this equation x � 70
corresponds to the electric field strength E � 28 kV/cm. Note that we used the
small parameter E/Ecr, where Ecr is the critical electric field strength (formula
(6.11)). Under the related conditions this parameter is equal to 0.8, i.e., they are
found near the boundary of validity of the used approach.

Problem 6.5. Determine the critical electric field strength for an excited electron
in the Coulomb field with parabolic quantum number n2 � 0 on the basis of the
condition that the barrier disappears at this electric field.

The electron wave function in parabolic coordinates has the form, in accordance
with the formulas of Problem 2.5,

	 � eimϕ

√
2π
· �(ξ )F (η)√

ξη
,

and the Schrödinger equations can be written in the form

d2�

dξx
+ p2

ξ � 0,
d2F

dη2
+ p2

η � 0,

where

p2
ξ �

ε

4
+ β1

ξ
− m2 − 1

4ξ 2
+ E

4
ξ ; p2

η �
ε

4
+ β2

η
− m2 − 1

4η2
− E

4
η,

where ε is the electron energy. The separation constants are connected by the
relation β1 + β2 � 1. Because the electron is found in an excited state, one can
use the quasi-classical conditions of the Bohr quantization∫ ξ2

ξ1

pξ dξ � π

(
n1 + 1

2

)
;

∫ η2

η1

pη dη � π

(
n2 + 1

2

)
,

where ξ1, ξ2, η1, η2 are the electron turning points, i.e.,pξ (ξ1,2) � 0 andpη(η1,2) �
0, and n1, n2 are the parabolic quantum numbers of the weakly bound electron
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which characterize a number of knots for the corresponding wave function. The
above quasi-classical conditions of quantization are valid for n1 
 1, n2 
 1.

Note that the condition of the barrier disappearance has the form

dpξ

dξ
(ξ2) � 0.

This relation, together with the Bohr equations of quantization, establishes the
connection between the critical electric field Ecr, the separation constants β1, β2,
and the electron energy ε. Below we consider this problem for the simplest case
m � 0, n2 � n1. This corresponds to n2 � 0, β2 � 0, β1 � 1. Because in this
case the turning point ξ2 relates, simultaneously, to a maximum of pξ , we have

ξ2 � 2√
Ecr

, |ε| � 2
√
Ecr, and p2

ξ �
Ecr

4ξ
· (ξ2 − ξ )2.

Since in this case ξ1 � 0, we obtain∫ ξ2

0
|pξ | dξ � 25/2

3E1/4
cr

� πn1.

Because n1 � n, we have

Ecr � 210

(3πn)4
� 0.130

n4
; |ε| � 64

9π2n2
� 0.720

n2
. (6.27)

Thus, action of the electric field on a highly excited atom in the relevant state
lowers the energy level. The critical electric field strength according to this formula
is almost twice as high according to formula (6.11). Note that the relevant state
decays more effectively than other states with the same n, because the electron
distribution is stretched in the direction of the electric field. For this distribution
the electron is concentrated in the region where its interaction with the field cor-
responds to attraction. Hence, interaction with the field leads to lowering of the
level. Interaction with the electric field for other levels of a given n can lead to a
rise in the electron energy. But the critical electric field strength must be higher
than in the relevant case which is preferable with respect to the ionization of a
weakly bound electron.

Note that our consideration corresponds to diabatic switching of the electric
field. This means that until the electric field strength varies from zero up to its final
value, transitions between the atomic levels are absent. In the opposite case of the
adiabatic evolution of this system, the level energy varies weakly in the course of
switching on the electric field. Then at the end of switching at the field, the weakly
bound electron will be located on another level, although the distribution inside the
atom is not changed. Let us analyze switching of the electric field by the adiabatic
way in the considered case n2 ≈ n. Then we have, for electron quantum numbers
after the establishment of the electric field n′1 ≈ n′, and from the condition of
conservation of the electron energy, that it follows that

1

2n2
� 64

9π2(n′)2
.
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The critical electric field strength is equal, in this case, to

Ecr � 210

(3πn′)4
� 1

16n4
,

i.e., we obtain formula (6.11) for the critical electric field strength. The coincidence
of these expressions is explained by conservation of the electron energy resulting
from switching of the electric field. This fact shows the convenience of formula
(6.11) for real estimate.

Problem6.6. Determine the accuracy of theKramers formula for the cross section
of photoionization of the hydrogenlike ion in the ground state.

Taking formula (6.20) for the photoionization cross section ω � Z2/2, n � 1,
we obtain the Kramers formula for photoionization of the hydrogenlike ion in the
ground state

σKr
ion �

64π

3
√

3cZ2
.

Comparing this with the accurate cross section for photoionization of the hy-
drogenlike ion in the ground state σ ac

ion, which is obtained in Problem 2.6, we
have

σKr
ion

σ ac
ion

� e4

8π
√

3
� 1.25.

Although this case is outside the limits of validity of the Kramers formula, the
error is not high.

Problem 6.7. Determine the rate of the cooling of atoms as a result of the absorp-
tion and reabsorption of resonant photons in the one-dimensional case when they
are irradiated from two sides by laser beams of identical frequency. This frequency
is shifted in the red side with regard to the atomic resonant transition. Neglect the
broadening of the spectral line under the action of the laser field.

We use the expression for the rate of photon absorption in the form

w � wo

[
1

(x − y)2 + 1
+ 1

(x + y)2 + 1

]
, x � 
ω

2�
, y � 2kvx

�
,

where wo is the maximum rate of photon absorption when the radiation frequency
corresponds to the center of the spectral line, 
ω is the shift of the laser line
with regard to the resonance, � is the width of the spectral line for the absorption
process, k � ω/c is the photon wave vector, and vx is the atom velocity. Each
act of the photon absorption leads to a variation of the atom velocity by the recoil
velocity±
vR , and the sign is determined by the photon direction, vx is the atom
velocity.

The recoil velocity
vR is small in comparison with the typical atom velocity, so
that we consider the atom velocity as a continuous variable, and describe the atom
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evolution in the space of variable y on the basis of the Fokker–Planck equation

∂f

∂t
+ u

∂f

∂y
+D

∂2f

∂y2
� 0,

where f (y) is the velocity distribution function of atoms, and the drift velocity u

and diffusion coefficient D of atoms in the space of variable y are equal to

u � uo

[
1

(x − y)2 + 1
+ 1

(x + y)2 + 1

]
, uo � wo

2k
vR

�
,

D � Do

[
1

(x − y)2 + 1
+ 1

(x + y)2 + 1

]
, Do � 2wo

(
k
vR

�

)2

.

Let us consider the limiting case y 
 x 
 1 so that, in this case,

u � uo
4x

y3
, D � Do

2

y2
,

where the parameters uo and Do correspond to the evolution of an atom in the
velocity space under the action of one laser beam which is tuned to the center of
the atom absorption line. In the stationary case we obtain the equation

u
df

dy
+D

d2f

dy2
� 0.

Its solution has the form

f (y) � C

(
k
vR

2
ω

)y

,

where C is a constant. Usually the optimal tuning is of the order of the line width
or exceeds it. The parameter k
vR/� is usually large, in particular, in the sodium
case it is 100. Hence, the distribution function drops strongly at large y when the
equilibrium is established. This means that atoms are stoped through some time,
and the typical width of the velocity distribution function is of the order of the
Doppler limit when x ∼ 1.

Estimating a typical time of the equilibrium establishment, we note that the
obtained nonstationary Fokker–Plank equation has the automodel form, so that at
large time the combination y4/t does not vary in time. Hence, a typical relaxation
time, when the initial distribution function has a large width in comparison with
the tuning (y 
 x) and the width of the absorption spectral line (y 
 1), may be
estimated as

t ∼ y

u
, t ∼ y2

D
,

and both estimates for x ∼ 1 (
ω ∼ �) give the identical result which has the
form

t ∼ y

u
∼ 1

wo

�

k
vR

�


ω

(
kv

�

)4

∼ 1

wo

�


ω

v4


vR
v3
D

.
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Note that the value wot is the number of absorption acts which lead to the equilib-
rium establishment if the absorption process proceeds under optimal conditions.
Let us consider the sodium case when
ω ∼ �. If we start from thermal velocities
at room temperature, we have v ∼ 5 ·104 cm/s,
vR � 3 cm/s,�/k ∼ 4 ·103 cm/s,
and this estimation gives that the equilibrium is established as a result of ∼ 108

absorption acts, while under optimal conditions the decelerating stopping of the
atom results from

v


vR
∼ 104

acts of photon absorption.



CHAPTER 7

Positive and Negative Ions

7.1 Peculiarities of Positive Ions

A positive ion is a system consisting of a Coulomb center of a charge Z and elec-
trons whose total number is less than Z. As the difference between Z and the total
number of electrons increases, some parameters of this system vary monotoni-
cally. In particular, this follows from Table 7.1 where the ionization potentials are
given for atoms and the three first ions. Below we demonstrate the variation of
atomic parameters with an increase in the ion charge on the basis of other atomic
characteristics.

Table 7.2 gives the parameters of the metastable state of the carbon atom and
the same state of the nitrogen ion. The difference of the energies between this and
the ground state level is due to an exchange interaction inside the same electron
shell. Because of the compression of the electron shells of ions compared to iden-
tical atoms, the exchange interaction potential increases for ions and the lifetime
decreases correspondingly. Table 7.3 demonstrates the same appropriateness for
the fine splitting of levels of the ground state of the iodine atom and xenon ion.

Thus the character of the interaction in ions is the same as in atoms, but the
self-consistent field potential in ions is stronger than in atoms with the identical
electron shell. Hence, the properties of ions with a small charge are close to those
of atoms. The parameters of ions vary monotonically as the ion charge increases.
This leads to principal changes of the parameters of valent electrons for ions of
large charges.
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Table 7.1. Ionization potentials of atoms and ions. The values J0, J1, J2, J3 are, correspond-
ingly, the ionization potentials of the atom, and the ground states of its one-, two-, and
three-charged ions. The ionization potentials are given in eV.

Z Atom J0, eV J1, eV J2, eV J3, eV

1 H 13.598 — — —

2 He 24.588 54.418 — —

3 Li 5.392 75.641 122.45 —

4 Be 9.323 18.211 153.90 217.72

5 B 8.298 25.155 37.931 259.38

6 C 11.260 24.384 47.89 64.49

7 N 14.534 29.602 47.45 77.47

8 O 13.618 35.118 54.936 77.414

9 F 17.423 34.971 62.71 87.14

10 Ne 21.565 40.963 63.46 97.12

11 Na 5.139 47.287 71.620 98.92

12 Mg 7.646 15.035 80.144 109.27

13 Al 5.986 18.829 28.448 119.99

14 Si 8.152 16.346 33.493 45.142

15 P 10.487 19.770 30.203 51.444

16 S 10.360 23.338 34.83 47.305

17 Cl 12.968 23.814 39.61 53.47

18 Ar 15.760 27.630 40.911 59.81

19 K 4.341 31.63 45.81 60.91

20 Ca 6.113 11.872 50.913 67.3

21 Sc 6.562 12.800 24.757 73.49

22 Ti 6.82 13.58 27.49 43.27

23 V 6.74 14.66 29.31 46.71

24 Cr 6.766 16.50 31.0 49.2

25 Mn 7.434 15.640 33.67 51.2

26 Fe 7.902 16.188 30.65 54.8

27 Co 7.86 17.084 33.5 51.3

28 Ni 7.637 18.169 35.3 54.9

29 Cu 7.726 20.293 36.84 57.4

30 Zn 9.394 17.964 39.72 59.57

31 Ga 5.999 20.51 30.7 64.2

32 Ge 7.900 15.935 34.2 45.7

33 As 9.789 18.59 28.4 50.1
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Table 7.1. (cont.)

Z Atom J0, eV J1, eV J2, eV J3, eV

34 Se 9.752 21.16 30.82 42.95

35 Br 11.814 21.81 35.90 47.3

36 Kr 14.000 24.360 36.95 52.5

37 Rb 4.177 27.290 39.2 52.6

38 Sr 5.694 11.030 42.88 56.28

39 Y 6.217 12.24 20.525 60.61

40 Zr 6.837 13.13 23.1 34.419

41 Nb 6.88 14.32 25.0 37.7

42 Mo 7.099 16.16 27.2 46.4

43 Tc 7.28 15.26 29.5 —

44 Ru 7.366 16.76 28.5 —

45 Rh 7.46 18.08 31.1 —

46 Pd 8.336 19.43 32.9 —

47 Ag 7.576 21.49 34.8 —

48 Cd 8.994 16.908 37.47 —

49 In 5.786 18.87 28.0 57.0

50 Sn 7.344 14.632 30.50 40.74

51 Sb 8.609 16.53 25.32 44.16

52 Te 9.010 18.6 27.96 37.42

53 I 10.451 19.131 33.0 —

54 Xe 12.130 20.98 31.0 45

55 Cs 3.894 23.15 33.4 46

56 Ba 5.212 10.004 35.8 47

57 La 5.577 11.1 19.18 49.9

58 Ce 5.539 10.8 20.20 39.76

59 Pr 5.47 10.6 21.62 38.98

60 Nd 5.525 10.7 22.1 40.4

61 Pm 5.58 10.9 22.3 41.0

62 Sm 5.644 11.1 23.4 41.4

63 Eu 5.670 11.24 24.9 42.7

64 Gd 6.150 12.1 20.6 44.0

65 Tb 5.864 11.5 21.9 39.4

66 Dy 5.939 11.7 22.8 41.4

67 Ho 6.022 11.8 22.8 42.5

68 Er 6.108 11.9 22.7 42.7
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Table 7.1. (cont.)

Z Atom J0, eV J1, eV J2, eV J3, eV

69 Tm 6.184 12.1 23.7 42.7

70 Yb 6.254 12.18 25.05 43.6

71 Lu 5.426 13.9 20.96 45.25

72 Hf 6.8 14.9 23.3 33.4

73 Ta 7.89 — — —

74 W 7.98 — — —

75 Re 7.88 — — —

76 Os 8.73 — — —

77 Ir 9.05 — — —

78 Pt 8.96 18.56 — —

79 Au 9.226 20.5 34 43

80 Hg 10.438 18.76 34.2 46

81 Tl 6.108 20.43 29.85 —

82 Pb 7.417 15.033 31.94 42.33

83 Bi 7.286 16.7 25.56 45.3

84 Po 8.417 — — —

85 At 9.0 — — —

86 Rn 10.75 — — —

87 Fr 4.0 — — —

88 Ra 5.278 10.15 — —

89 Ac 5.2 11.75 20 —

90 Th 6.1 11.9 18.3 28.7

91 Pa 6.0 — — —

92 U 6.194 11.9 20 37

93 Np 6.266 — — —

94 Pu 6.06 — — —

95 Am 6.0 — — —

96 Cm 6.02 — — —

97 Bk 6.23 — — —

98 Cf 6.30 — — —

99 Es 6.42 — — —

100 Fm 6.5 — — —

101 Md 6.6 — — —
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Table 7.2. Parameters of the metastable state 1S0 of the atom and ion with the electron shell
1s22s22p2.

Atom, ion Excitation energy, eV Radiative lifetime, s

C(1S) 2.684 2.0

N+(1S) 4.053 0.92

Table 7.3. Parameters of the upper state of the fine structure of the iodine atom and xenon
ion with the ground state p5 of the electron shell.

Atom, ion Excitation energy, eV λ,μ τ , s

I(2P1/2) 0.94 1.315 0.13

Xe+(2P1/2) 1.31 0.949 0.05

7.2 Multicharged Ions

Multicharged ions are characterized by a large difference between the nucleus
charge Z and the total number of electrons. This simplifies the description of the
system. Let us represent the Hamiltonian of electrons in the form

Ĥ �
∑
i

(
−1

2

i − Z

ri

)
+ Vee + Vrel, (7.1)

where the two terms in parentheses include the kinetic energy of electrons and their
interaction with the Coulomb field of the nucleus, the next term, Vee �

∑
i,j

∣∣ri −
rj
∣∣−1

, is the interaction potential between electrons, and the last term Vrel includes
all the relativistic interactions. The analysis of the multicharged heliumlike ions
(Chapter 3) shows that the electron binding energy varies as Z2 at large nucleus
chargesZ, the exchange interaction potentialwhich corresponds to the operatorVee

in formula (7.1) varies asZ, and the spin-orbit interactions,which are characterized
by the operator Vrel, vary as Z4. Hence, the relative role of the exchange and
relativistic interactions can change with an increase in Z. Nevertheless, one can
assume the terms Vee and Vrel of formula (7.1) to be small compared to the main
term of this formula. This is the basis of the perturbation theory which is valid for
multicharged ions.

Let us construct the perturbation theory for multicharged ions. In the zeroth
approximation we neglect the terms Vee and Vrel, and the Pauli exclusion principle
must be taken into account. Thus the obtained form of the Hamiltonian leads to
one-electron approximation, i.e., the eigenfunction of theHamiltonian in the zeroth
approximation is a product of one-electron wave functions which correspond to the
location of each electron in the Coulomb field of the chargeZ. The Pauli exclusion
principle requires the distribution of electrons over the states of the hydrogenlike
ion, so that we obtain the shell atom scheme. Exchange and relativistic interactions
lead to a relatively small shift of electron levels. Note that in contrast to light atoms,
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where the electron shell concept is a convenient model for the description of atoms,
in the case of multicharged ions this concept corresponds to the correct solution
of the problem on the basis of the perturbation theory.

In the first order of the perturbation theory we introduce a real self-consistent
fieldwhich accounts for the exchange and relativistic interactions. Let us divide this
additional interaction into long- and short-range parts. A long-range self-consistent
field creates a shielding charge which partially screens the Coulomb field of a
nucleus charge. A short-range interaction leads to a shift of electron levels. As a
result, we have in the first order of the perturbation theory that a multicharged ion
can be considered as a sum of independent electrons which occupy positions in
the corresponding shells of the hydrogenlike ion. Then the total electron energy
is E � ∑

j εj , and the energy of each electron corresponds to its energy in the
hydrogenlike ion with the above corrections:

εj � − (Z − σnj )2

2(n− δnj )2
, (7.2)

where σnj is the shielding charge due to internal electrons, and δnj is the quantum
defect of the electron state which takes into account a short-range interaction
involving this electron. In this representation we take as electron quantum numbers
the principal quantum number of the electron n and the total electron momenta j .
This means that relativistic interactions are stronger than exchange interactions.
This is valid for internal electrons at large Z, while for intermediate Z the electron
quantum numbers are n and l—the orbital electron momentum.

The parameters σnj and δnj depend on the filling of subsequent shells. Let
us demonstrate this in the example of a 1s-electron. Then if a multicharged ion
contains one electron we have, according to formula (2.41), σ � 0. For the he-
liumlike ion formula (3.8) gives σ � 0.75. From the results of Problem 5.3 it
follows that if subsequent electron shells are filled, this parameter is equal to
σ � 0.75 + 1.794Z1/3. We collect, in Table 7.4, values of the parameters of for-
mula (7.2) in the case when the relevant valent electron is the last one, so that
the electron energy in formula (7.2) corresponds to the ionization potential of the
relevant multicharged ion which is

J � (Z − σ )2

2(n− δ)2
. (7.3)

The parameters of Table 7.4 are evaluated on the basis of the ionization potentials
of the corresponding multicharged ions. As follows from the data of Table 7.4, the
parameter δ is small which allows us to use the hydrogenlike positions of levels;
the parameter σ < n, where n is the number of electrons of the multicharged ion.

Let us study the character of change of the ionization potential of a multicharged
ion as we remove its valent electrons. If we remove electrons of the same shell,
the ionization potential of the multicharged ion varies slowly. Transition to a new
shell of valent electrons leads to a strong jump of the ionization potential. This
reflects the nature of the electron shell model which is based on a strong exchange
interaction between electrons resulting from the prohibition to locate two electrons
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Table 7.4. Parameters of formula (7.3) for the ionization potential of multicharged ions.

Shell Atom of this shell σ δ

1s H 0 0

1s2 He 0.75 0.01

2s Li 1.76 0.03

2s2 Be 2.20 0.02

2p B 3.23 0.02

2p2 C 2.87 0.01

2p3 N 4.52 0.01

2p4 O 5.46 0.01

2p5 F 6.16 0.01

2p6 Ne 6.97 0.02

3s Na 8.50 0.08

3s2 Mg 9.15 0.08

3p Al 10.36 0.08

3p2 Si 10.96 0.08

3p3 P 11.63 0.08

3p4 S 12.56 0.09

3p5 Cl 13.32 0.11

3p6 Ar 14.23 0.16

in a state with the same quantum numbers. Below we demonstrate the fact of a
jump of the ionization potential for the transition of multicharged ions from the
Ne-electron shell to the Na-electron shell. Taking the value of the quantum defect
to be zero for the related states, we obtain the expression for the jump of the
ionization potential of a multicharged ion as a result of the transition from 3s- to
2p-shells:

J2p

J3s
� 9

4

(Z − σ2p)2

(Z − σ3s)2
� 9

4
·
[
1+ 2(σ3s − σ2p)

(Z − σ3s)

]
� 9

4

(
1+ 3.7

Z − 8.5

)
. (7.4)

Here we use formula (7.3) for the ionization potential, J2p, J3s are the ionization
potentials of multicharged ions if these have the valent electron shells 2p6 and 3s,
respectively, and the values of the shielding factors σ2p, σ3s are taken from Table
7.4. Formula (7.4) gives the value of the ionization potential jump 2.94 for the Ar
ion and 2.44 for the Fe ion.
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7.3 Negative Ions

Negative ions correspond to a bound state of the electrons and atoms. Because of
the short-range character of this interaction, only several stable states of a negative
ion exist. Since this bond is determined by the exchange interaction of electrons
and atoms, atoms with closed electron shells usually do not have stable negative
ions. In addition, the two-charged negative ions of atoms do not exist in the stable
state. Figure 7.3 contains the contemporary values of the electron binding energy
in negative ions. This value is called the electron affinity of atoms and is denoted
by EA. The maximum binding energy corresponds to the negative ions with a filled
valent electron shell. The EA of the halogen atoms exceeds 3 eV, but the maximum
EA of the atoms which correspond to the chlorine atom, and is equal to 3.61 eV, is
smaller than the lowest ionization atom potential which corresponds to the cesium
atom and is equal to 3.89 eV.

The existence of the excited states of negative ions is of interest. Because of the
short-range interaction between the electron and atom in the negative ions, a finite
number of their bound states is possible. Evidently, there are preferable conditions
for the excited states of negative ions exist for elements of the four groups of the
periodical table of elements. For example, from the data of Fig. 7.3 it follows that
carbon has one excited state of the negative ion and silicon has two excited states.
In addition, aluminum, scandium, and ytterbium have excited states of negative
ions.

The electron affinity of atoms is determined by various methods and during
almost a century of study of the negative ions these methods varied. Now the best
method for this goal is based on the photodetachment of negative ions by laser
radiation. The accuracy of this method exceeds, by one–three orders of magnitude,
the accuracy of other methods and, therefore, almost all the data of Fig. 7.3 are
obtained by this method. This method is used in different modifications. In the first
modification the photon energy varies and the threshold of the photodetachment
process is determined. This corresponds to the electron binding energy in a negative
ion. In another modification of this method, the photon energy is fixed and the
spectrum of the released electrons is measured, so that the electron affinity of an
atom is the difference between the photon energy and the energy of the released
electron. In both versions, negative ions are located in an atom beam, and the main
problem of this method is to approximate precisely the threshold dependencies of
the process that determines the accuracy of the obtained data.

7.4 The Electron Wave Function of Negative Ion

Because the electron binding energy in a negative ion is remarkably lower than
that in the corresponding atom, the size of a negative ion is large compared to the
atom size. But the bond is determined by the exchange interaction of electrons,
i.e., by an electron region where valent atomic electrons are located. Hence, in
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the main region of location of a weakly bound electron of the negative ion one
can neglect its interaction with an atomic field. This gives a simple solution for
the electron wave function because, in the main region of electron location, the
interaction potential between the electron and atom is equal to zero. Hence the
radial wave function of the weakly bound electron R(r) satisfies the Schrödinger
equation

d2

dr2
[rR(r)]−

[
γ 2 + l(l + 1)

r2

]
· [rR(r)] � 0, (7.5)

where the electron binding energy in the negative ion is equal toEA � h̄2γ 2/(2m)
and l is the electron orbital moment. The solution of equation (7.5) is expressed
through the Macdonald function

Rl(r) � C√
r
Kl+1/2(γ r).

In particular, for valent s- and p-electrons this formula has the form

Rs(r) � A

r
e−γ r ; Rp(r) � A

r
e−γ r ·

(
1+ 1

γ r

)
. (7.6)

Note that because the electron binding energy is determined by an internal electron
region, the parameter γ corresponds to the boundary condition and is not the
eigenvalue of equation (7.5).

The wave function (7.5) is convenient for the analysis of such parameters of a
negative ion which are determined by its external region. Using the wave function
in such a form, we extract a weakly bound electron from the valent electrons.
Its wave function differs from that of other valent electrons, but the position of a
weakly bound electron can occupy any valent electron. This is taken into account
by the symmetry condition (3.1). Let us demonstrate the character of the extraction
of a weakly bound electron in the example of a negative ion with the valent electron
shell ns2. In the related representation the wave function has the form

	(r1, r2) � ϕ(r<)ψ(r>),

where r< � min(r1, r2), ṙ> � max(r1, r2), i.e., the weakly bound electron is
assumed to be the valent electron which has the largest distance from the nucleus.
The normalization condition for a weakly bound electron has the form∫

ψ2(r) dr � 1.

Note that in spite of the smallness of an atom region compared to the negative ion
size, this introduces a contribution into the wave function normalization. One can
demonstrate this in the example of the hydrogen negative ion. Let us consider a
model of the negative hydrogen ion in which the wave function of a weakly bound
electron is equal to zero for r < ro, and is given by expression (7.6) for r ≥ ro.
Then, from the normalization condition, we have

A �
√

2γ · eγ ro . (7.7)
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Table 7.5. Parameters of a weakly bound electron in negative ions.

Ion, state nl γ B

H−(1S) 10 0.236 1.16

Li−(1S) 20 0.212 1.9

C−(4S) 21 0.305 0.74

O−(2P ) 21 0.328 0.52

F−(1S) 21 0.500 0.70

Na−(1S) 30 0.201 1.9

Al−(3P ) 31 0.192 0.8

Si−(4S) 31 0.320 0.9

P−(3P ) 31 0.266 0.75

S−(2P ) 31 0.391 1.05

Cl−(1S) 31 0.516 1.2

K−(1S) 40 0.192 2.0

Cu−(1S) 40 0.301 2.4

Br−(1S) 41 0.498 1.4

Rb−(1S) 50 0.189 2.5

Ag−(1S) 50 0.309 2.5

I−(1S) 51 0.475 2.8

According to the above consideration, the parameter γ ro must be small, and for
the hydrogen negative ion we have γ ro � 0.14. But the factor is the expression
of the electron density B2 � e2γ ro � 1.3, and we obtain a remarkable error if we
take γ ro � 0. Thus, the region inside the atom introduces a contribution into the
wave function normalization. Based on this analysis, one can use the following
simple and realistic model for a weakly bounded electron of the negative ion. The
electron wave function is taken in the asymptotic form

ψ(r) � A

r
√

4π
· e−γ r � B

r

√
γ

2π
· e−γ r , γ r 
 1, (7.8)

and the coefficientA is determined by the electron behavior in the region occupied
by other valent electrons. If we take the dependence (7.8) at all r we obtain, from
the normalization condition, B � 1. Table 7.5 lists the parameters of a weakly
bound electron for some negative ions.

Let us find the asymptotic coefficient by a standard method (see Problem 3.4),
comparing the wave function of a valent electron of the negative ion with its
asymptotic expression (7.8). We use the Chandrasekhar wave function of electrons
as the wave function of the hydrogen negative ion that has the form

	(r1, r2) � C · [exp(−αr1 − βr2)− exp(−βr1 − αr2)
]
(1+ c|r1 − r2|) , (7.9)
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and the variation principle gives the following parameters of this wave function:
α � 1.039, β � 0.283, c � 0, for the two-parameter form of the wave function,
and α � 1.075, β � 0.478, c � 0.312, if we use three parameters. The electron
affinity of the hydrogen atom is 0.367 eV in the first case and 0.705 eV in the
second case instead of the accurate value 0.754 eV.

Repeating the operations of Problem3.4weobtain, for the asymptotic coefficient
square,

A2
1(r) � r2(0.0695e−0.096r + 0.540e−0.852r + 3.44e−1.608r ) (7.10a)

in the first case, and

A2
2(r) � r2

(
0.102+ 0.0411r + 0.0064r2

)
e−0.486r

+ (0.660+ 0.218r + 0.0341r2
)
e−1.063r

+ (2.20+ 0.468r + 0.0729r2
)
e−1.68r (7.10b)

in the second case. Figure 7.2 contains the asymptotic coefficients obtained on the
basis of these formulas. As a result, we have A1 � 1.07 ± 0.03 on the basis of
formula (7.10a) and A2 � 1.19 ± 0.01 if we use formula (7.10b), and r ranges
in both cases from 2 to 5. Here only the statistical error is indicated, and the real

Figure 7.2. Determination of the asymptotic coefficient A of the electron wave function for
the hydrogen negative ion on the basis of formulas (7.10).
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accuracy of this asymptotic coefficient is worse. Nevertheless, the accuracy of the
asymptotic coefficient for a negative ion is usually better than that for an atom,
because of the absence of the interaction of a weakly bound electron with its core
outside the atom. Both formulas (7.10) give, for the asymptotic coefficient, A �
1.13±0.06 in the range r � 2–5. This corresponds toB � A/

√
2γ � 1.64±0.08

or, if we reduce this value to one valent electron,we obtainB � 1.16±0.06.Within
the framework of the model of a finite radius (7.7) we have ro � 2.1± 0.2.

7.5 Photodetachment of Negative Ions and
Photoattachment of Electrons to Atoms

Let us consider the process of photodetachment of the negative ion which proceeds
according to the scheme

A− + h̄ω→ A+ e. (7.11)

The characteristic of this elementary process is the cross section whose expression
is obtained in Problem 7.1 and has the form

σdet � qω

6πc
·
∫
|〈0|D|q〉|2d�q, (7.12)

where d�q is the element of the solid angle in which the released electron is
moving, D is the dipole moment operator so that the wave function of the initial
state is denoted by 0, and the wave function of the released electron has the form
of the plane wave eiqr far from the atom.

Formula (7.12) gives a certain selection rule for this process. In addition, the
symmetry of the wave function of the valent electrons leads to the relation between
the intensities of the process with the formation of the atom in different states.
These values are given in Tables 7.6 and 7.7 for the valent p-shell and for the
case when the photon energy remarkably exceeds the energy difference between
the related atom levels. The normalization of the process intensity is such that the
total intensity is equal to the number of valent electrons.As is seen, the intensities of
the separate multiplets depend on the coupling scheme. Hence, the measurement
of the relative intensities of multiplets in the photodetachment of negative ions
allows one to ascertain the scheme of coupling of valent electrons. This statement
is also valid for the process of atom photoionization.

Let us consider the process of the photoattachment of an electron to an atom
which is the reversible process with respect to the process of the photodetachment
of negative ions (7.11) and proceeds according to the scheme

e + A→ A− + h̄ω. (7.13)

The cross sections of processes (7.11) and (7.13) are connected by the principle
of detailed balance. Below we obtain the relation between these cross sections by
using the basis of the principle of detailed balance. Let us take some spatial volume
where the electrons, photons, atoms, and negative ions are found in equilibrium, so
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Table 7.6. The relative intensity of the final states of the formed atom as a result of negative
ion photodetachment within the framework of LS-coupling.

Initial shell and term Final state Intensity

p2, 3P0
2P1/2 1.333

p2, 3P0
2P3/2 0.667

p3, 4S3/2
3P0 0.333

p3, 4S3/2
3P1 1.000

p3, 4S3/2
3P2 1.667

p4, 3P2
4S3/2 1.333

p4, 3P2
2D3/2 0.167

p4, 3P2
2D5/2 1.500

p4, 3P2
2P1/2 0.167

p4, 3P2
2P3/2 0.833

p5, 2P3/2
3P0 0.167

p5, 2P3/2
3P1 0.750

p5, 2P3/2
3P2 2.083

p5, 2P3/2
1D2 1.667

p5, 2P3/2
1S0 0.333

Table 7.7. The relative intensity of the final states of the formed atom as a result of negative
ion photodetachment within the framework of jj -coupling.

Initial shell Ji Final shell Jf Intensity

(1/2)2 0 (1/2)1 1/2 2.000

(1/2)2(3/2)1 3/2 (1/2)2 0 1.00

(1/2)2(3/2)1 3/2 (1/2)1(3/2)1 1 0.750

(1/2)2(3/2)1 3/2 (1/2)1(3/2)1 2 0.250

(1/2)2(3/2)2 2 (1/2)2(3/2)1 3/2 2.00

(1/2)2(3/2)2 2 (1/2)1(3/2)2 3/2 0.800

(1/2)2(3/2)2 2 (1/2)1(3/2)2 5/2 0.200

(1/2)2(3/2)3 3/2 (1/2)2(3/2)2 0 0.500

(1/2)2(3/2)3 3/2 (1/2)1(3/2)3 2 2.500

(1/2)2(3/2)3 3/2 (1/2)1(3/2)3 1 0.750

(1/2)2(3/2)3 3/2 (1/2)1(3/2)3 2 1.250

(1/2)2(3/2)4 0 (1/2)2(3/2)3 3/2 4.000

(1/2)2(3/2)4 0 (1/2)1(3/2)4 1/2 2.000
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that the number of decays and formations of negative ions is identical. If we take,
in this volume, one atom and one electron at the beginning, this relation obtains
the form

c
2 dk dr
(2π )3

giσdet � v
2 dq dr
(2π )3

gaσat, (7.14)

where σdet is the cross section of process (7.11), σat is the cross section of process
(7.13), k, q are the wave vectors of the photon and electron, respectively, v is the
electron velocity, gi , ga are the statistical weights of the ion and atom, dr is the
value of an extracted volume, and the factor 2 in the left-hand side of the relation
accounts for two photon polarizations.

Using the dispersion relation for photons ω � ck and the law of energy conser-
vation h̄ω � EA+ h̄2q2/(2m) (we return to the usual units), we have the following
relation from formula (7.14),

σat � gi

ga
· k

2

q2
· σdet. (7.15)

This formula connects the cross sections of the direct and reversible processes.
Make estimates on the basis of this formula. Taking the electron energy of the
order of EA, we obtain k2/q2 ∼ h̄ω/(mc2). Because mc2 � 500 keV and h̄ω ∼
EA ∼ 1 eV, the cross section of the photoattachment of the electron to atom is
five-six orders of magnitude smaller than the cross section of the photodetachment
of negative ions.

Let us consider the case when the valent shell of the negative ion is s2. Then, as
follows from Problem 7.2, the cross section of the photodetachment of the negative
ion is

σdet � 8πB2γ v3
e

3ω3c
· e

2

h̄
,

and the cross section of the electron attachment to the atom is equal to (ga � 1,
gi � 1):

σdet � 4πB2

3c3
· e

2h̄

m2
· γ v
ω

. (7.16)

This cross section has the maximum at q � γ , so that γ v/ω � 1 at the maximum,
and the maximum attachment cross section is

σdet � 4πB2

3c3
·
(
e2

h̄c

)3

· a2
o . (7.17)

In particular, for electron attachment to the hydrogen atom the maximum cross
section is equal to 6 · 10−23 cm2, that is, six orders of magnitude lower than the
maximum cross section of the photodetachment of the hydrogen negative ion.
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7.6 Bremsstrahlung from the Scattering of Electrons
and Atoms

The interaction between an electron and atom, which is responsible for the for-
mation of a negative ion, also leads to radiation resulting from electron–atom
scattering. If the electron remains free after radiation, the radiation process is
bremsstrahlung and proceeds according to the scheme

e(q)+ A −→ e(q′)+ A+ h̄ω, (7.18)

where q, q′ are the electron wave vectors before and after scattering. The energy
conservation law gives for this process (in the usual units)

h̄2q2

2m
� h̄2(q ′)2

2m
+ h̄ω. (7.19)

Our goal is to determine the cross section of process (7.18).
For simplificationof operationwith thewave functions of a continuous spectrum,

we use the standard method (see Chapter 1) by placing the system of colliding
electrons and atoms into a cell of large volume �. Then the radiation rate is equal
to, according to formulas (1.26),

dwbr � 4ω3

3h̄c3
· |〈q|D|q′〉|2�dq′

(2π)3
. (7.20)

We assume the atom to be structureless, so that the electron spin state is conserved
as a result of scattering, and the electron statistical weight is unity. Note that the
electron wave function far from the atom is eiqr/

√
�, because it is normalized to

unity, and the electron flux is h̄q/(�m). Hence, the cross section of bremsstrahlung
is

dσbr

dω
� dwbr

dω
· m�

h̄q
� m2q ′�2

6π3h̄3c3q
·
∫
|〈q|D|q′〉|2d�q′ , (7.21)

where d�q′ is the element of the solid angle in which the electron is scattered and
we use the law of energy conservation q ′ dq ′ � −mdω/h̄.

Now let us transfer to the electron wave functions which are plane waves far
from the atom, i.e.,

ψq −→ eiqr, if r −→∞.

Transition to such wave functions leads to multiplication of the matrix element
〈q|D|q′〉 by 1/�. The dipole moment operator is D � er, where r is the electron
radius-vector. Thus, we have, for the bremsstrahlung cross section,

dσbr

dω
� m2e2q ′

6π3h̄3c3q
·
∫ ∣∣rqq′ ∣∣2 d�q′ , where rqq′ �

∫
ψq(r)rψq′ (r) dr.

(7.22)
In the case of the spherical symmetry of a scattered atom, it is convenient to

expand the integral (7.22) over spherical harmonics. Repeating operations for the
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deduction of formula (2.40) we get, in this case,

dσbr

dω
� 32mω3q ′

3h̄c3aoq
·
∑
l

(l + 1)
(
K2

l+1,l +K2
l,l+1

)
,

where Kll′ �
∫

ul(q, r) ul′ (q
′, r)r dr, (7.23)

and the spherical harmonics ul(q, r) of the electron wave functions have the
following asymptotic form:

ul(q, r) � 1

q
sin(qr − πl/2+ δl), if r −→∞.

Here δl(q) is the scattering phase for electron–atom collisions.
In particular, for a slow electron we have

δo � −Lq,
where L is the atom scattering length, and the scattering phases with l ≥ 1 are
relatively small and we neglect them. The cross section of the elastic scattering of
a slow electron on this atom is

σea � 4πL2.

In this limiting case one can restrict, by the matrix elements K01 and K10 in the
sum of formula (7.23), and they are equal to

K01 � K10 � sin δ0

2q2(q − q ′)2
,

when |q − q ′| � q. In this case, we have

dσbr

dω
� 8

3π

σea

ω

e2

h̄c

ε

mc2
, (7.24)

where ε � h̄2q2/(2m) is the incident electron energy. Thus, the bremsstrahlung
cross section due to electron–atom scattering is small compared to the cross section
of elastic scattering and has a logarithmic divergency at small and large frequencies
of the emitting radiation.

Problems

Problem 7.1. Express the cross section of the photodetachment of a negative ion
through the matrix element of the valent electron.

Use the expression for the probability of a radiative transition per unit time

Boj � 4ω3

3c3
·
∑
j

|〈0|D|j〉|2nω,
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where nω is the number of photons in one state with a frequency ω in the flux of
incident radiation, ω is the frequency of an absorbed photon, c is the velocity of
light, and the wave function of the negative ion is normalized by unity. There is
no averaging in this formula over the initial states 0. A final state of the transition
is a free electron, so that the electron wave function far from the nucleus has the
form of a plane wave: ψ(r) → eiqr, r → ∞, where q is the wave vector of a
free electron. Within this framework of formal operations, we introduce a volume
� in which an electron is located that allows us to transfer from the continuous
to discrete spectra of electrons in the final state. Because an introduced volume
remarkably exceeds an atom volume, in the main part of this volume the interaction
between the electron and atom is small. Thus the normalized wave function far
from the atom has the form �−1/2eiqr. As a result, we change the matrix element
〈0|D|j〉 to the expression 〈0|D|q〉�−1/2, where the plane wave eiqr is used as the
wave function of the state q.

Let us sum up the expression for the probability of the photon absorption over
the final states. This corresponds to multiplying by the statistical weight of the
final state which is equal to

gf �
∫

dq dr
(2π )3

� �
q2 dq d�q

8π3
,

where d�q is the element of a solid angle of motion of the released electron. Note
that the electron state of the formed atom and the spin direction of a free electron
are determined through the selection rules. Therefore, we take the statistical weight
of the atom and electron to be unity. The energy conservation law gives

ω � EA+ q2

2
,

where EA is the electron binding energy in the negative ion. From this it follows
that dω � q dq, and the expression for the probability of the photodetachment per
unit time takes the form

dBoj � 4ω3

3c3
· |〈0 |D|q〉|2 nωq dω · d�q

8π3
,

where the indices 0, q correspond to the initial and final states of the system under
consideration.

Dividing this expression by the photon flux cNω, we obtain the cross section of
the photodetachment. Here Nω is the photon number density. Taking into account
that nω is the number of photons located in one state of a frequency we have ω,
for the number density of photons,

dNω � 2dk
(2π )3

· nω � 8πk2 dk

8π3
· nω � ω2 dω

π2c3
· nω,

where the factor 2 accounts for two polarizations of photons and k is the pho-
ton wave vector which is connected by the dispersion relation with the photon



Problems 199

frequency ω � kc. Thus we obtain, for the cross section of the photodetachment,

dσdet � dB0j

cdNω

� qω

6πc
· |〈0 |D|q〉|2 d�q. (7.25)

Problem 7.2. Determine the cross section of the photodetachment of a negative
ion with the valent electron shell s2.

Let us express the matrix element from the dipole moment operator through the
radius-vector of the valent electron r. We have

|〈0 |D|q〉|2 � 2 · |〈0 |r|q〉|2 ,
and we account for the location of two electrons in the valent electron shell. Eval-
uating the matrix element on the basis of the wave function of the bound electron
(7.8) and the plane wave as the wave function of the free electron, we obtain

|〈0 |r|q〉| � 4B ·
√

2πq

γ 2 + q2
· n,

where n is the unit vector directed along q. Using the formula of the previous
problem for the cross section of the photodetachment and integrating the cross
section over the angle of motion of a free electron, we obtain

σdet � 8πB2γ v3
e

3ω3c
· e

2

h̄
. (7.26)

Now, for convenience, we return to the usual units from the atomic units, so that
the conservation energy law is h̄ω � h̄2(q2 + γ 2)/(2m) and the velocity of the
free electron is ve � h̄q/m.

According to the structure of the cross section, this has the maximum at q � γ

which is equal to

σdet � 8πB2

3γ 2
· e

2

h̄c
. (7.27)

In particular, for the negative hydrogen ion the maximum photodetachment cross
section is equal to 1.4a2

o � 0.40 Å2.
Note that the assumption used is valid in the range of the cross section maximum

because the corresponding matrix element is determined by the region of the valent
electron where the interaction potential of the electrons and atoms is small. The
obtained formula for the cross section of the photodetachment is not valid at large
photon energies which are compared to the atom ionization potential. Then the
assumption of a small interaction of the valent electrons and atoms is violated.

Problem 7.3. Find the connection between the electron binding energy in a neg-
ative ion with an s-valent electron and the scattering length of a slow s-electron
on the atom which is the basis of the related negative ion. Neglect the polarization
interaction between the electron and atom.
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The wave function of a slow s-electron outside the action of an atomic field has
the following form, according to formula (2.35),

Rqo(r) � 1

r
sin(qr − δo),

where the scattering phase is equal to, at a small electron wave vector, δo � −Lq.
This relation is valid for a slow electron q � 1 and is the definition of the scattering
lengthL. From this it follows that the wave function of a slow electron in the atom
vicinity has the formRqo(r) � const (1−L/r).Expanding the wave function (7.7)
of the bound s-electron in the vicinity of the atom we haveRs(r) � const (1−γ r).
Comparing these expressions, which must be identical near the atom, we obtain

Lγ � 1. (7.28a)

Let us deduce the same relation in the case of the finite radius model, when the
wave function of a test electron is given by formula (7.6) for r ≥ ro and is zero
at lower distances. For determination of the parameter ro one can use an identical
behavior of a free and bound electron outside the atom near its boundary. Indeed,
the wave function of a slow free s-electron outside the action of an atomic field
has the form

Rq(r) � 1

r
sin(qr − δo),

where q is the electron wave vector, r is the electron distance from the atom, and
the scattering phase of the s-electron δo is equal, at a small electron wave vector,
to δo � −Lq whereL is the scattering length for a slow electron on the atom. This
relation is valid for a slow electron q << 1 and is the definition of the scattering
length L. As follows from this, the logarithm derivative of this wave function on
the atom surface is

d ln[rRq(r)]

dr

∣∣∣∣
r�ro

� 1

ro − L
,

and the logarithm derivative of a bound electron, according to formula (7.6), is
equal, on the atom surface, to

d ln[rRq(r)]

dr

∣∣∣∣
r�ro

� −γ.

Because, inside an atom and in the vicinity of its boundary, the behavior of the free
and bound electrons is identical, the logarithmic derivatives of their wave functions
coincide on the atom boundary, which gives

ro � L− 1/γ. (7.28b)

In particular, in the case of the hydrogen negative, ionwe haveL � 5.8, γ � 0.235,
so that ro � 1.55, whereas for the asymptotic coefficient which follows from
formulas (7.10) we have ro � 2.1± 0.2.

Problem 7.4. Consider the previous problem by taking into account the
polarization interaction between the electron and the atom.
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The Schrödinger equation for the wave function of the bound s-electron Rs(r) in
the negative ion, by taking into account the atom polarizability, has the following
form instead of (7.5):

d2

dr2
[rRs(r)]+

( α
r4
− γ 2

)
[rRs(r)] � 0,

where α is the atom polarizability. This wave function satisfies the boundary
condition

d ln [rRs(r)]

dr
� − 1

L
. (7.29)

Using this boundary condition and expression (7.10) for the wave function far from
the atom, one can connect these expressions by solving the Schrödinger equation
in the middle region of distances between the electron and the atom. Introducing
a reduced variable x � r(γ 2/α)1/4 and the small parameter β � (αγ 2)1/4 of the
perturbation theory, we obtain the above Schrödinger equation in the form

d2ϕ

dr2
+ β2

(
1

x4
− 1

)
ϕ � 0,

where ϕ � rRs(r). Below we analyze this problem for small values of the
parameter β.

Use the perturbation operator of the perturbation theory in the form

V � −β2, x ≤ 1; V � β2

x4
, x ≥ 1.

Then the Shrödinger equation in the zero approximation has the form

d2ϕ

dr2
+ β2

x4
ϕ � 0, x ≤ 1;

d2ϕ

dr2
− β2ϕ � 0, x ≥ 1.

This equation has the following solution

ϕ � Ax sin

(
β

x
+ δ

)
, x ≤ 1; ϕ � B

√
2βe−βx, x ≥ 1,

where for x ≥ 1 we use the solution in the form of (7.10). In order to join these so-
lutions, it is necessary to equalize the logarithmic derivatives of the wave functions
at x � 1. The logarithmic derivative of the wave function for x ≤ 1 is

ϕ′

ϕ
� 1

x
− β cot

(
β

x
+ δ

)
.

We compare this logarithmic derivative of the electron wave function near the
atomwith that of a slow free electronwhen thewave function isϕ � const (1−L/r)
whereL is the electron–atomscattering length.Note that the electronwave function
has a finite number of knots in an internal atom region, so that at small x the
argument β/x + δ is small. Then expanding cot (β/x + δ) we find, at small x,

ϕ′

ϕ
� δ

β
.
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Comparing this logarithmic derivativewith that of a slow free electron,we have δ �
−β2/(γL). Next, equalizing the logarithmic derivatives of the above expressions
for the electron wave function at x � 1, we find the following relation between
the parameters of the problem

tan(β + δ) � β

1+ β
. (7.30)

In particular, for the hydrogen negative ion (γ 2 � 1/18, α � 9/2) we obtain
formula from (7.30) for the electron–atom scattering length L � 6.7 in the case
when the total electron–atom spin is zero, while the accurate value isL � 5.8.Note
that the used small parameter for this case β � 1/

√
2, i.e., the used approximation

is not well for this case.

Problem 7.5. Determine the normalization coefficient in expression (7.10) for the
wave function of a valence s-electron by taking into account a weak polarization
interaction between the electron and atom.

If the electron wave function has the form (7.10) at all distances r from the atom,
we have B � 1. Below we determine the next term of the expansion of B over the
small parameter β � (αγ 2)1/4 � 1, where α is the atom polarizability, γ 2/2 is the
electron affinity of the atom. For this goal we use the solution of the Schrödinger
equation which corresponds to the zeroth order of expansion of the electron wave
function over this small parameter and was obtained in the previous problem. This
has the form

ϕ � Ax sin

(
β

x
+ δ

)
, x ≤ 1; ϕ � B ·

√
2β · e−βx, x ≥ 1.

Combining these wave functions at x � 1 and normalizing the total electron wave
function, we have

B2e−2β

[
1+ 2β(β2 + βδ + δ2/3)

(β + δ)2

]
� 1.

Restricted by the first expansion terms over the small parameter β and accounting
for δ ∼ β2, we find

B2 � 1

1− 2β2 − 2δ
. (7.31)

In particular, for the hydrogen negative ion (γ 2 � 1/18, α � 9/2, L � 5.8, δ �
−0.37) we obtain B2 � 1.4, which corresponds to the accurate value B2 �
1.3 ± 0.2. Note that the small parameter of the theory is not small for this case
β � 1/

√
2.

Problem 7.6. Determine the photorecombination coefficient for the collisional
process of a slow electron and the bare nucleus of charge Z if the forming hydro-
genlike ion is found in a highly excited state with the principal quantum number
n, and the electrons have the Maxwell distribution function on velocities.
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On the basis of the Kramers formula (6.19) we have, for the photorecombination
coefficient,

αrec � 〈vσrec〉 � 16πZ4

3
√

3c3n3

〈
1

v

1

ε + Z2/(2n2)

〉
,

where v is the electron velocity, ε � v2/2 is the electron energy, Z is the nucleus
charge, and the angle brackets mean an average over the electron velocities with
the Maxwell distribution function. After integration over the electron velocities,
we obtain

αrec � −16
√

2π

3
√

3

Z2

c3n3T
3/2
e

exp

(
Z2

2n2Te

)
Ei

(
− Z2

2n2Te

)
, (7.32)

where Te is the electron temperature. The limiting expressions for the photore-
combination coefficient are the following:

αrec � −32
√

2π

3
√

3

Z2

c3nT
1/2
e

, Te 
 Z2/n2

and

αrec � −16
√

2π

3
√

3

Z2

c3n3T
3/2
e

ln

(
2n2Te

Z2γ

)
, Te � Z2/n2.

Here γ � expC � 1.78, where C � 0.577 is the Euler constant.

Problem 7.7. Express the cross section of the bremsstrahlung of an electron in the
field of a multicharged ion through the electron Furie components of the electron
coordinates on the basis of formula (7.23).

We first evaluate the integral

I �
∫

h̄ω dσbr ,

which is proportional to the radiation power due to electron scattering on multi-
charged ions. In this formula dσbr is the cross section of the bremsstrahlung which
is determined by formula (7.23), so that

I �
∫

32mω4 dωq ′

3c3aoq
·
∑
l

(l+1)
(
K2

l+1,l +K2
l,l+1

) � ∫ 64ω4

3c3q

(
q ′
)2

dq ′
∫

K2
ll l dl.

Above we use the connection between the final electron wave vector q ′ and the
radiation frequency dω � h̄q ′ dq ′/m and the classical character of scattering that
allows us to replace the sum by an integral and neglect the difference between l

and l + 1. Introducing the matrix element

Jll � −ω2Kll �
∫

ul(q, r) ul(q
′, r)

d2r

dt2
dr,
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we have

I �
∫

64

3c3q

(
q ′
)2

dq ′
∫

J 2
ll l dl.

From the condition of normalization of the electron radial wave functions∫
ul(q

′, r) ul(q ′, r)
(
q ′
)2

dq ′ � 2πδ(r − r ′)

we have∫
J 2
ll

(
q ′
)2

dq ′ �
∫ (

q ′
)2

dq ′
∫
ul(q, r) ul(q

′, r)
d2r

dt2
dr

∫
ul(q, r

′) ul(q ′, r ′)
d2r ′

dt2
dr ′

� 2π
∫
u2
l (q, r)

(
d2r

dt2

)2

dr � 2π

〈(
d2r

dt2

)2

ll

〉
.

Here the angle brackets mean an average over the electron positions because
u2
l (q, r) dr is the probability of locating the electron at distances from r to r + dr

from the ion. In this way, considering the electron motion to be classical, we re-
place the electron momentum l by the impact parameter of collision ρ � l/q, and
take a certain trajectory of the electron motion which corresponds to a definite de-
pendence r(t). It is convenient to transfer to Furie components because the matrix
elements are transformed into Furie components in the classical case. We have∫

J 2
ll l dl �

1

q2

∫
ρ dρ

∫ ∞

−∞
e−iωt

(
d2r

dt2

)
ω

dt

∫ ∞

−∞
eiω

′t ′
(
d2r

dt2

)
ω′
dt ′,

where the Furie components are(
d2r

dt2

)
ω

� 1

2π

∫ ∞

−∞
e−iωt

(
d2r

dt2

)
dt,

(
d2r

dt2

)
�
∫ ∞

−∞
e−iωt

(
d2r

dt2

)
ω

dω,

and we use the relation ∫ ∞

−∞
ei(ω−ω

′)t dt � 2πδ(ω − ω′).

In addition, we use the relation between the Furie components(
d2r

dt2

)
ω

� −ω2rω.

Thus, we finally obtain

dσbr

dω
� 8πe2ω3

3h̄c3
·
∫ ∞

0
r2
ω2πρ dρ. (7.33)

Problem 7.8. Determine the cross section of the bremsstrahlung for an electron
moving in the field of a multicharged ion of charge Z using the quasi-classical
character of this process.

This problemwas considered inChapter 6, andwenowevaluate the bremsstrahlung
cross section in another way. Assuming the criterion (6.17) to be fulfilled, we
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consider the electron to move along a classical trajectory. Then on the basis of
formula (1.34) we have, for the total energy of photons 
E emitted as a result of
the movement of the electron along a given trajectory,


E �
∫ ∞

−∞

2e2

3c3

(
d2r
dt2

)2

dt,

where r(t) is the electron radius-vector in the coordinate frame whose origin co-
incides with the multicharged ion, and we take into account that the varying part
of the dipole moment of this system is er. Let us introduce the Furie component(

d2r
dt2

)
ω

� 1

2π

∫ ∞

−∞
e−iωt

(
d2r
dt2

)
dt,

and use the relation between the Furie components(
d2r
dt2

)
ω

� iω

(
dr
dt

)
ω

� −ω2rω.

Formula (7.33) has the form


E �
∫ ∞

0
Sωdω, Sω � 8e2ω4

3c3
|rω|2 . (7.34)

Here Sω is the spectral power of radiation for this trajectory of the electron. Note
that transition to the classical case leads to the replacement of the matrix elements
in the quantum case by the Furie components of the corresponding values in the
classical case. Next, under strict consideration, the lower and upper limits in the
last formula are determined by the criteria (6.18) and (6.17), respectively. But for
frequencies which give the main contribution to 
E this change is not essential.

Integrating the spectral power over the possible trajectories of the electron
and dividing by the photon energy h̄ω, we transfer to the cross section of the
bremsstrahlung which is given by

dσbr

dω
�
∫ ∞

0

Sω

h̄ω
· 2πρ dρ, (7.35a)

where ρ is the impact parameter of the collision of the electron and multicharged
ion that is modeled by a restless Coulomb center. We present this formula in the
following form:

dσbr

dω
� 16πe2ω3

3h̄c3

∫ ∞

0

(|xω|2 + |yω|2) ρ dρ

� 16πe2ω

3h̄c3

∫ ∞

0

(∣∣∣∣(dxdt
)
ω

∣∣∣∣2 + ∣∣∣∣(dydt
)
ω

∣∣∣∣2
)
ρ dρ, (7.35b)

where x, y are the electron coordinates in the plane of motion. This formula
coincides with formula (7.33) that is obtained in another way.
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We now use the law of electron motion in the field of the multicharged ion of
charge Z and which it is convenient to represent in the parametric form

x �
√
ρ2 + ρ2

o − ρochξ, y � ρ shξ, t � 1

v

(√
ρ2 + ρ2

o shξ − ρoξ

)
,

where ξ is the parameter, and ρo � Ze2/(mv2), so that m is the electron mass, and
v is the electron velocity far from the Coulomb center of charge Z.

First we make estimates as was done in Chapter 6. According to criterion (6.18),
we have a small parameter

γ � mv3

Ze2ω
� 1, (7.36)

and we have estimates

ρ ∼ ρoγ
1/3, rmin ∼ ρoγ

2/3,

where ρ is the typical impact parameter of collisionswhich determines the emitting
of photons of frequencyω, and rmin is the distance of closest approach which corre-
sponds to such impact parameters. From this we determine the Furie components,
in particular, ∣∣∣∣(dxdt

)
ω

∣∣∣∣ ∼ ∣∣∣∣(dydt
)
ω

∣∣∣∣ ∼ vmin

ω
∼ v

ω
γ−1/3.

Here vmin is the typical electron velocity at the distance of closest approach whose
value follows from the relation

mv2
min ∼ Ze2/rmin.

From this we have for the bremsstrahlung cross section

dσbr

dω
∼ Z2e6

3h̄ωc3m2v2
.

Of course, this estimate corresponds to formula (6.16).
We now evaluate the Furie components. We have for the exponent

exp(−iωt) � exp

[
− i

γ

(√
1+ ρ2

ρ2
o

sh ξ − ξ

)]
and because γ � 1, small ξ give the main contribution to the Furie components.
Accounting for ρ ∼ ρoγ

−1/3 � ρo and for γ � 1, and expanding over small ξ ,
we obtain for the exponent

exp(−iωt) � exp

[
i

γ

(
− ρ2

2ρ2
o

ξ + ξ 3

6

)]
.

From this it follows that ξ ∼ γ 1/3 gives the main contribution to the integral. This
leads to the above estimates for the Furie components and the bremsstrahlung cross



Problems 207

section. Next, from this we have∣∣∣∣(dxdt
)
ω

∣∣∣∣ � ρo

2π

∣∣∣∣∫ ∞

−∞
exp

[
i

γ

(
− ρ2

2ρ2
o

ξ + ξ 3

6

)]
sh ξ dξ

∣∣∣∣
� ρ2

π
√

3ρo
K1/3

(
ρ3

3ρ3
oγ

)
,∣∣∣∣(dydt

)
ω

∣∣∣∣ � ρ

2π

∣∣∣∣∫ ∞

−∞
exp

[
i

γ

(
− ρ2

2ρ2
o

ξ + ξ 3

6

)]
ch ξ dξ

∣∣∣∣
� ρ2

π
√

3ρo
K2/3

(
ρ3

3ρ3
oγ

)
.

Substituting these expressions for the Furie components in formula (7.35b), we
get, using the variable z � ρ3/(3ρ3

oγ ) � ρ3m2v3ω/(3Z2e4),

dσbr

dω
� 16Z2e6

3h̄c3ωm2v2

∫ ∞

0

(
K2

1/3(z)+K2
2/3(z)

)
z dz � 16πZ2e6

3
√

3h̄c3ωm2v2
, (7.37)

which coincides with formula (6.16).



CHAPTER 8

The Autoionization States
of Atoms and Ions

8.1 The Auger Process and Autoionization States

In the course of the study of the ionization of atoms under the action of X-rays
in the Wilson camera, Auger (France) revealed in 1925 tracks of V -form which
was evidence of the release of two electrons from one atom. The first electron was
formed as a result of absorption of the X-ray photon. The analysis showed that
release of the second electron was connected with the new phenomenon that was
called the Auger process. Indeed, absorption of the X-ray photon leads to tearing
out an electron from an internal shell and to the formation of a vacancy there. This
vacancy is subsequently filled by an electron from an external shell. The energy
excess is transferred to another electron of an external shell which leads to its
release.

According to the contemporary representations, theAuger process is an example
of the decay of an autoionization state. The excitation energy of an autoionization
state exceeds the atom ionization potential. Therefore, the autoionization state is a
bound state of an atom whose discrete level lies above the boundary of continuous
spectrum. In particular, these states result from the excitation of two atomic elec-
trons whose total excitation energy exceeds the ionization potential of the atom.
Until we neglect the interaction between electrons, this state corresponds to a dis-
crete level. But interaction between electrons leads to the decay of this state so that
one electron transfers into a lower state, and the second electron takes an energy
excess that causes its release. Since the lifetime of an atom in an autoionization
state is large compared to typical atomic times, one can consider the autoioniza-
tion level as a quasi-discrete level. Because of the possibility of its decay, the
autoionization level is characterized by a width �, which is small compared to the
excitation energy of this level ε. This criterion � � ε allows us to consider the
autoionization level as a quasi-discrete level.



8.2 Types of Autoionization States 209

8.2 Types of Autoionization States

Let us consider various kinds of autoionization states. The first state corresponds
to the above character of the excitation of two electrons, when the energies of
the excitation of each electron are of the same order of magnitude, and the total
excitation energy exceeds the atom ionization potential. As an example of this
type, the autoionization state is an excited state of the helium atom He(2s2, 1S)
or heliumlike ion. Taking, for simplicity, the nuclear charge Z 
 1, we obtain
the excitation energy 3Z2/4, which exceeds the ionization potential Z2/2 of the
heliumlike ion, and this state is the autoionization state.

The other type of autoionization state is realized when the atom excitation en-
ergy, which is the sum of the excitation energy of a valent electron and the atom
core, exceeds the atom ionization potential. For example, the ground state of the
krypton ion is Kr+(4p5, 2P3/2), and the lowest excited state of this ion is charac-
terized by a change of the fine structure of the state; the excitation energy of this
state Kr+(4p5, 2P1/2) is 0.666eV. If an excited state of a krypton atom is formed
such that its atomic core is found in the upper state 2P1/2, of fine structure, and
the potential ionization of an excited electron is lower than 0.666eV, this state is
the autoionization state. This autoionization state can decay with transition of the
ion in the state 2P3/2 which leads to the release of the excited electron. This takes
place for the krypton atom if the effective principal quantum number of the excited
electron is n∗ > 5.

The third type of autoionization state is a bound state whose level is found
above the boundary of continuous spectra, but decay of the autoionization state
is prohibited by a conservation of quantum numbers. Examples of such states
are He−(1s2s2p, 4P ), Li(1s2s2p, 4P ) whose levels are located lower than the
metastable states He(1s2s, 3S) and Li+(1s2s, 3S). Hence, the only channel of de-
cay of these states corresponds to formation of the helium atom or lithium ion in
the ground state, i.e., the decay process proceeds according to the scheme

He−(1s2s2p, 4P )→ He(1s2, 1S)+ e. (8.1)

As it is seen, the total spin in the initial channel of the process is equal to 3/2,
while in the final channel it is 1/2. From the spin conservation law it follows that
this transition proceeds only due to a weak relativistic interaction which violates
the prohibition on this process. Hence, the lifetime of this autoionization state is
larger by several orders of magnitude than that of the autoionization states of other
types.

The fourth type of autoionization state corresponds to excitation of the internal
electron and formation of a vacancy in an internal electron shell which is further
filled as a result of the transition of an electron from an external electron shell.
The excess of energy is consumed on tearing off one or several electrons from the
external shells. Filling of the vacancy can result from the radiative transition of
an electron from an external shell that leads to the generation of an X-ray photon.
The process of the filling of an internal vacancy can be a stepwise process. Then
several shells can partake in this process, and several electrons can be released.
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This type of autoionization state was the beginning of the investigations of the
atomic autoionization states.

8.3 Decay of Internal Vacancies

An internal atom vacancy occurs as a result of the atom excitation by X-ray pho-
tons, or by electrons or ion impact which lead to removal of an internal electron.
Then a vacancy is formed in an internal electron shell. The notation of these va-
cancies is given in Table 8.1. Note that if an electron is removed from an internal
shell, its quantum numbers coincide with those of the vacancy formed, since the
corresponding electron shell is filled at the beginning. The internal vacancy formed
can be filled in two ways. In the first case, an electron transfers to this shell from
an external shell, and the released energy is consumed on tearing off another ex-
ternal electron. The other way of filling to the vacancy corresponds to a radiative
transition of an electron this shell from an external one, and an X-ray photon is
generated. The first channel of the filling of the vacancy corresponds to the Auger
process, and the scheme of this process can be written, for example, in this way:
K → L1L2. This means that a vacancy in a K-shell is filled by one electron from
the L1 or L2-shells, and the second electron is released from these shells. Note
that the filling of a vacancy by electrons from the same shell is possible. Then
electrons must have a larger moment compared to the vacancy. This is known as
the Coster–Kronig process.

Let us consider the energetics of this process in the simplest case when a vacancy
is formed on a K-shell. At a large nucleus charge Z 
 1 the energy which is
consumed on the ionization of a K-electron is equal to

εK � Z2/2. (8.2a)

Table 8.1. Notations of the vacancies in atoms; the subscript of the notation of the orbital
electronmomentum indicates the total vacancymomentum; the electronwith these quantum
numbers is removed for formation of the vacancy.

n s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2

1 K

2 L1 L2 L3

3 M1 M2 M3 M4 M5

4 N1 N2 N3 N4 N5 N6 N7

5 O1 O2 O3 O4 O5 O6 O7

6 P1 P2 P3 P4 P5

7 Q1
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Let this vacancy be filled by electrons from an L-shell. The energy of formation
of the vacancy in an L-shell at large Z is

εL � Z2/8. (8.2b)

In the case of the radiative channel of the vacancy filling, a 2p-electron of L2- or
L3-shells transfers to a K-shell, so that the photon energy at large Z is equal to

h̄ω � εK − εL � 3Z2/8. (8.3)

If the K-vacancy is filled due to the Auger process, two electrons of the L-shell
partake in this process, and the energy of a released electron is equal to

h̄ω � εK − 2εL � Z2/4. (8.4)

Formulas (8.3), (8.4) give the approximate energetic parameters of the process of
the filling of the K-vacancy if electrons of the L-vacancies participate in this pro-
cess. We used the excessive values (8.2) for the energies of the vacancy formation
since we do not take into account the shielding of the nucleus charge by electrons.
Some parameters of the process under consideration are given in Table 8.2 where
they are compared with those according to formulas (8.2)–(8.4).

Let us analyze the competition of the above processes. Introduce the quantum
yields of the X-ray photon wr as

wr � �r

�r + �a

, (8.5)

Table 8.2. Parameters of decay of K-vacancies in atoms of inert gases. In this table h̄ω is
the photon energy resulting from the transition L2 → K , λ is the wavelength of the photon,
and ε is the electron energy released as a result of the Auger process.

Atom Ne Ar Kr Xe

Z 10 18 36 54

εK , keV 0.870 3.206 14.33 34.56

εL1 , keV 0.048 0.326 1.92 5.45

εL2 , keV 0.022 0.251 1.73 5.11

2εK/Z2 0.64 0.73 0.82 0.87

h̄ω, keV 0.848 2.955 12.60 29.46

λ, nm 1.462 0.4196 0.0984 0.0421

8h̄ω/(3Z2) 0.83 0.89 0.95 0.99

ε, keV 0.748 2.509 10.39 23.52

4ε/Z2 1.10 1.14 1.18 1.19
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where �r is the width of the energy level of the autoionization state due to photon
emitting and �a is the width due to the Auger process. Because the values �r and
�a , expressed in atomic units, are the probabilities of the corresponding transitions
per unit time, one can determine the Z-dependence of these values in the same
way. Indeed, within the framework of the perturbation theory, the probability of
vacancy filling per unit time is

� � 2π | 〈	i |V |	f

〉 |2ρf , (8.6)

where V is the operator of interaction which causes this transition, 	i , 	f are the
wave functions of the initial and final states of the transition, and ρf is the density
of the final states per unit energy interval. In the case of the Auger process this
transition is determined by the interaction between electrons so thatV ∼ e2/r , and
in the equation for the wave function we must replace the interaction parameter e2

by Ze2. This gives the dependenceZ−2 for the matrix element, and since the width
�a is expressed in energy units, it contains an additional factor Z2. As a result,
we obtain from this consideration that �a does not depend on Z. Figure 8.1 gives
the Z-dependence for the width of the autoionization level when the K-vacancy
is filled as a result of the Auger process with the participation of L-electrons. The
rise of the curve at large Z is due to the relativistic effects. This dependence
characterizes the accuracy of the above consideration. Analyzing the radiation
rate �r , on the basis of formula (1.24), we find its dependence on the problem
parameters withZ. We have�r ∼ ω3D2, whereω ∼ Z2 is the transition frequency
and D ∼ 1/Z is the matrix element of the operator of the dipole moment for this
transition. From this it follows that �r ∼ Z4, so that the larger the nucleus charge,
the larger is the quantum yield (8.5) of the radiative decay of theK-vacancy. Figure
8.2 contains the Z-dependence for the quantum yield of radiation of the X-photon
as a result of the decay of theK-vacancy. The data of Fig. 8.2 confirm the obtained
conclusion.

Figure 8.1. The width of autoionization levels of the K-vacancy as a function of Z.
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Figure 8.2. The quantum yields of X-ray photons as a result of decay of the K-vacancy.

8.4 Dielectron Recombination

A specific mechanism of the recombination of electrons and multicharged ions oc-
curs due to formation of the autoionization states. This process proceeds according
to the scheme

e + A+Z ←→ [
A+(Z−1)]∗∗ ;

[
A+(Z−1)]∗∗ → A+(Z−1) + h̄ω, (8.7)

where
[
A+(Z−1)

]∗∗
means the autoionization state of a multicharged ion. This

process, which is called “dielectron recombination,” leads to the formation of
a multicharged ion of a lower charge. Let us find the expression for the coeffi-
cient of dielectron recombination. The balance equation for the number density of
multicharged ions in the autoionization state Na has the form

dNa

dt
� NeNik −Na�a − Na

τ
, (8.8)

where Ne is the number density of electrons, Ni is the number density of recom-
bining ions, k is the rate constant of formation of the autoionization state, and 1/τ
is the frequency of a radiative transition for the autoionization state. Because the
typical time of recombination is small compared to the time of establishment of the
equilibrium for autoionization states, one can take the derivation to be zero. This
leads to the following expressions for the number density of multicharged ions in
the autoionization state Na and for the intensity of recombination Ja � Na/τ ,

Na � NeNik

�a + 1/τ
; Ja � Na

τ
� NeNik

�τ + 1
. (8.9)

In order to determine the rate constant k of the formation of the autoionization
state, let us consider the case �aτ 
 1, so that the radiative process does not influ-
ence the equilibrium number density of ions in the autoionization state. Then the
equilibrium between the autoionization state and the states of continuous spectrum
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which are determined by the first process (8.7), leads to the Saha formula

NeNi

Na

� gegi

ga

(
Te

2π

)3/2

eεa/Te , (8.10)

where Te is the electron temperature, εa is the excitation energy of the autoion-
ization state, and ge, gi , ga are the statistical weights of the electron, ion and
autoionization state, respectively. Comparing formulas (8.9) and (8.10) under the
condition �aτ 
 1 we obtain, for the rate constant of electron capture on the
autoionization state,

k � ga

gegi
·
(

2π

Te

)3/2

exp

(
− εa

Te

)
· �a. (8.11)

Note that this expression does not depend on the number density of ions in
the autoionization state, but that the character of the distribution of electrons on
energies can influence it. This formula uses the Maxwell distribution function of
electrons on energies since the equilibrium between electrons was used for its
deduction. Next, because the rate constant (8.11) does not depend on the kinetics
of processes, it does not depend on the parameter �aτ . Hence, it can be used at any
value of this parameter. From this it follows that, for the coefficient of dielectron
recombination,

αd � Ja

NeNi

� �a

�aτ + 1
· ga

gegi
·
(

2π

Te

)3/2

exp

(
− εa

Te

)
. (8.12)

This expression corresponds only to the related autoionization state. If several
autoionization states give a contribution to the rate constant of recombination, sum-
mation over the autoionization states must be made in formula (8.12). The process
of dielectron recombination is of importance for a rare plasma with multicharged
ions, mostly for astrophysical plasmas.

8.5 Dielectron Recombination and Photorecombination

The recombination of electrons and multicharged ions in a rare plasma can proceed
through both autoionization states and by a direct photoprocess. Belowwe compare
the rates of these processes. We use the results of Problem 7.6, for the coefficient of
the photorecombination of electrons and multicharged hydrogenlike ions, which
are the following:

αph � 64
√
π

3
√

3
· Z
c3
· F
(

Z2

2n2Te

)
, F (x) � −x3/2ex Ei(−x), (8.13)

i.e.,

F (x) � x1/2, x 
 1, and F (x) � x3/2 ln
1

γ x
, x � 1; γ � eC � 1.78,
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whereZ is the nucleus charge, n is the principal quantum number, c is the velocity
of light, and c � 137 in atomic units. We compare this with the coefficient of
dielectron recombination which is given by formula (8.12),

αd � gw

(
4πn2

Z2

)3/2

x3/2 exp

(
− εa

Te

)
, (8.14)

where

w � �a

�aτ + 1
, g � ga

gegi
.

Below, for definiteness, we take n � 2, and the autoionization state is such that
both electrons are found in this state. Then εa � Z2/4, εa/Te � Z2/(4Te) � 2x,
and the ratio of the above rate constants is

αd

αph
� 3π

√
3c3gw

Z4
·
[
− e−3x

Ei(−x)

]
. (8.15)

This ratio, as a function of the electron temperature has a maximum at x � 0.25
where the dielectron recombination process gives the maximum contribution to
the total recombination coefficient, is equal to

αd

αph
� τo · gw

Z4
, (8.16)

where τo � 1.5 · 10−10 s.
Let us analyze the contribution from dielectron recombination into the total

recombination rate as a function of the nucleus charge. The rate of dielectron
recombination is determined by the slower of two processes, radiative and non-
radiative decay of the autoionization state, because 1/w � 1/�a + τ . At small
values of the nucleus charge Z, this process is the radiative transition w � 1/τ ,
and τ ∼ Z−4. Hence at small Z the ratio (8.16) does not depend on Z. At large
Z this value w � �a , and �a does not depend on Z, so that the ratio (8.16) varies
as Z−4. From this it follows that dielectron recombination is of importance at
moderate Z. Table 8.3 gives values of this ratio in the case of recombination with
participation of the hydrogenlike ion of iron, where the main channels of dielectron
recombination are taken into account. As is seen, dielectron recombination gives
a small contribution to the total recombination coefficient compared to photore-
combination. The collisional recombination of electrons and ions is significant at
high electron number densities and is not essential for rare plasmas.

A small contribution of dielectron recombination in the above case can be ex-
plained by a large excitation energy of the autoionization states for hydrogenlike
and heliumlike multicharged ions. If the K-shell of multicharged ions is filled, the
excitation energy of the autoionization states can be small. This corresponds to
lower electron temperatures where the relative contribution of dielectron recom-
bination to the total one is higher. Let us demonstrate this in the example of the
dielectron recombination of a lithiumlike multicharged ion if it develops according
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Table 8.3. Main channels of dielectron recombination involving multicharged hydrogenlike
ions of iron.

State Notation g �a, 1013s−1 1
τ
, 1013s−1 w, 1013s−1 αd/αph,%

(2s2)1S A 0.25 32 10 8.2 0.65

(2p2)3P2 E 1.25 12 25 7.9 3.2

(2p2)1D2 G 1.25 25 28 13 5.3

(2p2)1D2 O 1.25 25 15 9.5 3.8

(2p2)1D2 R 1.25 25 14 9.0 3.6

(2s2p)1P1 S 0.75 20 28 12 2.7

to the scheme

A+Z(1s22s)+ e→ A+(Z−1)(1s22pnl)→ A+(Z−1)(1s22snl)+ h̄ω, (8.17)

where nl are the quantum numbers of a captured electron. The excitation energy
of the autoionization state is equal, in this case, to

εa � Z2

2(2− δ2s)2
− Z2

2(2− δ2p)2
− (Z − 1)2

2n2
, (8.18)

where δ2s , δ2p are the quantum defects of the corresponding states. From (8.18) it
follows that there are many autoionization states with different n and l which can
partake in dielectron recombination. Because the radiative transition 2p → 2s is
enough strong, these autoionization states are characterized by relatively high-level
widths and are excited effectively. Next, the excitation energy of some autoioniza-
tion states is not high and they can be excited at small electron energies. Therefore,
in this case, dielectron recombination can introduce the main contribution into the
rate of recombination ofmulticharged ions and electrons. The total coefficient of di-
electron recombination in this case can remarkably exceed the photorecombination
coefficient.

8.6 Satellites of the Resonant Spectral Lines of
Multicharged Ions

The process of dielectron recombination is of interest, not only because its con-
tribution to the recombination coefficient of electrons and multicharged ions. As
a result of this process, new spectral lines appear in a rare plasma involving elec-
trons and multicharged ions. Hence this process gives additional information about
plasma parameters on the basis of the positions and intensities of spectral lines.
These lines accompany the corresponding resonance spectral lines of multicharged
ions and hence are called satellites of resonance spectral lines or, simply satellite
spectral lines. First these lines were observed by Edlen and Tirren in 1939 for the
transitions of 1s2p → 1s2 of heliumlike ions during investigations of the spec-
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Figure 8.3. Scheme of levels of hydrogenlike, heliumlike, and lithiumlike ions. Resonant
and satellite radiative transitions in the radiation spectrum of a plasma.

tra of light elements in a vacuum spark. Figure 8.3 indicates the character of the
radiative transitions from the autoionization states of heliumlike and lithiumlike
multicharged ions which lead to the generation of satellite photons with respect to
resonant photons emitted by the resonantly excited hydrogenlike and heliumlike
multicharged ions.

In order to understand the nature of satellites, let us consider the simplest case
when satellites correspond to the resonance transitions 2p→ 2s of a hydrogenlike
ion. Then the two resonant lines Lα1 , and Lα2 would be observed in the plasma
spectrum which respect to the Laiman transitions 2p1/2 → 2s1/2 and 2p3/2 →
2s1/2. Along with this, nearby energy radiative transitions correspond to radiative
quenching of the autoionization states 2s2 → 1s2p, 2p2 → 1s2p, and 2s2p →
1s2s. The photon energy for these transitions is close to that of the transition
2p → 1s, which is equal to 3Z2/8, where Z is the nucleus charge. This value
is evaluated in neglecting the interaction between electrons. Accounting for this
interaction leads to a small shift of the photon energy. Partial shielding of the
nucleus field for one electron by the other one gives the shift of satellite spectral
lines in the “red side” with respect to the resonance spectral lines. This is confirmed
by the data of Tables 8.4 and 8.5, where satellite lines of iron are given with respect
to the resonance lines of hydrogenlike and heliumlike iron ions. Figure 8.4 gives
examples of the spectra of iron multicharged ions which are formed in plasmas of
various types. These spectra we include satellite of resonant spectral lines.

The data of Tables 8.4 and 8.5 confirm an abundance of satellite spectral lines
in the spectra of multicharged ions. As is seen, in all cases, the satellite spectral
lines are longer than the corresponding resonant spectral lines. The relative inten-
sity of the satellite spectral lines depends on the parameters of the corresponding
autoionization state, in particular, it is determined by the width of an autoioniza-
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Table 8.4. Parameters of transitions in the vicinity of the resonant 2p → 1s transition of
the hydrogenlike multicharged iron ions.

Initial shell Final shell Transition Notation λ, 10−3 nm

Resonant transitions

2p 1s 2P3/2 → 12S1/2 Lα1 177.70

2p 1s 2P1/2 → 12S1/2 Lα2 178.24

Satellite transitions 178.24

2p2 1s2p 1S0 → 1P1 A 181.04

2p2 1s2p 1S0 → 3P1 B 180.19

2p2 1s2p 3P0 → 1P1 C 180.09

2p2 1s2p 3P1 → 1P1 D 179.83

2p2 1s2p 3P2 → 1P1 E 179.66

2p2 1s2p 1S0 → 1P1 F 178.24

2p2 1s2p 1D2 → 1P1 G 179.13

2p2 1s2p 3P1 → 3P0 H 179.83

2p2 1s2p 3P0 → 3P1 I 179.24

2p2 1s2p 3P1 → 3P1 K 178.99

2p2 1s2p 3P2 → 3P1 M 178.82

2p2 1s2p 1S0 → 3P1 N 177.41

2p2 1s2p 1D2 → 3P1 O 178.30

2p2 1s2p 3P1 → 3P2 P 179.36

2p2 1s2p 3P2 → 3P2 Q 179.19

2s2p 1s2s 1D2 → 3P2 R 178.67

2s2p 1s2s 1P1 → 1S0 S 178.66

2s2p 1s2s 3P1 → 1S0 T 179.98

2s2p 1s2s 1P1 → 3S1 U 177.85

2s2p 1s2s 3P0 → 3S1 V 179.25

2s2p 1s2s 3P1 → 3S1 X 179.16

2s2p 1s2s 3P2 → 3S1 Y 178.75
The data of Tables 8.4, 8.5 are taken from R.K. Janev, L.P. Schevelko, and
L.P. Presnyakov. Physics of Highly Charged Ions. (Springer, Berlin, 1985)

tion level. Thus, the positions and intensities of satellite spectral lines give much
information about a related plasma consisting of electrons and multicharged ions.
Reliable methods of diagnostics of such plasmas are developed on the basis of this
information. In reality, the neighboring satellite spectral lines are overlapping. This
is demonstrated in Fig. 8.4 where the spectra are represented of various plasmas
containing multicharged iron ions. The treatment of such spectra allows one to
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Table 8.5. The parameters of radiative transitions for the heliumlike multicharged iron ion
and their satellites.

Initial shell Final shell Transition Notation λ, 10−3 nm

Resonant transitions

1s2p 1s2 1P1 → 1S0 w 185.00

1s2p 1s2 3P2 → 1S0 x 185.51

1s2p 1s2 3P1 → 1S0 y 185.91

1s2s 1s2 3S1 → 1S0 z 186.77

Satellite transitions

1s2p2 1s22p 2P3/2 → 2P3/2 a 186.22

1s2p2 1s22p 2P3/2 → 2P1/2 b 185.78

1s2p2 1s22p 2P1/2 → 2P3/2 c 186.72

1s2p2 1s22p 2P1/2 → 2P1/2 d 186.28

1s2p2 1s22p 4P5/2 → 2P3/2 e 187.27

1s2p2 1s22p 4P3/2 → 2P3/2 f 187.43

1s2p2 1s22p 4P3/2 → 2P1/2 g 186.99

1s2p2 1s22p 4P1/2 → 2P3/2 h 187.67

1s2p2 1s22p 4P1/2 → 2P1/2 i 187.06

1s2p2 1s22p 2D5/2 → 2P3/2 j 186.59

1s2p2 1s22p 2D3/2 → 2P1/2 k 186.31

1s2p2 1s22p 2D3/2 → 2P3/2 l 186.75

1s2p2 1s22p 2S1/2 → 2P3/2 m 185.67

1s2p2 1s22p 2S1/2 → 2P1/2 n 185.24

1s2s2 1s2s2p 2S1/2 → 2P3/2 o 189.68

1s2s2 1s2s2p 2S1/2 → 2P1/2 p 189.23

1s2s2p 1s22s (1P )2P3/2 → 2S1/2 q 186.10

1s2s2p 1s22s (1P )2P1/2 → 2S1/2 r 186.36

1s2s2p 1s22s (3P )2P3/2 → 2S1/2 s 185.63

1s2s2p 1s22s (3P )2P1/2 → 2S1/2 t 185.71

1s2s2p 1s22s 4P3/2 → 2S1/2 u 187.38

1s2s2p 1s22s 4P1/2 → 2S1/2 v 187.48

determine the electron temperature Te, the temperature TZ , which characterized
the ratio of the number density of ions of different charge, and other parameters,
especially if this plasma is nonequilibrium. This method is the main method of the
diagnostics of astrophysical, laser and hot plasmas.

Usually the resonant transitions in a plasma containing multicharged ions are
stronger than satellite ones. As follows from a comparison of the coefficients of
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Figure 8.4. Radiative transitions between states of iron multicharged ions including the
dielectron recombination with participation of heliumlike multicharged ions which leads to
the generation of the sattelite spectral lines. (a) Plasma of Sun corona; (b) plasma of vacuum
spark; (c) Tokomak plasma.

dielectron recombination and photorecombination, this takes place for the tran-
sitions of hydrogenlike and heliumlike multicharged ions, because the energy of
excitation of the autoionization states in these cases is high enough. This is not so
for the autoionization levels of lithiumlike multicharged ions, so that in this case
satellite spectral lines can be more intense than the resonant ones.

8.7 Photoionization of Atoms Through
Autoionization States

Autoionization states influence the absorption spectrum of atoms in the continuous
region. The excitation of atoms in autoionization states results from the absorption
of photons accompanied by decay of these states and reflects the character of the
absorption process. If the radiative transitions in autoionization states are the dipole
permitted ones, this creates the resonance structure of the photoionization cross
section. This is demonstrated by the data of Fig. 8.5 where the photoionization
cross section of inert gases, as a function of the wavelength, is given.
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Figure 8.5. Photoabsorption spectrum of krypton involving formation of the autoionization
states of krypton atoms.

Below we analyze the peculiarities of the photoionization cross section resulting
from the interaction between the autoionization states and the states of continuous
spectra. Let us take in the zeroth order of the perturbation theory the absence of
the autoionization states. Then this wave functionψε is normalized in the standard
way

〈ψε|Ĥ |ψε′ 〉 � εδ(ε − ε′), (8.18a)

where Ĥ is the Hamiltonian, and ε is the energy of a given state of the continuous
spectra. The autoionization state is described by the wave function ψa and can be
considered in the zeroth order of the perturbation theory as a discrete state which
is characterized by the energy εa ,

〈ψa|Ĥ |ψa〉 � εa. (8.18b)

Interaction of the autoionization state and the states of the continuous spectra are
determined by the matrix element

〈ψε|Ĥ |ψa〉 � Vε, (8.19)

and thewidth of the autoionization state, in the first order of the perturbation theory,
is � � 2π |Vε|2. Taking into account this interaction between the autoionization
state and the states of the continuous spectra we obtain, for the wave functions of
these states which correspond to an energy E in the first order of the perturbation
theory,

�a � ψa +
∫

dEψEVE

ε − E
; εa(E) � εa +

∫ |VE|2 dE
ε − E

. (8.20)

The main value of the integral is taken in these formulas. Accounting for the
interaction between the autoionization state and the states of continuous spectra
we have, for the electron wave function of the continuous spectra in the two-level
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approximation,

	ε � V ∗ε �a + [ε − εa(ε)]ψε[
(ε − εa)

2 + π2 |Vε|4
]1/2 . (8.21)

The wave function 	ε includes the interference of states of the continuous spectra
and this autoionization state. This wave function allows us to compare the pho-
toionization cross section in the absence and presence of an autoionization state.
For this goal let us introduce the Fano parameter

q � 〈ψo |D|�a〉
πVε 〈ψo |D|	ε〉 , (8.22)

where ψo is the wave function of the initial state at the photoionization process,
and D is the operator of the atom dipole moment. Using this parameter, we obtain
the ratio of the photoionization cross section σ in the considering case to this value
σo, when the autoionization state is absent:

σ

σo
� |〈ψo |D|	ε〉|2
|〈ψo |D|ψo〉|2

� (q + ξ )2

1+ ξ 2
, (8.23)

where

ξ � ε − εa(ε)

π |Vε|2
� 2

ε − εa(ε)

�
.

Thus we have for the photoionization cross section, by taking into account the
autoionization state,

σ � σo ·
[
1+ q2 − 1+ 2qξ

1+ ξ 2

]
. (8.24)

Above we assume that the related autoionization state and states of continuous
spectra have the same symmetry, and hence they interact. In this case, if a part of
these states corresponds to a different symmetry and hence does not interact with
the autoionization state, the photoionization cross section, in the absence of the
autoionization state, has the form

σc � σo + σ1,

where σ1 corresponds to the transition in the noninteracting part of the states of
continuous spectra. Taking into account the autoionization state, and replacing the
cross section σo with that of formula (8.24), we obtain the Fano formula

σ � σo ·
[
1+ ρ2 · q

2 − 1+ 2qξ

1+ ξ 2

]
, where ρ2 � σo

σc
� σo

σo + σ1
. (8.25)

Formula (8.25) leads to a special form of the cross section which includes both
a resonance and a dip of the cross section that is demonstrated by the data of Fig.
8.6. The relative depth of the dip and the height of the resonance are determined
by the Fano parameter q which can have different values. As for the parameter ρ,
this is close to unity, if the atomic core state is the same for both channels of the
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Figure 8.6. Fano profiles of spectral lines near the autoionization resonance of inert gas
atoms.

photoionization process, i.e., for the process of direct photoionization and through
an autoionization state. For instance, let us consider the photoionization of the
helium atom in the vicinity of the formation of the autoionization level 2s2p. This
direct photoionization leads to this formation of He+(1s) and a free p-electron,
and the decay of the autoionization state He(2s2p) gives the same final state of
the related system. Hence, in this case, we have σ1 � 0 and ρ2 � 1.

Another case takes place for the autoionization states whose decay changes the
internal state of a formed ion. For example, consider the photoionization process
of the xenon atom which corresponds to the excitation of an internal 4d-electron,
i.e., the process proceeds according to the scheme

Xe(4d105s25p6; 1S0)+ h̄ω→ Xe(4d95s25p66p; 1P0)→ Xe+ + e.

The formed vacancy is filled by an electron from the 5s- or 5p-shells which
are close to the vacancy and interact with each other effectively. As a result of
this direct photoionization, an electron is released from the 5s- or 5p-shells. Thus,
the final states of the process are different for the related channels. Indeed, the
formed xenon ion resulting from this direct photoionization process has the lowest
electron shell by an energy of Xe+(4d105s25p5), while if the process proceeds
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through the autoionization state, it leads to the formation of an excited xenon ion
with the electron shells Xe+(4d105s25p46p) or Xe+(4d105s5p56p). As a result,
the parameter ρ is small in this case. In particular, as follows from Fig. 8.6, this
parameter is equal to ρ2 � 3 ·10−4 for xenon, while the Fano parameter is equal to
q � 200, i.e., ρ2q2 � 13. Then the resonance in the photoionization cross section
is without a dip, and the maximum cross section in 1 + ρ2q2 � 14 exceeds the
cross section far from the resonance.

Problems

Problem 8.1. Determine the shielding charge σ for the autoionization states when
two electrons are found in the identical states (nl)2 in the field of a core of charge
Z.

These autoionization states are called the Wannier–Rydberg states by analogy
with the character of the ionization of an atom near the threshold which was
analyzed by G. Wannier. The most probable behavior of electrons, in the process
of the ionization of an atom by electron impact near the threshold, is such that
both electrons move from the core in opposite directions and are found at almost
identical distances from the core. Using this analogy, for the bound states of two
highly excited electrons located in the Coulomb field of an atomic core, we assume
that the probable distribution of electrons corresponds to their location at identical
distances from the opposite sides.

The interaction potential for two electrons located in theCoulombfield of charge
Z is

U (r1, r2) � −Z

r1
− Z

r2
+ 1

|r1 − r2| ,

where r1, r2 are the coordinates of electrons and the origin is found in the core.
Reducing the system under consideration to hydrogenlike ions, we introduce the
shielding charge σ and replace the above interaction potential by the effective
potential

Uef (r1, r2) � −Z − σ

r1
− Z − σ

r2
.

Evidently, for the electron distribution which corresponds to the above character
of the removal of two electrons in the ionization process r1 � r2, this replacment
corresponds to σ � 1/4. Thus, the Wannier character of the behavior of identical
highly excited bound electrons in the Coulomb field of the core gives the energy
of the two electrons, by analogy with (7.3), in the form

E � − (Z − 1/4)2

(n− δ)2
,

where δ is the quantum defect.
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Problem 8.2. Determine the relation between the width of the autoionization level
� and the cross section of excitation of the atomic core by electron impact if an
atom in the autoionization state consists of a weakly excited atomic core and a
highly excited valent electron. Consider the interaction between electrons as a
perturbation.

Decay of the relevant autoionization state proceeds according to the scheme

b, nl → a, εl′,

where a, b are the ground and weakly excited states of the atomic core, nl are
the electron quantum numbers in a highly excited state, and ε, l′ are the energy
and orbital moment of the released electron. Though we divide excitations in an
excitation of the core and that of a highly excited electron, the decay of the au-
toionization state proceeds due to the interaction between these degrees of freedom.
Denoting the operator of this interaction by V we have, for the rate of decay of the
autoionization state an expression similar to formula (8.6),

� � 2π |〈b, nl|V |a, εl′〉|2ρf ,
and the interaction operator is V � ∑

j

∣∣r − rj
∣∣−1

, so that r is the coordinate of
the valent electron and rj are the coordinates of the core electrons. Evidently, if
the excitation energy of the atomic core is small compared to the excitation energy
of the valent electron, in the spatial region which is responsible for the transition,
one can neglect both by the energy of the excited electron and by the energy of
the ion excitation. Then the rate of decay of the autoionization state, and the rate
of excitation of the ion state in collisions with a slow electron, must be in a simple
relation since they correspond to the same character of electron–ion interaction.

Let us write the expression, for the quenching cross section, for the related ion
state by electron impact, which proceeds according to the scheme

b, ql → a, q ′l′,

where q, q ′ are the wave vectors of the electron before and after the process. In
order to transfer to the limit q → 0, let us use the wave functions of the electron
in continuous spectrum. Far from the center they correspond to a plane wave so
that the electron flux is equal to q. Considering the cross section of the process as
the ratio of the transition per unit time to the flux of incident particles, we have

σ (b, ql → a, q ′l′) � 2π

q

∣∣〈b, ql |V | a, q ′l′〉∣∣2 ρf .
Using formulas for the width of the autoionization state and this cross section

we have

�

σ (b, ql → a, q ′l′)
� q

∣∣∣∣ψnl

ψql

∣∣∣∣2 ,
where ψql is the wave function of a free electron which is determined by the
formulas of Chapter 2. We assume the binding energy of a weakly bound electron
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1/(2n2) to be small compared to the ion excitation energy 
ε, which allows us to
consider the wave functions of the continuous spectrum to be the same for both
processes. Besides, we suppose that the same angle parameters of electrons in
these processes correspond to the same character of summation of electron and
ion momenta in these cases.

Comparing the formulas for the wave functions of weakly bounded and free
electrons in the Coulomb field (see Chapter 2), we obtain∣∣∣∣ψnl

ψql

∣∣∣∣2 � Z2q

2π2n3 (2l + 1))
.

From the principle of detailed balance it follows that the cross section of direct
and opposite processes are connected by the relation

gbq
2σ (b, ql → a, q ′l′) � ga(q

′)2σ (a, q ′l′ → b, ql),

where gb, ga are the statistical weights of the ion in these states. In the limit q → 0,
when (q ′)2 � 2
ε, we obtain

�(b, ql → a, εl′)
σ (a,
ε, l → a, ε � 0, l′)

� ga

gb
· Z2
ε

π2n3 (2l + 1))
.

It is essential in this formula that the cross section of the ion excitation
σ (a,
ε, l → a, ε, l′) tends to a constant near the threshold of this process.



Part II

Atoms in Interactions
and Collisions



CHAPTER 9

Atoms in External Fields

9.1 Atoms in Magnetic Fields

The rotation motion of the valent electrons of atoms creates an electric current and,
hence, is responsible for the atom’s magnetical moment which is proportional to
the mechanical momentum of electrons. It is important that the proportionality
coefficient between the magnetic and mechanical momenta is different for the
spin and orbital momenta. Indeed, the magnetic moment μorb which is determined
by the orbital electron momentum l is equal to

μorb � −μB l,

and the magnetic moment μsp which is determined by the electron spin s is equal
to

μsp � −2μBs,

where μB � eh̄/2mc � 9.274 · 10−28 J/G is the so-called Bohr magneton. From
these relations we obtain, for the atom magnetic moment,

μ � −μB(L+ 2S), (9.1)

whereL, S are the spin and angular momenta of the atom. The interaction potential
of the atommagneticmoment in the linear approachover themagneticfield strength
H has the form

V � −μBH(L̂+ 2Ŝ). (9.2)

The average atom magnetic moment depends on the atom’s quantum numbers
and the magnetic field strength H . If the magnetic field is high enough so that
the magnetic field splitting is large as compared to the fine structure splitting, the
atomic quantum numbers in the case of the LS-coupling scheme are LSMLMS ,
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where ML and MS are the projections of the angular and spin momenta onto the
direction of the magnetic field. In this case, the level shift is given by


ε � −μBH (ML + 2MS). (9.3)

This formula is also valid at any magnetic field strength if S � 0 or L � 0. This
case is known as the normal Zeeman effect, or the Pashen–Back effect.

Let us consider the other limiting case of aweakmagnetic field, so thatwithin the
framework of the LS-coupling scheme the atom state is described by the quantum
numbers LSJMJ , where MJ is the total electron momentum projection onto the
direction of the magnetic field. Let us take the interaction operator in this case as

V � −μBH (Ĵz + Ŝz), (9.4)

where the z-axis directed along the magnetic field. This operator gives, for the
level shift in the first approach of the perturbation theory,


ε � −gμBMJH, (9.5)

where the parameter g is the Lande factor which is equal to

g � 1+ 〈LSJMJ |Sz|LSJMJ 〉
〈LSJMJ |Jz|LSJMJ 〉 . (9.6)

We can use that the action of the operator Ŝz on the wave function does not
change the spin projection and, hence, the total momentum projection onto the
direction of the magnetic field does not vary. Hence all the nondiagonal matrix
elements of this operator are zero, and only the diagonal matrix elements for the
sameMJ are not zero. In order to determine the Lande factor let us use the relation

〈LSJ |Ŝz|LSJ 〉 � a〈LSJ |Ĵz|LSJ 〉, (9.7)

which means that the average value of the atom spin directs along the average total
electron momentum of the atom because it is the only vector in this problem. In
particular, from this relation it follows that g � 1 + a, and below we evaluate
the value a. Note that the absence of averaging over MJ in the above formula
means that the quantization axis can have any direction, that is, the vector J �
〈LSJMJ |Ĵ|LSJMJ 〉 does not depend on the direction of this axis. If we multiply
both sides of formula (9.7) by J, since this vector does not depend on the direction
of the quantization axis, one can introduce this vector inside the averaging. This
gives

〈LSJ |ĴŜ|LSJ 〉 � a〈LSJ |Ĵ2|LSJ 〉.
These matrix elements do not depend on the value of the momentum projection
MJ onto the magnetic field. Calculating the matrix element on the basis of the
relation (Ĵ− Ŝ)2 � L̂2, we obtain

g � 1+ J (J + 1)+ S(S + 1)− L(L+ 1)

2J (J + 1)
. (9.8)

The case (9.5) of the splitting of atom levels under the action of a magnetic field
is known as the anomal Zeeman effect.
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9.2 Atoms in Electric Fields

Energy levels are shifted and split under the action of an electric field. Let us
consider this effect assuming the electric field strength to be small compared to
the typical atomic values. Then one can evaluate the action of the electric field
on the basis of the perturbation theory where the electric field strength is a small
parameter. Then the result of the first order of the perturbation theory is not zero
if degeneration of the states on the angular momentum takes place. This is valid
for the hydrogen atom (see Problem 2.2), for a highly excited atom in the case that
if the electric field strength is relatively high, so that the corresponding splitting
of levels remarkably exceeds the distance between the neighboring energy levels
corresponding to the different orbital momenta. This case is called the linear Stark
effect, and then the average dipole moment of the atom is not zero.

If the average atom dipole moment is zero, the shift and splitting of the energy
levels corresponds to the second order of the perturbation theory and is called the
quadratic Stark effect. Representing the perturbation operator in the form V �
−DE, where E is the electric field strength directed along the z-axis and D is the
operator of the atom dipole moment, we obtain for the shift of an energy level


ε � −αE2

2
,

α � 2
∑
f

|(Dz)of |2
εf − εo

. (9.9)

Here 
ε is the energy shift under the action of the electric field, α is the atom’s
polarizability, so that Dx is the projection of the operator of the atom’s dipole
moment onto the electric field direction, the subscript o refers to the atom’s state
under consideration, the subscript f corresponds to its other states, and εf is the
energy of these states. Formula (9.9) states that the polarizability of the ground
state is positive (εo < εf ), whereas it can have any sign for excited states. In
addition, the polarizability is conserved as a result of the transformation x →−x,
i.e., it does not depend on the sign of the atom momentum projection onto the
electric field direction

α(γ, LSMLMS) � α(γ, LS,−ML,−MS);

α(γ, LSJMJ ) � α(γ, LSJ,−MJ ), (9.10)

where the atom quantum numbers are given in parentheses. Table 9.1 contains
values of the atom’s polarizabilities α.

If an atom is found in a nonuniform constant electric field, an additional inter-
action due to the field nonuniformity is added to the interaction operator, and is
equal to

V � 1

6

(
∂E

∂x
Qzx + ∂E

∂y
Qzy + ∂E

∂z
Qzz

)
, (9.11)
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Table 9.1. Polarizabilities of some atoms in the ground states.

Atom α, a.u. Atom α, a.u. Atom α,a.u.

H 4.5 Al 46 Se 25

He 1.383 Si 36 Br 21

Li 164 P 24 Kr 16.77

Be 38 S 20 Rb 320

B 20 Cl 14.7 Sr 190

C 12 Ar 11.08 In 69

N 7.4 K 290 Xe 27.3

O 5.4 Ca 160 Cs 400

F 3.8 Cu 45 Ba 270

Ne 2.670 Ga 55 Hg 36

Na 159 Ge 41 Tl 51

Mg 72 As 29

where the electric field strength is directed along the z-axis. The tensor Qik is
called the quadrupole moment tensor and is determined by the formula

Qik �
∑
j

〈(qj )ik〉, 〈(qj )ik〉 � 〈3(rj )i(rj )k − r2
j δik〉, (9.12)

where j is the electron number, the subscripts i, k refer to the corresponding
coordinates (x, y, z), (qj )ik is the quadrupole moment tensor of the j th electron,
δik is the Kronecker delta symbol, and the average is made over the electron
distribution in the atom.

9.3 Atom Decay in Electric Fields

A free electron in a constant electric field has a continuous energy spectrum, so
that it includes any negative values of energy. Hence, if an atom is located in an
electric field, an atomic electron can transfer from the atomic region to the region of
the continuous spectrum (see Fig. 2.2). Thus, atomic levels become quasi-discrete
levels if an electric field acts on the atom. The level width � � 1/τ , where τ is
the atom lifetime in the electric field. The atom decay corresponds to the tunnel
transition of a valent electron from the atom region to the region of free electron
motion.

Let us estimate the principal dependence of the level width on the electric field
strength for weak fields. Evidently, the level width or the rate of atom decay is
proportional to the electron flux through the barrier, i.e.,

� ∼ |ψ(zo)|2 , (9.13)
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where ψ is the electron wave function and zo is the boundary of the barrier (see
Fig. 2.2). The Schrödinger equation for the electron under consideration has the
form

− 1

2

ψ + Vψ − Ezψ � −γ 2

2
ψ, (9.14)

where V is the effective potential of the atomic core which acts on the related
electron, γ 2/2 is the ionization potential for a given atom state, andE is the electric
field strength. From this it follows that for the barrier boundary zo � γ 2/(2E),
and for a weak electric field V (zo)� γ 2, i.e., one can neglect the atomic field for
consideration of a tunnel transition of the electron. Next, since zo 
 1, one can
use the quasi-classical solution of the Schrödinger equation. Takingψ � exp(−S)
and assuming S 
 1, i.e., S ′′ � (S ′)2 we obtain, from the Schrödinger equation,

1

2

(
dS

dz

)2

� γ 2

2
− Ez � E(zo − z).

Since S(0) ∼ 1, we have from this, for the level width,

� ∼ ψ2(zo) ∼ exp

[
−2
∫ zo

0

√
2E(zo − z) dz

]
∼ exp

(
−2γ 3

3E

)
. (9.15)

This is the principal dependence of the level width on the electric field strength
which is valid for atoms, negative ions, and excited atoms at low E, i.e., when the
factor 2γ 3/(3E) is large.

Problems

Problem 9.1. Find the eigenstates and positions of the magnetic levels of the
hydrogen atom in the ground state which is located in a constant magnetic field.
An atom nucleus is proton with the nuclear spin i � 1/2 and the superfine splitting
in the hydrogen atom is δε � 1420.4 MHz.

The interaction which causes the superfine splitting of levels of the hydrogen atom
in amagnetic field consists of two parts. The first part corresponds to the interaction
of the electron s and nuclear i spins, so that the corresponding interaction operator
has the form V̂1 � Aŝî. This interaction leads to the superfine splitting of levels
so that in the absence of a magnetic field the total atom momentum F̂ � ŝ + î
characterizes the atomic eigenstate. Since

2〈ŝî〉 � 〈F̂2〉 − 〈ŝ2〉 − 〈î2〉 � F (F + 1)− s(s + 1)− i(i + 1),

where the angle brackets mean the average over states, and the difference of the
energies of the states of superfine structure is

δε � A

2
F (F + 1)

∣∣1
0 � A.
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The other part of the interaction operator is responsible for the interaction of
the spin momenta with the magnetic field. Because the electron magnetic moment
exceeds the proton magnetic moment by more than three orders of magnitude, one
can neglect the interaction of the proton spin with the magnetic field. This gives
the interaction operator V̂2 � −2μŝH, where μ � eh̄/(2mc) � μB is the electron
magnetic moment, and H is the magnetic field strength. Thus, the Hamiltonian of
the system of spins under consideration in a magnetic field has the form

Ĥ � Aŝî− 2μŝH.

This system has four states (2×2). Let us find the eigenstates of this system and
the corresponding energies of these states. For this goal we take a suitable basis
of wave functions {ψi} and calculate the matrix elements 〈ψiĤψk〉. The condition
that the determinant of the matrix εδik − 〈ψiĤψk〉 is equal to zero allows us to
determine the positions of the energy levels for this system.

Let us take, as a basis, the eigenstates for the interaction potential V̂1 � Aŝî. The
perturbation potential V2 conserves the momentum projection onto the magnetic
field direction. For this reason two states with total spin 1 and spin projections onto
the direction of the magnetic fields±1 remain the eigenstates of the Hamiltonian.
The energies of these states are equal to

ε1,2 � A± μH,

if the position of the singlet level in the absence of the magnetic field is taken as
zero. The wave functions of two other states are

ψ3,4 � 1√
2

(χ+η− ± χ−η+) ,

where χ , η are the spin wave functions of the electron and proton respectively, the
subscript+ corresponds to the projection+1/2 onto the direction of the magnetic
field, and the subscript− corresponds to the projection−1/2. From this we obtain
the following energy matrix:

ε − A −μH
−μH ε

.

Above we use the relations ŝzψ3 � ψ4/2, ŝzψ4 � ψ3/2. From the energy matrix
we have the following expressions for the energies of these levels:

ε3,4 � A

2
±
(
A2

4
+ μ2H 2

)1/2

. (9.16)

Let us introduce the reduced variables ε′i � εi/A, x � H/Ho, where Ho �
A/μ � 1015 G. In these variables the positions of the energy levels are given by
the expressions (see also Fig. 9.1):

ε′1,2 � 1± x, ε′3,4 � 1/2±
√

1/4+ x2.
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Figure 9.1. Decay in an electric field.

Problem 9.2. Within the framework of the LS-coupling scheme determine the
positions of the levels for an atom with angular momentum L and spin S � 1/2
located in a constant magnetic field.

Based on a standard method of diagonalization of the energy matrix, we include in
the Hamiltonian a spin-orbit interaction and the interaction potential (9.2) between
the atom and the magnetic field, so that the Hamiltonian of the system under
consideration has the form

Ĥ � AL̂Ŝ− μBH(L̂+ 2Ŝ).

Let us construct the energy matrix by taking the basis in the form of wave functions
which correspond to a certain projection of the atom angular momentum M and
a certain spin projection σ onto the magnetic field direction. The total number of
states of the system under consideration is equal to 2(2L + 1). One can separate
two states from the other states which correspond to the atom’s total momentum
J � L+ 1/2, and its projection onto the magnetic field direction is ±(L+ 1/2).
For these states we have〈

M, 1/2
∣∣Ĥ ∣∣M, 1/2

〉 � AL

2
− μBH (L+ 1);〈−M,−1/2

∣∣Ĥ ∣∣−M,−1/2
〉 � AL

2
+ μBH (L+ 1).

The other secular equation for the energy matrix
∣∣ε−Hik

∣∣ � 0 is divided into the
2L pair equations because the first term of the Hamiltonian mixes states with M ,
1/2 and M + 1, −1/2, and the second term is diagonal on this basis. The energy
matrix for one of the 2L elements is presented in Table 9.2.
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Table 9.2.

M , 1/2 M + 1, −1/2

M , 1/2 A

2 M − μBH (M + 1) A

2

√
(L+M + 1)(L−M)

M + 1, −1/2 A

2

√
(L+M + 1)(L−M) −A

2 (M + 1)M − μBHM

From the solution of the secular equation we obtain, for the eigenvalues of the
energy,

ε � −A

4
−μBH

(
M + 1

2

)
±
√
A2

4

(
L+ 1

2

)2

+ 1

4
μ2
BH

2 − A

2
μBH

(
M + 1

2

)
.

(9.17)
In particular, from this one can find the positions of levels in the limiting cases.
In the case of a weak magnetic field (μBH � A) we have ε1 � −(A/2)L,
ε2 � (A/2)

(
L+ 1

2

)
. In a strong magnetic field (μBH 
 A) the positions of these

levels are ε1 � −μBH (M + 1), ε2 � −μBHM . Thus, in a weak field this atomic
term includes two energy levels with the atom’s total momentum J � L ± 1

2 . In
a strong magnetic field this term includes the 2L + 2 energy levels (the energy
levels for the quantum numbers M , 1/2 and M + 1, −1/2 are coincident), and at
moderate magnetic fields this term contains the 4L+ 2 energy levels.

Problem 9.3. Calculate the polarizability for the negative ion with a valent s2-
electron shell. Assume that the typical size of the negative ion remarkably exceeds
that of an atom which is the basis of the negative ion.

The wave function ψo of a valent electron, in the basic region of its location,
satisfies the Schrödinger equation

−1

2

ψo � −γ 2

2
ψo,

where γ 2/2 is the binding energy of the valent s-electron in the negative ion. The
solution of this equation is given by formula (7.8),

ψo � B

r

√
γ

2π
e−γ r ,

where r is the distance between the electron and nucleus. The polarizability of the
negative ion is given by formula (9.9),

α � 2
∑
f

|(Dz)of |2
εf − εo

� 4
∑
f

z2
of

εf − εo
.

We account for two identical valent electrons in the negative ion, and z is the
projection of the electron radius-vector onto the electric field direction. Let us
introduce the operator ĝ which satisfies the relation zof � (εk − εo)gof , so that
ẑ � i(dĝ/dt) and the operators ẑ and ĝ are connected by the relationship

Ĥ ĝψo − ĝĤψo � zψo
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with the boundary conditions ψkrĝψo → 0 at r → 0 for any resonantly excited
state k. Let us take the function g(r) in the form g � ϕ(r) cos θ , where θ is the
angle between the electron radius-vector and the z-axis, i.e., cos θ � z/r . In the
basic region of the electron distribution, where one can neglect the interaction
between the valent electron and the atomic core, this equation has the form

−1

2
ϕ′′ + γ ϕ′ + 1

r2
ϕ � r.

The general solution of this equation is

ϕ � r2

2γ
+ C1

rγ + 1

rγ
+ C2

rγ − 1

rγ
exp(rγ ),

where C1, C2 are the integration constants. From the boundary conditions for
r → 0 and r → ∞ it follows that C1 � C2 � 0 and g � (r2/2γ ) cos θ . Hence
the polarizability of the negative ion is

α � 4
∑
k

z2
ok

εk − εo
� 4

∑
k

zokgko � 4

〈
r3

2γ
cos2 θ

〉
� 2

〈
r3
〉

3γ
.

Using the asymptotic wave function for a valent s-electron of a negative ion (7.8)
which is

ψo � B

√
γ

2π
e−γ r/r,

we have 〈
r3
〉 � 3B2

4γ 2
,

and the polarizability of the negative ion is

α � B2

2γ 4
. (9.18)

In particular, in the case of the hydrogen negative ion we use the parameters of
Table 7.6 (γ � 0.236, B � 1.15), and have for the polarizability α � 213. This
is a relatively high value in comparison with the polarizabilities of atoms (Table
9.1), because of the large size of the negative ion.

Problem 9.4. Evaluate the polarizability of the hydrogen atom in the ground state.

Using, for the evaluation of the polarizability, the method of the previous problem,
we have the following expression for the polarizability of the hydrogen atom:

α � 2〈zg〉 � 2

3
〈rϕ(r)〉.

Here the average is made on the basis of the wave function of the electron wave
function for the hydrogen atom in the ground state, and the function ϕ(r) satisfies
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the equation

−1

2
ϕ′′ + ϕ′ − 1

r
ϕ′ + 1

r2
ϕ � r.

Here r , θ are the electron spherical coordinates and the following boundary
conditions are fulfilled for the function ϕ(r):

r2ϕ(r)→ 0 at r → 0, and exp(−r)ϕ(r)→ 0 at r →∞.

The solution of the above equation, which satisfies the second condition, has the
form

ϕ(r) � r2

2
+ r + C

(
2+ 2

r
+ 1

r2

)
.

The second condition gives C � 0, so that

ϕ(r) � r2

2
+ r.

From this it follows that for, the polarizability of the hydrogen atom in the
ground state,

α � 2

3
〈rϕ(r)〉 � 1

3

〈
r3 + 2r2

〉 � 9

2
.

Problem9.5. Determine the polarizability of the negative ionwith a valent s2-shell
on the basis of a direct method.

We use formula (9.9) for the negative ion polarizability and take into account
that the negative ion has only one bound state. Then, locating the negative ion
in a volume �, we obtain the following expression, for the polarizability of the
negative ion on the basis of formula (9.9),

α � 2
∑
k

|(Dz)ok|2
εk − εo

� 4
∑
k

z2
ok

εk − εo
� 4

∫
�dq
(2π )3

|zoq|2
(EA+ q2/2)

.

We account for two identical valent electrons in the negative ion; in this formula
z is the projection of the electron radius-vector onto the electric field direction and
EA � γ 2/2 is the electron binding energy in the negative ion. Thus our task is
to calculate the matrix element zoq and the integral for the polarizability of the
negative ion. Neglecting the interaction of the valent electron and atomic core in
the principal region of electron location we have, for the wave function of the
bound electron, according to formula (7.8),

ψo � B

√
γ

2π
e−γ r/r,

where r is the distance between the electron and nucleus. In this case, the
wave function of a free electron is given in the form of a plane wave ψq �
�−1/2 exp(iqr).
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From this we have, for the matrix element,

zoq � 4iB

√
2πγ

�

q cosϑ

(q2 + γ 2)2
,

where ϑ is the angle between the z-axis and the q-direction. This yields, for the
polarizability of the related negative ion,

α �
∫

2�q2 dq d cosϑ

π2(q2 + γ 2)

∣∣zoq∣∣2 � B2

2γ 4
.

As is seen, this formula coincides with formula (9.18) of Problem 9.3. This
deduction allows us to estimate the criterion of the validity of this result. The
polarizability is determined by the electron wave vectors q ∼ γ . For example,
the maximum of the function under the integral takes place at q � 0.8γ . This
corresponds to large distances of the electron from the nucleus. In particular, for
q � γ the maximum under the integral for the matrix element zoq corresponds
to rq � 2.04. Because large distances of the electrons from the nucleus r give
the basic contribution to the integral, this justifies the use of asymptotic expres-
sions for the wave functions of the bound and free electrons for calculation of the
polarizability of the negative ion.

Problem 9.6. Determine the upper and lower limits for the polarizability of a
light atom in the ground state. Compare this with the values for the hydrogen and
helium atoms in the ground state.

All the terms of formula (9.9) for the atom’s polarizability are positive if the atom
is found in the ground state. Hence, replacing the energy difference εf − εo in this
formula, by the excitation energy in the lowest resonantly excited state 
ε, we
obtain the upper limit for the polarizability

α <
2
∑

f

∣∣(Dz

)
of

∣∣2

ε

� 2
〈
o
∣∣D2

z

∣∣o〉

ε

.

The other limit for the polarizability follows from the sum rule for the oscillator
strengths ∑

i

foi � n,

where n is the number of valent electrons. Multiplying this relation by formula
(9.9) for the polarizability, we obtain

αn � 4
∑
i,f

∣∣(Dz)oi
∣∣2 ∣∣(Dz)of

∣∣2 εi − εo

εf − εo

� 2
∑
i,f

∣∣(Dz)oi
∣∣2 ∣∣(Dz)of

∣∣2 [ εi − εo

εf − εo
+ εf − εo

εi − εo

]

� 2
∑
i,f

∣∣(Dz)oi
∣∣2 ∣∣(Dz)of

∣∣2 [2− (εi − εf )2

(εf − εo)(εi − εo)

]
.
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Because the second term in parentheses is positive we obtain, as a result of
neglecting this term,

αn > 4
(〈
o
∣∣D2

z

∣∣ o〉)2 .
Summarizing the above results, we have

4(
〈
o
∣∣D2

z

∣∣o〉)2
n

< α <
2
〈
o
∣∣D2

z

∣∣o〉

ε

. (9.19)

This relation gives the range of the polarizability values. In particular, for the
hydrogen atom in the ground state (n � 1,
ε � 3/8) we have

(〈
o
∣∣D2

z

∣∣ o〉) �〈
o
∣∣r2
∣∣ o〉 /3 � 1, where ris the electron radius-vector for the hydrogen atom. Then

the obtained relation yields

4 < α < 5.3,

while the real value of the polarizability of the hydrogen atom is equal to 4.5.
In the case of the helium atom in the ground state we use the hydrogenlike wave

function (3.4). Then we have〈
o
∣∣D2

z

∣∣o〉 � 2

3

〈
o
∣∣r2
∣∣o〉 � 2

Z2
ef

,

where the factor 2 accounts for two electrons in the helium atom. Then the above
relation for the polarizability takes the form (n � 2):

8

Z4
ef

< α <
4

Z2
ef
ε

. (9.20)

Using the parameters of the helium atom Zef � 1.69, 
ε � 0.780, we obtain
the above relation in the form

0.98 < α < 1.80,

while the real value of the helium polarizability is equal to 1.38. As is seen, for
both cases the atom polarizability lies close to the middle between the obtained
limits, so that the formula for the atom polarizability

α �
〈
o
∣∣D2

x

∣∣o〉

ε

+ 2
(〈
o
∣∣D2

x

∣∣o〉)2
n

(9.21)

is valid with an accuracy of several percent.

Problem 9.7. Find the dependence of the polarizability of a highly excited atom
on the principal quantum number.

The polarizability of a highly excited atom is determined by the formula

α � 2
∑
n′l′m′

∣∣〈nlm |z| n′l′m′〉∣∣2
εn′l′m′ − εnlm

,
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where nlm are the quantum numbers of a given highly excited state, and the
selection rule gives l′ � l ± 1. This follows from the expression for the angular
wave function and leads to the expression for the matrix element

〈
nlm |r cos θ | n′l′m′〉 � 〈nl |r| n′l′〉

⎡⎣√ (l + 1)2 −m2

(2l + 3)(2l + 1)
δl′,l+1δmm′

+
√

l2 −m2

(2L+ 1)(2l − 1)
δl′,l−1δmm′

⎤⎦ .

From this we obtain the following formula for the polarizability of a highly excited
atom

α � 2
(l + 1)2 −m2

(2l + 3)(2l + 1)

∑
n′

∣∣〈nl |r| n′, l + 1
〉∣∣2

εn′,l−1 − εnl

+ 2
l2 −m2

(2L+ 1)(2l − 1)

∑
n′

∣∣〈nl |r| n′, l − 1
〉∣∣2

εn′l−1 − εnl
.

If the atom is found in the s state, this formula does not contain the second term.
The values of n′ which are close to n give the main contribution to the result.

Since εn′,l±1 − εnl ∼ n−3, and because 〈nl|r|n′l ± 1〉 ∼ n2, we have

α ∼ n7. (9.22)

Note that the sign of the polarizability depends of the positions of the levels.

Problem 9.8. Determine the polarizability of a highly excited atom for states with
a small value of the quantum defect.

We consider a highly excited state with the principal quantum numbers n
 l and
δl−1 � 1. Since δl−1 > δl > δl+1, we have that the quantum defects are small,
so that the main contribution to the polarizability gives n′ � n. Then using the
formula of the previous problem for the polarizability of a highly excited atom and
restricting, in this formula, the terms with n′ � n, we have

α � 9n7

2(δl−1 − δl)
· l2 −m2

(2l − 1)(2l + 1)
− 9n7

2(δl − δl+1)
· (l + 1)2 −m2

(2l + 1)(2l + 3)
. (9.23)

Since δl depends sharply on l, the second term is large compared to the first one.
Let us give the criterion that the electric field strength is small and does not mix

states with different values of the electron angular momenta. Then the level shift
due to the electric field αE2/2 is small compared to the distance between levels
with the same n and neighboring values l which is equal to (δl−1 − δl)/n3. This
criterion has the form

E � δl−1 − δl

n5
. (9.24)

If this criterion is fulfilled, nlm remain the quantum numbers of a highly excited
atom.
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Problem 9.9. Determine the quadrupole moment of a light atom with valent p-
electrons.

We use formula (9.12) for the tensor of the atom quadrupole moment which has
the form

Qik �
∑
j

〈
(qj )ik

〉
,

〈
(qj )ik

〉 � 〈3(rj )i(rj )k − r2
j δik

〉
,

where j is the electron number, indices i, k refer to the corresponding coordinates
(x, y, z), and qik is the quadrupole moment of an individual electron. Expressing
the atomwave function of a light atom according to the parentage scheme (4.7), one
can conclude that the atom core does not influence the atom quadrupole moment.
Next, the nondiagonal elements of this tensor are equal to zero, so that the mean
values of the quadrupole tensor moment are equal to

Qzz �
∑
j

(rj )
2〈P2(cos θzj )〉,

where rj is the radius-vector of the j -electron, P2(cos θzj ) � 3 cos2 θzj − 1, and
θzj is the angle between the direction of the radius-vector of the j th electron and
the z-axis. From the relation for Qzz because

cos2 θxj + cos2 θyj + cos2 θzj � 1,

we have

Qxx +Qyy +Qzz � 0.

In addition, the filled shell does not give a contribution to the atom quadrupole
moment.

Let us consider an atom with a noncompleted electron shell. Using the formula

〈P2(cos θ )〉 � l(l + 1)− 3m2

(2l − 1)(2l + 1)
,

where l is the orbital momentum of a valent electron, m is its projection onto the
z-axis, and we have, from the formula for the atom’s quadrupole moment,

Qzz � 〈r2〉 ·
∑
j

l(l + 1)− 3m2
j

(2l − 1)(2l + 1)
, (9.25)

where mj is the momentum projection of the j th electron onto the z-axis. This
sum for a filled shell is equal to zero because

l∑
m�−l

m2 � (2l + 1)((l + 1)l

3
.

Let us use the parentage scheme for summation of the parameters of an atom
core and the electron in the atoms quantum numbers LMLSMS on the basis of
formula (4.7). Although the atomic core does not make a contribution to the atom’s
quadrupole moment, it can influence the quadrupole moment through the character
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of summation of momenta of the core and valence electron into the atom’s total
momenta. Thus, within the framework of the parentage scheme of the momenta
summation (4.7), the expression for the atom quadrupole moment has the form

Qzz �
〈
r2
〉 · ∑

L′S ′M ′
Lm

(
GLS

L′S ′
)2 [ l L′ L

m M ′
L ML

]2

〈lm |qzz| lm〉 , (9.26)

where lm are the angular momenta and their projection onto the z-axis for a va-
lent electron, LML are these quantum numbers for the atom, L′M ′

L are the same
quantum numbers for the atom core, and qzz is the quadrupole moment of a valent
electron with quantum numbers lm. In particular, for the quadrupole moment of a
p-electron, we have

〈10 |qzz| 10〉 � 4

5

〈
r2
〉
, 〈1,±1 |qzz| 1,±1〉 � −2

5

〈
r2
〉
.

Thus, finally we have, for the atom quadrupole moment,

Qzz �
〈
r2
〉 ·∑

LS ′

(
GLS

L′S ′
)2⎧⎨⎩4

5

[
1 L′ L

0 ML ML

]2

− 2

5

[
1 L′ L

1 ML − 1 ML

]2

−2

5

[
1 L′ L

−1 ML + 1 ML

]2
⎫⎬⎭ .

Problem 9.10. Find a shift of the 32P levels of the sodium atom under the action
of a constant electric field. Consider any relation between this shift and the fine
structure splitting.

The splitting and shift of this state level both proceed as a result of the spin-orbit
interaction and under the action of the electric field. Let us take into account
both effects within the framework of the standard methods when the Hamiltonian
matrix is constructed on a certain basis of the atomic wave functions, and the
eigenvalues of the state energies follow from the diagonalization of this matrix.
Then we include the spin-orbit interaction in the Hamiltonian by the term −Al̂ŝ
where l̂ is the operator of the angular moment and ŝ is the spin operator of the
valent electron. Note the symmetry of the problem with respect to the change of
sign of the momentum projection onto the electric field direction. Hence, we take
only states with positive values of the projection of the total electron momentum
onto the electric field direction. Table 9.3 gives the obtained energy matrix andUo,
U1 in this table are shifts of the energy levels under the action of the electric field.

The obtained matrix energy leads to the secular equation |ε −Hik| � 0, where
| | is the determinant of this secular equation which yields

[(ε − Uo)(ε − U1 + A/2)− A2/2](ε − U1 + A/2) � 0.
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Table 9.3.

m � 0, σ � 1/2 m � 1, σ � −1/2 m � 1, σ � 1/2

m � 0, σ � 1/2 Uo A
√

2 0

m � 1, σ � −1/2 A
√

2 U1 − A/2 0

m � 1, σ � 1/2 0 0 U1 + A/2

From this it follows that for the positions of the energy levels

ε1 � U1 − A/2;

ε2,3 � (Uo + U1)/2+ A/4±
√

(Uo − U1)2

4
+ A

4
(3Uo + U1)+ 9

16
A2. (9.27)

The first value relates to the state with projection of the total momentum 3/2, the
second and third values relate to the value of this projection 1/2. In the limit of
small electric fields, when one can neglect the terms Uo and U1, the positions of
the energy levels correspond to states with total electron momentum 1/2 and 3/2;
these are equal to ε1 � ε2 � −A/2, ε3 � A. In the opposite limiting case we have
ε1 � ε2 � U1, ε3 � Uo.

The second order of the perturbation theory for expansion over the electric
field strength gives Uo � −αoE

2, U1 � −α1E
2, where αo, α1 are the atom’s

polarizabilities for the projections of the angular momentum onto the electric field
directions 0 and 1, respectively. For determination of these values we use the
relations for the matrix elements of the operator z � r cos θ ,

〈
γ lm |r cos θ | γ ′, l + 1,m

〉 � √ (l + 1)2 −m2

(2l + 3)(2l + 1)
· 〈γ l |r cos θ | γ ′, l + 1

〉
;

〈
γ lm |r cos θ | γ ′, l − 1,m

〉 � √ l2 −m2

(2l + 1)(2l − 1)
· 〈γ l |r cos θ | γ ′, l − 1,m

〉
,

where γ lm is a set of atom quantum numbers. This gives, for the atom
polarizabilities in the related states,

αo � 2

3

∑
γ

(〈p |r| γ s〉)2
εγ s − εp

+ 8

15

∑
γ

(〈p |r| γ d〉)2
εγd − εp

; α1 � 2

5

∑
γ

(〈p |r| γ d〉)2
εγd − εp

,

(9.28)
whereγ s,γ d are the stateswith angular electronmomenta 0 and 2which determine
the atom polarizability. Note that on introducing the polarizabilities αo and α1, we
neglect the fine level spliting compared to the energy differences between the levels
of different n. The main contribution to the above polarizabilities gives transitions
in states with nearby energies to the related state. On the basis of this we obtain,
accounting for several terms in the above sums,

αo � 530; α1 � 280.
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Thus the above formulas allow us to evaluate the positions of levels at any
electric field strength. In particular, let us find the electric field strength at which
the distance between the levels of the fine structure is doubled compared to that
in the absence of the electric field. This leads to the value of the electric field
strength E � 6 · 106 V/cm which is close to the critical electric field strength
(6.11), Ecr � 7 · 106 V/cm.

Problem 9.11. Determine the rate of decay of an excited hydrogen atom in an
external electric field (this is similar to Problem 2.4).

The bound state of an electron in the hydrogen atom in an electric field is not
stable. Indeed, there is a region at large distances from the center in the direction
of the electric field where the electron has continuous spectrum (see Fig. 2.2). The
transition of the electron in this region leads to decay of the bound state. Thus the
energy level of the electron which is located in the field of the Coulomb center has
a finite width. This width is determined by the time of the electron transition in
the region of continuous spectrum. According to Fig. 2.2, where the cross section
of the potential energy in a space is given, this region starts from a distance in the
direction of the electric field zo � |ε|/E, where ε is the electron binding energy
and E is the electric field strength. Below we determine the time of this tunnel
transition and hence the width of the electron level.

For this goal we use the Schrödinger equation for the electron wave function
in parabolic coordinates. We take the following form of expansion of the wave
function which is more convenient for this problem

	 � eimϕ

√
2π
· �(ξ )F (η)√

ξη
.

Correspondingly, the Schrödinger equations for these wave functions have the
form

d2�

dξ 2
+
(
−γ 2

4
+ β1

ξ
− m2 − 1

4ξ 2
+ E

4
ξ

)
� � 0,

d2F

dη2
+
(
−γ 2

4
+ β2

η
− m2 − 1

4η2
− E

4
η

)
F � 0,

where the electron energy is given by formula ε � −γ 2/2, and the separation
constants β1, β2 in accordance with the results of Problem 2.3 are equal to

β1 � γ

(
n1 +

m+ 1

2

)
, β2 � γ

(
n2 +

m+ 1

2

)
,

which corresponds to the electron energy

εnn1n2m
� − 1

2n2
− 3

2
En(n1 − n2),

i.e.,

γ � 1

n
+ 3

2
En2(n1 − n2).
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The probability of the electron transition through a barrier per unit time is equal
to

w �
∫
S

j dS,

where

j � i

2

(
	
∂	∗

∂z
−	∗ ∂	

∂z

)
is the electron flux through the barrier, and S is the cross section of the barrier.
We use that for small electric field strengths the main contribution to the electron
current gives a small region of the barrier cross section near zo. Use the cylindrical
coordinates ρ, z, ϕ in this region and the condition ρ � z, when the connection
between the cylindrical and parabolic coordinates has the form

ξ � r + z ≈ 2z, η �
√
ρ2 + z2 ≈ ρ2

2z
≈ ρ2/ξ.

The element of the barrier surface is equal to dS � ρ dρ dϕ � (ξ/2) dη dϕ.
Substituting these formulas into the expression for the rate of decay of this state,
we have

w �
∫ ∞

0

F 2(η)dη

η

i

2

(
�
d�∗

dξ
−�∗

d�

dξ

)
.

Using the expressions for the electron wave functions which are obtained in
Problem 2.3, we obtain

w � i

2

(
�
d�∗

dξ
−�∗

d�

dξ

)
.

In the region near the center, where one can neglect the action of the electric field,
the wave function �(ξ ) is

� �
√

2

n
· 1

[n1! (n1 +m)!]1/2
·
(
ξ

n

)n1+(m+1)/2

exp

(
− ξ

2n

)
.

Let us analyze the solution of the Schrödinger equation for the wave function
�(ξ ). Let us find the expression for this wave function in the vicinity of the point ξo
which separates the classically available region from the region where location of
the classical electron is forbidden. The position of the point ξo is given by equation
p(ξo) � 0, where p is the classical electron momentum which, in accordance with
the Schrödinger equation for �(ξ ), is given by the expression

p2 � −γ 2

4
+ β1

ξ
− m2 − 1

4ξ 2
+ E

4
ξ.
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The quasi-classical solutions of the Schrödinger equation �′′ + p2� � 0, right
and left of the turning point, have the form

� � iC√
p
· exp

(
i

∫ ξ

ξo

p dξ − iπ

4

)
, ξ > ξo;

� � iC√
p
· exp

(
−
∫ ξ

ξo

|p| dξ
)
, ξ < ξo.

Substituting the first of these expressions into the formula for the decay rate, we
obtain

w � |C|2.
Thus the probability of the electron tunnel transition per unit time is expressed

through the wave function amplitude on the boundary of the classical region for the
electron. In order to determine this value, it is necessary to connect the expressions
for the wave function near the center and boundary of the classical region. In the
case of small electric field strengths there is a broad region of ξ where, on one
hand, one can neglect the action of the electric field and, on the other hand, the
classical expression for the wave function is valid. Connecting in this region the
expression for the wave function by neglecting the electric field with the classical
wave function, we find the value C and, correspondingly, the rate of atom decay

w � γ 3
(
4γ 3/E

)2n1+m+1(
n1 +m

)
!n1 !

· exp

(
−2γ 3

3E

)
. (9.29)

The region where both solutions are valid corresponds, on one hand, to neglecting
the action of the electric field that is valid under the relation ξ � ξo � γ 2/E and,
on the other hand, in this region the quasi-classical wave function is valid, i.e.,
γ 2/4 
 β1/ξ . This leads to the following criterion of the validity of the above
expression for the decay rate

E � γ 4

β1
.

Thus, at small values of the electric field strength E the probability of the
atom decay per unit time depends exponentially on the value 1/E. Note that in
Problem 2.3 we obtain the expansion of the value γ over a small parameter which
is proportional to the electric field strength E. In this case, it is necessary to use
two expansion terms of γ on E, because the second term of the expansion of γ
gives a term of the order of one in the exponent of w. In this approximation, we
have

2γ 3

3E
� 2

3n3E
+ 3(n1 − n2),
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and the probability of decay of the hydrogen atom per unit time in a weak electric
field is equal to

w �
(

4
3n3E

)2n1+m+1

n3 (n1 +m)!n1!
· exp

(
− 2

3n3E
+ 3n2 − 3n1

)
. (9.30)

In particular, from this formula it follows the formula of Problem 2.4 for the
probability of decay per unit time for the hydrogen atom in the ground state is

w � 4

3E
· exp

(
− 2

3E

)
.



CHAPTER 10

Interactions Involving
Atoms and Ions

10.1 Long-Range Interactions of Atoms

The interaction potential of two atoms or an atom and ion at moderate and large
distances between them consists of two parts—long-range and exchange inter-
actions. The long-range interaction of two atomic particles is determined by the
interaction between their momenta induced by fields of interacting particles. The
exchange part of the interaction potential is due to overlapping of the wave func-
tions of electrons whose centers are located on different nuclei. Since these types
of interaction are created by different regions of the electron distribution in a space,
they can be summed independently into the total interaction potential of atomic
particles.

Let us consider, in consecutive order, various types of the long-range interaction
of atomic particles. A general scheme for the determination of the long-range
interaction potential consists of the expansion of the electron energy of interacting
particles over a small parameter rj /R, where rj is the distance of the j th electron
from the nucleus in whose field the electron is located and R is the distance
between nuclei of the interacting particles. Take the interaction operator in the
form (in atomic units)

V � Z1Z2

R
−
∑
j

Z1

|R − rj | −
∑
k

Z2

|R + ri | +
∑
j

1

|R − rj + ri | , (10.1)

where Z1, Z2 are the charges of nuclei, rj are the coordinates of electrons of
the first atomic particle, and ri are the coordinates of the electrons of the second
atomic particle. Using the operator (10.1) within the framework of the theory of
the perturbation and expanding of this interaction potential over a small parameter
r/R, one can analyze various cases of the long-range interaction of atomic particles.
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First we consider the long-range ion–atom interaction. Then take ri � 0 in the
interaction operator V (10.1), so that it can be presented in the form (the ion charge
is assumed to be one and the charge of the atom nuclei is Z)

V � Z

R
−
∑
j

1∣∣R − rj
∣∣ . (10.2)

The first order of the perturbation theory in expansion over a small parameter r/R
gives, for the ion–atom interaction energy,

U (R) �
〈

1

R3

∑
j

r2
j P2(cos θj )

〉
� Qzz

R3
. (10.3)

As a matter of fact, this term corresponds to the interaction of the nonuniform
electric field of a charged particle with the quadrupole moment of the other atomic
particle. Indeed, use formula (9.11) for this part of the interaction potential which
has the form

U � 1

6

∂Ez

∂z
Qzz,

where the z-axis joins the nuclei and the electric field of a charged particle is
E � R−2, so that ∂Ez/∂z � 2R−3 (we omit the sign of the interaction potential and
assumebelow that the ion charge is one). From this formula (10.3) follows.Thenext
term of expansion of the interaction potential over the small parameter corresponds
to the second order of the perturbation theory and is given by formula (9.9), U �
−αE2/2, where the electric field strength of the charge particle at the point of
location of another particle is equal to E � R−2, i.e., the interaction potential is

U (R) � − α

2R4
, α � 2

∑
k

∑
f

∣∣(zk)of ∣∣2
εf − εo

, (10.4)

where the state under consideration is denoted by the subscript o, the subscript f
refers to other states of the atomic particle, and k is the electron number.

Now let us consider the long-range interaction of two neutral atomic particles.
A general method consists of the expansion of the operator (10.1) over a small
parameter r/R, and in the extraction the strongest interaction for each case. This
expansion has the following general form

V �
∑
i,k

∞∑
l�1

R−l−1
[|rk − ri |l Pl(nkn − nin)− rlkPl(nkn)−rli Pl(nin)

]
, (10.5)

where nk , ni , n are the unit vectors directed along rk , ri , and R, respectively, and
Pl(x) is the Legendre polynomial. The first two terms of this expansion are

V � D1D2 − 3(D1n)(D2n)

R3
+ 3

2R4

[
(D1n)[3(D2n)2 − 1]+ (D2n)[3(D1n)2 − 1]

]
,

(10.6)
where D1 �

∑
k rk , D2 �

∑
i ri are operators of the dipole moment of the

corresponding atomic particle.
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Let us determine the interaction potential of two atomic particles on the basis
of the interaction operator (10.6). Since the average dipole moment of an atom is
equal to zero for any state, the first order of the perturbation theory, accounting for
the first term of (10.6), differs from zero for the interaction of two dipolemolecules.
Then we have, for the interaction potential,

U (R) � D1D2 − 3(D1n)(D2n)

R3
, (10.7)

where D1, D2 are the dipole moments of the corresponding atoms. The first order
of the perturbation theory leads to a nonzero result in the case of the interaction of
two identical atom states if their states o and f are such that the matrix element
(D)of is not zero. Let us denote the wave function of an excited atom by ϕ and
the wave function of a nonexcited atom by ψ , so that the eigenwave functions
of this system of interacting atoms are ψs � (1/

√
2)[ψ(a)ϕ(b) + ϕ(a)ψ(b)] and

ψa � (1/
√

2)[ψ(a)ϕ(b) − ϕ(a)ψ(b)]. Here the arguments a, b indicate an atom
which relates to a given wave function. From this we find the interaction potential
of atoms in the related states

Us,a(R) � ± 1

R3

[∣∣(Dx)of
∣∣2 + ∣∣(Dy)of

∣∣2 − 2
∣∣(Dz)of

∣∣2] , (10.8)

where the matrix element is (Dx)of � 〈ψ |Dx |ϕ〉, the + sign corresponds to the
symmetric state, the− sign relates to the antisymmetric state, and the z-axis joins
the nuclei. Thus, in this case, the interaction of the dipole moments leads to the
splitting of the quasi-molecule energy levels.

The next term in the expansion of the interaction potential of two atomic particles
with a distance between them accounts for the interaction of a dipole moment of
one particle (molecule) with a quadrupole moment of the other atomic particle.
This corresponds to taking into consideration the second termof the operator (10.6)
in the first order of the perturbation theory, and yields

U (R) � 3

R4
[(D1n)Q2 + (D2n)Q1], (10.9)

whereDi is the averagedipolemoment of the corresponding atomic particle,n is the
unit vector directed along the z-axis, andQ is the zz-component of the quadrupole
moment tensor for an indicated atomic particle. The next term of the first order of
the perturbation theory corresponds to the interaction of two quadrupole momenta
of atoms and yields, for the interaction potential,

U (R) � 6Q1Q2

R5
, (10.10)

where Q1, Q2 are the zz-components of the quadrupole moment tensor for the
indicated atoms. This interaction describes the long-range interaction of two atoms
with unfilled shells. Averaging over the direction of moments of any atom gives
zero for the mean interaction potential.

The second order of the perturbation theory for a long-range interaction of two
atoms starts from the term which is proportional to R−6. In this case, on the basis
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of the operator of the dipole–dipole interaction of atoms, we have

U (R) � − C

R6
,

C�
∑
f,m

4
∣∣(D1z)of

∣∣2 |(D2z)om|2 +
∣∣(D1x)of

∣∣2 |(D2x)om|2 +
∣∣(D1y)of

∣∣2 ∣∣(D2y)om
∣∣2

Ef − Eo + εm − εo
,

(10.11)

where the subscript o corresponds to the related states of the interacting atoms, the
subscripts f and m refer to possible states of the first and second interacting atom
respectively, the D1, D2 are the dipole moment operators for the corresponding
atoms. Ef indicates the energy of f th state of the first atomic particle, and εm is
that for mth state of the second particle. The parameter C is called the van der
Waals constant. The interaction potential (10.11) corresponds to the interaction of
remote atoms with filled electron shells or is the average long-range interaction
potential for any atoms.

Let us analyze the expression for the van der Waals constant in the case of the in-
teraction of two atoms with zero angular momenta. Then

∣∣(Dx)of
∣∣2 � ∣∣(Dy)of

∣∣2 �∣∣(Dz)of
∣∣2 for each atom and expression (10.11) for the van der Waals constant has

the form

C � 6
∑
f,m

∣∣(D1z)of
∣∣2 |(D2z)om|2

Ef − Eo + εm − εo
. (10.12)

Considering the case of two identical atoms, when Em − Eo � εm − εo, we have

3

2
α(D2

z )oo − C �
∑
f,m

3
∣∣(D1z)of

∣∣2 |(D2z)om|2
2(Ef − Eo)

+
∑
f,m

3
∣∣(D1z)of

∣∣2 |(D2z)om|2
2(Em − Eo)

−
∑
f,m

6
∣∣(D1z)of

∣∣2 |(D2z)om|2
Ef − Eo + εm − εo

� 3

2

∑
f,m

∣∣(D1z)of
∣∣2 |(D2z)om|2 (Em − Ef )2

(Em − Eo)(Ef − Eo)(Ef + Em − 2Eo)
.

For the ground state of atoms this combination is positive, so that

3

2
α(D2

z )oo ≥ C.

In the case of different interacting atoms this relation takes the form

3

4
α1(D

2
2z)oo +

3

4
α2(D

2
1z)oo ≥ C, (10.13)

where the subscripts 1, 2 refer to the respective atoms. This relation can be used
as the basis for approximating formulas for the van der Waals constant. Use the
relation for the atom polarizability which was obtained in Problem 9.6 and has the
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form:

4(
〈
o
∣∣D2

z

∣∣ o〉)2
n

< α <
2
〈
o
∣∣D2

z

∣∣ o〉

ε

.

Let us replace the matrix element (D2
z )oo in expression (10.13) on the basis of the

right-hand side of this inequality (D2
2z)oo � 2α
ε, where 
ε is the excitation

energy for the first resonance level. Then we obtain the following expression for
the van der Waals constant, which is called the London formula,

C � 3α1α2
ε1
ε2

2(
ε1 +
ε2)
, (10.14)

where α1, α2 is the polarizability and 
ε1, 
ε2 is the excitation energy of the
first resonant level for the corresponding atom. Using the approximating relation
(D2

2z)oo �
√
αn/2, we obtain the following expression for the van der Waals

constant which is called the Kirkwood–Slater formula,

C � 3α1α2

2(
√
α1/n1 +

√
α2/n2)

, (10.15)

where n1, n2 are the numbers of the valent electrons for the related atoms. Formulas
(10.14) and (10.15) are used as the approximations for calculation of the van der
Waals constants for the interaction of atoms with filled electron shells or for the
van der Waals constants of atoms with unfilled electron shells if the interaction
potential is averaged over the momentum directions of atoms. Table 10.1 gives a
comparison of formulas (10.14) and (10.15) with accurate values for the van der
Waals constants. As is seen, the Kirkwood–Slater formula works better than the
London formula.

Table 10.1. Van der Waals constants (in atomic units) for the interaction of identical atoms.

Atoms London formula Kirkwood–Slater formula Accurate value

H–H 5.7 7.2 6.2

He–He 1.1 1.7 1.5

He–H 2.4 3.2 2.8

He–Ne 2.0 3.8 3.1

Ne–Ne 4.5 8.4 6.6

Ar–Ar 40 66 68

Kr–Kr 80 130 130

Xe–Xe 190 260 270

Na–Na 1600 1600 1600

Rb–Rb 3800 3800 3800

Cs–Cs 5100 5200 5200
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Figure 10.1. Three types of exchange interaction. (a) Electron transferred from the field
of one ion or atom to the field of another atomic particle; (b) exchange of two electrons
between two atomic particles; (c) the wave function tail of the valence electron reaches
another atomic particle and thereby interacts with it.

10.2 Ion–Atom Exchange Interaction at Large
Separations

The exchange interaction of atomic particles is determined by the overlapping of
the electron wave functions which belong to different atomic centers. One can
divide the exchange interaction between atomic particles into three groups (see
Fig. 10.1). The first group corresponds to the transition of a valent electron from
the field of one ion or atomic particle to the field of another. The second type of
exchange interaction corresponds to a simultaneous exchange by two electrons
which belong to different atomic centers. The third type is the result of the in-
teraction of a valent electron with the field of a neighboring atomic particle. We
now concentrate on the first type of exchange interaction which corresponds to
the interaction between an ion and an atom. We begin with the case when a one-
electron atom interacts with the parent ion that has the filled electron shell. Then
the interaction is determined by the transition of the valent electron from the field
of one ion to the field of another ion (see Fig. 10.2a). First we consider the case
when the valent electron is found in an s-state so that the related system has two
states which can be composed from states with the location of the electron in the
field of the first and second ions.

Let us denote by ψ1 the electron wave function which is centered on the first
nucleus and by ψ2 the wave function centered on the second nucleus. The electron
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Figure 10.2. Electron in the field of two identical centers. Reflection in the symmetry plane
corresponds to the transformation ψ1 → ψ2, ψ2 → ψ1. This yields the eigenfunctions of
the system: the even electron wave function which retains its sign under reflection is equal
to ψg � (1/

√
2)(ψ1 + ψ2), and the odd wave function is equal to ψu � (1/

√
2)(ψ1 − ψ2).

Hamiltonian has the form

Ĥ � −1

2

+ V (r1)+ V (r2)+ 1

R
, (10.16)

where R is the distance between the atomic cores, r1, r2 are the distances of the
electron from the related nucleus, V (r) is the interaction potential of the electron
with ions, and far from the ion this potential is theCoulombpotentialV (r) � −1/r .
Use the symmetry of the problemunder consideration, so that the symmetry plane is
perpendicular to the line joining the nuclei and bisects it, and the electron reflection
with respect to this plane conserves the electron Hamiltonian. Hence, the electron
eigenstates can be divided into even and odd states, depending on the property of
their wave functions to conserve or change their sign as a result of reflection with
respect to the symmetry plane. Evidently, these wave functions are the following
compositions of ψ1 and ψ2:

ψg � 1√
2
(ψ1 + ψ2), ψu � 1√

2
(ψ1 − ψ2). (10.17)

These wave functions satisfy the Schrödinger equations

Ĥψg � εgψg, Ĥψu � εuψu, (10.18)

where εg(R), εu(R) are the eigenvalues of the energies of these states. Let us define
the exchange interaction potential in this case as


(R) � εg(R)− εu(R). (10.19)

In order to determine this value at large distances between atoms we use the
following method. Let us multiply the first equation byψ∗u , the second equation by
ψ∗g , take the difference of the obtained equations, and integrate the result over the
volumewhich is a half-space restricted by the symmetry plane. Since the separation
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between the nuclei is large, the wave function ψ2 is zero inside this volume and
the wave function ψ1 is zero outside this volume. Hence

∫
V
ψ∗uψgdr � 1/2, and

the relation obtained has the form

εg(R)− εu(R)

2
� 1

2

∫
V

(
ψu
ψg − ψg
ψu

)
dr� 1

2

∫
S

(
ψ2

∂

∂z
ψ1 − ψ1

∂

∂z
ψ2

)
ds,

where S is the symmetry plane which limits the integration range; we use relations
(10.17) with real wave functions, and the z-axis joins the nuclei. Take the origin of
the coordinate system in the center of the line joining the nuclei. Since the electron
is found in the s-state in the field of each atomic core, its wave functions in this
coordinate system can be represented in the form

ψ1 � ψ
(√

(z+ R/2)2 + ρ2
)
, ψ2 � ψ

(√
(z− R/2)2 + ρ2

)
,

where ρ is the distance from the axis in the perpendicular direction to it. Since
ds � 2πρ dρ we have, from the above relation,

εg(R)− εu(R) �
∫ ∞

0
2πρ dρ

×
[
ψ
(√

(z− R/2)2 + ρ2
) ∂

∂z
ψ
(√

(z+ R/2)2 + ρ2
)

− ψ
(√

(z+ R/2)2 + ρ2
) ∂

∂z
ψ
(√

(z− R/2)2 + ρ2
)]

z�0

� R

∫ ∞

0
dρ2 ∂

∂ρ2
ψ2

(√
R2

4
+ ρ2

)
� Rψ2

(
R

2

)
.

In the course of the deduction of this formula we use the obvious relation

∂

∂z

[
ψ
(√

(z+ R/2)2 + ρ2
)]

z�0
� R

∂

∂ρ2
ψ

(√
R2

4
+ ρ2

)
.

Now let us connect the molecular wave function ψ(r) of the s-electron with
the atomic function ψat whose behavior at large distances from the atomic core is
determined by the Schrödinger equation

−1

2

∂2

∂r2
(rψat)− 1

r
ψat � −γ 2

2
ψat,

where γ 2/2 is the electron binding energy. The solution of this equation is given
by formula (4.11),

ψat(r) � Ar1/γ−1e−rγ .

Take the molecular wave function in the form ψ(r) � χ (r)ψat(r) and compare
the Schrödinger equations for the molecular and atomic wave functions near the
axis between the nuclei where one can use the asymptotic form of the interaction
potential V (r) � −1/r in formula (10.16) for the electron Hamiltonian. So, we



10.2 Ion–Atom Exchange Interaction at Large Separations 257

have, from the Schrödinger equation for ψ , neglecting the second derivative of χ
near the axis,

γ
∂χ

∂r1
+
(

1

R
− 1

r2

)
χ � 0.

Solving this equation, we connect the molecular wave function of the s-electron
near the axis with the atomic wave function that allows us to express the exchange
interaction potential through the asymptotic parameters of the valent s-electron in
the atom


o � A2R2/γ−1e−Rγ−1/γ . (10.20)

In particular, this formula yields, for the exchange interaction of the proton and
hydrogen atom in the ground state,


o � 4

e
Re−R. (10.21)

Formula (10.20) is the asymptotic expression for the exchange interaction potential
of a one-electron atom with a valent s-electron and its atomic core. The criterion
of validity of this formula has the form

Rγ 
 1, Rγ 2 
 1. (10.22)

Formula (10.20) admits a generalization. Consider the interaction of a one-
electron atom with the parent ion for an electron angular momentum l and its
projection μ onto the molecular axis. Then the electron wave function is ψ(r) �
Ylμ(θ, ϕ)�(r), where r , θ , ϕ are the spherical electron coordinates if its center
coincides with a corresponding nuclei, and the z-axis directs along the molecular
axis. For determination of the exchange interaction potentialwe based ondeduction
of formula (10.20) for the s-electron andmake changes in integration over dρ. Then
we have


 ∼
∫ ∞

0

∣∣Ylμ(θ, ϕ)
∣∣2 �2(r)ρdρ,

where r �
√
R2/4+ ρ2 is the distance from each nucleus for the electron located

on the symmetry plane. Since �(r) ∼ e−γ r , the integral converges at small ρ(ρ ∼√
R/γ � R). Then �(r) � �(R/2)e−γρ

2/R . This corresponds to the small angles
θ � 2ρ/r and Ylμ(θ, ϕ) ∼ θμ for θ � 1. Thus we have


lμ � 
o

∫ ∞

0
e−2γρ2/R

∣∣Ylμ(θ, 0)
∣∣2

θ2μ

∣∣∣∣2ρR
∣∣∣∣2μ · 4γ ρdρ

R
,

where the exchange interaction potential
o is given by formula (10.20) and relates
to an s−transferring electron with the same asymptotic parameters in the atom.
Since the exchange interaction potential does not depend on the sign of μ, we
take the momentum projection to be positive. Thus, we find, for the exchange
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interaction potential of a one-electron atom with the parent ion,


lμ � A2R2/γ−1−μe−Rγ−1/γ · (2l + 1)(l + μ)!

(l − μ)!μ!(2γ )μ
� 
o

(2l + 1)(l + μ)!

(l − μ)!μ!(2Rγ )μ
.

(10.23)
In particular, for p-electrons it follows from this that


11


10
� 3

Rγ
.

In a general case, when the atom has several valent electrons, we use the LS-
coupling scheme for the atom and the parentage scheme of summation of the
electron and atomic core momenta into the atom and molecular ion momenta. We
consider the casewhen the energy splitting, due to the orbitalmomentumprojection
on the molecular axis for the atom or ion remarkably exceeds the fine splitting of
the energy levels. Then the quantum numbers of the system are the atom quantum
numbers LSMLMS and the quantum numbers of the ion are L′sML′ms . We sum
up the electron momenta l, 1

2 and the momenta of the atomic coreL′s into the atom
momenta LS, and then the atom spin S and the spin of another atom core s are
summed into the total spin I of the molecular ion. Using formula (4.7) for the atom
wave function within the framework of the parentage scheme and substituting it
into the expression for the exchange interaction potential, we obtain


 � n(GLS
L′s)

2
∑

μ,M ′
L′ ,M

′
L

∑
σ,σ ′,ms ,m′s

∑
MS,M

′
S

×
[

l L′ L

μ ML′ M ′
L

][
l L′ L

μ M ′
L′ ML

]⎡⎣ 1

2
s S

σ ms MS

⎤⎦
×
⎡⎣ 1

2
s S

σ ′ m′s M ′
S

⎤⎦[ s S I

ms MS M

][
s S I

m′s M ′
S M

]

lμ

� n(GLS
L′s)

2
∑
μ

[
l L′ L

μ ML′ ML

]2

(2S + 1)

⎧⎨⎩ s
1

2
S

s I S

⎫⎬⎭
lμ

� n
I + 1

2

2s + 1
(GLS

L′s)
2

∑
μ,M ′

L′ ,M
′
L

[
l L′ L

μ ML′ M ′
L

][
l L′ L

μ M ′
L′ ML

]

lμ

. (10.24)

Here M is the projection of the total spin I onto the molecular axis; the result
does not depend on this value because the influence of the spin on the exchange
interaction is determined by the Pauli exclusion principle only, and the fine struc-
ture splitting is assumed to be small. Note that summation of the Clebsh–Gorgan
coefficients leads to the 6j Wigner symbol which is denoted by braces,and its
value is used. Formula (10.24) gives the asymptotic expression for the exchange
interaction potential of an atom with its atomic core within the framework of the
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LS-coupling scheme. The criterion for the validity of this expression is given by
formula (10.22).

Note that the dependence of the ion–atom exchange interaction potential on the
total spin is determined by the exchange of electrons which belong to different
cores. Hence, at large separations R, the level of splitting due to different total
spins I is weaker than ∼ exp(−2γR) and is small compared with the exchange
interaction potential which is ∼ exp(−γR). This allows us to use, in formula
(10.24), the average molecular spin I . Next, since the exchange interaction poten-
tial decreases with increasing μ as R−μ, one can restrict by one term in the sum
(10.24) with a minimal value of μ, and formula (10.24) takes the form


(lμ, L′ML′s, LMLS)

� I + 1
2

2s + 1

(
GLS

L′s
)2 [ l L′ L

μ ML′ ML′ + μ

][
l L′ L

μ ML − μ ML

]

lμ,

(10.25)

where the brackets mean an average over the molecular total spin,μ is the possible
minimal projection of the transferring electronmomentumonto themolecular axis,
and the value 
lμ is given by formula (10.23).

The method used allows us to express this interaction potential through the
asymptotic parameters of the valent atomic electron. Formulas (10.20), (10.21),
(10.23), (10.24), and (10.25) give the first term of the asymptotic expansion of the
ion–atom exchange interaction potential at large distances between the nuclei. The
following terms of this expansion over a small parameter of the theory are of the
order 1/R from the first one.

10.3 The LCAO Method

One can construct the asymptotic theory in another way. Let us take the wave
functions ψ1, ψ2, and on their bases construct the eigenfunctions ψg , ψu of the
Hamiltonian (10.16) according to formula (10.17). Then the eigenvalues for the
energies of the levels follow from equations (10.18), and the exchange interaction
potential (10.19) is equal to


 � εg − εu �
〈
ψg

∣∣Ĥ ∣∣ψg

〉〈
ψg

∣∣1∣∣ψg

〉 − 〈
ψu

∣∣Ĥ ∣∣ψu

〉〈
ψu

∣∣1∣∣ψu

〉 � 2
〈
ψ1

∣∣Ĥ ∣∣ψ2
〉− 2εoS, (10.26)

where εo � 〈ψ1|Ĥ |ψ1〉, and S � ∫ ψ∗1ψ2 dr is the overlapping integral. If we take
the wave functions ψ1, ψ2 such that they coincide with the atomic functions near
the parent nuclei, and account for the action of the other atomic cores in the region
between the nuclei, we obtain the above asymptotic expressions for the exchange
interaction potential. Hence, formula (10.26) is another form of presentation of the
exchange interaction potential. This is valid if the overlapping integral is small,
i.e., at large distances between the nuclei.
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Let us use formula (10.26) in order to estimate the dependence of the exchange
interaction potential at a distance R between the nuclei. Take the electron Hamil-
tonian as Ĥ � ĥ2 − 1/r1 + 1/R, where ĥ2 is the Hamiltonian of a valent electron
in the second atom. Because of the Schrödinger equation for the atomic electron
ĥ2ψ2 � εoψ2, where εo � −γ 2/2 is the electron energy for the isolated atom we
have, on the basis of formula (10.26), the following expression for the ion–atom
exchange interaction potential:


 � 2

〈
ψ1

∣∣∣∣ 1r1 − 1

R

∣∣∣∣ψ2

〉
,

where r1 is the electron distance from the first nuclei. Taking into account that
the volume which determines the overlapping integral is of the order of R2/γ we
obtain, on the basis of the asymptotic expression (4.11) for the wave functions, the
following estimate for the exchange interaction potential 
 ∼ A2R2/γ−1e−Rγ . Of
course, this estimate coincides with the dependence of formula (10.20). From this
it also follows that the region of the first atom gives a contribution in the exchange
interaction potential of the order of ψ(R) ∼ R1/γ−1e−Rγ . Hence, one can express
the exchange interaction potential through the asymptotic parameters of the valent
electron with the accuracy∼ 1/R. For determination of the subsequent expansion
terms of the exchange interaction potential over a small parameter, information is
required about the electron behavior inside the atom.

One can use a simple model for the calculation of the exchange interaction
potential by replacing the molecular wave functions in formula (10.26) by the
atomic functions. This approach is called the LCAO-method (linear combination
atomic orbits) and is based on simplified wave functions. The LCAO-method is
widely practiced due to its simplicity. Below we calculate, on the basis of this
method, the exchange potential for the ion–atom interaction of a one-electron
atom with a valent s-electron when the asymptotic expression is given by formula
(10.20). Present the electronHamiltonian (10.16) in the form Ĥ � ĥ1−1/r2+1/R,
where ĥ1 is the electron Hamiltonian in the absence of the second ion. Since ψ1

is the atomic wave function, we have ĥ1ψ1 � εaψ1, where εa � −γ 2/2 is the
electron energy in an isolated atom. Thus the exchange interaction potential in this
case is equal to


 � 2

〈
ψ1

∣∣∣∣ 1r2
∣∣∣∣ψ2

〉
− 2

R
S.

Now let us take the asymptotic expression (4.11) for the basis wave function

ψ(r) � 1√
4π

Ar1/γ−1e−rγ

and use the ellipticity coordinates ξ , η, ϕ, so that r1,2 � R(ξ±η)/2. The ellipticity
coordinates are located in the regions −1 < η < 1, 1 < ξ < ∞, and the volume
element is dr � πR3

4 (ξ 2 − η2) dξ dη. At the start we calculate the overlapping
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Table 10.2. The ratio of the ion-atom exchange interaction potential evaluated on the basis
of the LCAO-method to the accurate one.

γ 1
3

1
2 1 2

f e3

35 � 0.57 e2

10 � 0.75 e

3 � 0.91 3π
√
e

16 � 0.97

integral S � ∫ ψ∗1ψ2 dr, which is equal to

S � A2

4

(
R

2

) 2
γ
+1 ∫ 1

−1
dη

∫ ∞

1
dξe−Rγ ξ (ξ 2 − η2)1/γ

� A2

4

(
R

2

) 2
γ
+1 ∫ ∞

1
dξe−Rγ ξ

∫ 1

−1
dη(1− η2)1/γ

� A2

4γ

(
R

2

)2/γ

e−Rγ ·
√
π�(1/γ + 1)

�(1/γ + 3/2)
.

Here we use that the integral converges in the region ξ − 1 ∼ 1/(Rγ ) and, hence,
we replace ξ by 1 everywhere except the exponent. This method leads to the
following expression for the exchange interaction potential:


LCAO � A2

4

(
R

2

)2/γ−1

e−Rγ

√
π�(1/γ + 2)

�(1/γ + 3/2)
. (10.27)

Although the basis wave functions of the LCAO-method are not correct, this
method gives the accurate dependence on separation R for the exchange inter-
action potential. It is of interest to compare the ratio of formulas (10.27) and
(10.20) which have the form

f � 
LCAO


ac
�
√
π

2

( e
4

)1/γ �(1/γ + 2)

�(1/γ + 3/2)
,

where 
ac is the asymptotic exchange interaction potential which is given by
formula (10.20) and has the accurate dependence on separations at large R. The
difference between the numerical factors increases with a decrease in γ . Table 10.2
contains the ratios of the numerical factors for these interaction potentials at some
γ . From these data the validity follows the LCAO-method if the electron binding
energy is not small.

10.4 Exchange Interactions of Atoms at Large
Separations

Wenowconsider the exchange interaction of two atoms for the case of two identical
one-electron atoms with valent s-electrons (an example of this is the system of
two hydrogen atoms). One can construct two combinations of the atomic wave
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functions when electrons are located near the parent cores as

	1 � ψ(1a)ψ(2b), 	2 � ψ(1b)ψ(2a).

Here the arguments 1, 2 enumerate electrons and the arguments a, b enumerate
nuclei, so that, for example, the wave function ψ(1a) means that the first electron
is located in the field of the atomic core a. There are two states of this electron
system which are described by the following wave functions:

	s � 1√
2

(	1 +	2) , 	a � 1√
2

(	1 −	2) ,

and the wave function of the symmetric state 	s is conserved as a result of the
transposition of electrons while, as a result of this operation, the wave function
of the antisymmetric state 	a changes sign. For determination of the exchange
interaction potential of two atoms we use a similar method to that used for the ion–
atom exchange interaction potential. The eigen electron wave functions satisfy the
Schrödinger equations

Ĥ	s � εs	s, Ĥ	a � εa	a,

where εs(R), εa(R) are the eigenvalues of the energies of these states. The exchange
interaction potential is defined as


(R) � εa(R)− εs(R), (10.28)

and the electron Hamiltonian has the form

Ĥ � −1

2

1 − 1

2

2 − 1

r1a
−− 1

r1b
− 1

r2a
− 1

r2b
+ 1

|r1 − r2| +
1

R
, (10.29)

where 
1, 
2 are the Laplacians of the corresponding electrons, r1, r2 are the
electron coordinates, r1a is the distance for the first electron from the nucleus a

and, in the same manner, the other distances between electrons and nuclei are
denoted. Now let us multiply the Schrödinger equation for 	s by 	a , for 	a by
	s , and taking the difference of the obtained equation, we integrate the result over
the hyperspace z1 ≤ z2 (the z-axis is directed along the line joining the nuclei and
the origin is taken in its center; in addition, we also take into account that the wave
functions of the s-electrons are real). Thus we obtain




∫
V

(	2
1 −	2

2 ) dr1 dr2

�
∫
V

[(
	1

∂2

∂z2
1

	2 −	2
∂2

∂z2
1

	1

)
+
(
	2

∂2

∂z2
2

	1 −	1
∂2

∂z2
2

	2

)]
dr1 dr2.

Inside the volumeV thewave function	2 is exponentially small,while the function
	1 is exponentially small outside this volume.Hence

∫
V
(	2

1−	2
2 ) dr1 dr2 � 1.Let

us transform the integral in the right-hand side of the above integral to an integral
over the hypersurface z1 � z2. Since the transformation r1 → r2, r2 → r1 gives
	1 → 	2, 	2 → 	1, the second term of the above equation coincides with the
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Figure 10.3. Electron regions which determine the exchange interaction potential for two
identical atoms at large distances between the nuclei: 1, 2, internal regions of atoms where
the electrons are located; 3, 4, regions where the asymptotic expressions for the atomic
wave functions are valid; 5, in this region the quasi-classical approach is valid for valence
electrons (this is restricted by a dotted line); 6, this region gives the main contribution into
the exchange interaction potential of these atoms. Since the volume of region 6 is of the
order of R2, where R is the distance between the nuclei, and regions 1 and 2 possess a
volume of the order of an atomic value, on the basis of asymptotic data for atomic wave
functions, one can evaluate the exchange interaction potential with an accuracy of the order
of 1/R2.

first one, and we find


 �
∫
S

(
	1

∂

∂z1
	2 −	2

∂

∂z1
	1

)
dz dx1 dy1 dx2 dy2, (10.30)

where the hypersurface S is described by the equation z1 � z2 � z.
We now evaluate this integral on the basis of the standard method which we

used for the determination of the ion–atom exchange interaction potential. Let us
present the wave functions of the atom system in the form

	1 � ψ(1a)ψ(2b)χ1, 	2 � ψ(1b)ψ(2a)χ2.

Taking into account that the strongest dependence of the wave functions 	1, 	2

on the electron coordinates is determined by the atomic wave functions and that a
region of electron coordinates near the molecule axis gives the main contribution to
the integral (see Fig. 10.3), we have

∂

∂z1
	2 � 	2

∂

∂z1
lnψ(1b) � γ	2,

and the integral (10.30) is equal to


 � 2γ
∫
S

	1	2 dz dx1 dy1 dx2 dy2

� 2γ
∫
S

ψ(1a)ψ(2b)ψ(1b)ψ(2a)χ1χ2 dz dx1 dy1 dx2 dy2.

For determination of the functionsχ1(χ2) we use the Schrödinger equation Ĥ	1 �
E	1(Ĥ	2 � E	2) and the expression (10.29) for the Hamiltonian, so that the
electron energy in this approach is E � −γ 2. Taking the origin in the center of
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the molecular axis and introducing a � R/2, we have the equation for χ ,(
γ

∂

∂z1
− γ

∂

∂z2
− 1

a − z1
− 1

a + z2
+ 1

2a
+ 1

|r1 − r2|
)
χ1 � 0.

Here we use the asymptotic expressions (4.11) for the atomic wave functions and,
based on the quasi-classical approach for the wave function, we neglect the second
derivative of χ1. Introducing the new variables ξ � z1+z2, η � z1−z2, we obtain
this equation in the form

2γ
∂χ1

∂η
+
⎛⎝ 1

2a
+ 1√

η2 + ρ2
12

− 1

a − ξ − η
− 1

a + ξ − η

⎞⎠χ1 � 0,

where ρ2
12 � (x1 − x2)2 + (y1 − y2)2, and the variables ρ12, ξ are included in the

equation as parameters. Because of the linearity of this equation, one can solve it
separately for each of the four terms in parentheses. Then let us present χ1 in the
form χ1 � ϕ1ϕ2ϕ3ϕ4 and demonstrate the analysis for the first term which satisfies
the equation

γ
∂ϕ1

∂η
� − 1

2a
ϕ1.

Its solution is ϕ1 � C(ξ ) exp(−η/4aγ ) with the boundary condition ϕ1 → 1, if
z1 + z2 > 0, and z2 →∞, i.e., ϕ1(2ξ − 2a) � 1. This gives

ϕ1 � exp

(
− 1

2γ
− η − 2ξ

4γ a

)
for z1 + z2 > 0.

In a similar way one can find the expression for ϕ1 in the region z1 + z2 < 0 on
the basis of the boundary condition ϕ1 � 1, if z1 � −a, i.e., at η � −2a − 2ξ .
This yields

ϕ1 � exp

(
− 1

2γ
− η + 2ξ

4γ a

)
for z1 + z2 < 0.

Fulfilling the same operations for ϕ2, ϕ3, ϕ4 and then for χ2, we calculate the
integral (10.30) for the exchange interaction potential (10.28) and extract from this
the dependence on the distance between the nuclei. The result has the following
form:


(R) � εa(R)− εs(R) � A4F (γ )R
7

2γ −1
e−2Rγ , (10.31)

where A is the asymptotic coefficient for the atomic wave function in formula
(4.11), and function F (γ ) is the following:

F (γ ) � 2−1/γ−1γ−2−1/2γ �(
1

2γ
)
∫ 1

0
eu−1/γ (1− u)3/2γ (1+ u)1/2γ du. (10.32)

Table 10.3 contains values of F (γ ) for some values of the argument, and Table
10.4 lists the values of the numerical factor in expression (10.31) for the interaction
of hydrogen atoms and the atoms of alkali metals.
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Table 10.3. Values of the function F on the basis of formula (10.32).

γ 0.80 0.84 0.88 0.92 0.96 1 1.04

F 0.0918 0.0944 0.0968 0.0990 0.1011 0.1031 0.1050

γ 1.08 1.12 1.16 1.20 1.24 1.28 1.32

F 0.1067 0.1083 0.1098 0.1112 0.1124 0.1136 0.1148

Table 10.4. Parameters of the exchange interaction potential for identical atoms of the first
group of the periodical system of elements.

Atoms H Li Na K Rb Cs

γ 1 0.630 0.626 0.567 0.557 0.536

A2 4 0.58 0.56 0.28 0.24 0.17

100FA4 165 2.7 2.5 0.60 0.42 0.21

The criterion of the validity of the asymptotic expression (10.31) for the ex-
change interaction potential of atoms is (10.22), as well as the case of the ion–atom
exchange interaction potential. The other analogy corresponds to the next term of
expansion in the asymptotic theory which is of the order of 1/

√
R with respect to

the main term (10.31). In the same way, one can find the accuracy with which the
exchange interaction potential of two identical atoms can be expressed through the
asymptotic parameters of the atomic valence electrons. Indeed, the contribution of
regions which determine the normalization of the atomic wave functions into the
exchange interaction potential of atoms is of the order of ψ2(R) ∼ R2/γ−2e−2Rγ ,
so that this accuracy is of the order of R−3/2γ−1.

The principal difference, compared to the ion–atom exchange interaction po-
tential, is a different R-dependence of the exchange interaction potential of atoms
obtained on the basis of the asymptotic theory and within the framework of the
LCAO-model. In contrast to the ion–atom exchange interaction, in this case the
functions χ1, χ2 are equal to zero in the middle of the space region which deter-
mines the exchange interaction potential. Hence, the molecular wave functions of
the system under consideration differ, in principle, from the product of the atomic
wave functions. From this it follows that the LCAO-method, with the atomic wave
functions as a basis, gives at large R another power dependence on R for the ex-
change interaction potential of atoms other than that for the accurate asymptotic
result.

10.5 Repulsion Interactions of Atoms with Filled
Electron Shells

The long-range interaction potential of atomic particles and the exchange inter-
action potential are determined by different regions of electrons. Hence, the total
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interaction potential can be constituted as a sum of these. This is not strictly from
a mathematical standpoint because the exchange and long-range interaction po-
tentials have different dependence on the distance between nuclei, so that they
cannot be terms of the same asymptotic series. But it is convenient, in practice, at
separations where these interaction potentials have the same order of magnitude.
In particular, the interaction potential of two atoms with valent s-electrons is equal
to

Us,a(R) � Ul(R)± 1

2

(R), (10.33)

where Ul(R) is the long-range interaction potential of atoms, 
 is the exchange
interaction potential of atoms, the+ sign corresponds to the symmetric state, and
the − sign refers to the antisymmetric state. A long-range interaction potential
because of its nature only acts at large distances between atoms; at moderate
distances it disappears by transformations in interaction of Coulomb centers whose
field is partially shielded by valent electrons. The exchange interaction potential of
atoms, which is determined by the overlapping of electron orbits, is conserved at
moderate distances between the nuclei. This accounts for partially the shielding of
Coulomb charges of the nuclei. Thus one can use the exchange interaction potential
for a description of the atom interaction at moderate distances between them.

This model can be successful under certain conditions. If the exchange interac-
tion corresponds to attraction, it competes with the Coulomb repulsion of atoms.
Because both potentials contain a remarkable error, in this case such a description
cannot be valid. Hence, thismodel is suitable for the repulsive exchange interaction
potential. This potential must be small compared to the typical electron energies,
i.e., the distances between atoms are not small. This is the second requirement
for this model. These conditions are valid for the interaction of atoms with filled
electron shells when the interaction potential is not large. Below we consider this
interaction.

In the case of the interaction of atoms of the second group, four valent s-electrons
partake in the exchange interaction. The nature of the exchange interaction con-
nects an exchange by electrons which belong to different atoms. But in each
exchange only electrons with the same spin state can take part. Hence, in this
case, the exchange interaction is put into effect by two pairs of electrons. Thus, the
exchange interaction potential is 
(R), and this repulsion interaction potential is
given by formulas (10.31) and (10.32). Table 10.5 contains the parameters of this
interaction potential.

Let us consider the exchange interaction of atoms with valent p-electrons. If the
projection of the angular momenta of the interacting electrons onto the molecular
axis is m � 1, the result for valent s-electrons with the same radial wave function
must be multiplied by a factor of the order of θ4, where θ is a typical angle between
the radius-vector of the valence electron and the molecular axis. According to this
estimate, electrons with m � 1 give the contribution ∼ R−2 to the exchange
interaction potential compared to electrons with zero momentum projection (m �
0) onto the molecular axis.
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Table 10.5. Parameters of the exchange interaction potential for identical atoms of the
second group of the periodic system of elements.

Atoms γ A FA4

He 1.345 2.8 7.0

Be 0.829 1.9 1.2

Mg 0.756 1.5 0.44

Ca 0.678 0.96 0.069

Sr 0.652 0.87 0.046

Ba 0.620 0.76 0.026

Zn 0.830 1.7 0.78

Cd 0.813 1.6 0.60

Hg 0.878 1.7 0.86

In the case of the interaction of the identical atoms of inert gases we have that
the exchange interaction potential is determined by electrons with the momentum
projection m � 0 onto the molecular axis. One can use expression (10.31) for
this interaction potential with the following corrections. First, in this interaction
four electrons partake which have a zero momentum projection onto the molecular
axis. Second, comparing this case with the above case when each of the interacting
atoms has one s-electron, it is necessary to take into account that the angle wave
function of the p-electron on the axis is

√
3 times more than that in the case of

the valent s-electron. We finally obtain that the exchange interaction potential of
two atoms of inert gases with valent p-electrons is equal to 9
(R), and 
(R) is
given by formulas (10.31) and (10.32), where the parameters of the radial wave
functions for the valent electrons are used in this formula. Let us present the
exchange interaction potential of two identical atoms of inert gases in the form

U (R) � DR7/2γ−1e−2Rγ . (10.34)

Table 10.6 gives the parameters of this formula for the interaction of the identical
atoms of inert gases.

It is convenient to use the logarithm derivative for a description of the repulsion
interaction potential of two atoms with filled electron shells in some range of

Table 10.6. Parameters of the exchange interaction potential for the identical atoms of inert
gases.

Atoms Ne Ar Kr Xe

γ 1.26 1.08 1.03 0.944

A 1.9 2.7 2.8 2.0

D 15 51 54 14
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Table 10.7. The logarithmic derivation n for the repulsion interaction potential of two atoms
of inert gases at the interaction energy 0.3 eV.

Atoms He Ne Ar Kr Xe

He 5.9 5.6 5.2 5.5 5.2

Ne — 7.6 6.6 7.6 6.8

Ar — — 6.1 7.0 5.9

Kr — — — 7.7 7.1

Xe — — — — 6.4

separations which is given by

n � −d lnU (R)

d lnR
. (10.35)

Correspondingly, the interaction potential of two atoms in this region of distances
has the following form:

U (r) � Uo

(
Ro

R

)n

, (10.36)

where ro, Uo are the parameters. The parameter n characterizes the sharpness
of the interaction potential. Table 10.7 contains values of this parameter for the
interaction of atoms of inert gases at the distance where the interaction potential
equals 0.3 eV. As is seen, this parameter is high enough to provide the validity of
the hard sphere model for collisions of these atoms.

If the exchange interaction potential is responsible for the interaction of atoms
at moderate distances between them, we have the simple relation for the parameter
n as follows from the comparison of formulas (10.34) and (10.36):

n � 2Rγ − 7

2γ
+ 1. (10.37)

Table 10.8 compares the real value of the parameter n with that obtained from
formula (10.37) for the interaction of two identical atoms of inert gases at a distance
which corresponds to the repulsive interaction potential 0.3 eV. In this table ro is
the corresponding distance between atoms for the real interaction potential andRo

corresponds to the interaction potential in the form (10.36). From these examples
it follows that the asymptotic expression for the exchange interaction potential of
two identical atoms with filled electron shells is suitable for a rough description
of the interaction at moderate distances between them.

10.6 Exchange Interactions of Different Atoms

The expressions obtained for the exchange interaction potentials of an ion with
the parent atom or for two identical atoms can be generalized for the interaction of
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Table 10.8. Parameters of the repulsion of two identical atoms of inert gases at the interaction
energy 0.3 eV.

ro, Å n Ro 2rγ − 3.5/γ + 1

He 1.58. 5.9 1.62 6.4

Ne 2.07 7.6 2.01 8.1

Ar 2.85 6.1 3.03 9.4

Kr 2.99 7.7 3.33 9.2

Xe 3.18 6.4 3.43 8.6

different atomic particles with close binding energies of electrons. This requires
an additional criterion that the main contribution to this value is determined by the
regions of electron coordinates where the electrons are found between the nuclei
and near the molecular axis. Let us begin from the ion–atom exchange interaction
by taking the electron binding energies of each atomic core to be γ 2/2 and β2/2,
so that the asymptotic expressions for the radial electron atomic wave functions
(4.11) in the field of the first and second atomic cores are the following:

ψat(r) � A1r
1/γ−1e−rγ , ϕat(r) � A2r

1/β−1e−βr .

Repeating the operations for the deduction of the asymptotic expression (10.20)
in the case of identical atomic particles we have, for the exchange interaction
potential of an atom and ion of different sorts with valent s-electrons,


 � Rψ

(
R

2

)
ϕ

(
R

2

)
,

where ψ(r), ϕ(r) are the molecular wave functions which are transformed into
the corresponding atomic wave functions ψat(r), ϕat(r) when the field of another
ion is small enough. Expressing the molecular wave functions through the atomic
functions by the same method as above ψ(r) � ψat(r)χ1, ϕ(r) � ϕat(r)χ2, we
will find the previous quasi-classical expressions for the functions χ1, χ2. Then
we have the expression for the ion–atom exchange interaction potential instead
of formula (10.20) in the case of the s-state of the valent electrons when they are
located in the field of the atomic cores


 � A1A2R
1/β+1/γ−1 exp

[
−R

2
(β + γ )− 1

2β
− 1

2γ

]
. (10.38)

This formula is a generalization of formula (10.20) and is transformed into (10.20)
in the case of the identical atoms.

Let us analyze the criterion of validity of this expression. Along the asymptotic
conditions (10.22), this requires that the interaction potential is determined by
the region of electron coordinates between the nuclei. In reality, this leads to the
criterion

R |β − γ | � 1. (10.39)
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Generalization of expression (10.38), to the case of nonzero orbital electron mo-
menta in atoms, has a similar form to the case of the interaction of an ion with
the parent atom because the angle dependence for the electron wave functions is
similar in both cases.

In the same way one can generalize the asymptotic expression (10.31), for the
exchange interaction potential of two identical atoms with valent s-electrons, to
the case of the interaction of different s-atoms with close binding energies of
electrons. Repeating the operations which we use for identical atoms we obtain,
for the exchange interaction potential of two different one-electron atoms with
valent s-electrons,


(R) � A2
1A

2
2F (β, γ )R2/β+2/γ−1/(β+γ )−1 exp

[−R(β + γ )
]
. (10.40)

Note that the numerical coefficient F (γ ) in formula (10.32) depends on γ not
being strong and the parameters β and γ are close within the framework of the
validity of this version of the asymptotic theory according to the criterion (10.39).
This allows us to use a simple relation

F (β, γ ) � F

(
β + γ

2

)
,

where the function F (x) is given by formula (10.32) and its values are given in
Table 10.3.

If the criterion (10.39) violates strongly, the exchange interaction potential is
determined by the electron region near an atom with a larger ionization potential.
Belowweconsider, as an example of this, the interactionpotential of the excited and
nonexcited atoms. Since this is determined by an electron region near a nonexcited
atom, it is convenient to take the surface of a nonexcited atom as the integration
surface S in formula (10.30). One can deduct this formula on the basis of the
Schrödinger equations for the wave functions of an excited electron �(r), and
	(r) in the cases of the absence and presence of a nonexcited atom

−1

2

�+ Vo� � Eo�, −1

2

	 + Vo	 + V1	 � E1	,

where Vo is the electron interaction potential with its own atomic residue, V1 is the
interaction potential with a nonexcited atom, andEo,E1 are the electron energies in
the absence and presence of a nonexcited atom, so that the interaction potential of
the related atoms is U (R) � E1−Eo. Making standard operations by multiplying
the first equations by 	, multiplying the second equations by � (for simplicity
we assume 	 and � to be real), and integrating the result over a nonexcited atom
volume, we then obtain

U (R) �
∫
S

(	∇�−�∇	) ds. (10.41)

We choose a surface S to be found far from the nonexcited atom, so that V1 � 0
on this surface. The wave function of an electron with zero energy near an atom
at distance r from its nucleus has the form C(1 − L/r) where L is the electron–
atom scattering length. The requirement of the coincidence of functions 	(r) and
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�(r) far from the perturbation atom gives 	(r) � �(r)(1 − L/r). On the basis
of this relation we obtain, for the exchange interaction potential of an excited and
nonexcited atoms,

U (R) � 2πL�2(r). (10.42)

This formula, which is sometimes called the Fermi formula, determines a shift
of the spectral lines of photons emitted as a result of the radiative transitions of
excited atoms in the presence of a gas of neutral atoms.

In the same way let us consider the exchange interaction of positive and negative
ions in the case when the binding energies of the electron in the negative ion and
excited atom γ 2/2 are coincident. Then taking as the surface S in formula (10.41)
the boundary of the atom which is a base of the negative ion we obtain, for the
exchange interaction potential,

U (R) �
∫
S

(ψ∇ϕ − ϕ∇ψ) ds, (10.43)

where the wave functions ψ and ϕ transfer into the wave functions of the excited
atom and negative ion when one can neglect the field of the other atomic cores.
We use expression (7.8) for the electron wave function in the negative ion

ϕ(r) � B

√
γ

2π
e−γ r/r,

and take it near the atom to be independent of the field of the positive ion. Here r is
an electron distance from the negative ion nucleus, and γ 2/2 is the binding energy
in the negative ion. Since the main dependence of the electron wave function of
the excited atom at distance r2 from its center is e−γ r2 , the electron wave function
on the surface S is equal to

ψ(r) � ψ(R) exp(γR − γ |R − r|) � ψ(R) exp(γ r cos θ ),

where θ is the angle between the vectors r andR. Integrating over the atom surface
S and using the above relations, we finally find the following expression for the
exchange interaction potential of the negative and positive ions


(R) � 2B
√

2πγψ(R). (10.44)

Let us use this formula in the case of the exchange interaction of a negative ion
with the parent atom. Then, on the basis of formula for the wave function of the
valent s-electron (7.8) in the negative ion, and formula (10.43) we obtain


(R) � 2Bγ e−γR/R. (10.45)

A similar formula follows from the general expression 
 � Rψ2(R/2) for the
valent s-electron case, where ψ(r) is the molecular wave function of the electron
which now coincides with the atomic wave function because of the absence of a
Coulomb interaction and which is connected to the radial wave function ϕ(r) by
the following formula ψ(r) � √4πϕ(r).
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Let us consider one more case of the exchange interaction of atomic particles
of different sizes. If an atom interacts with an excited atom of the same sort, an
additional symmetry arises. This corresponds to the reflection of electrons in the
symmetry plane which is perpendicular to the line joining the nuclei and bisects
it. In order to extract this symmetry, let us take one electron to be excited and the
other one to be nonexcited, so that we obtain two combinations of the basis wave
functions 	1 � ψ(1a)ϕ(2b), 	1 � ψ(1b)ϕ(2a), where we number the valent
electrons by the ciphers 1, 2 and the nuclei by the letters a, b; ψ , ϕ are the wave
functions of the nonexcited and excited electrons. Let us take the Hamiltonian of
electrons in the form (10.29) and divide it into two parts

Ĥ � −1

2

1 − 1

2

2 − 1

r1a
− 1

r1b
− 1

r2a
− 1

r2b
+ 1

|r1 − r2| +
1

R
� ĥ1 + ĥ2,

so that

ĥ1 � −1

2

1 − 1

r1a
− 1

r1b
+ 1

R
, ĥ2 � −1

2

2 − 1

r2a
− 1

r2b
+ 1

|r1 − r2| .

If we take the first electron to be located near the first Coulomb center, and the
second electron to be located near the second Coulomb center, and assume the size
of the electron orbit of the first electron to be small in comparison with that of the
second electron, formula (10.25) leads to the clear and simple expression for the
exchange interaction potential


 � 
ia(1)S2, (10.46)

where 
ia(1) is the exchange interaction potential for the interaction of a nonex-
cited atomwith its ion, S2 is the overlapping integral for the excited electron, so that
in the case of the nonexcited s-electrons 
ia(1) is determined by formula (10.20),
and the overlapping integral is given by the formula S2 �

∫
ϕ(1a)ϕ(2a) dr, so

that ϕ(1a), ϕ(2a) are the atomic wave functions in the field of the corresponding
center.

Note that although the above examples do not include all the possible cases of the
exchange interaction of atomic particles, they reflect the nature of this interaction
and give a representation about its character.

Problems

Problem 10.1. Determine the potential of the long-range interaction of highly
excited and nonexcited atoms at large separations.

Take the interaction operator according to formula (10.9), V̂ (R) � 3DzQzz/R
4,

where Dz is the projection of the dipole moment operator of a nonexcited atom
onto the molecule axis and Qzz is the component of the quadrupole moment of the
excited atom. The interaction potential of atoms corresponds to the first order of
the perturbation theory with respect to the quadrupole moment of the excited atom
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and to the second order of the perturbation theory with respect to the nonexcited
atom. Then we obtain, for the interaction potential,

U (R) � 3αQ

R6
, (10.47)

where α is the polarizability of the nonexcited atom, and Q is the quadrupole
moment of an excited electron in its atom.

Problem 10.2. Determine the interaction potential of two atoms of the same kind
if one is found in the ground S-state and the other one is found in the resonantly
excited P -state.

On the basis of formula (10.8)wehave, for the interaction potentials in the indicated
states of the system of interacting atoms,

Usσ � −2d2

R3
, Uaπ � − d2

R3
, Usπ � d2

R3
, Uaσ � 2d2

R3
, (10.48)

where R is the distance between atoms, the subscripts s and a characterize the
symmetry of thewave functions of the state (symmetric and antisymmetric, respec-
tively) for the reflection of electrons in the symmetry plane which is perpendicular
to the axis joining the nuclei and bisects it, and the subscripts σ , π correspond to
the projection of the momentum of the P -atom onto the molecular axis which is
equal to zero and one, respectively. Next, the matrix element d is introduced as
nd � 〈s|D|pσ 〉, where n is the unit vector which is directed along the axis.

Let us transfer from the symmetric and antisymmetric states of the quasi-
molecule to the even and odd states which are usually used. The parity of states
of such a symmetric system corresponds to the inversion of electrons with respect
to the origin which is located in the middle of the molecular axis. In this case
the inversion transformation 1a → 1b, 1b → 1a, 2a → 2b, 2b → 2a (1, 2 are
the numbers of electrons, a, b are the numbers of nuclei) causes the simultaneous
transformation of the electron coordinates x → −x, y → −y, z → −z near the
center where the electron is located. The total transformation of the spatial wave
function of electrons depends on the parity of the wave function with respect to
the transposition of electrons which is determined by the total electron spin of the
system. Note that the inversion of the electron coordinates x → −x, y → −y,
z → −z near the center where the p-electron is located leads to a change of the
sign of the electron wave function. From this we establish the correspondence be-
tween the quantum numbers of the quasi-molecule. Indeed, we find that the states
1�u, 3�g correspond to state σs, the states 3�g , 1�u correspond to state πs, 1�g ,
3�u correspond to state σa, and the states 1�g , 3�u correspond to state πa.

Problem 10.3. Evaluate the possibility of the existence of the bound state for the
molecular hydrogen ion H+2 in the odd

2�u-state.

The interaction potential in this state is given by formula (10.33) with the use of the
polarization interaction potential as a long-range potential, and formula (10.21)
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for the exchange interaction potential

U (R) � − α

2R4
+ 2Re−R−1, (10.49)

where the polarizability of the hydrogen atom is α � 9/2. This potential has the
minimum U (Ro) � −5.8 · 10−5 at Ro � 12.8. This function is equal to zero at
R � 10.8. This character of the interaction potential allows us to model it by the
cut-off polarization potential

U (R) � ∞, R < R1; U (R) � −α/(2R4), R > R1.

The parameter R1 in this potential lies between 11 and 13, and the wave function
of nuclei 	 satisfies the Schrödinger equation

− 1

2μ

1

R

d2

dR2
(R	)− α

2R4
	 � − γ 2

2μ
	 and 	(R1) � 0

where μ is the reduced mass of nuclei and γ 2/2μ is the binding energy of the
nuclei. For a small binding energy we assume the parameters to be αμγ 2 � 1.
Then one can divide the region of R into two parts, so that at small distances one
can neglect the right-hand side term and at large distances one can neglect the
second term of the left-hand side of this equation. Combining these solutions in
an intermediate region where both approaches are valid, we determine a number
of bound states of this system. Thus we have

Psi � C1 sin

(√
αμ

R
− δ

)
, R1 < R � 1

γ
,

and from the condition 	(R1) � 0 we have δ � √
αμ/R1. In the other region

R 
 √
αμ, we find

	 � C2 exp(−γR)/R.

Combining these solutions in a region
√
αμ � R � 1/γ , we obtain tan δ �

γ
√
αμ. From this it follows that if δ > πn, where n is a whole number, there

are n bound states. In the case under consideration the number of bound states of
the nuclei corresponds to a whole part of the value

√
αμ/(πR1) � 21/R1. Since

11 < R1 < 13, one can conclude that there is one bound state of the hydrogen
molecular ion in the odd electron state 2�u.

Problem 10.4. Determine the exchange interaction potential for the hydrogen
atom in the ground state and multicharged ion at large separations when the fields
of the proton and multicharged ion are separated by a barrier.

Let us use formula (10.43) for the exchange interaction potential which has the
form


(R) �
∫
S

(ψH∇ψi − ψi∇ψH ) ds,

where ψH is the electron wave function which is centered on the proton, and a
multicharged ion is the center of the wave function ψi . We choose, as a surface
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S in the above formula, the plane that passes through the top of a barrier which
separates the proton and multicharged ion fields.

This plane crosses the molecular axis at a distance R1 � R(1 + √Z)−1 from
the proton and at a distance R2 � R

√
Z(1 + √Z)−1 from the multicharged ion.

Take into account that the main distance dependencies, of the wave functions for
the electron located in the field of the proton and multicharged ion, are equal to
ψH (r) ∼ exp(−γH r), and ψi(r) ∼ exp(−γir). Then, evaluating the integral over
a surface S, we get


(R) � 2π (γH + γi)

γH/R1 + γi/R2
ψH (R1)ψi(R2) � 4πR

√
Z

(1+√Z)2
ψH (R1)ψi(R2). (10.50)

We use here that γH � γi � 1.As amatter of fact, this formula is the generalization
of formula (10.19) for the case of different Coulomb centers. The condition that
the barrier separates regions of the action of the fields of different Coulomb centers
has the following form in this case:

R 
 4
√
Z.

The wave functions ψH (r), ψi(r) in the expression for the exchange interaction
potential are the molecular wave functions, i.e., they include the action of the
field of another particle. Let us express them through the electron wave functions
ϕH (r), ϕi(r) of the isolated hydrogen atom and hydrogenlike ion on the basis of the
standard method. Then we present the connection of these functions in the form
ψH (r) � χHϕH (r), ψi(r) � χiψi(r), and determine functions χH , χi as a result
of quasi-classical solution of the Schrödinger equation in neglecting of the second
derivatives from χH , χi . This yields

χH �
(
R

R2

)Z

exp

(
−ZR1

R

)
, χi � R

R1
exp

(
− R

R2

)
.

From this we have for the exchange interaction potential, using the expression
for the electron wave function in the hydrogen atom ψH (r) � e−r/

√
π :


(R) � 4R
√
π

(
1+ 1√

Z

)Z−1

ψi(
R
√
Z

1+√Z
) exp

(√
Z − R

√
Z

1+√Z

)
. (10.51)

In particular, in the case of the interaction of the hydrogen atom and proton
(Z � 1, ψi � exp(−R/2)/

√
π ) we obtain from this formula 
(R) � 4Re−R−1,

that is, formula (10.21).

Problem 10.5. Obtain the expression for the exchange interaction potential of the
hydrogen atom in the ground state and a multicharged ion of charge Z 
 1. The
electron angular momentum l in the field of a multicharged ion is zero.

Along with the expression of the previous problem for the exchange interaction
potential in the system under consideration, we use the quasi-classical expression
for the wave function of a highly excited electron in the field of the multicharged
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ion which is found in Problem 6.1 and has the form, in this case,

Rn0(r) � 1

r
· C

2
√|p| exp

(
−
∫ r

ro

|p| dr
)
,

where

|p| �
√
γ 2 − 2Z

r
, γ � Z/n, ro � 2n2/Z, C �

√
2/(n3/2

√
πZ).

From this we obtain, for the exchange interaction potential,


n0 � 4

n3/2
·
√

2

π
· b

1− b
·
(

1−√b

1+√b

)√b

exp[−Rf (b)], (10.52)

where

b �
(

1+ 2Z

R

)−1

, f (b) � 1− 1− b

2
√
b

ln
1+√b

1−√b
.

In the limiting cases this formula gives


n0 � 2

n3/2
·
√

2

π
· exp[−R2

3Z
],

√
Z � R � Z; (10.53)


n0 �
√

2

πZ
·
(

2R

Z

)Z

· e−R, R 
 Z.

Let us analyze the criterion of validity of the above formula for the exchange
interaction potential. First, we assume that this interaction is determined by tails
of the electron wave functions for the ground state of the hydrogen atom and a
highly excited state of the electron in the Coulomb field of charge Z. This leads to
the condition

Rf (b)
 1. (10.54)

The other condition requires a closeness of the electron energies for bound states
of the electron in the fields of the proton and multicharged ion. The difference of
these energies is equal to


ε � 1

2
+ Z − 1

R
− Z2

2n2
.

Since this value is small, it chooses certain values of the principal quantum number
of the electron in the multicharged ion field. It is necessary to compare the energy
difference with the height of the barrier which separates fields of the proton and
multicharged ion. The barrier height at a given distance between charges is equal
to

Umax(R) � 1

2
− 2

√
Z + 1

R
.
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The criterion of validity of the above asymptotic formulas for the exchange
interaction potential is


ε � Umax.

One more condition requires that the exchange interaction potential is small com-
pared to the barrier height. This criterion is fulfilled if the previous ones are
valid.

Problem 10.6. Connect the exchange interaction potentials of the hydrogen atom
andmulticharged ion for cases when the electron orbital momentum l in the field of
the multicharged ion satisfies the condition l � Z, where Z is the nuclear charge.

We are working with formula (10.50) of Problem 10.4 for the exchange interaction
potential of the hydrogen atom andmulticharged ion. Let us give the criterionwhen
this formula is valid for electron states with an orbital momentum l. Obtaining this
formula, we assume the electron wave function of the multicharged ion to be
independent of the angle θ between the electron radius-vector and molecular axis.
This is valid for lθ � 1 and, since θ ∼ ρ/R, where ρ is an electron distance from
the axis, and the main contribution into the integral gives ρ2 ∼ R

√
Z, this requires

fulfillment of the condition

l2 � R
√
Z. (10.55)

The electron state in the field of themulticharged ion is described by the quantum
numbers nl. Let us connect the electron wave functions with the quantum numbers
nl and n0. We have, from the quasi-classical expression of the radial electron wave
function Rnl(r), for the electron quantum number nl,

Rnl(r) � Rn0(r) exp

[
−
∫ r

ro

dr

√
γ 2 − 2Z

r
−
∫ r

rl

dr

√
γ 2 − 2Z

r
+ l(l + 1)

r2

]
,

where γ 2/2 is the electron binding energy and r0, rl are the turning points for the
classical electron motion at the indicated orbital momenta; at these distances from
the center the corresponding root is zero. From this it follows that, at large r ,

Rnl(r) � Rn0(r) exp

[
− l(l + 1)γ

2Z

]
, r 
 Z/γ 2.

We take into account that the resonance with the hydrogen atom corresponds to
γ � 1, and the angular wave function is equal to, at the molecular axis, Yl0(θ, ϕ) �√

(2l + 1)/(4π )Pl(cos θ). From thiswe have the following connection between the
exchange interaction potential and the electron orbital momentum


nl �
√

2l + 1e−l(l+1)/2Z
n0. (10.56)

Problem10.7. Construct thematrix of the exchange interaction potential of an ion
and atom with valent p-electrons. Determine the exchange interaction potential
for this system if the quantization axis, on which the momentum projection is zero,
forms an angle θ with the molecular axis.
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Our goal is to construct the ion–atom exchange interaction potentials on the basis
of formula (10.25) if the atomic particles have p-electron shells and are found in
the ground states. For the atoms of Group 3 (one valent p-electron) and the atoms
of Group 8 (one valent p-hole) of the periodic table of elements, when the ground
states of the atom and ion are 1S and 2P , the exchange interaction potential of the
interacting atom and ion, according to formula (10.25), gives,


(ML) � ML � −1 ML � 0 ML � +1


11 
10 
11

, (10.57a)

whereML is the orbital momentum projection for the atom (the elements of Group
3) or ion (the elements of Group 8). For the elements of Groups 4 and 7 of the
periodic table, when the ground electron states of the atom and ion are 3P and 2P ,
the matrix of the exchange interaction potential according to formula (10.25) is


(ML′ ,ML) � 5

3
·

ML � −1 ML � 0 ML � +1

ML′ � −1 
10 
11 
10

ML′ � 0 
11 2
11 
11

ML′ � 1 
10 
11 
10

, (10.57b)

where ML′ , ML are the projections of the orbital ion and atom momenta. For the
elements of Groups 5 and 6 of the periodic table, with the ground states of the
atom and ion 4S and 3P , the matrix of the exchange interaction potential has the
form


(ML′ ) � 7

3
· ML′ � −1 ML′ � 0 ML′ � 1


11 
10 
11

. (10.57c)

We take as a quantization axis the direction in which the projection of the
electron momentum is zero, and denote by θ the angle between the quantization
and molecular axes. By definition, the exchange interaction potential 
(θ) of an
atom and its ion, with valent p-electrons, is equal to


(θ ) � 1

3

∑
M

|d1
M0(θ)|2
1M � 4π

3

∑
M

|Y1M (θ, ϕ)|2
1M,

where d1
M0(θ ) is the Wigner function of rotation and Y1M (θ ) is the spherical func-

tion, so that 4π |Y1M (θ)|2 is the probability of finding a state of a momentum
projection M at angles θ, ϕ with respect to the molecular axis. The spherical
function satisfies the normalization condition∫ 1

−1
d cos θ

∣∣Y1M (θ )
∣∣2 � 1

4π
,

and −1 ≤ cos θ ≤ 1. From this we have, for the exchange interaction potential
of an atom and parent ion in the case of Groups 3 and 8 of the periodic table of
elements,


(θ ) � 
10 cos2 θ +
11 sin2 θ. (10.58a)
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Thematrix (10.57b) gives the ion–atomexchange interaction potential as a function
of the angles between the quantization and molecular axes for elements of Groups
4 and 7 of the periodic system


(θ ) � 5

3

[

10 sin2 θ1 sin2 θ2 +
11(cos2 θ1 + cos2 θ2)

]
, (10.58b)

where θ1, θ2 are the angles between the molecular axis and the quantization axes
for the atom and ion, respectively so that the electron momentum projection onto
the quantization axis is zero. In the case of Groups 4 and 7 of the periodic system
the exchange interaction potential is similar to that for atoms of Groups 3 and 8
and has the form


(θ ) � 7

3
· (
10 cos2 θ +
11 sin2 θ

)
(10.58c)

Although we are restricted by the ground states of the ion and parent atom, this is
a general scheme of construction of the ion–atom exchange interaction potential.
Being averaged over the total quasi-molecule spin I , the exchange interaction
potential depends on the ion m and atom ML angular momentum projections onto
the molecular axis. This corresponds to the LS-coupling scheme for atoms and
ions, i.e., we neglect the spin-orbital interaction. Hence, the above expressions
correspond to the following hierarchy of the interaction potentials

Vex 
 U (R),
(R), (10.59)

where Vex is a typical exchange interaction potential for valent electrons inside the
atom or ion, U (R) is the long-range interaction potential between the atom and
ion at large separations R, and 
(R) is the exchange interaction potential between
the atom and ion. Within the framework of the LS-coupling scheme for atoms and
ions, we assume the excitation energies inside the electron shell to be relatively
large, and this criterion is fulfilled for light atoms and ions. In the same manner one
can construct the exchange interaction potential matrix for excited states within a
given electron shell.

Problem10.8. Formulate the selection rules for the ion–atom interactionpotential
with the transition of one electron.

Because the exchange interaction potential is determined by the transition of one
electron from a valent electron shell and a transferring electron carries a certain
momentum and spin, additional selection rules occur for one-electron interaction.
In particular, in the case of a transition of a p-electron, the selection rules have the
form

|L− l| ≤ 1, |S − s| ≤ 1/2. (10.60)

These selection rules follow the properties of the Clebsh–Gordan coefficients in
formula (6). If these conditions are violated, the ion–atom exchange interaction
potential is zero in a scale of one-electron interaction potentials. Table 10.9 lists
the states of atoms and their ions with valent p-electrons for which the ion–atom
one-electron exchange interaction potential is zero.
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Table 10.9. The electron configuration and state of an ion and the parent atom with valent
p-electrons, so that a one-electron transition is forbidden between these states, and the
exchange interaction potential of the ion and the parent atom is zero.

Ion state Atom state

p2(1D) p3(4S)

p2(1S) p3(4S)

p2(1S) p3(2D)

p3(4S) p4(1D)

p3(4S) p4(1S)

p3(2D) p4(1S)

Problem 10.9. Within the framework of the delta-function model for a negative
ion, analyze the behavior of the electron terms of the quasi-molecule consisting of
a negative ion and atom with a valent s-electron.

The delta-function model for the negative ion assumes a radius of the action of the
atom field in a negative ion to be small compared to the size of the negative ion.
Hence, one can consider the atomic field as having the delta-function form. Then
it is convenient to change the action of the atomic field on a valent electron by a
boundary condition for the electron wave function. Let us consider the behavior of
an s-electron in the field of two atomic centers on the basis of this model. Outside
the atoms the electron wave function satisfies the Schrödinger equation

−1

2

	 � −1

2
α2	,

where 1
2α

2 is the electron binding energy. The solution of this equation has the
form

	 � Ae−αr1/r1 + Be−αr2/r2,

where r1, r2 are the electron distances from the corresponding nucleus. The bound-
ary conditions for the electron wave function near the corresponding atom have
the form

d ln(r1	)

dr1
(r1 � 0) � −κ1,

d ln(r2	)

dr2
(r2 � 0) � −κ2, (10.61)

where 1/κ is the electron scattering length for the atom or κ2/2 is the electron
binding energy in the negative ion formed on the basis of this atom.

We have, from the above boundary conditions,

−κ1 � −α + B

A
e−αR/R; −κ2 � −α + A

B
e−αR/R,

where R is the distance between atoms. Excluding the parameters A and B from
this equation, we obtain

(α − κ1)(α − κ2)− e−2αR/R2 � 0. (10.62)
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The solution of this equation allows us to find the dependence of the elec-
tron binding energy 1

2α
2 on the distance between atoms. In particular, the related

electron term can intersect the boundary of a continuous spectrum (α � 0). The
electron bond is broken at Rc � √α1α2 �

√
L1L2, where L1, L2 are the electron

scattering lengths for the corresponding atom.

Problem 10.10. An electron is located in the field of two identical atoms with spin
1/2. One can construct the negative ion with zero spin on the basis of the atom.
Determine a distance between the negative ion and parent atom when the electron
term intersects the boundary of the continuous spectrum within the framework
of the model of the delta-function for the electron–atom interaction. Express the
distance of the intersection of terms through the electron scattering lengths L−
and L+ for the singlet and triplet states of the electron–atom system.

Weuse themethod of the previous problem taking into account a different character
of the electron–atom interaction depending on their total spin. Accounting for the
total spin of the interacting atom and negative ion to be 1/2, compose the electron
wave function in a space between the atoms in the form

	 � �1(r)Sa +�2(r)T −a +�3(r)T +a � 	1(r)Sb +	2(r)T −b +	3(r)T +b ,

where the nuclei are denoted by a and b, the spin wave functions S, T correspond
to the atom spin zero and one, the subscript of the spin wave function indicates
a nucleus where the negative ion is formed, and the subscript of the spin wave
function gives the spin projection of a free atom. These spin functions have the
form

Sa � η−(b) · 1√
2
[η+(a)η− − η−(a)η+],

T −a � η−(b) · 1√
2
[η+(a)η− + η−(a)η+], T +a � η+(b)η−(a)η+,

and similar notations correspond to the spin functions Sb, T
−
b , T +b , when the elec-

tron is located in a field of a b-atom. Here the subscript of the spin function η

indicates the spin projection onto a given direction (± 1
2 ), the argument gives an

atom to which correspond these spin wave functions, and the electron spin function
does not contain an argument. Using the connection between the spin wave func-
tions Sa , T −a , T +a and Sb, T

−
b , T +b , one can obtain the following relation between

the above coordinate wave functions

	1 � �1 −�2

2
+ �3√

2
, 	2 � −�1 −�2

2
+ �3√

2
, 	3 � �1 +�2√

2
.

In the region between the atoms the coordinate wave functions satisfy the
Schrödinger equation

−1

2

	 � −α2

2
	,



282 10. Interactions Involving Atoms and Ions

where α2/2 is the electron binding energy. Therefore, we present the electron
coordinate wave functions in the form

�i � Aie
−αra /ra + Bie

−αrb/rb, 	i � Cie
−αra /ra +Die

−αrb/rb,

where i � 1, 2, 3, and ra , rb is the electron distance from the corresponding
nucleus. Using the boundary conditions (10.61) and expressing the asymptotic
behavior of the electron wave functions near atoms through the scattering lengths
L0 and L1 for the total spin of the atom and electrons 0 and 1, respectively, we
have, for the behavior of the above wave functions near the corresponding atoms,

�1 � const

(
1

ra
− 1

L0

)
, �2,3 � const

(
1

ra
− 1

L1

)
, if ra → 0,

	1 � const

(
1

rb
− 1

L0

)
, 	2,3 � const

(
1

rb
− 1

L1

)
, if rb → 0.

From this we obtain the following set of equations:(
α − 1

L0

)
A1 − e−αR

R
B1 � 0,

(
α − 1

L1

)
A2,3 − e−αR

R
B2,3 � 0,(

α − 1

L0

)
C1 − e−αR

R
D1 � 0,

(
α − 1

L1

)
C2,3 − e−αR

R
D2,3 � 0.

This gives the equation for the energy of the electron terms[(
α − 1

L0

)2

− 1

R2
e−2αR

]{
1

R4
e−4αR − 1

4R2
e−2αR

×
[(

α − 1

L0

)2

+ 6

(
α − 1

L0

)(
α − 1

L1

)
+
(
α − 1

L0

)2
]

+
(
α − 1

L0

)2 (
α − 1

L0

)2
}
� 0.

This equation is the product of two factors so that the first factor corresponds to the
total spin 3/2, and the second factor corresponds to the total spin of the system 1/2.
Since we consider the interaction involving the negative ion whose spin is zero,
only the second factor is of interest. This factor is divided into two factors:[

1

R2
e−2αR −

(
α − 1

L0

)(
α − 1

L1

)
+ 1

2R
e−αR

(
1

L0
− 1

L1

)]
,[

1

R2
e−2αR −

(
α − 1

L0

)(
α − 1

L1

)
− 1

2R
e−αR

(
1

L0
− 1

L1

)]
� 0.
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The first factor corresponds to the odd state of the system and the second factor
corresponds to the even state. This symmetry relates to the reflection of the electron
with respect to the plane which is perpendicular to the molecular axis and bisects
it. The intersection of the electron term with a boundary of continuous spectrum
only takes place in the odd state. Since this corresponds to the equation α � 0, we
obtain the following relation for the distance of the intersection Rc:

Rc � 4

[√
1

L2
0

+ 1

L2
1

+ 14

L0L1
+ 1

L0
− 1

L1

]−1

. (10.63)

In particular, for the case of the interaction of the hydrogen atom with its negative
ion (L0 � 5.8, L1 � 1.8) this distance is Rc � 4.4.

Problem 10.11. Determine the asymptotic dependence on a distance between
atoms for the exchange interaction potential of the two-charged ion with the parent
atom at large separations.

Use expression (10.26) for the exchange interaction potential


 � 2
〈
ψ1

∣∣Ĥ ∣∣ψ2
〉− 2εo

〈
ψ1|1|ψ2

〉
,

where εo is the energy of the isolated ion and atom and ψ1, ψ2 are the wave
functions of the interacting particles, so that in the first case the second particle
is the ion and in the second case the electron wave function is centered on the
second nucleus. Let us analyze the general structure of this integral. If we remove
one electron from an atom, the second electron is located in the field of a two-
charged ion. Hence the asymptotic behavior of the electron wave function makes
valent electrons nonequivalent. Thus, take the electron wave function in the form
ψ1 � P̂ψ(r1a)ϕ(r2a), where the operator P̂ transposes the electrons, r1a , r2a is the
distance of the corresponding electron from the center a, and the one-electronwave
functions ψ(r), ϕ(r) have a different asymptotic form. This chooses the form of
the overlapping integrals, and the exchange interaction potential has the following
structure:


 ∼ 〈ψ(r1a)ϕ(r2a)
∣∣Ĥ ∣∣ψ(r2b)ϕ(r1b)

〉
.

We take into account that the wave functions ψ(r), ϕ(r) have a different depen-
dence on the distance from its nucleus. The wave function of a valent electron with
a smaller binding energy has the following asymptotic form in the field of a for-
eign atomic core, as follows from the quasi-classical solution of the Schrödinger
equation in this region

ψ(r1a) ∼ r
1/γ−1
1a e−γ r1a

(
R

r1b

)2/γ

.

As follows from the structure of the exchange interaction potential, it is de-
termined by overlapping integrals when a weakly bound electron penetrates the
region of a foreign atomic particle and overlaps the wave functions corresponding
to a stronger bound electron. Then the exchange interaction potential is estimated
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as 
 ∼ ψ2(ra → R, rb ∼ 1). This leads to the following dependence:


 ∼ R6/γ−2e−2Rγ . (10.64)

In particular, in the case of the interaction of an α-particle with a helium atom this
dependence is


 ∼ R2.45e−2.69R.



CHAPTER 11

Diatomic Molecules

11.1 Quantum Numbers and Types of Bonds in
Diatomic Molecules

Diatomic molecules are the simplest systems of bound atoms. The analysis of a
diatomic molecule is based on a small parameter m/M , where m is the electron
mass and M is a typical nuclear mass. In the first approximation of expansion
over this small parameter, one can consider the nuclei to have infinite mass, so
that the molecular parameters depend only on the distance R between the nuclei.
The dependencies of the energy En(R) of certain states of a diatomic molecule on
distance R between the nuclei are called the electron terms of the molecule.

In particular, Fig. 11.1 contains the lowest electron terms of the CN-molecule
which are typical for stable molecular states. Below we consider the nuclear states
of the molecule at weak excitations. Then the electron energy can be expanded
near the bottom of the potential well and has the form

En(R) � Eno − k(R − Re)
2/2,

where the distance Re corresponds to the energy minimum and k � ∂2En/∂R
2
e .

The Schrödinger equation for the nuclear wave function 	 is given by

− h̄2

2μ

R	 + k(R − Re)2

2
	 � εn	,

where μ is the reduced mass of the nuclei, and εn is the energy of the nuclear
degrees of freedom for a given electron term. The solution of the Schrödinger
equation allows us to divide the nuclear degrees of freedom in the molecule into
vibrational and rotational degrees of freedom, so that the energy of the nuclei in
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Figure 11.1. Lowest electron terms of a CN-molecule as typical electron terms of stable
molecular states. Near the bottom these potential curves have a parabolic form, and a certain
number of vibrations is found as an attractive part of these electron terms.

the first approximation takes the form

εn � h̄ω(v + 1/2)+ h̄2

2μR2
e

J (J + 1), (11.1)

where v, J are the vibration and rotation quantum numbers which begin from
zero and which are whole positive numbers, h̄ω is the energy of excitation of the
vibration level, and the value

B � h̄2

2μR2
e

(11.2)

is called the rotational constant of a molecule. As follows from the Schrödinger
equation, ω � √k/μ. Hence, comparing the values of the typical vibrational h̄ω
and the rotational B energies with the typical electron energy εe ∼ me4/h̄2, one
can find h̄ω ∼ εe

√
m/μ and B ∼ εem/μ.

The parameters h̄ω, B are called the spectroscopic parameters of the molecule.
Different orders of magnitude for electron, vibration, and rotation energies allow
us to separate these degrees of freedom and present the total molecule energy as
the sum of these energies. Usually for this relation the following notations are used

T � Te +G(v)+ Fv(J ), (11.3)
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where T is the total excitation energy of the molecule, T is the excitation energy
of an electron state, G(v) is the excitation energy of a vibrational state, and Fv(J )
is the excitation energy of a rotational state. Formula (11.1) includes the main part
of the vibrational and rotational energies for a weakly excited molecule. As the
molecule is excited in the limits of a given electron term, it is necessary to intro-
duce corrections to formula (11.1) in order to take into account a divergence of the
electron term from the parabolic form in the region of excitation. Then the vibra-
tional and rotational energies of a molecule, accounting for the first corrections,
take the form

G(v) � h̄ωe(v + 1/2)− h̄ωex(v + 1/2)2,

Fv(J ) � BvJ (J + 1), Bv � Be − αe(v + 1/2), (11.4)

and Be is given by formula (11.2).
The parameters h̄ωe, h̄ωex, Be, and αe are the spectroscopic parameters of the

diatomic molecule. The subscript e indicates that these parameters correspond to
the equilibrium distances between the nuclei for the electron term under consider-
ation. The quantum numbers of the electron terms of the diatomic molecules are
determined by the character of the interaction inside the molecule. Three types of
interaction are of importance for a diatomic molecule. The first type is described by
the interaction potential Ve that corresponds to the so-called interaction between
the orbital angular momentum of electrons and the molecular axis. In the absence
of other interactions, due to this interaction, an electron term is characterized by
the projection of the molecular orbital angular momentum onto the molecular axis.
The second type of interaction, whose potential is denoted by Vm, corresponds to
the spin-orbit interaction. The third type of interaction in a diatomic molecule is
denoted by Vr and accounts for the interaction between the orbital and spin elec-
tron momenta with rotation of the molecular axis. This interaction often is called
the Coriolis interaction. Depending on the ratio between the potentials of these
interactions, a certain character of formation of quantum numbers of the molecule
takes place. Possible types of this ratio between the above interaction potentials
lead to various limiting cases which are known as the Hund coupling rules. The
various types of cases of the Hund coupling are summarized in Table 11.1 together
with the quantum numbers which describe an electron term in this case.

Table 11.1 presents the standard classification of the Hund coupling as it was
given by R.S. Mulliken in 1930. Sometimes, for the completeness of this scheme,
one more case “e′” is added to the above cases with the relation between the
interaction potentials Vm 
 Vr 
 Ve. But this case does not differ in principle
from case “e”. Indeed, in this case, the molecule is characterized by the same
quantum numbers J and JN , although the method of obtaining these quantum
numbers is different. In case “e” first the momenta L and S are quantized onto the
axisN, and then their momentum projections are summed into JN ; in case “e′” first
the momenta L and S are summed in the total electron momentum J, and then the
total momentum is quantized onto the direction N yielding the quantum number
JN .
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Table 11.1. The cases of Hund coupling. In the used notations, L is the electron angular
momentum, S is the total electron spin, J is the total electron momentum, n is the unit vector
along the molecular axis, K is the rotation momentum of nuclei, ! is the projection of the
angular momentum of electrons onto the molecular axis, � is the projection of the total
electron momentum J onto the molecular axis, Sn is the projection of the electron spin onto
the molecular axis, and LN , SN , JN are projections of these momenta onto the direction of
the nuclei rotation momentum N.

Hund case Relation Quantum numbers

a Ve 
 Vm 
 Vr !, S, Sn

b Ve 
 Vr 
 Vm !, S, SN

c Vm 
 Ve 
 Vr �

d Vr 
 Ve 
 Vm L, S, LN, SN

e Vr 
 Vm 
 Ve J, JN

The character of the coupling is changed with excitation of the molecule because
the role of the interaction between the axes and molecule rotation grows as the
molecule is excited. In addition, rotation of the quasi-molecule axis in the course
of the atom collisions is, in principle, for the transitions between multiplets or
degenerated atomic states.Nevertheless, it is convenient to use themoleculer states,
in the absence of rotation, as the basis states for the study of excited states and
atomic transitions. Therefore let us consider case “a” of the Hund coupling and
determine the quantum numbers of the diatomic molecule in this case. Neglecting
the relativistic interactions, one can present the electron Hamiltonian as a sum
of the kinetic energies of the electrons, the Coulomb potential of the interaction
of electrons with nuclei, and the Coulomb potential of the interaction between
electrons. This Hamiltonian is invariant with respect to the rotation of the molecule
around its axis. Hence, the projection of the orbital angular electron momentum
onto themolecular axis! is a quantumnumber of the diatomicmolecule. The states
with a certain value of! are denoted by Greek capital letters which are identical to
the notation of the orbital angularmomentumL of an atom. In particular,molecular
states with ! � 0, 1, 2, 3 are denoted by the �, �, 
, � quantum numbers.

One more quantum number of the diatomic molecule corresponds to its symme-
try for reflection of the electrons in the plane which passes through the molecular
axis. If the momentum projection onto the molecular axis is not zero, this opera-
tion changes the sign of the momentum projection. Hence, molecular states with
! � 0 are twice degenerated, because two states with different signs of ! are
characterized by the same energy. For the state with ! � 0 the above operation
of electron reflection conserves the molecular state, so that the molecular wave
function is multiplied by a constant as a result of such a reflection. Because two
reflections return the system to the initial state, this constant is equal to±1. Thus,
the �-terms are of two kinds, so that the wave function of a state �+ conserves its
sign as a result of the reflection of electrons with respect to a plane passed through
the molecular axis, and the wave function of the state �− changes sign under this
operation.
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Alongwith the above quantumnumbers, the total electron spinS of themolecule,
and its projection onto the molecular axis, are quantum numbers of the molecule.
Since neither the electron energy nor the space wave function of electrons depend
on the spin projection (they depend on the total electron spin through the Pauli
exclusion principle), this quantum number does not partake in the state notation.
Thus, in the notation of the electron terms of the diatomic molecules are included,
the projection of the orbital angular momentum of electrons onto the molecular
axis, the multiplicity 2S+1 with respect to the electron spin which is indicated as a
superscript left from the notation of the momentum projection, and for the�-states
is also given the parity for the reflection of electrons in the plane passed through
the molecular axis. For example, the notation 3�− relates to the electron term with
the electron spin S � 1, with zero projection of the orbital momentum onto the
molecular axis, and this state is odd for reflection of the molecular electrons with
respect to a plane passing through the molecular axis; the notation 2� corresponds
to an electron term with the spin S � 1/2 and the orbital momentum projection
onto the molecular axis ! � 1.

Dimers are molecules or molecular ions with identical nuclei. They have the
additional symmetry plane which is perpendicular to the line joining the nuclei
and bisects it. The reflection of electrons with respect to this plane conserves the
Hamiltonian. Because two such reflections return the molecule in the initial state,
the wave function of the electrons can conserve or change its sign as a result of
one reflection. Usually the parity of the dimer states is characterized with respect
to inversion of the electrons. This operation corresponds to a change of signs of
the three electron coordinates if the origin of the coordinate frame is taken as the
middle of the molecular axis. Since the inversion operation can proceed, as a result
of reflection in the plane passing through the molecular axis and the reflection in
the symmetry plane which is perpendicular to the molecular axis, both methods of
introduction of the dimer parity are identical. The even molecular state is denoted
by the subscriptg (even) right from the notation of the orbitalmomentumprojection
and the odd state, with respect to electron inversion, is denoted by the subscript u
(odd). For example, the ground state of the oxygen molecule is denoted as 3�−

g ,
so that this state is even for inversion of the electrons. Note that symmetry of the
dimers is determined by the identity of the atomic fields and does not depend on
the isotope state of the nuclei, while for vibrational and rotational states the isotope
state of the nuclei is of importance.

Let us take into account the spin-orbit interaction within the framework of case
“a” of the Hund coupling when we want to sum the orbital angular momentum
and the spin of an atom into a total electron momentum. In this case it is necessary
to use the projection of the total electron momentum � onto the molecular axis,
instead of the projection of the orbital momentum. In the same way, the parity for
reflection of the electronswith respect to a plane passing through themolecular axis
corresponds to the total electron wave function instead of the spatial electron wave
function in the absence of a spin-orbit interaction. The notation of the projection
of the total electron momentum � is given by a cipher. For example, the electron
term 3�−

g is divided into the terms 0−g and 1g as a result of accounting for the spin-
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orbit interaction. Note that the operation of the reflection of electrons in symmetry
planes can act on the spatial and total electron wave functions in a different way.
If we assume, as usual, that the spin wave function is even with respect to these
reflections, we obtain the correspondence between the operations with the spatial
and total wave functions of the electrons.

The description of the molecular states within the framework of cases “a” or “c”
of the Hund coupling is a convenient model for electron terms. The corresponding
notation of electron terms are used even if the criteria of these cases are violated.
Usually, the sequence of electron terms is denoted by the capital letters X, A,
B, C, and so on, in the order of electron excitation. The notation of the electron
term follows from these letters in accord with the notation of cases “a” or “c”
of the Hund coupling. For example, the sequence of the electron terms of the
molecule NO is X2�, A2�+, B2�, and so on. For some molecules, along with
the capital letters, lowercase letters are used in order to distinguish the states
of the different symmetry. For example, singlet states of the hydrogen molecule
and other similar dimers are denoted by capital letters, while for the triplet states
lowercase letters are used. The sequence of the electron terms of a certain molecule
reflect the history of the study of this molecule. Since some excited states of the
molecule were discovered when notation of the neighboring electron terms were
introduced, they are denoted by a letter with a prime or two primes. In addition, the
sequence of letters may not correspond to the excitation of the molecule because
of errors in the positions of terms in the course of the study of this molecule.
Briefly, there are only general regulations for the notation of the electron terms of
molecules, and the adopted notation cannot be in correspondence with a universal
scheme.

Thus, we concentrate our attention on cases “a” and “c” of the Hund coupling
as a convenient model or as a basis for the accurate description of both a molecule
and a quasimolecule which is formed in the course of the collisions of atoms.
Let us determine the corrections in the molecule energy due to the interaction
between electron and nuclear momenta, which allows us to estimate the reality of
this approximation. In formulas (11.1), (11.3) above we neglect this interaction.
We now obtain the expression for the rotational energy of the molecule taking
this interaction into account. We introduce the total molecular momentum J �
L+ S+K � j+K, where L is the orbital angular momentum of the electrons, S
is the total electron spin, j � L+ S is the total electron momentum, and K is the
nuclear rotation momentum. We now replace these values by their operators and
take into account that the total molecular momentum is the quantum number of the
molecule because its operator commutes with the Hamiltonian of the molecule.
We denote the eigenvalues of this operator by J , and this is the quantum number
for any case of the Hund coupling.

Returning to the deduction of formula (11.1) we have, for the nuclear rotational
energy which is connected with the angular wave function for the relative motion
of the nuclei,

εrot �
〈
B(R)K̂2

〉 � B(R)
〈
(Ĵ− ĵ)2

〉
, (11.5)
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where B(R) � h̄2/(2μR2) and the angle brackets mean an average over the elec-
tron and nuclear states of the molecule. Since the total momentum of the molecule
is the quantum number, one can extract it by taking into account the relation〈
Ĵ2
〉 � J (J + 1). This gives

εrot � B(R)
[
J (J + 1)− 2

〈
Ĵ
〉〈
ĵ
〉+ 〈ĵ2〉]

Let us introduce the unit vector along the molecular axis n and use the relation〈
K̂n
〉 � 0 which follows from the definition of the nuclear rotation momentum for

a linear molecule. Since, in the related case, we have only one explicit vector n,
all the average values of the vectors are directed along n. Hence we have ĵ � ĵnn,
and we find

εrot � B(R)
[
J (J + 1)− 2

〈
(Ĵ− K̂)nĵn

〉+ 〈ĵ2〉].
Since 〈ĵn〉 � �, where � is the projection of the total electron momentum onto
the molecular axis, we obtain:

εrot � B(R)
[
J (J + 1)− 2�2 +

〈
ĵ2
〉]
. (11.6)

The last term gives the contribution to the molecular energy, but this does not
depend on the quantumnumbersJ and�. Thus the interaction between the electron
and nuclear momenta leads to a shift in the total rotation energy of the molecule.
This effect does not reflect on the difference between the energies of the rotational
levels if the nuclear rotationmomentum in formulas (11.1) and (11.5) is replaced by
the total rotation momentum of the molecule, and the energy shift is small at large
nuclear rotational momenta. Thus, in reality, formula (11.5) is correct, although its
deduction was made by neglecting the interaction between the molecule rotation
and the electron motion.

11.2 Correlation Diagrams for the Correspondence
Between the Molecular and Atomic States

There is a certain connection between the electron terms of diatomic molecules
and the quantum numbers of atoms from which the molecule is constructed. The
scheme which establishes this conformity is called the correlation diagram. Below
we consider some examples of this conformity. We first analyze the electron terms
of a molecule consisting of different atoms within the framework of case “a” of the
Hund coupling and assume that the LS-coupling scheme (see Chapter 4) is valid
for each atom. Then one can produce summation of the orbital and spin momenta
of atoms in molecular momenta separately. Based on this, we calculate the number
of molecular states with a certain value! of the orbital momentum projection onto
themolecular axis. Let themolecule consist of atomswith orbital angularmomenta
L1 and L2, respectively, and L1 > L2. The total number of states, i.e., the number
of different projections of atom momenta, is equal to (2L1+1)(2L2+1). Using the
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result of Problem 11.1, we obtain that the number of electron terms with ! � 0 is
equal to (2L2+ 1). Because the electron terms with ! � 0 are degenerated twice,
we find the total number of electron terms L1(2L2 + 1) which have a nonzero
projection of the electron orbital momentum onto the molecular axis. One can
calculate the number of electron terms having each momentum projection. There
are (2L2 + 1) electron terms with ! � 1, 2, . . . , L1 − L2, i.e., the number of
electron terms of the molecule is the same for ! in the regions from 1 to L1−L2;
then the number of electron terms decreases by one with an increase in ! by one
and is equal to one at ! � L1 + L2.

If the molecule consists of identical atoms, a new symmetry occurs which cor-
responds to the electron inversion with respect to the center of the molecular axis.
This leads to some changes in the number of states. If the atoms are found in
different states, the number of the corresponding states is doubled, because the
excitation can transfer to the other atom. If the atoms are found in the same state,
the total number of states of a given! is the same as in the case of different atoms.
But since the total molecular spin acts on the state parity, the parity of states in each
case depends on the molecule spin. Table 11.2 lists the symmetry of the possible
molecular states if the molecule is formed from identical atoms in the same states
for case “a” of the Hund coupling.

The character of summation of the atomic momenta determines the possible
states of the molecule consisting of these atoms. Table 11.3 gives a list of the
molecular states for the j–j -coupling scheme inside each atom. Then the molec-
ular momentum is summed from the total (orbital and spin) atomic momenta.
The summation of the atomic momenta into the molecular momentum projection
corresponds to both cases “a” and “c” of the Hund coupling.

Let us consider the character of the transition from atomic states to molecular
states on the basis of some examples. We first consider the correlation diagram for
the NH molecule (see Fig. 11.2). In this case one can neglect the spin-orbit interac-
tion, so that the behavior of the molecular terms is determined by the electrostatic
and exchange interactions of the electrons in the molecule. We concentrate upon
the lowest states of the molecule which are usually determined by the state 2p3 of
the electron shell of the nitrogen atom. Then the three lowest electron states of
the nitrogen atom 4S, 2D, 2P , are separated by energy as a result of the exchange
interaction in the atom due to the Pauli exclusion principle. Interaction with the
hydrogen atoms leads to the splitting of these levels, and the molecular electron
terms include all the possible projections of the orbital momentum and the total
electron spin onto the molecular axis. A part of these terms (approximately one-
half) corresponds to the attraction of atoms, the other part corresponds to their
repulsion.

In this analysis the parity of the states is of importance for the reflection of
electrons with respect to a plane passed through the molecular axis. Then the
parity of the molecular state is the sum of the parities of the atomic states, and
this value is conserved with the variation of separations between the nuclei. The
parity of atomic states is denoted by the subscript g for the even state and by the
subscriptu for the odd state. The total parity of the interacting atoms determines the
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Table 11.2. Correlation between the states of two identical atoms and the dimer consisting
of these atoms in neglecting the spin-orbit interaction. The number of dimer states of a
given symmetry is given in parentheses, otherwise it is 1.

Atomic states Dimer states
1S 1�+

g

2S 1�+
g ,

3�+
u

3S 1�+
g ,

3�+
u ,

5�+
g

4S 1�+
g ,

3�+
u ,

5�+
g ,

7�+
u

1P 1�+
g (2), 1�−

u ,
1�g,

1�u,
1
g

2P 1�+
g (2), 1�−

g ,
1�g,

1�u,
1
g,

3�+
u (2), 3�−

g ,
3�g,

3�u,
3
u

3P 1�+
g (2), 1�−

u ,
1�g,

1�u,
1
g,

3�+
u (2), 3�−

g ,
3�g,

3�u,
3
u,

5�+
g (2), 5�−

u ,
5�g,

5�u,
5
g

4P 1�+
g (2), 1�−

g ,
1�g,

1�u,
1
g,

3�+
u (2), 3�−

g ,
3�g,

3�u,
3
u

5�+
g (2), 5�−

u ,
5�g,

5�u,
5
g,

7�+
u (2), 7�−

g ,
7�g,

7�u,
7
g

1D 1�+
g (3), 1�−

u (2), 1�g(2), 1�u(2), 1
g(2), 1
u,
1�g,

1�u,
1�g

2D 1�+
g (3), 1�−

u (2), 1�g(2), 1�u(2), 1
g(2), 1
u,
1�g,

1�u,
1�g ,

3�+
u (3), 3�−

g (2), 3�g(2), 3�u(2), 3
g,
3
u(2), 3�g,

3�u,
3�u

3D 1�+
g (3), 1�−

u (2), 1�g(2), 1�u(2), 1
g(2), 1
u,
1�g,

1�u,
1�g ,

3�+
u (3), 3�−

g (2), 3�g(2), 3�u(2), 3
g,
3
u(2), 3�g,

3�u,
3�u,

5�+
g (3), 5�−

u (2), 5�g(2), 5�u(2), 5
g(2), 5
u,
5�g,

5�u,
5�g

Figure 11.2. The correlation diagram for the electron terms of an NH-molecule. The sub-
script right above indicates the parity of states for the reflection of electrons in a plane
passing through the molecular axis (y → −y). Until the spin-orbit interaction potential is
small compared to the exchange one, i.e., fulfilled for this molecule, the total parity of a
molecular state is conserved in the course of a change of distances between the nuclei.
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Table 11.3. Correlation between the states of two identical atoms and the dimer molecule
consisting of these atoms in case “c” of the Hund coupling, if the atom state is characterized
by the total electron momentum J . The number of dimer states of a given symmetry is
indicated in parentheses, otherwise it is 1.

Atom states Dimer states

J � 0 0+g
J � 1/2 1u, 0+g , 0

−
u

J � 1 2g, 1u, 1g, 0+g (2), 0−u
J � 3/2 3u, 2g, 2u, 1g, 1u(2), 0+g (2), 0−u (2)

J � 2 4g, 3g, 3u, 2g(2), 2u, 1g(2), 1u(2), 0+g (3), 0−u (2)

Figure 11.3. The lowest electron terms of an NH-molecule.

parity of the �-terms. At small distances between the atoms the electron terms of
the NH molecule are transformed in terms of the oxygen atom. Evidently, stable
molecular states correspond to such terms which are transformed to the lowest
states of the oxygen atom. The positions of the lowest electron states of the NH
molecule, which are presented in Fig. 11.3, confirm this assertion.

The case under consideration corresponds to case “a” of the Hund coupling
where one can neglect the spin-orbit and the other magnetic interactions in the
molecule. The next example corresponds to the interaction of two alkali metal
atoms when one of these is found in the 2S ground state, and the state of the other
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Figure 11.4. The correlation diagram for the electron terms of a quasi-molecule consisting
of two identical alkali metal atoms so that one of these is found in the ground 2S-state and
the other is found in the resonance excited 2P -state.

atom corresponds to the lowest resonance 2P excited state. At large separations
we have two levels of fine structure 2S +2 P1/2 and 2S +2 P3/2. The approach
of atoms leads to the splitting of these levels due to the dipole–dipole interaction
of atoms. This splitting is usually determined by the parity of the state for the
inversion of electrons with respect to the molecule center and depends on the
projection of the orbital momentum onto the molecular axis. At large distances
between the atoms the fine splitting exceeds that of the dipole–dipole interaction,
and at moderate distances between the atoms the spin-orbit interaction introduces
a small contribution to the energetic position of the term. These conclusions follow
from the correlation diagram for this case and is given in Fig. 11.4.

Thus, at large distances between atoms, case “c” of the Hund coupling is valid
for a description of this quasi-molecule. Then the state is characterized by the
projection � of the total electron moment of the molecule onto the molecular axis
and by the symmetry (g, u) of the electron system for inversion with respect of
the molecule center. If � � 0, the electron terms are degenerated on the sign of
the momentum projection. An additional symmetry occurs for terms with � � 0,
which corresponds to the parity of a state for the reflection of electrons with respect
to a plane passing through the molecular axis. Note that the reflection symmetry is
different for cases “a” and “c” of the Hund coupling. In case “a” the spatial and spin
coordinates are separated, and the reflection operation corresponds to the spatial
electron coordinates only. As a result of this transformation an individual electron
changes the projection of the orbital momentum m on the molecular axis, i.e., this
transformation gives m → −m. In case “c” of the Hund coupling, the reflection
operation results in the simultaneous change of the orbital and spin momentum
projection, i.e., m→ −m, σ → −σ , where σ � ± 1

2 is the spin projection of an
individual electron onto the molecular axis. Then in the case “c” of Hund coupling,
the parity of the molecular state, as a result of the reflection operation, leads to
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multiplication of the molecular wave function by the factor (−1)j , where j is the
total electron momentum of the molecule.

Returning to the interaction of two identical alkali metal atoms in the ground
states 2S and the resonantly excited 2P states, we have at large separations that
two levels of the fine structure of the 2P term give the origin to several electron
terms of the quasi-molecule. The states with the total electron momentum j � 0, 1
start from the lower level of this system and form the electron terms 1g , 1u, 0−g , 0−u
from the states with j � 1 and from the electron terms 0+g , 0+u from the states with
j � 0. The upper electron terms of this system correspond to j � 1, 2, and are 2g ,
2u, 1g , 1u, 0+g , 0+u for j � 2 and 1g , 1u, 0−g , 0−u for j � 1. These electron terms are
joined in groups with practically identical positions. In particular, if we account
for a long-range dipole–dipole interaction only, these terms form four groups, and
the positions of these terms in case “a” of the Hund coupling are determined in
Problem 10.2. Note that the transition from case “c” to case “a” proceeds at large
distances between the atoms because the dipole–dipole interaction is strong. In
particular, Table 11.4 gives the values of a typical distance of the transition R∗
which is determined by the relation d2/R3

∗ � 
f , where 
f is the difference of
the 2P3/2−2 P1/2 levels of the excited atom, and the splitting of levels 1�+

g −1 �+
u

at distance R∗ between the atoms is equal to 4
f , as follows from the solution of
Problem 10.2. As is seen, the distance R∗ is large enough, so that the other types
of interaction are small at this separation. This means that the positions of only
four electron terms are different at this and larger separations. At smaller distances
between atoms, when the exchange interaction of atoms gives a contribution to
the interaction potential, the electron terms obtain eight different positions. The
correlation diagram in Fig. 11.4 reflects such behavior of the electron terms.

Thus, the behavior of the electron terms is determined by the competition of
some interactions, and the variation of the distances between the nuclei can lead to
a change in the quantum numbers which characterize the molecular states. We now
consider this in the simple example of the interaction of an inert gas ion with the
parent atom at large distances between the atoms. Then we take into consideration
the fine splitting of the ion level and the long-range ion–atom interaction which
depends on the projection of ion orbital momentum m onto the molecular axis and
the exchange ion-atom interaction which also depends on m. It is of importance
that the long-range and exchange interaction potentials do not depend on the fine
structure state of the ion. This allows us to separate these interactions.

Figure 11.5 gives the correlation diagram for this case. Below we find positions
of the levels by the standard method. Let us denote by 
f the fine splitting of the

Table 11.4. Parameters of the interaction of two atoms of alkali metals in the ground and
resonantly excited states.

Li Na K Rb Cs

d2 5.4 6.2 8.8 8.6 11.5

R∗ 150 43 32 20 17
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Figure 11.5. The correlation diagram for electron terms of a quasi-molecule which consists
of an inert gas ion and the parent atom.

ion levels, U0, U1 are the long-range interaction potentials between the ion and
atom for the projection of the ion orbital momentum onto the molecular axes 0
and 1, respectively, and we denote the ion–atom exchange interaction potential for
the orbital momentum projection onto the molecular axes 0 and 1 by 
0 and 
1,
respectively. The total number of states of the molecule is 12, and the simultaneous
change of sign of the orbital momentum projection m and the spin projection σ

onto the molecular axis does not change the Hamiltonian. Therefore, we must
analyze six states from which three are even and three are odd for the operation of
electron reflection, with respect to the symmetry plane which is perpendicular to
the molecular axis and passes through its middle. Then using as a basis the states
with a corresponding projection of the orbital and spin momenta of the ion onto
the molecular axis, we obtain the Hamiltonian matrix Hif at these bases wave
functions in the form

Hif �
m � 0, σ � 1

2 m � 1, σ � − 1
2 m � 1, σ � 1

2

m � 0, σ � 1
2 U0 ± 1

2
0 −
√

2
3 
f 0

m � 1, σ � − 1
2 −

√
2

3 
f U1 − 1
3
f ± 1

2
1 0

m � 1, σ � 1
2 0 0 U1 − 1

3
f ± 1
2
1

(11.7)
Here the+ and− signs relate to the corresponding parity of the state. We define

the even and odd parity of a state depending on the conservation or change of
sign of the electron wave function as a result of the inversion with respect to the
molecule center. In this case the inversion of the electrons of the ion with respect
to their centers leads to the change of sign of the electron wave function, while in
the atom case the sign of the electron wave function does not change as a result
of this operation. From this it follows that the lowest state of the molecular ion
is 2�+

u and the upper sign in the matrix (11.6) corresponds to the odd state. Note
that if we define the state parity with respect to reflection of the electrons in the
symmetry plane, which is perpendicular to the molecular axis and passes through
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the molecule center, the lowest state of the molecular ion attains the symmetry
2�+

g .
The matrix (11.6) allows us to determine the positions of the energy levels by a

standard method on the basis of the secular equation |ε − Hif | � 0. This yields,
for the energy of the electron states if we take the energy of the lowest level of the
system at R→∞ to be zero

ε1,2 � U0 + U1

2
± 
0 +
1

2
+ 
f

2

+ 1

2

√
[U0 − U1 ± (
0 −
1)]2 − 2

3
[U0 − U1 ± (
0 −
1)]
f +
2

f ,

ε3,4 � U0 + U1

2
± 
0 +
1

2
+ 
f

2

− 1

2

√
[U0 − U1 ± (
0 −
1)]2 − 2

3
[U0 − U1 ± (
0 −
1)]
f +
2

f ,

ε5,6 � U1 − 1

3

f ± 1

2

1. (11.8)

Formula (11.8) gives the positions of all six electron terms of the system under
consideration in increasing order by energy.Note that at large distances between the
nuclei we haveU0 
 U1,
0 
 
1. Since the long-range interaction potentialU0

has an inverse power dependence onR and since
0 varies at largeR exponentially,
one can assume U0 
 
0 at large distances. Then the transition from case “c” to
case “a” of the Hund coupling is determined by the relation between the values U0

and 
f . Let us assume that U0 corresponds to the attraction between the ion and
atom (for example, this is the polarization interaction potential between the ion and
atom). Then we obtain that only one lowest term corresponds to a strong attraction
which varies as 2

3U0 at 
f 
 U0 and as U0 at 
f � U0. At smaller distances
between the nuclei, when the exchange ion–atom interaction becomes remarkable,
this term is split, and the difference between the forming terms is of the order of

0. Thus, the above analysis shows that a number of interacting terms and their
behavior with a variation of distances between the atomic particles depends on the
competition of different kinds of interaction in this system.

Let us analyze one more aspect of the interaction of electron terms when they
are intersected. In reality we have the pseudocrossing of two levels if they belong
to terms of the same symmetry. Let us analyze the behavior of two terms near
the intersection point, dividing the Hamiltonian of the molecular electrons into
two parts Ĥ � Ĥo + Vm, so that the corresponding terms are intersected for
the Hamiltonian Ĥo. For example, we include in Vm magnetic interactions in the
molecule, so that the projection of the orbital momentum onto the molecular axis
is the quantum number of the molecule in neglecting Vm, and the electron terms
corresponding to different values of this quantum number are intersected. Then
the magnetic interaction which mixes the electron terms of different projections
of the orbital momentum leads to splitting of the electron terms. Let us study the
behavior of the terms near the intersection point, so that the wave function of the
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first molecular state is ψ1(r, R) and for the second state this function is equal
to ψ2(r, R), where r includes all the electron coordinates, and R is the distance
between the nuclei. Let Ro be the intersection point for the Hamiltonian Ĥo, so
that we have〈

ψ1(r, Ro)
∣∣∣Ĥo

∣∣∣ψ1(r, Ro)
〉
�
〈
ψ2(r, Ro)

∣∣∣Ĥo

∣∣∣ψ2(r, Ro)
〉
.

Expanding these matrix elements near the intersection point, we introduce the
difference of the inclines F of the electron terms on the basis of the relation〈

ψ1(r, R)
∣∣∣Ĥo

∣∣∣ψ1(r, R)
〉
−
〈
ψ2(r, R)

∣∣∣Ĥo

∣∣∣ψ2(r, R)
〉
� F (R − Ro).

Denoting the nondiagonal matrix element from the perturbation operator by V �
〈ψ1(r, R)|Vm|ψ2(r, R)〉 we neglect, for simplicity, the diagonal matrix elements
from the perturbation operator because taking into account these elements only
leads to a small shift of the intersection point. Then one can express the parameters
of the given electron terms through the parameters F and V in the two-level
approximation. Indeed, let us take the eigenfunction of the total Hamiltonian Ĥ �
Ĥo + Vm in the form

	 � aψ1(r, R)+ bψ2(r, R),

so that this wave function satisfies the Schrödinger equation Ĥ	 � E	. From the
orthogonality of the wave functions ψ1(r, R) and ψ2(r, R) we find the parameters
of the above formulas, which are

a �
√

1

2
+ V√

V 2 + F 2(R − Ro)2
, b �

√
1

2
− V√

V 2 + F 2(R − Ro)2
,

E1 − E2 �
√
V 2 + F 2(R − Ro)2. (11.9)

These formulas characterize the behavior of the electron terms near the intersec-
tion point (see also Fig. 11.5). Thus, due to an additional interaction the electron
terms, which are intersected within the framework of a simplified Hamiltonian
of electrons, are mixed and the splitting between the related levels is determined
by the nondiagonal matrix elements from the interaction potential which mixes
these terms. Such a behavior of the electron terms is of importance for the colli-
sional transitions between some atomic states when a certain interaction can cause
these transitions or lead to the mixing of states. Then this effect determines the
probability of the collisional transition.

11.3 The Parameters of Dimers and Their Ions

Below we consider dimers, i.e., molecules consisting of identical atoms. Because
of the additional symmetry, some properties of these molecules can be analyzed
at great length. Table 11.5 gives the spectroscopic parameters of these molecules
which are determined by formula (11.3). Table 11.6 contains the spectroscopic
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parameters of the positive ions of dimers. These systems are similar to dimer
molecules and have an additional symmetry for the inversion of electron with
respect to the middle of the molecular axis. We can obtain the simple relation for
the energetic parameters of positive molecular ions if we destroy a dimer in an
atom, atomic ion, and electron in two different ways

A2 → 2A→ A+ A+ + e; A2 → A+2 + e→ A+ A+ + e. (11.10)

This relation between the energetic parameters of the atomic particles has the
form

D(A+2 ) � D(A2)+ J (A)− J (A2), (11.11)

where D(XY ) is the dissociation energy of a molecular particle XY and J (X) is
the ionization potential of an indicated particle.

A similar relation for negative ions has the form

D(A−2 ) � D(A2)+ EA(A)− EA(A2), (11.12)

where EA(X) is the electron affinity of a particle X. Table 11.7 contains the
spectroscopic parameters (11.4) of the dimer negative ions which are found in the
ground electron state.

11.4 The Method of Molecular Orbits

For the analysis of diatomic molecules one can use a model which is similar to
the shell atom model. This model is called the method of molecular orbits and is
convenient in the case of dimers. Let us introduce a self-consistent potential of the
molecular field which acts on electrons and present the molecule as a result of the
distribution of electrons by states of this self-consistent field. Evidently, this field
has axial symmetry, so that the states of individual electrons are characterized by
the projection of the orbital momentum onto the molecular axis. In addition, the
parity of the corresponding molecular orbit is the quantum number of electrons
of the dimers or their ions. The accepted notation for molecular orbits is σ , π ,
δ for the molecular orbits of electrons with projections 0, 1, 2 of the electron
orbital momentum onto the molecular axis, respectively. The method of molecular
orbits possesses a central place in quantum chemistry, allowing one to evaluate the
structures of various molecules and to calculate the energies of the corresponding
molecular states. In our consideration of the atom interaction this method helps in
the analysis of some of the properties of quasi-molecules as systems of interacting
atoms. We demonstrate this method below by some examples.

We first return to the case of the NH molecule whose electron terms are given in
Fig. 11.3. The valent electrons of thismolecule are threep-electrons of the nitrogen
atom and one s-electron of the hydrogen atom. These electrons can occupy 3σ - or
3π -orbitals. It is clear that the higher binding energy corresponds to the 3σ -orbital
because of the smaller distances of the electron from the core. Therefore, the lowest
states by energy correspond to the electron shell 3σ 23π2, and this fact is confirmed
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Table 11.5. Spectroscopic parameters of some dimers in the ground state. The reduced
mass μ accounts for the isotope content of an element and is expressed in atomic units of
mass (1.66056 · 10−24 g), the energy of the vibrational quantum h̄ωe and the anharmonicity
parameter h̄ωex are given in cm−1, the equilibrium distance between nucleiRe is taken in Å,
the rotational constant Be is expressed in cm−1, the parameter αe for the vibration–rotation
interaction is taken in 10−3 cm−1, and the dimer dissociation energy D is given in eV.

Dimer Term μ h̄ωe h̄ωex Re Be αe D

Ag2 X1�+
g 53.934 135.8 0.50 2.53 0.049 0.195 1.67

Al2 X3�u 13.491 284.2 2.02 2.47 0.205 0.8 0.46
Ar2 X1�+

g 19.974 30.68 2.42 3.76 0.0596 3.64 0.0122
As2 X1�+

g 37.461 429.6 1.12 2.103 0.102 0.333 3.96
Au2 X1�+

g 98.483 190.9 0.42 2.47 0.028 0.66 2.31
B2 X1�+

g 5.405 1059 15.66 1.60 1.216 14.0 2.8
Be2 X1�+

g 4.5061 275.8 12.5 2.45 0.615 81 0.098
Bi2 X1�+

g 104.49 173.1 0.376 2.66 0.082 0.053 2.08
Br2 X1�+

g 39.952 325 1.08 2.28 0.82 0.318 2.05
C2 X1�+

g 6.0055 1855 13.27 1.24 1.899 17.8 5.36
Ca2 X1�+

g 20.04 64.9 1.087 4.28 0.047 0.7 0.13
Cl2 X1�+

g 17.726 559.7 2.68 1.99 0.244 2.1 2.576
Cr2 X1�+

g 25.998 470 14.1 1.68 0.23 3.8 1.66
Cs2 X1�+

g 66.453 42.02 0.082 4.65 0.013 0.026 0.452
Cu2 X1�+

g 31.773 266.4 1.03 2.21 0.109 0.062 1.99
F2 X1�+

g 9.4992 916.6 11.24 1.41 0.89 14.1 1.66
H2 X1�+

g 0.5040 4401 121.3 0.741 60.85 3062 4.478
D2 X1�+

g 1.0070 3116 61.82 0.741 30.44 1079 4.556
T2 X1�+

g 1.5082 2546 41.23 0.741 20.34 .589 4.591
I2 X1�+

g 63.452 214.5 0.615 2.67 0.037 0.124 1.542
K2 X1�+

g 19.549 92.09 0.283 3.92 0.057 0.165 0.551
Kr2 X1�+

g 41.90 24.1 1.34 4.02 0.024 1.0 0.018
Li2 X1�+

g 3.571 351.4 2.59 2.67 0.672 7.04 1.05
Mg2 X1�+

g 12.152 51.08 1.623 3.89 0.093 3.78 0.053
Mo2 X1�+

g 47.97 477 1.51 2.2 0.072 0.48 4.1
N2 X1�+

g 7.0034 2359 14.95 1.098 1.998 17.1 9.579
Na2 X1�+

g 11.495 159.1 0.725 3.08 0.155 0.874 0.731
Ne2 X1�+

g 10.090 31.3 6.48 2.91 0.17 60 0.0037
O2 X3�−

g 7.9997 1580 11.98 1.207 1.445 15.93 5.12
Pb2 X3�−

g 103.6 110.2 0.327 2.93 0.019 0.057 0.083
Rb2 X1�+

g 42.734 57.78 0.139 4.17 0.023 0.047 0.495
S2 X3�−

g 16.03 725.6 2.84 1.89 0.295 1.58 4.37
Se2 X3�−

g 39.48 385.3 0.963 2.16 0.89 0.28 2.9
Si2 X3�−

g 14.043 510.9 2.02 2.24 0.239 1.35 3.24
Sn2 X3�−

g 59.345 186.2 0.261 2.75 0.038 0.1 2.0
Sr2 X1�+

g 43.81 39.6 0.45 4.45 0.019 0.2 0.13
Te2 X3�−

g 63.80 249.1 0.537 2.56 0.040 0.109 2.7
V2 X3�−

g 25.471 537.5 3.34 1.78 0.209 1.4 2.62
Xe2 X1�+

g 65.645 21.12 0.65 4.36 0.013 0.3 0.024



302 11. Diatomic Molecules

Table 11.6. Spectroscopic parameters of some dimer ions in the ground state. The vibration
energy h̄ωe the anharmonicity parameter h̄ωex, and the rotational constant Be are given in
cm−1, the equilibrium distance between the nuclei Re is taken in Å, and the dissociation
energy D of the molecular ion and the ionization potential J of the corresponding dimer
are expressed in eV.

Ion Term h̄ωe h̄ωexe Re Be D J

Ag+2 X2�+
g 118 0.05 2.8 0.040 1.69 7.66

Al+2 X2�+
g 178 2.0 3.2 0.122 1.4 4.84

Ar+2 X2�+
u 308.9 1.66 2.43 0.143 1.23 14.5

Be+2 X2�+
u 502 4.2 2.23 0.752 1.9 7.45

Br+2 X2�g 376 1.13 2.3 0.088 2.96 10.52

C+2 X4�−
g 1351 12.1 1.41 1.41 5.3 12.15

Cl+2 X2�g 645.6 3.02 1.88 0.265 3.95 11.50

Cs+2 X2�+
g 32.4 0.051 4.44 0.013 0.61 3.76

Cu+2 X2�+
g 188 0.75 2.35 0.096 1.8 7.90

F+2 X2�g 1073 9.13 1.32 1.015 3.34 15.47

H+2 X2�+
g 2323 67.5 1.06 30.21 2.650 15.426

He+2 X2�+
g 1698 35.3 1.08 7.21 2.47 22.22

Hg+2 X2�+
u 91.6 0.301 2.8 0.021 0.96 9.4

I+2 X2�g 243 — 2.58 0.040 1.92 9.3

K+2 X2�+
g 73.4 0.2 4.6 0.042 0.81 4.06

Kr+2 X2�+
u 178 0.82 2.8 0.051 1.15 12.97

Li+2 X2�+
g 263.1 1.61 3.12 0.49 1.28 5.14

N+2 X2�+
g 2207 16.2 1.12 1.932 8.713 15.581

Na+2 X2�+
g 120.8 0.46 3.54 0.113 0.98 4.80

Ne+2 X2�+
u 586 5.4 1.75 0.554 1.2 20.4

O+2 X2�g 1905 16.3 1.12 1.689 6.66 12.07

P+2 X2�u 672 2.74 1.98 0.276 5.0 10.56

Rb+2 X2�+
g 44.5 — 4.8 0.017 0.75 3.9

S+2 X2�u 806 3.33 1.82 0.318 5.4 9.4

Sr+2 X2�+
g 86 0.54 3.9 0.025 1.1 4.74

Xe+2 X2�+
g 123 0.63 3.25 0.026 1.03 11.85
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Table 11.7. Spectroscopic parameters of some negative ions of dimers in the ground state.
The vibration energy h̄ωe, the anharmonicity parameter h̄ωexe, and the rotational constant
Be are expressed in cm−1, the equilibrium distance between the nuclei Re is taken in Å,
and the dissociation energy D of the molecular ion and the electron affinity EA of the
corresponding dimer are expressed in eV.

Ion Term h̄ωe h̄ωexe Re Be D EA

Ag−2 X2�+
u 145 0.9 2.6 0.046 1.37 1.03

Al−2 X4�−
g 335 — 2.65 0.178 2.4 1.1

Bi−2 X2�g 152 0.53 2.83 0.020 2.8 1.27

Br−2 X2�+
u 178 0.88 2.81 0.054 1.2 2.55

C−2 X2�+
g 1781 11.7 1.27 1.746 3.3 3.27

Cl−2 X2�+
u 277 1.8 1.26 2.38

Cs−2 X2�+
u 28.4 0.042 4.8 0.011 0.45 0.47

Cu−2 X2�+
u 196 0.7 2.34 0.097 1.57 0.84

F−2 X2�u 475 5.1 1.92 0.47 1.3 3.08

Li−2 X2�+
u 233.1 1.92 2.8 0.516 0.88 0.7

O−2 X2�g 1090 10 1.35 1.12 4.16 0.45

P−2 X2�u 640 — 1.98 0.277 4.08 0.59

Pb−2 X2�g 129 0.2 2.81 0.021 1.37 1.66

S−2 X2�u 601 2.16 1.8 0.32 3.95 1.67

by the positions of the potential curves which are given in Fig. 11.3. Next, the
radiative dipole transitions in this system correspond to the transitions σ → π with
conservation of the total molecule spin. Therefore, for this molecule, the radiative
dipole transitions are permitted between the electron terms X3�− → A3� and
a1
, b1�+ → C1�.

Another example of the application of the method of molecular orbits corre-
sponds to the interaction of two helium atoms. Based on this method, one can
show that the electron term, corresponding to the ground states of atoms at infinite
distances between the atoms, intersects the boundary of the continuous spectrum at
small separations. This means that if such distances are reached under the collision
of two helium atoms, the electron release from one colliding atom is possible.

Let us construct the correlation diagram of the quasi-molecule consisting of
two helium atoms. Two atoms 2He(1s2) form the quasi-molecule He2(1σ 2

g 1σ 2
u )

which is transformed to the beryllium atom state Be(1s22p2, 1S) when the helium
nuclei are joined. The excitation energy of the beryllium atom from the ground
state Be(1s22s2) into the excited state Be(1s22s2p) is 5.3 eV. Since the excited
beryllium atom Be(1s22s2p) 2s-electron has a higher binding energy than the
2s-electron in the ground state of the atom, the excitation energy from the ground
state of the beryllium atom Be(1s22s2) into the excited state Be(1s22p2) exceeds
10.6 eV. The ionization potential of the beryllium atom is 9.32 eV. Thus the electron
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term of the state which corresponds to two helium atoms in the ground state, at
infinite separations, intersects the boundary of the continuous spectrum and is
transformed into the autoionization state at small distances between the nuclei, if
we consider the pseudointersections with other electron terms as intersections.

One can prove that the above electron term for two helium atoms in the ground
state intersects the electron terms corresponding to two excited helium atoms.
This means that the collision of two helium atoms in the ground state can lead to
the excitation of both atoms. Let us construct a correlation diagram for He(1s2s)
and He+(1s) when this quasi-molecule is found in the even state with respect to
reflection of the electrons in the plane which is perpendicular to the molecule
axis and bisects it. Then the state of the quasi-molecule at intermediate distances
between the atoms is He+2 (1σ 2

g 2σg). This state corresponds to the ground state
of the beryllium ion Be+(1s22s) when the nuclei are joined. Therefore, using
the above result for the intersection of the electron term He2(1σ 2

g 1σ 2
u ) with the

boundary of the continuous spectrum, one can find that the electron term of the
state 2He(1s2) intersects any electron term He(1s2s) + He(1snl) if the states of
the first three electrons are even for the reflection of electrons with respect to the
symmetry plane. These examples demonstrate the possibilities of the method of
molecular orbits.

11.5 Radiative Transitions in Diatomic Molecules

Let us analyze briefly the specifics of the radiative transitions in diatomic
molecules. We will be guided by dipole radiation when the radiation rates are
determined by formulas (1.22)–(1.26). Then the peculiarities of the radiative tran-
sitions are connected with the properties of the matrix element for the dipole
moment operator. For diatomic molecules the dipole moment vector is directed
along the molecular axis. This leads to certain selection rules for the quantum
numbers of transition.

We first consider the radiative transitions between the electron states of a di-
atomic molecule. Then, because of the structure of the dipole moment operator,
the selection rules permit transitions with conservation of the electron momentum
projection onto the molecular axis or change it by one. This momentum projec-
tion corresponds to the electron angular momentum projection ! in case “a” of
the Hund coupling or to the projection of the total electron momentum onto the
molecular axis � in case “c” of the Hund coupling. Simultaneously, a radiative
transition in diatomic molecules requires certain selection rules for the rotation
quantum numbers. If we separate the rotation degrees of freedom, and take into
account the different orders of magnitude for the electron and rotational energies,
the dependence on the rotational quantum numbers in formula (1.23) would be the
factor of 〈JM|n|J ′M ′〉, where n is the unit vector directed along the molecular
axis, J , M are the rotational quantum numbers for the initial states, and J ′, M ′ are
the rotational quantum numbers for the final state. This matrix element is reduced
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to the Clebsh–Gordan coefficients and leads to the following selection rules

J − J ′ � 0,±1; M −M ′ � 0,±1. (11.13)

An additional selection rule applies for dimer molecules. Because the dipole
moment operator is antisymmetric with respect to the inversion of electrons, ra-
diative transitions between the states of a different symmetry (g←→ u) only are
permitted.

Radiative transitions between the vibration and rotation states are weaker than
those between the electron states mainly due to the difference of the photon ener-
gies. Radiative transitions between the rotational states are possible only for dipole
molecules and are absent for dimer molecules consisting of identical isotopes be-
cause their electric center and center of mass are coincident. These conclusions
follow from a simple analysis of formula (1.23). The radiative transitions be-
tween vibrational states are determined by the dependence of the molecular dipole
moment on the distance R between the nuclei. Take this dependence in the form

D � n
[
Do + dD

dR|Re

(R − Re)+ 1

2

d2D

dR2|Re

(R − Re)
2

]
, (11.14)

where Re is the equilibrium distance between the nuclei in the molecule and n is
the unit vector directed along the molecular axis. The matrix element for radiative
transitions between the vibrational states is determined by the second term in the
expansion (11.14). This leads to the selection rule v′ � v − 1 and to the matrix
element 〈v|R − Re|v − 1〉 ∼ √v/μω, where μ is the reduced mass of the nuclei
ω is the transition frequency. Because ω ∼ μ−1/2, one can estimate from this that
the ratio of the intensities for vibration and electron radiative transitions is order
of μ−2.

Alongwith the radiative transitions v→ v−1, one can expectweaker transitions
in other vibration states. In particular, the radiative transitions v → v − 2 are
determined by both the second part of formula (11.14) and by the anharmonicity of
vibrations. Although the corresponding matrix elements are relatively small, they
growwith excitation of themolecule. Hence, for a strong excitation of themolecule
such transitions may be significant. For example, in the case of the HF molecule
the ratio of the rates of the radiative transitions w(v→ v − 2)/w(v→ v − 1) are
equal to 0.12 for v � 2 and to 5.6 for v � 10; for the molecule DF this ratio is
0.09 and 1.3, respectively, for these vibrational numbers.

Problems

Problem 11.1. Determine the parity for reflection in a plane which passes through
the atom center for the nitrogen atom in the ground state N(4S) and for the lowest
states of the carbon and oxygen atoms.

This parity can be introduced in the case when the spin and spatial coordinates
are separated, and which takes place for the case under consideration. This parity
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corresponds to the states with zero projection of the orbital momentum onto the
axis which is located on the reflection plane. Let us take the coordinate frame such
that the momentum projection is taken onto the z-axis and reflection is produced in
the xz-plane. Then this reflection leads to the transformation y → −y and in the
spherical or cylindrical coordinates the reflection givesϕ →−ϕ. This corresponds
to a change of sign of the momentum projection for both an individual electron and
for the total atom. The operation of electron reflection, whose operator we denote
by σ̂ , commutes with the electron Hamiltonian. Hence, the eigenfunctions of the
Hamiltonian 	 are simultaneously eigenfunctions of the reflection operator, i.e.,
σ̂	 � σ	 (below we consider 	 as the spatial wave functions of the electrons).
Our goal is to find the σ eigenvalues of the reflection operator for given states of
atoms.

In the case of the nitrogen atom in the ground state 4S the spin wave functions
of all three atoms of the valence electron shell are identical. Therefore the spin
wave function of the electron is the product of three one-electron spin functions,
and the total electron wave function is the product of the spin and coordinate wave
functions. Because the total wave function of the electrons is antisymmetric with
respect to the transposition of two the electrons, and the spin wave function is
symmetric for this operation, the coordinate wave function is antisymmetric with
respect to the transposition of coordinates of any two electrons. Thus the electron
spatial wave function can be represented in the form of the Slater determinant

	(r1, r2, r3) �

∣∣∣∣∣∣∣
ψ1(r1) ψ1(r2) ψ1(r3)

ψ−1(r1) ψ−1(r2) ψ−1(r3)

ψ0(r1) ψ0(r2) ψ0(r3)

∣∣∣∣∣∣∣ ,
where ψm(ri) is the space wave function of the ith electron which has the mo-
mentum projection m onto the z-axis. As is seen, the reflection operation σ̂ for
electrons is similar to the operation of the transposition of two electrons and, taking
into account the symmetry of the spatial wave function with respect to the electron
transposition, we find σ � −1 for the ground state of the nitrogen atomN (p3, 4S).

In the case of the carbon atom the electron wave function is the product of
the spin and coordinate wave functions and, since the projection of the orbital
momentum of two electrons is zero, the spatial wave function of the electrons has
the following structure:

	 �
∑
m

Cm,−mψm(r1)ψ−m(r2),

whereCm,−m is the Clebsh–Gordan coefficient andm is the momentum projection
onto the axis for the first electron. We have

σ̂	 � σ̂
∑
m

Cm,−mψm(r1)ψ−m(r2) �
∑
m

Cm,−mψm(r2)ψ−m(r1).

As is seen, the electron reflection leads, in this case, to the same result as the
electron transposition. Hence the symmetry of this wave function coincides with
the symmetry of the spatial electron wave function with respect to the transposition
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of the two electrons. Therefore, the stateC(3P ) is odd, and the statesC(1D),C(1S)
are even. Considering the oxygen electron shell to consist of twop-holes,we obtain
the same result for the oxygen atom as in the carbon case, that is, state O(3P ) is
odd, and states O(1D), O(1S) are even.

Problem 11.2. Determine the number of �+- and �−-terms of a molecule con-
sisting of atoms with electron orbital momenta L1 and L2 (L1 > L2) within the
framework of case “a” of the Hund coupling.

Since case “a” of the Hund coupling scheme admits the summation of the orbital
and spin momenta of atoms independently, the number of �-terms of a different
parity is the same for each molecular spin. Hence, molecular spin is out of the
question. Below, for simplicity, we consider weakly interacting atoms which are
located far from each other, although the conclusion for the momentum projection
of a formedmolecule does not depend on this interaction.Weobtain zero projection
of the molecule momentum if the momentum projection is equal to M for the first
atom and to −M for the second atom. Because of L1 > L2, there is one such
state for each projection momentum of the second atom, i.e., a number of �-terms
is 2L2 + 1 at a given spin state. In this case, the molecular wave function can
be constructed as a product of atomic wave functions, so that the molecule wave
function for the �-terms is given by the formula

	0 � 1√
2

(
ψMϕ−M ± ψ−MϕM

)
,

where the wave function of the first atom with momentum projection M onto the
molecular axis is denoted ψM and the corresponding wave function of the second
atom is denoted by ϕM , the + sign corresponds to the �+-terms and the − sign
corresponds to the �−-terms. As is seen, the above expression is valid for M � 0.
Thus, in this way, we obtainL2 electron terms of the symmetry�+ andL2 electron
terms of the symmetry �−.

One more term is described by the wave function 	0 � ψ0ϕ0. Let us determine
its parity. Evidently, the parity of this term is the product of the parities of the atoms
forming the molecule σ1σ2. Hence, this term has �+-symmetry if σ1σ2 � 1, and
this term has�−-symmetry if σ1σ2 � −1. Thus, finally, we obtain that if σ1σ2 � 1,
there are (L2+1) terms of�+-symmetry andL2 terms of�−-symmetry. If σ1σ2 �
−1, we have L2 terms of �+-symmetry and (L2 + 1) terms of �−-symmetry.

Problem 11.3. Find the ion–atom exchange interaction potential if the p-electron
is located in the field of structureless cores and the fine splitting of levels
significantly exceeds the electrostatic splitting.

This relates to elements of Groups 3 and 8 of the periodical table and the jj -
scheme of momentum coupling is valid, so that the electron state is characterized
by the quantum numbers jmj—the total electron momentum and its projection
onto a quantization axis. According to the character of summation of the orbital
electron momentum and its spin into the total electron momentum, the electron
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wave function 	jmj
is given by

	jmj
�
∑
μ,σ

⎡⎣ 1

2
1 j

σ μ mj

⎤⎦ψ1μχσ ,

whereψ1μ is the spatial wave function of the p-electron with a momentum projec-
tion μ onto the quantization axis, and χσ is the spin function. From this we have
the following relation between the exchange interaction potential 
jmj

within
the framework of the jj -coupling scheme for atoms and ions, and the exchange
interaction potentials 
1m for the LS-coupling scheme


jmj
�
∑
μ

⎡⎣ 1

2
1 j

σ μ mj

⎤⎦2


1μ,

where 
1μ is given by formula (10.23) and, according to the properties of the
Clebsh–Gordan coefficients, mj � σ + μ. This formula for ap-electron can be
presented in the form


1/2,1/2 � 1

3

10 + 2

3

11, 
3/2,1/2 � 2

3

10 + 1

3

11, 
3/2,3/2 � 
11.

(11.15)
Introducing an angle θ between the molecular axis and a quantization axis onto
which the angular momentum projection is zero we have, for the exchange
interaction potentials at a given electron momentum,


1/2 � 1

3

10+ 2

3

11, 
3/2(θ ) �

(
1

6
+ 1

2
cos2 θ

)

10+

(
1

3
+ 1

2
sin2 θ

)

11.

(11.16)

Problem 11.4. Determine the exchange interaction potential of an ion and its
parent atom in the ground states if the atomic particles have p-electron shells and
if a jj -scheme of momentum coupling is valid.

We compose the atom and ion electron shells from two subshells with electron
momenta j � 1/2 and j � 3/2. The results for the ion and atom ground states
are given in Table 11.8, where the correspondence is shown between the LS- and
jj -coupling schemes. As follows from the data of Table 11.8, the ion–atom ex-
change interaction potential is simpler in the presence of relativistic interactions
because of a lower symmetry of atomic particles in this case.

Problem 11.5. Find the structure of the exchange interaction potential for the
ions and parent atoms with p2- and p3-electron shells, i.e., for the elements of
Group 5 of the periodic table. Establish the correspondence between the LS- and
jj -schemes of momentum coupling.

The results are given in Table 11.9 where the correspondence between theLS- and
jj -coupling schemes are given for individual terms. The values are presented for
the jj -coupling scheme, and this is indicated in parentheses for the LS-coupling
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Table 11.8. The ground states of atoms with p-electron shells within the framework of the
LS- and jj -coupling schemes, and the ion–atom exchange interaction potential (
) for
cases “c” and “e” of the Hund coupling.

Shell J LS-term jj -shell 


p 1/2 2P1/2 [1/2]1 
1/2

p2 0 3P0 [1/2]2 
1/2

p3 3/2 4S3/2 [1/2]2[3/2]1 
3/2

p4 2 3P2 [1/2]1[3/2]3 0

p5 3/2 2P3/2 [1/2]2[3/2]3 
1/2

p6 0 1S0 [1/2]2[3/2]4 
3/2

Table 11.9. The exchange interaction potential for atoms of Group 5 of the periodic table
system of elements whose atomic electron shell is p3 with their ions having the electron
shell p2.

LS 4S3/2
2D3/2

2D5/2
2P1/2

2P3/2

j − j
[(

1
2

)2(
3
2

)]
3/2

[(
1
2

)(
3
2

)2]
3/2

[(
1
2

)(
3
2

)2]
5/2

[(
1
2

)(
3
2

)2]
1/2

[(
3
2

)3]
3/2

3P0

[(
1
2

)2]
0


3/2(+) 0(+) 0(+) 0(+) 0(+)

3P1

[(
1
2

)(
3
2

)]
1


1/2(+) 
3/2(+) 
3/2(+) 
3/2(+) 0(+)

3P2

[(
1
2

)(
3
2

)]
2


1/2(+) 
3/2(+) 
3/2(+) 
3/2(+) 0(+)

1D2

[(
3
2

)2]
2

0(0) 
1/2(+) 
1/2(+) 
1/2(+) 
3/2(+)

1S0

[(
3
2

)2]
0

0(0) 
1/2(0) 
1/2(0) 
1/2(+) 
3/2(+)

scheme, that the exchange interaction potential is zero (0) or is not zero (+) forLS-
coupling. In particular, for the ground atom and ion states, the exchange interaction
potential occupies one cell in Table 11.9, while within the framework of the LS-
coupling scheme it is given by the matrix of formula (10.57c).



CHAPTER 12

Atom Interaction in Systems
of Many Bound Atoms

12.1 Exchange Interactions of Three Hydrogen Atoms

The interaction of many atoms leads to new properties of systems of many bound
atoms. Below we give some examples of this. We first consider the interaction of
three atoms and show that this interaction can lead to the intersection of electron
terms that is of importance for the collisional processes involving these particles.
Let us take three hydrogen atoms in the ground state and analyze the behavior
of the electron states which correspond to the atoms depending on the distances
between atoms. One can learn from this analysis that the electron terms of the two
lowest states of the system are intersected when the hydrogen atoms form a regular
triangle.

Assuming the distance between hydrogen atoms to be large, construct the wave
functions of the system under consideration, taking the electron wave functions
of the individual hydrogen atoms as a basis. The eigenfunctions of these states,
corresponding to the projection of the total electron spin 1/2 onto a given direction,
are combinations of the following basis wave functions:

�1 �
ψa(1)η−(1) ψa(2)η−(2) ψa(3)η−(3)
ψb(1)η+(1) ψb(2)η+(2) ψb(3)η+(3)
ψc(1)η+(1) ψc(2)η+(2) ψc(3)η+(3)

, (12.1a)

�2 �
ψa(1)η+(1) ψa(2)η+(2) ψa(3)η+(3)
ψb(1)η−(1) ψb(2)η−(2) ψb(3)η−(3)
ψc(1)η+(1) ψc(2)η+(2) ψc(3)η+(3)

, (12.1b)

�3 �
ψa(1)η+(1) ψa(2)η+(2) ψa(3)η+(3)
ψb(1)η+(1) ψb(2)η+(2) ψb(3)η+(3)
ψc(1)η−(1) ψc(2)η−(2) ψc(3)η−(3)

. (12.1c)
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Hereψa(i),ψb(i),ψc(i) are the coordinate wave functions of the ith electron which
is located in the field of the a, b, and c nuclei, respectively, η+(i), η−(i) are the
spin wave functions of ith electron if the spin projection is 1/2 or −1/2 onto a
given direction. Let us consider the case when the nuclei form an isosceles triangle.
Then the plane which is perpendicular to the triangle plane, and passes through its
height, is the symmetry plane of this system. Because of the s-state of electrons of
the hydrogen atom, reflection with respect to this symmetry plane givesψc → ψc,
ψa → ψb, ψb → ψa , where ab and ac are equivalent sides of the triangle. Hence
this operation of reflection yields �1 → −�2, �2 → −�1, �3 → −�3. Thus,
the eigenfunctions of the system of three hydrogen atoms, when these atoms form
an isosceles triangle, are an even wave function C1(�1 − �2) that conserves the
sign as a result of the reflection of electrons with respect to the symmetry plane,
and of two odd functions C2(�1+�2)+C3�3, C3(�1+�2)−C2�3 that change
sign under this operation. If we remove an atom c far from the other two atoms,
the even state corresponds to the hydrogen molecule, whereas the other two odd
states relate to the triplet state of the hydrogen molecule. In odd states electrons
are distributed in a wider region than in an even state, i.e., the binding energy of
electrons in the odd states is smaller than in the even state.

If the nuclei form an equilateral triangle, a new symmetry of the system occurs.
Let us introduce the operator α̂ of the rotation of electrons by an angle 2π/3
around the axis which is perpendicular to the triangle plane and passes through the
triangle center. Because this operator commutes with the electron Hamiltonian,
the eigenfunctions of the Hamiltonian are eigenfunctions of the operator α̂. This
operation of rotation of the system corresponds to the transformations ψa → ψc,
ψc → ψb, ψb → ψa , so that this operation leads to the following transformations
of the wave functions of the system �1 → �3, �2 → �1, �3 → �2. Using this
for the determination of the eigenfunctions of the system of three hydrogen atoms,
we note that the three rotations return the system to the initial state. Hence the
eigenvalues of the operator α̂ satisfy the relation α̂3 � 1, i.e.,α � 1, ei2π/3, e−i2π/3.
The corresponding expressions for the eigenfunctions 	 � a1�1 + a2�2 + a3�3

follow from the relation α̂	 � α(a1�1+ a2�2+ a3�3) � a1�3+ a2�1+ a3�2.
In this way we determine the eigenfunctions of the system that have the form

	I � C1(�1 +�2 +�3);

	II � C2(�1 +�2e
i2π/3 +�3e

−i2π/3);
	III � C3(�1 +�2e

−i2π/3 +�3e
i2π/3).

Since 	II � 	∗
III, EII �

〈
	∗

II

∣∣Ĥ ∣∣	II
〉 � 〈

	∗
II

∣∣Ĥ ∣∣	II
〉∗ � EIII, i.e., the levels of

states II and III are coincident when the atoms form a regular triangle. Next,

	II � 	∗
III � C2(�1 +�2e

i2π/3 +�3e
−i2π/3)

� C2

[
1

2
(�1 −�2)(1+ ei2π/3)+ 1

2
(�1 +�2)(1− ei2π/3)+�3e

−i2π/3
]

� C2

[
�1 + (�2 +�3) cos

2π

3
+ i(�2 −�3) sin

2π

3

]
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� C2

[
1

2
(�1 −�3)(1+ e−i2π/3)+ 1

2
(�1 +�3)(1− e−i2π/3)+�2e

i2π/3

]
i.e., the wave functions 	II, 	III include combinations of both even and odd func-
tions with respect to reflection in the symmetry planes, while the wave function	I

consists of only odd functions with respect to this operation. Therefore we obtain
EI > EII � EIII, i.e., the intersection of the electron term of the ground state with
the electron term of the first excited electron state takes place in the system of three
hydrogen atoms when they form an equilateral triangle.

Let us calculate the energy of states of the systems of three hydrogen atoms
in the ground state. Take the above wave functions �1, �2, �3 as the basis wave
functions. The normalization wave function �1 has the form

�1 � 1√
6(1+ Sbc)

ψa(1)η−(1) ψa(2)η−(2) ψa(3)η−(3)

ψb(1)η+(1) ψb(2)η+(2) ψb(3)η+(3)

ψc(1)η+(1) ψc(2)η+(2) ψc(3)η+(3)

, (12.2)

where Sbc �
〈
	bc(1, 2)

∣∣Ĥ ∣∣	bc(2, 1)
〉
is the overlapping integral and 	bc(1, 2) �

ψa(1)ψb(2) in the regionwhere the electrons are found far from the other nuclei. An
accurate two-electron wave function, similar to that of formula (10.30), is used for
small distances between related electrons. The expressions for the wave functions
�2, �3 have a similar form.

For calculation of the matrix elements Hik �
〈
�i

∣∣Ĥ ∣∣�k

〉
we divide the electron

Hamiltonian into three parts:

Ĥ � ĥab(1, 2)+ ĥc(3)+ V,

where

ĥab(1, 2) � −1

2

1 − 1

2

2 − 1

r1a
− 1

r1b
− 1

r2a
− 1

r2b
+ 1

|r1 − r2| +
1

Rab

,

ĥc(3) � −1

2

3 − 1

r3c
,

V � − 1

r3a
− 1

r3b
− 1

r1c
− 1

r2c
+ 1

|r1 − r3| +
1

|r2 − r3| +
1

Rac

+ 1

Rbc

.

Here ri is the coordinate of the ith electron, ria is the distance of the ith elec-
tron from the nucleus a, Rab is the distance between the nuclei a and b, the
Hamiltonian ĥab(1, 2) describes the system of two hydrogen atoms with nuclei
a and b, the Hamiltonian ĥc(3) corresponds to the hydrogen atom consisting of the
third electron and nucleus c, and the operator V accounts for the interaction be-
tween these systems. This form is convenient for calculation of the matrix element〈
	ab(1, 2)ψc(3)

∣∣Ĥ ∣∣	ab(2, 1)ψc(3)
〉
. In this case the matrix element from the oper-

ator V at large distances R between atoms contains an additional small parameter
1/R compared with the overlapping integral S between these wave functions.

Separating the Hamiltonian of two electrons into two- and one-electron Hamil-
tonians and neglecting the interaction between these systems in the region of the
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electron coordinates which determine the integrals under consideration, we reduce
the three-election problem to a two-electron problem. The matrix elements of the
Hamiltonian in the basis �1, �2, �3 are equal to

H11 � Eo − 1

2

bc, H22 � Eo − 1

2

ac, H33 � Eo − 1

2

ab,

H12 � −1

2

ab, H13 � −1

2

ac, H23 � −1

2

bc,

where 
ab is the exchange interaction potential for two hydrogen atoms at a dis-
tanceRab andEo is the energy of three hydrogen atoms accounting for a long-range
interaction between them. Presenting the energy of the system of three hydrogen
atoms in the form E � Eo + ε, we obtain the following secular equation for the
electron energy ε: ∣∣∣∣∣∣∣

ε +
bc 
ab 
ac


ab ε +
ac 
bc


ac 
bc ε +
bc

∣∣∣∣∣∣∣ � 0.

This equation is

ε3 + (
ab +
ac +
bc)ε
2

+(
ab
ac +
ab
bc +
ac
bc −
2
ab −
2

ac −
2
bc)ε

−
3
ab −
3

ac −
3
bc + 3
ab
ac
bc � 0.

The solution of this equation gives, for the energies of three electron states of the
system of three hydrogen atoms when they are found in the ground states at large
separations,

EI � Eo − 1

2

, EII � Eo + 1

2

, EIII � Eo + 1

2
(
ab +
ac +
bc),

(12.3)
where


 �
√

1

2
(
ab −
ac)2 + 1

2
(
ab −
bc)2 + 1

2
(
ac −
bc)2. (12.4)

From this solution it follows that if the hydrogen atoms form an equilateral
triangle (
ab � 
ac � 
bc), we obtain 
 � 0, and two lowest levels of the
system are coincident. In the case where one atom (atom c) is removed to infinity
(
ac,
bc → 0), the first state corresponds to the combined singlet state of the
hydrogen molecule EI � Eo − 1

2
ab, whereas the other two states correspond to
the triplet repulsive state of the hydrogen molecule EII � EIII � Eo + 1

2
ab.
Thus the analysis of the interaction of three hydrogen atoms shows a specific

structure of the electron terms. In particular, the intersections of the surfaces of
the electron potential energy for different electron terms may be responsible for
collisional transitions. In this case collisions of the hydrogen atom or its isotope
with the hydrogen molecule can lead to an exchange between the free and bound
atoms or to a dissociation of the molecule if configurations of the atoms are reached



314 12. Atom Interaction in Systems of Many Bound Atoms

which are close to a regular triangle. This example shows that complex systems of
atoms can have additional properties.

12.2 The Character of the Interactions of Atoms in Bulk
Inert Gases

The attraction between atoms is responsible for the formation of many-atom sys-
tems. In the case of the pair character of an atom interaction in a system of many
bound atoms, the parameters of this system can be expressed through the param-
eters of the pair interaction potential of atoms. The analysis of this connection
allows one to work out realistic models for the description of the bulk systems of
bound atoms. Below we make this analysis for the bulk condensed systems of inert
gases where additional simplicity is due to a weak interaction between atoms in
the bulk system.

The parameters of the interaction potentials of two inert gas atoms in the re-
pulsion and attraction regions of interaction follow from the analysis of various
properties and processes, such as the basis ofmeasurement of a high resolution vac-
uum ultraviolet absorption spectrum for the ground electronic state which yields
the positions of the lowest vibrational and rotational levels of dimers, and from
the total and differential collision cross sections resulting from measurements in
atomic beams. Use of the measurements of the second virial coefficients of inert
gases, transport data, mainly the viscosity and thermal conductivity coefficients
of gases and also data for the binding energy of crystals of inert gases at 0 K,
gives independent information about the interaction potential of two atoms. Sum-
mation of these data leads to enough accurate values of the interactions potential
in the range of distances between atoms which determine these data. Table 12.1
contains some parameters of the interaction potentials of two identical atoms of
the inert gases. Let us consider their peculiarities. Since an inert gas atom has a
filled electron shell, the exchange interaction of two atoms, which is determined
by the overlapping of the electron wave functions of different atoms, corresponds
to repulsion. This means that attraction in atomic interactions is due to a weak
long-range interaction and, hence, the dissociation energy of the dimer molecules
of inert gases is small compared to a typical electron energy. From this it follows
that three-body interactions in a system of many atoms of inert gases are relatively
small and, hence, one can be restricted only by a pair interaction of atoms in such
a system, i.e., the total interaction potential of atoms in this system has the form

U �
∑
j,k

U (rjk), (12.5)

where U (R) is the pair potential of the atom interaction of two atoms at a distance
R between them and rjk is the distance between the atoms j and k. Note the
character of atom motion in a bulk system of inert gases. In particular, the dimer
molecules of neon and argon are quantum systems because only two vibrational
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Table 12.1. The parameters of the interaction between two identical atoms of inert gases and
the parameters of bulk inert gases. Here Re is the equilibrium distance between the nuclei
of the dimer, D is the depth of the well in the pair interaction potential of atoms, Do is the
dimer dissociation energy for the ground vibrational state, Rl is the lattice constant at 0 K,
so that the distance between nearest neighbors in the crystal is equal to Rl/

√
2, and εsub is

the sublimation energy of the crystal per atom, so that E � εsubn is the binding energy of
atoms for the crystal consisting of n atoms.

Parameter Ne Ar Kr Xe

Re, Å 3.091 3.756 4.011 4.366

D, K 42.2 143 201 283

Do, K 24 121 184 267

Rl , Å 4.493 5.311 5.646 6.132

εsub � E/n 232 929 1343 1903

Re

√
2/Rl 0.973 1.000 1.005 1.007

εsub/6D 0.92 1.08 1.11 1.12

C6 6.6 68 130 270

2R6
eD 10.7 116 242 566

levels exist for the neon dimer, and 13–14 vibration levels are observed for the
argon dimer molecule. Nevertheless, we will consider bulk systems of these inert
gases as classical systems because they have many degrees of freedom.

From the data of Table 12.1 follows the short-range character of the interaction
between the atoms of inert gases in their crystals, i.e., interaction between nearest
neighbors determines the parameters of these crystals. Indeed, if we neglect the
interaction of nonnearest neighbors, we obtain that the distance between nearest
neighbors a � Rl/

√
2 becomes identical to the equilibrium distance for the di-

atomic moleculeRe, and the binding energy per atom for the classical bulk system
in the absence of atom vibrations is 6D, where D is the binding energy per bond,
because each internal atom has 12 nearest neighbors.

Now let us consider a bulk system of atoms with a short-range interaction where
only the interaction between the nearest neighbors takes place. In this system atoms
can be modeled by balls whose radius is determined by the equilibrium distance
between atoms in the corresponding diatomic. Then the profitable configuration
of this system is the structure of close packing which corresponds to maximum
density of these balls in a volume occupied them. This structure provides the
maximum total binding energy of the atoms in the system. Let us transfer to the
limit of zero temperature. Then the total binding energy of the system is equal to

E � D

2

∑
k

knk, (12.6)
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Figure 12.1.Assemblingof a lattice of a close-packed structure consistingof atomswhich are
modeled by hard spheres of a radius a located in the plane. Crosses indicate the projections
of centers of atoms of the lower plane onto this one. The distance between these planes
is a

√
2/3. The projections of the centers of atoms of the upper plane onto this one are

marked by open circles for the hexagonal structure of the lattice and by black circles for
the face-centered cubic (fcc) structure of the lattice.

where D is the binding energy per bond, k is the number of bonds between the
nearest neighbors, and nk is the number of atoms with this number of bonds, the
factor 1/2 takes into account that each bond includes two atoms.

Let us construct a close-packed structure containing an infinite number of atoms.
Denoting the distance between the nearest neighbors by a, we construct an infinite
crystal of this structure in the following way. First we arrange the atoms-balls
along straight lines, so that the neighboring straight lines are located at the distance
a
√

3/2, and each atom of a given line has two nearest neighbors located on the
neighboring line.Repeating this operation, such that all the atomcenters are located
on the same plane, we obtain the plane of the atoms-balls as is shown in Fig. 12.1
for the plane {111} where each atom has six nearest neighbors among the atoms
of this plane. In constructing the next plane,we place each atom in hollows between
three atoms of the previous plane. Thus each atom of this structure, with planes of
direction {111}, has three nearest neighbors among the atoms of the previous and
following planes, so that the total number of nearest neighbors for the atoms of the
structure of close packing is equal to 12. Then, according to formula (12.6), the
total binding energy of the atoms in the case of a short-range interaction potential
equals E � 6nD, where n
 1 is the number of atoms of this system.

Note that the structure of close packing can be of two types. There are two
possibilities of placing atom balls of the subsequent plane in hollows of this plane
with respect to the atoms of the previous plane (see Fig. 12.1). If the projections of
the atoms of the previous and subsequent planes onto this plane are coincident, then
these atoms form the hexagonal lattice. If these projections of atoms are different,
atoms form the face-centered cubic lattice. In the course of the construction of
the lattice of atoms, by addition of the new planes, one can change the positions
of these planes which leads to transition from the face-centered cubic lattice to
the hexagonal lattice or vice versa. This character of the change of symmetry is
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Figure 12.2. Transition between fcc and hexagonal structures of the close-packed lattice
(twinning). The lattice is assembled such that the atoms of the next layer are located in
hollows between atoms of the previous one. There are two possibilities for the positions of
atoms of a new layer (see Fig. 12.1). A change in the order of these layers leads to a change
of the lattice structure.

called “twinning” (see Fig. 12.2) and is observed in crystals with the close-packed
structure of atoms.

We now analyze the properties of crystals with a pair interaction of atoms and a
simple formof the pair interaction potential.Wefirst consider the popular Lennard–
Jones interaction potential which has the form

U (R) � D ·
[(

Re

R

)12

− 2

(
Re

R

)6
]
, (12.7)

whereR is the distance between atoms andD is the binding energy of two classical
atoms. This interaction potential has a minimum U � −D atR � Re, i.e., Re is
the equilibrium distance between atoms in the diatomic molecule. An attractive
feature of the Lennard–Jones interaction potential is that it contains a correct long-
range dependence on the distances between atoms. But because of its simplicity,
this interaction potential includes a certain connection between a long-range part
of the interaction and the parameters of the bond. Indeed, as follows from formula
(12.7), at large distances between the atoms, this potential has the form U (R) �
−2DR6

e /R
6, which corresponds to the dependence (10.11), U (R) � −C6/R

6.
The data of Table 12.1 show that the values of the parameters of a long-range
interaction 2DR6

e and C6 differ by a factor 2. This means that the Lennard–Jones
form of the interaction potential cannot satisfactorily describe the interaction of
inert gas atoms at large distances between the atoms.

In analyzing the parameters of the Lennard–Jones crystal, which consists of
atoms with the Lennard–Jones potential of interaction between them, we use the
face-centered cubic structure of this crystal which is observed for real inert gas
crystals. Let us determine the average binding energy per atomE/nwhich is given
by

E

n
� D

2
·
[
2C1

(
a

Re

)6

− C2

(
a

Re

)12
]
, (12.8)
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where a is the distance between nearest neighbors in the lattice and the parameters
of this formula are equal to (see Problem 12.2), for the face-centered cubic lattice,

C1 �
∑
k

nk

k6
� 14.356, C2 �

∑
k

nk

k12
� 12.131,

where nk is the number of atoms at a distance ka from the atom under consideration
and a is the distance between the nearest neighbors in this formula. Optimization
of this formula over the distance a yields, for this parameter and the maximal
binding energy,

a �
(
C2

C1

)1/6

Re � 0.971Re,
E

n
� D

2
· C

2
1

C2
� 8.61D. (12.9)

In the case of a short-range interaction potential these parameters are equal to

a � Re,
E

n
� 6D. (12.10)

Table 12.2 contains the average parameters of inert gases in reduced units. Com-
parison of these data with those of model crystals allows us to ascertain which of
the above two forms of the pair interaction potentials better describes the real inert
gas crystals. One can add to this comparison that the Lennard–Jones crystal has
the hexagonal lattice and, in the case of the crystal with a short-range interaction
of atoms, that the face-centered cubic lattice and hexagonal lattice are equivalent.
The real crystals of all inert gases (Ne, Ar, Kr, Xe) at low temperatures have the
face-centered cubic lattice. Thus a short-range interaction potential is more prof-
itable, for the modeling of systems of many bound atoms of inert gases, than the
Lennard–Jones one.

One more peculiarity of the short-range interaction between atoms follows from
the analysis of the liquid state of bulk inert gases. The transition from the solid to
liquid state is accompanied by a change in the bulk density so that a number of
nearest neighbors varies at this transition. In the course of the heating of an inert
gas solid from 0 K up to melting point, the distance between the nearest neighbors
increases due to excitation of the phonons. We assume that as a result of melting,
the distance between the nearest neighbors does not change while the number of
nearest neighbors varies. Then one can connect the average number of nearest
neighbors q in the liquid state at the melting point from the change bulk density. In
a volume V there are ρsV atoms in the solid state and ρlV atoms in the solid state,

Table 12.2. Properties of model and real crystals with pair interaction atoms at zero
temperature.

Parameter Lennard–Jones crystal
Short-range

interaction crystal
Average for crystals of

Ne, Ar, Kr, Xe

Rl/(Re

√
2) 0.97 1 1.00± 0.02

εsub/D 8.61 6 6.4± 0.6

Structure hexag. fcc or hexag. fcc
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where ρs , ρl are the density of the solid and liquid inert gases at the melting point.
Correspondingly, there are (ρs − ρl)V vacancies (or voids) in this volume. The
formation of each vacancy leads to a loss of 12 bonds, and the number of bonds is
equal to 6ρsV for the solid at the melting point. Hence in the given volume there
are 6ρsV − 12(ρs − ρl)V � 6(2ρl − ρs)V bonds for the liquid state. Because, in
the liquid state, 6ρlV atoms are found in a given volume, the average number of
nearest neighbors is equal to

q � 24− 12
ρs

ρl
. (12.11)

We now calculate the average number of nearest neighbors with accounting for
the energetics of the system within the framework of the short-range character of
the atom interaction in liquid inert gases. The relation

1

12
Hs(Tm) � 1

q
Hl(Tm)

yields

q � 12

1+
H/Hl

, (12.12)

where Hs , Hl are the enthalphies of atomization per atom for solid and liquid inert
gases and
H � Hs−Hl is the variation of this value as a result of melting. Table
12.3 contains values of the average nearest neighbors resulting from formulas
(12.11), (12.12). The coincidence of the results of different models testifies to the
validity of the short-range character of the interaction of atoms for the bulk inert
gas systems.

Note one more peculiarity of the properties of the bulk systems of inert gases.
Although the pair interaction potential can be approximated by the use of several
numerical parameters, only two of them are of importance, the equilibrium dis-
tance between the dimer atoms and the depth of the attraction well. From these
parameters and the atom massm one can compose only one combination of a given
dimensionality. This leads to a certain scaling law for various parameters of the

Table 12.3. The reduced parameters of liquid inert gases. Here Tm is the melting point, ρs ,
ρl are the densities of condensed inert gases at the melting point in the solid and liquid
states, ρo � m

√
2/R3

e is the typical density (m is the atom mass), 
H is the fusion energy
per atom, Hl is the sublimation energy in the liquid state per atom, and q is the number of
nearest neighbors in the liquid state.

Ne Ar Kr Xe Average

Tm/D 0.583 0.585 0.576 0.570 0.578± 0.006

(ρs − ρl)/ρo 0.123 0.116 0.126 0.127 0.123± 0.005


H/Hl 0.211 0.182 0.175 0.173 0.185± 0.015

q, formula (12.11) 10.10 10.27 10.11 10.19 10.17± 0.08

q, formula (12.12) 10.07 10.15 10.14 10.19 10.15± 0.04
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Table 12.4. Reduced critical parameters of inert gases. Tcr is the critical temperature, pcr is
the critical pressure and ρcr is the critical density.

System Ne Ar Kr Xe Average

Tcr/D 1.052 1.052 1.041 1.025 1.04± 0.01

pcrR
3
e /D 0.132 0.129 0.132 0.132 0.131± 0.001

ρcrR
3
e /m 0.301 0.303 0.301 0.298 0.301± 0.002

bulk systems consisting of the interacting atoms of inert gases. For some examples
of this scaling, Table 12.4 contains the reduced critical parameters of inert gases,
and their coincidence for different inert gases confirms the above statement.

12.3 Short-Range Interactions in Many-Atom Systems

The above analysis shows the short-range character of atom interaction in the
bulk systems of inert gases. We now analyze the peculiarities of this interaction in
bulk systems and clusters, systems consisting of a finite number of bound atoms.
The name for a short-range interaction of atoms is taken from nuclear physics
where this term has another meaning. This means that the interaction between two
nuclear particles takes place only in a restricted region of the order of a radius
of the action of nuclear forces. The potential of a short-range interaction of two
nuclear particles has one sign, i.e., it corresponds to attraction or repulsion only,
while the interaction potential of two atomic particles varies from their repulsion
at small distances between them to attraction at large distances. Then the term “a
short-range interaction” in atomic andmolecular physicsmeans that the interaction
between atomic particles is absent starting from some distance between them. For
example, this takes place if the interaction potential U (R) at large distances R

between the interacting atomic particles varies as ∼ exp(−γR), where γ is a
constant.

In the case of the short-range interaction of atoms, the total interaction potential
in the systemofmany atoms is the sumof the interaction potentials between nearest
neighbors only, and the interaction potential of two atoms does not depend on the
interaction of these atoms with other atoms. These facts simplify the analysis of
such systems and allows one to describe their properties in a simple way. Below we
evaluate the energy of clusters with a short-range interaction at zero temperature.
Note that large clusters differ from bulk systems because of the quantum character
of variation of the cluster energy with an increase in the number of cluster atoms.
This is determined by the cluster structure and is of importance up to large cluster
sizes.

The binding energy of a large cluster consisting of n atoms at zero temperature,
tends, in the limit (12.10), to E � 6Dn at large n, where D is the energy of
one bond or the well depth in the pair interaction potential of atoms. Below we
express the energetic parameters of clusters in units of D, so that the total binding
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energy of atoms is equal to the number of bonds between the nearest neighbors.
Formula (12.10) corresponds to the first term of expansion of the binding energy of
atoms over a small parameter n−1/3 and takes into account the fact that the distance
between the nearest neighbors in clusters is equal to the equilibrium distance in the
diatomic molecule in the case of a short-range pair interaction potential of atoms.
Accounting for the second term of expansion of the atom binding energy over the
small parameter, we introduce the cluster surface energy Esur from the relation

E � 6n− Esur. (12.13)

From this, on the basis of formula (12.6) we have

Esur �
∑
k

(
6− k

2

)
nk, (12.14)

where k is the number of nearest neighbors and nk is the number of atoms with
this number of nearest neighbors. As follows from this formula, internal atoms
does not give a contribution to the cluster surface energy. Because the number of
surface atoms is proportional to n2/3, at large n we have

Esur � An2/3. (12.15)

Here the parameter A is the specific surface energy which, according to formulas
(12.13) and (12.15), can be determined on the basis of the following relation if the
total binding energy of atoms is known

A � 6n1/3 − E/n2/3. (12.16)

These relations can be a basis for determination of the energetic parameters of
clusters of a different structure with a short-range interaction of atoms. We analyze
this problem below.

12.4 Clusters with a Short-Range Interaction of Atoms

Let us construct clusterswith a short-range interaction of atoms at zero temperature
and determine the binding energy of atoms. We start from clusters of the face-
centered cubic (fcc) structure, and these clusters can be by cutting out from the
fcc lattice. The fcc structure has a high symmetry, and clusters of fcc structures
can have surface atoms located on plane faces. The positions of atoms for all these
planes, which include planes {100}, {110}, and {111} in crystallographic notations,
are given in Fig. 12.3. We use the coordinate frame such that planes xy, xz, yz
have the symmetry {100}. Then a high symmetry of the fcc structure is expressed
by conservation of the system as a result of the transformations

x ←→−x, y ←→−y, z←→−z, x ←→ y ←→ z. (12.17)

We now construct clusters of the fcc structure by the addition of atoms to a
cluster or by cutting off the cluster from a crystal of the fcc structure. Take as the
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Figure 12.3. Positions of the centers of atoms on planes of the lattice of the fcc-structure.
Black circles mark the centers of the atoms of the upper layer, and open circles indicate the
positions of projections of the centers of atoms of the previous layer onto the surface. (a)
Plane {100}, where each surface atom has 8 nearest neighbors (4 nearest neighbors of this
layer and 4 nearest neighbors of the previous layer). (b) Plane {110}, where each surface
atom has 7 nearest neighbors (2 nearest neighbors of this layer, 4 nearest neighbors of the
previous layer, and 1 nearest neighbor from the second layer from the surface). (c) Plane
{111}, where each surface atom has 9 nearest neighbors (6 nearest neighbors of this layer
and 3 nearest neighbors of the previous layer).

origin of the coordinate frame any atom of this lattice or a center of a cell of the
lattice so that the symmetry (12.17) takes place for cluster atoms. Then one can
extract groups of atoms of the cluster such that the atoms of one group change
their positions as a result of transformation (12.17). Such a group is called “the
cluster shell,” i.e., the fcc cluster has a shell structure. The maximum number of
atoms of one shell corresponds to the total number of transformations (12.17) and
is equal to 48. In clusters with filled shells the properties of each atom of a certain
shell, in particular, a number of nearest neighbors, are the same for any atom of
this shell. Hence, for a cluster description, it is enough to analyze the parameters
of one atom of each shell.

Let us find the configuration of cluster atoms which correspond to the maximum
binding energy of cluster atoms E (or a minimum surface energy Esur) for a given
number of atoms n at zero temperature. We assume the cluster shells to be filled
or free and use the property of the fcc clusters that surface atoms can form plane
faces when they are located in planes {100}, {110}, and {111} (see Fig. 12.3).
Since there are six different planes of type {100}, 12 different planes of {110}, and
eight different planes of type {111}, the maximum number of plane faces of fcc
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clusters is equal to 26. A cluster with such or other completed structure has the
so-called magic number of atoms. In this case removal or addition of one atom
to the cluster leads to an increase in its specific surface energy (12.16). Thus the
magic numbers of clusters correspond to the profitable structures of clusters with
respect to their specific energy. The appearance of the magic numbers of cluster
atoms is the property of a system consisting of a finite number of atoms and results
from the shell structure of clusters with a pair interaction of atoms.

We now construct the cluster geometrical figures with plane faces which corre-
spond to the magic numbers of clusters of the fcc structure and evaluate the energy
of such clusters with a short-range interaction of atoms. In order to calculate the
surface energy of these clusters it is enough, in accordance with formula (12.14),
to determine the number of bonds between nearest neighbors in this cluster. Ac-
cording to Fig. 12.3, the surfaces of the direction {111} are more profitable because
a surface atom has nine nearest neighbors, while a surface atom of a plane of the
direction {100} has eight nearest neighbors, and a surface atom of a plane of the
direction {100} has seven nearest neighbors. From this it follows that the basis
of the optimal structure of fcc clusters with a short-range interaction of atoms is
an octahedron—a geometrical figure whose surface consists of eight equilateral
triangles. Below we calculate the number of atoms and the surface energy of clus-
ters with a short-range interaction of atoms for the family of octahedrons (see Fig.
12.4(a)). The number of an octahedron in the family is m so that each of 12 edges
of this octahedron containsm+1 atoms. Then this octahedral cluster has six vertex
atoms, 12(m−1) nonvertex edge atoms and 4(m−1)(m−2) surface atoms which
are located inside eight surface triangles. Thus the total number of surface atoms
of the mth octahedron is equal to 4m2 + 2, and we have the relation

nm � nm−1 + 4m2 + 2,

where nm is the total number of atoms of the mth octahedral cluster, and this
relation gives (for simplicity, below we omit the subscript)

n � 2m3

3
+ 2m2 + 7m

3
+ 1. (12.18)

In order to calculate the surface energy, we note that each vertex atom has four
nearest neighbors, each interior edge atom has seven nearest neighbors, and each
interior atom of surface triangles has nine nearest neighbors. Then, from formula
(12.14), we obtain, for the surface energy of this cluster,

Esur � 6(m+ 1)2. (12.19)

Let us now consider a truncated octahedron (Fig. 12.5) which can be obtained
from the mth octahedral cluster by cutting off six regular pyramids whose vertices
are the octahedron vertices, and each edge of these pyramids contains k atoms.
Each pyramid contains k(k + 1)(2k + 1)/6 atoms. The number of atoms of the
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Figure 12.4. Symmetric structures of fcc-clusters: (a) Octahedron; (b) regular truncated
octahedron—tetradecahedron; (c) cuboctahedron.

Figure 12.5. The icosahedron figure. Its 12 vertices are located on the surface of a sphere
of radius R and the distances between neighboring vertices on the sphere are identical and
equal to Ro, so that joining of the neighboring vertices gives 20 equilateral triangles.

truncated octahedron and its surface energy are equal to

n � 2m3

3
+2m2+ 7m

3
+1−k(k+1)(2k+1), Esur � 6(m+1)2−6k(k+1).

(12.20)



12.4 Clusters with a Short-Range Interaction of Atoms 325

The surface of a truncated octahedron includes six squares and eight hexagons.
The regular truncated octahedron—tetradecahedron (Fig. 12.4(b)) has regular
hexagons on its surface (see Fig. 12.4(b)). Let us consider a family of such figures
which are characterized by a number p so that its edges contain 3p + 1 atoms.
Then from relations m � 3p and k � p we have, from formula (12.20),

n � 16p3 + 15p2 + 6p + 1; Esur � 48p2 + 30p + 6. (12.21)

One more symmetrical figure of truncated octahedra is the cuboctahedron (Fig.
12.4(c)). In this case three edges of the hexagon are equal to zero, and the surface
of the cuboctahedron consists of six squares and eight equilateral triangles. Denote
the number of the octahedron family by p so that each of its edges contains 2p+1
atoms. Then 2(2p + 1) � m+ 1, so that from formula (12.20) we obtain, for the
parameters of the cuboctahedral cluster,

n � 10p3

3
+ 5p2 + 11p

3
+ 1; Esur � 6(2p + 1)2. (12.22)

From the above expressions one can find the specific surface energy A of the
clusters under consideration in accordance with formula (12.14). In particular, for
large clusters with m
 1, k 
 1, this value is equal to

A � 6 · m2 − k2

(2m3/3− 2k3)2/3
. (12.23)

The specific surface energy A is equal to 7.86 for the octahedral cluster structure,
8.06 for the cuboctahedral cluster, 7.55 for the regular truncated octahedron—
tetradecahedron and 7.60± 0.05 for fcc clusters with a maximum binding energy
of atoms at a given number of atoms on average.

In order to determine the optimal cluster structures at low temperatures, it is
enough to compare the values of the specific surface energiesA for these structures
at the same number of cluster atoms. This comparison shows that for large clusters
n 
 100 the fcc structure of clusters is more preferable than the hexagonal one.
The icosahedral structure can be more favorable for these and larger sizes. Hence
below we consider the icosahedral cluster structure. Note that the existence of the
cluster icosahedral structure confirms a general peculiarity of cluster structures
whose variety is wider than that of crystal structures. Indeed, crystals with a pair
interaction of atoms can have two structures of close packing, fcc and hexagonal
structures. Clusters consisting of these atoms along with these structures can have
the icosahedral structure.

The icosahedron as a geometric figure has a surface consisting of 20 regular
triangles (Fig. 12.6). Hence the distances between neighboring vertices of the
icosahedron are identical as well as the distances from the icosahedral center to
its vertices. This means that all the icosahedral vertices are located on a sphere
which center is the icosahedral center. But the radius of this sphere (we denote it by
R) differs from the distance between neighboring surface atoms Ro. Figure 12.6
gives projections of the icosahedron onto some planes and its developing view.
We express below the different distances in the icosahedron and find the relation
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Figure 12.6. The icosahedral structure. (a) The projections of the icosahedron vertices onto
the plane passing through its two axes. (b) The projections of the icosahedron vertices onto
the plane which is perpendicular to one of its axes. (c) The developed view of the cylinder
whose axis is one axis of the icosahedron, so that 10 icosahedron vertices are located on the
surface of this cylinder. The projection of this cylinder onto the plane which is perpendicular
to the cylinder axis is shown by a dashed line in the top view of the icosahedron (Fig. 12.6(b).

between the parameters R and Ro. The side length of the pentagon of Fig. 12.6(b)
is equal to

Ro � 2r sin
π

5
. (12.24a)

The distance between nearest neighbors that are the vertices of different pentagons
is

Ro �
√
l2 +

(
2r sin

π

10

)2
, (12.24b)

where l is the distance between pentagons. The distance between a pole and an
atom of a nearest pentagon equals

R2
o � r2 +

(
R − l

2

)2

. (12.24c)

In addition, the following relation takes place between the sphere radius and the
ring radius in which pentagons are inscribed

R2 � r2 + (l/2)2. (12.24d)

One can see that the first three equations give the relation between the icosahedral
parameters, and the forth equation allows us to check the validity of the icosahedron
definition. The first and second equations give

r � l �
(

1

2
+ 1

2
√

5

)1/2

Ro � 0.851Ro. (12.25a)
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From the third equation we have

R � r

√
5

2
� 0.951Ro. (12.25b)

The last equation corroborates these relations. Thus, the distance from the center to
the icosahedral vertices is approximately 5% less than between the nearest vertices
of the icosahedron.

Let us construct the icosahedral cluster withm filled layers in the following way.
Let us draw a sphere of radius mR and locate on it 12 vertices such that 20 regular
triangles are formed as a result of joining the nearest vertices. Then we divide
each edge of the icosahedron into m parts and draw lines through them which are
parallel to the triangle sides. Atoms are located in both the vertices and crosses of
these lines. Now let us divide each radius-vector joining the center with the vertices
into m parts and draw m− 1 new spheres through the obtained points. Repeating
the above operation with the triangles of each layer, we obtain the cluster of the
icosahedral structure which containsm filled layers. Let us calculate the number of
atoms of such a cluster. The surface layer of this cluster contains 12 vertex atoms,
m − 1 nonvertex atoms in 30 of each of its edges, and (m − 1)(m − 2)/2 atoms
inside each of the 20 surface triangles. This leads to the relation

nm � nm−1 + 12+ 30(m− 1)+ 10(m− 1)(m− 2),

where nm is the number of atoms for the icosahedral, the cluster containing m

filled layers. From this we have

nm � 10

3
m3 + 5m2 + 11

3
m+ 1. (12.26)

In order to determine the binding energy of cluster atoms within the framework
of a short-range interaction of atoms, it is necessary to calculate the number of
bonds of different lengths between the atoms. We account for two lengths of R
and Ro in the cluster and bonds of length R are realized between atoms of the
neighboring layers, while the bonds of length Ro correspond to the nearest atoms
of one layer. Let us present the total binding energy of cluster atoms in the form

E � −aU (R)− bU (Ro), (12.27)

where a is the number bonds in the cluster of lengthR and b is the number bonds of
length Ro. Now we calculate these numbers of bonds taking into account that each
vertex atom has one bond of length R and five bonds of length Ro, each nonvertex
edge atom has two bonds of lengthR and six bonds of lengthRo, and each internal
atom of a surface triangle has three bonds of length R and six bonds of length Ro.
This leads to the following relations for the numbers of corresponding bonds for
the icosahedral cluster with completed layers

am � am−1 + 30m2 − 30m+ 12;

bm � bm−1 + 30m2.
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This gives, for the number of corresponding bonds,

am � 10m3 + 2m; bm � 10m3 + 15m2 + 5m. (12.28)

Taking into account that the lengths of bonds R and Ro are close to the
equilibrium distanceRe in the diatomic molecule we obtain, from formula (12.28),

E � (am + bm)D − 1

2
U ′′(Re) · [am(R − Re)

2 + bm(Ro − Re)
2].

Taking the maximum of this value as a function of R, we obtain as a result of
optimization of this expression,

E � (am + bm)D − 0.0012ambm
0.904am + bm

· R2
eU

′′(Re). (12.29)

The second term of this expression is small compared to the first term. For
example, in the case of the truncated Lennard–Jones interaction potential, when
R2

eU
′′(Re) � 72D, the second term is 2.3% of the first term. This means that the

binding energy is mainly determined by the number of bonds. But because the
number of the nearest neighbors of internal atoms is the same for the icosahedral
and close-packing structures, the second term of formula (12.29) is of importance
for the choice of the optimal structure at a given number of cluster atoms. In
particular, the asymptotic expression of the total binding energy of atoms E at
large numbers of atoms n has the following form for the icosahedral cluster with
filled layers

E � 5.864n− 6.56n2/3. (12.30)

Let us compare this expression with that of the fcc cluster where, according
to formula (12.15), the asymptotic form of the total binding energy of atoms is
E � 6n − An2/3. One can see that the difference in the first term of expansion
is determined by the second term in the right-hand side of formula (12.29), and
formula (12.30) corresponds to the truncated Lennard–Jones interaction potential
between the atoms. In this case the coincidence of these asymptotic formulas for the
icosahedral and fcc structures takes place in the range n � 400÷ 500. This means
competition of these structures in a wider region than this one, so that at some
number of cluster atoms in this region the icosahedral structure is preferable, other
regions clusters with the fcc structure are characterized by a higher binding energy
of atoms. Of course, the position of the region of competition of the structures
depends on the form of the pair interaction potential of atoms.

12.5 The Jelium Model of Metallic Clusters

Above we consider a system of many bound the atoms where atoms conserve their
individuality. Now we present another case of atom interaction which relates to the
formation of metallic particles from atoms. The related jelium model of clusters
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is suitable for clusters consisting of alkali metal atoms and assumes the charge
of positive ions to be distributed uniformly over a cluster space. As a matter of
fact, this model resembles plasma models with uniform distribution of the positive
charge over a space. These models allow us to understand the principal plasma
properties. In particular, electrons of a dense plasma can form the Wigner crystal
at zero temperature which has an analogy with the jelium cluster model. Let us use
the concept of the Wigner crystal for the jelium cluster model. Electrons in a field
of a distributing positive charge have a specific potential energy whose depth is of
the order of e2N−1/3, where N is the number density of electrons and ions. On the
other hand, electrons of this degenerated electron gas have a typical kinetic energy
of the order of p2

o/m ∼ N2/3, where po is the Fermi momentum for electrons.
From this follows the form for the binding energy per electron

ε � aN2/3 + bN−1/3, (12.31)

where the parameters a, b have the order of a typical atomic value. Optimization
of this formula gives the optimal value of the number density of electrons which is
of the order of a typical atomic value. Thus the size of a metallic cluster within the
framework of the jelium cluster model is established on the basis of competition of
the electrostatic interaction between electrons and ions [the second term of formula
(12.31)] and the exchange interaction between electrons due to the Pauli exclusion
principle [the first term of formula (12.31)]. The result of this competition gives
an optimal cluster size.

Along with the general properties of a dense plasma at zero temperature, the
related cluster has specificpropertieswhich are determinedby its finite size. Indeed,
the form of the well which is created by the positive charge of the cluster influences
the positions of electrons and, as a result of their interaction, a self-consistent field
occurs which determines the quantum numbers of the electrons of the cluster. Let
us consider this problem in a general form. The self-consistent field of the cluster
has a spherical symmetry as follows from the problem symmetry (in reality it is
valid strictly for clusters with filled electron shells).

Then the quantum numbers of electrons are the same as for atomic elec-
trons. They are nlmσ , and in a general case we have |m| ≤ l, σ � ±1/2.
As for the condition l + 1 ≤ n, which takes place for electrons located in the
Coulomb field, this condition is now absent. This means that an electron with
a certain n can have, in principle, any orbital momentum l. In particular, Fig.
12.7 yields the sequence of the filling of electron shells for clusters of alkali met-
als, as follows from the experiment. At the start, this sequence is the following
1s21p61d102s21f 142p61g182d101h123s2, and so on. The example of the jelium
cluster shows the connection between physical concepts which were understood
for physical objects of one type and can be suitable in a modified form for other
physical objects. This relates to the connection between the jelium model of clus-
ters of a dense plasma with a low temperature, with the electron behavior in a
self-consistent field of ions and electrons, and with the physics of metals.
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Figure 12.7. The sequence of shell filling for alkali metal clusters.

Problems

Problem 12.1. Analyze the interaction potential of three atoms with one valent
s-electron if they are arranged in one line.

We use formulas (12.3) and (12.4) for the energy of the lowest state of the sys-
tem under consideration. Let us take atom b as the middle atom and neglect the
interaction between atoms a and c. Then the interaction potential depends on two
distances, x � Rab and y � Rbc. According to formula (12.3), the interaction
potential has the following form:

U (x, y) � V (x)+ V (y)− 1

2
√

2

√
[
(x)−
(y)]2 +
2(x)+
2(y), (12.32)

where V (x) is the long-range interaction potential between two atoms and 
(x)
is the exchange interaction potential. Note that U (x,∞) � V (x) − 1

2
(x) is the
interaction potential for the diatomic molecule which is found in the even state. It
is convenient to use this potential in a form which is similar to the Morse formula,
so that V (x) � A exp[−α(x − Re)], 
(x) � B exp[−β(x − Re)], where Re is
the equilibrium distance for the diatomic molecule. Introducing the dissociation
energy D of the diatomic molecule we have, for the parameters of the long-range
and exchange interaction potentials of two atoms,

A � β

α − β
D, B � 2α

α − β
D, α > β.

These relations lead to the minimum of the pair interaction potential at distance
Re between the atoms with depth D of the potential well.

These relations allow us to present a general form of the electron energy which
is called the potential energy surface for the system ABC of atoms. In this case
the potential energy is presented as equipotential curves in the xy plane. In the
frame of the xy-axes these curves are symmetric with respect to the line x � y.
At large x or y they have the form of valleys which are separated by a potential
barrier. Let us find the value of the barrier on the basis of the above formulas and
approximations. Because of the symmetry, the barrier lies on the line x � y. The
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interaction potential of atoms on this line is equal to

U (x � y)− U (x, y � ∞) � V (x)− 
(x)

2

� 2A exp[−α(x − Re)]− 1

2
B exp[−β(x − Re)].

Using the connection between the parameters of long-range and exchange in-
teraction potentials, we find the position of the minimum xmin of this function and
the barrier value Ubar � D − U (xmin, xmin):

xmin � Re + ln 2

α − β
, Ubar � D − D

2β/(α−β)
. (12.33)

In particular, in the case of the Morse interaction potential α � 2β we have, for
the barrier height,

Ubar � D/2. (12.34)

Thus the potential energy surface of the system under consideration in the xy

plane consists of two ravines separated by a barrier. These ravines are approxi-
mately located parallel to the x- and y-axes, so that the middle of each ravine is
found at the distance Re from the corresponding axis. In reality, transition from
one ravine to the other corresponds to transition from the bound state of atomsAB
to the bound state of atoms BC. Thus, the transition between these ravines corre-
sponds to the chemical process A+ BC → AB +C. Therefore the ravine which
is parallel to the x-axis is called the reagent valley, and the other ravine is called
the product value. The line of an optimal transition from the reagent valley to the
product valley is called the reaction way and the potential energy along this way is
called the profile of the reaction way. In the case under consideration, the reaction
way is a symmetric curve with respect to the line x � y. This is characterized by
the maximum of the profile which is equal to Ubar.

Problem 12.2. Evaluate the specific sublimation energy (the binding energy per
atom) for a crystal of the face-centered cubic (f cc) structure with a pair in-
teraction between atoms which has the form of the Lennard–Jones or Morse
potential.

It is convenient to introduce the unit of length Re/
√

2, so that Re is the equilib-
rium distance between atoms in the diatomic molecule, and we use the reduced
energy units by expressing them in D units—the dissociation energy of the di-
atomic molecule or the energy per bond. Taking a test atom as the origin of the
coordinate frame whose axes have the direction {100} of the lattice, we account
for the symmetry of the fcc structure (12.17),

x ←→−x, y ←→−y, z←→−z, x ←→ y ←→ z.

This allows us to place crystal atoms in shells so that all the atoms of one shell
are located at identical distances from the central atom, and the atoms of one shell
exchange their positions as a result of the above transformations. Therefore it is
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Table 12.5. Parameters of atomic shells.

Shell r2
k /R

2
e nk Shell r2

k /R
2
e nk

011 1 12 044 16 12

002 2 6 334 17 24

112 3 24 035 17 24

022 4 12 006 18 6

013 5 24 244 18 24

222 6 8 116 19 24

123 7 48 235 19 48

004 8 6 026 20 24

114 9 24 145 21 48

033 9 12 226 22 24

024 10 24 136 23 48

233 11 24 444 24 8

224 12 24 055 25 12

015 13 24 017 25 24

134 13 48 345 25 48

125 15 48 046 26 24

enough to use the parameters of one atom of each shell for the analysis of the
contribution of this shell to the total binding energy. Below we characterize a shell
by the coordinates of a test atom of a given shell xyz for which 0 ≤ x ≤ y ≤ z.
Table 12.5 gives the number of atoms nk for filled shells located at a given distance
from the central atom. Note that for each atom of the crystal lattice, the value
x + y + z expressed in reduced units, is a whole even number.

On the basis of the data of Table 12.5 determine the binding energy of the crystal
per atom which is equal to

ε � 1

2

∑
k

nkU (rk), (12.35)

where U (rk) is the pair interaction potential of the central atom with an atom of a
given shell, the factor 1/2 accounts for each bond relating to two atoms.

The general scheme of determination of the sum is the following. We present
each term of the interaction potential in the form

ε � 1

2

26∑
k�1

nkU (rk)+
∫ ∞
√

27
2πr2

k drk
√

2U (rk),
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Table 12.6.The total binding energyof the fcc crystal per one atom for a givenpair interaction
potential.

U (r) r−6 r−8 r−12 exp[2(r − Re)] exp[4(r − Re)] exp[8(r − Re)]
2ε 14.454 12.802 12.132 28.60 14.937 12.292
δ 0.002 7 · 10−5 1 · 10−7 0.01 2 · 10−6 2 · 10−13

and the error of this operation is estimated as δ � π
√

26U (
√

26) � 16U (
√

26).
Table 12.6 gives values of this sum for various forms of terms of interaction
potentials and the error of the used scheme of calculation.

Let us formulate a general method for the calculation of the specific binding
energy of crystal atoms on the basis of the data of Table 12.6 or data of such a
type. We consider two methods for the presentation of the pair interaction potential
so that in the first case it is the sum of two terms with an inverse power depen-
dence on the distance between atoms and, in the second case it has a form of the
Morse potential. In the first case the general form of the interaction potential is the
following:

U (R) � D

[
l

n− l

(
Re

R

)n

− n

n− l

(
Re

R

)l
]
, l < n,

so that this dependence has a minimum U (Re) � −D at R � Re. Denoting the
sumCn �

∑
k(Re/rk)n, where rk is the distance for atoms of the kth shell we have,

for the specific binding energy of the crystal,

2ε

D
� Cn

l

n− l

(
Re

R

)n

− Cl

n

n− l

(
Re

R

)l

.

This function has a minimum

2ε

D
� −C

n/(n−l)
n

C
l/(n−l)
l

at Ro � Re

(
Cn

Cl

)1/(n−l)
.

In particular, for the Lennard–Jones potential l � 6, n � 12, this formula yields,
for the maximum binding energy of crystal atoms,

2ε

D
� −C2

6/C12 at Ro � Re

(
C12

C6

)1/6

which coincides with formula (12.9).
In the case of the Morse pair potential

U (R) � D
[
e2α(R−Re) − 2eα(R−Re)

]
we obtain, for the specific binding energy of the crystal per atom,

2ε

D
� Cαe

2α(R−Re) − 2C2αe
α(R−Re),
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where Cα �
∑

k e
α(rk−Re). This value has a minimum

2ε

D
� C2

α/C2α at Ro � Re − 1

α
ln

Cα

C2α
.

In particular, in the case α � 2, this formula and the data of Table 12.6 give
Ro � 0.675Re, εmin � −27.4D. In the case α � 4 we have Ro � 0.951Re,
εmin � −9.084D. Note that in both cases of this type of interaction potential
the optimal distance between the nearest neighbors is less than the equilibrium
distance between atoms of the diatomic molecule, and the specific binding energy
exceeds the value 6D which corresponds to a short-range interaction potential.



CHAPTER 13

Elastic Collisions
of Atomic Particles

13.1 Elastic Scattering of Classical Atomic Particles

The interaction of atomic particles determines the character of the collisional pro-
cesses involving these particles. Hence the parameters of the scattering of these
particles are expressed through the parameters of their interaction potentials or
electron terms of the quasi-molecule consisting of colliding particles. We start
from the elastic collisions of classical atomic particles, when their motion is gov-
erned by classical laws. Let U (R) be the interaction potential of particles which
depend on a distanceR between them. We consider the elastic collisions of atomic
particles when the internal states of the colliding particles do not vary. Then the
positions of the colliding particles satisfy the following Newton equations:

m1
d2R1

dt2
� − ∂U

∂R1
, m2

d2R2

dt2
� − ∂U

∂R2
(13.1)

where R1, R2 are the coordinates of the corresponding particles, m1, m2 are
their masses and, because the interaction potential U for related particles de-
pends only on the relative distance between particles, R � R1 − R2, the
forces which act on one particle from one another, are connected by the rela-
tion ∂U/∂R1 � −∂U/∂R2. This form of interaction between particles allows us
to divide the motion of two particles into the motion of their center of mass and
their relative motion. Indeed, introducing the vector of the center of mass of par-
ticles Rc � (m1R1 + m2R2)/(m1 + m2), one can present the Newton equations
(13.1) in the following form:

(m1 +m2)
d2Rc

dt2
� 0, μ

d2R
dt2

� −∂U

∂R
, (13.2)
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where μ � m1m2/(m1+m2) is the reduced mass of the particles. Thus, the center
of mass moves with a constant velocity, and the interaction of particles influences
only their relative motion.

Therefore, we study below the motion of one particle with the reduced mass μ
in the field of center U (R), because the problem of the scattering of two particles
is reduced to the problem of the scattering of one particle with mass μ in the
field U (R) of a scattering center. Note that the same situation takes place for the
quantum character of the interaction of particles. Then the Schrödinger equation
is separated as a result of using the same variables, and the scattering problem is
described by the Schrödinger equation for the relative positions of particles.

We now introduce the parameters which characterize the scattering of particles.
Under given initial conditions, the relative motion of particles is described by the
certain trajectory of a scattering particle. Assuming the interaction potential to
be spherical, U � U (|R1 − R2|), one can characterize the trajectory of colliding
particles by the following parameters (see Fig. 13.1): ρ is the impact parameter of
collision, ro is the distance of closest approach, and ϑ is the scattering angle which
is the angle between the initial and final directions of motion of the particle. The
parameter of the elementary act of the collision of particles is the cross section of
this process, which is the ratio of the number of scattering acts per unit time to the
flux of incident particles. Let us assume the dependence ρ(ϑ) to be monotonic in
some range of ϑ and then find the differential cross section of collision as the ratio
of the number of scattering acts per unit time and unit of solid angle to the flux of
incident particles. In the case of a central force field the elementary solid angle is
equal to d� � 2π d cosϑ , and particles are scattered in this angle element when
the impact parameters range from ρ up to ρ + dρ. Since the flux of particles is
equal toNv, whereN is the number density of incident particles and v � |v1−v2|
is the relative velocity of the colliding particles, the number of particles scattered
per unit time into a given solid angle is equal to 2πρ dρNv, so that the differential

Figure 13.1. The parameters of the elastic scattering of particles. O is the position of the
scattered force center, the solid curve is the trajectory of collision in the center-of-mass
coordinate system, ρ is the impact parameter of the collision, ro is the distance of closest
approach, and ϑ is the scattering angle.
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cross section is

dσ � 2πρ dρ. (13.3)

The spherical symmetry of the field of the scattering center U � U (|R1 − R2|)
leads to a simple connection between the impact parameter of collision ρ and the
distance of closest approach ro. Use the conservation of the momentum of motion
which is equal toμρv at large distances between particles andμvτ ro at the distance
of closest approach, where vτ is the tangential component of the velocity at the
distance of closest approach at which the normal component of the velocity is zero,
so that the law of energy conservation gives μv2

τ /2 � μv2/2− U (ro). This leads
to the following relationship:

1− ρ2

r2
o

� U (ro)

ε
, (13.4)

where ε � μv2/2 is the kinetic energy of particles in the center-of-mass coordinate
system. These relations allow us to determine the angle of scattering ϑ . Indeed,
the rotation momentum of particles L � μvρ � μvτR is conserved in the course
of collision. Here v is the relative velocity of particles at large distances between
colliding particles when the interaction between them is weak. The tangential
velocity is vτ � vρ/R � R dϑ/dt , and this is the equation for the scattering
angle. Next, the normal velocity of particles vR � dR/dt can be determined from
the equation μv2

R/2+ μv2
τ /2 � ε � μv2/2− U (R). This yields

dR

dt
� ±v

√
1− ρ2

R2
− U (R)

ε
,

and the sign depends on the direction of the relative motion of particles. From this
equation, on the basis of the symmetry of this problem [R(t) � R(−t), t is time,
and t � 0 at R � ro], we obtain the following expression for the scattering angle
in the classical case:

ϑ � π − 2
∫ ∞

ro

ρdR

R2
√

1− ρ2

R2 − U (R)
ε

, (13.5)

and according to formula (13.4) the root is zero if R � ro. Of course, this formula
gives ϑ � 0 at U (R) � 0.

The scattering of particles at large angles is of importance for the various pa-
rameters of gases and plasmas. Parameters, such as transport coefficients and rates
of relaxation for various degrees of freedom, are determined by the scattering of
particles on large angles. In particular, the greatest averaging of the scattering cross
section over the scattering angles has the form

σ ∗ �
∫

(1− cosϑ) dσ, (13.6)

and this cross section is called the diffusion, or transport, cross section. An esti-
mation for the scattering cross section at large angles ϑ ∼ 1 follows from formula
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(13.4) and has the form

σ � πρ2
o , where U (ρo) ∼ ε. (13.7)

This estimate also corresponds to the diffusion cross section (13.6).
Thus, the problem of the elastic scattering of two atomic particles is reduced

to the problem of the scattering of one particle in the central field. As follows
from the above analysis, the parameters of scattering including the cross section
of scattering, are determined by the interaction potential U (R) between particles.

13.2 Scattering of Atoms in a Sharply Varied
Interaction Potential

The interaction of atomic particles at small and moderate separations usually cor-
responds to repulsion (see Table 10.7) with a sharply varied interaction potential,
because of the exchange interaction between the atomic particles and since the
Coulomb interaction of atomic cores is partially shielded by atomic electrons at
these separations. One can use a simple model for elastic collisions and an interac-
tion potential which is called the hard sphere model. Then atoms are modeled by
hard balls and their scattering is similar to the elastic scattering of billiard balls.
The character of the scattering in this case is shown in Fig. 13.2, where Ro is the
sum of the radii of these balls. According to Fig. 13.2, the following relation takes
place between the collision and scattering parameters ϑ � π −2α, sin α � ρ/Ro,
which leads to ρ � Ro cos(ϑ/2). Then on the basis of formula (13.2) we have the
following expression for the differential cross section of scattering:

dσ � 2πρ dρ � (πR2
o/2) d cosϑ. (13.8)

In particular, for the diffusion cross section of the collision of particles this gives

σ ∗ � πR2
o, (13.9)

which corresponds to formula (13.7).

Figure 13.2. The trajectory of collision (solid lines with arrows) for the hard sphere model.
Ro is the sphere radius, ρ is the collision impact parameter, and ϑ is the scattering angle.
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As a matter of fact, this model relates to scattering of particles whose interaction
is described by the potential of a hard wall:

U (R) � 0, R > Ro; U (R) � ∞, R ≤ Ro. (13.10)

If we model a real interaction potential on this one, the question occurs as to what is
the parameterRo if the interaction potential is known. From general considerations
it follows that this parameter can be found from the relation

U (Ro) ∼ ε, (13.11)

where ε is the energy of the particles in the center-of-mass coordinate system. We
find below the numerical coefficient in this relation for a sharply varied interaction
potential of particles as a result of the expansion over a small parameter 1/n, where
n is the logarithmic derivative of the interaction potential

n � −d lnU (R)

dR
| R � Ro. (13.12)

Then the collision parameter may be constructed in the form of a series over a
small parameter ∼ 1/n. Formula (13.10) gives the first term of this expansion.
The use of two expansion terms gives the possibility of determining the parameter
Ro in the form

U (Ro) � aε, (13.13)

where the numerical constant a depends on the form of the collision cross section.
The procedure of the determination of this parameter is fulfilled in Problems 13.1
and 13.2 for the scattering angle and the diffusion cross section. Now we determine
the parameter a in formula (13.13) for the diffusion cross section σ ∗ � ∫

(1 −
cosϑ)2πρ dρ and one more cross section for the scattering on large angles which
is included in the expressions for the thermal conductivity and viscosity coefficients
used in the kinetic theory of gases σ (2) � ∫ (1− cos2 ϑ)2πρ dρ. We use numerical
calculations for the interaction potentials U (R) � CR−n. Note that in this case
we obtain, for a cross section on the basis of formula (13.9),

σ � πR2
o � π

(
C

aε

)2/n

. (13.14)

Comparing the calculated cross section with this formula, one can find the value
of the parameter a. This means that we can give the cross section for any n. In this
way we find, for the related cross sections,

σ ∗ � πR2
1, where U (R1) � 0.74ε;

and σ (2) � 2

3
πR2

2, where U (R2) � 0.27ε. (13.15)

Table 13.1 gives the comparison of the cross sections calculated on the basis
of formulas (13.15) and the data of accurate calculations. The difference of these
data characterizes the accuracy of formulas (13.15) for the real sharply varied
interaction potentials.
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Table 13.1. Comparison of formula (13.15) and the results of numerical calculations for the
σ (1) and σ (2) cross sections of scattering in the interaction potential U (R) � CR−n.

n 4 6 8 10 12 14

πR2
1/σ

∗ 0.974 0.995 0.998 1.005 1.002 1.000

2πR2
2/(3σ

(2)) 1.040 1.001 0.985 0.984 0.983 0.985

13.3 Capture of Particles in an Attractive
Interaction Potential

Another character of the motion of particles takes place for an attractive interaction
potential of the colliding particles. Assume that the interaction potential of two
atomic particles has a typical form of the potential well, and consider the limiting
case of collision when the energy of particles ε in the center-of-mass system of
coordinates is small compared to the potential well depth D. On the basis of
the above expression we present the energy conservation law in the form ε �
μv2

R/2 + μv2
τ /2 � μv2/2 − U (R) and, since vτ � vρ/R, this relation has the

form

μv2
R

2
� μv2

2
− U (R)− μv2ρ2

2R2
� μv2

2
− Uef (R), (13.16)

where Uef (R) � U (R)−μv2ρ2/(2R2) is the effective interaction potential corre-
sponding to the radial relative motion of particles. Since the effective interaction
potential has a maximum, the trajectories of the particles can be divided into
two groups. The boundary of these groups corresponds to the maximum of the
effective interaction potential as a function of the distance of closest approach
ro[U ′

ef (rmin) � 0]. Introducing the impact parameter ρc, which relates to this dis-
tance rmin of closest approach, we find that in the range ρ > ρc, i.e., ro > rmin,
there takes place a monotonic dependence ro(ρ). In the range ρ ≤ ρc the distance
of closest approach transfers by a jump to zero. Hence, the capture of the colliding
particles takes place at these impact parameters ρ ≤ ρc and, in reality, particles
approach distances of a strong repulsion between them.

Let us determine the capture cross section σc � πρ2
c for the interaction potential

of particles U (R) � −C/Rn. Then the impact parameter of capture ρc is deter-
mined as a minimum of the dependence ρ(ro) and, on the basis of formula (13.4)
we find for the cross section of capture,

σc � πρ2
c �

πn

n− 2

[
C(n− 2)

2ε

]2/n

. (13.17)

As is seen, the dependence of the cross section on the parameters is similar to
formula (13.7). In particular, in the case of the polarization interaction between the
ion and atom U (R) � −αe2/(2R4) (α is the atom polarizability), the polarization
cross section of capture resulting from ion–atom collisions is equal to, in the usual
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units,

σc � 2π

√
αe2

μv2
. (13.18)

As follows from this, the capture cross section of particles is mainly determined
by the long-range part of the interaction potential. Indeed, according to formula
(13.17), we have −U (rmin)/ε � 2/(n − 2) and, because of ε � D, this gives
|U (rc)| � D, i.e., the capture is determined by the long-range part of the attractive
interaction. Next, since in reality n 
 1, in the range ro > rmin the interaction
potential is small compared to the kinetic energy of particles. Hence, the capture
cross section gives the main contribution to the cross section of scattering at large
scattering angles.

For a realistic interaction potential of atomic particles, which is characterized by
repulsion of the particles at small distances between them, the capture of particles
leads to their strong approach. Indeed,

rmin ∼ Re(D/ε)1/n 
 Re, (13.19)

where Re is the equilibrium distance between particles.
As a result of capture, particles reach such distances between them where the

attractive interaction potential remarkably exceeds their kinetic energy. A strong
interaction of the particles in this region causes a strong scattering of particles.
Therefore, one can assume that the capture of particles leads to their almost
isotropic scattering and, hence, the diffusion cross section of scattering (13.6)
is close to the cross section of capture (13.18). (In particular, in the case of the
polarization interaction of particles, the diffusion cross section of the scattering of
particles exceeds their cross section of capture by 10%). Thus, under the condition
ε � D, the capture cross section can be used as the diffusion cross section of the
scattering of particles.

13.4 The Scattering of Quantum Particles

Let us consider the elastic collisions of two particles when their motion is governed
by the quantum laws. Then the Schrödinger equation for colliding particles, in the
usual units, has the form[

− h̄2

2m1

1 − h̄2

2m2

2 + U (R1 − R2)

]
	(R1,R2) � E	(R1,R2), (13.20)

where we use the same notations as in the classical case described by the Newton
equations (13.1) andwhereE is the total energyof particles.As above,we introduce
new variables—the coordinate of the center of mass Rc � (m1R1+m2R2)/(m1+
m2) and the relative distance between particles R � R1 − R2. Using the relation
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for the sum of the Laplacians

h̄2

2m1

1 + h̄2

2m2

2 � h̄2

2(m1 +m2)

Rc

+ h̄2

2μ

R, (13.21)

we separate the variables in the Schrödinger equation. Similar to the classical
case, we obtain that the center of mass of the colliding particles moves with con-
stant velocity, and information about the scattering of particles is contained in the
Schrödinger equation for the wave function which describes the relative motion
of particles. This Schrödinger equation has the form

− h̄2

2μ

Rψ(R)+ U (R)ψ(R) � εψ(R), (13.22)

where ε � h̄2q2/2μ is the energy of particles in the center-of-mass coordinate sys-
tem, so that q is the wave vector of the relative motion of particles. It is convenient
to rewrite this equation in the form

(
R + q2)ψ(R) � 2μ

h̄2 U (R)ψ(R). (13.23)

The Grin function of this equation is

G(R,R′) � −exp(iq|R − R′|)
4π |R − R′| ,

so that the solution of this Schrödinger equation is

ψ(R) � C

[
eiqR − μ

2πh̄2

∫
exp(iq|R − R′|)
|R − R′| U (R′)ψ(R′) dR′

]
. (13.24)

Formula (13.24) is an integral form of the Schrödinger equation. This form is
convenient for obtaining the asymptotic expression for the wave function of the
relative motion of particles which includes information about the scattering of
particles. When R tends to infinity, so that |R − R′| � R − R′n, where n is the
unit vector directed along R, this equation gives

ψ(R) � C

[
eiqR + f (ϑ)

eiqR

R

]
, (13.25)

where the scattering amplitude is

f (ϑ) � − μ

2πh̄2

∫
exp(−iqnR′)U (R′)ψ(R′) dR′. (13.26)

Here ϑ is the angle between vectors R and q, and the wave function is nor-
malized such that it tends to eiqR when R → ∞. This formula does not allow
us to determine the scattering amplitude in a general form because its expression
includes the wave function of particles, but it is convenient for an approximate
solution of the problem. In particular, in the Born approximation we neglect the
interaction of the scattered particlewith the force center, which givesψ(R) � eiqR.
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Substituting this in formula (13.26) we obtain, for the scattering amplitude in the
Born approximation,

f (ϑ) � − μ

2πh̄2

∫
e−iKRU (R′) dR′, (13.27)

where K � qn − q is the variation of the wave vector for the relative motion of
particles as a result of collision. This value is connected with the scattering angle ϑ
by the relation K � 2q sin ϑ/2. The Born approximation is valid if the interaction
potential is small compared to the kinetic energy at distances between particles
R ∼ 1/q which are responsible for the scattering, i.e.,

U

(
1

q

)
� ε. (13.28)

13.5 Phase Theory of Elastic Scattering

If the interaction potential does not depend on the anglesU � U (R), the scattering
amplitude can be expressed through parameters of the Schrödinger equation for
the radial wave function of the colliding particles. Indeed, let us expand the wave
function over the spherical angular functions

ψ(R) � 1

R

∞∑
l�0

Alϕl(R)Pl(cosϑ),

eiqR �
√

π

2qR

∞∑
l�0

il(2l + 1)Jl+1/2(qR)Pl(cosϑ),

f (ϑ) �
∞∑
l�0

flPl(cosϑ), (13.29)

where Pl(cosϑ) is the Legendre polynomial and Jl+1/2(qR) is the Bessel function
which has the following form at large values of the argument:

Jl+1/2(x) �
√

2

πx
sin(x − πl/2).

The radial wave functions satisfy to the equation

d2ϕl

dR2
+
[
q2 − 2μU (R)

h̄2 − l(l + 1)

R2

]
ϕl � 0, (13.30)

and have the following asymptotic form:

ϕl(R) � 1

q
sin

(
qR − πl

2
+ δl

)
, (13.31)

where δl are the scattering phases. These values include information about the
scattering of particles. Indeed, substituting the expressions (13.29) into relation
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(13.23) and equalizing the coefficients for the terms eiqR and e−iqR at large R, we
obtain the following relations:

Al � eiδl (2l + 1)il, fl � 1

2iq
(2l + 1)(e2iδl − 1). (13.32)

Thus the scattering amplitude is expressed through the scattering phases. From
this it follows that, for the total σt and diffusion σ ∗ cross sections of the scattering
of atomic particles,

σt �
∫ 1

0
|f (ϑ)|2 2π d cosϑ � 4π

q2

∞∑
l�0

(2l + 1) sin 2δl,

σ ∗ �
∫ 1

0
|f (ϑ)|2 (1−cosϑ)2π d cosϑ� 4π

q2

∞∑
l�0

(2l + 1) sin 2(δl − δl+1). (13.33)

Relation (13.26) gives the following equation for the scattering phase:

sin δl � − μ

h̄2

√
2πq

∫ ∞

0

√
RJl+1/2(qR)ϕl(R)U (R) dR. (13.34)

In the Born approximation, when the radial wave functions

ϕl(R) �
√
πR

2q
Jl+1/2(qR)

describe a free motion of particles, we obtain the following relation from equation
(13.34):

δl � −πμ

h̄2

∫ ∞

0
U (R)

[
Jl+1/2(qR)

]2
R dR. (13.35)

In particular, in the case of the electron–atom scattering and the polarization
interaction potential between them, when U (R) � −αe2/2R4, this formula gives

δl � παq2

(2l − 1)(2l + 1)(2l + 3)ao
, (13.36)

where ao � h̄2/(me2) is the Bohr radius. This formula is valid if the main
contribution to the integral gives large distances between an electron and atom
R ∼ 1/q 
 ao, where the polarization interaction takes place. One can see
that this is not valid for the zeroth scattering phase, because the integral (13.36)
converges in this case.

Formulas (13.34) and (13.35) allow us to analyze the behavior of the scattering
phases at small energies of the colliding particles. Since Jl+1/2(x) ∼ xl+1/2 at small
x we obtain, from formulas (13.34) and (13.35), for a short-range interaction of
particles δl ∼ q2l+1 at small q. If the interaction potential has the dependence
U (R) ∼ R−n at large R we obtain, for l ≥ (n − 3)/2, the dependence of the
scattering phases on the collision wave vector in the form δl ∼ qn−2. In particular,
for the polarization potential of the interaction U (R) ∼ R−4 this formula gives
δl ∼ q2 for l ≥ 1 in accordance with formula (13.36).
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Let us consider the behavior of the zeroth scattering phase at small energies of
collision. Formula (13.34) gives δ0 ∼ q at small q. We present this relation in
the form δ0 � −Lq, where the value L is called the scattering length. At small
energies of collision the scattering amplitude is f � −L so that, for the total σt
and the diffusion σ ∗ cross sections of the collisions of atomic particles at small
energies, we have

σt � σ ∗ � 4πL2. (13.37)

Let us obtain the quasi-classical limit for the collision of particles within the
framework of the quantum formalism. Our goal is to establish a correspondence
between the quasi-classical limit of the phase theory of the scattering and the
classical scattering of particles. In the quasi-classical limit, large momenta of
collision l give the main contribution to the cross section. Then we use the quasi-
classical solution of the Schrödinger equation (13.30) which has the form

ϕl(R) � C sin

⎡⎣q ∫ R

ro

dR′
√

1− U (R′)
ε

− (l + 1/2)2

q2R2
+ π

4

⎤⎦ ,

where ro is the classical distance of closest approach which satisfies relation (13.4)
and, in the above expression, we replace l(l+1) by (l+1/2)2. From this we obtain,
for the scattering phase,

δl � lim
R→∞

⎡⎣q ∫ R

ro

dR′
√

1− U (R′)
ε

− (l + 1/2)2

q2(R0)2
+ π

2
(l + 1

2
)− qR

⎤⎦ .

(13.38)
At first we prove the relation

∞∑
l�0

(2l + 1)Pl(cosϑ) � δ(1− cosϑ).

Indeed, from the definition of the product function for the Legendre polynomials

1√
1− 2tx + t2

�
∞∑
l�0

t lPl(x),

the relation follows
∞∑
l�0

(2l + 1)t lPl(x) � 1− t2

(1− 2tx + t2)3/2
.

This function is zero in the limit t → 1 for any x � 1, and it equals∞ at x � 1,
t � 1. Next, the integral from this function over dx in the interval from x � 0 up to
x � 1 is equal to unity in the limit t → 1. This allows us to replace the above sum
in the limit t → 1 by the delta-function, so that the scattering amplitude (13.29)
and (13.32) can be presented in the form

f (ϑ) � 1

2iq

∞∑
l�0

(2l + 1)e2iδl Pl(cosϑ)− 1

2iq
δ(1− cosϑ). (13.39)
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Considering the scattering of particles in a nonzero angle, we neglect the second
term in formula (13.39). Then the differential cross section of the scattering per
unit solid angle d� � 2π d cosϑ has the form:

dσ � 2π d cosϑ |f (ϑ)|2

� πd cosϑ

2q2

∞∑
l�0

∞∑
n�0

(2l + 1)(2n+ 1)Pl(cosϑ)Pn(cosϑ) exp(2iδl − 2iδn).

Let us use the asymptotic expression for the Legendre polynomials at large values
of the subscript (see Problem 6.2):

Pl(cosϑ) � 2 sin [(l + 1/2)ϑ + π/4]√
π (2l + 1) sin ϑ

, lϑ 
 1.

This gives, for the differential cross section,

dσ � dϑ

q2

∞∑
l�0

∞∑
n�0

√
(2l + 1)(2n+ 1)

×
{
cos [(l − n)ϑ]− cos

[
l + n+ 1

2
ϑ

]}
exp(2iδl − 2iδn).

Because, in the classical limit, the main contribution to these sums gives large
collision momenta, we replace the sums by integrals. Due to oscillations of the
cosines, the second term does not give a contribution to the result, while the integral
for the first term converges near l � n. Thus, after integration over dn, we have

dσ � π dϑ

q2

∫ ∞

0
(2l + 1) dl

[
δ

(
2
dδl

dl
− ϑ

)
+ δ

(
2
dδl

dl
+ ϑ

)]
. (13.40)

Let us introduce the classical scattering angle on the basis of the relation

ϑcl � ±2
dδl

dl
, (13.41)

so that the+corresponds to a repulsion interaction potential and the− relates to an
attractive one. Introducing the impact parameter of collision as ρ � (l + 1/2)/q,
rewrite the expression for the differential cross section of scattering

dσ � 2πρ dρ,

where the parameters ρ and ϑcl are connected by a relation ϑ � ϑcl(ρ). As is
seen, the obtained relation for the differential cross section coincides with the
classical formula (13.3). In addition, from formula (13.41) and the quasi-classical
expression of the scattering phase (13.38) follows the expression for the classical
scattering angle

π ± ϑcl

2
�
∫ ∞

ro

ρ dr√
1− U (R)/ε − ρ2/R2

. (13.42)

This result corresponds to the classical formula (13.5). Thus, the quantum
formalism gives an accurate limiting transition to the classical scattering problem.
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13.6 Total Cross Section of Scattering

The total cross section of the elastic scattering of particles determines the broaden-
ing of the spectral lines and is connected with a phase shift as a result of collision.
This is given by formula 13.35):

σt �
∫ 1

0
|f (ϑ)|2 2π d cosϑ � 4π

q2

∞∑
l�0

(2l + 1) sin2 δl. (13.43)

In the classical limit the total cross section σt �
∫
dσ is infinite because the clas-

sical particles interact and are scattered at any distances between them. Therefore,
the classical total cross section must tend to infinity as the Planck constant h̄→ 0.

Let us evaluate the total cross section of the collision of particles within the
framework of the classical scattering theory. Because the scattering on small angles
gives the main contribution to this cross section, we obtain below the dependence
ϑ(ρ) at small scattering angles. In the zeroth approximationwe assume the particles
to move along straight classical trajectories. From formula (13.43) it follows that

σt �
∫ ∞

0
8πρ dρ sin2 δ(ρ), (13.43a)

where ρ � l/q is the impact parameter of collision, so that the total cross section
can be evaluated according to the formula

σt � 2πρ2
t , where δ(ρt ) ∼ 1. (13.44)

The value ρt is called the Weiskopf radius. Take into account that the total
cross section is determined by small scattering angles and a weak interaction
during collision. Then, neglecting the interaction, we use formula (13.35) for the
scattering phase

δl � −πμ

h̄2

∫ ∞

ro

U (R)
[
Jl+1/2(qR)

]2
R dR � − 1

h̄2

∫ ∞

ro

U (R) dR√
q2 − (l + 1/2)2/R2

,

where the distance of closest approach is equal to ro � ρ � (l + 1/2)/q. Intro-
ducing the classical time from the relation R2 � ρ2 + v2t2, we rewrite the above
relation in the form

δl � − 1

2h̄

∫ ∞

−∞
U (R) dt. (13.45)

Correspondingly, formula (13.44) can be rewritten in the form

σt � 2πρ2
t , where

ρtU (ρt )

h̄v
∼ 1. (13.46)

In particular, for the interaction potential U (R) � CR−n, formula (13.45) gives

δ � − C

2h̄

∫ ∞

−∞

dt

(ρ2 + v2t2)n
� − C

√
π

2h̄vρn−1

�
(
n+1
2

)
�
(
n
2

) , (13.47)
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and we obtain the following expression for the total cross section of scattering

σt�
∫ ∞

−∞
8πρ dρ sin2 δ(ρ)�2π

(
C

h̄v

)2/(n−1)
[√

π�
(
n−1
2

)
�
(
n
2

) ]2/(n−1)

�

(
n− 3

n− 1

)
.

(13.48)
Since the total cross section is determined by the quantumeffects, it tends to infinity
in the classical limit. Indeed, from formulas (13.46) and (13.48) it follows that the
total cross section tends to infinity in the limit h̄→ 0.

Let us compare the diffusion and total cross sections of scattering in the classical
limit. Then the kinetic energy of particles ε � μv2/2 satisfies the relation

ε 
 h̄/τ, (13.49)

where τ ∼ ρ/v is a typical collision time. Formula (13.49) gives the criterion
for the classical character of the particle motion l � μρv/h̄ 
 1, where l is
the collision momentum of particles. If this criterion is fulfilled, one can consider
the motion of particles along classical trajectories. Next, in this case, according
to formula (13.46) the total cross section of scattering σt remarkably exceeds
a cross section σ of scattering on large angles which is estimated by formula
(13.7). From formulas (13.7) and (13.46) it follows that, in the classical case,
U (ρo)/U (ρt ) ∼ μρtv/h̄
 1, so that for a monotonic interaction potential U (R)
this gives ρt 
 ρo, i.e.,

σt 
 σ. (13.50)

In particular, in the case of the polarization interaction potential U (R) �
−αe2/(2R4), this ratio is equal to

σt

σc
�
(π

4

)2/3
�

(
1

3

)(
αe2μ2v2

h̄4

)1/6

� 2.3l2/3c ,

where formula (13.18) is used for the capture cross section and the total cross sec-
tion σt is given by formula (13.48). Here lc � μρcv/h̄ is the collisional momentum
of capture, so that the impact parameter ρc corresponds to the capture of particles.
In the case of the classical character of capture we have lc 
 1, and the above
ratio is large.

13.7 Oscillations in Quasi-Classical Cross Sections

Above we obtain that the quantum formalism gives classical formulas for the
differential cross sections in the classical limit. But there is a principal difference
between the classical andquantumdescriptions of particle scattering in the classical
limit. Indeed, according to formula (13.39), the quasi-classical expression for the
scattering phase has the following structure:

f (ϑ) � fcl(ϑ)eiηl , (13.51)
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Figure 13.3. The dependence of the classical scattering angle on the collision impact pa-
rameter for a typical interaction potential of two atoms when an attraction at large distances
between them is changed by repulsion at small distances. ρg refers to the glory point and
ρr is the impact parameter of the rainbow.

where fcl(ϑ) is the classical scattering amplitude and the square of its module
is the classical differential cross section of scattering. The principal difference
between the quasi-classical and classical scattering amplitudes consists of the
quasi-classical phase ηl � 2δl which is a distinctive feature of the quantum values.
This leads to specific peculiarities of the scattering of atomic particles.

Let us analyze the scattering of atomic particles for a realistic character of
their interaction potential which corresponds to the attraction of particles at large
distances between them and corresponds to their repulsion at small distances. Then
the scattering angle, as a function of the collision impact parameter, has the form
as given in Fig. 13.3. Indeed, frontal collisions correspond to the scattering angle
ϑ � π . At large impact parameters the scattering angle tends to zero, and for
an attractive interaction potential it is negative. Thus the scattering angle, as a
function of the impact parameter of collision, has a negative minimum. This is
called the rainbow point. Near this point identical scattering angles correspond
to two different impact parameters of collision in the region of negative angles of
scattering. The scattering amplitude for negative scattering angles has the following
structure, according to formula (13.51):

f (ϑ) � f1(ϑ)eiη1 + f2(ϑ)eiη2 ,

where f1, f2 are the classical scattering amplitudes that are positive values.
As is seen, the total scattering amplitude depends on the relative value of the
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corresponding phases. Indeed, the differential cross section is, in this case,

dσ

d�
� f 2

1 + f 2
2 + 2f1f2 cos(η1 − η2),

and the phases η1, η2 are monotonic functions of both the impact parameter of
collision and the collision velocity. Therefore, the differential cross section of the
scattering has an oscillating structure in the range of negative scattering angles as
a function of both the scattering angle and collision velocity.

The other effect corresponds to the zero scattering angle. Collisions with such
impact parameters proceed without scattering because scattering in an attractive
region of interaction is compensated for by scattering in a repulsive region. This
point is called the glory point and, in accordance with formula (13.41), it corre-
sponds to a maximum of the scattering phase as a function of the impact parameter.
But such a character of scattering gives an oscillation structure of the differential
and total cross section of scattering. Indeed, from formula (13.43a) it follows that
if function δl(ρ) has a maximum, then the integral depends on this maximum value.
Because the maximum phase varies with the collision energy, the cross section,
as a function of the collision energy has an oscillation structure in spite of the
classical character of scattering.

In order to take this effect into account, let us divide the scattering phase into
two parts

δl � δ
(reg)
l + α(l − lg)

2,

where the first term corresponds to a regular part of the scattering phase and the
second term accounts for its stationarity near the glory point. Here lg is the collision
momentum at the glory point, and α � 1

2 (d
2δl/dl

2) at this point. The first term
of this expression determines the total cross section of scattering (13.44), and the
second term acts only near the glory point. From this we have, for the total cross
section (13.43)

σt � σLLS +
σNU, (13.52)

where the first term is the so-called Landau–Lifshiz–Schiff cross section which
accounts for the regular part of the scattering and, for the inverse power interac-
tion potential, U (R) � CR−n is given by formula (13.48). The value 
σNU, the
Nikitin–Umanskij correction, includes oscillations of the cross section as a func-
tion of the collision velocity. For the above character of extraction of the phase
stationarity, this correction to the total cross section is given by


σNU � − 8ρg

π3/2q1/2

√∣∣∣ d2δ
dρ2

∣∣∣ cos
(
2δg − π

4

)
, (13.53)

where the derivative is taken at the glory point. Since the scattering phase mono-
tonically depends on the collision velocity, this part of the cross section oscillates.
Because ρg < ρt and lg � qρg 
 1, the second term of the total cross section
(13.52) is small compared to the first one. Oscillations in the scattering cross sec-
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Figure 13.4. The relative values of the total cross section of collision of two thermal krypton
atoms, as a function of the reduced collision velocity.

tion give information about the interaction potential of the colliding particles. As a
demonstration of this phenomenon, Fig. 13.4 gives the relative values of the total
cross section of the scattering of two thermal krypton atoms as a function of the
collision velocity.

13.8 Elastic Collisions Involving Slow Electrons

Let us consider the collision of a slow electron with an atom. Then the character
of the collision depends on the total spin of the electron–atom system, so that any
cross section of the electron–atom collision is

σ � S

2S + 1
σ− + S + 1

2S + 1
σ+, (13.54)

where S is the atom spin, the cross sections σ−, σ+ correspond to the total spin
S − 1/2 and S + 1/2 for the electron–atom system, and we assume that the
electron–atom scattering proceeds in each channel independently. In particular, at
small electron energies, this formula together with (13.37) gives, for the total or
diffusion cross section of electron scattering on an atom with spin 1/2,

σ � πL2
− + 3πL2

+, (13.55)

where L−, L+ are the electron–atom scattering length for the corresponding total
spin of the system. Because the exchange interaction of the electron and atom can
strongly depend on their total spin, these parameters are different. For example, for
the electron–hydrogen atom scattering we haveL− � 5.8 andL+ � 1.8. Note that
formulas (13.54) and (13.55) use the LS-scheme of the coupling of the electron
and atom momenta into the total moment. Below we study the scattering for one
channel and use atomic units.

Let us consider the scattering of a slow electron for a certain total spin. In
the limit of its zero energy the diffusion and total cross section of the electron–
atom scattering in this channel is given by formula (13.37) σ � 4πL2, and the
scattering length takes into account the exchange and other types of interaction



352 13. Elastic Collisions of Atomic Particles

when the electron is located near the atom. Below we also take into account the
polarization interaction of the electron and atom which determines the dependence
of the cross section on the electron energy at small collision energies. Within the
framework of the phase theory of the scattering and the perturbation theory, we
determine above (see formula (13.36)) the electron–atom phases of scattering due
to the polarization interaction potential for all the scattering phases except δ0. As
for δ0, in this case, the perturbation theory does not work and the integral (13.35) of
the perturbation theory diverges. Indeed, the radial wave function of the s-electron
at small electron energies is proportional to r − L, where r is the distance from
the atom and L is the electron–atom scattering length, so that the polarization
potential leads to divergence at small r . The physical reason of this divergence
consists of an influence of the polarization interaction potential on the electron
behavior in the internal region. But, if we assume that the polarization interaction
potential acts only at large distances from the atom and does not influence the
electron behavior in the internal region, one can separate the polarization potential
from other interaction potentials. Then this potential acts on the electron only
at large distances from the atom and we obtain formally that the corresponding
integrals, which take into account the polarization potential, are determined by
large electron–atom distances. Separating the action of the polarization potential
from the other ones, we take L � 0 in expression (13.35) for the zero-scattering
phase and further add to it the term with the scattering length. Then we obtain, for
the zero scattering phase on the basis of formula (13.35), in atomic units

δ0 � −Lq − παq2

3
. (13.56)

Joining this with expressions (13.36) for the other scattering phases, we find the
scattering amplitude on the basis of formulas (13.29) and (13.32).

Using the above considerations, one can solve this task in a simpler way if we
present the scattering amplitude in the following form by accounting for formula
(13.27):

f (ϑ) � −L− 1

2π

∫
(1− e−iKr)U (r) dr, (13.57)

Here we extract the scattering amplitude on the zero angle similar to formula
(13.39). This formula gives, for the polarization interaction potential,

f (ϑ) � −L+ πα

4
K � −L− παq

2
sin

ϑ

2
. (13.58)

Thus the differential cross section of the electron–atom scattering is equal to, in
this case,

dσ

d cosϑ
� 2π |f (ϑ)|2 � 2πL2 + 2π2αqL sin

ϑ

2
− π3α2q2

4
(1− cosϑ).
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From this we obtain, for the total and diffusion cross section of the electron–atom
scattering at low energies,

σt � 4π

(
L2 + 2

3
παqL+ π2

8
α2q2

)
,

σ ∗ � 4π

(
L2 + 4

5
παqL+ π2

6
α2q2

)
. (13.59)

The important conclusion resulting from these formulas consists of a sharp
minimum for the cross sections of the electron–atom scattering at small collision
energies if L is negative. This is called the Ramsauer effect and is observed in the
elastic scattering of electrons on argon, krypton and xenon atoms. One can expect
this effect if the scattering length is negative. Then, according to formula (13.56),
δ0 vanishes at small energies when the contribution of the other phases to the cross
section is relatively small. As follows from formula (13.59), the total cross section
has the minimum (4π/9)L2 at the electron wave number q � −8L/3πα. The
minimum of the diffusion cross section is equal to (4π/25)L2 and corresponds
to the electron wave vector q � −12L/5πα. Thus, the scattering cross section
drops by order of magnitude at small electron energies that is of importance for
the processes in gases or plasmas involving electrons.

Problems

Problem 13.1. Determine the scattering angle for the collision of particles with
a sharply varied repulsive interaction potential.

We are working on formula (13.5) for the scattering angle

ϑ � π − 2
∫ ∞

ro

ρ dR

R2
√

1− ρ2

R2 − U (R)
ε

,

where ρ is the impact parameter of collision, and ro is the distance of closest
approach which are connected by relation (13.4), 1−ρ2/r2

o � U (ro)/ε. Below we
expand the expression for the scattering angle over a small parameter 1/n, where
n � −d lnU (R)/dR. The zeroth approximation corresponds to the use of the hard
sphere model for an interaction potential. The hard sphere model corresponds to
the interaction potential: U (R) � 0 for R > ro, U (R) � ∞ for R ≤ ro, where
ro is taken for a given impact parameter, i.e., this value depends on the impact
parameter in accordance with formula (13.4). Thus we have, for the scattering
angle in the zeroth approximation,

ϑ � π − 2 arcsin
ρ

ro
.

Then in the first approximation we have

ϑ � π − 2 arcsin
ρ

ro
+ 2
ϑ,
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where


ϑ �
∫ ∞

ro

ρ dR

R2

⎛⎝ 1√
1− ρ2

R2

− 1√
1− ρ2

R2 − U (R)
ε

⎞⎠ .

The above expression for the scattering angle is exact and 
ϑ ∼ 1/n, i.e., it is
proportional to a small parameter of the theory. Our goal is to determine the first
expansion term of 
ϑ over 1/n. In order to avoid the divergence in the integral
for 
ϑ , we use the relation

− d

dρ

∫ ∞

ro

dR

(√
1− ρ2

R2
− U (R)

ε
−
√

1− ρ2

R2

)

� −dro

dρ

√
1− ρ2

R2
−
∫ ∞

ro

ρ dR

R2

⎛⎝ 1√
1− ρ2

R2

− 1√
1− ρ2

R2 − U (R)
ε

⎞⎠ .

From this it follows that


ϑ � −dro

dρ

√
1− ρ2

R2
− d

dρ

∫ ∞

ro

dR

(√
1− ρ2

R2
− U (R)

ε
−
√

1− ρ2

R2

)
.

Taking into account that the above integral converges nearR � ro (R−ro ∼ 1/n),
one can calculate this integral with an accuracy of the order of 1/n:

−
∫ ∞

ro

dR

(√
1− ρ2

R2
− U (R)

ε
−
√

1− ρ2

R2

)

≈
√

1− ρ2

r2
o

∫ ∞

ro

dR

[
1−

√
1− rno

Rn

]

�
√
r2
o − ρ2

∫ 1

0

1−√1− x

nx1+1/n
dx � 2

n
(1− ln 2)

√
r2
o − ρ2,

where

x � U (R)

ε

1√
1− ρ2

R2

� rno

Rn
.

From this we have


ϑ � dro

dρ

√
1− ρ2

R2
+ 2

n
(1− ln 2)

d

dρ

√
r2
o − ρ2.

Let us introduce the value u � U (ro)/ε � 1 − ρ2/r2
o . Since n 
 1 and in the

scattering region the value u is close to unity we obtain, from the above formulas,

ϑ � 2 arcsin
√
u+ 2

[
2− (n− 2) ln 2

n

] √
u(1− u)

1+ (n− 2)u/2
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≈ 2 arcsin
√
u− 2 ln 2

√
u(1− u)

1+ nu/2
,

where n � −d ln u/dro. We conserve 1 in the denominator of this formula in order
to have the possibility for an expansion of this formula at small scattering angles.

Problem 13.2. Determine the diffusion cross section of the elastic scattering of
particles as a result of expansion over a small parameter for the scattering of
particles with a sharply varied interaction potential.

We are working on the result of the previous problem for the scattering angle.
Taking into account that collisions with u ∼ 1 give the main contribution to the
diffusion cross section we have, for the scattering angle,

ϑ � 2 arcsin
√
u− 4 ln 2

n

√
1− u

u
.

From this we find the diffusion cross section

σ ∗ �
∫ ∞

0
(1− cosϑ)π dρ2

� 2π
∫ 1

0
u[(1− u) dr2

o − r2
o du]+ π

∫ 1

0

4 ln 2

n

√
1− u

u
2
√
u(1− u)r2

o du.

Here, since u � 1−ρ2/r2
o , we use the relation dρ2 � (1−u) dr2

o − r2
o du. Taking

into account that the first term is of the order of 1/n from the second term, we take
the second integral on parts. We have

−2π
∫ 1

0
ur2

o du � π

∫ 1

0
r2
o du

2 � πr2
o |10 − π

∫ 1

0
u2 dr2

o

� πR2
o +

2π

n

∫ 1

0
r2
ou du � πR2

o

(
1+ 1

n

)
,

where u(Ro) � 1. We use that u ∼ r−no , so that dro/ro � −du/(nu). Note that
ρ � 0 corresponds to u � 1, and that ρ � ∞ corresponds to u � 0. Repeating
these operations for the other integral and keeping only terms of the order of 1/n
we find, finally,

σ ∗ � πR2
o ·
(

1+ 3− 4 ln 2

n

)
.

Let us represent the diffusion cross section in the form σ ∗ � πR2
1 , so that

R1 � Ro + (3− 4 ln 2)/2n. We have

u(R1) � (Ro/R1)
n � exp(−3/2+ 2 ln 2) � 4 exp(−3/2) � 0.89.

Thus the diffusion cross section has the form

σ ∗ � πR2
1, where

U (R1)

ε
� 0.89.
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In a similar way one can determine the cross section

σ (2) �
∫ ∞

0
(1− cosϑ)2πρ dρ.

Repeating the above operations we find, finally,

σ (2) �
∫ ∞

0
(1− cosϑ)2πρ dρ � 2

3
πR2

2, where
U (R2)

ε
� 0.23.

Note that the values of the resultant constants differ from those obtained from
a comparison with the numerical calculations for the interaction potentials U �
CR−n which are given by formulas (13.15).

Problem 13.3. Determine the diffusion cross section of the collision for particles
with the polarization potential of interaction.

For the polarization interaction potentialU (R) � −αe2/2R4, according to formula
(13.5), the scattering angle is

ϑ � π − 2
∫ ∞

ro

ρ dR

R2
√

1− ρ2

R2 − αe2

2R4ε

.

Here the distance of closest approach ro is zero, if the impact parameter of the
collision ρ ≤ ρc, and it is given by formula (13.4) for ρ > ρc, where the value
ρc is determined by formula (13.17). So, we divide the impact parameter range
into two parts, ρ ≤ ρc and ρ > ρc. Let us introduce the reduced variables x �(
αe2/2εR4

)1/4
and y � ρ/ρc. Then we have the following expression for the

diffusion cross section

σ ∗ � σc(1+ J1 + J2),

where σc � πρ2
c � 2π

√
αe2/ε is the cross section of the capture of a particle in the

polarization interaction potential, the integrals in the expression for the diffusion
cross section are

J1 �
∫ 1

0
2y dy cos

∫ ∞

0

2y
√

2 dx√
1+ x4 − 2x2y2

,

J2 �
∫ ∞

1
2y dy

(
1+ cos

∫ xo

0

2y
√

2 dx√
1+ x4 − 2x2y2

)
,

and the distance of closest approach is xo � y2 −
√
y4 − 1. These integrals are

calculated by numerical methods and are equal to J1 � −0.101 and J2 � 0.207.
Thus the diffusion cross section of the scattering in the polarization interaction
potential is

σ ∗ � 1.10σc,

i.e., the contribution to the diffusion cross section from collisions with impact
parameters larger than ρc is approximately 10%.
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Problem 13.4. Present formula (13.46) for the total cross section of the scattering
for a sharply varied interaction potential.

Let us take the interaction potential of particles in the form U (R) � CR−n assum-
ing n 
 1. For the total cross section of the scattering we have formula (13.46)
which we presented in the form

σt � 2πρ2
t , where

ρtU (ρt )

h̄v
� g.

Our goal is to determine the value of the parameter g in this formula. For this we
use expression (13.48) for the total cross section of scattering with this interaction
potential and transfer to the limit n→∞. Then we have, for the parameter g,

g � �
(
n
2

)
√
π�

(
n−1
2

) [� (n− 3

n− 1

)](n−1)/2

.

We have, for n
 1,[
�

(
n− 3

n− 1

)](n−1)/2

�
[
�(1)− 2

n
�′(1)

]n/2
� eψ(1)�(1),

where ψ(1) � �′(1)/�(1) � −C + 1 � 0.423. Next, the Stirling formula gives

�
(
n
2

)
�
(
n−1
2

) � (
n
2

)n/2
√
e
(
n−1
2

)(n−1)/2 �
√

n

2e

(
1− 2

n

)n/2

�
√
ne

2
.

Thus, finally, we have g � √ne/2πeψ(1) ≈ √n, so that the formula for the total
cross section of scattering has the form

σt � 2πρ2
t , where

ρtU (ρt )

h̄v
� √n.

Problem 13.5. Compare values of the diffusion cross section of scattering for
similar attractive and repulsive interaction potentials of particles U (R) �
±CR−n.

Take, as the diffusion cross section of the scattering of particles, the capture cross
section σc which is given by formula (13.17). The difference of these cross sections
is approximately 10%forn � 4 and these cross sections are coincident forn→∞.
Use formula (13.14) for the diffusion cross section σrep of the scattering of particles
with a repulsive interaction potential. Table 13.2 contains the ratio of these cross
sections η � σc/σrep for some n. As is seen, the scattering cross section in an
attractive interaction potential exceeds that for a repulsive interaction potential,
because the interaction of particles during collisions is stronger for the attractive
interaction potential.

Problem 13.6. Determine the contribution to the diffusion cross section from
large impact parameters for the scattering of particles with an attractive potential
U (R) � CR−n if n
 1.
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Table 13.2. The ratio of the cross sections of the scattering of particles η � σc/σrep for
similar attractive and repulsive interaction potentials.

n 4 6 8 10 12 14

η 1.76 1.72 1.63 1.54 1.49 1.44

We assume that scattering on small angles takes place for collisions with impact
parameters ρ > ρc, where ρc is the capture impact parameter. Then the scattering
angle ϑ ∼ ρ−n for the related interaction potential, and that part of the diffusion
cross section 
σ , which is determined by the impact parameters of collision ρ >

ρc, is equal to


σ �
∫ ∞

ρc

2πρdρ(1− cosϑ) �
∫ ∞

ρc

πρdρϑ2 � πρ2
c ϑ

2
c /(n− 1) � σc

ϑ2
c

(n− 1)
,

where σc � πρ2
c is the capture cross section and ϑc is the scattering angle at the

impact parameter of collision ρc.
Let us calculate the scattering angle if it is small. Then we consider the motion

of a scattering particle along straight trajectories and calculate the momentum

p⊥, which a scattering particle obtains from the force center in the direction
perpendicular to its trajectory. The scattering angle is 
p⊥/p, where p is the
initial momentum of the scattering particle, and we have

ϑ � 
p⊥
p

� 1

p

∫ ∞

−∞

∣∣∣∣∂U∂R
∣∣∣∣ ρRdt � ρ

ε

∫ ∞

ρ

∣∣∣∣∂U∂R
∣∣∣∣ dR√

R2 − ρ2
� U (ρ)

ε

√
π�

(
n
2

)
�
(
n−1
2

) .

Above we use the relation R2 � ρ2 + v2t2 for the free motion of the scattering
particle and the dependence U (R) ∼ R−n for the interaction potential. In this case
we have

U (Ro)

ε
� 2

n− 2
and

ρ2
c

R2
o

� n

n− 2
,

where Ro is the distance of closest approach to the impact parameter ρc. From this
we obtain

ϑc �
(

1− 2

n

) n
2
√
π�

(
n
2

)
�
(
n−1
2

)
and


σ

σc
� ϑ2

c

(n− 1)
� π

n− 1

(
1− 2

n

)n 4

(n− 2)2
�2
(
n
2

)
�2
(
n−1
2

) .
At large n we present this ratio in the form


σ

σc
� 2π

(n− 2)2e2
,
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so that this gives the correct result 
σ/σc � 0.21 for the polarization interaction
potential U (R) ∼ R−4, in accordance with the result of Problem 13.3, and it has
the correct asymptotic form in the limit of large n. As is seen, the contribution of
the large impact parameters to the diffusion cross section drops sharply with an
increase in n.



CHAPTER 14

Resonant Processes in
Slow Atomic Collisions

14.1 Specifics of Slow Inelastic Atomic Collisions

Let us consider the slow collisions of atomic particles when the relative velocity
of the nuclei v and a typical atomic velocity ve for this process satisfy the relation

v � ve. (14.1)

This criterion corresponds to large energies of atomic particles. For example, in the
case ofH+–H collisions this corresponds to collision energies ε � 10 keV. In this
chapter we focus on the processes which proceed at large and moderate distances
between the colliding particles. Such processes are characterized by large cross
sections compared to the typical atomic cross sections.

In the course of slow atomic collisions, when the criterion (14.1) is valid, the
electron subsystem follows for the variations of atomic fields due to motion of the
nuclei, and the equilibrium of the electron subsystem is established at each distance
between the nuclei, because the time of the establishment of this equilibrium
is small compared to a typical collision time. Hence, the electron state of this
nonstationary electron system is close to that of motionless nuclei. This gives a
method for the description of slow atomic collisions. Such a description is based
on the parameters of the quasi-molecule which is the related system of colliding
particles with motionless nuclei.

Let us express this statement in mathematical form. We have the Schrödinger
equation for colliding atomic particles

ih̄
∂	(r,R, t)

∂t
� Ĥ	(r,R, t), (14.2)

where r is the sum of electron coordinates, R describes the relative position of the
atomic particles, and t is time. There is a system of eigenwave functions {ψi} for
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each distance between the nuclei. These wave functions satisfy the Schrödinger
equations

Ĥψi(r, R) � εi(R)ψi(r, R), (14.3)

where i denotes the quasi-molecule state. Thus, the electron state of the system of
colliding atomic particles is close to a state of this system under motionless nuclei.
The electron terms εi(R) are called the adiabatic terms.

Let us use the adiabatic wave functions as a basis for the description of the
evolution of the electron system during collisions. Assuming the motion of the
nuclei to be governed by classical laws, we present the wave function of the system
in the form

	(r,R, t) �
∑
i

ci(t)ψi(r,R) exp

(
−i
∫ t

0
εi(t

′) dt ′
)
. (14.4)

Substituting this expression into the Schrödinger equation (14.2) and using the
orthogonality of the wave functions ψi(r, R), we obtain the following set of equa-
tions as a result of multiplying (14.2) by ψi(r, R) and integrating over the electron
coordinates

ċi(t) �
∑
k

ck(t)

(
∂

∂t

)
ik

exp

(
−i
∫ t

ωik(t
′)dt ′

)
, (14.5)

where h̄ωik(t) � εi [R(t)]− εk [R(t)], and the matrix element is(
∂

∂t

)
ik

�
∫

ψi

∂ψk

∂t
dr.

The set of equations (14.5) is called the adiabatic set of equations. As a matter
of fact, this is a new form of the Schrödinger equation (14.2) which is equivalent
to equation (14.2). But this form of the Schrödinger equation is more convenient
for the analysis of transitions in slow atomic collisions. Let us construct the pertur-
bation theory on the basis of this set of equations assuming, that at the beginning,
the wave function of the system is ψo(r,∞) and in the course of its evolution it is
close to ψo(r, R) whose phase corresponds to the stationary state. Then the set of
equations (14.5) can be rewritten within the framework of the perturbation theory
by a change of amplitudes ck , in the right-hand side of this equation and by δko
this transforms the set of equations (14.5) to the form

ċi(t) �
(
∂

∂t

)
io

exp(−i
∫ t

ωio(t
′) dt ′).

The probability of transition to state i after collision is Pi � |ci(∞)|2, where

ci(t) �
∫ ∞

−∞

(
∂

∂t

)
io

exp(−i
∫ t

−∞
ωio(t

′) dt ′). (14.6)

One can see that the integral (14.6) is of the order of exp(−
εa/h̄v), where
a is a typical size which represents a shift in the distance between the nuclei
corresponding to a remarkable change of the matrix element (∂/∂t)io, 
ε is a
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typical distance between levels o and i and v is the collision velocity. Thus the
following parameter is of importance to understand the adiabatic character of slow
atomic collisions

ξ � 
εa

h̄v
. (14.7)

This is called the Massey parameter. If this parameter is large, the probability of
the transition between the corresponding levels is small in an exponential manner.
Hence, analyzing the transitions between the electron states, one can be restricted
by adiabatic states for which only the Massey parameter is not large. Other states
may be excluded from this consideration.

14.2 Resonant Charge Exchange Processes

According to the above analysis, the transitions between the states of close energy
are effective in slow collisions. The processes with the energy variation 
ε � 0
are called resonant processes and for quasi-resonant processes 
ε is relatively
small. We start with the analysis of resonant processes from the resonant charge
exchange process which proceeds according to the scheme

A+ + A→ A+ A+, (14.8)

and as a result of this process a valent electron transfers from the field of one ion to
the other. For simplicity, we consider the case of one state of an atom and ion, as this
takes place in the case when an atom A has a valent s-electron and the ion electron
shell is completed. The eigenstate of the quasi-molecule, consisting of the colliding
ion and atom, can be even or odd depending on the property of the corresponding
wave functions to conserve or change their sign as a result of electron reflection
with respect to the symmetry plane. This plane is perpendicular to the axis joining
the nuclei and passes through its middle. These electron eigenwave functions are
determined by formula (10.17):

ψg � 1√
2
(ψ1 + ψ2), ψu � 1√

2
(ψ1 − ψ2), (14.9)

where the wave functions ψ1, ψ2 are the molecular wave functions which corre-
spond to the electron location in the field of the corresponding ion. The wave
functions (14.9) are the eigenfunctions of the electron Hamiltonian, so that
according to (10.18) we have

Ĥψg � εgψg, Ĥψu � εuψu. (14.10)

For simplicity, we will be guided by the case when an ionA+ has a filled electron
shell, and its atom A has one valent s-electron above the filled shell, so that the
process (14.8) corresponds to a transition of the valent electron from the field of
one ion to the field of the other ion. Let us study the electron behavior in the
absence of nonadiabatic transitions. At the beginning let the electron be located in



14.2 Resonant Charge Exchange Processes 363

the field of the first ion, i.e., the electron wave function is 	(r,R,−∞) � ψ1(r).
This means that at that time c1 � c2 � 1/

√
2. Then in the absence of nonadiabatic

transitions we have, for the electron wave function according to formula (14.4), in
atomic units

	(r,R, t) � 1√
2
ψg(r,R) exp

[
−i
∫ t

−∞
εg(t

′) dt ′
]

+ 1√
2
ψu(r,R) exp

[
−i
∫ t

−∞
εu(t

′) dt ′
]
. (14.11)

Let us introduce the S-matrix of transition in the usual way such that if the initial
state of a system isψ , its state at time t is Ŝψ . Then substituting (14.9) into (14.11),
we find the element of the S-matrix, at time t ,

S12(t) � exp

[
−i
∫ t

−∞

(εg + εu)

2
dt ′
]
· i sin

∫ t

−∞

(εg − εu)

2
dt ′. (14.12)

This formula shows that in the absence of inelastic transitions between the states
the electron transfers from the field of one ion to the field of the other ion due to the
interference of the states. This is the nature of both the resonant charge exchange
process and other resonant processes. Formula (14.2) gives, for the probability of
the charge exchange process as a result of an ion–atom collision,

P12 � |S12(∞)|2 � sin2
∫ ∞

−∞

(εg − εu)

2
dt � sin2

∫ ∞

−∞


(R)

2
dt, (14.13)

and the exchange interaction potential between the ion and atom is introduced on
the basis of formula (10.19), 
(R) � εg(R)− εu(R).

The cross section of the charge exchange process, for this case of transition
between two states, is equal to

σres �
∫ ∞

0
2πρ dρ sin2 ζ (ρ), ζ (ρ) �

∫ ∞

−∞


(R)

2
dt, (14.14)

where ζ (ρ) is the charge exchange phase. We now calculate this integral by taking
into account a strong dependence
(R). For this goal we take the charge exchange
phase ζ (ρ) in the form ζ (ρ) � Aρ−n and consider the result in the limit n→∞.
We obtain

σres �
∫ ∞

0
2πρ dρ sin2 ζ (ρ) � π

2
(2A)2/n�

(
1− 2

n

)
cos

π

n
.

Let us present the result in the form

σres � πR2
o

2
fn,

where Ro is determined by the relation ζ (Ro) � a, so that the function fn is equal
to

fn � (2a)2/n�

(
1− 2

n

)
cos

π

n
.
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We take the parameter a such that the second term of expansion of the function
fn over a small parameter 1/n would be zero. This gives

a � e−C

2
� 0.28,

where C � 0.557 is the Euler constant. Then the function fn is equal to

fn � exp

(
−2C

n

)
�

(
1− 2

n

)
cos

π

n
,

and its expansion at large n has the form

fn � 1− π2

6n2
.

Table14.1 contains values of this function and its asymptotic expansion for some
n. These data confirm the validity of the used expansion over a small parameter
1/n.

Because of an exponential dependence ζ (ρ) at large ρ[ζ (ρ) ∼ e−γρ], i.e., n �
γρ 
 1, the expression for the cross section of the resonant charge exchange
process can be represented in the form

σres � πR2
o

2
− π3

12γ 2
, where ζ (Ro) � e−C

2
� 0.28. (14.15)

In the deduction of this formula we suppose the parameter γRo to be large. This is
the basis of the asymptotic theory of resonant charge exchange which uses a small
parameter 1/(γRo). Table14.2 contains the cross sections of the resonant charge
exchange process for some ion–atom pairs with a transferring s-electron, and for
the ground ion and atom states and the quantity of a large parameter γRo in these
cases. The data of Table 14.2 confirm the used assumption of a large value of the
parameter γRo in reality. Note that according to Fig. 10.3, within the framework
of the asymptotic theory under consideration, the exchange interaction potential

(R) is determined with an accuracy up to ∼ 1/(γRo)2, because we do not take
into account the contribution of the atomic regions of Fig. 10.3 into the exchange
interaction potential. Hence, it is correct to account for two expansion terms over
a small parameter 1/(γRo) in formula (14.15).

Let us determine the dependence of the cross sections of the resonant charge
exchange process on the collision velocity. On the basis of formulas (10.20) and
(10.23) we take the dependence of the exchange interaction potential 
 on the
ion–atom distance R in the form 
 ∼ e−γR . This gives ζ (Ro) ∼ e−γRo/v. From

Table 14.1. Values of the function fn and its asymptotic expression.

n 2 4 6 8 ∞
fn 0.88 0.94 0.97 0.98 1.00

1− π 2/(6n2) 0.59 0.90 0.95 0.97 1.00
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Table 14.2. Parameters of the resonant charge exchange process at the ion collision energy
of 1 eV in the laboratory coordinate system (an atom is at rest) for the ground atom and ion
states.

Element H He Li Be Na Mg K Ca Cu

Roγ 10.5 10.5 13.6 12.7 14.9 13.8 15.7 14.7 14.3

σres, 10−15 cm2 4.8 2.7 22 10 26 15 34 21 16

−d ln σres/d ln v, 10−2 4.8 4.8 3.7 3.9 3.4 3.6 3.2 3.4 3.5

Element Zn Rb Sr Ag Cd Cs Ba Au Hg

Roγ 14.0 16.3 15.4 14.5 14.4 16.8 16.0 14.5 14.5

σres, 10−15 cm2 12 38 25 17 14 44 29 14 12

−d ln σres/d ln v, 10−2 3.6 3.1 3.2 3.4 3.5 3.0 3.1 3.4 3.4

this it follows that

Ro � 1

γ
ln

vo

v
,

where the parameter vo 
 1. Thus we obtain the following dependence of the
charge exchange cross section on the collision velocity:

σres � πR2
o

2
� π

2γ 2
ln2 vo

v
. (14.16a)

This dependence is weak enough, if the parameter γRo is large. From this we have

d ln σres

d ln v
� − 2

γRo

,

which allows us to represent the velocity dependence for the cross section in the
form

σres(v)

σres(v1)
�
(v1

v

)α
, α � 2

γRo

. (14.16b)

The data of Table14.3, where the ratio σres(0.3v)/σres(v) is given, show that the
velocity dependence for the cross section is weaker, the larger the parameter γRo

is.
Let us express the cross section (14.15) through the exchange ion–atom inter-

action potential 
(R). Because of the exponential dependence of the exchange
interaction potential 
 ∼ e−γR on a distance R between particles, the integral for
the charge exchange phase ζ (ρ) converges near the distance of closest approach
of the particles which coincides with the impact parameter of collision ρ. Then,
taking R �

√
ρ2 + z2 � ρ + z2/(2ρ) where z � vt , v is the velocity of collision,

t is time, and accounting for 
 ∼ e−γR , we obtain

ζ (ρ) �
∫ ∞

−∞


(R)

2
dt � 
(ρ)

2v

∫ ∞

−∞
exp

(
−z2γ

2ρ

)
dz � 
(ρ)

v

√
πρ

2γ
. (14.17)
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Table 14.3. The reduced cross sections of a resonant charge exchange; σo is the cross section
of a resonant charge exchange for a transferring s-electron; σ10, σ11 are the cross sections for
a p-transferring electron for zero and one momentum projections on the impact parameter
of collision; σres � σ10/3+2σ11/3; σ3, σ4, σ5 are the average cross sections for the transition
of ap-electron for elements of Groups 3, 8, Groups 4, 7 and Groups 5, 6 of the periodic table,
respectively; and σ1/2, σ3/2 are the average cross sections for the total momentum 1/2 and
3/2 respectively, for a transferring p-electron between structureless cores. The asymptotic
parameters of the transferring s- and p-electrons under consideration are identical.

Roγ 6 8 10 12 14 16

σo(v)/σo(0.3v) 0.669 0.740 0.786 0.818 0.842 0.860

σ10/σo 1.40 1.29 1.23 1.19 1.16 1.14

σ11/σo 1.08 0.98 0.94 0.92 0.91 0.91

σres/σo 1.19 1.08 1.04 1.01 0.99 0.95

σ3/σo 1.17 1.09 1.05 1.03 1.02 1.01

σ4/σo 1.50 1.32 1.23 1.18 1.14 1.12

σ5/σo 1.44 1.29 1.22 1.17 1.14 1.11

σ1/2/σo 1.18 1.10 1.07 1.05 1.04 1.03

σ3/2/σo 1.18 1.10 1.06 1.04 1.03 1.02

On the basis of this formula, it is convenient to present expression (14.15) for the
cross section of the charge exchange process in the form

σres � πR2
o

2
, where

√
Ro
(Ro) � 0.22v

√
γ , (14.18)

Here the exchange potential of the ion–atom interaction is given by formulas
(10.20) and (10.23).

In order to ascertain the accuracy of the asymptotic theory, we consider the
charge exchange of the proton on the hydrogen atom at a collision energy of 1 eV
in the laboratory coordinate system and analyze various versions of the asymptotic
theory. In this case formula (14.15) has the form

σres � πR2
o

2
, where ζ (Ro) � 1

v
· 4

e

√
π

2
R3/2

o exp(−Ro) � 0.28. (14.19a)

One can account for the next term of the expansion of the phase ζ (Ro) over the
small parameter 1/Ro. Then formula (14.15) has the form

σres � πR2
o

2
, where ζ (Ro) � 1

v
· 4

e

√
π

2
R3/2

o

(
1+ 7

8Ro

)
exp(−Ro) � 0.28.

(14.19b)
One can evaluate the exchange phase ζ (ρ) on the basis of the exchange interaction
potential 
(R) directly by the use of formula (14.15). This gives, for the charge
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exchange cross section,

σres � πR2
o

2
, where ζ (Ro) � 4R2

o

v exp(1)

[
Ko(Ro)+ 1

Ro

K1(Ro)

]
� 0.28.

(14.19c)
Finally, one can find the charge exchange cross section directly

σres �
∫ ∞

0
2πρ dρ sin2 ζ (ρ), (14.19d)

where the charge exchange phase is given by formulas (14.19a, b, and c). Calcula-
tion of the cross section in the hydrogen case at an energy of 1 eV in the laboratory
coordinate system gives on the basis of the above formulas for the values of the
charge exchange cross sections 172, 175, 175, respectively, in atomic units, if we
use formulas (14.19a, b, and c), and also 170, 173, 174, if we use formula (14.19d)
with the above expressions for the phase of charge exchange. The statistical treat-
ment of these data gives 173 ± 2 for the average cross section, i.e., the error in
this case, which can be considered as the best accuracy of the asymptotic theory,
is approximately 1%.

The accuracy of the asymptotic theory is determined by the small parameter
1/(Roγ ) and the above accuracy is of the order of 1/(Roγ )2. According to the
data of Table 14.2, the best accuracy of the asymptotic theory is of the order of
1 under the parameters of the resonant charge exchange process with a transfer-
ring s-electron. In reality, the accuracy of the evaluated cross sections within the
framework of the asymptotic theory is determined by the accuracy of the asymp-
totic coefficient A for the wave function (4.11) of a transferring electron far from
the core. From formula (14.15) follows the relative accuracy of the cross section

σ ,


σres

σres
� 4

Roγ
· 
A

A
. (14.20)

One can see that this error arises in the first approximation of the expansion of the
charge exchange cross section over a small parameter. In particular, if the error
in the asymptotic coefficient is 
A/A � 10%, the error in the cross section is
3–4% for the cases of Table 14.2, as follows from formula (14.20). In particular,
the asymptotic coefficient for the helium atom in the ground state is 2.8± 0.3 (see
Chapter 4), if we are based on the hydrogenlike electronwave functions. According
to formula (14.20) this corresponds to an accuracy of 4% at the collision energy
of 1 eV. Thus, the accuracy of the asymptotic coefficients is of importance for
the accuracy of the asymptotic theory for the cross section of a resonant charge
exchange, and the accuracy of the cross sections of a resonant charge exchange
with the transferring s-electron lies in reality between 1% and 5% at small collision
energies. As a demonstration of the asymptotic theory for the transition of an s-
electron, Figs. 14.1 and 14.2 give the cross sections of a resonant charge exchange
for collisions of rubidium and cesium atoms with their ions depending on the
collision energy.
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Figure 14.1. The cross sections of a resonant charge exchange for rubidium. Curve 1
corresponds to formula (5.8), signs relate to experimental data.

14.3 Resonant Charge Exchange with Transition of the
p-Electron

The resonant charge exchange process with the transition of an electron of a
nonzero momentum is entangled with the process of rotation of the electron
momentum. Partially, these processes can be separated because the exchange
interaction potential of the colliding particles strongly depends on a change of
distance between the interacting particles. This means that a strong interaction
takes place in a narrow range of distances between the colliding particles where
the molecular axis turns on a small angle of the order of 1/

√
Roγ . Indeed, the

range of the distances between the nuclei 
R, where the phase of charge ex-
change ζ varies remarkably, is 
R ∼ 1/γ , which corresponds to the angle of
rotation ϑ ∼ vt/R ∼ 1/

√
Rγ � 1. Nevertheless, it is necessary to account for

the rotation of the molecular axis in the course of electron transition.
Figure 14.3 shows the geometry of a collision in a center-of-mass coordinate

system, when the configuration of colliding particles is close to that at the distance
of closest approach.We have the following relation, which connects a current angle
θ between the molecular and quantization axes and the angle ϑ between these axes
at the distance of closest approach,

cos θ � cosϑ cosα + sin ϑ sin α cosϕ, (14.21)
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Figure 14.2. The cross sections of a resonant charge exchange for cesium. Curve 1
corresponds to formula (5.8), signs relate to experimental data.

Figure 14.3. The geometry of the nuclear trajectory in the centre-of-mass coordinate sys-
tem. 1, Quantization axis; 2, molecular axis at the distance of closest approach; 3, current
molecular axis, 4, trajectory of nuclear motion. θ , ϑ are the angles between the quantization
and molecular axes, current and at the distance of closest approach, α, ϕ are polar angles
of a current molecular axis with respect to the distance of closest approach.
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where α, ϕ are the polar angles of the molecular axis, so that sin α � vt/R, v is the
collision velocity, t is time, and R is the distance between the colliding particles.

A small parameter of the theory 1/ργ simplifies determination of the phase of
charge exchange and the cross section of this process. On the basis of formulas
(10.58) the exchange interaction potentials of atoms and their ions with filling p-
shells in neglecting the spin-orbital interaction one can find the charge exchange
phase (14.14),

ζ (ρ, ϑ) �
∫ ∞

−∞


(R, θ )

2
dt.

On the basis of this formula we have, for the charge exchange phase as a result of
an expansion over a small parameter 1/ργ in the case of atoms of Groups 3, 5, 6,
and 8 of the periodic table of elements,

ζ (ρ, ϑ, ϕ) � ζ (ρ, 0)

[
cos2 ϑ − 1

γρ
cos2 ϑ + 1

γρ
sin2 ϑ(2+ cos2 ϕ)

]
. (14.22)

This expression relates to the large impact parameters of collision, and ζ (ρ, 0)
is the phase of the charge exchange process when a quantization axis has the
same direction as the molecular axis at the distance of closest approach. The
value ζ (ρ, 0) can be expressed through the charge exchange phase ζo which is
given by formula (14.17) and relates to transition of an s-electron with the same
asymptotic parameters γ , A. This connection for the resonant charge exchange
process involving atoms of Groups 3 and 8 of the periodic table of elements has
the form

ζ (ρ, 0) � 3ζo(ρ), (14.23a)

and for atoms of Groups 5 and 6 this connection is

ζ (ρ, 0) � 7ζo(ρ), (14.23b)

Note that our analysis relates to the ground state of the colliding atom and ion.
In the case of atoms of Groups 4 and 7 of the periodic table of elements the

expression for the charge exchange phase at large impact parameters of collision
has the form

ζ (ρ, ϑ, ϕ)

� 5ζo(ρ){sin2 ϑ1 sin2 ϑ2 + 1

γρ
[2 cos2 ϑ1 + 2 cos2 ϑ2 + sin2 ϑ1 cos2 ϑ2

+ cos2 ϑ1 sin2 ϑ2 − sin2 ϑ1 sin2 ϑ2(cos2 ϕ1 + cos2 ϕ2)

+ sin 2ϑ1 sin 2ϑ2 cosϕ1 cosϕ2]}, (14.24)

where ϑ1, ϕ1 and ϑ2, ϕ2 are the polar angles of the quantization axes of the atom
and ion, respectively, with respect to the molecular axis at the distance of closest
approach.

Thus, separating the depolarization of a colliding atom and ion from the charge
exchange process, we average the cross section over directions of the molecular
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axis with respect to the quantization axis. Below we find the average cross section
of the resonant charge exchange process σ according to the formula

σ res � 1

2

∫ 1

−1
σ (ϑ) d cosϑ, (14.25)

where σ (ϑ) is the cross section of charge exchange at an angle ϑ between the
impact parameter of collision and the quantization axis.

According to the exponential dependence of the charge exchange phase on the
impact parameter of collision ζ (ρ, ϑ) ∼ exp(−γρ) we have, in the case of atoms of
Groups 3, 5, 6, 8 of the periodic table of elements, comparing the cross section with
that at identical directions of the impact parameter of collision and quantization
axis

Ro(ϑ, ϕ) � Ro(0)+ 1

γ
ln

ζ (ρ, ϑ, ϕ)

ζ (ρ, 0)
. (14.26)

This gives, for the average cross section of resonant charge exchange,

σ res � 1

4

∫ 1

0

∫ 2π

0

[
Ro(0)+ 1

γ
ln

ζ (Ro, ϑ, ϕ)

ζ (Ro, 0)

]2

d cosϑ dϕ. (14.27)

As a matter of fact, formula (14.27) means that the dependence of the exchange
phase ζ on the impact parameter ρ of collision has the form ζ ∼ exp(−γρ).
This formula is the basis for the determination of the average cross section of the
resonant charge exchange process when this process results from the transition of
a p-electron. This formula is valid for elements of Groups 3, 5, 6, 8 of the periodic
table when atoms and ions are in the ground states, and one of these states is an
S-state, so that the phase of charge exchange depends on two angles ϑ , ϕ. In the
same manner, one can find the charge exchange phase for elements of Groups 4
and 7 which depend on four angles ϑ1, ϕ1, ϑ2, ϕ2. The data for the reduced cross
sections of charge exchange for these cases are given in the Table 14.3.

Let us compare the cross sections of resonant charge exchange for transition of s
and p-valent electrons if these electrons are characterized by the same asymptotic
parameters γ and A. Supposing the dependence of the charge exchange phase
ζ (ρ, ϑ, ϕ) on the impact parameter ρ of collision to be exponential ζ (ρ, ϑ, ϕ) ∼
exp(−γρ), and neglecting themomentum rotation during the electron transitionwe
obtain, for the average cross section σ res of the resonant charge exchange process,

σ res � σo

∫ 1

0
d cosϑ

∫ 2π

0

dϕ

2π

(
1+ 1

γRo

ln
ζ (ρ, ϑ, ϕ)

ζo(ρ)

)2

, (14.28)

where σo is the cross section for a resonant charge exchange for a transferring
s-electron with the same asymptotic parameters and ζo(ρ) is the charge exchange
phase for an s-electron which is given by formula (14.15). Table 14.3 contains the
ratios of the cross sections of resonant charge exchange for elements of Groups
3–8 of the periodic table to the cross sections with a transferring s-electron with
the same asymptotic parameters as a function of a small parameter of the asymp-
totic theory. The use of additional assumptions for the evaluation of the charge
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exchange cross sections with a transferring p-electron decreases the accuracy of
the asymptotic theory in this case. In addition to this, Figs. 14.3 and 14.3 give the
cross section of the resonant charge exchange process for most elements of the
periodic table. These cross sections are evaluated on the basis of the above formula.
Figures 14.6–14.8 contain the cross sections as a function of the collision energy
for neon, krypton, and xenon. The experimental data presented in these figures
and Figs. 14.1 and 14.2 show that the accuracy of the contemporary experiment is
lower than that of the asymptotic theory.

14.4 Coupling of Electron Momenta in the Resonant
Charge Exchange Process

Analyzing the charge exchange process, we neglect above the relativistic effects
in comparison with the electrostatic interactions. Returning to a general case of
the coupling of electron moments during collisions, we consider six cases of the
Hund coupling which are given in Table 11.1. The consideration is simplified for
the resonant charge exchange process because the electron transition proceeds in
a narrow range of distances between the colliding particles. Indeed, according
to formulas (14.15) and (14.17), for typical impact parameters ρ of the charge
exchange process


(ρ) ∼ v

√
γ

ρ
.

Because a typical rotational energy of colliding particles is Vr ∼ v/ρ, we have


(ρ) ∼ Vr

√
γρ 
 Vr.

Since the exchange interaction potential 
 is a part of the electrostatic energy Ve,
from this it follows that only three cases of the Hund coupling, cases “a”, “b”, “c”,
are of interest for resonant charge exchange. Moreover, because the rotational axis
rotates on a small angle during the electron transition, the difference of the cross
sections for cases “a” and “b” of the Hund coupling is small and, practically, for
the analysis of real charge exchange processes, one can restrict only by cases “a”
and “c” of the Hund coupling for the analysis of the resonant charge exchange
process. Above we consider this process for case “a” of the Hund coupling, and
below we focus on case “c”.

Note that because of a low atom symmetry in the case of the jj -coupling scheme,
charge exchange in this case can be realized by the transition of only one electron,
as follows from (11.8) and (11.9). Therefore, we consider below the transition of
an electron with a total momentum 1/2 or 3/2 between two identical cores. We use
formula (11.16) for the exchange interaction potentials


1/2 � 1

3

10 + 2

3

11,
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Figure 14.6. The cross sections of resonant charge exchange for neon. 1, Formulas (14.22),
(14.27); 2–12, experiment.

Figure 14.7. The cross sections of resonant charge exchange for krypton. 1, Formulas
(14.22), (14.27); 2–9, experiment.


3/2(θ ) �
(

1

6
+ 1

2
cos2 θ

)

10 +

(
1

3
+ 1

2
sin2 θ

)

11,

where θ is an angle between the molecular and quantization axes. Repeating the
operation of the previous section we obtain from this, for the charge exchange
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Figure 14.8. The cross sections of resonant charge exchange for xenon. 1, Formulas (14.22),
(14.27), 2–11, experiment.

phase when the electron momentum projection is 1/2 and 3/2, respectively,

ζ1/2(ρ, ϑ)

ζo(ρ)
� 1+ 4

ργ
,

ζ3/2(ρ, ϑ)

ζo(ρ)
� 1

2
+ 3

2
cos2 ϑ + 1

ργ

(
1

2
+ 9

2
sin2 ϑ + 3

2
sin2 ϑ cos2 ϕ

)
,

where ζo(ρ) is the charge exchange phase for a transferring s-electron with the
same asymptotic parameters. On the basis of these phases of charge exchange,
with the use of the method of the previous section, one can evaluate the cross
sections for the resonant charge exchange process. The reduced quantities of the
cross sections are given in Table 14.3 depending on the asymptotic parameterRoγ .
Table 14.4 represents the cross sections of this process for rare gases, i.e., σ is the
average cross section for case “a” of the Hund coupling, σ (ϑ � 0) is the cross
section of this process when the projection of the orbital momentum of the hole on
the impact parameter direction is zero, and σ1/2 and σ3/2 are the charge exchange
cross sections for the total ion momenta 1/2 and 3/2, respectively. We take the atom
ionization potential with formation of the ion in different fine states to be identical,
so that the difference in the cross sections under consideration is determined by the
process dynamics.According to the data of Table 14.4, the difference of the average
cross sections for both coupling schemes is small, and is lower than the accuracy
of the cross sections evaluated which, in turn, is determined by the accuracy of the
asymptotic coefficients of the wave function of an atomic valent electron. Hence, in
spite of a significant dependence of the cross section of resonant charge exchange
on the direction of the orbital momentum, the average cross section of this process
is not sensitive to the scheme of coupling of electron momenta if the process is
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Table 14.4. The resonant charge exchange cross sections for rare gases at the ion energy of
1 eV.

Element Ne Ar Kr Xe Rn

γRo 10.8 12.4 13.2 14.1 15.0

σ/σ (ϑ � 0) 0.85 0.867 0.87 0.87 0.88

σ1/2/σ 1.02 1.02 1.02 1.02 1.02

σ1/2/σ3/2 0.995 0.995 0.995 0.995 0.995

σ , 10−15 cm2 3.5 5.8 7.5 10 12

permitted in a one-electron approach. Hence, the cross sections averaged over the
initial states weakly depend on the coupling scheme for atoms of Groups 3 and 8.

According to the data of Table 14.3, the difference between the cross sections
of this process for different coupling schemes is significant for other groups of the
periodic system of elements. This difference becomes dramatic for certain initial
atomic and ionic states if the one-electron transition is forbidden according to the
selection rules for one of these coupling schemes (see formula (10.60) and Tables
10.9, 11.8, and 11.9).

14.5 Spin Exchange

The spin exchange process is analogous to the resonant charge exchange process.
We consider the case of the collision of two atoms with spin 1/2, as hydrogen or
alkali metal atoms. If the spins of colliding atoms have different directions, the
process corresponds to a change by valent electrons, i.e., the process proceeds
according to the scheme

A↓ + B↑ → A↑ + B↓, (14.29)

where the arrows indicate direction of spin. This process leads to transitions be-
tween the states of superfine structure. Indeed, let us consider a gas consisting of
hydrogen or alkali metal atoms, and that the nuclear spin of the colliding atoms
is equal to I . Then the total atom spin equals F � I ± 1/2. Let the cross section
of the spin exchange process be σex, and let the total momentum of both colliding
atoms be equal to F . Then the cross section of the transition between the superfine
states of atoms is

σ (F → F ′) � 2 · 1

2
· 2F ′ + 1

4I + 2
σex � 2F ′ + 1

4I + 2
σex. (14.30)

Here the factor 2 takes into account that two atoms with total spin F partake in the
collisions, the next factor is the probability that the colliding atoms have opposite
directions of electron spins, and the factor (2F ′ + 1)/(4I + 2) is the probability
of transition of each colliding atom in a new superfine state. Because this process
leads to the decay of the initial superfine state of a colliding atom, it determines
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the number density of atoms in masers which operate on transitions between states
of superfine structure (hydrogen and rubidium masers).

The physical nature of this process is similar to that of the resonant charge ex-
change process. Indeed, the wave function of the initial state in accordance with the
notations of Chapter 10, has the form 	1 � ψ(1a)ψ(2b). This is the combination
of the eigenwave functions of the quasi-molecule consisting of colliding atoms,
i.e., it is a sum of the symmetrical and antisymmetric wave functions with respect
to exchange of electrons. Therefore the interference of the corresponding eigen-
states leads to exchange by electrons. By analogy with resonant charge exchange,
the cross section of this process is given by formula (14.15),

σex � πR2
o

2
, where ζ (Ro) �

∫ ∞

−∞


(R)R dR

2v
√
R2 − R2

o

dt � 0.28. (14.31)

Here the exchange interaction potential of atoms 
(R) is determined by formula
(10.28) as the difference between the energies of the symmetric and antisymmetric
states of the systems of two atoms, and is given by formulas (10.31) and (10.32).
Table 14.5 contains values of the spin exchange cross sections which correspond
to the energy of collision of about 0.1 eV. Note that formula (14.31) for the cross
section of the spin exchange process uses the small parameter 1/(2γRo) � 1.
Values of the parameter γRo are given in Table 14.5 at a given collision energy.

14.6 Excitation Transfer

Excitation transfer from one excited atom to the other proceeds according to the
scheme

A∗ + B → A+ B∗. (14.32)

If an excited state is forbidden for the dipole radiation transition from the ground
state, the cross section of this process is determined by the exchange interaction
whose expression in the limiting case is given by formula (10.46). Below we
consider in detail the following process:

A(P )+ A(S)→ A(S)+ A(P ). (14.33)

Table 14.5. The cross sections of spin exchange σex at the collision energy 0.1 eV in the
laboratory coordinate system are expressed in 10−15 cm2.

Colliding atoms σex γRo

H −H 2.0 6.8

Na −Na 11 10

K −K 15 10

Rb − Rb 17 11

Cs − Cs 19 11
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This process is of interest for two reasons. First, the cross section of this process
is high enough and, hence, it can influence the character of the interaction of
resonant radiationwith these atoms located in a gaseous system. Second, there is an
interaction between this process and the rotation of the electron orbital momentum,
so that in the example of this process one can ascertain peculiarities of this general
problem.

The interaction operator in this case is determined by formula (10.7),

V � D1D2 − 3(D1n)(D2n)

R3
,

where D1; D2 are the operators of the dipole moment for the first and second
atoms, respectively, n is the unit vector directed along the molecular axis, and
R is the distance between atoms. This transition proceeds without exchange by
electrons and hence takes place at large distances between atoms. This character
of the transition allows one to make an estimate of cross section. The probability
of transition is determined by a shift of phases between the wave functions of
different eigenstates similar to the case of the charge exchange process. Then the
cross section of the transition is estimated as σet ∼ R2

o , where
∫ 〈S|V |P 〉dt ∼ 1.

This gives

σet ∼ d2

v
, (14.34)

v is the collision velocity, d � 〈
S
∣∣Dz

∣∣Pz

〉
, where Pz means the state with zero

projection of the orbital electron momentum onto the z-axis. This cross section
is high enough. In particular, for thermal collisions (v ∼ 10−4, d ∼ 1) this cross
section is estimated as σet ∼ 10−11 cm2.

For determination of the cross sections of partial transitions it is necessary to
solve the Schrödinger equation for a suitable coordinate frame and basis wave
functions. Let us use in this case the motionless frame of axes where the x-axis
is directed along the velocity vector and the y-axis is directed along the impact
parameter vector. It is convenient to take, as basiswave functions, the product of the
wave functions of the noninteracting atomsψk . This is similar to the representation
of the Hamiltonian of the system of colliding atoms in the form Ĥ � Ĥo + V ,
where Ĥo describes the noninteracting atoms, so that Ĥoψk � Eoψk and Eo is
the energy of the noninteracting atoms. Substituting the expansion of the wave
function of the colliding atoms 	 over the basis wave functions

	 �
∑
k

ckψke
−iEot

in the Schrödinger equation i(∂	/∂t) � Ĥ	 and restricted by only the related
states, we obtain the following set of equations for the amplitudes ck:

iċk �
∑
m

Vmkcm. (14.35)

In the related problem we have an additional symmetry with respect to the
location of excitation. We separate the states of different symmetry by introducing
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symmetric basis functions by the formula

	+ � 1√
2

[ϕ(1s)ψ(2pi)+ ψ(1pi)ϕ(2s)] ,

where thewave functionsϕ,ψ correspond to theS- andP -atomstates, respectively,
the number in the wave function argument indicates to which atom this wave
function corresponds, and the subscript i marks the projection of the P -atom
momentum onto a given direction. In the same way we have, for the basis wave
function of an antisymmetric state,

	− � 1√
2

[ϕ(1s)ψ(2pi)− ψ(1pi)ϕ(2s)] .

The set of equations (14.35) is separated into two independent sets for c+i and
c−i ; each of the obtained sets includes three equations. Let us consider the general
properties of the S-matrix whose element Sik is introduced as the probability
amplitude ci(t � ∞) for a final state i under the initial condition cj (t � −∞) �
δjk . Since we have V +ik � −V −ik , this gives S−ik �

(
S+ik
)∗

. The scattering matrix for
excitation transfer is equal to

Set
ik �

1

2

(
S+ik − S−ik

) � iIm S+ik. (14.36)

The scattering matrix for elastic scattering is

Sel
ik �

1

2

(
S+ik + S−ik

) � Re S+ik.

Let us separate the state with zero momentum projection onto the direction which
is perpendicular to both the velocity and impact parameter of collision. This state
does not mix with other states, so that the equation for the probability amplitude
of this state has the form

i
dc+z
dt

� d2

R3
c+z ,

where d � 〈
S
∣∣Dz

∣∣Pz

〉
and Pz means the state with zero projection of the orbital

electron momentum onto the axis z. The solution of this equation gives

S+zz(ρ) � exp

(
−i
∫ ∞

−∞

d2

R3
dt

)
� exp

(
−i 2d

2

vρ2

)
.

This leads to the following expressions for the cross sections of the corresponding
processes:

σ et
zz �

∫ ∞

0
2πρ dρ

[
Im S+zz

]2 � π2d2

v
, σ el

zz �
∫ ∞

0
2πρ dρ

[
Re S+zz

]2 � π2d2

v
.

(14.37)
In the case of the states with orbital momentum located in the motion plane, the
processes of excitation transfer and depolarization are mixed. We give results
from numerical solutions of the set of equations in this case. The cross sections of
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excitation transfer are equal to, in units σo � πd2/v,

σ et
xx � 2.65σo, σ et

yy � 0.43σo, σ et
xy � σ et

yx � 0.56σo.

From this it follows that, for the average cross section of excitation transfer,

σet � 1

3

∑
i,k

σ et
ik � 2.26

πd2

v
, (14.38a)

the average cross section of elastic scattering is equal to

σel � 2.58
πd2

v
. (14.38b)

This yields, for the total cross section of the scattering of atoms, σt � σet + σel �
4.8πd2/v.

The analysis of the above process allows us to formulate a general approach to
resonance processes. The character of transitions is determined by the interference
of some states, and the resonant processes are characterized by large cross sections.
This means that the transition proceeds at large distances between the colliding
particles. Then one can neglect the interaction with states which do not partake in
the process. Thus, the problem is reduced to the analysis of interaction of several
states at large distances between the colliding atomic particles where this interac-
tion is weak. But the processes of transition between states of a related structure
are mixed with the processes of rotation of momenta of colliding particles which
is a general feature of the resonant processes of collisions of atomic particles with
nonzero momenta.

14.7 The Matching Method

The above analysis shows that transitions between resonant states at large distances
between colliding atomic particles are accompanied by the processes of rotation of
momenta of colliding particles. Now we consider this problem in detail and give
a commonly used method of an approximate solution to the problem. First, let us
consider the above problem of excitation transfer from the P -atom to the parent
S-atom. The set of equations (14.35), in the frame of axes which is connected to
the molecular axis, has the form (in atomic units)

i
dc+x
dt

� −2d2

R3
c+x − i

dθ

dt
c+y , i

dc+y
dt

� d2

R3
c+y + i

dθ

dt
c+x ,

where dθ/dt � −ρv/R2 is the rate of rotation of the molecular axis. Introducing
the new variables

a+x,y � c+x,y exp

(
−i
∫ t d2

2R3
dt ′
)
,
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we transform the set of equations to the symmetric form

i
da+x
dt

� − 3d2

2R3
a+x + i

ρv

R2
a+y , i

da+y
dt

� 3d2

2R3
a+y − i

ρv

R2
a+x . (14.39)

Let us compare this set with the set of equations in the motionless frame of axes
which includes vectors v and ρ (see Fig. 14.1) and can be obtained from this one
by introducting the new probability amplitudes

b+x � a+x cos θ + a+y sin θ, b+y � −a+x sin θ + a+y cos θ.

The obtained set of equations has the form

i
db+x
dt

� − 3d2

2R3
cos 2θ · b+x −

3d2

2R3
sin 2θ · b+y ,

i
db+y
dt

� 3d2

2R3
cos 2θ · b+y −

3d2

2R3
sin 2θ · b+x . (14.40)

From the set of equations (14.39) it follows that at large distances between atoms
R 
 d2/(ρv) case “d ” of the Hund coupling (see Table 11.1) is realized, so
that the rotation energy of the molecular axis exceeds the �–� splitting of levels.
Hence, in this region one can neglect the �–� splitting of levels, i.e., transitions
between states are absent in the motionless frame of coordinates. On the contrary,
in the region R � d2/(ρv), where case “b” of the Hund coupling is valid, one
can neglect the rotation energy compared to the �–� splitting, so that in this
region the probability amplitudes b+x,y vary only their phases. If we suppose that
the transition region between these limiting cases is narrow, one can join solutions
for the probability amplitude in boundary points. As a result, the scattering matrix
would be expressed through both �–� splitting of levels and through the rotation
angle of the molecular axis when case “b” of the Hund coupling is valid. This way
of accounting for the rotation of molecular axis during the collisions of atomic
particles is called the matching method. This approach is more suitable for a
stronger dependence of the �–� splitting of levels on distances between atoms
than we have in the case under consideration. Below we consider the matching
method in a general form for collision of the S- and P -atoms.

Let us start from the set of equations (14.35) for the probability amplitudes, and
for symmetrization of this set of equations introduce the probability amplitudes by

ax,y � cx,y exp

(
−i
∫ t V0 + V1

2
dt ′
)
,

where V0, V1 are the interaction potentials for the momentum projections 0 and 1
onto the molecular axis. Then we have the following set of equations by analogy
with (14.39):

i
dax

dt
� 
ax − i

dθ

dt
ay, i

day

dt
� −
ay + i

dθ

dt
ax, i

daz

dt
� −
az,

(14.41)
where 
 � (V0 − V1)/2. Here the x-axis is directed along the molecular axis and
the y-axis is perpendicular to it and is found in the motion plane. It is convenient to
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Figure 14.9. The geometry of collision of free moving atoms.

introduce the motionless frame of axes whose axes are directed along the collision
velocity v and the impact parameter ρ of collision (see Fig. 14.9), so that in the
related case of the P -atom the transition from one to the other frame of axes leads
to the following transformations of the wave functions:

ψx � − cos θψv + sin θψρ, ψy � sin θψv + cos θψρ.

The inverse transformation has the form

ψv � − cos θψx + sin θψy, ψρ � sin θψx + cos θψy.

This leads to the following relations between the probability amplitudes

ax � −av cos θ + aρ sin θ, ay � av sin θ + aρ cos θ, (14.42a)

and

av � −ax cos θ + ay sin θ, aρ � ax sin θ + ay cos θ. (14.42b)

From this we have the set of equations in the motionless frame of axes

i
dav

dt
� 
 cos 2θav −
 sin 2θaρ, i

daρ

dt
� −
 sin 2θav −
 sin 2θaρ.

(14.43)
Now let us solve the set of equations (14.41) within the framework of the

matching method. Let us introduce the initial conditions av(t � −∞) � A,
aρ(t � −∞) � B which correspond to the probability amplitudes in the rotational
frame of axes ax(t � −∞) � −A, ay(t � −∞) � B. Introduce the characteristic
angle θo such that at this angle
 � dθ/dt , i.e., the distance between atomsRm(θo)
at this angle satisfies the relation


(Rm) � ρv

R2
m

. (14.44a)

In the region θ ≤ θo one can neglect the phases which are gained by the
wave functions and probability amplitudes. Indeed, a typical phase shift result-
ing from this region according to equations (14.43) is estimated as η ∼ ∫ 
dt �∫
(dθ/dt) dt ∼ θo ∼ 1, i.e., η � 1. Thus we obtain, for the probability amplitudes
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in the motionless and rotational frames of axes on the boundary of this region
θ � θo:

av � A, aρ � B; ax � −A cos θo+B sin θo, ay � A sin θo+B cos θo.

In the next region, θo ≤ θ ≤ π − θo, one can neglect the rotation so that the
amplitudes ax , ay , in accordance with the set of equations (14.41), gain the phases
−ζo and ζo, respectively, where ζo �

∫

dt and the integral is taken over this

region. Below, for simplicity, we define the phase ζo as

ζo �
∫ ∞

−∞

dt, (14.44b)

because times beyond this region do not contribute to this integral. Thus we have,
on the basis of the second boundary at θ � π − θo,

ax � −Ae−iζo cos θo + Be−iζo sin θo, ay � Aeiζo sin θo + Beiζo cos θo.

This gives, for amplitudes in the motionless frame of axes at the second boundary,

av � A(i sin ζo − cos ζo cos 2θo)+ B sin 2θo cos ζo,

aρ � −A sin 2θo cos ζo − B(i sin ζo + cos ζo cos 2θo).

The last region θ ≥ π − θo is symmetric with respect to the first region. In this
region the amplitudes av , aρ do not vary.

Finally, we obtain, for the S-matrix by taking into account that the amplitudes
ci differ from amplitudes ai by the factor exp

[−i ∫ (Vo + V1) dt/2
]
,

Sik � e−i
∫ t Vo+V1

2 dt ′
(

i sin ζo − cos ζo cos 2θo − sin 2θo cos ζo
sin 2θo cos ζo −i sin ζo − cos ζo cos 2θo

)
.

(14.45)
Now let us take into account the state with zero momentum projection onto the

momentum of motion which is directed along the z-axis which is perpendicular
to the motion plane. From the last equation of the set (14.41) it follows that this
state develops independently of the other states and the corresponding probability
amplitude is az � az(−∞)eiζo . Including this state in consideration we obtain, for
the scattering matrix,

Sik � e−i
∫ t [(Vo+V1)/2] dt ′

×

⎛⎜⎝ i sin ζo − cos ζo cos 2θo − sin 2θo cos ζo 0

sin 2θo cos ζo −i sin ζo − cos ζo cos 2θo 0

0 0 eiζo

⎞⎟⎠.(14.46)

One can see that, in the cases ζo � 0 and θo � π/2, the internal matrix contains
only diagonal matrix elements which are equal to one, so that Sik � δik . In this case
transitions between the states are absent. In the case θo � π/2 the internal matrix
contains diagonal matrix elements e−iζo and eiζo which means that transitions
between the states are absent but that the wave functions gain different phases
depending on the energy of the corresponding state.
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Above we use the peculiarity of the P -state whose basis can be composed
from three states with zero momentum projection onto each axis of the frame of
coordinates. Now let us formulate the above problem within the framework of
the quantum numbers connected with one direction, which is the z-axis directed
perpendicular to the motion plane. First we obtain the expression for the scattering
matrix for the P -state on the basis of (14.46). Then we express the eigenwave
function �i corresponding to the z-axis through the above wave functions. Here i
is themomentumprojectiononto the z-axis, and thesewave functions are connected
with the old functions by the relations

�0 � ψz, �1 � 1√
2
(−ψv + iψρ), �−1 � 1√

2
(−ψv − iψρ).

From this we obtain the connection between elements of the S-matrix:

S00 � Szz,

S11 � 1

2
(Svv + Sρρ)+ i

2
(Svρ − Sρv),

S−1,−1 � 1

2
(Svv + Sρρ)− i

2
(Svρ − Sρv), (14.47)

S1,−1 � 1

2
(Svv − Sρρ)+ i

2
(Svρ + Sρv),

S−1,1 � 1

2
(Svv − Sρρ)− i

2
(Svρ + Sρv),

where the matrix element Sik corresponds to the transition i → k. Then the scat-
tering matrix for the related quantum numbers are given in Table 14.6 where the
initial states correspond to columns and the final states correspond to rows.

Let us find elements of the scattering matrix using the quantum numbers with
respect to the z-axis. Let us analyze transformations of the wave function cor-
responding to one momentum projection on the z-axis resulting from the above
operations. If the initial wave function is�1, rotation of the frame of axes by angle
θo transforms it, in a new frame of axes, into 	 � �1e

iθo . Next, transfer to the
molecular axis by using the relations

�1 � 1√
2

(
ψx + iψy

)
, �−1 � 1√

2

(
ψx − iψy

)
,

Table 14.6. The elements of S-matrix for collisions of atoms in the S- andP -stateswithin the
framework of the matching method. The parameters θo and ζo are determined by formulas
(14.44).

−1 0 1

−1 − cos ζo · e−2iθo 0 i sin ζo

0 0 eiζo 0

1 i sin ζo 0 − cos ζo · e2iθo
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where the wave functions ψx and ψy describe the states with zero momentum
projection on the molecular x- and y-axes which are located in the motion plane
and are perpendicular to the z-axis. The reversal transformation gives

ψx � 1√
2
(�1 +�−1), ψy � −i 1√

2
(�1 −�−1).

After rotation of the molecular axis from the angle θo up to π − θo the wave
functions ψx , ψy gain phases −ζo and ζo, respectively, so that the wave function
has the form

	 � 1√
2

(
ψxe

−iζo + iψye
iζo
)
eiθo � �1e

iθo cos ζo − i�−1e
iθo sin ζo.

The last operation which returns us to the initial frame of axes is the rotation
around the z-axis by the angle π − θo in the opposite direction. Then, finally, we
obtain, for the wave function,

	 � �1e
i(2θo−π) cos ζo + i�−1 sin ζo.

This gives, for elements of the scattering matrix,

S1,1 � −ei2θo cos ζo, S1,−1 � i sin ζo, (14.48)

in accordance with the data in Table 14.6.
Now let us formulate the matching method in the general form on the basis of

the above transformation of wave functions. Let us introduce the rotation function
D

j

mm′ (α, β, γ ) which describes the transformation of the wave function as a result
of rotation on the Euler angles α, β, γ . Here j is the momentum and m, m′ are the
momentum projections onto the z-axis in a given frame of axes. The wave function
ψjm in a new frame of axes obtains the form

ψjm �
∑
m′

D
j

mm′ (α, β, γ )ψjm′ .

The rotation function (or Wigner D-function) Dj

mm′ (α, β, γ ) describes the follow-
ing sequence of rotations. The first operation is the rotation around the z-axis by
angle α, the second operation is the rotation around the new y-axis by angle β,
and the third transformation of the frame of axes is the rotation around the new
z-axis by angle γ . Taking into account the change of phases for the wave functions
during a strong coupling with the molecular axis we obtain, in this case for the
scattering matrix,

Sj
mμ �

∑
!

D
j

μ!(0,−π/2,−π + θo)e
iζ!D

j

m!(θo, π/2, 0),

where ζ! are the phases which are gained by the wave functions of states with the
momentum projection ! onto the molecular axis. The general properties of the
rotation functions are

D
j

mm′ (α, β, γ ) � exp(−iαm)dj

mm′ (β) exp(−im′γ ).
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Using standard notations dj

mm′ (π/2) � 

j

mm′ and taking into account the direction
of rotations we obtain, for the scattering matrix in the case under consideration,

Sj
mμ � ei(m+μ)θ0−iμπ

∑
!

eiζ!
(



j

!μ

)∗



j

!m. (14.49)

14.8 Depolarization of Atoms in Collisions

The S-matrix of atomic transitions gives total information about the processes of
collisions of the P -atom with the S-atom within the framework of the matching
method. Let us use this S-matrix for determination of the cross section of the
depolarization of the P -atom as a result of collision with the S-atom. We take
the quantization axis onto which the momentum projection of this atom is zero,
and this axis forms the polar angles α and ϕ with the motionless frame of axes
related to the collision. Then the initial wave function of the P -atom is expressed
in the following way, through the wave functions with zero projection of the atom
momentum onto axes of the motionless frame of coordinates,

	 � ψz cosα − ψv sin α cosϕ + ψρ sin α sin ϕ.

This gives, for the probability amplitude of survival of the initial atom state,〈
	∗Ŝ	

〉 � Szz cos2 α + Sxx sin2 α cos2 ϕ + Syy sin2 α sin2 ϕ

− (Sxy + Syx) sin2 α cosϕ sin ϕ.

From this follows the expression for the probability averaging on the initial di-
rection of the momentum with respect to collision (we take into account Sxy �
−Syx):

P � 1−
∣∣∣〈	∗Ŝ	

〉∣∣∣2 � 1− 1

5

(
|Sxx |2 +

∣∣Syy∣∣2 + |Szz|2)− 1

15
|Syx + Sxy |2

− 1

15

[
S∗xx(Syy + Szz)+ S∗yy(Sxx + Szz)+ S∗zz(Sxx + Syy)

]
. (14.50)

This leads to a cumbersome expression for the probability of transition from a
given state

P � 8

15
+ 4

15
cos2 ζo + 4

15
cos 2θo cos2 ζo − 8

15
cos2 2θo cos2 ζo. (14.51)

As is seen, this expression includes the phases ±ζo which are gained by the wave
functions during a strong interaction of states with the molecular axis, and the
rotation angle θo which characterizes a size of this region. Let us consider the
case of a sharply varied interaction potential as a function of a distance between
particles, because the matching method is valid only for this case. Then the phase
ζo is high enough, so that averaging over this phase gives

〈
cos2 ζo

〉 � 1/2, and the
probability of transition from the initial state according to formula (14.51) is

P � 2

3
+ 2

15
cos 2θo − 4

15
cos2 2θo.
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Taking into account a strong dependence 
(R) in comparison with a power de-
pendence and accounting for sin θo � ρ/Rm we obtain, for the cross section of the
depolarization process,

σdep �
∫ ∞

0
P · 2πρ dρ � 26

45
πR2

m, (14.52a)

where the matching radius is given by the relation:∣∣∣∣Vo(Rm)− V1(Rm)

2

∣∣∣∣ � v

Rm

. (14.52b)

In particular, in the case when Vo(R)− V1(R) � C/R6 this formula gives

σdep � 0.76π

(
C

v

)2/5

, (14.53)

while the numerical evaluation gives the factor 0.78. Thus, along with the possibil-
ity of extracting the main features of the process, the matching method is capable
of giving reliable numerical evaluations for the yield parameters of the processes.

14.9 Relaxation of Atomic Momentum in Isotropic
Collisions

The above consideration includes only one aspect of the relaxation of an atom with
nonzero momentum as a result of collisions with a gas of isotropically moving
atoms. Let us consider this problem in a general form within the framework of the
formalism of the density matrix which has the form, in this case,

ρ
j

mm′ � ψ∗jmψjm′ ,

where j is the atom moment, and m, m′ are its projections onto a given direction.
In particular, for the case m � m′, the density matrix ρ

j
mm � |ψm|2 gives the

population of a given state. The formalism of the density matrix allows one to
analyze some coherent phenomena resulting from collisions involving the related
atom.

Because of a random distribution of gaseous atoms on the directions of motion,
the averaged density matrix is isotropic which simplifies the consideration of these
processes. Then it is convenient to introduce the polarization atomic momenta

ρj
κq �

∑
m,m′

[
j j κ

m −m′ q

]
(−1)j−m

′
ρ
j

mm′ ,

so that the parameter κ varies from 0 to 2j , and the parameter q varies from
−κ to κ . The value ρ

j
κq characterizes the multipole atom momentum of rank 2κ ,

and q corresponds to a spherical projection of this momentum. For example, ρj

00

determines the population of the related state, the values ρj

1,−1, ρ
j

1,0, and ρ
j

1,1 are
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components of a vector which characterizes the atom orientation, and five values
of the second rank ρ

j

2q are responsible for the atom alignment and are proportional
to components of the tensor of the atom quadrupole moment. Usage of this κq-
representation of the density matrix is convenient for the isotropic character of
collisions which leads to an independent evolution of the spherical components
of tensors of different κ-ranks. This allows one to separate the kinetic equation
for the density matrix in blocks each of them characterizing a certain rank of
the spherical tensor. This means that the evolution for one rank of the tensor
does not influence the tensor of another rank. In particular, we consider above
the evolution of orientation by assuming the population of the considering state
to be conserved. This leads to the relation between components of the scattering
matrix

∑
i |Ski |2 � 1. But the obtained expressions for relaxation of orientation

are valid for any evolution of the atom population. The other convenience of this
description is such that evolution of the tensor of each rank is described by only
one relaxation constant. In particular, in the case of the orientation relaxation, it
is the depolarization cross section. Thus, the formalism of the spherical tensors of
the density matrix is convenient for the understanding and analysis of relaxation
processes resulting from isotropic collisions.

14.10 Transitions between States of Multiplet Structure

Rotation of the atomic angular momentum leads to transitions between the states
of the atom’s multiplet structure. Above we consider the process of spin exchange
when the exchange by valent electrons leads to transition between the states of
superfine structure. Below we consider the other example of such a type when the
distance between the levels of multiplet structure is relatively small. The state of
the multiplet structure results from summation of the angular and spin atomic mo-
menta. Therefore a change of the angular momentum leads to transitions between
the states of multiplet structure. As an example of such a process, we consider
the transitions between states of the fine structure of the P -atom as a result of the
rotation of the angular momentum which is described by the scattering matrices
(14.36) and (14.39) and which is given in Table 14.4. Let us take the initial atom
state to be related to the total momentum j � 1/2 and its projection m � 1/2
onto the z-axis which is perpendicular to the motion plane. Then the atom wave
function before collision is

	1/2,1/2 � −
√

2

3
ψ1η− + 1√

3
ψ0η+ � 1√

3

(−ψxη− − iψyη− + ψzη+
)
,

where η+, η− are the spin wave functions related to the atom spin projections + 1
2

and − 1
2 onto the z-axis, ψ1, ψ0 are the atom wave functions corresponding to the

values 1 and 0 for the angular momentum projection onto the z-axis, and ψx , ψy ,
ψz are the wave functions with zero momentum projection onto an indicated axis.
Note that the parity of states with respect to the motion plane is conserved during
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collision of the atoms. Hence transitions from the states 1/2, 1/2 are possible only
in the states 3/2, 1/2 and 3/2, −3/2 .

Let us introduce the scattering matrix S(jm→ j ′m′) as the amplitude of tran-
sitions between the indicated states of colliding atoms. Because the transition in a
new fine state is determined by a change in the space atom state, this matrix can
be expressed through matrix (14.46). Indeed, the final atom state is described by
the wave function

	 ′ � 1√
3

(−Sxxψxη− − Sxyψyη− − iSyyψyη− − iSyxψxη− + Szzψzη+
)
.

From this it follows that

S

(
1

2
,
1

2
→ 1

2
,
1

2

)
� 1

3
(Sxx + Syy + Szz)+ i

3
(Syx − Sxy). (14.54)

In the same manner we find the scattering matrix for the state j � 1/2,m � −1/2.
We obtain the wave function of this state from the wave function of the state 1/2,
1/2 by changing the direction of the angular and spin momenta. Then, repeating
the above operations we get, for the scattering matrix,

S(
1

2
,−1

2
→ 1

2
,−1

2
) � 1

3
(Sxx + Syy + Szz)− i

3
(Syx − Sxy).

From this we obtain, for the probability of transition from states with j � 1/2 to
states with j � 3/2,

P � 1− 1

2

∣∣∣∣S (1

2
,
1

2
→ 1

2
,
1

2

)∣∣∣∣2 − 1

2

∣∣∣∣S (1

2
,−1

2
→ 1

2
,−1

2

)∣∣∣∣2
� 1− 1

9

∣∣Sxx + Syy + Szz
∣∣2 − 1

9

∣∣Syx − Sxy
∣∣2 .

Using expressions (14.46) for the scatteringmatrix, one can connect the probability
of the transition from the state with j � 1/2 through the parameters of collision

P (1/2 → 3/2) � 7

9
− 5

9
cos2 ζo + 4

9
cos 2θo cos2 ζo. (14.55)

In particular, for the case of a sharply varied interaction potential as a function of
the distances between colliding particles, one can take an average over the phase
ζo which is high enough. Then we have

〈
cos2 ζo

〉 � 1/2, 〈cos ζo〉 � 0, and the
probability of transition between the states of fine structure is

P � 2

3
+ 2

9
cos 2θo.

Taking into account sin θo � ρ/Rm and neglecting the power dependence on
R, in comparison with the exponential dependence of 
(R) we find, for the cross
section of the transition between the states of fine structure,

σ

(
1

2
→ 3

2

)
�
∫ ∞

0
P · 2πρ dρ � 2

3
πR2

m, (14.56a)
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where the matching radius Rm is determined by the relation∣∣∣∣Vo(Rm)− V1(Rm)

2

∣∣∣∣ � v

Rm

. (14.56b)

The cross section of the inverse transition, averaged over the momentum pro-
jections, is expressed through the above cross section on the basis of the principle
of detailed balance

σ

(
3

2
→ 1

2

)
� 1

2
σ

(
1

2
→ 3

2

)
� 1

3
πR2

m. (14.57)

As one more example of the transitions between the states of fine structure, we
consider depolarization of the state with j � 1/2. Introduce an angle α between
the quantization axis and the z-axis which is perpendicular to the motion plane.
If �1/2,1/2 is the initial wave function relating to the initial axis, and 	1/2,1/2,
	1/2,−1/2 are the wave functions quantized on the z-axis, they are connected by
the relation

�1/2,1/2 � 	1/2,1/2 cos
α

2
+	1/2,−1/2 sin

α

2
.

The final atom state after collision is described by the wave function

�′ � S

(
1

2
,
1

2
→ 1

2
,
1

2

)
	1/2,1/2 cos

α

2
+S

(
1

2
,−1

2
→ 1

2
,−1

2

)
	1/2,−1/2 sin

α

2
,

where the expression for the scattering matrix is given by formula (14.44). From
this we find the probability of depolarization of the related fine state as a result of
collision,

P � ∣∣〈�′ | �1/2,−1/2
〉∣∣2

� sin2 α

2
cos2 α

2

∣∣∣∣S (1

2
,
1

2
→ 1

2
,
1

2

)
− S

(
1

2
,−1

2
→ 1

2
,−1

2

)∣∣∣∣2
� 4

9
sin2 α

2
cos2 α

2

∣∣Sxy − Syx
∣∣2 � 4

9
sin2 α sin2 2θo cos2 ζo.

Averaging this expression over angle α and a large random phase ζo and inte-
grating it over the impact parameter of collision similar to the above examples we
obtain, for the depolarization cross section,

σ

(
1

2
,
1

2
→ 1

2
,−1

2

)
� 8

81
πR2

m. (14.58)

The examples under consideration reflect the character of the transitions between
the degenerated states of atoms resulting from collisions with other atoms. Then
the rotation of the atom angular momentum as a result of the rotation of the
molecular axis in the course of collision and a strong coupling of states with the
molecular axis at certain distances between the colliding particles determine the
variation of the initial wave function of the atom that causes transitions between the
degenerated states. These factors are responsible for transitions in the above cases
when particles are moving along straight trajectories according to the classical
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Figure 14.10. The character of a charge exchange process for the interaction of a highly
excited atom and ion.

laws. Violation of such a character of the motion of particles can lead to additional
possibilities of transitions between the states of multiplet structure.

Problems

Problem 14.1. Determine the cross section of the charge exchange process for
the collisions of slow highly excited atoms and ions. Assume the electron motion
to be classical.

Figure 14.10 gives the cross section of the potential energy of an excited electron
in the field of two Coulomb centers. The electron potential energy is equal to

U � − 1

r1
− 1

r2
+ 1

R
,

where r1, r2 are the electron distances from the corresponding nucleus andR is the
distance between the nuclei. The electronwave functionψ satisfies theSchrödinger
equation

−1

2

ψ + Uψ � εψ,

so that at large ion–atom distances, when the fields of the individual ions are
separated by a barrier, the electron energy is equal to ε � −γ 2/2, where γ 2/2
is the ionization potential for this atom state. Let us assume that the approach of
the atoms and ions proceeds fast enough so that the electron energy does not vary
as a result of their collision. Then the condition of disappearance of the barrier
U (r1 � r2 � Ro/2) � ε givesRo � 8/γ 2. Assuming the transition of the electron
in the field of the other atom to be a result of the disappearance of the barrier we
obtain, for the cross section of the resonant charge exchange process in this case,

σres � πR2
o

2
� 32π

γ 4
� 8π

J 2
,
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where J � γ 2/2 is the atom ionization potential.
Note that this formula corresponds to the diabatic way of collisions so that the

second ion does not change the electron energy in the field of the first ion in the
course of collision. For the adiabatic way of approaching the atomic particles we
obtain another cross section. Then as a result of a slow approach the ionization
potential of the molecule is conserved in the course of collision, and the condition
of disappearance of the barrier has the form U (r1 � r2 � Ro/2) � 4/Ro � ε �
−γ 2/2 + 1/Ro. This gives, for the distance between the nuclei when the barrier
vanishes, Ro � 6/γ 2. Considering the charge exchange process to be a result of
the disappearance of the barrier we find, for the cross section of the resonant charge
exchange process in this case,

σres � πR2
o

2
� 18π

γ 4
� 9π

2J 2
.

Problem 14.2. Determine the contribution of the tunnel transitions to the cross
section of the resonant charge process for a highly excited atom.

Let us take the diabatic case of the approach of particles and calculate the part
of the cross section due to tunnel transitions. The ion–atom exchange interaction
potential has the following dependence on the distance between the nuclei in this
case:


(R) ∼ ψ2

(
R

2

)
∼ exp

[
−2
∫ R/2

zo

dz

√
2
(
U + γ 2/2

)]
,

where ε is the electron binding energy, U (R) is the interaction potential of the
electron with the nuclei, and zo � Ro/2 corresponds to the disappearance of the
barrier. Assuming 
R � R − Ro � Ro and R/2− z� R/2, we obtain

U � −1

z
− 1

R − z
+ 1

R
+ γ 2

2
� 3
R

R2
o

− 16(R/2− z)2

R3
o

.

This leads to the following exponential dependence of the exchange interaction
potential:


(R) ∼ exp

[
−3π

√
2

8

R − Ro√
Ro

]
∼ exp

[
−π

√
3(R − Ro)γ

8

]
,

where we account for Ro � 6/γ 2.
From this we find the addition to the cross section of the resonant charge

exchange process. This addition to the formula of the previous problem is de-
termined by tunnel transitions, so that the cross section is given by formula
(14.15): σres � πρ2

o/2, where ρo is the impact parameter of the collision for
which

∫∞
−∞
(ρo) dt/2 � 0.28. This gives the equation for the parameter ρo:

1

v
exp

[
−π

√
3(ρo − Ro)γ

8

]
� const.
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From this it follows that

ρo − Ro � 8

π
√

3γ
ln

vo

v
,

where the parameter vo weakly depends on the collision velocity v. Representing
the cross section in the form σres � σo+
σ , where σo � πR2

o/2 and Ro � 6/γ 2,
we obtain


σ � πRo(ρo − Ro) � 8Ro

π
√

3
ln

vo

v
.

From this we find that

σ

σ
� 16

π
√

3

1

γRo

ln
vo

v
� 8γ

3π
√

3
ln

vo

v
� 0.5γ ln

vo

v
� 1,

because for a highly excited atom γ � 1. Thus, tunnel transitions give a small
contribution to the cross section of the charge exchangeprocess in the slowcollision
of an ion and highly excited atom.

Problem14.3. Analyze a jump in the cross section of the resonant charge exchange
for rare gases as a result of the transition between cases “a” and “c” of the Hund
coupling.

At low collision velocities when ions are found in the ground state (j � 3/2), the
cross section is equal to σ3/2 according to the used notations, and the transition
into the ion state j � 1/2 is forbidden. At high collision velocities this channel is
opened, and the resonant charge exchange process corresponds to case “a” of the
Hund coupling. Let us assume that these coupling schemes lead to identical cross
sections, if the ionization potential is identical to the ion formation in both fine
states (see Table 14.4). Hence, a variation of the cross section in the course of the
transition between cases “c” and “a” of the Hund coupling is due to different atom
ionization potentials with the formation of different fine ion states. The jump in
the cross sections due to this effect is


σ res � 1

3


I

I
σ res, (14.59)

where the first factor is the probability of the ion state j � 1/2 and the second
factor accounts for the dependence (14.16a) of the cross section on the electron
binding energy. According to formula (14.59), the relative variation of the cross
section is approximately 0.4% for Ar, approximately 2% for Kr, and approximately
4% for Xe. A typical collision velocity v for this transition can be estimated from
the expression for a typical time of the process

τ ∼ 1

v

√
Ro

γ
∼ 
f ,

as follows from formula (14.17), and
f is the ion fine splitting of levels. A typical
collisional energy for this transition is estimated as ∼ 10 eV for Ar, ∼ 100 eV for
Kr, and ∼ 600 eV for Xe.
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Problem 14.4. Analyze the expression for the scatteringmatrix (14.46) in the case
of the elastic scattering of colliding particles if the scattering angle of particles is
equal to ϑ .

Let us repeat the operations which we made to obtain expression (14.46) for the
scattering matrix. A variation of the wave functions is absent untilR > Rm, where
this value is determined by the expression

dθ

dt
(Rm) � 
(Rm).

In this case the expression for the rotation angle during a weak coupling of states
with the molecular axis is

θo � −
∫ ∞

Rm

ρ dR

R2

(
1− ρ2

R2
− U (R)

E

)−1/2

instead of sin θo � ρ/Rm which takes place in the absence of scattering. Here
U (R) is the interaction potential which is assumed to be identical for all atom
states, and E is the collision energy in the center of mass frame of the axes. As is
seen, for U (R) � 0, both formulas give the same value of θo.

It is clear that a change of the motion trajectory leads to a change in the differ-
ence of the phases for the wave function of states related to different momentum
projections because of the different times of a strong coupling of states with the
molecular axis. But formally the expression for this value ζo �

∫∞
−∞(Vo−V1) dt/2

is conserved.
Next, the last operation in the determination of the S-matrix for returning to the

initial frame of axes corresponded to rotation of the system by the angle π − 2θo
around the z-axis. Now because of the scattering, this angle is equal to π−2θo−ϑ .
Finally, the expression for the scattering matrix has the following form instead of
(14.46) (we must change 2θo in formula (14.46) to 2θo − ϑ):

Sik � e−i
∫ t [(Vo+V1)/2] dt ′

×

⎛⎜⎝ i sin ζo − cos ζo cos(2θo − ϑ) − sin(2θo − ϑ) cos ζo 0

sin(2θo − ϑ) cos ζo −i sin ζo − cos ζo cos(2θo − ϑ) 0

0 0 eiζo

⎞⎟⎠.



CHAPTER 15

Inelastic Slow
Atomic Collisions

15.1 Transitions in Two-Level Systems

According to the Massey criterion (14.7), the transitions between states with large
distances between the electron terms are characterized by a small probability in
slow collisions. This means that the transitions proceed between close by energy
states only or they take place in a range of distances where the electron terms
of these states are intersected or pseudointersected. The first case corresponds to
quasiresonant processes which were considered in the previous chapter. Then the
electron levels of transition are close or are coincident at infinite distances between
the colliding atoms, so that the Massey parameter (14.7) is small in a wide range
of distances. The other case corresponds to the approach of two electron terms and
their intersection in some range of distances. Such distances between the colliding
particles are responsible for the transition between states where the electron terms
of these states are close. Just as in this region it is necessary to analyze the evolution
of the system of colliding atoms, because other range of distances takes place the
adiabatic development of this quasi-molecule without a change in the probability
of its location in each of the related states. Hence, our task is to analyze the
behavior of a quasi-molecule consisting of colliding atoms in the transition region
where the electron terms of the states under consideration are close. Note that the
system of colliding atoms goes through the transition region twice—during the
approach and removal of atoms. The phases obtained by the wave function in an
intermediate region can both lead to summation and subtraction of the amplitudes
of the corresponding states. Thus, although we assume the colliding atoms to move
along classical trajectories, an interference of states takes place and the transition
has a quantum character. In order to analyze the character of the transition under
related conditions, we are restricted by the case of two nondegenerated stateswhich
partake in the process under consideration.
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We take the stationary wave functions as basis wave functions. This means
that in contrast to the set of equations (14.5) for probability amplitudes, which is
written in the adiabatic basis, we use a diabatic basis similar to the set of equations
(14.35). So, let us choose a Hamiltonian Ĥo which is close to the Hamiltonian of
the system of colliding atoms Ĥ , and take as the basis the eigenfunctions ψ1, ψ2

of the Hamiltonian Ĥo. The wave function of the colliding atoms we present in the
form (in atomic units)

	 � (c1ψ1 + c2ψ2) exp

[
− i

2

∫ t

(H11 +H22) dt
′
]
, (15.1)

where H11 �
〈
ψ1

∣∣Ĥ ∣∣ψ1
〉
and H22 �

〈
ψ2

∣∣Ĥ ∣∣ψ2
〉
. Substituting this expansion into

the Schrödinger equation i(∂	/∂t) � Ĥ	, multiplying it by ψ∗1 or ψ∗2 , and
integrating over the electron coordinates, we obtain the following set of equations
for the probability amplitudes

i
dc1

dt
� κ

2
c1 + 


2
c2, i

dc2

dt
� 


2
c1 − κ

2
c2, (15.2)

where κ(R) � H11 −H22 and 
(R) � 2H12 − (H11 +H22)
〈
ψ2 | ψ1

〉
.

The solution of this set of equations is determined by the time dependence
for the parameters κ and 
. Below we consider the case when, in the transition
region, κ � const and 
 � 2αe−t/τ . This case corresponds to the resonant charge
exchange if κ � 0. A general method of the solution of this set of equations is
based on the asymptotic solutions. In region κ 
 
 the solutions of the set of
equations (15.2) have

c1 � a exp

(
i

2

∫ t

κ dt ′
)
, c2 � b exp

(
− i

2

∫ t

κ dt ′
)
, (15.3a)

and the values
∣∣c1

∣∣, ∣∣c2

∣∣ are conserved in time. In the region κ � 
 the solutions
of the set of equations (15.2) have the form

c1 � cos

(∫ t 


2
dt ′
)
, c2 � i sin

(∫ t 


2
dt ′
)
, (15.3b)

and the values
∣∣c1 + c2

∣∣, ∣∣c1 − c2

∣∣ do not vary in time. Below we divide the time
region into several parts and, solving the set of equations in each region, we join
these solutions in common regions.

Let us take the initial conditions c1(−∞) � 1, c2(−∞) � 0, so that until
κ 
 
, we have

∣∣c1

∣∣ � 1, c2 � 0. In the next time region the set of equations
(15.2) has the form

i
dc1

dt
� κ

2
c1 + αet/τ c2, i

dc2

dt
� αet/τ c1 − κ

2
c2. (15.4)
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The solutions of this set of equations under the initial conditions c1(−∞) � 1,
c2(−∞) � 0 are the following:

c1 �
√

β

chβ
·et/(2τ )J−1/2−iκτ/2(ατet/τ ), c2 �

√
β

chβ
·et/(2τ )J1/2−iκτ/2(ατet/τ ),

where β � πκτ/2. We assume the transition regions near the points 
 � κ to be
divided by a large time interval. Hence, after passing the first transition region, the
probability amplitudes reach the asymptotic expressions (15.3b) before the second
transition region. In the region 
 
 κ , the above expressions have the following
form:

c1 �
√

1

chβ
· cos

(
ατet/τ + i

β

2

)
, c2 �

√
1

chβ
· sin

(
ατet/τ + i

β

2

)
.

Comparing these solutions with (15.3b), rewrite them in the form

c1 �
√

1

chβ
· cos

(∫ t

−∞




2
dt ′ + i

β

2

)
, c2 �

√
1

chβ
· sin

(∫ t

−∞




2
dt ′ + i

β

2

)
.

The set of equations for the probability amplitude in the region 
 ∼ κ , during
the removal of atoms, can be obtained from the set of equations (15.4) by replacing
the time sign in the expression of 
(t), i.e.,

i
dc1

dt
� κ

2
c1 + αe−t

′/τ c2, i
dc2

dt
� αe−t

′/τ c1 − κ

2
c2,

and t ′ differs from t in (15.4) by an initial time. Joining the solutions of this equation
at t ′ � −∞with the above asymptotic expressions we obtain, in the limit t ′ → ∞
the following expression for the probability of the transition,

P � |c2(∞)|2 � sin2

(∫ ∞

−∞




2
dt

)
/ch2β � sin2

(∫ ∞

−∞




2
dt

)
/ch2πκτ

2
.

(15.5)
Averaging over the phase, we obtain

P � 1

2ch2 πκτ
2

. (15.6)

Formula (15.5) is called the Rosen–Zener formula, while the general formula
(15.5) is the Demkov formula. Note that the Demkov formula (15.5) transfers to
the expression for the probability of resonant charge exchange (14.13) in the limit
κ � 0.

The above deduction shows the character of change of the probability amplitudes
in the course of the evolution of the system. From this it follows that the scattering
matrix, resulting from a single passage of the transition region, has the form

S �
( √

1− pe−iζ −pe−iη
peiη

√
1− peiζ

)
. (15.7)
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Averaging over phases we have, for the transition probability resulting from the
double passage of the transition region (during approach and removal),

P � 2p(1− p). (15.8)

One can consider this value as the sum of two probabilities, so that the first one
is the product of the probability of the transition during the first passage of the
transition region by the probability of its absence during the second passage, i.e.,
it is equal to p(1 − p), and the second probability corresponds to the reversible
character of the transition and is equal to (1− p)p.

The set of equations (15.2) does not have an analytic solution for any form of
functions κ(t) and 
(t). We consider one more case when this set has an analytic
solution. The case when

κ � FvRt, 
 � const. (15.9)

in the transition region is called the Landau–Zener case. The Landau–Zener
formula for a single passage of the transition region has the form

p � exp

(
− π
2

2FvR

)
. (15.10)

There is a more general analytical solution for the probability of a single passage
of the transition region when the parameters of the diabatic terms are given by the
dependence

κ(t) � H11 −H22 � ε(1− cosϑe−t/τ ),

(t) � 2H12 − (H11 +H22) 〈ψ2 | ψ1〉 � ε sin ϑe−t/τ . (15.11)

Then the electron terms of the related states E1 and E2 are determined by the
formulas

E1,2 � H11 +H22

2
±
E, 
E �

√
κ2 +
2 � ε

√
1− 2 cosϑe−t/τ + e−2t/τ .

(15.12)
The minimum of the difference of the level energies 
E � ε sin ϑ corresponds to
a time which follows from the relation e−t/τ � cosϑ . The limiting case ϑ � π/2
corresponds to the Rosen–Zener case, and the limit ϑ → 0 corresponds to the
Landau–Zener case. The probability of transition in a general case is given by the
Nikitin formula

p � sh[πε(1+ cosϑ)/(2α]

sh(πε/α)
exp

[
−πε(1+ cosϑ)

2α

]
. (15.13)

The Nikitin formula includes two parameters, ε/α and ϑ . In the limiting case
ϑ � π/2 this gives

p � 1

exp(πε/α)+ 1
,

which corresponds to the Rozen–Zener formula (15.6) accounting for relation
(15.8) for the double passage of the transition region. In the other limiting case
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ϑ → 0 formula (15.13) is transformed into the Landau–Zener formula (15.10),

p � exp

(
−πεϑ2

2α

)
.

15.2 Cross Section of a Nonresonant Charge Exchange

Let us use the above results for the evaluation of the cross section for the nonres-
onant charge exchange process when two states of the system of colliding atoms
participate in the process. This takes place if two levels are close at infinite distances
between the atoms and the transition is determined by the exchange interaction
potential which mixes these states. Then one can use the Demkov formula (15.5)
for the probability of the transition by taking for these states κ � const and ac-
counting for a real dependence of the exchange interaction potential 
 on the
distance between the colliding particles R. If we use this dependence in the form
of formulas (10.20), (10.23), 
(R) ∼ e−γR , the parameter α in the Demkov for-
mula is equal to α � γ vR , where the radial velocity of the free moving particles
is vR � v

√
1− ρ2/R2.

Let us introduce the characteristic distance between the atomic particlesRc such
that


(Rc) � κ.

Using the new probability amplitudes a1 � c1e
−iκt , a2 � c2e

iκt , we obtain the set
of equations (15.4) in the form

i
da1

dt
� 


2
eiκta2, i

da2

dt
� 


2
e−iκt a1. (15.14)

At the large impact parameters of collisions ρ > Rc, we solve this set of equations
on the basis of the perturbation theory. This gives, for the transition probability,

P (ρ) �
∣∣∣∣∫ ∞

−∞


(R)

2
eiκt dt

∣∣∣∣2 � ζ 2 exp

(
−ρκ2

γ v2

)
, ρ ≥ Rc, (15.15)

where the exchange phase is

ζ (ρ) �
∫ ∞

−∞




2
dt �

√
πρ

2γ
· 
(ρ)

v
.

One can check the validity of the perturbation theory for the large impact pa-
rameters of collisions. The transition probability decreases with an increase in an
impact parameter, so that P (ρ) < P (Rc). Next, P (Rc) � ζ 2

c exp(−2ζ 2
c /π ), where

ζc � ζ (Rc). This value as a function of ζc has a maximum P � π/(2e) < 1 at
ζ 2
c � π/2. Thus, one can consider this function to be small in a wide region of

parameters ζc.
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At impact parameters ρ < Rc we use the Demkov formula (15.5) for the
transition probability, which has the form

P (ρ) � sin2 ζ

ch2δR
, where δR � πκ

2γ v
√

1− ρ2/R2
. (15.16)

Let us evaluate the cross section of this process in the limiting cases. At large
collision velocities one can take κ � 0, so that the cross section according to
formula (15.16) is determined similarly to the cross section of the resonant charge
exchange (14.15):

σ � πR2
o/2, where ζ (Ro) �

√
πRo

2γ
· 
(Ro)

v
� 0.28. (15.17)

In the other limiting case of small collision velocities one can average over the
phase in the Demkov formula (15.5), i.e., we transfer to the Rozen–Zener formula
(15.6). Then the cross section equals

σ � πR2
c

2
F (δ), where δ � πκ

2γ v
and F (δ) �

∫ 1

0

2xdx

ch2(δ/x)
. (15.18)

The values of the functionF (δ) are given in Table 15.1. The asymptotic expressions
of this function at large and small argument values are

F (0) � 1, F (δ→∞) � 4

δ
e−2δ.

Note that the large impact parameters give a small contribution to the cross
section. This can be estimated on the basis of formula (15.15) for the transition
probability at these impact parameters. We have


σ �
∫ ∞

Rc

2πρ dρP (ρ) � π2R2
c

2+ v2γ 2/κ2
exp

(
−κ2Rc

γ v2

)
.

A maximum of this value 
σmax � π2Rc/(e2γ ) corresponds to the collision
velocity v � κ

√
Rc/γ . Since, usually, γRc 
 1, this region gives a small contri-

bution to the cross section of the process. Thus the cross section consists of two
parts. At large collision velocities the resonant charge exchange cross section is
given by formula (15.17) and at small collision velocities it is determined by the

Table 15.1. Values of the function F (δ) which is determined by formula (15.18).

δ F (δ) δ F (δ) δ F (δ)

0.2 0.859 1.2 0.131 2.2 0.0137

0.4 0.647 1.4 0.084 2.4 0.0087

0.6 0.456 1.6 0.0536 2.6 0.0055

0.8 0.308 1.8 0.0339 2.8 0.0035

1 0.203 2 0.0215 3 0.0023
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Rozen–Zener cross section (15.8). The cross section has a flat maximum in a wide
transition region where these limit cases are combined. According to the numerical
calculations, the maximum cross section is approximately equal to 0.54πR2

c .
The conditions under consideration correspond to the nonresonant charge

exchange process

A+ + B → A+ B+.

Then the parameter κ is equal to the difference of the ionization potentials of
atoms A and B, and 
 is the exchange interaction potential corresponding to this
electron transition. As an example, we consider the process of nonresonant charge
exchange

O+ + H → O+ H+.

In this case the parameter κ is equal to 0.02 eV, and the exchange interaction
potential is given by formula (10.38) for the zero momentum projection of the
oxygen valence electron. The transitions proceed in a narrow range of distances
between the colliding particles. At small collision velocities this takes place near
separation Rc, at large collision velocities the main contribution to the exchange
phase gives the range near the distance of closest approach. This allows one to
account for the different projections of the electron momentum in a simple way.
Figure 15.1 gives the experimental cross section of this process and is evaluated
in a simple way by neglecting the electron momentum rotation during a collision.

15.3 Principle of Detailed Balance for the Excitation
and Quenching Processes

The principle of detailed balance connects the cross sections of an inelastic col-
lision process and an inverse process. The connection between the parameters of
these processes follows from the time reversal operation. If the process proceeds

Figure 15.1. The cross section of charge exchange involving the oxygen ion and hydrogen
atom. The curve is constructed on the basis of formulas (15.17), (15.18); signs refer to
experiments.
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according to the scheme

A+ Bj → A+ Bf , (15.19)

time reversal leads to the process

A+ Bf → A+ Bj . (15.20)

Denoting the cross section of the first process by σjf and the cross section of
process (15.20) by σf i , we place one particle A and one particle B in a volume �.
Particle B can be found only in states j or f and, due to equilibrium, the number
of transitions j → f per unit time wjf is equal to the number of transitions
f → j per unit time wfj . Next, introducing the interaction operator V which is
responsible for these transitions we have, within the framework of the perturbation
theory for the rates of these transitions,

wjf � 2π

h̄

∣∣Vjf

∣∣2 dgf

dε
, wfj � 2π

h̄

∣∣Vfj

∣∣2 dgj

dε
.

Here dgf /dε, dgi/dε are the statistical weights per unit energy for states of the
corresponding channel of processes and these formulas are written in the usual
units. Using the definition of the cross sections of the processes

σjf � wjf /(Nvj ) � �wjf /vj , σfj � wfj/(Nvf ) � �wfj/vf .

where N � 1/� is the number density of particles and vj , vf are the relative
velocities of particles for a given channel of the process. The time reversal leads
to the connection between matrix elements of the interaction potential Vjf � V ∗fj .
This gives the following relation between the cross sections of the direct and inverse
processes

σjf � σfj

(
vf

dgf

dε

)(
vj

dgj

dε

)−1

. (15.21)

Let us use this relation for inelastic electron–atom collisions. Then vj , vf are
the initial electron velocities for a given channel of the process, and the statistical
weight of the corresponding channel is equal to dgf � �[dpf /(2πh̄)3]gf , where
gf is the statistical weight of the atom state; formula (15.21) takes the form

σjf � σfj
v2
f gf

v2
j gj

. (15.22)

In particular, near the threshold, the excitation cross section σex has the form
(σex � σjf ):

σex � C
√
E −
ε,

where E is the energy of the incident electron and 
ε is the excitation energy
for this transition. Then, according to formula (15.22), the cross section of atom
quenching σq � σf i , resulting from the collision with a slow electron of energy
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ε � E −
ε � 
ε, is

σq � C
go
ε

gf
√
E −
ε

.

From this it follows that the rate constant of atom quenching by a slow electron

kq � vf σq � C
go
ε

√
2

gf
√
m

(15.23)

does not depend on the electron energy (m is the electron mass). This means that
in a plasma containing slow electrons the rate of quenching of the excited atoms
does not depend on the distribution function of the electrons on energy.

15.4 Quenching of the Excited Atom States by
Ion Impact

If an atom has two energetically nearby levels, and their states are mixed by an
external electric field, the transitions between these states can result from the
collision of the atom with an ion. Below we consider this problem starting from
the transition between the 2s- and 2p-states of the hydrogen atom colliding with an
ion. This process leads to quenching of the excited atom state and is of importance
in astrophysics. The process is caused by the interaction potential between colliding
particles (in atomic units)

V � rR/R3,

where R is the distance between nuclei and r is the electron coordinate; we use
atomic units. Taking into account the free motion of particles R2 � ρ2 + v2t2

(ρ is the impact parameter of collision, v is the relative velocity of the colliding
particles, and t is time), we present the wave function of the excited hydrogen atom
colliding with an ion in the form,

	 � a0ψp0e
−itεp0 + a1ψp1e

−itεp1 + cψse
−itεs ,

where εs , εp0, εp1 are the energies of the corresponding states and the subscripts
p0, p1 indicate the momentum projection of the p-electron on the ρ-axis. We
neglect the transitions to other states of the hydrogen atom because of a large
transferring energy. The set of equations for the probability amplitudes takes the
form

iċ � dρ

R3
ap0 + dvt

R3
ap1 − ω

2
c,

iȧp0 � dρ

R3
c + ω

2
ap0,

iȧp1 � dvt

R3
c + ω

2
ap1, (15.24)
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where ω is the difference between the energies of the p- and s-levels, and d is the
matrix element from the electron coordinate r between the radial wave functions
of the s- and p-states. We now neglect the fine splitting of p-levels. Next we
account for the precise positions of these levels, so that the 22S1/2-level of the
hydrogen atom lies lower than the 22P1/2-level by 0.035 cm−1 and is higher than
the 22P3/2-level by 0.330 cm−1. Let us first use the perturbation theory assuming
in the zero-approximation that c � 1. Then we have

ap0 � 2dω

v2
K0

(ωρ
v

)
; ap1 � 2dω

v2
K1

(ωρ
v

)
,

where K0, K1, are the Macdonald functions and the perturbation theory is valid
for ρ 
 d/v. Let us consider the case of large collision velocities

v2 
 dω,

when the cross section of the process is determined by the impact parameters

d

v
� ρ � v

ω
.

Thus, within the framework of the perturbation theory we obtain, for quenching
of the s-state,

P (ρ) � 4d2ω2

v4

[
K2

0

(ωρ
v

)
+K2

0

(ωρ
v

)]
, ρ 
 d

v
.

Let us present the cross section of quenching of the s-state in the form

σsp �
∫ ρo

0
P (ρ)2πρ dρ +

∫ ∞

ρo

2πρ dρ · 4d2ω2

v4

[
K2

0

(ωρ
v

)
+K2

0

(ωρ
v

)]
�
∫ ρo

0
P (ρ)2πρ dρ + 8π

d2

v2
ln

2ve−C

ωρo
, (15.25)

where the impact parameter ρo is taken such that ωρo/v 
 1 and P (ρ) � 1;
C � 0.577 is the Euler constant. The first term results from the solution of the
set of equations (15.24). But one can estimate the parameter ρo in formula (15.25)
from the relation P (ρo) ∼ 1, which gives ρo ∼ v/ω, and

σsp � 8π
d2

v2
ln

av2

ωd
.

The numerical coefficient a follows from the solution of the set of equations at
small impact parameters of the collision where the perturbation theory is violated.
If we find ρo from the relation P (ρo) � 1, we obtain a � exp(0.5 − C) � 0.9.
As is seen, under a given condition v2 
 dω, an error in the coefficient a weakly
influences the result because of a large value under logarithm. Therefore, one can
take a � 1 in the above formula, so that the quenching cross section is

σsp � 8π
d2

v2
ln

v2

ωd
. (15.26)



406 15. Inelastic Slow Atomic Collisions

Let us use this formula for the 2s-hydrogen atom, accounting for splitting of
the levels of fine structure. Denote by ω1 � 0.035 cm−1 the distance between the
2S1/2- and 2P1/2-levels and by ω1 � 0.330 cm−1 the distance between the 2S1/2-
and 2P3/2-levels. Then using the perturbation theory for each level separately,
and accounting for the statistics of each level, we obtain formula (15.26) with the
following value of the parameter ω � (ω1ω

2
2)

1/3 � 0.16 cm−1. The cross section
(15.26) is high enough. In particular, in the case of the collision of the proton at the
collision energy in the center-of-mass coordinate frame ε � 1 eV, formula (15.26)
gives the cross section of quenching of the 2s-hydrogen atomσsp � 2.8·10−10 cm2.

We now consider quenching of a highly excited atom by ion impact on the
basis of the above result. Then the transitions from a state with quantum numbers
nl mostly proceed in states with quantum numbers n, l + 1, where the distance
between the levels is equal toω � (δl−δl+1)/n3

∗ � 
l/n
3
∗. Here n∗ is the effective

principal quantum number and n∗ 
 l, δl is the quantum defect for this level and

l � δl − δl+1. We have, for the quenching probability according to the above
solution of the set of equations (15.24) within the framework of the perturbation
theory,

P (ρ) � 4ω2

3v4

∣∣rnl;n,l+1

∣∣2 [K2
0

(ωρ
v

)
+K2

1

(ωρ
v

)]
. (15.27)

Summing over the various momentum projections, we have∣∣rnl;n,l+1

∣∣2 �∑
m′

∣∣〈nlm |r| n, l + 1,m′
〉∣∣2 � 9

4
n4
∗
l + 1

2l + 1
[1− (l + 1)2/n2

∗].

Accounting for n∗ 
 l we obtain, for the quenching cross section,

σq � 6π
n4
∗

v2

l + 1

2l + 1
ln

av2n∗

l

,

where the numerical coefficient a ∼ 1. If we obtain the parameter ρo from the re-
lation P (ρo) � 1/2, we have a � 0.5

√
(2l + 1)/(l + 1). If this parameter follows

from the relation P (ρo) � 1, the above value of a is multiplied by
√

2. Thus, one
can take a � 1, so that the quenching cross section is determined by the formula

σq � 6π
n4
∗

v2

l + 1

2l + 1
ln

v2n∗

l

. (15.28)

15.5 Quenching of Highly Excited Atoms in
Atomic Collisions

Some examples of the effective processes with large cross sections corresponding
to processes involving a highly excited atom because of a high density of its levels.
Below we analyze the process of quenching of a highly excited state resulting from
a collision with an atom in the ground state. This atom has a filled electron shell
and hence the interaction between atoms has a short-range character. We take this
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interaction in the form (10.42), so that the interaction operator of the colliding
atoms is given by the formula

V � 2πLδ(r − R), (15.29)

whereL is the electron-incident atom scattering length, r is the electron coordinate,
and R is the coordinate of the perturbed atom.

Let us determine the cross section of the process within the framework of the
perturbation theory. We have, for the probability of the transition from the initial
j -state to a final f -state,

Pjf �
∣∣∣∣∫ ∞

−∞
Vjf dt

∣∣∣∣2 � 4π2L2

∣∣∣∣∫ ∞

−∞
ψ∗j (R)ψf (R) dt

∣∣∣∣2 ,
where ψj is the electron wave function of the corresponding state. This formula
can be used to estimate the quenching cross section as a function of the principal
quantum number. Since |ψ(R)|2 ∼ a−3 ∼ n−6, where a ∼ n2 is the size of
a highly excited atom, and

∫
dt ∼ a/va we have, for the transition probability

Pik ∼ L2/(v2
an

8), where va is the collision velocity. This gives, for the transition
cross section,

σ ∼ a2Pjf ∼ L2

v2
an

4
, where Pjf � 1, i.e., L/va � n4. (15.30)

At small n this process has an adiabatic character, and the quenching cross section
sharply decreases with a decrease in n. Thus the cross section of this process as
a function of n has a sharp maximum at nmax ∼ (L/va)1/4, which corresponds to
the cross section

σmax ∼ L

va
∼ n4

max. (15.31)

15.6 Quenching of Metastable States in Collisions

Although this process is characterized by small cross sections, it can determine
the lifetime of metastable atoms in gases. Interaction of the metastable atom and
perturbed atom partially removes violation for the dipole radiation, so that the
quasi-molecule consisting of the metastable and perturbed atoms emits dipole
radiation. Denote the interaction operator for these atoms by V and assume that
the main contribution to this process gives a resonantly excited state r which is
nearest to the related metastable atom statem. Then the wave function of the quasi-
molecule consisting of the metastable and perturbed atoms according to the first
order of the perturbation theory can be presented in the form

	 � ψm + Vmr

εm − εr
ψr,

where ψm, ψr are the wave functions for the metastable and nearest resonantly
excited states, and εm, εr are the energies of these states. According to formula
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(1.23) the probability per unit time for radiation of the quasi-molecule equals

w(R) � V 2
mr (R)

(εm − εr )2τr
, (15.32)

where τr is the radiative lifetime of the resonantly excited state and, for simplicity,
we neglect the difference of the photon energy and the excitation energy of the
resonantly excited state.

Let us consider a general problem when a transition with a small probability
takes place in the course of collision, and our goal is to evaluate the process cross
section. Then the probability of this process, for the given parameters of collision,
is equal to

P �
∫ ∞

−∞
w(R) dt � 2

v

∫ ∞

ro

w(R)ρ dR

R2
√

1− ρ2/R2 − U (R)/ε
, (15.33)

where ro is the distance of closest approach, ε is the collision energy in the center-
of-mass system, U (R) is the interaction potential of the colliding atoms, and we
use the connection between the parameters of collision on the basis of formulas
(13.4) and (13.5). From this we have, for the cross section of this process,

σ �
∫ ∞

0
2πρ dρ · 2

v

∫ ∞

ro

w(R)ρ dR

R2
√

1− ρ2/R2 − U (R)/ε

� 4π

v

∫ ∞

Ro

R2 dR · w(R)

√
1− U (R)

ε
, (15.34)

where Ro is determined by the relation U (Ro) � ε. If this process proceeds in a
gas, it is convenient to introduce the rate constant of the process,

k � 〈vσ 〉 � 4π
∫ ∞

0
exp

[
−U (R)

T

]
· w(R)R2 dR, (15.35)

where the averaging is made over the Maxwell distribution of atoms, and T is the
gaseous temperature expressed in energetic units. Formulas (15.34) and (15.35)
allow us to evaluate the cross section and rate constant for various processes of
this type. In particular, in the related case the expression for the rate constant has
the form

k � 4π

(εm − εr )2τr

∫ ∞

0
exp

[
−U (R)

T

]
· V 2

mr (R)R2 dR. (15.36)

If this process proceeds mostly in a repulsive region of the interaction of atoms, this
gives a strong temperature dependence because of the sharp dependence Vmr (R).

Problems

Problem 15.1. Evaluate the position and value of the maximum cross section of
the nonresonant charge exchange process for transition between two states.
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We work on the set of equations (15.14) for the probability amplitudes. According
to the above analysis, the maximum of the cross section of this process is expected
at small values of the parameter κ/(γ v). Therefore, we will expand the transition
probability over this small parameter. At the impact parameters of collision ρ ≤ Rc

the transition probability is given by the Demkov formula which has the form, at
κ/(γ v)� 1,

P (ρ) � sin2 ζ ·
[
1+ 1

2

(
πκ

2γ v

)2 1√
1− ρ2/R2

c

]−1

, Rc − ρ 
 1

γ
.

The transition probability for large impact parameters ρ ≥ Rc is determined by
formula (15.15) of the perturbation theory which, at κ/(γ v)� 1, can be presented
in the form

P (ρ) � sin2 ζ ·
(

1− ρκ2

2γ v2

)
, ρ ≥ Rc.

From this it follows that for the transition cross section,

σ �
∫ ∞

0
2πρ dρP (ρ) � σres − πR2

c

2

(
πκ

2γ v

)2

ln(aγRc),

where σres �
∫∞
0 sin2 ζ (ρ) · 2πρ dρ is the cross section of the resonant charge

exchange, and a parameter a ∼ 1, because the used Demkov formula for the
probability transition is valid up to Rc − ρ ∼ 1/γ . Because σres ∼ πR2

c , the
second term in the expression for the transition cross section is small compared to
the first one.

Let us analyze the obtained expression for the cross section. Itsmaximum is close
to πR2

c /2 because of a weak dependence of the cross section of resonant charge
exchange on the collision velocity, and the velocity vmax, which corresponds to the
cross section maximum, is given by the relation

κ

γ vmax
� 2

π

√
2σres

πR2
c

· 1

Roγ
· 1

ln(aRcγ )
,

where Ro �
√

2σres/π. Since σres ≈ πR2
c /2, we have

κ

γ vmax
� 2

π

√
1

Roγ
· 1

ln(aRcγ )
< 1/

√
γRo � 1,

which was used above.
Let us compare the velocities vmax and vo which are given by the relation

σres(vo) � πR2
c /2. According to the definition of the resonant charge exchange

cross section (14.15), we have

ζ (Rc) � 1

vo

√
πRc

2γ

(Rc) � 0.28,
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and because of 
(Rc) � κ , we obtain

κ

γ vo
� 0.22√

γRc

.

This gives
vmax

vo
� 0.35

√
ln(aγRc).

From this it follows that the values vo and vmax have the same order of magnitude.

Problem 15.2. Determine the cross section of the detachment of a negative ion
with the external electron shell s2 in collision with a fast ion or electron within the
framework of the perturbation theory.

Let us take into account one binding state of the negative ion and use formula
(15.27) for the probability of the related transition which has the form

P (ρ) � 4ω2

3v4

∑
k

|rok|2
[
K2

0

(ωρ
v

)
+K2

1

(ωρ
v

)]
,

where subscript o refers to the negative ion state and subscript k refers to the system
of an atom and free electron. In the limit ρ � v/ω this formula gives

P (ρ) � 8

3v2ρ2

∑
k

|rok|2 � 8

3v2ρ2

(
r2
)
oo
, ρ � v

ω
.

Using the asymptotic wave function (7.8) for the s-electron of the negative ion

ψo � B

√
γ

2π
e−γ r/r,

and accounting for two valent electrons of the negative ionwe obtain, for thematrix
element by analogy with Problem 9.5,(

r2
)
oo
� B2

γ 2
,

where γ 2/2 is the electron binding energy in the negative ion and B is the asymp-
totic coefficient. From this it follows that, for the cross section of the related
process,

σdet �
∫ ∞

0
2πρ dρP (ρ) � 16π

3

B2

v2γ 2
ln

ρmax

ρmin
.

As the upper limit of integration we take ρmax ∼ v/ω ∼ v/γ 2, because at
the larger impact parameters of collision the used expansion of the Macdonald
functions is not valid. As the lower limit of integration we take ρmin ∼ (vγ )−1

from the relationP (ρmin) ∼ 1 where the used perturbation theory is violated. From
this it follows that, for the cross section of detachment of the negative ion,

σdet � 16π

3

B2

v2γ 2
ln

av2

γ
,
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where the parameter a ∼ 1. This formula corresponds to the detachment of the
negative ion by both electron and ion impact. This is valid for the corresponding
high-collision velocities

v 
 √
γ ,

at which ρmax 
 ρmin.



CHAPTER 16

Collisions with Transitions in
States of Continuous and
Quasi-Continuous Spectra

16.1 Transitions in States of Continuous Spectra

The ionization of atomic particles in slow collisions results from the intersection of
a corresponding electron term with the boundary of continuous spectra. Examples
of such behavior of the electron terms were given in Chapter 10 for the interaction
of a negative ion with an atom, and in Chapter 11 for the interaction of two helium
atoms. Now we consider methods for the analysis of such transitions. If the related
discrete level which is denoted by i is found above the boundary of continuous
spectra, we have an autoionization or autodetachment state, and the corresponding
discrete level is characterized by a width �, so that the energy of this state is equal
to Ej � ε(R)+ i�(R), where

� � 2π
∑
f

∣∣Hjf

∣∣2 dgf

dε
, (16.1)

where the subscript f corresponds to the states of continuous spectra, gf is the
statistical weight of this state, and this formula gives the probability per unit time
for transitions from a given state which corresponds to the perturbation theory.
Since the wave function of this state is 	 ∼ exp(−iEt), the probability of the
survival of a state is equal to P � |	|2 � exp(−�t). But the description of the
state on the basis of its width demands the fulfillment of two conditions. First, the
energy above the boundary of the continuous spectra must remarkably exceed its
width ε 
 �. Second, the rate of variation of a distance between atoms must be
small enough, so that dε/dt � ε2. Below we analyze the behavior of an electron
term near the continuous spectra boundary where these conditions can be violated.

If an electron term corresponding to two atoms intersects the boundary of con-
tinuous spectra, it intersects first the infinite number of terms of excited states. Let
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us evaluate the probability for the survival of this term when it goes into continuous
spectra. Assume that all terms of the excited states are parallel each to other and
that the interaction with each term is small, i.e., the regions of transition in each
of the intersected states are separated. The probability of the survival of a related
j -state, after the passage of the intersection region with a state f , is given by the
Landau–Zener formula (15.10):

pf � exp

(
−2π

β

∣∣Hjf

∣∣2) , where β � FvR � d(Ej − Ef )/dt.

Hence the probability of survival of the related term, after the passing of regions
of intersections with n parallel terms, is equal to

Pn �
n∏

f�1

pf � exp

(
−2π

β

∑
f

∣∣Hjf

∣∣2) .

As follows from the above formulas, the probability of survival of the related
term can be presented in the form

Pn � exp

(
−
∫ t

�dt ′
)
, where � � 2π

βdt

∑
f

∣∣Hjf

∣∣2 � 2π
dn

dε

∑
f

∣∣Hjf

∣∣2 ,
(16.2)

and dn/dε is the number of levels per unit energy. As is seen, this consideration
leads to the concepts of a level width in accordance with (16.1) although the related
term is found under the boundary of continuous spectra.

Using the concepts of the width of an autoionization or an autodetachment level
we obtain, for the cross section of the electron release resulting from the collision
of two atoms or an atom and a negative ion,

σ �
∫ Rc

0
2πρ dρ

[
1− exp

(
−
∫ t

�dt ′
)]

, (16.3)

where Rc is the distance of intersection between an electron term of the initial
electron state with the boundary of continuous spectra, and the integral over time
is taken for a time when this term is above the boundary of continuous spectra.

Let us consider the process of detachment of a negative ion as a result of atomic
collisions within the framework of the above concepts of an autodetachment state
of the quasi-molecule consisting of a colliding negative ion and atom. The behavior
of the corresponding electron terms for these atomic particles is given in Fig. 16.1,
and the electron release takes place at distances between the colliding particles
less than Rc. A simple result corresponds to the case of slow collisions, if decay
of the negative ion takes place for collisions whose distance of closest approach
is less than Rc. The cross section of this process is equal to πρ2

c , where ρc is the
impact parameter of the collision with the closest approach distance Rc. Using
relationship (13.4) between the impact parameter of collision and the distance of



414 16. Collisions in States of Continuous and Quasi-Continuous Spectra

Figure 16.1. The character of detachment of a negative ion resulting from collision with an
atom. The width of the autodetachment level is shown.

closest approach we obtain, for the detachment cross section,

σdet � πR2
c

[
1− U (Rc)

ε

]
, (16.4)

where U (R) is the interaction potential of colliding particles at a distance R

between them, and ε is the collision energy in the center-of-mass frame of axes.
One can use formulas (15.33), (15.34), (15.35) for the analysis of this and

identical processes, resulting in decay of the autodetachment or autoionization
state of a system of interacting atomic particles. We consider the limit when the
interaction between colliding particles is weak, so that the decay probability during
one collision is small. Then taking into account that decay proceeds at distances
less than Rc we obtain, by analogy with (15.33) for the decay probability

P �
∫ ∞

−∞
�(R) dt � 2

v

∫ Rc

ro

�(R)ρ dR

R2
√

1− ρ2/R2 − U (R)/ε
,

where ro is the distance of closest approach, and ε is the collision energy in the
center-of mass system. From this we have, for the cross section of this process,

σ �
∫ ∞

0
2πρ dρ · 2

v

∫ Rc

ro

�(R)ρ dR

R2
√

1− ρ2/R2 − U (R)/ε

� 4π

v

∫ Rc

Ro

R2�(R)

√
1− U (R)

ε
, (16.5)

where Ro is determined by U (Ro) � ε. We use this relation below to evaluate
some processes of this type.

16.2 Mutual Neutralization at Collisions of Positive and
Negative Ions

This process proceeds according to the scheme

A− + B+ → A+ B∗. (16.6)

Process (16.6) can be responsible for the recombination of charges in a weakly
ionized gas and, by nature, it is analogous to the charge exchange process because
of a tunnel transition of a valence electron in the field of the positive ion. But the
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Figure 16.2. Positions of levels of the interacting hydrogen negative ion and helium atom
at the distance between nuclei 2 nm (the cross section of the electron potential surface is
shown). The process H− + He+ → H + He∗ corresponds to formation of excited helium
atoms with the main quantum number n � 3.

difference compared to a typical charge exchange corresponds to the possibility
of the electron transition on many excited levels (see, e.g., Fig. 16.2). This allows
us to use the quasi-continuous model for this process. Within the framework of
this model we assume that the final electron state is similar to a state of continuous
spectra, so that the transition character is the same as for the decay of an atomic
particle in an electric field with the release of an electron. In contrast to the charge
exchange process, a reverse electron transition in the atom field is absent under
conditions of the quasi-continuous model because of a large number of occupied
states in the ion field. Thus the negative ion term is characterized by a certain
width, although its nature differs from that considered above. Now our goal is to
evaluate this width.

We use the same method as in the case of atom decay in an electric field (see
Chapters 2, 6, and 11), i.e., we evaluate the rate of the electron tunnel transition
by accounting for the form of the barrier. Let the valent electron be in the s-state
of the negative ion. Then the asymptotic expression of its wave function is given
by formula (7.8):

ψ(r) � B

r

√
γ

2π
e−γ r ,

where r is the electron distance from the negative ion nucleus. In the transition
region the electron wave satisfies the following Schrödinger equation:(

−1

2

− 1

|R − r|
)
ψ �

(
−γ 2

2
− 1

R

)
ψ,
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where R is the distance between nuclei, and r is the electron distance from the
positive ion. The equation can be separated into the ellipticity coordinates ξ �
(|R − r| + r)/R, η � l(|R − r| − r)/R:

ψ(r) � X(ξ )Y (η),

d

dξ
(ξ 2 − 1)

dX

dξ
+
(
Rξ − R2γ 2

4
ξ 2 − R

2
ξ 2 + C

)
X � 0;

d

dη
(1− η2)

dY

dη
+
(
−Rη + R2γ 2

4
η2 + R

2
η2 − C

)
Y � 0. (16.7)

Because of the large distance between nuclei (or a small rate of electron tunnel
leakage) the electron tunneling takes place near the axis joining the nuclei. The
electron wave function (7.8) has the following form near the axis (ξ − 1� 1) and
far from the center of the negative ion

ψ � 2B
√

2γ

R(1− η)
√
π

exp

[
−Rγ

2
(1− η)− Rγ

2
(ξ − 1)

]
, θ � 2

√
ξ − 1

1− η
� 1.

(16.8)
Substituting this into equations (16.7), we find the separation constant

C � R2γ 2

4
+ Rγ − R

2
.

From this one can obtain the quasi-classical electron wave function and the
rate of tunnel transition. The wave function Y (η) has the turning point ηo �
−(Rγ 2/2−1)/(Rγ 2/2+1), so that left from it thewave function has an exponential
dependence on η and right from the turning point the wave function as a function
of η oscillates. In the quasi-classical regions left and right of the turning point the
electron wave function has the form

Y (η) � − iD√|p|
√

1− η2
exp

(
−
∫ η

ηo

|p| dη′
)
, η < ηo;

Y (η) � D
√
p
√

1− η2
exp

(
i

∫ η

ηo

p dη′ − i
π

4

)
, η > ηo,

where

p �
√
R2γ 2

4
− Rγ

1− η2
− R

2

1− η

1+ η
.

Joining this solution with expression (16.8) for the negative ion wave function, we
find

D � − iBγ
√

2

R
√
π

exp

[
−Rγ +

√
2Rf

(
Rγ 2

2

)]
, (16.9)

where f (x) � ln(
√
x +√1+ x)√

1+ x
.
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Now let us evaluate the rate of the electron tunneling. The probability of the
tunnel transition per unit time is equal to P � ∫

S
j dS, where the electron current

density is j � (i/2)(ψ∇ψ∗ −ψ∗∇ψ), and the element of the surface near the axis
is dS � ρ dρ dϕ � (R/2)2(1 − η2)ξ dξ dϕ, so that the electron current density
right of the turning point is equal to

j � 2D2X2(ξ )

R
√

(1− η2)(ξ 2 − η2)
.

From this we obtain, for the probability of the electron tunnel transition per unit
time,

�(R) � πD2

γ
� B2

2R2
exp

[
−Rγ +

√
2Rf

(
Rγ 2

2

)]
. (16.10)

In the limit, Rγ 2 � 1, this gives

�(R) � B2

2R2
exp

(
−2

3
R2γ 3

)
. (16.11a)

In the other limit case, Rγ 2 
 1, we get

�(R) � B2

2R2
exp(−2Rγ ). (16.11b)

The cross section of the exchange process is determined by formula (16.3)which
we use in the form

σex �
∫ ∞

0
2πρ dρ

[
1− exp(−F )

]
, where F (ρ) �

∫ ∞

−∞
� dt. (16.12)

Let us assume the cross section of the elastic scattering of two ions to be relatively
small, i.e., suppose the free motion of ions and account for a strong dependence
F (ρ). Then we divide the integral (16.12) into two parts

σex �
∫ ρo

0
2πρ dρ +

∫ ∞

ρo

2πρ dρ
[
1− exp(−F )

]
,

so that F (ρo) � 1 and the second integral converges in a narrow range of ρ.
At these ρ we have F (ρ) � F (ρo) exp[−ω(ρ − ρo)], where ω � d lnF/dρ and
ωρo 
 1. Then we obtain

σex � πρ2
o +

2πρo
ω

∫ F (ρo)

0

dx

x
(1− e−x) � πρ2

o +
2πρo
ω

[C + lnF (ρo)],

where C � 0.577 is the Euler constant. With accuracy of the order of 1/(ωρo)2

this can be represented in the form

σex � πR2
o, where F (Ro) � e−C � 0.56. (16.13)

In particular, in the case (16.11b), Roγ
2 
 1 when the action of a field of a

positive ion on the transferring electron is analogous to the action of a constant
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electric field, this formula gives

σex � 3π

2γ 3
ln

vo

v
, where vo � 3.9A2

R2
oγ

3
. (16.14)

One can account for the elastic scattering of nuclei when it is essential. This
scattering is determined by the Coulomb interaction of nuclei. Assuming that the
electron tunnel transition proceeds mainly near the distance of the closest approach
of atoms, we use the relation between the impact parameter ρ and the distance of
closest approach Ro:

1− ρ2

R2
o

� − 1

Roε
,

where ε is the collision energy. This gives, for the cross section of the related
process,

σex � πR2
o + πRo/ε, where F (Ro) � 0.56. (16.15)

As is seen, the cross section of the mutual neutralization of ions slowly depends
on the collision energy at large energies (ε 
 1/Ro) and is inverse to the collision
energy at small energies (ε � 1/Ro). As a demonstration of this method, Fig.
16.3 gives values of the cross sections of the mutual neutralization process N+,
O+ + O− → N, O + O, which are evaluated on the basis of formulas (16.13),
(16.14), (16.15), and also the experimental values of these cross sections.

Let us analyze the criterion of validity of the above quasi-continuous model
for the considered charge exchange process. Since the electron transfers in many
excited levels of the positive ion field, the perturbation theory is valid for the
transition on each of these levels. Hence we consider the set of equations (15.14)
within the framework of the perturbation theory which now has the form

i
dcn

dt
� 
n

2
eiωnta, (16.16)

Figure 16.3. The cross section of charge exchange for processes N+ + O− → N + O,
O+ + O− → 2O. Curves are calculated on the basis of formulas (16.13)–(16.15), signs
refer to experiments.
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where n is the number of a state for the electron in the field of the positive ion,
so that cn is the probability amplitude for this state, a is the probability amplitude
for the negative ion state, and 
n, ωn are the exchange interaction potential and
difference diagonal matrix elements of the Hamiltonian for these states. Solving
this equation on the basis of the perturbation theory (a � 1) we obtain, for the
transition probability,

Pn(ρ) �
∣∣∣∣∫ ∞

−∞


n

2
eiωnt dt

∣∣∣∣2 � 1

v2
· 2πρ

α

2

n(ρ) exp

(
−ω2

nρ

αv2

)
,

where α � −d ln
n/dρ. The total probability of the electron transfer is equal to

P (ρ) �
∑
n

Pn(ρ) � 1

v2
· 2πρ

α

∑
n


2
n(ρ) exp

(
−ω2

nρ

αv2

)
.

We use formula (10.44) for the exchange interaction between negative and
positive ions through the state of an excited atom


n � 2B
√

2πγψn(R),

whereB is the asymptotic coefficient for the electron wave function of the negative
ion and ψn(R) is the electron wave function for the corresponding excited atom
state at the point of location of a perturbed atom. This gives

P (ρ) � 1

v2
· 16π2B2γρ

α

∑
n

|ψn(ρ)|2 exp

(
−ω2

nρ

αv2

)
.

Taking into account the high density of excited levels, we substitute the summa-
tion in this formula by integration. Then the difference of energies for the negative
ion and excited atom is

ωn � γ 2

2
− 1

2n2
+ 1

R
,

where γ 2/2 is the electron binding energy in the negative ion and n is the principal
quantum number of an excited atom state. The integration of the exponent gives∫

dn exp

(
−ω2

nρ

αv2

)
�
√

2παv2

ρ
·
(√

d2ω2
n

dn2
|no
)−1

� v
√
πα√
ρ

(
dωn

dn
|no
)−1

� vn3
o

√
πα

ρ
,

where no is defined by the relation ωno � 0. Thus we obtain

P (ρ) � 16π2B2γρ

v

√
πρ

α
n3
o

∑
l,m

|ψnlm(ρ)|2 . (16.17)

From this one can determine the criteria of validity of the quasi-continuous
model. This requires that the exponent varies continuously with the change of the
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principal quantum number, so that

ρ

αv2

∣∣ω2
n − ω2

n+1

∣∣� 1.

Since dωn/dn � n−3 and the main contribution into the integral gives ωn ∼
v
√
α/ρ, this criterion has the form

v 
 1

n3

√
ρ

α
. (16.18a)

This condition provides nonadiabatic conditions for the electron transitions on
neighboring levels of an excited atom. The other condition requires the process to
be slow, so that a typical process time τcol ∼ (1/v)

√
ρ/α must be large compared

to a typical atomic time ∼ 1/γ 2. This gives

v � γ 2

√
ρ

α
. (16.18b)

A comparison of criteria (16.18) shows that the quasi-continuous model is valid
for states with a small electron binding energy.

Let us assume that the electron state in the positive ion field is similar to a highly
excited hydrogen atom. Then it is convenient to use parabolic quantum numbers
for the electron excited states, so that summation in formula (16.17) has the form∑

n1,n2,m

∣∣ψnn1,n2m(R)
∣∣2 � πn4

n∑
n1�0

∣∣∣∣F (−n, 1, 2R

n

)∣∣∣∣2 .
If the electron is located in a classically prohibited region under the barrier, we
obtain ∑

n1,n2,m

∣∣ψnn1,n2m(R)
∣∣2 � 1

32πn3[pn(R)]2
exp

(
−2
∫ R

rn

pn dr

)
,

where pn(r) �
√

1/n2 − 2r and the turning point rn is determined by the relation
pn(rn) � 0. The above expression is valid in the quasi-classical region

∫ R

rn
pn dr 


1. From this we obtain

P (ρ) � 1

v

√
πρ

α

B2

2γρ2
exp

(
−2
∫ R

rn

√
γ 2 + 2

R
− 2

r
dr

)
.

Write this expression in the form

P (ρ) � 1

v

√
πρ

α
�(ρ), where �(ρ) � B2

2γρ2
exp

(
−2
∫ R

rn

√
γ 2 + 2

R
− 2

r
dr

)
.

(16.19)
Since

α � −d ln
(ρ)

dρ
� −d ln�

2dρ
,
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one can rewrite the above formula for the transition probability in the formP (ρ) �∫∞
0 �(ρ) dt , where the time t is introduced from the relationR2 � ρ2+v2t2. This

shows the analogy of this consideration on the basis of the perturbation theory and
the above consideration within the framework of the concept of an autodetachment
state. Let us expose expression (16.19) for the levelwidth�(ρ) in the limiting cases.
In the limit Rγ 2 � 1 this gives

�(R) � B2

2γR2
exp

(
−2

3
R2γ 2

)
, Rγ 2 � 1,

and

�(R) � B2

2γR2
exp(−2Rγ ), Rγ 2 
 1,

in accordance with (16.11). Thus, the coincidence of expressions for the process
rates, which are obtained by different methods, demonstrates both the physical
nature of this process and the conditions of validity of the result.

16.3 Collisional Transitions Involving
Multicharged Ions

The character of the electron transition resulting from the collision of an atom and
multicharged ion is similar to the case of the exchange process of the collision
of negative and positive ions. In both cases the electron transfers to a group of
levels of highly excited states of the electron in the field of a Coulomb center.
Hence the above formulas can be used for charge exchange during the collision of
atoms and multicharged ions in a certain range of collision parameters. Below we
use the results of the previous section for the charge exchange process involving
multicharged ions. In the case of the charge exchange process involving an atom
and amulticharged ion of a chargeZ, the criteria of validity of the quasi-continuous
model (16.18) have the form

γ 2

√
ρ

α

 v 
 Z2

n3

√
ρ

α
, (16.20)

and the energy difference for the transition states at a distance R between nuclei
is equal to

ωn � γ 2

2
− Z2

2n2
+ Z

R
.

In the case ργ 2 
 Z we have α ≈ γ , n ≈ Z/γ , so that the criteria (16.20) are
the following, in this case,

γ
√
ργ 
 v 
 γ, ργ 2 
 Z. (16.21a)

In the other limit we obtain√
Zγ 
 v 
 γ, ργ 2 � Z. (16.21b)
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From this it follows that the quasi-continuous model is working for some range of
parameters if γ ∼ 1, Z 
 1.

Let us demonstrate this model in the case of the electron transition from the
ground state of the hydrogen atom in the highly excited states of a multicharged
ion. This model is especially simple, if the main contribution to the cross section
gives impact parameters ρ which satisfy the relation ργ 2 � Z. Then an action
of the multicharged ion on the hydrogen atom is determined by its electric field
whose strength is equal to E � Z/R2, where R is the distance between nuclei.
The rate of hydrogen atom decay in a constant electric field of strength E is (see
Problem 6.3):

w � 4

E
exp

(
− 2

3E

)
.

This decay corresponds to the electron tunnel transition in the field of the mul-
ticharged ion and is similar to the tunnel electron transition in a constant electric
field. Hence this probability of decay per unit time is analogous to the level width
�(R) which is equal to, according to this formula (E � Z/R2),

�(R) � 4R2

Z
exp

(
−2R2

3Z

)
.

Then, on the basis of formulas (16.12), (16.13) we obtain, for the charge exchange
cross section,

σex � πR2
o, where

∫ ∞

−∞
�(R) dt |Ro

� 2

v

√
6π

Z
· R2

o exp

(
−2R2

o

3Z

)
� 0.56.

(16.22)
This cross section can be represented in the form

σex � 3

2
πZ�

(
v√
Z

)
, �� Z,

where the function �(x) satisfies the relation

� exp(−�) � 0.56x

3
√

6π
� 0.043x.

As a matter of fact, the cross section (16.22) is the upper boundary for the charge
exchange cross section, because it gives the cross section in the regionR2

o 
 Z and
gives an excessive result at the collision parameterswhere this condition is violated.
The lower boundary for the cross section one can determine as σex � πR2

∗ , where
R∗ is the distance between nuclei when the barrier disappears between fields of
the multicharged ion and proton. Since R∗ � 2

√
2Z, the lowest boundary for the

cross section is

σmin � 8πZ. (16.23)

Figure 16.4 contains cross sections (16.22) and (16.23) between which are found
the real values of this process.
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Figure 16.4. The cross section of charge exchange involving the hydrogen atom and a
multicharged ion of a charge Z 
 1. Curve 1 corresponds to formula (16.22), curve 2 refer
to formula (16.23).

16.4 Associative Ionization and the Penning Process

Collisional ionization involving excited atoms can be determined by different
mechanisms. Each of them corresponds to the decay of an autoionization state of
the quasi-molecule consisting of colliding atoms. One such process, the associative
ionization process, proceeds according the scheme

A∗ + B → AB+ + e. (16.24)

As a demonstration of the peculiarity of this process, Fig. 16.5 explains the char-
acter of the associative ionization process in the case of the collisions of an excited
helium atomwith a helium atom in the ground state. At thermal collisions, the cross
section of this process is approximately 2 · 10−15 cm2 for the 31D-excited state
and essentially less for other excited states. According to the data of Fig. 16.5, a
profitable position of termsof this state is due to the interaction of the corresponding
electron term with the repulsive term corresponding to He(21P ) + He. In the
case of repulsion at the distance Rc of the term intersection with the boundary
of continuous spectra, U (Rc) > 0, this process has a threshold at the collision
energy εo � U (Rc). As follows from formula (16.7), the threshold form of the
cross section of associative ionization is the following:

σas � C(ε − εo)
3/2, where C � 4π

3

√
2μR2

c�(Rc)/

∣∣∣∣dUdR
∣∣∣∣
R�Rc

,

whereμ is the reducedmass of colliding particles andweuse the threshold behavior
(� � const) for �(R).

The other mechanism of ionization takes place in the case that the excitation
energy of one colliding atom exceeds the ionization potential of its partner (see
also Chapter 6). This process is called the Penning process if the excited state is
a metastable state. The Penning process can be responsible for the ionization of
atoms in a gas discharge if the gaseous atoms have a high ionization potential and
if there is an admixture of atoms with a small ionization potential. Examples of
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Figure 16.5. Positions of electron terms of the excited helium molecule and molecular ion
which are responsible for the process He(31D)+ He → He+2 + e.

these processes are

He(23S)+ Ar(Kr,Xe)→ He(11S)+ Ar+(Kr+,Xe+). (16.25)

In this case the quasi-molecule consisting of colliding atoms is found in the au-
toionization state at any distance between atoms, but thewidth of the autoionization
level decreases strongly with an increase in the distance between atoms. Indeed,
let us represent the electron Hamiltonian in the form Ĥ � Ĥo + V , where the
perturbation potential V is responsible for the transition of interacting electrons.
According to formula (16.1), the level width is equal to

� � 2π
∑
f

∣∣Vjf

∣∣2 dgf
dε

, (16.26)

where the subscript j corresponds to the initial state of the system and the subscript
f correspond to a final state of the process which relates to the formation of a free
electron. Note that this process corresponds to the transition of two electrons,
because an excited atom transfers to the ground state, and a valence electron of
the second atom releases.

Let us evaluate the dependence of the cross section of the Penning process on
the collision energy (see Fig. 16.6). At small collision energies (the energy range
1 of Fig. 16.6) the cross section decreases with an increase in the collision energy
because of a decrease in the time of location of colliding particles in the attractive
zone. The cross section reaches its minimum at energies ε ∼ D, where D is
the depth of an attractive well for colliding particles. At higher collision energies
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Figure 16.6. Schematic form of the dependence of the cross section for the Penning process
on the collision energy.

(the energy range 2 of Fig. 16.6) the cross section increases with an increase in
the collision energy because of a stronger interaction at small distances between
atoms. Let us analyze the behavior of the cross section in this region, assuming
�(R) to be the strongest distance dependence in formula (16.5). Then, introducing
α � −d ln�(Ro)/dR, where U (Ro) � ε we obtain, from formula (16.5),

σ � 4π

v

∫ ∞

Ro

R2�(R)

√
1− U (R)

ε
dR � 2

v
·
(π
α

)3/2
· R2

o�(Ro)

√
|U ′(Ro)|

ε
.

This formula is valid for a strong dependence�(R), and the cross section reaches a
maximum at αRo ∼ 1. The next energy range 3 of Fig. 16.6 corresponds to a slow
decrease in the cross section with an increase in the collision energy due to factors
in expression (16.5) which depend on the collision velocity or energy. Figure 16.7
contains examples of the Penning process which confirm a general dependence of
its cross section on the collision energy in accordance with the data of Fig. 16.6.

One more specific of this process refers to the spectrum of the released elec-
tron. The electron energy in each case is equal to the difference of the energies for
the corresponding states of colliding atoms, so that the spectrum of released elec-
trons gives information about both the distances between colliding atomic particles
where the process takes place, and about the final states of formed particles.

16.5 Ionization in Collisions with Resonantly
Excited Atoms

Although the Penning process with the partaking of a metastable atom is more
spread, the ionization process involving a resonantly excited atom ismore effective.
Below we evaluate the cross section of this process. The interaction operator in
this case is determined by formula (10.5),

V � 1

R3
[D1D2 − 3(D1n)(D2n)] ,

where the subscripts 1, 2 refer to the corresponding atom and n is a unit vector
directed along the molecular axis. We assume the cross section in this case to
be large compared to a typical atomic value, so that the above expansion of the
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Figure 16.7. The dependence of the cross section of the Penning process on the collisional
velocity for ionization of the argon atom in collisions with (a) He(23S) and (b) Ne(3P2).
The solid curve corresponds to calculations, signs refer to experiments.

interaction operator on a small parameter 1/R is valid. Let us take the motionless
frame of axes, whose axes x, y, z are directed along the collision velocity v, the
impact parameter of collision ρ, and the motion moment respectively. Write the
interaction operator in the form

V � 1

R3

[
D1xD2x(1− 3 cos2 θ )+D1yD2y(1− 3 sin2 θ )

+D1zD2z − 3(D1xD2y +D1yD2x)
]
sin θ cos θ,

where θ is the angle between the vectors v and ρ. Thus the level width is expressed
through the matrix elements of the dipole moment operators of atoms. The pho-
toionization cross section is expressed through the same matrix elements. Hence,
the value �(R) can be expressed through the photoionization cross sections

σx
ph �

4π2ω

c

∣∣(D2x)jf
∣∣2 gf ,

σ
y

ph �
4π2ω

c

∣∣∣(D2y
)
jf

∣∣∣2 gf ,
σ z

ph �
4π2ω

c

∣∣(D2z)jf
∣∣2 gf .

We use atomic units; the superscripts x, y, z denote the polarization of an incident
photon whose frequency ω coincides with the atom excitation energy. Below, for
simplicity, we assume that the photoionization cross sections do not depend on a
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photon polarization (the second atom has a filled electron shell). Then the level
width or the rate of electron release resulting from decay of the quasi-molecule is
equal to

�(R) � cσph

2πωR6

[∣∣(D1x)jf
∣∣2 (1+ 3 cos2 θ )

+ ∣∣(D1y)jf
∣∣2 (1+ 3 sin2 θ )+ ∣∣(D1z)jf

∣∣] , (16.27)

where the matrix element (D1x)jf is taken between the ground and excited states
of atomA. The autonization term width �(R) has an inverse power dependence on
separations, while this dependence is an exponential one for the processes of type
(16.24). Assuming the motion of colliding atoms to be free, from formula (16.27)
we have∫ ∞

−∞
�(R)dt � 9cσph

32ωρ5v

[∣∣(D1x)jf
∣∣2 + 7

3

∣∣∣(D1y
)
jf

∣∣∣2 + 2

3

∣∣(D1z)jf
∣∣] .

This gives, for the ionization cross section according to formula (16.3),

σion � π�

(
5

3

){
9cσph

32ωv

[∣∣(D1x)jf
∣∣2 + 7

3

∣∣∣(D1y
)
jf

∣∣∣2 + 2

3

∣∣(D1z)jf
∣∣]}2/5

.

(16.28)
Let us average this cross section over the direction of the excited atom mo-

mentum. First we consider the case when this process corresponds to an S − P

transition for the first atom. Then we have, for the ionization cross section, if the
P -state has a zero momentum projection on an axis with polar angles θ , ϕ:

σion � σo

(
1− 1

4
cos2 θ + 3

4
sin2 θ cos2 ϕ − 1

2
sin2 θ sin2 ϕ

)
,

where

σo � π�

(
5

3

)[
9cσph

32ωv
|(D1)ik|2

]2/5

� 3.72

(
cf σph

ω2v

)2/5

, (16.29)

the oscillator strength for this transition is f � 2
3ω |(D1)ik|2, and the coordinate

frame is such that x is the polar axis, ϕ � 0 corresponds to the plane xy. Then the
average cross section for an S − P transition is equal to 0.986σo, and the partial
cross sections for the corresponding directions of the atom momentum are equal
to

σx
ion � 0.996σo, σ

y

ion � 0.969σo, σ z
ion � 0.982σo.

As is seen, the difference of these partial cross sections is small, and the average
cross section of ionization is

σion � 0.986σo � 3.16
[cσph

ωv
|(D1)ik|2

]2/5
. (16.30)

This formula is valid if, in accordance with the concept of the autoionization
level width, slow collisions give the main contribution to the cross section, so that
the level width is small compared to the excess of the energy of an excited atom
above the boundary of continuous spectra. This gives ω−J 
 1/τ ∼ v/ρ, where
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J is the ionization potential of the second atom (ω− J is the energy of a released
electron), τ is a typical collision time, v is the collision velocity, and ρ ∼ √σion is
a typical impact parameter. Thus the criterion of validity for formula (16.30) has
the form

v2 � (ω − J )2σion. (16.31)

16.6 Collisional Ionization of Highly Excited Atoms

This process is determined by the interaction of a highly excited electron and an
incident atom. Assuming the electron motion to be classical, one can consider this
process as a result of the scattering of the excited electron on an incident atom.
If the energy obtained by the electron exceeds its binding energy, the ionization
process takes place. Within the framework of this model we have, for the ionization
probability,

P (ρ) �
∫

dt |ψ(R)|2 |v − va|
∫

ε≥J

dσ,

where v is the electron velocity, va is the relative velocity of nuclei, ψ(R) is the
electron wave function at the point of location of an incident atom, dσ is the
differential cross section of the electron–atom scattering, 
ε is the energy change
as a result of collision, and J is the ionization potential of the highly excited atom,
i.e., the electron binding energy, so that |ψ(R)|2 |v − va|

∫

ε≥J dσ is the ionization

probability per unit time. Integration of this expression over the impact parameters
of collision leads to the following expression for the ionization cross section:

σion �
∫

P (ρ) dρ �
∫

dρ
dz

va
|ψ(R)|2 |v − va|

∫

ε≥J

dσ �
〈 |v − va|

va

∫

ε≥J

dσ

〉
,

(16.32)
where an average is made over the electron distribution in a highly excited atom
and we use that the collision trajectory is straight, i.e., dt � dz/va .

Formula (16.32) can be obtained in another way. Indeed, the probability per
unit time for the ionization of a highly excited atom by incident atoms is equal to
N〈|v− va|

∫

ε≥J dσ 〉, where N is the number density of incident atoms. Division

of this value on the flux Nva of incident atoms leads to formula (16.32).
Let us show formula (16.32). We have, for a change of the electron energy

resulting from a collision with an atom,


ε � P 2

2μ
− (P −
p)2

2μ
� va
p− 
p2

2μ
,

whereP � μva is the nuclear momentum before collision,μ is the nuclear reduced
mass, and 
p is the change of the electron momentum. The last value is equal to


p � 2 |v − va| sin ϑ

2
,
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Figure 16.8. The cross section of the electron–nitrogen molecule elastic scattering (solid
curve) and the ionization cross section of a highly excited deuterium atom with nitrogen
molecule (open circles) at identical collisional velocities of electrons.

where ϑ is the scattering angle for electron–atom collision. Let us consider the
case

va 
 v ∼ 1/n,

where n is the principal quantum number of the highly excited electron [J �
1/(2n2)]. In this case the energy change is equal to 
ε � va
p � v2

a(1− cosϑ).
Then the relation 
ε ≥ J is fulfilled for scattering angles which give the main
contribution to the electron–atom elastic cross section, and the ionization cross
section is equal to

σion � σea, va 
 1/n, (16.33)

where σea �
∫
dσ is the electron–atom elastic cross section. As a demonstration

of this result, Fig. 16.8 compares the cross section of a highly excited deuterium
atom resulting from collision with a nitrogen molecule and the cross section of the
electron–nitrogen molecule elastic scattering. One can see the same character of
the dependence on the collision energies for these cross sections.

16.7 Electron Attachment to Molecules

This process has a resonant character and results from electron capture on an
autodetachment term of the negative ion. Hence, this process is effective at the
favorable positions of electron terms of the molecule and its negative ion. As a
demonstration of this, Table 16.1 contains the values of the rate constants for
the attachment of thermal electrons to halomethane molecules. Although these
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Table 16.1. The rate constants of electron attachment to halomethane molecules at room
temperature.

Molecule Rate constant, cm3/s Molecule Rate constant, cm3/s

CH3Cl < 2 · 10−15 CF2Cl2 1.6 · 10−9

CH2Cl2 5 · 10−12 CFCl3 1.9 · 10−7

CHCl3 4 · 10−9 CF3Br 1.4 · 10−8

CHFCl2 4 · 10−12 CF2Br2 2.6 · 10−7

CH3Br 7 · 10−12 CFBr3 5 · 10−9

CH2Br2 6 · 10−8 CF3I 1.9 · 10−7

CH3I 1 · 10−7 CCl4 3.5 · 10−7

CF4 < 1 · 10−16 CCl3Br 6 · 10−8

CF3Cl 1 · 10−13

Figure 16.9. Positions of the molecule and negative ion electron terms during electron
attachment to (a) a molecule, and (b) the spectrum of captured electrons.

molecules have a similar or close structure, the difference of these rate constants
shows their dependence on the fine elements of interaction in these molecules and
their negative ions that determine the positions of their electron terms.

Figure 16.9 represents the typical positions of the electron terms which partake
in the electron attachment process. This process proceeds in three stages which in-
clude the electron capture in an autodetachment state, development of the forming
negative ion, and the decay of the autodetachment state. Positions of the electron
terms of Fig. 16.9 are typical for diatomic molecules and lead to the following



16.7 Electron Attachment to Molecules 431

expression for the electron attachment cross section

σat � πh̄2

2mε

∫
�2(R) |ϕo(R)|2 dR

[ε − E(R)]2 + �2(R)/4
exp

[
−
∫

�(R) dt/h̄

]
, (16.34)

where R is the nuclear coordinate which is responsible for the electron attachment
process, ε is the electron energy, me is the electron mass, �(R) is the width of the
autodetachment state, E(R) is the excitation energy for the autodetachment state
at a given nuclear coordinate, and ϕo(R) is the nuclear wave function. The value
|ϕo(R)|2 dR is the probability of finding the nuclear coordinate in an interval from
R to R + dR.

The basis of formula (16.34) is the Breight–Wigner formula for the resonant
process, and the last factor exp

[− ∫ �(R) dt/h̄
]
is the probability of survival for

the autodetachment state in the course of its evolution. In the case of diatomic
molecules, when the rate of this process is small in thermal collisions, the survival
probability is small. For example, for the process

e +H2 → H +H−,

when the resonance in the electron attachment corresponds to the electron energy
is at 4 eV, the survival probability at this electron energy is equal to 3 · 10−6±0.2.

The small probability of survival of the autodetachment state in the course of
its evolution leads to a strong dependence of the electron attachment cross section
on the vibrational temperature of the molecule. In addition, the electron energy at
which the cross section has a maximum, decreases with excitation of the molecule.
For example, the process

e +O2 → O +O−

is characterized by the resonance at the electron energy 6.7 eV at room temperature
of the molecules, and the maximum cross section is 1.2 · 10−18 cm2. An increase
in the molecular temperature up to 1930 K shifts the energy of the cross section
maximum to about 5.7 eV, and the maximum cross section becomes about 4 ·
10−18 cm2 at this molecular temperature. Note that only 21% of molecules are
excited vibrationally at this molecular temperature. In the case when the oxygen
molecule is found in the metastable electron state 1
g whose excitation energy
is 1 eV, the maximum cross section of electron attachment is approximately 6 ·
10−18 cm2 and corresponds to the electron energy 5.7 eV. The resonance width in
the electron attachment cross section increases with excitation of the molecule.

Let us consider the case when the electron attachment process is effective in
thermal collisions. The molecules for which it takes place are used for the protec-
tion of power electric systems from electrical breakdown. Therefore, the electron
attachment to such molecules is well studied. The effective electron attachment is
possible if the molecular electron term and the electron term of the autodetachment
negative ion are intersected near the bottom of the molecular potential well. This
takes place for some complex molecules (see Table 16.1), in particular, the rate
constant of electron attachment to the SF6 molecule at room temperature is equal
to 2.5 · 10−7 cm3/s. Because of the profitable positions of electron terms in these
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cases, the survival probability of the autodetachment term during its evolution to
a stable state is close to unity, and the electron attachment cross section is equal
to the electron capture on an autodetachment term, that is,

σat � πh̄2

2meε

∫
�2(R) |ϕo(R)|2 dR

[ε − E(R)]2 + �2(R)/4
. (16.35)

We now consider the limiting case when ε 
 �(R) and the energy difference
for the transition terms is linear with respect to the reaction coordinate R, i.e.,

ε − E(R) � E′R(R − Rc),

whereRc is the point of intersection of terms. Then in the limit of small � we have
for the capture cross section

σat � π2h̄2

meε

�(Ro) |ϕo(Ro)|2
E′R

, (16.36)

where the resonance pointRo is given by ε � E(Ro) � E′R(Ro−Rc). In the region
of a weak dependence of the formula (16.36) parameters on the electron energy
we have

σat ∼ 1/ε.

At small electron energies according to the Wigner threshold law we have, for
attachment of the s-electron, � ∼ √

ε, σat ∼ 1/
√
ε, i.e., the rate constant of

electron attachment ko � vσat (v is the electron velocity) does not depend on the
electron energy in this limiting case. Combining these energy dependencies for
the electron attachment cross section we have, for the rate constant of the electron
attachment process,

kat � ko√
1+ ε

ε1

. (16.37)

In particular, in the case of electron attachment to the SF6-molecule the parameters
of this formula are

ko � (4.6± 0.6) · 10−7 cm3/s, ε1 � 6± 2 meV.

Analyzing the character of this process, we consider symmetric or almost sym-
metric molecules such as SF6 or halomethane such molecules as CX4, CXkY4−k
where X, Y are halogen atoms. These molecules are characterized by a certain
symmetry with respect to the transposition of halogen atoms. Evidently, the elec-
tron wave function of the ground molecular state is symmetric with respect to such
transpositions, as well as the ground state of the negative ion of this molecule. This
means that the capture of an s-electron leads to the formation of the ground elec-
tron state of the negative ion. Usually these molecules have stable negative ions.
Because the electron capture results in the formation of an autodetachment state
of the negative ion, one can conclude that compression of this negative ion leads
to a decrease in the electron binding energy up to the intersection of its electron
term and its molecular electron term.
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Figure 16.10. Positions of the electon terms for complex molecules which form a stable
negative ion and are characterized by a high electron attachment rate in thermal collisions.

Possible positions of the electron terms in this case are given in Fig. 16.10.
The evolution of a forming autodetachment state of the negative ion proceeds
such that all the distances between the central atom and halogen atom remain
identical, i.e., the reaction coordinate R is the distance from the central atom to
a halogen atom in this case. Next, because the intersection of the electron terms
of the molecule and negative ion ground states proceeds left from the bottom of
the potential well, the efficiency of this process can increase with an increase in
the molecular temperature. For example, the rate constant of attachment of an
ultraslow electron to the SF6 molecule is ko � (1.7 ± 0.3) · 10−7 cm3/s at low
vibrational temperatures below 100 K, when the molecule is found in the ground
vibrational state, and ko � (10± 2) · 10−7 cm3/s at vibrational temperatures above
400 K when the temperature dependence of the rate constant becomes weak.

Problems

Problem 16.1. Determine the width of the autodetachment electron term near the
intersection point of the boundary of continuous spectra for the electron term of
a quasi-molecule consisting of an atom and a negative ion. Use the conditions of
Problem 10.9 of a short-range interaction of the valent electron with each atom.

Use the relation for the electron binding energy, which is obtained in Problem 10.9,

α − κ − 1

R
exp(−αR) � 0,

where α2/2 is the electron binding energy and κ is the logarithmic derivation of
the electron wave function near each atom. The intersection with the boundary of
continuous spectra (α � 0) takes place at a distance Rc between nuclei Rc � 1/κ .
Let us expand the above relation over a small parameter αR near the intersection
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point. Expanding e−αR , and accounting for terms up to (αR)3, we obtain

−κ + 1

R
+ α2R

2
− α3R2

6
� 0.

Then, introducing the energy of the autodetachment state as Ea � −α2/2, we
obtain in the first approximation Ea � (Rc − R)/R3

c . In the next approximation,
taking into account the term∼ (αR)3 in the above relation we have, for the energy
of the autodetachment state,

E � Ea + i�, where � �
√

2

3
R2

cE
3/2
a .

As is seen in this case, � � Ea .

Problem 16.2. Determine the spectrum of released electrons as a result of the
detachment of a negative ion in slow collisions with atoms.

We use that the decay at a given distance between nuclei leads to the formation of a
free electron whose energy is equal to the excitation energy of the autodetachment
state Ea , i.e., it is the difference between the energy of a given electron term and
the boundary of continuous spectra. Let us introduce the probability of decay of
the autodetachment state up to time t :

P � 1− exp

(
−
∫ t

0
� dt ′

)
,

where �(R) is the width of the autodetachment term. From this we have, for the
energy distribution function of released electrons,

f (ε) dε � dP

dt
dε/

dEa

dt
� � dε

vR |dEa/dR| exp

(
−
∫ ε

0

�dε′

vR |dEa/dR|
)
,

where vR � dR/dt . In particular, using the results of the previous problem (ε �
Ea, � � (

√
2/3)R2

cE
3/2
a ), we have (dEa/dR � −1/R3

c ),

f (ε) dε � 5

2
Cε3/2 dε exp(−Cε5/2), where C � 2

√
2

15
R5

c /vR.

Problem 16.3. Determine the cross section of ionization of a highly excited atom
in collisions with a resonantly excited atom.

Based on formula (16.30) for the ionization cross section, we use the Kramers
formula (Problem 6.5) for the photoionization cross section

σph � 16π

3
√

3
· 1

n5ω3
,

where n is the principal quantum number of a highly excited atom and ω is the
photon frequency. From this we have, for the ionization cross section,

σion � 9

ω2n2
·
(
f

v

)2/5

,
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where f is the oscillator strength for transition between the ground and resonantly
excited states of the first (quenched) atom.

Problem 16.4. Analyze the role of elastic scattering in the ionization of atomic
particles resulting from collisions with an He(21P )-atom.

At small collision energies the capture of particles leads to their approach. Because
of a strong interaction at small distances between colliding particles, this can lead
to an effective decay of an autoionization state. Let us evaluate this part of the
process by presenting the decay cross section in the form

σion � ξσcap,

where ξ is the probability of decay at a close approach and the capture cross
section is given by formula (13.17). We take the interaction potential in the form
U (R) � CR−6, and the van der Waals constant is equal to, in this case according
to formula (10.12), C � α · (r2

)
oo

where α is the polarizability of the ionizing
atom, the value

(
r2
)
oo

relates to the excited electron. Thus we have, for the capture
cross section,

σcap � 3π

2

[
2α · (r2

)
oo

ε

]1/3

,

where ε is the collision energy. Averaging this cross section over the Maxwell
distribution of atoms, we obtain

σc � 〈vσcap〉
〈v〉 � 5.36

[
2α · (r2

)
oo

T

]1/3

.

Table 16.2 contains the comparison of this cross section and the ionization
cross section (16.30) which is obtained by neglecting the elastic scattering of the
colliding particles. This comparison is made at the gaseous temperature 1000 K.
This demonstrates that both mechanisms of ionization must be taken into account
under related conditions.

Table 16.2. The cross sections of some processes at the temperature 1000 K. Here σph is the
photoionization cross section which is included in formula (16.30), σion is the ionization
cross section of the process He(21P )+A→ He(11S)+A++e in accordance with formula
(16.30) which is averaged over the Maxwell distribution of atoms and σc is the averaging
cross sections of capture for these particles.

A Ar Kr Xe H2 N2 O2

σph, 10−17 cm2 3.5 3.8 3.2 0.6 2 2

σion, 10−15 cm2 8.6 8.9 8.4 2.6 6.9 6.9

σc, 10−15 cm2 10.8 12.4 14.5 8.5 11 10.6
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