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Preface to the Second Edition

The first edition of this book was published in 1998 and we were pleased that it was well received. It has

been used in over 25 countries as a text for courses in physics, chemistry and engineering, and it has been

translated into French, Italian, Japanese, Portuguese and Russian. Thermodynamics as formulated in the

twentieth century, what we chose to call ‘Modern Thermodynamics’ is a theory of irreversible processes in

contrast to nineteenth century thermodynamics, which is a theory of states. In the latter, thermodynamics is

confined to initial and final states, the processes that transform a state are not central to the theory; they are

treated as another subject, ‘kinetics’. In Modern Thermodynamics, however, entropy-increasing irreversible

processes are central to the theory. In it, we find additional tools, such as the rate of entropy production, to

characterize and analyze nonequilibrium systems, and new results, such as the Onsager reciprocal relations,

that are applicable to the thermoelectric effect, thermal diffusion and other cross-effects.

The context in which thermodynamics is being taught is rapidly changing. Therefore we have added new

sections to chapters, which show more applications of the subject. The following is a partial list. In Chapter 2

we have included ‘energy flows’ in turbines and jet engines, and basics of renewable energies such as solar and

wind energy. We have also included a description of the hurricane as a heat engine in Chapter 3. Chapter 11

now has sections on nonequilibrium electromagnetic radiation. In Chapter 19, we have included rates of

entropy production in dissipative structures. In response to suggestions by users of this text, we have included

a chapter on Statistical Thermodynamics, which makes this text self-contained by the inclusion of derivations

of heat capacities of solids and Planck’s law of blackbody radiation. Several other changes have been made

to improve the presentation of the concepts.

Entropy and entropy-producing irreversible processes are generally thought of as agents of disorder. A

central message of this book is that, under far-from-equilibrium conditions, irreversible processes are, in

fact, the drivers of self-organization and order we see all around us in Nature. These emergent structures,

called dissipative structures, are distinct from machines and are a good thermodynamic basis on which we

may begin to build a theory of biological organisms. It is an important direction for future developments in

thermodynamics. We have included a section on this topic in the final chapter.



Preface to the First Edition
Why Thermodynamics?

I

Since half a century ago, our view of Nature has changed drastically. Classical science emphasized equilibrium

and stability. Now we see fluctuations, instability, evolutionary processes on all levels from chemistry and

biology to cosmology. Everywhere we observe irreversible processes in which time symmetry is broken. The

distinction between reversible and irreversible processes was first introduced in thermodynamics through the

concept of ‘entropy’, the arrow of time, as Arthur Eddington called it. Therefore our new view of Nature leads

to an increased interest in thermodynamics. Unfortunately, most introductory texts are limited to the study of

equilibrium states, restricting thermodynamics to idealized, infinitely slow reversible processes. The student

does not see the relationship between irreversible processes that naturally occur, such as chemical reactions

and heat conduction, and the rate of increase of entropy. In this text, we present a modern formulation of

thermodynamics in which the relation between the rate of increase of entropy and irreversible processes is

made clear from the very outset. Equilibrium remains an interesting field of inquiry but in the present state

of science, it appears essential to include irreversible processes as well.

It is the aim of this book to give a readable introduction to present-day thermodynamics, starting with

its historical roots as associated with heat engines but including also the thermodynamic description of far-

from-equilibrium situations. As is well known today, far-from-equilibrium situations lead to new space–time

structures. For this reason the restriction to equilibrium situations hides, in our opinion, some essential features

of the behavior of matter and energy. An example is the role of fluctuations. The atomic structure of matter

leads to fluctuations. However, at equilibrium or near equilibrium, these fluctuations are inconsequential.

Indeed a characteristic feature of equilibrium thermodynamics is the existence of extremum principles.

For isolated systems entropy increases and is therefore maximum at equilibrium. In other situations (such

as constant temperature) there exist functions called thermodynamic potentials which are also extrema (that

is maximum or minimum) at equilibrium. This has important consequences. A fluctuation that leads to a

temporal deviation from equilibrium is followed by a response that brings back the system to the extremum

of the thermodynamic potential. The equilibrium world is also a stable world. This is no longer so in far-

from-equilibrium situations. Here fluctuations may be amplified by irreversible dissipative processes and lead

to new space–time structures which one of us (I. Prigogine) has called ‘dissipative structures’ to distinguish

them from ‘equilibrium’ structures such as crystals. Therefore distance from equilibrium becomes a parameter

somewhat similar to temperature. When we lower the temperature, we go from the gaseous state to a liquid

and then a solid. As we shall see, here the variety is even greater. Take the example of chemical reactions.

Increasing the distance from equilibrium we may obtain in succession oscillatory reactions, new spatial

periodic structures and chaotic situations in which the time behavior becomes so irregular that initially close

trajectories diverge exponentially.

One aspect is common to all these nonequilibrium situations, the appearance of long-range coherence.

Macroscopically distinct parts become correlated. This is in contrast to equilibrium situations where the range

of correlations is determined by short-range intermolecular forces. As a result, situations that are impossible to
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realize at equilibrium become possible in far-from-equilibrium situations. This leads to important applications

in a variety of fields. We can produce new materials in nonequilibrium situations where we escape from the

restrictions imposed by the phase rule. Also, nonequilibrium structures appear at all levels in biology. We

give some simple examples in Chapters 19 and the postface. It is now generally admitted that biological

evolution is the combined result of Darwin’s natural selection as well as of self-organization, which results

from irreversible processes.

Since Ludwig Boltzmann (1844–1906) introduced a statistical definition of entropy in 1872, entropy

is associated with disorder. The increase of entropy is then described as an increase of disorder, as the

destruction of any coherence that may be present in the initial state. This has unfortunately led to the view that

the consequences of the Second Law are self-evident, are trivial. This is, however, not true even for equilibrium

thermodynamics, which leads to highly nontrivial predictions. Anyway, equilibrium thermodynamics covers

only a small fraction of our everyday experience. We now understand that we cannot describe Nature around

us without an appeal to nonequilibrium situations. The biosphere is maintained in nonequilibrium through

the flow of energy coming from the Sun and this flow is itself the result of the nonequilibrium situation of

our present state of the universe.

It is true that the information obtained from thermodynamics both for equilibrium and nonequilibrium

situations is limited to a few general statements. We have to supplement them by the equation of state at equi-

librium or the rate laws, such as chemical reaction rates. Still the information we obtain from thermodynamics

is quite valuable precisely because of its generality.

II

Our book is subdivided into five parts. The first, Chapters 1 to 4, deals with the basic principles. The systems

considered in thermodynamics are large systems (the number of particles N is a typical Avogadro number).

Such systems are described by two types of variables, variables such as pressure or temperature, which

are independent of the size of the system and are called ‘intensive’ variables, and variables such as the total

energy, which are proportional to the number of particles (‘extensive variables’). Historically thermodynamics

started with empirical observations concerning the relation between these variables (e.g. the relation between

pressure and volume). This is the main subject of Chapter 1. However, the two conceptual innovations of

thermodynamics are the formulation of the ‘First Law’ expressing conservation of energy (Chapter 2) and of

the ‘Second Law’ introducing entropy (Chapter 3).

Ignis mutat res. Fire transforms matter; fire leads to chemical reactions, to processes such as melting and

evaporation. Fire makes fuel burn and release heat. Out of all this common knowledge, nineteenth century

science concentrated on the single fact that combustion produces heat and that heat may lead to an increase

in volume; as a result, combustion produces work. Fire leads, therefore, to a new kind of machine, the heat

engine, the technological innovation on which industrial society has been founded.

What is then the link between ‘heat’ and ‘work’? This question was at the origin of the formulation of the

principle of energy conservation. Heat is of the same nature as energy. In the heat engine, heat is transferred

into work but energy is conserved.

However, there was more. In 1811 Baron Jean-Joseph Fourier, the Prefect of Isère, won the prize of the

French Academy of Sciences for his mathematical description of the propagation of heat in solids. The result

stated by Fourier was surprisingly simple and elegant: heat flow is proportional to the gradient of temperature.

It is remarkable that this simple law applies to matter, whether its state is solid, liquid or gaseous. Moreover,

it remains valid whatever the chemical composition of the body, whether it is iron or gold. It is only the

coefficient of proportionality between the heat flow and the gradient of temperature that is specific to each

substance.
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Fourier’s law was the first example describing an irreversible process. There is a privileged direction of

time as heat flows according to Fourier’s law, from higher to lower temperature. This is in contrast with the

laws of Newtonian dynamics in which the past and future play the same role (time enters only in Newton’s law

through a second derivative, so Newton’s law is invariant in respect to time inversion). As already mentioned,

it is the Second Law of thermodynamics that expresses the difference between ‘reversible’ and irreversible

processes through the introduction of entropy. Irreversible processes produce entropy.

The history of the two principles of thermodynamics is a most curious one. Born in the middle of

technological questions, they acquired rapidly a cosmological status. Let us indeed state the two principles

as formulated by Rudolph Clausius (1822–1888) in the year 1865:

The energy of the universe is constant.

The entropy of the universe approaches a maximum.

It was the first evolutionary formulation of cosmology. This was a revolutionary statement as the existence

of irreversible processes (and therefore of entropy) conflicts with the time-reversible view of dynamics. Of

course, classical dynamics has been superseded by quantum theory and relativity. However, this conflict

remains because, in both quantum theory and relativity, the basic dynamical laws are time-reversible.

The traditional answer to this question is to emphasize that the systems considered in thermodynamics

are so complex (they contain a large number of interacting particles) that we are obliged to introduce

approximations. The Second Law of thermodynamics would have its roots in these approximations! Some

authors go so far as to state that entropy is only the expression of our ignorance!

Here again the recent extension of thermodynamics to situations far-from-equilibrium is essential. As we

mentioned already, irreversible processes lead then to new space–time structures. They therefore play a basic

constructive role. No life would be possible without irreversible processes (see Chapter 19). It seems absurd

to suggest that life would be the result of our approximations! We can therefore not deny the reality of entropy,

the very essence of an arrow of time in nature. We are the children of evolution and not its progenitors.

Questions regarding the relation between entropy and dynamics have received great attention recently but

they are far from simple. Not all dynamical processes require the concept of entropy. The motion of the Earth

around the Sun is an example in which irreversibility (such as friction due to tides) can be ignored and the

motion described by time symmetric equations. However, recent developments in nonlinear dynamics have

shown that such systems are exceptions. Most systems exhibit chaos and irreversible behavior. We begin to

be able to characterize the dynamical systems for which irreversibility is an essential feature leading to an

increase in entropy.

Let us go back to our book. In our presentation a central role is played by entropy production. As we show

in Chapter 15, entropy production can be expressed in terms of thermodynamic flows Ji and thermodynamic

forces Xi. An example is heat conduction where Ji is the flow of heat and Xi the gradient of temperature. We

can now distinguish three stages. At equilibrium both the flows and the forces vanish. This is the domain of

traditional thermodynamics. It is covered in Chapters 5 to 11. The reader will find many results familiar from

all textbooks on thermodynamics. However, some subjects neglected in most textbooks are treated here. An

example is thermodynamic stability theory, which plays an important role both at equilibrium and out from

equilibrium. This forms the second part of the book.

Thermodynamic theory of stability and fluctuation, which originated in the work of Gibbs, is the subject

of Chapters 12 to 14. Here, first we go through the classical theory of stability, as Gibbs formulated it,

which depends on thermodynamic potentials. We then discuss the theory of stability in terms of the modern

theory of entropy production, which is more general than the classical theory. This gives us the foundation

for the study of stability of nonequilibrium systems discussed in the later part of the book. We then turn to

the thermodynamic theory of fluctuations, which has its origin in Einstein’s famous formula that relates the
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probability of a fluctuation to a decrease in entropy. This theory also gives us the basic results that will later

lead us to Onsager’s reciprocal relations, discussed in Chapter 16.

The fourth part, Chapters 15 to 17, is devoted to the neighborhood of equilibrium, which is defined by

linear relations between flows and forces (such as realized in Fourier’s law). This is a well-explored field

dominated by Onsager’s reciprocity relations. Indeed in 1931, Lars Onsager discovered the first general

relations in nonequilibrium thermodynamics for the linear, near-equilibrium region. These are the famous

‘reciprocal relations’. In qualitative terms, they state that if a force, say ‘one’ (corresponding, for example,

to a temperature gradient), may influence a flux ‘two’ (for example a diffusion process), then force ‘two’ (a

concentration gradient) will also influence the flux ‘one’ (the heat flow).

The general nature of Onsager’s relations has to be emphasized. It is immaterial, for instance, whether the

irreversible processes take place in a gaseous, liquid or solid medium. The reciprocity expressions are valid

independently of any microscopic assumptions.

Reciprocal relations have been the first results in the thermodynamics of irreversible processes to indicate

that this was not some ill-defined no-man’s-land but a worthwhile subject of study whose fertility could be

compared with that of equilibrium thermodynamics. Equilibrium thermodynamics was an achievement of the

nineteenth century, nonequilibrium thermodynamics was developed in the twentieth century and Onsager’s

relations mark a crucial point in the shift of interest away from equilibrium toward nonequilbrium.

It is interesting to notice that now the flow of entropy, even close to equilibrium, irreversibility can no

longer be identified with the tendency to disorder. We shall give numerous examples in the text, but let us

already illustrate this conclusion in a simple situation corresponding to thermal diffusion. We take two boxes

connected by a cylinder, we heat one box and cool the other. Inside the box there is a mixture of two gases,

say hydrogen and nitrogen. We then observe that, at the steady state, the concentration of hydrogen is higher

in one box, of nitrogen in the other. Irreversible processes here cause the flow of heat to produce both disorder

(‘thermal motion’) and order (separation of the two components). We see that a nonequilibrium system may

evolve spontaneously to a state of increased complexity. This constructive role of irreversibility becomes ever

more striking in far-from-equilibrium situations to which we now turn.

The main novelty is that in far-from-equilibrium situations, which correspond to the third stages of

thermodynamics, there is in general no longer any extremum principle (Chapters 18 and 19). As a result,

fluctuations are no longer necessarily damped. Stability is no longer the consequence of the general laws

of physics. Fluctuations may grow and invade the whole system. As mentioned, we have called ‘dissipative

structures’ these new spatiotemporal organizations, which may emerge in far-from-equilibrium situations.

These dissipative structures correspond to a form of supramolecular coherence involving an immense number

of molecules. In far-from-equilibrium situations we begin to observe new properties of matter that are hidden

at equilibrium.

We already mentioned the constructive role of irreversibility and the appearance of long-range correlations

in far-from-equilibrium systems. Let us add also ‘unpredictability’ because the new nonequilibrium states

of matter appear at so-called bifurcation points where the system may in general ‘choose’ between various

states. We are far from the classical description of nature as an automaton.

One often speaks of ‘self-organization’. Indeed, as there are generally a multitude of dissipative structures

available, molecular fluctuations determine which one will be chosen. We begin to understand the enormous

variety of structures we observe in the natural world. Today the notion of dissipative structures and of self-

organization appear in a wide range of fields from astrophysics up to human sciences and the economy.

We want to quote a recent report to the European Communities due to C.K. Biebracher, G. Nicolis and

P. Schuster:

The maintenance of the organization in nature is not – and cannot be – achieved by central management;

order can only be maintained by self-organization. Self-organizing systems allow adaptation to the pre-

vailing environment, i.e., they react to changes in the environment with a thermodynamic response which
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makes the systems extraordinarily flexible and robust against perturbations of the outer conditions. We

want to point out the superiority of self-organizing systems over conventional human technology which

carefully avoids complexity and hierarchically manages nearly all technical processes. For instance, in

synthetic chemistry, different reaction steps are usually carefully separated from each other and contri-

butions from the diffusion of the reactants are avoided by stirring reactors. An entirely new technology

will have to be developed to tap the high guidance and regulation potential of self-organizing systems

for technical processes. The superiority of self-organizing systems is illustrated by biological systems

where complex products can be formed with unsurpassed accuracy, efficiency and speed.

(From C.F. Biebricher, G. Nicolis and P. Schuster, Self-Organization in the Physico-Chemical and Life
Sciences, 1994, Report on Review Studies, PSS 0396, Commission of the European Communities,

Director General for Science, Research and Development)

III

This book is aimed to be an introductory text. No previous familiarity with thermodynamics is assumed.

Interested readers are invited to consult more specialized texts. For this reason we have excluded a number

of interesting problems often associated with ‘extended thermodynamics’. These are the questions that deal

with strong gradients or with very long time scales when memory effects have to be included. Every theory

is based on idealizations, which have a limited domain of validity. In our presentation the assumption is that

at least local quantities such as temperature and pressure take well-defined values. More precisely this is

called the ‘local equilibrium assumption’, which is a reasonable approximation for the phenomena studied in

this book.

Science has no final form and is moving away from a static geometrical picture towards a description in

which evolution and history plays an essential role. For this new description of nature, thermodynamics is

basic. This is the message our book wants to transmit to the reader.
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Notes for Instructors

The first 11 chapters and Chapter 20 (statistical thermodynamics) are intended for a one-semester introductory

undergraduate course on modern thermodynamics for students in physics, chemistry and engineering. Not

all chapters are meant to be for all the three branches; the instructor may drop a few chapters to emphasize

others. Exercises in each chapter are chosen to illustrate applications of the subject in many areas. In the

current research environment, interdisciplinary research is becoming increasingly important. It is therefore

important to make the students aware of a wide variety of applications of thermodynamics at an early stage.

Chapters 12 to 19 are meant for an advanced undergraduate or a graduate course in thermodynamics.

For these chapters a good knowledge of vector calculus is assumed. These chapters do not include worked

examples. The exercises are designed to give the student a deeper understanding of the topics and practical

applications.

Throughout the text, the reader is encouraged to use Mathematica* or Maple† to do tedious calculations

or look at complex physicochemical situations. Appendix 1.2 in the first chapter introduces the reader to the

use of Mathematica.

[Supplementary Online Material]

Full solutions to exercises, PowerPoint slides of all figures, Data Tables and Answers to Exercises, are

available for instructors as PDF files at:

http://sites.google.com/site/modernthermodynamics/

These supplementary website files are password protected. Instructors can obtain the password by sending a

request to Professor Kondepudi at dilip@wfu.edu. The above website also contains other useful thermody-

namic information related to the book.

*Mathematica is the registered trademark of Wolfram Research Inc.
†Maple is the registered trademark of Waterloo Maple Inc.
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ΔH0
f

standard enthalpy of formation

ΔHr enthalpy of a reaction

ΔHfus enthalpy of fusion

ΔHvap enthalpy of vaporization

H‡ transition-state enthalpy

I electric current

Jk thermodynamic flow

k rate constant

kB Boltzmann constant

K(T) equilibrium constant at temperature T
Ki Henry’s constant of i
mk molality, concentration (in moles of

solute/kilogram of solvent)

m0 standard state molality

Mk molar mass of component k
nk concentration (mol m−3)

N molar amount of substance
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1
Basic Concepts and the Laws of Gases

Introduction

Adam Smith’s Wealth of Nations was published in the year 1776, seven years after James Watt (1736–1819)

had obtained a patent for his version of the steam engine. Both men worked at the University of Glasgow.

Yet, in Adam Smith’s great work the only use for coal was in providing heat for workers [1]. The machines

of the eighteenth century were driven by wind, water and animals. Nearly 2000 years had passed since Hero

of Alexandria made a sphere spin with the force of steam, but still the power of fire to generate motion and

drive machines remained hidden. Adam Smith (1723–1790) did not see in coal a buried wealth of nations.

The steam engine revealed a new possibility. While wind, water and animals converted one form of

motion to another, the steam engine was fundamentally different: it converted heat to mechanical motion.

Its enormous impact on civilization not only heralded the industrial revolution but also gave birth to a new

science: thermodynamics. Unlike the science of Newtonian mechanics, which had its origins in theories of

motion of heavenly bodies, thermodynamics was born out of a more practical interest: generating motion

from heat.

Initially, thermodynamics was the study of heat and its potential to generate motion; then it merged with

the larger subject of energy and its interconversion from one form to another. With time, thermodynamics

evolved into a theory that describes transformations of states of matter in general, motion generated by heat

being a consequence of particular transformations. It is founded on essentially two fundamental laws, one

concerning energy and the other entropy. A precise definition of energy and entropy, as measurable physical

quantities, will be presented in Chapters 2 and 3 respectively. In these chapters, we will also touch upon the

remarkable story behind the formulation of these two concepts. In the following two sections we will give

an overview of thermodynamics and familiarize the reader with the terminology and concepts that will be

developed in the rest of the book.

Every system is associated with an energy and an entropy. When matter undergoes transformation from one

state to another, the total amount of energy in the system and its exterior is conserved; total entropy, however,

can only increase or, in idealized cases, remain unchanged. These two simple-sounding statements have far-

reaching consequences. Max Planck (1858–1947) was deeply influenced by the breadth of the conclusions

that can be drawn from them and devoted much of his time to the study of thermodynamics. In reading this

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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book, I hope the reader will come to appreciate the significance of the following often-quoted opinion of

Albert Einstein (1879–1955):

A theory is more impressive the greater the simplicity of its premises is, the more different kinds of

things it relates, and the more extended its area of applicability. Therefore the deep impression which

classical thermodynamics made upon me. It is the only physical theory of universal content concerning

which I am convinced that, within the framework of the applicability of its basic concepts, it will never

be overthrown.

The thermodynamics of the nineteenth century, which so impressed Planck and Einstein, described static

systems that were in thermodynamic equilibrium. It was formulated to calculate the initial and final entropies

when a system evolved from one equilibrium state to another. In this ‘Classical Thermodynamics’ there was

no direct relationship between natural processes, such as chemical reactions and conduction of heat, and

the rate at which entropy changed. During the twentieth century, Lars Onsager (1903–1976), Ilya Prigogine

(1917–2003) and others extended the formalism of classical thermodynamics to relate the rate of entropy

change to rates of processes, such as chemical reactions and heat conduction. From the outset, we will take the

approach of this ‘Modern Thermodynamics’ in which thermodynamics is a theory of irreversible processes,

not merely a theory of equilibrium states. Equipped with a formalism to calculate the rate of entropy changes,

Modern Thermodynamics gives us new insight into the role of irreversible processes in Nature.

1.1 Thermodynamic Systems

A thermodynamic description of natural processes usually begins by dividing the world into a ‘system’

and its ‘exterior’, which is the rest of the world. This cannot be done, of course, when one is considering

the thermodynamic nature of the entire universe; however, although there is no ‘exterior’, thermodynamics

can be applied to the entire universe. The definition of a thermodynamic system depends on the existence

of ‘boundaries’, boundaries that separate the system from its exterior and determine the way the system

interacts with its exterior. In understanding the thermodynamic behavior of a system, the manner in which it

exchanges energy and matter with its exterior is important. Therefore, thermodynamic systems are classified

into three types: isolated, closed and open systems (Figure 1.1) according to the way they interact with the

exterior.

Isolated systems do not exchange energy or matter with the exterior. Such systems are generally considered

for pedagogical reasons, while systems with an extremely slow exchange of energy and matter can be realized

in a laboratory. Except for the universe as a whole, truly isolated systems do not exist in Nature.

Closed systems exchange energy but not matter with their exterior. It is obvious that such systems can

easily be realized in a laboratory. A closed flask of reacting chemicals that is maintained at a fixed temperature

is a closed system. The Earth, on a time-scale of years, during which it exchanges negligible amounts of

matter with its exterior, may be considered a closed system; the Earth only absorbs solar energy and emits it

back into space.

Open systems exchange both energy and matter with their exterior. All living and ecological systems are

open systems. The complex organization in open systems is a result of exchange of matter and energy and

the entropy generating irreversible processes that occur within.

In thermodynamics, the state of a system is specified in terms of macroscopic state variables, such as

volume, V, pressure, p, temperature, T, and moles, Nk, of chemical constituent k, which are self-evident. These

variables are adequate for the description of equilibrium systems. When a system is not in thermodynamic
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Figure 1.1 Isolated, closed and open systems. Isolated systems exchange neither energy nor matter with the
exterior. Closed systems exchange heat and mechanical energy but not matter with the exterior. Open systems
exchange both energy and matter with the exterior.

equilibrium, more variables, such as the rate of convective flow or of metabolism, may be needed to describe

it. The two laws of thermodynamics are founded on the concepts of energy, U, and entropy, S, which, as we

shall see, are functions of state variables.
Since the fundamental quantities in thermodynamics are functions of many variables, thermodynamics

makes extensive use of multivariable calculus. Functions of state variables, such as U and S, are multivariable

functions and are called state functions. A brief summary of some basic properties of functions of many

variables is given in Appendix A1.1 (at the end of this chapter).

It is convenient to classify thermodynamic variables into two categories. Variables such as volume V and

amount of a substance Nk (moles), which indicate the size of the system, are called extensive variables.
Variables such as temperature T and pressure p, which specify a local property and do not indicate the system’s

size, are called intensive variables.
If the temperature is not uniform, then heat will flow until the entire system reaches a state of uniform

temperature. Such a state is the state of thermal equilibrium. The state of thermal equilibrium is a special
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state towards which all isolated systems will inexorably evolve. A precise description of this state will be

given later in this book. In the state of thermal equilibrium, the values of total internal energy U and entropy

S are completely specified by the temperature T, the volume V and the amounts of the system’s chemical

constituents Nk (moles):

U = U(T , V , Nk) or S = S(T , V , Nk) (1.1.1)

The values of an extensive variable, such as total internal energy U or entropy S, can also be specified by

other extensive variables:

U = U(S, V , Nk) or S = S(U, V , Nk) (1.1.2)

As we shall see in the following chapters, intensive variables can be expressed as derivatives of one extensive

variable with respect to another. For example, we shall see that the temperature T = (𝜕U/𝜕S)V,Nk. The laws of

thermodynamics and the calculus of multivariable functions give us a rich understanding of many phenomena

we observe in Nature.

1.2 Equilibrium and Nonequilibrium Systems

It is our experience that if a physical system is isolated, its state – specified by macroscopic variables such

as pressure, temperature and chemical composition – evolves irreversibly towards a time-invariant state in

which we see no further physical or chemical change. This is the state of thermodynamic equilibrium. It is

characterized by a uniform temperature throughout the system. The state of equilibrium is also characterized

by several other physical features that we will describe in the following chapters.

The evolution of a system towards the state of equilibrium is due to irreversible processes, such as

heat conduction and chemical reactions, which act in a specific direction but not its reverse. For example,

heat always flows from a higher to a lower temperature, never in the reverse direction; similarly, chemical

reactions cause compositional changes in a specific direction, not its reverse (which, as we shall see in Chapter

4, is described using the concept of ‘chemical potential’, a quantity similar to temperature, and ‘affinity’,

a thermodynamic force that drives chemical reactions). At equilibrium, these processes vanish. Thus, a

nonequilibrium state can be characterized as one in which irreversible processes are taking place, driving the

system towards the equilibrium state. In some situations, especially during chemical transformations, the rates

at which the state is transforming irreversibly may be extremely small, and an isolated system might appear

as if it is time invariant and has reached its state of equilibrium. Nevertheless, with appropriate specification

of the chemical reactions, the nonequilibrium nature of the state can be identified.

Two or more systems that interact and exchange energy and/or matter will eventually reach the state of

thermal equilibrium in which the temperature within each system is spatially uniform and the temperature of

all the systems are the same. If a system A is in thermal equilibrium with system B and if B is in thermal

equilibrium with system C, then it follows that A is in thermal equilibrium with C. This ‘transitivity’ of

the state of equilibrium is sometimes called the zeroth law. Thus, equilibrium systems have a well-defined,

spatially uniform temperature; for such systems, the energy and entropy are functions of state as expressed

in Equation (1.1.1).

Uniformity of temperature, however, is not a requirement for the entropy or energy of a system to be well

defined. For nonequilibrium systems, in which the temperature is not uniform but is well defined locally
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at every point x, we can define densities of thermodynamic quantities such as energy and entropy. Thus, the

energy density, u, at the location x,

u[T(x), nk(x)] = internal energy per unit volume (1.2.1)

can be defined in terms of the local temperature T(x) and the concentrations

nk(x) = moles of constituent k per unit volume (1.2.2)

Similarly, an entropy density s(T, nk) can be defined. (We use a lower case letter for the densities of

thermodynamic quantities). The atmosphere of the Earth, shown in Box 1.1, is an example of a nonequilibrium

system in which both nk and T are functions of position. The total energy U, the total entropy S and the total

amount of the substance Nk are

S = ∫V
s[T(x), nk(x)]dV (1.2.3)

U = ∫V
u[T(x), nk(x)]dV (1.2.4)

Nk = ∫V
nk(x)dV (1.2.5)

In nonequilibrium (nonuniform) systems, the total energy U is no longer a function of other extensive variables

such as S, V and Nk, as in Equation (1.1.2), and obviously one cannot define a single temperature for the

entire system because it may not be uniform. In general, each of the variables, the total energy U, entropy

S, the amount of substance Nk and the volume V, is no longer a function of the other three variables, as in

Equation (1.1.2). However, this does not restrict in any way our ability to determine the entropy or energy of

a system that is not in thermodynamic equilibrium; we can determine them using the expressions above, as

long as the temperature is locally well defined.

In texts on classical thermodynamics, it is sometimes stated that entropy of a nonequilibrium system is not

defined; it only means that S is not a function of the variables U, V and Nk. If the temperature of the system

is locally well defined, then indeed the entropy of a nonequilibrium system can be defined in terms of an

entropy density, as in Equation (1.2.3).

Box 1.1 The atmosphere of the Earth

Blaise Pascal (1623–1662) explained the nature of atmospheric pressure. The pressure at any point in the

atmosphere is due to the column of air above it. The atmosphere of the Earth is not in thermodynamic

equilibrium: its temperature is not uniform and the amounts of its chemical constituents (N2, O2, Ar, CO2,

etc.) are maintained at a nonequilibrium value through cycles of production and consumption.
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1.3 Biological and Other Open Systems

Open systems are particularly interesting because in them we see spontaneous self-organization. The most

spectacular example of self-organization in open systems is life. Every living cell is an open system that

exchanges matter and energy with its exterior. The cells of a leaf absorb energy from the sun and exchange

matter by absorbing CO2, H2O and other nutrients and releasing O2 into the atmosphere. A biological open

system can be defined more generally: it could be a single cell, an organ, an organism or an ecosystem. Other

examples of open systems can be found in industry; in chemical reactors, for example, raw materials and

energy are the inputs and the desired and waste products are the outputs.
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Figure 1.2 (a) In a nonequilibrium system, the temperature T(x) and molar density nk(x) may vary with position.
The entropy and energy of such a system may be described by an entropy density s(T, nk) and an energy density
u(T, nk). The total entropy S = ∫V s[T(x),nk(x)]dV, the total energy U = ∫V u[T(x), nk(x)]dV and the total molar
amount Nk = ∫V nk(x)dV. For such a nonequilibrium system, the total entropy S is not a function of U, Nk and
the total volume V. The term diS/dt is the rate of change of entropy due to chemical reactions, diffusion, heat
conduction and other such irreversible processes; according to the Second Law, diS/dt can only be positive. In
an open system, entropy can also change due to the exchange of energy and matter; this is indicated by the
term deS/dt, which can be either positive or negative. (b) A system in contact with thermal reservoirs of unequal
temperatures is a simple example of a nonequilibrium system. The temperature is not uniform and there is a flow
of heat due to the temperature gradient. The term deS/dt is related to the exchange of heat at the boundaries in
contact with the heat reservoirs, whereas diS/dt is due to the irreversible flow of heat within the system.

As noted in the previous section, when a system is not in equilibrium, processes such as chemical reactions,

conduction of heat and transport of matter take place so as to drive the system towards equilibrium. All of

these processes generate entropy in accordance with the Second Law (see Figure 1.2). However, this does not

mean that the entropy of the system must always increase: the exchange of energy and matter may also result

in the net output of entropy in such a way that the entropy of a system is maintained at a low value.

One of the most remarkable aspects of nonequilibrium systems that came to light in the twentieth century

is the phenomenon of self-organization. Under certain nonequilibrium conditions, systems can spontaneously

undergo transitions to organized states, which, in general, are states with lower entropy. For example,

nonequilibrium chemical systems can make a transition to a state in which the concentrations of reacting

compounds vary periodically, thus becoming a ‘chemical clock’. The reacting chemicals can also spatially

organize into patterns with great symmetry. In fact, it can be argued that most of the ‘organized’ behavior

we see in Nature is created by irreversible processes that dissipate energy and generate entropy. For these

reasons, these structures are called dissipative structures [1]. Chapter 19 is devoted to this important topic,

an active field of current research. In an open system, these organized states could be maintained indefinitely,

but only at the expense of exchange of energy and matter and increase of entropy outside the system.

1.4 Temperature, Heat and Quantitative Laws of Gases

During the seventeenth and eighteenth centuries, a fundamental change occurred in our conception of Nature.

Nature slowly but surely ceased to be solely a vehicle of God’s will, comprehensible only through theology.
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The new ‘scientific’ conception of Nature based on rationalism and experimentation gave us a different

world view, a view that liberated the human mind from the confines of religious doctrine. In the new view,

Nature obeyed simple and universal laws, laws that humans can know and express in the precise language

of mathematics. Right and wrong were decided through experiments and observation. It was a new dialogue

with Nature. Our questions became experiments, and Nature’s answers were consistent and unambiguous.

It was during this time of great conceptual change that a scientific study of the nature of heat began.

This was primarily due to the development of the thermometer, which was constructed and used in scientific

investigations since the time of Galileo Galilei (1564–1642) [2, 3]. The impact of this simple instrument

was considerable. In the words of Sir Humphry Davy (1778–1829), ‘Nothing tends to the advancement of

knowledge as the application of a new instrument.’

The most insightful use of the thermometer was made by Joseph Black (1728–1799), a professor of medicine

and chemistry at Glasgow. Black drew a clear distinction between temperature, or degree of hotness, and

the quantity of heat (in terms of current terminology, temperature is an intensive quantity whereas heat is an

extensive quantity). His experiments using the newly developed thermometers established the fundamental

fact that the temperatures of all the substances in contact with each other will eventually reach the same
value, i.e. systems that can exchange heat will reach a state of thermal equilibrium. This idea was not easily

Joseph Black (1728–1799).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)
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accepted by his contemporaries because it seems to contradict the ordinary experience of touch, in which

a piece of metal felt colder than a piece of wood even after they had been in contact for a very long time.

However, the thermometer proved this point beyond doubt. With the thermometer, Black discovered specific
heat, laying to rest the general belief of his time that the amount of heat required to increase the temperature

of a substance by a given amount depended solely on its mass, not specific to its makeup. He also discovered

latent heats of fusion and evaporation of water – the latter with the enthusiastic help from his pupil James

Watt (1736–1819) [4].

Though the work of Joseph Black and others clearly established the distinction between heat and temper-

ature, the nature of heat remained an enigma for a long time. Whether heat was an indestructible substance

without mass, called the ‘caloric’, that moved from substance to substance or whether it was a form of

microscopic motion was still under debate as late as the nineteenth century. After considerable debate and

experimentation it became clear that heat was a form of energy that could be transformed to other forms, and

so the caloric theory was abandoned – though we still measure the amount of heat in ‘calories’, in addition

to using the SI units of joules.

Temperature can be measured by noting the change of a physical property, such as the volume of a fluid

(such as mercury), the pressure of a gas or the electrical resistance of a wire, with degree of hotness. This

is an empirical definition of temperature. In this case, the uniformity of the unit of temperature depends on

the uniformity with which the measured property changes as the substance gets hotter. The familiar Celsius

scale, which was introduced in the eighteenth century by Anders Celsius (1701–1744), has largely replaced

the Fahrenheit scale, which was also introduced in the eighteenth century by Gabriel Fahrenheit (1686–1736).

As we shall see in the following chapters, the development of the Second Law of thermodynamics during

the middle of the nineteenth century gave rise to the concept of an absolute scale of temperature that is

independent of material properties. Thermodynamics is formulated in terms of the absolute temperature. We

shall denote this absolute temperature by T.

1.4.1 The Laws of Gases

In the rest of this section we will present an overview of the laws of gases without going into much detail.

We assume the reader is familiar with the laws of ideal gases and some basic definitions are given in

Box 1.2.

Box 1.2 Basic definitions

Pressure is defined as the force per unit area. The pascal is the SI unit of pressure:

pascal (Pa) = 1 N m−2

The pressure due to a column of fluid of uniform density 𝜌 and height h equals h𝜌g, where g is the

acceleration due to gravity (9.806 m s–2). The pressure due to the Earth’s atmosphere changes with

location and time, but it is often close to 105 Pa at sea level. For this reason, a unit called the bar is defined

as

1 bar = 105 Pa = 100 kPa
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The atmospheric pressure at the Earth’s surface is also nearly equal to the pressure due to a 760 mm

column of mercury. For this reason, the following units are defined:

torr = pressure due to 1.00 mm column of mercury

1 atmosphere (atm) = 760 torr = 101.325 kPa

1 atm equals approximately 10 N cm–2 (1 kg weight cm–2 or 15 lb inch–2). The atmospheric pressure

decreases exponentially with altitude (see Box 1.1).

Temperature is usually measured in kelvin (K), Celsius (◦C) or Fahrenheit (◦F). The Celsius and

Fahrenheit scales are empirical, whereas (as we shall see in Chapter 3) the kelvin scale is an absolute scale

based on the Second Law of thermodynamics: 0 K is the absolute zero, the lowest possible temperature.

Temperatures measured in these scales are related as follows:

T (◦C) = (5∕9)[T (◦F) − 32], T(K) = T(◦C) + 273.15

On the Earth, the highest recorded temperature is 57.8 ◦C, or 136 ◦F; it was recorded in El Azizia, Libiya,

in 1922. The lowest recorded temperature is –88.3 ◦C, or –129 ◦F; it was recorded in Vostok, Antarctica.

In the laboratory, sodium gas has been cooled to temperatures as low as 10–9 K, and temperatures as high

as 108 K have been reached in nuclear fusion reactors.

Heat was initially thought to be an indestructible substance called the caloric. According to this view,

caloric, a fluid without mass, passed from one body to another, causing changes in temperature. However,

in the nineteenth century it was established that heat was not an indestructible caloric but a form of energy

that can convert to other forms of energy (see Chapter 2). Hence, heat is measured in the units of energy.

In this text we shall mostly use the SI units in which heat is measured in joules, though the calorie is an

often-used unit of heat. A calorie was originally defined as the amount of heat required to increase the

temperature of 1 g of water from 14.5 ◦C to 15.5 ◦C. The current practice is to define a thermochemical

calorie as 4.184 J.

The gas constant R appears in the ideal gas law, pV = NRT. Its numerical values are:

R = 8.314 J K mol–1 (or Pa m3 K–1 mol–1) = 0.08314 bar L K–1 mol–1

= 0.0821 atm L K–1 mol–1

The Avogadro number NA = 6.023 × 1023 mol–1. The Boltzmann constant kB = R/NA = 1.3807 ×
10–23 J K–1.

One of the earliest quantitative laws describing the behavior of gases was due to Robert Boyle (1627–1691),

an Englishman and a contemporary of Isaac Newton (1642–1727). The same law was also discovered by

Edmé Mariotte (1620(?)–1684) in France. In 1660, Boyle published his conclusion in his New Experiments
Physico-mechanical, Touching the Spring of the Air and Its Effects: at a fixed temperature T, the volume V of

a gas was inversely proportional to the pressure p, i.e.:

V =
f1(T)

p
in which f1(T) is some function of the temperature T (1.4.1)
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Robert Boyle (1627–1691).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)

(Though the temperature that Boyle knew and used was the empirical temperature, as we shall see in Chapter

3, it is appropriate to use the absolute temperature T (in kelvin) in the formulation of the law of ideal gases.

To avoid excessive notation we shall use T whenever it is appropriate.) Boyle also advocated the view that

heat was not an indestructible substance (caloric) that passed from one object to another but was ‘… intense

commotion of the parts…’ [5].

At constant pressure, the variation of volume with temperature was studied by Jacques Charles (1746–

1823), who established that

V
T
= f2(p) , in which f2(p) is a function of p (1.4.2)

In 1811, Amedeo Avogadro (1776–1856) announced his hypothesis that, under conditions of the same

temperature and pressure, equal volumes of all gases contained equal numbers of molecules. This hypothesis

greatly helped in explaining the changes in pressure due to chemical reactions in which the reactants and

products were gases. It implied that, at constant pressure and temperature, the volume of a gas is proportional
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to the amount of the gas (number of molecules). Hence, in accordance with Boyle’s law (1.4.1), for N moles

of a gas:

V = N
f1(T)

p
, in which f1(T) is a function of T (1.4.3)

Jacques Charles (1746–1823).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)

A comparison of Equations (1.4.1), (1.4.2) and (1.4.3) leads to the conclusion that f1(T) is proportional to T
and to the well-known law of ideal gases:

pV = NRT (1.4.4)

in which R is the gas constant. Note that R = 8.314 41 J K–1 mol–1 (or Pa m3 K–1 mol–1) = 0.083 14 bar

L K–1 mol–1 = 0.0821 atm L K–1 mol–1.

As more gases were identified and isolated by the chemists during the eighteenth and nineteenth centuries,

their properties were studied. It was found that many obeyed Boyle’s law approximately. For most gases, this

law describes the experimentally observed behavior fairly well for pressures to about 10 atm. As we shall see

in the next section, the behavior of gases under a wider range of pressures can be described by modifications

of the ideal gas law that take into consideration the molecular size and intermolecular forces.

For a mixture of ideal gases, we have Dalton’s law of partial pressures, according to which the pressure

exerted by each component of the mixture is independent of the other components of the mixture and each

component obeys the ideal gas equation. Thus, if pk is the partial pressure due to component k, we have

pkV = NkRT (1.4.5)

Joseph-Louis Gay-Lussac (1778–1850), who made important contributions to the laws of gases, discovered

that a dilute gas expanding into a vacuum did so without a change in temperature. James Prescott Joule (1818–

1889) also verified this fact in his series of experiments that established the equivalence between mechanical

energy and heat. In Chapter 2 we will discuss Joule’s work and the law of conservation of energy in detail.

When the concept of energy and its conservation was established, the implication of this observation became
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clear. Since a gas expanding into vacuum does not do any work during the processes of expansion, its energy

does not change. The fact that the temperature does not change during expansion into a vacuum, while the

volume and pressure do change, implies that the energy of a given amount of ideal gas depends only on its

temperature T, not on its volume or pressure. Also, a change in the ideal gas temperature occurs only when its

energy is changed through exchange of heat or mechanical work. These observations lead to the conclusion

that the energy of a given amount of ideal gas is a function only of its temperature T. Since the amount of

energy (heat) needed to increase the temperature of an ideal gas is proportional to the amount of the gas,

the energy is proportional to N, the amount of gas in moles. Thus, the energy of the ideal gas, U(T, N), is a

function only of the temperature T and the amount of gas N. It can be written as

U(T , N) = NUm(T) (1.4.6)

in which Um is the total internal energy per mole, or molar energy. For a mixture of gases the total energy

is the sum of the energies of the components:

Joseph-Louis Gay-Lussac (1778–1850).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)

U(T , N) =
∑

k

Uk(T , Nk) =
∑

k

NkUmk(T) (1.4.7)

in which the components are indexed by k. Later developments established that

Um = cRT + U0 (1.4.8)

to a good approximation, in which U0 is a constant. For monatomic gases, such as He and Ar, c = 3/2; for

diatomic gases, such as N2 and O2, c = 5/2. The factor c can be deduced from the kinetic theory of gases,

which relates the energy U to the motion of a gas molecules.

The experiments of Gay-Lussac also showed that, at constant pressure, the relative change in volume 𝛿V/V
due to an increase in temperature had nearly the same value for all dilute gases; it was equal to 1/273 ◦C–1.
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Thus, a gas thermometer in which the volume of a gas at constant pressure was the indicator of temperature t
had the quantitative relation

V = V0(1 + 𝛼t) (1.4.9)

in which 𝛼 = 1/273 is the coefficient of expansion at constant pressure. In Chapter 3 we will establish the

relation between the temperature t, measured by the gas thermometer, and the absolute temperature T.

The above empirical laws of gases played an important part in the development of thermodynamics. They

are the testing ground for any general principle and are often used to illustrate these principles. They were

also important for developments in the atomic theory of matter and chemistry.

For most gases, such as CO2, N2 and O2, the ideal gas law was found to be an excellent description of

the experimentally observed relation between p, V and T only for pressures up to about 20 atm. Significant

improvements in the laws of gases did not come until the molecular nature of gases was understood. In

1873, more than 200 years after Boyle published his famous results, Johannes Diderik van der Waals (1837–

1923) proposed an equation in which he incorporated the effects of attractive forces between molecules and

molecular size on the pressure and volume of a gas. We shall study van der Waals’ equation in detail in the

next section, but here we would like to familiarize the reader with its basic form so that it can be compared

with the ideal gas equation. According to van der Waals, p, V, N and T are related by(
p + a

N2

V2

)
(V − Nb) = NRT (1.4.10)

In this equation, the constant a is a measure of the attractive forces between molecules and b is proportional

to the size of the molecules. For example, the values of a and b for helium are smaller than the corresponding

values for a gas such as CO2. The values of the constants a and b for some of the common gases are given in

Table 1.1. Unlike the ideal gas equation, this equation explicitly contains molecular parameters and it tells us

Table 1.1 Van der Waals constants a and b and critical constants Tc, pc and Vmc for selected gases.

Gas A (bar L2 mol–2) B (L mol–1) Tc (K) pc (bar) Vmc (L mol–1)

Acetylene (C2H2) 4.516 0.0522 308.3 61.39 0.113
Ammonia (NH3) 4.225 0.0371 405.5 113.5 0.072
Argon (Ar) 1.355 0.0320 150.9 49.55 0.075
Carbon dioxide (CO2) 3.658 0.0429 304.1 73.75 0.094
Carbon monoxide (CO) 1.472 0.0395 132.9 34.99 0.093
Chlorine (Cl2) 6.343 0.0542 416.9 79.91 0.123
Ethanol (C2H5OH) 12.56 0.0871 513.9 61.32 0.167
Helium (He) 0.0346 0.0238 5.19 2.22 0.057
Hydrogen (H2) 0.245 0.0265 32.97 12.93 0.065
Hydrogen chloride (HCl) 3.700 0.0406 324.7 83.1 0.081
Methane (CH4) 2.300 0.0430 190.5 46.04 0.099
Nitric oxide (NO) 1.46 0.0289 180 64.8 0.058
Nitrogen (N2) 1.370 0.0387 126.2 33.9 0.090
Oxygen (O2) 1.382 0.0319 154.59 50.43 0.073
Propane (C3H8) 9.385 0.0904 369.82 42.50 0.203
Sulfur dioxide (SO2) 6.865 0.0568 430.8 78.84 0.122
Sulfur hexafluoride (SF6) 7.857 0.0879 318.69 37.7 0.199
Water (H2O) 5.537 0.0305 647.14 220.6 0.056

Source: An extensive listing of van der Waals constants can be found in D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 75th edition,
1994, CRC Press: Ann Arbor, MI.
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how the ideal gas pressure and volume are to be ‘corrected’ because of the molecular size and intermolecular

forces. We shall see how van der Waals arrived at this equation in the next section. At this point, students are

encouraged to pause and to try and derive this equation on their own before proceeding to the next section.

As one might expect, the energy of the gas is also altered due to forces between molecules. In Chapter 6

we will see that the energy Uvw of a van der Waals gas can be written as

Uvw = Uideal − a
(N

V

)2

V (1.4.11)

The van der Waals equation was a great improvement over the ideal gas law, in that it described the observed

liquefaction of gases and the fact that, above a certain temperature, called the critical temperature, gases could

not be liquefied regardless of the pressure, as we will see in the following section. However, it was found that

the van der Waals equation failed at very high pressures (Exercise 1.13). Various improvements suggested by

Clausius, Berthelot and others are discussed in Chapter 6.

1.5 States of Matter and the van der Waals Equation

The simplest transformations of matter caused by heat is the melting of solids and the vaporization of liquids.

In thermodynamics, the various states of matter (solid, liquid, gas) are often referred to as phases. Every

compound has a definite temperature Tm at which it melts and a definite temperature Tb at which it boils.

In fact, this property can be used to identify a compound or separate the constituents of a mixture. With the

development of the thermometer, these properties could be studied with precision. As noted earlier, Joseph

Black and James Watt discovered another interesting phenomenon associated with the changes of phase:

at the melting or the boiling temperature, the heat supplied to a system does not result in an increase in

temperature; it only has the effect of converting the substance from one phase to another. This heat that lays

‘latent’ or hidden without increasing the temperature was called the latent heat. When a liquid solidifies, for

example, this heat is given out to the surroundings. This phenomenon is summarized in Figure 1.3.

Clearly, the ideal gas equation, good as it is in describing many properties of gases, does not help us to

understand why gases convert to liquids when compressed. An ideal gas remains a gas at all temperatures and

its volume can be compressed without limit. In 1822, Gay-Lussac’s friend Cagniard de la Tour (1777–1859)

discovered that a gas does not liquefy when compressed unless its temperature is below a critical value, called

the critical temperature. This behavior of gases was studied in detail by Thomas Andrews (1813–1885),

who published his work in 1869. During this time, atomic theory was gaining more and more ground, while

Maxwell, Clausius and others advanced the idea that heat was related to molecular motion and began to find

an explanation of the properties of gases, such as pressure and viscosity, in the random motion of molecules.

It was in this context that Johannes Diderik van der Waals (1837–1923) sought a single equation of state for

the liquid and gas phases of a substance. In 1873, van der Waals presented his doctoral thesis titled On the
Continuity of the Gas and Liquid State, in which he brilliantly explained the conversion of a gas to a liquid and

the existence of critical temperature as the consequence of forces between molecules and molecular volume.

Van der Waals realized that two main factors modify the ideal gas equation: the effect of molecular volume

and the effect of intermolecular forces. Since molecules have a nonzero volume, the volume of a gas cannot

be reduced to an arbitrarily small value by increasing p. The corresponding modification of the ideal gas

equation would be (V – bN) = NRT/p, in which the constant b is the limiting volume of 1 mol of the gas as

p →∞. The constant b is sometimes called the ‘excluded volume’. The effect of intermolecular forces, van

der Waals noted, is to decrease the pressure, as illustrated in Figure 1.4. Hence, the above ‘volume-corrected’

equation is further modified to

p = NRT
V − bN

− 𝛿p
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Figure 1.3 The change in temperature of 1 mol of H2O versus the amount of heat, at a pressure of 1 atm.
At the melting point, absorption of heat does not increase the temperature until all the ice melts. It takes about
6 kJ to melt 1 mol of ice, the ‘latent heat’ discovered by Joseph Black. Then the temperature increases until the
boiling point is reached, at which point it remains constant until all the water turns to steam. It takes about 40 kJ
to convert 1 mol of water to steam.

Figure 1.4 Van der Waals considered molecular interaction and molecular size to improve the ideal gas equa-
tion. As shown on the left, the pressure of a real gas is less than the ideal gas pressure because intermolecular
attraction decreases the speed of the molecules approaching the wall. Therefore, p = pideal – 𝛿p. As shown on
the right, since the molecules of a gas have a nonzero size, the volume available to molecules is less than the
volume of the container. Each molecule has a volume around it that is not accessible to other molecules because
the distance between the centers of the molecules cannot be less than the sum of the molecular radii. As a result,
the volume of the gas cannot decrease below this ‘excluded volume’. Thus, V in the ideal gas equation is replaced
with (V – bN) so that as p → ∞, V → bN.
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Johannes van der Waals (1837–1923).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)

Next, van der Waals related the factor 𝛿p to the molar density N/V using the kinetic theory of gases, which

showed how molecular collisions with container walls cause pressure. Pressure depends on the number of

molecules that collide with the walls per unit area, per unit time; therefore, it is proportional to the molar

density N/V (as can be seen from the ideal gas equation). In addition, each molecule that is close to a container

wall and moving towards it experiences the retarding attractive forces of molecules behind it (see Figure 1.4).

This force would also be proportional to molar density N/V; hence, 𝛿p should be proportional to two factors

of N/V, so that one may write 𝛿p = a(N/V)2, in which the constant a is a measure of the intermolecular forces.

The expression for pressure that van der Waals proposed is

p = NRT
V − bN

− a
N2

V2

or, as it is usually written: (
p + a

N2

V2

)
(V − Nb) = NRT (1.5.1)
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Figure 1.5 The van der Waals isotherms for CO2 (Tc = 304.14 K). When T < Tc, there is a region AA
′BB′C in

which, for a given value of p, the van der Waals equation does not specify a unique volume V; in this region, the
gas transforms to a liquid. The segment A′BB′ is an unstable region; states corresponding to points on this segment
are not experimentally realizable. Experimentally realizable states are on the dotted line ABC. The observed state
follows the path ABC. A detailed description of this region is discussed in Chapter 7.

This turns out to be an equation of state for both the liquid and the gas phase. Van der Waals’ insight revealed

that the two phases, which were considered distinct, can, in fact, be described by a single equation. Let us

see how.

For a given T, a p–V curve, called the p–V isotherm, can be plotted. Such isotherms for the van der

Waals equation (1.5.1) are shown in Figure 1.5. They show an important feature: the critical temperature
Tc studied by Thomas Andrews. If the temperature T is greater than Tc then the p–V curve is always single

valued, much like the ideal gas isotherm, indicating that there is no transition to the liquid state. However, for

lower temperatures, T < Tc, the isotherm has a maximum and a minimum. There are two extrema because

the van der Waals equation is cubic in V. This region represents a state in which the liquid and the gas phases

coexist in thermal equilibrium. When T< Tc, on the p–V curve shown in Figure 1.5, the gas begins to condense

into a liquid at point A; the conversion of gas to liquid continues until point C, at which all the gas has been

converted to liquid. Between A and C, the actual state of the gas does not follow the path AA′BB′C along

the p–V curve because this curve represents an unstable supersaturated state in which the gas condenses to a

liquid. The actual state of the gas follows the straight line ABC, which represents states in which the liquid

and gas states coexist. In fact, when T < Tc, the pressure on the van der Waals curve can be negative (Exercise

1.16), but such states are not physically realized; the physically realized states are on the line ABC. This line,

called the coexistence line, is such that the area enclosed by the van der Waals curve above it (AA′B) equals

the area enclosed below it (BB′C). The coexistence line will be discussed in more detail in Chapter 7.

As T increases, the two extrema move closer and finally coalesce at T = Tc. For one mole of a gas, the point

(p, V) at which the two extrema coincide is defined as the critical pressure pc and critical molar volume
Vmc. For T higher than Tc, there is no phase transition from a gas to a liquid; the distinction between gas and

liquid disappears. (This does not happen for a transition between a solid and a liquid because a solid is more
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ordered than a liquid; the two states are always distinct.) Experimentally, the critical constants pc, Vmc and

Tc can be measured and they are tabulated (Table 1.1 lists some examples).

We can relate the critical parameters to the van der Waals parameters a and b by the following means. We

note that if we regard p(V, T) as a function of V, then, for T < Tc, the derivative (𝜕p/𝜕V)T = 0 at the two

extrema, but the second derivatives have opposite signs. As T increases, at the point where the two extrema

coincide the second derivative is therefore zero. Hence, at the critical point T = Tc, p = pc and V = Vmc, we

have an inflection point at which the second derivatives of a function vanish. Since the first derivative is also

zero at the critical point: (
𝜕p

𝜕V

)
T
= 0 and

(
𝜕2p

𝜕V2

)
T
= 0 (1.5.2)

Using these equations, one can obtain the following relations between the critical constants and the constants

a and b (Exercise 1.17):

a = 9

8
RTcVmc, b =

Vmc

3
(1.5.3)

in which Vmc is the molar critical volume. Conversely, we can write the critical constants in terms of the van

der Waals constants a and b (Exercise 1.17):

Tc =
8a

27Rb
, pc =

a
27b2

, Vmc = 3b (1.5.4)

Table 1.1 contains the values of a and b and critical constants for some gases.

1.5.1 The Law of Corresponding States

Every gas has a characteristic temperature Tc, pressure pc, and volume Vmc, which depend on the molecular

size and intermolecular forces. In view of this, one can introduce dimensionless reduced variables defined

by

Tr =
T
Tc

, Vr =
Vm

Vmc

, pr =
p

pc

(1.5.5)

Van der Waals showed that, if his equation is rewritten in terms of these reduced variables, one obtains the

following ‘universal equation’ (Exercise 1.18), which is independent of the constants a and b:

pr =
8Tr

3Vr − 1
− 3

V2
r

(1.5.6)

This is a remarkable equation because it implies that gases have corresponding states: at a given value of
reduced volume and reduced temperature, all gases have the same reduced pressure. This statement is called

the law of corresponding states or principle of corresponding states, which van der Waals enunciated

in an 1880 publication. Noting that the reduced variables are defined wholly in terms of the experimentally

measured critical constants, pc, Vmc and Tc, he conjectured that the principle has a general validity, independent

of his equation of state. According to the principle of corresponding states, at a given Tr and Vmr the reduced

pressures pr of all gases should be the same (which is not necessarily the value given by Equation (1.5.6)).

The deviation from ideal gas behavior is usually expressed by defining a compressibility factor:

Z =
Vm

Vm,ideal

=
pVm

RT
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which is the ratio between the actual volume of a gas and that of the ideal gas at a given T and p. Ideal gas

behavior corresponds to Z = 1. For real gases, at low pressures and temperatures, it is found that Z < 1, but

for higher pressures and temperatures, Z > 1. It is also found that there is a particular temperature, called the

Boyle temperature, at which Z is nearly 1 and the relationship between p and V is close to that of an ideal gas

(Exercise 1.11). One way to verify the law of corresponding states experimentally is to plot Z as a function of

reduced pressure pr at a given reduced temperature Tr. The compressibility factor Z can be written in terms

of the reduced variables: Z = (pcVmc/RTc)(prVmr/Tr) = Zc(prVmr/Tr) in which (pcVmc/RTc) = Zc. The value of

Zc may not vary much from one gas to another. For example, for the van der Waals gas, Zc = (pcVmc/RTc) =
3/8 (Exercise 1.18). If we assume Zc is constant, then Z is a function of the reduced variables.

Experimentally, for a given pr and Tr, the value of Vmr, and hence Z, can be obtained. Experimental values

of Z for different gases could be plotted as a function of pr for a fixed Tr. If the law of corresponding states

is valid, then at a given value of Tr and pr the value of Z must be the same for all gases. The plot shown

in Figure 1.6 indicates that the validity of the law of corresponding states is fairly general. Note that this

experimental verification of the law of corresponding states is not based on the validity of a particular equation

of state.

The van der Waals equation and the law of corresponding states, however, have their limitations, which

van der Waals himself noted in his 1910 Nobel Lecture:

But closer examination showed me that matters were not so simple. To my surprise I realized that the

amount by which the volume must be reduced is variable, that in extremely dilute state this amount,

which I notated b, is fourfold the molecular volume1 – but that this amount decreases with decreasing

external volume and gradually falls to about half. But the law governing this decrease has still not been

found.

Van der Waals also noted that the experimental value of Zc = (pcVmc/RTc) for most gases was not 3/8 =
0.375, as predicted by his equation, but was around 0.25 (0.23 for water and 0.29 for Ar). Furthermore,

it became evident that the van der Waals constant a depended on the temperature – Rudolf Clausius even

suggested that a was inversely proportional to T. Thus, the parameters a and b might themselves be functions

of gas density and temperature. As a result, a number of alternative equations have been proposed for the

description of real gases. For example, engineers and geologists often use the following equation, known as

the Redlich–Kwong equation:

p = NRT
V − Nb

− a√
T

N2

V(V + Nb)
= RT

Vm − b
− a√

T

1

Vm(Vm + b)
(1.5.7)

The constants a and b in this equation differ from those in the van der Waals equation; they can be related to

the critical constants and they are tabulated in the same way as the van der Waals a and b. We will discuss

other similar equations used to describe real gases in Chapter 6.

The limitation of van der Waals-type equations and the principle of corresponding states lies in the fact

that molecular forces and volume are quantified with just two parameters, a and b. As explained below, two

parameters can characterize the forces between small molecules fairly well, but larger molecules require more

parameters.

1Molecular volume is the actual volume of the molecules (NA4𝜋r3/3 for a mole of spherical molecules of radius r).
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Figure 1.6 Isotherms of compressibility factor Z (y-axis) as a function of reduced pressure pr ( x-axis) for various
gases showing the validity of the law of corresponding states. At very low pressures, the compressibility factor
approaches the ideal gas value Z = 1. (Reproduced with permission from Goug-Jen Su, Industrial and Engineering
Chemistry, 38 (1946), 803. Copyright 1946, American Chemical Society).

1.5.2 Molecular Forces and the Law of Corresponding States

From a molecular point of view, the van der Waals equation has two parameters, a and b, that describe

molecular forces, often called the van der Waals forces. These forces are attractive when the molecules are

far apart but are repulsive when they come into contact, thus making the condensed state (liquid or solid) hard

to compress. It is the repulsive core that gives the molecule a nonzero volume. The typical potential energy

between two molecules is expressed by the so-called Lennard–Jones energy:

ULJ(r) = 4𝜀

[(
𝜎

r

)12
−
(
𝜎

r

)6
]

(1.5.8)
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Figure 1.7 Lennard–Jones ‘6–12’ potential energy between two molecules as a function of the distance between
their centers. It is common to specify 𝜀 in units of kelvin using the ratio 𝜀/kB, in which kB is the Boltzmann constant.
The assumed Lennard–Jones parameter values for the above curve are 𝜀/kB = 197 K (which corresponds to
𝜀NA = 1.638 kJ mol–1) and 𝜎 = 430 pm. These values represent the approximate interaction energy between CO2
molecules.

Figure 1.7 shows a plot of this potential energy as a function of the distance r between the centers of the

molecules. As the distance between the molecules decreases, ULJ decreases, reaches a minimum, and sharply

increases. The decreasing part of ULJ is due to the term –(𝜎/r)6, which represents an attractive force, and

the sharply increasing part is due to the term (𝜎/r)12, which represents a repulsive core. The Lennard–Jones

energy reaches a minimum value of –𝜀 when r = 21/6𝜎 (Exercise 1.20). The two van der Waals parameters,

a and b, are related to 𝜀 and 𝜎 respectively, the former being a measure of the molecular attractive force and

the latter a measure of the molecular size. In fact, using the principles of statistical thermodynamics, for a

given 𝜀 and 𝜎 the values of a and b can be calculated. Such a relationship between the molecular interaction

potential and the parameters in the van der Waals equation of state gives us an insight into the limitations of

the law of corresponding states, which depends on just two parameters, a and b. If more than two parameters

are needed to describe the forces between two molecules adequately, then we can also expect the equation

of state to depend on more than two parameters. Lennard–Jones-type potentials that use two parameters

are good approximations for small molecules; for larger molecules the interaction energy depends not only

on the distance between the molecules but also on their relative orientation and other factors that require

more parameters. Thus, significant deviation from the law of corresponding states can be observed for larger

molecules.

1.6 An Introduction to the Kinetic Theory of Gases

When Robert Boyle published his study on the nature of the ‘spring of the air’ (what we call pressure today)

and argued that heat was an ‘intense commotion of the parts’, he did not know how pressure in a gas actually

arose. During the seventeenth century, a gas was thought to be a continuous substance. A century later, Daniel
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Bernoulli (1700–1782) published the idea that the mechanism that caused pressure is the rapid collisions of

molecules with the walls of the container [5]. In his 1738 publication, Hydrodynamica, Bernoulli presented

his calculation of the average force on the container walls due to molecular collisions and obtained a simple

expression for the pressure: p = (mnv2
avg/3), in which m is the molecular mass, n is the number of molecules

per unit volume and vavg is the average speed of molecules. At that time, no one had any idea how small

gas molecules were or how fast they moved, but Bernoulli’s work was an important step in explaining the

properties of a gas in terms of molecular motion. It was the beginnings of a subject that came to be known as

the kinetic theory of gases.

The kinetic theory of gases was largely developed in the late nineteenth century. Its goal was to explain the

observed properties of gases by analyzing the random motion of molecules. Many quantities, such as pressure,

diffusion constant and the coefficient of viscosity, could be related to the average speed of molecules, their

mass, size and the average distance they traversed between collisions (called the mean free path). As we shall

see in this section, the names of James Clerk Maxwell (1831–1879) and Ludwig Boltzmann (1844–1906) are

associated with some of the basic concepts in this field, while, as is often the case in science, several others

contributed to its development [4,5]. In this introductory section we shall deal with some elementary aspects

of kinetic theory, such as the mechanism that causes pressure and the relation between average kinetic energy

and temperature.

1.6.1 Kinetic Theory of Pressure

As Daniel Bernoulli showed, using the basic concepts of force and randomness, it is possible to relate the

pressure of a gas to molecular motion: pressure is the average force per unit area exerted on the walls by

colliding molecules.

We begin by noting some aspects of the random motion of molecules. First, if all directions have the

same physical properties, then we must conclude that motion along all directions is equally probable: the

properties of molecules moving in one direction will be the same as the properties of molecules moving in

any other direction. Let us assume that the average speed of the gas molecules is vavg. We denote its x, y and

z components by vxavg, vyavg, and vzavg. Thus:

v2
avg = v2

x avg + v2
y avg + v2

z avg (1.6.1)

Because all directions are equivalent, we must have

v2
x avg = v2

y avg = v2
z avg =

v2
avg

3
(1.6.2)

The following quantities are necessary for obtaining the expression for pressure:

NA = Avogadro number

N = amount of gas in moles

V = gas volume

M = molar mass of the gas

m = mass of a single molecule = M∕NA

n = number of molecules per unit volume = NNA∕V

(1.6.3)

Now we calculate the pressure by considering the molecular collisions with the wall. In doing so, we will

approximate the random motion of molecules with molecules moving with an average speed vavg. (A rigorous
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Figure 1.8 Rapid collisions of gas molecules with the walls of the container give rise to pressure. By computing
the average momentum transferred to the wall by colliding molecules, pressure can be related to the average of
the square of molecular velocity.

derivation gives the same result.) Consider a layer of a gas, of thickness Δx, close to the wall of the container

(see Figure 1.8). When a molecule collides with the wall, which we assume is perpendicular to the x axis,

the change in momentum of the molecule in the x direction equals 2mvxavg. In the layer of thickness Δx and

area A, because of the randomness of molecular motion, about half the molecules will be moving towards

the wall; the rest will be moving away from the wall. Hence, in a time Δt = Δx/vavg about half the molecules

in the layer will collide with the wall. The number of molecules in the layer is (ΔxA)n and the number of

molecules colliding with the walls is (ΔxA)n/2. Now, since each collision imparts a momentum 2mvxavg, in a

time Δt, the total momentum imparted to the wall is 2mvxavg (ΔxA)n/2. Thus, the average force F on the wall

of area A is

F =
Momentum imparted

Δt
=

2mvx avgΔxA

Δt
n
2
=

mvx avgΔxAn

Δx∕vx avg

= mv2
x avgnA (1.6.4)

Pressure p, which is the force per unit area, is thus

p = F
A
= mv2

x avgn (1.6.5)

Since the direction x is arbitrary, it is better to write this expression in terms of the average speed of the

molecule rather than its x component. By using Equation (1.6.2) and the definitions (1.6.3), we can write the

pressure in terms the macroscopic variables M, V and N:

p = 1

3
mnv2

avg =
1

3
M

N
V

v2
avg (1.6.6)

This expression relates the pressure to the square of the average speed. A rigorous description of the random

motion of molecules leads to the same expression for the pressure with the understanding that v2
avg is to be

interpreted as the average of the square of the molecular velocity, a distinction that will become clear when

we discuss the Maxwell velocity distribution.

When Daniel Bernoulli published the above result in 1738, he did not know how to relate the molecular

velocity to temperature; that connection had to wait until Avogadro stated his hypothesis in 1811 and the

formulation of the ideal gas law based on an empirical temperature that coincides with the absolute temperature

that we use today (see Equation (1.4.9)). On comparing expression (1.6.6) with the ideal gas equation, pV =
NRT, we see that

RT = 1

3
Mv2

avg (1.6.7)
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Using the Boltzmann constant kB = R/NA = 1.3807 × 10–23 J K–1 and noting M = mNA, we can express

Equation (1.6.7) as a relation between the gas molecule’s kinetic energy and temperature:

1

2
mv2

avg =
3

2
kBT (1.6.8)

This is a wonderful result because it relates temperature to molecular motion, in agreement with Robert

Boyle’s intuition. It shows us that the average kinetic energy of a molecule equals 3kBT/2. It is an important

step in our understanding of the meaning of temperature at the molecular level.

From Equation (1.6.8) we see that the total kinetic energy of 1 mol of a gas equals 3RT/2. Thus, for

monatomic gases, whose atoms could be thought of as point particles that have neither internal structure nor

potential energy associated with intermolecular forces (He and Ar are examples), the total molar energy of

the gas is entirely kinetic; this implies Um = 3RT/2. The molar energy of a gas of polyatomic molecules is

larger. A polyatomic molecule has additional energy in its rotational and vibrational motion. In the nineteenth

century, as kinetic theory progressed, it was realized that random molecular collisions result in an equal

distribution of energy among each of the independent modes of motion. According to this equipartition
theorem, the energy associated with each independent mode of motion equals kBT/2. For a point particle,

for example, there are three independent modes of motion, corresponding to motion along each of the three

independent spatial directions x, y and z. According to the equipartition theorem, the average kinetic energy

for motion along the x direction is mv2
x avg/2 = kBT/2, and similarly for the y and z directions, making the

total kinetic energy 3(kBT/2) in agreement with Equation (1.6.8). For a diatomic molecule, which we may

picture as two spheres connected by a rigid rod, there are two independent modes of rotational motion in

addition to the three modes of kinetic energy of the entire molecule. Hence, for a diatomic gas the molar

energy Um = 5RT/2, as we noted in the context of Equation (1.4.8). The independent modes of motion are

often called degrees of freedom.

1.6.2 The Maxwell–Boltzmann Velocity Distribution

A century after Bernoulli’s Hydrodynamica was published, the kinetic theory of gases began to make great

inroads into the nature of the randomness of molecular motion. Surely molecules in a gas move with different

velocities. According to Equation (1.6.8), the measurement of pressure only tells us the average of the

square of the velocities. It does not tell us what fraction of molecules have velocities with a particular

magnitude and direction. In the latter half of the nineteenth century, James Clerk Maxwell (1831–1879)

directed his investigations to the probability distribution of molecular velocity that specifies such details.

We shall denote the probability distribution of the molecular velocity v by P(v). The meaning of P(v) is

as follows:

P(v) dvxdvydvz is the fraction of the total number of molecules whose velocity vectors have their

components in the range (vx,vx + dvx), (vy,vy + dvy) and (vz,vz + dvz).

As shown in the Figure 1.9, each point in the velocity space corresponds to a velocity vector; P(v) dvx dvy
dvz is the probability that the velocity of a molecule lies within an elemental volume dvx, dvy and dvz at the

point (vx, vy, vz). P(v) is called the probability density in the velocity space.

The mathematical form of P(v) was obtained by James Clerk Maxwell; the concept was later generalized

by Ludwig Boltzmann (1844–1906) to the probability distribution of the total energy E of the molecule.

According to the principle discovered by Boltzmann, when a system reaches thermodynamic equilibrium, the
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Figure 1.9 The probability distribution for the velocity is defined in the velocity space. P(v)dvx dvy dvz is the
probability that the velocity of a molecule is within the shown cube.

probability that a molecule is in a state with energy E is proportional to exp(–E/kBT). If 𝜌(E) is the number

of different states in which the molecule has energy E, then

P(E) ∝ 𝜌(E)e−E∕kBT (1.6.9)

The quantity 𝜌(E) is called the density of states. Relation (1.6.9), called the Boltzmann principle, is one

of the fundamental principles of physics. Using this principle, equilibrium thermodynamic properties of a

substance can be derived from molecular energies E – a subject called statistical thermodynamics, presented

in a later chapter. In this introductory section, however, we will only study some elementary consequences of

this principle.

The energy of a molecule E = Etrans + Erot + Evib + Eint + ∙∙∙ , in which Etrans is the kinetic energy

of translational motion of the whole molecule, Erot is the energy of rotational motion, Evib is the energy of

vibrational motion, Eint is the energy of the molecule’s interaction with other molecules and fields such as

electric, magnetic or gravitational fields, and so on. According to the Boltzmann principle, the probability that

a molecule will have a translational kinetic energy Etrans is proportional to exp(–Etrans/kBT) (the probabilities

associated with other forms of energy are factors that multiply this term). Since the kinetic energy due to

translational motion of the molecule is mv2/2, we can write the probability as a function of the velocity v by

which we mean probability that a molecule’s velocity is in an elemental cube in velocity space, as shown in

the Figure 1.9. For a continuous variable, such as velocity, we must define a probability density P(v) so that

the probability that a molecule’s velocity is in an elemental cube of volume dvx dvy dvz located at the tip of

the velocity vector v is P(v) dvx dvy dvz. According to the Boltzmann principle, this probability is

P(v)dvx dvy dvz =
1

z
e−mv2∕2kBTdvx dvy dvz (1.6.10)

in which v2 = v2
x + v2

y + v2
z. Here, z is the normalization factor, defined by

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

e−mv2∕2kBTdvx dvy dvz = z (1.6.11)
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so that a requirement of the very definition of a probability

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

P(v)dvx dvy dvz = 1

is met. The normalization factor z, as defined in Equation (1.6.11), can be calculated using the definite

integral:

∞

∫
−∞

e−ax2
dx =

(
𝜋

a

)1∕2

which gives

1

z
=
(

m
2𝜋kBT

)3∕2

(1.6.12)

(Some integrals that are often used in kinetic theory are listed at the end of this chapter in Appendix 1.2.)

With the normalization factor thus determined, the probability distribution for the velocity can be written

explicitly as

P(v)dvxdvydvz =
(

m
2𝜋kBT

)3∕2

e−mv2∕2kBTdvxdvydvz (1.6.13)

This is the Maxwell velocity distribution. Plots of this function show the well-known Gaussian or ‘bell-

shaped’ curves shown in Figure 1.10a. It must be noted that this velocity distribution is that of a gas at

thermodynamic equilibrium. The width of the distribution is proportional to the temperature. A gas not

in thermodynamic equilibrium has a different velocity distribution and the very notion of a temperature

may not be well defined, but such cases are very rare. In most situations, even if the temperature changes

with location, the velocity distribution locally is very well approximated by Equation (1.6.13). Indeed, in

computer simulations of gas dynamics it is found that any initial velocity distribution evolves into the Maxwell

distribution very quickly, in the time it takes a molecule to undergo few collisions, which in most cases is less

than 10–8 s.

1.6.3 The Maxwell Speed Distribution

The average velocity of a molecule is clearly zero because every direction of velocity and its opposite are

equally probable (but the average of the square of the velocity is not zero). However, the average speed, which

depends only on the magnitude of the velocity, is not zero. From the Maxwell velocity distribution (1.6.13)

we can obtain the probability distribution for molecular speed, i.e. the probability that a molecule will have

a speed in the range (v, v + dv) regardless of direction. This can be done by summing or integrating P(v)

over all the directions in which the velocity of a fixed magnitude can point. In spherical coordinates, since

the volume element is v2 sin 𝜃 d𝜃 d𝜑 dv, the probability is written as P(v)v2 sin 𝜃 d𝜃 d𝜑 dv. The integral over

all possible directions is

𝜋

∫
𝜃=0

2𝜋

∫
𝜙=0

P(v)v2sin𝜃 d𝜃 d𝜙 dv = 4𝜋P(v)v2dv (1.6.14)
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Figure 1.10 Probability distributions of nitrogen. (a) Maxwell velocity distribution of the x-component of the
velocity vx at T = 100 K and 300 K. At the value of P(vx) at which P(vx)/P(0) = 1/2 or 1/e, the width of the
distribution is proportional to

√
T. (b) f(v) versus speed at T = 100 K and 300 K.

The quantity 4𝜋P(v)v2 is the probability density for the molecular speed. We shall denote it by f(v). With this

notation, the probability distribution for molecular speeds can be written explicitly as

f (v)dv = 4𝜋

(
m

2𝜋kBT

)3∕2

e−𝛽v2
v2dv

𝛽 = m
2kBT

(1.6.15)
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Because the molar mass M = mNA and R = kBNA, the above expressions can also be written as

f (v)dv = 4𝜋
( M

2𝜋RT

)3∕2

e−𝛽v2
v2dv

𝛽 = M
2RT

(1.6.16)

The shape of the function f(v) is shown in Figure 1.10b. This graph shows that, at a given temperature, there

are a few molecules with very low speeds and a few with large speeds; we can also see that f(v) becomes

broader as T increases. The speed v at which f(v) reaches its maximum is the most probable speed.

With the above probability distributions we can calculate several average values. We shall use the notation

in which the average value of a quantity X is denoted by ⟨X⟩. The average speed is given by the integral

⟨v⟩ = ∞

∫
0

vf (v)dv (1.6.17)

For the probability distribution (1.6.15), such integrals can be calculated using integral tables, Mathematica
or Maple. While doing such calculations, it is convenient to write the probability f(v) as

f (v)dv = 4𝜋

z
e−𝛽v2

v2dv

𝛽 = M
2RT

,
1

z
=
( M

2𝜋RT

)3∕2
(1.6.18)

Using the appropriate integral in Appendix 1.2 at the end of this chapter, the average speed can be obtained

in terms of T and the molar mass M (Exercise 1.23):

⟨v⟩ = 4𝜋

z

∞

∫
0

v3e−𝛽v2
dv = 4𝜋

z
1

2𝛽2
=
√

8RT
𝜋M

(1.6.19)

Similarly, one can calculate the average energy of a single molecule using m and kB instead of M and R
(Exercise 1.23):

⟨
1

2
mv2
⟩
= m4𝜋

2z

∞

∫
0

v4e−𝛽v2
dv = m2𝜋

z

3
√
𝜋

8𝛽5∕2
= 3

2
kBT (1.6.20)

A rigorous calculation of the pressure using the Maxwell–Boltzmann velocity distribution leads to the

expression (1.6.6) in which v2
avg =

⟨
v2
⟩

. Also, the value of v at which f(v) has a maximum is the most

probable speed. This can easily be determined by setting df/dv = 0, a calculation left as an exercise.

What do the above calculations tell us? First, we see that the average speed of a molecule is directly

proportional to the square root of the absolute temperature and inversely proportional to its molar mass.

This is one of the most important results of the kinetic theory of gases. Another point to note is the simple

dependence of the average kinetic energy of a molecule on the absolute temperature (1.6.20). It shows that

the average kinetic energy of a gas molecule depends only on the temperature and is independent of its mass.
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Appendix 1.1 Partial Derivatives

Derivatives of Many Variables

When a variable such as energy U(T, V, Nk) is a function of many variables V, T and Nk, its partial derivative
with respect to each variables is defined by holding all other variables constant. Thus, for example, if U(T, V,

N) = (5/2)NRT – a(N2/V), then the partial derivatives are(
𝜕U
𝜕T

)
V ,N

= 5

2
NR (A1.1.1)

(
𝜕U
𝜕N

)
V ,T

= 5

2
RT − a

2N
V

(A1.1.2)

(
𝜕U
𝜕V

)
N,T

= a
N2

V2
(A1.1.3)

The subscripts indicate the variables that are held constant during the differentiation. In cases where the

variables being held constant are understood, the subscripts are often dropped. The change in U, i.e. the

differential dU, due to changes in N, V and T is given by

dU =
(
𝜕U
𝜕T

)
V ,N

dT +
(
𝜕U
𝜕V

)
T ,N

dV +
(
𝜕U
𝜕N

)
V ,T

dN (A1.1.4)

For functions of many variables, there is a second derivative corresponding to every pair of variables:

𝜕2U/𝜕T𝜕V, 𝜕2U/𝜕N𝜕V, 𝜕2U/𝜕T2, etc. For the ‘cross-derivatives’ such as 𝜕2U/𝜕T𝜕V, which are derivatives

with respect to two different variables, the order of differentiation does not matter. That is:

𝜕2U
𝜕T𝜕V

= 𝜕2U
𝜕V𝜕T

(A1.1.5)

The same is valid for all higher derivatives, such as 𝜕3U/𝜕T2 𝜕V; i.e. the order of differentiation does not

matter.

Basic Identities

Consider three variables x, y and z, each of which can be expressed as a function of the other two variables,

x = x(y, z), y = y(z, x) and z = z(x, y) (p, V and T in the ideal gas equation pV = NRT is an example). Then

the following identities are valid: (
𝜕x
𝜕y

)
z
= 1

(𝜕y∕𝜕x)z
(A1.1.6)

(
𝜕x
𝜕y

)
z

(
𝜕y

𝜕z

)
x

(
𝜕z
𝜕x

)
y
= −1 (A1.1.7)

Consider a function of x and y, f = f(x, y), other than z. Then:(
𝜕f

𝜕x

)
z
=
(
𝜕f

𝜕x

)
y
+
(
𝜕f

𝜕y

)
x

(
𝜕y

𝜕x

)
z

(A1.1.8)
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Appendix 1.2 Elementary Concepts in Probability Theory

In the absence of a deterministic theory that enables us to calculate the quantities of interest to us, one uses

probability theory. Let xk, in which k = 1, 2, 3,… , n, represent all possible n values of a random variable

x. For example, x could be the number of molecules at any instant in a small volume of 1 nm3 within a gas

or the number of visitors at a website at any instant of time. Let the corresponding probabilities for these n
values of x be P(xk). Since xk, k = 1, 2,… , n, represents all possible states:

n∑
k=1

P(xk) = 1 (A1.2.1)

Average Values

We shall denote the average value of a quantity A by ⟨A⟩. Thus, the average value of x would be

⟨x⟩ = n∑
k=1

xkP(xk) (A1.2.2)

Similarly, the average value of x2 would be

⟨
x2
⟩
=

n∑
k=1

x2
kP(xk) (A1.2.3)

More generally, if f(xk) is a function of x, its average value would be

⟨f ⟩ = n∑
k=1

f (xk)P(xk)

If the variable x takes continuous values in the range (a, b), then the average values are written as integrals:

⟨x⟩ = b

∫
a

xP(x)dx, ⟨f ⟩ = b

∫
z

f (x)P(x)dx (A1.2.4)

For a given probability distribution, s, the standard deviation, is defined as

s =
√⟨

(x − ⟨x⟩)2
⟩

(A1.2.5)

Some Common Probability Distributions

Binomial distribution. This is the probability distribution associated with two outcomes, H and T (such as a

coin toss) with probabilities p and (1 – p) respectively. The probability that, in N trials, m are H and (N –

m) are T is given by

P(N, m) = N!
m!(N − m)!

pm(1 − p)N−m (A1.2.6)

Poisson distribution. In many random processes the random variable is a number n. For example, the number

of gas molecules in a small volume within a gas will vary randomly around an average value. Similarly, so
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is the number of molecules undergoing chemical reaction in a given volume per unit time. The probability

of n in such processes is given by the Poisson distribution:

P(n) = e−𝛼
𝛼n

n!
(A1.2.7)

The Poisson distribution has one parameter, 𝛼; it is equal to the average value of n, i.e. ⟨n⟩ = 𝛼.
Gaussian distribution. When a random variable x is a sum of many variables, its probability distribution is

generally a Gaussian distribution. If x is a real number in the range (–∞, ∞) the probability distribution is

given by

P(x)dx =
(

1

2𝜋𝜎2

)1∕2

exp

(
−

(x − x0)2

2𝜎2

)
dx (A1.2.8)

The Gaussian distribution has two parameters, x0 and 𝜎. The average value of x is equal to x0 and the standard

deviation equals 𝜎.

Some Useful Integrals

a.

∞

∫
0

e−ax2
dx = 1

2

(
𝜋

a

)1∕2

b.

∞

∫
0

x e−ax2
dx = 1

a

c.

∞

∫
0

x2e−ax2
dx = 1

4a

(
𝜋

a

)1∕2

d.

∞

∫
0

x3e−ax2
dx = 1

2a2

More generally:

e.

∞

∫
0

x2ne−ax2
dx = 1 × 3 × 5 ×⋯ × (2n − 1)

2n+1an

(
𝜋

a

)1∕2

f.

∞

∫
0

x2n+1e−ax2
dx = n!

2

(
1

an+1

)

Appendix 1.3 Mathematica Codes

The following Mathematica codes show how to define functions, plot them using the Plot command, produce

dynamic graphics using Manipulate command, create numerical text output files using Export command

and do algebraic calculations and evaluate derivatives.
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CODE A: EVALUATING AND PLOTTING PRESSURE USING THE EQUATION OF STATE AND

GENERATING DYNAMIC PLOTS

We define the van der Walls pressure (PVW) and the ideal gas pressure (PID) as shown below as functions

of V and T setting N = 1. The parameters a and b are set for CO2. Then, using the defined functions the

pressures at V = 1.5 L , T = 300 K and Tc are evaluated.

(* Values of a and b set for CO2; We set N=1 *)
a=3.658; (* Lˆ2.bar.molˆ-2*)
b=0.0429; (* L.molˆ-1*)
R=0.0831; (* L.bar.Kˆ-1.molˆ-1 *)

PVW[V_,T_]:= (R*T/(V-b)) - (a/(Vˆ2));
PID[V_,T_]:= R*T/V;

PID[1.5,300]
PVW[1.5,300]
TC=(8/27)*(a/(R*b))

16.62
15.4835
304.027

Using the functions defined above, p–V curves could be plotted using the Plot command. The options

PlotRange, PlotStyle and AxesLabel are also used to format the plot. If these are not specified, Mathematica
uses default values. Drawing Tools under the Graphics menu could be used to add text and figures to the

plots. For more options see online manual.

Plot[{PVW[V,270],PVW[V,304],PVW[V,330]},{V,0.06,0.4},
PlotRange->{{0,0.4},{20,150}},
PlotStyle->{{Gray,Thick},{Black,Thick},{Gray,Thick}},
AxesLabel->{V/L,p/bar}]
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The above plot can also be made a dynamic plot by using the Manipulate command. Using this command,

on can see how the p–V curve changes when a, b and T are changed. Using the table in the text, appropriate

ranges of values are specified for a and b.

In the cell shown below, the value of the parameters are displayed when the optionAppearance is specified

as ‘Labeled’. When the option SaveDefinitions->True is included, all the definitions outside theManipulate
command (such as R= 0.0831) are associated with the graphic that is generated. Then the stand-alone graphic

can be used in a CDF (Computable Document Format) file without the code that generated the graphic.

Clear[a,b,R,T1,V];
R=0.0831;(*L.bar.Kˆ-1.molˆ-1*)
PVW[V_,T_,a_,b_]:=(R*T/(V-b))-(a/(Vˆ2));

Manipulate[
Plot[PVW[V,T1,a,b],{V,0.06,0.4},

PlotRange->{{0,0.4},{20,150}},
PlotStyle->{Black,Thick},AxesLabel->{V/L,p/bar}],

{T1,270, 330, Appearance->"Labeled"},
{a,1.0,10.0, Appearance->"Labeled"},
{b,0.02,0.09, Appearance->"Labeled"},
SaveDefinitions->True]

T1 270

a 1.

b 0.02
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To write output files for spreadsheets use the ‘Export’ command and the file format ‘CSV’. For more detail

for the Export command use the help menu and online documentation. In the command below, the output

FileName is data.txt. This file can be read by most spreadsheets and graphing software.

Export["data.txt", Table[{x,PVW[x,270],PVW[x,304],PVW[x,350]},
{x,0.07,0.6,0.005}],"CSV"]

data.txt

Using the Table command, we can also generate a table of values of V and p, as shown below:

Table[{x,PVW[x,300]},{x,0.06,0.1,0.01}]//TableForm

0.06 441.784
0.07 173.396
0.08 100.405
0.09 77.6944
0.1 70.8025

CODE B: OBTAINING CRITICAL CONSTANTS FOR THE VAN DER WAALS EQUATION

Clear[a,b,R,T,V];
p[V_,T_]:=(R*T/(V-b)) -(a/Vˆ2);

(* At the critical point the first and second derivatives of p with respect to
V are zero*)

(* First derivative *)
D[p[V,T],V]

(2 a)/V3-(R T)/(-b+V)2

(* Second derivative *)
D[p[V,T],V,V]

-((6 a)/V4)+(2 R T)/(-b+V)3

Solve[{(-6*a)/Vˆ4 + (2*R*T)/(-b + V)ˆ3==0,
(2*a)/Vˆ3 - (R*T)/(-b + V)ˆ2==0},{T,V}]

{{T->(8 a)/(27 b R),V->3 b}}

Now we can substitute these values in the equation for p and obtain pc.

T = (8*a)/(27*b*R); V = 3*b;
p[V,T]

a/(27 b2)

Thus we have all the critical variables: pc = a/(27*bˆ2), Tc = (8*a)/(27*b*R), Vc = 3*b.
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CODE C: THE LAW OF CORRESPONDING STATES

Clear[a,b,R,T,V];
T = Tr*(8*a)/(27*b*R); V = Vr*3*b; pc = a/(27*bˆ2);

(* In terms of these variables the reduced pressure pr = p/pc. This can now be
calculated*)

p[V,T]/pc

(27 b2 (-(a/(9 b2 Vr2))+(8 a Tr)/(27 b (-b+3 b Vr))))/a

FullSimplify[(27 b2 (-(a/(9 b2 Vr2))+(8 a Tr)/(27 b (-b+3 b Vr))))/a]

-(3/Vr2)+(8 Tr)/(-1+3 Vr)

Thus we have the following relation for the reduced variables, which is the law of corresponding states: pr =
(8*Tr)/(3*Vr -1)) - 3/Vrˆ2.

CODE D: PLOTTING THE MAXWELL–BOLTZMANN SPEED DISTRIBUTION FOR A GAS OF

MOLAR MASS M AT TEMPERATURE T

Clear[a,b,R2,T,V];
M=28.0*10-3; (*molar mass of N2 in kg*)
R2=8.314(*J/K.mol*);
b=M/(2*R2);
p[v_,T_]:=(4.0*Pi)(M/(2*Pi*R2*T))3/2 v2*Exp[(-b*v2)/T];
Plot[{p[v,300],p[v,100]},{v,0,1500},

PlotStyle->{{Black,Thick},{Gray,Thick}}]
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As in Code A one can also produce a dynamic plot of the Maxwell–Boltzmann velocity distributions with

T as the dynamic variable.

Clear[a,bb,R2,T2];
M=28.0*10-3; (*molar mass of N2 in kg*)
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R2=8.314(*J/K.mol*);
bb=M/(2*R2);
p[v_,T_]:=(4.0*Pi)(M/(2*Pi*R2*T))3/2 v2*Exp[(-bb*v2)/T];

Manipulate[
Plot[p[v,T2],{v,0,1500},

PlotStyle->{Black,Thick},
PlotRange->{{0,1500},{0.,0.004}}],

{T2,100,400,Appearance->"Labeled"}]

T2 115.
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5. Segrè, E., From Falling Bodies to Radio Waves. 1984, W.H. Freeman: New York; 188.

Examples

Example 1.1 The atmosphere consists of 78.08% by volume of N2 and 20.95% of O2. Calculate the partial

pressures due to the two gases.

Solution The specification ‘percentage by volume’ may be interpreted as follows. If the components of

the atmosphere were to be separated, at the pressure of 1 atm, the volume occupied by each component is
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specified by the volume percent. Thus, if we isolate the N2 in 1.000 L of dry air, at a pressure of 1 atm, its

volume will be 0.781 L. According to the ideal gas law, at a fixed pressure and temperature, the amount of

gas N = V(p/RT); i.e. the molar amount is proportional to the volume. Hence, the percentage by volume is

the same as the percentage in N, i.e. 1.000 mol of air consists of 0.781 mol of N2. According to Dalton’s law

(see Equation (1.4.5)), the partial pressure is proportional to N; therefore, the partial pressure of N2 is 0.781

atm and that of O2 is 0.209 atm.

Example 1.2 Using the ideal gas approximation, estimate the change in the total internal energy of 1.00 L

of N2 at p = 2.00 atm and T = 298.15 K if its temperature is increased by 10.0 K. What is the energy required

to heat 1.00 mol of N2 from 0.0 K to 298 K?

Solution The energy of an ideal gas depends only on the amount of gas N and the temperature T. For a

diatomic gas such as N2 the energy per mole equals (5/2)RT + U0. Hence, for N moles of N2 the change in

energy ΔU for a change in temperature from T1 to T2 is

ΔU = N(5∕2)R(T2 − T1)

In the above case

N =
pV

RT
= 2.00 atm × 1.00 L

0.821 L atm mol−1K−1(298.15K)
= 8.17 × 10−2 mol

Hence:

ΔU = (8.17 × 10−2 mol)
5

2
(8.314 J mol−1K−1)(10.0 K)

= 17.0 J

(Note the different units of R used in this calculation.)

The energy required to heat 1.00 mol of N2 from 0 K to 298 K is

(5∕2)RT = (5∕2)(8.314 J K−1mol−1)(298 K) = 6.10 kJ mol−1

Example 1.3 At T = 300 K, 1.00 mol of CO2 occupies a volume of 1.50 L. Calculate the pressures given by

the ideal gas equation and the van der Waals equation. (The van der Waals constants a and b can be obtained

from Table 1.1.)

Solution The ideal gas pressure is

p = 1.00 mol × 0.0821 atm L mol−1K−1 × 300 K

1.50 L
= 16.4 atm

The pressure according to the van der Waals equation is

p = NRT
V − Nb

− a
N2

V2

Since the van der Waals constants a and b given in Table 1.1 are in units of L2 atm mol–2 and L mol–2

respectively, we will use the value or R= 0.0821 atm L mol–1 K–1. This will give the pressure in atmospheres:

p = 1.00(0.0821)300

1.50 − 1.00(0.0421)
− 3.59

1.00

1.502
= 15.3 atm
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Exercises

1.1 Describe an experimental method, based on the ideal gas law, to obtain the molecular mass of a gas.

1.2 The density of dry air at p = 1.0 bar and T = 300 K is 1.161 kg m–3. Assuming that it consists entirely

of N2 and O2 and using the ideal gas law, determine the amount of each gas in moles in a volume of

1 m3 and their mole fractions.

1.3 The molecular density of interstellar gas clouds is about 104 molecules/mL. The temperature is

approximately 10 K. Calculate the pressure. (The lowest vacuum obtainable in the laboratory is about

three orders of magnitude larger.)

1.4 A sperm whale dives to a depth of more than 1.5 km into the ocean to feed. Estimate the pressure the

sperm whale must withstand at this depth. (Express your answer in atmospheres.)

1.5 (a) Calculate the amount of gas in moles per cubic meter of atmosphere at p = 1 atm and T = 298 K

using the ideal gas equation.

(b) The atmospheric content of CO2 is about 360 ppmv (parts per million by volume). Assuming

a pressure of 1.00 atm, estimate the amount of CO2 in a 10.0 km layer of the atmosphere at

the surface of the Earth. The radius of the Earth is 6370 km. (The actual amount of CO2 in the

atmosphere is about 6.0 × 1016 mol.)

(c) The atmospheric content of O2 is 20.946% by volume. Using the result in part (b), estimate the

total amount of O2 in the atmosphere.

(d) Life on Earth consumes about 0.47 × 1016 mol of O2 per year. What percentage of the O2 in the

atmosphere does life consume in a year?

1.6 The production of fertilizers begins with the Haber processes, which is the reaction 3H2 +N2 → 2NH3

conducted at about 500 K and a pressure of about 300 atm. Assume that this reaction occurs in a

container of fixed volume and temperature. If the initial pressure due to 300.0 mol H2 and 100.0 mol

N2 is 300.0 atm, what will the final pressure be? What will the final pressure be if initially the system

contained 240.0 mol H2 and 160.0 mol N2? (Use the ideal gas equation even though the pressure is

high.)

1.7 The van der Waals constants for N2 are a = 1.370 L2 atm mol–2 and b = 0.0387 L mol–1. Consider 0.5

mol of N2(g) is in a vessel of volume 10.0 L. Assuming that the temperature is 300 K, compare the

pressures predicted by the ideal gas equation and the van der Waals equation.

(a) What is the percentage error in using the ideal gas equation instead of the van der Waals equation?

(b) Keeping V = 10.0 L, use Maple/Mathematica to plot p versus N for N = 1 to 100, using the ideal

gas and the van der Waals equations. What do you notice regarding the difference between the

pressure predicted by the two equations?

1.8 For 1.00 mol of Cl2 in a volume of 2.50 L, calculate the difference in the energy between Uideal and

Uvw. What is the percentage difference when compared with Uideal?

1.9 (a) Using the ideal gas equation, calculate the volume of 1 mol of a gas at a temperature of 25 ◦C

and a pressure of 1 atm. This volume is called the Avogadro volume.

(b) The atmosphere of Venus is 96.5% CO2 (g). The surface temperature is about 730 K and the

pressure is about 90 atm. Using the ideal gas equation, calculate the volume of 1 mol of CO2 (g)

under these conditions (Avogadro volume on Venus).

(c) Use Maple/Mathematica and the van der Waals equation to obtain the Avogadro volume on

Venus and compare it (find the percentage difference) with the result obtained using the ideal gas

equation.



42 Modern Thermodynamics

1.10 The van der Waals parameter b is a measure of the volume excluded due to the finite size of the

molecules. Estimate the size of a single molecule from the data in Table 1.1.

1.11 For the van der Waals equation, express the pressure as a power series in 1/Vm. Using this expression,

determine the Boyle temperature TB at which p ≈ RTB/Vm.

1.12 For the Redlich–Kwong equation

p = RT
Vm − b

− a√
T

1

Vm(Vm + b)

show that there is a critical temperature above which there is no transition to a liquid state.

1.13 Though the van der Waals equation was a big improvement over the ideal gas equation, its validity

is also limited. Compare the following experimental data with the predictions of the van der Waals

equation for 1 mol of CO2 at T= 40 ◦C. (Source: I. Prigogine and R. Defay, Chemical Thermodynamics,

1967, Longmans: London.)

P (atm) Vm (L mol–1)

1 25.574
10 2.4490
25 0.9000
50 0.3800
80 0.1187
100 0.0693
200 0.0525
500 0.0440
1000 0.0400

1.14 Use Mathematica/Maple to plot the van der Waals p–V curves for Ar, N2 and C3H8 using the data

listed in Table 1.1 (see Appendix 1.3 for sample programs). In particular, compare the van der Waals

curves for CO2 and He and the ideal gas equation.

1.15 For CO2, plot the compressibility factor Z = pVm/RT as a function of the reduced pressure pr for fixed

reduced temperatures Tr = 1.2 and Tr = 1.7. Verify that the Z–pr curves are the same for all van der

Waals’ gases. (This can be plotted using Parametric Plots.)

1.16 Show that the pressure given by the van der Waals equation can become negative only when T is less

than the critical temperature Tc.

1.17 (a) From the van der Waals equation, using Equation (1.5.2) obtain Equations (1.5.3) and

(1.5.4). (These calculations may also be done using Mathematica/Maple). (b) Show that Zc =
(pcVmc/RTc) = 3/8, a constant for all van der Waals gases.

1.18 Using Mathematica/Maple, obtain Equation (1.5.6) from Equation (1.5.5).

1.19 For CO2, plot p–V isotherms for the van der Waals and Redlich–Kwong equations on the same graph

for T = 280 K, 300 K and 330 K and comment on the difference between the two equations. The table
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below lists some constants a and b for the Redlich–Kwong equation. (Source: J.H. Noggle, Physical
Chemistry, 1996, Harper Collins.)

A (bar L2 mol–2 K1/2) B (L mol–1)

Ar 16.71 0.0219
CO2 64.48 0.0296
O2 17.36 0.0221

1.20 Show that the Lennard–Jones energy

ULJ(r) = 4𝜀

[(
𝜎

r

)12
−
(
𝜎

r

)6
]

has a minimum value equal to – 𝜀 at r = 21/6𝜎.

1.21 Estimate the average distance between molecules at T = 300 K and p = 1.0 atm. (Hint: consider a cube

of side 10 cm in which the molecules occupy points on a three-dimensional cubic lattice.)

1.22 According to Graham’s law of diffusion, the rate of diffusion of gas molecules is inversely proportional

to the square root of its mass. Explain why this is so using the kinetic theory of gases. How would you

expect the diffusion coefficient to depend on the temperature?

1.23 (a) Using the integrals in Appendix 1.2, obtain the square of average speed and compare it with the

average of v2.

(b) Using the Maxwell probability distribution f(v), obtain the most probable speed of a molecule of

molar mass M at a temperature T.

1.24 Consider N2 at a temperature of 350 K. Use the Maxwell speed distribution to calculate the fraction

of molecules that have speeds greater than 600 m/s. You may use Mathematica to evaluate the needed

integrals.
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The First Law of Thermodynamics

The Idea of Energy Conservation Amidst New Discoveries

The concepts of kinetic energy, associated with motion, and potential energy, associated with conservative

forces such as gravitation, were well known at the beginning of the nineteenth century. For a body in motion,

the conservation of the sum of kinetic energy and potential energy is a direct consequence of Newton’s laws

(Exercise 2.1). However, this concept had no bearing on the multitude of thermal, chemical and electrical

phenomena that were being investigated at that time. In addition, during the final decades of the eighteenth

century and the initial decades of the nineteenth century, new phenomena were being discovered at a rapid pace.

The Italian physician Luigi Galvani (1737–1798) discovered that a piece of charged metal could make the

leg of a dead frog twitch! The amazed public was captivated by the idea that electricity can generate life as

dramatized by Mary Shelley (1797–1851) in her Frankenstein. Summarizing the results of his investigations

in a paper published in 1791, Galvani attributed the source of electricity to animal tissue. However, it

was the physicist Alessandro Volta (1745–1827) who recognized that the ‘galvanic effect’ is due to the

passage of electric current. In 1800, Volta went on to construct the so-called Volta’s pile, the first ‘chemical

battery’; electricity could now be generated from chemical reactions. The inverse effect, the driving of a

chemical reaction by electricity, was demonstrated by Michael Faraday (1791–1867) in the 1830s. The newly

discovered electric current could also produce heat and light. To this growing list of interrelated phenomena,

the Danish physicist Hans Christian Oersted (1777–1851) added the generation of magnetic field by an

electrical current in 1819. In Germany, in 1822, Thomas Seebeck (1770–1831) (who helped Goethe in his

scientific investigations) demonstrated the ‘thermoelectric effect’, the generation of electricity by heat. The

well-known Faraday’s law of induction, the generation of an electrical current by a changing magnetic field,

came in 1831. All these discoveries presented a great web of interrelated phenomena in heat, electricity,

magnetism and chemistry to the nineteenth century scientists (Figure 2.1).

Soon, within the scientific community that faced this multitude of new phenomena, the idea that all these

effects really represented the transformation of one indestructible quantity, ‘the energy’, began to take shape

[1]. This law of conservation of energy is the First Law of thermodynamics. We will see details of its

formulation in the following sections.

The mechanical view of nature holds that all energy is ultimately reducible to kinetic and potential energy

of interacting particles. Thus, the law of conservation of energy may be thought of as essentially the law of

conservation of the sum of kinetic and potential energies of all the constituent particles. A cornerstone for the

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 2.1 Interrelations between various phenomena discovered in the nineteenth century.

formulation of the First Law is the decisive experiments of James Prescott Joule (1818–1889) of Manchester,

a brewer and an amateur scientist. Here is how Joule expressed his view of conservation of energy [2, 3]:

Indeed the phenomena of nature, whether mechanical, chemical or vital, consist almost entirely in a

continual conversion of attraction through space,1 living force2 and heat into one another. Thus it is that

order is maintained in the universe – nothing is deranged, nothing ever lost, but the entire machinery,

complicated as it is, works smoothly and harmoniously. And though, as in the awful vision of Ezekiel,

‘…wheel may be in the middle of wheel…’, and everything may appear complicated and involved in

the apparent confusion and intricacy of an almost endless variety of causes, effects, conversion, and

arrangements, yet is the most perfect regularity preserved – the whole being governed by the sovereign

will of God.

In practice, however, we measure energy in terms of heat and changes in macroscopic variables, such as

chemical composition, electrical voltage and current, not the kinetic and potential energies of molecules.

Energy can take many forms, e.g. mechanical work, heat, chemical energy, and it can reside in electric,

magnetic and gravitational fields. For each of these forms we can specify the energy in terms of macroscopic

variables, and the changes of energy in each form have a mechanical equivalent.

2.1 The Nature of Heat

Though the distinction between temperature and heat was recognized in the eighteenth century as a result

of the work of Joseph Black and others, the nature of heat was not clearly understood until the middle of

the nineteenth century. Robert Boyle, Isaac Newton and others held the view that heat was the microscopic

chaotic motion of particles. An opposing view, which prevailed in France, was that heat was an indestructible

fluid-like substance without mass that was exchanged between material bodies. This indestructible substance

was called caloric and it was measured in ‘calories’ (see Box 2.1). In fact, such figures as Antoine-Laurent

Lavoisier (1743–1794), Jean Baptiste Joseph Fourier (1768–1830), Pierre-Simon de Leplace (1749–1827) and

Siméon-Denis Poisson (1781–1840) all supported the caloric theory of heat. Even Sadi Carnot (1796–1832),

in whose insights the Second Law originated, initially used the concept of caloric, though he later rejected it.

1Potential energy.
2Kinetic energy.
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Box 2.1 Basic definitions

Heat can be measured by the change in temperature it causes in a body. In this text we shall mostly use

the SI units in which heat is measured in joules, though the calorie is an often-used unit of heat.

The calorie. The calorie, a word derived from the caloric theory of heat, was originally defined as the

amount of heat required to increase the temperature of 1 g of water by 1 ◦C. When it was realized that

this amount depended on the initial temperature of the water, the following definition was adopted: a

calorie is the amount of heat required to increase the temperature of 1 g of water from 14.5 ◦C to 15.5 ◦C

at a pressure of 1 bar. The current practice is to define 1 cal as 4.184 J. In fact, the International Union

of Pure and Applied Chemistry (IUPAC) defines three types of calorie: the thermochemical calorie,

calth = 4.184 J; the international calorie, calIT = 4.1868 J; the 15 ◦C calorie, cal15 ≈ 4.1855 J.

Work and heat. In classical mechanics, when a body undergoes a displacement ds by a force F, the

mechanical work done dW = F∙ds. Work is measured in joules. Dissipative forces, such as friction

between solids in contact, or viscous forces in liquids, convert mechanical energy to heat. Joule’s

experiments demonstrated that a certain amount of mechanical work, regardless of the manner in which

it is performed, always produces the same amount of heat. Thus, an equivalence between work and heat

was established.

Heat capacity. The heat capacity C of a body is the ratio of the heat absorbed dQ to the resulting increase

in temperature dT:

C = dQ
dT

For a given dQ, the change in temperature dT depends on whether the substance is maintained at

constant volume or at constant pressure. The corresponding heat capacities are denoted by CV and Cp
respectively. Heat capacities are generally functions of temperature.

Molar heat capacity. It is the heat capacity of 1 mol of the substance. We shall denote it by CmV or Cmp.

Specific heat. It is the heat required to change the temperature of a unit mass (usually 1.0 g or 1.0 kg) of

the substance by 1 ◦C.

The true nature of heat as a form of energy that can interconvert to other forms of energy was established

after much debate. One of the most dramatic demonstrations of the conversion of mechanical energy to heat

was performed by Benjamin Thompson, an American born in Woburn, Massachusetts, whose adventurous life

took him to Bavaria where he became Count Rumford (1753–1814) [4]. Rumford immersed metal cylinders

in water and drilled holes in them. The heat produced due to mechanical friction could bring the water to a

boil! He even estimated that the production of 1 cal of heat requires about 5.5 J of mechanical work [5].

It was the results of the careful experiments of James Prescott Joule, reported in 1847, that established

beyond doubt that heat was not an indestructible substance, that, in fact, it can be transformed to mechanical

energy and vice versa [5, 6]. Furthermore, Joule showed that there is an equivalence between heat and

mechanical energy in the following sense: a certain amount of mechanical energy, regardless of the particular

means of conversion, always produces the same amount of heat (4.184 J produce 1 cal of heat). This meant

heat and mechanical energy can be thought of as different manifestations of the same physical quantity, the

‘energy’.

But still, what is heat? One could say that physical and chemical processes have a natural tendency to

convert all other forms of energy to heat. In the classical picture of particle motion, it is the kinetic energy



48 Modern Thermodynamics

James Prescott Joule (1818–1889).
(Reproduced by courtesy of the AIP Emilio Segre Visual Archive, Physics Today Collection.)

associated with chaotic motion, as we saw in Chapter 1. Molecules in incessant motion collide and randomize

their kinetic energy and the Maxwell–Boltzmann velocity distribution is quickly established; the average

kinetic energy, which equals 3kBT/2, generally increases with absorption of heat. However, heat does not

change the temperature of the body during phase transformations, but transforms the phase.

That is not all we can say about heat. In additions to particles, we also have fields. The interaction between

the particles is described by fields, such as electromagnetic fields. Classical physics had established that

electromagnetic radiation was a physical quantity that can carry energy and momentum. So when particles

gain or lose energy, some of it can transform into the energy of the field. The energy associated with

electromagnetic radiation is an example. The interaction between matter and radiation also leads to a state of

thermal equilibrium in which a temperature can be associated with radiation. Radiation in thermal equilibrium

with matter is called ‘heat radiation’ or ‘thermal radiation’. So heat can also be in the form of radiation. We

shall study the thermodynamics of thermal radiation in some detail in Chapter 11.
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Figure 2.2 Classical picture of a gas of molecules (m) at low temperatures in equilibrium with radiation (𝛾).

During the twentieth century, our view of particles and fields has been unified by quantum field theory.

According to quantum field theory, all particles are excitations of quantum fields. We now know, for example,

that the electromagnetic field is associated with particles we call photons, though it also has a wave nature.

Similarly, other fields, such as those associated with nuclear forces, have corresponding particles. Just

as photons are emitted or absorbed by molecules undergoing a transition from one state to another (see

Figure 2.2) – which in the classical picture corresponded to emission or absorption of radiation – other

particles, such as mesons, can be absorbed and emitted by nuclear particles in high-energy processes. The

energy density of thermal radiation depends only on the temperature.

One of the most remarkable discoveries of modern physics is that every particle has an antiparticle. When

a particle encounters its antiparticle they may annihilate each other, converting their energy into other forms,

such as photons. All this has expanded our knowledge of the possible states of matter. As mentioned above, the

average kinetic energy of particles is proportional to temperature. At the temperatures we normally experience,

collisions between molecules result in the emission of photons, but not other particles. At sufficiently high

temperatures (greater than 1010 K), other particles can also be similarly created as a result of collisions.

Particle creation is often in the form of particle–antiparticle pairs (see Figure 2.3). Thus, there are states of

matter in which there is incessant creation and annihilation of particle–antiparticle pairs, a state in which the

Figure 2.3 A gas of electrons (e−) and positrons (e+) in equilibrium with radiation (𝛾) at very high temperatures.
At temperatures over 1010 K, particle–antiparticle pair creation and annihilation begins to occur and the total
number of particles is no longer a constant. At these temperatures, electrons, positrons and photons are in a state
called thermal radiation. The energy density of thermal radiation depends only on temperature.
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number of particles does not remain constant. This state of matter is a highly excited state of a field. The

notion of thermodynamic equilibrium and a temperature should apply to such a state as well.

Fields in thermal equilibrium can be more generally referred to as thermal radiation. One of the charac-

teristic properties of thermal radiation is that its energy density is only a function of temperature; unlike the

ideal gas, the number of particles of each kind itself depends on the temperature. ‘Blackbody radiation’, the

study of which led Max Planck (1858–1947) to the quantum hypothesis, is thermal radiation associated with

the electromagnetic field. At high enough temperatures, all particles (electrons and positrons, protons and

antiprotons) can exist in the form of thermal radiation. Immediately after the big bang, when the temperature

of the universe was unimaginably high, the state of matter in the universe was in the form of thermal radiation.

As the universe expanded and cooled, the photons remained in the state of thermal radiation, which can be

associated with a temperature, but the protons, electrons and neutrons are no longer in that state. In its present

state, the electromagnetic radiation that fills the universe is in an equilibrium state of temperature about 2.7 K,

but the observed abundance of elements in the universe is not that expected in a state of thermodynamic

equilibrium [7].

2.2 The First Law of Thermodynamics: The Conservation of Energy

As mentioned at the beginning of this chapter, though mechanical energy (kinetic energy plus potential

energy) and its conservation was known from the time of Newton and Leibnitz, energy was not thought of as

a general and universal quantity until the nineteenth century [5, 8].

With the establishment of the mechanical equivalence of heat by Joule, it became accepted that heat is a form

of energy that could be converted to work and vice versa. It was in the second half of the nineteenth century

that the concept of conservation of energy was clearly formulated. Many contributed to this idea, which was

very much ‘in the air’ at that time. For example, the law of ‘constant summation of heats of reaction’ was

formulated in 1840 by the Russian chemist Germain Henri Hess (1802–1850). This was essentially the law

of energy conservation in chemical reactions. This law, now called Hess’s law, is routinely used to calculate

heats of chemical reactions.

It can be said that the most important contributions to the idea of conservation of energy as a universal law

of nature came from Julius Robert von Mayer (1814–1878), James Prescott Joule (1818–1889) and Hermann

von Helmholtz (1821–1894). Two of the landmarks in the formulation of the law of conservation of energy

are a paper by Robert von Mayer titled ‘Bermerkungen über die Kräfte der unbelebten Natur’ (‘Remarks on

the forces of inanimate nature’), published in 1842, and a paper by Helmholtz titled ‘Uber die Erhaltung der

Kraft’ (‘On the conservation of force’), which appeared in 1847 [5, 6].

The law of conservation of energy can be stated and utilized entirely in terms of macroscopic variables. A

transformation of state may occur due to an exchange of heat, performance of work and change in chemical

composition and other such macroscopic processes. Each of these processes is associated with a change in

energy, and the First Law of thermodynamics could be stated as:

When a system undergoes a transformation of state, the algebraic sum of the different energy changes,

heat exchanged, work done, etc., is independent of the manner of the transformation. It therefore depends

only on the initial and final states of the transformation.

For example, as shown in Figure 2.4, when Nk is constant, a transformation of volume and temperature of a

gas mixture from the state O to the state X may occur via different paths, each following different intermediate

volumes and temperatures. For each path, the total amount of heat exchanged and the mechanical work done

will be different. However, as the First Law states, the sum of the two will be the same, independent of the

path. Since the total change in energy is independent of the path, the infinitesimal change dU associated
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Hermann von Helmholtz (1821–1894).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)

Figure 2.4 The change of energy UX during a transformation from a normal or reference state ‘O’ to the state
‘X’ is independent of the manner of transformation. In the figure, the state of a system is specified by its volume
V and temperature T.
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with any transformation must depend solely on the initial and final states. An alternative way of stating this

assertion is that in every cyclic process (closed path) that restores the system to its initial state, the integral of

the energy change is zero:

∮ d U = 0 (2.2.1)

Equation (2.2.1) may also be considered a statement of the First Law. Since changes in U are independent

of the transformation path, its change from a fixed state O to any final state X is entirely specified by X. The

state X of many systems is specified by the state variables T, V and Nk. For such systems, if the value of U at

the state O is arbitrarily defined as U0, then U is a function of the state X:

U = U(T , V , Nk) + U0 (2.2.2)

If more variables (such as electric or magnetic fields) are needed to specify the state of a system, then U
will be a function of those variables as well. In this formulation, the energy U can only be defined up to an

arbitrary additive constant. Its absolute value cannot be specified.

Yet another way of stating the First Law is as an ‘impossibility’, a restriction nature imposes on physical

processes. For example, in Max Planck’s treatise [9], the First Law is stated thus:

… it is in no way possible, either by mechanical, thermal, chemical, or other devices, to obtain perpetual
motion, i.e. it is impossible to construct an engine which will work in a cycle and produce continuous

work, or kinetic energy, from nothing (author’s italics).

It is easy to see that this statement is equivalent to the above formulation summarized in Equation (2.2.1).

We note again that this statement is entirely in macroscopic, operational terms and has no reference whatsoever

to the microscopic structure of matter. The process described above is called perpetual motion of the first
kind.

For a closed system, the energy exchanged with its exterior in a time dt may be divided into two parts:

dQ, the amount of heat, and, dW, the amount of mechanical energy. Unlike the change in total energy dU,

the quantities dQ and dW are not independent of the manner of transformation; we cannot specify dQ or dW
simply by knowing the initial and final states because their values depend on the path or the process that

causes the energy exchange. Hence, it is not possible to define a function Q that depends only on the initial

and final states, i.e. heat is not a state function. While every system can be said to possess a certain amount

of energy U, the same cannot be said of heat Q or work W. However, there is no difficulty in specifying the

amount of heat exchanged in a particular transformation. The process that causes the heat exchange enables

us to specify dQ as the heat exchanged in a time interval dt.
Most introductory texts on thermodynamics do not include irreversible processes; they describe all trans-

formations of state as idealized, infinitely slow changes. In that formulation, dQ cannot be defined in terms of

a time interval dt because the transformation does not occur in finite time; in fact, classical thermodynamics

does not contain time at all. This point is clearly stated in the well-known physical chemistry text by Alberty

and Silbey [10]: ‘Thermodynamics is concerned with equilibrium states of matter and has nothing to do with

time.’ It is a theory based solely on states with no explicit inclusion of irreversible processes, such as heat

conduction. This poses a problem: because Q is not a state function, the heat exchanged dQ cannot be uniquely

specified by initial and final states. To overcome this difficulty, an ‘imperfect differential’ dQ is defined to

represent the heat exchanged in a transformation, a quantity that depends on the initial and final states and
the path of transformation. In our approach we will avoid the use of imperfect differentials. The heat flow is

described by processes that occur at a finite time and, with the assumption that the rate of heat flow is known,

the heat exchanged dQ in a time dt is well defined. The same is true for the work dW. Idealized, infinitely
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Figure 2.5 The law of conservation of energy: the total energy of an isolated system U remains a constant. The
change in the energy dU of a system, in a time dt, can only be due to exchange of energy deU with the exterior
in the form of heat, mechanical work dW and through the exchange of matter dUmatter. The energy change of the
system is equal and opposite to that of the exterior.

slow reversible processes still remain useful for some conceptual reasons and we will use them occasionally,

but we will not restrict our presentation to reversible processes as many texts do.

The total change in energy dU of a closed system in a time dt is

dU = dQ + dW (2.2.3)

The quantities dQ and dW can be specified in terms of the rate laws for heat transfer and the forces that do

the work. For example, the heat supplied in a time dt by a heating coil of resistance R carrying a current I is

given by dQ = VI dt = (I2R) dt, in which V is the voltage drop across the coil.

For open systems there is an additional contribution due to the flow of matter dUmatter (Figure 2.5):

dU = dQ + dW + dUmatter (2.2.4)

Also, for open systems we define the volume not as the volume occupied by a fixed amount of substance

but by the boundary of the system, e.g. a membrane. Since the flow of matter into and out of the system

can be associated with mechanical work (as, for instance, the flow of molecules into the system through a

semipermeable membrane due to excess external pressure), dW is not necessarily associated with changes in

the system volume. The calculation of changes in energy dU in open systems does not pose any fundamental

difficulty. In any process, if changes in T, V and Nk can be computed, then the change in energy can be

calculated. The total change in the energy can then be obtained by integrating U(T, V, Nk) from the initial

state A to the final state B:

B

∫
A

dU = UB − UA (2.2.5)

Because U is a state function, this integral is independent of the path.

Let us now consider some specific examples of exchange of energy in forms other than heat.

� For closed systems, if dW is the mechanical work due to a volume change, then we may write

dWmech = −p dV (2.2.6)

in which p is the pressure at the moving surface and dV is the change in volume (see Box 2.2).
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� For transfer of charge dq across a potential difference 𝜙

dUq = 𝜙 dq (2.2.7)

� For dielectric systems, the change of electric dipole moment dP in the presence of an electric field E is

associated with a change of energy

dUelect = −E dP (2.2.8)

� For magnetic systems, the change of magnetic dipole moment dM in the presence of a magnetic field B is

associated with a change of energy

dUmag = −B dM (2.2.9)

� For a change of surface area dΣ with an associated interfacial energy 𝛾 (interfacial energy per unit

area)

dUsurf = 𝛾 dΣ (2.2.10)

In general, the quantity dW is a sum of all the various forms of ‘work’, each term being a product of an

intensive variable and a differential of an extensive variable.

Thus, in general, the change in the total internal energy may be written as

dU = dQ − p dV + 𝜑 dq − EdP +⋯ (2.2.11)

This change of energy of a system is a function of state variables such as T, V and Nk.

Box 2.2 Mechanical work due to a change in volume

Mechanical work: dW = F∙ds

The force on the piston of area A due to a pressure p is pA. An expanding gas does work; hence,

its energy decreases. The decrease in the energy when the gas pressure moves the piston by an amount

dx is

dW = −pA dx = −p dV

in which dV is the change in volume of the gas. The negative sign is used to ensure that the energy of the

gas decreases when V increases. By considering small displacements of the surface of a body at pressure
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p (the figure on the right), the above expression for the work done by a gas can be shown to be generally

valid for any system.

Isothermal Volume Change

By keeping a gas in contact with a reservoir at temperature T and slowly changing its volume, a constant-

temperature or isothermal process can be realized. For such a process, the change in the energy of the gas

equals the isothermal work given by the expression:

Work =

Vf

∫
Vi

−p dV =

Vf

∫
Vi

−NRT
V

dV = −NRT ln
(

Vf

Vi

)
The negative sign indicates that an expanding gas transfers its energy to the exterior. During an isothermal

expansion, flow of heat from the reservoir to the gas keeps T constant.

For systems undergoing chemical transformations, the total energy U = U(T, V, Nk) may be expressed

as a function of T, V and the molar amounts of the constituents Nk. As a function of T, V and Nk, the total

differential of U can be written as

dU =
(
𝜕U
𝜕T

)
V ,Nk

dT +
(
𝜕U
𝜕V

)
T ,Nk

dV +
∑

k

(
𝜕U
𝜕Nk

)
V ,T ,Ni≠k

dNk

= dQ + dW + dUmatter (2.2.12)

The exact form of the function U(T, V, Nk) for a particular system is obtained empirically. One way of

obtaining the temperature dependence of U is the measurement of the molar heat capacity CmV at constant
volume (see Box 2.1 for basic definitions of heat capacity and specific heat). At constant volume, since no

work is performed, dU = dQ. Hence:

CmV(T , V) ≡
(

dQ
dT

)
V=const

=
(
𝜕U
𝜕T

)
V ,N=1

(2.2.13)

If CmV is determined experimentally (Box 2.3), then the internal energy U(T, V) is obtained through

integration of CmV:

U(T , V , N) − U(T0, V , N) = N

T

∫
T0

CmV (T , V)dT (2.2.14)

in which T0 is the temperature of a reference state. If, for example, CmV is independent of temperature and

volume, as is the case for an ideal gas, then we have

UIdeal = CmVNT + U0 (2.2.15)

in which U0 is an arbitrary additive constant. As noted earlier, U can only be defined up to an additive

constant. For ideal monatomic gases CmV = (3/2)R and for diatomic gases CmV = (5/2)R.
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Box 2.3 Calorimetry

Calorimeter. Heat evolved or absorbed during a transformation, such as a chemical reaction, is measured

using a calorimeter. The transformation of interest is made to occur inside a chamber that is well

insulated from the environment to keep heat loss to a minimum. To measure the heat generated by a

process, first the heat capacity of the calorimeter, Ccal should be determined. This is done by noting the

increase in the temperature of the calorimeter due to a process for which the heat evolved is known.

The heat produced by a current-carrying resistor, for example, is known to be I2R joules per second, in

which I is the current in amps and R is the resistance in ohms. (Using Ohm’s law, V = IR, in which V is

the voltage across the resistor in volts, the heat generated per second may also be written as VI.) If the

heat capacity Ccal of the calorimeter is known, then one only needs to note the change in the temperature

of the calorimeter to determine the heat generated by a process.

Calorimetry is widely used in present-day laboratories.

Bomb calorimeter. The heat of combustion of a compound is determined in a bomb calorimeter. In a bomb

calorimeter, the combustion takes place in a chamber pressurized to about 20 atm with pure oxygen to

ensure that the combustion is complete.

Isothermal calorimeter. In this type of calorimeter, the sample that absorbs or generates heat due to a

physicochemical process is maintained at a constant temperature using a sensitive heat exchanger that

can record the amount of heat exchanged. This technique is highly developed and sensitive enough

to measure enthalpy changes as low as a few nanojoules. It is a method widely used to study the

thermodynamics of biological systems.

The notion of total internal energy is not restricted to homogeneous systems in which quantities such

as temperature are uniform. For many systems, temperature is locally well defined but may vary with the

position x and time t. In addition, the equations of state may remain valid in every elemental volume 𝛿V (i.e.

in a small-volume element defined appropriately at every point x) in which all the state variables are specified

as densities. For example, corresponding to the energy U(T, V, Nk) we may define the energy destiny u(x, T),

energy per unit volume, at the point x at time t, which can be expressed as a function of the local temperature

T(x, t) and the molar density nk(x, t) (moles of k per unit volume, also called number density), which in

general are functions of both position x and time t:

u(x, t) = u(T(x, t), nk (x, t)) (2.2.16)



The First Law of Thermodynamics 57

Figure 2.6 Molar heat capacity at constant pressure is larger than that at a constant volume.

The law of conservation of energy is a local conservation law: the change in energy in a small volume can

only be due to a flow of energy into or out of the volume. Two spatially separated regions cannot exchange

energy unless the energy passes through the region connecting the two parts.3

2.3 Elementary Applications of the First Law

2.3.1 Relation between Cmp and CmV

The First Law of thermodynamics leads to many simple and useful conclusions. It leads to a relation between

the molar heat capacities at constant pressure Cmp and at constant volume CmV (Figure 2.6 and Table 2.1).

Consider a one-component substance. Then, using Equations (2.2.3) and (2.2.6), and the fact that U is a

function of the volume and temperature, the change in the energy dU can be written as

dU = dQ − p dV =
(
𝜕U
𝜕T

)
V

dT +
(
𝜕U
𝜕V

)
T

dV (2.3.1)

From this it follows that the heat exchanged by the gas can be written as

dQ =
(
𝜕U
𝜕T

)
V

dT +
[
p +
(
𝜕U
𝜕V

)
T

]
dV (2.3.2)

If the gas is heated at a constant volume, then, since no work is done, the change in the energy of the gas

is entirely due to the heat supplied. Therefore:

CV ≡
(

dQ
dT

)
V
=
(
𝜕U
𝜕T

)
V

(2.3.3)

3One might wonder why energy conservation does not take place nonlocally, disappearing at one location and simultaneous appearing at

another. Such conservation, it turns out, is not compatible with the theory of relativity. According to relativity, events that are simultaneous

but occurring at different locations to one observer may not be simultaneous to another. Hence, the simultaneous disappearance and

appearance of energy as seen by one observer will not be simultaneous for all. For some observers, energy would have disappeared at

one location first and only some time later would it reappear at the other location, thus violating the conservation law during the time

interval separating the two events.
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Table 2.1 Molar heat capacities CmV and Cmp for some substances
at T = 298.15 K and p = 1 bar.

Substance
Cmp

(J mol−1 K−1)
CmV

(J mol−1 K−1)

Ideal monatomic (5/2)R (3/2)R
Ideal diatomic (7/2)R (5/2)R
Noble gases (He, Ne, Ar, Kr, Xe) 20.8 12.5
N2(g) 29.17 20.82
O2(g) 29.43 21.07
CO2(g) 37.44 28.93
H2(g) 28.83 20.52
H2O(l) 75.33
CH3OH(l) 81.21
C6H6(l) 132.9
Cu(s) 24.47
Fe(s) 25.09

Source: P.J. Linstrom and W.G. Mallard (eds), NIST Chemistry WebBook, NIST Stan-
dard Reference Database Number 69, June 2005, National Institute of Standards and
Technology, Gaithersburg, MD (http://webbook.nist.gov).

On the other hand, if the gas is heated at constant pressure, then from Equation (2.3.2) we have

Cp ≡
(

dQ
dT

)
p
=
(
𝜕U
𝜕T

)
V
+
[
p +
(
𝜕U
𝜕V

)
T

] (
𝜕V
𝜕T

)
p

(2.3.4)

Comparing Equations (2.3.3) and (2.3.4), we see that CV and Cp are related by

Cp − CV =
[
p +
(
𝜕U
𝜕V

)
T

] (
𝜕V
𝜕T

)
p

(2.3.5)

The right-hand side of Equation (2.3.5) is equal to the additional amount of heat required to raise the

temperature in a constant-pressure, or ‘isobaric’, process to compensate for the energy expended due to

expansion of the volume.

Relation (2.3.5) is generally valid for all substances. For an ideal gas, it reduces to a simple form. As

mentioned in Chapter 1 (see Equations (1.4.6) and (1.4.8)), the energy U is only a function of the temperature

and is independent of the volume. Hence, in Equation (2.3.5), (𝜕U/𝜕V)T = 0; for 1 mol of an ideal gas,

since pV = RT, the remaining term p(𝜕V/𝜕T)p = R. Therefore, for the molar heat capacities, Equation (2.3.5)

reduces to the simple relation

Cmp − CmV = R (2.3.6)

2.3.2 Adiabatic Processes in an Ideal Gas

In an adiabatic process, the state of a system changes without any exchange of heat. Using the equation

dU = dQ − p dV, we can write

dQ = dU + pdV =
(
𝜕U
𝜕T

)
V

dT +
(
𝜕U
𝜕V

)
T

dV + pdV = 0 (2.3.7)
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For an ideal gas, since U is a function of temperature but not of volume, and because (𝜕U/𝜕T)V = NCmV,

Equation (2.3.7) reduces to

CmVN dT + p dV = 0 (2.3.8)

If the change in volume occurs so that the ideal gas equation is valid during the process of change, then we

have

CmVdT + RT
V

dV = 0 (2.3.9)

(For very rapid changes in volume, the relation between p, V and T may deviate from the ideal gas law.)

However, since R = Cmp − CmV for an ideal gas, we can write Equation (2.3.9) as

dT
T

+
Cmp − CmV

CmVV
dV = 0 (2.3.10)

Integration of Equation (2.3.10) gives

TV (𝛾−1) = constant where 𝛾 =
Cmp

CmV
(2.3.11)

Using pV = NRT, the above relation can be transformed into

pV𝛾 = constant or T𝛾p1−𝛾 = constant (2.3.12)

Thus, the First Law gives us Equations (2.3.11) and (2.3.12), which characterize adiabatic processes in an

ideal gas. Table 2.2 lists the ratio of heat capacities 𝛾 for some gases. We shall discuss adiabatic processes in

real gases in Chapter 6.

2.3.3 Sound Propagation

An example of an adiabatic process in nature is the rapid variations of pressure during the propagation of

sound. These pressure variations, which are a measure of the sound intensity, are small. A measure of these

pressure variations is prms, the root-mean-square value of the sound pressure with respect to the atmospheric

Table 2.2 Ratios of molar heat capacities and speed of sound Csound
at T = 298.15 K and p = 1 bar.

Gas
Cmp

(J mol−1 K−1)
CmV

(J mol−1 K−1) 𝛾 = Cmp/CmV

Csound
(m s−1)

Ar(g) 20.83 12.48 1.669 321.7
CO2(g) 37.44 28.93 1.294 268.6
H2(g) 28.83 20.52 1.405 1315
He(g) 20.78 12.47 1.666 1016
N2(g) 29.17 20.82 1.401 352.1
O2(g) 29.43 21.07 1.397 328.7

Source: E.W. Lemmon, M.O. McLinden and D.G. Friend, Thermophysical properties of
fluid systems. In NIST Chemistry WebBook, NIST Standard Reference Database Number
69, P.J. Linstrom and W.G. Mallard (eds), June 2005, National Institute of Standards and
Technology, Gaithersburg, MD (http://webbook.nist.gov).
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pressure, i.e. prms is the square root of the average value of (p− patms)
2. The unit for measuring sound intensity

is the bel (B, named in honor of Alexander Graham Bell). The usual practice is to express the intensity in

units of decibels (dB). The decibel can be expressed as a logarithmic measure of the pressure variations

defined by

I = 10 log10

(
p2

rms

p2
0

)
(2.3.13)

in which the reference pressure p0 = 2 × 10−8 kPa (= 2 × 10−10 bar) roughly corresponds to audibility

threshold in humans – an astoundingly low threshold, which in units of energy intensity equals a mere 2 ×
10−12 W m−2. The logarithmic scale is used because it corresponds roughly to the sensitivity of the ear. We

normally encounter sound whose intensity is in the range 10–100 dB, corresponding to a pressure variations

in the range 6 × 10−10 to 2 × 10−5 bar. These small variations of pressure for audible sound occur in the

frequency range 20 Hz–20 kHz (music being in the range 40–4000 Hz).

Owing to the rapidity of pressure variations, hardly any heat is exchanged by the volume of air that is

undergoing the pressure variations and its surroundings. It is essentially an adiabatic process. As a first

approximation, we may assume that the ideal gas law is valid for these rapid changes. In introductory physics

texts it is shown that the speed of sound Csound in a medium depends on the bulk modulus B and the density

𝜌 according to the relation

Csound =
√

B
𝜌

in which B = −
𝛿p

𝛿V∕V
(2.3.14)

The bulk modulus B relates the relative change in the volume of a medium 𝛿V/V due to a change in pressure

𝛿p; the negative sign indicates that for positive 𝛿p the change 𝛿V is negative. If the propagation of sound is

an adiabatic process, in the ideal gas approximation, then the changes in volume and pressure are such that

pV𝛾 = constant. By differentiating this relation, one can easily see that the bulk modulus B for an adiabatic

process is

B = −V
dp

dV
= 𝛾p (2.3.15)

For an ideal gas of density 𝜌 and molar mass M, we have

p = NRT
V

= NM
V

RT
M

= 𝜌RT
M

Hence:

B = 𝛾𝜌RT
M

(2.3.16)

Using this expression in the relation (2.3.14) we arrive at the conclusion that, if the propagation of sound

is an adiabatic process, the velocity C is given by

Csound =
√
𝛾RT
M

(2.3.17)

Experimental measurements of sound confirm this conclusion to a good approximation. The velocities of

sound in some gases are listed in Table 2.2.



The First Law of Thermodynamics 61

2.4 Thermochemistry: Conservation of Energy in Chemical Reactions

During the first half of the nineteenth century, chemists mostly concerned themselves with the analysis of

compounds and chemical reactions and paid little attention to the heat evolved or absorbed in a chemical

reaction. Though the early work of Lavoisier (1743–1794) and Laplace (1749–1827) established that heat

absorbed in a chemical reaction was equal to the heat released in the reverse reaction, the relation between

heat and chemical reactions was not investigated very much. The Russian chemist Germain Henri Hess

(1802–1850) was rather an exception among the chemists of his time in regard to his interest in the heat

released or absorbed by chemical reactions [11]. Hess conducted a series of studies in neutralizing acids and

measuring the heats released (see Box 2.4). This, and several other experiments on the heats of chemical

reactions, led Hess to his ‘law of constant summation’, which he published in 1840, 2 years before the

appearance of Robert von Mayer’s paper on the conservation of energy:

The amount of heat evolved during the formation of a given compound is constant, independent of

whether the compound is formed directly or indirectly in one or in a series of steps [12].

Box 2.4 The experiments of Germain Henry Hess

Hess conducted a series of studies in which he first diluted sulfuric acid with different amounts of water

and then neutralized the acid by adding a solution of ammonia. Heat was released in both steps. Hess

found that, depending on the amount of water added during the dilution, different amounts of heat were

released during the dilution and the subsequent neutralization with ammonia. However, the sum of the

heats released in the two processes was found to be the same [11]. The following example, in which ΔH
are the heats released, illustrates Hess’s experiments:

1 L of 2M H2SO4

Dilution
−−−−−−−−−→

ΔH1

1.5M H2SO4

NH3 solution
−−−−−−−−−→

ΔH2

3 L Neutral solution

1 L of 2M H2SO4

Dilution
−−−−−−−−−→

ΔH′
1

1.0M H2SO4

NH3 solution
−−−−−−−−−→

ΔH′
2

3 L Neutral solution

Hess found that ΔH1 + ΔH2 = ΔH′
1
+ ΔH′

2
to a good approximation.

Hess’s work was not very well known for many decades after its publication. The fundamental contribution

of Hess to thermochemistry was made known to chemists largely through Wilhelm Ostwald’s (1853–1932)

Textbook of General Chemistry, published in 1887. The above statement, known as Hess’s law, was amply

confirmed in the detailed work of Mercellin Berthelot (1827–1907) and Julius Thompsen (1826–1909) [13].

As we shall see below, Hess’s law is a consequence of the law of conservation of energy and is most

conveniently formulated in terms of a state function called enthalpy.

Hess’s law refers to the heat evolved in a chemical reaction under constant (atmospheric) pressure. Under

such conditions, a part of the energy released during the reaction may be converted to work W = ∫ V2

V1
−p dV ,

if there is a change in volume from V1 to V2. Using the basic equation of the First Law, dU = dQ − V dp, the

heat evolved, ΔQp, during a chemical transformation at a constant pressure can be written as

ΔQp =

U2

∫
U1

dU +

V2

∫
V1

p dV = (U2 − U1) + p(V2 − V1) (2.4.1)
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Germain Henri Hess (1802–1850).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)

From this we see that the heat released can be written as a difference between two terms, one referring to

the initial state (U1, V1), the other to the final state (U2, V2):

ΔQp = (U2 + pV2) − (U1 + pV1) (2.4.2)

Since U, p and V are specified by the state of the system and are independent of the manner in which that

state was reached, the quantity U + pV is a state function, fully specified by the state variables. According to

Equation (2.4.2), the heat evolved, ΔQp, is the difference between the values of the function (U + pV) at the

initial and the final states. The state function (U + pV) is called enthalpy H:

H ≡ U + pV (2.4.3)

The heat released by a chemical reaction at constant pressure ΔQp = H2 − H1. Since ΔQp depends

only on the values of enthalpy at the initial and final states, it is independent of the ‘path’ of the chemical

transformation, in particular if the transformation occurs ‘directly or indirectly in one or in a series of steps’,

as Hess concluded.
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As a simple example, consider the reaction

(a) 2P(s) + 5Cl2(g) → 2PCl5(s)

in which 2 mol of P reacts with 5 mol of Cl2 to produce 2 mol of PCl5. In this reaction, 886 kJ of heat is

released. The reaction can occur directly when an adequate amount of Cl2 is present or it could be made to

occur in two steps:

(b) 2P(s) + 3Cl2(g) → 2PCl3(l)

(c) 2PCl3(g) + 2Cl2(g) → 2PCl5(s)

In reactions (b) and (c), for the molar quantities shown in the reaction, the heats evolved are 640 kJ and 246 kJ

respectively. If the change in the enthalpies between the initial and final states of reactions (a), (b) and (c) are

denoted by ΔHra, ΔHrb and ΔHrc respectively, then we have:

ΔHra = ΔHrb + ΔHrc (2.4.4)

The heat evolved or enthalpy change in a chemical reaction under constant pressure is usually denoted by

ΔHr and is called the enthalpy of reaction. The enthalpy of reaction is negative for exothermic reactions and

it is positive for endothermic reactions.

The First Law of thermodynamics applied to chemical reactions in the form of Hess’s law gives us a very

useful way of predicting the heat evolved or absorbed in a chemical reaction if we can formally express it as

a sum of chemical reactions for which the enthalpies of reaction are known. In fact, if we can assign a value

for the enthalpy of 1 mol of each compound, then the heats of reactions can be expressed as the difference

between the sums of enthalpies of the initial reactants and the final products. In reaction (c), for example, if

we can assign enthalpies for a mole of PCl3(g), Cl2(g) and PCl5(s), then the enthalpy of this reaction will

be the difference between the enthalpy of the product PCl5(s) and the sum of the enthalpies of the reactants

PCl3(g) and Cl2(g). However, from the definition of enthalpy in Equation (2.4.3) it is clear that it could only

be specified with respect to a reference or normal state because U can only be defined in this way.

A convenient way to calculate enthalpies of chemical reactions at a specified temperature has been developed

by defining a standardmolar enthalpy of formationΔH0
f
[X] for each compound X as described in Boxes 2.5

and 2.6.

Box 2.5 Basic definitions of standard states

Like the energy U, the quantitative specification of enthalpy and other thermodynamic quantities that we

will discuss in later chapters can be done with reference to a standard state at a specified temperature

T, standard pressure p0, standard molality m0 and standard concentration c0. Though the choice of p0, m0

and c0 depends on the system under consideration, the most common choice for tabulating data is

T = 298.15, p0 = 1 bar = 105 Pa, m0 = 1 mol kg−1 and c0 = 1 mol dm−3

The standard state of a pure substance at a particular temperature is its most stable state (gas, liquid or

solid) at a pressure of 1 bar (105 Pa).

Notation used to indicate the standard state: g = gas; l = liquid; s = pure crystalline solid.

In a gas phase, the standard state of a substance, as a pure substance or as a component in a gas mixture,

is the hypothetical state exhibiting ideal gas behavior at p = 1 bar. (Note that this definition implies that

real gases at p = 1 bar are not in their standard state.∗)



64 Modern Thermodynamics

In a condensed phase (solid or liquid), the standard state of a substance, as a pure substance or as

component of a mixture, is the state of the pure substance in the liquid or solid phase at the standard

pressure p0.

For a solute in a solution, the standard state is a hypothetical ideal solution of standard concentration

c0 at the standard pressure p0. Notation used to indicate the standard state: ai = completely dissociated

electrolyte in water; ao = undissociated compound in water.

∗Since the energy of an ideal gas depends only on the temperature, the standard state energy and enthalpy

of a gas depend only on the temperature. This implies that real gases at a pressure of 1 bar are not in

their standard state; their energies and enthalpies differ from that of the standard state of a gas at that

temperature. For a real gas, at a temperature T and pressure of 1 bar, the energy Ureal(T) = U0
ideal

(T) +
ΔU(T), in which ΔU(T) is the correction due to the nonideality of the gas; it is sometimes called ‘internal

energy imperfection’. Similarly, the enthalpy of a real gas at a temperature T and pressure of 1 bar is

Hreal (T) = H0
ideal

(T) + ΔH(T). The corrections, ΔU(T) and ΔH(T), are small, however, and they can be

calculated using the equation of state such as the van der Waals equation.

Box 2.6 Basic definitions used in thermochemistry

Standard reaction enthalpies at a specified temperature are reaction enthalpies in which the reactants

and products are in their standard states.

Standard molar enthalpy of formation ΔH0
f
[X] of a compound X, at a specified temperature T, is the

enthalpy of formation of the compound X from its constituent elements in their standard state. Consider

the example where X = CO2(g):

C(s) + O2(g)
ΔH0

f
[CO2(g)]

−−−−−−−−−−−−→CO2(g)

The enthalpies of formation of elements in their standard state are defined to be zero at any temperature.

Thus, the enthalpies of formation ΔH0
f
[H2],ΔH0

f
[O2] and ΔH0

f
[Fe] are defined to be zero at all temper-

atures.

The consistency of the above definition is based on the fact that in ‘chemical reactions’ elements do

not transform among themselves, i.e. reactions between elements do not result in the formation of other

elements (though energy is conserved in such a reaction).

Standard enthalpies of formation of compounds can be found in tables of thermodynamic data [14]. Using

these tables and Hess’s law, the standard enthalpies of reactions can be computed by viewing the reaction as

‘dismantling’ of the reactants to their constituent elements and recombining them to form the products. Since

the enthalpy for the dismantling step is the negative of the enthalpy of formation, the enthalpy of the reaction

aX + bY → cW + dZ (2.4.5a)

for example, can be written as

ΔH0
r = −aΔH0

f
[X] − bΔH0

f
[Y] + cΔH0

f
[W] + dΔH0

f
[Z] (2.4.5b)

Enthalpies of various chemical transformations are discussed in detail in later chapters and in the exercises

at the end of this chapter.

Though it is most useful in thermochemistry, the enthalpy H, as defined in Equation (2.4.3), is a function

of state that has a wider applicability. For example, we can see that the constant-pressure heat capacity Cp
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can be expressed in terms of H as follows. Since the heat exchanged in a process that takes place at constant

pressure is equal to the change in the system’s enthalpy,

dQp = dU + p dV = dHp (2.4.6)

in which the subscripts denote a constant-pressure process. If the system consists of 1 mol of a substance,

and if the change in temperature due to the exchange of heat is dT, then it follows that(
dQ
dT

)
p
= Cmp =

(
𝜕Hm

𝜕T

)
p

(2.4.7)

Also, in general, the change in enthalpy in a chemical reaction (not necessarily occurring at constant

pressure) can be written as

ΔHr = Hf − Hi = (Uf − Ui) + (pfVf − piVi)

= ΔUr + (pfVf − piVi)
(2.4.8)

in which the subscripts ‘i’ and ‘f’ denote the initial and final states. In an isothermal process occurring at

temperature T, if all the gaseous components in the reaction can be approximated to be ideal gases and if the

change in volume of the nongaseous components can be neglected, then the changes of enthalpy and energy

are related by

ΔHr = ΔUr + ΔNrRT (2.4.9)

in which ΔNr is the change in the total molar amount of the gaseous reactants, a relation used in obtaining

enthalpies of combustion using a bomb colorimeter.

2.4.1 Variation of Enthalpy with Temperature

Being a state function, enthalpy is a function of T. Using the relation (2.4.7), the dependence of enthalpy on

T can be expressed in terms of the molar heat capacity Cmp:

H(T , p, N) − H(T0, p, N) = N

T

∫
T0

Cmp(T)dT (2.4.10)

Though the variation of Cmp with temperature is generally small, the following equation, called the Shomate

equation, is often used:

Cmp = A + BT + CT2 + DT3 + E
T2

(2.4.11)

Values of the coefficients A, B, C, D and E for some gases are shown in Table 2.3.

Table 2.3 Values of constants A, B, C, D and E in Equation (2.4.11) for some gases. The range of validity is 300
to 1200 K (p = 1 bar).

Gas
A

(J mol−1 K−1)
B

(10−3 J mol−1 K−2)
C

(10−6 J mol−1 K−3)
D

(10−9 J mol−1 K−4)
E

(106 J mol−1 K−5)

O2(g) 29.66 6.137 −1.186 0.0958 −0.2197
N2(g) 29.09 8.218 −1.976 0.1592 0.0444
CO2(g) 24.99 55.19 −33.69 7.948 −0.1366

Source: P.J. Linstrom and W.G. Mallard (eds), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, National
Institute of Standards and Technology, Gaithersburg, MD (http://webbook.nist.gov).
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From Equations (2.2.14) and (2.4.10) it is clear that the temperature dependence of the total internal

energy U and enthalpy H of any particular gas can be obtained if its heat capacity is known as a function of

temperature. Sensitive calorimetric methods are available to measure heat capacities experimentally.

Using the relation (2.4.10), if the reaction enthalpy at a pressure p0 (which could be the standard pressure

p0 = 1 bar) is known at one temperature T0, then the reaction enthalpy at any other temperature T can be

obtained if the molar heat capacities, Cmp, for the reactants and the products are known. The enthalpies of

reactants or products X at the temperatures T and T0 are related according to the relation (2.4.10) as

HX(T , p0, NX) − HX(T0, p0, NX) = NX

T

∫
T0

Cmp(T)dT (2.4.12)

in which the subscript X identifies the reactants or products. Then, by subtracting the sum of the enthalpies

of reactants from the sum of the enthalpies of the products (as shown in Equation (2.4.5b)) we arrive at the

following relation between the reaction enthalpies ΔHr (T, p0) and ΔHr (T0, p0):

ΔHr(T , p0) − ΔHr(T0, p0) =
T

∫
T0

ΔCp(T)dT (2.4.13)

in which ΔCp is the difference in the heat capacities of the products and the reactants. Thus, ΔHr (T, p0) at

any arbitrary temperature T can be obtained knowing ΔHr (T0, p0) at a reference temperature T0. Relation

(2.4.13) was first noted by Gustav Kirchhoff (1824–1887) and is sometimes called Kirchhoff’s law. The

change in reaction enthalpy with temperature is generally small.

2.4.2 Variation of Enthalpy with Pressure

The variation of H with pressure, at a fixed temperature, can be obtained from the definition H = U + pV.

Generally, H and U can be expressed as functions of p, T and N. For changes in H we have

ΔH = ΔU + Δ(pV) (2.4.14)

At constant T0 and N, in the ideal gas approximation ΔH = 0 for gases. This is because U and the product

pV are functions only of temperature (see Chapter 1); hence H = U + pV is a function only of T and is

independent of pressure. The change in H due to a change in p is mainly due to intermolecular forces and it

becomes significant only for large densities. These changes in H can be calculated, for example, using the

van der Waals equation.

For most solids and liquids, at a constant temperature, the total energy U does not change much with

pressure. Since the change in volume is rather small unless the changes in pressure are very large, the change

in enthalpy ΔH due to a change in pressure Δp can be approximated by

ΔH ≈ VΔp (2.4.15)

A more accurate estimate can be made from a knowledge of the compressibility of the compound.

The First Law thus provides a powerful means of understanding the heats of chemical reactions. It enables

us to compute the heats of reactions of an enormous number of reactions using the heats of formation of

compounds at a standard temperature and pressure. The table entitled ‘Standard Thermodynamic Properties’ at

the end of the book lists the standard heats of formation of some compounds. In addition, with a knowledge of
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heat capacities and compressibilities, the heats of reactions at any temperature and pressure can be calculated

given those at a reference temperature and pressure.

2.4.3 Computation of 𝚫Hr Using Bond Enthalpies

The concept of a chemical bond gives us a better understanding of the nature of a chemical reaction: it is

essentially the breaking and making of bonds between atoms. The heat evolved or absorbed in a chemical

reaction can be obtained by adding the heat absorbed in the breaking of bonds and the heat evolved in the

making of bonds. The heat or enthalpy needed to break a bond is called the bond enthalpy.

For a particular bond, such as a C H bond, the bond enthalpy varies from compound to compound, but

one can meaningfully use an average bond enthalpy to estimate the enthalpy of a reaction. For example, the

reaction 2H2(g) + O2(g) → 2H2O(g) can be written explicitly indicating the bonds as

2(H H) + O O → 2(H O H)

This shows that the reaction involves the breaking of two H H bonds and one O O bond and the making of

four O H bonds. If the bond enthalpy of the H H bond is denoted by ΔH[H H], etc., the reaction enthalpy

ΔHr may be written as

ΔHr = 2ΔH[H H] + ΔH[O O] − 4ΔH[O H]

This is a good way of estimating the reaction enthalpy of a large number of reactions using a relatively

small table of average bond enthalpies. Table 2.4 lists some average bond enthalpies which can be used to

estimate the enthalpies of a large number of reactions.

Table 2.4 Average bond enthalpies for some common bonds.

Bond enthalpy (kJ mol−1)

H C N O F Cl Br I S P Si

H 436
C (single) 412 348
C (double) 612
C (triple) 811
C (aromatic) 518
N (single) 388 305 163
N (double) 613 409
N (triple) 890 945
O (single) 463 360 157 146
O (double) 743 497
F 565 484 270 185 155
Cl 431 338 200 203 254 252
Br 366 276 219 193
I 299 238 210 178 151
S 338 259 250 212 264
P 322 172
Si 318 374 176

Source: L. Pauling, The Nature of the Chemical Bond, 1960, Cornell University Press: Ithaca, NY.
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2.5 Extent of Reaction: A State Variable for Chemical Systems

In each chemical reaction, the changes in the mole numbers Nk are related through the stoichiometry of the

reaction. In fact, only one parameter is required to specify the changes in Nk resulting from a particular
chemical reaction. This can be seen as follows. Consider the elementary chemical reaction:

H2(g) + I2(g) ⇌ 2HI(g) (2.5.1)

which is of the form

A + B ⇌ 2C (2.5.2)

In this case the changes in the molar amounts dNA, dNB and dNC of the components A, B and C are related

by the stoichiometry. We can express this relation as

dNA

−1
=

dNB

−1
=

dNC

2
≡ d𝜉 (2.5.3)

in which we have introduced a single variable d𝜉 that expresses all the changes in the mole numbers due to the

chemical reaction. This variable 𝜉 introduced by Theophile De Donder [15,16] is basic for the thermodynamic

description of chemical reactions and is called the extent of reaction or degree of advancement. The rate
of conversion (or reaction velocity) is the rate at which the extent of reaction changes with time:

Rate of conversion (or reaction velocity) = d𝜉

dt
(2.5.4)

If the initial values of Nk are written as Nk0, then the values of all Nk during the reactions can be specified

by the extent of reaction 𝜉:

Nk = Nk0 + vk𝜉 (2.5.5)

in which vk is the stoichiometric coefficient of the reacting component Nk; vk is negative for reactants and

positive for products. In this definition 𝜉 = 0 for the initial state.

If the changes in Nk in a system are due to chemical reactions, then the total internal energy U of such a

system can be expressed in terms of the initial Nk0, which are constants, and the extents of reaction 𝜉i defined for

each of the reactions. For example, consider a system consisting of three substances A, B and C undergoing

a single reaction (see Equation (2.5.2)). Then the molar amounts can be expressed as: NA = NA0 − 𝜉,

NB = NB0 − 𝜉 and NC = NC0 + 2𝜉. The value of 𝜉 completely specifies all the molar amounts NA, NB

and NC. Hence, the total energy U may be regarded as a function U(T, V, 𝜉) with the understanding that

the initial molar amounts NA0, NB0 and NC0 are constants in the function U. If more than one chemical

reaction is involved, then an extent of reaction 𝜉i is defined for each independent reaction i and each mole

number is specified in terms of the extents of reaction of all the chemical reactions in which it takes

part. Clearly, the 𝜉i are state variables and internal energy can be expressed as a function of T, V and 𝜉i:

U(T, V, 𝜉i).

In terms of the state variables T, V and 𝜉i, the total differential of U becomes

dU =
(
𝜕U
𝜕T

)
V ,𝜉k

dT +
(
𝜕U
𝜕V

)
T ,𝜉k

dV +
∑

k

(
𝜕U
𝜕𝜉k

)
V ,T ,𝜉i≠k

d𝜉k (2.5.6)
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Using the First Law, the partial derivatives of U can be related to ‘thermal coefficients’, which characterize

the system’s response to heat under various conditions. Consider a system with one chemical reaction. We

have one extent of reaction 𝜉. Then, by using the First Law:

dQ − p dV = dU =
(
𝜕U
𝜕T

)
V ,𝜉

dT +
(
𝜕U
𝜕V

)
T ,𝜉

dV +
(
𝜕U
𝜕𝜉

)
T ,V

d𝜉 (2.5.7)

which can be written as

dQ =
(
𝜕U
𝜕T

)
V ,𝜉

dT +
[

p +
(
𝜕U
𝜕V

)
T ,𝜉

]
dV +

(
𝜕U
𝜕𝜉

)
T ,V

d𝜉 (2.5.8)

Just as the partial derivative (𝜕U/𝜕T)V has the physical meaning of being the heat capacity at constant

volume CV, the other derivatives, called thermal coefficients, can be related to experimentally measurable

quantities. The derivative rT,V ≡ (𝜕U/𝜕𝜉)V,T, for example, is the amount of heat evolved per unit change in

the extent of reaction (one equivalent of reaction) at constant V and T. If it is negative, then the reaction is

exothermic; if it is positive, then the reaction is endothermic. Just as we derived the relation (2.3.6) between the

thermal coefficients Cp and CV, several interesting relations can be derived between these thermal coefficients

as a consequence of the First Law [17].

Also, since the extent of reaction is a state variable, the enthalpy of a reacting system can be expressed as

a function of the extent of reaction:

H = H(p, T , 𝜉) (2.5.9)

The heat of reaction per unit change of 𝜉, which we shall denote as hp,T, is the derivative of H with respect

to 𝜉:

hp,T =
(
𝜕H
𝜕𝜉

)
p,T

(2.5.10)

2.6 Conservation of Energy in Nuclear Reactions and Some General Remarks

At terrestrial temperatures, transformations of states of matter are mostly chemical, radioactivity being an

exception. Just as molecules collide and react at terrestrial temperatures, at very high temperatures that exceed

106 K, typical of temperatures attained in the stars, nuclei collide and undergo nuclear reactions. At these

temperatures, the electrons and nuclei of atoms are completely torn apart. Matter turns into a state that is

unfamiliar to us and the transformations that occur are between nuclei, which is why it is called ‘nuclear

chemistry’.

All the elements heavier than hydrogen on our and other planets are a result of nuclear reactions, generally

referred to as nucleosynthesis, which occurred in stars [18]. Just as we have unstable molecules that dissociate

into other more stable molecules, some of the nuclei that were synthesized in the stars are unstable and

disintegrate; these are the ‘radioactive’ elements. The energy released by radioactive elements turns into heat,

which is a source of heat for the Earth’s interior. For example, the natural radioactivity in granite due to 238U,
235U, 232Th and 40K produces a small amount of heat equal to about 5 μcal per gram of granite per year;

however, accumulation of such heat over billions of years in the interior of the Earth makes a significant

contribution to geothermal energy.
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Under special circumstances, nuclear reactions can occur on the Earth, as in the case of nuclear fission of

uranium and in the nuclear fusion of hydrogen in special reactors. Nuclear reactions release vastly greater

amounts of energy than chemical reactions. The energy released in a nuclear reaction can be calculated from

the difference in the rest mass of the reactants and the products using the famous relation E2 = p2c2 + m2
0
c4,

derived by Einstein, in which E is the total energy of a particle, p is its momentum, m0 its rest mass and c
the velocity of light in vacuo. If the total rest mass of the products is lower than the total rest mass of the

reactants, then the difference in energy due to change in the rest mass turns into the kinetic energy of the

products. This excess kinetic energy turns into heat due to collisions. If the difference in the kinetic energy of

the reactants and products is negligible, then the heat released ΔQ = Δm0c2, in which Δm0 is the difference

in the rest mass between the reactants and the products. In nuclear fusion, two deuterium nuclei, 2H, can

combine to form a helium nucleus, 3He, and a neutron, n, is released:

2H + 2H → 3He + n

Δm0 = 2(mass of 2H) − (mass of 3He + mass of n)

= 2(2.0141) amu − (3.0160 + 1.0087) amu

= 0.0035 amu

where amu stands for atomic mass unit. Since 1 amu = 1.6605 × 10−27 kg, when 2 mol of 2H react to

produce 1 mol of 3He and 1 mol of n, the difference in mass Δm0 = 3.5 × 10−6 kg. The corresponding heat

released is

ΔE = Δm0c2 = 3.14 × 108 kJ mol−1

If a nuclear process occurs at constant pressure, then the heat released is equal to the enthalpy and all the

thermodynamic formalism that applies to the chemical reactions also applies to nuclear reactions. Needless to

say, in accordance with the First Law, Hess’s law of additivity of reaction enthalpies is also valid for nuclear

reactions.

2.6.1 General Remarks

Thermodynamically, energy is only defined up to an additive constant. In physical processes, it is only

the change in energy (Equation (2.2.11)) that can be measured, which leaves the absolute value of energy

undetermined. With the advent of the theory of relativity, which has given us the relation between rest mass,

momentum and energy, E2 = p2c2 + m2
0
c4, the definition of energy has become as absolute as the definition

of mass and momentum. The absolute value of the energy of elementary particles can be used to describe

matter in the state of thermal radiation that we discussed in Section 2.1.

The conservation of energy has become the founding principle of physics. During the early days of

nuclear physics, studies of 𝛽 radiation, or ‘𝛽 decay’ as it is often called, showed initially that the energy of

the products was not equal to the energy of the initial nucleus. This resulted in some reexamination of the

law of conservation of energy, with some physicists wondering if it could be violated in some processes.

Asserting the validity of the conservation of energy, Wolfgang Pauli (1900–1958) suggested in 1930 that

the missing energy was carried by a new particle that interacted extremely weakly with other particles and,

hence, was difficult to detect. This particle later acquired the name neutrino. Pauli was proven right 26 years

later. Experimental confirmation of the existence of the neutrino came in 1956 from the careful experiments

conducted by Frederick Reines and (the now late) Clyde Cowen. Since then our faith in the law of conservation

of energy has become stronger than ever. Frederick Reines received the Physics Noble Prize in 1995 for
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the discovery of the elusive neutrino; for the interesting history behind the discovery of the neutrino, see

Reference [19].

2.7 Energy Flows and Organized States

In Nature, the role of energy is much more than just a conserved quantity: energy flows are crucial to life,

ecosystems and human activity that we call ‘economy’. It could be said that energy flows have a creative

role, in that out of these flows emerge complex processes that range from global biogeochemical cycles

to photosynthetic bacteria. In this section, we present a brief introduction to energy flow and some of its

consequences. We will discuss more about nonequilibrium systems that become organized spontaneously in

Chapter 19.

2.7.1 Self-organization

At the outset we must note that what is of interest to us in a thermodynamic system is not only its state
but also the processes that take place in it and the way the system interacts with its exterior. The state of

thermodynamic equilibrium is static, devoid of processes; in this state there is no flow of energy or matter from

one point to another and no chemical change takes place. When a system is driven out of equilibrium by energy

and matter flows, however, irreversible processes begin to emerge within the system. These processes are

‘irreversible’ in that the transformations they cause have a definite direction. Heat conduction is an example

of an irreversible process: heat always flows towards a region at a lower temperature, never in the opposite

direction. The concept of entropy, which will be introduced in the following chapters, makes the notion of

irreversibility more precise; but even without the concept of entropy, one can see through simple examples

how irreversible processes can create structure and organization in a system. One such example involving

heat flow is illustrated in Figure 2.7. It consists of a fluid placed between two metal plates. The lower plate is

maintained at a temperature Th, which is higher than that of the upper plate temperature Tc. The temperature

difference will cause a flow of heat through the fluid. If the difference in the temperature ΔT = (Th − Tc)

is increased, there is a point at which a well-organized pattern of convection cells emerges. The threshold

value of ΔT depends on the fluid properties, such as the thermal expansion coefficient and viscosity. What is

remarkable about this familiar convection pattern is that it emerges entirely out of chaotic motion associated

with heat. Furthermore, the fluid’s organized convection pattern now serves a ‘function’: it increases the rate

of heat flow. This is an example in which the energy flow drives a system to an organized state which in turn

increases the energy flow.

Figure 2.7 Energy flows can cause self-organized patterns to emerge. A fluid is placed between two plates and
heated from below. The temperature difference ΔT = Th − Tc between the two plates drives a heat flow. (a)
When ΔT is small, the heat flow is due to conduction and the fluid is static. (b) When ΔT exceeds a critical value,
organized convection patterns emerge spontaneously.
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The convection pattern exists as long as there is heat flow; if the heat flow is stopped, then the system evolves

to equilibrium and the pattern disappears. Such patterns in nonequilibrium systems should be distinguished

from patterns that we might see in a system in equilibrium, such as layers of immiscible fluids separated by

differences in density. Organized states in nonequilibrium systems are maintained by the flow of energy and

matter and, as we shall see in later chapters, production of entropy.

In the formulation of modern thermodynamics, flows of matter and energy are thermodynamic flows. The

laws that govern them can be formulated in thermodynamic terms, as described in later chapters. Empirical

laws governing heat flow and radiative cooling have been known for centuries. Some commonly used laws

are summarized in Box 2.7. These laws can be used to analyze heat flows in various systems.

Box 2.7 Laws of heat flow

Heat flow or heat current Jq is defined as the amount of heat flowing per unit surface area per unit time.

Conduction

Jean Baptiste Joseph Fourier (1768–1830) proposed a general law of heat conduction in his 1807 memoir,

which states that the heat current is proportional to the gradient of temperature:

Jq = −𝜅∇T = −𝜅
(
î
𝜕T
𝜕x

+ ĵ
𝜕T
𝜕y

+ k̂
𝜕T
𝜕z

)
in which k (W m−1 K−1) is the thermal conductivity and î, ĵ and k̂ are unit vectors. The SI units of Jq are

W m−2.

Convection

A law of cooling due to convection, attributed to Newton, states that the rate of heat loss dQ/dt of a body

at temperature T surrounded by a fluid at temperature T0 is proportional to the difference (T − T0) and the

body’s surface area A:

dQ
dt

= −hA(T − T0)

in which h (W m−2 K−1) is the heat transfer coefficient. This law is a good approximation when heat loss

is mainly due to convection and that due to radiation can be ignored.
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Radiation

When thermal equilibrium between matter and radiation (Chapter 12) is analyzed, it is found that heat

radiated by a body at temperature T is proportional to T4 and the heat radiation absorbed from the

surroundings at temperature T0 is proportional to T4
0

. The net radiative heat loss is equal to

dQ
dt

= −𝜎eA(T4 − T4
0

)

in which 𝜎 = 5.67 10−8 W m−2 K−4 is the Stefan–Boltzmann constant, A is the surface area of the body

and e is the body’s emissivity (the maximum e = 1 for a blackbody). At high temperatures, the cooling of

bodies is due to convective and radiative heat losses.

2.7.2 Process Flows

An important application of the First Law is to the analysis of energy flows associated with fluids in industrial

processes and engines. Energy flows in this case include the kinetic and potential energies of the fluid in

addition to the thermodynamic internal energy U. The First Law applies to the total energy

E = U + 1

2
Mv2 + Ψ (2.7.1)

in which M is the mass of the system and Ψ is its potential energy. In describing energy flows, it is convenient

to use energy and mass densities:

Internal energy density u (J m−3)

Mass density 𝜌 (kg m−3)

When the change in potential energy is insignificant, the energy flowing in and out of a system is in the

form of heat, mechanical work, kinetic energy and internal energy of matter (Figure 2.8). Let us assume

that matter with energy density ui is flowing into the system under a pressure pi and velocity vi. Consider a

displacement dxi = vi dt of the matter flowing in through an inlet with area of cross-section Ai, in time dt
(see Figure 2.8). The amounts of the various forms of energy entering the system through the inlet due to this

displacement are:

Internal energy: uiAi dxi

Kinetic energy:
1

2
𝜌v2

i Ai dxi

Mechanical work: piAi dxi

Similar considerations apply for the energy flowing through the outlet, for which we use the subscript ‘o’

instead of ‘i’. In addition, we assume, in time dt, that there is a net heat output dQ and mechanical energy

output dW that are not associated with matter flow (which are positive for a net output and negative for a net

input). Taking all these into consideration, we see that the total change in energy dU in a time dt is

dU = −dW − dQ + uiAi dxi +
1

2
𝜌iv

2
i Aidxi + piAidxi − uoAodxo −

1

2
𝜌ov2

oAodxo − poAo dxo (2.7.2)
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Figure 2.8 Energy flow through a system. The subscripts i and o identify the variables for the inflow and outflow
respectively; p is the pressure, A is the area of cross-section, u is the energy density, 𝜌 is the mass density and v
is the flow velocity. The change in the energy of the system in a time dt is given by Equation (2.7.3), in which h
is the enthalpy density.

By defining enthalpy per unit volume h = u + p, and by noting that dxi = vidt and dxo = vodt, the above

expression can be written as

dU
dt

= −dW
dt

− dQ
dt

+
(

hi +
1

2
𝜌iv

2
i

)
Aivi −

(
ho +

1

2
𝜌ov2

o

)
Aovo (2.7.3)

In many situations, the system may reach a steady state in which all its thermodynamic quantities are

constant, i.e. dU/dt = 0. Also, in such a state, the mass of matter flowing into the system is equal to the mass

flowing out. Since the mass of matter flowing into and out of the system in time dt is (𝜌iviAi) dt and (𝜌ovoAo)

dt respectively, we have (𝜌iviAi) dt = (𝜌ovoAo) dt for a steady state. Hence, we can rewrite (2.7.3) as

dW
dt

+ dQ
dt

=

[(
hi

𝜌i

+
v2

i

2

)
−

(
ho

𝜌o

+
v2

o

2

)]
dm
dt

(2.7.4)

in which dm/dt = 𝜌iviAi = 𝜌ovoAo is the mass flow rate. In this expression, dW/dt is the rate of work output

and dQ/dt is the rate of heat output. Thus, we obtain a relation between the work and heat output and the

change of enthalpy densities and the kinetic energy of the matter flowing through the system.

This general equation can be applied to various situations. In a steam turbine, for example, steam enters

the system at a high pressure and temperature and leaves the system at a lower pressure and temperature,

delivering its energy to the turbine, which converts it to mechanical energy. In this case the heat output dQ/dt
is negligible. We then have

dW
dt

=

[(
hi

𝜌i

+
v2

i

2

)
−

(
ho

𝜌o

+
v2

o

2

)]
dm
dt

(2.7.5)

The ratio h/𝜌 is the specific enthalpy (enthalpy per unit mass) and its values at a given pressure and

temperature are tabulated in ‘steam tables’. The term dm/dt (kg s−1) is the rate of mass flow through the

system in the form of steam and, in many practical situations, the term (v2
i − v2

o) is small compared with the
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other terms in Equation (2.7.5). Thus, the rate of work output in a turbine is related to the rate of steam flow

and the specific enthalpy through the simple relation

dW
dt

≈
[(

hi

𝜌i

)
−
(

ho

𝜌o

)]
dm
dt

(2.7.6)

Using steam tables, the expected work output can be calculated. Note that if there are heat losses, i.e.

if dQ/dt > 0, then the work output dW/dt is correspondingly less. Explicit examples of the application of

Equation (2.7.4) are given at the end of this chapter.

2.7.3 Solar Energy Flow

In discussing energy flows, it is useful to have a quantitative idea of the energy flows on a global scale.

Figure 2.9 summarizes the flows that result from the solar energy incident on the Earth. The energy from

the sun traverses 150 × 106 km (93 million miles) before it reaches the Earth’s atmosphere. The amount of

solar energy reaching the Earth, called the ‘total solar radiance’, is about 1300 W m−2, which amounts to a

total of about 54.4 × 1020 kJ year−1. About 30% of this energy is reflected back into space by clouds and

other reflecting surfaces, such as snow. A significant fraction of the solar energy entering the Earth’s surface

goes to drive the water cycle, the evaporation and condensation as rain (Exercise 2.20). Of the solar energy

not lost due to reflection, it is estimated that only a small fraction, about 0.08 × 1020 kJ year−1, or 0.21%,

goes into the biosphere through photosynthesis. The energy consumed by human economies is estimated to

Figure 2.9 Annual solar energy flow through the Earth’s atmosphere and the surface. (Numerical Data from
T.G. Spiro and W.M. Stigliani, Chemistry of the Environment, second edition, 2003, Prentice Hall: Upper Saddle
River, NJ.)



76 Modern Thermodynamics

Figure 2.10 Energy flow through the biosphere.

be about 0.0037 × 1020 kJ year−1, which is about 5% of the energy that flows into photosynthesis. Thus,

there is ample solar energy to run human economies. The interior of the Earth also has a vast amount of

geothermal energy that flows to the surface at a rate of about 0.01 × 1020 kJ year−1. The solar energy entering

the Earth system is ultimately radiated back into space, and the total energy contained in the crust and the

atmosphere is essentially in a steady state, which is not a state of thermodynamic equilibrium. This flow of

38.1 × 1020 kJ year−1 drives the winds, creates rains and drives the cycle of life.

2.7.4 Energy Flows in Biological Systems

The process of life is a consequence of energy flow. Energy enters the biosphere through photosynthesis,

which results in the production of biochemical compounds, such as carbohydrates, from CO2, H2O and other

simple compounds containing nitrogen and other elements. Photosynthesis releases O2 into the atmosphere

while removing CO2 (Figure 2.10). The solar energy is captured in the biomolecules, which contain more

energy than the compounds from which they are synthesized. The ‘high-energy’ products of photosynthesis

are in turn the energy source for organisms that feed on them. Photosynthesis, the primary source of ‘food’,

drives a complex food chain that sustains ‘higher organisms’ and ultimately a complex ecosystem. The energy

flow in higher organisms is through the conversion of carbohydrates back to CO2 and H2O; this flow drives

life processes: feeding, reproducing, flying, running, etc. While living cells do not exist in a steady state but

go through a cycle of life and death, the ecosystems as a whole could be in a self-sustaining ‘steady state’

on a long timescale. As energy flows through the biosphere, it is converted to heat and is returned to the

atmosphere. The metabolic processes in a human, for example, generate about 100 J s−1 of heat. The heat

generated in the biosphere is ultimately radiated back into space.

Let us look at some quantitative aspects of energy captured in photosynthesis. When a plant grows, it not

only synthesizes compounds but also absorbs water. For this reason, to estimate the amount of substance

produced in photosynthesis it is necessary to separate the ‘dry mass’ from the water. By measuring the energy

in the dry mass generated in the presence of a known flux of radiation, the efficiency of photosynthesis in

various conditions could be estimated. When the dry mass is combusted, it is converted back to its initial

reactants, CO2, H2O and other small compounds, and the energy captured in photosynthesis is released.

Combustion of carbohydrates releases about 15.6 kJ mol−1, proteins about 24 kJ mol−1 and fats 39 kJ mol−1

[20]. Plant cells contain many other compounds that yield less energy upon combustion. On the whole, plant

dry mass yields about 17.5 kJ mol−1. Under optimal conditions rapidly growing plants could produce around

50 g m−2 day−1, which equals 875 kJ m−2 day−1. During this observed plant growth, the amount of solar

energy that was incident on the plants averaged about 29 × 103 kJ m−2 day−1. From these figures we can

estimate that plants capture solar energy with an efficiency of about (875/29 ×103) = 0.03, a rather low value.

A much larger fraction, about 0.33, of solar energy that enters the Earth’s atmosphere, goes into the water cycle

(see Figure 2.8). A part of the reason for such a low efficiency of photosynthetic capture of solar energy is the

low amounts of CO2 in the atmosphere (about 0.04% by volume). Plants grow faster at higher levels of CO2.
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The rate of photosynthesis depends on the intensity of incident radiation, I (W m−2). In a leaf exposed

to radiation of intensity I, the rate of photosynthesis could be measured in terms of the energy captured P
(W m−2). At low intensities P increases with I but at high intensities P reaches a saturation value Pmax (see

Box 2.8). The empirical relationship between P and I could be expressed as [20]

P = Pmax
I

K + I
(2.7.7)

in which K is a constant and is approximately 200 W m−2. A representative value of Pmax is about

25 W m−2. It is found that Pmax depends on the temperature and the CO2 concentration. On a bright

sunny day I ≈ 1000 W m−2. Using Equation (2.7.7) one can estimate the photosynthetic efficiency at various

intensities.

Box 2.8 Photosynthesis
� Satellite measurements of solar radiant flux just outside the atmosphere give a value of 1370 W m−2

(area perpendicular to the flux). The maximum radiation reaching Earth’s surface is about 1100 W m−2.

For the purposes of estimation, the maximum flux at the ground surface during a clear day

≈800 W m−2.
� It is estimated that 90% of photosynthesis takes place in the oceans in algae, bacteria, diatoms and

other organisms. Approximately 4.7 × 1015 mol of O2 is generated per year by photosynthesis.

Microorganisms in the oceans and soil consume over 90% of all the oxygen consumed by life.
� The energy captured, P, by photosynthesis varies with the incident solar energy intensity, I, according

to the approximate equation shown below.

P

I

P = Pmax

Pmax = 25 W m–2

K = 200 W m–2

K + I
I

� The rate of photosynthesis is considered to be primary production. It is quantified as either energy

captured or new biomass formed. Gross primary production is the rate at which biomass is being

synthesized. The process of respiration degrades biomass into CO2. Net primary production is the

difference between the rate at which biomass is being synthesized and the rate at which it is being

degraded into carbon dioxide; it is the rate at which biomass is accumulating. For example, sugarcane

growth corresponds to about 37 g m−2 day−1.

Source: R.M. Alexander, Energy for Animals, 1999, Oxford University Press: New York.

The energy captured by plants moves up the food chain, sustaining the process of life at the micro level

and ecosystems on the macro level. Ultimately this ‘food’ reacts with O2 and turns into CO2 and H2O, thus

completing the cycle. The cycle, however, has an awesome complexity, which is the process of life. Finally,

when an organism ‘dies’ its complex constituents are converted to simpler molecules by bacteria.



78 Modern Thermodynamics

vin
voutA

A'

vavg

Figure 2.11 Wind flowing into a turbine at speed vin transfers some of its energy to the blades of the turbine and
flowes out at a velocity vout. The area swept by the turbine blades is A. At steady state, the wind flowing behind
the turbine has a larger cross-sectional area A′ and lower speed vout. Energy is transferred to the turbine at an
average wind speed vavg = (vin + vout)/2.

2.7.5 Wind Energy and the Betz Law

A part of the solar energy that the Earth receives converts to wind energy. Differences in pressure and

temperature that are caused by the location-dependent heating and cooling cause the flow of wind. In the last

few decades, there has been a steady increase using wind energy for generating electric power.

The amount of energy flowing into a wind turbine when the wind speed is v can be determined as follows.

Consider wind flowing at a speed vin into a wind turbine (Figure 2.11) whose area of cross-section is A. If the

density of air is 𝜌, the kinetic energy carried by a unit volume wind is 𝜌v2
in∕2. In one second, a column of air

of volume Avin will be incident on the wind turbine. Hence the incident power on the turbine is

Pin = A𝜌v3
in∕2 (2.7.8)

Because the wind delivers some of its energy to the turbine blades, its velocity, vout, behind the blades will

be lower and its area of cross-section will also increase to A′, so that, at steady state, the mass of air flowing

in to the turbine equals the mass flowing past it. This leads to the mass balance equation:

𝜌Avin = 𝜌A′vout (2.7.9)

Here we have assumed that the density of air, which depends on its pressure, does not change significantly

as it flows past the turbine; vout and A′ depend on the design of the blades.

The kinetic energy transferred to the wind turbine per unit volume of air is

𝜌
(
v2

in − v2
out

)
∕2 (2.7.10)

Albert Betz, a German physicist, noted that there is an upper limit to the amount of power that can be

extracted from wind. This can be seen as follows. Since the wind slows down from vin to vout as it flows past

the turbine, the average speed of the wind vavg = (vin + vout)/2. Hence the average rate at which energy is

delivered to the turbine for power generation is

P = A𝜌
(
v2

in − v2
out

)
(vin + vout)∕4 (2.7.11)

As Equation (2.7.9) indicates, the ratio of wind speeds, vout/vin, depends on the design and the efficiency

of the turbine blades, which capture the wind energy. Let us assume that

𝛽 = vout∕vin
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In terms of this parameter 𝛽, the power P can be written as

P = A𝜌v3
in(1 − 𝛽2)(1 + 𝛽)∕4 (2.7.12)

Now we can determine the maximum value P as function of the parameter 𝛽. It is easy to see that P reaches

its maximum value when 𝛽 = 1/3, which is

P = (16∕27) (1∕2)A𝜌v3
in (2.7.13)

Thus we see that the maximum power a wind turbine can capture from the incident wind power is given by

the factor 16/27, which is about 59%. This result is called the Betz law. The energy transferred to the turbine

is converted to electrical energy with further losses. Currently, the overall conversion efficiency of wind power

to electrical power is about 40%. Wind turbines in the diameter range 20–120 m are available commercially.

Appendix 2.1 Mathematica Codes

CODE A: MATHEMATIC CODE FOR EVALUATING WORK DONE IN AN ISOTHERMAL EXPAN-

SION OF A GAS

While evaluating integrals, Mathematica assumes that the parameters in the integral and limits could be

complex numbers. Therefore the output may look complex, as shown below. This can be avoided by using

the Assumptions option as shown in the commands below

Integrate[1/x,{x,x1,x2}]

ConditionalExpression[-Log[x1]+Log[x2],((Im[x1]>=Im[x2]&&Im[x2]
Re[x1]<=Im[x1] Re[x2])||(Im[x2] Re[x1]>=Im[x1]
Re[x2]&&Im[x1]<=Im[x2]))&&((Re[x1/(-x1+x2)]>=0&&x12!=x1 x2)||x1/(x1-x2)∉
Reals||Re[x1/(x1-x2)]>=1)]

Integrate[1/x,{x,x1,x2},Assumptions->{x1>0,x2>0}]

ConditionalExpression[Log[x2/x1],x1<x2]

Using the Assumptions command we can now calculate the work done in an isothermal expansion of a van

der Waals gas.

Clear[p,V,T,a,b]
p[V_,T_]:=(R*T/(V-b))-(a/Vˆ2);

Integrate[p[V,T],{V,v1,v2}, Assumptions->{v1>0,v2>0,b>0,a>0}]

ConditionalExpression[
a(-(1/v1)+1/v2)+RT(-Log[-b+v1]+Log[-b+v2]),
v1<v2&&(b<=v1||b>=v2)]

Appendix 2.2 Energy Flow in the USA for the Year 2013

Energy flows are essential for economies and ecosystems. The figure below shows the estimated electricity

and energy flow from various sources in the United States for the year 2011 in units of quadrillion Btu/year

or 1015 Btu/year. 1 Btu = 1.055 kJ. The estimated total energy flow for 2013 is 97.4 quads/year. For the years

2008–2012, the total energy flow was in the range 99–94 quads/year. Flow charts such as this may be found

at the website of Lawrence Livermore National Labs: https://flowcharts.llnl.gov.
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Examples

Example 2.1 A bullet of mass 20.0 g moving at a speed of 350.0 m s−1 is lodged into a block of wood.

How many calories of heat are generated in this process?

Solution In this process, the kinetic energy (KE) of the bullet is converted to heat.

KEbullet = mv2∕2 = (1∕2)20.0 × 10−3 kg × (350 m s−1)2 = 1225 J

1225 J = 1225 J∕4.184 J cal−1 = 292.6 cal

Example 2.2 Calculate the energy ΔU required to increase the temperature of 2.50 mol of an ideal

monatomic gas from 15.0 ◦C to 65.0 ◦C.

Solution Since the specific heat CV = (𝜕U/𝜕T)V, we see that

ΔU =

Tf

∫
Ti

CV dT = CV (Tf − Ti)

Since CV for a monatomic ideal gas is (3/2)R:

U = (3∕2)(8.314 J mol−1 K−1)(2.5 mol)(65.0 − 15.0) K = 1559 J



The First Law of Thermodynamics 83

Example 2.3 The velocity of sound in CH4 at 41.0 ◦C was found to be 466.0 m s−1. Calculate the value of

𝛾 , the ratio of specific heats, at this temperature.

Solution Equation (2.3.17) gives the relation between 𝛾 and the velocity of sound:

𝛾 =
MC2

sound

RT
=

16.04 × 10−3 kg × (466 m s−1)2

8.314 × 314.15K
= 1.33

Example 2.4 1 mol of N2(g) at 25.0 ◦C and a pressure of 1.0 bar undergoes an isothermal expansion to a

pressure of 0.132 bar. Calculate the work done.

Solution For an isothermal expansion:

Work = −NRT ln
(

Vf

Vi

)
For an ideal gas, at constant T, piVi = pfVf. Hence:

Work = −NRT ln
(

Vf

Vi

)
= −NRT ln

(
pi

pf

)
= −1.0(8.314 J K−1) ln

(
1.0 bar

0.132 bar

)
= −5.03 kJ

Example 2.5 Calculate the heat of combustion of propane in the reaction at 25 ◦C:

C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(l)

Solution From the table of heats of formation at 298.15 K we obtain

ΔH0
r = −ΔH0

f
[C3H8] − 5ΔH0

f
[O2] + 3ΔH0

f
[CO2] + 4ΔH0

f
[H2O]

= −(−103.85 kJ) − (0) + 3(−393.51 kJ) + 4(−285.83 kJ) = −2220 kJ

Example 2.6 For the reaction N2(g) + 3H2(g) → 2NH3(g), at T = 298.15 K the standard enthalpy of

reaction is –46.11 kJ mol−1. At constant volume, if 1.0 mol of N2(g) reacts with 3.0 mol of H2(g), what is

the energy released?

Solution The standard enthalpy of reaction is the heat released at constant pressure of 1.0 bar. At constant

volume, since no mechanical work is done, the heat released equals the change in internal energy ΔU. From

Equation (2.4.9) we see that

ΔHr = ΔUr + ΔNrRT

In the above reaction, ΔNr = –2. Hence:

ΔUr = ΔHr − (−2)RT = −46.11 kJ + 2(8.314 J K−1)298.15 = −41.15 kJ

Example 2.7 Apply the energy flow equation to a thermal power station for which the energy flow is as

shown in the figure below. The power station takes in heat to run an electrical power generator.
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Solution A thermal power plant may be considered as a system with the following properties: heat flows

into the system, a part of it is converted to mechanical energy that runs an electrical power generator, and

the unused heat is expelled. There is no flow of matter. Applying Equation (2.7.4) to this system, we see that

dm/dt = 0, and we are left with dW/dt = –dQ/dt. Since dQ/dt is the net outflow of heat, a negative value of

dQ/dt means that the inflow of heat is larger than the outflow, i.e. part of the heat flowing into the system

is converted to mechanical energy that runs the power generator. What fraction of the heat energy flowing

into the system is converted to mechanical energy depends on the efficiency of the power plant. In Chapter 3

we will discuss Sadi Carnot’s discovery that conversion of heat to mechanical energy has limitations; it is

impossible to convert 100% of the heat flowing into the system into mechanical energy.

Example 2.8 N2 is flowing into a nozzle with a velocity vi = 35.0 m s−1 at T = 300.0 K. The temperature

of the gas flowing out of the nozzle is 280.0 K. Calculate the velocity of the gas flowing out of the nozzle.

(Assume the ideal gas law for the flowing gas.)

Solution For flow through a nozzle, there is no net output of heat or work. Applying Equation (2.7.4) to

this system, we see that dW/dt = 0 and dQ/dt = 0. Hence:

hi

𝜌i

+
v2

i

2
=

ho

𝜌o

+
v2

o

2

in which the subscripts ‘i’ and ‘o’ denote the quantities for inflow and outflow respectively. Using the given

values of T for the flows, the specific enthalpies h/𝜌 of the gas flowing in and out of the nozzle can be

calculated as follows. For an ideal gas, enthalpy H = U + pV = cNRT + NRT = (c + 1)RTN (c = 5/2 for a

diatomic gas such as N2). If the molar mass of the gas is M, then

h = H
V
= (c + 1)RT

M
NM
V

= (c + 1)RT
M

𝜌

i.e.

h
𝜌
= (c + 1)RT

M

Now we can write the specific enthalpies in terms of temperature in the above expression and obtain

v2
o

2
=

v2
i

2
+ (c + 1)R

M
(Ti − To)
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For a diatomic gas N2, c = 5/2. We have vi = 35.0 m s−1, M = 28 × 10−3 kg mol−1, Ti = 300.0 K and

T0 = 280.0 K. Using these values, vo can be calculated: vo = 206 m s−1.

Example 2.9 A steam turbine operates under the following conditions: steam flows into a turbine through

an inlet pipe of radius 2.50 cm, at a velocity 80.0 m s−1, at p = 6.0 MPa and T = 450.0 ◦C. The spent steam

flows out at p = 0.08 MPa and T = 93.0 ◦C through an outlet pipe of radius 15.0 cm. Assuming steady-state

conditions, calculate the power output using the following data from steam tables

At p = 6.0 MPa, T = 450.0 ◦C, the specific volume 1/𝜌 = 0.052 m3 kg−1 and h/𝜌 = 3301.4 kJ kg−1.

At p = 0.08 MPa, T = 93.0 ◦C, the specific volume 1/𝜌 = 2.087 m3 kg−1 and h/𝜌 = 2665.4 kJ kg−1.

Solution At steady state, the mass flowing in must equal the mass flowing out (mass balance). Hence,

Aivi 𝜌i = Aovo𝜌o. Using this equation and the given data, we can calculate the velocity of the steam in the

outlet:

vo =
𝜋(0.025 m)2(19.2 kg m−3)

𝜋(0.15 m)2(0.479 kg m−3)
80.0 m s−1 = 89.0 m s−1

The rate of mass flow is

dm
dt

= Aivi𝜌i = 𝜋(0.025 m)2(19.2 kg m−3)80 m s−1 = 3.01 kg s−1

Now we can apply Equation (2.7.4) to calculate the power output. In this case, mechanical energy is the

output and we may assume negligible heat losses, i.e. dQ/dt = 0. We then have

dW
dt

=

[(
hi

𝜌i

+
v2

i

2

)
−

(
ho

𝜌o

+
v2

o

2

)]
dm
dt

Using the steam table data, we see that hi/𝜌i = 3301.4 kJ kg−1 and ho/𝜌o = 2665.4 kJ kg−1. Thus, the power

output is

dW
dt

= [(3301.4 − 2665.4)103 + 0.5(80.02 − 89.02)]3.01 = 1915 kJ s−1 = 1.9 MW

Exercises

2.1 For a conservative force F = –𝜕V(x)/𝜕x, in which V(x) is the potential, using Newton’s laws of motion,

show that the sum of kinetic energy and potential energy is a constant.

2.2 How many joules of heat are generated by the brakes of a 1000 kg car when it is brought to rest from

a speed of 50 km h−1? If we use this amount of heat to heat 1.0 L of water from an initial temperature

of 30 ◦C, estimate the final temperature assuming that the heat capacity of water is about 1 cal mL−1

(1 cal = 4.184 J).

2.3 The manufacturer of a heater coil specifies that it is a 500 W device.

(a) At a voltage of 110 V, what is the current through the coil?

(b) Given that the latent heat of fusion of ice is about 6.0 kJ mol−1, how long will it take for this

heater to melt 1.0 kg of ice at 0 ◦C.
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2.4 Use the relation dW = –p dV to show that:

(a) The work done in an isothermal expansion of N moles of an ideal gas from initial volume Vi to

the final volume Vf is Work = –NRT ln(Vf/Vi).

(b) For 1 mol of an ideal gas, calculate the work done in an isothermal expansion of 1 mol from

Vi = 10.0 L to Vf = 20.0 L at temperature T = 350 K.

(c) Repeat the calculation of part (a) using the van der Waals equation in place of the ideal gas

equation and show that

Work = −NRT ln
(

Vf − Nb

Vi − Nb

)
+ aN2

(
1

Vi

− 1

Vf

)
2.5 Given that for the gas Ar the heat capacity CV = (3R/2) = 12.47 J K−1 mol−1, calculate the velocity

of sound in Ar at T = 298 K using the ideal-gas relation between Cp and CV. Do the same for N2, for

which CV = 20.74 J K−1 mol−1.

2.6 Calculate the sound velocities of He, N2 and CO2 using Equation (2.3.17) and the values of 𝛾 in

Table 2.2 and compare them with the experimentally measured velocities shown in the same table.

2.7 The human ear can detect an energy intensity of about 2 × 10−12 W m−2. Consider a light source

whose output is 100 W. At what distance is its intensity equal to 2 × 10−12 W m−2?

2.8 Amonatomic ideal gas is initially at T= 300 K, V= 2.0 L and p= 1.0 bar. If it is expanded adiabatically

to V = 4.0 L, what will its final T be?

2.9 We have seen (Equation (2.3.5)) that, for any system,

Cp − CV =
[
p +
(
𝜕U
𝜕V

)
T

] (
𝜕V
𝜕T

)
p

For the van der Waals gas the energy Uvw = Uideal – a(N/V)2V, in which Uideal = CVNT + U0

(Equation (2.2.15)). Use these two expressions and the van der Waals equation to obtain an explicit

expression for the difference between Cp and CV for a van der Waals gas.

2.10 For nitrogen at p = 1 atm and T = 298 K, calculate the change in temperature when it undergoes an

adiabatic compression to a pressure of 1.5 atm; 𝛾 = 1.404 for nitrogen.

2.11 Using Equation (2.4.11) and Table 2.3, calculate the change in enthalpy of 1.0 mol of CO2(g) when it

is heated from 350.0 K to 450.0 K at p = 1 bar.

2.12 Using the Standard Thermodynamic Properties table at the back of the book, which contains heats of

formation of compounds at T = 298.15 K, calculate the standard heats of reaction for the following

reactions:

(a) H2(g) + F2(g) → 2HF(g)

(b) C7H16(l) + 11O2(g) → 7CO2(g) + 8H2O(l)

(c) 2NH3(g) + 6NO(g) → 3H2O2(l) + 4N2(g)

2.13 Gasoline used as motor fuel consists of a mixture of the hydrocarbons heptane (C7H16), octane (C8H18)

and nonane (C9H20). Using the bond energies in Table 2.4, estimate the enthalpy of combustion of 1 g

of each of these fluids. (In a combustion reaction, an organic compound reacts with O2(g) to produce

CO2(g) and H2O(g).)
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2.14 Calculate the amount of energy released in the combustion of 1 g of sucrose and compare it with the

mechanical energy needed to lift 100 kg through 1 m. (Combustion of sucrose: C12H22O11 + 12O2 →
11H2O + 12CO2.)

2.15 Consider the reaction CH4(g) + 2O2(g) → CO2(g) + 2H2O(l). Assume that initially there are 3.0 mol

CH4 and 2.0 mol O2 and that the extent of reaction 𝜉 = 0. When the extent of reaction 𝜉 = 0.25 mol,

what are the amounts of the reactants and the products? How much heat is released at this point? What

is the value of 𝜉 when all the O2 has reacted?

2.16 The sun radiates energy approximately at a rate of 3.9 × 1026 J s−1. What will be the change in its

mass in 1 million years if it radiates at this rate?

2.17 Calculate the energy released in the reaction

21H + 2n →4 He

given the following masses: mass of 1H = 1.0078 amu, mass of n = 1.0087 amu, mass of 4He = 4.0026

amu (1 amu = 1.6605 × 10−27 kg).

2.18 O2 is flowing into a nozzle with a velocity vi = 50.0 m s−1 at T = 300.0 K. The temperature of the gas

flowing out of the nozzle is 270.0 K. (a) Assume the ideal gas law for the flowing gas and calculate

the velocity of the gas flowing out of the nozzle. (b) If the inlet diameter is 5.0 cm, what is the outlet

diameter?

2.19 A steam turbine has the following specifications: inlet diameter 5.0 cm; steam inflow is at p= 4.0 MPa,

at T = 450.0 ◦C at a velocity of vi = 150 m s−1. The outlet pipe has a diameter of 25.0 cm and

the steam flows out at p = 0.08 MPa, T = 93.0 ◦C. (a) Assuming steady-state conditions, calculate

the output power using the data given below from steam tables. (b) Show that the change in kinetic

energy between the inflow and the outflow is negligible compared with the change in the specific

enthalpy.

Data from steam tables:

At p = 4.0 MPa, T = 450.0 ◦C, the specific volume 1/𝜌 = 0.080 m3 kg−1 and h/𝜌 = 3330.1 kJ kg−1.

At p = 0.08 MPa, T = 93.0 ◦C, the specific volume 1/𝜌 = 2.087 m3 kg−1 and h/𝜌 = 2665.4 kJ kg−1.

2.20 The amount of solar energy driving the water cycle is approximately 12.5 × 1020 kJ year−1. Estimate

the amount of water, in moles and liters, evaporated per day in the water cycle.

2.21 (a) Find out how much solar energy reaches the surface of the Earth per square meter per second.

(This is called the ‘solar constant’. Maps of average solar energy per day per m2 can be found at

http://www.nrel.gov/gis/solar.html. )

(b) The present cost of electricity in the United States is in the range $0.12–0.18 kW h−1 (1 kW hour=
103 × 3600 J). Assume that the efficiency of commercial solar cells is only about 10%, that they

can last 30 years and that they can produce power for 5 h day−1 on average. How much should

1 m2 of solar cells cost so that the total energy it can produce amounts to about $0.15 kW h−1.

(Make reasonable estimates of quantities not specified.)

2.22 Consider a region in which the average wind speed is 9 km h−1. Assume wind turbines whose diameter

is 20.0 m, capable of generating electric power with an efficiency of 40%. How many wind turbines are

needed in a wind farm that can produce 1.0 MW of average power? (Air density = 1.2 kg/m3.) Assume

that these turbines are arranged in a square array, with a turbine-to-turbine distance of 5 diameters.

Calculate the amount of power that can be obtained per m2 in such a wind farm.
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2.23 Show that the power extracted by a wind turbine given by Equation (2.7.11) reaches its maximum

when b = 1/3.

2.24 Using the energy flow charts in Appendix 2.2 calculate the per capita (per person) consumption of

energy in kW h and the average flow rate in kW in the United States.

2.25 (a) Calculate the residential electrical energy (kW h) per person per day consumed in the United

States using the electricity flow chart in Appendix 2.2. If the cost of electricity is $0.12 kW h−1,

what is the yearly cost of electricity per person.

(b) The average solar power in a city in the United States is 200 W m−2 (this is a 24-hour, 365-day

average in Miami). Assume solar panels with 12% efficiency. How many m2 of solar panels

are needed per person in this city? If the cost of installing and maintaining solar panels is

approximately4 $700/m2, what is the cost of the solar panels per person. Assume that, once

installed, a solar panel will produce power for a period of 20 years. What is the cost per year?

4Using a solar calculator: http://www.findsolar.com/index.php?page=rightforme gives 14 m2 cost about $10K.



3
The Second Law of Thermodynamics and

the Arrow of Time

3.1 The Birth of the Second Law

James Watt (1736–1819), the most famous of Joseph Black’s pupils, obtained a patent for his modifications of

Thomas Newcomen’s steam engine in the year 1769. Soon, this invention brought unimagined power and speed

to everything: mining of coal, transportation, agriculture and industry. This revolutionary generation of motion

from heat that began in the British Isles quickly crossed the English Channel and spread throughout Europe.

James Watt (1736–1819).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Nicolas Léonard Sadi Carnot (1796–1832), a brilliant French military engineer, lived in this rapidly

industrializing Europe. ‘Everyone knows,’ he wrote in his memoirs, ‘that heat can produce motion. That

it possesses vast motive-power no one can doubt, in these days when the steam-engine is everywhere so

well known’ [1, p. 3]. The name Carnot is well known in France. Sadi Carnot’s father, Lazare Carnot

(1753–1823), held many high positions during and after the French Revolution and was known for his

contributions to mechanics and mathematics. Lazare Carnot had a strong influence on his son Sadi. Both

had their scientific roots in engineering, and both had a deep interest in general principles in the tradition

of the French Encyclopedists. It was his interest in general principles that led Sadi Carnot to his abstract

analysis of heat engines. Carnot pondered over the principles that governed the working of the steam engine

and identified the flow of heat as the fundamental process required for the generation of ‘motive power’ –

‘work’ in today’s terminology. He analyzed the fundamental processes that underlie heat engines, engines

that performed mechanical work through the flow of heat, and realized that there was a fundamental limit to

the amount of work generated from the flow of a given amount of heat. Carnot’s great insight was that this

limit was independent of the machine and the manner in which work was obtained: it depended only on the

temperatures that caused the flow of heat. As explained in the following sections, further development of this

principle resulted in the formulation of the Second Law of thermodynamics.

Sadi Carnot (1796–1832).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)

Carnot described his general analysis of heat engines in his only scientific publication, Réflexions sur la
Puissance Motrice du Feu, et sur les Machines Propres a Développer cette Puissance (Reflections on the
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Motive Force of Fire and on the Machines Fitted to Develop that Power) [1]. Six hundred copies of this work

were published in 1824, at Carnot’s own expense. At that time, Carnot was a well-known name in the French

scientific community due to the fame of Sadi’s father, Lazare Carnot. Still, Sadi Carnot’s book did not attract

much attention at the time of its publication. Eight years after the publication of his Reflexions, Sadi Carnot

died of cholera. A year later, Émile Clapeyron (1799–1864) was to come across Carnot’s book and realize its

fundamental importance and make it known to the scientific community.

Carnot’s analysis proceeded as follows. First, Carnot observed, ‘Wherever there exists a difference of

temperature, motive force can be produced’ [1, p. 9]. Every heat engine that produced work from the flow

of heat operated between two heat reservoirs of unequal temperatures. In the processes of transferring heat

from a hot to a cold reservoir, the engine performed mechanical work (see Figure 3.1). Carnot then specified

the following condition for the production of maximum work [1, p. 13]:

The necessary condition of the maximum (work) is that in the bodies employed to realize the motive
power of heat there should not occur any change of temperature which may not be due to a change
of volume. Reciprocally, every time that this condition is fulfilled the maximum will be attained. This

principle should never be lost sight of in the construction of a heat engine; it is its fundamental basis. If

it cannot be strictly observed, it should at least be departed from as little as possible.

Thus, for maximum work generation, all changes in volume – such as the expansion of a gas (steam) that

pushes a piston – should occur with minimal temperature gradients so that changes in temperature are almost

all due to volume expansion and not due to the flow of heat caused by temperature gradients. This is achieved

in heat engines that absorb and discard heat during very slow changes in volume, keeping their internal

temperature as uniform as possible.

Furthermore, in the limit of infinitely slow transfer of heat during changes of volume, with an infinitesimal

temperature difference between the source of heat (the ‘heat reservoir’) and the engine, the operation of

such an engine is a reversible process, which means that the series of states the engine goes through can be

retraced in the exact opposite order. A reversible engine can perform mechanical work W by transferring heat

from a hot to a cold reservoir or it can do the exact reverse by transferring the same amount of heat from a

cold reservoir to a hot reservoir by using the same amount of work W.

The next idea Carnot introduced is that of a cycle: during its operation, the heat engine went through a

cycle of states so that, after producing work from the flow of heat, it returned to its initial state, ready to go

through the cycle once again. A modern version of Carnot’s reversible cycle will be discussed later in this

section.

Carnot argued that the reversible cyclic heat engine must produce the maximum work (‘motive force’), but

he did so using the caloric theory of heat, according to which heat was an indestructible massless substance.

If any engine could produce a greater amount of work than that produced by a reversible cyclic heat engine,

then it was possible to produce work endlessly by the following means. Begin by moving heat from the hot

reservoir to a cold reservoir using the more efficient engine. Then move the same amount of heat back to

the hot reservoir using the reversible engine. Because the forward process does more work than is needed to

perform the reverse process, there is a net gain in work. In this cycle of operations, a certain amount of heat

was simply moved from the hot to the cold reservoir and back to the hot reservoir, with a net gain of work.

By repeating this cycle, an unlimited amount of work can be obtained simply by moving a certain amount of

heat back and forth between a hot and a cold reservoir. This, Carnot asserted, was impossible:

This would be not only perpetual motion, but an unlimited creation of motive power without consumption

either of caloric or of any other agent whatever. Such a creation is entirely contrary to ideas now accepted,

to laws of mechanics and of sound physics. It is inadmissible [1, p. 12].
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Figure 3.1 The upper figure shows a schematic of a steam engine. The lower figure shows the essential process
that governs heat engines, engines that convert heat to work. It illustrates the fundamental observation made by
Sadi Carnot: ‘Wherever there exists a difference of temperature, motive force can be produced’ [1, p. 9]. The heat
engine absorbs heat Q1 from a hot reservoir (heat source), converts part of it to work W and discards heat Q2
to a cold reservoir (heat sink). The efficiency 𝜂 is given by W = 𝜂Q1 (according to the caloric theory of heat that
Carnot used, Q1 = Q2, but an analysis consistent with the First Law gives W = Q1 – Q2).

Hence, reversible cyclic engines must produce the maximum amount of work. A corollary of this conclusion

is that all reversible cyclic engines must produce the same amount of work regardless of their construction.

Furthermore, and most importantly, since all reversible engines produce the same amount of work from a

given amount of heat, the amount of work generated by a reversible heat engine is independent of the material

properties of the engine: it can depend only on the temperatures of the hot and cold reservoirs. This brings us

to the most important of Sadi Carnot’s conclusions [1, p. 20]:

The motive power of heat is independent of the agents employed to realize it; its quantity is fixed solely

by the temperatures of the bodies between which is effected, finally, the transfer of caloric.

Carnot did not derive a mathematical expression for the maximum efficiency attained by a reversible heat

engine in terms of the temperatures between which it operated. This was done later by others who realized

the importance of his conclusion. Carnot did, however, find a way of calculating the maximum work that

can be generated. For example, he concluded that ‘1000 units of heat passing from a body maintained at the
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temperature of 1 degree to another body maintained at zero would produce, in acting upon the air, 1.395 units

of motive power’ [1, p. 42].

Though Sadi Carnot used the caloric theory of heat to reach his conclusions, his later scientific notes reveal

his realization that the caloric theory was not supported by experiments. In fact, Carnot understood that heat

is converted to mechanical work and even estimated the conversion factor to be approximately 3.7 J cal−1

(the more accurate current value being 4.18 J cal−1) [1–3]. Unfortunately, Sadi Carnot’s brother, Hippolyte

Carnot, who was in possession of Sadi’s scientific notes after his death in 1832, did not make them known

to the scientific community until 1878 [3]. That was the year in which Joule published his last paper. By

then, the equivalence between heat and work and the law of conservation of energy were well known through

the work of Joule, Helmholtz, von Mayer and others (1878 was also the year in which Gibbs published his

famous work On the Equilibrium of Heterogeneous Substances).

Sadi Carnot’s brilliant insight went unnoticed until Émile Clapeyron (1799–1864) came across Carnot’s

book in 1833. Realizing its importance, he reproduced the main ideas in an article that was published in the

Journal de l’Ecole Polytechnique in 1834. Clapeyron represented Carnot’s example of a reversible engine

in terms of a p–V diagram (which is used today) and described it with mathematical detail. Clapeyron’s

article was later read by Lord Kelvin and others who realized the fundamental nature of Carnot’s conclu-

sions and investigated its consequences. These developments led to the formulation of the Second Law of

thermodynamics as we know it today.

To obtain the efficiency of a reversible heat engine, we shall not follow Carnot’s original reasoning because

it considered heat as an indestructible substance. Instead, we shall modify it by incorporating the First Law.

For the heat engine represented in Figure 3.1, the law of conservation of energy gives W = Q1 – Q2. This

means, a fraction 𝜂 of the heat Q1 absorbed from the hot reservoir is converted into work W, i.e. 𝜂 = W/Q1.

The fraction 𝜂 is called the efficiency of the heat engine. Since W = (Q1 – Q2) in accordance with the first

law, 𝜂 = (Q1 – Q2)/Q1 = (1 – Q2/Q1). Carnot’s discovery that the reversible engine produces maximum work

amounts to the statement that its efficiency is maximum. This efficiency is independent of the properties of

the engine and is a function only of the temperatures of the hot and the cold reservoirs:

𝜂 = 1 −
Q2

Q1

= 1 − f (t1t2) (3.1.1)

in which f (t1, t2) is a function only of the temperatures t1 and t2 of the hot and cold reservoirs. The scale of

the temperatures t1 and t2 (Celsius or other) is not specified here. Equation (3.1.1) is Carnot’s theorem. In

fact, as described below, Carnot’s observation enables us to define an absolute scale of temperature that is

independent of the material property used to measure it.

3.1.1 Efficiency of a Reversible Engine

Now we turn to the task of obtaining the efficiency of reversible heat engines. Since the efficiency of a

reversible heat engine is the maximum, all of them must have the same efficiency. Hence, obtaining the

efficiency of one reversible engine will suffice. The following derivation also makes it explicit that the

efficiency of Carnot’s engine is only a function of temperature.

Carnot’s reversible engine consists of an ideal gas that operates in a cycle between hot and cold reservoirs,

at temperatures 𝜃1 and 𝜃2 respectively. Until their identity is established below, we shall use 𝜃 for the

temperature that appears in the ideal gas equation and T for the absolute temperature (which, as we shall

see in the next section, is defined by the efficiency of a reversible cycle). Thus, the ideal gas equation is

written as pV = NR𝜃, in which 𝜃 is the temperature measured by noting the change of some quantity such

as volume or pressure. (Note that measuring temperature by volume expansion is purely empirical; each unit

of temperature is simply correlated with a certain change in volume.) In the following, the work done by the
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Figure 3.2 The Carnot cycle. The upper part shows the four steps of the Carnot cycle, during which the engine
absorbs heat from the hot reservoir, produces work and returns heat to the cold reservoir. The lower part shows
the representation of this process in a p–V diagram used by Clapeyron in his exposition of Carnot’s work.

gas will be a positive quantity and the work done on the gas will be a negative quantity, so that the net work

obtained in a cycle is positive for a net heat transfer from the hot to the cold reservoir. The reversible cycle

we consider consists of the following four steps (Figure 3.2).

Step 1

The gas has an initial volume of VA and is in contact with the hot reservoir at temperature 𝜃1. At the constant

temperature 𝜃1 due to its contact with the reservoir, the gas undergoes an infinitely slow reversible expansion
(as Carnot specified it) to the state B, of volume VB. The work done by the gas during this expansion is

WAB =

VB

∫
VA

p dV =

VB

∫
VA

NR𝜃1

V
dV = NR𝜃1 ln

(
VB

VA

)
(3.1.2)
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During this isothermal processes, heat is absorbed from the reservoir. Since the internal energy of an ideal

gas depends only on the temperature (see Equations (1.3.8) and (2.2.15)), there is no change in the energy of

the gas; the heat absorbed equals the work done. Hence, the heat absorbed is

QAB = WAB (3.1.3)

Step 2
In the second step, the gas is thermally insulated from the reservoir and the environment and made to undergo

an adiabatic expansion from state B to a state C, resulting in a decrease of temperature from 𝜃1 to 𝜃2. During

this adiabatic process, work is done by the gas. Noting that on the adiabat BC we have pV𝛾 = pBV𝛾

B
= PCV𝛾

C
,

we calculate the amount of work done by the gas in this adiabatic expansion:

WBC =

VC

∫
VB

p dV =

VC

∫
VB

pBV𝛾

B

V𝛾
dV =

pCV𝛾

C
V1−𝛾

C
− pBV𝛾

B
V1−𝛾

B

1 − 𝛾

=
pCVC − pBVB

1 − 𝛾
Using pV = NR𝜃, the above equation can be further simplified to

WBC =
NR(𝜃1 − 𝜃2)

𝛾 − 1
(3.1.4)

in which 𝜃1 and 𝜃2 are the initial and final temperatures during the adiabatic expansion.

Step 3
In the third step, the gas is in contact with the reservoir of temperature 𝜃2 and it undergoes an isothermal

compression to the point D, at which the volume VD is such that an adiabatic compression can return it to

the initial state A. (VD can be specified by finding the point of intersection of the adiabat through the point A

and the isotherm at temperature 𝜃2.) During this isothermal process, the work done on the gas is transferred

as heat QCD to the reservoir (since the energy of the ideal gas depends only on its temperature):

WCD =

VD

∫
VC

p d V =

VD

∫
VC

N R𝜃2

V
d V = NR𝜃2 ln

(
VD

VC

)
= −QCD (3.1.5)

Step 4
In the final step, an adiabatic compression takes the gas from the state D to its initial state A. Since this

process is similar to step 2, we can write

WDA =
NR(𝜃2 − 𝜃1)

𝛾 − 1
(3.1.6)

The total work done in this reversible Carnot cycle in which heat QAB was absorbed from the reservoir at a

temperature of 𝜃1 and heat QCD was transferred to the reservoir at temperature 𝜃2 is

W = WAB + WBC + WCD + WDA = QAB − QCD

= NR𝜃1 ln

(
VB

VA

)
− NR𝜃2 ln

(
VC

VD

)
(3.1.7)

The efficiency 𝜂 = W/QAB can now be written using Equations (3.1.2), (3.1.3) and (3.1.7):

𝜂 = W
QAB

= 1 −
NR𝜃2 ln(VC∕VD)

NR𝜃1 ln(VB∕VA)
(3.1.8)
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For the two isothermal processes, we have pAVA = pBVB and pCVC = pDVD and for the two adiabatic processes,

we have pBV𝛾

B
= pCV𝛾

C
and pAV𝛾

A
= pDV𝛾

D
. Using these relations, it can easily be seen that (VC/VD)= (VB/VA).

Using this relation in Equation (3.1.8), we arrive at a simple expression for the efficiency:

𝜂 = W
QAB

= 1 −
𝜃2

𝜃1

(3.1.9)

In this expression for the efficiency, 𝜃 is the temperature defined by one particular property (such as volume

at a constant pressure) and we assume that it is the temperature in the ideal gas equation. The temperature t
measured by any other empirical means, such as measuring the volume of mercury, is related to 𝜃; that is,

𝜃 can be expressed as a function of t, i.e. 𝜃(t). Thus, the temperature t measured by one means corresponds

to 𝜃 = 𝜃(t), measured by another means. In terms of any other temperature t, the efficiency may take a more

complex form. In terms of the temperature 𝜃 that obeys the ideal gas equation, however, the efficiency of the

reversible heat engine takes a particularly simple form shown in Equation (3.1.9).

3.2 The Absolute Scale of Temperature

The fact that the efficiency of a reversible heat engine is independent of the physical and chemical nature of

the engine has an important consequence, which was noted by Lord Kelvin (William Thomson (1824–1907)).

Following Carnot’s work, Lord Kelvin introduced the absolute scale of temperature. The efficiency of a

reversible heat engine is a function only of the temperatures of the hot and cold reservoirs, independent of

the material properties of the engine. Furthermore, the efficiency cannot exceed unity, in accordance with the

First Law. These two facts can be used to define an absolute scale of temperature that is independent of any
material properties.

William Thomson/Lord Kelvin (1824–1907).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)
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First, by considering two successive Carnot engines, one operating between t1 and t′ and the other operating

between t′ and t2, we can see that the function f(t2, t1) in Equation (3.1.1) is a ratio of a functions of t1 and

t2: if Q′ is the heat exchanged at temperature t′, then we can write

f (t2, t1) =
Q2

Q1

=
Q2

Q′
Q′

Q1

= f (t2, t′)f (t′, t1) (3.2.1)

This relation, along with f(t, t)= 1, implies that we can write the function f(t2, t1) as the ratio f(t2)/f(t1). Hence,

the efficiency of a reversible Carnot engine can be written as

𝜂 = 1 −
Q2

Q1

= 1 −
f (t2)

f (t1)
(3.2.2)

One can now define a temperature T ≡ f(t) based solely on the efficiencies of reversible heat engines. In terms

of this temperature scale, the efficiency of a reversible engine is given by

𝜂 = 1 −
Q2

Q1

= 1 −
T2

T1

(3.2.3)

in which T1 and T2 are the absolute temperatures of the cold and hot reservoirs respectively. An efficiency of

unity defines the absolute zero of this scale. Carnot’s theorem is the statement that reversible engines have

the maximum efficiency given by Equation (3.2.3).

Comparing expression (3.2.3) with (3.1.9), we see that the ideal gas temperature coincides with the absolute

temperature and, hence, we can use the same symbol, i.e. T, for both.1

In summary, for an idealized, reversible heat engine that absorbs heat Q1 from a hot reservoir at absolute

temperature T1 and discards heat Q2 to a cold reservoir at absolute temperature T2, we have, from Equation

(3.2.3),

Q1

T1

=
Q2

T2

(3.2.4)

All real heat engines that go through a cycle in finite time must involve irreversible processes such as flow of

heat due to a temperature gradient. They are less efficient. Their efficiency 𝜂′ is less than the efficiency of a

reversible heat engine, i.e. 𝜂′ = 1 – (Q2/Q1) < 1 – (T2/T1). This implies T2/T1 < Q2/Q1 whenever irreversible

processes are involved. Therefore, while the equality (3.2.4) is valid for a reversible cycle, for the operation

of an irreversible cycle that we encounter in reality we have the inequality

Q1

T1

<
Q2

T2

(3.2.5)

As we shall see below, irreversibility in Nature, or a sense of an ‘arrow of time’, is manifest in this inequality.

A spectacular example of a ‘heat engine’ in Nature is the hurricane. In a hurricane, heat is converted to

kinetic energy of the hurricane wind. As summarized in Box 3.1 and described in more detail in Appendix

3.1, by using Carnot’s theorem one can obtain an upper bound to the velocity of the hurricane wind.

1The empirical temperature t of a gas thermometer is defined through the increase in volume at constant pressure (see Equation (1.4.9)):

V = V0(1 + 𝛼t). Gay-Lussac found that 𝛼 ≈ (1/273) ◦C−1. From this equation it follows that dV/V = 𝛼 dt/(1 + 𝛼t). On the other hand,

from the ideal gas equation pV = NRT, we have, at constant p, dV/V = dT/T. This enables us to relate the absolute temperature T to the

empirical temperature t by T = (1 + 𝛼t)/𝛼 = (273 + t) in which t is in Celsius.
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Box 3.1 The hurricane as a heat engine

The mechanism of a hurricane is essentially that of a heat engine, as shown in the figure below in the cycle

ABCD. The maximum intensity of a hurricane, i.e. the maximum hurricane wind speed, can be predicted

using Carnot’s theorem for the efficiency of a heat engine.
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In a hurricane, as the wind spirals inwards towards the eye at low pressure, enthalpy (heat) is absorbed at

the warm ocean–air interface in an essentially isothermal process: water vaporizes and mixes with the air,

carrying with it the enthalpy of vaporization (segment AB). When this moist air reaches the hurricane’s

eyewall, it rises rapidly to about 15 km along the eyewall. Since the pressure decreases with altitude,

it expands adiabatically and cools (segment BC). As the rising moist air’s temperature drops, the water

vapor in it condenses as rain, releasing the enthalpy of vaporization (latent heat), part of which is radiated

into outer space. In a real hurricane, the air at the higher altitude flows out into the weather system.

Theoretically, in order to close the Carnot cycle, it could be assumed that the enthalpy of vaporization

is lost in an isothermal process (segment CD). The last step (segment DA) of the cycle is an adiabatic

compression of dry air. During the cycle, part of the enthalpy absorbed from the ocean is converted into

mechanical energy of the hurricane wind.

The ‘hurricane heat engine’ operates between the ocean surface temperature T1 (about 300 K) and the

lower temperature T2 (about 200 K) at the higher altitude, close to the upper boundary of the troposphere

(tropopause). The conversion of the heat of vaporization to mechanical energy of the hurricane wind can

now be analyzed. In a time dt, if dQ1 is the heat absorbed at the ocean surface, dQ2 is the heat radiated at

the higher altitude and dW is the amount of heat converted to mechanical energy of the hurricane wind,

then, according to Carnot’s theorem:

dW
dt

≤
(

1 −
T2

T1

)
dQ1

dt

Appendix 3.1 shows that the use of this expression in an analysis of the energetics of a hurricane leads to

the following estimate for the maximum hurricane wind speed |vmax|:

||vmax||2 ≈ (T1 − T2

T2

)
Ch

CD

(h∗ − h)
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Here, Ch and CD are constants, h∗ is the specific enthalpy (enthalpy per unit mass) of the air saturated

with moisture close to the ocean surface and h is the specific enthalpy of dry wind above the ocean surface

(see the figure above). All the terms on the right-hand side are experimentally measured or theoretically

estimated. The ratio Ch/CD ≈ 1. Kerry Emanual, the originator of the above theory, has demonstrated that

the above expression for vmax leads to remarkably good estimates of the hurricane wind speeds [4]. More

details can be found in Appendix 3.1 and in the cited articles.

3.3 The Second Law and the Concept of Entropy

The far-reaching import of the concepts originating in Carnot’s Reflexions on the Motive Force of Fire was

realized in the generalizations made by Rudolf Clausius (1822–1888), who introduced the concept of entropy,

a new physical quantity as fundamental and universal as energy.

Clausius began by generalizing expression (3.2.4) that follows from Carnot’s theorem to an arbitrary cycle.

This was done by considering composites of Carnot cycles in which the corresponding isotherms differ by

an infinitesimal amount ΔT, as shown in Figure 3.3a. Let Q1 be the heat absorbed during the transformation

Figure 3.3 Clausius’s generalization of Carnot cycle. (a) Two Carnot cycles can be combined to obtain a larger
cycle. (b) Any closed path can be thought of as a combination of a large number of infinitesimal Carnot cycles.
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from A to A′, at temperature T1, and let Q′
1

be the heat absorbed during the transformation A′B at temperature

(T1 + ΔT). Similarly, we define Q′
2

and Q2 for the transformations CC′ and C′D occurring at temperatures

T2 + ΔT and T2 respectively. Then the reversible cycle AA′BCC′DA can be thought of as a sum of the two

reversible cycles AA′C′DA and A′BCC′A′ because the adiabatic work A′C′ in one cycle cancels that of the

second cycle, C′A′. For the reversible cycle AA′BCC′D, we can therefore write

Q1

T1

+
Q′

1

T1 + ΔT
−

Q2

T2

−
Q′

2

T2 + ΔT
= 0 (3.3.1)

The above composition of cycles can be extended to an arbitrary closed path (as shown in Figure 3.3b) by

considering it as a combination of a large number of infinitesimal Carnot cycles. With the notation dQ > 0

if heat is absorbed by the system and dQ < 0 if it is discarded, the generalization of Equation (3.3.1) of an

arbitrary closed path gives

∮
dQ
T

= 0 (3.3.2)

Rudolf Clausius (1822–1888).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)

This equation has an important consequence: it means that the integral of the quantity dQ/T along a path

representing a reversible process from a state A to a state B depends only on the states A and B and is

independent of the path, as described in Figure 3.4. Thus, Clausius saw that one can define a function S that
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Figure 3.4 Any differential, such as dQ∕T in Equation (3.3.2), whose integral over any closed path is zero can
be used to define a function of state can be seen as follows. Since the total integral for a closed path from A to B

along 1 and from B to A along 2 is zero, it follows that ∮ dQ∕dT = ∫
B

A,path1
dQ∕T + ∫

A

B,path2
dQ∕T = 0. Now we

note that ∫
B

A
dQ∕T = −∫

A

B
dQ∕T along paths 1 or 2. Hence, ∫

B

A,path1
dQ∕T = ∫

B

A,path2
dQ∕T, i.e. the integral of

dQ/T from point A to point B is independent of the path; it depends only on the points A and B. Hence, if the
initial reference state is fixed, the integral, which is a function only of the final state, is a state function.

depends only on the initial and final states of a reversible process (Figure 3.4). If SA and SB are the values of

this function in the states A and B, then we can write

SB − SA =
B

∫
A

dQ
T

or dS = dQ
T

(3.3.3)

By defining a reference state ‘O’, the new function of state S could be defined for any state X as the integral

of dQ/T for a reversible process transforming the state O to the state X.

Clausius introduced this new quantity S in 1865, stating ‘I propose to call the magnitude S the entropy of

the body, from the Greek word 𝜏𝜌o𝜋𝜂, transformation.’ [5, p. 357]. The usefulness of the above definition

depends on the assumption that any two states can be connected by a reversible transformation.

If the temperature remains fixed, then it follows from (3.3.3) that, for a reversible flow of heat Q, the change

in entropy is Q/T. In terms of entropy, Carnot’s theorem (3.2.3) is equivalent to the statement that the sum of

the entropy changes in a reversible cycle is zero:

Q1

T1

−
Q2

T2

= 0 (3.3.4)

In a reversible process, since the temperatures of the system and the reservoirs are the same when heat is

exchanged, the change of entropy of the reservoir in any part of the cyclic process is the negative of the

entropy change of the system.
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In a less efficient irreversible cycle, a smaller fraction of Q1 (the heat absorbed from the hot reservoir) is

converted into work. This means that the amount of heat delivered to the cold reservoir by an irreversible

cycle Qirr
2

is greater than Q2. Therefore, we have

Q1

T1

−
Qirr

2

T2

< 0 (3.3.5)

Since the cyclic engine returns to its initial state whether the process is reversible or irreversible, there is no

change in its entropy. On the other hand, since the heats transferred to the reservoirs and to the irreversible

engine have opposite sign, the total change of entropy of the reservoirs is

−Q1

T1

−
−Qirr

2

T2

> 0 (3.3.6)

if the reservoir temperatures can be assumed to be the same as the temperatures at which the engine operates.

In fact, for heat to flow at a nonzero rate, the reservoir temperatures T′
1

and T′
2

must be such that T ′
1
> T1 and

T′
2
< T2. In this case, the increase in entropy is even larger than (3.3.6).

Generalizing the above result, for a system that goes through an arbitrary cycle, with the equalities holding

for a reversible process, we have

∮
dQ
T

≤ 0 (system) (3.3.7)

For the ‘exterior’ with which the system exchanges heat, since dQ has the opposite sign, we then have

∮
dQ
T

≥ 0 (exterior) (3.3.8)

At the end of the cycle, be it reversible or irreversible, there is no change in the system’s entropy because

it has returned to its original state. For irreversible cycles this means that the system expels more heat to

the exterior. This is generally a conversion of mechanical energy into heat through irreversible processes.

Consequently, the entropy of the exterior increases. Thus, the entropy changes in a cyclic process may be

summarized as follows:

Reversible cycle: dS = dQ
T

, ∮ dS = ∮
dQ
T

= 0 (3.3.9)

Irreversible cycle: dS >
dQ
T

, ∮ dS = 0, ∮
dQ
T

=< 0 (3.3.10)

As we shall see in the following section, this statement can be made more precise by expressing the entropy

change dS as a sum of two parts:

dS = deS + diS (3.3.11)

Here, deS is the change of the system’s entropy due to exchange of energy and matter and diS is the change in

entropy due to irreversible processes within the system. For a closed system that does not exchange matter,

deS = dQ/T. The quantity deS could be positive or negative, but diS can only be equal to or greater than zero.

In a cyclic process that returns the system to its initial state, since the net change in entropy must be zero, we

have

∮ dS = ∮ deS + ∮ diS = 0 (3.3.12)
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Since diS ≥ 0, we must have ∮ diS ≥ 0. For a closed system, from Equation (3.3.12) we immediately obtain

the previous result (3.3.10):

∮ deS = ∮
dQ
T
< 0

This means that, for the system to return to its initial state, the entropy ∮ diS generated by the irreversible

processes within the system has to be discarded through the expulsion of heat to the exterior. There is no real

system in nature that can go through a cycle of operations and return to its initial state without increasing

the entropy of the exterior, or more generally the ‘universe’. Every process in Nature increases the entropy,

thus establishing a distinction between the past and future. The Second Law establishes an arrow of time: the
increase of entropy distinguishes the future from the past.

3.3.1 Statements of the Second Law

The limitation to the convertibility of heat to work that Carnot discovered is one manifestation of a fundamental

limitation in all natural processes: it is the Second Law of thermodynamics. The Second Law can be formulated

in many equivalent ways. For example, it can be a statement about a macroscopic impossibility, without any

reference to the microscopic nature of matter:

It is impossible to construct an engine which will work in a complete cycle, and convert all the heat it

absorbs from a reservoir into mechanical work.

This is a statement perfectly comprehensible in macroscopic, operational terms. A cyclic engine that converts

all heat to work is shown in Figure 3.5. Since the reservoir or the ‘exterior’, at temperature T, only loses heat,

inequality (3.3.8) is clearly violated. Such an engine is sometimes called a perpetual motion machine of the
second kind and the Second Law is the statement that such a machine is impossible. The equivalence between

this statement and Carnot’s theorem can be seen easily and is left as an exercise for the reader.

Another way of stating the Second Law is due to Rudolf Clausius (1822–1888):

Heat cannot by itself pass from a colder to a hotter body.

Figure 3.5 A perpetual motion machine of the second kind absorbs heat Q and converts all of it to work W.
Such a machine, though consistent with the First Law, is impossible according to the Second Law. The existence
of such a machine would violate the inequalities (3.3.7) and (3.3.8).
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If heat could pass spontaneously from a colder body to a hotter body, then a perpetual motion machine

of the second kind can be realized by simply making the heat Q2 expelled by a cyclic heat engine to the

colder reservoir pass by itself to the hotter reservoir. The result would be the complete conversion of the heat

(Q1 – Q2) to work.

As we have seen above, any real system that goes through a cycle of operations and returns to its initial

state does so only by increasing the entropy of its exterior with which it is interacting. This also means that

in no part of the cycle can the sum of entropy changes of the system and its exterior be negative because,

if it were so, we could complete the rest of the cycle through a reversible transformation, which does not

contribute to the change of entropy. The net result is a decrease of entropy in a cyclic process. Thus, the

Second Law may also be stated as:

The sum of the entropy changes of a system and its exterior can never decrease.

Thus, the universe as a whole can never return to its initial state. Remarkably, Carnot’s analysis of heat

engines has led to the formulation of a cosmological principle. The two laws of thermodynamics are best

summarized by Rudolf Clausius thus:

The energy of the universe is a constant.
The entropy of the universe approaches a maximum.

3.4 Modern Formulation of the Second Law

The usefulness of the concept of entropy and the Second Law depends on our ability to define entropy for

a physical system in a calculable way. Using Equation (3.3.3), if the entropy So of a reference or standard
state is defined, then the entropy of an arbitrary state SX can be obtained through a reversible process that

transforms the state O to the state X (see Figure 3.6):

Sx = So +
x

∫
o

dQ
T

(3.4.1)

(In practice dQ is measured with the knowledge of the heat capacity using dQ = C dT.) In a real system,

the transformation from the state O to the state X occurs in a finite time and involves irreversible processes

along the path I. In this process, the entropy of the system, and hence the universe, increases. In classical
thermodynamics it is assumed that every irreversible transformation that a system undergoes can also be
achieved through a reversible transformation for which Equation (3.4.1) is valid. In other words, it is assumed

that every irreversible transformation that results in a certain change in the entropy of the system can be exactly

reproduced through a reversible process in which the entropy change is solely due to the exchange of heat.

Since the change in entropy of the system depends only on the initial and final states, the change in entropy

calculated using a reversible path will be equal to the entropy change produced by the irreversible processes.

However, it must be noted that a reversible transformation from an initial state O to the final state X (Figure 3.6)

may give the right value for the change in entropy of the system, but it leaves the entropy of the universe

unchanged; in a reversible process, the change in entropy of the system is compensated by the opposite

change in the entropy of the exterior, leaving the entropy of the universe unchanged. On the other hand,

the naturally occurring irreversible transformation from O to X increases the entropy of the universe. Some

authors restrict the above assumption to transformations between equilibrium states; this restriction excludes
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Figure 3.6 Reversible and irreversible processes. (a) The system reaches the state X from the standard state
O through a path I involving irreversible processes. It is assumed that the same transformation can be achieved
through a reversible transformation R. (b) An example of an irreversible process is the spontaneous expansion
of a gas into a vacuum, as shown in the upper part. The same change can be achieved reversibly through an
isothermal expansion of a gas that occurs infinitely slowly so that the heat absorbed from the reservoir equals the
work done on the piston. In the latter case, the change in entropy can be calculated using dS = dQ/T.

chemical reactions, in which the transformations are often from a nonequilibrium state to an equilibrium state

(see Chapters 4 and 7).

A process is reversible only in the limit of infinite slowness: as perfect reversibility is approached, the

speed of the process approaches zero. As Max Planck notes in his treatise [6, p. 86], ‘Whether reversible

processes exist in nature or not, is not a priori evident or demonstrable.’ However, irreversibility, if it exists,

has to be universal because a spontaneous decrease of entropy in one system could be utilized to decrease

the entropy of any other system through appropriate interaction; a spontaneous decrease of entropy of one

system implies a spontaneous decrease of entropy of all systems. Hence, either all systems are irreversible,
or none are, as Max Planck emphasized [6].
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The notion of an idealized reversible path provides a convenient way for calculating entropy changes. How-

ever, it is also lacking in providing the real connection between physical processes and entropy. Addressing

this issue in his 1943 monograph The Nature of Thermodynamics, P.W. Bridgman wrote [7, p. 133]:

It is almost always emphasized that thermodynamics is concerned with reversible processes and equilib-

rium states and that it can have nothing to do with irreversible processes or systems out of equilibrium

in which changes are progressing at a finite rate. The reason for the importance of equilibrium states is

obvious enough when one reflects that temperature itself is defined in terms of equilibrium states. But

the admission of general impotence in the presence of irreversible processes appears on reflection to be

a surprising thing. Physics does not usually adopt such an attitude of defeatism.

Today, in most texts on thermodynamics, an irreversible transformation is usually identified by the Clausius
inequality:

dS ≥ dQ
T

(3.4.2)

which we saw in the last section. However, the fact that Clausius considered irreversible processes as an

integral part of formulating the Second Law is generally not mentioned. In his ninth memoir, Clausius

included irreversible processes explicitly into the formalism of entropy and replaced the inequality (3.4.2) by

an equality [8, p. 363, eq. (71)]:

N = S − So − ∫
dQ
T

(3.4.3)

in which S is the entropy of the final state and SO is the entropy of the initial state. He identified the change

in entropy due to the exchange of heat with the exterior by the term dQ/T (which is compensated by equal

gain or loss of heat by the exterior). Clausius wrote: ‘The magnitude N thus determines the uncompensated
transformation’ (uncompensirte Verwandlung) [8, p. 363]. It is the entropy produced by irreversible processes

within the system. While dQ can be positive or negative, the Clausius inequality (3.4.2) implies that the change

in entropy due to irreversible processes can only be positive:

N = S − So − ∫
dQ
T

> 0 (3.4.4)

Clausius also stated the Second Law as: ‘Uncompensated transformations can only be positive’ [8, p. 247].

Perhaps Clausius hoped to, but did not, provide a means of computing the entropy N associated with

irreversible processes. Nineteenth century thermodynamics remained in the restricted domain of idealized

reversible transformation and without a theory that related entropy explicitly to irreversible processes. Some

expressed the view that entropy is a physical quantity that is spatially distributed and transported (e.g. see

Reference [9]), but still no theory relating irreversible processes to entropy was formulated in the nineteenth

century.

Noticing the importance of relating entropy to irreversible processes, Pierre Duhem (1861–1916) began to

develop a formalism. In his extensive and difficult two-volume work titled Energétique [10], Duhem explicitly

obtained expressions for the entropy produced in processes involving heat conductivity and viscosity [11].

Some of these ideas of calculating the ‘uncompensated heat’ also appeared in the work of the Polish researcher

L. Natanson [12] and the Viennese school led by G. Jaumann [13–15], where the notions of entropy flow and

entropy production were developed.

Formulation of a theory of entropy along these lines continued during the twentieth century, and today we

do have a theory in which the entropy change can be calculated in terms of the variables that characterize the
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irreversible processes. It is a theory applicable to all systems in which the temperature is well defined at every

location. For example, the modern theory relates the rate of change of entropy to the rate of heat conduction

or the rates of chemical reaction. To obtain the change in entropy, it is not necessary to use infinitely slow
reversible processes.

With reference to Figure 3.6, in the classical formulation of entropy it is often stated that, along the

irreversible path I, the entropy may not be a function of the total energy and the total volume and hence it

is not defined. However, for a large class of systems, the notion of local equilibrium makes entropy a well-

defined quantity, even if it is not a function of the total energy and volume. We shall discuss the foundations

of this and other approaches in Chapter 15. For such systems, entropy, which represents irreversibility in

nature, can be related directly to irreversible processes.

In his pioneering work on the thermodynamics of chemical processes, Théophile De Donder (1872–1957)

[16–18] incorporated the ‘uncompensated transformation’ or ‘uncompensated heat’ of Clausius into the for-

malism of the Second Law through the concept of affinity (which is presented in Chapter 4). Unifying all these

developments, Ilya Prigogine (1917–2003) formulated the ‘modern approach’ incorporating irreversibility

into the formalism of the Second Law by providing general expressions for computing entropy produced by

irreversible processes [19–21], thus giving the ‘uncompensated heat’ of Clausius a sound theoretical basis.

Thus, thermodynamics evolved into a theory of irreversible processes in contrast to classical thermodynamics,

which is a theory of equilibrium states. We shall follow this more general approach in which, along with

thermodynamic states, irreversible processes appear explicitly in the formalism.

The basis of the modern approach is the notion of local equilibrium. For a very large class of systems

that are not in thermodynamic equilibrium, thermodynamic quantities such as temperature, concentration,

pressure and internal energy remain well-defined concepts locally, i.e. one could meaningfully formulate

a thermodynamic description of a system in which intensive variables such as temperature and pressure

are well defined in each elemental volume, and extensive variables such as entropy and internal energy are

replaced by their corresponding densities. Thermodynamic variables can thus be functions of position and

time. This is the assumption of local equilibrium. There are, of course, systems in which this assumption is

not a good approximation, but such systems are exceptional. In most hydrodynamic and chemical systems,

local equilibrium is an excellent approximation. Modern computer simulations of molecular dynamics have

shown that if initially the system is in such a state that temperature is not well defined, then in a very

short time (few molecular collisions) the system relaxes to a state in which temperature is a well-defined

quantity [22].

The modern formalism begins by expressing the changes in entropy as a sum of two parts [19]:

dS = deS + diS (3.4.5)

in which deS is the entropy change due to the exchange of matter and energy with the exterior and diS is the

entropy change due to ‘uncompensated transformation’, the entropy produced by the irreversible processes

in the interior of the system (Figure 3.7).

The task now is to obtain explicit expressions for deS and diS in terms of experimentally measurable quan-

tities. Irreversible processes can in general be thought of as thermodynamic forces driving thermodynamic
flows. The thermodynamic flows are a consequence of the thermodynamic forces. For example, the temper-

ature gradient is the thermodynamic force that causes an irreversible flow of heat; similarly, a concentration

gradient is the thermodynamic force that causes the flow of matter (Figure 3.8). In general, the irreversible

change diS is associated with a flow dX of a quantity, such as heat or matter, that has occurred in a time dt.
For the flow of heat, dX = dQ, the amount of heat that flowed in time dt; for the case of matter flow, dX = dN,

moles of the substance that flowed in time dt. In each case, the change in entropy can be written in the form

diS = FdX (3.4.6)



108 Modern Thermodynamics

Figure 3.7 Entropy changes in a system consist of two parts: diS due to irreversible processes and deS due to the
exchange of energy and matter. According to the Second Law, the change diS can only be positive. The entropy
change deS can be positive or negative.

in which F is the thermodynamic force. The thermodynamic forces are expressed as functions of thermo-

dynamic variables such as temperature and concentrations. In the following section we shall see that, for

the flow of heat shown in Figure 3.8, the thermodynamic force takes the form F = (1/Tcold – 1/Thot). For a

continuous variation of T,

F = 𝜕

𝜕x

(
1

T(x)

)
For the flow of matter, the corresponding thermodynamic force is expressed in terms of affinity, which, as

noted above, is a concept developed in Chapter 4. All irreversible processes can be described in terms of

thermodynamic forces and thermodynamic flows. In general, the irreversible increase in entropy diS is the

sum of all the increases due to irreversible flows dXk.We then have the general expression

diS =
∑

k

FkdXk ≥ 0 or
diS

dt
=
∑

k

Fk
dXk

dt
≥ 0 (3.4.7)

Figure 3.8 Flow of heat and diffusion of matter are examples of irreversible processes.
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Equation (3.4.7) is a modern statement of the Second Law of thermodynamics. The rate of entropy production

due to each irreversible process is a product of the corresponding thermodynamic force Fk and the flow Jk =
dXk/dt and can only be positive.

The entropy exchange with the exterior deS is expressed in terms of the flow of heat and matter. For isolated
systems, since there is no exchange of energy or matter,

deS = 0 and diS ≥ 0 (3.4.8)

For closed systems, which exchange energy but not matter,

deS = dQ
T

=
dU + p dV

T
and diS ≥ 0 (3.4.9)

In this expression, dQ is the amount of heat exchanged by the system in a time dt. (By defining dQ in this

way, we avoid the ‘imperfect differentials’ used in classical thermodynamics.)

For open systems, which exchange both matter and energy:

deS =
dU + p dV

T
+ (deS)matter and diS ≥ 0 (3.4.10)

where (deS)matter is the exchange of entropy due to matter flow. This term can be written in terms of chemical
potential, a concept that will be developed Chapter 4. When there is a flow of matter, as discussed in

Section 2.7, dU + p dV ≠ dQ, because the internal and kinetic energies of the matter flowing through the

system must be included.

Whether we consider isolated, closed or open systems, diS ≥ 0. It is the statement of the Second Law in

its most general form. There is another important aspect to this statement: it is valid for all subsystems, not

just for the entire system. For example, if we assume that the entire system is divided into two subsystems,

we not only have

diS = diS
1 + diS

2 ≥ 0 (3.4.11)

in which diS
1 and diS

2 are the entropy productions in each of the subsystems, but we also have

diS
1 ≥ 0 diS

2 ≥ 0 (3.4.12)

We cannot have, for example,

diS
1 > 0, diS

2 < 0 but diS = diS
1 + diS

2 ≥ 0 (3.4.13)

This statement is stronger and more general than the classical statement that the entropy of an isolated system

can only increase.

In summary, for closed systems, the First and the Second Laws can be stated as

dU = dQ + dW (3.4.14)

dS = diS + deS in which diS ≥ 0, deS ≥ dQ∕T (3.4.15)

If a transformation of the state is assumed to take place through a reversible process, diS = 0 and the entropy

change is solely due to the flow of heat. We then obtain the equation

dU = T dS + dW = T dS − p dV (3.4.16)

which is found in texts that confine the formulation of thermodynamics to idealized reversible processes.

For open systems, the changes in energy and entropy have additional contributions due to the flow of matter.

In this case, though the definition of heat and work needs careful consideration, there is no fundamental

difficulty in obtaining dU and deS.
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Finally, we must note that the above formulation enables us to calculate only the changes of entropy. It

does not give us a way to obtain the absolute value of entropy. In this formalism, entropy can be known only

up to an additive constant. However, in 1906, Walther Nernst (1864–1941) formulated a law that stated that

the entropy of all systems approaches zero as the temperature approaches zero [23]:

S → 0 as T → 0 (3.4.17)

Walther Nernst (1864–1941).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)

This law is often referred to as the Third Law of thermodynamics or the Nernst heat theorem. Its validity

has been well verified by experiment.

The Third Law enables us to give the absolute value for the entropy. The physical basis of this law lies in

the behavior of matter at low temperatures that can only be explained by quantum theory. It is remarkable

that the theory of relativity gave us means to define absolute values of energy and quantum theory enables us

to define absolute values of entropy.

The concept of entropy has its foundation in macroscopic processes. No mention has been made about its

meaning at a molecular level. In order to explain what entropy is at a molecular level, Ludwig Boltzmann

(1844–1906) introduced the statistical interpretation of entropy. Box 3.2 gives an introduction to this topic; a

more detailed discussion of this topic is given in Chapter 20.

Box 3.2 Statistical interpretation of entropy

As we have seen in this chapter, the foundation of the concept of entropy as a state function is entirely

macroscopic. The validity of the Second Law is rooted in the reality of irreversible processes. In stark

contrast to the irreversibility of processes we see all around us, the laws of both classical and quantum

mechanics possess no such irreversibility. Classical and quantum laws of motion are time symmetric: if
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a system can evolve from a state A to a state B then its time-reversed evolution, from B to A, is also

admissible. The laws of mechanics make no distinction between evolution into the future and evolution

into the past. For example, the spontaneous flow of gas molecules from a location at higher concentration

to a location at lower concentration and its reverse (which violates the Second Law) are both in accord

with the laws of mechanics. Processes that are ruled impossible by the Second Law of thermodynamics do

not violate the laws of mechanics. Yet all irreversible macroscopic processes, such as the flow of heat, are

the consequence of motion of atoms and molecules that are governed by the laws of mechanics; the flow

of heat is a consequence of molecular collisions that transfer energy. How can irreversible macroscopic

processes emerge from the reversible motion of molecules? What is the relation between entropy and the

microscopic constituents of matter? The energy of a macroscopic system is the sum of the energies of its

microscopic constituents. What about entropy? Addressing these questions, Ludwig Boltzmann (1844–

1906) proposed an extraordinary relation; entropy is a logarithmic measure of the number of microscopic

states that correspond to the macroscopic state:

S = kBlnW

in which W is the number of microstates corresponding to the macrostate whose entropy is S. (We shall

discuss this relation in detail in Chapter 20.) The constant kB is now called the Boltzmann constant;∗

kB = 1.381 × 10−23 J K−1. The gas constant R = kBNA, in which NA is the Avogadro number. The

following example will illustrate the meaning of W. Consider the macrostate of a box containing a gas

with N1 molecules in one half and N2 in the other (see the figure below). Each molecule can be in one half

or the other. The total number of ways in which the (N1 + N2) molecules can be distributed between the

two halves such that N1 molecules are in one and N2 molecules in the other is equal to W. The number of

distinct ‘microstates’ with N1 molecules in one half and N2 in the other is

W =
(N1 + N2)!

N1!N2!

According to Boltzmann, macrostates with larger W are more probable. The irreversible increase of entropy

then corresponds to the evolution to states of higher probability in the future. Equilibrium states are those

for which W is a maximum. In the above example, it can be shown that W reaches a maximum when

N1 = N2.

∗Ter Harr notes that it was Max Planck who introduced kB in the above form; Planck also determined its

numerical value (D. ter Haar, The Old Quantum Theory, 1967, Pergamon Press: London, p. 12.)
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3.5 Examples of Entropy Changes due to Irreversible Processes

To illustrate how entropy changes are related to irreversible processes, we shall consider some simple

examples. The examples we consider are ‘discrete systems’ in which the system consists of two parts that are

not mutually in equilibrium. An example of a continuous system is presented in Appendix 3.2.

3.5.1 Heat Conduction

Consider an isolated system, which we assume (for simplicity) consists of two parts, each part having a

well-defined temperature, i.e. each part is locally in equilibrium. Let the temperatures of the two parts be

T1 and T2 (as shown in Figure 3.9), with T1 being greater than T2. Let dQ be the amount of heat flow from

the hotter part to the colder part in a time dt. Since this isolated system does not exchange entropy with the

exterior, deS = 0. Also, since the volume of each part is a constant, dW = 0. The energy change in each part

is due solely to the flow of heat: dUi = dQi, i = 1, 2. In accordance with the First Law, the heat gained by one

part is equal to the heat lost by the other. Therefore, –dQ1 = dQ2 = dQ. Both parts are locally in equilibrium

with a well-defined temperature and entropy. The total change in entropy diS of the system is the sum of the

changes of entropy in each part due to the flow of heat:

diS = −dQ
T1

+ dQ
T2

=
(

1

T2

− 1

T1

)
dQ (3.5.1)

Since the heat flows irreversibly from the hotter to the colder part, dQ is positive if T1 > T2. Hence, diS > 0.

In expression (3.5.1), dQ and (1/T1 – 1/T2) correspond to dX and F respectively in Equation (3.4.6). In terms

of the rate of flow of heat dQ/dt, the rate of entropy production can be written as

diS

dt
=
(

1

T2

− 1

T1

)
dQ
dt

(3.5.2)

Now the rate of flow of heat or the heat current JQ ≡ dQ/dt is given by the laws of heat conduction. For

example, according to the Fourier law of heat conduction, JQ = 𝛼 (T1 – T2), in which 𝛼 is the coefficient of

heat flow (it can be expressed in terms of the coefficient of heat conductivity and the area of cross-section).

Note that the ‘thermodynamic flow’ JQ is driven by the ‘thermodynamic force’ F = (1/T2 – 1/T1). For the

rate of entropy production we have, from Equation (3.5.2),

diS

dt
=
(

1

T2

− 1

T1

)
𝛼(T1 − T2) =

𝛼(T1 − T2)2

T1T2

≥ 0 (3.5.3)

Figure 3.9 Entropy production due to heat flow. The irreversible flow of heat between parts of unequal tem-
perature results in an increase in entropy. The rate at which entropy is produced, diS/dt, is given by Equation
(3.5.3).
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Figure 3.10 Two equivalent properties that characterize the state of equilibrium. (a) The entropy production
rate diS/dt as a function of the difference in temperatures Δ ≡ (T1 – T2) of the two parts of the system shown in
Figure 3.9. At equilibrium, the entropy production rate is zero. (b) At equilibrium the entropy reaches its maximum
value. Both properties can be used to identify a system in equilibrium.

Owing to the flow of heat, the two temperatures eventually become equal and the entropy production ceases.

This is the state of equilibrium. Entropy production must vanish in the state of equilibrium, which implies that

the force F and the corresponding flux JQ both vanish. In fact, we can deduce the properties of the equilibrium

state by stipulating that all entropy production must vanish in that state.

From Equation (3.5.3) we see that the entropy production rate diS/dt is a quadratic function of the deviation

Δ ≡ (T1 – T2). In the state of equilibrium, the entropy production rate takes its minimum value equal to zero.

This is indicated graphically in Figure 3.10a.

A nonequilibrium state in which T1 ≠ T2 evolves to the equilibrium state in which T1 = T2 = T through a

continuous increase of entropy. Therefore, the entropy of the equilibrium state must be larger than the entropy

of any nonequilibrium state. In Chapters 12 and 14, we will see explicitly that for a small deviation Δ =
(T1 – T2) from the state of equilibrium the corresponding change ΔS is a quadratic function of Δ, attaining a

maximum at Δ = 0 (see Figure 3.10b).

This example illustrates the general assertion that the state of equilibrium can be characterized either by

the principle of the minimum (equal to zero) rate of entropy production or the principle of maximum entropy.

3.5.2 Irreversible Expansion of a Gas

In a reversible expansion of a gas, the pressure of the gas and that on the piston are assumed to be the same. If

we consider an isothermal expansion of a gas that has a constant temperature T by virtue of its contact with a

heat reservoir, the change in entropy of the gas deS = dQ/T, in which dQ is the heat flow from the reservoir to

the gas that is necessary to maintain the temperature constant. This is an ideal situation. In any real expansion

of a gas that takes place in a finite time, the pressure of the gas is greater than that on the piston. If pgas is the

pressure of the gas and ppiston that the pressure on the piston, the difference (pgas – ppiston) is the force per

unit area that moves the piston. The irreversible increase in entropy in this case is given by

diS =
pgas − ppiston

T
dV > 0 (3.5.4)

In this case, the term (pgas – ppiston)/T corresponds to the ‘thermodynamic force’ and dV/dt the corresponding

‘flow’. The term (pgas – ppiston) dV may be identified as the ‘uncompensated heat’ of Clausius. Since the

change in the volume and (pgas – ppiston) have the same sign, diS is always positive. In this case, dS = deS +
diS = dQ/T + (pgas – ppiston) dV/T. In the case of an ideal gas, since the energy is only a function of T, the
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initial and final energies of the gas remain the same; the heat absorbed is equal to the work done in moving

the piston ppiston dV. For a given change in volume, the maximum work is obtained for a reversible process

in which pgas = ppiston.

3.6 Entropy Changes Associated with Phase Transformations

In this section we will consider a simple example of an entropy exchange deS. Changes in the phase of a system,

from a solid to a liquid or a liquid to vapor (as shown in Figure 1.3), provide a convenient situation because,

at the melting or boiling point, the temperature remains constant even when heat is being exchanged. Hence,

in the expression for the entropy change associated with the heat exchange, deS = dQ/T, the temperature T
remains constant. The total entropy change ΔS due to the exchange of heat ΔQ is now easy to determine. In

a solid-to-liquid transition, for example, if the melting temperature is Tm, we have

ΔS =
ΔQ

∫
0

dQ
Tm

= ΔQ
Tm

(3.6.1)

As discovered by Joseph Black, the heat absorbed, ‘the latent heat’, converts the solid to a liquid at a fixed

temperature. Generally, this change happens at a fixed pressure and, hence, we may equate ΔQ to ΔH, the

enthalpy change associated with melting. The enthalpy associated with the conversion of 1 mol of the solid

to liquid is called the molar enthalpy of fusion ΔHfus. The corresponding change in entropy, the molar
entropy of fusion ΔSfus, can now be written as

ΔSfus =
ΔHfus

Tm

(3.6.2)

Water, for example, has a heat of fusion of 6.008 kJ mol−1 and a melting temperature of 273.15 K at a pressure

of 1.0 atm. When 1 mol of ice turns to water, the entropy change ΔSfus = 21.99 J K−1 mol−1.

Similarly, if the conversion of a liquid to vapor occurs at a constant pressure at its boiling point Tb,

then the molar entropy of vaporization ΔSvap and the molar enthalpy of vaporization ΔHvap are related

by

ΔSvap =
ΔHvap

Tb

(3.6.3)

The heat of vaporization of water is 40.65 kJ mol−1. Since the boiling point is 373.15 K at a pressure of

1.0 atm, from the above equation it follows that the molar entropy change ΔSvap = 108.96 J K−1 mol−1, about

five times the entropy change associated with the melting of ice. Since entropy increases with volume, the

large increase in volume from about 18 mL (volume of 1 mol of water) to about 30 L (volume of 1 mol of steam

at p = 1 atm) is partly responsible for this larger change. The molar enthalpies of fusion and vaporization of

some compounds are given in Table 3.1. (Thermodynamic data may be accessed using the NIST Chemistry

WebBook at http://webbook.nist.gov/chemistry.)
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Table 3.1 Enthalpies of fusion of and vaporization at p = 101.325 kPa = 1.0 atm and the corresponding
transition temperatures.

Substance Tm (K) ΔHfus (kJ mol−1) Tb (K) ΔHvap (kJ mol−1)

H2O 273.15 6.01 373.15 40.65
CH3OH 175.5 3.18 337.7 35.21
C2H5OH 159.0 5.02 351.4 38.56
CH4 90.69 0.94 111.7 8.19
CCl4 250.15 3.28 349.9 29.82
NH3 195.4 5.66 239.8 23.33
CO2 (sublimes) Tsub = 194.65 ΔHsub = 25.13
CS2 161.6 4.40 319.1 26.74
N2 63.15 0.71 77.35 5.57
O2 54.36 0.44 90.19 6.82

Source: D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 75th edition, 1994, CRC Press: Ann Arbor, MI.

3.7 Entropy of an Ideal Gas

In this section we will obtain the entropy of an ideal gas. Being a state function, entropy of an ideal gas

can be expressed as a function of its volume, temperature and the amount in moles. For a closed system in

which the changes of entropy are only due to the flow of heat, if we assume that the changes in volume V and

temperature T take place so as to make diS = 0, then we have seen that (see Equation (3.4.16)) dU = T dS +
dW. If dW = – p dV, and if we express dU as a function of V and T, we obtain

TdS =
(
𝜕U
𝜕V

)
T

dV +
(
𝜕U
𝜕T

)
V

dT + pdV (3.7.1)

For an ideal gas, (𝜕U/𝜕V)T = 0, because the energy U is only a function of T – as was demonstrated in

the experiments of Joule and Gay-Lussac and others (see Section 1.4, Equation (1.4.6)). Also, by definition

(𝜕U/𝜕T)V = NCmV, in which CmV is the molar heat capacity at constant volume, which is found to be a

constant. Hence Equation (3.7.1) may be written as

dS =
p

T
dV + NCmV

dT
T

(3.7.2)

Using the ideal gas law, pV = NRT, (3.7.2) can be integrated to obtain

S(V , T , N) = S0(V0, T0, N) + NR ln(V∕V0) + NCmV ln(T∕T0) (3.7.3)

in which S0 in the entropy of the initial state (V0, T0). Since U = CmVNT + U0 for an ideal gas, entropy can

also be written as a function of V, N and U. As described in Box 3.3, entropy is an extensive function. In

expression (3.7.3), the extensivity of S as a function of V and N is not explicit because S0(V0, T0, N) contains

terms that make S extensive. The requirement that entropy is extensive, i.e. 𝜆S(V, T, N) = S(𝜆V, T, 𝜆N), can

be used to show (Exercise 3.10) that the entropy of an ideal gas has the form

S(V , T , N) = N[s0 + R ln(V∕N) + CmV ln(T)] (3.7.4)

in which s0 is a constant. In this form, the extensivity of S is explicit and it is easy to verify that 𝜆S(U, T, N) =
S(𝜆U, T, 𝜆N).
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Box 3.3 Extensivity of energy and entropy

At a fixed pressure and temperature, if the amount of substance N is changed by a factor 𝜆, the volume

V also changes by the same factor. In many cases, the system’s entropy S and energy U also change by

the same factor 𝜆. This property is called extensivity. Entropy is an extensive function of U, V and N: S =
S(U, V, N). That entropy is an extensive function can be expressed mathematically as

𝜆S(U, V , N) = S(𝜆U, 𝜆V , 𝜆N)

Similarly, energy is a function of S, V and N: U = U(S, V, N) and

𝜆U(S, V , N) = U(𝜆S,𝜆V ,𝜆N)

Physically, extensivity implies that combining 𝜆 identical systems results in a larger system whose entropy

is 𝜆 times the entropy of each of the systems. This means that the processes of combining 𝜆 identical

systems is reversible with no entropy or energy change. Here is an example. Initially, two identical com-
partmentalized subsystems contain an ideal gas, both at the same p and T (see the figure below). The process

of removing the wall between the two subsystems and creating a system that is twice as large requires

neither work nor heat. Hence, the energy of the larger system is the sum of the energies of the subsystems.

Also, since the wall does not contribute to entropy, the process is reversible with no entropy change: deS =
diS= 0. Therefore, we deduce that the initial entropy, which is the sum of the entropies of the two identical

systems, equals the entropy of the final larger system. In this sense the entropy and energy of most systems

can be assumed to be extensive functions.

On the other hand, entropy and energy are not extensive functions as expressed in the equations above

when the process of combining identical systems to create a larger system involves a change in energy and

entropy. Such is the case for very small systems, whose surface energy and entropy cannot be ignored as

they can be for large systems. When two small drops of liquid are brought into contact, for example, they

spontaneously coalesce to form a larger drop (see the figure above). Because the surface of the larger drop

is not equal to the sum of the surfaces of the two initial drops, the energy of the larger drop does not equal

the sum of energies of the two smaller drops. As we shall see in later chapters, diS > 0 in this process.

Note also that it requires work to break the bigger drop into two smaller drops. Hence, neither entropy

nor energy obey the above equations. However, there is no fundamental difficulty in taking the energy and

entropy of the surface into account and formulating the thermodynamics of small systems.

3.8 Remarks about the Second Law and Irreversible Processes

As was emphasized by Planck [24], the statement of the Second Law and the concept of entropy can be

made entirely macroscopic. This is perhaps why Einstein was convinced that for thermodynamics, ‘within
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the framework of applicability of its basic concepts, it will never be overthrown’. Many modern expositions

present the Second Law and entropy starting with their microscopic definitions based on the probability that

belie their independence from microscopic theories of matter.

The Second Law is universal. In fact, its universality gives us a powerful means to understand the thermo-

dynamic aspects of real systems through the usage of ideal systems. A classic example is Planck’s analysis

of radiation in thermodynamic equilibrium with matter (the ‘black-body radiation’) in which Planck con-

sidered idealized simple harmonic oscillators interacting with radiation. Planck considered simple harmonic

oscillators, not because they are good approximations of molecules, but because the properties of radiation in

thermal equilibrium with matter are universal, regardless of the particular nature of matter that it is interacting

with. The conclusions one arrives at using idealized oscillators and the laws of thermodynamics must also be

valid for all other forms of matter, however complex.

In the modern context, the formulation summarized in Figure 3.7 is fundamental for understanding ther-

modynamic aspects of self-organization, evolution of order and life that we see in Nature. When a system

is isolated, deS = 0. In this case, the entropy of the system will continue to increase due to irreversible

processes and reach the maximum possible value, the state of thermodynamic equilibrium. In the state of

equilibrium, all irreversible processes cease. When a system begins to exchange entropy with the exterior,

then, in general, it is driven away from equilibrium and the entropy-producing irreversible processes begin

to operate. The exchange of entropy is due to the exchange of heat and matter. The entropy flowing out of

the system is always larger than the entropy flowing into the system, the difference arising due to entropy

produced by irreversible processes within the system. As we shall see in the following chapters, systems that

exchange entropy with their exterior do not simply increase the entropy of the exterior, but may undergo

dramatic spontaneous ‘self-organization’. The irreversible processes that produce entropy create these orga-
nized states. Such self-organized states range from convection patterns in fluids to life. Irreversible processes

are the driving force that creates this order.

Appendix 3.1 The Hurricane as a Heat Engine

The mechanism of a hurricane is essentially that of a heat engine, as shown in Figure A3.1 in the cycle

ABCD. The maximum intensity of a hurricane, i.e. the maximum hurricane wind speed (Table A3.1), can be

predicted using Carnot’s theorem for the efficiency of a heat engine.

In a hurricane, as the wind spirals inwards towards the eye at low pressure, enthalpy (heat) is absorbed

at the warm ocean–air interface in an essentially isothermal process: water vaporizes and mixes with the

air, carrying with it the enthalpy of vaporization (segment AB). When this moist air reaches the hurricane’s

eyewall, it rises rapidly about 15 km along the eyewall. Since the pressure decreases with altitude, it expands

adiabatically and cools (segment BC). As the rising moist air’s temperature drops, the water vapor in it

condenses as rain, releasing the enthalpy of vaporization (latent heat), a part of which is radiated into outer

space. In a real hurricane, the air at the higher altitude flows out into the weather system. Theoretically, in

order to close the Carnot cycle, it could be assumed that the enthalpy of vaporization is lost in an isothermal

process (segment CD). The last step (segment DA) of the cycle is an adiabatic compression of dry air. During

the cycle, a part of the enthalpy absorbed from the ocean is converted into mechanical energy of the hurricane

wind.

The ‘hurricane heat engine’ operates between the ocean surface temperature T1 (about 300 K) and the

lower temperature T2 (about 200 K) at the higher altitude, close to the upper boundary of the troposphere

(tropopause). Let us look at the relationship between the heat absorbed at the ocean surface and the mechanical

energy of the hurricane wind. In a time dt, if dQ1 is the heat absorbed at the ocean surface, dQ2 is the heat
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Figure A3.1 The hurricane operates as a heat engine, converting part of the heat absorbed at the ocean surface
to mechanical energy of the hurricane wind.

radiated at the higher altitude and dW is the amount of heat converted to mechanical energy of the hurricane

wind. Thus, according to the First Law,

dQ1

dt
= dW

dt
+

dQ2

dt
(A3.1.1)

Furthermore, according to Carnot’s theorem:

dW
dt

≤
(

1 −
T2

T1

)
dQ1

dt
(A3.1.2)

In a hurricane, the mechanical energy in the wind is converted to heat due to wind friction, almost all of it

at the ocean surface. This heat in turn contributes to dQ1/dt, the rate at which heat is absorbed at the ocean

surface. When the hurricane is in a steady state, i.e. when all the flows are constant, all the mechanical energy

entering the system as wind motion is converted to heat at the ocean surface: the rate of heat generation due

Table A3.1 The Saffir–Simpson hurricane intensity scale.

Maximum sustained wind speed

Category Minimum central pressure (kPa) m s−1 mph

1 >98.0 33–42 74–95
2 97.9–96.5 43–49 96–110
3 96.4–94.5 50–58 111–130
4 94.4–92.0 59–69 131–155
5 <92.0 >70 >156
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to wind friction is equal to dW/dt. Thus, the rate at which heat enters the Carnot cycle, dQ1/dt, consists of

two parts:

dQ1

dt
=

dQ10

dt
+ dW

dt
(A3.1.3)

where dQ10/dt is the rate at which heat enters the system in the absence of heating due to wind friction. Using

Equation (A3.1.3) in Equation (A3.1.2), it is easy to see that

dW
dt

≤
(

T1 − T2

T2

)
dQ10

dt
(A3.1.4)

A detailed study of the physics of the hurricane wind shows that the rate of heat generation per unit area of

the ocean surface (i.e. vertically integrated heating) is equal to CD𝜌|v|3, in which CD is a constant, 𝜌 is the

air density and v is the wind velocity. The total amount of heat generated is obtained by integrating over the

circular surface of radius R (from the center of the eye to the outer edge of the hurricane), which is the area of

contact between the hurricane wind and the ocean. At steady state, since this integral equals dW/dt, we have

dW
dt

= 2𝜋

R

∫
0

CD𝜌 |v|3 r dr (A3.1.5)

The term dQ10/dt is the rate at which enthalpy enters the inflowing dry air (segment AB). This energy

is essentially the enthalpy of vaporization. It is proportional to the difference between specific enthalpies

(enthalpies per unit mass) of the air saturated with moisture very close to the ocean surface h∗ and the

enthalpy of the inflowing dry air h (see Figure A3.1); it is also proportional to the wind velocity at the ocean

surface. Thus, the enthalpy entering the system per unit area is Ch𝜌 (h∗ – h) |v|. The total amount of enthalpy

dQ10/dt entering the hurricane system in this process equals the integral of this expression over the circular

surface of radius R:

dQ10

dt
= 2𝜋

R

∫
0

Ch𝜌(h∗ − h) |v| r dr (A3.1.6)

in which Ch is constant. Combining Equations (A3.1.4), (A3.1.5) and (A3.1.6) we obtain

R

∫
0

CD𝜌 |𝜈|3 rdr ≤
(

T1 − T2

T2

) R

∫
0

Ch𝜌(h∗ − h) |v| r dr

If we assume that the dominant contribution to this integral comes from the region where the velocity is

maximum, we can write

CD𝜌
||vmax||3 ≤

(
T1 − T2

T2

)
Ch𝜌(h∗ − h) ||vmax||

Thus, we arrive at the result

||vmax||2 ≈ (T1 − T2

T2

)
Ch

CD

(h∗ − h) (A3.1.7)

Bister and Emanuel [25] have shown that the above result can be obtained through a more rigorous calculation.

All the terms on the right-hand side are experimentally measured or theoretically estimated. A comparison

of theory and experimental data suggests that the ratio Ch/CD is in the range 0.75–1.5 [26]. Kerry Emanuel,
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the originator of the above theory, has demonstrated that (A3.1.7) leads to remarkably good estimates of the

hurricane wind speeds [4, 27].

When the system is in a steady state, the heat converted into mechanical energy of the hurricane wind

balances the conversion of the wind energy back to heat. Under these conditions, if expression (A3.1.3) is used

in (A3.1.1) we obtain dQ10/dt = dQ2/dt, which implies that heat of vaporization absorbed by the hurricane

wind at the ocean surface is released at higher altitudes where the water condenses. This heat is ultimately

radiated out of Earth’s atmosphere. Thus, the vaporization and condensation of water vapor is a mechanism

that transports heat from the oceans to higher altitudes where it is radiated into outer space. If this mechanism

did not exist, the heat would be transported entirely through air currents, currents that would be very intense.

Appendix 3.2 Entropy Production in Continuous Systems

We consider a nonequilibrium situation in which a heat-conducting material is in contact with a hot reservoir

on one side and a cold reservoir on the other (see Figure A3.2). We further assume that the conductor is

insulated in such a way that it exchanges heat only with the heat reservoirs. After going through an initial

transient change in temperature, such a system will settle into a steady state in which there is a uniform

temperature gradient and a steady flow of heat. We will calculate the rate of entropy production at this steady

state.

As each elemental quantity of heat dQ flows through the system the entropy increases. At a steady state,

there is a steady flow of heat JQ, which is the amount of heat flowing per unit area per second (J m−2 s−1).

Since only one space direction is involved in this problem, we shall ignore the vectorial aspect of JQ. For

simplicity, we shall assume that the conductor has a unit area of cross-section. In this case the rate of flow of

heat dQ/dt = JQ. For continuous systems, the entropy production due to the flow of heat given by Equation

(3.5.2) should be replaced by the entropy production due to the flow of heat through each infinitesimal

segment of the heat conductor of width dx. The corresponding entropy production per unit volume at the

point x is denoted by 𝜎(x). The quantity (1/T1 – 1/T2) is now replaced by the change of the quantity 1/T over

the length dx, namely (𝜕/𝜕x)(1/T)dx. Combining all these terms, we can now write the entropy production for

flow of heat across a segment dx:

𝜎(x)dx = JQ

(
𝜕

𝜕x
1

T

)
dx (A3.2.1)

According to the Fourier law of heat conduction, JQ = – 𝜅(𝜕T/𝜕x), in which 𝜅 is the heat conductivity.

Substituting this expression into Equation (A3.2.1) we can obtain

𝜎(x)dx = 𝛼 1

T2

(
𝜕T
𝜕x

)2

dx ≥ 0 (A3.2.2)

Figure A3.2 The continuous flow of heat is associated with entropy production.
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The above expression gives the entropy production at each location x, i.e. the local entropy production. It is

the entropy produced per unit time due to the flow of heat through the segment of width dx at the location

x. As required by the Second Law, it is positive. At steady state, the temperature of the segment is constant.

Hence, the entropy of the segment itself is not increasing; the entropy increase is due to the flow of heat down

a temperature difference dT across the segment.

To obtain the total rate of entropy production due to the flow of heat from one end of the conductor to the

other, we integrate the expression (A3.2.1) over the length l of the conductor:

diS

dt
=

1

∫
0

𝜎(x)dx =
1

∫
0

JQ

(
𝜕

𝜕x
1

T

)
dx (A3.2.3)

When the system has reached steady state, since JQ is constant, we can integrate this expression and rearrange

terms to obtain

JQ

T2

=
JQ

T1

+
diS

dt
(A3.2.4)

This result shows that the outflow of entropy equals the sum of entropy entering the system and the entropy

produced due to the heat flow.
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Examples

Example 3.1 Draw the S versus T diagram for the Carnot cycle.

Solution During the reversible adiabatic changes the change in entropy is zero. Hence, the S–T graph is as

shown:

Example 3.2 A heat pump is used to maintain the inside temperature of a house at 20.0 ◦C when the outside

temperature is 3.0 ◦C. What is the minimum amount of work necessary to transfer 100.0 J of heat to the

inside of the house?

Solution The ideal heat pump is the Carnot’s engine running in reverse, i.e. it uses work to pump heat from

a lower temperature to a higher temperature. For an ideal pump, Q1/T1 = Q2/T2. Thus, if Q1 = 100.0 J and

T2 = 293.0 K, we have T1 = 276.0 K:

Q2 = 276.0 K(100.0 J∕293.0 K) = 94.0 J

Thus, the heat pump absorbs 94.0 J from the outside and delivers 100.0 J to the inside. Form the First Law it

follows that the necessary work W = Q1 – Q2 = 100.0 J – 94.0 J = 6.0 J.

Example 3.3 The heat capacity of a solid is Cp = 125.48 J K−1. What is the change in its entropy if it is

heated from 273.0 K to 373.0 K?
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Solution This is a simple case of heat transfer, where deS = dQ/T. Hence:

Sfinal − Sinitial =

Tf

∫
Ti

dQ
T

=

Tf

∫
Ti

Cp dT

T
= Cp ln

(
Tf

Ti

)
= 125.48 J K−1 ln(373∕273) = 39.2 J K−1

Example 3.4 A container with N moles of ideal gas with an initial volume Vi is in contact with a heat

reservoir at T0 K. The gas expands isothermally to a volume Vf. Calculate: (a) the amount of heat absorbed

by the gas in this expansion; (b) the increase in the entropy of the gas.

Solution The energy of an ideal gas depends only on its temperature. Hence, the heat absorbed Q must

equal the work done W by the gas. The work done by the gas is

W =

Vf

∫
Vi

p dV

Vf

∫
Vi

NRT0

V
dV = NRT0 ln

(
Vf

Vi

)
= Q

Since the process occurs isothermally, the change in entropy is

Sf − Si =

Sf

∫
Si

dQ
T0

= Q
T0

= NR ln

(
Vf

Vi

)
Note that the change in entropy can also be calculated using Equation (3.7.4).

Exercises

3.1 (a) For the Carnot cycle shown in Figure 3.2, show that VC/VD = VB/VA.

(b) Show the equivalence between a perpetual motion machine of the second kind and Carnot’s

theorem.

3.2 A refrigerator operating reversibly extracts 45.0 kJ of heat from a thermal reservoir and delivers

67.0 kJ as heat to a reservoir at 300 K. Calculate the temperature of the reservoir from which heat was

removed.

3.3 What is the maximum work that can be obtained from 1000.0 J of heat supplied to a steam engine with

a high-temperature reservoir at 120.0 ◦C if the condenser is at 25.0 ◦C?

3.4 Using the data shown in Figure 2.9, estimate the amount of entropy radiated by the Earth per hour.
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3.5 The heat of combustion of gasoline is approximately 47 kJ g−1. If a gasoline engine operated between

1500 K and 750 K, what is the maximum height that 1.0 kg of gasoline can lift a small aircraft that

weighs 2000 kg?

3.6 The heat capacity Cp of a substance is given by

Cp = a + bT

where a= 20.35 J K−1 and b= 0.2 J K−2. Calculate the change in entropy in increasing the temperature

of this substance from 298.15 K to 304.0 K.

3.7 When 0.5 J of heat passes between two large bodies in contact at temperatures of 70 ◦C and 25 ◦C,

what is the change of entropy? If this occurs in 0.23 s, what is the rate of change of entropy diS/dt?

3.8 What is the entropy of 1.00 L of N2(g) at T = 350.0 K and p = 20.25 atm given that the standard

(p = 1.00 bar, T = 298.15 K) molar entropy S0
m = 191.6 J K−1 mol−1? (Calculate the molar amount

of N2 using the ideal gas equation.)

3.9 Which of the following are not extensive functions:

S1 = (N∕V)[S0 + CV ln T + R ln V]

S2 = N[S0 + CV ln T + R ln(V∕N)]

S3 = N2[S0 + CV ln T + R ln(V∕N)]

3.10 Apply the condition S(𝜆V, T, 𝜆N) = 𝜆S(V, T, N) to

S(V , T , N) = S0(V0, T0, N) + NR ln(V∕V0) + NCV ln(T∕T0)

differentiate it with respect to 𝜆, set 𝜆 = 1, solve the resulting differential equation for S0 and show

that

S(V , T , N) = N[s0 + R ln(V∕N) + CmV ln(T)]

3.11 In an isolated container, at a temperature T, N moles of a gas of volume V irreversibly expands into

another chamber of equal volume, reaching a final volume 2V. What is the irreversible increase in

entropy?



4
Entropy in the Realm of Chemical Reactions

4.1 Chemical Potential and Affinity: The Thermodynamic Force for Chemical Reactions

Nineteenth century chemists did not pay much attention to the developments in thermodynamics, while

experiments done by chemists – such as Gay-Lussac’s on the expansion of a gas into vacuum – were taken

up and discussed by physicists for their thermodynamic implications. The interconversion of heat into other

forms of energy was a matter of great interest, mostly to physicists. Among the chemists, the concept of heat

as an indestructible caloric, a view supported by Lavoisier, largely prevailed [1]. As we noted in Chapter 2,

the work of the Russian chemist Germain Hess on heats of reaction was an exception.

Motion is explained by the Newtonian concept of force, but what is the ‘driving force’ that was responsible

for chemical change? Why do chemical reactions occur at all and why do they stop at certain points?

Chemists called the ‘force’ that caused chemical reactions affinity, but it lacked a clear physical meaning and

definition. For the chemists who sought quantitative laws, defining affinity, as precisely as Newton’s defined

mechanical force, was a fundamental problem. In fact, this centuries-old concept had different interpretations

at different times. ‘It was through the work of the thermochemists and the application of the principles of

thermodynamics as developed by the physicists’, notes the chemistry historian Henry M. Leicester, ‘that a

quantitative evaluation of affinity forces was finally obtained’ [1, p. 203]. The thermodynamic formulation of

affinity as we know it today is due to Théophile De Donder (1872–1957), the founder of the Belgian school

of thermodynamics.

De Donder’s formulation of chemical affinity [2,3] was founded on the concept of chemical potential, one of

the most fundamental and far-reaching concepts in thermodynamics, which was introduced by Josiah Willard

Gibbs (1839–1903). There were earlier attempts: in the nineteenth century, the French chemist Marcellin

Berthelot (1827–1907) and the Danish chemist Julius Thompsen (1826–1909) attempted to quantify affinity

using heats of reaction. After determining the heats of reactions for a large number of compounds, in 1875

Berthelot proposed a ‘principle of maximum work’, according to which ‘all chemical changes occurring

without intervention of outside energy tend toward the production of bodies or of a system of bodies which

liberate more heat’ [1, p. 205]. However, this suggestion met with criticism from Hermann Helmholtz and

Walther Nernst (1864–1941), who noted that the principle could not apply to spontaneous endothermic

chemical change that absorbed heat. The controversy continued until the concept of a chemical potential

formulated by Gibbs (who was a professor at Yale University) became known in Europe. Later, it became

clear that it was not the heat of reaction that characterized the evolution to the state of equilibrium but another

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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thermodynamic quantity called ‘free energy’. As we shall describe in this chapter, De Donder gave a precise

definition of affinity using the concept of chemical potential and, through his definition of affinity, obtained

a relation between the rate of entropy change and the chemical reaction rate. In De Donder’s formulation,

the Second Law implies that chemical reactions drive the system to a state of thermodynamic equilibrium in

which the affinities of the reactions equal zero.

J Willard Gibbs (1839–1903).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)

4.1.1 Chemical Potential

Josiah Willard Gibbs introduced the idea of chemical potential in his famous work titled On the Equilibrium of
Heterogeneous Substances, published in 1875 and 1878 [4–6]. Gibbs published his work in the Transactions
of the Connecticut Academy of Sciences, a journal that was not widely read. This fundamental work of Gibbs

remained in relative obscurity until it was translated into German by Wilhelm Ostwald (1853–1932) in 1892

and into French by Henri Le Châtelier (1850–1936) in 1899 [1]. Much of the present-day presentation of

classical equilibrium thermodynamics can be traced back to this important work of Gibbs.

Gibbs considered a heterogeneous system (Figure 4.1) that consisted of several homogeneous parts, each

part containing various substances s1, s2,… , sn of masses m1, m2,… , mn. His initial consideration did not
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Figure 4.1 A heterogeneous system considered by Gibbs in which substances were exchanged between
the parts I, II and III. The change in energy dU of any part when matter was exchanged reversibly is given by
Equation (4.1.1).

include chemical reactions between these substances, but was restricted to their exchange between different

homogeneous parts of a system. Arguing that the change in energy dU of a homogeneous part must be propor-

tional to reversible changes in the masses of the substances, dm1, dm2,… , dmn, Gibbs introduced the equation

dU = T dS − p dV + 𝜇1 dm1 + 𝜇2 dm2 +⋯ + 𝜇n dmn (4.1.1)

for each homogeneous part. The coefficients 𝜇k are called the chemical potentials. The heterogeneous

systems considered included different phases of a substance that exchanged matter. The considerations

of Gibbs, however, were restricted to transformations between states in equilibrium. This restriction is

understandable from the viewpoint of the classical definition of entropy, which required the system to be in

equilibrium and the transformations between equilibrium states to be reversible so that dQ = T dS. In the

original formulation of Gibbs, the changes in the masses dmk in Equation (4.1.1) were due to the exchange of

the substances between the homogeneous parts, a situation encountered when various phases of a substance

exchange matter and reach equilibrium.

It is more convenient to describe chemical reactions by the change in the molar amounts of the reactants

rather than the change in their masses, because chemical reaction rates and the laws of diffusion are most

easily formulated in terms of molar amounts. Therefore, we shall rewrite Equation (4.1.1) in terms of the

molar amounts Nk of the constituent substances, redefining the chemical potentially accordingly:

dU = T dS − p dV + 𝜇1 dN1 + 𝜇2 dN2 +⋯ + 𝜇n dNn

i.e.

dU = T dS − p dV +
n∑
1

𝜇k dNk (4.1.2)

The above equation implies that U is a function of S, V and Nk, and that the coefficients of dS, dV and dNk
are the corresponding derivatives:(

𝜕U
𝜕S

)
V ,Nk

= T
(
𝜕U
𝜕V

)
S, Nk

= −p

(
𝜕U
𝜕Nk

)
S, V , Nj≠k

= 𝜇k (4.1.3)

4.1.2 Chemical Reactions

Although Gibbs did not consider irreversible chemical reactions, Equation (4.1.1) that he introduced contained

what was needed for the formulation of thermodynamics as a theory of irreversible processes in chemical

systems. Using the chemical potential, the rates of entropy production due to chemical reactions can be
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computed. By making the important distinction between the entropy change deS due to a reversible exchange

of matter and energy with the exterior and an irreversible increase of entropy diS due to chemical reactions,

De Donder formulated the thermodynamics of irreversible chemical transformations [2,3]. Using the concept

of chemical potential, De Donder took the ‘uncompensated heat’ of Clausius in the context of chemical

reactions and gave it a clear expression.

Let us look at Equation (4.1.2) from the point of view of reversible entropy flow deS and irreversible

entropy production diS that were introduced in the previous chapter. To make a distinction between irreversible

chemical reactions and reversible exchange with the exterior, we express the change in the molar amounts

dNk as a sum of two parts:
dNk = diNk + deNk (4.1.4)

in which diNk is the change due to irreversible chemical reactions and deNk is the change due to the exchange

of matter with the exterior. In Equation (4.1.2), Gibbs considered the reversible exchange of heat and matter.

Because this corresponds to deS, we may write (see Equation (3.4.10))

deS =
dU + p dV

T
−

n∑
1

𝜇k deNk

T
(4.1.5)

Théophile De Donder (1872–1957) (third row, fifth from the left) at the historic 1927 Solvay Conference. His
book, L’Affinité was published the same year.
First row, L to R: I. Langmuir, M. Planck, Mme. Curie, H.A. Lorentz, A. Einstein, P. Langevin, Ch. E. Guye, C.T.R.
Wilson, O.W. Richardson.
Second row, L to R: P. Debye, M. Knudsen, W.L. Bragg, H.A. Kramers, P.A.M. Dirac, A.H. Compton, L. de Broglie,
M. Born, N. Bohr.
Third row, L to R: A. Piccard, E. Henriot, P. Ehrenfest, Ed. Herzen, Th. De Donder, E. Schrödinger, E. Verschaffelt,
W. Pauli, W. Heisenberg, R.H. Fowler, L. Brillouin. (Reproduced by courtesy of the International Solvay Institutes,
Brussels, Belgium.)
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De Donder recognized that, in a closed system, if the change of molar amounts dNk were due to irreversible

chemical reactions, then the resulting entropy production diS can be written as

diS = −

n∑
1

𝜇kdiNk

T
(4.1.6)

This is the ‘uncompensated heat’ of Clausius in the realm of chemical reactions. The validity of this equation

lies in the fact that chemical reactions occur in such a way that diS is always positive in accordance with the

Second Law. For the total change in entropy dS we have

dS = deS + diS (4.1.7)

in which

deS =
dU + p dV

T
− 1

T

n∑
1

𝜇k deNk (4.1.8)

and

diS = − 1

T

n∑
1

𝜇k diNk > 0 (4.1.9)

For a closed system, which by definition does not exchange matter, deNk = 0. Since the rates of chemical

reaction specify dNk/dt, the rate of entropy production can be written as

diS

dt
= − 1

T

n∑
1

𝜇k
dNk

dt
> 0 (4.1.10)

If we sum Equations (4.1.8) and (4.1.9) we recover (4.1.2):

dU = T dS − p dV +
n∑
1

𝜇k dNk (4.1.11)

Further development of this theory relates chemical potential to measurable system variables such as p, T
and Nk. The pioneering work of De Donder established a clear connection between entropy production and

irreversible chemical reactions: the rate of entropy production diS/dt is related directly to the rates of chemical

reactions that specify dNk/dt. In a closed system, if initially the system is not in chemical equilibrium, then

chemical reactions will take place that will irreversibly drive the system towards equilibrium. According to

the Second Law of thermodynamics, this will happen in such a way that Equation (4.1.10) is satisfied.

4.1.3 Affinity

De Donder also defined the affinity of a chemical reaction, which enables us to write expression (4.1.10) in

an elegant form, as the product of a thermodynamic force and a thermodynamic flow. The concept of affinity

can be understood through the following simple example.

In a closed system, consider a chemical reaction of the form

X + Y ⇌ 2Z (4.1.12)
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Figure 4.2 The changes in entropy diS due to irreversible chemical reactions is formulated using the concept of
affinity. For the above reaction, the affinity A ≡ 𝜇X + 𝜇Y – 2𝜇Z, in which 𝜇 is the chemical potential.

In this case the changes in the molar amounts dNX, dNY and dNZ of the components X, Y and Z are related

by the reaction stoichiometry. We can express this relation as

dNX

−1
=

dNY

−1
=

dNZ

2
≡ d𝜉 (4.1.13)

in which d𝜉 is the change in the extent of reaction 𝜉, which was introduced in Section 2.5. Using Equa-

tion (4.1.11), the total entropy change and the entropy change due to irreversible chemical reactions can now

be written as

dS =
dU + p dV

T
+ 1

T
(𝜇X + 𝜇Y − 2𝜇Z)d𝜉 (4.1.14)

diS =
𝜇X + 𝜇Y − 2𝜇Z

T
d𝜉 > 0 (4.1.15)

For a chemical reaction X + Y ⇌ 2Z, De Donder defined a new state variable called affinity as [1, p. 203, 2]

A ≡ 𝜇X + 𝜇Y − 2𝜇Z (4.1.16)

This affinity is the driving force for chemical reactions (see Figure 4.2). A nonzero affinity implies that the

system is not in thermodynamic equilibrium and that chemical reactions will continue to take place, driving

the system towards equilibrium. In terms of affinity A, the rate of increase of entropy is written as

diS

dt
=
(A

T

) d𝜉

dt
> 0 (4.1.17)

As in the case of entropy production due to heat conduction, the entropy production due to a chemical reaction

is a product of a thermodynamic force A/T and a thermodynamic flow d𝜉/dt. The flow in this case is the

conversion of reactants to products (or vice versa), which is caused by the force A/T. We shall refer to the

thermodynamic flow d𝜉/dt as the velocity of reaction or rate of conversion.

Though a nonzero affinity means that there is a driving force for chemical reactions, the velocity, d𝜉/dt,
of the chemical reactions is not specified by the value of affinity A. The velocities of chemical reactions are

usually known through empirical means; there is no general relationship between the affinity and the velocity

of a reaction.

At equilibrium, the thermodynamic flows and, hence, the entropy production must vanish. This implies

that in the state of equilibrium the affinity of a chemical reaction A = 0. Thus, we arrive at the conclusion

that, at thermodynamic equilibrium, the chemical potentials of the compounds X, Y and Z will reach values

such that

A ≡ 𝜇X + 𝜇Y − 2𝜇Z = 0 (4.1.18)
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In Chapter 9, which is devoted to the thermodynamics of chemical processes, we will see how chemical

potentials can be expressed in terms of experimentally measurable quantities such as concentrations and

temperature. Equations such as (4.1.18) are specific predictions regarding the states of chemical equilibrium.

These predictions have been amply verified by experiment and today they are routinely used in chemistry.

For a general chemical reaction of the form

a1A1 + a2A2 + a3A3 +⋯ + anAn
−−−−→←−−−− b1B1 + b2B2 + b3B3 +⋯ + bmBm (4.1.19)

the changes in the molar amounts of the reactants Ak and the products Bk are related in such a way that a change

dN in molar amount of one of the species (reactants or products) completely determines the corresponding

changes in all the other species. Consequently, there is only one independent variable, which can be defined

as

dNA1

−a1

=
dNA2

−a2

= ⋯
dNAn

−an
=

dNB1

b1

=
dNB2

b2

⋯
dNBm

bm
= d𝜉 (4.1.20)

The affinity A of the reaction (4.1.19) is defined as

A ≡
n∑

k=1

ak𝜇Ak
−

m∑
k=1

bk𝜇Bk
(4.1.21)

in which 𝜇Ak
is the chemical potential of the reacting species Ak, etc. If several simultaneous reactions occur

in a closed system, then an affinity Ai and a degree of advancement 𝜉i can be defined for each reaction and

the change of entropy is written as

dS =
dU + pdV

T
+
∑

i

Ai

T
d𝜉i (4.1.22)

diS =
∑

i

Ai

T
d𝜉i ≥ 0 (4.1.23)

For the rate of entropy production we have the expression

diS

dt
=
∑

k

Ak

T

d𝜉k

dt
≥ 0 (4.1.24)

At thermodynamic equilibrium, the affinity A and the velocity d𝜉/dt of each reaction are zero. We will consider

explicit examples of entropy production due to chemical reactions in Chapter 9.

In summary, when chemical reactions are included, the entropy is a function of the energy U, volume V and

the molar amounts Nk, S = S(U, V, Nk). For a closed system, following Equation (4.1.22), it can be written as

a function of U, V and the extent of reaction 𝜉k: S = S(U, V, 𝜉k).

We conclude this section with a historical remark. In Chapter 5 we will introduce a quantity called the

Gibbs free energy. The Gibbs free energy of 1 mol of X can also be interpreted as the chemical potential of

X. The conversion of a compound X to a compound Z causes a decrease in the Gibbs free energy of X and

an increase in the Gibbs free energy of Z. Thus, the affinity of a reaction, X + Y ⇌ 2Z, defined as A ≡ (𝜇X +
𝜇Y – 2𝜇Z), can be interpreted as the negative of the change in Gibbs free energy when 1 mol of X and 1 mol of

Y react to produce 2 mol of Z. This change in the Gibbs free energy, called the ‘Gibbs free energy of reaction’,

is related to affinity A by a simple negative sign, but there is a fundamental conceptual difference between the

two: affinity is a concept that relates irreversible chemical reactions to entropy, whereas the Gibbs free energy
is primarily used in connection with equilibrium states and reversible processes. Nevertheless, in many texts

the Gibbs free energy is used in the place of affinity and no mention is made about the relation between
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entropy and reaction rates (for comments on this point, see Gerhartl [7]). Leicester, in his well-known book,

The Historical Background of Chemistry [1, p. 206], traces the origin of this usage to the textbook [8] by

Gilbert Newton Lewis (1875–1946) and Merle Randall (1888–1950):

The influential textbook of G.N. Lewis (1875–1946) and Merle Randall (1888–1950) which presents

these ideas has led to the replacement of the term ‘affinity’ by the term ‘free energy’ in much of the

English-speaking world. The older term has never been entirely replaced in thermodynamics literature,

since after 1922 the Belgian school under Théophile De Donder (1872–1957) has made the concept of

affinity still more precise.

De Donder’s affinity has an entirely different conceptual basis: it relates entropy to irreversible chemical

processes that occur in Nature. It is clearly a more general view of entropy, one that does not restrict the idea

of entropy to infinitely slow (‘quasi-static’) reversible processes and equilibrium states.

4.2 General Properties of Affinity

The affinity of a reaction is a state function, completely defined by the chemical potentials. In the following

chapters we will see how the chemical potential of a substance can be expressed in terms of state variables

such as pressure, temperature and concentration. Thus, affinity can be expressed as a function of p, T and Nk
or it can also be expressed as a function of V, T and Nk. For a closed system, since all the changes in Nk can

only be due to chemical reactions, it can be expressed in terms of V, T, 𝜉k and the initial values of the molar

amounts Nk0. We will now note some general properties of affinities that follow from the fact that chemical

reactions can be interdependent when a substance is a reactant in more than one reaction.

4.2.1 Affinity and Direction of Reaction

The sign of affinity can be used to predict the direction of reaction. Consider the reaction X + Y ⇌ 2Z. The

affinity is given by A = 𝜇X + 𝜇Y – 2𝜇Z. The sign of the velocity of reaction d𝜉/dt indicates the direction of

reaction, i.e. whether the net conversion is from X + Y to 2Z or from 2Z to X + Y. From the definition of

𝜉 it follows that if d𝜉/dt > 0 then the reaction ‘proceeds to the right’: X + Y → 2Z; if d𝜉/dt < 0 then the

reaction ‘proceeds to the left’: X + Y ← 2Z. The Second Law requires that A(d𝜉/dt) ≥ 0. Thus, we arrive at

the following relation between the sign of A and the direction of the reaction:

� If A > 0, the reaction proceeds to the right.
� If A < 0, the reaction proceeds to the left.

4.2.2 Additivity of Affinities

A chemical reaction can be the net result of two or more successive chemical reactions. For instance:

2C(s) + O2(g) ⇌ 2CO(g), A1 (4.2.1)

2CO(g) + O2(g) ⇌ 2CO2(g), A2 (4.2.2)

2[C(s) + O2(g) ⇌ CO2(g)], 2A3 (4.2.3)
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which shows that reaction (4.2.3) is the net result or ‘sum’ of the other two. By definition the affinities of the

above three reactions are

A1 = 2𝜇C + 𝜇O2
− 2𝜇CO (4.2.4)

A2 = 2𝜇CO + 𝜇O2
− 2𝜇CO2

(4.2.5)

A3 = 𝜇C + 𝜇O2
− 𝜇CO2

(4.2.6)

From these definitions it is easy to see that

A1 + A2 = 2A3 (4.2.7)

Clearly this result can be generalized to many reactions. We thus have the general result: the sum of affinities
of a sequence of reactions equals the affinity of the net reaction.

The rate of entropy production for the above reactions (4.2.1) and (4.2.2) is the sum of the rates at which

entropy is produced in the two reactions:

diS

dt
=

A1

T

d𝜉1

dt
+

A2

T

d𝜉2

dt
> 0 (4.2.8)

in which 𝜉1 and 𝜉2 are the corresponding extents of reactions. Note that for the net reaction (4.2.3), because

the net conversion from (C +O2) to CO2 goes through the intermediate CO, dNC ≠ dNCO2
, the loss of carbon

is due to its conversion to CO and CO2, not just CO2. As a consequence, the corresponding extent of reaction

d𝜉3 is not well defined and we cannot write −dNC = dNCO2
. Therefore, the rate of total entropy production

cannot be written as (A3/T)(d𝜉3/dt) in general. However, if the reaction velocities d𝜉1/dt and d𝜉2/dt are equal,

then the total rate of entropy production (4.2.8) may be written as

diS

dt
=

A1 + A2

T

d𝜉1

dt
=

2A3

T

d𝜉1

dt
=

A3

T

d𝜉3

dt
> 0 (4.2.9)

in which d𝜉3/dt ≡ 2(d𝜉1/dt), the reaction velocity of reaction (4.2.3). The condition d𝜉1/dt = d𝜉2/dt means

the rate of production of the intermediate CO in reaction (4.2.1) is balanced by the consumption of CO in

reaction (4.2.2), i.e. NCO, the amount of CO, remains constant. When the production of a substance X is

exactly balanced by its consumption, it is said to be in a steady state (which can be expressed mathematically

as dNX/dt = 0). In many chemical reactions, the intermediate reactants are often in a steady state or nearly so.

In a series of reactions in which intermediate compounds are produced and consumed, if all the intermediates

are in a steady state, then it is possible to define an extent of reaction for the net reaction and write the rate of

entropy production in terms of the affinity and the velocity of the net reaction.

4.2.3 Coupling between Affinities

In reactions coupled to each other through common reactants, it may appear as if one reaction with positive

entropy production is compensating for the negative entropy production of the other in such a way that the

total entropy production is positive, in accord with the Second Law. Consider the following example:

X + Y ⇌ Z + W, A4> 0 (4.2.10)

for which, as indicated, the corresponding affinity A4 is assumed to be positive. We then expect the reaction

to proceed to the right so that d𝜉4/dt > 0. It is possible to drive the reaction (4.2.10) effectively to the left,

making d𝜉4/dt < 0, by ‘coupling’ it to another reaction:

T ⇌ D, A5 > 0, A5(d𝜉5∕dt) > 0 (4.2.11)
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Figure 4.3 Entropy production in coupled reactions. The left and right panels show different ways of represent-
ing the same net reaction Z + W + T → X + Y + D resulting from two reaction steps. The left panel shows a
reaction scheme and the corresponding chemical potentials in which entropy production of both reaction steps
are positive. The right panel shows a reinterpretation of the same net reaction when the intermediate Z that cou-
ples the two reactions is in a steady state. In this case, the entropy production of one reaction is positive and the
other is negative, but their sum, the total entropy production, remains positive.

The two reactions (4.2.10) and (4.2.11) could be coupled so that their total entropy production A4(d𝜉4/dt) +
A5(d𝜉5/dt) > 0 but A4(d𝜉4/dt) < 0. An example of a mechanism that makes such reaction reversal possible is

(see Figure 4.3)

Z + T ⇌ Z∗ + D, A6 > 0, A6(d𝜉6∕dt) > 0 (4.2.12)

Z∗ + W ⇌ X + Y, A7> 0, A7(d𝜉7∕dt) > 0 (4.2.13)

Z + W + T ⇌ X + Y + D, A > 0, A(d𝜉∕dt) > 0 (4.2.14)

Once again, as indicated, the affinities and velocities of reactions (4.2.11) to (4.2.13) are assumed positive.

The net reaction Z + W + T ⇌ X + Y + D is an effective reversal of X + Y ⇌ Z + W accompanied by

T ⇌ D. This way of interpreting the net reaction can be expressed in terms of the affinities by noting that

A = A6 + A7 = −A4 + A5 (4.2.15)

For the net reaction Z + W + T ⇌ X + Y + D, as discussed above, the corresponding velocity of reaction

d𝜉/dt can be defined only when the intermediate Z∗ is in a steady state, i.e. d𝜉6/dt = d𝜉7/dt = d𝜉/dt. Under

these steady-state conditions, we will now show that the rate of entropy production can be written as if it is

due to two coupled reactions Z + W ⇌ X + Y and T ⇌ D, each proceeding with velocity d𝜉/dt.
The total rate of entropy production due to the two coupled reactions (4.2.12) and (4.2.13) is

diS

dt
=

A6

T

d𝜉6

dt
+

A7

T

d𝜉7

dt
≥ 0 (4.2.16)
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Now, if d𝜉6/dt = d𝜉7/dt = d𝜉/dt, expression (4.2.16) can be rewritten in terms of the affinities A4 and A5 of

reactions (4.2.10) and (4.2.11) using the equality (4.2.15):

diS

dt
=

A6 + A7

T
d𝜉

dt
= −

A4

T
d𝜉

dt
+

A5

T
d𝜉

dt
≥ 0 (4.2.17)

In this expression, the affinities A4 and A5 are positive and, since we have assumed that the net reaction

(4.2.14) proceeds to the right, d𝜉/dt > 0. Thus, the first term on the right-hand side of (4.2.17) is negative but

the second term is positive. It can easily be seen that the steady-state condition d𝜉6/dt = d𝜉7/dt = d𝜉/dt also

implies that –d𝜉4/dt = d𝜉5/dt = d𝜉/dt, which enables us to rewrite (4.2.17) as

diS

dt
=

A4

T

d𝜉4

dt
+

A5

T

d𝜉5

dt
≥ 0 in which

A4

T

d𝜉4

dt
< 0 and

A5

T

d𝜉3

dt
> 0 (4.2.18)

The entropy production at every reaction step in the actual mechanism, however, is positive as indicated in

(4.2.12)–(4.2.14). Such coupled reactions are common in biological systems.

4.3 Entropy Production Due to Diffusion

The concepts of chemical potential and affinity not only describe chemical reactions but also flow of matter

from one region of space to another. With the concept of chemical potential, we are now in a position to

obtain an expression for the entropy change due to diffusion, an example of an irreversible process we saw in

Chapter 3 (see Figure 3.8). The concept of chemical potential turns out to have a wide reach. Other irreversible

processes that can be described using a chemical potential will be discussed in Chapter 10. Here, we shall

see how it can be used to describe diffusion.

When chemical potentials of a substance in adjacent parts of a system are unequal, diffusion of that

substance takes place until the chemical potentials in the two parts equalize. The process is similar to the flow

of heat due to a difference in temperature. Diffusion is another irreversible process for which we can obtain

the rate of increase in entropy in terms of chemical potentials.

4.3.1 Discrete Systems

For simplicity, let us consider a system consisting of two parts of equal temperature T, one with chemical

potential 𝜇1 and molar amount N1 and the other with chemical potential 𝜇2 and molar amount N2, as shown in

Figure 4.4. The flow of particles from one part to another can also be associated with an ‘extent of reaction’,

though no real chemical reaction is taking place here:

− dN1 = dN2 = d𝜉 (4.3.1)

Figure 4.4 The irreversible process of diffusion can be described thermodynamically using the chemical poten-
tial. The variation of chemical potential with location corresponds to an affinity that drives a flow of matter. The
corresponding entropy production is given by Equation (4.3.4).
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Following Equation (4.1.14), the entropy change for this process can be written as

dS =
dU + p dV

T
−
𝜇2 − 𝜇1

T
d𝜉 (4.3.2)

=
dU + p dV

T
+ A

T
d𝜉 (4.3.3)

in which the corresponding affinity A = 𝜇1 – 𝜇2. If dU = dV = 0, then the transport of particles results in the

change of entropy given by

diS =
𝜇1 − 𝜇2

T
d𝜉 > 0 (4.3.4)

The positivity of this quantity required by the Second Law implies that particle transport is from a region of

high chemical potential to a region of low chemical potential. This is, of course, the process of diffusion of

particles from a region of higher concentration to a region of lower concentration in many cases, but it must

be emphasized that the driving force for diffusion is the gradient of chemical potential, not the gradient of

concentration as is often stated (see Appendix 4.1).

4.4 General Properties of Entropy

Entropy, as formulated in this and the previous chapter, encompasses all aspects of transformations of matter:

changes in energy, volume and composition. Thus, every system in Nature, be it a gas, an aqueous solution,

a living cell or a neutron star, is associated with a certain entropy, just as we associate an energy. We shall

obtain explicit expressions for entropies of various systems in the following chapters and study how entropy

production is related to irreversible processes. At this stage, however, we shall note some general properties

of entropy as a function of state.

The entropy of a system is a function of its total energy U, volume V and molar amounts Nk of its

constituents:

S = S(U, V , N1, N2,… , Nn) (4.4.1)

As a function of variables U, V and Nk, the differential dS can be written as

dS =
(
𝜕S
𝜕U

)
V ,Nk

dU +
(
𝜕S
𝜕V

)
U,Nk

dV +
(
𝜕S
𝜕Nk

)
U, V , Nj≠k

dNk (4.4.2)

Furthermore, from the general relation (4.1.2)

dU = T dS − p dV +
n∑

k=1

𝜇kdNk

it follows that

dS = 1

T
dU +

p

T
dV −

∑
k

𝜇k

T
dNk (4.4.3)

(Here we have combined the change in Nk due to chemical reactions and the change due to exchange with

the exterior.) Comparing Equations (4.4.2) and (4.4.3) we immediately see that(
𝜕S
𝜕U

)
V ,Nk

= 1

T
,
(
𝜕S
𝜕V

)
U,Nk

=
p

T
and

(
𝜕S
𝜕Nk

)
U,V ,Nj≠k

= −
𝜇k

T
(4.4.4)



Entropy in the Realm of Chemical Reactions 137

If the change in molar amounts Nk is only due to a chemical reaction, then the entropy can also be expressed

as a function of U, V and 𝜉 (see Example 4.1). Then one can show that(
𝜕S
𝜕𝜉

)
U,V

= A
T

(4.4.5)

In addition, for any function of many variables, the ‘cross-derivatives’ must be equal, i.e. we must have

equalities of the type

𝜕2S
𝜕V𝜕U

= 𝜕2S
𝜕U𝜕V

(4.4.6)

Relations (4.4.4) then imply that (
𝜕

𝜕V
1

T

)
U
=
(
𝜕

𝜕U

p

T

)
V

(4.4.7)

Many such relations can be similarly derived because entropy is a function of state.

For homogeneous systems, we have seen in Chapter 3 (Box 3.3) that entropy is an extensive variable.

Mathematically, this means that entropy S is a homogeneous function of the variables U, V and Nk, i.e. it has

the following property:

S(𝜆U, 𝜆V , 𝜆N1, 𝜆N2,… , 𝜆Ns) = 𝜆S(U, V , N1, N2,… , Ns) (4.4.8)

Differentiating (4.4.8) with respect to 𝜆 and setting 𝜆 = 1, we obtain the well-known Euler’s theorem for

homogeneous functions:

S =
(
𝜕S
𝜕U

)
V ,Nk

U +
(
𝜕S
𝜕V

)
U,Nk

V +
∑

k

(
𝜕S
𝜕Nk

)
U,V ,Nj≠k

Nk (4.4.9)

Using relations (4.4.4) we can write this relation as

S = U
T
+

pV

T
−
∑

k

𝜇kNk

T
(4.4.10)

In Equations (4.4.9) and (4.4.10), we have expressed entropy as a function of U, V and Nk. Since U can be

expressed as a function of T, V and Nk, entropy can also be expressed as a function of T, V and Nk: S =
S(T, V, Nk). (The temperature and volume dependence of the energy U and enthalpy H of each component is

obtained by using the empirical values of the heat capacity as described in Chapter 2.) Since T, V and Nk are

directly measurable state variables, it is often more convenient to express thermodynamic quantities such as

entropy and energy as functions of these state variables.

As a function of T, V and Nk, the derivatives of entropy can be obtained by expressing dU in relation (4.4.3)

as a function of V, T and Nk:

TdS = dU + p dV −
∑

k

𝜇k dNk

=
(
𝜕U
𝜕T

)
V ,Nk

dT +
(
𝜕U
𝜕V

)
T ,Nk

dV +
∑

k

(
𝜕U
𝜕Nk

)
V ,T ,Nj≠k

Nk + p dV −
∑

k

𝜇k dNk

i.e.

dS = 1

T

[(
𝜕U
𝜕V

)
T ,Nk

+ p

]
dV + 1

T

(
𝜕U
𝜕T

)
V ,Nk

dT −
∑

k

(𝜇k

T

)
dNk +

1

T

∑
k

(
𝜕U
𝜕Nk

)
V ,T ,Nj≠k

dNk (4.4.11)
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In Equation (4.4.11), since the coefficient of dV must equal (𝜕S/𝜕V)T,Nk, etc., we can make the following

identification: (
𝜕S
𝜕V

)
T ,Nk

= 1

T

(
𝜕U
𝜕V

)
T ,Nk

+
p

T
(4.4.12)

(
𝜕S
𝜕T

)
V ,Nk

= 1

T

(
𝜕U
𝜕T

)
V ,Nk

=
CV

T
(4.4.13)

(
𝜕S
𝜕Nk

)
V ,T ,Nj≠k

= −
𝜇k

T
+ 1

T

(
𝜕U
𝜕Nk

)
V ,T ,Nj≠k

(4.4.14)

Similar relations can be derived for U as a function of T, V and Nk.

The above relations are valid for homogeneous systems with uniform temperature and pressure. These

relations can be extended to inhomogeneous systems as long as one can associate a well-defined temperature

to every location. The thermodynamics of an inhomogeneous system can be formulated in terms of entropy

density s(T(x), nk(x)), which is a function of the temperature and the molar densities nk(x) (mol m−3) at the

point x. If u(x) is the energy density, then following (4.4.4) we have the relations(
𝜕s
𝜕u

)
nk

= 1

T(x)
,

(
𝜕s
𝜕nk

)
u
= −𝜇(x)

T(x)
(4.4.15)

in which the positional dependence of the variables is explicitly shown.

An empirically more convenient way is to express both entropy and energy densities as functions of the

local temperature T(x) and molar density nk(x), both of which can be directly measured:

u = u(T(x), nk(x)) and s = s(T(x), nk(x)) (4.4.16)

The total entropy and energy of the system are obtained by integrating the corresponding densities over the

volume of the system:

S = ∫V
s(T(x), nk(x))dV , U = ∫V

u(T(x), nk(x))dV (4.4.17)

Since the system as a whole is not in thermodynamic equilibrium, the total entropy S in general is not a

function of the total energy U and the total volume V. Nevertheless, a thermodynamic description is still

possible as long as the temperature is well defined at each location x.

Appendix 4.1 Thermodynamics Description of Diffusion

Expression (4.3.4) can be generalized to describe a continuous system in which 𝜇 and T are functions of the

position vector r and S is replaced by the entropy density s (the entropy per unit volume):

dis(r) = −∇
(
𝜇(r)

T(r)

)
∙ d𝜉(r) (A4.1.1)
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in which the direction of the flow of particles (dN per unit area) is indicated by the vector d𝜉. From Equation

(A4.1.1), the rate of entropy production per unit volume due to diffusion can be written in terms of the particle

current JN ≡ d𝜉/dt as
dis(r)

dt
= −∇

(
𝜇(r)

T(r)

)
∙ JN (A4.1.2)

The particle current JN is a response to the gradient ∇(𝜇(r)/T(r)). As we saw in Section 3.4, the entropy

production due to each irreversible process in general has the above form of a product of a current or ‘flow’

JN and a ‘force’, such as the gradient ∇(𝜇(r)/T(r)).
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Example

Example 4.1 If the change in molar amounts is entirely due to one reaction, show that entropy is a function

of V, U and 𝜉 and that (
𝜕S
𝜕𝜉

)
U,V

= A
T

Solution Entropy is a function of U, V and Nk: S(U, V, Nk). As shown in Section 4.4 (see Equation (4.4.3)),

for the change in entropy dS we have

dS = 1

T
dU +

p

T
dV −

∑
k

𝜇k

T
dNk

If 𝜉 is the extent of reaction of the single reaction that causes changes in Nk, then

dNk = vkd𝜉, k = 1, 2,… , s

in which vk is the stoichiometric coefficient of the s species that participate in the reaction; vk is negative for

the reactants and positive for the products. For the species that do not participate in the reaction vk = 0. The

change in entropy dS can now be written as

dS = 1

T
dU +

p

T
dV −

s∑
k=1

𝜇kvk

T
d𝜉

Now, the affinity of the reaction A = −
∑

s
k=1
𝜇kvk (note that vk is negative for the reactants and positive for

the products). Hence:

dS = 1

T
dU +

p

T
dV + A

T
d𝜉
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This shows that S is a function of U, V and 𝜉 and that(
𝜕S
𝜕𝜉

)
U,V

= A
T

If N10 is the molar amount of the reactant k at time t = 0, etc., and if we assume 𝜉 = 0 at t = 0, then the

molar amounts at any time t are N10 + vk𝜉(t), N20 + v2𝜉(t),… , Ns0 + vs𝜉(t), with all the other molar amounts

being constant. Thus, S = S(U, V, N10 + v1𝜉(t), N20 + v2𝜉(t),… , Ns0 + vs𝜉(t)). Thus, for a given initial molar

amount Nk0, the entropy of a closed system with a chemical reaction is a function of U, V and 𝜉.

Exercises

4.1 In a living cell, which is an open system that exchanges energy and matter with the exterior, the entropy

can decrease, i.e. dS < 0. Explain how this is possible in terms of deS and diS. How is the Second Law

valid in this case?

4.2 In SI units, what are the units of entropy, chemical potential and affinity?

4.3 Consider a reaction A → 2B in the gas phase (i.e. A and B are gases) occurring in a fixed volume V at

a fixed temperature T. In the ideal gas approximation, at any time t, if NA and NB are molar amounts:

(a) Write an expression for the total entropy.

(b) Assume that at time t = 0, NA(0) = NA0, NB(0) = 0 and the extent of reaction 𝜉(0) = 0. At any

time t, express the concentrations NA(t) and NB(t) in terms of 𝜉(t).
(c) At any time t, write the total entropy as a function of T, V and 𝜉(t) (and NA0, which is a constant).

4.4 Consider the series of reactions:

X + Y ⇌ 2Z (1)

2[Z + W ←→ S + T] (2)

Net reaction : X + Y + 2W ⇌ 2S + 2T (3)

Determine the conditions under which the rate of entropy production can be written in terms of the net

reaction, i.e. diS/dt = (A3/T)(d𝜉3/dt) in which A3 and 𝜉3 are the affinity and the extent of reaction of

the net reaction (3).

4.5 For the reaction scheme

Z + T ⇌ Z∗ + D, A6 > 0, A6(d𝜉6∕dt) > 0

Z∗ + W ⇌ X + Y, A7 > 0, A7(d𝜉7∕dt) > 0

(a) Express dNk/dt for each of the reactants and products, Z, T, Z∗, D, etc., in terms of the extents of

reaction velocities d𝜉6/dt and d𝜉7/dt.
(b) For the steady state of Z∗, i.e. dNZ

∗/dt = 0, show that d𝜉6/dt = d𝜉7/dt and that

(c) the total entropy production diS/dt can be written as

diS

dt
=

A4

T

d𝜉4

dt
+

A5

T

d𝜉5

dt
≥ 0

in which quantities with subscripts 4 and 5 refer to the affinities and extents of reaction of the

reactions X + Y ⇌ Z + W and T ⇌ D respectively.
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4.6 (a) Using the fact that S is a function of U, V and Nk, derive the relation(
𝜕

𝜕V

𝜇k

T

)
U,Nk

+
(

𝜕

𝜕Nk

p

T

)
V ,U

= 0

(b) For an ideal gas, show that (
𝜕

𝜕V

𝜇k

T

)
U,Nk

= −R
V

(c) For an ideal gas, show that (𝜕S/𝜕V)T,N = nR in which n is molar density (moles per unit volume).
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5
Extremum Principles and General

Thermodynamic Relations

Extremum Principles in Nature

For centuries we have been motivated by the belief that the laws of Nature are simple, and have been rewarded

amply in our search for such laws. The laws of mechanics, gravitation, electromagnetism and thermodynamics

can all be stated simply and expressed precisely with a few equations. The current search for a theory that

unifies all the known fundamental forces between elementary particles is very much motivated by such a

belief. In addition to simplicity, Nature also seems to ‘optimize’ or ‘economize’: natural phenomena occur in

such a way that some physical quantity is minimized or maximized – or to use one word for both, ‘extremized’.

The French mathematician Pierre Fermat (1601–1665) noticed that the change of direction of rays of light as

they propagate through different media can all be precisely described using one simple principle: light travels
from one point to another along a path that minimizes the time of travel. Later it was discovered that all the

equations of motion in mechanics can be obtained by invoking the principle of least action, which states that

if a body is at a point x1 at a time t1 and at a point x2 at time t2, then the motion occurs so as to minimize a

quantity called the action. (An engaging exposition of these topics can be found in Feynman’s Lectures on
Physics [1].)

Equilibrium thermodynamics, too, has its extremum principles. In this chapter we will see that the approach

to equilibrium under different conditions is such that a thermodynamic potential is extremized. Following

this, in preparation for the applications of thermodynamics in the subsequent chapters, we will obtain general

thermodynamic relations that are valid for all systems.

5.1 Extremum Principles Associated with the Second Law

We have already seen that all isolated systems evolve to the state of equilibrium in which the entropy reaches

its maximum value or, equivalently, the rate of entropy production is zero. This is the basic extremum principle

of equilibrium thermodynamics. However, we do not always deal with isolated systems. In many practical

situations, the physical or chemical system under consideration is subject to constant pressure or temperature

or both. In these situations, the positivity of entropy change due to irreversible processes, i.e. diS > 0, implies

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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the evolution of certain thermodynamic functions to their minimum values. Under each constraint, such

as constant pressure, constant temperature or both, the evolution of the system to the state of equilibrium

corresponds to the extremization of a thermodynamic quantity. These quantities are the Gibbs energy, the

Helmholtz energy and enthalpy (which was introduced in Chapter 2), which, as we shall see in this chapter, are

functions of state. They are also called thermodynamic potentials, in analogy with the potentials associated

with forces in mechanics, whose minima are also points of stable mechanical equilibrium. The systems we
consider are either isolated or closed.

5.1.1 Maximum Entropy

As we have seen in Chapter 4, owing to irreversible processes the entropy of an isolated system continues

to increase (diS > 0) until it reaches the maximum possible value. The state thus reached is the state of

equilibrium. Therefore, it may be stated that, when U and V are constant, every system evolves to a state of
maximum entropy.

An equivalent statement is that, when U and V are constant, every system evolves to a state such that rate

of entropy production diS/dt approaches zero. The latter statement refers to irreversible processes, whereas

the former refers to the state. When processes are extremely slow, as may be the case for some chemical

transformations, the system could be considered to be in ‘equilibrium’ with respect to all the irreversible

processes whose rates have reduced to zero.

5.1.2 Minimum Energy

The Second Law also implies that, at constant S and V, every system evolves to a state of minimum energy.

This can be seen as follows. We have seen that, for closed systems, dU = dQ – p dV = T deS – p dV. Because

the total entropy change dS = deS + diS we may write dU = T dS – p dV – T diS. Since S and V are constant,

dS = dV = 0. Therefore, we have

dU = −T diS ≤ 0 (5.1.1)

Thus, in systems whose entropy is maintained at a fixed value, driven by irreversible processes, the energy

evolves to the minimum possible value.

To keep the entropy constant, the entropy diS produced by irreversible processes has to be removed from

the system. If a system is maintained at a constant T, V and Nk, the entropy remains constant. The decrease in

energy dU = –T diS is generally due to irreversible conversion of mechanical energy to heat that is removed

from the system to keep the entropy (temperature) constant. A simple example is the falling of an object to the

bottom of a fluid (Figure 5.1). Here, dU = –T diS is the heat produced as a result of fluid friction or viscosity.

If this heat is removed rapidly so as to keep the temperature constant, the system will evolve to a state of

minimum energy. Note that, during the approach to equilibrium, dU = –T diS < 0 for every time interval

dt. This represents a continuous conversion of mechanical energy (kinetic energy plus potential energy) into

heat; at no time does the conversion occur in the opposite direction.

5.1.3 Minimum Helmholtz Energy

In closed systems maintained at constant T and V, a thermodynamic quantity called the Helmholtz energy
or Helmholtz free energy evolves to its minimum value. The term ‘free energy’ has been in use because
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Figure 5.1 A simple illustration of the principle of minimum energy. In this example, if T and V are constant,
then the entropy S is constant. At constant S and V the system evolves to a state of minimum energy.

the Helmholtz energy is the energy that is ‘free’, available to do work in an idealized reversible process (see

Example 5.1). Helmholtz energy, denoted by F, is defined as

F ≡ U − TS (5.1.2)

At constant T we have

dF = dU − T dS = dU − T deS − T diS

= dQ − p dV − T deS − T diS

If V is also kept constant, then dV = 0, and for closed systems, T deS = dQ. Thus, at constant T and V, we

obtain the inequality

dF = −T diS ≤ 0 (5.1.3)

as a direct consequence of the Second Law. This tells us that a system whose temperature and volume are

maintained constant evolves such that the Helmholtz energy is minimized.

An example of the minimization of F is a chemical reaction, such as 2H2(g) + O2(g) ⇌ 2H2O(l), that takes

place at a fixed value of T and V (see Figure 5.2a). To keep T constant, the heat generated by the reaction has

to be removed. In this case, following De Donder’s identification of the entropy production in an irreversible

chemical reaction (4.1.6), we have T diS = – Σk𝜇k diNk = –dF ≥ 0.

Another example is the natural evolution of the shape of a bubble (Figure 5.2b) enclosed in a box of fixed V
and T. In the absence of gravity (or if the bubble is small enough that the gravitational energy is insignificant

compared with other energies of the system), regardless of its initial shape, a bubble finally assumes the

shape of a sphere of minimal size. The bubble’s size decreases irreversibly until the excess pressure inside the

bubble balances the contracting force of the surface. During this process, the Helmholtz energy decreases with

decreasing surface area. As the area of the bubble decreases irreversibly, the surface energy is transformed

into heat which escapes to the surroundings (thus T is maintained constant). The entropy production in this

irreversible process is given by T diS= –dF. Generally, Helmholtz energy increases with an increase in surface

area (but not always) because molecules at the surface have higher energy than those below the surface. This

excess surface energy 𝛾 is usually small, of the order of 10−2 J m−2. For water, 𝛾 = 7.275 × 10−2 J m−2. The

thermodynamic drive to minimize the Helmholtz energy can be seen in the tendency of the surface to shrink,

resulting in a ‘surface tension’ (force per unit length) whose numerical value equals 𝛾 . We will consider

surface energy in more detail at the end of the chapter.
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Figure 5.2 Examples of minimization of the Helmholtz free energy F. (a) If V and T are kept at a fixed value, then
a chemical reaction will progress to a state of minimum F (but S is not a constant). In this case the irreversible
production of entropy T diS = –Σk𝜇k dNk = −dF ≥ 0. (b) Similarly, the contraction of a bubble enclosed in a
box of fixed V and T is an example. The contracting force on the bubble’s surface decreases the bubble’s radius
until it reaches a point at which the excess pressure in the bubble balances the contracting force of the surface.
In this case, we can identify dF = −T diS ≤ 0 and determine the excess pressure in the bubble at equilibrium
(see Section 5.6).

The minimization of Helmholtz energy is a very useful principle. Many interesting features, such as phase

transitions and the formation of complex patterns in equilibrium systems [2], can be understood using this

principle.

That Helmholtz free energy is a state function follows from its definition (5.1.2). We can show that F is

function of T, V and Nk and obtain its derivatives with respect to these variables. From Equation (5.1.2) it

follows that dF = dU – T dS – S dT. For the change of entropy due to the exchange of energy and matter we

have T deS = dU + p dV – Σk𝜇k deNk. For the change of entropy due to an irreversible chemical reaction we

have T diS = –Σk𝜇k diNk. For the total change in entropy, we have T dS = T deS + T diS. Substituting these

expressions for dS in the expression for dF we obtain

dF = dU − T

[
dU + p dV

T
− 1

T

∑
k

𝜇kdeNk

]
− T

∑
k

𝜇kdiNk

T
−S dT

= −p dV − S dT +
∑

k

𝜇k(deNk + diNk)

(5.1.4)

Since dNk = deNk + diNk we may write Equation (5.1.4) as

dF = −p dV − S dT +
∑

k

𝜇k dNk (5.1.5)

This shows that F is a function of V, T and Nk. It also leads to the following identification of the derivatives

of F(V, T, Nk) with respect to V, T and Nk:1(
𝜕F
𝜕V

)
T ,Nk

= −p,
(
𝜕F
𝜕T

)
V ,Nk

= −S,

(
𝜕F
𝜕Nk

)
T ,V

= 𝜇k (5.1.6)

It is straightforward to include surface or other contributions to the energy (see Equations (2.2.10) and

(2.2.11)) into the expression for F and obtain similar derivatives.

1In this and the following chapters, for derivatives with respect to Nk, we assume the subscript Ni ≠ k is understood and drop its explicit

use.
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If the changes in Nk are only due to a chemical reaction, then F is a function of T, V and the extent of

reaction 𝜉. Then it can easily be shown that (Exercise 5.2)(
𝜕F
𝜕𝜉

)
T ,V

= −A (5.1.7)

5.1.4 Minimum Gibbs Energy

If both the pressure and temperature of a closed system are maintained constant, then the quantity that is

minimized at equilibrium is the Gibbs energy, also called Gibbs free energy. We shall denote this quantity

by G. As in the case of Helmholtz free energy, the term ‘free energy’ is used to note the fact that G is the

maximum energy available for doing work (through an idealized reversible process). Gibbs energy is defined

as the state function

G ≡ U + pV − TS = H − TS (5.1.8)

where we have used the definition of enthalpy H = U + pV. Just as F evolves to a minimum when T and

V are maintained constant, G evolves to a minimum when the pressure p and temperature T are maintained
constant. When p and T are constant, dp = dT = 0 and we can relate dG to diS as follows:

dG = dU + p dV + V dp − T dS − S dT

= dQ − p dV + p dV + V dp − T deS − T diS − S dT (5.1.9)

= −T diS ≤ 0

where we have used the fact that T deS = dQ for closed systems and dp = dT = 0.

The Gibbs energy is mostly used to describe chemical processes because the usual laboratory situation

corresponds to constant p and T. The irreversible evolution of G to its minimum value can be related to

the affinities Ak of the reactions and the reaction velocities d𝜉k/dt (in which the index k identifies different

reactions) using Equation (4.1.23):

dG
dt

= −T
diS

dt
= −

∑
k

Ak
d𝜉k

dt
≤ 0 (5.1.10)

or

dG = −
∑

k

Akd𝜉k ≤ 0 (5.1.11)

in which the equality on the right-hand side holds at equilibrium. Equation (5.1.11) shows that, at constant

p and T, G is a function of the state variables d𝜉k, the extent of reaction for reaction k. It also follows that

−Ak =
(
𝜕G
𝜕𝜉k

)
p,T

(5.1.12)

In view of this relation, calling the affinity, which is a derivative of Gibbs energy, the ‘Gibbs free energy of

reaction’, as is commonly done in many texts, is inappropriate. For a chemical reaction shown in Figure 5.3a,

as shown in Figure 5.3b, at constant p and T, the extent of reactions d𝜉k will evolve to a value that minimizes

G(𝜉k, p, T).

Note that G evolves to its minimum value monotonically in accordance with the Second Law. Thus,

𝜉 cannot reach its equilibrium value, as a pendulum does, in an oscillatory manner. For this reason, an
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Figure 5.3 Minimization of the Gibbs energy G. (a) Under conditions of constant p and temperature T, irre-
versible chemical reactions will drive the system to a state of minimum G. (b) The extent of reaction 𝜉 evolves to
𝜉eq, which minimizes G.

oscillatory approach to equilibrium in a chemical reaction is impossible. This does not mean that concentration

oscillations in chemical systems are not possible, as it was once widely thought. As we will see in later chapters,

in systems that are far from equilibrium, concentration oscillations can occur without violating the second

law; in fact these oscillations are accompanied by continuous entropy production.

We showed above that F is function of V, T and Nk. In a similar manner, it is straightforward to show that

(Excercise 5.3)

dG = V dp − S dT +
∑

k

𝜇k dNk (5.1.13)

This expression shows that G is function of p, T and Nk and that(
𝜕G
𝜕p

)
T ,Nk

= V ,
(
𝜕G
𝜕T

)
p,Nk

= −S,

(
𝜕G
𝜕Nk

)
T ,p

= 𝜇k (5.1.14)

One very useful property of the Gibbs free energy is its relation to the chemical potential. From a homogeneous

system we have shown that (Equation (4.4.10)) U = TS – pV + Σk𝜇kNk. Substituting this into the definition

of G (Equation (5.1.8)) we obtain

G =
∑

k

𝜇kNk (5.1.15)
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For a pure compound, G = 𝜇N. Therefore, one might think of the chemical potential 𝜇 as the Gibbs energy
per mole of a pure compound. For a multicomponent system, dividing Equation (5.1.15) by N, the total molar

amount, we see that the molar Gibbs energy

Gm ≡ G
N
=
∑

k

𝜇kxk (5.1.16)

in which xk are the mole fractions. Since G must be an extensive function, we see that G(p, T, Nk) =
G(p, T, xkN) = NGm(p, T, xk), that is Gm is a function of p, T and the mole fractions xk. From Equation

(5.1.16) it then follows that in a multicomponent system the chemical potential is a function of p, T and the
mole fractions xk: 𝜇k = 𝜇k(p, T, xk). (When we apply these general concepts to particular systems, we will

obtain explicit expressions for Gibbs energies and chemical potentials. For example, in Chapter 8 we will see

that for mixtures of compounds that interact very weakly with each other, what are called ideal mixtures, the

chemical potential of a component can be written in the form 𝜇k(p, T, xk) = 𝜇k
∗ (p, T) + RT ln xk, in which

𝜇k
∗(p, T) is the chemical potential of the pure compound.)

Furthermore, as shown in Example 5.3, at constant p and T, we have the differential relation

(dGm)p,T =
∑

k

𝜇kdxk (5.1.17)

In this relation the dxk are not all independent because Σkxk = 1 for mole fractions xk.

5.1.5 Minimum Enthalpy

In Chapter 2 we introduced the enthalpy

H ≡ U + pV (5.1.18)

Like the Helmholtz energy F and the Gibbs energy G, the enthalpy is also associated with an extremum

principle: at fixed entropy S and pressure p, the enthalpy H evolves to its minimum value. This can be seen as

before by relating the enthalpy change dH to diS. Since we assume that p is constant, we have

dH = dU + p dV = dQ (5.1.19)

For a closed system, dQ = T deS = T(dS – diS). Hence, dH = T dS – T diS. However, because the total entropy

S is fixed, dS = 0. Therefore, we have the relation

dH = −T diS ≤ 0 (5.1.20)

in accordance with the Second Law. When irreversible chemical reactions take place, we normally do not

encounter situations in which the total entropy remains constant. For illustrative purposes, however, it is

possible to give an example.

Consider the reaction

H2(g) + Cl2(g) ⇌ 2HCl(g)

In this reaction, the total number of molecules does not change. As we have seen in Section 3.7, the entropy

of an ideal gas S(V, T, N) = N[s0 + R ln(V/N) + CV ln(T)]. Although there is a considerable difference in

the heat capacity of molecules with different numbers of atoms, the difference in the heat capacity of two

diatomic molecules is relatively small. The difference in the term s0 is also small for two diatomic molecules.

If we ignore these small difference in the entropy between the three species of diatomic molecules, then

the entropy, which depends on Nk, V and T, will essentially remain constant if T and V are maintained

constant. At the same time, since the number of molecules does not change, the pressure p remains constant
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(assuming ideal gas behavior). Since this reaction is exothermic, the removal of heat produced by the reaction

is necessary to keep T constant. Under these conditions, both p and S remain constant as the reaction proceeds

and the enthalpy reaches its minimum possible value when the system reaches the state of equilibrium. For

an arbitrary chemical reaction, V and T have to be adjusted simultaneously so as to keep p and S constant,

which is not a simple task.

Just as we derived dF = –p dV – S dT + Σk𝜇k dNk, it can easily be shown that (Exercise 5.4)

dH = T dS + V dp +
∑

k

𝜇k dNk (5.1.21)

This equation shows that H can be expressed as a function of S, p and Nk. The derivatives of H with respect

to these variables are (
𝜕H
𝜕p

)
S,Nk

= V ,
(
𝜕H
𝜕S

)
p,Nk

= T ,

(
𝜕H
𝜕Nk

)
S,p

= 𝜇k (5.1.22)

Once again, if the change in Nk is only due to a chemical reaction, then H is a function of p, S and 𝜉, and we

have (
𝜕H
𝜕𝜉

)
p,S

= −A (5.1.23)

5.1.6 Extremum Principles and Stability of the Equilibrium State

In thermodynamics, the existence of extremum principles have an important consequence for the behavior of

microscopic fluctuations. Since all macroscopic systems are made of a very large number of molecules that

are in constant random motion, thermodynamic quantities, such as temperature, pressure and concentration,

undergo small fluctuations. Why do these fluctuations not slowly drive the thermodynamic variables from

one value to another, just as small random fluctuations in the positions of an object slowly move the object

from one location to another (a phenomenon called Brownian motion)? The temperature or concentration

of a system in thermodynamic equilibrium fluctuates about a fixed value but does not drift randomly. This

is because the state of equilibrium is stable. As we have seen, irreversible processes drive the system to the

equilibrium state in which one of the potentials is extremized. Thus, whenever a fluctuation drives the system

away from the state of equilibrium, irreversible processes restore the state of equilibrium. The tendency of

the system to reach and remain at an extremum value of a thermodynamic potential keeps the system stable.

In this way the stability of the equilibrium state is related to the existence of thermodynamic potentials.

The state of a system is not always stable. There are situations in which fluctuations can drive a system from

one state to another. In this case the initial state is said to be thermodynamically unstable. Some homogeneous

mixtures become unstable when the temperature is decreased; driven by fluctuations, they then evolve to a

state in which the components separate into two distinct phases, a phenomenon called ‘phase separation’. We

shall discuss thermodynamic stability more extensively in Chapters 12, 13 and 14.

In addition, when a system is far from thermodynamic equilibrium, the state to which the system will evolve

is, in general, not governed by an extremum principle; there is not an identifiable thermodynamic potential

that is minimized due to the Second Law. Furthermore, the irreversible processes that assure the stability of the

equilibrium state may do just the contrary and make the system unstable. The consequent instability under far-

from-equilibrium systems drives the system to states with a high level of organization, such as concentration

oscillations and spontaneous formation of spatial patterns. We shall discuss far-from-equilibrium instability

and the consequent ‘self-organization’ in Chapters 18 and 19.
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Table 5.1 Legendre transforms in thermodynamics.

U(S, V, Nk) → F(T, V, Nk) = U – TS S replaced by
(
𝜕U
𝜕S

)
V,Nk

= T

U(S, V, Nk) → H(S, p, Nk) = U + pV V replaced by
(
𝜕U
𝜕V

)
S,Nk

= −p

U(S, V, Nk) → G(T, p, Nk) = U + pV – TS
S replaced by

(
𝜕U
𝜕S

)
V,Nk

= T

and V replaced by
(
𝜕U
𝜕V

)
S,Nk

= −p

5.1.7 Legendre Transformations

The relations between the thermodynamic functions F(T, V, Nk), G(T, p, Nk) and H(S, p, Nk) and the total

energy U(S, V, Nk), expressed as a function of S, V and Nk (which follows from Equation (4.1.2) introduced by

Gibbs), are particular instances of a general class of relations called Legendre transformations. In a Legendre

transformation, a function U(S, V, Nk) is transformed to a function in which one or more of the independent

variables S, V, and Nk are replaced by the corresponding partial derivatives of U. Thus, F(T, V, Nk) is a

Legendre transform of U in which S is replaced by the corresponding derivative (𝜕U/𝜕S)V,Nk = T. Similarly,

G(T, p, Nk) is a Legendre transform of U in which S and V are replaced by their corresponding derivatives

(𝜕U/𝜕S)V,Nk = T and (𝜕U/𝜕V)V,Nk = –p. We thus have the general table of Legendre transforms shown in

Table 5.1.

Legendre transforms show us the general mathematical structure of thermodynamics. Clearly, not only are

there more Legendre transforms of U(S, V, Nk) that can be defined but also of S(U, V, Nk), and indeed they are

used in some situations. A detailed presentation of the Legendre transforms in thermodynamics can be found

in the text by Herbert Callen [3]. (Legendre transforms also appear in classical mechanics: the Hamiltonian

is a Legendre transform of the Lagrangian.)

5.2 General Thermodynamic Relations

As Einstein noted (see Introduction in Chapter 1), it is remarkable that the two laws of thermodynamics are

simple to state, but have a wide range of applicability; they help us understand many different phenomena

in systems ranging from gases to galaxies. Thermodynamics gives us many general relations between state

variables that are valid for any system in equilibrium. In this section, we shall present a few important general

relations. We will apply these to particular systems in later chapters. As we shall see in Chapters 15 to 17, the

applicability of these relations can also be extended to nonequilibrium systems that are locally in equilibrium.

5.2.1 The Gibbs–Duhem Equation

One of the important general relations is the Gibbs–Duhem equation, named after Josiah Willard Gibbs

(1839–1903) and Pierre Duhem (1861–1916). It shows that the intensive variables T, p and 𝜇k are not all

independent. The Gibbs–Duhem equation is obtained from the fundamental relation (4.1.2), through which

Gibbs introduced the chemical potential

dU = T dS − p dV +
∑

k

𝜇k dNk (5.2.1)
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and relation (4.4.10), which can be rewritten as

U = TS − pV +
∑

k

𝜇kNk (5.2.2)

We recall the latter follows from the assumption that entropy is an extensive function of U, V and Nk and the

use of Euler’s theorem. The differential of (5.2.2) is

dU = T dS + S dT − V dp − p dV +
∑

k

(𝜇k dNk + Nk d𝜇k) (5.2.3)

This relation can be consistent with (5.2.1) only if

S dT − V dp +
∑

k

Nk d𝜇k = 0 (5.2.4)

This equation is called the Gibbs–Duhem equation. It shows that changes in the intensive variables T, p
and 𝜇k cannot all be independent. We shall see in Chapter 7 that the Gibbs–Duhem equation can be used to

understand the equilibrium between phases and the variation of boiling point with pressure as described by

the Clausius–Clapeyron equation.

At constant T and p, from Equation (5.2.4) it follows that ΣkNk(d𝜇k)p,T = 0. Since the change in the

chemical potential is (d𝜇k)p,T = Σi(𝜕𝜇k/𝜕Ni)dNi, we can write this expression as

∑
k,i

Nk

(
𝜕𝜇k

𝜕Ni

)
p,T

dNi =
∑

i

[∑
k

(
𝜕𝜇k

𝜕Ni

)
p,T

Nk

]
dNi = 0 (5.2.5)

Since dNi are independent and arbitrary variations, Equation (5.2.5) can be valid only if the coefficient of

every dNi is equal to zero. Thus, we have Σk(𝜕𝜇k/𝜕Ni)p,TNk = 0. Furthermore, since(
𝜕𝜇k

𝜕Ni

)
p,T

=
(

𝜕2G
𝜕Ni𝜕Nk

)
p,T

=
(

𝜕2G
𝜕Nk𝜕Ni

)
p,T

=
(
𝜕𝜇i

𝜕Nk

)
p,T

we can write ∑
k

Nk

(
𝜕𝜇i

𝜕Nk

)
p,T

= 0 (5.2.6)

Equation (5.2.6) is an important general result that we will use in later chapters.

5.2.2 The Helmholtz Equation

The Helmholtz equation gives us a useful expression to understand how the total energy U changes with the

volume V at constant T. We have seen that the entropy S is a state variable and that it can be expressed as a

function of T, V and Nk. The Helmholtz equation follows from the fact that, for a function of many variables,

the second ‘cross-derivatives’ must be equal, i.e.

𝜕2S
𝜕T𝜕V

= 𝜕2S
𝜕V𝜕T

(5.2.7)

For closed systems in which no chemical reactions take place, the changes in entropy can be written as

dS = 1

T
dU +

p

T
dV (5.2.8)
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Since U can be expressed as a function of V and T, we have

dU =
(
𝜕U
𝜕V

)
T

dV +
(
𝜕U
𝜕T

)
V

dT

Using this expression in Equation (5.2.8) we obtain

dS = 1

T

(
𝜕U
𝜕V

)
T

dV + 1

T

(
𝜕U
𝜕T

)
V

dT +
p

T
dV

=
[

1

T

(
𝜕U
𝜕V

)
T
+

p

T

]
dV + 1

T

(
𝜕U
𝜕T

)
V

dT

(5.2.9)

The coefficients of dV and dT can now be identified as the derivatives (𝜕S/𝜕V)T and (𝜕S/𝜕T)V respectively. As

expressed in Equation (5.2.7), since the second ‘cross-derivatives’ must be equal, we have{
𝜕

𝜕T

[
1

T

(
𝜕U
𝜕V

)
+

p

T

]}
V
=
{
𝜕

𝜕V

[
1

T

(
𝜕U
𝜕T

)]}
T

(5.2.10)

It is a matter of a simple calculation (Exercise 5.6) to show that (5.2.10) leads to the Helmholtz equation:(
𝜕U
𝜕V

)
T
= T2

(
𝜕

𝜕T

p

T

)
V

(5.2.11)

This equation enables us to determine the variation of the energy with volume if the equation of state is

known. In particular, it can be used to conclude that, for an ideal gas, the equation pV = NRT implies that, at

constant T, the energy U is independent of the volume, i.e. (𝜕U/𝜕V)T = 0.

5.2.3 The Gibbs–Helmholtz Equation

The Gibbs–Helmholtz equation relates the temperature variation of the Gibbs energy G to the enthalpy H.

It is useful for understanding how the state of chemical equilibrium responds to a change in temperature; in

addition, it provides us with a way to determine enthalpies of chemical reactions using data on the variation of

Gibbs energy changes with temperature. The Gibbs–Helmholtz equation is obtained as follows. By definition,

G ≡ H – TS. First, we note that S = –(𝜕G/𝜕T)p,Nk and write

G = H +
(
𝜕G
𝜕T

)
p,Nk

T (5.2.12)

It is easy to show (Exercise 5.8) that this equation can be rewritten as

𝜕

𝜕T

(G
T

)
= − H

T2
(5.2.13)

When considering a chemical reaction, this equation can be written in terms of the changes in G and H that

accompany the conversion of reactants to products. If the total Gibbs energy and the enthalpy of the reactants

are Gr and Hr respectively and those of the products are Gp and Hp respectively, then the changes due to the

reactions will be ΔG = Gp – Gr and ΔH = Hp – Hr. By applying Equation (5.2.13) to the reactants and the

products and subtracting one equation from the other, we obtain

𝜕

𝜕T

(ΔG
T

)
= −ΔH

T2
(5.2.14)

In Chapter 9 we will see that a quantity called the ‘standard ΔG’ of a reaction can be obtained by measuring

the equilibrium concentrations of the reactants and products. If the equilibrium concentrations (and hence
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ΔG) are measured at various temperatures, then the data on the variation of ΔG with T can be used to obtain

ΔH, which is the enthalpy of reaction. Equations (5.2.13) and (5.2.14) are referred to as theGibbs–Helmholtz
equations.

5.3 Gibbs Energy of Formation and Chemical Potential

Other than heat conduction, every irreversible process – e.g. chemical reactions, diffusion, the influence of

electric, magnetic and gravitational fields, ionic conduction, dielectric relaxation – can be described in terms

of suitable chemical potentials. Chapter 10 is devoted to some of the processes described using the concept of

a chemical potential. All these processes drive the system to the equilibrium state in which the corresponding

affinity vanishes. Because of its central role in the description of irreversible processes, we will derive a

general expression for the chemical potential that facilitate its application.

As already noted, 𝜇 is the molar Gibbs energy of a pure compound. In general, the Gibbs energy and the

chemical potential are related by (
𝜕G
𝜕Nk

)
p,T

= 𝜇k (5.3.1)

This equation does not give us a means to relate the chemical potential directly to experimentally measurable

quantities such as heat capacities. As we have seen in Chapter 2, enthalpy can be related to heat capacities;

therefore, we seek an expression that relates chemical potential to enthalpy. To this end, we differentiate the

Gibbs–Helmholtz equation (5.2.13) with respect to Nk and use Equation (5.3.1) to obtain

𝜕

𝜕T

(𝜇k

T

)
= −

Hmk

T2
where Hmk =

(
𝜕H
𝜕Nk

)
p,T ,Ni

.
=k

(5.3.2)

in which Hmk is called the partial molar enthalpy of the compound k.

If the value of the chemical potential 𝜇(p0, T0) at a reference temperature T0 and pressure p0 is known,

then by integrating Equation (5.3.2) we can obtain the chemical potential at any other temperature T if the

partial molar enthalpy Hmk(p0, T) is known as a function of T:

𝜇(p0, T)

T
=
𝜇(p0, T0)

T0

+
T

∫
T0

−Hmk(p0, T ′)

T′2 dT′ (5.3.3)

As was shown in Chapter 2 (see Equations (2.4.10) and (2.4.11)), the molar enthalpy of a pure compound

Hmk(T) can be obtained using the tabulated values of Cmp(T), the molar heat capacity at constant pressure.

For ideal mixtures, Hmk is the same as that of a pure compound. For nonideal mixtures, a detailed knowledge

of the heat capacities of the mixture is needed to obtain Hmk. As noted earlier, the chemical potential of a

component k is not only a function of its mole fraction, xk, but also a function of mole fractions of other

components xj. The chemical potential of a component k depends on how it interacts with other components

in the mixture.

For a pure compound, knowing 𝜇(p0, T) at a pressure p0 and temperature T, the value of 𝜇(p, T) at any other

pressure p can be obtained using the expression d𝜇 = –Sm dT+ Vm dp, which follows from the Gibbs–Duhem



Extremum Principles and General Thermodynamic Relations 157

equation (5.2.4), where the molar quantities Sm = S/N and Vm = V/N. Since T is fixed, dT = 0, and we may

integrate this expression with respect to p to obtain

𝜇(p, T) = 𝜇(p0, T) +
p

∫
p0

Vm(p′, T)dp′ (5.3.4)

Thus, if the value of the chemical potential 𝜇(p0, T0) is known at a reference pressure p0 and temperature

T0, Equations (5.3.3) and (5.3.4) tell us that a knowledge of the molar volume Vm(p, T) (or density) and

the molar enthalpy Hm(p, T) of a compound will enable us to calculate the chemical potential at any other

pressure p and temperature T. An alternative and convenient way of writing Equation (5.3.4) is due to

G.N. Lewis (1875–1946), who introduced the concept of activity ak of a compound k [4]. The activity is

defined by the expression

𝜇k(p, T) = 𝜇k(p0, T) + RT ln ak = 𝜇0
k + RT ln ak (5.3.5)

in which 𝜇0
k = 𝜇k(p0, T). When we write the chemical potential in this form in terms of activity ak, it turns

out that activity has a direct relationship to experimentally measurable quantities such as concentration and

pressure. As an illustration, let us apply Equation (5.3.4) to the case of an ideal gas. Since Vm = RT/p, we

have

𝜇(p, T) = 𝜇(p0, T) +
p

∫
p0

RT
p′

dp′

= 𝜇(p0, T) + RT ln(p∕p0) = 𝜇0 + RT ln a

(5.3.6)

which shows that the activity a = (p/p0) in the ideal gas approximation. In Chapter 6 we will obtain the

expression for the activity of gases when the molecular size and molecular forces are taken into account, as

in the van der Waals equation.

5.3.1 Tabulation of Gibbs Energies of Compounds

The formalism presented above does not give us a way to compute the absolute values of Gibbs energies

of compounds. Hence, the convention described in Box 5.1 is usually used for tabulating Gibbs energies.

Computation of Gibbs energy changes in chemical reactions are based on this convention. Here, the molar
Gibbs energy of formation of a compound k, denoted byΔGf

0[k], is defined. Since chemical thermodynamics

assumes that there is no interconversion between elements, the Gibbs energy of elements may be used to

define the ‘zero’ with respect to which the Gibbs energies of all other compounds are measured. The Gibbs

energy of formation of H2O, written as ΔGf
0[H2O], for example, is the Gibbs energy change ΔG in the

reaction

H2(g) + 1

2
O2(g) → H2O(1)

The molar Gibbs energies of formation of compounds ΔG0
f[k] = 𝜇(p0, T0) are tabulated generally for

T0 = 298.15 K. We shall consider the use of ΔG0
f in more detail in Chapter 9, which is devoted to the

thermodynamics of chemical reactions. From these values, the chemical potentials of compounds can be
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Box 5.1 Tabulation of Gibbs free energies of compounds

To compute the changes in the Gibbs energy in a chemical reaction, the molar Gibbs energy 𝜇(p0, T) of

a compound in its standard state (its state at pressure p0 = 1 bar) at temperature T, may be defined using

the Gibbs energy of formation, ΔGf[k, T], as follows:

ΔG0
f [k, T] = 0 for all elements k, at all temperatures T

𝜇0
k (T) = 𝜇k(p0, T) = ΔG0

f [k, T] = standard molar Gibbs energy of formation of compound k at

temperature T
= Gibbs energy of formation of 1 mol of the compound from its

constituent elements, all in their standard states, at temperature T

Since chemical thermodynamics assumes that there is no interconversion between the elements, the Gibbs

energy of formation of elements may be used to define the ‘zero’ with respect to which the Gibbs energies

of all other compounds are measured.

The molar Gibbs energy at any other p and T can be obtained using Equations (5.3.3) and (5.3.4) (or

(5.3.7)), as shown in the figure below.

calculated as explained in Box 5.1. We conclude this section by noting that substitution of Equation (5.3.3)

into (5.3.4) gives us a general expression for the computation of the chemical potential:

𝜇(p, T) = T
T0

𝜇(p0, T0) +
p

∫
p0

Vm(p′, T0)dp′ + T

T

∫
T0

−Hm(p, T ′)

T′2 dT′ (5.3.7)

Thus, once the reference chemical potential 𝜇(p0, T0) is defined using some convention, the chemical potential

of a compound can be computed using the above formula if the molar volumes Vm and molar enthalpy Hm

are known as functions of p and T. These quantities are experimentally measured and tabulated (e.g. see the

NIST Chemistry Webbook at http://webbook.nist.gov/chemistry).
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5.4 Maxwell Relations

The two laws of thermodynamics establish energy and entropy as functions of state, making them functions of

many variables. As we have seen, U=U(S, V, Nk) and S= S(U, V, Nk) are functions of the indicated variables.

James Clerk Maxwell (1831–1879) used the rich theory of multivariable functions to obtain a large number

of relations between thermodynamic variables. The methods he employed are general, and the relations thus

obtained are called the Maxwell relations.

In Appendix 1.1 we introduced the following result: if three variables x, y and z are such that each may be

expressed as a function of the other two, x = x(y, z), y = y(x, z) and z = z(x, y), then the theory of multivariable

functions gives us the following fundamental relations:

𝜕2x
𝜕y𝜕z

= 𝜕2x
𝜕z𝜕y

(5.4.1)(
𝜕x
𝜕y

)
z
= 1(

𝜕y

𝜕x

)
z

(5.4.2)

(
𝜕x
𝜕y

)
z

(
𝜕y

𝜕z

)
x

(
𝜕z
𝜕x

)
y
= −1 (5.4.3)

Also, if we consider two functions of x and y, z = z(x, y) and w = w(x, y), then the partial derivative (𝜕z/𝜕x)w,

in which the derivative is evaluated at constant w, is given by(
𝜕z
𝜕x

)
w
=
(
𝜕z
𝜕x

)
y
+
(
𝜕z
𝜕y

)
x

(
𝜕y

𝜕x

)
w

(5.4.4)

We have already seen how Equation (5.4.1) can be used to derive the Helmholtz equation (5.2.11) in which

entropy S was considered as a function of T and V. In most cases, Equations (5.4.1) to (5.4.4) are used to

write thermodynamic derivatives in a form that can easily be related to experimentally measurable quantities.

For example, using the fact that the Helmholtz energy F(V, T) is a function of V and T, Equation (5.4.1) can

be used to derive the relation (𝜕S/𝜕V)T = (𝜕p/𝜕T)V, in which the derivative on the right-hand side is clearly

more easily related to the experiment.

Some thermodynamic derivatives are directly related to properties of materials that can be measured

experimentally. Other thermodynamic derivatives are expressed in terms of these quantities. The following

are among the most commonly used physical properties in thermodynamics:

Isothermal compressibility: 𝜅T ≡ − 1

V

(
𝜕V
𝜕p

)
T

(5.4.5)

Coefficient of volume expansion: 𝛼 ≡ 1

V

(
𝜕V
𝜕T

)
p

(5.4.6)

Now the pressure coefficient (𝜕p/𝜕T)V, for example, can be expressed in terms of 𝜅T and 𝛼 as follows. From

Equation (5.4.3), it follows that (
𝜕p

𝜕T

)
V
= −1(

𝜕V
𝜕p

)
T

(
𝜕T
𝜕V

)
p
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Now, using Equation (5.4.2) and dividing the numerator and the denominator by V we obtain

(
𝜕p

𝜕T

)
V
=
− 1

V

(
𝜕V
𝜕T

)
p

1

V

(
𝜕V
𝜕p

)
T

= 𝛼

𝜅T
(5.4.7)

5.4.1 General Relation between Cmp and CmV

As another example of the application of Maxwell’s relations, we will derive a general relation between Cmp
and CmV in terms of 𝛼, 𝜅T, the molar volume Vm and T – all of which can be measured experimentally. We

start with the relation we have already derived in Chapter 2, i.e. Equation (2.3.5):

Cmp − CmV =
[

p +
(
𝜕Um

𝜕Vm

)
T

](
𝜕Vm

𝜕T

)
p

(5.4.8)

where we have used all molar quantities, as indicated by the subscript ‘m’. The first step is to write the

derivative (𝜕U/𝜕V)T in terms of the derivatives involving p, V and T, so that we can relate it to 𝛼 and 𝜅T. From

the Helmholtz equation (5.2.11), it is easy to see that (𝜕U/𝜕V)T + p = T(𝜕p/𝜕T)V. Therefore, we can write

Equation (5.4.8) as

Cmp − CmV = T

(
𝜕p

𝜕T

)
V
𝛼Vm (5.4.9)

in which we have used the definition (5.4.6) for 𝛼. Now, using the Maxwell relation (𝜕p/𝜕T)V = (𝛼/𝜅T) (see

Equation (5.4.7)) in Equation (5.4.9) we obtain the general relation

Cmp − CmV =
T𝛼2Vm

𝜅T
(5.4.10)

5.5 Extensivity with Respect to N and Partial Molar Quantities

In multicomponent systems, thermodynamic functions such as volume V, Gibbs energy G and all other

thermodynamic functions that can be expressed as functions of p, T and Nk are extensive functions of Nk.

This extensivity leads to general thermodynamic relations, some of which we will discuss in this section.

Consider the volume of a system as a function of p, T and Nk: V = V(p, T, Nk). At constant p and T, if all

the molar amounts were increased by a factor k, the volume V will also increase by the same factor. This is

the property of extensivity. In mathematical terms, we have

V(p, T , 𝜆Nk) = 𝜆V(p, T , Nk) (5.5.1)

At constant p and T, using Euler’s theorem as was done in Section 4.4, we can arrive at the relation

V =
∑

k

(
𝜕V
𝜕Nk

)
p,T

Nk (5.5.2)

It is convenient to define partial molar volumes as the derivatives

Vmk ≡
(
𝜕V
𝜕Nk

)
p,T

(5.5.3)
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Using this definition, Equation (5.5.2) can be written as

V =
∑

k

VmkNk (5.5.4)

Partial molar volumes are intensive quantities. As was done in the case of the Gibbs–Duhem relation, we can

derive a relation between the Vmk by noting that at constant p and T

(dV)p,T =
∑

k

(
𝜕V
𝜕Nk

)
p,T

dNk =
∑

k

Vmk dNk (5.5.5)

in which we have explicitly noted that the change dV is at constant p and T. Comparing dV obtained from

Equations (5.5.4) and (5.5.5), we see that ΣkNk(dVmk)p,T = 0. Now (dVmk)p,T = Σi(𝜕Vmk/𝜕Ni)dNi, so we

obtain ∑
k

∑
i

Nk

(
𝜕Vmk

𝜕Ni

)
dNi = 0

In this equation, dNi are arbitrary variations in Ni; consequently, the above equation can be valid only when

the coefficient of each dNi equals zero, i.e. ΣkNk(𝜕Vmk/𝜕Ni) = 0. Finally, using the property (𝜕Vmk/𝜕Ni) =
(𝜕2V/𝜕Ni𝜕Nk) = (𝜕Vmi/𝜕Nk) we arrive at the final result:

∑
k

Nk

(
𝜕Vmi

𝜕Nk

)
p,T

= 0 (5.5.6)

Relations similar to Equations (5.5.4) and (5.5.6) can be obtained for all other functions that are extensive in

Nk. For Gibbs energy, which is an extensive quantity, the equation corresponding to (5.5.4) is

G =
∑

k

(
𝜕G
𝜕Nk

)
p,T

Nk =
∑

k

GmkNk =
∑

k

𝜇kNk (5.5.7)

in which we recognize the partial molar Gibbs energy Gmk as the chemical potentials 𝜇k. The equation

corresponding to (5.5.6) follows from the Gibbs–Duhem relation (5.2.4) when p and T are constant:

∑
k

Nk

(
𝜕𝜇i

𝜕Nk

)
p,T

= 0 (5.5.8)

Similarly, for the Helmholtz energy F and the enthalpy H, we can obtain the following relations:

F =
∑

k

FmkNk

∑
k

Nk

(
𝜕Fmi

𝜕Nk

)
p,T

= 0 (5.5.9)

H =
∑

k

HmkNk

∑
k

Nk

(
𝜕Hmi

𝜕Nk

)
p,T

= 0 (5.5.10)

in which the partial molar Helmholtz energy Fmk = (𝜕F/𝜕Nk)p,T and the partial molar enthalpy Hmk =
(𝜕H/𝜕Nk)p,T. Similar relations can be obtained for entropy S and the total internal energy U.
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Figure 5.4 Tominimize the interfacial Helmholtz energy, a liquid drop shrinks its surface area to the least possible
value. As a result, the pressure p′′ inside the drop is larger than the external pressure p′. The excess pressure
(p′′ – p′) = 2𝛾/r.

5.6 Surface Tension

We conclude this chapter by considering some elementary thermodynamic relations involving interfaces [5].

Since molecules at an interface are in a different environment from molecules in the bulk, their energies and

entropies are different. Molecules at a liquid–air interface, for example, have a larger Helmholtz energy than

those in the bulk. At constant V and T, since every system minimizes its Helmholtz energy, the interfacial

area shrinks to its minimum possible value, thus increasing the pressure in the liquid (Figure 5.4).

The thermodynamics of such a system can be formulated as follows. Consider a system with two parts,

separated by an interface of area Σ (Figure 5.4). For this system we have

dU = T dS − p′′ dV ′′ − p′ dV′ + 𝛾 dΣ (5.6.1)

in which p′ and V′ are the pressure and the volume of one part and p′′ and V′′ are the pressure and the volume

of the other, Σ is the interfacial area and the coefficient 𝛾 is called the surface tension. Since dF = dU −
T dS – S dT, using Equation (5.6.1) we can write dF as

dF = −S dT − p′′ dV′′ − p′ dV′ + 𝛾 dΣ (5.6.2)

From this it follows that (
𝜕F
𝜕Σ

)
T ,V′,V′′

= 𝛾 (5.6.3)

Thus, surface tension 𝛾 is the change of F per unit extension of the interfacial area at constant T, V′ and V′′.
This energy is small, usually of the order of 10−2 J m−2.

The minimization of Helmholtz energy drives the interface to contract like an elastic sheet. The force per

unit length that the interface exerts in its tendency to contract is also equal to 𝛾 . This can be seen as follows.

Since enlarging an interfacial area increases its Helmholtz energy, work needs to be done. As shown in

Figure 5.5, this means a force f is needed to stretch the surface by an amount dx, i.e. the interface behaves

like an elastic sheet. The work done, f dx, equals the increase in the surface energy, 𝛾 dΣ = (𝛾l dx), in which l
is the width of the surface (Figure 5.5). Thus, f dx = 𝛾l dx, or the force per unit length f/l = 𝛾 . For this reason,

𝛾 is called the ‘surface tension’.
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Figure 5.5 Energy is required to enlarge a surface of a liquid. The force per unit length is 𝛾.

5.6.1 Excess Pressure in a Liquid Drop

In the case of the liquid drop in air shown in Figure 5.4, the difference in the pressures (p′′ – p′) = Δp is the

excess pressure inside the liquid drop. An expression for the excess pressure Δp in a spherical liquid drop

can be obtained as follows. As shown in Section 5.1, if the total volume of a system and its temperature are

constant, then the irreversible approach to equilibrium is described by – T diS = dF ≤ 0. Now consider an

irreversible contraction of the volume V′′ of the liquid drop to its equilibrium value when the total volume

V = V′ + V′′ and T are constant. Setting dT = 0 and dV′ = –dV′′ in Equation (5.6.2) we obtain

− T
diS

dt
= dF

dt
= −(p′′ − p′)

dV′′

dt
+ 𝛾 dΣ

dt
(5.6.4)

For a spherical drop of radius r, dV′′ = (4𝜋/3)3r2 dr and dΣ = 4𝜋2r dr; hence, the above equation can be

written as

− T
diS

dt
= dF

dt
= [−(p′′ − p′)4𝜋r2 + 𝛾8𝜋r]

dr
dt

(5.6.5)

We see that this expression is a product of a ‘thermodynamic force’ – (p′′ – p′)𝜋4r2 + 𝛾8𝜋r that causes the

‘flow rate’ dr/dt. At equilibrium, both must vanish. Hence, – (p′′ – p′)4𝜋r2 + 𝛾8𝜋r = 0. This gives us the

well-known equation for the excess pressure inside a liquid drop of radius r:

Δp ≡ (p′′ − p′) = 2𝛾

r
(5.6.6)

This result is called the Laplace equation because it was first derived by the French mathematician Pierre-

Simon Laplace (1749–1827).

5.6.2 Capillary Rise

Another consequence of surface tension is the phenomenon of ‘capillary rise’: in narrow tubes or capillaries,

most liquids rise to a height h (Figure 5.6) that depends on the radius of the capillary. The smaller the radius,

the higher the rise. The liquid rises because an increase in the area of the liquid–glass interface lowers the

Helmholtz energy. The relation between the height h, the radius r and the surface tension can be derived as

follows. As shown in Figure 5.6c, the force of surface tension of the liquid–air interface pulls the surface

down while the force at the liquid–glass interface pulls the liquid up. Let the ‘contact angle’, i.e. the angle

at which the liquid is in contact with the wall of the capillary, be 𝜃. When these two forces balance each

other along the vertical direction, the force per unit length generated by the liquid–glass interface must be

𝛾cos 𝜃. As the liquid moves up, the liquid–glass interface is increasing while the glass–air interface is

decreasing; 𝛾cos 𝜃 is the net force per unit length due to these two factors. The force per unit length is equal
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Figure 5.6 Capillary rise due to surface tension. (a) The height h to which the liquid rises depends on the contact
angle 𝜃, the surface tension 𝛾 and the radius r. (b) The contact angle 𝜃 specifies the direction in which the force
due to the liquid–air interface acts. (c) The vertical component of the force due to the liquid–air interface balances
the net force due to the liquid–glass and glass–air interfaces.

to the interfacial energy per unit area; thus, as the liquid moves up, the decrease in the interfacial energy is

𝛾cos𝜃 per unit area. Hence, as the liquid moves up and increases the area of the glass–liquid interface, the

decrease in Helmholtz energy is 𝛾cos𝜃 per unit area. On the other hand, as the liquid rises in the capillary,

there is an increase in the potential energy of the liquid due to gravity. A liquid layer of thickness dh and

density 𝜌 has the mass (𝜌𝜋r2 dh) and its potential energy at a height h is equal to (𝜌𝜋r2 dh)gh. For the entire

liquid column, this expression has to be integrated from 0 to h. The change in the Helmholtz energy ΔF as

the liquid rises is the sum of the potential energy and glass–liquid interfacial energy:

ΔF(h) =
h

∫
0

gh𝜌𝜋r2 dh − 2𝜋rh(𝛾 cos 𝜃) =
𝜋𝜌gr2h2

2
− 2𝜋rh(𝛾 cos 𝜃) (5.6.7)

The value of h that minimizes F is obtained by setting 𝜕(ΔF(h)/𝜕h) = 0 and solving for h. This leads to the

expression

h = 2𝛾 cos 𝜃
𝜌gr

(5.6.8)

The same result can also be derived by balancing the forces of surface tension and the weight of the liquid

column. As shown in Figure 5.6b, the liquid column of height h is held at the surface by the surface tension.

The total force due to the surface tension of the liquid along the circumference is 2𝜋r𝛾 cos 𝜃. Since this force

holds the weight of the liquid column, we have

2𝜋r𝛾 cos 𝜃 = 𝜌gh𝜋r2 (5.6.9)

from which Equation (5.6.8) follows.

The contact angle 𝜃 depends on the interface (see Table 5.2). For a glass–water interface the contact angle

is nearly zero, as it is for many, though not all, organic liquids. For a glass–kerosene interface, 𝜃 = 26◦. The

contact angle can be greater than 90◦, as in the case of a mercury–glass interface, for which 𝜃 is about 140◦,

or a paraffin–water interface, for which it is about 107◦. When 𝜃 is greater than 90◦, the liquid surface in the

capillary is lowered.



Extremum Principles and General Thermodynamic Relations 165

Table 5.2 Examples of surface tension and contact angles.

𝛾(10−2 J m−2 or 10−2 N m−1) Interface Contact angle (◦)

Methanol 2.26 Glass–water 0
Benzene 2.89 Glass–many organic liquids∗ 0
Water 7.73 Glass–kerosene 26
Mercury 47.2 Glass–mercury 140
Soap solution 2.3 (approximate) Paraffin–water 107

∗Not all organic liquids have a contact angle value of 0◦, as is clear in the case of kerosene.
More extensive data may be found in D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 75th edition, 1994, CRC Press: Ann Arbor, MI.
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Examples

Example 5.1 Show that the change in the value of the Helmholtz free energy F corresponds to the work

done when T and Nk are constant, thus justifying the name ‘free energy’ (available for doing work).

Solution As a specific example, consider a gas in contact with a thermal reservoir at temperature T. By

expanding this gas, work can be done. We can show that the change of F corresponds to the work done at

constant T and Nk as follows. F = U – TS. From this it follows that (see Equation (5.1.5))

dF = −p dV − S dT +
∑

k

𝜇k dNk

At constant T and Nk, dF = – p dV. Integrating both sides, we see that

F2

∫
F1

dF = F2 − F1 =

V2

∫
V1

−p dV

which shows that the change in F is equal to the work done by the gas. The same will be true for any other

system.



166 Modern Thermodynamics

Example 5.2 For a closed system with one chemical reaction, show that (𝜕F/𝜕𝜉)T, V = –A.

Solution The change in F is given by (see Equation (5.1.5))

dF = −p dV − S dT +
∑

k

𝜇k dNk

Since the system is closed, the changes in Nk are due to a chemical reaction; hence, we have dNk = 𝜈k
d𝜉 in which 𝜈k are the stoichiometric coefficients (which are negative for the reactants and positive for the

products). Thus:

dF = −p dV − S dT +
∑

k

𝜈k𝜇k d𝜉

Since Σk𝜈k𝜇k = – A we have

dF = − p dV − S dT − A d𝜉

When F is considered as a function of V, T and 𝜉, then

dF =
(
𝜕F
𝜕V

)
T ,𝜉

dV +
(
𝜕F
𝜕T

)
V ,𝜉

dT +
(
𝜕F
𝜕𝜉

)
T ,V

= d𝜉

and we see that (𝜕F/𝜕𝜉)T,V = – A.

Example 5.3 Using the Gibbs–Duhem relation show that, at constant p and T, (dGm)p,T = Σk𝜇kdxk (which

is Equation (5.1.17)).

Solution The molar Gibbs free energy Gm = Σk𝜇kxk in which xk is the mole fraction of component k.

Hence:

dGm =
∑

k

dxk𝜇k +
∑

k

xk d𝜇k

The Gibbs–Duhem relation is

S dT − V dp +
∑

k

Nk d𝜇k = 0

Since p and T are constant, dT = dp = 0. Furthermore, xk = Nk/N in which N is the total number of moles.

Dividing the Gibbs–Duhem equation by N and setting dp = dT = 0, we have Σkxk d𝜇k = 0. Using this result

in the expression for dGm above, for constant p and T we see that

(dGm)p,T =
∑

k

𝜇k dxk

(Note that Σkxk = 1 and, hence, xk are not all independent. Hence, the above equation does not imply that

(𝜕Gm/𝜕xk)p, T = 𝜇k.)

Exercises

5.1 Use the expression T diS = – 𝛾 dA and T deS = dU + p dV in the general expressions for the First and

the Second Laws and obtain dU = T dS – p dV + 𝛾 dA (assuming dNk = 0).



Extremum Principles and General Thermodynamic Relations 167

5.2 (a) In an isothermal expansion of a gas from a volume Vi to Vf, what is the change in the Helmholtz free

energy F? (b) For a system undergoing chemical transformation at constant V and T, prove Equation

(5.1.7).

5.3 Use the relations dU = dQ – p dV, T deS = dQ and T diS = –Σk𝜇k dNk to derive

dG = V dp − S dp +
∑

k

𝜇k dNk

which is Equation (5.1.13).

5.4 Use the relations dU = dQ – p dV, T deS = dQ and T diS = –Σk𝜇k dNk to derive

dH = T dS + V dp +
∑

k

𝜇k dNk

which is Equation (5.1.21).

5.5 For an ideal gas, in an isothermal process, show that the change in the Gibbs energy of a system is

equal to the amount of work done by a system in an idealized reversible process.

5.6 Obtain the Helmholtz equation (5.2.11) from (5.2.10).

5.7 (a) Use the Helmholtz equation (5.2.11) to show that, at constant T, the energy of an ideal gas is

independent of volume.

(b) Use the Helmholtz equation (5.2.11) to calculate (𝜕U/𝜕V)T for N moles of a gas using the van der

Waals equation.

5.8 Obtain Equation (5.2.13) from Equation (5.2.12).

5.9 Derive the following general equation, which is similar to the Gibbs–Helmholtz equation:

𝜕

𝜕T

(F
T

)
= − U

T2

5.10 Assume that ΔH changes little with temperature, integrate the Gibbs–Helmholtz equation (5.2.14) and

express ΔGf at temperature Tf in terms of ΔH, the initial ΔGi and the corresponding temperature Ti.

5.11 Obtain an explicit expression for the Helmholtz energy of an ideal gas as a function T, V and N.

5.12 The variation of Gibbs energy of a substance with temperature is given by G= aT+ b+ c/T. Determine

the entropy and enthalpy of this substance as a function of temperature.

5.13 Show that Equation (5.4.10) reduces to Cmp – CmV = R for an ideal gas.

5.14 Consider a reaction X ⇌ 2Y in which X and Y are ideal gases.

(a) Write the Gibbs energy of this system as a function of the extent of reaction 𝜉 so that 𝜉 is the

deviation from the equilibrium amounts of X and Y, i.e. NX = NXeq – 𝜉 and NY = NYeq + 2𝜉 in

which NXeq and NYeq are the equilibrium amounts of X and Y.

(b) Through explicit evaluation, show that (𝜕G/𝜕𝜉)p,T = – A = (2𝜇Y – 𝜇X).

5.15 (a) By minimizing the free energy ΔF(h) given by Equation (5.6.1) as a function of h, obtain the

expression

h = 2𝛾 cos 𝜃
𝜌gr

for the height h of capillary rise due to surface tension.
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(b) Assume that the contact angle 𝜃 between water and glass is nearly zero and calculate the height

of water in a capillary of diameter 0.1 mm.

5.16 (a) Owing to surface tension, the pressure inside a bubble is higher than the outside pressure. Let this

excess pressure be Δp. By equating the work done, Δp dV, due to an infinitesimal increase dr in

the radius r to the increase in surface energy 𝛾 dA, show that Δp = 2𝛾/r.

(b) Calculate the excess pressures inside water bubbles of radius 1.0 mm and 1.0 μm.

5.17 What is the minimum energy needed to convert 1.0 mL of water to droplets of diameter 1.0 μm?

5.18 When the surface energy is included we have seen that

dU = T dS − p dV + 𝜇 dN + 𝛾 dA

in which 𝛾 is the surface tension and dA is the change in the surface area. For a small spherical liquid

drop of a pure substance, show that the above expression can be written as dU = T dS – p dV + 𝜇′(r)

dN in which 𝜇′(r) = 𝜇 + (2𝛾/r)Vm, a size-dependent chemical potential.



6
Basic Thermodynamics of Gases,

Liquids and Solids

Introduction

The formalism and general thermodynamic relations that we have seen in the previous chapters have wide

applicability. In this chapter, we will see how thermodynamic quantities can be calculated for gases, liquids,

solids and solutions using general methods.

6.1 Thermodynamics of Ideal Gases

Many thermodynamic quantities, such as total internal energy, entropy, chemical potential, etc., for an ideal

gas have been derived in the preceding chapters as examples. In this section, we will bring all these results

together and list the thermodynamic properties of gases in the ideal gas approximation. In the following

section, we will see how these quantities can be calculated for ‘real gases’ for which we take into account the

molecular size and intermolecular forces.

6.1.1 The Equation of State

Our starting point is the equation of state, the ideal gas law:

pV = NRT (6.1.1)

As we saw in Chapter 1, this approximation is valid for most gases when their densities are less than about

1 mol L−1. At this density and temperature of about 300 K, for example, the pressure of N2(g) obtained using

the ideal gas equation is 24.76 atm, whereas that predicted using the more accurate van der Waals equation

is 24.36 atm, a difference of only a few percent.

6.1.2 The Total Internal Energy

Through thermodynamics, we can see that the ideal gas law (6.1.1) implies that the total internal energy
U is independent of the volume at fixed T, i.e. the energy of an ideal gas depends only on its temperature.

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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One arrives at this conclusion using the Helmholtz equation (see Equation (5.2.11)), which is valid for all

thermodynamic systems: (
𝜕U
𝜕V

)
T
= T2

[
𝜕

𝜕T

( p

T

)]
V

(6.1.2)

(We remind the reader that the Helmholtz equation is a consequence of the fact that entropy is a state function

of V, T and Nk.) Since the ideal gas equation implies that the term p/T = NR/V is independent of T, it

immediately follows from Equation (6.1.2) that (𝜕U/𝜕V)T = 0. Thus, the total internal energy U(T, V, N) of

N moles of an ideal gas is independent of the volume at a fixed T. We can get a more explicit expression for

U. Since CmV = (𝜕Um/𝜕T) V is found to be independent of T, we can write

Uideal = NU0 + N

T

∫
0

CmVdT = N(U0 + CmVT) (6.1.3)

(The constant U0 is not defined in classical thermodynamics, but, using the definition of energy that the theory

of relativity gives us, we may set NU0 = MNc2, in which M is the molar mass, N is the molar amount of the

substance and c is the velocity of light. In thermodynamic calculations of changes of energy, U0 does not

appear explicitly.)

6.1.3 Heat Capacities and Adiabatic Processes

We have seen earlier that there are two molar heat capacities: CmV and Cmp, the former at constant volume

and the latter at constant pressure. We have also seen in Chapter 2 that the First Law gives us the following

relation between molar heat capacities:

Cmp − CmV = R (6.1.4)

For an adiabatic process, the First Law also gives us the relation

TV𝛾−1 = constant or pV𝛾 = constant (6.1.5)

in which 𝛾 = Cmp/CmV. In an adiabatic process, by definition deS = dQ/T = 0. If the process occurs such that

diS ≈ 0, then the entropy of the system remains constant because dS = diS + deS.

6.1.4 Entropy and Thermodynamic Potentials

We have already seen that the entropy S(V, T, N) of an ideal gas is (see Equation (3.7.4))

S = N[s0 + CmV ln(T) + R ln(V∕N)] (6.1.6)

From the equation of state (6.1.1) and the expressions for Uideal and S it is straightforward to obtain explicit

expressions for the enthalpy H = U + pV, the Helmholtz energy F = U – TS and the Gibbs energy G = U –

TS + pV of an ideal gas (Exercise 6.1).

6.1.5 Chemical Potential

For the chemical potential of an ideal gas, we obtained the following expression in Section 5.3 (see Equation

(5.3.6)):

𝜇(p, T) = 𝜇(p0, T) + RT ln (p∕p0) (6.1.7)
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For a mixture of ideal gases the total energy is the sum of the energies of all its components. The same is true

for the entropy. The chemical potential of a component k can be expressed in terms of the partial pressures pk
as

𝜇k(pk, T) = 𝜇k(p0, T) + RT ln (pk∕p0) (6.1.8)

Alternatively, if xk is the mole fraction of the component k, since pk = xkp, the chemical potential can be

written as

𝜇k (p, T , xk) = 𝜇0
k (p, T) + RT ln (xk) (6.1.9)

in which 𝜇0
k (p, T) = 𝜇k(p0, T) + RT ln (p∕p0) is the chemical potential of a pure ideal gas. This form of the

chemical potential is generally used in the thermodynamics of multicomponent systems to define an ‘ideal

mixture’.

6.1.6 Entropy of Mixing and the Gibbs Paradox

Using the expression for the entropy of an ideal gas, we can calculate the increase in its entropy due to

irreversible mixing of two gases. Consider two nonidentical gases in chambers of volume V separated by

a wall (Figure 6.1). The entire system is isolated. Let us assume that the two chambers contain the same

amount, N moles, of the two gases. The total initial entropy of the system is the sum of the entropies of the

two gases:

Sinit = N[s01 + CmV1 ln(T) + R ln(V∕N)] + N[s02 + CmV2 ln(T) + R ln (V∕N)] (6.1.10)

Now if the wall separating the two chambers is removed, the two gases will mix irreversibly and the entropy

will increase. T and p remain constant. When the two gases have completely mixed and the system has reached

Figure 6.1 The entropy of mixing two nonidentical gases is given by Equation (6.1.12), however small the
difference between the gases. If the two gases are identical, then there is no change in the entropy.
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a new state of equilibrium, each gas would be occupying a volume of 2V. Hence, the total final entropy after

the mixing is

Sfin = N[s01 + CmV1 ln (T) + R ln (2V∕N)] + N[s02 + CmV2 ln (T) + R ln (2V∕N)] (6.1.11)

The difference between Equations (6.1.10) and (6.1.11) is the entropy of mixing ΔSmix = Sfin – Sinit. It is easy

to see that

ΔSmix = 2NR ln 2 (6.1.12)

The generalization of this result to unequal volumes and molar amounts is left as an exercise. It can be shown

that if initially the densities of the two gases are the same, i.e. (N1/V1) = (N2/V2), then the entropy of mixing

can be written as (Exercise 6.2)

ΔSmix = −RN(x1 ln x1 + x2 ln x2) (6.1.13)

where x1 and x2 are the mole fractions and N = N1 + N2.

Gibbs noted a curious aspect of this result. If the two gases were identical, then the states of the gas before

and after the removal of the wall are indistinguishable except for the wall; by replacing the wall, the initial

state can be restored. This means that there is no irreversible process mixing the two gases. Hence, there is no

change in entropy because the initial and final states are the same. For two nonidentical gases, however small

the difference between them, the change of entropy is given by Equation (6.1.12). Generally, in most physical

systems, a small change in one quantity results in a small change in another dependent quantity. Not so with

the entropy of mixing; even the smallest difference between two gases leads to an entropy difference of 2NR
ln 2. If the difference between the two gases vanishes, then Smix abruptly drops to zero. This discontinuous

behavior of the entropy of mixing is often called the Gibbs paradox.

The entropy of mixing (6.1.13) can also be obtained using the statistical formula S = kB ln W introduced

in Chapter 3 (Box 3.1). Consider a gas containing (N1 + N2) moles or (N1 + N2)NA molecules (NA is the

Avogadro number). For this gas, interchange of molecules does not correspond to distinct microstates because

the molecules are indistinguishable. However, if N2 moles of the gas are replaced by another gas, then an

interchange of molecules of the two different gases corresponds to a distinct microstate. Thus, the gas mixture

with N1 moles of one gas and N2 of another gas has additional microstates in comparison with (N1 + N2)

moles of one gas. That these additional microstates when used in the formula S = kB ln W give the entropy

of mixing, Equation (6.1.13), can be seen as follows. The number of additional microstates in the mixture is

Wmix =
(NAN1 + NAN2) !
(NAN1) ! (NAN2)!

(6.1.14)

Using the Stirling approximation ln(N!) ≈ N ln N – N, it can easily be shown that (Exercise 6.2)

ΔSmix = kB ln Wmix = −kBNA(N1 + N2)(x1 ln x1 + x2 ln x2) (6.1.15)

in which x1 and x2 are mole fractions. Equation (6.1.15) is identical to (6.1.13) because R = kBNA and

N = N1 + N2. This derivation shows that expression (6.1.13) for the entropy of mixing is not dependent

on the interactions between the gas molecules: it is entirely a consequence of distinguishability of the two

components of the system.

6.2 Thermodynamics of Real Gases

Useful though it might be, the ideal gas approximation ignores the finite size of the molecules and the

intermolecular forces. Consequently, as the gas becomes denser, the ideal gas equation does not predict the



Basic Thermodynamics of Gases, Liquids and Solids 173

relation between the volume, pressure and temperature with good accuracy: one has to use other equations

of state that provide a better description. If the molecular size and forces are included in the theory, then one

refers to it as a theory of a ‘real gas’.

As a result of molecular forces, the total internal energy U, the relation between the molar heat capacities

Cmp and CmV, the equation for adiabatic processes and other thermodynamic quantities will differ from those

for the ideal gas. In this section, we shall see how the thermodynamic quantities of a real gas can be obtained

from an equation of state that takes molecular size and forces into account.

The van der Waals equation, which takes into account the intermolecular forces and molecular size, and

the critical constants pc, Vmc and Tc, were introduced in Chapter 1:(
p + a

V2
m

)
(Vm − b) = RT (6.2.1)

Pc =
a

27b2
, Vmc = 3b , Tc =

8a
27bR

in which Vm is the molar volume. Since the van der Waals equation also has its limitations, other equations

have been proposed for gases. Some of the other equations that have been proposed and the corresponding

critical constants are as follows:

The Berthelot equation: p = RT
Vm − b

− a
TV2

m

(6.2.2)

pc =
1

12

(
2aR
3b3

)1∕2

, Vmc = 3b, Tc =
2

3

(
2a

3bR

)1∕2

The Dieterici equation: p = RT e−a∕RTVm

Vm − b
(6.2.3)

pc =
a

4e2b2
, Vmc = 2b, Tc =

a
4Rb

The Redlich−Kwong equation: p = RT
Vm − b

− a√
T

1

Vm (Vm + b)
(6.2.4)

a =
0.42748 R2T2.5

c

pc

, b =
0.08664 RTc

pc

in which a and b are constants similar to the van der Waals constants, which can be related to the critical

constants as shown.

Another equation that is often used is the virial equation, proposed by Kamerlingh Onnes (1853–1926).

It expresses the pressure as a power series in the molar density 𝜌 = N/V:

p = RT
N
V

[
1 + B(T)

N
V
+ C(T)

(N
V

)2

+⋯
]

(6.2.5)

in which B(T) and C(T) are functions of temperature, called the virial coefficients; they are experimentally

measured and tabulated. For example, it is found that experimental data for the virial coefficient can be
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Table 6.1 An empirical function for the second virial coefficient B(T) = 𝛼 – 𝛽 exp(𝛾/T).

Gas 𝛼 (mL mol−1) 𝛽 (mL mol−1) 𝛾 (K) Range of validity (K)

Ar 154.2 119.3 105.1 80–1024
N2 185.4 141.8 88.7 75–700
O2 152.8 117.0 108.8 90–400
CH4 206.4 159.5 133.0 110–600
C2H6 267.3 191.5 256 210–500

Source: Online Kaye & Laby Tables of Physical and Chemical Constants at the National Physical Laboratory, UK (http://www.kayelaby.
npl.co.uk/chemistry).

approximated by the function B(T) = 𝛼 – 𝛽 exp(𝛾/T), in which 𝛼, 𝛽 and 𝛾 are constants and T is the

temperature in kelvin.1 Values of these constants for a few gases are shown in Table 6.1.

It is also found that a better fit for experimental data can be obtained by dropping (N/V)3 and higher odd

powers from the virial expansion (6.2.5). As expected, Equation (6.2.5) reduces to the ideal gas equation at

low densities. The van der Waals constants a and b can be related to the virial coefficients B(T) and C(T)

(Exercise 6.4); conversely, the virial coefficients can be calculated from the van der Waals constants. Since

the ideal gas equation is valid at low pressures, the virial equation may also be written as

p = RT
N
V

[1 + B′(T)p + C′(T)p2 +⋯] (6.2.6)

Comparing Equations (6.2.5) and (6.2.6), it can be shown that B = B′RT, to a first approximation.

6.2.1 Total Internal Energy

For real gases, due to the molecular interaction, the energy is no longer only a function of the temperature.

Because the interaction energy of the molecules depends on the distance between the molecules, a change

in volume (at a fixed T) causes a change in energy, i.e. the term (𝜕U/𝜕V)T does not vanish for a real gas.

Molecular forces have a short range. At low densities, since molecules are far apart, the force of interaction is

small. As the density approaches zero, the energy of real gas Ureal approaches the energy of an ideal gas Uideal.

We can obtain an explicit expression for Ureal through the Helmholtz equation, (𝜕U/𝜕V)T = T2[𝜕(p/T)/𝜕T]V,

which is valid for all systems (not only for gases). Upon integration, this equation yields

Ureal(T , V , N) = Ureal(T , V0, N) +
V

∫
V0

T2
(
𝜕

𝜕T

p

T

)
V

dV

To write this expression in a convenient form, first we note that, for a fixed N, as V0 → ∞, the density

approaches zero, and, as noted above, Ureal approaches the energy of an ideal gas Uideal given by Equation

(6.1.3). Hence, Equation (6.2.6) can be written as

Ureal(T , V , N) = Uideal(T , N) +
V

∫
∞

T2
(
𝜕

𝜕T

p

T

)
V

dV (6.2.7)

1The values of the constants 𝛼, 𝛽 and 𝛾 and the ranges of T for which the empirical formula is valid can be found at http://www.kayelaby

.npl.co.uk/chemistry/3_5/3_5.html of the National Physical Laboratory, UK.
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If [𝜕(p/T)/𝜕T]V can be calculated using an equation of state, then explicit expressions for Ureal could be

derived. As an example, let us consider the van der Waals equation of state. From (6.2.1) it is easy to see that

p/T = NR/(V – Nb) – a(N/V)2(1/T). Substituting this expression into (6.2.7) we obtain the energy of a van der

Waals gas Uvw:

Uvw(T , V , N) = Uideal(T , N) +
V

∫
∞

a
(N

V

)2

dV

Evaluation of the integral gives

Uvw(V , T , N) = Uideal − a
(N

V

)2

V (6.2.8)

Writing the energy in this form shows us that the energy due to molecular interactions is equal to – a(N/V)2

per unit volume. As expected, as the volume increases, Uvw approaches Uideal.

6.2.2 Molar Heat Capacities CmV and Cmp

If the molar internal energy Um of a gas is known, then the molar heat capacity at constant volume CmV =
(𝜕Um/𝜕T)V can be calculated. For a real gas, we can use Equation (6.2.7) to obtain the following expression

for the molar heat capacity CmV:

CmV ,real =
(
𝜕Um, real

𝜕T

)
V
=
(
𝜕Um, ideal

𝜕T

)
V
+ 𝜕

𝜕T

V

∫
∞

T2
(
𝜕

𝜕T

p

T

)
V

dV

which upon explicit evaluation of the derivatives in the integral gives

CmV , real = CmV , ideal +
V

∫
∞

T

(
𝜕2p

𝜕T2

)
V

dV (6.2.9)

Given an equation of state, such as the van der Waals equation, the above integral can be evaluated to obtain

an explicit expression for CmV. Equation (6.2.9) shows that, for any equation of state in which p is a linear
function of T, CmV,real = CmV,ideal. This is true for the case of the van der Waals equation. The energy due

to the molecular interactions depends on the intermolecular distance or density N/V. Because this does not

change at constant V, the value of CmV is unaffected by the molecular forces. CmV is the change in kinetic

energy of the molecules per unit change in temperature.

Also, given the equation of state, the isothermal compressibility 𝜅T and the coefficient of volume expansion

𝛼 (which are defined by Equations (5.4.5) and (5.4.6) respectively) can be calculated. Then, using the general

relation

Cmp − CmV =
TVm𝛼

2

𝜅T
(6.2.10)

(see Equation (5.4.10)), Cmp can also be obtained. Thus, using Equations (6.2.9) and (6.2.10), the two molar

heat capacities of a real gas can be calculated using its equation of state.
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6.2.3 Adiabatic Processes

For an ideal gas, we have seen in Chapter 2 that in an adiabatic process TV𝛾–1 = constant or pV𝛾 = constant

(see Equations (2.3.11) and (2.3.12)), in which 𝛾 = Cmp/CmV. One can obtain a similar equation for a real

gas. An adiabatic process is defined by dQ = 0 = dU + p dV. By considering U as a function of V and T, this

equation can be written as (
𝜕U
𝜕V

)
T

dV +
(
𝜕U
𝜕T

)
V

dT + pdV = 0 (6.2.11)

Since (𝜕U/𝜕T)V = NCmV, where N is the molar amount of the gas, this equation becomes[(
𝜕U
𝜕V

)
T
+ p
]

dV = −NCmV dT (6.2.12)

By evaluating the derivative on the right-hand side of the Helmholtz equation (5.2.11), it is easy to see

that [(𝜕U/𝜕V)T + p] = T(𝜕p/𝜕T)V. Furthermore, we have also seen in Chapter 5 (see Equation (5.4.7)) that

(𝜕p/𝜕T)V = 𝛼/𝜅T. Using these two relations, Equation (6.2.12) can be written as

T𝛼
𝜅T

dV = −NCmV dT (6.2.13)

To write this expression in terms of the ratio 𝛾 = Cmp/CmV we use the general relation:

Cmp − CmV =
T𝛼2Vm

𝜅T
(6.2.14)

in which Vm is the molar volume. Combining Equations (6.2.14) and (6.2.13) we obtain

N
Cmp − CmV

V𝛼
dV = −NCmV dT (6.2.15)

where we have made the substitution Vm = V/N for the molar volume. Dividing both sides of this expression

by CmV and using the definition 𝛾 = Cmp/CmV we obtain the simple expression

𝛾 − 1

V
dV = −𝛼 dT (6.2.16)

Generally, 𝛾 varies little with volume or temperature, so it may be treated as a constant and Equation (6.2.16)

can be integrated to obtain

(𝛾 − 1) ln V = −∫ 𝛼(T) dT + C (6.2.17)

in which we have written 𝛼 as an explicit function of T. C is the integration constant. An alternative way of

writing this expression is

V𝛾−1e∫ 𝛼(T)dT = constant (6.2.18)

This relation is valid for all gases. For an ideal gas, 𝛼 = (1/V)(𝜕V/𝜕T)p = 1/T. When this is substituted into

Equation (6.2.18) we obtain the familiar equation TV𝛾–1 = constant. If p is a linear function of T, as is the

case with the van der Waals equation, since CmV,real = CmV,ideal, from Equation (6.2.14) it follows that

𝛾 − 1 =
T𝛼2Vm

CmV ,ideal𝜅T
(6.2.19)
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If the equation of state of a real gas is known, then 𝛼 and 𝛾 can be evaluated (numerically, if not analytically)

as a function of T, and the relation (6.2.18) between V and T can be made explicit for an adiabatic process.

6.2.4 Helmholtz and Gibbs Energies

The method used to obtain a relation (6.2.7) between Uideal and Ureal can also be used to relate the correspond-

ing Helmholtz and Gibbs energies. The main idea is that the thermodynamic quantities for a real gas approach

those of an ideal gas as p → 0 or V → ∞. Let us consider the Helmholtz energy F. Since (𝜕F/𝜕V)T = −p
(see Equation (5.1.6)) we have the general expression

F(T , V , N) = F(T , V0, N) −
V

∫
V0

p dV (6.2.20)

The difference between the Helmholtz energy of a real and an ideal gas at any T, V and N can be obtained as

follows. Writing Equation (6.2.20) for a real and an ideal gas, and subtracting one from the other, it is easy

to see that

Freal(T , V , N) − Fideal(T , V , N) = Freal(T , V0, N) − Fideal(T , V0, N) −
V

∫
V0

(preal − pideal) dV (6.2.21)

Now, since limV0→∞ [Freal(V0, T, N) – Fideal(V0, T, N)] = 0, we can write the above expression as

Freal (T , V , Nk) − Fideal (T , V , Nk) = −
V∫
∞

(preal − pideal) dV (6.2.22)

where we have explicitly indicated the fact that this expression is valid for a multicomponent system by

replacing N with Nk. Similarly, we can also show that

Greal(T , p, Nk) − Gideal (T , p, Nk) =
p∫

0

(Vreal − Videal) dp (6.2.23)

As an example, let us calculate F using the van der Waals equation. For the van der Waals equation, we have

preal = pvw = [NRT/(V – bN)] – (aN2/V2). Substituting this expression for preal into Equation (6.2.22) and

performing the integration one can obtain (Exercise 6.10)

Fvw(T , V , N) = Fideal (T , V , N) − a
(N

V

)2

V − NRT ln
(V − Nb

V

)
(6.2.24)

where

Fideal = Uideal − TSideal

= Uideal − TN[s0 + CmV ln (T) + R ln(V∕N)] (6.2.25)

Substituting Equation (6.2.25) into Equation (6.2.24) and simplifying we obtain

Fvw = Uideal − a (N∕V)2V − TN{s0 + CmV ln (T) + R ln[(V − Nb)∕N]}

= Uvw − TN{s0 + CmV ln (T) + R ln[(V − Nb)∕N]} (6.2.26)
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where we have used the expression Uvw(V, T, N) = Uideal – a(N/V)2V for the energy of a van der Waals gas

(see Equation (6.2.8)). Similarly, the Gibbs energy of a real gas can be calculated using the van der Waals

equation.

6.2.5 Entropy

The entropy of a real gas can be obtained using expressions (6.2.7) and (6.2.21) for Ureal and Freal because

Freal = Ureal – TSreal. Using the van der Waals equation, for example, the entropy Svw of a real gas can be

identified in Equation (6.2.26):

Svw(T , V , N) = N{s0 + CmV ln (T) + R ln [(V − Nb)∕N]} (6.2.27)

A comparison of Equation (6.2.27) with the entropy of an ideal gas (6.1.6) shows that, in the van der Waals

entropy, the term (V – Nb) takes the place of V in the ideal gas entropy.

6.2.6 Chemical Potential

The chemical potential for a real gas can be derived from the expression (6.2.23) for the Gibbs free energy.

Since the chemical potential of the component k is 𝜇k = (𝜕G/𝜕Nk)p,T, by differentiating Equation (6.2.23)

with respect to Nk we obtain

𝜇k, real (T , p) − 𝜇k, ideal (T , p) =
p

∫
0

(Vmk, real − Vmk, ideal) dp (6.2.28)

in which Vmk = (𝜕V/𝜕Nk)p,T is the partial molar volume of the component k by definition. For simplicity, let

us consider a single gas. To compare the molar volume of the ideal gas Vm,ideal = RT/p with that of a real gas

Vm,real, a compressibility factor Z is defined as follows:

Vm, real = ZRT∕p (6.2.29)

For an ideal gas Z = 1; a deviation of the value of Z from 1 indicates nonideality. In terms of Z, the chemical

potential can be written as

𝜇real(T , p) = 𝜇ideal (T , p) + RT

p

∫
0

(
Z − 1

p

)
dp

= 𝜇ideal (p0, T) + RT ln
(

p

p0

)
+ RT

p

∫
0

(
Z − 1

p

)
dp

(6.2.30)

in which we have used expression 𝜇ideal(p,T) = 𝜇(p0,T) + RT ln(p/p0) for the chemical potential of an ideal

gas. The chemical potential is also expressed in terms of a quantity called fugacity f, which was introduced

by G.N. Lewis, a quantity similar to pressure [1]. To keep the form of the chemical potential of a real gas

similar to that of the ideal gases, G.N. Lewis introduced the fugacity f through the definition

𝜇real (p, T) = 𝜇ideal (p, T) + RT ln
(

f

p

)
(6.2.31)
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Indeed, we must have limp→0( f /p) = 1 to recover the expression for the ideal gas at a very low pressure.

Thus, the deviation of f from the pressure of an ideal gas is a measure of the ‘nonideality’ of the real gas.

Comparing Equations (6.2.30) and (6.2.31), we see that

ln
(

f

p

)
=

p∫
0

(
Z − 1

p

)
dp (6.2.32)

It is possible to obtain Z explicitly for various equations such as the van der Waals equation or the virial

equation (6.2.5). For example, if we use the virial equation we have

Z =
pVm

RT
= [1 + B′(T) p + C′(T) p2 +⋯] (6.2.33)

=
[

1 + B(T)
(N

V

)
+ C(T)

(N
V

)2

+⋯
]

Substituting this expression in Equation (6.2.33) in Equation (6.2.32) we find that, to the second order in p:

ln
(

f

p

)
= B′(T) p +

C′(T) p2

2
+⋯ (6.2.34)

G.N. Lewis (1875–1946).
(Reproduced by courtesy of the AIP Emilio Segre Visual Archive, photo by Francis Simon.)

Generally, terms of the order p2 are small and may be ignored. Then, Equation (6.2.34) can be used for the

chemical potential of a real gas 𝜇real given by Equation (6.2.31) and can be written as

𝜇real(p, T) = 𝜇ideal (p, T) + RT ln
(

f

p

)
= 𝜇ideal (p, T) + RT (B′ (T) p +⋯)

(6.2.35)



180 Modern Thermodynamics

This expression can also be written in terms of the virial coefficients of Equation (6.2.5) by noting the relation

B = B′RT, to a first approximation. Thus, the chemical potential in terms of the virial coefficients is

𝜇real = 𝜇ideal(p, T) + Bp +⋯ (6.2.36)

Similarly, expressions for 𝜇real can be obtained using the van der Waals equation.

We can also obtain explicit expressions for 𝜇 using (𝜕F/𝜕N)T,V = 𝜇. Using the van der Waals equation, for

example, we can write the chemical potential as a function of the molar density n = N/V and temperature T
(Exercise 6.9):

𝜇 (n, T) = (U0 − 2 an) +
(

CmV

R
+ 1

1 − nb

)
RT − T

[
s0 + CmV ln T − R ln

( n
1 − bn

)]
(6.2.37)

6.2.7 Chemical Affinities

Finally, to understand the nature of chemical equilibrium of real gases it is useful to obtain affinities for

chemically reacting real gases. The affinity of a reaction A = – Σk vk𝜇k, in which vk are the stoichiometric

coefficients (which are negative for reactants and positive for products). For a real gas this can be written

using the expression (6.2.28) for the chemical potential:

Areal = Aideal −
∑

k

vk

p

∫
0

(Vm, real, k − Vm, ideal, k) dp (6.2.38)

This expression can be used to calculate the equilibrium constants for reacting real gases. The partial molar

volume Vm,ideal,k is RT/p. Hence, the above expression becomes

Areal = Aideal −
∑

k

vk

p

∫
0

(
Vm,real,k −

RT
p

)
dp (6.2.39)

With the above quantities, all the thermodynamics of real gases can be described once the real gas parameters,

such as the van der Waals constants or the virial coefficients, are known.

6.3 Thermodynamics Quantities for Pure Liquids and Solids

6.3.1 Equation of State

For pure solids and liquids, jointly called condensed phases, the volume is determined by the molecular size

and molecular forces and it does not change much with a change in p and T. Since the molecular size and

forces are very specific to a compound, the equation of state is specific to that compound. A relation between

V, T and p is expressed in terms of the coefficient of thermal expansion 𝛼 and the isothermal compressibility

𝜅T defined by Equations (5.4.5) and (5.4.6). If we consider V as a function of p and T, V(p, T), we can write

dV =
(
𝜕 V
𝜕 T

)
p

dT +
(
𝜕 V
𝜕p

)
T

dp = 𝛼VdT − 𝜅TVdp (6.3.1)

The values of 𝛼 and 𝜅T are small for solids and liquids. For liquids, the coefficient of thermal expansion 𝛼

is in the range 10−3 to 10−4 K−1 and isothermal compressibility 𝜅T is about 10−5 atm−1. For solids, 𝛼 is in

the range 10−5 to 10−6 K−1 and 𝜅T is in the range 10−6 to 10−7 atm−1. Table 6.2 lists the values of 𝛼 and 𝜅T
for some liquids and solids. Furthermore, the values of 𝛼 and 𝜅T are almost constant for T variations of about
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Table 6.2 List of coefficient of thermal expansion 𝛼 and isothermal
compressibility 𝜅T for some liquids and solids.

Compound 𝛼 (10−4 K−1) 𝜅T (10
−6 atm−1)

Water 2.1 49.6
Benzene 12.4 92.1
Mercury 1.8 38.7
Ethanol 11.2 76.8
Carbon tetrachloride 12.4 90.5
Copper 0.501 0.735
Diamond 0.030 0.187
Iron 0.354 0.597
Lead 0.861 2.21

100 K and pressure variations of about 50 atm. Therefore, Equation (6.3.1) can be integrated to obtain the

following equation of state:

V (p, T) = V (p0, T0) exp[𝛼(T − T0) − 𝜅T (p − p0)]

≈ V(p0, T0) [1 + 𝛼(T − T0) − 𝜅T (p − p0)]
(6.3.2)

6.3.2 Thermodynamic Quantities

Thermodynamically, the characteristic feature of solids and liquids is that 𝜇, S and H change very little with

pressure and, hence, they are essentially functions of T for a given N. If entropy is considered as a function

of p and T, then

dS =
(
𝜕S
𝜕T

)
p

dT +
(
𝜕S
𝜕p

)
T

dp (6.3.3)

The first term, (𝜕S/𝜕T)p = NCmp/T, which relates dS to the experimentally measurable Cmp. The second term

can be related to 𝛼 as follows:(
𝜕S
𝜕p

)
T
= −

[
𝜕

𝜕p

(
𝜕G (p, T)

𝜕T

)
p

]
T

= −
[
𝜕

𝜕T

(
𝜕G (p, T)

𝜕p

)
T

]
p

= −
(
𝜕V
𝜕T

)
p
= −V𝛼 (6.3.4)

With these observations, we can now rewrite Equation (6.3.3) as

dS =
NCmp

T
dT − 𝛼Vdp (6.3.5)

Upon integration, this equation yields

S(p, T) = S(0, 0) + N

T

∫
0

Cmp

T
dT − N

p

∫
0

𝛼Vmdp (6.3.6)

where we have used V = NVm. (That S(0, 0) is well defined is guaranteed by the Nernst theorem.) Since

Vm and 𝛼 do not change much with p, the third term in Equation (6.3.6) can be approximated to N𝛼Vmp. For

p = 1–10 atm, this term is small compared with the second term. For example, in the case of water, Vm =
18.0 × 10−6 m3 mol−1 and 𝛼 = 2.1 × 10−4 K−1. For p = 10 bar = 10 × 105 Pa, the term 𝛼Vmp is about
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3.6 × 10−3 J K−1 mol−1. The value of Cmp, on the other hand, is about 75 J K−1 mol−1. Though Cmp
approaches zero so that S is finite as T → 0, the molar entropy of water at p = 1 bar and T = 298 K is about

70 J K−1. Thus, it is clear that the third term in Equation (6.3.6) that contains p is insignificant compared with

the second term. Since this is generally true for solids and liquids, we may write

S (p, T) = S (0, 0) + N

T

∫
0

Cmp (T)

T
d T (6.3.7)

where we have written Cmp explicitly as a function of T. A knowledge of Cmp(T) will enable us to obtain

the value of entropy of a pure solid or liquid. Note that the integral in Equation (6.3.7) is ∫ T
0

deS because

(NCmp dT/T) = dQ/T = deS.

The chemical potential of condensed phases can be obtained from the Gibbs–Duhem equation d𝜇 =
−Sm dT + Vm dp (see Equation (5.2.4)). Substituting the value of molar entropy into the Gibbs–Duhem

equation and integrating, we get

𝜇(p, T) = 𝜇(0, 0) −
T

∫
0

Sm (T) dT +
p

∫
0

Vm dp

= 𝜇(T) + Vmp ≡ 𝜇0 (T) + RT ln a

(6.3.8)

where we assumed that Vm is essentially a constant. Once again, it can be shown that the term containing p is

small compared with the first term, which is a function of T. For water, Vmp = 1.8 J mol−1 when p = 1 atm,

whereas the first term is of the order 280 kJ mol−1. Following the definition of activity a, if we write Vmp =
RT ln(a), then we see that for liquids and solids the activity is nearly equal to unity.

In a similar manner, one can obtain other thermodynamic quantities such as enthalpy H and the Helmholtz

free energy F.

6.3.3 Heat Capacities

From the above expressions it is clear that one needs to know the molar heat capacities of a substance as a

function of temperature and pressure in order to calculate the entropy and other thermodynamic quantities. A

theory of heat capacities of solids, which requires statistical mechanics and quantum theory, is presented in

chapter 20. Here we shall only give a brief outline of Debye’s theory of molar heat capacities of solids, which

provides an approximate general theory. The situation is more complex for liquids because for liquids there

is neither complete molecular disorder, as in a gas, nor is there a long-range order as in the case of a solid.

According to a theory of solids formulated by Peter Debye, the molar heat capacity CmV of a pure solid is

of the form

CmV = 3RD (T∕𝜃) (6.3.9)

in which D(T/𝜃) is a function of the ratio T/𝜃. The parameter 𝜃 depends mainly on the chemical composition

of the solid and, to a very small extent, varies with the pressure. As the ratio T/𝜃 increases, the ‘Debye

function’ D(T/𝜃) tends to unity, and molar heat capacities of all solids CmV = 3R. The fact that the heat

capacities of solids tend to have the same value had been observed long before Debye formulated a theory of
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heat capacities; it is called the law of Dulong and Petit. Debye theory provided an explanation for the law of

Dulong and Petit. At very low temperatures, when T/𝜃 < 0.1:

D
(T
𝜃

)
≈ 4𝜋4

5

(T
𝜃

)3

(6.3.10)

Thus, Debye’s theory predicts that the molar heat capacities at low temperatures will be proportional to the

third power of the temperature. Experimentally, this was found to be true for many solids. Quantum theory is

required to explain this result.

Once CmV is known, Cmp can be obtained using the general expression Cmp – CmV = TVm𝛼
2/𝜅T. More

detail on this subject can be found in texts on condensed matter. The thermodynamics of liquid and solid

mixtures is discussed in Chapters 7 and 8.

Reference

1. Lewis, G.N., Randall, M., Thermodynamics and Free Energy of Chemical Substances. 1925, McGraw-Hill: New York.

Examples

Example 6.1 Show that CmV for a van der Waals gas is the same as that of an ideal gas.

Solution The relation between CmV for real and ideal gases is given by Equation (6.2.9):

CmV , real = CmV , real +
V

∫
∞

T

(
𝜕2p

𝜕T2

)
V

dV

For 1 mol of a van der Waals gas:

p = RT
Vm − b

− a
1

V2
m

Since this is a linear function of T the derivative (𝜕2p/𝜕T2)V = 0. Hence, the integral in the expression relating

CmV,real and CmV,ideal is zero. Hence, CmV,real = CmV,ideal.

Example 6.2 Calculate the total internal energy of a real gas using the Berthelot equation (6.2.2).

Solution The internal energy of a real gas can be calculated using the relation (6.2.7):

Ureal(T , V , N) = Uideal (T , N) +
V

∫
∞

T2
(
𝜕

𝜕T

p

T

)
V

dV

For the Berthelot equation:

p = RT
Vm − b

− a
TV2

m
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In this case, the integral

V

∫
∞

T2
(
𝜕

𝜕T

p

T

)
V

dV = −
V

∫
∞

a N2

V2
T2 𝜕

𝜕T

(
1

T2

)
dV =

V

∫
∞

2aN2

T
1

V2
dV

= −2aN2

TV

Hence:

Ureal (T , V , N) = Uideal (T , N) − 2a N2

T V

Exercises

6.1 For an ideal gas obtain the explicit expressions for the following:

(a) F(V, T, N) = U – TS as a function of V, T and N.

(b) G = U – TS + pV as a function of p, T and N.

(c) Use the relation 𝜇 = (𝜕F/𝜕N)V,T to obtain an expression for 𝜇 as a function of the molar density

N/V and T. Also show that 𝜇 = 𝜇0(T) + RT ln(p/p0), in which 𝜇0(T) is a function of T.

6.2 (a) Obtain a general expression for the entropy of mixing of two nonidentical gases of equal molar

densities N/V, with molar amounts N1 and N2, initially occupying volumes V1 and V2. Also show

that the entropy of mixing can be written as ΔSmix = – RN(x1 ln x1 + x2 ln x2), where x1 and x2

are the mole fractions and N = N1 + N2.

(b) Using the Stirling approximation N! ≈ N ln N – N, obtain Equation (6.1.15) from Equation

(6.1.14).

6.3 For N2 the critical values are pc = 33.5 atm, Tc = 126.3 K and Vmc = 90.1 × 10−3 L mol−1. Using

Equations (6.2.1) to (6.2.3), calculate the constants a and b for the van der Waals, Berthelot and

Dieterici equations. Plot the p–Vm curves for the three equations at T = 300 K, 200 K and 100 K on

the same graph in the range Vm = 0.1 L to 10 L and comment on the differences between the curves.

6.4 Using the van der Waals equation, write the pressure as a function of the molar density N/V. Assume

that the quantity b(N/V) is small and use the expansion 1/(1 – x) = 1 + x + x2 + x3 + ∙ ∙ ∙, valid for x
< 1, to obtain an equation similar to the virial equation

p = RT
N
V

[
1 + B(T)

N
V
+ C(T)

(N
V

)2

+⋯
]

Comparing the two series expansions for p, show that the van der Waals constants a and b and the

virial coefficients B(T) and C(T) are related by B = b – (a/RT) and C = b2.

6.5 The Boyle temperature is defined as the temperature at which the virial coefficient B(T) = 0. An

empirical function used to fit experimental data is B(T) = 𝛼 – 𝛽 exp(𝛾/T), in which 𝛼, 𝛽 and 𝛾 are

constants tabulated in Table 6.1.

(a) Using the data in Table 6.1, determine the Boyle temperatures of N2, O2 and CH4.

(b) Plot B(T) for N2, O2 and CH4 on one graph for an appropriate range of T.
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6.6 (a) Assume an ideal gas energy Uideal = CmVNT, where CmV = 28.46 J K−1 for CO2 and calculate

the difference ΔU between Uideal and Uvw for N = 1, T = 300 K at V = 0.5 L. What percentage

of Uideal is ΔU?

(b) Use Maple/Mathematica to obtain a three-dimensional plot of ΔU/Uideal for 1 mol of CO2, in the

volume range V = 22.00 L to 0.50 L for T = 200 K to 500 K.

6.7 Obtain Equation (6.2.9) from Equation (6.2.7) and the definition CmV,real = (𝜕Ureal/𝜕T)V.

6.8 For CO2, using the van der Waals equation:

(a) Obtain an expression for the compressibility factor Z. At T = 300 K and for N = 1, using

Mathematica/Maple, plot Z as a function of V from V = 22.0 L to 0.5 L.

(b) Obtain an explicit expression for (Fvw – Fideal) for 1 mol of CO2 as a function of T and V in which

if T is in Kelvin and V is in liters, then (Fvw – Fideal) is in joules.

6.9 Show that for a van der Waals gas:

𝜇vw (n, T) = (U0 − 2an) +
(

CmV

R
+ 1

1 − nb

)
RT − T

[
s0 + CmV ln T − R ln

( n
1 − bn

)]
in which n = N/V. (Hint: it can be obtained from Fvw.)

6.10 Obtain Equation (6.2.24) from (6.2.22) and Equation (6.2.26) from (6.2.24) and (6.2.25).



7
Thermodynamics of Phase Change

Introduction

Transformations from a liquid to a vapor phase or from a solid to a liquid phase are caused by heat. The

eighteenth century investigations of Joseph Black revealed that these transformations take place at a definite

temperature: the boiling point or the melting point. At this temperature the heat absorbed by the substance

does not increase its temperature but is ‘latent’ or concealed; the heat’s effect is to cause the change from

one phase to another, not to increase the substance’s temperature. Joseph Black, who clarified this concept,

measured the ‘latent heat’ for the transformation of ice to water.

Under suitable conditions, the phases of a compound can coexist in a state of thermal equilibrium. The nature

of this state of thermal equilibrium and how it changes with pressure and temperature can be understood

using the laws of thermodynamics. In addition, at the point where the phase transition takes place, some

thermodynamic quantities, such as molar entropy, change discontinuously. Based on such discontinuous

changes of some thermodynamic quantities, such as molar heat capacity and molar entropy, phase transitions

in various materials can be classified into different ‘orders’. There are general theories that describe phase

transitions of each order. The study of phase transitions has grown to be a large and interesting subject, and

some very important developments occurred during the 1960s and the 1970s. In this chapter, we will only

present some of the basic results. For further understanding of phase transitions, we refer the reader to books

devoted to this subject [1–3].

7.1 Phase Equilibrium and Phase Diagrams

The conditions of temperature and pressure under which a substance exists in different phases, i.e. gas,

liquid or solid, are summarized in a phase diagram. A simple phase diagram is shown in Figure 7.1. Under

suitable conditions of pressure and temperature, two phases may coexist in thermodynamic equilibrium. The

thermodynamic study of phase equilibrium leads to many interesting and useful results. For example, it tells

us how the boiling point or freezing point of a substance changes with changes in pressure. We shall see how

the thermodynamic formalism developed in the previous chapters enables us to obtain expression that relates

the boiling point of a liquid to its pressure.

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 7.1 (a) Phase diagram for a one-component system showing equilibrium p–T curves (defined by the
equality of the chemical potentials), the triple point T and the critical point C. Tc is the critical temperature above
which the gas cannot be liquefied by increasing the pressure. (b) A liquid in equilibrium with its vapor. The affinity
for the liquid–vapor transformation A = 𝜇l – 𝜇g = 0. An infinitely slow expansion in the system’s volume results is
a ‘reversible’ transformation of the liquid to gas at an affinity A ≈ 0.

We begin by looking at the equilibrium between liquid and gas phases, as shown in Figure 7.1b. When a

liquid is in a closed container, a part of it will evaporate and fill the space above it until an equilibrium is

reached. The system under consideration is closed and consists only of the liquid in equilibrium with its vapor

at a fixed temperature. In Figure 7.2, the p–V isotherms of a vapor–liquid system are shown. The region of

coexistence of the liquid and vapor phases corresponds to the flat portion XY of the isotherms. When T > Tc,

the flat portion does not exist; there is no distinction between the gas and the liquid phases. The flat portion

Figure 7.2 p–V isotherms of a gas showing critical behavior. Tc is the critical temperature above which the gas
cannot be liquefied by increasing the pressure. In the flat region XY, the liquid and the gas phases coexist.



Thermodynamics of Phase Change 189

of each isotherm in Figure 7.2 corresponds to a point on the curve TC in Figure 7.1a; as the temperature

approaches Tc, we approach the critical point C.

For a thermodynamic analysis of the equilibrium between liquid and gas phases of a substance let us

consider a heterogeneous system in which the two phases coexist and can interconvert, thus changing the

volume of each phase. Under these conditions, the liquid converts irreversibly to vapor, or vice versa, until

equilibrium between the two phases is attained. The exchange of matter between the two phases may be

considered a ‘chemical reaction’, which we may represent as

l ⇌ g (7.1.1)

Let the chemical potential of the substance k in the two phases be 𝜇
g
k and 𝜇1

k , with the superscripts ‘g’ for gas

and ‘l’ for liquid. At equilibrium, the entropy production due to every irreversible process must vanish. This

implies that the affinity corresponding to liquid–vapor conversion must vanish, i.e.

A = 𝜇1
k (p, T) − 𝜇g

k (p, T) = 0

i.e.

𝜇1
k (p, T) = 𝜇g

k (p, T) (7.1.2)

in which we have made explicit that the two chemical potentials are functions of pressure and temperature.

The pressure of the vapor phase in equilibrium with the liquid phase is called the saturated vapor pressure.
The equality of the chemical potentials implies that, when a liquid is in equilibrium with its vapor, the pressure

and temperature are not independent. This relationship between p and T, as expressed in Equation (7.1.2),

gives the coexistence curve TC in the phase diagram shown in Figure 7.1a.

A liquid in equilibrium with its vapor is a good system to illustrate the idea of a ‘reversible’ transformation

for which diS = 0 (Figure 7.1b). Let us assume that initially the system is in equilibrium with A = 0. If the

volume of the system is increased slowly, the chemical potential of the gas phase will decrease by a small

amount, making the affinity for the liquid-to-gas transformation positive. This will result in the conversion

of liquid to gas until a new equilibrium is established. In the limit of an ‘infinitely slow’ increase of volume

such that the transformation takes place at an arbitrarily small A, i.e. A ≈ 0, virtually no entropy is produced

during this transformation because diS = A d𝜉 ≈ 0. Therefore, it is a reversible transformation. A reversible

transformation, of course, is an idealized process taking place at an infinitely slow rate. In any real process

that occurs at a nonzero rate, diS = A d𝜉 > 0, but this change can be made arbitrarily small by slowing the

rate of transformation.

Clearly, equality of chemical potentials as in Equation (7.1.2) must be valid between any two phases that

are in equilibrium. If there are P phases, then we have the general equilibrium condition:

𝜇1
k (p, T) = 𝜇2

k (p, T) = 𝜇3
k (p, T) = ⋯ = 𝜇p

k (p, T) (7.1.3)

The phase diagram Figure 7.1a also shows another interesting feature: the critical point C at which the

liquid–vapor coexistence curve TC terminates. If the temperature of the gas is above Tc, the gas cannot be

liquefied by increasing the pressure. As the pressure increases, the density increases but there is no transition
to a condensed phase – and no latent heat. In contrast, there is no critical point for the transition between solid

and liquid due to the fact that a solid phase has a definite crystal structure that the liquid phase does not have.

Owing to the definite change in symmetry, the transition between a solid and liquid is always well defined.

A change of phase of a solid is not necessarily a transformation to a liquid. A solid may exist in different

phases. Thermodynamically, a phase change is identified by a sharp change in properties such as the heat

capacity. In molecular terms, these changes correspond to different arrangements of the atoms, i.e. different

crystal structures. For example, at very high pressures, ice exists in different structures, and these are the

different solid phases of water. Figure 7.3 shows the phase diagram of water.
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Figure 7.3 (a) The phase diagram of water at ordinary pressures (not to scale). (b) At high pressures, the solid
phase (ice) can exist in different phases, as shown on the right. The triple point of water is at p = 0.006 bar,
T = 273.16 K. The critical point is at pc = 218 bar, Tc = 647.3 K.

7.1.1 The Clapeyron Equation

At a given pressure, the coexistence cure specifies the temperature at which the two phases can coexist. It is

the temperature at which one phase begins to convert to the other; in the case of a liquid–vapor coexistence

curve, the temperature corresponds to the boiling point at the given pressure. Thus, if we obtain an explicit

relation between the pressure and the temperature that defines the coexistence curve, then we can know how

the boiling point or freezing point changes with pressure. Using the condition for equilibrium (7.1.2), we can

arrive at a more explicit expression for the coexistence curve. Let us consider two phases denoted by 1 and 2.

Using the Gibbs–Duhem equation, d𝜇 = – Sm dT+ Vm dp, one can derive a differential relation between p and

T of the system as follows. From Equation (7.1.3) it is clear that, for a component k, d𝜇1
k = d𝜇2

k . Therefore,

we have the equality

− Sm1d T + Vm1dp = −Sm2d T + Vm2dp (7.1.4)

in which the molar quantities for the two phases are indicated by the subscripts ‘m1’ and ‘m2’. From this it

follows that

dp

d T
=

Sm1 − Sm2

Vm1 − Vm2

=
ΔHtrans

T(Vm1 − Vm2)
(7.1.5)

in which we have expressed the difference in the molar entropy between the two phases in terms of the

enthalpy of transition: Sm1 – Sm2 = (ΔHtrans/T), where ΔHtrans is the molar enthalpy of the transition (vapor-

ization, fusion or sublimation). Molar enthalpies of vaporization and fusion of some substances are listed in

Table 7.1. More generally, then, we have the equation called the Clapeyron equation:

dp

dT
=
ΔHtrans

TΔVm

(7.1.6)
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Table 7.1 Enthalpies of fusion of and vaporization at p = 1 bar = 105 Pa = 0.987 atm.

Substance Tm (K) ΔHfus (kJ mol−1) Tb (K) ΔHvap (kJ mol−1)

He 0.95∗ 0.021 4.22 0.082
H2 14.01 0.12 20.28 0.46
O2 54.36 0.444 90.18 6.820
N2 63.15 0.719 77.35 5.586
Ar 83.81 1.188 87.29 6.51
CH4 90.68 0.941 111.7 8.18
C2H5OH 156 4.60 351.4 38.56
CS2 161.2 4.39 319.4 26.74
CH3OH 175.2 3.16 337.2 35.27
NH3 195.4 5.652 239.7 23.35
CO2 217.0 8.33 194.6 25.23
Hg 234.3 2.292 629.7 59.30
CCl4 250.3 2.5 350 30.0
H2O 273.15 6.008 373.15 40.66
Ga 302.93 5.59 2676 270.3
Ag 1235.1 11.3 2485 257.7
Cu 1356.2 13.0 2840 306.7

Source: D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 75th edition, 1994, CRC Press: Ann Arbor, MI.
∗Under high pressure.

Here, ΔVm is the difference in the molar volumes of the two phases. The temperature T in this equation

is the transition temperature, i.e. boiling point, melting point, etc. This equation tells us how the transition

temperature changes with pressure. For example, for a transition from a solid to a liquid in which there is

an increase in the molar volume (ΔV > 0), the freezing point will increase (dT > 0) when the pressure is

increased (dp > 0); if there is a decrease in the molar volume, then the opposite will happen – as is the case

when ice melts and becomes liquid water.

7.1.2 The Clausius–Clapeyron Equation

For the case of liquid–vapor transitions, the Clapeyron equation can be further simplified. In this transition

Vm1 ≪ Vmg Therefore, we may approximate Vmg – Vm1 by Vmg. In this case the Clapeyron equation (7.1.6)

simplifies to

dp

dT
=
ΔHvap

TVmg

(7.1.7)

As a first approximation, we may use the ideal gas molar volume Vmg = RT/p. Substituting this expression

in the place of Vmg, and noting that dp/p = d(ln p), we arrive at the following equation, called the Clausius–
Clapeyron equation:

d(ln p)

dT
=
ΔHvap

RT2
(7.1.8)
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Figure 7.4 Equilibrium between liquid and vapor phases. (a) An isolated system, which contains a liquid in
equilibrium with its vapor. The pressure of the vapor pg is called the saturated vapor pressure. (b) When the
liquid subject to a pressure pext (atmospheric pressure) is heated, bubbles of its vapor can form when pg ≥ pext
and the liquid begins to ‘boil’. (c) The vapor in the bubble is the saturated vapor in equilibrium with the liquid,
as in the case of an isolated system (a).

This equation is also applicable to a solid in equilibrium with its vapor (e.g. I2), since the molar volume of

the vapor phase is much larger than that of the solid phase. For a solid in equilibrium with its vapor, ΔHsub

takes the place of ΔHvap. At times, Equation (7.1.8) is also written in its integrated form:

ln p2 − ln p1 =
ΔHvap

R

(
1

T1

− 1

T2

)
(7.1.9)

As illustrated in Figure 7.4, Equations (7.1.8) and (7.1.9) tell us how the boiling point of a liquid changes

with pressure. When a liquid subjected to an external pressure, pext, is heated, bubbles containing the vapor

(in equilibrium with the liquid) can form provided that the vapor pressure pg ≥ pext. The liquid then begins to

‘boil’. If the vapor pressure p is less than pext, then the bubbles cannot form: they ‘collapse’. The temperature

at which p= pext is what we call the boiling point Tb. Hence, in Equations (7.1.8) and (7.1.9) we may interpret

p as the pressure to which the liquid is subjected and T is the corresponding boiling point. It tells us that the

boiling point of a liquid decreases with a decrease in pressure pext.

7.2 The Gibbs Phase Rule and Duhem’s Theorem

Thus far we have considered the equilibrium between two phases of a single compound. When many

compounds or components and more than two phases are in equilibrium, the chemical potential of each

component should be the same in every phase in which it exists. When we have a single phase, such as a

gas, its intensive variables, i.e. pressure and temperature, can be varied independently. However, when we

consider equilibrium between two phases, such as a gas and liquid, p and T are no longer independent. Since

the chemical potentials of the two phases must be equal, 𝜇1(p, T) = 𝜇2(p, T), which implies that only one of

the two intensive variables is independent. In the case of liquid–vapor equilibrium of a single component, p
and T are related according to Equation (7.1.8). The number of independent intensive variables depends on

the number of phases in equilibrium and the number of components in the system.
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The independent intensive variables that specify a state are called its degrees of freedom. Gibbs observed

that there is a general relationship between the number of degrees of freedom f, the number of phases P and

the number of components C:

f = C − P + 2 (7.2.1)

This can be seen as follows. At a given T, specifying p is equivalent to specifying the density as moles per

unit volume (through the equation of state). For a given density, the mole fractions specify the composition

of the system. Thus, for each phase, p, T and the C mole fractions xi
k (in which the superscript indicates

the phase and the subscript the component) are the intensive variables that specify the state. Of the C mole

fractions in each phase i, there are (C – 1) independent mole fractions xi
k because

∑C
k=1 xi

k = 1. In a system

with C components and P phases, there are a total of P(C – 1) independent mole fractions xi
k. These, together

with p and T, make a total of P(C – 1) + 2 independent variables. On the other hand, equilibrium between

the P phases of a component k requires the equality of chemical potentials in all the phases:

𝜇1
k (p, T) = 𝜇2

k (p, T) = 𝜇3
k (p, T) = ⋯ = 𝜇p

k (p, T) (7.2.2)

in which, as before, the superscript indicates the phase and the subscript the component. These constitute

(P – 1) constraining equations for each component. For the C components, we then have a total of C(P – 1)

equations between the chemical potentials, which reduces the number of independent intensive variables by

C(P – 1). Thus, the total number of independent degrees of freedom is

f = P(C – 1) + 2 – C(P – 1) = C – P + 2

If a component ‘a’ does not exist in one of the phases ‘b’, then the corresponding mole fraction xa
b
= 0, thus

reducing the number of independent variables by one. However, this also decreases the number of constraining

equations by one. Hence, there is no overall change in the number of degrees of freedom.

As an illustration of the Gibbs phase rule, let us consider the equilibrium between the solid, liquid and gas

phases of a pure substance, i.e. one component. In this case we have C = 1 and P = 3, which gives f = 0.

Hence, for this equilibrium, there are no free intensive variables; there is only one pressure and temperature at

which all three phases can coexist. This point is called the triple point (see Figure 7.1). At the triple point of

H2O, T = 273.16, K = 0.01 ◦C and p = 611 Pa = 6.11 × 10−3 bar. This unique condition for the coexistence

of the three phases may be used in defining the kelvin temperature scale.

If the various components of the system also chemically react through R independent reactions, then,

in addition to Equation (7.2.2), for the chemical equilibrium, the R affinities, Ak, of each of the chemical

reactions must equal zero:

A1 = 0, A2 = 0, A3 = 0,… , AR = 0 (7.2.3)

Consequently, the number of degrees of freedom is further decreased by R and we have

f = C − R − P + 2 (7.2.4)

In older statements of the phase rule, the term ‘number of independent components’ is used to represent

(C – R). In a reaction such as A ⇌ B + 2C, if the amount B and C is entirely a result of decomposition of

A, then the amount of B and C is determined by the amount of A that has converted to B and C; in this case

the mole fractions of B and C are related, xC = 2xB. This additional constraint, which depends on the initial

preparation of the system, decreases the degrees of freedom by one.
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In addition to the phase rule identified by Gibbs, there is another general observation that Pierre Duhem

made in his treatise Traité Élémentaire de Mechanique Chimique, which is referred to as Duhem’s theorem.

It states:

Whatever the number of phases, components and chemical reactions, if the initial molar amounts Nk of

all the components are specified, the equilibrium state of a closed system is completely specified by two

independent variables.

The proof of this theorem is as follows. The state of the entire system is specified by the pressure p,

temperature T and the molar amounts Ni
k, in which the superscript indicates the P phases and the subscript

the C component – a total of CP molar amounts in P phases. Thus, the total number of variables that specify

a system is CP + 2. Considering the constraints on these variables, for the equilibrium of each component k
between the phases we have

𝜇1
k (p, T) = 𝜇2

k (p, T) = 𝜇3
k (p, T) = ⋯ = 𝜇p

k (p, T) (7.2.5)

a total of (P – 1) equations for each component, a total of C(P – 1) equations. In addition, since the total molar

amount, say Nk,total, of each component is specified, we have
∑P

i=1 Ni
k = Nk,total for each component, a total

of C equations. Thus, the total number of constraints is C(P – 1) + C. Hence, the total number of independent

equations is CP + 2 – C(P – 1) – C = 2.

The addition of chemical reactions does not change this conclusion because each chemical reaction 𝛼 adds

a new independent variable 𝜉𝛼 , its extent of reaction, to each phase and at the same time adds the constraint for

the corresponding chemical equilibrium A𝛼 = 0. Hence, there is no net change in the number of independent

variables.

Comparing the Gibbs phase rule and the Duhem theorem, we see the following. The Gibbs phase rule

specifies the total number of independent intensive variables regardless of the extensive variables in the

system. In contrast, Duhem’s equation specifies the total number of independent variables, intensive or

extensive, in a closed system.

7.3 Binary and Ternary Systems

Figure 7.1 shows the phase diagram for a single-component system. The phase diagrams for systems with

two and three components are more complex. In this section we shall consider examples of two- and three-

component systems.

7.3.1 Binary Liquid Mixtures in Equilibrium with the Vapor

Consider a liquid mixture of two components, A and B, in equilibrium with their vapors. This system contains

two phases and two components. The Gibbs phase rule tells us that such a system has two degrees of freedom.

We may take these degrees of freedom to be the pressure and the mole fraction xA of component A. Thus,

if we consider a system in which the vapor pressure is to be set at a given value, for each value of the mole

fraction xA, there is a corresponding temperature at which the pressure will reach the set value; at this point

the two phases are in equilibrium. For example, if the vapor pressure is to be 0.5 bar, for the liquid to be in

equilibrium with its vapor the temperature T must be set at an appropriate value (T equals the boiling point

at 0.5 bar).

If the applied pressure is the atmospheric pressure, then the temperature corresponds to the boiling point.

In Figure 7.5, the curve I is the boiling point as a function of the mole fraction xA; the boiling points of the two
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Figure 7.5 The boiling point versus composition of a mixture of two similar liquids, such as benzene and toluene.

components A and B are TA and TB respectively. Curve II shows the composition of the vapor at each boiling

temperature. If a mixture with composition corresponding to the point M is boiled, then the vapor will have

the composition corresponding to the point N; if this vapor is now collected and condensed, then its boiling

point and composition will correspond to the point O. This process enriches the mixture in component B. For

such systems, by continuing this process a mixture can be enriched in the more volatile component, which

has the lower boiling point; the liquid at M is enriched in the component with the higher boiling point.

7.3.2 Azeotropes

The relation between the boiling point and the compositions of the liquid and the vapor phases shown in

Figure 7.5 is not valid for all binary mixtures. For many liquid mixtures the boiling point curve is as shown

in Figure 7.6. In this case, there is a value of xA at which the composition of the liquid and the vapor are

the same. Such systems are called azeotropes. The components of an azeotrope cannot be separated by

distillation. For example, in the case of Figure 7.6a, starting at a point to the left of the maximum, if the

mixture is boiled and the vapor collected, then the vapor will be enriched in component B while the remaining

Figure 7.6 The boiling point versus composition of liquid and vapor phases of binary mixtures called azeotropes.
Azeotropes have a point at which the vapor and the liquid phases have the same composition. At this point the
boiling point is either (a) a maximum or (b) a minimum.
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Table 7.2 Examples of azeotropes.

Boiling point (◦C)

Pure compound Azeotrope Azeotropic wt %

Azeotropes formed with water at p = 1 bar
Boiling point of water = 100 ◦C

Hydrogen chloride (HCl) –85 108.58 20.22
Nitric acid (HNO3) 86 120.7 67.7
Ethanol (C2H5OH) 78.32 78.17 96

Azeotropes formed with acetone at p = 1 bar
Boiling point of acetone ((CH3) 2CO) = 56.15 ◦C
Cyclohexane (C6H12) 80.75 53.0 32.5
Methyl acetate (CH3COOCH3) 57.0 55.8 51.7
n-Hexane (C6H14) 68.95 49.8 41

Azeotropes formed with methanol at p = 1 bar
Boiling point of methanol (CH3OH) = 64.7 ◦C

Acetone ((CH3) 2CO) 56.15 55.5 88
Benzene (C6H6) 80.1 57.5 60.9
Cyclohexane (C6H12) 80.75 53.9 63.6

Source: D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 75th edition, 1994, CRC Press: Ann Arbor, MI.

liquid will be richer in component A and move towards the azeotropic composition. Thus, successive boiling

and condensation results in pure B and a mixture with azeotropic composition, not pure A and pure B. The

azeotropic composition and the corresponding boiling points for binary mixtures are tabulated. One may

notice in Figure 7.6 that the boiling point corresponding to the azeotropic composition occurs at an extremum

(maximum or minimum). That this must be so for thermodynamic reasons has been noted by Gibbs and later

by Konovalov and Duhem. This observation is called the Gibbs–Konovalov theorem [4], which states that:

At constant pressure, in an equilibrium displacement of a binary system, the temperature of coexistence

passes through an extremum if the composition of the two phases is the same.

We shall not discuss the proof of this theorem here. An extensive discussion of this and other related

theorems may be found in the classic text by Prigogine and Defay [4]. Azeotropes are an important class of

solutions whose thermodynamic properties we shall discuss in more detail in Chapter 8. Some examples of

azeotropes are given in Table 7.2.

7.3.3 Solution in Equilibrium with Pure Solids: Eutectics

The next example we consider is a solid–liquid equilibrium of two components, A and B, which are miscible

in the liquid state but not in the solid state. This system has three phases in all, the liquid with A + B, solid

A and solid B.

We can understand the equilibrium of such a system by first considering the equilibrium of two-phase

systems, the liquid and one of the two solids, A or B, and then extending it to three phases. In this case, the

Gibbs phase rule tells us that, with two components and two phases, the number of degrees of freedom equals

two. We can take these two degrees of freedom to be the pressure and composition. Thus, if the mole fraction

xA and the pressure are fixed, then the equilibrium temperature is also fixed. By fixing the pressure at a given
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Figure 7.7 The phase diagram of a two-component system with three phases. The system has only one degree
of freedom. For a fixed pressure, the three phases (the liquid, solid A and solid B) are at equilibrium at the
eutectic point E. Along the curve ME, solid B is in equilibrium with the liquid and along the curve NE, solid A is
in equilibrium with the liquid. The point of intersection E specifies the equilibrium composition and temperature
when all three phases are in equilibrium. At a fixed T, if the system is initially at point P it will move towards the
equilibrium curve ME. Below the eutectic point the solid is a mixture of solid A and solid B.

value (say the atmospheric pressure) one can obtain an equilibrium curve relating T and xA. The two curves

corresponding to solid A in equilibrium with the liquid and solid B in equilibrium with the liquid are shown

in Figure 7.7. In this figure, along the curve EN, the solid A is in equilibrium with the liquid; along the curve

EM, solid B is in equilibrium with the solution. The point of intersection of the two curves, E, is called the

eutectic point, and the corresponding composition and temperature are called the eutectic composition and

the eutectic temperature.
Now, if we consider a three-phase system, the liquid, solid A and solid B, all in equilibrium, then the

Gibbs phase rule tells us that there is only one degree of freedom. If we take this degree of freedom to be the

pressure and fix it at a particular value, then there is only one point (T, xA) at which the three phases are in

equilibrium. This is the eutectic point. This is the point at which the chemical potentials of solid A and solid

B are equal to their corresponding chemical potentials in the liquid mixture. Since the chemical potentials of

solids and liquids do not change much with changes in pressure, the eutectic composition and temperature

are insensitive to variations in pressure.

7.3.4 Ternary Systems

As was noted by Gibbs, the composition of a solution containing three components may be represented by

points within an equilateral triangle whose sides have a length equal to one. Let us consider a system with

components A, B and C. As shown in Figure 7.8, a point P may be used to specify the mole fractions xA, xB

and xC as follows. From the point P, lines are drawn parallel to the sides of the equilateral triangle. The length

of these lines can be used to represent the mole fractions xA, xB and xC. It is left as an exercise to show that

such a construction ensures that xA + xB + xC = 1. In this representation of the composition, we see that:

1. The vertices A, B and C correspond to pure substances.

2. A line parallel to a side of the triangle corresponds to a series of ternary systems in which one of the mole

fractions remains fixed.
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Figure 7.8 The composition of a ternary system consisting of components A, B and C can be represented on
a triangular graph because xA + xB + xC = 1. The composition is represented as a point P inside an equilateral
triangle whose side has a length equal to one. The mole fractions are the lengths of the lines drawn parallel to the
sides of the triangle. Showing that Pa + Pb + Pc = 1 for any point P is left as an exercise.

3. A line drawn through one of the apexes to the opposite side represents a set of systems in which the mole

fractions of two components have a fixed ratio. As the apex is approached along this line, the system

becomes increasingly richer in the component represented by the apex. The variation of some property

of a three-component solution can be shown in a three-dimensional graph in which the base is the above

composition triangle; the height will then represent the property.

As an example, let us consider three components, A, B and C, in two phases: a solution that contains A, B

and C, and the other a solid phase of B in equilibrium with the solution. This system has three components

and two phases and, hence, has three degrees of freedom, which may be taken as the pressure and the

mole fractions xA and xB. At constant pressure, every value of xA and xB has a corresponding equilibrium

temperature. In Figure 7.9a, the point P shows the composition of the solution at a temperature T. As the

temperature decreases, the relative values of xA and xC remain the same while more of B turns into a solid.

According to the observations in point (3) above, this means that the point moves along the line BP as shown by

the arrow. As the temperature decreases, a point P′ is reached at which the component C begins to crystallize.

The system now has two solid phases and one solution phase and, hence, has two degrees of freedom.

The composition of the system is now confined to the line P′E. With a further decrease in the temperature,

component A also begins to crystallize at point E, which corresponds to the eutectic temperature. The system

now has only one degree of freedom. At the eutectic temperature and composition, all three components will

crystallize out in the eutectic proportions.

7.4 Maxwell’s Construction and the Lever Rule

The reader might have noticed that the isotherms obtained from an equation of state, such as the van der Waals

equation, do not coincide with the isotherms shown in Figure 7.2 at the part of the curve that is flat, i.e. where

the liquid and vapor phases coexist. The flat part of the curve represents what is physically realized when
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Figure 7.9 (a) The phase diagram of a ternary system showing the composition of the solution as it is cooled.
At the point P the system consists of two phases: the solution (A + B + C) in equilibrium with solid B. As the
temperature decreases, the composition moves along PP′. At P′ the component C begins to crystallize and the
composition moves along P′E until it reaches the ternary eutectic point E, at which all components begin to
crystallize. (b) The composition of the system at points P, P′ and E.

a gas is compressed at a temperature below the critical temperature. Using the condition that the chemical

potential of the liquid and the vapor phases must be equal at equilibrium, Maxwell was able to determine the

location of the flat part of the curve.

Let us consider a van der Waals isotherm for T < Tc (Figure 7.10). Imagine a steady decrease in volume

starting at the point Q. Let the point P be such that, at this pressure, the chemical potentials of the liquid and

the vapor phases are equal. At this point the vapor will begin to condense and the volume can be decreased

with no change in the pressure. This decrease in volume can continue until all the vapor has condensed to

a liquid at the point L. If the volume is maintained at some value between P and L, then liquid and vapor

coexist. Along the line PL the chemical potentials of the liquid and the vapor are equal. Thus, the total change

in the chemical potential along the curve LMNOP must be equal to zero:

∫
LMNOP

d𝜇 = 0 (7.4.1)

Now, since the chemical potential is a function of T and p, and since the path is an isotherm, it follows from

the Gibbs–Duhem relation that d𝜇 = Vm dp. Using this relation we may write the above integral as

O

∫
P

Vmdp +
N

∫
O

Vmdp +
M

∫
N

Vmdp+
L

∫
M

Vmdp = 0 (7.4.2)
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Figure 7.10 Maxwell’s construction specifies the physically realized flat part LP with respect to the theoretical
isotherm given by an equation of state such as the van der Waals equation. At equilibrium, the chemical potentials
at the points L and P must be equal. As shown in the text, this implies that the physically realized states lie on a
line LP that makes area I equal to area II.

The area I shown in Figure 7.10 is equal to

O

∫
P

Vmdp −
O

∫
N

Vmdp =
O

∫
P

Vmdp +
N

∫
O

Vmdp

which is same as the first two integrals in Equation (7.4.2). Similarly, the sum of the second two terms equals

the negative of area II.

Thus, Equation (7.4.2) may be interpreted as

Area I − Area II = 0 (7.4.3)

This condition specifies how to locate or construct a flat line on which the chemical potentials of the liquid

and the vapor are equal, the one that is physically realized. It is called the Maxwell construction.

At point P the substance is entirely in the vapor phase with volume Vg; at the point L it is entirely in the

liquid phase with volume Vl. At any point S on the line LP, if a fraction x of substance is in the vapor phase,

then the total volume VS of the system is

VS = xVg + (1 − x)V1 (7.4.4)

It follows that

x =
VS − V1

Vg − V1

= SL

LP
(7.4.5)

From this relation it can be shown that (Exercise 7.10) the mole fraction x of the vapor phase and (1 – x) of

the liquid phase satisfy

(SP)x = (SL)(1 − x) (7.4.6)

This relation is called the lever rule, in analogy with a lever supported at S, in equilibrium with weights Vl

and Vg attached to either end.
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7.5 Phase Transitions

Phase transitions are associated with many interesting and general thermodynamic features. As described

below, based on some of these features, phase transitions can be classified into different ‘orders’. Thermo-

dynamic behavior in the vicinity of the critical points has been of much interest from the point of view

of thermodynamic stability and extremum principles, discussed in Chapter 5. A classical theory of phase

transitions was developed by Lev Landau; however, in the 1960s, experiments showed that the predictions of

this theory were incorrect. This resulted in the development of the modern theory of phase transitions during

the 1960s and the 1970s. The modern theory is based on the work of C. Domb, M. Fischer, L. Kadanoff, G.S.

Rushbrook, B. Widom, K. Wilson and others. In this section we will only outline some of the main results of the

thermodynamics of phase transitions. A detailed description of the modern theory of phase transitions, which

uses the mathematically advanced concepts of renormalization-group theory, is beyond the scope of this book.

For a better understanding of this rich and interesting subject we refer the reader to books on this topic [1–3].

7.5.1 General Classification of Phase Transitions

When transition from a solid to a liquid or from a liquid to vapor takes place, there is a discontinuous change

in the entropy. This can clearly be seen (see Figure 7.11) if we plot molar entropy Sm = – (𝜕Gm/𝜕T)p as

function of T, for fixed p and N. The same is true for other derivatives of Gm, such as Vm = (𝜕Gm/𝜕p)T. The

chemical potential changes continuously, but its derivative is discontinuous. At the transition temperature,

because of the existence of latent heat, the molar heat capacities (ΔQ/ΔT) have a ‘singularity’ in the sense

they become infinite; i.e. heat absorbed ΔQ causes no change in temperature, i.e. ΔT = 0. Transitions of this

type are classified as first-order phase transitions.

The characteristic features of second-order phase transitions are shown in Figure 7.12. In this case,

the changes in the thermodynamic quantities are not so drastic: changes in Sm and Vm are continuous, but

their derivatives are discontinuous. Similarly, for the chemical potential it is the second derivative that is

discontinuous; the molar heat capacity does not have a singularity, but it has a discontinuity. Thus, depending

on the order of the derivatives that are discontinuous, phase transitions are classified as transitions of first or

second order.

7.5.2 Behavior near the Critical Point

The classical theory of phase transitions was developed by Lev Landau to explain the coexistence of phases

and the critical point at which the distinction between the phases disappears. Landau’s theory explains the

Figure 7.11 The change of thermodynamic quantities in a first-order phase transition that occurs at the temper-
ature Ttrans. X is a molar extensive quantity such as Sm or Vm that changes discontinuously.
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Figure 7.12 The change of thermodynamic quantities in a second-order phase transition that occurs at the
temperature Ttrans. X is a molar extensive quantity such as Sm or Vm whose derivative changes discontinuously.

critical behavior in terms of the minima of the Gibbs free energy. According to this theory, as shown in

Figure 7.13, in the coexistence region, for a given p and T, G as a function of V has two minima. As the

critical point is approached, the minima merge into one broad minimum. The classical theory of Landau makes

several predictions regarding the behavior of systems near the critical point. The predictions of the theory are,

in fact, quite general, valid for large classes of systems. Experiments done in the 1960s did not support these

predictions. We shall list below some of the discrepancies between theory and experiments using the liquid–

vapor transition as an example, but the experimental values are those obtained for many similar systems.

Also, all the classical predictions can be verified using the van der Waals equation of state as an example.

� For the liquid–vapor transition, as the critical temperature was approached from below (T< Tc), the theory

predicted that
Vmg − Vml ∝ (Tc − T)𝛽 , 𝛽 = 1∕2 (7.5.1)

However, experiments showed that 𝛽 was in the range 0.3–0.4, not equal to 0.5.

Figure 7.13 Classical theory of phase transitions is based on the shape of the Gibbs energy as a function of V.
The Gibbs energies associated with the points A, B, C and D are shown in the insets. As the system moves from
A to D, the Gibbs energy changes from a curve with two minima to a curve with one minimum, as shown in the
small figures.
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� Along the critical isotherm, as the critical pressure pc is approached from above, the theory predicted

Vmg − Vml ∝ (p − pc)1∕𝛿 , 𝛿 = 3 (7.5.2)

Experiments place the value of 𝛿 in the range 4.0–5.0.
� When the gas can be liquefied, it is easy to see that the isothermal compressibility 𝜅T = – (1/V)(𝜕V/𝜕p)T

diverges during the transition (the flat part of the p–V isotherm). Above the critical temperature, since there

is no transition to liquid there is no divergence. According to classical theory, as the critical temperature

is approached from above, the divergence of 𝜅T should be according to

𝜅T ∝ (T − Tc)−𝛾 , 𝛾 = 1 (7.5.3)

Experimental values of 𝛾 were found to be in the range 1.2–1.4.
� We have seen in Chapter 6 that the values of molar heat capacity CmV for real and ideal gases are the same

if the pressure is a linear function of the temperature. This means that the value of CmV does not diverge

(though the value of Cp diverges). Thus, according to classical theory, if

CmV ∝ (T − Tc)−𝛼 then 𝛼 = 0 (7.5.4)

Experimentally, the value of 𝛼 found was in the range –0.2 to +0.3.

The failure of the classical or Landau theory initiated a reexamination of the critical behavior. The main

reason for the discrepancy was found to be the role of fluctuations. Near the critical point, due to the flat nature

of the Gibbs energy, large long-range fluctuations arise in the system, and these were not properly included

in Landau’s theory. Kenneth Wilson incorporated these fluctuations into the theory through the development

of new mathematical techniques and the theory of the renormalization group. The modern theory of critical

behavior not only predicts the experimental values of the exponents 𝛼, 𝛽, 𝛾 and 𝛿 more successfully than the

classical theory but it also relates these exponents. For example, the modern theory predicts that

𝛽 = 2 − 𝛼
1 + 𝛿

and 𝛾 = (𝛼 − 2)(1 − 𝛿)

1 + 𝛿
(7.5.5)

Since a detailed presentation of the theory of the renormalization group is beyond the scope of this book, we

will leave the reader with only this brief outline of the limitations of the classical theory and accomplishments

of the modern theory.
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Examples

Example 7.1 A chemical reaction occurs in CCl4 at room temperature, but it is very slow. To increase

its speed to a desired value, the temperature needs to be increased to 80 ◦C. Since CCl4 boils at 77 ◦C at

p = 1.00 atm, the pressure has to be increased so that CCl4 will boil at a temperature higher than 80 ◦C. Using

the data in Table 7.1, calculate the pressure at which CCl4 will boil at 85 ◦C.
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Solution From the Clausius–Clapeyron equation we have

ln p − ln (1.00 atm) = 30.0 × 103

8.314

(
1

350
− 1

358

)
= 0.230

p = (1.00 atm)e0.23 = 12.6 atm

Example 7.2 If a system contains two immiscible liquids (such as CCl4 and CH3OH), how many phases

are there?

Solution The system will consist of three layers. A layer rich in CCl4, a layer rich in CH3OH and a layer

of vapor of CCl4 and CH3OH. Thus, there are three phases in this system.

Example 7.3 Determine the number of degrees of freedom of a two-component liquid mixture in equilibrium

with its vapor.

Solution In this case C = 2, P = 2. Hence, the number of degrees of freedom f = 2 – 2 + 2 = 2. These two

degrees of freedom can be, for example, T and the mole fraction xl of one of the components. The pressure

of the system (vapor phase in equilibrium with the liquid) is completely specified by xl and T.

Example 7.4 How many degrees of freedom does an aqueous solution of the weak acid CH3COOH have?

Solution The acid decomposition is

CH3COOH ⇌ CH3COO− + H+

The number of components is C = 4 (water, CH3COOH, CH3COO− and H+). The number of phases is P = 1.

There is one chemical reaction in equilibrium; hence R = 1. However, since the concentrations of CH3COO−

and H+ are equal, the degrees of freedom are reduced by one. Hence, the number of degrees of freedom

f = C – R – P + 2 – 1 = 4 – 1 – 1 + 2 – 1 = 3.

Exercises

7.1 The heat of vaporization of hexane is 30.8 kJ mol−1. The boiling point of hexane at a pressure of

1.00 atm is 68.9 ◦C. What will the boiling point be at a pressure of 0.50 atm?

7.2 The atmospheric pressure decreases with height. The pressure at a height h above sea level is given

approximately by the barometric formula p = p0e−Mgh/RT, in which, p0 is the pressure at sea level,

M = 0.0289 kg mol−1 and g = 9.81 ms−2. Assume that the enthalpy of vaporization of water is

ΔHvap = 40.6 kJ mol−1 and predict at what temperature water will boil at a height of 3.5 km.

7.3 At atmospheric pressure, CO2 turns from solid to gas, i.e. it sublimates. Given that the triple point of

CO2 is at T = 216.58 K and p = 518.0 kPa, how would you obtain liquid CO2?

7.4 In a two-component system, what is the maximum number of phases that can be in equilibrium?

7.5 Determine the number of degrees of freedom for the following systems:

(a) solid CO2 in equilibrium with CO2 gas;

(b) an aqueous solution of fructose;

(c) Fe(s) + H2O(g) ⇌ FeO(s) + H2(g).
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7.6 Draw qualitative figures of T versus xA curves (Figure 7.6) for the azeotropes in Table 7.2.

7.7 In Figure 7.8, show that Pa + Pb + Pc = 1 for any point P.

7.8 In the triangular representation of the mole fractions of a ternary solution, show that along the line

joining an apex and a point on the opposite side, the ratio of two of the mole fractions remains constant

while the mole fraction of the third component changes.

7.9 On triangular graph paper, mark points representing the following compositions:

(a) xA = 0.2, xB = 0.4, xC = 0.4

(b) xA = 0.5, xB = 0, xC = 0.5

(c) xA = 0.3, xB = 0.2, xC = 0.5

(d) xA = 0, xB = 0, xC = 1.0.

7.10 Obtain the lever rule (7.4.6) from (7.4.5).

7.11 When the van der Waals equation is written in terms of the reduced variables pr, Vr and Tr (see Equation

(1.4.6)), the critical pressure, temperature and volume are equal to one. Consider small deviations from

the critical point, pr = 1 + 𝛿p and Vr = 1 + 𝛿V on the critical isotherm. Show that 𝛿V is proportional

to (𝛿p)1/3. This corresponds to the classical prediction (7.5.2).
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Thermodynamics of Solutions

8.1 Ideal and Nonideal Solutions

Many properties of solutions can be understood through thermodynamics. For example, we can understand

how the boiling and freezing points of a solution change with composition, how the solubility of a compound

changes with temperature and how the osmotic pressure depends on the concentration.

We begin by obtaining the chemical potential of a solution. As noted in Chapter 5 (Equation (5.3.5)), the

general expression for the chemical potential of a substance may be written as 𝜇(p, T) = 𝜇0(p0, T) + RT
ln a, in which a is the activity and 𝜇0 is the chemical potential of the standard state in which a = 1. For

an ideal gas mixture, in Equation (6.1.9) we saw that the chemical potential of a component can be written in

terms of its mole fraction xk in the form 𝜇k(p, T, xk) = 𝜇0(p0, T) + RT ln xk. We shall see in this section that

properties of many dilute solutions can be described by a chemical potential of the same form. This has led

to the following definition of an ideal solution as a solution for which

𝜇k(p, T , xk) = 𝜇0
k (p, T) + RT ln xk (8.1.1)

where 𝜇0(p, T) is the chemical potential of a reference state that is independent of xk. We stress that the

similarity between ideal gas mixtures and ideal solutions is only in the dependence of the chemical potential

on the mole fraction; the dependence on the pressure, however, is entirely different, as can be seen from the

general expression for the chemical potential of a liquid (Equation (6.3.8)).

In Equation (8.1.1), if the mole fraction of the ‘solvent’ xs is nearly equal to one, i.e. for dilute solutions, then

for the chemical potential of the solvent the reference state 𝜇0
k (p, T) may be taken to be 𝜇∗k (p, T), the chemical

potential of the pure solvent. For the other components, xk ≪ 1; as we shall see below, Equation (8.1.1) is still

valid in a small range, but in general the reference state is not 𝜇∗k (p, T). Solutions for which (8.1.1) is valid

for all values of xk are called perfect solutions. When xk = 1, since we must have 𝜇k = 𝜇
∗
k (p, T), it follows

that for perfect solutions

𝜇k(p, T , xk) = 𝜇∗k (p, T) + RT ln xk, ∀xk (8.1.2)
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Figure 8.1 Equilibrium between a solution and its vapor.

The activity of nonideal solutions is expressed as ak = 𝛾kxk in which 𝛾k is the activity coefficient, a quantity

introduced by G.N. Lewis. Thus, the chemical potential of nonideal solutions is written as

𝜇k(p, T , xk) = 𝜇0
k (p, T) + RT ln ak

= 𝜇∗k (p, T) + RT ln(𝛾kxk)
(8.1.3)

The activity coefficient 𝛾k → 1 as xk → 1.

Let us now look at conditions under which ideal solutions are realized. We consider a solution with many

components, whose mole fractions are xi, in equilibrium with its vapor (see Figure 8.1). At equilibrium,

the affinities for the conversion of the liquid to the gas phase are zero for each component i; i.e. for each

component the chemical potentials in the two phases are equal. If we use the ideal gas approximation for the

component in the vapor phase we have

𝜇0
i,1(p0, T) + RT ln ai = 𝜇0

i,g(p0, T) + RT ln(pi∕p0) (8.1.4)

in which the subscripts l and g indicate the liquid and gas phases. The physical meaning of the activity ai can

be seen as follows. Consider a pure liquid in equilibrium with its vapor. Then pi = p∗i , the vapor pressure of a

pure liquid in equilibrium with its vapor. Since ai is nearly equal to one for a pure liquid, ln(ai) ≈ 0. Hence,

Equation (8.1.4) can be written as

𝜇0
i,1(p0, T) = 𝜇0

i,g(p0, T) + RT ln(p∗i ∕p0) (8.1.5)

Subtracting Equation (8.1.5) from (8.1.4) we find that

RT ln ai = RT ln(pi∕p∗i ) or ai =
pi

p∗i
(8.1.6)

i.e. the activity is the ratio of the partial vapor pressure pi of the component in a solution and its vapor pressure

p∗ when it is a pure substance. By measuring the vapor pressure of a substance, its activity can be determined.

For an ideal solution, Equation (8.1.4) takes the form

𝜇0
i,1(p, T) + RT ln(xi) = 𝜇0

i,g(p0, T) + RT ln(pi∕p0) (8.1.7)
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Figure 8.2 The vapor pressure diagram of a perfect binary solution for which Equation (8.1.1) is valid for all
values of the mole fraction x1. Here p

∗
1 and p

∗
2 are the vapor pressures of the pure substances, p1 and p2 are the

partial pressures of the two components in the mixture and p is the total vapor pressure.

From this equation it follows that the partial pressure in the vapor phase and the mole fraction of a component

can be written as

pi = Kixi (8.1.8)

in which

Ki(p, T) = p0 exp

(
𝜇0

i,1(p, T) − 𝜇0
i,g(p0, T)

RT

)
(8.1.9)

As indicated, the term Ki(p, T) is, in general, a function of p and T, but since the chemical potential of the

liquid 𝜇0
i,1(p, T) changes little with p, it is essentially a function of T. Ki has the dimensions of pressure.

For any component, when xi = 1, we must have K(p∗, T) = p∗, the vapor pressure of the pure substance

(Figure 8.2). (This is consistent with Equation (8.1.9) because when we set p = p0 = p∗, because the vapor

and the liquid are in equilibrium, the exponent 𝜇0
1
(T , p∗) − 𝜇0

g(T , p∗) = 0.) At a given temperature T, if xl ≈
1 for a particular component, which is called the ‘solvent’ or the major component, then, since the change of

Ki is small for changes in pressure, we may write

p1 = p∗
1
x1 (8.1.10)

Experiments conducted by François-Marie Raoult (1830–1901) in the 1870s showed that if the mole

fraction of the solvent is nearly equal to unity, i.e. for dilute solutions, then Equation (8.1.10) is valid. For this

reason, (8.1.10) is called Raoult’s law. The chemical potential of the vapor phase of the solvent 𝜇s,g(ps, T) =
𝜇s,g(p0, T) + RT ln(ps/p0) can now be related to its mole fraction in the solution, xs, by using Raoult’s law

and by setting p0 = p∗:

𝜇s,g(ps, T) = 𝜇s,g(p∗, T) + RT ln xs

= 𝜇∗
s,l

(T) + RT ln xs
(8.1.11)
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Table 8.1 Henry’s law constants at 25 ◦C for atmospheric gases.

Gas K (104 atm) Volume in the atmosphere (ppm)

N2(g) 8.5 780 900
O2(g) 4.3 209 500
Ar(g) 4.0 9 300
CO2(g) 0.16 380
CO(g) 5.7 –
He(g) 13.1 5.2
H2(g) 7.8 0.5
CH4(g) 4.1 1.5
C2H2(g) 0.13 –

Source: D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 75th edition, 1994, CRC
Press: Ann Arbor, MI.

For a minor component of a solution, when its mole fraction xk ≪ 1, Equation (8.1.10) is not valid but

Equation (8.1.8) is still valid. This relation is called Henry’s law after William Henry (1774–1836), who

studied this aspect for the solubility of gases [1]:

pi = Kixi, xi ≪ 1 (8.1.12)

The constant Ki is called Henry’s constant. Some values of Henry’s constants are given in Table 8.1. In the

region where Henry’s law is valid, Ki is not equal to the vapor pressure of the pure substance. The graphical

representation of Henry’s constant is shown in Figure 8.3. Also, where Henry’s law is valid, in general, the

chemical potential of the reference state 𝜇0
i is not the same as the chemical potential of the pure substance.

Figure 8.3 The vapor pressure diagram of a binary solution. When the mole fraction is very small or nearly
equal to one, we have ideal behavior. The minor component obeys Henry’s law, while the major component
obeys Raoult’s law. Here p∗1 and p∗2 are the vapor pressures of the pure substances, p1 and p2 are the partial
pressures of the two components in the mixture and p is the total vapor pressure. The deviation from the partial
pressure predicted by Henry’s law or Raoult’s law can be used to obtain the activity coefficients.
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Only for a perfect solution do we have Ki = p∗i when xi ≪ 1, but such solutions are very rare. Many dilute

solutions obey Raoult’s and Henry’s laws to a good approximation.

When the solution is not dilute, the nonideal behavior is described using the activity coefficients, 𝛾 i, in

the chemical potential:

𝜇i(p, T , xi) = 𝜇0
i (p, T) + RT ln(𝛾ixi) (8.1.13)

The factor 𝛾 i quantifies the deviation from Raoult’s or Henry’s law. For nonideal solutions, as an alternative

to the activity coefficient, an osmotic coefficient 𝜙i is defined through

𝜇i(p, T , xi) = 𝜇0
i (p, T) + 𝜙i RT ln(xi) (8.1.14)

As we will see in the following section, the significance of the osmotic coefficient lies in the fact that it is

the ratio of the osmotic pressure to that expected for ideal solutions. From Equations (8.1.13) and (8.1.14) it

is easy to see that

𝜙k − 1 =
ln 𝛾k

ln xk
(8.1.15)

8.2 Colligative Properties

By using the chemical potential of ideal solutions we can derive several properties of ideal solutions that

depend on the total number of the solute particles and not on the chemical nature of the solute. (For example,

a 0.2 M solution of NaCl will have colligative concentration of 0.40 M due to the dissociation into Na+ and

Cl−.) Such properties are collectively called colligative properties.

8.2.1 Changes in Boiling and Freezing Points

Equation (8.1.11) could be used to obtain an expression for the increase in the boiling point and the decrease

in the freezing point of solutions (Figure 8.4). As we noted in Chapter 7, a liquid boils when its vapor pressure

p = pext, the atmospheric (or applied external) pressure. Let T∗ be the boiling temperature of the pure solvent

and T the boiling temperature of the solution. We assume that the mole fraction of the solvent is x2 and that
of the solute is x1. We also assume that the solute is nonvolatile so that the gas phase in equilibrium with the

Figure 8.4 The vapor pressure of a solution with a nonvolatile solute is less than that of a pure solvent. Conse-
quently, the boiling point of a solution increases with the solute concentration.
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solution is purely the solvent. At equilibrium, the chemical potential of the solvent in the liquid phase and

that of the pure solvent gas phase (which we denote by 𝜇∗) must be equal:

𝜇∗
2,g

(pext, T) = 𝜇2,1(pext, T , x2) (8.2.1)

Using Equation (8.1.11), and noting that 𝜇∗
2,l

is essentially independent of p, we can now write this

equation as

𝜇∗
2,g

(pext, T) = 𝜇2,l(pext, T , x2) = 𝜇∗
2,l

(T) + RT ln(x2) (8.2.2)

Since the chemical potential of a pure substance 𝜇 = Gm, the molar Gibbs energy, we have

𝜇∗
2,g

(pext, T) − 𝜇∗
2,1

(T)

RT
=
ΔGm

RT
=
ΔHm − TΔSm

RT
= ln x2 (8.2.3)

in which Δ denotes the difference between the liquid and the gas phase. Generally, ΔHm does not vary much

with temperature. Therefore, ΔHm(T) = ΔHm(T∗) = ΔHvap. Also, ΔSm = ΔHvap(T)/T∗ and x2 = (1 – x1), in

which x1 ≪ 1 is the mole fraction of the solute. With these observations we can write Equation (8.2.3) as

ln(1 − x1) =
ΔHvap

R

(
1

T
− 1

T∗

)
(8.2.4)

If the difference T – T∗ = ΔT is small, then it is easy to show that the terms containing T and T∗ can

be approximated to −ΔT/T∗2. Furthermore, since ln(1 – x1) ≈ – x1 when x1 ≪ 1, we can approximate

Equation (8.2.4) by the relation

ΔT = RT∗2

ΔHvap

x1 (8.2.5)

which relates the increase in boiling point to the mole fraction of the solute. In a similar way, by considering

a pure solid in equilibrium with the solution, one can derive the following relation for the decrease in freezing

point ΔT in terms of the enthalpy of fusion ΔHfus, the mole fraction xk of the solute and the freezing point T∗

of the pure solvent:

ΔT = RT∗2

ΔHfus

x1 (8.2.6)

The change in the boiling point and the freezing point are often expressed in terms of molality, i.e. moles of
solute/kilogram of solvent, instead of mole fraction. For dilute solutions, the conversion from mole fraction

x to molality m is easily done. If Ms is the molar mass of the solvent in kilograms, then the mole fraction of

the solute

x1 =
N1

N1 + N2

≈
N1

N2

= Ms

(
N1

MsN2

)
= Msm1

Equations (8.2.5) and (8.2.6) are often written as

ΔT = K(m1 + m2 +⋯ + ms) (8.2.7)
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Table 8.2 Ebullioscopic and cryoscopic constants.

Compound Kb (
◦C kg mol−1) Tb (

◦C) Kf (
◦C kg mol−1) Tf (

◦C)

Acetic acid, CH3COOH 3.07 118 3.90 16.7
Acetone, (CH3)2CO 1.71 56.3 2.40 –95
Benzene, C6H6 2.53 80.10 5.12 5.53
Carbon disulfide, CS2 2.37 46.5 3.8 –111.9
Carbon tetrachloride, CCl4 4.95 76.7 30 –23
Nitrobenzene, C6H5NO2 5.26 211 6.90 5.8
Phenol, C6H5OH 3.04 181.8 7.27 40.92
Water, H2O 0.51 100.0 1.86 0.0

Source: G.W.C. Laye and T.H. Laby (eds), Tables of Physical and Chemical Constants, 1986, Longmans: London.

in which the molalities of all the ‘s’ species of solute particles is shown explicitly. The constant K is called

the ebullioscopic constant for changes in boiling point and the cryoscopic constant for changes in freezing

point. The values of ebullioscopic and cryoscopic constants for some liquids are given in Table 8.2.

8.2.2 Osmotic Pressure

When a solution and pure solvent are separated by a semipermeable membrane (see Figure 8.5a), which

is permeable to the solvent but not the solute molecules, the solvent flows into the chamber containing the

solution until equilibrium is reached. This process is called osmosis and was noticed in the mid-eighteenth

century. In 1877, a botanist named Pfeffer made a careful quantitative study of it. Jacobus Henricus van’t

Hoff (1852–1911), who was awarded the first Nobel Prize in chemistry in 1901 for his contributions to

thermodynamics and chemistry [1], found that a simple equation, similar to that of an ideal gas, could

describe the observed data.

As shown in Figure 8.5, let us consider a solution and a pure solvent separated by a membrane that is

permeable to the solvent but not the solute. Initially, the chemical potentials of the solvent on the two sides of

the membrane may not be equal, the chemical potential on the solution side being smaller. Unequal chemical

Figure 8.5 Osmosis: (a) the pure solvent flows towards the solution through a semipermeable membrane (b) the
flow stops when chemical potentials of the solvent in the two chambers are equal.
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potentials will cause a flow of the solvent from a higher to a lower chemical potential, i.e. a flow of pure

solvent towards the solution. The affinity driving this solvent flow is

Jacobus van ’t Hoff (1852–1911).
(Reproduced by courtesy of the AIP Emilio Segre Visual Archive, Brittle Book Collection.)

A = 𝜇∗(p, T) − 𝜇(p′, T , x2) (8.2.8)

in which x2 is the mole fraction of the solvent, p′ is the pressure of the solution and p is the pressure of the pure

solvent. Equilibrium is reached when the chemical potentials become equal and the corresponding affinity

(8.2.8) equals zero. As noted above, for an ideal solution, the chemical potential of the major component

(solvent) is given by 𝜇(p′, T) = 𝜇∗(p′, T) + RT ln x2, in which 𝜇∗ is the chemical potential of the pure solvent.

Hence the affinity of this system can be written as

A = 𝜇∗(p, T) − 𝜇∗(p′, T) − RT ln x2 (8.2.9)

When p = p′, the affinity takes the following simple form:

A = −RT ln x2 (8.2.10)
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The flow of the solvent into the solution can generate a pressure difference between the solvent and the

solution (Figure 8.5b). The flow continues until the difference between solvent pressure p and solution

pressure p′ makes A = 0. When A = 0, the pressure difference (p′ – p) = 𝜋 is called the osmotic pressure.
In the experimental setup shown in Figure 8.5b, the liquid level in the solution rises to a height h above the

pure-solvent level when equilibrium is reached. The excess pressure in the solution 𝜋 = h𝜌g, in which 𝜌 is

the solution density and g is the acceleration due to gravity. At equilibrium, from Equation (8.2.9) it follows

that

A = 0 = 𝜇∗(p, T) − 𝜇∗(p + 𝜋, T) − RT ln x2 (8.2.11)

At constant temperature, the change in the chemical potential with pressure d𝜇 = (𝜕𝜇/𝜕p)T dp= Vm dp, where

Vm is the partial molar volume. Since the partial molar volume of a liquid changes very little with pressure,

we may assume it to be a constant equal to V
∗
m, the solvent molar volume (because when 𝜇 = 𝜇∗, Vm = V

∗
m).

Hence, we may write

𝜇∗(p + 𝜋, T) ≈ 𝜇∗(p, T) +
p+𝜋

∫
p

d𝜇 = 𝜇∗(p, T) +
p+𝜋

∫
p

V∗
mdp

= 𝜇∗(p, T) + V∗
m𝜋

(8.2.12)

Also, as we noted before, for dilute solutions, ln(x2) = ln(1 – x1) ≈ – x1. If N1 is the molar amount of the

solute and N2 is the molar amount of the solvent, then, since N2 ≫ N1, we see that x1 = N1/(N1 + N2) ≈
N1/N2. Hence, we see that ln(x2) ≈ – N1/N2. Using Equation (8.2.12) and the fact that ln(x2) ≈ –N1/N2,

Equation (8.2.11) can be written as

RT
N1

N2

= V∗
m𝜋

i.e.

RTN1 = N2V∗
m𝜋 = V𝜋 (8.2.13)

in which V = N2V∗
m is nearly the volume of the solution (the correction due to the solute being small). This

shows that the osmotic pressure 𝜋 obeys an ideal–gas–like equation:

𝜋 =
NsoluteRT

Vsolution

= [S]RT (8.2.14)

in which [S] is the molar concentration of the solution. This is the van ’t Hoff equation for the osmotic

pressure. The osmotic pressure is as if an ideal gas consisting of the solute particles is occupying a volume

equal to the solution volume. By measuring the osmotic pressure, one can determine the molar amount Nsolute

of a solute. Thus, if the mass of the solute is known, then its molar mass can be calculated. The measurement

of osmotic pressure is used to determine the molar mass or molecular weight of large biomolecules for which

semipermeable membranes can be easily found (Exercise 8.10).

Table 8.3 shows a comparison between experimentally measured osmotic pressures and those calculated

using the van ’t Hoff equation (8.2.14) for an aqueous solution of sucrose. We see that for concentrations up to

about 0.2 M the van ’t Hoff equation agrees with experimental values. Deviation from the van ’t Hoff equation

is not necessarily due to deviation from ideality. In deriving the van ’t Hoff equation, we also assumed a dilute
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Table 8.3 Comparison between theoretical osmotic pressure calculated using van ’t Hoff’s
equation and the experimentally observed osmotic pressure for an aqueous solution of sucrose at
two temperatures.

T = 273 K T = 333 K

𝜋 (atm) 𝜋 (atm)

Concentration (mol L−1) Experiment Theory Concentration (mol L−1) Experiment Theory

0.029 22 0.65 0.655 0.098 2.72 2.68
0.058 43 1.27 1.330 0.1923 5.44 5.25
0.131 5 2.91 2.95 0.370 1 10.87 10.11
0.273 9 6.23 6.14 0.533 16.54 14.65
0.532 8 14.21 11.95 0.685 5 22.33 18.8
0.876 6 26.80 19.70 0.827 3 28.37 22.7

Source: I. Prigogine and R. Defay, Chemical Thermodynamics, 4th edition, 1967, Longmans: London.

solution. Using Equations (8.1.11) and (8.2.12), it is easy to see that the osmotic pressure can also be written

as

𝜋ideal =
−RT ln x2

V∗
m

(8.2.15)

where x2 is the mole fraction of the solvent. Here we have indicated explicitly that the osmotic pressure in

this expression is valid for ideal solutions. This formula was obtained by J.J. van Larr in 1894.

For nonideal solutions, instead of an activity coefficient 𝛾 , an osmotic coefficient 𝜙 is defined through

𝜇(p, T , x2) = 𝜇∗(p, T) + 𝜙RT ln x2 (8.2.16)

in which 𝜇∗ is the chemical potential of the pure solvent. At equilibrium, when the affinity vanishes and

osmotic pressure is 𝜋 we have the equation

𝜇∗(p, T) = 𝜇∗(p + 𝜋, T) + 𝜙RT ln x2 (8.2.17)

Following the same procedure as above, we arrive at the following expression for the osmotic pressure of a

nonideal solution:

𝜋 =
−𝜙RT ln x2

V∗
m

(8.2.18)

Equation (8.2.18) was proposed by Donnan and Guggenheim in 1932. From Equations (8.2.15) and (8.2.18)

it follows that 𝜙 = 𝜋/𝜋ideal. Hence, the name ‘osmotic coefficient’ is used for 𝜙. We can also relate the affinity

to the osmotic pressure. When the solution and the pure solvent are at the same pressure the affinity is A =
𝜇∗(p, T) – 𝜇∗(p, T) – 𝜙RT ln x2 = –𝜙RT ln x2. Using this in Equation (8.2.18) we see that

𝜋 = A
V∗

m

when psolution = psolvent (8.2.19)

Another approach for the consideration of nonideal solutions is similar to that used to obtain the virial

equation for real gases. In this case the osmotic pressure is written as

𝜋 = [S]RT(1 + B(T)[S] +⋯) (8.2.20)
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in which B(T) is a constant that depends on the temperature. The experimental data on the osmotic pressure

of polymer solutions (such as polyvinyl chloride in cyclohexanone) shows a fairly linear relation between

𝜋/[S] and [S]. Also, the value of B(T) changes sign from negative to positive as the temperature increases.

The temperature at which B equals zero is called the theta temperature. If the concentration is expressed in

grams per liter, which we shall denote by [C], then Equation (8.2.20) can be written as

𝜋 = [C]RT
Ms

{
1 + B(T)

[C]

Ms

+⋯
}

(8.2.21)

in which Ms is the molar mass of the solute. With this equation, a plot of 𝜋/[C] versus [C] is expected to

be linear with an intercept equal to RT/Ms. From the intercept, the molar mass can be determined. From the

slope, equal to BRT/Ms
2, the ‘virial constant’ B can be obtained.

8.3 Solubility Equilibrium

The solubility of a solid in a solvent depends on the temperature. Solubility is the concentration when the

solid solute is in equilibrium with the solution: it is the concentration at saturation. Thermodynamics gives

us a quantitative relation between solubility and temperature. In considering the solubilities of solids one

must distinguish between ionic solutions and nonionic solutions. When ionic solids, such as NaCl, dissolve

in polar solvents, such as water, the solutions contain ions, Na+ and Cl−. Since ions interact strongly even in

dilute solutions, the activities cannot be approximated well by mole fractions. For nonionic solutions, such as

sugar in water or naphthalene in acetone, the activity of the dilute solution can be approximated by the mole

fraction.

8.3.1 Nonionic Solutions

For dilute nonionic solutions, we may assume ideality and use the expression (8.1.1) for the chemical potential

to analyze the conditions for thermodynamic equilibrium. Solutions of higher concentrations require a more

detailed theory (as can be found, for instance, in the classic text by Prigogine and Defay [2]). Recall that, as

it does for liquids, the chemical potential of a solid varies very little with pressure and so it is essentially a

function only of the temperature. If 𝜇∗s (T) is the chemical potential of the pure solid in equilibrium with the

solution, then we have (using Equation (8.1.1))

𝜇∗s (T) = 𝜇1(T) = 𝜇∗
1
(T) + RT ln(x1) (8.3.1)

in which the 𝜇1 is the chemical potential of the solute in the solution phase (liquid phase), 𝜇∗
1

is the chemical

potential of the pure solute in the liquid phase and x1 is the mole fraction of the solute. Since ΔGfus(T) =
𝜇∗

1
− 𝜇∗s is the molar Gibbs energy of fusion at temperature T, the above equation can be written in the form

ln x1 = − 1

R

ΔGfus

T
(8.3.2)

In this form the temperature dependence of the solubility is not explicit becauseΔGfus is itself a function of T.

This expression can also be written in terms of the enthalpy of fusion ΔHfus by differentiating this expression

with respect to T and using the Gibbs–Helmholtz equation d(ΔG/T)dT = – (ΔH/T2) (Equation (5.2.14)).

Thus:

d ln(x1)

dT
= 1

R

ΔHfus

T2
(8.3.3)
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Since ΔHfus does not change much with T, this expression can be integrated to obtain a more explicit

dependence of solubility with temperature.

8.3.2 Ionic Solutions

Ionic solutions, also called electrolytes, are dominated by electrical forces, which can be very strong. To get

an idea of the strength of electrical forces, it is instructive to calculate the force of repulsion between two

cubes of copper of side 1 cm in which one in a million Cu atoms is a Cu+ ion, when the two cubes are 10 cm

apart. The force is sufficient to lift a weight of 16 × 106 kg (Exercise 8.13).

Owing to the enormous strength of electrical forces, there is almost no separation between positive and

negative ions in a solution; positive and negative charges aggregate to make the net charge in every macroscopic

volume nearly zero, i.e. every macroscopic volume is electrically neutral. Solutions, and indeed most matter,

maintain electroneutrality to a high degree. Thus if ck (mol L−1) are the concentrations of positive and

negative ions with ion numbers (number of electronic charges) zk, the total charge carried by an ion per unit

volume is Fzkck, in which F = eNA is the Faraday constant, equal to the product of the electronic charge

e = 1.609 × 10−19 C and the Avogadro number NA. Since electroneutrality implies that the net charge is zero,

we have ∑
k

Fzkck = 0 (8.3.4)

Let us consider the solubility equilibrium of a sparingly soluble electrolyte AgCl in water:

AgCl(s) ⇌ Ag+ + Cl− (8.3.5)

At equilibrium:

𝜇AgCl = 𝜇Ag+ + 𝜇Cl−1 (8.3.6)

In ionic systems, since the positive and negative ions always come in pairs, physically it is not possible

to measure the chemical potentials 𝜇Ag+ and 𝜇Cl− separately; only their sum can be measured. A similar

problem arises for the definition of enthalpy and Gibbs energy of formation. For this reason, for ions, these

two quantities are defined with respect to a new reference state based on the H+ ions, as described in Box 8.1.

For the chemical potential, a mean chemical potential is defined by

𝜇± =
1

2
(𝜇Ag+ + 𝜇Cl− ) (8.3.7)

so that Equation (8.3.6) becomes

𝜇AgCl = 2𝜇± (8.3.8)

In general, for the decomposition of a neutral compound W into positive and negative ions, AZ+ and BZ−

respectively (with ion numbers Z+ and Z−), we have

W ⇌ v+AZ+ + v−BZ− (8.3.9)

in which v+ and v– are the stoichiometric coefficients. The mean chemical potential in this case is defined as

𝜇± =
v+𝜇+ + v−𝜇−

v+ + v−
=

𝜇salt

v+ + v−
(8.3.10)

in which 𝜇salt ≡ v+𝜇+ + v–𝜇–. Here, we have written the chemical potential of the positive ion AZ+ as 𝜇+
and that of the negative ion BZ− as 𝜇–.



Thermodynamics of Solutions 219

Box 8.1 Enthalpy and the Gibbs free energy of formation of ions

When ionic solutions form, the ions occur in pairs; therefore, it is not possible to isolate the enthalpy of

formation of a positive or negative ion. Hence, we cannot obtain the heats of formation of ions with the

usual elements in their standard state as the reference state. For ions, the enthalpy of formation is tabulated

by defining the ΔHf of formation of H+ as zero at all temperatures. Thus

ΔH0
f
[H+(aq)] = 0 at all temperatures

With this definition it is now possible to obtain the ΔHf of all other ions. For example, to obtain the heat of

formation of Cl−(aq), at a temperature T, the enthalpy of solution of HCl is measured. Thus,ΔH0
f
[Cl−(aq)]

is the heat of solution at temperature T of the reaction

HCl → H+(aq) + Cl−(aq)

The tabulated values of enthalpies are based on this convention. Similarly, for the Gibbs energy,

ΔG0
f
[H+(aq)] = 0 at all temperatures

For ionic systems, it has become customary to use the molality scale (mol kg−1 solvent). This scale has

the advantage that the addition of another solute does not change the molality of a given solute. The values

of ΔG0
f

and ΔH0
f

for the formation of ions in water at T = 298.15 K are tabulated for the standard state
of an ideal dilute solution at a concentration of 1 mol kg−1. This standard state is given the subscript ‘ao’.

Thus, the chemical potential or the activity of an ion is indicated by ‘ao’. The chemical potential of an

ionized salt, 𝜇salt ≡ 𝜈+𝜇+ + 𝜈−𝜇−, and the corresponding activity are denoted with the subscript ‘ai’.

The activity coefficients 𝛾 of electrolytes are defined with respect to ideal solutions. For example, the mean

chemical potential for AgCl is written as

𝜇± = 1

2

[
𝜇0

Ag+
+ RT ln(𝛾Ag+xAg+) + 𝜇0

Cl− + RT ln(𝛾Cl−xCl−)
]

= 𝜇0
± + RT ln√𝛾Ag+𝛾Cl−xAg+xCl−

(8.3.11)

where 𝜇0
± = 1∕2

(
𝜇0

Ag+
+ 𝜇0

Cl−

)
. Once again, since the activity coefficients of the positive and negative ions

cannot be measured individually, a mean activity coefficient 𝛾± is defined by

𝛾± = (𝛾Ag+𝛾Cl− )1∕2 (8.3.12)

In the more general case of Equation (8.3.9), the mean ionic activity coefficient is defined as

𝛾± =
(
𝛾

v+
+ 𝛾

v
−
)1∕(v++v−)

(8.3.13)

where we have used 𝛾+ and 𝛾– for the activity coefficients of the positive and negative ions.

The chemical potentials of dilute solutions may be expressed in terms of molality mk (moles of solute per

kilogram of solvent) or molarities ck (moles of solute per liter of solution1) instead of mole fractions xk. In

electrochemistry, it is more common to use molality mk. For dilute solutions, since xk = Nk/Nsolvent, we have

the following conversion formulas for the different units:

xk = mkMs and xk = Vmsck (8.3.14)

1The molarity of k is also expressed as [k].
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in which Ms is the molar mass of the solvent in kilograms and Vms the molar volume of the solvent in liters.

The corresponding chemical potentials then are written as

𝜇x
k = 𝜇

x0
k + RT ln(𝛾kxk) (8.3.15)

𝜇m
k = 𝜇x0

k + RT lnMs + RT ln(𝛾kmk)

= 𝜇m0
k + RT ln

(𝛾kmk

m0

) (8.3.16)

𝜇c
k = 𝜇x0

k + RT lnVms + RT ln(𝛾kck)

= 𝜇c0
k + RT ln

(𝛾kck

c0

)
= 𝜇c0

k + RT ln
(
𝛾k[k]

[k]0

) (8.3.17)

in which the definitions of the reference chemical potentials 𝜇m0
k and 𝜇c0

k in each concentration scale are

self-evident. The activity in the molality scale is written in the dimensionless form as ak = 𝛾kmk/m0, in which

m0 is the standard value of molality equal to 1 mol of solute per kilogram of solvent. Similarly, the activity

in the molarity scale is written as ak = 𝛾kck/c0, in which c0 equals 1 mol per liter of solution. For electrolytes

the mean chemical potential 𝜇± is usually expressed in the molality scale; the tabulation of ΔG0
f
and ΔH0

f
for

the formation of ions in water at T = 298.15 K is usually for the standard state of an ideal dilute solution at a

concentration of 1 mol kg−1. This standard state is given the subscript ‘ao’.

In the commonly used molality scale, the solution equilibrium of AgCl expressed in Equation (8.3.8) can

now be written as

𝜇0
AgCl

+ RT ln aAgCl = 2𝜇m0
± + RT ln

[
𝛾2
±mAg+mCl−

(m0)2

]
(8.3.18)

Since the activity of a solid is nearly equal to one, aAgCl ≈ 1. Hence, we obtain the following expression for

the equilibrium constant2 for solubility in the molality scale:

Km(T) ≡ 𝛾2
±mAg+mCl−

(m0)2
= aAg+aCl− = exp

(
𝜇0

AgCl
− 2𝜇m0

±

RT

)
(8.3.19)

The equilibrium constant for electrolytes is also called the solubility product KSP. For sparingly soluble

electrolytes such as AgCl, even at saturation the solution is very dilute and 𝛾± ≈ 1. In this limiting case, the

solubility product

KSP ≈ mAg+mCl− (8.3.20)

in which we have not explicitly included m0, which has a value equal to one.

8.3.3 Activity, Ionic Strength and Solubility

A theory of ionic solutions developed by Peter Debye and Erich Hückel in 1923 (which is based on statistical

mechanics) provides an expression for the activity. We shall only state the main result of this theory,

2A general definition of the equilibrium constant is discussed in Chapter 9.
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which works well for dilute electrolytes. The activity depends on a quantity called the ionic strength I
defined by

I = 1

2

∑
k

z2
kmk (8.3.21)

The activity coefficient of an ion k in the molality scale is given by

log10(𝛾k) = −Az2
k

√
I (8.3.22)

in which

A = 1

2.3026
(2𝜋NA𝜌s)

1∕2

(
NAe2

4𝜋𝜀0𝜀rRT

)3∕2

(8.3.23)

where 𝜌s is the density of the solvent, e is the electronic charge, 𝜀0 = 8.854 × 10−12 C2 N−1 m−2 is the

permittivity of a vacuum and 𝜀r the relative permittivity of the solvent (𝜀r = 78.54 for water). For ions in

water, at T = 298.15 K, we find A = 0.509 kg1/2 mol−1/2. Thus, at 25 ◦C the activity of ions in dilute solutions

can be approximated well by the expression

log10(𝛾k) = −0.509z2
k

√
I (8.3.24)

The Debye–Hückel theory enables us to understand how solubility is influenced by ionic strength. For

example, let us look at the solubility of AgCl. If the mAg+ = mCl− = S, the solubility, we may write the

equilibrium constant Km as

Km(T) ≡ 𝛾2
±mAg+mCl+ = 𝛾2

±S2 (8.3.25)

The ionic strength depends not only on the concentration of Ag+ and Cl− ions, but also on all the other

ions. Thus, for example, the addition of nitric acid, HNO3, which adds H+ and NO−
3

ions to the system, will

change the activity coefficient 𝛾±. However, the equilibrium constant, which is a function of T only (as is

evident from Equation (8.3.19)), remains unchanged if T is constant. As a result, the value of m (or solubility

in molal) will change with the ionic strength I. If the concentration of HNO3 (which dissociates completely)

is mHNO3, then the ionic strength of the solution is

I = 1

2

(
mAg+ + mCl− + mH+ + mNO3−

)
= S + mHNO3

(8.3.26)

Using Equation (8.3.12) for 𝛾± for AgCl and substituting Equation (8.3.24) in (8.3.25) we can obtain the

following relation between the solubility S of AgCl and the concentration of HNO3:

log10(S) = 1

2
log10(Km(T)) + 0.509

√
S + mHNO3

(8.3.27)

If S ≪ mHNO3
, then the above relation can be approximated by

log10(S) = 1

2
log10(Km(T)) + 0.509

√
mHNO3

(8.3.28)

Thus, a plot of log S versus
√

mHNO3
should yield a straight line, which is indeed found to be the case

experimentally. In fact, such plots can be used to determine the equilibrium constant Km and the activity

coefficients.
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8.4 Thermodynamic Mixing and Excess Functions

8.4.1 Perfect Solutions

A perfect solution is one for which the chemical potential of the form 𝜇k(p, T, xk) = 𝜇∗k(p, T) + RT ln(xk) is

valid for all values of the mole fraction xk. The molar Gibbs energy of such a solution is

Gm =
∑

k

xk𝜇k =
∑

k

xk𝜇
∗
k + RT

∑
k

xk ln xk (8.4.1)

If each of the components were separated, then the total Gibbs energy for the components is the sum

G∗
m =

∑
k xkG∗

mk =
∑

k xk𝜇
∗
k , in which we have used the fact that, for a pure substance, G∗

mk, the molar Gibbs

energy of k, is equal to the chemical potential 𝜇∗k. Hence, the change (decrease) in the molar Gibbs energy

due to the mixing of the components in the solution is

ΔGmix = RT
∑

k

xk ln xk (8.4.2)

and

Gm =
∑

k

xkG∗
mk + ΔGmix (8.4.3)

Since the molar entropy Sm = – (𝜕Gm/𝜕T)p, it follows from Equations (8.4.2) and (8.4.3) that

Sm =
∑

k

xkS∗
mk + ΔSmix (8.4.4)

ΔSmix = −R
∑

k

xk ln xk (8.4.5)

where ΔSmix is the molar entropy of mixing. This shows that, during the formation of a perfect solution from

pure components at a fixed temperature, the decrease in G is ΔGmix = –TΔSmix. Since ΔG = ΔH – TΔS, we

can conclude that, for the formation of a perfect solution at a fixed temperature, ΔH = 0. This can be verified

explicitly by noting that the Helmholtz equation (5.2.11) can be used to evaluate the enthalpy. For G given

by Equations (8.4.2) and (8.4.3) we find

Hm = −T2

(
𝜕

𝜕T

Gm

T

)
=
∑

k

xkH∗
mk (8.4.6)

Thus, the enthalpy of the solution is the same as the enthalpy of the pure components and there is no change

in the enthalpy of a perfect solution due to mixing. Similarly, by noting that Vm = (𝜕Gm/𝜕p)T, it is easy to see

(Exercise 8.16) that there is no change in the molar volume due to mixing, i.e. ΔVmix = 0; the total volume is

the sum of the volumes of the components in the mixture. Furthermore, since ΔU = ΔH – pΔV, we see also

that ΔUmix = 0. Thus, for a perfect solution, the molar quantities for mixing are

ΔGmix = RT
∑

k

xk ln xk (8.4.7)

ΔSmix = −R
∑

k

xk ln xk (8.4.8)

ΔHmix = 0 (8.4.9)

ΔVmix = 0 (8.4.10)

ΔUmix = 0 (8.4.11)
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In a perfect solution, the irreversible process of mixing of the components at constant p and T is entirely due

to the increase in entropy; no heat is evolved or absorbed.

8.4.2 Ideal Solutions

Dilute solutions may be ideal over a small range of mole fractions xi. In this case the molar enthalpy Hm and

the molar volume Vm may be a linear function of the partial molar enthalpies Hmi and partial molar volumes

Vmi. Thus:

Hm =
∑

i

xiHmi and Vm =
∑

i

xiVmi (8.4.12)

However, the partial molar enthalpies Hmi may not be equal to the molar enthalpies of pure substances if the

corresponding mole fractions are small. The same is true for the partial molar volumes. On the other hand, if

xi is nearly equal to one, then Hmi will be nearly equal to the molar enthalpy of the pure substance. A dilute

solution for which Equation (8.4.12) is valid will exhibit ideal behavior, but it may have a nonzero enthalpy

of mixing. To see this more explicitly, consider a dilute (x1 ≫ x2) binary solution for which H∗
m1

and H∗
m2

are

the molar enthalpies of the two pure components. Then, before mixing, the molar enthalpy is

H∗
m = x1H∗

m1
+ x2H∗

m2
(8.4.13)

After mixing, since for the major component (for which x1 ≈ 1) we have H∗
m1

= Hm1, the molar enthalpy will

be

Hm = x1H∗
m1

+ x2H
m2

(8.4.14)

The molar enthalpy of mixing is then the difference between the above two enthalpies:

ΔHmix = Hm − H∗
m = x2

(
H

m2
− H∗

m2

)
(8.4.15)

In this way, an ideal solution may have a nonzero enthalpy of mixing. The same may be true for the volume

of mixing.

8.4.3 Excess Functions

For nonideal solutions, the molar Gibbs energy of mixing is

ΔGmix = RT
∑

i

xi ln(𝛾ixi) (8.4.16)

The difference between the Gibbs energies of mixing of perfect and nonideal solutions is called the excess
Gibbs energy, which we shall denote by ΔGE. From Equations (8.4.7) and (8.4.16) it follows that

ΔGE = RT
∑

i

xi ln 𝛾i (8.4.17)

Other excess functions, such as excess entropy and enthalpy, can be obtained from ΔGE. For example:

ΔSE = −
(
𝜕ΔGE

𝜕T

)
p
= −RT

∑
i

xi
𝜕 ln 𝛾i

𝜕T
− R
∑

i

xi ln xi (8.4.18)
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Figure 8.6 Thermodynamic excess function for a solution of n-heptane (component 1) and n-hexadecane (com-
ponent 2) at 20 ◦C. The graph shows molar excess functions as a function of the mole fraction x2 of n-hexadecane.

Similarly ΔHE can be obtained using the relation

ΔHE = −T2

(
𝜕

𝜕T

ΔGE

T

)
(8.4.19)

These excess functions can be obtained experimentally through measurements of vapor pressures and heats

of reaction (see Figure 8.6 for an example of an excess function).

8.4.4 Regular and Athermal Solutions

Nonideal solutions may be classified into two limiting cases. In one limiting case, called regular solutions,
ΔGE ≈ ΔHE; i.e. most of the deviation from ideality is due to the excess enthalpy of mixing. Since ΔGE =
ΔHE – TΔSE, it follows that for regular solutions ΔSE ≈ 0. Furthermore, since ΔSE = – (𝜕ΔGE/𝜕T)p, from

Equation (8.4.17) it follows that the activity coefficients

ln 𝛾i ∝
1

T
(8.4.20)

For regular binary solutions, the activities may be approximated by the function 𝛾k = 𝛼x2
k∕(RT).

The other limiting case of nonideal solutions is when ΔGE ≈ – TΔSE, in which case the deviation from

ideality is mostly due to the excess entropy of mixing and ΔHE ≈ 0. In this case, using Equation (8.4.17)

in (8.4.19), we see that ln 𝛾 i are independent of T. Such solutions are called athermal solutions. Solutions

in which the component molecules are of nearly the same size but differ in intermolecular forces generally

behave like regular solutions. Solutions whose component molecules have very different sizes but do not

differ significantly in their intermolecular forces, as in the case of monomers and polymers, are examples of

athermal solutions.
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8.5 Azeotropy

In Chapter 7 we discussed azeotropes briefly. We shall apply the thermodynamics of solutions that was

presented in the previous sections of this chapter to azeotropes. For an azeotrope in equilibrium with its

vapor, the composition of the liquid and the vapor phases are the same. At a fixed pressure, a liquid mixture is

an azeotrope at a particular composition called the azeotropic composition. In a closed system, an azeotropic
transformation is one in which there is an exchange of matter between two phases without a change in the

composition. In this regard, an azeotrope is similar to the vaporization of a pure substance. This enables us to

obtain the activity coefficients of azeotropes just as can be done for a pure substance.

Let us consider a binary azeotrope. As we have seen in Section 8.1, the chemical potentials of the

components can be written in the form 𝜇k(T , p, xk) = 𝜇0
k (T , p) + RT ln(𝛾kxk), in which activity coefficient

𝛾k quantifies the deviation from ideality. If 𝛾k,l and 𝛾k,g are the activity coefficients of component k in the

liquid and gas phases respectively, then by considering an azeotropic transformation it can be shown that

(Exercise 8.17)

ln
(
𝛾k,g

𝛾k,l

)
=

T

∫
T∗

k

ΔHvap,k

RT2
dT − 1

RT

p

∫
p∗

ΔV∗
mkdp (8.5.1)

in which ΔHvap,k is the heat of vaporization of component k and ΔV∗mk is the change in the molar volume of

the pure component between the liquid and the vapor phases. T∗ is the boiling point of the pure solvent at

pressure p∗. If we consider an azeotropic transformation at a fixed pressure, e.g. p = p∗ = 1 atm, then since

ΔHvap generally does not change much with T, we obtain

ln
(
𝛾k,g

𝛾k,l

)
=
−ΔHvap,k

R

(
1

T
− 1

T∗

)
(8.5.2)

For the activity coefficient of the vapor phase, if we use the ideal gas approximation, 𝛾k,g = 1. This gives us

an explicit expression for the activity coefficient of the liquid phase:

ln(𝛾k,l) =
ΔHvap,k

R

(
1

T
− 1

T∗

)
(8.5.3)

With this expression, the activity coefficient of a component of an azeotrope can be calculated, and it gives a

simple physical meaning to the activity coefficient. Molecular theories of solutions give us more insight into

the relation between the intermolecular forces and the thermodynamics of azeotropes [3].
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Examples

Example 8.1 In the oceans, to a depth of about 100 m the concentration of O2 is about 0.25 × 10−3 mol L−1.

Compare this value with the value obtained using Henry’s law assuming equilibrium between the atmospheric

oxygen and the dissolved oxygen.
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Solution The partial pressure of O2 in the atmosphere is pO2 ≈ 0.2 atm. Using Henry’s law constant in

Table 8.1 we have, for the mole fraction of the dissolved oxygen xO2,

pO2
= KO2

xO2

Hence:

xO2
=

pO2

kO2

= 0.2 atm

4.3 × 104 atm
= 4.6 × 10−6

i.e. there are 4.6 × 10−6 mol of O2 per mole of H2O. Noting that 1 L of H2O is equal to 55.5 mol, the above

mole fraction of O2 can be converted into a concentration in moles per liter:

cO2
= 4.6 × 10−6 × 55.5 mol L−1 = 2.5 × 10−4 mol L−1

which is equal to the measured concentration of O2 in the oceans.

Example 8.2 In an aqueous solution of NH3 at 25.0 ◦C, the mole fraction of NH3 is 0.05. For this solution,

calculate the partial pressure of water vapor assuming ideality. If the vapor pressure is found to be 3.40 kPa,

what is the activity a of water and what is its activity coefficient 𝛾?

Solution If p∗ is the vapor pressure of pure water at 25.0 ◦C, then, according to Raoult’s law (8.1.10),

the vapor pressure of the above solution is given by p = xH2Op∗ = 0.95p∗. The value of p∗ can be obtained

as follows. Since water boils at 373.0 K at p = 1.0 atm = 101.3 kPa, we know that its vapor pressure is

101.3 kPa at 373.0 K. Using the Clausius–Clapeyron equation, we can calculate the vapor pressure at

25.0 ◦C = 298.0 K:

ln pl − ln p2 =
ΔHvap

R

(
1

T2

− 1

T1

)
With p2 = 1 atm, T2 = 373.0, T1 = 298.0, ΔHvap = 40.66 kJ mol−1 (see Table 7.1), the vapor pressure,

p1 (atm), can be computed:

ln(p1∕atm) = −3.299

i.e.

p1 = exp(−3.299) atm = 0.0369 atm = 101.3 × 0.0369 kPa

= 3.73 kPa = p∗

Hence, the vapor pressure p∗ of pure water at 25 ◦C is 3.738 kPa. For the above solution in which the mole

fraction of water is 0.95, the vapor pressure for an ideal solution according to Raoult’s law should be

p = 0.95 × 3.73 kPa = 3.54 kPa

For an ideal solution, the activity a is the same as the mole fraction x1. As shown in Equation (8.1.6), in the

general case the activity a = p/p∗. Hence, if the measured vapor pressure is 3.40 kPa, then the activity

a1 = 3.40∕3.738 = 0.909

The activity coefficient is defined by ak = 𝛾kxk. Hence, 𝛾1 = a1/x1 = 0.909/0.95 = 0.956.

Example 8.3 Living cells contain water with many ions. The osmotic pressure corresponds to that of an

NaCl solution of about 0.15 M. Calculate the osmotic pressure at T = 27 ◦C.
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Solution Osmotic pressure depends on the ‘colligative concentration’, i.e. the number of particles per unit

volume. Since NaCl dissociates into Na+ and Cl− ions, the colligative molality of the above solution is

0.30 M. Using the van ’t Hoff equation (8.2.14), we can calculate the osmotic pressure 𝜋:

𝜋 = RT[S] = (0.0821 L atm K−1mol−1)(300.0 K)(0.30 mol L−1) = 7.40 atm

If an animal cell is immersed in water, then the water flowing into the cell due to osmosis will exert a pressure

of about 7.4 atm and causes the cell to burst. Plant cell walls are strong enough to withstand this pressure.

Example 8.4 At p = 1 atm, the boiling point of an azeotropic mixture of C2H5OH and CCl4 is 338.1 K.

The heat of vaporization of C2H5OH is 38.58 kJ mol−1 and its boiling point is 351.4 K. Calculate the activity

coefficient of ethanol in the azeotrope.

Solution This can be done by direct application of Equation (8.5.3), where ΔHl,vap = 38.58 kJ mol−1,

T = 338.1 K and T ∗ = 351.4 K:

ln(𝛾l,k) = 38.5 × 103

8.314

(
1

338.1
− 1

351.4

)
= 0.519

i.e.

𝛾l,k = 1.68

Exercises

8.1 Obtain Equation (8.1.8) from Equation (8.1.7).

8.2 14.0 g of NaOH is dissolved in 84.0 g of H2O. The solution has a density of 1.114 × 103 kg m−3. For

the two components, NaOH and H2O, in this solution, obtain (a) the mole fractions, (b) the molality

and (c) molarity.

8.3 The composition of the atmosphere is shown in Table 8.1. Using Henry’s law constants, calculate the

concentrations of N2, O2 and CO2 in a lake.

8.4 Obtain Equation (8.2.5) from Equation (8.2.4) for small changes in the boiling point of a solution.

8.5 (a) The solubility of N2(g) in water is about the same as in blood serum. Calculate the concentration

(in mol L−1) of N2 in the blood.

(b) The density of seawater is 1.01 g mL−1. What is the pressure at a depth of 100 m? What will the

blood serum concentration (in mol L−1) of N2 be at this depth? If divers rise too fast, then any

excess N2 can form bubbles in the blood, causing pain, paralysis and distress in breathing.

8.6 Assuming Raoult’s law holds, predict the boiling point of a 0.5 M aqueous solution of sugar. Do the

same for NaCl, but note that the number of particles (ions) per molecule is twice that of a nonionic

solution. Raoult’s law is a colligative property that depends on the number of solute particles.

8.7 Ethylene glycol (OH—CH2—CH2—OH) is used as an antifreeze. (Its boiling point is 197 ◦C and

freezing point is –17.4 ◦C.)

(a) Look up the density of ethylene glycol in the CRC Handbook or other tables and write a general

formula for the freezing point of a mixture of X mL of ethylene glycol in 1.00 L of water for X
in the range 0–100 mL.



228 Modern Thermodynamics

(b) If the lowest expected temperature is about –10 ◦C, what is the minimum amount of ethylene

glycol (milliliters ethylene glycol per liter of H2O) you need in your coolant?

(c) What is the boiling point of the coolant that contains 300 mL of ethylene glycol per liter of water?

8.8 What will be the boiling point of a solution of 20.0 g of urea ((NH2)2CO) in 1.25 kg of nitrobenzene

(use Table 8.2).

8.9 A 1.89 g pellet of an unknown compound was dissolved to 50 mL of acetone. The change in the boiling

point was found to be 0.64 ◦C. Calculate the molar mass of the unknown compound. The density of

acetone is 0.7851 g mL−1 and the value of the ebullioscopic constant Kb may be found in Table 8.2.

8.10 A solution of 4.00 g of hemoglobin in 100 mL was prepared and its osmotic pressure was measured. The

osmotic pressure was found to be 0.0130 atm at 280 K. (a) Estimate the molar mass of hemoglobin. (b) If

4.00 g of NaCl is dissolved in 100 mL of water, what would the osmotic pressure be? (Molecular weights

of some proteins: ferricytochrome C, 12 744; myoglobin, 16 951; lysozyme, 14 314; immunoglobulin

G, 156 000; myosin, 570 000.)

8.11 The concentration of the ionic constituents of seawater are:

Ion Cl− Na+ SO4
2− Mg2+ Ca2+ K+ HCO3

−

Concentration (M) 0.55 0.46 0.028 0.054 0.010 0.010 0.0023

Many other ions are present in much lower concentrations. Estimate the osmotic pressure of seawater

due to its ionic constituents.

8.12 The concentration of NaCl in seawater is approximately 0.5 M. In the process of reverse osmosis,

seawater is forced through a membrane impermeable to the ions to obtain pure water. The applied

pressure has to be larger than the osmotic pressure.

.(a) At 25 ◦C, what is the minimum pressure needed to achieve reverse osmosis? What is the work

done in obtaining 1.0 L of pure water from seawater?

(b) If the cost of 1 kW h of electrical power is about $0.15, what would be the energy cost of

producing 100 L of water from seawater through reverse osmosis if the process is 50% efficient

in using the electrical power to obtain pure water?

(c) Suggest another process to obtain pure water from seawater.

8.13 Consider two cubes of copper of side 1 cm. In each cube, assume that one out of a million Cu atoms is

Cu+. Using Coulomb’s law, calculate the force between the two cubes if they are placed at a distance

of 10 cm.

8.14 Calculate the ionic strength and the activity coefficients of a 0.02 M solution of CaCl2.

8.15 The solubility product of AgCl is 1.77 × 10−10. Calculate the concentration of Ag+ ions in equlibrium

with solid AgCl.
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8.16 Show that for a perfect solution the molar volume of mixing ΔVmix = 0.

8.17 Consider a binary azeotrope. The chemical potentials of a component, say 2, in the gas and the liquid

phases can be written as

𝜇2,g(T , p, x) = 𝜇∗
2 ,g(T , p) + RT ln(𝛾2,gx2)

and

𝜇2,1(T , p, x) = 𝜇∗
2,l(T , p) + RT ln(𝛾2,1x2)

in which 𝜇∗ is the chemical potential of the pure substance. Note that the mole fraction is the same in

the two phases. Use Equation (5.3.7) to derive the relation (8.5.1).

8.18 A regular solution is one for which the excess entropy ΔSE = 0. Show that this implies that ln 𝛾 i ∝ 1/T
in which 𝛾 i is the activity coefficient.



9
Thermodynamics of Chemical

Transformations

9.1 Transformations of Matter

Transformations of matter take place in many ways, through chemical, nuclear and elementary particle

reactions. We shall speak of ‘chemical transformations’ in this broader sense. Though thermodynamics was

founded in our daily experience, its reach is vast, ranging from the most simple changes like the melting of

ice, to the state of matter during the first few minutes after the ‘big bang’, to the radiation that fills the entire

universe today.

Let us begin by looking at the transformation that matter undergoes at various temperatures. Box 9.1 gives

an overview of the reactions that take place at various temperatures, ranging from those during the first

few minutes after the ‘big bang’ [1] to terrestrial and interstellar temperatures. All these transformations or

reactions can be associated with enthalpies of reaction and an equilibrium characterized by the vanishing of

the corresponding affinities.

Our present knowledge of the universe is based on the radiation emitted by galaxies that we can detect

and on the motion of galaxies due to gravitational forces exerted by matter that is visible and invisible.

Astrophysical data on observable gravitational effects indicate that only about 4% of the energy density in the

universe is in the form of the protons, neutrons and electrons that make up ordinary matter in all the visible

galaxies. Of the rest, 74% is in an unknown form spread diffusely throughout the universe; this is called dark
energy. The remaining 22% is matter in galaxies that is not visible and is called dark matter; its presence

is inferred through the gravitational effects it has on visible matter. The universe is also filled with thermal

radiation1 at a temperature of about 2.73 K (usually called cosmic microwave background) and particles

called neutrinos, which interact only very weakly with protons, neutrons and electrons.

The small amount of matter that is in the form of stars and galaxies is not in thermodynamic equilibrium.

The affinities for the reactions that are currently occurring in the stars are not zero. The nuclear reactions in

the stars produce all the known elements from hydrogen [2–4]. Hence, the observed properties, such as the

abundance of elements in stars and planets, cannot be described using the theory of chemical equilibrium.

1The precise thermodynamic nature of thermal radiation is discussed in Chapter 11.

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Box 9.1 Transformation of matter at various temperatures

Temperature >1010 K. This was the temperature during the first few minutes of the universe after the

‘big bang’. At this temperature, the thermal motion of the protons and neutrons is so violent that even

the strong nuclear forces cannot bind them as nuclei of elements. Electron–positron pairs appear and

disappear spontaneously and are in thermal equilibrium with radiation. (The threshold for electron–

positron pair production is about 6 × 109 K.)

Temperature range 109–107 K. At about 109 K, nuclei begin to form and nuclear reactions occur in

this range. Temperatures as high as 109 are reached in stars and supernova, where heavier elements

are synthesized from H and He. The binding energy per nucleon (proton or neutron) is in the range

(1.0–1.5) × 10−12 J ≈ (6.0–9.0) × 106 eV, which corresponds to (6.0–9.0) × 108 kJ mol−1.

Temperature range 106–104 K. In this range, electrons bind to nuclei to form atoms, but the bonding

forces between atoms are not strong enough to form stable molecules. At a temperature of about

1.5 × 105 K, hydrogen atoms begin to ionize. The ionization energy of 13.6 eV corresponds to

1310 kJ mol−1. Heavier atoms require larger energies for complete ionization. Complete ionization

of carbon, for example, requires 490 eV of energy, which corresponds to 47187 kJ mol−1.* Carbon

atoms will be completely dissociated at T ≈ 5 × 106 K into electrons and nuclei. In this temperature

range, matter exists as free electrons and nuclei, a state of matter called plasma.

Temperature range 10–104 K. Chemical reactions take place in this range. The chemical bond energies

are of the order of 102 kJ mol−1. The C—H bond energy is about 414 kJ mol−1. At a temperature of

about 5 × 104 K, chemical bonds will begin to break. The intermolecular forces, such as hydrogen

bonds, are of the order 10 kJ mol−1. The enthalpy of vaporization of water, which is essentially the

breaking of hydrogen bonds, is about 40 kJ mol−1.

*1 eV = 1.6 × 10−19 J = 96.3 kJ mol−1; T = (Energy in J mol−1)/R = (Energy in J)/kB.

A knowledge of the rates of reactions and the history of the star or planet is necessary to understand the

abundance of elements.

When a system reaches thermodynamic equilibrium, however, its history is of no importance. Regardless

of the path leading to equilibrium, the state of equilibrium can be described by general laws. In this chapter

we shall first look at the nature of chemical reactions and equilibrium; then we study the relation between

entropy production and the rates chemical reactions that drive the system to equilibrium.

9.2 Chemical Reaction Rates

In studying chemical reactions and their evolution to equilibrium, it is also our purpose to look explicitly at

the entropy production while the reactions are in progress. In other words, we would like to obtain explicit

expressions for the entropy production diS/dt in terms of the rates of reactions. The introduction of reaction

rates takes us beyond the classical thermodynamics of equilibrium states that was formulated by Gibbs

and others.

In general, the laws of thermodynamics cannot specify reaction rates. Though affinity is the driving force

of chemical reactions, the rates are not determined solely by affinities, but depend on many factors, such as

the presence of catalysts which does not change the affinity. However, as we shall see in later chapters, close

to the thermodynamic equilibrium – called the ‘linear regime’ – thermodynamic formalism can be used to
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show that rates are linearly related to the affinities. The general topic of specifying the rates of chemical

reactions has become a subject in itself and goes by the name of ‘chemical kinetics’. Kinetic equations express

reaction rates as functions of state variables. Some basic aspects of chemical kinetics will be discussed in

this section.

We have already seen that the entropy production due to a chemical reaction may be written in the form

(see Equation (4.1.16))

diS

dt
= A

T
d𝜉

dt
(9.2.1)

in which 𝜉 is the extent of reaction introduced in Section 2.5 and A is the affinity, expressed in terms of the

chemical potentials. The time derivative of 𝜉 is related to the rate of reaction. The precise definition of the

rate of reaction is given in Box 9.2. For the following simple reaction2:

Cl(g) + H2(g) ⇌ HCl(g) + H(g) (9.2.2)

Box 9.2 Reaction rate and reaction velocity

The reaction rate is defined as the number of reactive events per second per unit volume. It is usually

expressed as mol L−1 s−1. Chemical reactions depend on collisions. In most reactions, only a very small

fraction of the collisions result in a chemical reaction. For each reacting species, since the number of

collisions per unit volume is proportional to its concentration, the rates are proportional to the product

of the concentrations. A reaction rate refers to conversion of the reactants to the products or vice versa.

Thus, for the reaction

Cl (g) + H2 (g) ⇌ HCl (g) + H (g)

the forward rate Rf = kf[Cl][H2] and the reverse rate Rr = kr[HCl][H], in which kf and kr are the rate

constants. In a reaction, both forward and reverse reactions take place simultaneously. For thermodynamic

considerations, we define the velocity of a reaction as the rate of net conversion of the reactants to

products. Thus:

Reaction velocity v = Forward rate − Reverse rate

= kf [Cl][H2] − kr[HCl][H]

= Rf − Rr

In a homogeneous system, the reaction velocity v is given in terms of the extent of reaction:

v = d𝜉

V dt
= Rf − Rr

in which V is the volume of the system. In practice, monitoring the progress of a reaction by noting the

change in some property (such as spectral absorption or refractive index) of the system generally amounts

to monitoring the change in the extent of reaction 𝜉.

2For a detailed study of this reaction, see Science, 273 (1996), 1519.
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the affinity A and the extent of reaction 𝜉 are defined by

A = 𝜇Cl + 𝜇H2
− 𝜇HCl − 𝜇H (9.2.3)

d𝜉 =
dNCl

−1
=

dNH2

−1
=

dNHCl

1
=

dNH

1
(9.2.4)

As explained in Box 9.2, the forward reaction rate is kf[Cl][H2], in which the square brackets indicate

concentrations and kf is the forward rate constant, which depends on temperature. Similarly, the reverse

reaction rate is kr[HCl][H]. The time derivative of 𝜉 is the net rate of conversion of reactants Cl and H2 to the

products HCl and H due to the forward and reverse reactions. Since the reaction rates are generally expressed

as functions of concentrations, it is more convenient to define this net rate per unit volume. Accordingly, we

define a reaction velocity v as

v = d𝜉

Vdt
= kf [Cl][H2] − kr[HCl][H] (9.2.5)

Note that this equation follows from Equation (9.2.4) and the definition of the forward and reverse rates.

For example, in a homogeneous system, the rate of change of the concentration of Cl is d(NCl/V) dt =
–kf [Cl][H2] + kr [HCl][H]. More generally, if Rf and Rr are the forward and reverse reaction rates,

we have

v = d𝜉

V dt
= Rf − Rr (9.2.6)

The reaction velocity units are mol L−1 s−1.

In the above example, the rate of reaction bears a direct relation to the stoichiometry of the reactants, but

this is not always true. In general, for a reaction such as

2X + Y → Products, Rate = k[X]a[Y]b (9.2.7)

in which k is a temperature-dependent rate constant and the exponents a and b are not necessarily integers.

The rate is said to be of order a in [X] and of order b in [Y]. The sum of all the orders of the reactants, a + b,
is the order of the reaction. Reaction rates can take complex forms because they may be the result of many

intermediate steps with widely differing rates that depend on the presence of catalysts. If all the intermediate

steps are known, then each step is called an elementary step. Rates of elementary steps do bear a simple

relation to the stoichiometry: the exponents equal the stoichiometric coefficients. If reaction (9.2.7) were an

elementary step, for example, then its rate would be k[X]2[Y].

In many cases, the temperature dependence of the rate constant is given by the Arrhenius equation:

k = k0 e−Ea∕RT (9.2.8)
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Svante Arrhenius (1859–1927) proposed it in 1889 and showed its validity for a large number of reactions

[5,6]. The term k0 is called the pre-exponential factor and Ea the activation energy. For the forward reaction

of Equation (9.2.2), Cl + H2 → HCl + H, we have, for example, k0 = 7.9 × 1010 L mol−1 s−1 and Ea = 23

kJ mol−1. When T varies over a wide range, the Arrhenius equation was found to be inaccurate in predicting

the variation of the rate constant, though it is quite useful for many reactions.

Svante August Arrhenius (1859–1927).

A more recent theory that is based on statistical mechanics and quantum theory was developed in the

1930s by Wigner, Pelzer, Eyring, Polyani and Evans. According to this theory, the reaction occurs through

a transition state (see Box 9.3). We shall discuss transition state theory in some detail later in this chapter.

The concept of a transition state leads to the following expression for the rate constant:

k = 𝜅
(

kBT

h

)
e−(ΔH†−TΔS†)∕RT = 𝜅

(
kBT

h

)
e−ΔG†∕RT (9.2.9)

in which kB = 1.381 × 10−23 J K−1 is the Boltzmann constant and h is Planck’s constant. The terms ΔH† and

ΔS† are the transition-state enthalpy and entropy respectively, as explained briefly in Box 9.3. The term 𝜅 is

small, of the order of unity, which is characteristic of the reaction. A catalyst increases the rate of reaction by
altering the transition state such that (ΔH† – TΔS†) = ΔG† decreases.
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Box 9.3 Arrhenius equation and transition state theory

G
ib

b
s

en
er

g
y

Z + W

X + Y

X + Y

Reaction coordinate

(XY)† → Z + W

(XY)†

According to the Arrhenius equation, the rate constant of a chemical reaction is of the form

k = k0 e−Ea∕RT

The rate constant k has this form because, for the reactants to convert to products, the collisions must have

sufficient energy to overcome an energy barrier. As shown in the above figure, the transformation from the

reactants to the products is schematically represented with a ‘reaction coordinate’ and the energy of the

molecules undergoing the reaction.

According to the transition state theory, the reactants X and Y reversibly form a transition state (XY)†.

The transition state then irreversibly transforms to the products. The difference in the enthalpy and entropy

between the free molecules X and Y and the transition state are denoted by ΔH† and ΔS† respectively.

The main result of the transition state theory (which is obtained using principles of statistical mechanics

and quantum mechanics) is that the rate constant is of the form

k = 𝜅
(
kBT∕h

)
exp[−(ΔH† − TΔS†)∕RT] = 𝜅

(
kBT∕h

)
exp[−ΔG†∕RT]

in which kB = 1.381 × 1023 J K−1 is the Boltzmann constant and h= 6.626 × 10−34 J s is Planck’s constant;

𝜅 is a term of the order of unity that is characteristic of the reaction.

A catalyst increases the rate of reaction by altering the transition state such that (ΔH† – TΔS†) = ΔG†

decreases.

9.2.1 Rate Equations Using the Extent of Reactions

Reaction rates are generally determined empirically. The mechanisms of reactions, which detail all the

elementary steps, are usually a result of long and detailed study. Once the reaction rate laws are known,

the time variation of the concentration can be obtained by integrating the rate equations, which are coupled

differential equations. (Box 9.4 lists elementary first- and second-order reactions.) For example, if we have

an elementary reaction of the form

X
kf

←←←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←←←←
kr

2Y (9.2.10)
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then the concentrations are governed by the following differential equations:

− 1

V
d𝜉

dt
= d[X]

dt
= −kf [X] + kr[Y]2 (9.2.11)

2
1

V
d𝜉

dt
= d[Y]

dt
= 2kf [X] − 2kr[Y]2 (9.2.12)

Box 9.4 Elementary reactions

To obtain an explicit analytic expression for the concentrations of the reactants and products as a function

of time, we must solve differential equations such as (9.2.11) and (9.2.12). Generally, this is possible only

in the case of simple reactions. For more complex reactions, one can obtain numerical solutions using a

computer. Two elementary reactions for which we can obtain explicit expressions for the concentrations

as functions of time are given below.

First-order reaction. For a decomposition reaction X → Products, in which the reverse reaction rate is

so small that it can be neglected, we have the differential equation

d[X]

dt
= −kf [X]

It is easy to see that solution of this equation is

[X](t) = [X]0e−kf t

in which [X]0 is the concentration at time t = 0. This is the well-known exponential decay; in a given

amount of time, [X] decreases by the same fraction. In particular, the time it takes for any initial value

of [X] to decrease by a factor of 1/2 is the half-life. It is usually denoted by t1/2. The half-life can be

computed by noting that exp(–kft1/2) = 1/2, i.e.

t1∕2 =
ln(2)

kf

= 0.6931

kf

Second-order reaction. For the elementary reaction 2X → Products, if the reverse reaction can be

neglected, the rate equation is

d[X]

dt
= −2kf [X]2

The solution is obtained by evaluating

[X]

∫
[X]0

d[X]

[X]2
= −

t

∫
0

2kfdt

which gives us

1

[X]
− 1

[X]0

= 2kf t

Given [X]0 at t = 0 and kf, this expression gives us the value [X] at any time t.
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Without loss of generality, we may assume V = 1 and simplify the notation. These two equations are not

independent. In fact, there is only one independent variable 𝜉 for every independent reaction. If [X]0 and

[Y]0 are the values of the concentrations at t = 0, then by assigning 𝜉(0) = 0 and using d𝜉 = –d[X] and 2d𝜉 =
d[Y] it is easy to see that [X] = [X]0 – 𝜉 and [Y] = [Y]0 + 2𝜉. Substituting these values into Equation (9.2.1)

we obtain

d𝜉

dt
= kf ([X]0 − 𝜉) − kr([Y]0 − 2𝜉)2 (9.2.13)

In this equation, the initial concentrations [X]0 and [Y]0 appear explicitly and 𝜉(0) = 0 for all initial

concentrations. The solution 𝜉(t) of such an equation can be used to obtain the rate of entropy production, as

will be shown explicitly in Section 9.5. Differential equations such as these, and more complicated system

of equations, can be solved numerically on a computer, e.g. using software such as Mathematica or Maple
(sample programs are provided in Appendix 9.1). Furthermore, in describing reactions involving solid phases,

concentration cannot be used to describe the change in the amount of a solid phase; the extent of reaction 𝜉,

which represents the change in the total amounts of a reactant or product, is a convenient variable for this

purpose.

When many reactions are to be considered simultaneously, we will have one 𝜉 for each independent reaction,

denoted by 𝜉k, and the entire system will be described by a set of coupled differential equations in 𝜉k. Only

in a few cases can we find analytical solutions to such equations, but they can be readily solved numerically

using Mathematica, Maple or other software that is designed specifically for solving rate equations.

9.2.2 Reaction Rates and Activities

Though reaction rates are generally expressed in terms of concentrations, one could equally well express them

in terms of activities. In fact, we shall see in the following sections that the connection between affinities and

reaction rates can be made more easily if the reaction rates are expressed in terms of activities. For example,

for the elementary reaction

X + Y ⇌ 2W (9.2.14)

the forward rate Rf and the reverse rate Rr may be written as

Rf = kfaXaY and Rr = kra
2
W

(9.2.15)

The rate constants kf and kr in Equation (9.2.15) will have units of mol L−1 s−1; their numerical values

and units differ from those of the rate constants when Rf and Rr are expressed in terms of concentrations

(Exercise 9.11).

Experimentally, we know that reaction rates do depend on the activities; they are not specified by concen-

trations alone. For example, at fixed values of temperature and concentrations of the reactants, it is well known

that the rates of ionic reactions can be altered by changing the ionic strength of the solution (usually known

as the ‘salt effect’). This change in the rate is due to a change in the activities. It has become general practice,

however, to express the reaction rates in terms of the concentrations and to include the effects of changing

activities in the rate constants. Thus, the rate constants are considered functions of the ionic strength when

rates are expressed in terms of concentrations. Alternatively, if the rates are expressed in terms of activities,

then the rate constant is independent of the ionic strength; a change in rate due to a change in ionic strength

would be because activity depends on ionic strength.
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9.3 Chemical Equilibrium and the Law of Mass Action

In this section we shall study chemical equilibrium in detail. At equilibrium, the pressure and temperature

of all components and phases are equal; the affinities and the corresponding reaction velocities vanish. For

example, for a reaction such as

X + Y ⇌ 2Z (9.3.1)

at equilibrium we have

A = 𝜇X + 𝜇Y − 2𝜇Z = 0 and
d𝜉

dt
= 0 (9.3.2)

or

𝜇X + 𝜇Y = 2𝜇Z (9.3.3)

The condition that the ‘thermodynamic force’, affinity A, equals zero implies that the corresponding ‘ther-

modynamic flow’, i.e. the reaction velocity d𝜉/dt, also equals zero. The condition A = 0 means that at

equilibrium the ‘stoichiometric sum’ of the chemical potentials of the reactants and products are equal, as in

Equation (9.3.3). This result can be generalized to an arbitrary chemical reaction of the form

a1A1 + a2A2 + a3A3 +⋯ + anAn ⇌ b1B1 + b2B2 + b3B3 +⋯ + bmBm (9.3.4)

in which the ak are the stoichiometric coefficients of the reactants Ak and the bk are the stoichiometric

coefficients of the products Bk. The corresponding condition for chemical equilibrium will then be

a1𝜇A1
+ a2𝜇A2

+ a3𝜇A3
+⋯ + an𝜇An

= b1𝜇B1
+ b2𝜇B2

+ b3𝜇B3
+⋯ + bm𝜇Bm

(9.3.5)

Such equalities of chemical potentials are valid for all reactions: changes of phase, and chemical, nuclear and

elementary particle reactions. Just as a difference in temperature drives the flow of heat until the temperatures

difference vanishes, a nonzero affinity drives a chemical reaction until the affinity vanishes.

To understand the physical meaning of the mathematical conditions such as Equation (9.3.3) or (9.3.5), we

express the chemical potential in terms of experimentally measurable quantities. We have seen in Section 5.3

(Equation (5.3.5)) that the chemical potential in general can be expressed as

𝜇k(p, T) = 𝜇0
k (T) + RT ln ak (9.3.6)

in which ak is the activity and 𝜇0
k (T0) = ΔG0

f
[k,T] is the standard molar Gibbs energy of formation (Box 5.1),

the value of which may be found in data tables. This being a general expression, for gases, liquids and solids

we have the following explicit expressions:

� Ideal gas: ak = pk/p0, where pk is the partial pressure.
� Real gases: expressions for activity can be derived using Equation (6.2.30), as was shown in Section 6.2.
� Pure solids and liquids: ak ≈ 1.
� Solutions: ak ≈ 𝛾kxk, where 𝛾k is the activity coefficient and xk is the mole fraction.

For ideal solutions, 𝛾k = 1. For nonideal solutions, 𝛾k is obtained by various means, depending on the

type of solution. The chemical potential can also be written in terms of the concentrations by appropriately

redefining 𝜇0
k .
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We can now use Equation (9.3.6) to express the condition for equilibrium (9.3.3) in terms of the activities,

which are experimentally measurable quantities:

𝜇0
X

(T) + RT ln(aX,eq) + 𝜇0
Y

(T) + RT ln(aY,eq) = 2[𝜇0
Z

(T) + RT ln(aZ,eq)] (9.3.7)

where the equilibrium values of the activities are indicated by the subscript ‘eq’.

This equation can be rewritten as

a2
Z,eq

aX,eq
aY,eq

= exp

[
𝜇0

X
(T) + 𝜇0

Y
(T) − 2𝜇0

Z
(T)

RT

]
≡ K(T) (9.3.8)

K(T), as defined above, is called the equilibrium constant. It is a function only of temperature. That the

equilibrium constant as defined above is a function of T only is an important thermodynamic result. It is called

the law of mass action. 𝜇0
k (T) = ΔG0

f
[k, T] is the standard molar Gibbs energies of formation of compound k

at a temperature T. The ‘Standard Thermodynamic Properties’ table at the end of the book lists this quantity

at T = 298.15 K. It is convenient and conventional to define the Gibbs energy of reaction ΔGr as

ΔG0
r (T) = −[𝜇0

X
(T) + 𝜇0

Y
(T) − 2𝜇0

Z
(T)]

= 2ΔG0
f
[Z, T] − ΔG0

f
[X, T] − ΔG0

f
[Y, T]

(9.3.9)

The equilibrium constant is then written as

K(T) = exp(−ΔG0
r ∕RT)

= exp[−(ΔH0
r − TΔS0

r )∕RT]
(9.3.10)

in which ΔG0
r ,ΔH0

r andΔS0
r are respectively the standard Gibbs energy, enthalpy and entropy of the reaction

at temperature T, though their temperature dependence is usually not explicitly indicated. The activities in

Equation (9.3.8) can be written in terms of partial pressures pk or mole fractions xk. If reaction (9.3.1) were

an ideal-gas reaction, then ak = pk/p0. With p0 = 1 bar and pk measured in bars, the equilibrium constant

takes the form

p2
Z,eq

pX,eqpY,eq

= Kp(T) = exp(−ΔG0
r ∕RT) (9.3.11)

At a given temperature, regardless of the initial partial pressures, the chemical reaction (9.3.1) will irreversibly

evolve towards the state of equilibrium in which the partial pressures will satisfy Equation (9.3.11). This is

one form of the law of mass action. Kp is the equilibrium constant expressed in terms of the partial pressures.

Since in an ideal gas mixture pk = (Nk/V)RT = [k]RT (in which R is in units of bar L mol−1 K−1), the law of

mass action can also be expressed in terms of the concentrations of the reactants and products:

[Z]2
eq

[X]eq[Y]eq

= Kc(T) (9.3.12)

in which Kc is the equilibrium constant expressed in terms of the concentrations. In general, for a reaction of

the form, aX + bY ⇌ cZ it is easy to obtain the relation Kc = (RT)𝛼Kp, where 𝛼 = a + b – c (Exercise 9.14).

In the particular case of reaction (9.3.1) 𝛼 happens to be zero.

If one of the reactants were a pure liquid or a solid, then the equilibrium constant will not contain

corresponding ‘concentration’ terms. For example, let us consider the reaction

O2(g) + 2C(s) ⇌ 2CO(g) (9.3.13)
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Since aC(s)
≈ 1 for the solid phase, the equilibrium constant in this case is written as

a2
CO,eq

aO2,eq
a2

C,eq

=
p2

CO,eq

pO2,eq

= Kp(T) (9.3.14)

Equations (9.3.9) and (9.3.10) provide us with the means of calculating the equilibrium constant K(T) using

the tabulated values of ΔG0
f
[k]. If the activities are expressed in terms of partial pressures, then we have Kp.

Some examples are shown in Box 9.5.

Box 9.5 The equilibrium constant

A basic result of equilibrium chemical thermodynamics is that the equilibrium constant K(T) is a function

of only temperature. It can be expressed in terms of the standard Gibbs energy of reaction ΔG0
r (Equations

(9.3.9) and (9.3.10)):

K(T) = exp[−ΔG0
r ∕RT]

For a reaction such as O2(g) + 2C(s) ⇋ 2CO(g) the equilibrium constant at 298.15 K can be calculated

using the tabulated values of standard Gibbs energy of formation ΔG0
f

at T = 298.15 K:

ΔG0
r = 2ΔG0

f
[CO] − 2ΔG0

f
[C] − ΔG0

f
[O2]

= −2(137.2) kJ mol−1 − 2(0) − (0) = −274.4 kJ mol−1

Using this value in the expression K(T) = exp[−ΔG0
r ∕RT] we can calculate K(T) at T = 298.15:

K(T) = exp[−ΔG0
r ∕RT] = exp[274.4 × 103∕(8.314 × 298.15)] = 1.18 × 1048

Similarly, for the reaction CO(g) + 2H2(g) ⇋ CH3OH(g), at T = 298.15 K,

ΔG0
r = ΔG0

f
[CH3OH] − ΔG0

f
[CO] − 2ΔG0

f
[H2]

= −161.96 kJ mol−1 − (−137.2 kJ mol−1) − 2(0) = −24.76 kJ mol−1

The equilibrium constant is

K(T) = exp[−ΔG0
r ∕RT] = exp[24.76 × 103∕(8.314 × 298.15)] = 2.18 × 104.

9.3.1 Relation between the Equilibrium Constants and the Rate Constants

Chemical equilibrium can also be described as a state in which the forward rate of every reaction equals its

reverse rate. If the reaction X + Y ⇌ 2Z is an elementary step, and if we express the reaction rates in terms

of the activities, then when the velocity of the reaction is zero we have

kfaXaY = kra
2
Z

(9.3.15)

From a theoretical viewpoint, writing the reaction rates in terms of activities rather than concentrations is

better because the state of equilibrium is directly related to activities, not concentrations.

Comparing Equation (9.3.15) and the equilibrium constant (9.3.8), we see that

K(T) =
a2

Z

aXaY

=
kf

kr

(9.3.16)
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Thus, the equilibrium constant can also be related to the rate constants kr and kf when the rates are expressed

in terms of the activities. It must be emphasized that Equation (9.3.8) is valid even if the forward and reverse

rates do not have the form shown in Equation (9.3.15); in other words, Equation (9.3.8) is valid whether

the reaction X + Y ⇌ 2Z is an elementary reaction step or not. The relation between the activities and the
equilibrium constant is entirely a consequence of the laws of thermodynamics; it is independent of the kinetic
rates of the forward and reverse reactions.

9.3.2 The van’t Hoff Equation

Using Equation (9.3.10), the temperature variation of the equilibrium constant K(T) can be related to the

enthalpy of reaction ΔHr. From Equation (9.3.10) it follows that

d lnK(T)

dT
= − d

dT

ΔGr

RT
(9.3.17)

However, according to the Gibbs–Helmholtz equation (5.2.14), the variation ofΔG with temperature is related

to ΔH by [𝜕(ΔG/T)/𝜕T] = – ΔH/T2. Using this in the above equation we have

d lnK(T)

dT
=
ΔHr

RT2
(9.3.18)

This relation enables us to deduce how the equilibrium constant K(T) depends on the temperature. It is called

the van’t Hoff equation. In many situations of interest, the heat of reaction ΔHr changes very little with

temperature and may be assumed to be a constant equal to the standard enthalpy of reaction at 298.15 K,

which we denote by ΔH0
r . Thus, we may integrate Equation (9.3.18) and obtain

lnK(T) =
−ΔH0

r

RT
+ C (9.3.19)

Experimentally, K(T) can be obtained at various temperatures. According to Equation (9.3.19), a plot of

ln K(T) versus 1/T should result in a straight line with a slope equal to −ΔH0
r ∕R. This method can is used to

obtain the values of ΔH0
r .

9.3.3 Response to Perturbation from Equilibrium: The Le Chatelier–Braun Principle

When a system is perturbed from its state of equilibrium, it will relax to a new state of equilibrium. Le

Chatelier and Braun noted in 1888 that a simple principle may be used to predict the direction of the response

to a perturbation from equilibrium. Le Chatelier stated this principle thus:

Any system in chemical equilibrium undergoes, as a result of a variation in one of the factors governing

the equilibrium, a compensating change in a direction such that, had this change occurred alone it would

have produced a variation of the factors considered in the opposite direction.

To illustrate this principle, let us consider the reaction

N2 + 3H2 ⇌ 2NH3

in equilibrium. In this reaction, the total molar amount of all components decreases when the reactants

convert to products. If the pressure of this system is suddenly increased, then the system’s response will be

the production of more NH3, which decreases the total molar amount and thus the pressure. The compensating

change in the system is in a direction opposite to that of the perturbation. The new state of equilibrium will
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contain more NH3. Similarly, if a reaction is exothermic, if heat is supplied to the system, then the product

will be converted to reactants, which has the effect of opposing the increase in temperature. Though this

principle has its usefulness, it does not always give unambiguous results. For this reason, a more general

approach under the name ‘theorems of moderation’ has been developed [7]. This approach provides a very

precise and accurate description of the response of a system in equilibrium to a perturbation from this state,

which is always the evolution to another state of equilibrium.

Le Chatelier’s principle only describes the response of a system in thermodynamic equilibrium; it says

nothing about the response of a system that is maintained in a nonequilibrium state. Indeed, the response of a

nonequilibrium system to small changes in temperature could be extraordinarily complex. This is obviously

evident in living organisms, which are nonequilibrium systems. In the case of alligators, for example, the sex

of an offspring depends on the incubation temperature of the eggs [8]: temperatures below 30 ◦C produce all

females, while temperatures above 34 ◦C produce all males.

9.4 The Principle of Detailed Balance

There is an important aspect of the state of chemical equilibrium, and the state of thermodynamic equilibrium

in general, that must be noted, namely the principle of detailed balance.
We observed earlier that, for a given reaction, the state of equilibrium depends only on the stoichiometry

of the reaction, not its actual mechanism. For example, in the reaction X + Y ⇌ 2Z considered above, if the

forward and reverse reaction rates were given by

Rf = k
f
aXaY and Rr = kra

2
Z

(9.4.1)

respectively, then the result that a2
Z
∕aXaY = K(T) is at equilibrium can be interpreted as the balance between

forward and reverse reactions:

Rf = kfaXaY = Rr = kra
2
Z

so that

a2
Z

aXaY

= K(T) =
kf

kr

(9.4.2)

However, the equilibrium relation a2
Z
∕aXaY = K(T) was not obtained using any assumption regarding the

kinetic mechanism of the reaction. It remains valid even if there was a complex set of intermediate reactions

that result in the overall reaction X + Y ⇌ 2Z. This feature could be understood through the principle of
detailed balance, according to which:

In the state of equilibrium, every transformation is balanced by its exact opposite or reverse.

That the principle of detailed balance implies that a2
Z
∕aXaY = K(T) regardless of the mechanism can be seen

through the following example. Assume that the reaction really consists of two steps:

X + X ⇌ W (9.4.3)

W + Y ⇌ 2Z + X (9.4.4)
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which results in the net reaction X + Y ⇌ 2Z. According to the principle of detailed balance, at equilibrium

we must have

aW

a2
X

=
kfa

kra
≡ Ka,

a2
Z

aX

aWaY

=
kfb

krb
≡ Kb (9.4.5)

in which the subscripts a and b stand for reactions (9.4.3) and (9.4.4) respectively. The thermodynamic

equation for equilibrium a2
Z
∕aXaY = K(T) can now be obtained as the product of Ka and Kb:

KaKb =
aWa2

Z
aX

a2
X

aWaY

=
a2

Z

aXaY

= K (9.4.6)

From this derivation it is clear that this result will be valid for an arbitrary set of intermediate reactions.

The principle of detailed balance is a very general principle, valid for all transformations. It is in fact valid

for the exchange of matter and energy between any two volume elements of a system in equilibrium. The

amount of matter and energy transferred from volume element X to volume element Y exactly balances the

energy and matter transferred from volume element Y to volume element X (see Figure 9.1). The same can

be said of the interaction between the volume elements Y and Z and X and Z. One important consequence

of this type of balance is that the removal or isolation of one of the volume elements from the system, say

Z, does not alter the states of X or Y or the interaction between them. This is another way of saying that

there is no long-range correlation between the various volume elements. As we shall see in later chapters,

the principle of detailed balance is not valid in nonequilibrium systems that make a transition to organized

dissipative structures. Consequently, the removal or isolation of a volume element at one part will alter the

Figure 9.1 The principle of detailed balance. (a) The equilibrium between three interconverting compounds A,
B and C is a result of ‘detailed balance’ between each pair of compounds. (b) Though a cyclic conversion from
one compound to another as shown can also result in concentrations that remain constant in time, such a state
is not the equilibrium state. (c) The principle of detailed balance has a more general validity. The exchange of
matter (or energy) between any two regions of a system is balanced in detail; the amount of matter going from X
to Y is balanced by exactly the reverse process.
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state of a volume element located elsewhere. It is then said to have long-range correlations. We can see this

clearly if we compare a droplet of water that contains carbon compounds in thermal equilibrium and a living

cell that is in an organized state far from thermodynamic equilibrium. Removal of a small part of the water

droplet does not change the state of other parts of the droplet, whereas removing a small part of a living cell

is likely to have a drastic influence on other parts of the cell.

9.5 Entropy Production due to Chemical Reactions

The formalism of the previous sections can now be used to relate entropy production to reaction rates more

explicitly. In Chapter 4 we saw that the entropy production rate due to a chemical reaction is given by

diS

dt
= A

T
d𝜉

dt
≥ 0 (9.5.1)

Our objective is to relate the affinity A and d𝜉/dt to the reaction rates, so that the entropy production is written

in terms of the reaction rates. In order to do this, let us consider the reaction that we have considered before:

X + Y ⇌ 2Z (9.5.2)

Assuming that this is an elementary step, we have for the forward and reverse rates

Rf = kfaXaY and Rr = kra
2
Z

(9.5.3)

Since the forward and reverse rates must be equal at equilibrium, we have seen from Equation (9.4.2) that

K(T) =
kf

kr

(9.5.4)

The velocity of reaction v, which is simply the difference between the forward and reverse reaction rates, is

related to d𝜉/dt as shown in Equation (9.2.6). The reaction rates Rf and Rr can themselves be expressed as

functions of the extent of reaction 𝜉, as was shown in Section 9.2:

1

V
d𝜉

dt
= [Rf(𝜉) − Rr(𝜉)] (9.5.5)

To obtain the velocity of reaction as a function of time, this differential equation has to be solved. An example

is presented below.

Turning now to the affinity A, we can relate it to the reaction rates in the following manner. By definition,

the affinity of the reaction (9.5.2) is

A = 𝜇X + 𝜇Y − 2𝜇Z

= 𝜇0
X

(T) + RT ln(aX) + 𝜇0
Y

(T) + RT ln(aY) − 2[𝜇0
Z

(T) + RT ln(aZ)]

= [𝜇0
X

(T) + 𝜇0
Y

(T) − 2𝜇0
Z

(T)] + RT ln(aX) + RT ln(aY) − 2RT ln(aZ)

(9.5.6)

Since [𝜇0
X

(T) + 𝜇0
Y

(T) − 2𝜇0
Z

(T)] = −ΔG0
r = RT lnK(T), the above equation can be written as

A = RT lnK(T) + RT ln

(
aXaY

a2
Z

)
(9.5.7)
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This is an alternative way of writing the affinity. At equilibrium, A = 0. To relate A to the reaction rates, we

use Equation (9.5.4) and combine the two logarithm terms:

A = RT ln
kf

kr

+ RT ln

(
aXaY

a2
Z

)
= RT ln

(
kfaXaY

kra
2
Z

)
(9.5.8)

This leads us to the relations we are seeking if we use the expressions in (9.5.3) to write this expression in

terms of the reaction rates:

A = RT ln
(

Rf

Rr

)
(9.5.9)

Clearly, this equation is valid for any elementary step because the rates of elementary steps are directly related

to the stoichiometry. Now we can substitute Equations (9.5.5) and (9.5.9) in the expression for the entropy

production rate (Equation (9.5.1)) and obtain

1

V

diS

dt
= 1

V
A
T

d𝜉

dt
= R(Rf − Rr) ln(R

f
/Rr) ≥ 0 (9.5.10)

which is an expression that relates entropy production rate per unit volume to the reaction rates. (Note that

R is the gas constant.) Also, as required by the Second Law, the right-hand side of this equation is positive,

whether Rf > Rr or Rf > Rr. Another point to note is that in Equation (9.5.10) the forward and reverse rates

Rf and Rr can be expressed in terms of concentrations, partial pressures of the reactants or other convenient

variables; the reaction rates need not be expressed only in terms of activities, as in Equation (9.5.3).

The above equation can be generalized to several simultaneous reactions, each indexed by the subscript k.

The rate of total entropy production per unit volume is the sum of the rates at which entropy is produced in

each reaction:

1

V

diS

dt
= 1

V

∑
k

Ak

T

d𝜉k

dt
= R
∑

k

(Rkf − Rkr) ln(R
kf
∕Rkr) (9.5.11)

in which Rkf and Rkr are the forward and reverse reaction rates of the kth reaction. This expression is useful for

computing the entropy production rate in terms of the reaction rates, but it is valid only for elementary steps
whose reaction rates are specified by the stoichiometry. This is not a serious limitation, however, because

every reaction is ultimately the result of many elementary steps. If the detailed mechanism of a reaction is

known, then an expression for the entropy production rate can be written for any chemical reaction.

9.5.1 An Example

As an example of entropy production due to an irreversible chemical reaction, consider the simple reaction:

L ⇌ D (9.5.12)

which is the interconversion or ‘racemization’ of molecules with mirror-image structures. Molecules that are

not identical to their mirror image are said to be chiral and the two mirror-image forms are called enantiomers.
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Let [l] and [d] be the concentrations of the enantiomers of a chiral molecule. If at time t= 0 the concentrations

are [l] = L0 and [d] = D0, and 𝜉(0) = 0, then we have the following relations:

d[L]

−1
= d[D]

+1
= d𝜉

V
(9.5.13)

[L] = L0 − (𝜉∕V), [D] = D0 + (𝜉∕V) (9.5.14)

Relations (9.5.14) are obtained by integrating (9.5.13) and using the initial conditions. For notational conve-

nience we shall assume V = 1. At the end of the calculation we can reintroduce the V factor. Racemization

can be an elementary first-order reaction for which the forward and reverse reactions are

Rf = k[L] = k(L0 − 𝜉), Rr = k[D] = k(D0 + 𝜉) (9.5.15)

Note that the rate constants for the forward and reverse reactions are the same due to symmetry: l must

convert to d with the same rate constant as d to l. Also, from Equations (9.5.15) and (9.5.9) one can see that

the affinity is a function of the state variable 𝜉 for a given set of initial concentrations.

To obtain the entropy production as an explicit function of time, we must obtain Rf and Rr as functions of

time. This can be done by solving the differential equation defining the velocity of this reaction:

d𝜉

dt
= Rf − Rr = k(L0 − 𝜉) − k(D0 + 𝜉)

i.e.

d𝜉

dt
= 2k

(
L0 − D0

2
− 𝜉
)

(9.5.16)

This first-order differential equation can be easily solved by defining x = [(L0 – D0)/2] – 𝜉 so that the equation

reduces to dx/dt = –2kx. The solution is

𝜉(t) =
L0 − D0

2
(1 − e−2kt) (9.5.17)

With this expression for 𝜉(t), the rates in Equation (9.5.15) can be written as explicit functions of time:

Rf =
k(L0 + D0)

2
+

k(L0 − D0)

2
e−2kt (9.5.18)

Rr =
k(L0 + D0)

2
−

k(L0 − D0)

2
e−2kt (9.5.19)

With Equations (9.5.18) and (9.5.19), we can now also write the rate of entropy production (9.5.10) as an

explicit function of time:

1

V

diS

dt
= R(Rf − Rr) ln(Rf∕Rr)

1

V

diS

dt
= R[k(L0 − D0)e−2kt] ln

[
(L0 + D0) + (L0 − D0)e−2kt

(L0 + D0) − (L0 − D0)e−2kt

] (9.5.20)

As t →∞, the system reaches equilibrium, at which

𝜉eq =
L0 − D0

2
and [L]eq = [D]eq =

L0 + D0

2
(9.5.21)

The volume term can be reintroduced by replacing 𝜉eq by 𝜉eq/V.

In Chapter 5 (see Equation (5.1.12)) we noted the relation between affinity A and the Gibbs energy G: A =
– (𝜕G/𝜕𝜉)p,T. Both A and G are functions of state, which can be expressed as functions of 𝜉 and the initial
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[L]=L0 [D]=D0

L D
t = 0

[L]=[D]=(L0+D0)/2   

L D
t =

(a)diS/dt

t t

GA

eq

(c)

eq

(d)

(b)A

Figure 9.2 Racemization of enantiomers as an example of a chemical reaction. The associated entropy produc-
tion, the time variations of A, are shown in (a) and (b). State functions A and G as functions of 𝜉 are shown in
(c) and (d).

molar amounts of reactants and products. As 𝜉 approaches its equilibrium value 𝜉eq, the Gibbs energy reaches

its minimum value and the affinity A goes to zero, as shown in Figure 9.2.

The entropy production for more complex reactions can be obtained numerically using computers. Math-
ematica codes for the above example are given in Appendix 9.1. The student is encouraged to expand these

codes for more complex reactions.

9.6 Elementary Theory of Chemical Reaction Rates

The rates of chemical reactions depend on several factors. In previous sections we discussed the dependence

of rates on concentrations and introduced the Arrhenius and transition-state rate constants. According to the

Arrhenius theory, the rate constant has the form k0 exp(–Ea/RT), whereas transition-state theory gives a rate

constant of the form k0 exp(–ΔG†/RT). In this section we will introduce the reader to the theoretical basis

that leads to these expressions.
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9.6.1 The Arrhenius Theory of Rates

When the molecular nature of compounds became established, theories of rates of chemical reactions began

to emerge. That molecules were in incessant and rapid chaotic motion was established by the kinetic theory of

gases. A natural consequence was a view that chemical reactions were a consequence of molecular collisions.

When molecules collide, somehow an atomic rearrangement occurs and the products are formed. However,

not every collision between reacting molecules results in the formation of products. In fact, quantitative

estimates indicated that only a very small fraction of the collisions were ‘reactive collisions’. This naturally

raised the question as to why only certain collisions between reactant molecules resulted in the formation of

products.

One of the first successful theories of reaction rates is due to the Swedish chemist Svante Arrhenius (1859–

1927), but it is noted that others, especially van’t Hoff, also made important contributions to this theory [5,6].

The success of the Arrhenius theory is mainly in explaining the temperature dependence of reaction rates.

To explain why only a small fraction of molecular collisions resulted in reactions, the concept of ‘activation

energy’ was introduced. This is the idea that the colliding molecules must have sufficient energy to activate the

reaction, i.e. the breaking of bonds and formation of new bonds. That only a small fraction of molecules have

the required activation energy was proposed by the German chemist L. Pfundler. To compute the probability

that the collision has the required activation energy, the Boltzmann principle is taken as a guide. We recall

that, according to the Maxwell–Boltzmann probability distribution, the probability that a molecule has energy

E is proportional to exp(–E/RT). Using this principle, it could be argued that if a certain activation energy Ea is

required in a collision between reacting molecules to generate the product, this will happen with a probability

proportional to exp(–Ea/RT). Thus, the reaction rate must be proportional to a factor exp(–Ea/RT); that is, of

all the collisions that occur in a unit volume in unit time, a fraction k0 exp(–Ea/RT) will be reactive collisions.

Thus, the Arrhenius rate constant

k = k0e−Ea∕RT

where k0 is called the pre-exponential factor.
The next step is to compute the number of collisions that occur in unit time in a unit volume. For gases,

this can be done using the Maxwell–Boltzmann distribution (Section 1.6). Let us consider the reaction

A + B → Products. Let rA and rB be the radii of the A and B molecules respectively. For small molecules,

radii can be estimated from tabulated bond lengths. Figure 9.3 shows the path of a molecule of A as it

undergoes collisions with molecules in its path. An observer located on the molecule A will observe a stream

of molecules; collisions with molecules of B occur when the distance between the center of A and the center

of a streaming B is equal to or less than the sum rA + rB. Consider a cylinder of radius rA + rB with the

path of the molecule A as its axis. Molecule A will collide with all B molecules in such a cylinder. From

the viewpoint of an observer on A, molecules will be streaming at an average speed vr, which is equal to the

average relative velocity between A and B molecules. Thus, in unit time, on the average, a molecule of A

will collide with all B molecules in the volume 𝜋(rA + rB)2vr. The term 𝜋(rA + rB)2 is called the collision
cross-section. If nB is the moles of B molecules per unit volume, then a single A molecule will collide with

𝜋(rA + rB)2vrnBNA molecules of B per unit time. Thus, the average total number of collisions between A

and B molecules per unit volume per unit time, called the collision frequency zAB, equals

zAB = 𝜋(rA + rB)2vrnBnAN2
A

(9.6.1)

in which nA is the moles of A molecules per unit volume. Using the Maxwell–Boltzmann distribution it can

be shown that the average relative velocity between A and B molecules is given by

vr =
(

8kBT

𝜋𝜇

)1∕2

in which 𝜇 =
mAmB

mA + mB

(9.6.2)
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Figure 9.3 The elementary bimolecular reaction A + B→ Products is a result of collisions between the molecules
of A and B. Approximating the molecule’s shape to be spherical, we assume the radii of molecules of A and B
are rA and rB respectively. As shown, on average, in unit time, a molecule of A (filled sphere) will collide with all
molecules in the cylinder of cross-section 𝜋(rA + rB)

2 and length vr.

where mA and mB are the masses of molecules A and B respectively. The factor 𝜇 is called the reduced
mass. Of all the collisions, only a fraction exp(–Ea/RT) are reactive collisions that result in the formation of

products. Hence, the reaction rate (number of reactive collisions per unit time per unit volume) equals

Rate = zAB exp(−Ea∕RT)

= N2
A
𝜋(rA + rB)2

(
8kBT

𝜋𝜇

)1∕2

nBnA exp(−Ea∕RT)
(9.6.3)

To specify the rate in moles per unit volume per unit time, we divide the above expression by NA:

Rate(mol m−3 s−1) = NA(rA + rB)2

(
8𝜋kBT

𝜇

)1∕2

exp(−Ea∕RT)nAnB (9.6.4)

in which all quantities are in SI units. If the unit of length is taken to be decimeters, then the concentrations

will be molarities [A] and [B] and the rate will be in the units of moles per liter. We can now identify the

pre-exponential factor k0 in the Arrhenius rate:

k0 = NA(rA + rB)2

(
8𝜋kBT

𝜇

)1∕2

(9.6.5)

At T = 300 K, the value of k0 is of the order of 108 m3 mol−1 s−1 = 1011 L mol−1 s−1. The changes in k0

due to changes in T are small compared with the corresponding changes in the exponential factor in the rate

constant.

A number of other expressions were also suggested to explain the temperature dependence of reaction rates,

as Laidler notes [6], but they found less and less support as experimental data were gathered. In addition, the

expression suggested by Arrhenius had a strong theoretical basis that the other expressions lacked.
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9.6.2 The Transition State Theory

Transition state theory postulates the existence of a transition state which is in equilibrium with the reactants.

The transition state has an unstable mode that results in conversion to products. For a reaction X + Y →
Z + W, the transition-state mechanism is

X + Y
klf⟶⟵
klr

(XY)†
k2f⟶Z + W (9.6.6)

The rate of product formation is k2f[XY†]. The assumption that the transition state is in equilibrium with the

reactants implies that

[(XY)†]∕[X][Y] = k1f∕k1r = K1(T) = exp(−ΔG†∕RT) (9.6.7)

in which K1(T) is the equilibrium constant and ΔG† is the Gibbs energy of reaction. The reaction rate can

now be written as

Rate = k2f[(XY)†] = k2f K1(T)[X][Y] (9.6.8)

The use of statistical thermodynamics and quantum mechanics to calculate the rate constant gives k2f =
𝜅(kBT/h), in which 𝜅 is a term of the order of unity and h is the Planck’s constant (see Box 9.3). Therefore,

the rate constant has the form

k = 𝜅
(

kBT

h

)
exp(−ΔG†∕RT) (9.6.9)

In contrast to the Arrhenius theory, the transition state theory has a thermodynamic basis and predicts the

existence of a transition state. The pre-exponential factor it predicts is proportional to T; this is in contrast to

the Arrhenius theory, which predicts a T1/2 dependence. The transition state theory predicts a change in the

rate of reaction due to factors that might change ΔG†. One such factor is the effect of solvents. In solutions,

if the reactants are ionic, then it is observed that the reaction rate depends on the dielectric constant of the

solvent. This effect, called the ‘solvent effect’, can be explained by noting that a change in the dielectric

constant changes the value of ΔG†. In general, the transition state theory gives more insight into the nature

of a chemical reaction than the Arrhenius theory and is widely used.

9.7 Coupled Reactions and Flow Reactors

In the previous sections we discussed some basic aspects of chemical kinetics. In this section, we shall look at

more complex reactions. Box 9.4 summarizes the main aspects of first- and second-order reactions. In these

cases, the reverse reactions were not considered, but in many cases the reverse reaction cannot be ignored.

We shall now consider some examples below.

9.7.1 Zero-Order Reactions

In certain conditions, the rate of a reaction can be essentially independent of the concentration of the initial

reactants. For example, a reaction such as

X → Y (9.7.1)
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could have a rate of product formation that is given by

d[Y]

dt
= k (9.7.2)

in which k is a constant. Such a reaction may be said to be of ‘zero order’ in the reactant X. Such a

rate law clearly indicates that the reaction mechanism that controls the conversion of X to Y depends on

the concentration of another compound and that increasing the amount of X does not increase the rate of

conversion to Y. For example, let us assume that the formation of Y depends on X binding to a catalyst C to

form a complex CX and that the complex CX converts to C and Y:

X + C
k1f⟶CX

k2f⟶Y + C (9.7.3)

The rate of product formation depends on the amount of the complex CX. If all the catalyst is bound to the

reactant X, then increasing the amount of X does not increase the rate of product formation. If [C]T is the

total amount of C, then the rate of reaction when the complex is saturated is

d[Y]

dt
= k2f[C]T (9.7.4)

Such rates can be observed in reactions catalyzed by solid catalysts and in enzymes. The solution to Equation

(9.7.2) is [Y] = [Y]0 + kt.

9.7.2 Reversible First-Order Reaction

In general, the forward and the reverse rate constants are not equal and the rate equations are of the form

A
kf⟶⟵
kr

B (9.7.5)

d[A]

dt
= −Rf + Rr = −kf [A] + kr[B] (9.7.6)

in which Rf and Rr are the forward and reverse reactions rates. Let [A]0 and [B]0 be the initial concentrations.

In the above reaction, the total concentration, which we shall denote as T = [A] + [B] = [A]0 + [B]0, remains

constant. Hence, the above rate equation can be rewritten as

d[A]

dt
= −kf [A] + kr(T − [A]) = −(kf + kr)[A] + krT (9.7.7)

The solution to this equation is

[A] =
kr

kf + kr

T +
(

[A]0 −
kr

kf + kr

T

)
e−(kf+kr)t (9.7.8)

The reaction could also be described in terms of the extent of reaction 𝜉, as was done in Section 9.5 for the

racemization reaction L ⇌ D. This is left as an exercise for the student.

9.7.3 Consecutive First-Order Reactions

Sequential conversion of compounds is quite common in natural and industrial processes. Sequential trans-

formations in Nature more often than not are cyclical. Let us consider a very simple example: conversion of

A to B to C, in which the reverse reactions have negligible rates:

A
klf⟶B

k2f⟶C (9.7.9)
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We assume that all the rates are first order and that, at t = 0, [A] = [A]0, [B] = 0 and [C] = 0. The kinetic

equations for the concentrations of A, B and C are

R1f = k1f[A], R2f = k2f[B] (9.7.10)

d[A]

dt
= −R1f = −k1f[A] (9.7.11)

d[B]

dt
= R1f − R2f = k1f[A] − k2f[B] (9.7.12)

d[C]

dt
= R2f = k2f[B] (9.7.13)

This set of coupled equations can be solved analytically. The solution to Equation (9.7.11) is

[A] = [A]0 exp(−k1f t) (9.7.14)

This solution can be substituted into the equation for [B], (9.7.12); we get

d[B]

dt
+ k2f[B] = k1f[A]0 exp(−k1f t) (9.7.15)

This is a first-order differential equation of the form (dX/dt) + cX = f(t) in which c is a constant and f(t) is a

function of time. The general solution to such an equation is

X(t) = X(0)e−ct + e−ct

t

∫
0

ect′ f (t′)dt′ (9.7.16)

Using this general solution, we can write the solution to Equation (9.7.15) and show that

[B] =
k1f[A]0

k2f − k1f

(e−k1f t − e−k2f t) (9.7.17)

in which we have used [B]0 = 0. If the initial concentration [C]0 = 0, then the total amount [A] + [B] + [C] =
[A]0. Using this relation, one can obtain the time variation of [C]:

[C] = [A]0 − [A] − [B]

= [A]0

[
1 − e−k1f t −

k1f

k2f − k1f

(e−k1f t − e−k2f t)

]
(9.7.18)

Alternatively, the rate equations can be written and solved in terms of the extents of reaction 𝜉1 and 𝜉2 of

the two reactions (9.7.9). For simplicity, and without loss of generality, we shall assume the system volume

V = 1 so that concentrations and 𝜉 values can be related without explicitly including V. The extent of reaction

for the two reactions and the corresponding changes in concentrations are related by

d[A1]

−1
=

d[B1]

+1
= d𝜉1,

d[B2]

−1
=

d[C2]

+1
= d𝜉2 (9.7.19)

in which the subscripts indicate changes due to the first and second reactions in the consecutive reactions

(9.7.9). The total change in the concentration of A is only due to the reaction A → B and that of C is only

due to B → C, i.e.

d[A] = d[A1] = −d𝜉1 or [A] = [A]0 − 𝜉1 (9.7.20)
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and

d[C] = d[C2] = + d𝜉2 or [C] = [C]0 + 𝜉2 (9.7.21)

where we have assumed 𝜉 = 0 at t = 0 (the subscript 0 indicates values at t = 0). Since the change in the

intermediate [B] is due to both reactions, we write:

d[B] = d[B1] + d[B2] = d𝜉1 − d𝜉2 or [B] = [B]0 + 𝜉1 − 𝜉2 (9.7.22)

The velocities of the two reactions are

d𝜉1

dt
= R1f − R1r = k1f[A] = k1f([A]0 − 𝜉1) (9.7.23)

d𝜉2

dt
= R2f − R2r = k2f[B] = k2f([B]0 + 𝜉1 − 𝜉2) (9.7.24)

These two first-order linear differential equations could be solved using the methods outlined above. By

substituting the solutions 𝜉1(t) and 𝜉2(t) into Equations (9.7.20) to (9.7.22), the time variation of concentrations

[A], [B] and [C] can be obtained (Exercise 9.20). Describing the kinetics of reactions using extents of reaction

has some notable aspects:

� Each extent of reaction is an independent variable and the number of independent variables in a set of

reactions is equal to the number of extents of reaction. The time variations of all reacting species are

expressed in terms of these independent variables.
� The initial values of all reactants appear explicitly in the equations and the initial values of all extents of

reaction may be assumed to be zero.
� The rate of entropy production can be conveniently expressed in terms of the velocities d𝜉k/dt and the

chemical potentials of the reacting species.

9.7.4 The Steady-State Assumption

In many chemical reactions, the concentration of an intermediate compound or complex may be approximated

to be constant. Take, for example, the following Michaelis–Menten mechanism, which describes enzyme

reactions:

E + S
k1f⟶⟵
k1r

ES
k2f⟶ P + E (9.7.25)

Enzyme E complexes with the substrate S to form the complex ES, which in turn transforms to product P

and the enzyme. The complexation of E and S to form ES occurs very rapidly and reversibly. In contrast, the

conversion of ES to P and E happens relatively slowly. The rapidity of the reaction E + S →← ES keeps the

concentration of ES essentially a constant close to its equilibrium value; any decrease in [ES] due to product

formation is quickly compensated by the production of ES. Hence, we can assume that [ES] is in a steady
state, i.e. its time derivative is zero. Taking the two steps of the reaction (9.7.25), the steady-state assumption

can be expressed as

d[ES]

dt
= k1f[E][S] − k1r[ES] − k2f

[ES] = 0 (9.7.26)

In the above reaction, the total concentration of enzyme [E0], in the free and complex form, is a constant:

[E] + [ES] = [E0] (9.7.27)
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Combining Equations (9.7.26) and (9.7.27) we can write k1f([E0] – [ES])[S] – k1r[ES] – k2f[ES] = 0. From

this, it follows that

[ES] =
k1f[E0][S]

k1f[S] + (k1r + k2f)
(9.7.28)

The rate of formation of the product P is k2f[ES] and is usually written in the following form:

R = d[P]

dt
= k2f[ES] =

k2f[E0][S]

[S] + (k1r + k2r)∕k1f

=
Rmax[S]

[S] + Km
(9.7.29)

in which Rmax = k2f[E0] is the maximum rate of product formation and Km = (k1r + k2r)/k1f. It can be seen

from Equation (9.7.29) that the rate at which P is generated has the following properties:

� When [S] ≪ Km, the rate is proportional to [S].
� When [S] ≫ Km, the rate reaches its maximum value and is independent of [S].
� When [S] = Km, that rate reaches half the maximum value.

9.7.5 Flow Reactors

Many industrial chemical reactions take place in a flow reactor into which reactants flow and from which

products are removed. The kinetic equations for such systems must consider the inflow and outflow. To see

how the kinetic equations are written for a flow reactor, let us consider the following reaction, which we

assume requires a catalyst:

A
k1f⟶B

k2f⟶C (9.7.30)

We assume that the reaction takes place in a solution. The solution containing A flows into the reactor

(Figure 9.4) of volume V. In the reactor, activated by a catalyst, the conversion from A to B and C takes

place. The fluid in the reactor is rapidly stirred so that we may assume that it is homogeneous. The outflow

is a solution containing B, C and unconverted A. If the objective is to produce B and C, then the reaction

should be rapid enough so that very little A is in the outflow. We consider a flow rate of f liters per second of a

solution of concentration [A]in mol L−1. Moles of A flowing into the reactor per second equals [A]inf. Hence,

the rate at which the concentration of A increases due to the inflow into the reactor of volume V is [A]inf/V.

Similarly, the rate of decrease in concentrations of A, B and C due to the outflow are [A]f/V, [B]f/V and

[C]f/V respectively. The term f/V has units of s−1. Its inverse, V/f ≡ 𝜏, is called the residence time (because

Figure 9.4 A flow reactor into which fluid containing A flows. Owing to a catalyst in the reactor, conversion
of A → B → C takes place in the reactor. The outflow consists of unconverted A and the products B and C. The
amount of fluid flowing into the reactor per unit time is f. The inflow rate equals the outflow rate at steady state.
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it roughly corresponds to the time the flowing fluid resides in the reactor before it flows out). Taking the flow

into consideration, the kinetic equations for the reactor can be written as

d[A]

dt
= [A]in(f∕V) − k1f[A] − [A](f∕V) (9.7.31)

d[B]

dt
= k1f[A] − k2f[B] − [B](f∕V) (9.7.32)

d[C]

dt
= k2f[B] − [C](f∕V) (9.7.33)

This set of linear coupled equations can be solved for steady states by setting d[A]/dt = d[B]/dt = d[C]/dt = 0.

If, initially, the reactor contains no A, B or C, then the flow will result in an initial increase in the concentration

of the three reactants and then the reactor will approach a steady state in which the concentrations are constant.

The steady states, which we identify with a subscript ‘s’, are easily calculated:

[A]s =
[A]in(f∕V)

k1f + (f∕V)
(9.7.34)

[B]s =
k1f[A]s

k2f + (f∕V)
(9.7.35)

[C]s =
k2f[B]s

f∕V
(9.7.36)

If the rate constants k1f and k2f are large compared with f/V, then the steady-state concentrations [A]s and

[B]s will be small and [C]s will be large. This corresponds to almost complete conversion of A into product

C, which will flow out of the reactor. On the other hand, if the flow rate is high, then the conversion in the

reactor will only be partial. Because they are coupled linear equations, (9.7.31) to (9.7.33) can also be solved

analytically; generally, however, chemical kinetics leads to coupled nonlinear equations, which cannot be

solved analytically. They can, of course, be solved numerically.

The above simple example illustrates how kinetic equations for a reactor can be written. Generalizing it

to reactions more complex than Equation (9.7.30) is straightforward. The purpose of some reactors is to

combust fuel and generate heat. At the steady state, heat is generated at a constant rate. If the enthalpies of the

reactions are known, then at a steady state, the rate at which heat is generated in the reactor can be calculated.

Appendix 9.1 Mathematica Codes

In Mathematica, numerical solutions to the rate equation can be obtained using the NDSolve command.

Examples of the use of this command in solving simple rate equations are given below. The results can be

plotted using the Plot command. Numerical output can be exported to graphing software using the Export
command.

CODE A: LINEAR KINETICS X → PRODUCTS

(* Linear Kinetics *)

k=0.12;
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Soln1=NDSolve[{X'[t]== -k*X[t], X[0]==2.0},X,{t,0,10}]

{{X->InterpolatingFunction[{{0.,10.}},<>]}}

The above output indicates that the solution as an interpolating function has been generated. The solution can

be plotted using the following command. Here ‘ /.Soln1’ specifies that the values of X[t] are to be calculated

using the interpolation function generated by Soln1.

Plot[Evaluate[X[t]/.Soln1],{t,0,10},
PlotStyle→{{Black,Thick}},
AxesLabel->{Time,"[X]"}]

2 4 6 8 10
Time

0.8

1.0

1.2

1.4

1.6

1.8

2.0

X

To write output files for spreadsheets use the ‘Export’ command and the file format List. For more detail

see the Mathematica help file for the Export command. In the command below, the output filename is:

data1.txt. This file can be read by most spreadsheets and graphing software. The command ‘X[t]/.Soln1’

specifies that X[t] is to be evaluated using Soln1 defined above. TableForm outputs data in a convenient

form.

Export["data1.txt", Table[{t,X[t]/.Soln1},{t,1,10}]//TableForm,"List"]

data1.txt

To obtain a table of t and X(t) the following command can be used.

Table[{t,X[t]/.Soln1},{t,1,5}]//TableForm

1 1.77384
2 1.57326
3 1.39535
4 1.23757
5 1.09762
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CODE B: Mathematica CODE FOR THE REACTION X + 2Y ⇋ 2Z

In writing codes for kinetic equations, we shall define the forward and reverse rates, Rf and Rr respectively,

and use these in the rate equations. Thus we avoid typing the same expression many times.

(* Reaction X+2Y ⇋ 2Z *)

kf=0.5;kr=0.05;
Rf:=kf*X[t]*(Y[t]ˆ2); Rr:=kr*Z[t]ˆ2;

Soln2=NDSolve[{ X'[t]== -Rf+Rr,
Y'[t]== 2*(-Rf+Rr),
Z'[t]== 2*(Rf-Rr),

X[0]==2.0,Y[0]==3.0,Z[0]==0.0},
{X,Y,Z},{t,0,3}]

{{X->InterpolatingFunction[{{0.,3.}},<>],
Y->InterpolatingFunction[{{0.,3.}},<>],
Z->InterpolatingFunction[{{0.,3.}},<>]}}

The above output indicates that the solution as an interpolating function has been generated. The solution can

be plotted using the following command:

Plot[Evaluate[{X[t],Y[t],Z[t]}/.Soln2],{t,0,3},
AxesLabel->{Time,Concentrations},
PlotStyle→{{Black,Thick},{GrayLevel[.5],Thick},
{Dashed,Gray,Thick}}]
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As shown in Code A, the data could be written to an output file that graphing software can read using the

Export command.
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CODE C: Mathematica CODE FOR RACEMIZATION REACTION L ⇌ D AND CONSEQUENT

ENTROPY PRODUCTION

(* Racemization Kinetics: L ⇌ D *)

kf=1.0;kr=1.0;
Rf:=kf*XL[t]; Rr:=kr*XD[t];

Soln3=NDSolve[{ XL'[t]== -Rf+Rr,
XD'[t]== Rf-Rr,

XL[0]==2.0,XD[0]==0.001},
{XL,XD},{t,0,3}]

{{XL->InterpolatingFunction[{{0.,3.}},<>],
XD->InterpolatingFunction[{{0.,3.}},<>]}}

The output indicates an interpolating function has been generated. As before, the solution can be plotted.

Plot[Evaluate[{XL[t],XD[t]}/.Soln3],{t,0,3},
PlotStyle->{{Black,Thick},{Gray,Thick}}]
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The rate of entropy production can be obtained from the interpolating functions and the first equation in

(9.5.20). Note: in Mathematica, log is ln.

(*Calculation of entropy production "sigma"*)
R=8.314; sigma=R*(Rf-Rr)*Log[Rf/Rr];
Plot[Evaluate[sigma/.Soln3],{t,0,0.5},

PlotStyle->{Thick},AxesLabel->{"Time","dS/dt"}]
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Examples

Example 9.1 At a temperature T, the average energy h𝜈 of a thermal photon is roughly equal to kT. As

discussed in Chapter 2, at high temperatures electron–positron pairs will be spontaneously produced when

the energy of photons is larger than rest energy 2mc2 of an electron positron pair (where m is the mass of the

electron). Calculate the temperature at which electron–positron pair production occurs.

Solution For pair production:

hv = kBT = 2mc2 = (2 × 9.10 × 10−31 kg)(3.0 × 108 m s−1)2 = 1.64 × 10−13 J

Hence, the corresponding T = (1.64 × 10−13 J)∕(1.38 × 10−23 J K−1) = 1.19 × 1010 K.

Example 9.2 Consider a second-order reaction 2X→ Products whose rate equation is d[X] / dt= –2kf[X]2 =
–k[X]2 in which we set k = 2kf. (a) Show that the half-life t1/2 for this reaction depends on the initial value of

[X] and is equal to 1/([X]0k). (b) Assume that k = 2.3 × 10−1 M−1 S−1 and obtain the value of [X] at a time

t = 60.0 s if the initial concentration [X]0 = 0.50 M.



Thermodynamics of Chemical Transformations 261

Solution

a. As shown in Box 9.4, the solution to the rate equation is

1

[X]
− 1

[X]0

= kt

Multiplying both sides by [X]0 we obtain

[X]0

[X]
= 1 + [X]0kt

Since at t = t1/2 the ratio [X]0/[X] = 2, we must have [X]0kt1/2 = 1 or t1/2 = 1/([X]0k).

b. If the initial concentration [X]0 = 0.50 M, k = 0.23 M−1 S−1 and t = 60.0 s we have

1

[X]
− 1

0.50
= 0.23 × 60 mol L−1

Solving for [X] we get [X] = 0.063 mol L−1.

Example 9.3 For the water dissociation reaction H2O ⇌ OH− + H+ the enthalpy of reaction ΔHr =
55.84 kJ mol−1. At 25 ◦C, the value of the equilibrium constant K = 1.00 × 10−14 and pH is 7.0. At 50 ◦C,

what will the pH be?

Solution Given K(T) at one temperature T1, its value at another temperature T2 can be obtained using the

van’t Hoff equation (9.3.19):

lnK(T1) − lnK(T2) =
−ΔHr

R

(
1

T1

− 1

T2

)
For this example, we have, for K at 50 ◦C,

lnK = ln(1.0 × 10−14) − 55.84 × 103

8.314

(
1

323
− 1

298

)
= −30.49

Hence, K at 50 ◦C is equal to exp(–30.49) = 5.73 × 10−14. Since the equilibrium constant K = [OH−][H+]

and because [OH−] = [H+], we have

pH = − log[H+] = −log[
√

K] = −1

2
log[5.73 × 10−14] = 6.62

Exercises

9.1 When the average kinetic energy of molecules is nearly equal to the chemical bond energy, molecular

collisions will begin to break the bonds. (a) The C–H bond energy is about 414 kJ mol−1. At what

temperature will the C–H bonds in methane begin to break? (b) The average binding energy per nucleon

(neutron or proton) is in the range (6.0–9.0)× 106 eV or (6.0–9.0) × 108 kJ mol−1. At what temperature

do you expect nuclear reactions to take place?

9.2 For the reaction Cl + H2 → HCl + H, the activation energy Ea = 23.0 kJ mol−1 and k0 = 7.9 × 1010

mol−1 L s−1. What is the value of the rate constant at T = 300.0 K? If [Cl] = 1.5 × 10−4 mol L−1 and

[H2] = 1.0 × 10−5 mol L−1, what is the forward reaction rate at T = 350.0 K?
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9.3 For the decomposition of urea in an acidic medium, the following data were obtained for rate constants

at various temperatures:

Temperature (◦C) 50 55 60 65 70
Rate constant k (10−8 s−1) 2.29 4.63 9.52 18.7 37.2

(a) Using an Arrhenius plot, obtain the activation energy Ea and the pre-exponential factor k0.

(b) Apply the transition state theory to the same data, plot ln(k/T) versus 1/T and obtain ΔH† and

ΔS† of the transition state.

9.4 Consider the dimerization of the triphenylmethyl radical Ph3C∙, which can be written as the reaction

A ⇌ 2B

The forward and reverse rate constants for this reaction at 300 K are found to be kf = 0.406 s−1 and

kr = 3.83 × 102 mol−1 L s−1. Assume that this reaction is an elementary step. At t = 0 the initial

concentration of A and B are [A]0 = 0.041 m and [B]0 = 0.015 m.

(a) What is the velocity of the reaction at t = 0?

(b) If 𝜉eq is the extent of reaction at equilibrium (𝜉 = 0 at t = 0), write the equilibrium concentrations

of A and B in terms of [A]0, [B]0 and 𝜉eq.

(c) Use (b) to obtain the value of 𝜉eq by solving the appropriate quadratic equation and obtain the

equilibrium concentrations of [A] and [B].

9.5 (a) Write the rate equations for the concentrations of X, Y and Z in the following reaction:

X + Y ⇌ 2Z

(b) Write the rate equation for the extent of reaction 𝜉.

(c) When the system reaches thermal equilibrium, 𝜉 = 𝜉eq. If [X]0, [Y]0 and [Z]0 are the initial

concentrations, write the equilibrium concentrations in terms of the initial concentrations and 𝜉eq.

9.6 Radioactive decay is a first-order reaction. If N is the number of radioactive nuclei at any time, then

dN/dt = –kN. 14C is radioactive with a half-life of 5730 years. What is the value of k? For this process,

do you expect k to change with temperature?

9.7 If d[A]/dt = – k[A]𝛼 , show that the half-life is

t1∕2 =
2𝛼−1 − 1

(𝛼 − 1)k[A]𝛼−1
0

9.8 Find an analytical solution to the reversible reaction [L]
kf⟶⟵
kr

[D], in which l and d are enantiomers.

Enantiomeric excess (EE) is defined as

EE ≡ |[L] − [D]|
[L] + [D]

If the initial EE = 1.0, how long does it take for it to reach 0.5? (Amino acid racemization is used in

dating of biological samples.)
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9.9 (a) For the bimolecular reaction A + B
kf⟶ P the rate equation is

d[A]

dt
= −kf [A][B]

When [A]0 and [B]0 are the initial concentrations, show that

1

[B]0 − [A]0

ln
(

[A][B]0

[B][A]0

)
= −kf t

(b) Write the above rate equation in terms of the extent of reaction 𝜉 and solve it.

9.10 The chirping rate of crickets depends on temperature. When the chirping rate is plotted against 1/T it

is observed to follow the Arrhenius law (see K.J. Laidler, J. Chem. Ed., 49 (1972), 343). How would

you explain this observation?

9.11 Consider the reaction X + Y ⇌ 2Z in the gas phase. Write the reaction rates in terms of the concentra-

tions [X], [Y] and [Z] as well as in terms of the activities. Find the relation between the rate constants

in the two ways of writing the reaction rates.

9.12 When atmospheric CO2 dissolves in water it produces carbonic acid H2CO3 (which causes natural rain

to be slightly acidic). At 25.0 ◦C the equilibrium constant Ka for the reaction H2CO3 ⇌ HCO−
3
+ H+

is specified by pKa = 6.63. The enthalpy of this reaction ΔHr = 7.66 kJ mol−1. Calculate the pH at

25 ◦C and at 35 ◦C. (Use Henry’s law to obtain [H2CO3].)

9.13 Equilibrium constants can vary over an extraordinary range, as the following examples demonstrate.

Obtain the equilibrium constants for the following reactions at T = 298.15 K, using the tables for

𝜇(p0, T0) = ΔG0
f
:

(a) 2NO2 (g) ⇌ N2O4 (g)

(b) 2CO (g) + O2 (g) ⇌ 2CO2 (g)

(c) N2 (g) + O2 (g) ⇌ 2NO (g)

9.14 (a) For a reaction of the form aX + bY ⇌ cZ, show that the equilibrium constants Kc and Kp are

related by Kc = (RT)𝛼Kp where 𝛼 = a + b – c.

(b) Using the definition of enthalpy H = U + pV, show that the van’t Hoff equation for a gas-phase

reaction can also be written as

d lnKc

dT
=
ΔUr

RT2

in which Kc is the equilibrium constant expressed in terms of concentrations.

9.15 Ammonia may be produced through the reaction of N2(g) with H2(g):

N2 (g) + 3H2 (g) ⇌ 2NH3 (g)

(a) Calculate the equilibrium constant of this reaction at 25 ◦C using the thermodynamic tables.

(b) Assuming that there is no significant change in the enthalpy of reaction ΔHr, use the van’t Hoff

equation to obtain the approximate ΔGr and the equilibrium constant at 400 ◦C.

9.16 2-Butene is a gas that has two isomeric forms, cis and trans. For the reaction:

cis − 2 − butene ⇌ trans − 2 − butene, ΔG0
r = −2.41 kJ mol−1

calculate the equilibrium constant at T = 298.15 K. If the total amount of butene is 2.5 mol, then,

assuming ideal gas behavior, determine the molar amounts of each isomer.
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9.17 Determine if the introduction of a catalyst will alter the affinity of a reaction or not.

9.18 For the reaction A
kf⟶⟵
kr

B, write the equation for the velocity of reaction d𝜉/dt in terms of the initial

values [A0] and [B0] and obtain the solution 𝜉(t).

9.19 For the reaction X + 2Y ⇌ 2Z, write explicitly the expression for the entropy production in terms of

the rates and as a function of 𝜉.

9.20 As shown in Section 9.7, for the reaction A
k1f⟶B

k2f⟶C the extents of reaction obey the equations

d𝜉1

dt
= R1f − R1r = k1f[A] = k1f([A]0 − 𝜉1)

d𝜉2

dt
= R2f − R2r = k2f[B] = k2f([B]0 + 𝜉1 − 𝜉2)

Solve these equations with initial conditions 𝜉1 = 𝜉2 = 0 at t = 0. Assume [A] = [A]0, [B] = 0 and

[C] = 0 and show that

[C] = [A]0

[
1 − e−k1f t −

k1f

k2f − k1f

(e−k1f t − e−k2f t)

]
9.21 Write the complete set of rate equations for all the species in the Michaelis–Menten reaction mecha-

nism:

E + S
k1f⟶⟵
k1r

ES
k2f⟶ P + E

Write Mathematica/Maple code to solve them numerically with the following numerical values for

the rate constants and initial values (assuming all quantities are in appropriate units): k1f = 1.0 × 102,

k1r = 5.0 × 103, k2f = 2.0 × 103 and, at t = 0, [E] = 3.0 × 10−4, [S] = 2 × 10−2, [ES] = 0, [P] = 0.

Using the numerical solutions, check the validity of the steady-state assumption.

9.22 Calculate k0 for the reaction between H2 and O2 at T = 298 K using the bond lengths 74 pm for H–H

and 121 pm for O=O.



10
Fields and Internal Degrees of Freedom

The Many Faces of Chemical Potential

The concept of chemical potential is very general, applicable to almost any transformation of matter as long as

there is a well-defined temperature. We have already seen how the condition for thermodynamic equilibrium

for chemical reactions leads to the law of mass action. We shall now see how particles in a gravitational

or electric field, electrochemical reactions and transport of matter through diffusion can all be viewed as

‘chemical transformations’ with associated chemical potential and affinity.

10.1 Chemical Potential in a Field

The formalism for the chemical potential presented in Chapter 9 can be extended to electrochemical reactions

and to systems in a field, such as a gravitational field. When a field is present, the energy due to a field must

be included in the expression for the system’s energy. As a result, the energy of a constituent depends on its

location.

We start with a simple system: the transport of chemical species that carry electrical charge from a position

where the electrical potential is 𝜙1 to a position where the potential is 𝜙2. For simplicity, we shall assume that

our system consists of two parts, each with a well-defined potential, while the system as a whole is closed

(see Figure 10.1). The situation is as if the system consists of two phases and transport of particles dNk is a

‘chemical reaction’. For the corresponding extent of reaction d𝜉k we have

− dN1k = dN2k = d𝜉k (10.1.1)

in which dN1k and dN2k are the changes in the molar amount in each part. The change in energy due to the

transport of the ions is given by

dU = T dS − p dV + F𝜙1

∑
k

zk dN1k+F𝜙2

∑
k

zk dN2k+
∑

k

𝜇1k dN1k+
∑

k

𝜇2k dN2k (10.1.2)
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Figure 10.1 A simple situation illustrating the thermodynamics of a system in the presence of an electric field.
We consider two compartments, one with associated potential 𝜙1 and the other 𝜙2. It is as if there are two phases;
ions will be transported from one to the other until the electrochemical potentials are equal.

in which zk is the charge of ion k and F is the Faraday constant (the product of the electronic charge e and

the Avogadro number NA: F = eNA = 9.6485 × 104 C mol–1). Using Equation (10.1.1), the change in the

entropy dS can now be written as

T dS = dU + p dV −
∑

k

[(F𝜙1zk + 𝜇1k) − (F𝜙2zk + 𝜇2k)]d𝜉k (10.1.3)

In this expression, we see that the introduction of a potential 𝜙 associated with a field is equivalent to adding

a term to the chemical potential. This makes it possible to extend the definition of the chemical potential to

include the field. Thus, the electrochemical potential �̃�, which was introduced by Guggenheim [1] in 1929,

is defined as

�̃�k = 𝜇k + Fzk𝜙 (10.1.4)

Clearly, such a formalism can be extended to any conservative field to which a potential may be associated. If

𝜓 is the potential associated with the field, then the energy of interaction per mole of the component k may be

written in the form 𝜏k𝜓 . The ‘coupling constant’ for the electric field 𝜏k = Fzk and for the gravitational field

𝜏k = Mk, where Mk is the molar mass. The corresponding chemical potential, which includes the potential 𝜓

associated with the field, is

�̃�k = 𝜇k + 𝜏k𝜓 (10.1.5)

The affinity Ãk for electrochemical reactions can be written just as it was done for other chemical reactions:

Ãk = �̃�1k − �̃�2k = [(F𝜙1zk + 𝜇1k) − (F𝜙2zk + 𝜇2k)] (10.1.6)

The increase in entropy due to the transfer of charged particles from one potential to another can now be

written as

diS =
∑

k

Ãk

T
d𝜉k (10.1.7)

At equilibrium:

Ãk = 0 or 𝜇1k − 𝜇2k = −zk(𝜙1 − 𝜙2) (10.1.8)

The basic equations of equilibrium electrochemistry follow from Equation (10.1.8).

As noted in Section 8.3 (and Exercise 8.13), electrical forces are very strong. In ionic solutions, the

electrical field produced by even small changes in charge density results in very strong forces between the

ions. Consequently, in most cases the concentrations of positive and negative ions are such that the net charge

density is virtually zero; i.e. electroneutrality is maintained to a high degree. In a typical electrochemical
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cell, most of the potential difference applied to the electrodes appears in the vicinity of the electrodes and

only a small fraction of the total potential difference occurs across the bulk of the solution. The solution

is electrically neutral to an excellent approximation. As a result, an applied electric field does not separate

positive and negative charges and so does not create an appreciable concentration gradient.

When we consider the much weaker gravitational field, however, an external field can produce a concen-

tration gradient. As noted above, for a gravitational field, the coupling constant 𝜏k is the molar mass Mk. For

a gas in a uniform gravitational field, for example, 𝜓 = gh, where g is the strength of the field and h is the

height. Using Equation (10.1.8) we see that

𝜇k(h) = 𝜇k(0) − Mkgh (10.1.9)

For an ideal-gas mixture, using 𝜇k(h) = 𝜇0
k (T) + RT ln[pk(h)∕p0] in the above equation, we obtain the well-

known barometric formula:

pk(h) = pk(0)e−Mkgh∕RT (10.1.10)

Note how this formula is derived assuming that the temperature T is uniform, i.e. the system is assumed to

be in thermal equilibrium. The temperature of the Earth’s atmosphere is not uniform; in fact, as shown in

Figure 10.2, it varies between –60 ◦C and +20 ◦C in the troposphere and stratosphere, the two layers in which

almost all of the atmospheric gases reside.

10.1.1 Entropy Production in a Continuous System

In considering thermodynamic systems in a field, we often have to consider continuous variation of the

thermodynamic fields. In this case, �̃� is a function of position and entropy has to be expressed in terms of

entropy density s(r), i.e. entropy per unit volume, which depends on position r. For simplicity, let us consider

a one-dimensional system, i.e. a system in which the entropy and all other variables, such as 𝜇, change only

along one direction, say x (Figure 10.3). Let s(x) be the entropy density per unit length. We shall assume that

the temperature is constant throughout the system. Then the entropy in a small volume element between x
and x + 𝛿 is equal to s(x)𝛿. An expression for affinity in this small volume element can be written as

Ãk = �̃�k(x) − �̃�k(x + 𝛿) = �̃�k(x) −
(
�̃�k(x) +

𝜕�̃�k

𝜕x
𝛿

)
= −

𝜕�̃�k

𝜕x
𝛿 (10.1.11)

The velocity of the reaction d𝜉k/dt for this elemental volume is the flow of particles of component k, i.e. the

particle current of k. We shall denote this particle current of k by JNk. Then by writing expression (10.1.7) for

the rate of entropy production in this elemental volume we obtain

di(s(x)𝛿)

dt
=
∑

k

Ãk

T

d𝜉k

dt
= −

∑
k

1

T

(
𝜕�̃�k

𝜕x

)
𝛿

d𝜉k

dt
(10.1.12)

Simplifying this expression and using the definition JNk = d𝜉k/dt, the following expression for entropy
production per unit length due to particle flow is obtained:

di(s(x))

dt
= −

∑
k

1

T

(
𝜕�̃�k

𝜕x

)
JNk (10.1.13)
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Figure 10.2 The actual state of the Earth’s atmosphere is not in thermal equilibrium. The temperature varies
with height as shown. At thermal equilibrium, the concept of a chemical potential that includes a field leads to
the well-known barometric formula p(h) = p(0)e–Mgh/RT.

Figure 10.3 An expression for the entropy production in a continuous system can be obtained by considering
two adjacent cells separated by a small distance 𝛿. The entropy in the region between x and x + 𝛿 is equal to
s(x)𝛿. The affinity, which is the difference in the chemical potential is given by Equation (10.1.11).
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10.1.2 Entropy Production Due to Electrical Conduction and Ohm’s Law

To understand the physical meaning of expression (10.1.13), let us consider the flow of electrons in a

conductor. In a conductor in which the electron density and temperature are uniform, the chemical potential

of the electron 𝜇e (which is a function of the electron density and T) is constant. Also, for electrons, zk = –1.

Therefore, the derivative of the electrochemical potential is

𝜕�̃�e

𝜕x
= 𝜕

𝜕x
(𝜇e − F𝜙) = − 𝜕

𝜕x
(F𝜙) (10.1.14)

Since the electric field E= –𝜕𝜙/𝜕x and the conventional electric current I= –FJe, using (10.1.14) in expression

(10.1.13) we obtain the following expression for the entropy production:

dis

dt
= F

(
𝜕𝜙

𝜕x

)
Je

T
= EI

T
(10.1.15)

Since the electric field is the change of potential per unit length, it follows that the integral of E over the entire

length L of the system is the potential difference V across the entire system. The total entropy production

from x = 0 to x = L is

dS
dt

=
L

∫
0

(
dis

dt

)
dx =

L

∫
0

EI
T

dx = VI
T

(10.1.16)

Now it is well known that the product VI, of potential difference and the current, is the heat generated per

unit time, called the ohmic heat. The flow of an electric current through a resistor is a dissipative process

that converts electrical energy into heat. For this reason we may write VI = dQ/dt. Thus, for a flow of electric

current, we have

diS

dt
= VI

T
= 1

T
dQ
dt

(10.1.17)

This shows that the entropy production is equal to the dissipative heat divided by the temperature.

We noted in Chapter 3 that the entropy production due to each irreversible process is a product of a

thermodynamic force and the flow it drives (see Equation (3.4.7)). In the above case, the flow is the electric

current; the corresponding force is the term V/T. Now it is generally true that, when a system is close to

thermodynamic equilibrium, the flow is proportional to the force. Hence, based on thermodynamic reasoning,

we arrive at the conclusion

I = Le
V
T

(10.1.18)

in which Le is a constant of proportionality for the electric current. Le is called the linear phenomenological
coefficient. Relations such as (10.1.18) are the basis of linear nonequilibrium thermodynamics, which we

shall consider in more detail in Chapter 16. We see at once that this corresponds to the familiar Ohm’s law,

V = IR, where R is the resistance, if we identify

Le =
T
R

(10.1.19)

This is an elementary example of how the expression for entropy production can be used to obtain linear

relations between thermodynamic forces and flows, which often turn out to be empirically discovered laws

such as the Ohm’s law. In Section 10.3 we shall see that a similar consideration of entropy production due to

diffusion leads to another empirically discovered law called Fick’s law of diffusion. Modern thermodynamics
enables us to incorporate many such phenomenological laws into one unified formalism.
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10.2 Membranes and Electrochemical Cells

10.2.1 Membrane Potentials

Just as equilibrium with a semipermeable membrane resulted in a difference in pressure (the osmotic pressure)

between the two sides of the membrane, equilibrium of ions across a membrane that is permeable to one ion

but not another results in an electric potential difference. As an example, consider a membrane separating

two solutions of KCl of unequal concentrations (Figure 10.4). We assume that the membrane is permeable to

K+ ions but is impermeable to the larger Cl– ions. Since the concentrations of the K+ ions on the two sides of

the membrane are unequal, K+ ions will begin to flow to the region of lower concentration from the region

of higher concentration. Such a flow of positive charge, without a counterbalancing flow of negative charge,

will cause a change in the potential difference that will oppose the flow. Equilibrium is reached when the

electrochemical potentials of K+ on the two sides become equal, at which point the flow will stop. We shall

denote the two sides with superscripts 𝛼 and 𝛽. Then the equilibrium of the K+ ion is established when

�̃�𝛼k+ = �̃�
𝛽

k+
(10.2.1)

Since the electrochemical potential of an ion k is �̃�k = 𝜇k + zkF𝜙 = 𝜇0
k + RT ln ak + zkF𝜙, in which ak is the

activity and zk the ion number (which is +1 for K+), the above equation can be written as

𝜇0
K+ + RT ln a𝛼

K+ + F𝜙𝛼 = 𝜇0
K+ + RT ln a𝛽

K+ + F𝜙𝛽 (10.2.2)

From this equation it follows that the potential difference, i.e. the membrane potential 𝜙𝛼 – 𝜙𝛽 across the

membrane, can now be written as

𝜙𝛼 − 𝜙𝛽 = RT
F

ln

(
a𝛽

K+

a𝛼
K+

)
(10.2.3)

In electrochemistry, the concentrations are generally measured using the molality scale, as was discussed in

Chapter 8. In the simplest approximation, the activities may be replaced by molalities mK
+, i.e. the activity

coefficients are assumed to be unity. Hence, one may estimate the membrane potential with the formula

𝜙𝛼 – 𝜙𝛽 = (RT∕F) ln(m𝛽

K+∕m𝛼
K+ ).

10.2.2 Electrochemicl Affinity and Electromotive Force

In an electrochemical cell, the reactions at the electrodes that transfer electrons can generate an electro-

motive force(EMF). An electrochemical cell generally has different phases that separate the two electrodes

Figure 10.4 A membrane potential is generated when a membrane permeable to K+ but not to Cl– separates
two solutions of KCl of unequal concentrations. In this case, the flow of the permeable K+ ions is counterbalanced
by the membrane potential.
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Figure 10.5 An electrochemical cell consisting of many phases that generate an EMF due to half-reactions at
the electrodes. The electrode reactions are as given in Equations (10.2.4) and (10.2.5). Upon closing the circuit,
chemical reactions occurring within the cell will generate an EMF that will drive a current. Cells such as this are
represented by a cell diagram denoting the various phases and junctions. In a cell diagram, the reduction reaction
is on the right.

(Figure 10.5). By considering entropy production due to the overall reaction and the electric current flowing

through the system we can derive a relationship between the activities and the EMF. In an electrochemical

cell, the reactions at the two electrodes can be generally written as

X + ne− → Xred ‘reduction’ (10.2.4)

Y → Yox + ne− ‘oxidation’ (10.2.5)

Each is called a half-reaction; the overall reaction is

X + Y → Xred + Yox (10.2.6)

For example, the half-reactions

Cu2+ + 2e− → Cu(s)

Zn(s) → Zn2+ + 2e−

at the two electrodes result in the overall reaction

Cu2+ + Zn(s) → Zn2+ + Cu(s)

(Thus, a zinc rod placed in an aqueous solution of CuSO4 will dissolve and metallic copper will be deposited.)

Reactions at the electrodes may be more complicated than those indicated above, but the main idea is

the same: at one electrode, electrons are transferred from the electrode; at the other electrode, electrons are

transferred to the electrode. In representing electrochemical cells diagramatically, it has become a convention

to place the ‘reduction’ half-reaction on the right. Thus, the electrode on the right-hand side of the diagram

supplies the electrons that reduce the reactants.
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Since the reactions at the electrodes may occur at different electrical potentials, we must use the electro-

chemical affinity to formulate the thermodynamics of an electrochemical cell. If Ã is the electrochemical

affinity and 𝜉 is the extent of reaction, the entropy production due to such a reaction is

diS

dt
= Ã

T
d𝜉

dt
(10.2.7)

Since each mole of reacting X transfers n moles of electrons (see Equation (10.2.4)), and since d𝜉/dt is the

velocity of the reaction, the relation between the current I (which is the amount of charge transferred per

second) is

I = nF
d𝜉

dt
(10.2.8)

in which F is the Faraday constant (the amount of charge carried by a mole of electrons). Substituting Equation

(10.2.8) in Equation (10.2.7) we find

diS

dt
= 1

T
Ã

nF
I (10.2.9)

Comparing this expression with Equation (10.1.17) we obtain the following relation between the voltage and

the associated electrochemical affinity:

V = Ã
nF

(10.2.10)

in which n is the number of electrons transferred in the oxidation–reduction reaction. For a given Ã, the larger

the number of electrons transferred, the smaller the potential difference.

Using the electrode reactions (10.2.4) and (10.2.5), the above expression can be more explicitly written in

terms of the chemical potentials:

X + ne− → Xred(right), ÃR = (𝜇R
X
+ n𝜇R

e − nF𝜙R) − 𝜇R
Xred

(10.2.11)

Y → Yox + ne− (left), ÃL = 𝜇L
Y
− (n𝜇L

e − nF𝜙L + 𝜇L
Yox

) (10.2.12)

in which the superscripts indicate the reactions at the right and left electrodes. The electrochemical affinity

of the electron in the left electrode is written as �̃�e = 𝜇L
e − F𝜙L, and similarly for the electrons in the right

electrode. The overall electrochemical affinity Ã, which is the sum of the two affinities, can now be written as

Ã = ÃR + ÃL = (𝜇R
X
+ 𝜇L

Y
− 𝜇R

Xred
− 𝜇L

Yox
) + n(𝜇R

e − 𝜇L
e ) − nF(𝜙R − 𝜙L) (10.2.13)

If the two electrodes are identical, then 𝜇R
e = 𝜇L

e and the only difference between the two electrodes is in

their electrical potential 𝜙. By virtue of Equation (10.2.10), we can now write the voltage V associated with

the above electrochemical affinity as

V = Ã
nF

= 1

nF
(𝜇R

X
+ 𝜇L

Y
− 𝜇R

Xred
− 𝜇L

Yox
) − (𝜙R − 𝜙L) (10.2.14)

Now let us consider the ‘terminal voltage’ Vcell = 𝜙R – 𝜙L, the potential difference between the terminals

for which Ã = 0. It is the open-circuit condition with zero current, similar to the osmotic pressure difference
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at zero affinity. This terminal voltage Vcell is called the EMF of the cell. From Equation (10.2.14) we

see that

Vcell =
1

nF
(𝜇R

X
+ 𝜇L

Y
− 𝜇R

Xred
− 𝜇L

Yox
) (10.2.15)

For a nonzero Ã, i.e. for nonzero current, the terminal voltage is less than the EMF. On the other hand, if the

potentials of the two electrodes are equalized by shorting the two terminals, then 𝜙R − 𝜙L = 0, and the flow of

current I = nF(d𝜉/dt) is limited only by the rate of electron transfer at the electrodes. Under these conditions

the voltage in Equation (10.2.14), V = Ã∕nF is also equal to the right-hand side of Equation (10.2.15).

It is more convenient to write the cell EMF (Equation (10.2.15)) in terms of the activities by using the

general expression 𝜇k = 𝜇0
k + RT ln ak for the reactants and products. This leads to the well-known Nernst

equation

V = V0 −
RT
nF

ln

(
aR

Xred
aL

Yox

aR
X

aL
Y

)
(10.2.16)

where

V0 =
1

nF
(𝜇R

X0
+ 𝜇L

Y0
− 𝜇R

Xred0
− 𝜇L

Yox0
) =

−ΔG0
r

nF
(10.2.17)

Equation (10.2.16) relates the cell potential to the activities of the reactants. As we expect, V is zero at

equilibrium and the equilibrium constant of the electrochemical reaction can be written as

lnK =
−ΔG0

r

RT
=

nFV0

RT
(10.2.18)

10.2.3 Galvanic and Electrolytic Cells

A cell in which a chemical reaction generates an electric potential difference is called a galvanic cell; if

an external source of electric voltage drives a chemical reaction, then it is called an electrolytic cell. Such

electrochemical cells are represented by cell diagrams, as described in Box 10.1.

Box 10.1 Electrochemical cells and cell diagrams

When there is an external flow of current, there must be a compensating current within the cell. This can

be accomplished in many ways, each defining a type of electrochemical cell. The choice of electrodes

is also decided by the experimental conditions and the need to use an electrode without undesirable side

reactions. Electrochemical cells often incorporate salt bridges and liquid junctions.

Liquid junctions. When two different liquids are in contact, usually through a porous wall, it is called a

liquid junction. The concentrations of ions and their electrochemical potentials on either side of a liquid

junction are generally not equal; the electrochemical potential difference causes a diffusional flow of

ions. If the rates of flow of the different ions are unequal, then a potential difference will be generated

across the liquid junction. Such a potential is called the liquid junction potential. The liquid junction

potential may be reduced by the use of a salt bridge, in which the flows of the positive and negative

ions are nearly equal.
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Salt bridge. A commonly used salt bridge consists of a solution of KCl in agarose gel. In this medium,

the flow of K+ and Cl– are nearly equal.

Cell diagrams. An electrochemical cell diagram is drawn adopting the following conventions:
� Reduction reaction occurs at the electrode on the right.
� The symbol | indicates a phase boundary, such as the boundary between a solid electrode and a

solution.
� The symbol ‘ ⋮ ’ indicates a liquid junction, such as a porous wall separating a solution of CuSO4

and CuCl.
� The symbol ∥ or ⋮ ⋮ indicates a salt bridge, such as KCl in agarose gel.

For example, the cell in Figure 10.6 is represented by the following cell diagram:

Zn(s)|Zn2+||H+|Pt(s)

Let us consider a simple reaction. When Zn reacts with an acid, H2 is evolved. It is a simple electron-transfer

reaction:

Zn(s) + 2H+ → Zn2+ + H2 (10.2.19)

The reason why the electrons migrate from one atom to another is a difference in electrical potential; that is,

in the above reaction, when an electron moves from a Zn atom to an H+ ion, it is moving to a location of

lower potential energy. An interesting possibility now arises: if the reactants are placed in a ‘cell’ such that

the only way an electron transfer can occur is through a conducting wire, then we have a situation in which a

chemical affinity drives an electric current. Such a cell would be a galvanic cell, as shown in Figure 10.6, in

which the sum of the electrode half-reactions is Equations (10.2.19) and the flow of electrons occurs through

an external circuit. Conversely, through an external EMF, the electron transfer can be reversed, which is the

case in an electrolytic cell.

Figure 10.6 An example of a galvanic cell that is driven by the reaction Zn(s) + 2H+ → Zn2+ + H2. The two
electrode chambers are connected through a salt bridge that allows for the flow of current without introducing a
liquid junction potential.
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Figure 10.7 A concentration difference can generate an EMF. Two beakers containing AgNO3 solutions at differ-
ent concentrations are connected by a KNO3 salt bridge. A silver electrode is placed in each cell. The difference
in concentrations generates an EMF.

The EMF generated by a galvanic cell, as shown above, is given by the Nernst equation. In the above

example, the cell EMF is given by

V = V0 −
RT
nF

ln

(
aH2

aZn2+

aZn(s)a
2
H+

)
(10.2.20)

10.2.4 Concentration Cell

The affinity generated by a concentration difference can also generate an EMF. A simple example of an

AgNO3 concentration cell in which a concentration-driven EMF can be realized is shown in Figure 10.7. The

two beakers are linked by a KNO3 salt bridge (a gel containing KNO3 solution). A silver electrode is placed

in each beaker. If the two electrodes are connected by a wire, the difference in electrochemical potential of

Ag+ ions causes a flow of electrons from one silver electrode to another, absorbing Ag+ in the beaker that

has a higher concentration and releasing them in the beaker that has a lower concentration.

The reactions at the two electrodes are

Ag+ + e− → Ag(s)(𝛽) and Ag(s) → Ag+ + e−(𝛼) (10.2.21)

which amounts to transfer of Ag+ ions from a higher concentration to a lower concentration. Electroneutrality

is maintained in both beakers by the migration of K+ and NO3
– ions through the salt bridge. For such a cell

V0 in the Nernst equation equals zero because the reaction at one electrode is the reverse of the reaction at

the other and the standard states of reactants and products are the same. Thus, for a concentration cell:

Vcell = −RT
nF

ln
⎛⎜⎜⎝

a𝛽
Ag+

a𝛼
Ag+

⎞⎟⎟⎠ (10.2.22)
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10.2.5 Standard Electrode Potentials

Just as the tabulation of the Gibbs energies of formation facilitates the computation of equilibrium constants,

the tabulation of standard electrode potentials facilitates the computation of equilibrium constants for

electrochemical reactions. A voltage is assigned to each electrode half-reaction with the convention that

the voltage of the hydrogen–platinum electrode, H+|Pt, is zero. That is, the electrode reaction H+ + e– →
1

2
H2(g) at a Pt electrode is taken to be the reference and the voltages associated with all other electrode

reactions are measured with respect to it. The standard electrode potentials are the potentials when activities
of all the reactants and products equal one at T = 298.15 K. For any cell, the voltages of the corresponding

standard potentials are added to obtain the cell potentials. Since these potentials correspond to the situation

when all the activities are equal to one, it follows from the Nernst equation that the standard cell voltage is

equal to V0.

Example 10.3 shows how an equilibrium constant may be computed using the standard electrode potentials.

A list of some of the commonly used standard electrode potentials is given in Table 10.1. In using the standard

potentials, one must note that: (a) changing the stoichiometry does not change V0 and (b) if the reaction is

reversed, then the sign of V0 also reverses.

Table 10.1 Standard electrode potentials.

Electrode reaction V0 (V) Electrode

1
3
Au3+ + e− →

1
3
Au 1.50 Au3+|Au

1
2

Cl2(g) + e− → Cl− 1.360 Cl–|Cl2(g)|Pt
Ag+ + e− → Ag(s) 0.799 Ag+|Ag
Cu+ + e− → Cu(s) 0.521 Cu+|Cu
1
2

Cu2+ + e− →
1
2
Cu(s) 0.339 Cu2+|Cu

AgCl + e− → Ag + Cl− 0.222 Cl–|AgCl(s)|Ag
Cu2+ + e− → Cu+ 0.153 Cu2+|Cu+|Pt
H+ + e− →

1
2
H2(g) 0.0 H+|H2|Pt

1
2
Pb2+ + e− →

1
2
Pb(s) –0.126 Pb2+|Pb(s)

1
2
Sn2+ + e− →

1
2
Sn(s) –0.140 Sn2+|Sn(s)

1
2

Ni2+ + e− →
1
2
Ni(s) –0.250 Ni2+|Ni(s)

1
2

Cd2+ + e− →
1
2
Cd(s) –0.402 Cd2+|Cd(s)

1
2
Zn2+ + e− →

1
2
Zn(s) –0.763 Zn2+|Zn(s)

Na+ + e− → Na(s) –2.714 Na+|Na(s)

Li+ + e− → Li(s) –3.045 Li+|Li(s)
Note. (a) Changing the stoichiometry does not change V0. (b) If the reaction is reversed, the sign of V0 also reverses.
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10.3 Isothermal Diffusion

We have already seen in Section 4.3 that the flow of particles from a region of high concentration to a region

of lower concentration is a flow driven by unequal chemical potentials. For a discrete system consisting of

two parts of equal temperature T, one with chemical potential 𝜇1 and molar amount N1 and the other with

chemical potential 𝜇2 and molar amount N2 we have the following relation:

− dN1 = dN2 = d𝜉 (10.3.1)

The entropy production that results from unequal chemical potentials is

diS = −
(𝜇2 − 𝜇1

T

)
d𝜉 = A

T
d𝜉 > 0 (10.3.2)

The positivity of this quantity, required by the Second Law, implies that particle transport is from a region

of higher chemical potential to a region of lower chemical potential. It is the diffusion of particles from a

region of higher chemical potential to a region of lower chemical potential. In most situations this is a flow

of a component from a higher concentration to a lower concentration. At equilibrium, the concentrations

become uniform, but this need not be so in every case. For example, when a liquid is in equilibrium with

its vapor or when a gas reaches equilibrium in the presence of a gravitational field, the chemical potentials

becomes uniform, not the concentrations. The tendency of the thermodynamic forces that drive matter flow is
to equalize the chemical potential, not the concentrations.

10.3.1 Diffusion in a Continuous System and Fick’s Law

Expression (10.3.2) can be generalized to describe a continuous system, as was done for the general case of a

field in Section 10.1 (Figure 10.3). Let us consider a system in which the variation of the chemical potential

is along one direction only, say x. We shall also assume that T is uniform and does not change with position.

Then, as in Equation (10.1.13), the rate of entropy production for diffusion is

dis(x)

dt
= −

∑
k

1

T

(
𝜕𝜇k

𝜕x

)
JNk (10.3.3)

For simplicity, let us consider the flow of a single component k:

dis(x)

dt
= − 1

T

(
𝜕𝜇k

𝜕x

)
JNk (10.3.4)

We note, once again, that the entropy production is the product of a thermodynamic flow JNk and the force,

–(1/T)(𝜕𝜇k/𝜕x), that drives it. The identification of a thermodynamic force and the corresponding flow enables

us to relate the two. Near equilibrium, the flow is linearly proportional to the force. In the above case, we can

write this linear relation as

JNk = −Lk
1

T

(
𝜕𝜇k

𝜕x

)
(10.3.5)

The constant of proportionality, Lk, is the linear phenomenological coefficient for diffusional flow. We saw

earlier that, in an ideal fluid mixture, the chemical potential can be written as 𝜇(p, T, xk) = 𝜇(p, T) +
RT ln xk, in which xk is the mole fraction, which in general is a function of position. If ntot is the total molar

density and nk is the molar density of component k, then the mole fraction xk = nk/ntot. We shall assume

that the change of ntot due to diffusion is insignificant, so that 𝜕ln xk/𝜕x = 𝜕ln nk/𝜕x. Then, substituting
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Table 10.2 Diffusion coefficients of molecules in gases and liquids.

Compound, in air Solute, in water
(p = 101.325 kPa, T = 293.15 K) D (10–4 m2 s–1) (T = 298.15 K) D (10–9 m2 s–1)

CH4 0.106 Sucrose 0.52
Ar 0.148 Glucose 0.67
CO2 0.160 Alanine 0.91
CO 0.208 Ethylene glycol 1.16
H2O 0.242 Ethanol 1.24
He 0.580 Acetone 1.28
H2 0.627

Source: D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 75th edition, 1994, CRC Press: Ann Arbor, MI.

𝜇(p, T, xk) = 𝜇(p, T) + RT ln xk into Equation (10.3.5), we obtain the following thermodynamic relation

between the diffusion current JNk and the concentration:

JNk = −LkR
1

nk

𝜕nk

𝜕x
(10.3.6)

Empirical studies of diffusion have led to what is called Fick’s law. According to Fick’s law:

JNk = −Dk
𝜕nk

𝜕x
(10.3.7)

in which Dk is the diffusion coefficient of the diffusing component k. Typical values of the diffusion coefficients

for gases and liquids are given in Table 10.2. Clearly, this expression is the same as Equation (10.3.6) if we

make the identification

Dk =
LkR

nk
(10.3.8)

This gives us a relation between the thermodynamic phenomenological coefficient Lk and the empirical

diffusion coefficient.

An important point to note is that the thermodynamic relation (10.3.5) is valid in all cases, whereas Fick’s

law (10.3.7) is not. For example, in the case of a liquid in equilibrium with its vapor, since the chemical

potential is uniform, (𝜕𝜇k/𝜕x) = 0 and (10.3.5) correctly predicts JNk = 0; but (10.3.7) does not predict JNk =
0 because (𝜕nk/𝜕x) ≠ 0. In general, if we write (10.3.5) as JNk = –(Lk/T)(𝜕𝜇k/𝜕nk)(𝜕nk/𝜕x), then we see that,

depending on the sign of (𝜕𝜇k/𝜕nk), JNk can be positive or negative when (𝜕nk/𝜕x) > 0. Thus, the flow is toward

the region of lower concentration when (𝜕𝜇k/𝜕nk) > 0, but the flow can be to the region of higher concentration

when (𝜕𝜇k/𝜕nk) < 0. The latter situation arises when a mixture of two components is separating into two

phases: each component flows from a region of lower concentration to a region of higher concentration. As

we shall see in later chapters, the system is ‘unstable’ when (𝜕𝜇k/𝜕nk) < 0.

10.3.2 The Diffusion Equation

In the absence of chemical reactions, the only way the molar density nk(x, t) can change with time is due to

the flow JNk. Consider a small cell of size 𝛿 at a location x (Figure 10.8). The molar amount in this cell is

equal to nk(x, t)𝛿. The rate of change of the molar amount in this cell is 𝜕(nk(x, t)𝛿)/𝜕t. This change is due to
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Figure 10.8 In the absence of chemical reactions, the change in the molar amount of a substance in a small cell
of size 𝛿, at a location x, equals the net flow, the difference in the flow JNk into and out of the cell. The number of
moles in the cell of size 𝛿 is nk𝛿. The net flow into the cell of size 𝛿 is given by Equation (10.3.9). This difference
in the flow will cause a net rate of change in the mole amount 𝜕(nk(x, t)𝛿)/𝜕t. On equating the net flow to the
rate of change of the molar amount, we obtain the equation 𝜕nk(x, t)/𝜕 = –𝜕JNk/𝜕x.

the net flow, i.e. the difference between the inflow and the outflow of component k in the cell. The net flow

into the cell of size 𝛿 is equal to

JNk(x) − JNk(x + 𝛿) = JNk(x) −
(

JNk(x) +
𝜕JNk

𝜕x
𝛿

)
= −

𝜕JNk

𝜕x
𝛿 (10.3.9)

Equating the net flow to the rate of change of the molar amount, we obtain the equation

𝜕nk(x, t)

𝜕t
= −

𝜕JNk

𝜕x
(10.3.10)

Using Fick’s law (10.3.7), we can write this equation entirely in terms of nk(x, t) as

𝜕nk(x, t)

𝜕t
= Dk

𝜕2nk(x, t)

𝜕x2
(10.3.11)

This partial differential equation for nk(x) is the diffusion equation for the component k. It is valid in a

homogeneous system. In a homogeneous system, diffusion tends to eliminate concentration differences and

equalize the concentrations throughout the system. However, it must be borne in mind that, in general, the

thermodynamic force tends to equalize the chemical potential, not the concentrations.

10.3.3 The Stokes–Einstein Relation

The viscous force on a particle in a fluid and its diffusive motion are both results of random molecular

collisions. A particle diffuses due to random collisions it undergoes with the fluid molecules, and it can also

transfer its momentum to the fluid molecules during these collisions. The latter process appears as the viscous

force on a macro level. Through thermodynamics one can see that the diffusion coefficient and the coefficient

of viscous force or ‘friction’ must be related – a reflection of the fact that both are the result of molecular

collisions. This relation is called the Stokes–Einstein relation.

Fick’s law gives us the diffusion current in the presence of a concentration gradient. In the presence of a

field, there is also a current, which is proportional to the strength of the field. For example, in the presence of

an electric field E, an ion carrying a charge ezk will drift at constant speed proportional to the magnitude of

the force ezk|E|. This happens because the force due to the field Ffield (whose magnitude equals ezk|E| for
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ions) accelerates the ion till the opposing viscous or frictional force, which is proportional to the velocity,

balances Ffield. When the ion moves at a speed v, the viscous force equals 𝛾kv, in which 𝛾k is the coefficient

of viscous force. When the two forces balance, 𝛾kv = Ffield and the ion will drift with a terminal velocity v.

Hence, the terminal or drift velocity can be written as

v =
Ffield

𝛾k
(10.3.12)

Since the number of ions that drift is proportional to the concentration nk, the ionic drift gives rise to the

following particle current density Ik due to the component k along the x axis:

Ik = vnk =
ezk

𝛾k
nkEx = −Γknk

𝜕𝜙

𝜕x
(10.3.13)

in which the constant Γk = ezk/𝛾k is called the ionic mobility of the ion k and Ex is the x-component of E.

(Note that the total electric current density due to all the ions I =
∑

kezkIk.) Similarly, a molecule of mass

mk, falling freely in the atmosphere, or any fluid, will reach a ‘terminal velocity’ v = gmk/𝛾k, where g is the

acceleration due to gravity. In general, for any potential 𝜓 associated with a conservative field, the mobility

of a component k is defined by

Jfield = −Γknk
𝜕𝜓

𝜕x
(10.3.14)

Linear phenomenological laws of nonequilibrium thermodynamics lead to a general relation between mobility

Γk and the diffusion coefficient Dk, This relation can be obtained as follows. The general expression for the

chemical potential in a field with potential 𝜓 is given by �̃�k = 𝜇k + 𝜏k𝜓 , in which 𝜏k is the interaction energy

per mole due to the field (10.1.5). In the simplest approximation of an ideal system, if we write the chemical

potential in terms of the concentration nk, then we have

�̃�k = 𝜇0
k + RT ln(nk) + 𝜏k𝜓 (10.3.15)

A gradient in this chemical potential will result in a thermodynamic flow

JNk = −Lk
1

T

(
𝜕�̃�k

𝜕x

)
= −

Lk

T

(
RT
nk

𝜕nk

𝜕x
+ 𝜏k

𝜕𝜓

𝜕x

)
(10.3.16)

where we have used 𝜕 ln xk/𝜕x = 𝜕 ln nk/𝜕x. In Equation (10.3.16), the first term on the right-hand side is the

familiar diffusion current and the second term is the drift current due to the field. Comparing this expression

with Fick’s law (10.3.7) and expression (10.3.14) that defines mobility, we see that

LkR

nk
= Dk,

Lk𝜏k

T
= Γknk (10.3.17)

From these two relations it follows that the diffusion coefficient Dk and the mobility Γk have the following

general relation:

Γk

Dk
=
𝜏k

RT
(10.3.18)

This relation was first obtained by Einstein and is sometimes called the Einstein relation. For ionic systems,

as we have seen in Section 10.1 (see Equation (10.1.5)), 𝜏k = Fzk = eNAzk and Γk = ezk/𝛾k. Since R = kBNA,
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in which kB is the Boltzmann constant and NA the Avogadro number, Equation (10.1.18) for ionic mobility
Γk becomes

Γk

Dk
=

ezk

𝛾kDk
=

zkF

RT
=

ezk

kBT
(10.3.19)

which leads to the following general relation between the diffusion coefficient Dk and the friction coefficient

𝛾k of a molecule or ion k, called the Stokes–Einstein relation:

Dk =
kBT

𝛾k
(10.3.20)

10.4 Chemical Potential for an Internal Degree of Freedom

The notion of a chemical potential can also be extended to transformations in an internal degree of freedom

of molecules such as orientation of a polar molecule with respect to an external field (Figure 10.9) or

deformation of a macromolecule due to flow and similar phenomena [2]. This can be done by defining an

internal coordinate 𝜃 just as we define an ‘external coordinate’ such as the position x. In this section, we

shall only consider the orientation of an electric dipole of a polar molecule with respect to an electric field

(generalization to other situations being straightforward). In this case, 𝜃 is the angle between the direction of

the field and the dipole, as shown in Figure 10.9. Just as we defined a concentration as a function of position,

we can also define a concentration n(𝜃) as a function of 𝜃. Just as electrochemical potential is a function of

position and the potential of a field, for an internal coordinate 𝜃, the chemical potential of component k is a

function of 𝜃 and the potential:

�̃�k(𝜃, T) = �̃�k(𝜃, T) + gk𝜙(𝜃) (10.4.1)

in which gk𝜙(𝜃) is the interaction energy per mole between the field and the dipole. If the dipole moment per

mole is pk and the electric field E, then

gk𝜙(𝜃) = −|p||E| cos(𝜃) (10.4.2)

in which we may identify gk = |p| and 𝜙(𝜃) = – |E| cos(𝜃).

d+

-

E
p

O

H

H

p

Figure 10.9 Chemical potential 𝜇(𝜃) can be defined for an internal degree of freedom such as the orientation of
a polar molecule with respect to an electric field E. The electric dipole moment is denoted by p. The energy of an
electric dipole in field E is given by –p∙E. A water molecule is an example of a molecule with a dipole moment.
Since the oxygen atom tends to accumulate negative charge, there is a slight charge separation giving rise to an
electric dipole moment.
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Figure 10.10 Reaction scheme for a continuous internal degrees of freedom.

Other quantities, such as concentration nk(𝜃), entropy density s(𝜃), and the ‘flow’ in the 𝜃 space can be

defined as a function of 𝜃, just as they were defined as functions of x. However, in spherical coordinates, on

a unit sphere, since the area of the segment between 𝜃 and 𝜃 + d𝜃 is equal to 2𝜋 sin 𝜃 d𝜃 d𝜙, we use the

following definitions:

s(𝜃) 2𝜋 sin 𝜃 d𝜃 = entropy of molecules with an internal coordinate between 𝜃 and 𝜃 + d𝜃

n(𝜃) 2𝜋 sin 𝜃 d𝜃 = molar amount of molecules with an internal coordinate between 𝜃 and 𝜃 + d𝜃

J𝜃 2𝜋 sin 𝜃 d𝜃 = the molar amount of molecules whose orientation is changing from 𝜃 to 𝜃 + d𝜃 per unit time

(see Figure 10.10)

For simplicity we consider a unit volume and only one species and drop the subscript k of n.

With these definitions it is clear that all the formalism that was developed in Section 10.1 for the position

x can be directly converted to 𝜃 by formally replacing x with 𝜃. Accordingly, we are led to the equation:

dis(𝜃)

dt
= − 1

T

(
𝜕�̃�(𝜃)

𝜕𝜃

)
JN(𝜃) > 0 (10.4.3)

which is similar to Equation (10.1.13). In the above equation we can identify the affinity as

Ã(𝜃) = −𝜕�̃�(𝜃)

𝜕𝜃
(10.4.4)

for the ‘reaction’ n(𝜃) ⇋ n(𝜃 + 𝛿𝜃) with the corresponding extent of reaction 𝜉(𝜃). The velocity of this

reaction JN(𝜃) = d𝜉(𝜃)∕dt (see Figure 10.10) is the number of molecules being transformed from 𝜃 to 𝜃 +
d𝜃. With these definitions, the rate of entropy production can also be written as

dis(𝜃)

dt
= − 1

T

(
𝜕�̃�(𝜃)

𝜕𝜃

)
d𝜉(𝜃)

dt
> 0 (10.4.5)

For a system with an internal coordinate such as 𝜃, the total rate of entropy change is given by

dS
dt

= 1

T
dU
dt

+
p

T
dV
dt

− 1

T ∫𝜃
𝜕𝜇(𝜃)

𝜕𝜃

d𝜉(𝜃)

dt
d𝜃

= 1

T
dU
dt

+
p

T
dV
dt

− 1

T ∫𝜃
𝜕𝜇(𝜃)

𝜕𝜃
JN(𝜃)d𝜃 (10.4.6)

For the total entropy production the Second Law implies that

diS

dt
= − 1

T ∫𝜃
𝜕𝜇(𝜃)

𝜕𝜃
JN(𝜃)d𝜃 > 0 (10.4.7)
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In the formalism presented above, we have a more restrictive statement of the Second Law expressed in

Equation (10.4.5). When the system reaches equilibrium, since the affinity becomes zero, we have

Ã(𝜃) =
𝜕[𝜇(𝜃) + g𝜙(𝜃)]

𝜕𝜃
= 0 (10.4.8)

Writing the chemical potential more explicitly, we may then conclude that at equilibrium:

�̃�(𝜃) = 𝜇0(T) + RT ln[a(𝜃)] + g𝜙(𝜃) = C (10.4.9)

in which C is a constant and a(𝜃) is the activity for the molecules with orientation 𝜃 with respect to the field

E (see Figure 10.9). Also note that, in the absence of a field, since all orientations are equivalent, 𝜇0 should

be independent of 𝜃. As we have noted before, the activity of an ideal mixture can be approximated by the

mole fraction. For an internal degree of freedom, each value of 𝜃 may be taken as a species and, by analogy,

we may define an ideal activity by a(𝜃) = n(𝜃)∕ntot in which ntot is the total number of dipoles. It is now a

matter of elementary calculation to show that, at equilibrium:

n(𝜃) = ntotF(T)e−g𝜙(𝜃)∕RT = ntotF(T)e|p||E| cos 𝜃∕RT (10.4.10)

in which F(T) is a function of T, expressed in terms of 𝜇0(T) and C (Exercise 10.8), and in which we have

used Equation (10.4.2). Note also that F(T) should be such that
𝜋∫

0

n(𝜃) sin(𝜃) d𝜃 = ntot.

10.4.1 The Debye Equation for Electric Dipole Relaxation

Since the only possible way in which n(𝜃) can change is due to the current JN(𝜃), we have a situation analogous

to diffusion, as illustrated in Figure 10.10. As noted earlier, in spherical coordinates we use the following

definitions:

n(𝜃)2𝜋 sin 𝜃d𝜃 = molar amount of molecules with internal coordinate between 𝜃 and 𝜃 + d𝜃

J𝜃2𝜋 sin 𝜃 d𝜃 = molar amount of molecules whose orientation is changing from 𝜃 to 𝜃 + d𝜃 per unit time

From these definitions, it follows that the conservation equation for the dipoles is

𝜕n(𝜃) sin(𝜃)

𝜕t
= −

𝜕JN(𝜃) sin(𝜃)

𝜕𝜃
(10.4.11)

As we did in the case of diffusion, by looking at the entropy production (10.4.3), we can identify the force

corresponding to the flow JN(𝜃) as −1∕T (𝜕�̃�(𝜃)∕𝜕𝜃). When the system is near equilibrium, there exists a

linear relation between the flow and the force, which can be written as

JN(𝜃) = −
L𝜃
T
𝜕�̃�(𝜃)

𝜕𝜃
(10.4.12)

in which L𝜃 is the linear phenomenological coefficient. In the approximation of an ideal mixture:

�̃�(𝜃) = 𝜇0(T) + RT ln
(
n(𝜃)∕ntot

)
− |p||E| cos 𝜃 (10.4.13)
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Substituting Equation (10.4.13) into Equation (10.4.12), we obtain

JN(𝜃) = −
L𝜃R

n(𝜃)

𝜕n(𝜃)

𝜕𝜃
+

L𝜃
T
|p||E| 𝜕

𝜕𝜃
cos 𝜃 (10.4.14)

In analogy with ordinary diffusion, we may define a rotational diffusion in the 𝜃-space, for which expression

(10.4.14) corresponds to Fick’s law. A rotational diffusion coefficient D𝜃 may now be identified as

D𝜃 =
L𝜃R

n(𝜃)
(10.4.15)

With this identification, the flow JN(𝜃) given by Equation (10.4.14) can be written as

JN(𝜃) = −D𝜃

𝜕n(𝜃)

𝜕𝜃
−
[

D𝜃

TR
|p||E| sin 𝜃] n(𝜃) (10.4.16)

Finally, substituting this expression in Equation (10.4.11) gives

𝜕n(𝜃)

𝜕t
= 1

sin(𝜃)

𝜕

𝜕𝜃
sin(𝜃)

(
D𝜃

𝜕n(𝜃)

𝜕𝜃
+
[

D𝜃

TR
|p||E| sin 𝜃] n(𝜃)

)
(10.4.17)

This is the Debye equation for the relaxation of dipoles in an electric field. It has been used for analyzing

the relaxation of dipoles in an oscillating electric field.
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Examples

Example 10.1 Use the barometric formula to estimate the pressure at an altitude of 3.0 km. The temperature

of the atmosphere is not uniform (so it is not in equilibrium). Assume an average temperature T = 270.0 K.

Solution The pressure at an altitude h is given by the barometric formula p(h) = p(0)e–gMh/RT. For the

purpose of estimating, since 78% of the atmosphere consists of N2, we shall use the molar mass of N2 for M.

The pressure at an altitude of 3.0 km will be

p(3 km) = (1 atm) exp
[
−

(9.8 m s−2)(28.0 × 10−3kg mol−1)3.0 × 103m

(8.314 J K−1mol−1)(270 K)

]
= (1 atm) exp(−0.366)

= 0.69 atm

Example 10.2 Calculate the membrane potential for the setup shown in Figure 10.4.

Solution In this case, the expected potential difference across the membrane is

V = 𝜙𝛼 − 𝜙𝛽 = RT
F

ln
(

1.0

0.1

)
= 0.0257 ln(10)

= 0.0592 V
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Example 10.3 Calculate the standard cell potential V0 for the cell shown in Figure 10.6. Also calculate the

equilibrium constant for the reaction Zn(s) + 2H+ → H2(g) + Zn2+.

Considering the two electrode reactions, we have

2H+ + 2e− → H2(g), 0.00 V

Zn(s) → Zn2+ + 2e−, +0.763 V

The total cell potential is

V0 = 0 + 0.763 V = 0.763 V

and the equilibrium constant is

K = exp
(

2FV0

RT

)
= exp

(
2 × 9.648 × 104 × 0.763

8.314 × 298.15

)
= 6.215 × 1025

Exercises

10.1 Use the chemical potential of an ideal gas in Equation (10.1.9) and obtain the barometric formula

(10.1.10). Use the barometric formula to estimate the boiling point of water at an altitude of 2.50 km

above sea level. Assume an average T = 270 K.

10.2 A heater coil is run at a voltage of 110 V and it draws 2.0 A current. If its temperature is equal to

200 ◦C, what is the rate of entropy production due to this coil?

10.3 Calculate the equilibrium constants at T = 25.0 ◦C for the following electrochemical reactions using

the standard potentials in Table 10.1:

(a) Cl2(g) + 2Li(s) → 2Li+ + 2Cl–

(b) Cd(s) + Cu2+ → Cd2+ + Cu(s)

(c) 2Ag(s) + Cl2(g) → 2Ag+ + 2Cl–

(d) 2Na(s) + Cl2(g) → 2Na+ + 2Cl–

10.4 If the reaction Ag(s) + Fe3+ + Br– → AgBr(s) + Fe2+ is not in equilibrium it can be used generate an

EMF. The ‘half-cell’ reactions that correspond to the oxidation and reduction in this cell are

Ag(s) + Br− → AgBr(s) + e−, V0 = −0.071 V

Fe3+ + e− → Fe2+, V0 = 0.771 V

(a) Calculate V0 for this reaction.

(b) What is the EMF for the following activities at T = 298.15 K: aFe3+ = 0.98; aBr− = 0.30; aFe2+ =
0.01.

(c) What will be the EMF at T = 0.0 ◦C?

10.5 The K+ concentration inside a nerve cell is much larger than the concentration outside it. Assume that

the potential difference across the cell membrane is 90 mV. Assuming that the system is in equilibrium,

estimate the ratio of concentration of K+ inside and outside the cell.
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10.6 Verify that

n(x, t) = n(0)

2
√
𝜋Dt

e−x2∕4Dt

is the solution of the diffusion equation (10.3.11). Using Mathematica or Maple, plot this solution for

various values of t for one of the gases listed in Table 10.2, assuming n(0) = 1. This gives you an idea

of how far a gas will diffuse in a given time. Obtain a simple expression to estimate the distance a

molecule will diffuse in a time t, given its diffusion coefficient D.

10.7 Compute the diffusion current corresponding to the barometric distribution

n(x) = n(0)e−gMx∕RT .

10.8 Using Equation (10.4.9) and the ideal activity a(𝜃) = n(𝜃)/ntot for the dipole orientation, obtain the

equilibrium expression (10.4.10). Give an explicit expression for the function F(T) in terms of 𝜇0

and C.

10.9 The electric dipole moment of water molecules is 6.14 × 10−30 C m. In an electric field of 10.0 V m-1,

find the fraction of molecules oriented with respect to the field in the range 10◦ < 𝜃 < 20◦ when

T = 298 K.



11
Thermodynamics of Radiation

Introduction

Electromagnetic radiation, which interacts with matter, also reaches the state of thermal equilibrium with a

definite temperature. This state of electromagnetic radiation is called thermal radiation, also called heat
radiation in earlier literature. In fact, today we know that our universe is filled with thermal radiation at a

temperature of about 2.73 K.

It has long been observed that heat transfer can take place from one body to another in the form of radiation

with no material contact between the two bodies. This form of heat was called ‘heat radiation’. When it was

discovered that motion of charges produced electromagnetic radiation, the idea that heat radiation was a form

of electromagnetic radiation was taken up, especially in the works of Gustav Kirchhoff (1824–1887), Ludwig

Boltzmann (1844–1906), Joseph Stefan (1835–1893) and Wilhelm Wien (1864–1928), and its thermodynamic

consequences were investigated [1].

11.1 Energy Density and Intensity of Thermal Radiation

We begin by defining basic quantities required to study the properties of thermal radiation (here we follow

the classic work of Planck on thermal radiation [1]). Radiation is associated with energy density u, which is the

energy per unit volume, and specific intensity or radiance, I, which is defined as follows (Figure 11.1a): the

energy incident per unit time on a small area, d𝜎, due to radiation form a solid angle dΩ (=sin 𝜃 d𝜃 d𝜑), which

makes an angle 𝜃 with the surface normal and equals I cos 𝜃 dΩ d𝜎. The total amount of radiation incident on

one side of the area d𝜎 (Figure 11.1b) is equal to ∫ 𝜋∕2

𝜃=0
∫ 2𝜋

𝜑=0
I cos 𝜃 dΩ = ∫ 𝜋∕2

𝜃=0
∫ 2𝜋

𝜑=0
I cos 𝜃 sin 𝜃 d𝜃 d𝜑 = 𝜋I.

The quantity 𝜋I is called the radiation intensity or irradiance or radiant flux density. Electromagnetic

radiation has two independent states of polarization. The above quantities can be defined for each independent

state of polarization. For unpolarized light, as in the case of thermal radiation, the total intensity is the sum

of the intensities of the two independent states of polarization. A similar definition can be used for radiation

emitted from a small surface area d𝜎, in which case 𝜋I is the per unit area of the surface, called radiation
intensity or irradiance.

The energy density u and radiance I could also be defined as functions of frequency for each independent
state of polarization as:

u(𝜈) d𝜈 = spectral energy density of radiation in the frequency range 𝜈 and 𝜈 + d𝜈 (J m−3 Hz−1)

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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(a) (b)

d

I(T, )

(T, )

I(T, )

d

d

Figure 11.1 (a) Definition of spectral radiance I(T, 𝜈). The energy flux incident on the area element d𝜎, from a
solid angle dΩ = sin 𝜃 d𝜃 d𝜑, is given by I(T, 𝜈) cos 𝜃 dΩ d𝜎. Here 𝜃 is the angle between the normal to d𝜎 and
the incident radiation. (b) The total amount of radiation incident on d𝜎 from one side, the intensity of radiation,
equals 𝜋I(T, 𝜈). For electromagnetic radiation, the spectral intensity 𝜋I(T, 𝜈) contains two independent states of
polarization.

I(𝜈) d𝜈 = spectral radiance in the frequency range 𝜈 and 𝜈 + d𝜈 (W Hz−1 sr−1 m−2)

𝜋I(𝜈) d𝜈 = spectral intensity or spectral irradiance in the frequency range 𝜈 and 𝜈 + d𝜈 (W Hz−1 m−2)

There is a simple relationship between the spectral radiance I(𝜈) of radiation propagating at a velocity c and

its energy density [1]:

u(𝜈) = 4𝜋I(𝜈)

c
(11.1.1)

This relation is not particular to electromagnetic radiation; it is valid for any quantity that fills space

homogeneously and propagates with velocity c in all directions. In addition to intensity, electromagnetic

radiation has two independent states of polarization. For each independent state of polarization (11.1.1) is valid.

For unpolarized thermal radiation, the specific intensity I(𝜈) consists of two independent states of polarization.

Gustav Kirkchoff (1824–1887).
(Reproduced with permission from the Edgar Fahs Smith Collection, University of Pennsylvania Library.)
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As noted by Gustav Kirchhoff (1824–1887), thermal radiation that is simultaneously in equilibrium with

several substances should not change with the introduction or removal of a substance.

Hence I(𝜈) and u(𝜈) associated with thermal radiation must be functions only of the temperature T,

independent of the substances with which it is in equilibrium. We shall therefore write thermal spectral

energy density and radiance as u(T, 𝜈) and I(T, 𝜈) respectively.

A body in thermal equilibrium with radiation is continuously emitting and absorbing radiation. Spectral
absorptivity, ak(T, 𝜈), of a body k is defined as the fraction of the incident thermal spectral radiance I(T, 𝜈)

that is absorbed by the body k in the frequency range 𝜈 and 𝜈 + d𝜈 at a temperature T. The thermal radiation

absorbed by the body in the solid angle dΩ equals ak(T, 𝜈)I(T, 𝜈)dΩ. Let Ik(T, 𝜈) be the spectral radiance

of the body k. Then the power emitted per unit area into a solid angle dΩ equals Ik(T, 𝜈)dΩ. At thermal

equilibrium, the radiation absorbed by the body k in the solid angle dΩ must equal the radiation it emits in

that solid angle. It then follows that

Ik(T , 𝜈)

ak(T , 𝜈)
= I(T , 𝜈) (11.1.2)

As noted above, I(T, 𝜈) thermal spectral radiance must be independent of substances with which it is in

equilibrium. Hence the ratio of a body’s radiance to its absorptivity, Ik(T, 𝜈)/ak(T, 𝜈), is independent of the

substance k and function only of temperature T and frequency 𝜈. This fundamental observation is called

Kirchoff’s law (see Box 11.1).

Box 11.1 Kirchhoff’s law

Iak

Ik

I(T, )

Kirchhoff’s law states that, at thermal equilibrium, the ratio, Ik(T, 𝜈)/ak(T, 𝜈), of emissive radiance

Ik(T, 𝜈) of a body k to its absorptivity ak(T, 𝜈) is independent of the body and is equal to the radiance of

thermal radiation I(T, 𝜈):
Ik(T , 𝜈)

ak(T , 𝜈)
= I(T , 𝜈)

For a perfectly absorbing body, ak(T, 𝜈) = 1. Such a body is called a blackbody; its spectral radiance

is equal to the thermal spectral radiance I(T, 𝜈). Emissivity, ek, of a body k is defined as the ratio of its

spectral radiance to that of a blackbody: ek = Ik(T, 𝜈)/I(T, 𝜈). Thus Kirchoff’s law can also be stated as:

at thermal equilibrium,
Emissivity ek = Absorptivity ak

The emissive power of a body k is the power emitted per unit area into all directions in a hemisphere. It

equals 𝜋Ik(T). Emissivities of some materials are shown below:

Material Emissivity
Lampblack 0.84

Polished copper 0.023

Cast iron 0.60–0.70

Polyethylene black plastic 0.92
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For a perfectly absorbing body, ak(T, 𝜈) = 1. Such a body is called a blackbody; spectral radiance is equal
to the thermal spectral radiance I(T, 𝜈). In this context, another parameter called emissivity, ek, of a body k
is defined as the ratio of its spectral radiance, Ik(T, 𝜈), to that of a black body, i.e. ek = Ik(T, 𝜈)/I(T, 𝜈). Thus

Kirchoff’s law (11.1.2) can also be stated as: at thermal equilibrium

Emissivity ek = Absorptivity ak

At the end of the nineteenth century, classical thermodynamics faced the challenge of determining the exact

functional form of u(T, 𝜈) or I(T, 𝜈). None of the deductions based on the laws of physics that were known at that

time agreed with experimental measurements of u(T, 𝜈). This fundamental problem remained unsolved until

Max Planck (1858–1947) introduced his revolutionary quantum hypothesis. With the quantum hypothesis,

according to which matter absorbed and emitted radiation in discrete bundles or ‘quanta’, Planck was able to

derive the following expression, which agreed well with the observed frequency distribution u(T, 𝜈):

u(T , 𝜈)d𝜈 = 8𝜋h𝜈3

c3

d𝜈(
eh𝜈∕kBT − 1

) (11.1.3)

Here h (= 6.626× 10−34 J s) is the Planck’s constant and kB (= 1.381× 10−23 J K−1) is the Boltzmann

constant. The expression for the energy density includes the two independent states of polarization. The

derivation of this formula, which requires the principles of statistical mechanics, can be found in Chapter 20.

Finally, we note that total energy density of thermal radiation is

u(T) =
∞

∫
0

u(T , 𝜈)d𝜈 (11.1.4)

When functions u(𝜈, T) obtained using classical electromagnetic theory were used in this integral, the total

energy density, u(T, 𝜈), turned out to be infinite. The Planck formula (11.1.3), however, gives a finite value

for u(T, 𝜈).

Max Planck (1858–1947).
(Reproduced by courtesy of the AIP Emilio Segre Visual Archive.)
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11.2 The Equation of State

It was clear, even from the classical electromagnetic theory, that a field which interacts with matter and

imparts energy and momentum must itself carry energy and momentum. Classical expressions for the energy

and momentum associated with the electromagnetic field can be found in texts on electromagnetic theory.

For the purposes of understanding the thermodynamic aspects of radiation, we need an equation of state, i.e.

an equation that gives the pressure exerted by thermal radiation and its relation to the temperature.

Using classical electrodynamics it can be shown [1] that the pressure exerted by electromagnetic radiation

is related to the energy density u by

p = u
3

(11.2.1)

This relation follows from purely mechanical considerations of force exerted by electromagnetic radiation

when it is reflected by the walls of a container. Though it was originally derived using the classical elec-

trodynamics, Equation (11.2.1) can be more easily derived by treating electromagnetic radiation filling a

container as a gas of photons (shown in Box 11.2). We shall presently see that when this equation of state is

combined with the equations of thermodynamics, we arrive at the conclusion that the energy density u(T, 𝜈)

(and hence I(T, 𝜈)) is proportional to the fourth power of the temperature, a result that is credited to Joseph

Stefan (1835–1893) and Ludwig Boltzmann (1844–1906) and called the Stefan–Boltzmann law. The fact

that energy density u(T) = ∫ ∞
0

u(T , 𝜈)d𝜈 of thermal radiation is only a function of temperature, independent

of the volume, implies that in a volume V the total energy is

U = Vu(T) (11.2.2)

Though thermal radiation is a gas of photons, it has features that are different from that of an ideal gas. At

a fixed temperature T, as the volume of thermal radiation expands, the total energy increases (unlike in the

case of an ideal gas in which it remains constant). As the volume increases, the ‘heat’ that must be supplied

to such a system to keep its temperature constant is thermal radiation entering the system. This heat keeps

the energy density constant. The change in entropy due to this heat flow is given by

deS = dQ∕T = (dU + p dV)∕T (11.2.3)

Once we assign an entropy to the system in this fashion, all the thermodynamic consequences follow. Consider,

for example, the Helmholtz equation (5.2.11) (which follows from the fact that entropy is a state function and

therefore 𝜕2S/𝜕T 𝜕V = 𝜕2S/𝜕V 𝜕T: (
𝜕U
𝜕V

)
T
= T2

[
𝜕

𝜕T

( p

T

)]
V

(11.2.4)

Using Equation (11.2.2) and the equation of state, p = u/3, in this equation we can obtain (Exercise 11.1):

4u(T) = T

(
𝜕u(T)

𝜕T

)
(11.2.5)

Upon integrating this equation, we arrive at the Stefan–Boltzmann law:

u(T) = 𝛽T4 (11.2.6)

in which 𝛽 is a constant. The value of 𝛽 = 7.56 × 10−16 J m−3 K−4 is obtained by measuring the intensity of

radiation emitted by a blackbody at a temperature T. The above energy density includes the two independent

states of polarization.
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Box 11.2 Photon gas pressure: a heuristic derivation

 

For a heuristic derivation of the pressure of a photon gas, let n(𝜈) be the number of photons per unit

volume with frequency 𝜈. The momentum of each photon is (h𝜈/c). The radiation pressure on the walls is

due to photon collisions. Each collision imparts a momentum 2(h𝜈/c) to the wall upon reflection. Since

the photons are in random motion, at any instant the fraction of the photons that will be moving in the

direction of the wall equals 1/6. Hence the number of photons that will collide with a unit area of the wall

in one second is (n(𝜈)c/6). The total momentum imparted to an unit area of the wall per second is the

pressure. Hence we have:

p(𝜈) =
(

n(𝜈)c
6

)
2h𝜈

c
= n(𝜈)h𝜈

3

Now, since the energy density u(𝜈) = n(𝜈)h𝜈, we arrive at the result:

p(𝜈) = u(𝜈)

3

A more rigorous derivation, taking all the directions of the photon momentum into consideration, also

gives the same result. For photons of all frequencies we can integrate over the frequency 𝜈:

p =
∞

∫
0

p(𝜈)d𝜈 =
∞

∫
0

u(𝜈)

3
d𝜈 = u

3

where u is the total energy due to photons of all frequencies and p is the total pressure. Note that a similar

derivation for the ideal gas gives p = 2u/3, in which u = n(mv2
avg∕2), where n is the number of molecules

per unit volume and (mv2
avg∕2) is the average kinetic energy of a molecule.

The Stefan–Boltzmann law can also be written in terms of irradiance of a blackbody. By integrating Equa-

tion (11.1.1) over all frequencies 𝜈, we arrive at u(T) = 2 × 4𝜋I(T)/c. where we have explicitly indicated that

the intensity I(T) is the intensity due to each independent state of polarization. In this notation, experimentally
measured total radiance equals 2I(T). The corresponding irradiance 𝜋2I(T) (which is the power emitted per

unit area in all directions in a hemisphere) can now be written as

𝜋(2I) = u(T)c∕4 = (𝛽c∕4)T4 = 𝜎T4 (11.2.7)

in which the constant 𝜎 = 5.67 × 10−8 W m−2 K−4 is called the Stefan–Boltzmann constant.



Thermodynamics of Radiation 293

Using Equation (11.2.6), we can now write the pressure, p = u/3, as function of temperature:

p(T) = 𝛽T4∕3 (11.2.8)

Equations (11.2.6) and (11.2.8) are the equations of state for thermal radiation. For temperatures of order

103 K or less, the radiation pressure is small, but it can be quite large for stellar temperatures. In the interior of

stars, where the temperatures can be 107 K, we find, using Equation (11.2.8), that the pressure due to thermal

radiation is about 2.52 × 1012 Pa ≈ 2 × 107 atm!

11.3 Entropy and Adiabatic Processes

For thermal radiation, the change in entropy is entirely due to heat flow:

dS = deS =
dU + p dV

T
(11.3.1)

Considering U as a function of V and T, this equation can be written as

dS = 1

T

[(
𝜕U
𝜕V

)
T
+ p
]

dV + 1

T

(
𝜕U
𝜕T

)
V

dT (11.3.2)

Since U = Vu = V𝛽T4 and p = 𝛽T4/3 we can obtain the explicit differential expression

dS =
(

4

3
𝛽T3
)

dV +
(
4𝛽VT2

)
dT (11.3.3)

This expression enables us to identify the derivatives of S with respect to T and V:(
𝜕S
𝜕V

)
T
= 4

3
𝛽T3

(
𝜕S
𝜕T

)
V
= 4𝛽VT2 (11.3.4)

By integrating these two equations and setting S = 0 at T = 0 and V = 0, it is easy to see (Exercise 11.3) that

S = 4

3
𝛽VT3 (11.3.5)

The above expression for entropy and the equations of state (11.2.6) and (11.2.8) are basic; all other thermo-

dynamic quantities for thermal radiation can be obtained from them. Unlike other thermodynamic systems

we have studied so far, the temperature T is sufficient to specify all the thermodynamic quantities of thermal

radiation; the energy density u(T), the entropy density s(T) = S(T)/V and all other thermodynamic quantities

are entirely determined by T. There is no term involving a chemical potential in the expressions for S or U.

If we consider the particle nature of thermal radiation, i.e. a gas of photons, the chemical potential must be
assumed to equal zero – a point that we will discuss in detail in Section 11.5.

In an adiabatic process the entropy remains constant. From the expression for entropy, Equation(11.3.5),

the relation between the volume and temperature in an adiabatic process immediately follows:

VT3 = constant (11.3.6)

The radiation filling the universe is currently at about 2.7 K. The effect of the expansion of the universe on

the radiation that fills it can be approximated as an adiabatic process. (During the evolution of the universe

its total entropy is not a constant. Irreversible processes generate entropy, but the increase in entropy of

radiation due to these irreversible processes is small.) Using Equation (11.3.6) and the current value of T, one

can compute the temperature when the volume, for example, is one millionth of the present volume. Thus

thermodynamics gives us the relation between the volume of the universe and the temperature of the thermal

radiation that fills it.
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In a manner similar to the total entropy S of thermal radiation, entropy density s(T) can also be obtained

using the fact that the energy density u(T) is entirely heat. We can thus write:

ds(T) = du(T)

T
= 4𝛽T3dT

T
(11.3.7)

in which we have used expression u(T) = 𝛽T4 for the energy density that was obtained earlier. Integrating

this equation, and noting that s(T) = 0 at T = 0 K, we obtain

s(T) = 4

3
𝛽T3 (11.3.8)

which is in agreement with the expression for the total entropy of thermal radiation obtained above.

As was noted by Max Planck [1, p. 89], the expression (11.3.7) is also valid for every frequency component

of thermal radiation. This observation enables us to obtain the entropy density, s(𝜈, T), as a function of the

frequency 𝜈 and temperature T, an expression analogous to the Planck energy distribution u(𝜈, T). Writing

the fundamental expression (11.3.7) for each frequency component of thermal radiation, we have

ds(T , 𝜈) = du(T , 𝜈)

T
= 1

T
𝜕u(T , 𝜈)

𝜕T
dT (11.3.9)

The partial derivative 𝜕u(𝜈, T)/𝜕T can be evaluated using the Planck distribution (11.1.3). Upon substituting

this derivative in Equation (11.3.9) and integrating, we obtain the expression

s(T , 𝜈) = 8𝜋h𝜈3

c3
a∫

ea∕T

(ea∕T − 1)2

1

T3
dT in which a = h𝜈∕kB

The integral can be evaluated (analytically or using Mathematica) and we obtain the expression

s(T , 𝜈) =
8𝜋𝜈2kB

c3

[
h𝜈

kBT

(
1 + 1

(eh𝜈∕kBT − 1)

)
− ln

(
eh𝜈∕kBT − 1

)]
(11.3.10)

The Planck distribution for energy density and the above analogous expression for the entropy density are

the fundamental equations of thermal radiation.

It is clear that thermal radiation not only carries energy, it also carries entropy. Just as we can associate

specific intensity or spectral intensity, I(𝜈), with thermal radiation, we can also associate a specific spectral
entropy intensity, L(𝜈). The definition of L(𝜈) is similar to I(𝜈), only it is in the context of entropy flow:

The entropy incident per unit time on a small area, d𝜎, in the frequency range 𝜈 and 𝜈 + d𝜈, due to

linearly polarized radiation from a solid angle, dΩ = sin𝜃 d𝜃 d𝜑, which makes an angle 𝜃 with the

surface normal equals L(𝜈) cos𝜃 dΩ d𝜎 d𝜈.

Following the same line of reasoning that leads to the relation u(𝜈) = 2 × 4𝜋 I(𝜈)/c for thermal radiation at a

given T (in which the factor 2 takes into consideration two independent states of polarization), we can arrive

at the relation

s(𝜈) = 2
4𝜋

c
L(𝜈) (11.3.11)

We note that this relation is valid whenever the entropy intensity, L(𝜈), is isotropic and the entropy density,

s(𝜈), is uniform, for thermal as well as nonthermal or nonequilibrium radiation, i.e. radiation not in equilibrium

with matter. For nonthermal radiation, expression (11.3.10) is not valid. In Section 11.8 expressions for the

entropy density and intensity for nonequilibrium radiation are obtained.
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11.4 Wien’s Theorem

At the end of the nineteenth century, one of the most outstanding problems was the frequency dependence of

the spectral energy density u(T, 𝜈). Wilhelm Wien (1864–1928) made an important contribution in his attempt

to obtain u(T, 𝜈). Wien developed a method with which he could analyze what may be called the microscopic
consequences of the laws of thermodynamics. He began by considering adiabatic compression of thermal

radiation. Adiabatic compression keeps the system in thermal equilibrium but changes the temperature so

that VT3 = constant (Equation (11.3.6)). On a microscopic level, he analyzed the shift of each frequency 𝜈 to

a new frequency 𝜈′ due to its interaction with the compressing piston. Since this frequency shift corresponds

to a change in temperature such that VT3 = constant, he could obtain a relation between how u(T, 𝜈) changed

with 𝜈 and T. This led Wien to the conclusion that u(T, 𝜈) must have the following functional form (for more

details see Reference [1]):

u(T , 𝜈) = 𝜈3f (𝜈∕T) = T3(𝜈∕T)3f (𝜈∕T) (11.4.1)

i.e. u(T, 𝜈) is a function of the ratio (𝜈/T) multiplied by T3. This conclusion follows from the laws of

thermodynamics. We shall refer to Equation (11.4.1) as Wien’s theorem. Note that Equation (11.4.1) is in

agreement with Planck’s formula (11.1.3).

Experimentally it was found that, for a given T, as a function of 𝜈, u(T, 𝜈) has a maximum. Let 𝜈max be the

value of 𝜈 at which u(T, 𝜈) reaches its maximum value. Then, because u(T, 𝜈)/T3 is a function of the ratio

(𝜈/T), it follows that u(𝜈/T) reaches its maximum at a particular value of the ratio (𝜈/T) = C1. So for a given

T, u(T, 𝜈) reaches its maximum at 𝜈max when (𝜈max/T) = C1. In other words,

T
𝜈max

= C1 (11.4.2)

The spectral energy density u(T, 𝜈) can be expressed as a function of the wavelength 𝜆 by noting that

𝜈 = c/𝜆 and d𝜈 = − (c/𝜆2)d𝜆. Using Equation (11.4.1) we can write u(T, 𝜈)d𝜈 = −T3(c/𝜆T)3f(c/𝜆T)(c/𝜆2)d𝜆.

By combining all terms except T5 as a function, g(𝜆T), we can replace the right-hand side of the equation

with T5g(𝜆T)d𝜆. Now we can identify the expression T5g(𝜆T)d𝜆 = u(T, 𝜆)d𝜆 as the spectral energy density as

a function 𝜆. It is a function of the product 𝜆T multiplied by T5. The function u(T, 𝜆)/T5 reaches its maximum

for a particular value of the product 𝜆T = C2. Hence, for a given T, if u(T, 𝜆) is plotted as a function of 𝜆, its

maximum will occur at 𝜆max such that 𝜆maxT = C2. The values of the constants C1 and C2 can be obtained

using Planck’s formula (11.1.3). Generally the value of C2 is used. We thus have what is called Wein’s
displacement law. It tells us how the maximum of u(T, 𝜆) is displaced by changes in T:

T𝜆max = 2.8979 × 10−3 m K (11.4.3)

As T increases, 𝜆max decreases proportionately. This conclusion is entirely a consequence of the laws of

thermodynamics.

The above method of Wien is general and can be applied, for example, to an ideal gas. Here the objective

would be to obtain the energy density u as a function of the velocity v and the temperature. It can be shown

that (see Reference [2]) u(T, v) = v4 f(v2/T), which shows us that using thermodynamics we can arrive at the

conclusion that the velocity distribution is a function of (v2/T). This is consistent with the Maxwell velocity

distribution (1.6.13). Wien’s approach shows us how thermodynamics can be used to investigate microscopic

aspects of systems such as energy or velocity distributions.

Wien’s analysis and all other classical attempts to obtain the form of u(T, 𝜈) for thermal radiation gave

results that not only did not agree with experiments but also gave infinite values for u(T, 𝜈) when all frequencies
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𝜈 (0 to ∞) were included. It is now well known that it was to solve this problem that Planck introduced his

quantum hypothesis in 1900.

11.5 Chemical Potential of Thermal Radiation

The equations of state for thermal radiation are

p = u
3

, u = 𝛽T4 (11.5.1)

where u is the energy density and p is the pressure.

If all the material particles in a volume are removed, what was classically thought to be a vacuum is not

empty but filled with thermal radiation at the temperature of the walls of the container. There is no distinction

between heat and such radiation in the following sense. If we consider a volume filled with thermal radiation

in contact with a heat reservoir (Figure 11.2), then if the volume is enlarged, the temperature, T, and hence

the energy density, u, of the system are maintained constant by the flow of heat into the system from the

reservoir. The heat that flows into the system is thermal radiation.

From the particle point of view, thermal radiation consists of photons, which we shall refer to as thermal
photons. Unlike in an ideal gas, the total number of thermal photons is not conserved during isothermal

changes of volume. The change in the total energy, U = uV, due to the flow of thermal photons from or to the

heat reservoir must be interpreted as the flow of heat. Thus, for thermal radiation, in a reversible expansion

at constant T we have dS = deS = dQ/T:

dU = dQ − p dV = T dS − p dV (11.5.2)

This equation remains valid even though the number of photons in the system is changing. Comparing this

equation with the equation introduced by Gibbs, dU = dQ − p dV + 𝜇 dN, we conclude that the chemical

potential 𝜇 = 0. The state in which 𝜇 = 0 is a state in which the partial pressure or the particle density
is a function only of the temperature. Indeed, in the expression for the chemical potential, 𝜇k = 𝜇0

k (T) +
RT ln[pk∕p0], if we set 𝜇k = 0 we see that the partial pressure pk is only a function of T.

11.5.1 Two Level Atom in Equilibrium with Radiation

With the above observations that the chemical potential of thermal radiation is zero, the interaction of a

two-level atom with blackbody radiation (which Einstein used to obtain the ratio of the rates of spontaneous

dQ

Figure 11.2 Heat radiation in contact with a heat reservoir. The energy entering or leaving such a system is
thermal radiation. Though the number of photons is changing, dU = dQ − p dV.
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and stimulated radiation) can be analyzed in a somewhat different light. If A and A∗ are the two states of

the atom and 𝛾 th is a thermal photon, then the spontaneous and stimulated emission of radiation can be

written as

A∗ ⇌ A + 𝛾th (11.5.3)

A∗ + 𝛾th ⇌ A + 2𝛾th (11.5.4)

From the point of view of equilibrium of a chemical reaction, the above two reactions are the same. The

condition for chemical equilibrium is

𝜇A∗ = 𝜇A + 𝜇𝛾 (11.5.5)

Since 𝜇𝛾 = 0, we have 𝜇A∗ = 𝜇A. As we have seen in Chapter 9, if we use the expression 𝜇k = 𝜇0
k (T) +

RT ln(pk∕p0) for the chemical potential, and note that the concentration is proportional to the partial pressure,

the law of mass action takes the form:

[A]

[A∗]
= K(T) (11.5.6)

On the other hand, looking at the reactions (11.5.3) and (11.5.4) as elementary chemical reactions, we may

write

[A][𝛾th]

[A∗]
= K′(T) (11.5.7)

However, because [𝛾 th] is a function of temperature only, it can be absorbed in the definition of the equilibrium

constant so that if we define K(T) ≡ K′(T)∕[𝛾th] we recover the equation (11.5.6), which follows from

thermodynamics.

Similarly, we may consider any exothermic reaction,

A + B ⇌ 2C + Heat (11.5.8)

from the viewpoint of thermal photons, and write this reaction as

A + B ⇌ 2C + 𝛾th (11.5.9)

The condition for equilibrium can now be written as

𝜇A + 𝜇B = 2𝜇C + 𝜇𝛾 (11.5.10)

Since 𝜇𝛾 = 0, we recover the condition for chemical equilibrium derived in Chapter 9. For this reaction also,

one can obtain K′(T) similar to that defined in Equation (11.5.7).

11.6 Matter–Antimatter in Equilibrium with Thermal Radiation: The State of Zero
Chemical Potential

When we consider interconversion of matter and radiation, as in the case of particle–antiparticle pair creation

and annihilation, the chemical potential of thermal photons becomes more significant (see Figure 11.3).

Similar thermodynamic analysis could be done for electron–hole pair production by radiation. Consider

thermal photons in thermal equilibrium with electron–positron pairs:

2𝛾 ⇌ e+ + e− (11.6.1)
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e+

e–

Figure 11.3 Creation of particle–antiparticle pairs by thermal photons.

At thermal equilibrium we have

𝜇e+ + 𝜇e− = 2𝜇𝛾 (11.6.2)

For reasons of symmetry between particles and antiparticles, we may assert that 𝜇e+ = 𝜇e− . Since 𝜇𝛾 = 0 we

must conclude that for particle–antiparticle pairs that can be created by thermal photons 𝜇e+ = 𝜇e− = 0.

It is interesting to further discuss this state of matter for which 𝜇 = 0. For simplicity, let us consider 𝜇 = 0

state in an ideal monatomic gas mixture for which

𝜇k =
Uk − TSk + pkV

Nk

=
Nk[(3∕2)RT + Wk] − TNkR[(3∕2) ln T + ln(V∕Nk) + s0) + NkRT

Nk
(11.6.3)

in which we used the internal energy Uk = Nk[(3∕2)RT + Wk] of component k of the ideal gas mixture and its

entropy Sk = NkR[(3∕2) ln T + ln(V∕Nk) + s0] and the ideal gas equation pkV = NkRT . As we have already

noted in Chapter 2, the theory of relativity gives us the absolute value of energy E2 = p2c2 + m2c4. The

momentum p = 0 at T = 0 leaves the rest energy as E = mc2. The term Wk is the rest energy of one mole of the

particles: Wk = Mkc2, in which Mk is the molar mass of component k. (Quantum theory gives us the entropy

constant s0 in the expression for entropy.) Using Equation (11.6.3) we can write the molar density (Nk/V) as

Nk

V
= z(T)e(𝜇−Mkc2)∕RT (11.6.4)

in which z(T) is a function of temperature only (in Chapter 20 we can see that it is closely related to the

partition function of an ideal gas). When the process of particle-antiparticle pair production is in thermal

equilibrium, since 𝜇 = 0 the thermal particle density is given by(
Nk

V

)
th

= z(T)e−Mkc2∕RT (11.6.5)

The corresponding partial pressure is given by

pk,th = RTz(T)e−Mkc2∕RT (11.6.6)

The physical meaning of the above equations can be understood as follows: just as photons of energy

h𝜈 are excitations of the electromagnetic field, particles of energy E =
√

m2c4 + p2c2 are also excitations

of a quantum field. In the nonrelativistic approximation, E ≈ mc2 + p2∕2m. According to the Boltzmann

principle, in a field the probability P(E) of an excitation of energy E is given by the proportionality:

P(E) ∝ 𝜌(E)e−E∕kT = 𝜌(E)e−[mc2+(p2∕2m)]∕kBT (11.6.7)
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where 𝜌(E) is the density of states of energy E (see Chapter 20). If we approximate the statistics of these

excitations by classical Boltzmann statistics, the density of particles of mass m can be obtained by integrating

Equation (11.6.7) over all momenta p. We then obtain an expression of the form (11.6.5) in which the molar

mass Mk = NAmk. Thus Equations (11.6.5) and (11.6.6) give the density and partial pressure due to particles

that appear spontaneously at temperature T as thermal excitations of quantum fields. In this state, in which

𝜇 = 0, there is no distinction between heat and matter; just as it is for thermal photons, the particle density is

entirely determined by the temperature.

At ordinary temperatures, the thermal particle density obtained above is extremely small. Nevertheless,

from the point of view of thermodynamic formalism after the advent of quantum field theory, it is important

to consider this state in which the chemical potential vanishes. It is a state of thermal equilibrium that

matter could reach; indeed matter was in such a state during the early part of the universe. Had matter

stayed in thermal equilibrium with radiation, at the current temperature of the universe, 2.73 K, the density

of protons and electrons, given by Equation (11.6.5) or its modifications, would be virtually zero. Indeed,

the very existence of particles in the universe at the present temperatures implies that the universe is in a

nonequilibrium state. As a result of the particular way in which the universe has evolved, matter was not able

to convert to radiation and stay in thermal equilibrium with it.

From Equation (11.6.4) we see that assigning a nonzero value for the chemical potential is a way of fixing

the particle density at a given temperature. Since we have an understanding of the absolute zero of chemical
potential, we can write the chemical potential of an ideal gas particle as

𝜇k = RT ln
(

pk

pk,th

)
(11.6.8)

in which pk,th is the thermal pressure defined above. In principle, one may adopt this scale of chemical

potential for all ideal systems.

11.7 Chemical Potential of Radiation not in Thermal Equilibrium with Matter

From the above discussion we see how a nonzero chemical potential may be associated with ‘nonthermal’

electromagnetic radiation, i.e. radiation that is not in thermal equilibrium with matter with which it is

interacting. In discussing thermal and nonthermal radiation, one must keep in mind the distinction between

thermal energy density, given by Planck’s formula (11.1.3), and the thermal spectrum of the radiation emitted

by the an object at temperature T. Consider a hollow sphere at a temperature T that is well above the ambient

temperature. The radiation filling the space within the sphere and in thermal equilibrium with the sphere will

have an energy density given by the Planck formula. If we now make a small hole in the sphere through

which this thermal radiation can propagate to the space outside the sphere, that radiation will have a thermal

spectrum whose shape is given by the Planck formula, but the energy density of this radiation depends

on the location at which the radiation is received and it will not equal the Planck energy density. It is not

uncommon to refer to radiation emitted by an object at temperature T as ‘thermal radiation’, by which it

is meant that the radiation has a thermal spectrum but it is clear that its energy density is not the thermal

energy density given by the Planck formula. Thus the radiation from the Sun reaching the Earth has a thermal

spectrum corresponding Sun’s surface temperature, Tsun, but its energy density at the Earth’s surface will

not be equal to Planck’s energy density at Tsun. Such radiation may be referred to as ‘thermal radiation’ but

one must keep in mind that it is not in thermal equilibrium with matter on the Earth, which is at a different

temperature Tearth.
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Let us consider matter at a temperature T, interacting with radiation whose energy distribution is not the

Planck distribution (11.1.3) at the same temperature T. For electromagnetic radiation of frequency 𝜈, whether

it is in thermal equilibrium or not, the pressure associated with the energy density u(𝜈) is

p(𝜈) = u(𝜈)∕3 (11.7.1)

Also, as noted in Section 11.1, for any radiation that homogeneously fills space, for each independent state

of polarization, the spectral energy density u(𝜈) is related to the spectral radiance I(𝜈):

u(𝜈) = 4𝜋I(𝜈)∕c (11.7.2)

As before, we shall refer to u(𝜈) as ‘nonthermal’ or ‘nonequilibrium’ radiation and, to distinguish thermal

radiation density from it, we shall write Planck energy density as, uth(T, 𝜈) and the associated pressure and

intensity as pth(T, 𝜈) and Ith(T, 𝜈) respectively, with a subscript ‘th’ emphasizing that it is thermal radiation.

Following Equation (11.6.8), we can write the chemical potential of nonthermal or nonequilibrium radiation

as

𝜇(𝜈) = RT ln
(

p(𝜈)

pth(T , 𝜈)

)
= RT ln

(
u(𝜈)

uth(T , 𝜈)

)
= RT ln

(
I(𝜈)

Ith(T , 𝜈)

)
(11.7.3)

When the radiation reaches equilibrium with matter at temperature T, u(𝜈) = uth(T, 𝜈) and the chemical

potential will equal zero.

An example of nonequilibrium or nonthermal radiation is the solar radiation that reaches the Earth. As

discussed above, solar radiation is sometimes said to be ‘thermal’ by which it is meant it has a thermal

spectrum. The radiation has the Planck energy density, uth(Tsun, 𝜈), at the solar surface, corresponding to the

solar surface temperature Tsun ≈ 5800 K. As radiation propagates through space from the Sun’s surface, the

energy density decreases by a factor (rsun/r)2 in which r is the distance from the center of the Sun and rsun is

the radius of the Sun. When solar radiation arrives at the Earth’s surface, which is at an average temperature,

Tearth ≈ 287, its spectrum is that of Tsun but the energy density is much smaller than uth(Tsun, 𝜈). This radiation

is not in thermal equilibrium with matter on the surface of the Earth. Using (11.7.3) its chemical potential

can be written as

𝜇(𝜈) = RT ln
(

(rsun∕r)2uth(Tsun, 𝜈)

uth(Tearth, 𝜈)

)
(11.7.4)

in which r is the radius of Earth’s orbit. This nonzero chemical potential drives photosynthesis. Ultimately

solar radiation absorbed by the Earth reaches thermal equilibrium with matter at the Earth’s temperature Tearth

and is radiated back into space as thermal radiation at Tearth.

11.8 Entropy of Nonequilibrium Radiation

For nonequilibrium radiation, the spectral radiance I(𝜈) is not derived from Planck’s distribution; it is

arbitrary. However, we can still associate a temperature, T(𝜈), to each frequency, 𝜈, such that the thermal

spectral intensity of each independent state of polarization at that temperature equals I(𝜈), i.e. we choose T
such that

I(𝜈) = c
8𝜋

u(𝜈, T) = h𝜈3

c2

1(
eh𝜈∕kBT − 1

) (11.8.1)

In other words, we assume that each frequency component of the nonequilibrium radiation is at a different

temperature; in contrast, for thermal radiation with Planck’s energy density or thermal spectrum, all the
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frequency components of the radiation are at the same temperature. We assume that the nonequilibrium

radiation is in a cavity with homogeneous energy distribution and isotropic intensity. A small hole in this

cavity will emit radiation with spectral intensity I(𝜈). The temperature associated with each frequency of

nonequilibrium radiation is thus defined by [3]

I(𝜈)
c2

h𝜈3
= 1(

eh𝜈∕kBT − 1
)

We can now write T explicitly in terms of the frequency 𝜈 and the nonequilibrium intensity I(𝜈) by inverting

the above equation:

1

T(𝜈)
=

kB

h𝜈
[ln(𝛽I(𝜈) + 1) − ln(𝛽I(𝜈))] in which 𝛽 = c2

h𝜈3
(11.8.2)

Now the specific spectral entropy intensity associated with this radiation may be defined as

dL(𝜈) = dI(𝜈)

T
=

kB

h𝜈
[ln(𝛽I(𝜈) + 1) − ln(𝛽I(𝜈))] dI(𝜈) (11.8.3)

in which we have used Equation (11.8.2) for 1/T. By defining x = 𝛽I(𝜈), the above equation can be integrated

to obtain, for each independent state of polarization, the following specific entropy intensity L(𝜈) in terms of

I(𝜈), which we assume is given:

L(𝜈) =
kB𝜈

2

c2
[(x + 1) ln(x + 1) − x ln x] (11.8.4)

in which

x = c2

h𝜈3
I(𝜈)

As before, taking the two independent states of polarization into consideration, the associated total entropy

density can be written as

s(𝜈) = 2
4𝜋

c
L(𝜈) (11.8.5)

The above result can also be obtained using quantum statistics of Bosons [4]. With this expression, given

I(𝜈), we can compute the entropy flux associated with nonequilibrium radiation. For example, the solar

radiation arriving at the Earth’s surface has a spectral distribution given by the Planck distribution at the solar

surface temperature Tsun, which is close to 5800. However, only at the surface of the Sun is the intensity

I(𝜈) = (c/8𝜋)u(5800, 𝜈). As the solar radiation propagates through space, the intensity decreases in proportion

to the inverse square of the distance from its origin. If Isun(𝜈) is the intensity at the surface of the Sun and

rsun is the radius of the Sun, then from the conservation of energy we see that the intensity I(𝜈) at a distance

r from the center of the Sun are related by Isun(𝜈) r2
sun = I(𝜈)r2 (we assume r > rsun). Thus

I(𝜈) = (r2
sun∕r2)Isun(𝜈) = (r2

sun∕r2)(c∕8𝜋)u(5800, 𝜈)

This expression for I(𝜈) can be used in Equation (11.8.4) to compute the specific entropy intensity at a distance

r from the center of the Sun. Finally, we note that the expression for the entropy density of thermal radiation,

Equation (11.3.10), can also be written in the more general form of Equation (11.8.4) using the substitution

x = 1

(eh𝜈∕kBT − 1)
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Example

Example 11.1 Using the equation of state, calculate the energy density and pressure of thermal radiation at

6000 K (which is approximately the temperature of the radiation from the Sun). Also calculate the pressure

at T = 107 K.

Solution The energy density is given by the Stefan–Boltzmann law, u = 𝛽T4, in which 𝛽 = 7.56 ×
10−16 J m−3 K−4 (see Equation (11.2.6)). Hence the energy density is at 6000 K is

u (6000 K) = 7.56 × 10−16 J m−3 K−4 (6000 K)4 = 0.98 J m−3

The pressure due to thermal radiation is given by p = u/3 = (0.98/3) J m−3 = 0.33 Pa ≈ 3 × 10−6 atm.

At T = 107 K the energy density and pressure are

u = 7.56 × 10−16 J m−3 K−4 (107 K)4 = 7.56 × 1012 J m−3

p = u∕3 = 2.52 × 1012 Pa = 2.5 × 107 atm

Exercises

11.1 Obtain Equation (11.2.5) using Equations (11.2.1) and (11.2.2) in the Helmholtz equation (11.2.4).

11.2 Using Planck’s formula (11.1.3) for u(𝜈, T) in Equation (11.1.4), obtain the Stefan–Boltzmann law

(11.2.6) and an expression for the Stefan–Boltzmann constant 𝛽.

11.3 Show that Equation (11.3.5) follows from Equation (11.3.4).

11.4 At an early stage of its evolution, the universe was filled with thermal radiation at a very high

temperature. As the universe expanded adiabatically, the temperature of the radiation decreased. Using

the current value of T = 2.73 K, obtain the ratio of the present volume to the volume of the universe

when T = 1010 K.

11.5 The thermal spectral radiance I(T, 𝜆)d𝜆 is defined as the radiance in the wavelength range 𝜆 and

𝜆 + d𝜆 of thermal radiation at temperature T.

(a) Show that:

I(T , 𝜆)d𝜆 = 2hc2

𝜆5

d𝜆

ehc∕𝜆kBT − 1

(b) The surface temperature of the Sun is 6000 K. Plot I(6000, 𝜆), a function of 𝜆, and verify that

𝜆max ≈ 483 nm for the solar thermal radiation.

(c) What will 𝜆max be if the Sun’s surface temperature is 10 000 K?
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11.6 The total energy of the Earth is in a steady state. It means the flux of solar radiation absorbed by the

Earth equals that emitted as thermal radiation. (a) Assuming that the average surface temperature of

the Earth is about 288 K, estimate the amount of thermal radiation emitted by the Earth per second.

(b)Assuming that the temperature of the solar radiation is 6000 K, estimate the total rate of entropy

due to the thermal radiation flux through the Earth.

11.7 Estimate the chemical potential of solar radiation at the surface of the Earth where matter is at

temperature T = 295 K.



Part III
Fluctuations and Stability
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12
The Gibbs Stability Theory

12.1 Classical Stability Theory

The random motion of molecules causes all thermodynamic quantities such as temperature, concentration

and partial molar volume to fluctuate. In addition, due to its interaction with the exterior, the state of a

system is subject to constant perturbations. The state of equilibrium must remain stable in the face of all

fluctuations and perturbations. In this chapter we shall develop a theory of stability for isolated systems in

which the total energy U, volume V and molar amounts Nk are constant. The stability of the equilibrium

state leads us to conclude that certain physical quantities, such as heat capacities, must have a definite sign.

This chapter is an introduction to the theory of stability as developed by Gibbs. Chapter 13 contains some

elementary applications of this stability theory. In Chapter 14, we shall present a more general theory of

stability and fluctuations based on the entropy production associated with fluctuations. The more general

theory is applicable to a wide range of systems, including nonequilibrium systems.

For an isolated system, the entropy reaches its maximum value at equilibrium; thus, any fluctuation can only

reduce the entropy. In response to a fluctuation, entropy-producing irreversible processes spontaneously drive

the system back to equilibrium. Hence, the state of equilibrium is stable to any perturbation that results in a
decrease in entropy. Conversely, if fluctuations can grow, the system is not in equilibrium. The fluctuations in

temperature, volume, etc., are quantified by their magnitudes, such as 𝛿T and 𝛿V. The entropy of the system is

a function of these parameters. In general, the entropy can be expanded as a power series in these parameters,

so we have

S = Seq + 𝛿S + 1

2
𝛿2S +⋯ (12.1.1)

In such an expansion, the term 𝛿S represents the first-order terms containing 𝛿T, 𝛿V, etc., the term 𝛿2S
represents the second order terms containing (𝛿T)2, (𝛿V)2, etc., and so on. This notation will be made explicit

in the examples that follow. Also, as we shall see below, since the entropy is a maximum, the first-order term

𝛿S vanishes. The change in entropy is due to the second- and higher-order terms, the leading contribution

coming from the second-order term 𝛿2S.
We shall look at the stability conditions associated with fluctuations in different quantities such as temper-

ature, volume and molar amounts in an isolated system in which U, V and Nk are constant.
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1

2
U

T

Figure 12.1 Thermal fluctuations in the equilibrium state. We consider a fluctuation that results in a flow of
energy 𝛿U from one part to the other, causing the temperatures to change by a small amount 𝛿T.

12.2 Thermal Stability

For the fluctuations in temperature, we shall consider a simple situation without loss of generality. Let us

assume that the fluctuation occurs in a small part of the system (Figure 12.1). Due to the fluctuation there is a

flow of energy, 𝛿U, from one part to the other, resulting in a small temperature fluctuation, 𝛿T, in the smaller

part. The subscripts 1 and 2 identify the two parts of the system. The total entropy of the system is

S = S1 + S2 (12.2.1)

Here entropy S1 is a function of U1, V1, etc., and S2 is a function of U2, V2, etc. If we express S as a Taylor

series about its equilibrium value, Seq, we can express the change in entropy, ΔS, from its equilibrium value

as

S − Seq = ΔS =
(
𝜕S1

𝜕U1

)
𝛿U1 +

(
𝜕S2

𝜕U2

)
𝛿U2 +

(
𝜕2S1

𝜕U2
1

)
(𝛿U1)2

2

+

(
𝜕2S2

𝜕U2
2

)
(𝛿U2)2

2
+⋯

(12.2.2)

where all the derivatives are evaluated at the equilibrium state.

Since the total energy of the system remains constant, 𝛿U1 = – 𝛿U2 = 𝛿U. Also, recall that (𝜕S/𝜕U)V, N =
1/T. Hence Equation (12.2.2) can be written as

ΔS =
(

1

T1

− 1

T2

)
𝛿U +

[
𝜕

𝜕U1

1

T1

+ 𝜕

𝜕U2

1

T2

]
(𝛿U)2

2
+⋯ (12.2.3)

We can now identify the first and second variations of entropy, 𝛿S and 𝛿2S, and write them explicitly in terms

of the perturbation 𝛿U:

𝛿S =
(

1

T1

− 1

T2

)
𝛿U (12.2.4)

1

2
𝛿2S =

[
𝜕

𝜕U1

1

T1

+ 𝜕

𝜕U2

1

T2

]
(𝛿U)2

2
(12.2.5)

At equilibrium, since all thermodynamic forces must vanish, the entire system should be at the same tem-

perature. Hence T1 = T2 and the first variation of entropy 𝛿S = 0. (If it is taken as a postulate that entropy
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is a maximum at equilibrium, then the first variation should vanish. One then concludes that T1 = T2.) The

changes in entropy due to fluctuations in the equilibrium state are due to the second variation 𝛿2S (the smaller

higher-order terms in the Taylor series are neglected). At equilibrium, since S is a maximum, fluctuations can

only decrease S, i.e. 𝛿2S< 0, and spontaneous, entropy-increasing irreversible processes drive the system back

to the state of equilibrium. Now let us write Equation (12.2.5) explicitly in terms of the physical properties

of the system and see what the condition for stability implies. First we note that, at constant V,

𝜕

𝜕U
1

T
= − 1

T2

𝜕T
𝜕U

= − 1

T2

1

CV
(12.2.6)

in which CV is the heat capacity. We shall use CV1
for the heat capacity of the smaller part and CV2

for the heat

capacity of the larger part. If the change in the temperature of the smaller is 𝛿T then we have 𝛿U1 = CV1
(𝛿T).

Using Equation (12.2.6) for the two parts in Equation (12.2.5), writing 𝛿U = CV1
(𝛿T) and noting that all the

derivatives are evaluated at equilibrium, so that T1 = T2 = T, we obtain

1

2
𝛿2S = −

CV1
(𝛿T)2

2T2

(
1 +

CV1

CV2

)
(12.2.7)

If system 1 is small compared to system 2, CV1
≪ CV2

so that the second term in the parentheses can be

ignored. In general, then, for stability of the equilibrium state of a subsystem imbedded in a much larger

system, we have

1

2
𝛿2S = −

CV (𝛿T)2

2T2
< 0 (12.2.8)

This condition requires that the heat capacity CV > 0. Thus, the state of equilibrium is stable to thermal
fluctuations because the heat capacity at constant volume is positive. Conversely, if the heat capacity is

negative, the system is an unstable nonequilibrium state.

12.3 Mechanical Stability

We now turn to stability of the system with respect to fluctuations in its volume with N remaining constant,

i.e. fluctuations in the molar volume. As in the previous case, consider a system divided into two parts (Figure

12.2), but this time assume there is a small change in volume 𝛿V1 of system 1 and a consequent small change

1

2
V

Figure 12.2 Fluctuation in volume V of a subsystem with a fixed N.
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𝛿V2 of system 2. Since the total volume of the system remains fixed, 𝛿V1 = – 𝛿V2 = 𝛿V. To compute the

change in entropy associated with such a fluctuation, we can write an equation similar to (12.2.3), with V
taking the place of U. Since (𝜕S/𝜕V)U, N = p/T, a calculation similar to that in Section 12.2 (Exercise 12.2)

leads to

𝛿S =
(

p1

T1

−
p2

T2

)
𝛿V (12.3.1)

1

2
𝛿2S =

[
𝜕

𝜕V1

p1

T1

+ 𝜕

𝜕V2

p2

T2

]
(𝛿V)2

2
(12.3.2)

Because the derivatives are evaluated at equilibrium p1/T1 = p2/T2 = p/T. The first variation 𝛿S vanishes (as

it must if S is a maximum at equilibrium). To understand the physical meaning of the conditions for stability,

𝛿2S < 0, the second variation can be written in terms of the isothermal compressibility. The isothermal

compressibility 𝜅T is defined by 𝜅T = – (1/V) (𝜕V/𝜕p). We assume that T remains unchanged when the

fluctuation in V occurs. With these observations it is easy to see that Equation (12.3.2) can be written

as

𝛿2S = − 1

T𝜅T

(𝛿V)2

V1

[
1 +

V1

V2

]
(12.3.3)

As before, if one part is much larger than another, V2 ≫ V1, this expression can be simplified and the condition

for stability can be written as

𝛿2S = − 1

T𝜅T

(𝛿V)2

V
< 0 (12.3.4)

where we have used V for the arbitrary volume V1. This is valid when 𝜅T > 0. Thus the state of equilibrium
is stable to volume or mechanical fluctuations because the isothermal compressibility is positive. If 𝜅T < 0,
the system is in an unstable nonequilibrium state.

12.4 Stability and Fluctuations in Nk

Fluctuations in the molar amounts, Nk, of the various components of a system occur due to chemical reactions

and due to transport, such as diffusion. We shall consider each case separately.

12.4.1 Chemical Stability

These fluctuations can be identified as the fluctuations in the extent of reaction 𝜉 about its equilibrium value.

Considering a fluctuation 𝛿𝜉, the change in entropy is

S − Seq = ΔS = 𝛿S + 1

2
𝛿2S =

(
𝜕S
𝜕𝜉

)
U, V

𝛿 𝜉 + 1

2

(
𝜕2S
𝜕𝜉2

)
U, V

(𝛿 𝜉)2 (12.4.1)
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1

2 N

Figure 12.3 Fluctuations in Nk of a subsystem can occur due to chemical reactions (change in 𝜉) and exchange
of molecules with the rest of the system. The state of equilibrium is stable if the entropy change associated with
fluctuations is negative.

We have seen in Chapter 4 that (𝜕S/𝜕𝜉)U, V = A/T. Hence Equation (12.4.1) can be written as

ΔS = 𝛿S + 1

2
𝛿2S =

(A
T

)
eq
𝛿𝜉 + 1

2T

(
𝜕A
𝜕𝜉

)
eq

(𝛿𝜉)2 (12.4.2)

(T is constant). In this equation the identification of the first and second variations of entropy are obvious. At

equilibrium, the affinity A vanishes, so that once again 𝛿S = 0. For the stability of the equilibrium state, we

then require the second variation 𝛿2S to be negative:

1

2
𝛿2S = 1

2T

(
𝜕A
𝜕𝜉

)
eq

(𝛿𝜉)2 < 0 (12.4.3)

Since T > 0, the condition for stability of the equilibrium state is

(
𝜕A
𝜕𝜉

)
eq

< 0

1

(12.4.4)

When many chemical reactions take place simultaneously, condition (12.4.3) can be generalized to the

following statement [1, 2]:

1

2
𝛿2S =

∑
i,j

1

2T

(
𝜕Ai

𝜕𝜉j

)
eq

𝛿𝜉i 𝛿𝜉j < 0 (12.4.5)

12.4.2 Stability to Fluctuations Due to Diffusion

The fluctuations in Nk considered so far were only due to chemical reactions. The fluctuation in mole number

can also occur due to the exchange of matter between a part of a system and the rest (Figure 12.3). As in the

1This condition can be used to derive the Le Chatelier–Braun principle discussed in Section 9.3.
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case of exchange of energy, we consider the total change in entropy of the two parts of the system (indicated

as before by subscripts 1 and 2):

S = S1 + S2 (12.4.6)

S − Seq = Δ S
∑

k

[(
𝜕S1

𝜕N1k

)
𝛿N1k +

(
𝜕S2

𝜕N2k

)
𝛿N2k

]
+
∑
i,j

[(
𝜕2S1

𝜕N1i𝜕N1j

)
𝜕N1i𝜕N1j

2
+
(

𝜕2S2

𝜕N2i𝜕N2j

)
𝛿N2i𝛿N2j

2

]
+ ⋯

(12.4.7)

Now we note that 𝛿N1k = – 𝛿N2k = 𝛿Nk and (𝜕S/𝜕Nk) = –𝜇k/T. Equation (12.4.7) can then be written so that

the first and second variations of the entropy can be identified:

ΔS = 𝛿S + 𝛿2S
2

=
∑

k

(𝜇2k

T
−
𝜇1k

T

)
𝛿Nk −

∑
i,j

(
𝜕

𝜕Nj

𝜇1i

T
+ 𝜕

𝜕Nj

𝜇2i

T

)
𝛿Ni 𝛿Nj

2
(12.4.8)

As before, if the derivatives are evaluated at the state of equilibrium, the chemical potentials of the two parts

must be equal. Hence the first term vanishes. Furthermore, if system 1 is small compared to system 2, the

change in the chemical potential (which depends on the concentrations) with respect to Nk of system 2 will

be small compared to the corresponding change in system 1. That is,(
𝜕

𝜕Nj

𝜇1i

T

)
≫

(
𝜕

𝜕Nj

𝜇2i

T

)
if system 1 is much smaller than system 2. We then have

𝛿2S = −
∑
i,j

(
𝜕

𝜕Nj

𝜇1i

T

)
𝛿 Ni 𝛿 Nj < 0 (12.4.9)

as the condition for the stability of an equilibrium state when fluctuations in Nk are considered.

In fact, this condition is general and can be applied to fluctuations due to chemical reactions as well. By

assuming the fluctuations 𝛿Nk = vk 𝛿𝜉, in which vk is the stoichiometric coefficient, we can obtain (Exercise

12.4) condition (12.4.5). Thus a system that is stable to diffusion is also stable to chemical reactions. This

is called the Duhem–Jougeut theorem [3, 4]. A more detailed discussion of this theorem and many other

aspects of stability theory can be found in the literature [2].

In summary, the general condition for the stability of the equilibrium state to thermal, volume and mole

number fluctuations can be expressed by combining Equations (12.2.8), (12.3.4) and (12.4.9):

𝛿2S = −
CV (𝛿T)2

T2
− 1

T𝜅T

(𝛿V)2

V
−
∑
i,j

(
𝜕

𝜕Nj

𝜇i

T

)
𝛿 Ni 𝛿 Nj < 0 (12.4.10)

Here CV is the heat capacity of the system with arbitrary volume V and chemical potential 𝜇j.

Though we have derived the above results by assuming S to be a function of U, V and Nk, and a system

in which U, V and N are constant, the results derived have a more general validity in that they are also valid

for other situations in which p and/or T are maintained constant. The corresponding results are expressed in
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terms of the enthalpy H, Helmholtz free energy F and Gibbs free energy G. In fact, a more general theory

of stability that is valid for a wide range of conditions can be developed using the entropy production diS as

the basis. This more general approach will be presented in Chapter 14. The Gibbs stability theory is valid

only for well-defined boundary conditions such as T = constant. In contrast, the approach of Chapter 14 is

independent of such conditions; it depends on irreversible processes inside the system.
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Exercises

12.1 For N2 at equilibrium at T = 300 K and p = 1.0 atm, using the ideal gas approximation, calculate the

change in entropy due to a fluctuation of 𝛿T = 1.0 × 10−3 K in a volume V = 1.0 × 10−6 mL.

12.2 Obtain expressions (12.3.1) and (12.3.2) for the first- and second-order entropy changes due to fluctu-

ations of volume at constant N.

12.3 Explain the physical meaning of condition (12.4.4) for stability with respect to a chemical reaction.

12.4 In expression (12.4.9) assume that the change in mole number is due to a chemical reaction and obtain

expression (12.4.3) and generalize it to (12.4.5).



13
Critical Phenomena and Configurational

Heat Capacity

Introduction

In this chapter we shall consider applications of stability theory to critical phenomena of liquid–vapor

transitions and the separation of binary mixtures. When the applied pressure and temperature are altered,

systems can become unstable, causing their physical state to transform into another distinct state. When the

pressure on a gas is increased, for example, it may lose its stability and make a transition to a liquid. Similarly,

when the temperature of a two-component liquid mixture (such as hexane and nitrobenzene) changes, the

mixture may become unstable to changes in its composition; the mixture then separates into two phases, each

rich in one of the components. In Chapters 18 and 19 we shall see that, in far-from-equilibrium systems, loss of

stability can lead to a wide variety of complex nonequilibrium states. In equilibrium systems, loss of stability

leads to phase separation. In this chapter, we shall also look at the response of a system that can undergo

internal transformations to quick changes in temperature. This leads us to the concept of configurational
heat capacity.

13.1 Stability and Critical Phenomena

In Chapters 1 and 7 we looked briefly at the critical behavior of a pure substance. If its temperature is above

the critical temperature Tc then there is no distinction between the gas and the liquid states, regardless of the

pressure. Below the critical temperature, at low pressures the substance is in the form of a gas, but liquid

begins to form as the pressure is increased. We can understand this transformation in terms of stability.

As shown in Figure 13.1 by the arrows, by using an appropriate path it is possible to go from a gaseous

state to a liquid state in a continuous fashion. This was noted by James Thomson, who also suggested that

the isotherms below the critical point were also continuous, as shown in Figure 13.2 by the curve IAJKLBM.

This suggestion was pursued by van der Waals, whose equation, as we saw in Chapter 1, indeed gives the

curve shown. However, the region JKL in Figure 13.2 cannot be physically realized because it is an unstable

region, i.e. it is not mechanically stable. In Section 12.3 we saw that the condition for mechanical stability

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.
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BA

C

T > Tc

p

V

T < TcD E

Figure 13.1 The critical behavior of a pure substance. Below the critical temperature, at a fixed temperature, a
decrease in volume results in a transition to a liquid state in the region AB in which the two phases coexist. The
envelope of the segments AB for the family of isotherms has the shape ECD. Above the critical temperature Tc
there is no gas–liquid transition. The gas becomes more and more dense, there being no distinction between the
gas and the liquid phases. By following the path shown by the arrows, it is possible to go from a gas to a liquid
state without going through a transition.

is that the compressibility 𝜅T ≡ −(1∕V)(𝜕V∕𝜕p) > 0. In Figure 13.2, this implies that the system is stable

only if (
𝜕p

𝜕V

)
T
< 0 (13.1.1)

a condition that is satisfied for the segments IA and BM and for all the isotherms above the critical temperature.

These regions represent stable regions. For the segment JKL we see that (𝜕p/𝜕V)T > 0, which means that this

state is unstable. In this unstable state, if the volume of the system is kept fixed, then small fluctuations in

K

L

p

I

C

B

J

A

V

M

Unstable

Metastable

Stable

Figure 13.2 The stable, metastable and unstable regions for a liquid–vapor transition are indicated. In the region
JKL, (𝜕p∕𝜕V)T > 0, which shows that the system is unstable.
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pressure, depending on the initial state, will cause either the vapor to condense or the liquid to evaporate. The

system will collapse to a point in the segment AB, where liquid and vapor coexist. As shown in Section 7.4,

the amount of the substance in the two phases is given by the ‘lever rule’.

In region BL of Figure 13.2, the system is a supersaturated vapor and may begin to condense if nucleation

can occur. This is a metastable state. Similarly, in the region AJ we have a superheated liquid that will

vaporize if there is nucleation of the vapor phase. The stable, metastable and unstable regions are indicated in

Figure 13.2. Finally, at the critical point C, both the first and second derivatives of p with respect to V equal

zero. Here, the stability is determined by the higher-order derivatives. For stable mechanical equilibrium at

the critical point we have (
𝜕p

𝜕V

)
Tc

= 0,

(
𝜕2p

𝜕V2

)
Tc

= 0,

(
𝜕3p

𝜕V3

)
Tc

< 0 (13.1.2)

which is an inflection point. The inequality (𝜕3p/𝜕V3) < 0 is obtained by considering terms of higher order

than 𝛿2S.

13.2 Stability and Critical Phenomena in Binary Solutions

In solutions, depending on the temperature, the various components can segregate into separate phases. For

simplicity, we shall only consider binary mixtures. This is a phenomenon similar to the critical phenomenon

in a liquid–vapor transition, in that in one range of temperature the system is in one homogeneous phase

(solution), but in an another range of temperature the system becomes unstable and the two components

separate into two phases. The critical temperature that separates these two ranges depends on the composition

of the mixture. This can happen in three ways, as illustrated by the following examples.

At atmospheric pressure, liquids n-hexane and nitrobenzene are miscible in all proportions when the

temperature is above 19 ◦C. Below 19 ◦C, the mixture separates into two distinct phases, one rich in

nitrobenzene and the other in n-hexane. The corresponding phase diagram is shown in Figure 13.3a. At about

10 ◦C, for example, in one phase the mole fraction of nitrobenzene is 0.18, but in the other phase the mole

fraction is about 0.75. As the temperature increases, at T = Tc, the two liquid layers become identical in

composition, indicated by the point C. Point C is called the critical solution point or consolute point and its

location depends on the applied pressure. In this example, above the critical temperature the two liquids are

miscible in all proportions. Hence, the system is said to have an upper critical temperature. However, this

is not always the case, as shown in Figure 13.3b and c. The critical temperature can be such that below Tc the

two components become miscible in all proportions. An example of such a mixture is that of diethylamine

and water. Such a mixture is said to have a lower critical solution temperature. A binary system can have

both an upper and a lower critical solution temperature, as shown in Figure 13.3c. An example of such a

system is a mixture of m-toluidine and glycerol.

Let us now look at the phase separation of binary mixtures from the point of view of stability. The separation

of phases occurs when the system becomes unstable with respect to diffusion of the two components; that

is, if the separation of the two components results in an increase in entropy, then the fluctuations in Nk
due to diffusion in a given volume grow, resulting in the separation of the two components. As we saw in

Section 12.4, the condition for stability against diffusion of the components is

𝛿2S = −
∑
i,k

𝜕

𝜕Nk

(𝜇i

T

)
𝛿Nk𝛿Ni < 0 (13.2.1)



318 Modern Thermodynamics

(a) (b)

Tc

C

T/  C

XNitrobenzene

10

20

30

0.0 0.25 0.50 0.75 1.0

One phase

Two phases

0.1 0.2 0.3 0.4

Two phases

140

130

150

160

Tc

T/  C

XWater

0.0

C

One phase

(c)

One phase
0

100

150

Tc

T/ C

XGlycerol

50

0.0 0.25 0.50 0.75 1.0

One phase

Two phases

Tc

Figure 13.3 Three types of phase diagram showing the critical phenomenon in binary solutions: (a) a mixture
of hexane and nitrobenzene; (b) a mixture of diethylamine and water; (c) a mixture of m-toluidine and glycerol.

At a fixed T, for binary mixtures this can be written in the explicit form

𝜇11(𝛿N1)2 + 𝜇22(𝛿N2)2 + 𝜇21(𝛿N1)(𝛿N2) + 𝜇12(𝛿N1)(𝛿N2) > 0 (13.2.2)

in which

𝜇11 =
𝜕𝜇1

𝜕N1

, 𝜇22 =
𝜕𝜇2

𝜕N2

, 𝜇21 =
𝜕𝜇2

𝜕N1

, 𝜇12 =
𝜕𝜇1

𝜕N2

(13.2.3)

Condition (13.2.2) is mathematically identical to the statement that the matrix with elements 𝜇ij is positive
definite. Also, because

𝜇21 =
𝜕𝜇2

𝜕N1

= 𝜕

𝜕N1

𝜕G
𝜕N2

= 𝜕

𝜕N2

𝜕G
𝜕N1

= 𝜇12 (13.2.4)

this matrix is symmetric. The stability of the system is assured if the symmetric matrix[
𝜇11 𝜇12

𝜇21 𝜇22

]
(13.2.5)
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is positive definite. The necessary and sufficient conditions for the positivity of (13.2.5) are

𝜇11 > 0, 𝜇22 > 0, 𝜇11𝜇22 − 𝜇21𝜇12 > 0 (13.2.6)

If these are not satisfied, then condition (13.2.2) will be violated and the system becomes unstable. Note that

(13.2.4) and (13.2.6) imply that 𝜇12 = 𝜇21 < 0 to assure stability for all positive values of 𝜇11 and 𝜇22.

If we have an explicit expression for the chemical potential, then the conditions (13.2.6) can be related to

the activity coefficients of the system. This can be done, for example, for a class of solutions called strictly
regular solutions, which were studied by Hildebrandt and by Fowler and Guggenheim in 1939. The two

components of strictly regular solutions interact strongly and their chemical potentials are of the form

𝜇1(T , p, x1, x2) = 𝜇0
1
(T , p) + RT ln(x1) + 𝛼x2

2
(13.2.7)

𝜇2(T , p, x1, x2) = 𝜇0
2
(T , p) + RT ln(x2) + 𝛼x2

1
(13.2.8)

in which

x1 =
N1

N1 + N2

, x2 =
N2

N1 + N2

(13.2.9)

are mole fractions. The factor 𝛼 is related to the difference in interaction energy between two similar molecules

(two molecules of component 1 or two molecules of component 2) and two dissimilar molecules (one molecule

of component 1 and one of component 2). For solutions that are nearly perfect, 𝛼 is nearly zero. From these

expressions it follows that activity coefficients are given by RT ln 𝛾1 = 𝛼x2
2

and RT ln 𝛾2 = 𝛼x2
1
. We can now

apply the stability conditions (13.2.6) to this system. By evaluating the derivative we see that the condition

𝜇11 = (𝜕𝜇1∕𝜕N1) > 0 becomes (Exercise 13.5)

RT
2𝛼

− x1(1 − x1) > 0 (13.2.10)

For nearly perfect solutions, since 𝛼 → 0, this inequality is always satisfied.

For a given composition specified by x1, if R/2𝛼 is positive, then for sufficiently large T this condition will

be satisfied. However, it can be violated for smaller T. The maximum value of x1(1 − x1) is 0.25. Thus, for

RT/2𝛼 < 0.25 there must be a range of x1 in which the inequality (13.2.10) is not valid. When this happens,

the system becomes unstable and separates into two phases. In this case we have an upper critical solution

temperature. From (13.2.10), it follows that the relation between the mole fraction and the temperature below

which the system becomes unstable is

RTc

2𝛼
− x1(1 − x1) = 0 (13.2.11)

This gives us the plot of Tc as a function of x1, shown in Figure 13.4. It is easy to see that the maximum of

Tc occurs at x1 = 0.5. Thus, the critical temperature and mole fractions are

(x1)c = 0.5, Tc =
𝛼

2R
(13.2.12)

The equation T = (2𝛼∕R)x1(1 − x1) gives the boundary between the metastable region and the unstable region.

The boundary between the stable region and the metastable region is the coexistence curve. The coexistence

curve of the two phases can be obtained by writing the chemical potentials 𝜇1 and 𝜇2 in both phases and

equating them. This is left as an exercise.
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Figure 13.4 The phase diagram for strictly regular solutions.

13.3 Configurational Heat Capacity

The thermodynamic state of chemically reacting systems may be specified by p, T and the extent of reaction 𝜉.

For such a system, the heat capacity must also involve changes in 𝜉 due to the change in temperature. For

example, we may consider a compound that may exist in two isomeric forms. Then the extent of reaction 𝜉

specifies the molar amounts of each form given the initial amounts. The heat absorbed by such a system

may change not only p and T but also 𝜉, because the system will relax to its equilibrium with respect to the

transformation when p and T change. If the system is in equilibrium with respect to the extent of reaction 𝜉, then

the corresponding affinity A = 0. Now, since the heat exchanged dQ = dU – p dV = dH – V dp, we can write

dQ = (hT ,𝜉 − V) dp + Cp,𝜉 dT + hT ,p d𝜉 (13.3.1)

in which

hT ,𝜉 =
(
𝜕H
𝜕p

)
T ,𝜉

, Cp,𝜉 =
(
𝜕H
𝜕T

)
p,𝜉

, hT ,p =
(
𝜕H
𝜕𝜉

)
T ,p

(13.3.2)

At constant pressure, we can write the heat capacity Cp = CpmN as

Cp =
(

dQ
dT

)
p
= Cp,𝜉 + hT ,p

(
d𝜉

dT

)
p

(13.3.3)

Now for an equilibrium transformation, it can be shown (Exercise 13.6) that(
𝜕𝜉

𝜕T

)
p,A=0

= −
hT ,p

T

(
𝜕A
𝜕𝜉

)
T ,p

(13.3.4)

By substituting Equation (13.3.4) into Equation (13.3.3) we obtain the following result for a system that

remains in equilibrium as it is receiving heat:

Cp,A=0 = Cp,𝜉 − T

(
𝜕A
𝜕𝜉

)
T ,p

(
𝜕𝜉

𝜕T

)2

p,A=0

(13.3.5)

However, we have seen in Section 12.4 that the condition for the stability of a system with respect to chemical

reactions is (𝜕A/𝜕𝜉) < 0. Hence, the second term on the right-hand side of Equation (13.3.5) is positive.
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The term Cp,𝜉 is the heat capacity at constant composition. There may be situations, however, in which the

relaxation of the transformation represented by 𝜉 is very slow. In this case, we measure the heat capacity at a

constant composition. This leads us to the following general conclusion:

The heat capacity at a constant composition is always less than the heat capacity of a system that remains

in equilibrium with respect to 𝜉 as it receives heat.

The term hT ,p(d𝜉∕dT) is called the configurational heat capacity, because it refers to the heat capacity

due to the relaxation of the system to the equilibrium configuration. The configurational heat capacity can

be observed in systems such as glycerin near its crystalline state, where the molecules can vibrate but not

rotate freely as they do in the liquid state. This restricted motion is called libration. As the temperature is

increased, a greater fraction of the molecules begin to rotate. For this system, 𝜉 is the extent of reaction for

the libration–rotation transformation. For glycerin, there exists a state called the vitreous state in which the

libration–rotation equilibrium is reached rather slowly. If such a system is heated rapidly, the equilibrium is

not maintained and the measured heat capacity will be Cp,𝜉 , which is lower than the heat capacity measured

through slow heating during which the system remains in equilibrium.
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Exercises

13.1 Using the Gibbs–Duhem equation at constant p and T, and the relation d𝜇k =
∑

i (𝜕𝜇k∕𝜕Ni)p,T dNi,

show that ∑
i

(
𝜕𝜇k

𝜕Ni

)
p,T

Ni = 0

This equation implies that the determinant of the matrix with elements 𝜇ki = (𝜕𝜇k∕𝜕Ni) is equal to

zero. Consequently, one of the eigenvalues of the matrix (13.2.5) is zero.

13.2 Show that, if the 2 × 2 matrix (13.2.5) has a negative eigenvalue, then the inequality (13.2.2) can be

violated.

13.3 Show that if the matrix (13.2.5) has positive eigenvalues, then 𝜇11 > 0 and 𝜇22 > 0.

13.4 In a strictly binary solution, assuming that the two phases are symmetric, i.e. the dominant mole

fraction in both phases is the same, obtain the coexistence curve by equating the chemical potentials

in the two phases.

13.5 Using Equations (13.2.7) and (13.2.9), show that the condition m11 = 𝜕m1/𝜕N1 > 0 leads to Equa-

tion (13.2.10).

13.6 For an equilibrium transformation, show that(
𝜕𝜉

𝜕T

)
p,A=0

= −
hT ,p

T

(
𝜕A
𝜕𝜉

)
T ,p



14
Entropy Production, Fluctuations

and Small Systems

14.1 Stability and Entropy Production

In Chapter 12 we considered fluctuations in an isolated system in which U, V and Nk are constant and we

obtained conditions for the stability of the equilibrium state. These conditions, in fact, have a more general

validity in that they remain valid when other types of boundary condition are imposed on the system. For

example, instead of constant U and V, we may consider systems maintained at constant T and V, constant p
and S or constant T and p. The main reason for the general validity of the stability conditions is that all of

these conditions are a direct consequence of the fact that for all natural processes diS > 0. As we have seen in

Chapter 5, when each of these three pairs of variables is held constant, one of the thermodynamic potentials

F, H or G is minimized. In each case we have shown that, in accordance with the Second Law,

dF = −T diS ≤ 0 (T , V = constant) (14.1.1)

dG = −T diS ≤ 0 (T , p = constant) (14.1.2)

dH = −T diS ≤ 0 (S, p = constant) (14.1.3)

Through these relations, the change of the thermodynamic potentials ΔF, ΔG or ΔH due to a fluctuation

can be related to the entropy production ΔiS. The system is stable to all fluctuations that result in ΔiS < 0,

because irreversible processes that arise as a result of the fluctuation increasing the entropy restore the system

to its equilibrium state. From the above relations it is clear how one could also characterize stability of the

equilibrium state by stating that the system is stable to fluctuations for which ΔF > 0,ΔG > 0 or ΔH > 0.

For fluctuations in the equilibrium state, these conditions can be written more explicitly in terms of the

second-order variations 𝛿2F > 0, 𝛿2G > 0 and 𝛿2H > 0, which in turn can be expressed using the second-

order derivatives of these potentials. The conditions for stability obtained in this way are identical to those

obtained in Chapter 12.

A theory of stability that is based on the positivity of entropy production in natural processes is more general
than the classical Gibbs–Duhem theory of stability [1, 2], which is limited to the constraints expressed in
Equations (14.1.1) to (14.1.3) and the associated thermodynamic potentials. In addition, stability theory

based on entropy production can also be used to obtain conditions for the stability of nonequilibrium states.

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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In our more general approach, the main task is to obtain an expression for the entropy production, ΔiS,

associated with a fluctuation. A system is stable to fluctuations if the associated ΔiS < 0. In Chapter 3 we

have seen that the rate of entropy production due to irreversible processes takes the quadratic form

diS

dt
=
∑

k

Fk
dXk

dt
=
∑

k

FkJk (14.1.4)

in which the Fk are the ‘thermodynamic forces’ and where we have represented dXk/dt as the ‘flow’ or

‘current’ Jk. Thermodynamic forces arise when there is nonuniformity of temperature, pressure or chemical

potential. If we denote the equilibrium state by E and the state to which a fluctuation has driven the system

by I, then the change in entropy in going from E to I is

ΔiS = ∫
I

E
diS = ∫

I

E

∑
k

Fk dXk (14.1.5)

In this section we shall present simple examples of the calculation of ΔiS and defer the more general theory

to later chapters in which we consider the stability of nonequilibrium states.

14.1.1 Chemical Stability

Let us look at entropy production associated with a fluctuation in a chemical reaction specified by a change 𝛿𝜉

in the extent of reaction (Figure 14.1). In Chapter 4 we have seen that entropy production due to a chemical

reaction is

diS =
A
T

d𝜉 (14.1.6)

At equilibrium, the affinity Aeq = 0. For a small change 𝛼 = (𝜉 − 𝜉eq) in the extent of reaction from the

equilibrium state, we may approximate A by

A = Aeq +
(
𝜕A
𝜕𝜉

)
eq

𝛼 =
(
𝜕A
𝜕𝜉

)
eq

𝛼 (14.1.7)

The entropy production ΔiS due to the fluctuation can be calculated by noting that d𝜉 = d𝛼:

ΔiS = ∫
𝛿𝜉

0

diS =∫
𝛿𝜉

0

A
T
𝛿𝜉 = 1

T ∫
𝛿𝜉

0

(
𝜕A
𝜕𝜉

)
eq

𝛼 d𝛼 =
(
𝜕A
𝜕𝜉

)
eq

(𝛿𝜉)2

2T
(14.1.8)

(a) (b)

eq +

eq

Teq +

Teq

Figure 14.1 (a) A local fluctuation in the extent of reaction; the entropy change associated with such a fluctu-
ation can be calculated using Equation (14.1.9a). (b) A local fluctuation in temperature; the associated entropy
change can be calculated using Equation (14.1.11).
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The stability condition ΔiS < 0 now takes the form

ΔiS =
(
𝜕A
𝜕𝜉

)
eq

(𝛿𝜉)2

2T
< 0 (14.1.9a)

which is identical to Equation (12.4.3). If we consider r chemical reactions, we have

ΔiS =
r∑
i,j

1

2T

(
𝜕Ai

𝜕𝜉j

)
eq

𝛿𝜉i 𝛿𝜉j < 0 (14.1.9b)

Using the relation between the affinities Ai and the corresponding chemical potentials 𝜇k and the relation

between 𝜉j and the molar amounts Nk, the above equation can be written as (Exercise 12.4)

ΔiS = −
r∑
i,j

1

T

(
𝜕𝜇i

𝜕Nj

)
eq

𝛿Ni 𝛿Nj

2
< 0 (14.1.9c)

It is important to note that we arrived at this condition for stability by only assuming that for spontaneous
processes ΔiS > 0; consequently, it is independent of the boundary conditions imposed on the system.

14.1.2 Thermal Stability

As a second example, let us consider thermal fluctuations. Let the temperature of a local region of interest be

Teq + 𝛼, where Teq is the equilibrium temperature and 𝛼 is a small deviation. As we have seen in Chapter 3,

the entropy production due to heat flow is

diS

dt
=
(

1

Teq + 𝛼
− 1

Teq

)
dQ
dt

≃ − 𝛼

T2
eq

dQ
dt

(14.1.10)

For small changes in temperature, we can write dQ = CV d𝛼 where CV is the heat capacity at constant volume.

Then for a temperature change of 𝛿T, we have

ΔiS = ∫
𝛿T

0

diS = ∫
𝛿T

0

−
CV

T2
eq

𝛼 d𝛼 = −
CV

T2
eq

(𝛿T)2

2
(14.1.11)

The condition for thermal stability can now be written as

ΔiS = −
CV

T2
eq

(𝛿T)2

2
< 0 (14.1.12)

which is identical to condition (12.2.8). As before, we conclude that this condition is satisfied only if CV > 0.

Similarly, the probability of entropy production associated with the fluctuation of the volume of a

subsystem at a fixed pressure and molar amount Nk of its constituents can be shown to be equal to
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ΔiS = −(1∕Teq𝜅T )(𝛿V2∕2Veq) in which 𝜅T = −(1∕V)(𝜕V∕𝜕p)T is the isothermal compressibility. Combining

the above results, for fluctuations in T, Nk and V we arrive at

ΔiS = ∫
I

E
diS = ∫

I

E

∑
k

Fk dXk

= −
CV (𝛿T)2

2T2
− 1

T𝜅T

(𝛿V)2

2V
−
∑
i,j

(
𝜕

𝜕Nj

𝜇i

T

)
𝛿Ni 𝛿Nj

2
< 0

(14.1.13)

Finally, we note that this entropy term is second order in the perturbations 𝛿T, 𝛿V and 𝛿Nk, consistent with

the theory of Chapter 12.

In expression (14.1.13), the independent variables are T, V and N. The following more general expression

through which the entropy change is due to any other set of independent variables can be derived from

(14.1.13):

ΔiS =
𝛿2S
2

= −1

2T

[
𝛿T 𝛿S − 𝛿p 𝛿V +

∑
i

𝛿𝜇i 𝛿Ni

]
< 0 (14.1.14)

In Equation (14.1.13) in the first term CV 𝛿T∕T = 𝛿Q∕T = 𝛿S; similarly, in the second term 𝛿V∕𝜅TV = −𝛿p;

and in the third term
∑

j(𝜕𝜇i∕𝜕Nj)dNj = 𝛿𝜇i. Using these relations it is easy to see that (14.1.13) can be

written in the form (14.1.14).

That the entropy production should be second order in the perturbation follows from the fact that the forces

Fk and fluxes Jk vanish at equilibrium. If 𝛿Jk = (dXk∕dt) and 𝛿Fk are forces and fluxes associated with the

fluctuation close to equilibrium, entropy production takes the form

dΔiS

dt
=

diS

dt
=
∑

k

𝛿Fk 𝛿Jk =
∑

k

FkJk > 0 (14.1.15)

From this expression it is clear that the leading contribution to the entropy change due to a fluctuation in the

equilibrium state is of second order and we may make this explicit by using 𝛿2S/2 in place of ΔiS. In terms

of 𝛿2S/2, Equations (14.1.14) and (14.1.15) can be written as

𝛿2S < 0 ,
1

2

d𝛿2S
dt

=
∑

k

𝛿Fk 𝛿Jk > 0 (14.1.16)

in which the second equation is the Second Law. These two equations express the essence of stability of the

equilibrium state: the fluctuations decrease the entropy whereas the irreversible processes restore the system
to its initial state. These equations are specific cases of a more general theory of stability formulated by

Lyapunov, which we will discuss in Chapters 17 and 18.

14.2 Thermodynamic Theory of Fluctuations

14.2.1 The Probability Distribution

In the previous sections we have discussed the stability of a thermodynamic state in the face of fluctuations.

However, the theory that we presented does not give us the probability of a fluctuation of a given magnitude.

To be sure, our experience tells us that fluctuations in thermodynamic quantities are extremely small in

macroscopic systems except near critical points; still we would like to have a theory that relates these

fluctuations to thermodynamic quantities and gives us the conditions under which they become important.
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In an effort to understand the relation between microscopic behavior of matter, which was in the realm

of mechanics, and macroscopic laws of thermodynamics, Ludwig Boltzmann (1844–1906) introduced his

famous relation that related entropy and probability (see Box 3.1):

S = kB lnW (14.2.1)

in which kB = 1.38 × 10−23 J K−1 is the Boltzmann constant and W is the number of microscopic states

corresponding to the macroscopic thermodynamic state. The variable W is called thermodynamic probability
(as suggested by Max Planck) because, unlike the usual probability, it is a number larger than one – in fact

it is a very large number. Thus, Boltzmann introduced the idea of probability into thermodynamics – a

controversial idea whose true meaning could only be understood through the modern theories of unstable

dynamical systems [3].

Albert Einstein (1879–1955) proposed a formula for the probability of a fluctuation in thermodynamic

quantities by using Boltzmann’s idea in reverse; whereas Boltzmann used ‘microscopic’ probability to derive

thermodynamic entropy, Einstein used thermodynamic entropy to obtain the probability of a fluctuation

through the following relation:

P(ΔS) = Z−1eΔS∕kB (14.2.2)

in which ΔS is the entropy change associated with the fluctuation from the state of equilibrium and Z is a

normalization constant that ensures the sum of all probabilities equals one. Though relations (14.2.1) and

(14.2.2) may be mathematically close, it is important to note that conceptually one is the opposite of the other.

In Equation (14.2.1) the probability of a state is the fundamental quantity and entropy is derived from it; in

Equation (14.2.2) entropy as defined in thermodynamics is the fundamental quantity and the probability of a

fluctuation is derived from it. Einstein’s formula shows that from thermodynamic entropy we can also obtain

the probability of fluctuations.

To obtain the probability of a fluctuation, we must obtain the entropy change associated with it (Fig-

ure 14.2). The basic problem then is to obtain ΔS in terms of the fluctuations 𝛿T, 𝛿p, etc. However, this has

E

E'
I

iS

X

S

Figure 14.2 The entropy change ΔS associated with a fluctuation from an equilibrium state E to a nonequi-
librium state I. Entropy S is shown as a function of a thermodynamic variable X. The fluctuation that decreases
entropy drives the system to the state I. We compute the entropy change ΔS associated with such a fluctuation
by computing the entropy produced, ΔiS, as the system relaxes back to the equilibrium state E from I. In classical
formalisms that do not use diS, the entropy change ΔS is calculated by first determining an equilibrium state E′

that has the same entropy as the state I and then by computing the entropy change along a reversible trajectory
E′E of equilibrium states.
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already been done in the previous section. Expression (14.1.13) gives us the entropy associated with a

fluctuation:

ΔS = −
CV (𝛿T)2

2T2
− 1

2T𝜅T

(𝛿V)2

V
−
∑
i,j

(
𝜕

𝜕Nj

𝜇i

T

)
𝛿Ni 𝛿Nj

2
(14.2.3)

This expression can be made more explicit if the derivative of the chemical potential is expressed in terms of

the molar amounts Nk. For ideal gases this can easily be done because the chemical potential of a component

k is

𝜇k = 𝜇k0(T) + RT ln(pk∕p0)

= 𝜇k0(T) + RT ln(NkRT∕Vp0)
(14.2.4)

in which p0 is the standard pressure (usually 1 bar). Substituting this expression into Equation (14.2.3), we

obtain

ΔS = −
CV (𝛿T)2

2T2
− 1

T𝜅T

(𝛿V)2

2V
−
∑

i

R(𝛿Ni)
2

2Ni
(14.2.5)

Here CV is the heat capacity of the ideal gas mixture. In this expression the Ni are expressed in moles. By

multiplying them by the Avogadro number NA, they can be converted to numbers of molecules Ñi. The same

expression can be derived for an ideal system for which 𝜇k = 𝜇k0(T) + RT ln xk, in which xk is the mole

fraction (Exercise 14.2). Now using the Einstein formula (14.2.2), the probability of a fluctuation in T, V and

Ñi can be written as

P(𝛿T , 𝛿V , 𝛿Ñi) = Z−1 exp(ΔS∕kB)

= Z−1 exp

[
−

CV (𝛿T)2

2kBT2
− 1

2kBT𝜅T

(𝛿V)2

V
−
∑

i

(𝛿Ñi)
2

2Ñi

]
(14.2.6)

in which we have replaced R in Equation (14.2.5) by kBNA. In this expression the normalization factor Z is

defined as

Z = ∫ ∫ ∫ P(x, y, z)dx dy dz (14.2.7)

The probability distribution is a Gaussian in each of the independent variables 𝛿T , 𝛿V and 𝛿Ñk. The integral

of a Gaussian is given by

∫
∞

−∞
e−x2∕adx =

√
𝜋a (14.2.8)

With this formula, the probability can be explicitly written and the root mean square value of the fluctuations

can be obtained (Exercise 14.3). A more general form of the probability distribution can be obtained from

Equation (14.1.14) in which the change of entropy due to fluctuation is expressed in terms of products of

pairs of variables:

P = Z−1 exp
[
𝛿2S
2kB

]
= Z−1 exp

[
−1

2kBT
(𝛿T 𝛿S − 𝛿p 𝛿V +

∑
k

𝛿𝜇k 𝛿Nk)

]
(14.2.9)

in which Z is the normalization constant. For any set of independent variables Yk, Equation (14.2.9) can be

used to obtain the probability distribution for the fluctuation of these variables by expressing 𝛿T, 𝛿S, etc., in
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terms of the fluctuations in Yk. For notational convenience, let us denote the deviations of the independent

variables Yk from their equilibrium values by 𝛼k. Then, in general, 𝛿2S will be a quadratic function in 𝛼k:

𝛿2S
2

= −1

2

∑
i,j

gij𝛼i𝛼j (14.2.10)

in which the gij are appropriate coefficients and gij = gji; the negative sign is introduced only to emphasize

the fact that 𝛿2S is a negative quantity. For a single 𝛼, the probability P(𝛼) =
√

(g∕2𝜋kB) exp(−g𝛼2∕2kB). In

the more general case, the corresponding probability distribution can be written explicitly as

P(𝛼1, 𝛼2,… , 𝛼m) =

√
det [g]

(2𝜋kB)m
exp

[
− 1

2kB

m∑
i,j=1

gij𝛼i𝛼j

]
(14.2.11)

in which det [g] is the determinant of the matrix gij. In the rest of this section we shall derive some important

general results that we will use in Chapter 16 for deriving a set of fundamental relations in nonequilibrium

thermodynamics, the Onsager reciprocal relations.

14.2.2 Average Values and Correlations

In general, given a probability distribution for a set of variables 𝛼k, one can compute average values and

correlations between pairs of variables. We shall use the notation ⟨f⟩ to denote the average value of any

function f (𝛼1, 𝛼2,… , 𝛼m) of the variables 𝛼k; it is computed using the integral

⟨f ⟩ = ∫ f (𝛼1, 𝛼2,… , 𝛼m) P(𝛼1, 𝛼2,… , 𝛼m) d𝛼1 d𝛼2 ⋯ d𝛼m (14.2.12)

The correlation between two variables f and g is defined as

⟨fg⟩ = ∫ f (𝛼1, 𝛼2,… , 𝛼m) g(𝛼1, 𝛼2,… , 𝛼m)P(𝛼1, 𝛼2,… , 𝛼m) d𝛼1 d𝛼2 ⋯ d𝛼m (14.2.13)

We shall soon give a general expression for the correlation ⟨𝛼i𝛼j⟩ between any two variables 𝛼i and 𝛼j, but

first we shall calculate other correlation functions that will lead us to the result.

We have seen earlier that the entropy production (14.1.15) associated with a small fluctuation from

equilibrium can be written as

dΔiS

dt
= 1

2

d𝛿2S
dt

=
∑

k

FkJk (14.2.14)

in which the Fk are thermodynamic forces that drive the flows Jk = dXk∕dt, both of which vanish at equilib-

rium. Now if we compute the time derivative of the general quadratic expression (14.2.10), since gij = gji, we

obtain

1

2

d𝛿2S
dt

= −
∑
i,j

gij𝛼i

d𝛼j

dt
(14.2.15)

If we identify the derivative (d𝛼j∕dt) as a ‘thermodynamic flow’ (𝛿Jj close to equilibrium), comparison of

Equations (14.2.14) and (14.2.15) shows that the term

Fj ≡ −
∑

i

gij𝛼i (14.2.16)
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will be the corresponding thermodynamic force. Furthermore, due to the Gaussian form of the probability

distribution (14.2.11), we also have the relation

Fi = kB
𝜕 lnP
𝜕𝛼i

(14.2.17)

We will first show that ⟨Fi𝛼j⟩ = −kB𝛿ij (14.2.18)

in which 𝛿ij is the ‘Kronecker delta’: 𝛿ij = 0 if i ≠ j and 𝛿ij = 1 if i = j. This shows that each fluctuation is

correlated to its corresponding force but not to other forces. By definition

⟨Fi𝛼j⟩ = ∫ Fi𝛼jP d𝛼1 d𝛼2 ⋯ d𝛼m

Using Equation (14.2.17) this integral can be written as

⟨Fi𝛼j⟩ = ∫ kB

(
𝜕 lnP
𝜕𝛼i

)
𝛼jP d𝛼1 d𝛼2 ⋯ d𝛼m

= ∫ kB

(
𝜕P
𝜕𝛼i

)
𝛼j d𝛼1 d𝛼2 ⋯ d𝛼m

Which, on integration by parts, gives

⟨Fi𝛼j⟩ = kBP𝛼j
||+∞−∞ − kB ∫

(
𝜕𝛼j

𝜕𝛼i

)
P d𝛼1 d𝛼2 ⋯ d𝛼m

The first term vanishes because lim𝛼→±∞ 𝛼jP(𝛼j) = 0. The second term vanishes if i ≠ j and equals −kB if

i = j. Thus we arrive at the result (14.2.18).

Also useful is the following general result. By substituting Equation (14.2.16) into Equation (14.2.18) we

arrive at

⟨Fi𝛼j⟩ = ⟨−∑
k

gik𝛼k𝛼j

⟩
= −

∑
k

gik⟨𝛼k𝛼j⟩ = −kB𝛿ij

which simplifies to ∑
k

gik⟨𝛼k𝛼j⟩ = kB𝛿ij (14.2.19)

This implies that the matrix ⟨𝛼i𝛼j⟩∕kB is the inverse of the matrix gik:

⟨𝛼i𝛼j⟩ = kB(g−1)ij (14.2.20)

One particularly interesting result is the average value of the entropy fluctuations associated with the m
independent variables 𝛼i:

⟨ΔiS⟩ = ⟨−1

2

m∑
i,j=1

gij𝛼i𝛼j

⟩
= −1

2

m∑
i,j=1

gij⟨𝛼i𝛼j⟩ = −
kB

2

m∑
i,j=1

gij(g
−1)ji

= −
kB

2

m∑
i=1

𝛿ii = −
mkB

2

(14.2.21)
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Thus, we see that the average value of entropy fluctuations due to m independent variables is given by the

simple expression

⟨ΔiS⟩ = −
mkB

2
(14.2.22)

Each independent process that contributes to entropy is associated with a fluctuation −kB/2 at equilibrium.

This result is analogous to the equipartition theorem in statistical mechanics, which states that each degree

of freedom carries with it an average energy of kBT/2.

As a simple example, let us consider entropy fluctuations due to r chemical reactions. As was shown in

Equation (14.1.9), we have

ΔiSchem =
r∑
i,j

1

2T

(
𝜕Ai

𝜕𝜉j

)
eq

𝛿𝜉i 𝛿𝜉j = −1

2

r∑
i,j

gij 𝛿𝜉i 𝛿𝜉j (14.2.23)

in which we have made the identification gij = −(1∕T)(𝜕Ai∕𝜕𝜉j)eq. From the general result (14.2.22) we see

that the average value of the entropy fluctuations due to r chemical reactions is

⟨ΔiSchem⟩ = −r
kB

2
(14.2.24)

This shows how fluctuations in 𝜉i decrease entropy. In Chapter 16 we shall use Equations (14.2.16) and

(14.2.20) to derive the Onsager reciprocal relations.

14.3 Small Systems

Fluctuations discussed in the above two sections are clearly important when considering small systems.

However, thermodynamics of small systems has features not considered in previous chapters. We shall

discuss them in this section.

Pioneering work in formulating the thermodynamics of small systems was done by Terrell Hill [4] in the

early 1960s. It could be applied to many small systems that we encounter in nature: small particles in the

atmosphere called aerosols (which include small droplets of water containing dissolved compounds), crystal

nuclei in supersaturated solutions, colloids, small particles in interstellar space and ‘nanosystems’. Important

as it was, thermodynamics of small systems has taken on a new significance due to the development of

nanoscience, the production and study of particles in the size range 1–100 nm. Thermodynamics applied to

particles in the ‘nano range’ is called nanothermodynamics, but, because we do not limit our discussion to

this size range, we call this topic thermodynamics of small systems.

The laws of thermodynamics are universal, valid for all systems. However, depending on the system being

considered, various approximations are made. Care is necessary in applying thermodynamics to systems

that are very small. First, it must be ensured that thermodynamic variables that were used for large systems

have a clear physical meaning when used to describe small systems. Due to random molecular motion,

thermodynamic variables will fluctuate about their average values. We need a clear understanding of the

magnitude of these fluctuations relative to the average values and if and why the system is stable when

subjected to them. Second, quantities, such as interfacial energy, that could be neglected for large systems

must be taken into consideration. In Chapter 5, we have already seen how interfacial energy could be included

in the thermodynamic description of a system. We shall extend this formalism to understand why some

properties, such as solubility and melting point, change with size. In general, properties of very fine powders
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4 r2 

 

Figure 14.3 Chemical potential of a small spherical particle or liquid drop depends of the radius r, where 𝛾 is
the interfacial energy or surface tension (J m−2). The energy of the interface equals 4𝜋r2𝛾.

could be significantly different from those of a bulk substance – hence the current interest in nanotechnology.

We shall begin by discussing the thermodynamic formalism that includes interfacial energy.

14.3.1 Chemical Potential of Small Systems

Chemical potential is an important variable that enables us to understand how the properties of a system may

change as its size decreases to microscopic dimensions. In this section, we will derive an expression for the

chemical potential as a function of size.

In Chapter 5 (Section 5.6) we noted that molecules at an interface have different energy and entropy

compared to molecules in the bulk. This interfacial energy or surface tension, 𝛾 , is generally of the order

of 10−1 − 10−2 J m−2. Whether interfacial energy can be neglected or not depends on the size of the system,

more precisely on the area-to-volume ratio. If Um is the molar energy, for a sphere of radius r, the ratio of

interfacial energy to bulk energy is 4𝜋r2𝛾/[(4𝜋r3/3Vm)Um] = 3𝛾Vm/rUm, in which Vm is the molar volume.

If this quantity is very small, the interfacial energy can be neglected and as r → ∞ it becomes zero. If this

ratio is not small, then we include the interfacial energy term in the expression for dU. For a pure substance:

dU = T dS − p dV + 𝜇 dN + 𝛾 dΣ (14.3.1)

in which Σ is the interfacial area. The last two terms can be combined to express the chemical potential as a

function of the size of the system. For simplicity, we shall assume that the system is a sphere of radius r. Then

the molar amount N = (4𝜋r3/3Vm). The interfacial term dΣ = d(4𝜋r2) = 8𝜋r dr can be written in terms of dN
by noting that dN = 4𝜋r2 dr/Vm = (r/2Vm)dΣ. Thus we can substitute (2Vm/r)dN for dΣ in Equation (14.3.1)

to obtain

dU = T dS − p dV +
(
𝜇 +

2𝛾Vm

r

)
dN (14.3.2)

Using this equation we see that, for a pure substance, we can assign an effective chemical potential that

depends on the system’s radius (Figure 14.3). We shall write this potential as

𝜇 = 𝜇∞ +
2𝛾Vm

r
(14.3.3)
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in which 𝜇∞ is the chemical potential as r →∞; it is the ‘bulk chemical potential’ that has been used in the

previous chapters when interfacial energy could be ignored. The Gibbs energy of the system is

G = 𝜇∞N + 𝛾Σ (14.3.4)

and simple calculation shows that (𝜕G/𝜕N)p,T = 𝜇 = 𝜇∞ + (2𝛾Vm/r).

The above equation can also be understood in terms of the excess pressure in a small system. In Chapter 5,

we have seen that surface tension (or interfacial tension) increases the pressure in a small spherical system by

an amount Δp = 2𝛾/r (see Equation (5.6.6)). Expression (14.3.3) is the chemical potential under this higher

pressure. This can be seen by noting that

𝜇(p + Δp, T) = 𝜇(p, T) +
p+Δp

∫
p

(
𝜕𝜇

𝜕p

)
T

dp = 𝜇(p, T) +
p+Δp

∫
p

Vm dp, Δp = 2𝛾

r

where we have used the relation (𝜕Gm/𝜕p)T = (𝜕𝜇/𝜕p)T = Vm. For solids and liquids the molar volume Vm

does not change much with changes in pressure and hence we could write the above expression as

𝜇(p + Δp, T) = 𝜇(p, T) + VmΔp = 𝜇(p, T) +
2𝛾Vm

r
(14.3.5)

which is Equation (14.3.3). Therefore the increase in chemical potential of a small system by a term (2𝛾Vm/r)

is a consequence of an increase in the pressure due to surface tension.

14.4 Size-Dependent Properties

Using the chemical potential (14.3.3), several size-dependent properties can be derived. We shall consider

solubility and melting point. As noted above, small systems have a higher chemical potential due to the fact

that they are under a higher pressure. This causes a change in their solubility and melting point.

14.4.1 Solubility

We consider a solid solute Y in equilibrium with its solution. The chemical potentials of Y in the solid and

solution phases are equal. At equilibrium, the concentration of the solution is the saturation concentration

called the solubility; we shall denote it by [Y]eq. We shall denote the solid and solution phases with the

subscripts ‘s’ and ‘l’ respectively.

As shown in Equation (8.3.17), in the molarity scale, the equilibrium chemical potential of the solute in

the solution phase is 𝜇Y,l = 𝜇c0
Y
+ RT ln(𝛾Y[Y]eq∕[Y]0), in which 𝛾Y is the activity coefficient of Y (not to

be mistaken for the interfacial energy 𝛾) and [Y]0 is the standard concentration equal to 1.0 M. For solute

particles of radius r in equilibrium with the solution, 𝜇Y,l = 𝜇Y,s, which gives

𝜇Y,l = 𝜇c0
Y
+ RT ln

(
𝛾Y[Y]eq

[Y]0

)
= 𝜇Y,s = 𝜇Y,s∞ +

2𝛾Vm

r
(14.4.1)

in which we have used Equation (14.3.3) for the chemical potential of the solid phase. The quantity 𝜇c0
Y
−

𝜇Y,s∞ = ΔGsol is the molar Gibbs energy of solution (defined for large particles r→∞). Hence the above

equation can be written as

RT ln
(
𝛾Y[Y]eq

[Y]0

)
= −ΔGsol +

2𝛾Vm

r

i.e.

(
𝛾Y[Y]eq

[Y]0

)
= exp

(−ΔGsol

RT

)
exp
(

2𝛾Vm

rRT

)
(14.4.2)
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If we denote the equilibrium concentration for solute particles of radius r by [Y(r)]eq and assume that the

activity coefficient 𝛾Y does not vary much in the concentration range of interest, Equation (14.4.2) can be

simplified to the following relation :

[Y(r)]eq = [Y(∞)]eq exp
(

2𝛾Vm

rRT

)
(14.4.3a)

or, more generally,

aY(r)eq = aY(∞)eq exp
(

2𝛾Vm

rRT

)
(14.4.3b)

in which aY is the activity of Y. These equations give solubility [Y(r)]eq as a function of the particle size.

They tells us that the saturation concentration will be higher for smaller particles; that is smaller particles

have higher solubility. It is generally called the Gibbs–Thompson equation but some authors also call it the

Ostwald–Freundlich equation. The solubility of AgCl, AgBr and AgI particles whose size is in the range

2–20 nm can be satisfactorily explained using the Gibbs–Thompson equation (Figure 14.4).

The higher solubility of smaller particles has an interesting consequence. As shown in Figure 14.5, consider

a supersaturated solution containing solute particles of different size or radii. Supersaturation means that the

chemical potential of the solute in the solution phase is higher, 𝜇l > 𝜇s. Therefore the solute will begin to

precipitate out and deposit on the solid particles. As the chemical potential in the solution phase decreases

due to solute deposition on the solid phase, there will come a point at which the solution is in equilibrium

with the smaller particles, 𝜇l ≃ 𝜇s(rsmall), but its chemical potential is still higher than that of the larger

particles, 𝜇l > 𝜇s(rlarge). Hence solute from the solution begins to deposit on the larger particles, causing a

reduction of concentration in the vicinity of the larger particles. A concentration gradient is thus established,

with higher concentration near smaller particles and lower concentration near larger particles. The solute

then begins to flow from the vicinity of the smaller particles towards the larger particles. A consequent drop

in concentration in the vicinity of the smaller particles causes them to dissolve while the larger particles

continue to grow. As the smaller particles dissolve, their solubility increases, causing them to dissolve even

faster and they ultimately disappear. Such growth of larger particles at the expense of smaller ones is called

Ostwald ripening. It is a very slow process but it can be observed.

14.4.2 Melting Point

The higher chemical potential of small particles also has the effect of reducing their melting point. Let us

consider a solid particle of radius r in equilibrium with the melt. Let Tm be the melting point for the bulk

substance; it is the temperature at which large particles are in equilibrium with the melt. For small particles of

radius r, due to their higher chemical potential, let us assume that the melting point is Tm + ΔT. The chemical

potential of a pure substance, 𝜇(p, T), is a function of p and T. Using Equation (14.3.3) for the chemical

potential of the solid particle, we see that the solid–melt equilibrium for large particles at Tm implies

𝜇s∞(p, Tm) = 𝜇l(p, Tm) (14.4.4)

and the same for small particles at Tm+ ΔT implies

𝜇s(p, Tm + ΔT) = 𝜇s∞(p, Tm + ΔT) +
2𝛾Vm

r
= 𝜇l(p, Tm + ΔT) (14.4.5)
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Figure 14.4 (a) Experimental data relating the solubility ratio S = [Y(r)]eq/[Y(∞)]eq to the particle size r for
AgCl at 298 K. (b) Plot of ln(S) versus 1/r is a straight line in agreement with Equation (14.4.3a) (Data source:
Sugimoto,T., Shiba, F., J. Phys. Chem. B, 103 (1999), 3607).
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Figure 14.5 Ostwald ripening. Small particles have a higher chemical potential than larger particles. As a con-
sequence, in a saturated solution, small particles dissolve while larger particles grow. The difference in chemical
potential results in the effective transport of the solute.
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In this equation we can use the relation

𝜇(p, Tm + ΔT) = 𝜇(p, Tm) +

Tm+ΔT

∫
Tm

(
𝜕𝜇

𝜕T

)
p

dT

and write it as

𝜇s∞(p, Tm) +

Tm+ΔT

∫
Tm

(
𝜕𝜇s∞
𝜕T

)
p

dT +
2𝛾Vm

r
= 𝜇l(p, Tm) +

Tm+ΔT

∫
Tm

(
𝜕𝜇l

𝜕T

)
p

dT

Using Equation (14.4.4) and noting that (𝜕𝜇/𝜕T)p = −Sm, the molar entropy, we can simplify this equation to

Tm+ΔT

∫
Tm

(Sml − Sms)dT +
2𝛾Vm

r
= 0

The difference in molar entropies between the liquid and the solid state (Sml − Sms) ≃ ΔHfus∕T . The enthalpy

of fusion ΔHfus does not change much with T and may be assumed to be constant. With this approximation,

the integral can be evaluated and we obtain

ΔHfus ln
(

1 + ΔT
Tm

)
+

2𝛾Vm

r
= 0

Since ΔT/Tm ≪ 1, we can approximate ln(1 + ΔT∕Tm) ≃ ΔT∕Tm. If we write the melting point of particles

of radius as Tm(r) = Tm(∞) + ΔT, in which we have used Tm(∞) in place of Tm, the above equation can be

rearranged to

Tm(r) = Tm(∞)

(
1 −

2𝛾Vm

ΔHfusr

)
(14.4.6)

Sometimes this equation is written in the parametric form:

Tm(r) = Tm(∞)
(

1 − 𝜌

r

)
(14.4.7)

in which 𝜌 is expressed in nm. For many inorganic materials, 𝜌 is in the range 0.2–1.7 nm. Also for metals,

the solid–melt interfacial energy can be estimated using the formula [5]

𝛾 =
0.59RTm

aNA

in which Tm is the melting point and a is the area occupied by a single atom on the surface (approximately

equal to the square of the diameter).

14.5 Nucleation

The transition from a vapor to a liquid phase occurs when the corresponding affinity is positive, i.e. liquid

will condense from a vapor when the chemical potential of the liquid is lower than that of the vapor and

similarly for the transition from a liquid to a solid phase. The condensation of vapor into liquid must take

place through clustering of molecules that eventually grow into liquid drops. However, as we have seen, the
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chemical potential of a small system increases with decreasing radius. Hence, the affinity is higher for larger

clusters and, indeed, can be negative for very small clusters. We can see this clearly by writing the affinity

for the transformation from a vapor to a liquid cluster of radius r, which we write as Cr:

Transformation: l → Cr

Affinity: A = 𝜇g − (𝜇l∞ + 2𝛾Vm∕r) = Δ𝜇 − 2𝛾Vm∕r
(14.5.1)

in which the subscripts g and l stand for vapor and liquid respectively. Activities for nucleation of a solute

from a solution or a solid from a melt will also have the same form as Equation (14.5.1). In each case, Δ𝜇 is

the difference between the chemical potentials of the two phases. For crystallization from solution, Δ𝜇 is the

difference between the solution and the solid solute; in the case of solidification of a melt, it is the difference

between the chemical potentials of the melt and the solid. To reflect the generality of expression (14.5.1), we

can consider a phase transition from the initial phase 𝛼 that nucleates to phase 𝛽 and write the affinity for a

phase transformation as

A = 𝜇𝛼 − (𝜇𝛽∞ + 2𝛾Vm∕r) = Δ𝜇 − 2𝛾Vm∕r (14.5.2)

We assume that initially Δ𝜇 ≡ 𝜇𝛼 − 𝜇𝛽∞ > 0, that is phase 𝛼 is a supersaturated vapor or a supersaturated

solution or a supercooled melt.

Equation (14.5.2) implies that the affinity A is positive only when r is larger than a critical value, r∗, i.e.

A > 0 only when r > r∗ (Figure 14.6). It is easy to see that

r∗ =
2𝛾Vm

𝜇𝛼 − 𝜇𝛽∞
=

2𝛾Vm

Δ𝜇
(14.5.3)

where r∗ is called the critical radius. Due to random molecular motion, the molecules in 𝛼 phase form

clusters of 𝛽 phase of various sizes. However, most clusters of radius r < r∗ will evaporate or dissolve and

return to the 𝛼 phase. Only when a cluster’s radius reaches a value r ≥ r∗ would a 𝛽 phase have ‘nucleated’;

since the affinity (14.5.2) is positive for such nuclei, they will grow. It is through the growth of nuclei into

liquid drops or solid particles that phase 𝛼 converts to phase 𝛽. The formation of nuclei of radius r ≥ r∗ takes

place through random energy fluctuations. It is the process of nucleation, the gateway for the transition from

phase 𝛼 to phase 𝛽. As is clear from Equation (14.5.3), the critical radius r∗ decreases with increasing Δ𝜇;

that is the critical radius decreases as the supersaturation increases.

The above understanding of affinity for the formation of clusters and the corresponding changes in the

Gibbs energy enables one to formulate a theory of nucleation rate. The theory we present here is the classical
theory of nucleation. In small systems, which could be subsystems of larger systems, random fluctuations

in Gibbs energy occur. Since Gibbs energy reaches its minimum value at equilibrium, fluctuations in systems

r

G

r*

A

r r*

A < 0 A > 0

μ

Figure 14.6 Affinity and the corresponding Gibbs energy change for nucleation. The critical nucleation radius
is r∗. Clusters with radius r < r∗ will shrink while clusters with radius r > r∗ will grow.
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in equilibrium can only increase its Gibbs energy. The clustering of molecules in the 𝛼 phase to form small

clusters of 𝛽 phase takes place through fluctuations because the Gibbs energy change for such transformation

is positive. If the Gibbs energy of the random fluctuations is large enough, a critical nucleus of radius r∗ will

form and begin to grow, thus initiating a phase transition. We therefore need to know the laws that govern

fluctuations to understand the dynamics of nucleation. To this end, we can use the elegant thermodynamics

theory of fluctuations discussed in Section 14.2. Following this theory, we can combine Equations (14.2.2),

for the probability of fluctuations expressed in terms of the change in entropy ΔS, and Equation (14.1.2),

for the change in Gibbs energy associated with a change in entropy, to obtain the probability P(ΔG) of a

fluctuation in Gibbs energy of magnitude ΔG:

P(ΔG) = Z−1e−ΔG∕kBT (14.5.4)

Here Z−1 is the normalization factor such that ∫ ∞
0

P(ΔG)d(ΔG) = 1 and kB is the Boltzmann constant. Let

ΔG(r∗) be the increase in Gibbs energy needed to form the critical nucleus. We can obtain the probability

for the formation of a critical nucleus by substituting ΔG(r∗) into Equation (14.5.4). The rate of nucleation

is clearly proportional to P[ΔG(r∗)]. Hence the rate of nucleation, J (the number of nuclei formed per unit

volume per unit time), can be written as

J = J0 exp[−ΔG(r∗)∕kBT] (14.5.5)

in which J0 is the pre-exponential factor; it depends on the particular process being considered. The Gibbs

energy of a nucleus of radius r∗ of the 𝛽 phase, containing N moles of substance, is G𝛽(r∗) = 𝜇𝛽∞N +
𝛾4𝜋(r∗)2. The corresponding Gibbs energy in the 𝛼 phase is G𝛼 = 𝜇𝛼N. The change in Gibbs energy for this

transformation from the 𝛼 phase to the 𝛽 phase, ΔG(r∗) = (G𝛽(r∗) − G𝛼). This can be written as

ΔG(r∗) = −4𝜋(r∗)3

3Vm

Δ𝜇 + 𝛾4𝜋(r∗)2 (14.5.6)

Substitution of the expression (14.5.3) for the critical radius r∗ into Equation (14.5.6) gives

ΔG(r∗) = 16𝜋

3

𝛾3V2
m

Δ𝜇2
(14.5.7)

Thus, the nucleation rate (14.5.5) can be written as

J = J0 exp

[
− 16𝜋

3kBT

𝛾3V2
m

Δ𝜇2

]
(14.5.8)

This expression shows how the nucleation rate depends on the interfacial energy 𝛾 and the supersatu-

ration expressed through Δ𝜇. Experimentally measured nucleation parameters for silver salts are shown

in Table 14.1. The pre-exponential factor J0 depends on the details of the kinetics of nucleation and it is

Table 14.1 Experimentally measured interfacial energies of AgCl, AgBr and AgI particles in water and their
molar and molecular volumes Vm.

Compound 𝛾 at 10 ◦C (mJ m−2) 𝛾 at 40 ◦C (mJ m−2) Vm (mL mol−1) Molecular volume (mL)

AgCl 104 100 25.9 4.27 × 10−23

AgBr 112 102 29.0 4.81 × 10−23

AgI 128 112 41.4 6.88 × 10−23

Source: Sugimoto, T., Shiba, F., J. Phys. Chem. B, 103 (1999), 3607.



Entropy Production, Fluctuations and Small Systems 339

generally difficult to estimate its value. Reported values of J0 are in the range 1025–1030 for salts that are

sparingly soluble. Equilibrium between the 𝛼 phase and the 𝛽 phase implies 𝜇𝛽∞ = 𝜇0
𝛼
+ RT ln a𝛼,eq. Since

the chemical potential of the 𝛼 phase, 𝜇𝛼 = 𝜇0
𝛼
+ RT ln a𝛼 , it follows that

Δ𝜇 = 𝜇𝛼 − 𝜇𝛽∞ = RT ln(a𝛼∕aeq) (14.5.9)

Here the equilibrium activity aeq is the activity at saturation in the case of vapors and solution and, for

solidification of a melt, it is the activity of the liquid phase (melt) at the melting point. If the vapor 𝛼 is

considered an ideal gas, then Δ𝜇 = RT ln(p𝛼∕psat), in which psat is the saturated vapor pressure. Similarly,

for an ideal solution of solute Y, Δ𝜇 = RT ln([Y]∕[Y]S), in which [Y]S is the saturation concentration. For

solidification from a melt, the dependence of the chemical potential on T must be considered. It can be shown

that (Exercise 14.9) Δ𝜇 = ΔHfus(1 − T∕Tm).

In the above theory, the nucleation rate (number of nuclei formed per unit volume per unit time) is inde-

pendent of position; it is the same everywhere in the system. It is therefore called homogeneous nucleation.

According to this theory, in a supersaturated vapor or solution, we should observe nucleation in all parts of the

system with some uniformity – albeit with expected statistical fluctuations. However, most of the time we do

not find this to be the case. Instead, we find that nucleation occurs on small impurity particles or on the walls

of the container, indicating that nucleation occurs at higher rates at particular sites. Such nucleation is called

heterogeneous nucleation. It happens because, on impurity particles or the walls, the interfacial energy 𝛾 is

lower. The expression (14.5.8) is fundamentally correct but the value of 𝛾 (or more generally the nucleation

Gibbs energy G∗) depends on the site where the nucleation takes place. At these sites (called nucleation
sites) the rate of nucleation is higher. This is the reason why when crystals are grown from a solution,

nucleation does not occur homogeneously throughout the system, but occurs heterogeneously at certain sites.
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Example

Example 14.1 Consider an ideal gas at T = 298 K and p = 1.0 atm. Calculate the molar amount N1 of gas

in a spherical volume of radius 1.0 μm (the average value) and the magnitude of fluctuations in concentration

(N1/V1).

Solution N1 = pV/RT = 101 kPa × (4𝜋/3)(1.0 × 10−6)3 m3/ (8.314 J K−1 mol−1 × 298 K) =
1.7 × 10−16 mol.

The average concentrations (N1/V1) avg = 40.76 mol m−3.

The magnitude of the fluctuations 𝛿Ñ =
√

N1NA = 1.02 × 104.

Fluctuation in concentrations =
√

N1NA∕NAV1 mol m−3 = 4.02 × 10−3 mol m−3.

The magnitude of (𝛿Ñ∕V1)∕(N1NA∕V)1 = 1∕
√

N1NA ≃ 10 × 10−4.
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Exercises

14.1 By considering the change 𝛿2F, obtain the condition for stability with respect to thermal fluctuations

when Nk and V are constant.

14.2 Obtain the expression

ΔiS = −
CV (𝛿T)2

2T2
− 1

T𝜅T

(𝛿V)2

2V
−
∑

i

R(𝛿Ni)
2

2Ni

for an ideal system, where 𝜇k = 𝜇k0(T) + RT ln xk.

14.3 (a) Evaluate the normalization constant Z for Equation (14.2.6).

(b) Obtain the probability P(𝛿T) for the fluctuations of the one variable 𝛿T.

(c) Obtain average values for the square of the fluctuations by evaluating ∫ ∞
−∞(𝛿T)2P(𝛿T) d(𝛿T).

14.4 Obtain Equation (14.2.17) from Equation (14.2.11).

14.5 Consider an ideal gas at a temperature T and p = 1 atm. Assume this ideal gas has two components

A and B in equilibrium with respect to interconversion, A ⇌ B. In a small volume 𝛿V, calculate the

number of molecules that should convert from A to B to change the entropy by kB in the considered

volume. Equation (14.2.24) then gives the expected fluctuations.

14.6 Using the expression G = 𝜇∞N + 𝛾Σ show that (𝜕G/𝜕N)p,T = 𝜇 = 𝜇∞ + (2𝛾Vm/r).

14.7 Using the parameters in Table 14.1, determine the size of AgBr particles whose saturation concentration

[Y(r)]eq = 1.3 [Y(∞)]. At T = 40 ◦C, estimate the number of AgBr molecules in these particles.

14.8 N moles of the phase 𝛼 form a 𝛽 phase cluster of radius r∗. For this process, assume that G𝛼 = 𝜇𝛼N
and G𝛽 = 𝜇𝛽∞N + 𝛾 4𝜋(r∗)2 and show that

G𝛽 − G𝛼 = ΔG(r∗) = 16𝜋

3

𝛾3V2
m

Δ𝜇2

in which Δ𝜇 = 𝜇𝛼 − 𝜇𝛽∞.

14.9 For solidification from a melt, from the liquid phase 𝛼 to the solid phase 𝛽, the chemical potential as a

function of temperature must be analyzed. Assume T = Tm − ΔT in which (ΔT/T) ≪ 1 and show that

Δ𝜇 = 𝜇𝛼 − 𝜇𝛽 ≈ ΔHfus(1 − T∕Tm).
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15
Nonequilibrium Thermodynamics:

The Foundations

15.1 Local Equilibrium

As emphasized earlier, we live in a world that is not in thermodynamic equilibrium. The 2.8 K cosmic

microwave background thermal radiation that fills the universe is not in thermal equilibrium with the matter in

the galaxies. On a smaller scale, the Earth, its atmosphere, biosphere and the oceans are all in a nonequilibrium

state due to the constant influx of energy from the Sun. In the laboratory, most of the time we encounter

phenomena exhibited by systems not in thermodynamic equilibrium, while equilibrium systems are the

exception.

Yet, thermodynamics that describes equilibrium states is of great importance and extremely useful. This

is because almost all systems are locally in thermodynamic equilibrium. For almost every macroscopic

system we can meaningfully assign a temperature and other thermodynamic variables to every ‘elemental

volume’ ΔV. In most situations we may assume that equilibrium thermodynamic relations are valid for the
thermodynamic variables assigned to an elemental volume. This is the concept of local equilibrium. In the

following paragraphs we shall make this concept of local equilibrium precise. When this is done, we have a

theory in which all intensive thermodynamic variables, T, p and 𝜇, become functions of position x and time t:

T = T(x, t), p = p(x, t), 𝜇 = 𝜇(x, t)

The extensive variables are replaced by densities s, u and nk:

s(x, t) = entropy per unit volume

u(x, t) = energy per unit volume

nk(x, t) = moles per unit volume of reactant k
(15.1.1)

(In some formulations the extensive quantities are replaced by entropy, energy and volume per unit mass.)

The Gibbs relation dU = T dS − p dV +
∑

k𝜇kdNk is assumed to be valid for small volume elements. With

U = uV and S = sV it follows that relations such as(
𝜕u
𝜕s

)
nk

= T , Tds = du −
∑

k

𝜇k dnk (15.1.2)

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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for the densities are valid (Exercise 15.1) at every position x and time t. In these equations the volume does not

appear because s, u and nk are densities. The entire system is viewed as a collection of systems characterized

by different values of T, 𝜇, etc., which are interacting with each other.

Let us look at the physical conditions that make local equilibrium a valid assumption. First we must look at

the concept of temperature. From statistical mechanics it can be seen that when the system is in equilibrium,

the velocity distribution is Maxwellian, with a well-defined temperature. As discussed in Chapter 1, according

to the Maxwell distribution of velocities, the probability P(v) that a molecule has a velocity v is given by

P(v) d3v =
(
𝛽

𝜋

)3∕2

e−𝛽v2
d3v (15.1.3)

𝛽 = m
2kBT

(15.1.4)

In this expression, the temperature is identified through relation (15.1.4), in which m is the mass of the

molecule and kB is the Boltzmann constant. In practice, only under very extreme conditions do we find

significant deviations from the Maxwell distribution. Any initial distribution of velocities quickly becomes

Maxwellian due to molecular collisions. Computer simulations of molecular dynamics have revealed that

the Maxwell distribution is reached in less than 10 times the average time between collisions, which in a

gas at a pressure of 1 atm is about 10−8 s [1]. Consequently, physical processes that perturb the system

significantly from the Maxwell distribution have to be very rapid. A detailed statistical mechanical analysis

of the assumption of local equilibrium can be found in Reference [2].

Chemical reactions are of particular interest to us. In almost all reactions only a very small fraction of

molecular collisions produce a chemical reaction. Collisions between molecules that produce a chemical

reaction are called reactive collisions. For a gas at a pressure of 1 atm the collision frequency is about 1031

collisions per liter per second. If nearly every collision produced a chemical reaction, the resulting rate would

be of the order of 108 mol L−1 s−1! Reaction rates that approach such a large value are extremely rare.

Most of the reaction rates we encounter indicate that reactive collision rates are several orders of magnitude

smaller than overall collision rates. Between reactive collisions the system quickly relaxes to equilibrium,

redistributing the change in energy due to the chemical reaction. In other words, any perturbation of the

Maxwell distribution due to a chemical reaction quickly relaxes back to the Maxwellian with a slightly

different local temperature. Hence, on the timescale of chemical reactions, temperature is locally well

defined. (Small corrections to the rate laws due to small deviations from the Maxwell distribution in highly

exothermic reactions can be theoretically obtained [3–6]. These results have been found to agree well with

the results of molecular dynamics simulations done on modern computers [7].)

Next, let us look at the sense in which thermodynamic variables, such as entropy and energy, may be

considered functions of position. As we have seen in Chapters 12 and 14, every thermodynamic quantity

undergoes fluctuations. For a small elemental volume ΔV we can meaningfully associate a value for a

thermodynamic quantity Y only when the size of the fluctuations, e.g. the root mean square (rms) value, 𝛿Y
is very small compared to Y. Clearly, if ΔV is too small, this condition will not be satisfied. From Equation

(14.2.6) it follows that if Ñ is the number of particles in the considered volume, then the rms value of the

fluctuations 𝛿Ñrms = Ñ1∕2. As an example, let us consider an ideal gas for which N = Ñ∕NA = (p∕RT)ΔV .
For a given ΔV it is easy to compute the relative value of the fluctuation 𝛿Ñrms∕Ñ = 1∕Ñ1∕2. To understand

how smallΔV can be, we consider a gas at a pressure p= 1 atm and T= 298 K, and compute the fluctuations in

the number of particlesÑ in a volumeΔV = (1 μm)3 = 10−15 L. We find that 𝛿Ñrms∕Ñ ≈ 4 × 10−7. For liquids

and solids the same value of 𝛿Ñrms∕Ñ will correspond to an even smaller volume. Hence it is meaningful to

assign a molar density to a volume with a characteristic size of a micrometer. The same is generally true for

other thermodynamic variables. If we are to assign a molar density to a volume, ΔV, then the molar density

in this volume should be nearly uniform. This means that the variation of molar density with position on
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the scale of a micrometer should be very nearly zero, a condition satisfied by most macroscopic systems.

Similarly the fluctuations in T at the scale of μm is very small. This shows that a theory based on local

equilibrium is applicable to a wide range of macroscopic systems.

15.1.1 Extended Thermodynamics

In the above approach, an implicit assumption is that the thermodynamic quantities do not depend on the

gradients in the system; i.e. it is postulated that entropy s is a function of the temperature T and the molar

density nk, but not their gradients. However, flows represent a level of organization. This implies that the

local entropy in a nonequilibrium system may be expected to be smaller than the equilibrium entropy. In the

recently developed formalism of extended thermodynamics, gradients are included in the basic formalism

and there appears a small correction to the local entropy due to the flows. We shall not be discussing this more

advanced formalism. For a detailed exposition of extended thermodynamics, we refer the reader to some

recent books [8–11]. Extended thermodynamics finds application in systems where there are large gradients,

such as in shock waves. For almost all systems that we encounter, thermodynamics based on local equilibrium

has excellent validity.

15.2 Local Entropy Production

As we noted in the previous section, the Second Law of thermodynamics must be a local law. If we divide a

system into r parts, then not only is

diS = diS
1 + diS

2 +⋯ + diS
r ≥ 0 (15.2.1)

in which diS
k is the entropy production in the kth part, but also

diS
k ≥ 0 (15.2.2)

for every k. Clearly, this statement that the entropy production due to irreversible processes is positive in

every part is stronger than the classical statement of the Second Law that the entropy of an isolated system

can only increase or remain unchanged. The modern formulation of the Second Law, as stated by (15.2.2),

does not require the system to be isolated. It is valid for all systems, regardless of the boundary conditions.
There is a general point to note about the local nature of the First Law and the Second Law. To be compatible

with the principle of relativity, that is be valid regardless of the observer’s state of motion, these laws must be

local. Nonlocal laws of energy conservation or of entropy production are inadmissible because the notion of

simultaneity is relative. Consider two parts of a system spatially separated by a nonzero distance. If changes

in energy 𝛿u1 and 𝛿u2 occur in these two parts simultaneously in one frame of reference so that 𝛿u1 + 𝛿u2 = 0,

the energy is conserved. However, in another frame of reference that is in motion with respect to the first, the

two changes in energy will not occur simultaneously. One change, say 𝛿u1, will occur before the other. Thus,

during the time interval between one change of u and the other, the law of conservation of energy will be

violated. Similarly, the entropy changes in a system, 𝛿S1 and 𝛿S2 at two spatially separated parts of a system

must be independently positive. It is inadmissible to have the simultaneous decrease of one and increase of

the other so that their sum is positive.

The local increase of entropy in continuous systems can be defined by using the entropy density s(x, t). As

was the case for the total entropy, ds = dis + des, with dis ≥ 0. We define local entropy production as

𝜎(x, t) ≡ dis

dt
≥ 0 (15.2.3)

diS

dt
= ∫V

𝜎(x, t)dV (15.2.4)
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Nonequilibrium thermodynamics is founded on the explicit expression for 𝜎 in terms of the irreversible

processes that we can identify and study experimentally. Before we begin deriving this expression, however,

we shall write the explicit local forms of balance equations for energy and concentrations.

15.3 Balance Equation for Concentration

The balance equation for the molar density, nk(x), can easily be obtained using the general balance equation

described in Box 15.1. For notational simplicity we shall not always explicitly show nk as a function of x. The

changes in nk are due to the transport of particles, through processes such as diffusion and convection, denk,

and due to chemical reactions, dink; the total change dnk = denk + dink. Denoting by vk (x, t) the velocity of

the kth component at location x at time t, the balance equation can be written as

𝜕nk

𝜕t
=
𝜕enk

𝜕t
+
𝜕ink

𝜕t
= −∇ ∙ (nkvk) + P[nk] (15.3.1)

Box 15.1 Differential form of the balance equation

d

P[Y]

JY

Y

V

Consider a quantity Y whose density is denoted by y. The change in the amount of Y in a volume V is

the sum of the net flow of Y into the volume V and the production of Y within that volume. If JY is

the current density (flow through the unit area that is perpendicular to JY per unit time), then the change
in Y due to the flow = ∫Ω JY ∙ d𝝎 in which d𝝎 is the vector representing an area element, as illustrated.

The magnitude of d𝝎 equals the area of the element; its direction is perpendicular to the area pointing
outwards. If P[Y] is the amount of Y produced per unit volume per unit time, we have the change in Y due
to production= ∫V P[Y]dV . Then the balance equation for the change in Y in the considered volume can be

written as

∫ V

(
𝜕y

𝜕t

)
dV = ∫V

P[Y]dV − ∫Ω JY ∙ d𝝎

The negative sign in the second term is because d𝝎 points outwards.

According to the Gauss theorem, for any vector field J:

∫Ω J ∙ d𝝎 = ∫V
(∇ ∙ J)dV

Applying this theorem to the surface integral of JY in the balance equation, we see that

∫V

(
𝜕y

𝜕t

)
dV = ∫V

P[Y] dV − ∫V
(∇ ∙ JY ) dV



Nonequilibrium Thermodynamics: The Foundations 347

Since this relation should be valid for any volume, we can equate the integrands. This gives us the

differential form of the balance equation for Y:(
𝜕y

𝜕t

)
+ (∇ ∙ JY) = P[Y]

in which P[nk] is the production of the component k per unit volume, per unit time, due to chemical reactions,

which could be positive or negative. As we have seen in Chapter 9, if 𝜈k is the stoichiometric coefficient

of the reactant k in a particular reaction (𝜈k is negative for reactants and positive products), the moles of k
produced per unit time per unit volume is given by 𝜈k(1∕V)(d𝜉∕dt) in which 𝜉 is the extent of reaction. If

there are several reactions, we can identify them by a subscript j. The velocity of the jth reaction is

vj =
1

V

d𝜉j

dt
(15.3.2)

The velocities of reaction vj are specified by empirical laws, as discussed in Chapter 9. The production of

component k can now be expressed in terms of the reaction velocities vj and the corresponding stoichiometric

coefficients 𝜈kj:

P[nk] ≡∑
j

𝜈kjvj (15.3.3)

The balance equation for nk can now be written as

𝜕nk

𝜕t
=
𝜕enk

𝜕t
+
𝜕ink

𝜕t
= −∇ ∙ nkvk +

∑
j

𝜈kjvj (15.3.4)

Convective flow is the motion of the center of mass whereas the flow with respect to the center of mass accounts

for transport, such as diffusion, that is apart from convection. The center of mass velocity v is given by

v ≡
∑

k

Mknkvk∑
k

Mknk

(15.3.5)

in which Mk is the molar mass of component k. The nonconvective flow or diffusion flow Jk of component

k is then defined as1

Jk = nk(vk − v) (15.3.6)

The term (vk – v) is the velocity of component k relative to the center of mass, called the barycentric velocity.

The convectional and diffusional parts of the flow can be made explicit by using Equations (15.3.6) in (15.3.4):

𝜕nk

𝜕t
= −∇ ∙ Jk − ∇ ∙ (nkv) +

∑
j

𝜈kjvj (15.3.7)

1In the thermodynamics of superfluids it is more convenient to keep the motions of the components separate. Also, diffusion flow with

respect to mean volume velocity, defined by replacing Mk in Equation (15.3.5) with specific volume, is also used.
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By virtue of their definitions, the nonconvective flows Jk must obey the relation∑
k

MkJk = 0 (15.3.8)

i.e. these flows should not result in center of mass motion. Thus the Jk are not all independent, a point that

we shall return to in Chapter 16 while considering coupling between different flows. Also, based on the

definition of denk and dink, we can make the identification

𝜕enk

𝜕t
= −∇ ∙ Jk − ∇ ∙ (nkv) and

𝜕ink

𝜕t
=
∑

j

𝜈kjvj (15.3.9)

In the absence of convection, the flow is entirely Jk. We then have

𝜕nk

𝜕t
= −∇ ∙ Jk +

∑
j

𝜈kjvj (15.3.10)

In the presence of an external field, such as a static electric field, Jk may have a part that depends on the

field. When no field is present, Jk is entirely due to diffusion. In Chapters 18 and 19 we shall study such

diffusion–reaction systems under far-from-equilibrium conditions in some detail.

15.4 Energy Conservation in Open Systems

In Chapter 2 we saw the foundations of the concept of energy and its conservation. We have also noted how

this conservation law must be local. We can express the local form of the law in a differential form. The total

energy density e is a sum of the kinetic and the internal energies:

e = 1

2

∑
k

(Mknk)v2
k + u (15.4.1)

in which (Mknk) is the mass per unit volume and vk is the velocity of component k. Equation (15.4.1) may be

considered as the definition of the internal energy u, i.e. energy not associated with bulk motion. Using the

center of mass velocity v defined by Equation (15.3.5), Equation (15.4.1) can be written as

e = 𝜌

2
v2 + 1

2

∑
k

(Mknk)(vk − v)2 + u (15.4.2)

in which the density 𝜌 =
∑

kMknk. The term
1

2

∑
k(Mknk)(vk − v)2 is sometimes referred to as the kinetic

energy of diffusion [12]. Thus the total energy density is the sum of the kinetic energy associated with

convection and diffusion, and the internal energy. In some formalisms, the sum of the last two terms is defined

as the internal energy [12], in which case the internal energy includes the kinetic energy of diffusion.

When an external field is present, the energy of interaction
∑

k𝜏knk𝜓 , in which 𝜏k is the ‘coupling constant’

per mole and𝜓 is the potential, should also be considered. This energy can be introduced either as an additional

term in Equation (15.4.1) or assumed to be included in the definition of u [12]. Following our formalism in

Chapters 2 and 10, we shall assume that the term
∑

k𝜏knk𝜓 is included in the definition of the internal energy u.
Since energy is conserved, there is no source term in the balance equation. Therefore the formal differential

form for the conservation of energy is

𝜕e
𝜕t

+ ∇ ∙ Je = 0 (15.4.3)
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in which Je is the energy current density. In order to make this expression more explicit in terms of the

processes in the system, we begin by looking at the change in u. Being a function of T and nk, the change in

the energy density u(T, nk) is

du =
(
𝜕u
𝜕T

)
nk

dT +
∑

k

(
𝜕u
𝜕nk

)
T

dnk

= cV dT +
∑

k

uk dnk

(15.4.4)

in which uk ≡ (𝜕u∕𝜕nk)T is the partial molar energy of the kth component and cV is the constant-volume heat

capacity per unit volume. For the time variation of the internal energy density we can write

𝜕u
𝜕t

= cV
𝜕T
𝜕t

+
∑

k

uk
𝜕nk

dt
(15.4.5)

Using the nk balance equation (15.3.10), we can rewrite this equation as

𝜕u
𝜕t

= cV
𝜕T
𝜕t

+
∑

kj

uk𝜈kjvj −
∑

k

uk∇ ∙ Jk (15.4.6)

The quantity
∑

kuk𝜈kj =
∑

k(𝜕u∕𝜕nk)T𝜈kj is the change in the internal energy per unit volume, at constant

T, due to the jth chemical reaction. It is the heat of reaction of the jth reaction at constant volume and

temperature; we shall denote it by (rV,T)j. For exothermic reactions (rV,T)j is negative. Furthermore, to

relate Equation (15.4.6) to the conservation equation (15.4.3), we can make use of the identity uk∇ ∙ Jk =
∇ ∙ (ukJk) − Jk ∙ (∇uk) and rewrite Equation (15.4.6) as

𝜕u
𝜕t

= cV
𝜕T
𝜕t

+
∑

j

(rV ,T )jvj +
∑

k

Jk ∙ (∇uk) −
∑

k

∇ ∙ (ukJk) (15.4.7)

Using Equations (15.4.2) and (15.4.7) the energy conservation equation (15.4.3) can be more explicitly written

as

𝜕e
𝜕t

= cV
𝜕T
𝜕t

+
∑

j

(rV ,T )jvj +
∑

k

Jk ∙ (∇uk) −
∑

k

∇ ∙ (ukJk) + 𝜕

𝜕t
(KE)

= −∇ ∙ Je

(15.4.8)

in which (KE) is the kinetic energy associated with convection and diffusion:

(KE) ≡
(
𝜌

2
v2 + 1

2

∑
k

Mknk(vk − v)2

)
(15.4.9)

The energy flow Je can now be identified by defining a heat flow Jq:

−∇ ∙ Jq ≡ cV
𝜕T
𝜕t

+
∑

j

(rV ,T )jvj +
∑

k

Jk ∙ (∇uk) + 𝜕

𝜕t
(KE) (15.4.10)

Finally, substituting Equation (15.4.10) into Equation (15.4.8), we can identify the energy flow as

Je = Jq +
∑

k

ukJk (15.4.11)
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The definition of heat flow (15.4.10) leads to a physically appropriate interpretation of the processes that

change the internal energy and the temperature. Using Equation (15.4.7) in Equation (15.4.10) we obtain

−∇ ∙ Jq =
𝜕u
𝜕t

+ ∇ ∙

(∑
k

ukJk

)
+ 𝜕

𝜕t
(KE)

which can be rewritten as

𝜕u
𝜕t

+ ∇ ∙ Ju = − 𝜕
𝜕t

(KE) (15.4.12)

where

Ju = Jq +
∑

k

ukJk (15.4.13)

This is the balance equation for the internal energy. It shows that the internal energy as defined above may be

associated with a flow Ju =
(∑

kukJk + Jq

)
and a source term on the right-hand side of Equation (15.4.12),

which is the rate at which the kinetic energy is dissipated. Equation (15.4.12) shows that the changes in u are

a result of heat flow Jq and matter flow ukJk, and is due to dissipation of kinetic energy of the bulk motion.

The dissipation of kinetic energy can be related to viscous forces in the fluid. (Note that though Je and Ju are

the same, the total energy e is conserved but u is not because dissipation of kinetic energy generates heat and

acts as a source of u. Since Je is a barycentric current defined with respect to the center of mass, it does not

contain a term due to the motion of the entire system.)

The definition of heat flow (15.4.10) also gives an equation for the change in temperature

cV
𝜕T
𝜕t

+ ∇ ∙ Jq = Pheat (15.4.14)

Pheat = −
∑

j

(rV ,T )jvj −
∑

k

Jk ∙ (∇uk) − 𝜕

𝜕t
(KE) (15.4.15)

Equation (15.4.14) is an extension of the Fourier equation for heat transport with the addition of a heat source

Pheat. It is useful to note that the term ∇uk =
∑

i(𝜕uk∕𝜕ni)∇ni + (𝜕uk∕𝜕T)∇T . For ideal systems, in the

absence of temperature gradients, since the partial molar energy uk is independent of nk, this term will vanish;

it is the heat generated or absorbed due to molecular interaction when the molar density, nk, of a nonideal

system changes. In the following chapters, we shall not consider systems with convection. In addition, we will

only consider situations in which the kinetic energy of diffusion remains small, so the term 𝜕(KE)∕𝜕t ≃ 0.

Definition (15.4.10) of Jq is one of the many equivalent ways of defining the heat flow. Depending on the

particular physical conditions and the experimental quantities that are measured, different definitions of Jq are

used. A more extensive discussion of this aspect may be found in the literature [12]. The various definitions

of Jq, of course, give the same physical results.

When an external field is present, as noted earlier (Chapter 10), the energy of interaction
∑

k𝜏knk𝜓 , in

which 𝜏k is the ‘coupling constant’ per mole and 𝜓 is the potential, should also be included in u so that

u(T , nk) = u0(T , nk) +
∑

k

nk𝜏k𝜓 (15.4.16)

where u0(T, nk) is the energy density in the absence of the field. For an electric field 𝜏k = Fzk, where F is the

Faraday constant and zk is the ion number; 𝜓 is the electrical potential 𝜙. For a gravitational field 𝜏k = Mk,
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the molar mass; 𝜓 is the gravitational potential. For the time derivative of u, in place of Equation (15.4.5) we

now have

𝜕u
𝜕t

= cV
𝜕T
𝜕t

+
∑

k

(u0
k + 𝜏k𝜓)

𝜕nk

𝜕t
(15.4.17)

in which u0
k = (𝜕u0∕𝜕nk)T . Equation (15.4.17) differs from Equation (15.4.5) only in that the term uk is

replaced by
(
u0

k + 𝜏k𝜓
)
. This means that the corresponding expressions for Jq and Je can be obtained by

simply replacing uk with
(
u0

k + 𝜏k𝜓
)
. Thus we arrive at the conservation equation

𝜕e
𝜕t

+ ∇ ∙ J𝜓e = 0 (15.4.18)

in which

J𝜓e = Jq +
∑

k

(u0
k + 𝜏k𝜓)Jk (15.4.19)

In this case the heat current is defined by

− ∇ ∙ Jq ≡ cV
𝜕T
𝜕t

+
∑

j

(rV ,T )jvj +
∑

k

Jk ∙ (∇uk) +
∑

k

𝜏kJk ∙ ∇𝜓 + 𝜕

𝜕t
(KE) (15.4.20)

Comparing Equation (15.4.20) with Equation (15.4.10) we see the following. The term, ∇𝜓 is the negative

of the field strength. In the case of an electric field, the last term becomes – I ∙ E in which E = – ∇𝜓 is

the electric field and I =
∑

k𝜏kJk is the total current density; I ∙ E is the ohmic heat produced by an electric

current. For the balance equation of u, in place of Equation (15.4.12) we have

𝜕u
𝜕t

+ ∇ ∙ Ju = − 𝜕
𝜕t

(KE) + I ∙ E (15.4.21)

in which Ju =
∑

k u0
kJk + Jq. Similarly, Equation (15.4.14) is modified such that the source of heat will now

contain an additional term due to the ohmic heat:

cV
𝜕T
𝜕t

+ ∇ ∙ Jq = Pheat (15.4.22)

Pheat = −
∑

j

(rV ,T )jvj −
∑

k

Jk ∙ (∇uk) − 𝜕

𝜕t
(KE) + I ∙ E (15.4.23)

In this text we will only consider systems in mechanical equilibrium in which the kinetic energy of diffusion

is small.

15.5 The Entropy Balance Equation

The balance equation for entropy can be derived using the conservation of energy and the balance equation

for the concentrations. This gives us an explicit expression for entropy production 𝜎 – which can be related

to irreversible processes such as heat conduction, diffusion and chemical reactions – and the entropy current

JS. The formal entropy balance equation is

𝜕s
𝜕t

+ ∇ ∙ JS = 𝜎 (15.5.1)
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To obtain the explicit forms of JS and 𝜎, we proceed as follows. For simplicity, we shall consider a system

with no dissipation of kinetic energy due to convection or diffusion, and no external field. From the Gibbs

relation T ds = du −
∑
𝜇k dnk it follows that

𝜕s
𝜕t

= 1

T
𝜕u
𝜕t

−
∑

k

𝜇k

T

𝜕nk

dt
(15.5.2)

Now using the nk balance equation (15.3.10) and the balance equation (15.4.12) for the internal energy with

𝜕(KE)∕𝜕t = 0, expression (15.5.2) can be written as

𝜕s
𝜕t

= − 1

T
∇ ∙ Ju +

∑
k

𝜇k

T
∇ ∙ Jk −

∑
k,j

𝜇k

T
𝜈kjvj (15.5.3)

This equation can be simplified and written in the form (15.5.1) by making the following observations. First,

the affinity of reaction j is

Aj = −
∑

k

𝜈jk𝜇k (15.5.4)

Second, if g is a scalar function and J is a vector, then

∇ ∙ (gJ) = J ∙ (∇g) + g(∇ ∙ J) (15.5.5)

Through an elementary calculation using Equations (15.5.4) and (15.5.5), we can rewrite Equation (15.5.3)

to arrive at the following equation for the entropy balance:

𝜕s
𝜕t

+ ∇ ∙

(
Ju

T
−
∑

k

𝜇kJk

T

)
= Ju ∙ ∇

1

T
−
∑

k

Jk ∙ ∇
𝜇k

T
+
∑

j

Ajvj

T
(15.5.6)

By comparing this equation with Equation (15.5.1), we can make the identifications

JS =

(
Ju

T
−
∑

k

𝜇kJk

T

)
(15.5.7)

and

𝜎 = Ju ∙ ∇
1

T
−
∑

k

Jk ∙ ∇
𝜇k

T
+
∑

j

Ajvj

T
≥ 0 (15.5.8)

where we have emphasized the Second Law, 𝜎 ≥ 0.

As was done earlier, we identify the heat current Jq through the relation Ju = Jq +
∑

kukJk. Then, using

the relation uk = 𝜇k + Tsk (Exercise 15.2), where sk = (𝜕s∕𝜕nk)T is the partial molar entropy density of

component k, the entropy current JS can be written as

JS =

(
Jq

T
+
∑

k

uk − 𝜇k

T
Jk

)
=

(
Jq

T
+
∑

k

skJk

)
(15.5.9)

As was the case for the energy current, the expression for the entropy current consists of two parts, one due

to heat flow and the other due to matter flow.



Nonequilibrium Thermodynamics: The Foundations 353

If an external field with potential 𝜓 is included, from the Gibbs equation T ds = du −
∑

k𝜇kdnk−∑
k𝜏k𝜓 dnk it follows that

T
𝜕s
𝜕t

= 𝜕u
𝜕t

−
∑

k

(𝜇k + 𝜏k𝜓)
𝜕nk

𝜕t
(15.5.10a)

and

𝜕s
𝜕t

= − 1

T
∇ ∙ Ju +

∑
k

𝜇k + 𝜏k𝜓

T
∇ ∙ Jk −

∑
k,j

𝜇k + 𝜏k𝜓

T
𝜈kjvj (15.5.10b)

Comparing Equation (15.5.2) with Equations (15.5.10), we see that the only difference is that the chemical

potential 𝜇k is replaced by the electrochemical potential (𝜇k + 𝜏k𝜓). Correspondingly, the entropy current

(15.5.7) and the entropy production (15.5.8) now become

JS =

(
Ju

T
−
∑

k

𝜏k𝜓 + 𝜇k

T
Jk

)
(15.5.11)

𝜎 = Ju ∙ ∇
1

T
−
∑

k

Jk ∙ ∇
(𝜇k

T

)
+ I ∙ (−∇𝜓)

T
+
∑

j

Ãjvj

T
(15.5.12)

in which Ju = Jq +
∑
k

u0
kJk, where u0

k is the partial molar energy in the absence of the field, I =
∑
k
𝜏kJk and Ã

the electrochemical affinity. For a static electric field E, we have −∇𝜓 = E and I =
∑
k
Ik is the total current

density.

Expression (15.5.12) for the entropy production is fundamental to nonequilibrium thermodynamics. It

shows that entropy production 𝜎 has the bilinear form

𝜎 =
∑
𝛼

F𝛼J𝛼 (15.5.13)

of forces F𝛼 and currents or flows J𝛼 . It is through this expression that we identify the thermodynamic forces

and the flows they drive. For example, the force ∇(1/T) drives the flow Ju; the chemical affinities Aj drive the

chemical reactions with velocities 𝜐j. These forces and the corresponding flows are identified in Table 15.1.

A transformation that leaves 𝜎 invariant and alternative forms of writing 𝜎 are discussed in Appendix 15.1.

Table 15.1 Table of thermodynamic forces and flows.

Force F𝛼 Flow (current) J𝛼

Heat and matter flow ∇1
T

Internal energy flow Ju

Diffusion −∇
𝜇k

T
Diffusion current Jk

Electrical conduction
−∇𝜓
T

= E
T

Ion current densities Ik

Chemical reactions
Aj

T
Velocity of reaction vj =

1
V

d𝜉j
dt
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Appendix 15.1 Entropy Production

A15.1.1 Transformation that Leaves 𝝈 Invariant

The entropy production remains invariant under certain transformations. One theorem [13] states that: under
mechanical equilibrium, 𝜎 is invariant under the transformation

Jk → J′k = Jk + Vnk (A15.1.1)

in which the Jk are the matter currents, nk is the concentration of component k and V is an arbitrary velocity.

This statement implies that a uniform ‘drift velocity’ imposed on all the components of the system leaves the

entropy production unchanged.

To prove this theorem, we first obtain a relation that the chemical potentials must satisfy in a system at

mechanical equilibrium. If nkfk is the force acting on component k, then for mechanical equilibrium we have∑
k

nkfk − ∇p = 0 (A15.1.2)

This condition can be written in terms of the chemical potential using the Gibbs–Duhem equation:

s dT − dp +
∑

k

nk d𝜇k = 0 (A15.1.3)

Since

dp = (∇p) ∙ dr and d𝜇k = (∇𝜇k) ∙ dr (A15.1.4)

under isothermal conditions (dT = 0), substituting Equation (A15.1.4) into Equation (A15.1.3) we obtain the

relation

∇p =
∑

k

nk∇𝜇k (A15.1.5)

Using this expression, condition (A15.1.2) for mechanical equilibrium can now be written in terms of the

chemical potential as ∑
k

(nkfk−nk∇𝜇k) = 0 (A15.1.6)

With this result, the invariance of entropy production 𝜎 under the transformation (A15.1.1) can be shown

as follows. In the presence of an external force fk per mole, acting on the component k, under isothermal

conditions and no chemical reactions, the entropy production per unit volume (15.5.12) can be written by

identifying fk = −𝜏k∇𝜓. This takes the simple form

𝜎 =
∑

k

Jk

T
∙ (fk − ∇𝜇k) (A15.1.7)

The transformation (A15.1.1) implies that Jk = J′k − Vnk. If we substitute this expression into (A15.1.7), the

entropy production becomes

𝜎 =
∑

k

J′k
T
∙ (fk − ∇𝜇k) − V ∙

∑
k

(nkfk − nk∇𝜇k) (A15.1.8)
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Due to the condition for mechanical equilibrium (A15.1.6), the second summation on the right-hand side is

zero. Thus we have the invariance theorem, according to which

𝜎 =
∑

k

Jk

T
∙ (fk − ∇𝜇k) =

∑
k

J′k
T
∙ (fk − ∇𝜇k) (A15.1.9)

This theorem remains valid when chemical reactions and temperature gradients are include.

A15.1.2 Alternative Forms for Entropy Production

Different definitions of the heat current Jq give somewhat different expressions for 𝜎. We have defined the

heat current Jq through the relation Ju = Jq +
∑

k ukJk. However, some authors define Ju as the heat current;

then the flow associated with ∇(1/T) will be the heat current [12].2

Another form of 𝜎 arises when the force associated with the matter flow Jk is written as –∇𝜇k instead

of –∇(𝜇k/T). By separating the gradient of 𝜇k from the gradient of (1/T), it is straightforward to show that

Equation (15.5.12) can be rewritten as

𝜎 = J′u ∙ ∇
1

T
−
∑

k

Jk ∙ ∇𝜇k

T
+
∑

k

Ik ∙ (−∇𝜇)

T
+
∑

j

Ãjvj

T
(A15.1.10)

in which

J′u = Ju −
∑

k

𝜇kJk = Jq +
∑

k

(u0
k − 𝜇k)Jk = Jq +

∑
k

TskJk

where we have used the relation u0
k ≡ (𝜕u0∕𝜕nk)T = 𝜇k + Tsk (Exercise 15.2).

It is useful to write the expression for the entropy production, (5.5.12), in terms of (∇𝜇k)T , the gradient of

𝜇 at constant T. This can be done by noting that

𝜕𝜇k

𝜕x
=
(
𝜕𝜇k

𝜕T

)
nk

𝜕T
𝜕x

+
∑

k

(
𝜕𝜇k

𝜕nk

)
T

𝜕nk

𝜕x

Since this is also true for the y and the z derivatives, it follows that

∇𝜇k =
𝜕𝜇k

𝜕T
∇T + (∇𝜇k)T (A15.1.11)

where (∇𝜇k)T =
∑

j(𝜕𝜇k∕𝜕nj)T∇nj. As a consequence of Equation (A15.1.11), we have

∇
𝜇k

T
=
[
𝜇k − T

(
𝜕𝜇k

𝜕T

)]
∇ 1

T
+

(∇𝜇)T

T

= u0
k∇

1

T
+

(∇𝜇)T

T

(A15.1.12)

where once again we have used the relation u0
k ≡ (𝜕u0∕𝜕nk)T = 𝜇k + Tsk = 𝜇k − T(𝜕𝜇∕𝜕T)nk

. Substitution

of Equation (A15.1.12) into Equation (15.5.12) gives

𝜎 = Jq ∙ ∇
1

T
−
∑

k

Jk ∙ (∇𝜇k)T

T
+
∑

k

Ik ∙ (−∇𝜓)

T
+
∑

j

Ãjvj

T
(A15.1.13)

2We can establish the relation between the heat currents in this text and those used in the classic text of de Groot and Mazur

[12] : Ju = JDM
q and Jq = J′DM

q , in which the superscript DM indicates the quantity used by de Groot and Mazur.
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Exercises

15.1 Assume that the Gibbs relation dU = T dS − p dV +
∑

k𝜇k dNk is valid for a small volume ele-

ment V. Show the validity of the relation T ds = du −
∑
k
𝜇k dnk in which s = (S∕V), u = (U∕V) and

nk = (Nk∕V).

15.2 (a) Using the Helmholtz energy density f and an appropriate Maxwell relation, show that

uk ≡
(
𝜕u
𝜕nk

)
T
= 𝜇k + Tsk = 𝜇k − T

(
𝜕𝜇k

𝜕T

)
nk

in which

sk =
(
𝜕s
𝜕nk

)
T

(b) We have seen that in the presence of a field u = u0 +
∑

k𝜏knk𝜓. Show that fk = (𝜇k + 𝜏k𝜓) and

u0
k ≡
(
𝜕u0

𝜕nk

)
T
= 𝜇k + Tsk = 𝜇k − T

(
𝜕𝜇k

𝜕T

)
nk

15.3 Using the law of conservation of energy (15.4.3) and the concentration balance equation (15.3.10),

show that the current as defined by Equation (15.4.11) satisfies the energy conservation equation

(15.4.8).

15.4 From Equations (15.4.16) and (15.4.17) obtain Equations (15.4.18) and (15.4.19).

15.5 Obtain Equations (A15.1.10a) and (A15.1.10b) from Equation (15.5.12).



16
Nonequilibrium Thermodynamics:

The Linear Regime

16.1 Linear Phenomenological Laws

When a system is close to equilibrium, a general theory based on linear relations between forces and flows

could be formulated. In the previous chapter we have seen that the entropy production per unit volume, 𝜎,

can be written as

𝜎 =
∑

k

Fk Jk (16.1.1)

in which Fk are forces, such as the gradient of (1/T), and Jk are flows, such as the heat flow. The forces drive

the flows; a nonvanishing gradient of (1/T) causes the flow of heat. At equilibrium, all the forces and the

corresponding flows vanish, i.e. the flows Jk depend on forces Fk such that they vanish when Fk = 0. Though

the flows are driven by the forces, they are not entirely determined by them; the flows can depend on other

factors such as the presence of catalysts. For a fixed value of the affinity, the corresponding flow, the rate of

a chemical reaction, can be altered by the presence of a catalyst.

For a small deviation in the forces from their equilibrium value of zero, the flows can be expected to be

linear functions of the forces. (In other words, the flows are assumed to be analytic functions of the forces,

as is the case with most physical variables.) Accordingly, the following relation between the flows and the

forces is assumed:

Jk =
∑

j

LkjFj (16.1.2)

Here the coefficients Lkj are constants called phenomenological coefficients. Note how Equation (16.1.2)

implies that not only can a force, such as the gradient of (1/T), drive the flow of heat but it can also drive other

flows, such as a flow of matter or an electrical current. The thermoelectric effect is one such cross-effect, in

which a thermal gradient drives not only a heat flow but also an electrical current and vice versa (Figure 16.1).

Another example is cross-diffusion, in which a gradient in the concentration of one compound can drive

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.
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Figure 16.1 The thermoelectric effect is a ‘cross-effect’ relating thermodynamic forces and flows. (a) In the
Seebeck effect, two dissimilar metal wires are joined and the junctions are maintained at different temperatures.
As a result an EMF is generated. The EMF generated is generally of the order of 10−5 V K−1 of temperature difference
and it may vary from sample to sample. (b) In the Peltier effect, the two junctions are maintained at the same
temperature and an electric current is passed through the system. The electric current drives a heat flow Jq from
one junction to the other. The Peltier heat current is generally of the order of 10−5 J s−1 per amp [1].

a diffusion current of another. Such cross-effects were known long before thermodynamics of irreversible

processes was formulated. Each cross-effect was studied on an individual basis, but without a unifying

formalism. For example, the thermoelectric phenomenon was investigated in the 1850s and William Thomson

(Lord Kelvin) [2] gave theoretical explanations for the observed Seebeck and Peltier effects (Figure 16.1).

(Kelvin’s reasoning was later found to be incorrect.) Similarly, other cross-effects were observed and studied

in the nineteenth century. Neglecting the cross-effects, some of the well-established phenomenological laws

are as follows:

Fourier’s law of heat conduction: Jq = −𝜅∇T(x) (16.1.3)

Fick’s law of diffusion: Jk = −Dk∇nk(x) (16.1.4)

Ohm’s law of electrical conduction: I = V
R

(16.1.5a)

Alternative form of Ohm’s law: I = E
𝜌

(16.1.5b)

In these equations, 𝜅 is the heat conductivity, Dk is the diffusion coefficient of compound k and nk is the

concentration of compound k. Ohm’s law is usually stated as (16.1.5a) in which I is the electrical current, R
is the resistance and V is the voltage. It can also be stated in terms of the electric current density I, the electric

field E and the resistivity 𝜌 (resistance per unit length per unit area of cross-section). Other quantities in the

above equations are as defined in Table 15.1.



Nonequilibrium Thermodynamics: The Linear Regime 359

As a specific example of the general relation (16.1.2), let us consider the thermoelectric phenomenon

mentioned above (Figure 16.1). The equations that describe thermoelectric cross-coupling are1

Jq = Lqq∇
(

1

T

)
+ Lqe

E
T

(16.1.6)

Ie = Lee
E
T
+ Leq∇

1

T
(16.1.7)

in which Lqq, Lqe, etc., correspond to Lkj in Equation (16.1.2). Experimentally these coefficients can be

measured for various conductors. We shall discuss this and other examples in detail in later sections of this

chapter. Phenomenological laws and the cross-effects between the flows were independently studied and, until

the formalism presented here was developed in the 1930s, there was no unified theory of all the cross-effects.

Relating the entropy production to the phenomenological laws is the first step in developing a unified theory.

For conditions under which the linear phenomenological laws (16.1.2) are valid, entropy production (16.1.1)

takes the quadratic form

𝜎 =
∑
jk

LjkFjFk > 0 (16.1.8)

In this expression, if Fk are vectors, the product FjFk is a scalar product. The forces Fk can be positive

or negative. A matrix Ljk that satisfies the condition (16.1.8) is said to be positive definite. The properties

of positive definite matrices are well characterized. For example, a two-dimensional matrix Lij is positive

definite only when the following conditions are satisfied (Exercise 16.1):

L11 > 0, L22 > 0, (L12 + L21)2 < 4L11L22 (16.1.9)

In general, the diagonal elements of a positive definite matrix must be positive. In addition, a necessary and

sufficient condition for a matrix Lij to be positive definite is that its determinant and all the determinants of

lower dimension obtained by deleting one or more rows and columns must be positive. Thus, according to

the Second Law, the ‘proper coefficients’ Lkk should be positive; the ‘cross coefficients’ Lik (i ≠ k) can be of

either sign. Furthermore, as we shall see in the next section, the elements Ljk also obey the Onsager reciprocal
relations Ljk = Lkj. The positivity of entropy production and the Onsager relations form the foundation for

linear nonequilibrium thermodynamics.

16.2 Onsager Reciprocal Relations and the Symmetry Principle

That reciprocal relations, Lij = Lji, were associated with cross-effects, which was noticed by William Thomson

(Lord Kelvin) and others even during the last century. The early explanations of the reciprocal relations were

based on thermodynamic reasoning that was not on a firm footing. For this reason, William Thomson and

others regarded the reciprocal relations only as conjectures. A well-founded theoretical explanation for these

relations was developed by Lars Onsager (1903–1976) in 1931 [3]. Onsager’s theory is based on the principle
of detailed balance or microscopic reversibility that is valid for systems at equilibrium.

1Note that Ju = Jq when Σuk Jk = 0.
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Lars Onsager (1903–1976).
(Reproduced with permission from the Emilio Segré Visual Archives of the American Institute of Physics.)

The principle of detailed balance or microscopic reversibility is formulated using the general thermody-

namic theory of equilibrium fluctuations that we discussed in Section 14.2. A summary of the main results

of this section is as follows.

� The entropy ΔiS associated with fluctuations 𝛼i can be written as

ΔiS = −1

2

∑
k,j

gkj𝛼j𝛼k =
1

2

∑
k

Fk𝛼k (16.2.1)

in which

Fk =
𝜕ΔiS

𝜕𝛼k
= −

∑
j

gkj 𝛼j (16.2.2)

is the conjugate thermodynamic force for the thermodynamic flow d𝛼k/dt.
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� According to the Einstein formula (14.2.2), the entropy associated with the fluctuations gives the following

probability distribution for the fluctuations:

P(𝛼1, 𝛼2,… , 𝛼m) = Z−1 exp (Δi S∕kB) = Z−1 exp

[
− 1

2kB

∑
i,j

gij 𝛼i𝛼j

]
(16.2.3)

in which kB is the Boltzmann constant and Z is the normalization constant.
� As was shown in Section 14.2, using the probability distribution (16.2.3), the following expressions for

correlations between Fi and 𝛼j can be obtained:⟨
Fi𝛼j

⟩
= −kB𝛿ij (16.2.4)

⟨
𝛼i𝛼j

⟩
= kB(g−1)ij (16.2.5)

in which (g−1)ij is the inverse of the matrix gij.

These are the basic results of the theory of fluctuations needed to derive the reciprocal relations Lik = Lki.

16.2.1 The Onsager Reciprocal Relations

Onsager’s theory begins with the assumption that, where linear phenomenological laws are valid, a deviation

𝛼k decays according to the linear law

Jk =
d𝛼k

dt
=
∑

j

LkjFj (16.2.6a)

which, by virtue of Equation (16.2.2), can also be written as

Jk =
d𝛼k

dt
= −

∑
j,i

Lkjgji𝛼i =
∑

i

Mki𝛼i (16.2.6b)

in which the matrix Mki is the product of the matrices Lkj and gji. The equivalence of Equations (16.2.6a) and

(16.2.6b) shows that phenomenological equations for the flows that are usually written in the form (16.2.6b)

can be transformed into (16.2.6a) in which the flows are linear functions of the forces Fk.

As we shall see, according to the principle of detailed balance, the effect of 𝛼i on the flow (d𝛼k/dt) is the

same as the effect of 𝛼k on the flow (d𝛼i/dt). This condition can be expressed in terms of the correlation⟨𝛼i d𝛼k∕dt⟩ between 𝛼i and (d𝛼k/dt) as ⟨
𝛼i

d𝛼k

dt

⟩
=
⟨
𝛼k

d𝛼i

dt

⟩
(16.2.7)

In a way, this correlation isolates that part of the flow (d𝛼k/dt) that depends on the variable 𝛼i. Once the

validity of Equation (16.2.7) is accepted, the reciprocal relations directly follow from Equation (16.2.6a).

Multiplying (16.2.6a) by 𝛼i and taking the average, we obtain⟨
𝛼i

d𝛼k

dt

⟩
=
∑

j

Lkj

⟨
𝛼iFj

⟩
= −kB

∑
j

Lkj𝛿ji = −kBLki (16.2.8)
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where we have used
⟨

Fj𝛼i

⟩
= −kB𝛿ji. Similarly,⟨
𝛼k

d𝛼i

dt

⟩
=
∑

j

Lij

⟨
𝛼kFj

⟩
= −kB

∑
j

Lij𝛿jk = −kBLik (16.2.9)

If the equality (16.2.7) is valid, we immediately obtain the Onsager reciprocal relations

Lki = Lik
2

(16.2.10)

We are then naturally led to ask why Equation (16.2.7) is valid. Onsager argued that this equality is valid

because of microscopic reversibility, which, according to Onsager, is:

. . . the assertion that transitions between two (classes of) configurations A and B should take place

equally often in the directions A → B and B → A in a given time 𝜏 [3, p. 418].

This statement is the same as the principle of detailed balance that was discussed in Chapter 9. According

to this principle, if 𝛼i has a value 𝛼i(t) at time t, and if at time t + 𝜏 a correlated variable 𝛼k has a value

𝛼k(t + 𝜏), then the time-reversed transition should occur equally often. This means that

⟨𝛼i(t)𝛼k(t + 𝜏)⟩ = ⟨𝛼k(t)𝛼i(t + 𝜏)⟩ (16.2.11)

Note that Equation (16.2.11) remains unchanged if 𝜏 is replaced by – 𝜏.

From this equality, relation (16.2.7) can be obtained by noting that

d𝛼k

dt
≈
𝛼k(t + 𝜏) − 𝛼k(t)

𝜏

so that ⟨
𝛼i

d𝛼k

dt

⟩
=
⟨
𝛼i (t)

{
𝛼k(t + 𝜏) − 𝛼k(t)

𝜏

}⟩
= 1

𝜏
⟨𝛼i(t)𝛼k(t + 𝜏) − 𝛼i(t) 𝛼k(t)⟩ (16.2.12)⟨

𝛼k
d𝛼i

dt

⟩
=
⟨
𝛼k (t)

{
𝛼i(t + 𝜏) − 𝛼i(t)

𝜏

}⟩
= 1

𝜏
⟨𝛼k(t)𝛼i(t + 𝜏) − 𝛼k(t) 𝛼i(t)⟩ (16.2.13)

If we now use the relation ⟨𝛼i(t) 𝛼k(t + 𝜏)⟩ = ⟨𝛼k(t) 𝛼i(t + 𝜏)⟩ and use the fact that ⟨𝛼i(t)𝛼k(t)⟩ = ⟨𝛼k(t) 𝛼i(t)⟩
in Equations (16.2.12) and (16.2.13), equality (16.2.7) follows.

Thus we see that the principle of detailed balance or microscopic reversibility, expressed as⟨𝛼i(t) 𝛼k(t + 𝜏)⟩ = ⟨𝛼k(t) 𝛼i(t + 𝜏)⟩, leads to the reciprocal relations Lij = Lji.

16.2.2 The Symmetry Principle

Though forces and flows are coupled in general, the possible coupling is restricted by a general symmetry

principle. This principle, which states that macroscopic causes always have fewer or equal symmetries than
the effects they produce, was originally stated by Pierre Curie [4] but not in the context of thermodynamics.

Prigogine [5] introduced the principle into nonequilibrium thermodynamics because it enables us to eliminate

the possibility of coupling between certain forces and flows on the basis of symmetry. We shall refer to this

principle as the symmetry principle; in some texts it is also called the Curie principle. For example, a scalar

thermodynamic force such as chemical affinity, which has the high symmetry of isotropy, cannot drive a heat

2In the presence of a magnetic field B, Lij may be functions of B. In this case the reciprocal relations take the form Lki (B) = Lik (–B).
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current, which has lower symmetry because of its directionality. As an explicit example, let us consider a

system in which there is heat transport and chemical reaction. The entropy production is (with Ju = Jq)

𝜎 = Jq ∙ ∇
1

T
+ A

T
v (16.2.14)

The general linear phenomenological laws that follow from this are

Jq = Lqq∇
1

T
+ Lqc

A
T

(16.2.15)

v = Lcc
A
T
+ Lcq∇

1

T
(16.2.16)

According to the symmetry principle, the scalar process of chemical reaction, due to its higher symmetry

of isotropy and homogeneity, cannot generate a heat current that has a direction – and hence is anisotropic.

Another way of stating this principle is that a scalar cause cannot produce a vectorial effect. Therefore Lqc =
0. As a consequence of the reciprocal relations, we have Lqc = Lcq = 0. In general, irreversible processes of

different tensorial character (scalars, vectors and higher-order tensors) do not couple to each other.

Because of the symmetry principle, the entropy production due to scalar, vectorial and tensorial processes

should each be positive. In the above case, we must have

Jq ∙ ∇
1

T
≥ 0 ,

A
T

v ≥ 0 (16.2.17)

(Also, the entropy production due to chemical reactions in each phase should be separately positive.) Thus, the

symmetry principle provides constraints for the coupling of, and the entropy production due to, irreversible

processes.

In the following sections we shall present several cross-effects in detail to illustrate the experimental

implications of Onsager’s reciprocal relations.

16.3 Thermoelectric Phenomena

As a first illustration of the theory presented in the last two sections, let us consider thermoelectric effects

that involve the flow of heat Jq and electric current Ie in conducting wires (the subscript e indicates that the

flow corresponds to the flow of electrons). The entropy production rate per unit volume due to these two

irreversible processes and the linear phenomenological laws associated with it are

𝜎 = Jq ∙ ∇
(

1

T

)
+

Ie ∙ E
T

(16.3.1)

Jq = Lqq∇
(

1

T

)
+ Lqe

E
T

(16.3.2)

Ie = Lee
E
T
+ Leq∇

1

T
(16.3.3)

where E is the electric field. For a one-dimensional system, such as a conducting wire, the vectorial aspect

of Jq and Ie is unimportant and both may be treated as scalars. To relate the coefficients Lqq and Lee with
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the heat conductivity 𝜅 and resistance R, we can write Equations (16.3.2) and (16.3.3) in a one-dimensional

system as

Jq = − 1

T2
Lqq

𝜕

𝜕x
T + Lqe

E
T

(16.3.4)

Ie = Lee
E
T
− 1

T2
Leq

𝜕

𝜕x
T (16.3.5)

Fourier’s law (16.1.3) of heat conduction is valid when the electric field E= 0. Comparing the heat conduction

term Jq = −(1∕T2)Lqq𝜕T∕𝜕x to Fourier’s law (16.1.3) leads to the identification

𝜅 =
Lqq

T2
(16.3.6)

We can now specify more precisely what is meant by the near-equilibrium linear regime. It means that

Lqq, Lee, etc., may be treated as constants. Since T(x) is a function of position, such an assumption is strictly

not valid. It is valid only in the approximation that the change in T from one end of the system to another is

small compared to the average T, i.e. if the average temperature is Tavg, then
|||T(x) − Tavg

||| ∕Tavg ≪ 1 for all

x. Hence we may approximate T2 ≈ T2
avg and use 𝜅T2

avg in place of 𝜅T2.

To find the relation between Lee and the resistance R, we note that V = −Δ 𝜙 = ∫ l
0

E dx in which l is the

length of the system. The current Ie is independent of x. At constant temperature (𝜕T/𝜕x = 0), the current is

entirely due to the electrical potential difference. Integrating Equation (16.3.5) over the length of the system,

we obtain

∫
l

0

Ie dx =
Lee

T ∫
l

0

E dx or Iel =
Lee

T
V (16.3.7)

Comparing this equation with Ohm’s law (16.1.5a), we make the identification

Lee =
T

R∕l
= T

r
(16.3.8)

in which r is the resistance per unit length. As noted in Equation (16.1.5b), Ohm’s law can also be stated in

general as

I = E
𝜌

(16.3.9)

in which 𝜌 is the specific resistance, I is the current density and E is the electric field. Comparing Equation

(16.3.3) with Equation (16.3.9) we have the general relation

Lee =
T
𝜌

(16.3.10)

When we consider a one-dimensional system, 𝜌 is replaced by r, resistance per unit length.

16.3.1 The Seebeck Effect

The cross-coefficients Lqe and Leq can also be related to experimentally measured quantities. In the Seebeck

effect (Box 16.1), a temperature difference between two junctions of dissimilar metals produces an EMF.

This EMF is measured at zero current. For this system, Equations (16.3.4) and (16.3.5) may be used. Setting

Ie = 0 in Equation (16.3.5) we obtain

0 = LeeET − Leq
𝜕

𝜕x
T (16.3.11)
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This equation may now be integrated to obtain a relation between the temperature difference ΔT and the EMF

generated due to this temperature difference, Δ𝜙 = – ∫ E dx. In doing this integration, we shall assume that

the total variation ΔT is small and make the approximation ∫ TE dx ≈ T ∫ E dx = –T Δ𝜙. This gives us the

relation

Leq = −LeeT

(
Δ𝜙
ΔT

)
I=0

(16.3.12)

The ratio −(Δ𝜙∕ΔT)I=0, called the thermoelectric power, is experimentally measured. Some typical values

of thermoelectric power are shown in Table 16.1; its sign may be positive or negative. Using Equation

(16.3.12), the coefficient Leq can be related to the measured quantities.

Box 16.1 Onsager reciprocal relations in thermoelectric phenomena
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Table 16.1 Some experimental data confirming Onsager reciprocal relations.∗

Thermocouple T (◦C) Π/T (μV K−1) –Δ𝜙/ΔT (μV K−1) Lqe/Leq

Cu–Al 15.8 2.4 3.1 0.77
Cu–Ni 0 18.6 20.0 0.930
Cu–Ni 14 20.2 20.7 0.976
Cu–Fe 0 –10.16 –10.15 1.000
Cu–Bi 20 –71 –66 1.08
Fe–Ni 16 33.1 31.2 1.06
Fe–Hg 18.4 16.72 16.66 1.004

∗More extensive data can be found in Reference [1].



366 Modern Thermodynamics

16.3.2 The Peltier Effect

In the Peltier effect, the two junctions are maintained at a constant temperature while a current I is passed

through the system (Box 16.1). This causes a flow of heat from one junction to another. The two junctions are

maintained at the same temperature by removing heat from the junction receiving heat and thus maintaining

a steady heat flow Jq. Under these conditions, the ratio called the Peltier heat

Π =
(Jq

Ie

)
(16.3.13)

can be measured. Some typical values of (Π/T) are shown in Table 16.1. The phenomenological coefficient

Lqe can be related to the Peltier heat as follows. Since there is no temperature difference between the two

junctions, 𝜕T/𝜕x = 0, and Equations (16.3.4) and (16.3.5) become

Jq = Lqe
E
T

(16.3.14)

Ie = Lee
E
T

(16.3.15)

Dividing one equation by the other and using Equations (16.3.8) and (16.3.13), we obtain

Lqe = ΠLee = Π T
R∕l

= Π T
r

(16.3.16)

In this manner, the phenomenological coefficients Lqe and Leq can be related to the experimental parameters

of the cross-effects.

Having identified all the linear phenomenological coefficients in terms of the experimentally measured

quantities, we can now turn to the reciprocal relations, according to which one must find

Lqe = Leq (16.3.17)

Upon using Equation (16.3.12) for Leq and Equation (16.3.16) for Lqe, we find

− LeeT

(
Δ𝜑
ΔT

)
= Π Lee or −

(
Δ𝜑
ΔT

)
= Π

T
(16.3.18)

Experimental data verifying this prediction for pairs of conductors are shown in Table 16.1.

16.4 Diffusion

In this section we will apply the theory of linear nonequilibrium thermodynamics to the process of diffusion.

When several species are simultaneously diffusing, it is found that the flow of one species influences the flow

of another; i.e. there are cross-effects between diffusing species. The entropy production per unit volume

associated with simultaneous diffusion of several species is

𝜎 = −
∑

k

Jk ∙ ∇
(𝜇k

T

)
(16.4.1)

in which Jk is the matter current and 𝜇k is the chemical potential of species k. Under isothermal conditions,

the associated linear laws are

Ji = −
∑

k

Lik

T
∇𝜇k (16.4.2)
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Table 16.2 Some Fick’s law diffusion coefficients showing cross-effects in a molten silicate solution.∗

T(K) D11 (m
2 s−1) D12 (m

2 s−1) D21 (m
2 s−1) D22 (m

2 s−1)

1723 (6.8 ± 0.3) × 10−11 (–2.0 ± 0.5) × 10−11 (–3.3 ± 0.5) × 10−11 (4.1 ± 0.7) × 10−11

1773 (1.0 ± 0.1) × 10−10 (–2.8 ± 0.8) × 10−11 (–4.2 ± 0.8) × 10−11 (7.3 ± 0.4) × 10−11

1823 (1.8 ± 0.2) × 10−10 (–4.6 ± 0.6) × 10−11 (–6.4 ± 0.5) × 10−11 (1.5 ± 0.1) × 10−10

∗The composition of the silicate is 40% CaO, 20% Al2O3 and 40% SiO by weight [6,7].

Our first task is to relate the linear coefficients Lik to the experimentally measured diffusion coefficients Dij.

For simultaneous diffusion of several species (under isothermal conditions), a ‘generalized Fick’s law’ may

be written as

Ji = −
∑

k

Dik∇nk (x) (16.4.3)

in which nk(x) is the concentration of the component k at position x. As an example, diffusion coefficients

Dij in a molten silicate solution of CaO–Al2O3–SiO2 at various temperatures [6, 7] are shown in Table 16.2.

(Diffusion coefficients for some gases and liquids are given in Chapter 10.) Let us consider a system with two

components. The Gibbs–Duhem relation tells us that the chemical potentials, and hence the forces –∇(𝜇k/T),

are not all independent. For a two-component system when T and p are constant, we have

n1 d𝜇1 + n2 d𝜇2 = 0 (16.4.4)

Since d𝜇k = dr ∙ ∇𝜇k for an arbitrary dr, Equation (16.4.4) leads to the following relation between the

gradients of the chemical potentials:

n1∇𝜇1 + n2∇𝜇2 = 0 (16.4.5)

This shows that the thermodynamic forces are not all independent. Nor are all the flows Jk independent. In

most physical situations, the relation between the flows is more conveniently expressed as the condition for

‘no volume flow’[1]. For a two-component system, this is expressed as

J1v1 + J2v2 = 0 (16.4.6)

in which the vk are partial molar volumes. For notational simplicity we use vk for the partial molar volume

instead of Vm,k. This equation is the statement that the diffusion flows do not result in any change in volume

(Figure 16.2).

As a consequence of Equation (16.4.5), the entropy production due to diffusion under isothermal conditions

can be written (Exercise 16.4) as3

𝜎 = − 1

T

(
J1 −

n1

n2

J2

)
∙ ∇𝜇1 (16.4.7)

Now, using condition (16.4.6) for no volume flow, the expression for entropy production can be written as

𝜎 = − 1

T

(
1 +

v1n1

v2n2

)
J1 ∙ ∇𝜇1 (16.4.8)

3As shown in Appendix 15.1, even if there is a constant volume flow, 𝜎 remains unchanged.
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J1J2

Figure 16.2 Diffusion in a two-component system. In most physical situations the flow of the components due
to diffusion does not produce a change in volume.

The linear phenomenological law that relates the flux J1 to the conjugate force in Equation (16.4.8) is

J1 = −L11
1

T

(
1 +

v1n1

v2n2

)
∇𝜇1 (16.4.9)

We can relate this equation to Fick’s law, usually written as J1 = −D1∇n1, by noting that ∇𝜇1 =
(𝜕𝜇1∕𝜕n1)∇n1. We then have

J1 = −L11
1

T

(
1 +

v1n1

v2n2

) (
𝜕𝜇1

𝜕n1

)
∇n1 = −D1 ∇n1 (16.4.10)

From this it follows that the relation between the phenomenological coefficient L11 and the diffusion coeffi-

cient is

L11 =
D1T(

1 +
v1n1

v1n2

) (
𝜕𝜇1

𝜕n1

) (16.4.11)

For diffusion of a solute in a solution, n2 is the concentration of the solution and n1 the concentration of the

solute. For dilute ideal solutions recall that 𝜇1 = 𝜇0 (p, T) + RT ln x1, in which x1 = n1/(n1 + n2) ≈ n1/n2,

and also that n1 ≪ n2. These conditions simplify the relation between L11 and D1 to

L11 =
D1n1

R
(16.4.12)

This is the relation we saw in Chapter 10 between the usual diffusion coefficient and the corresponding

phenomenological coefficient.

To verify Onsager’s reciprocal relations we need at least three components. For three-component isothermal

diffusion, the entropy production per unit volume is

𝜎 = −
J1

T
∙ ∇𝜇1 −

J2

T
∙ ∇𝜇2 −

J3

T
∙ ∇𝜇3 (16.4.13)
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For a three-component system, the corresponding Gibbs–Duhem equation and the condition for no volume

flow are as follows (Equations (16.4.5) and (16.4.6)):

n1∇𝜇1 + n2∇𝜇2 + n3∇𝜇3 = 0 (16.4.14)

J1v1 + J2v2 + J3v3 = 0 (16.4.15)

Let us assume that J3 and 𝜇3 are the variables for the solvent while J1, 𝜇1 and J2, 𝜇2 are the variables of two

solutes whose diffusion cross-effects are of interest. Using Equations (16.4.14) and (16.4.15), J3 and 𝜇3 can

be eliminated from the expression for the entropy production. The entropy production can then be written in

terms of only the variables J1, 𝜇1 and J2, 𝜇2 of the two solutes (Exercise 16.5):

𝜎 = F1 ∙ J1 + F2 ∙ J2 (16.4.16)

in which the thermodynamic forces F1 and F2 are

F1 = − 1

T

[
∇𝜇1 +

n1v1

n3v3

∇𝜇1 +
n2v1

n3v3

∇𝜇2

]
(16.4.17)

and

F2 = − 1

T

[
∇𝜇2 +

n2v2

n3v3

∇𝜇2 +
n1v2

n3v3

∇𝜇1

]
(16.4.18)

The associated phenomenological laws then take the form

J1 = L11F1 + L12F2 (16.4.19)

J2 = L21F1 + L22F2 (16.4.20)

To verify the reciprocal relations, we must now relate Lik and the experimentally measured diffusion coeffi-

cients Dik of the generalized Fick’s law:

J1 = −D11 ∇n1 − D12 ∇n2 (16.4.21)

J2 = −D21 ∇n1 − D22 ∇n2 (16.4.22)

If J2 = 0, note how these equations imply that a constant flow, J1 = constant, due to a concentration gradient

in n1, will produce a concentration gradient in n2. Let us assume that the flow and concentration gradients are

along only one direction, say x, so that all the gradients correspond to derivatives with respect to x. (Extending

the following calculation to three dimensions is straightforward.) We can write the forces Fk in terms of the

gradients of the two diffusing components because the chemical potentials 𝜇k are functions of nk. Thus

𝜕𝜇1

𝜕x
=
𝜕𝜇1

𝜕n1

𝜕n1

𝜕x
+
𝜕𝜇1

𝜕n2

𝜕n2

𝜕x
(16.4.23)

A similar relation can be written for the gradient of 𝜇2. Using these relations in Equations (16.4.17) and

(16.4.18) and substituting them in Equations (16.4.19) and (16.4.20), the flows Jk can be written in terms
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of the gradients of nk. After some calculation (Exercise 16.6) the following relations between the diffusion

coefficients and the linear Onsager coefficients can be obtained:

L11 = T
dD11 − bD12

ad − bc
, L12 = T

aD12 − cD11

ad − bc
(16.4.24)

L21 = T
dD21 − bD22

ad − bc
, L22 = T

aD22 − cD21

ad − bc
(16.4.25)

in which

a =
(

1 +
n1v1

n3v3

) (
𝜕𝜇1

𝜕n1

)
+

n2v1

n3v3

(
𝜕𝜇2

𝜕n1

)
, b =

(
1 +

n2v2

n3v3

) (
𝜕𝜇2

𝜕n1

)
+

n1v2

n3v3

(
𝜕𝜇1

𝜕n1

)
(16.4.26)

c =
(

1 +
n1v1

n3v3

) (
𝜕𝜇1

𝜕n2

)
+

n2v1

n3v3

(
𝜕𝜇2

𝜕n2

)
, d =

(
1 +

n2v2

n3v3

) (
𝜕𝜇2

𝜕n2

)
+

n1v2

n3v3

(
𝜕𝜇1

𝜕n2

)
(16.4.27)

(Note that the only difference between Equations (16.4.26) and (16.4.27) is that the derivative 𝜕/𝜕n1 is

replaced by 𝜕/𝜕n2.) These relations can be written more compactly in matrix notation (Exercise 16.7). From

these relations it is easy to see that the implication of the reciprocal relations L12 = L21 is

aD12 + bD22 = cD11 + dD21 (16.4.28)

Experimental data for several three-component systems is summarized in Tables 16.3 and 16.4. Often

the relations between the chemical potential and the concentration are not known precisely and accurate

measurement of diffusion coefficients is rather difficult. Nevertheless, we see that within experimental error

the reciprocal relations seem to hold very well.

Table 16.3 Experimental data on cross-diffusion in molten silicates and verification of Onsager’s reciprocal
relations [1, 6, 7].

System D11 (m
2 s−1) D12 (m

2 s−1) D21 (m
2 s−1) D22 (m

2 s−1) L12/L21 T (K)

CaO–Al2O3–SiO2 6.8 × 10−11 –2.0 × 10−11 –3.3 × 10−11 4.1 × 10−11 1.46 ± 0.44 1723
CaO–Al2O3–SiO2 1.0 × 10−10 –2.8 × 10−11 –4.2 × 10−11 7.3 × 10−11 1.46 ± 0.44 1773
CaO–Al2O3–SiO2 1.8 × 10−10 –4.6 × 10−11 –6.4 × 10−11 1.5 × 10−10 1.29 ± 0.36 1823

Table 16.4 Experimental diffusion coefficients for the toluene–chlorobenzene–bromobenzene system at
T = 30 ◦C and verification of Onsager’s reciprocal relations [8].

X∗1 X∗2

D11/10
−9

(m2 s−1)
D12/10

−9

(m2 s−1)
D21/10

−9

(m2 s−1)
D22/10

−9

(m2 s−1) L12/L21

0.25 0.50 1.848 –0.063 –0.052 1.797 1.052
0.26 0.03 1.570 –0.077 –0.012 1.606 0.980
0.70 0.15 2.132 0.051 –0.071 2.062 0.942
0.15 0.70 1.853 0.049 –0.068 1.841 0.915

∗X1 = mole fraction of toluene; X2 = mole fraction of chlorobenzene.
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16.5 Chemical Reactions

In this section we shall look at the meaning of linear phenomenological laws in the context of chemical

reactions. In a formalism in which the principle of detailed balance or microscopic reversibility is incorporated

through the condition that forward rates of every elementary step balance the corresponding reverse rate, the

Onsager reciprocity is implicit. No additional relations can be derived for the reaction rates if it is assumed

that at equilibrium each elementary step is balanced by its reverse. Therefore, the main task in this section

will be to relate the Onsager coefficients Lij and the experimentally measured reaction rates. In our formalism

the Onsager reciprocal relations will be automatically valid.

The entropy production due to chemical reactions is

𝜎 =
∑

k

Ak

T
1

V

(
d𝜉k

dt

)
=
∑

k

Ak

T
vk (16.5.1)

in which we have written vk for the velocity of the kth reaction. In this case the thermodynamic forces are

Fk = (Ak/T) and the flows Jk = vk. In Chapter 9 we have seen that for a chemical reaction that can be identified
as an elementary step, the velocity v and the affinity A can be related to the forward and reverse reactions

through the following relations:

vk = Rkf − Rkr (16.5.2)

Ak = RT ln
(

Rkf

Rkr

)
(16.5.3)

in which Rkf and Rkr are forward and reverse rates of the kth reaction and R is the gas constant. Using Equation

(16.5.3) in Equation (16.5.2), we can write the velocity vk as

vk = Rk f

(
1 − e−Ak∕RT) (16.5.4)

a useful expression for discussing the linear phenomenological laws near thermodynamic equilibrium. It is

important to keep in mind that Equation (16.5.4) is valid only for an elementary step. Note that Equation

(16.5.3) incorporates the principle of detailed balance or microscopic reversibility according to which the

forward and reverse reactions of every elementary step balance each other at equilibrium (which leads to the

Onsager reciprocal relations). Also, the limit Ak →∞ implies that the velocity is entirely due to the forward

reaction.

Equation (16.5.4) does not give the reaction velocity vk as a function of the affinity Ak, because the term Rkf

has to be specified. There is no general thermodynamic expression relating velocities and affinities. Reaction

velocities depend on many nonthermodynamic factors such as the presence of catalysts. (A catalyst does not

have any effect on the state of equilibrium; also, because a catalyst changes the forward and reverse rate by

the same factor, it does not alter the affinity either.) Close to thermodynamic equilibrium, however, there

is a general linear relation between the two quantities. In this context, the general postulate of the linear

phenomenological laws takes the form

vk =
∑

j

Lkj

Aj

T
(16.5.5)

The coefficients Lkj can be related to the experimental quantities such as reaction rates, as shown below.
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16.5.1 Single Reaction

For simplicity, let us consider a single reaction that is an elementary step. Then Equation (16.5.4) becomes

v = Rf(1 − e−A∕RT ) (16.5.6)

At equilibrium A = 0. Let us denote the equilibrium value of the forward reaction rate by Rf,eq. Away from

equilibrium, A has a nonzero value. By ‘close to equilibrium’ we mean that|||| A
RT

||||≪ 1 (16.5.7)

When A is small compared to RT and Rf = Rf,eq + ΔRf, we can expand Equation (16.5.6) to obtain a linear

relation between v and A:

v = Rf, eq
A

RT
+⋯ (16.5.8)

to the leading order by ignoring smaller terms such as products of ΔRf and A. Comparing Equation (16.5.8)

with the phenomenological law v = LA/T, we make the identification

L =
Rf, eq

R
=

Rr, eq

R
(16.5.9)

where the last equality follows from the fact that the forward and reverse reaction rates of every elementary

step are equal at equilibrium.

16.5.2 Many Reactions

When the system consists of many reacting species and reactions, not all the reactions are independent. Take,

for example, the following reactions:

O2(g) + 2C(s) ⇌ 2CO(g) (16.5.10)

O2(g) + 2CO(g) ⇌ 2CO2(g) (16.5.11)

2O2(g) + 2C(s) ⇌ 2CO2(g) (16.5.12)

The third reaction is the sum of the first two reactions. Therefore not all three are independent reactions.

Thermodynamically this means that the affinity of the third reaction can be written as the sum of the first

two. We have seen in Chapter 4 that the affinity of a sum of reactions is the sum of the affinities. Since the

phenomenological relations are written in terms of independent thermodynamic forces, only the independent

affinities are to be used. Also, without loss of generality we may consider affinities of elementary steps only
because all reactions can be reduced to elementary steps.

If all the chemical reactions in the system are independent, then, close to equilibrium, each velocity vk is

dependent on only the corresponding affinity and the equilibrium reaction rate, as in Equation (16.5.8). There

are no cross-coupling terms. In the general formalism, cross-terms for chemical reactions appear when the

total number of reactions is not the same as the number of independent reactions. In this case, some of the

affinities can be expressed as linear functions of others. Let us look at an example. For simplicity but without

loss of generality, we consider a simple set of unimolecular reactions, all of which are elementary. We denote

their corresponding rates Rkf and Rkr, affinities Ak and velocities vk as shown:

W ⇌ X R1f , R1r, A1, v1 (16.5.13a)

X ⇌ Y R2f , R2r, A2, v2 (16.5.13b)

W ⇌ Y R3f , R3r, A3, v3 (16.5.13c)
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where the subscripts f and r stand for forward and reverse reaction rates, respectively. Only two out of the

three reactions are independent, because the third can be expressed as the sum of the other two. Consequently,

we have the relation

A1 + A2 = A3 (16.5.14)

The entropy production per unit volume due to these reactions is

𝜎 = v1

A1

T
+ v2

A2

T
+ v3

A3

T
(16.5.15)

Using the relation between the affinities (16.5.14), this expression can be written in terms of two independent

affinities A1 and A2:

𝜎 = (v1 + v3)
A1

T
+ (v2 + v3)

A2

T

= v′
1

A1

T
+ v′

2

A2

T
> 0

(16.5.16)

where v′
1
= v1 + v3 and v′

2
= v2 + v3. In terms of these independent velocities and affinities, the linear

phenomenological laws may be written as [9]

v′
1
= L11

A1

T
+ L12

A2

T
(16.5.17)

v′
2
= L21

A1

T
+ L22

A2

T
(16.5.18)

The relation between the phenomenological coefficients Lik and the experimentally measured reaction rates

can be obtained by using the general relation (16.5.4) between the velocities vk and the affinities Ak. For

example, close to equilibrium, i.e. when |Ak/RT| ≪ 1, we can write v′
1

as

v′
1
= v1 + v3 = R1f(1 − e−A1∕RT ) + R3f(1 − e−A3∕RT )

≈ R1f,eq

A1

RT
+ R3f,eq

A3

RT
=
(R1f,eq + R3f,eq

R

)
A1

T
+

R3f,eq

R

A2

T

(16.5.19)

using the fact that near equilibrium we have Rkf ≈ Rkf,eq, the forward reaction rate at equilibrium. Comparing

Equation (16.5.19) with Equation (16.5.17), we see that

L11 =
(R1f,eq + R3f,eq

R

)
and L12 =

R3f,eq

R
(16.5.20)

Similarly, it is straightforward to show that

L22 =
(R2f,eq + R3f,eq

R

)
and L21

R3f,eq

R
(16.5.21)

Thus one can relate the phenomenological coefficients Lik to the reaction rates at equilibrium. We see that

L12 = L21. Since the principle of detailed balance or microscopic reversibility is incorporated into the

formalism through R3f = R3r = R3f,eq, the Onsager reciprocal relations are automatically valid.

16.5.3 Alternative Forms for 𝝈

From the above considerations it is clear that the entropy production can be written in terms of A2 and

A3 instead of A1 and A2. There is no unique way of writing the entropy production. In whatever way the
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independent affinities and velocities are chosen, the corresponding linear phenomenological coefficients can

be obtained. The entropy production 𝜎 can be written in terms of different sets of independent reaction

velocities and affinities:

𝜎 =
∑

k

vk
Ak

T
=
∑

k

v′k
A′k
T
> 0 (16.5.22)

Equations (16.5.15) and (16.5.16) are examples. The number of independent reactions, and therefore the affini-

ties, is constrained by the number of reacting species. In homogeneous closed systems in which the change

in the concentrations of all the reacting species is only due to chemical reactions, we may choose the extents

of reaction 𝜉k to define the state of a system instead of the concentrations nk. The chemical potentials 𝜇k are

then functions of 𝜉k, p and T. However, since an extent of reaction relates the change in at least two reacting

species, in a system consisting of r reacting species there are at most (r – 1) independent extents of reaction

𝜉k. Thus all of r chemical potentials can be expressed as 𝜇k(𝜉1, 𝜉2, 𝜉3,… , 𝜉r−1, p, T). From this it is clear

that, at any given pressure p and temperature T, there are only (r – 1) independent chemical potentials. Since

the affinities Ak are linear functions of the chemical potentials, in a system with r reacting species, there can
be at most (r – 1) independent affinities. (Sometimes this fact is derived using the ‘conservation of mass’ in

chemical reactions. Although this may be valid in ordinary chemical reactions, since mass is not conserved

in nuclear reactions, the argument is not general. In fact, mass is incidental to chemical reactions whose main

consequence is the change in the number of molecules of the various reacting species.)

16.5.4 Linearity in Coupled Reactions

We have seen that the linear phenomenological laws are valid for chemical reactions with affinity A if the

condition |A/RT| ≪ 1 is satisfied. However, if the overall chemical reaction

X → Y (16.5.23)

consists of m intermediates, W1, W2,… , Wm, one may still be justified in using the linearity even if |A/RT|
≪ 1 is not valid. To see how this might happen, let us suppose that the overall reaction (16.5.23) goes through

the following series of reactions:

X
(1)
⇌W1

(2)
⇌W2

(3)
⇌W3 ⋯Wm

(m+1)
⇌ Y (16.5.24)

The entropy production for this set of (m + 1) reactions is

T𝜎 = A1v1 + A2v2 +⋯ + Am+1vm+1 (16.5.25)

If the intermediate components Wk interconvert rapidly, then the reaction velocity of each of these reactions

is essentially determined by the rate of the slowest reaction, which is called the rate-determining step. Let

us assume that the last step Wm ⇌ Y is the slow rate-determining step. The rate equations for this system are

d[X]

dt
= −v1

d[W1]

dt
= v1 − v2

d[W2]

dt
= v2 − v3

⋮

d[Y]

dt
= vm+1

(16.5.26)
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Because of the rapid interconversion, we may assume that a steady state is established for [Wk] so that

d[Wk]/dt ≈ 0. (Such an assumption is used, for example, in obtaining the Michaelis–Menten rate law for

enzyme kinetics.) This implies

v1 = v2 = ⋯ = vm+1 = v (16.5.27)

Then the entropy production for the system becomes

T𝜎 = (A1 + A2 +⋯ + Am+1) v = Av (16.5.28)

in which the overall affinity

A = A1 + A2 +⋯ + Am+1 (16.5.29)

Now if |Ak/RT| ≪ 1 for each of the (m + 1) reactions, we are still in the region where the linear laws are

valid, so from Equation (16.5.8) we have

v1 = R1f,eq

A1

RT
, v2 = R2f,eq

A2

RT
,… , vm+1 = R(m+1)f,eq

Am+1

RT
(16.5.30)

in which R1f,eq is the forward equilibrium reaction rate of reaction (1) in the scheme (16.5.24), etc.

In the above case, even if

|A| = ||||||
m+1∑
k=1

Ak

|||||| > RT

the linear phenomenological laws will be valid. A simple calculation (Exercise 16.9) using Equations

(16.5.27), (16.5.28) and (16.5.30) shows that

v =
Reff

RT
A (16.5.31)

in which the ‘effective reaction rate’ Reff is given by

1

Reff

= 1

R1f,eq

+ 1

R2f,eq

+ 1

R3f,eq

+ ⋯ + 1

R(m+1)f,eq

(16.5.32)

Since the overall reaction is not an elementary step but a result of many elementary steps, the relation

v = Reff(1 − e−A∕RT ) is not valid.

Though we considered a coupled set of unimolecular reactions (16.5.24) to obtain Equation (16.5.31), the

result is more generally valid. Thus, the linear phenomenological law is valid for an overall chemical reaction
if |A/RT|≪ 1 for every elementary step in the reaction, and if concentrations of all the reaction intermediates
may be assumed to be in a steady state.

16.6 Heat Conduction in Anisotropic Solids

In an anisotropic solid, the flow of heat Jq may not be in the direction of the temperature gradient; a temperature

gradient in one direction can cause the heat to flow in a different direction. The entropy production rate is

𝜎 =
3∑

i=1

Jq i
𝜕

𝜕xi

(
1

T

)
(16.6.1)
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in which xi are the Cartesian coordinates. The phenomenological laws for this system are

Jqi =
∑

k

Lik
𝜕

𝜕xk

(
1

T

)
=
∑

k

(−Lik

T2

)
𝜕T
𝜕xk

(16.6.2)

For anisotropic solids the heat conductivity 𝜅 is a tensor of the second rank. The empirical Fourier law of

heat conduction is then written as

Jqi = −
∑

k

𝜅ik
𝜕T
𝜕xk

(16.6.3)

Comparison of Equations (16.6.2) and (16.6.3) leads to

Lik = T2𝜅ik (16.6.4)

Reciprocal relations Lik = Lki then imply that

𝜅ik = 𝜅ki (16.6.5)

i.e. the heat conductivity is a symmetric tensor. However, for many solids, if the symmetry of the crystal

structure itself implies that 𝜅ik = 𝜅ki, experimental verification of this equality would not confirm the reciprocal

relations. On the other hand, solids with trigonal (C3, C3i), tetragonal (C4, S4, C4h) and hexagonal (C6, C3h,

C6h) crystal symmetries imply that

𝜅12 = −𝜅21 (16.6.6)

If the reciprocal relations are valid, then

𝜅12 = 𝜅21 = 0 (16.6.7)

Equation (16.6.6) implies that a temperature gradient in the x direction causes heat to flow in the positive

y direction but a gradient in the y direction will cause heat to flow in the negative x direction. Onsager’s

reciprocal relations imply that this is not possible. One method of experimental verification of this relation is

due to Voigt and Curie (Figure 16.3). Another method may be found in an article by Miller [1]. For crystals of

apatite (calcium phosphate) and dolomite (CaMg(CO3)2) it was found that (𝜅12/𝜅11) < 0.0005 [1], in accord

with the reciprocal relations.

Th

X1

A

Tc

X2

B

Is
ot

he
rm

Figure 16.3 The method of Curie and Voigt to verify the reciprocal relations for anisotropic heat conduction.
An anisotropic solid whose crystal symmetry implies 𝜅12 = –𝜅21 is placed in contact with two heat reservoirs of
temperature Th and Tc. If the reciprocal relations are valid then 𝜅12 = 𝜅21 = 0. If this is true, the isotherms should
be perpendicular to the direction x1, i.e. 𝜃 should be 90

◦.
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I

Jk

V

p p + p

(a)

(b)

Figure 16.4 Electrokinetic phenomena. Two chambers containing electrolytes are separated by a porous wall
or capillary. (a) An applied potential V generates a pressure difference Δp, called the electro-osmotic pressure.
(b) If the fluid is made to flow from one chamber to another through an applied pressure gradient, it generates
an electrical current I, called the streaming current.

16.7 Electrokinetic Phenomena and the Saxen Relations

Electrokinetic phenomena are due to the coupling between the electrical current and matter flow. Consider two

chambers, 1 and 2, containing electrolytes and separated by a porous wall. If a voltage V is applied between

the two chambers (Figure 16.4), a current will flow until a pressure difference Δp is established at the steady

state. This pressure difference is called the electro-osmotic pressure. Conversely, if a fluid flow J from one

chamber to another is achieved by a piston, an electric current I, called the streaming current, flows through

the electrodes. As before, the thermodynamic description of these effects begins with the expression for the

entropy production under the conditions specified above. In this case we essentially have a discontinuous

system in which there are no gradients but differences in chemical potentials between the two chambers. For

discontinuous systems the entropy production per unit volume 𝜎 is replaced by the total entropy production

diS/dt. Furthermore, the entropy produced by the flow from chamber 1 to chamber 2 may be formally thought

of as a chemical reaction for which the difference in the electrochemical potential becomes the affinity. Thus

we have

diS

dt
=
∑

k

Ãk

T

d𝜉k

dt
(16.7.1)

in which

Ãk = (𝜇1
k + zkF𝜑1) − (𝜇2

k + zkF𝜑2) (16.7.2)

d𝜉k = −dn1
k = dn2

k (16.7.3)
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In these equations, the superscripts refer to the two chambers, where zk is the ion number of the component

k, F is the Faraday constant and 𝜙 is the electrical potential. For a relatively small difference in the pressure

between the two chambers, since (𝜕𝜇k/𝜕p) = vk, the partial molar volume, we may write

(𝜇1
k − 𝜇

2
k ) = vkΔp (16.7.4)

Equation (16.7.1) may now be written as

diS

dt
= 1

T

∑
k

(
−vk

dn1
k

dt

)
Δp + 1

T

∑
k

(−Ik) Δ𝜙 (16.7.5)

in which Δ𝜙 = 𝜙1 – 𝜙2 and Ik = zkFdn1
k∕dt, the electric current due to the flow of component k. Combining

all the matter flow terms and the ion flow terms, Equation (16.7.5) can now be written in the compact form

diS

dt
=

JΔp

T
+ IΔ𝜙

T
(16.7.6)

where

J = −
∑

k

vk

dn1
k

dt
is the ‘volume flow’ (16.7.7)

I = −
∑

k

Ik is the electric current (16.7.8)

The phenomenological equations that follow from Equation (16.7.6) are

I = L11

Δ𝜙
T

+ L12

Δp

T
(16.7.9)

J = L21

Δ𝜙
T

+ L22

Δp

T
(16.7.10)

The reciprocal relations are

L12 = L21 (16.7.11)

Experimentally, the following quantities can be measured:

� The streaming potential (
Δ𝜙
Δp

)
I=0

= −
L12

L11

(16.7.12)

� Electro-osmosis (J
I

)
Δp=0

=
L21

L11

(16.7.13)

� Electro-osmotic pressure (
Δp

Δ𝜙

)
J=0

= −
L21

L22

(16.7.14)

� Streaming current ( I
J

)
Δ𝜙=0

=
L12

L22

(16.7.15)
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As a consequence of the reciprocal relations L12 = L21, we see from Equations (16.7.12) to (16.7.15) that(
Δ𝜙
Δp

)
I=0

= −
(J

I

)
Δp=0

(16.7.16)

(
Δp

Δ𝜙

)
J=0

= −
( I

J

)
Δ𝜙=0

(16.7.17)

These two relations, called the Saxen relations, were obtained originally by kinetic considerations for particular

systems, but by virtue of the formalism of nonequilibrium thermodynamics we see their general validity.

16.8 Thermal Diffusion

The interaction between heat and matter flows produces two effects, the Soret effect and the Dufour effect.
In the Soret effect, heat flow drives a flow of matter. In the Dufour effect, concentration gradients drive a

heat flow. The reciprocal relations in this context can be obtained by writing the entropy production due to

diffusion and heat flow:

𝜎 = Ju ∙ ∇
(

1

T

)
−

w∑
k=1

Jk ∙ ∇
(𝜇k

T

)
=

(
Ju −

w∑
k=1

Jk𝜇k

)
∙ ∇
(

1

T

)
−

w∑
k=1

Jk ∙
1

T
∇𝜇k

(16.8.1)

This expression, however, does not quite separate the thermal and concentration gradients as we would like,

because the term ∇𝜇k contains the gradient of T (due to the fact that 𝜇k is a function of T, nk and p). The

explicit form of ∇𝜇k can be written using the relation

d𝜇k = (d𝜇k)p, T +
(
𝜕𝜇k

𝜕T

)
nk ,p

dT +
(
𝜕𝜇k

𝜕p

)
nk ,T

dp (16.8.2)

in which

(d𝜇k)p,T =
(
𝜕𝜇k

𝜕n

)
p,T

dnk

is a variation due to concentration only.

In the following, g and h are Gibbs energy and enthalpy densities corresponding to G and H respectively.

In the above, the term(
𝜕𝜇k

𝜕T

)
nk ,p

= 𝜕

𝜕T

(
𝜕g

𝜕nk

)
p,T

=
(
𝜕

𝜕nk

(
𝜕g

𝜕T

))
p,T

= −
(
𝜕s
𝜕nk

)
p,T

Thus we see that Equation (16.8.2) can be written as

d𝜇k = (d𝜇k)p, T − sk dT +
(
𝜕𝜇k

𝜕p

)
nk ,T

dp (16.8.3)
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in which the partial molar entropy sk = (𝜕s∕𝜕nk)p, T (Section 5.5). In this section we will consider systems in

mechanical equilibrium for which dp = 0. Since the variation of any quantity Y with position can be written

as dY = (∇Y) ∙ dr, it follows that using Equation (16.8.3) we can write

∇𝜇k = (∇𝜇k)p, T − sk ∇T

= (∇𝜇k)p, T + skT2∇ 1

T
(16.8.4)

Here we have used the fact that dp = 0 because the system is assumed to be in mechanical equilibrium.

Substituting Equation (16.8.4) into Equation (16.8.1) we obtain

𝜎 =

(
Ju −

w∑
k=1

Jk(𝜇k + Tsk)

)
∙ ∇
(

1

T

)
−

w∑
k=1

Jk ∙
1

T
(∇𝜇k)p, T (16.8.5)

Now, using the relation g = h – Ts, it is easily seen that 𝜇k + Tsk = hk, where hk = (𝜕h∕𝜕nk)p, T is the partial

molar enthalpy. With this identification, a heat current that takes into account matter current can be defined

as

Jq ≡ Ju −
w∑

k=1

hkJk (16.8.6)

In a closed system under constant pressure, the change in enthalpy due to a change in composition is equal

to the heat exchanged with the exterior. In an open system of a fixed volume, the heat exchanged is the

difference between the change in energy and the change in enthalpy due to the matter flow. The vector Jq
defined in Equation (16.8.6) is called the reduced heat flow. In terms of Jq the entropy production may be

written as

𝜎 = Jq ∙ ∇
(

1

T

)
−

w∑
k=1

Jk ∙
(∇𝜇k)T , p

T
(16.8.7)

For simplicity, we shall consider a two-component system so that w = 2. As we noted in Section 16.4

on diffusion, because of the Gibbs–Duhem relation at constant p and T, the chemical potentials are not

independent. From Equation (16.4.5) we have the following relation:

n1(∇𝜇1)p, T + n2(∇𝜇2)p, T = 0 (16.8.8)

In addition, for no volume flow, we have, from Equation (16.4.6), the condition

J1v1 + J2v2 = 0 (16.8.9)

As when obtaining Equation (16.4.8), relations (16.8.8) and (16.8.9) can be used in Equation (16.8.7) to give

𝜎 = Jq ∙ ∇
(

1

T

)
− 1

T

(
1 +

v1n1

v2n2

)
J1 ∙ (∇𝜇1)p, T (16.8.10)

Thus, in place of two matter flows, J1 and J2, we have only independent matter flow J1. We can now write

the phenomenological laws for the flows of heat and matter:

Jq = Lqq∇
(

1

T

)
− Lq 1

1

T

(
1 +

v1n1

v2n2

)
(∇𝜇1)p, T (16.8.11)

J1 = L1q∇
(

1

T

)
− L11

1

T

(
1 +

v1n1

v2n2

)
(∇𝜇1)p, T (16.8.12)
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To relate the terms in this expression to the Fourier law of heat conduction and Fick’s law of diffusion, we

write the gradients as ∇𝜇1 = (𝜕𝜇1∕𝜕n1) ∇n1 and ∇(1∕T) = −(1∕T2) ∇T , so the two flows become

Jq = −
Lqq

T2
∇T − Lq1

1

T

(
1 +

v1n1

v2n2

)
𝜕𝜇1

𝜕n1

∇n1 (16.8.13)

J1 = −
L1q

T2
∇T − L11

1

T

(
1 +

v1n1

v2n2

)
𝜕𝜇1

𝜕n1

∇n1 (16.8.14)

We can now identify the diffusion coefficient and the heat conductivity:

D1 = L11
1

T

(
1 +

v1n1

v2n2

)
𝜕𝜇1

𝜕n1

, 𝜅 =
Lqq

T2
(16.8.15)

and we have the reciprocal relations

Lq1 = L1q (16.8.16)

The cross-flow −(L1q∕T2)∇T is usually written as −n1 DT∇T , in which DT is the coefficient of thermal
diffusion, so that the flow of matter is proportional to n1. The ratio of the thermal diffusion coefficient to the

ordinary diffusion coefficient is the Soret coefficient:

sT =
DT

D1

=
L1q

D1T2n1

(16.8.17)

In a closed system with a temperature gradient (Figure 16.5) a concentration gradient is set up due to the heat

flow. The stationary state concentration gradient can be obtained by setting J1 = 0:

J1 = −
L1q

T2
∇T − D1 ∇n1 = 0 (16.8.18)

Since L1q∕T2 = n1DT, the ratio of the two gradients is

∇n1

∇T
= −

n1DT

D1

= −n1sT (16.8.19)

The Soret coefficient has the dimensions of T−1. It is generally small, in the range 10−2 to 10−3 K−1

for electrolytes, nonelectrolytes and gases [10], but it might become larger in polymer solutions. Thermal

diffusion has been utilized to separate isotopes [11].

T1

n1

T2

Figure 16.5 Thermal diffusion: a temperature gradient and the consequent flow of heat causes a concentration
gradient.
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The heat current carried by a flow of matter is identified by the Dufour coefficient Dd. Since the heat

carried by the matter flow is proportional to the concentration n1, the Dufour coefficient is defined by

n1Dd = Lq1
1

T

(
1 +

v1n1

v2n2

)
𝜕𝜇1

𝜕n1

(16.8.20)

Since L1q∕T2 = n1DT, the Onsager reciprocal relations L1q = Lq1 predict the relation

Dd

DT
= T

(
1 +

v1n1

v2n2

)
𝜕𝜇1

𝜕n1

(16.8.21)

for the ratio of the Dufour and thermal diffusion coefficients. This prediction has been confirmed experimen-

tally.

Thus nonequilibrium thermodynamics gives a unified theory of irreversible processes. Onsager reciprocal

relations are general, valid for all systems in which linear phenomenological laws apply.
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Exercises

16.1 For a positive definite 2 × 2 matrix, show that Equation (16.1.9) must be valid.

16.2 Give examples of the equality (16.2.11) hypothesized by Onsager. Give examples of situations in which

it is not valid.

16.3 Estimate the cross-diffusion current of one component due to a gradient of another from the data given

in Table 16.2 for reasonable gradients.

16.4 Obtain Equation (16.4.7) from Equations (16.4.1) and (16.4.5) and generalize it to many components.

16.5 For diffusion in a three-component system, show that the entropy production is

𝜎 = F1 ∙ J1 + F2 ∙ J2

in which the thermodynamic forces F1 and F2 are

F1 = − 1

T

[
∇𝜇1 +

n1v1

n3v3

∇𝜇1 +
n2v1

n3v3

∇𝜇2

]
and

F2 = − 1

T

[
∇𝜇2 +

n2v2

n3v3

∇𝜇2 +
n1v2

n3v3

∇𝜇1

]
16.6 For diffusion in a three-component system, show that the phenomenological coefficients are given by

Equations (16.4.24) to (16.4.27). (You can obtain this using Mathematica or Maple.)

16.7 For diffusion in a three-component system, write Equations (16.4.17) to (16.4.27) in matrix notation.

16.8 For the chemical reaction CO(g) + 2H2(g) ⇋ CH3OH(g), specify the conditions in which the linear

phenomenological laws may be used.

16.9 Using Equations (16.5.27), (16.5.28) and (16.5.30) show that a linear phenomenological relation

v = (Reff/RT)A (Equation (16.5.31)) can be obtained in which the “effective reaction rate” Reff is given

by

1

Reff

= 1

R1f,eq

+ 1

R2f,eq

+ 1

R3f,eq

+⋯ + 1

R(m+1)f,eq



17
Nonequilibrium Stationary States and Their

Stability: Linear Regime

17.1 Stationary States under Nonequilibrium Conditions

A system can be maintained in a nonequilibrium state through a flow of energy and matter. In the previous

chapter, we have seen some examples of nonequilibrium systems in the linear regime. In this section, we

will study some of these systems in more detail to understand the nature of the nonequilibrium states. In

general, a system that is not in thermodynamic equilibrium need not be in a stationary (time-independent)

state. Indeed, as we shall see in Chapters 18 and 19, systems that are far from equilibrium, for which the linear

phenomenological laws are not valid, can exhibit very complex behavior, such as concentration oscillations,

propagating waves and even chaos. In the linear regime, however, all systems evolve to stationary states in

which there is constant entropy production. Let us consider some simple examples to understand the entropy

production and entropy flow in nonequilibrium stationary states in the linear regime.

17.1.1 Thermal Gradients

Let us consider a system of length L in contact with a hot thermal reservoir at a temperature Th at one end

and a cold thermal reservoir at temperature Tc at the other (Figure 17.1). In Section 3.5, and in more detail in

Chapter 16, we discussed the entropy production due to heat flow but we did not consider entropy balance

in detail. Here we assume that the conduction of heat is the only irreversible process. For this system, using

Table 15.1 for the flows and forces, we see that the entropy production per unit volume is

𝜎 = Jq ∙ ∇
1

T
(17.1.1)

If we assume that the temperature gradient is only in the x direction, 𝜎 per unit length is given by

𝜎(x) = Jqx
𝜕

𝜕x
1

T(x)
= −Jqx

1

T2

𝜕T(x)

𝜕x
(17.1.2)
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Th Tc

Jq

x

Th

Tc

Figure 17.1 A simple thermal gradient maintained by a constant flow of heat. In the stationary state, the entropy
current Js,out = diS/dt + Js,in. The stationary state can be obtained either as a solution of the Fourier equation for
heat conduction or by using the theorem of minimum entropy production. Both lead to a temperature T(x) that
is a linear function of the position x.

The total entropy production

diS

dt
= ∫

L

0

𝜎(x)dx =∫
L

0

Jqx

(
𝜕

𝜕x
1

T

)
dx (17.1.3)

Such a system will reach a state with stationary temperature distribution and a uniform heat flow Jq. (A

stationary temperature T(x) implies that the heat flow is uniform; otherwise there will be an accumulation or

depletion of heat, resulting in a time-dependent temperature.) The evolution of the temperature distribution

can be obtained explicitly by using the Fourier law of heat conduction:

C
𝜕T
𝜕t

= ∇ ∙ Jq, Jq = −𝜅∇T (17.1.4)

in which C is the heat capacity per unit volume and 𝜅 is the coefficient of heat conductivity. The first of

these equations expresses the conservation of energy when the change in energy is entirely due to heat flow.

(For Fourier, who supported the caloric theory, this equation expressed the conservation of caloric.) For a

one-dimensional system, these two equations can be combined to obtain

C
𝜕T
𝜕t

= 𝜅 𝜕
2T
𝜕x2

(17.1.5)

It is easy to see that the stationary state, 𝜕T/𝜕t = 0, is one in which T(x) is a linear function of x (Figure 17.1)

and Jq = constant. A stationary state also implies that all other thermodynamic quantities such as the total

entropy S of the system are constant:

dS
dt

=
deS

dt
+

diS

dt
= 0 (17.1.6)
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The total entropy can be constant only when the entropy flowing out of the system is equal to the entropy

entering the system plus the entropy produced in the system. This can be seen explicitly by evaluating the

integral (17.1.3) (in which Jq is a constant):

diS

dt
= ∫

L

0

Jq

(
𝜕

𝜕x
1

T

)
dx =

Jq

T

|||||
L

0

=
Jq

Tc

−
Jq

Th

> 0 (17.1.7)

We can now identify (Jq/Th) as the entropy flowing into the system, Js,in, and (Jq/Tc) as the entropy flowing

out of the system, Js,out. The entropy exchanged with the exterior is deS/dt = [(Jq/Th) – (Jq/Tc)]. Note that the

positivity of the entropy production requires that Jq be positive. Thus we have the entropy balance

diS

dt
+ (Js,in − Js,out) =

diS

dt
+

deS

dt
= 0 (17.1.8)

Since diS/dt > 0, the entropy exchanged with the exterior is deS/dt = (Js,in – Js,out) < 0. The nonequilibrium

state is maintained through a net outflow of entropy into the outside world; the system discards the entropy

produced by the irreversible processes.

17.1.2 Open Chemical Systems

In an open chemical system that exchanges matter and energy with the exterior, we can identify the energy

and entropy flows associated with the exchange of matter and energy. Using the kinetic equations, we can

obtain the stationary state. As an example, let us consider a chemical system undergoing a monomolecular

reaction such as isomerization:

A
k1f

←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←
k1r

X
k2f

←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←
k2r

B (17.1.9)

The associated entropy production per unit volume is

𝜎 =
A1

T
v1 +

A2

T
v2 > 0 (17.1.10)

in which Ak and vk (k= 1, 2) are the affinities and velocities of the two reactions respectively. As we discussed

in Section 9.5, if Rkf is the forward reaction rate and Rkr is the reverse reaction rate, then

vk = Rkf − Rkr and Ak = RT ln

(
Rkf

Rkr

)
(17.1.11)

We shall assume that the system is well mixed to maintain homogeneous concentrations and temperature. As

illustrated in Figure 17.2, this system is in contact with the reservoir with chemical potentials 𝜇A and 𝜇B, and

the heat of reaction is compensated by a heat flow that keeps the system at a constant temperature.

In a stationary state, the total entropy of the system remains constant, i.e.

dS
dt

=
deS

dt
+

diS

dt
= 0 where

diS

dt
= ∫V

𝜎 dV > 0 (17.1.12)

which means that the entropy exchange with the exterior must be negative:

deS

dt
= −

diS

dt
< 0 (17.1.13)
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JA

A TA

B

B

Jq

JB
A X B

Figure 17.2 An open chemical system in which the chemical potentials 𝜇A and 𝜇B are maintained at a given
nonequilibrium value by an inflow of component A and an outflow of component B. In this system the concen-
tration of X is maintained at a nonequilibrium value. The system is also maintained at a constant temperature by
removal of the heat of reaction.

We can obtain a more explicit expression for the entropy flow deS/dt by integrating the entropy balance

equation 𝜕s∕𝜕t = −∇ ∙ Js + 𝜎 over the volume of the system:

𝜕

𝜕t ∫V
s dV = −∫V

∇ ∙ Js dV + ∫V
𝜎 dV

We can now identify the first term on the right-handside of the above equation as deS/dt. In Section 15.5

(Equation (15.5.7)) we have seen that the entropy current Js is given by

Js =
Ju

T
−
∑

k

𝜇kJk

T
(17.1.14)

in which Ju is the energy flow. Now using the Gauss divergence theorem we can write

deS

dt
= −∮ Js ∙ da = − 1

T ∮ Ju ∙ da +
𝜇A

T ∮ JA ∙ da +
𝜇B

T ∮ JB ∙ da (17.1.15)

in which the integrals indicate integration over the surface enclosing the system.

From Equation (15.5.9) the entropy current can also be written as Js = Jq∕T +
∑

k SkJk, in which the

partial molar entropy is Sk = (𝜕s/𝜕nk)T and Jq is the heat flow. Using the expression for the entropy current,

deS/dt can be written as1

deS

dt
= − 1

T ∮ Jq ∙ da + ∮ SAJA ∙ da + ∮ SBJB ∙ da < 0 (17.1.16)

This means that heat and chemical species flowing out of the system must carry more entropy than the species

entering the system. If the reaction is exothermic, there is a net heat flow out of the system. If the enthalpy

of reaction is very small, then the entropy of the species flowing out of the system must be larger than the

entropy of the species flowing into the system.

1Note that the units of SA and SB are entropy mol−1.



Nonequilibrium Stationary States and Their Stability: Linear Regime 389

The stationary value of [X] is easily obtained from the kinetic equations:

d[X]

dt
= v1 − v2 = (R1f − R1r) − (R2f − R2r)

= k1f[A] − k1r[X] − k2f[X] + k2r[B]
(17.1.17)

Though it is more common to write the kinetic equations (17.1.17) in terms of concentrations, writing them in

terms of velocities is more general – for it does not presume a rate law – and more convenient for formulating

the thermodynamics of chemical reactions. The stationary state solution, d[X]/dt = 0, for (17.1.17) is simply

v1 = v2 (17.1.18)

or

[X] =
k1f [A] + k2r[B]

k1r + k2f

(17.1.19)

If we have a series of coupled reactions:

X
1

⟶⟵ W1

2
⟶⟵ W2

3
⟶⟵ ⋯Wn−1

n
⟶⟵ Y (17.1.20)

with an inflow of M and an outflow of N, the above result for the steady state can be generalized to

(Exercise 17.4)

v1 = v2 = ⋯ = vn (17.1.21)

in which the 𝜐k are velocities of the indicated reactions.

17.1.3 Entropy Production in Electrical Circuit Elements

The irreversible conversion of electrical energy into heat in electrical circuit elements, such as resistors,

capacitors and inductances, also leads to entropy production. The thermodynamic formalism of circuit

elements can be developed by considering the changes in the energies associated with them. Section 10.1

showed that in the presence of a field we have

dU = T dS − p dV +
∑

k

𝜇k dNk+
∑

k

Fzk𝜙k dNk (17.1.22)

in which F is the Faraday constant and zk the ion number; Fzk dNk represents the amount of charge transferred,

dQ. If this charge is transferred from a potential𝜙1 to a potential𝜙2 by an irreversible process within a system,

the entropy production is

diS

dt
= 1

T

∑
k

𝜇k
dNk

dt
−

(𝜙2 − 𝜙1)

T

∑
k

Fzk
dNk

dt

= 1

T

∑
k

Akvk −
(
𝜙2 − 𝜙1

)
T

dQ
dt

(17.1.23)

The first term is the entropy production due to chemical reactions, which can be dropped when considering

only electrical circuit elements. For a resistor and a capacitor, (𝜙1 – 𝜙2) in the second term may be identified

as the voltage V across the element and dQ/dt as the electric current I. If R is the resistance, according to

Ohm’s law, the voltage across the resistor VR = (𝜙1 – 𝜙2) = IR. The entropy production is

diS

dt
=

VRI

T
= RI2

T
> 0 (17.1.24)
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In this expression RI2 is the well-known ohmic heat produced per unit time by a current passing through a

resistor. The entropy production is simply the rate of ohmic heat generation divided by the temperature.

For a capacitor with capacitance C, the voltage decreases by dVC with the transfer of charge dQ is given

by dVC = −dQ/C. The entropy production is therefore

diS

dt
=

VCI

T
=

VC

T
dQ
dt

= −C
T

VC

dVC

dt

= − 1

T
d

dt

(
CV2

C

2

)
= − 1

T
d

dt

(
Q2

2C

)
> 0

(17.1.25)

where the term CV2
C
∕2 = Q2∕2C is the electrostatic energy stored in a capacitor. The entropy production is

the rate of loss of this energy divided by its temperature. An ideal capacitor, once charged, will keep its charge

indefinitely. Within such an ideal capacitor there is no dissipation of energy or entropy production. However,

all real capacitors will eventually lose their charge and reach equilibrium; Equation (17.1.25) corresponds to

the entropy production due to this irreversible process. (The internal discharging of a capacitor is the reaction

e− + M+ → M, in which M are the atoms that carry the charge. Note also that the flow of charge into a

capacitor by the application of an external voltage corresponds to deS.)
The entropy production due to an inductance can be written in a similar manner, by noting that the energy

stored in an inductance L carrying current I is equal to LI2/2 and the voltage across it is VL = – L dI/dt (Exercise

17.5). This energy is stored in the magnetic field. The entropy production associated with the dissipation of

this energy is

diS

dt
= − 1

T
d

dt

(
LI2

2

)
= −LI

T
dI
dt

=
VLI

T
> 0 (17.1.26)

As in the case of an ideal capacitor, in an ideal inductance there is no loss of energy; a current once started

will continue to exist indefinitely, as if in a perfect superconductor. In real inductances, however, the current

decays with time. The entropy production for this irreversible process is given by Equation (17.1.26).

The entropy production in circuit elements (Equations (17.1.24) to (17.1.26)) is in the form of a product

of a thermodynamic force and a flow. In each case we can write the following linear phenomenological law

relating the flows and the forces:

I = LR

VR

T
(17.1.27)

I = LC

VC

T
(17.1.28)

I = LL

VL

T
(17.1.29)

in which LR, LC and LL are linear phenomenological coefficients. In the case of the resistor, we identify

(LR/T) with the resistance (1/R), in accordance with Ohm’s law. For the capacitor we may think of an

internal resistance RC = (T/LC) that represents the slow dissipation of the charge. Equation (17.1.28) may be

represented by an equivalent circuit (Figure 17.3). By replacing I with dQ/dt in Equation (17.1.28) we obtain

a differential equation for the decay of the charge in the capacitor. Similarly, for the inductance, we identify

the internal resistance by RL = (T/LL). Equation (17.1.29) represents the irreversible decay of current in an

inductance. In all three cases the entropy production is equal to the product of the voltage and the current

divided by the temperature.
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R

VR

RC

VC

C
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L

Figure 17.3 Elementary circuit elements, such as a resistor R, a capacitor C and an inductance L, also dissipate
energy and produce entropy. In the thermodynamic formalism there are no ideal circuit elements with no dissipa-
tion of energy. Linear phenomenological laws give expressions for the rate of entropy production and dissipation
of energy.

17.2 The Theorem of Minimum Entropy Production

In the previous section we have seen some examples of nonequilibrium stationary states in which one or more

thermodynamic forces were maintained at a nonzero value. In the case of heat conduction, using Fourier’s

law of heat conduction (17.1.5), we found that the stationary state corresponded to a constant heat flow. In an

open chemical system (17.1.9) in which the concentrations of A and B were maintained constant, using the

kinetic equation (17.1.17) we found that in the stationary state the velocities of the two reactions were equal.

This result could be extended to the case of many intermediates (17.1.20), in which case all the velocities of

the reactions will be equal in the stationary state.

In terms of a general formalism, in the previous chapter we have seen how different flows Jk, k = 1, 2,…, n,

are coupled to the thermodynamic forces Fk in the linear regime. A system may be maintained away from

equilibrium by constraining some forces Fk, k = 1, 2, . . ., s, to be at a fixed nonzero value, while leaving the

remaining forces Fk, k= s+ 1, . . ., n, free. In such systems, one often finds that the flows corresponding to the

constrained forces reach a constant, Jk = constant, k = 1, 2, . . ., s, whereas the unconstrained forces adjust so

as to make their corresponding flows zero, Jk = 0, k = s + 1, . . ., n. An example is thermal diffusion in which

the stationary state corresponds to zero matter flow and constant heat flow (Figure 16.5). In the linear regime,

where the Onsager reciprocal relations are valid, all stationary states in which unconstrained thermodynamic

flows vanish are characterized by the following general extremum principle [1, 2]:

In the linear regime, the total entropy production in a system subject to flow of energy and matter,

diS∕dt = ∫ 𝜎 dV , reaches a minimum value at the nonequilibrium stationary state.

Such a general criterion was sought by Lord Rayleigh, who suggested a ‘principle of least dissipation of

energy’ [3]. Lars Onsager (1903–1976), in his well-known article on the reciprocal relations, comments on

this principle and suggests that ‘the rate of increase of entropy plays the role of a potential’ [4]. The general

formulation and the demonstration of the validity of this principle is due to Prigogine [1]. Let us look at the

proof of this theorem and some examples that demonstrate its application.
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For the case of coupled forces and flows, the principle of minimum entropy production can be demonstrated

as follows. Consider a system with two forces and flows that are coupled. For notational convenience, we

shall represent the total entropy production per unit time by P. Therefore,

P ≡ diS

dt
= ∫ (F1J1 + F2J2)dV (17.2.1)

Let us assume that the force F1 is maintained at a fixed value by a suitable nonequilibrium constraint (contact

with a reservoirs, for example). Using kinetic equations that relate the rate of change of state variables to the

flows close to equilibrium, one generally finds that in the stationary state J1 = constant and J2 = 0; i.e. for a

fixed value of F1, F2 adjusts so that J2 is zero. We now show that this stationary state corresponds to the state

in which the entropy production P is minimized.

The linear phenomenological laws give

J1 = L11F1 + L12F2 and J2 = L21F1 + L22F2 (17.2.2)

Substituting Equations (17.2.2) into Equation (17.2.1) and using the Onsager reciprocal relations L12 = L21,

we obtain

P = ∫
(
L11F2

1
+ 2L12F1F2 + L22F2

2

)
dV (17.2.3)

From Equation (17.2.3) it follows that, for a fixed F1, P as a function of F2 is minimized when

𝜕P
𝜕F2

= ∫ 2(L22F2 + L21F1)dV = 0 (17.2.4)

Since this equation is valid for an arbitrary volume, the integrand must equal zero. By noting that J2 = L21F1 +
L22F2, we see at once that the entropy production is minimized when

J2 = L21F1 + L22F2 = 0 (17.2.5)

That is, P ≡ diS/dt is minimized when the flow J2 corresponding to the unconstrained force F2 vanishes.

This result can easily be generalized to an arbitrary number of forces and flows. The stationary state is

the state of minimum entropy production in which the flows Jk, corresponding to the unconstrained forces,

are zero. Although nonequilibrium stationary states are generally obtained through kinetic considerations,

minimization of entropy production provides an alternative way.

We shall now present examples to illustrate the general applicability of the theorem of minimum entropy

production.

17.2.1 Example 1: Stationary States in Chemical Systems

Consider the chemical system (17.1.9) discussed in the previous section (Figure 17.2):

A
1

←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← X
2

←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← B (17.2.6)

As before, the flows of A and B keep the chemical potentials 𝜇A and 𝜇B fixed, which implies that the sum of

the affinities has a fixed value, A, not one of the two affinities:

A1 + A2 = (𝜇A − 𝜇X) + (𝜇X − 𝜇B) = 𝜇A − 𝜇B ≡ A = constant (17.2.7)

In the previous section, by using kinetics, we have already seen that the nonequilibrium stationary state is

completely specified by Equation (17.1.18):

v1 = v2 (17.2.8)
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We shall now show how this condition may also be obtained using the principle of minimum entropy

production. The entropy production per unit volume for this system (which we assume is homogeneous) is

1

V

diS

dt
= P

V
= 𝜎 =

A1

T
v1 +

A2

T
v2

=
A1

T
v1 +

(A − A1)

T
v2

(17.2.9)

in which V is the system volume and in which we have included the constraint A, which is constant. The

value of the chemical potential (or concentration) of X in the stationary state determines the value of A1, and

hence the value of the entropy production (17.2.9). We will now minimize the entropy production and obtain

(17.2.8). In the linear regime, since the two reactions are independent, we have

v1 = L11

A1

T
, v2 = L22

A2

T
= L22

(A − A1)

T
(17.2.10)

in which we have used Equation (17.2.7). Substituting Equations (17.2.10) into Equation (17.2.9) we obtain

𝜎 as a function of A1:

𝜎(A1) = L11

A2
1

T2
+ L22

(A − A1)2

T2
(17.2.11)

This function reaches its minimum value when

𝜕𝜎(A1)

𝜕A1

=
L11

T2
2A1 −

L22

T2
2(A − A1) = 0 (17.2.12)

i.e.

L11A1

T
−

L11A2

T
= v1 − v2 = 0 (17.2.13)

In the linear regime, the entropy production is minimized at the nonequilibrium stationary state.

Alternatively, we may describe the system with the following set of affinities and velocities: A′1 = (A1 +
A2)/2, A′2 = (A1 – A2)/2, v′1 = (v1 + v2)/2, v′2 = (v1 – v2)/2. The rate of entropy production in terms of these

affinities and velocities is 𝜎 = 2( A′1 v′1 + A′2 v′2). In this case, A′1 is constrained and the flow corresponding

to the affinity A′2 will be zero at steady state: v′2 = (v1 – v2)/2 = 0 (as was the case in the proof of the theorem

presented above).

We have expressed 𝜎 as a function of A1. It is not necessary to express 𝜎 in terms of the affinities of the

system, though it is convenient; 𝜎 can also be expressed in terms of the concentration [X]. The value of [X]

that minimizes 𝜎 is the stationary state. We shall outline the main steps in this alternative demonstration of

the principle, leaving some details as exercises.

In Section 9.5 we have seen that the entropy production per unit volume for the two reactions (17.2.6) can

also be written as

1

V

diS

dt
= 𝜎 = R{(R1f − R1r) ln (R1f∕R1r) + (R2f − R2r)ln (R2f∕R2r)} (17.2.14)

in which Rkf and Rkr are the forward and reverse reaction rates of reaction k and R is the gas constant. Now

if these forward and reverse reaction rates are written in terms of the concentrations, we have an expression
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for 𝜎 in terms of the concentrations. Assuming reactions in (17.2.6) are elementary steps, the rates may be

written as

R1f = k1f[A], R1r = k1r[X], R2f = k2f[X], R2r = k2r[B] (17.2.15)

At equilibrium, each reaction is balanced by its reverse. The equilibrium concentrations of [A] eq, [X]eq and

[B]eq are easily evaluated using the principle of detailed balance:

[X]eq =
k1f

k1r

[A]eq =
k2r

k2f

[B]eq (17.2.16)

We now define small deviations in concentrations from the equilibrium state:

𝛿A = [A] − [A]eq, 𝛿X = [X] − [X]eq, 𝛿B = [B] − [B]eq (17.2.17)

The deviations in [A] and [B] are due to the inflow of A and the outflow of B, so 𝛿A and 𝛿B are fixed by

the flows. Only the concentration 𝛿X is determined by the chemical reactions. Using Equations (17.2.17)

in Equation (17.2.14), the entropy production 𝜎 to the leading order in deviations (17.2.17) may be written

(Exercise 17.8) as

𝜎(𝛿X) = R

{
(k1f𝛿A − k1r𝛿X)2

k1f[A]eq

+
(k2f𝛿X − k2r𝛿B)2

k2f[X]eq

}
(17.2.18)

By setting 𝜕𝜎/𝜕𝛿X = 0, the value of 𝛿X that minimizes 𝜎 can easily be shown to be

𝛿X =
k1f𝛿A + k2r𝛿B

k1r + k2f

(17.2.19)

(This is another way of expressing Equation (17.2.8)). That 𝛿X given by Equation (17.2.19) is identical to

the stationary value can easily be verified. The kinetic equation for [X] that follows from the two reactions

(17.2.6) is

d[X]

dt
= k1f[A] − k1r[X] − k2f[X] + k2r[B] (17.2.20)

Substituting Equations (17.2.17) into Equation (17.2.20) gives the stationary state

d[X]

dt
= k1f𝛿A − k1r𝛿X − k2r𝛿X + k2r𝛿B = 0 (17.2.21)

The solution 𝛿X of this equation is identical to Equation (17.1.19). Thus the stationary value of 𝛿X is also the

value for which the entropy production is minimized.

17.2.2 Example 2: A Sequence of Chemical Reactions

The principle of minimum entropy production can easily be demonstrated for more complex chemical systems.

Example 1 can be generalized to an arbitrary number of intermediates:

X
1

←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← W1

2
←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← W2 ←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←← ⋯ ←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←← Wn−1

n
←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← Y (17.2.22)

The entropy production in this case is

1

V

diS

dt
= 𝜎 1

T
(v1A1 + v2A2 +⋯ + vnAn) (17.2.23)
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We assume that the system is homogeneous, so we may assume the volume V = 1 without loss of generality.

The affinity A of the net reaction X ←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←← Y is the sum of the affinities of the constituent reactions:

A =
n∑

k=1

Ak (17.2.24)

The inflow of X and outflow of Y keeps A at a fixed nonzero value, keeping the system away from thermody-

namic equilibrium. This nonequilibrium constraint can be made explicit by writing An = (A −
∑n−1

k=1 Ak) and

substituting it in Equation (17.2.23). We then have 𝜎 as a function of (n – 1) independent affinities Ak:

𝜎 = 1

T

(
v1A1 + v2A2 +⋯ + vn−1An−1 + vn

(
A −

n−1∑
k−1

Ak

))
(17.2.25)

Now, using the linear phenomenological laws, 𝜐k = Lkk (Ak/T), in this equation, we obtain

𝜎 = 1

T2

⎛⎜⎜⎝L11A2
1
+ L22A2

2
+⋯ + L(n−1) (n−1)A

2
n−1

+ Lnn

(
A −

n−1∑
k=1

Ak

)2⎞⎟⎟⎠ (17.2.26)

An elementary calculation shows that the condition for minimum entropy production 𝜕𝜎/𝜕Ak = 0 leads to vk =
vn. Since this is valid for all k, we have the following generalization of Equation (17.2.8):

v1 = v2 = ⋯ = vn−1 = vn (17.2.27)

Since the kinetic equations for (17.2.22) are

d[Wk]

dt
= vk − vk+1 (17.2.28)

it is clear that the stationary states d[Wk]/dt = 0 are identical to the states that minimize entropy production.

17.2.3 Example 3: Coupled Chemical Reactions

As an example of a chemical reaction in which one of the affinities is unconstrained by the nonequilibrium

conditions, let us consider the synthesis of HBr from H2 and Br2. In this case we expect the velocity of the

unconstrained reaction to equal zero at the stationary state. We assume that the affinity of the net reaction

H2 + Br2 ←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←← 2HBr (17.2.29)

is maintained at a fixed nonzero value by a suitable inflow of H2 and Br2 and removal of HBr. The intermediates

of the reaction, H and Br, appear through the reactions

Br2

1
←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← 2Br (17.2.30)

Br + H2

2
←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← HBr + H (17.2.31)

Br2 + H
3

←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← HBr + Br (17.2.32)

The affinity of the net reaction (17.2.29) is

A2 + A3 = A (17.2.33)
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which we assume is kept at a nonzero value. The affinity A1 of reaction (17.2.30) is not constrained. The

entropy production per unit volume for this system is

𝜎 = 1

T

(
v1A1 + v2A2 + v3A3

)
= 1

T

(
v1A1 + v2A2 + v3

(
A − A2

)) (17.2.34)

Again we shall assume a homogeneous system with V = 1, so that minimizing 𝜎 is equivalent to minimizing

the total entropy production P. As was done above, using the phenomenological laws 𝜐k = Lkk (Ak/T) and

setting 𝜕𝜎/𝜕Ak = 0 for the two independent affinities A1 and A2, we see that the entropy production is

extremized when

v1 = 0 and v2 = v3 (17.2.35)

This must also be the stationary state. Turning to the kinetic equations for H and Br, we have

d[H]

dt
= v2 − v3 (17.2.36)

d[Br]

dt
= 2v1 − v2 + v3 (17.2.37)

The stationary states of these equations are the same as Equations (17.2.35).

17.2.4 Example 4: Stationary States in Thermal Conduction

As an example of a continuous system, let us look at stationary states in heat conduction using the system we

considered in Figure 17.1. For a one-dimensional system the entropy production is

P ≡ diS

dt
= ∫

L

0

Jq

(
𝜕

𝜕x
1

T

)
dx (17.2.38)

Using the linear phenomenological law Jq = Lqq 𝜕(1/T)/𝜕x, the above expression can be written as

P = ∫
L

0

Lqq

(
𝜕

𝜕x
1

T

)2

dx (17.2.39)

Among the possible functions T(x), our goal is to identify the function that minimizes the entropy production

P. This can be done using the following basic result from the calculus of variations. The integral

I = ∫
L

0

Λ(f (x), ḟ (x))dx (17.2.40)

in which the integrand Λ(f (x), ḟ (x)), a function of f and its derivative ḟ ≡ 𝜕f∕𝜕x (for notational convenience

we shall use ḟ in place of 𝜕f/𝜕x), is extremized when the function f(x) is a solution of the following well-known

Euler–Lagrange equation in the calculus of variations:

d

dx
𝜕Λ
𝜕ḟ

− 𝜕Λ
𝜕f

= 0 (17.2.41)

In applying this result to the entropy production (17.2.39), we identify f with (1/T) so that Λ = Lqqḟ 2. Also,

as was discussed in Section 16.3 (Equation (16.3.6)), in this calculation we assume that Lqq = 𝜅T2 ≈ 𝜅T2
avg

(in which 𝜅 is the thermal conductivity and Tavg is the average temperature) is approximately constant in
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accordance with the linear approximation. Then writing Equation (17.2.41) for the entropy production, we

obtain

d

dx
Lqqḟ = 0 (17.2.42)

Because we identified f with (1/T), this condition implies

Lqqḟ = Lqq
𝜕

𝜕x
1

T
= Jq = constant (17.2.43)

Since Lqq ≈ 𝜅T2
avg, this condition can also be written as

𝜕T
𝜕x

= constant (17.2.44)

Thus the function T(x) that minimizes the entropy production P is linear in x; i.e. the entropy production is

minimized when the heat current reaches a uniform value along the length of the system. This result has a

formal similarity with the velocities of a sequence of coupled reactions all being constant along the reaction

chain (Example 2). As expected, the stationary state obtained in the previous section using the heat conduction

equation (17.1.5) is identical to Equation (17.2.44).

A nice experimental demonstration of the evolution of an initial distribution of T(x) to a stationary

distribution, decreasing the rate of entropy production to its minimum value along the way, can be found in

Reference [5].

17.2.5 Example 5: Stationary States in Electrical Circuit Elements

In the previous section we have seen that the entropy production for electrical circuit elements is given by T
diS/dt = VI, in which V is the voltage across the circuit element and I the current passing through it. For each

element k, the phenomenological laws imply that Ik = Lkk (Vk/T). Let us consider n circuit elements connected

in series, as shown in Figure 17.4 (C). We assume that the total voltage drop V across the whole circuit is

maintained at a constant value (just as a constant temperature was maintained for thermal conduction):

V =
n∑

k=1

Vk (17.2.45)

The total entropy production for such a system will then be

P =
diS

dt
= 1

T
(V1I1 + V2I2 +⋯ + VnIn)

= 1

T2

⎛⎜⎜⎝L11V2
1
+ L22V2

2
+⋯ + L(n−1) (n−1)V

2
n−1

+ Lnn

(
V −

n−1∑
k=1

Vk

)2⎞⎟⎟⎠
(17.2.46)

in which we have used Equation (17.2.45) to eliminate Vn. This equation is similar to Equation (17.2.26),

obtained for a sequence of chemical reactions in which the Vk take the place of the affinities Ak. We may now

minimize the entropy production with respect to the (n – 1) independent Vk by setting 𝜕P/𝜕Vk = 0. The result,

as in the case of chemical reactions, is that the flows Ik must be equal:

I1 = I2 = ⋯ = In (17.2.47)

Thus, in a circuit element, the entropy production is minimized when the current is uniform along the

circuit. (Feynman [6] indicates that he has observed this relation between entropy production and uniformity

of electric current.) In the analysis of electrical circuits, the condition that the current should be uniform
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(A)

(B)

(C)

V1 I1 V1 I1 Vn In

V

I1 = I2 n

Th
Tc

Jq

Jq = constant

Figure 17.4 For a nonequilibrium system consisting of a series of coupled subsystems, the entropy production
in the linear regime is minimized when all the flows are equal. It is also the stationary state.

is usually imposed on the system because we do not observe any charge accumulation in any part of the

system. In electrical systems the relaxation to the stationary state of uniform I is extremely rapid, and hence

nonuniform or discontinuous I are not observed.

Examples 2, 4 and 5 illustrate a common feature implied by the principle of minimum entropy production

(Figure 17.4): in a series of coupled systems, entropy production is extremized when the flows are equal. In

a chemical reaction it was the velocity vk; for heat conduction it was the heat flow Jq; for an electric circuit it

is the electric current Ik.

17.3 Time Variation of Entropy Production and the Stability of Stationary States

In the previous section we have seen that the stationary states in the linear regime are also states that extremize

the internal entropy production. We shall now consider the stability of these states and also show that the

entropy production is minimized. In Chapter 14 we saw that the fluctuations near the equilibrium state decrease

the entropy and that the irreversible processes drive the system back to the equilibrium state of maximum

entropy. As the system approaches the state of equilibrium, the entropy production approaches zero. The

approach to equilibrium can be described not only as a steady increase in entropy to its maximum value but

also as a steady decrease in entropy production to zero. It is this latter approach that naturally extends to the

linear regime, close to equilibrium.
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Let us look at the time variation of the entropy production due to chemical reactions in an open system in

the linear regime. As before, we assume homogeneity and unit volume. The entropy production is

P ≡ diS

dt
=
∑

k

Ak

T

d𝜉k

dt
=
∑

k

Ak

T
vk (17.3.1)

In this equation, all the affinities Ak are functions of p, T and the extents of reaction 𝜉k. In the linear regime,

since vk =
∑

i Lki(Ai∕T), Equation (17.3.1) becomes

P =
∑
ik

Lik

T2
AiAk (17.3.2)

The time derivative of P can now be explicitly written by noting that at constant p and T,

dAk

dt
=
∑

j

(
𝜕Ak

𝜕𝜉j

)
p,T

d𝜉j

dt
(17.3.3)

Thus we find

dP
dt

= 1

T2

∑
ijk

Lik

[
Ak

(
𝜕Ai

𝜕𝜉j

)
d𝜉j

dt
+ Ai

(
𝜕Ak

𝜕𝜉j

)
d𝜉j

dt

]
(17.3.4)

By using the Onsager reciprocal relations Lik = Lki and identifying d𝜉k∕dt ≡ vk =
∑

i Lki(Ai∕T), Equation

(17.3.4) can be reduced to

dP
dt

= 2

T

∑
ij

(
𝜕Ai

𝜕𝜉j

)
vivj (17.3.5)

P

Peq = 0
t

(a)

P

Pst

t
(b)

Figure 17.5 The time variation of the entropy production P = diS∕dt =
∑

k FkJk for equilibrium and near-
equilibrium states. (a) For a fluctuation from the equilibrium state, the initial nonzero value of P decreases to
its equilibrium value of zero. (b) In the linear regime, a fluctuation from a nonequilibrium steady state can only
increase the value of P above the stationary value Pst; irreversible processes drive P back to its minimum value Pst.
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To see that Equation (17.3.5) is negative, we turn to the stability conditions in Chapter 14, in particular to the

following condition (14.1.9b) for stability with respect to fluctuations 𝛿𝜉𝜄 in the extents of reaction:

ΔiS =
1

2T

∑
ij

(
𝜕Ai

𝜕𝜉j

)
eq

𝛿𝜉i 𝛿𝜉j < 0 (17.3.6)

Since 𝛿𝜉k can be positive or negative, condition (17.3.6) for stability of the equilibrium state implies that

the matrix (𝜕Ai/𝜕𝜉j)eq must be negative definite. In a neighborhood of the equilibrium state, (𝜕Ai/𝜕𝜉j) would

retain its negative definiteness. Then, in this neighborhood, expression (17.3.5) must also be negative definite.

Hence in the neighborhood of equilibrium we have the inequalities

P > 0 (17.3.7)

dP
dt

= 2

T

∑
ij

(
𝜕Ai

𝜕𝜉j

)
vivj < 0 (17.3.8)

close to the equilibrium state (Figure 17.5). At the stationary state, P has its minimum value. If a fluctuation

drives P to a higher value, irreversible processes drive P back to its minimum stationary value. The result

dP/dt < 0 for nonequilibrium states can be more generally proved [7]. The two conditions (17.3.7) and

(17.3.8) constitute the ‘Lyapunov conditions’ for the stability of a state, a topic we will discuss in detail in

the next chapter.
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Exercises

17.1 (a) Using the Fourier law Jq = – 𝜅∇T, obtain the time-dependent equation for heat conduction:

C
𝜕T
𝜕t

= 𝜅∇2T

in which C is the heat capacity per unit volume.
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(b) For a one-dimensional system, show that the stationary state of the system leads to a linear

temperature distribution.

R1

T1

R2

T2

Jq

(c) In planets the core is hotter than the surface. Consider a sphere of radius R whose core of radius

R1 is at a higher temperature T1 than the surface temperature T2. Obtain the stationary distribution

of T(r) and the heat flux Jq as a function of the radial distance r, using the Fourier law of heat

conduction. (The conductivity of the Earth cannot account for the heat flux measured at the

surface of the Earth. The transport of heat is therefore thought to be due to convective processes

within the Earth.)

17.2 (a) Using the relation sm = smo + CmV ln T for the molar entropy of a system, in which CmV is the

molar heat capacity, obtain an expression for the total entropy of the system shown in Figure

17.1. Let 𝜌 be the density and M the molar mass. Assume that the distance between the hot and

cold ends is L and that the area of cross-section is unity. Also assume that the density 𝜌 does not

change much with T so that it is nearly uniform.

(b) Suppose the system were suddenly removed from being in contact with the reservoirs and then

insulated so that no heat escaped.

(i) What would the final temperature of the system be when it reaches equilibrium?

(ii) What would be the final entropy of the system?

(iii) What would be the increase in entropy compared to the initial nonequilibrium state?

17.3 Write a Mathematica code to simulate the reaction

d[X]

dt
= k1f[A] − k1r[X] − k2f[X] + k2r[B]

Use it to study the relaxation of [X] and the entropy production 𝜎 to its stationary value assuming that

[A] and [B] are constant.

17.4 For a series of chemical reactions

M
1

←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← X1

2
←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← X2 ←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←← ⋯ ←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←← Xn−1

n
←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← N

with an inflow of M and an outflow of N, show that the steady state is given by

v1 = v2 = ⋯ = vn

in which the vk are velocities of the indicated reactions.
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17.5 Consider an ideal capacitor C in series with an inductance L.

L

C

The voltage across the capacitor is VC = –Q/C; the voltage across the inductance is VL = –L dI/dt.
For the shown circuit, the sum of these two voltages must be zero, i.e. VC + VL = 0. Using this fact,

write a differential equation for Q and show that the quantity (LI2/2 + Q2/2C) is constant in time. (The

conservation of energy here is similar to that of a simple harmonic oscillator.) If a resistor R is added

to the circuit, show that the equation dU/dt = – VRI leads to the well-known equation L d2Q/dt + R
dQ/dt + Q/C = 0 of an LCR circuit.

17.6 Using Equations (17.1.28) and (17.1.29) obtain the time variation of I(t) and Q(t) in a real capacitor

and a real inductance. Using these expressions in Equations (17.1.25) and (17.1.26) obtain the entropy

production at any time t in these circuit elements with initial current I0 and initial charge Q0.

17.7 Demonstrate the theorem of minimum entropy production for an arbitrary number of constrained and

unconstrained thermodynamic forces.

17.8 Consider the chemical reaction A
1

←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← X
2

←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←← B.

(a) Show that the entropy production per unit volume is

𝜎(𝛿X) = R

{
(k1f𝛿A − k1r𝛿X)2

k1f[A]eq

+
(k2f𝛿X − k2r𝛿B)2

k2f[X]eq

}
in which 𝛿A = [A] − [A]eq, 𝛿B = [B] − [B]eq, 𝛿X = [X] − [X]eq.

(b) Show that 𝜎 attains a minimum value for

𝛿X =
k1f𝛿A + k2r𝛿B

k1r + k2f
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18
Nonlinear Thermodynamics

18.1 Far-from-Equilibrium Systems

Systems that are subject to a flow of energy and matter can be driven far from thermodynamic equilibrium, into

the ‘nonlinear’ regime. In the nonlinear regime, the thermodynamic flows J𝛼 are no longer linear functions of

thermodynamic forces F𝛼 . In the case of chemical reactions, we have seen that a system is in the linear regime

if the affinities Ak are small compared to RT, i.e. |Ak/RT| ≪ 1. The value of RT at T = 300 K is about 2.5 kJ

mol−1. Since the affinities of chemical reactions can easily reach the range 10–100 kJ mol−1, the nonlinear

regime is easily reached for chemical processes (Exercise 18.1). It is more difficult to reach the nonlinear

regime for transport processes such as heat conduction and diffusion.

In Nature, far-from-equilibrium systems are ubiquitous. The Earth as a whole is an open system subject to

the constant flow of energy from the Sun. This influx of solar energy sustains the biosphere, and is ultimately

responsible for maintaining an atmosphere out of thermodynamic equilibrium (Exercise 18.2). Every living

cell lives through the flow of matter and energy.

As we shall see in the following sections, far-from-equilibrium states can lose their stability and evolve

to one of the many states available to the system. Irreversible processes and the boundary conditions do not

uniquely specify the nonequilibrium state to which the system will evolve; driven by internal fluctuations or

other small external influences, the system leaves the unstable state and evolves to one of the many possible

new states. These new states can be highly organized and are called dissipative structures.
Dissipative structures behave in an unpredictable way. Small external influences play a significant role;

causes that determine the behavior of the system are no longer within the system. It becomes extremely

difficult, if not impossible, to approximate such systems as isolated or closed systems. As for the certainty

of Newtonian and Laplacian planetary motion and the uniqueness of equilibrium states, both begin to fade;

we see instead a probabilistic Nature that generates new organized structures, a Nature that can create living

organisms.

18.2 General Properties of Entropy Production

In the linear regime we saw that the stationary states are those in which the total entropy production

P = ∫V 𝜎 dV reaches a minimum. This criterion also assured the stability of the stationary state. In the

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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far-from-equilibrium nonlinear regime, there is no such general principle for determining the state of the

system. Far-from-equilibrium states can become unstable and evolve to new organized states and we will

identify the thermodynamic conditions under which this may happen.

We begin by noting some general properties of the total entropy production P. These are statements

regarding the time evolution of change 𝛿P due to small changes in the forces 𝛿Fk and the flows 𝛿Jk. Let P be

the entropy production in a nonequilibrium stationary state. Since P = ∫V 𝜎 dV = ∫V

∑
k Fk Jk dV , the rate of

change in P can be written as

dP
dt

= ∫V

(
d𝜎

dt

)
dV = ∫V

(∑
k

dFk

dt
Jk

)
dV + ∫V

(∑
k

Fk
dJk

dt

)
dV

≡ dFP

dt
+

dJP

dt

(18.2.1)

in which dFP/dt is the change due to the changes in Fk and dJP/dt is the change due to the changes in Jk. Two

general properties can now be stated [1–3]:

a. In the linear regime:

dFP

dt
=

dJP

dt
(18.2.2)

b. For time-independent boundary conditions, even outside the linear regime:

dFP

dt
≤ 0 (18.2.3)

(dFP/dt = 0 at the stationary state).

In contrast to the variation dG in the Gibbs free energy G, dFP is not a differential of a state function. Hence

the fact that dFP can only decrease does not tell us how the state will evolve.

The first of the above relations follows from the linear relations Jk =
∑

i LkiFi and the Onsager reciprocal

relations Lki = Lik. First we note that∑
k

dFk Jk =
∑

ki

dFk LkiFi =
∑

ki

(dFk Lik) Fi =
∑

i

dJiFi (18.2.4)

Using this result in the definitions of dFP and dJP in Equation (18.2.1), we immediately see that

dFP

dt
= ∫V

(∑
k

dFk

dt
Jk

)
dV = ∫V

(∑
k

Fk
dJk

dt

)
dV =

dJP

dt
= 1

2

dP
dt

(18.2.5)

The general property (18.2.3) when applied to Equation (18.2.5) gives us the result we have seen in the

previous chapter:

dP
dt

= 2
dFP

dt
< 0 in the linear regime (18.2.6)

This shows, once again, that a perturbation in the total entropy production P from its stationary state value

will monotonically decrease to its stationary state value, in accordance with the principle of minimum entropy

production. A simple proof of Equation (18.2.3) is given in Appendix 18.1.
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We see that we now have two inequalities, P ≥ 0 and dFP ≤ 0. The second inequality is an important

evolution criterion. Let us indicate briefly two consequences for a homogeneous system of unit volume.

If only one concentration, say X, is involved in the evolution, dFP = v(X) (𝜕A∕𝜕X) dX ≡ dW. The variable

W, thus defined, is then a ‘kinetic potential’. However, this is rather an exceptional case. The interesting

consequence is that time-independent constraints may lead to states that are not stationary, states that oscillate

in time. We shall see examples of such systems in Chapter 19, but let us consider here a simple example of

a far-from-equilibrium chemical system where the dependence of velocities on affinities are antisymmetric,

i.e. v1 = lA2, v2 = −lA1 (Onsager’s relations are not valid for systems far from equilibrium). The derivative

dFP/dt in this case becomes

1

V

dFP

dt
= v1

dA1

dt
+ v2

dA2

dt
= lA2

dA1

dt
− lA1

dA2

dt
≤ 0 (18.2.7)

By introducing the polar coordinates A1 = r cos 𝜃 and A2 = r sin 𝜃, it is easy to see that this equation can be

written as

1

V

dFP

dt
= −lr2 d𝜃

dt
≤ 0 (18.2.8)

The system rotates irreversibly in a direction determined by the sign of l. An example of such a system

is the well-known Lotka–Volterra ‘prey–predator’ interaction given as an exercise (Exercise 18.9). We can

also apply this inequality to derive a sufficient condition for the stability of a steady state. If all fluctuations

𝛿FP > 0 then the steady state is stable. However, here it is more expedient to use the Lyapunov theory of

stability to which we turn now.

18.3 Stability of Nonequilibrium Stationary States

A very general criterion for stability of a state was formulated by Lyapunov [4]. We shall obtain the conditions

for the stability of a nonequilibrium state using Lyapunov’s theory.

18.3.1 Lyapunov’s Theory of Stability

Lyapunov’s formulation gives conditions for stability in precise mathematical terms (with clear intuitive

meaning). Let Xs be a stationary state of a physical system. In general, X may be an r-dimensional vector

with components Xk, k = 1, 2, . . . , r. We shall denote the components of Xs by Xsk. Let the time evolution of

X be described by an equation

dXk

dt
= Zk (X1, X2,… , Xr; 𝜆j) (18.3.1)

in which the 𝜆j are parameters that may or may not be independent of time. A simple example of such an

equation is given in Box 18.1. In general, if the Xk are functions not only of time t but also of positions x, then

Equation (18.3.1) will be a partial differential equation in which Zk will be a partial differential operator.
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Box 18.1 Kinetic equations and Lyapunov stability theory: an example

S A
B

T

P

Consider the open chemical system shown above with the following chemical reactions:

S + T
k1⟶A

S + A
k2⟶B

A + B
k3⟶P

For simplicity, we assume that the reverse reactions can be ignored. If the system is subject to an inflow

of S and T and an outflow of P such that the concentrations of these species are maintained constant, we

have the following kinetic equations for the concentrations of A and B:

X1 ≡ [A], X2 ≡ [B]

dX1

dt
= k1[S] [T] − k2[S]X1 − k3X1X2 ≡ Z1(Xj, [S], [T])

dX2

dt
= k2[S] X1 − k3X1X2 ≡ Z2(Xj, [S], [T])

In this system, [S] and [T] correspond to the parameters 𝜆j in Equation (18.3.1). For a given value of these

parameters, the stationary states Xs1 and Xs2 are easily found by setting dX1∕dt = dX2∕dt = 0 :

Xs1 =
k1 [T]

2 k2

, Xs2 =
k2 [S]

k3

The stability of this stationary state is determined by examining the evolution of the perturbations 𝛿X1 and

𝛿X2 from this stationary state. A possible Lyapunov function L, for example, is

L (𝛿X1, 𝛿X2) =
[
(𝛿X1)2 + (𝛿X2)2

]
> 0

If it can be shown that dL (𝛿X1, 𝛿X2)∕dt < 0, then the stationary state (Xs1, Xs2) is stable.

The stationary state Xsk is the solution to the set of coupled equations

dXk

dt
= Zk (Xs1, Xs2,… , Xsr; 𝜆j) = 0 (k = 1, 2,… , r) (18.3.2)
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The stability of the stationary state can be understood by looking at the behavior of a small perturbation 𝛿Xk.

To establish the stability of a state, first a positive function L(𝛿X) of 𝛿X, which may be called a ‘distance’, is

defined in the space spanned by Xk. If this ‘distance’ between Xsk and the perturbed state (Xsk + 𝛿Xk) steadily

decreases in time, the stationary state is stable. Thus state Xsk is stable if

L(𝛿Xk) > 0
dL(𝛿Xk)

dt
< 0 (18.3.3)

A function L that satisfies Equation (18.3.3) is called a Lyapunov function. If the variables Xk are functions

of position (as concentrations nk in a nonequilibrium system can be), L is called a Lyapunov functional –

a ‘functional’ is a mapping of a set of functions to a number, real or complex. The notion of stability is not

restricted to stationary states; it can also be extended to periodic states [4]. However, since we are interested

in the stability of nonequilibrium stationary states, we shall not deal with the stability of periodic states at

this point.

18.3.2 Second Variation of Entropy – 𝜹2S as a Lyapunov Functional

We have already seen that the second variation of entropy is a function that has a definite sign for any

thermodynamic system in local equilibrium. By considering the entropy density s(x) as a function of the

energy density u(x) and the concentrations nk(x), we can write ΔS, the change in entropy from the stationary

value, in the form

ΔS = ∫
[ (

𝜕s
𝜕u

)
nk

𝛿u +
∑

k

(
𝜕s
𝜕nk

)
u
𝛿nk

]
dV

+ 1

2 ∫
[ (

𝜕2s
𝜕u2

)
(𝛿u)2 + 2

∑
k

(
𝜕2s

𝜕u 𝜕nk

)
𝛿u 𝛿nk +

∑
ij

(
𝜕2s

𝜕ni 𝜕nj

)
𝛿ni 𝛿nj

]
dV

= 𝛿S + 1

2
𝛿2S

(18.3.4)

Since we are considering a nonequilibrium stationary state, the thermodynamic forces and the corresponding

flows of energy, Ju, and matter, Jk, do not vanish. Hence the first variation 𝛿S ≠ 0. The second variation, 𝛿2S,

has a definite sign because the integrand, which is the second variation of entropy of elemental volume that

is locally in equilibrium, is negative (Equation (12.4.10)):

1

2
𝛿2S < 0 (18.3.5)

Appendix 18.2 contains the derivation of the following general result:

d

dt
𝛿2S
2

= ∫V

∑
k

𝛿Fk 𝛿 JkdV (18.3.6)

In Chapter 14 (Equation (14.1.16)) we obtained the same equation for perturbations from the equilibrium

state. Equation (18.3.6) shows that the time derivative of 𝛿2S has the same form even under nonequilibrium

conditions. The difference is that near equilibrium
∑

k 𝛿Fk𝛿 Jk =
∑

k FkJk > 0; but it is not necessarily so

far from equilibrium. We shall refer to this quantity as excess entropy production, but, strictly speaking, it is

the increase in entropy production only near the equilibrium state; for a perturbation from a nonequilibrium

state, the increase in entropy production is equal to 𝛿P = 𝛿FP + 𝛿JP.
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Expressions (18.3.5) and (18.3.6) would define a Lyapunov functional, L = –𝛿2S/2 if the stationary state

were such that
∑

k 𝛿Fk𝛿 Jk > 0. Thus, a nonequilibrium stationary state is stable if

d

dt
𝛿2S
2

= ∫V

∑
k

𝛿Fk 𝛿 JkdV > 0 (18.3.7)

If this inequality is violated, it only means that the system may be unstable; i.e.
∑

k 𝛿Fk 𝛿 Jk < 0 is a necessary
but not a sufficient condition for instability.

18.3.3 Using the Stability Criterion

Since 𝛿2S < 0 under both equilibrium and nonequilibrium conditions, the stability of a stationary state is

assured if

d

dt
𝛿2S
2

= ∫V

∑
k

𝛿Fk 𝛿 JkdV > 0 (18.3.8)

Let us apply this condition to simple chemical systems to understand when a nonequilibrium system may

become unstable.

First, let us consider the following reaction:

A + B
kf
←←←←←←←←⇀↽←←←←←←←←
kr

C + D (18.3.9)

Assuming these reactions are elementary steps, we write the forward and reverse rates as

Rf = kf [A] [B] and Rr = kr[C] [D] (18.3.10)

We assume this system is maintained out of equilibrium by suitable flows. As we have seen in Section 9.5,

for a chemical reaction the affinity A and the velocity of reaction v are given by A = RT ln(Rf/Rr) and v = (Rf

– Rr). The time derivative of 𝛿2S, the ‘excess entropy production’ (18.3.8), can be written in terms of 𝛿F =
𝛿A/T and 𝛿J = 𝛿v. For a perturbation 𝛿[B] from the stationary state, it is easy to show that (Exercise 18.4)

1

2

d𝛿2S
dt

= ∫V

∑
𝛼

𝛿J𝛼 𝛿F𝛼dV = ∫V

∑
𝛼

𝛿A
T
𝛿v dV = Rkf ∫V

[A]s

[B]s

(𝛿[B])2dV > 0 (18.3.11)

in which the subscript s indicates the nonequilibrium stationary state values of the concentrations. Since

d𝛿2S/dt is positive, the stationary state is stable.

The situation is different, however, for an autocatalytic reaction such as

2X + Y
kf
←←←←←←←←⇀↽←←←←←←←←
kr

3X (18.3.12)

which appears in a reaction scheme called the ‘Brusselator’, which we will consider in the next chapter. For

this reaction, we can consider a nonequilibrium stationary state in which the concentrations are [X]s and [Y]s

and a perturbation 𝛿X. Using the forward and reverse rates Rf = kf[X]2[Y] and Rr = kr[X]3 in the expressions

A = RT ln(Rf/Rr) and v = (Rf – Rr), we can once again calculate the excess entropy production to obtain

1

2

d𝛿2S
dt

= ∫V

𝛿A
T
𝛿v dV = −R∫V

(2kf [X]s[Y]s − 3kr[X]2
s )

(𝛿X)2

[X]s

dV (18.3.13)

The excess entropy production can now become negative, particularly if kf ≫ kr. Hence the stability is no

longer assured and the stationary state may become unstable.
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Figure 18.1 Each value of X represents a state of the system. The distance from equilibrium is represented by
the parameter Δ. When Δ = 0 the system is in a state of thermodynamic equilibrium. When Δ is small, the system
is in a near-equilibrium state, which is an extrapolation of the equilibrium state; this family of states is called
the thermodynamic branch. In some systems, such as those with autocatalysis, when Δ reaches a critical value
Δc, the states belonging to the thermodynamic branch become unstable. When this happens, the system makes
a transition to a new branch, which may correspond to organized states.

The above discussion can be summarized through a stability diagram, as shown in Figure 18.1. The value

of the parameter Δ is a measure of the distance from equilibrium. For each value of Δ the system will relax to

a stationary state, denoted by Xs. The equilibrium state corresponds to Δ = 0; Xs is a continuous extension of

the equilibrium state and is called the thermodynamic branch. As long as condition (18.3.8) is satisfied, the

thermodynamic branch is stable; if it is violated, the thermodynamic branch may become unstable. If it does

become unstable, the system makes a transition to a new branch, which is generally an organized structure.

If the kinetic equations of the systems are known, there is a well-defined mathematical method to determine

at what point the stationary state will become unstable. This is the linear stability analysis we will discuss

in the following section. Nonequilibrium instabilities give rise to a great variety of structures, which we will

discuss in the next chapter.

18.4 Linear Stability Analysis

In general, the rate equations of a homogeneous chemical system take the general form:

dXk

dt
= Zk (X1,… , Xn; 𝜆j) (18.4.1)

where the Xk correspond to concentrations, such as [X] and [Y] in Equation (18.3.12), and 𝜆j corresponds to

concentrations that are maintained at a constant nonequilibrium value. We begin by assuming that a stationary

solution X0
k of Equation (18.4.1) is known. This means

Zk(X0
1
,… , X0

n , 𝜆j) = 0 (18.4.2)

We would like to know if this stationary solution will be stable to small perturbations xi. Linear stability

analysis provides the answer in the following way. Consider a small perturbation xk:

Xk = X0
k + xk(t) (18.4.3)
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Now the Taylor expansion of Zk (Xi) gives

Zk(X0
i + xi) = Zk(X0

i ) +
∑

j

(
𝜕Zk

𝜕Xj

)
0

xj +⋯ (18.4.4)

in which the subscript 0 indicates that the derivative is evaluated at the stationary state X0
i . In linear stability

analysis, only the linear terms in xj are retained; the higher-order terms are neglected by assuming the xj

are small. Substituting Equation (18.4.4) into Equation (18.4.1), since X0
i is a stationary state, we obtain for

xk(t) the linear equation

dxk

dt
=
∑

j

Λk j (𝜆) xj (18.4.5)

in which Λk j(𝜆) = (𝜕Zk∕𝜕Xj)0 is a function of the parameter 𝜆. In matrix notation, Equation (18.4.5) can be

written as

dx
dt

= Λx (18.4.6)

in which the vector x = (x1, x2, x3,… , xn) andΛkj are the elements of the matrixΛ. The matrixΛ is sometimes

referred to as the Jacobian matrix.

The general solution of Equation (18.4.6) can be written if the eigenvalues and the eigenvectors of the

matrix Λ are known. Let 𝜔k be the eigenvalues and 𝛙k the corresponding eigenvectors:

Λ𝛙k = 𝜔k𝛙k (18.4.7)

In general, for an n-dimensional matrix there are n eigenvalues and n eigenvectors. (Note that 𝛙k is a vector

and the subscript k indicates different vectors.) If the eigenvalues 𝜔k and the eigenvectors 𝛙k are known, it

is easy to see that, corresponding to each eigenvector and its eigenvalue, we have the following solution to

Equation (18.4.6):

x = e𝜔kt𝛙k (18.4.8)

This can be easily seen by substituting Equation (18.4.8) into Equation (18.4.6). Since a linear combination

of solutions of a linear equation is also a solution, the general solution to Equation (18.4.6) can be written as

x =
∑

k

cke𝜔kt𝛙k (18.4.9)

in which the coefficients ck are determined by x at t = 0. Now the question of stability depends on whether

the perturbation x will grow or decay with time. Clearly, this depends on the eigenvalues 𝜔k: if one or more

of the eigenvalues have a positive real part, the associated solutions (18.4.8) will grow exponentially. The

corresponding eigenvectors are called unstable modes. Since a random perturbation will be of the form

(18.4.9), which includes the unstable modes, the existence of a single eigenvalue with a positive real part is

sufficient to make the perturbation grow with time. If all the eigenvalues have negative real parts, any small

perturbation x in the vicinity of the stationary solution will exponentially decay or regress to zero. (This need

not be true for large perturbations x for which the approximation (18.4.5) is not valid.)

Thus, a necessary and sufficient condition for the stability of a stationary state is that all eigenvalues of
the associated Jacobian matrix, Λ, have negative real parts. An eigenvalue with a positive real part implies
instability.

The example given below illustrates the application of the linear stability theory to a chemical system. As

we have seen in the previous section, thermodynamic considerations lead us to the conclusion that instability
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can arise only when the system is far from thermodynamic equilibrium and, generally, when autocatalysis is

present.

The exponential growth of the perturbation does not continue indefinitely; the growth eventually stops due

to the nonlinear terms. Through this process, the system makes a transition from an unstable state to a stable

state. Thus, driven by instability, the system makes a transition to a new state. This new state is often an

organized state, a state with lower entropy. These organized states can be maintained indefinitely as long as

the flows are maintained.

18.4.1 An Example

We shall illustrate the use of linear stability theory with the following reaction scheme:

A
k1⟶X

B + X
k2⟶Y + D

2X + Y
k3⟶3X

X
k4⟶E

in which we assume A and B are maintained at a constant value while D and E are removed so that all four

concentrations are maintained at a constant value. Furthermore, we completely ignore the reverse reactions

because we assume their rates to be extremely small. This leads to the following set of kinetic equations that

we will study in more detail in the following chapter.

Instead of using X1 and X2, we shall use concentrations [X] and [Y] for the system variables:

d[X]

dt
= k1[A] − k2[B][X] + k3[X]2[Y] − k4[X] = Z1 (18.4.10)

d[Y]

dt
= k2[B][X] − k3[X]2[Y] = Z2 (18.4.11)

Here [A] and [B] are the parameters (concentrations that are maintained at fixed values) corresponding to 𝜆

(Equation (18.4.1)). One can easily obtain the stationary solutions to this equation (Example 18.6):

[X]s =
k1

k4

[A], [Y]s =
k4k2

k3k1

[B]

[A]
(18.4.12)

The Jacobian matrix evaluated at the stationary state is

⎡⎢⎢⎢⎣
𝜕Z1

𝜕[X]

𝜕Z1

𝜕[Y]

𝜕Z2

𝜕[X]

𝜕Z2

𝜕[Y]

⎤⎥⎥⎥⎦ =
[−k2[B] + 2k3[X]s[Y]s − k4

k2[B] − 2k3[X]s[Y]s

k3[X]2
s

−k3[X]2
s

]
= Λ

The product [X]s [Y]s in the above matrix can be simplified using Equations (18.4.12) and the resulting

matrix has the form: [
k2[B] − k4

−k2[B]

k3[X]2
s

−k3[X]2
s

]
= Λ (18.4.13)
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The stationary state (18.4.12) becomes unstable when the real parts of the eigenvalues of (18.4.13) become

positive. The eigenvalue equation or the characteristic equation of a matrix Λ, whose solutions are the

eigenvalues, is

Det[Λ−𝜆I] = 0 (18.4.14)

in which ‘Det’ stands for the determinant. For a 2 × 2 matrix such as (18.4.13) it is easy to see that the

characteristic equation is

𝜆2 − (Λ11 + Λ22)𝜆 + (Λ11Λ22 − Λ21Λ12) = 0 (18.4.15)

in which Λij are the elements of the matrixΛ. If all the matrix elementsΛij are real, as is the case for chemical

systems, the solutions of the characteristic equation must be complex conjugate pairs because coefficients in

the equation are real. For the matrix (18.4.13) we shall consider the case of a complex conjugate pair. We

shall look at these solutions as functions of the concentration [B] and investigate whether their real parts,

which are initially negative, can become positive due to an appropriate change in [B]. The point at which the

real parts reach zero will be the point of transition from stability to instability.

For Equation (18.4.15), since the coefficient of the linear term is the negative of the sum of the roots

(Exercise 18.7), if 𝜆± are the two roots, we have

𝜆+ + 𝜆− = (Λ11 + Λ22) = k2[B] − k4 − k3[X]2
s (18.4.16)

If the real parts of this complex conjugate pair, 𝜆±, are negative then k2[B] − k4 − k3[X]2
s < 0; if they are

positive then k2[B] − k4 − k3[X]2
s > 0.1 Thus the condition that requires positive real parts for the onset of

instability leads to

[B] >
k4

k2

+
k3

k2

[X]2
s

or

[B] >
k4

k2

+
k3

k2

k2
1

k2
4

[A]2 (18.4.17)

where we have used Equation (18.4.12) for [X]s. Thus, for a fixed value of [A], as the value of [B] increases,

when condition (18.4.17) is satisfied, the stationary state (18.4.12) becomes unstable. In the next chapter we

will see that this instability leads to oscillations.

Linear stability analysis does not provide a means of determining how the system will evolve when a state

becomes unstable. To understand the system’s behavior fully, the full nonlinear equation has to be considered.

Often we encounter nonlinear equations for which solutions cannot be obtained analytically. However, with

the availability of powerful desktop computers and software, numerical solutions can be obtained without

much difficulty. To obtain numerical solutions to nonlinear equations considered in the following chapter,

Mathematica codes are provided at the end of Chapter 19.

1If 𝜆± are real roots, 𝜆+ + 𝜆– > 0 implies that at least one of the roots is positive.
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Appendix 18.1 A General Property of dFP/dt

In this appendix we show that, regardless of the distance from equilibrium,

dFP

dt
≤ 0 (A18.1.1)

The validity of (A18.1.1) depends on the validity of the local equilibrium. In Chapter 12 we have seen that

the second-order variation of entropy 𝛿2S is negative because quantities such as the molar heat capacity

CV, isothermal compressibility 𝜅T and −
∑

i,j (𝜕Ai∕𝜕𝜉j)𝛿𝜉i𝛿𝜉j are positive. This condition remains valid for

an elemental volume 𝛿V, which is in local equilibrium. We can see the relation between the derivative

dFP/dt and quantities such as −
∑

i,j (𝜕Ai∕𝜕𝜉j)𝛿𝜉i𝛿𝜉j, which have a definite sign, as follows.

A18.1.1 Chemical Reactions

Consider a closed homogeneous nonequilibrium system undergoing a chemical reaction at uniform constant

temperature. The affinities Ak are functions of the extents of reaction 𝜉j and

𝜕Ak

𝜕t
=
∑

j

(
𝜕Ak

𝜕𝜉j

)(
𝜕𝜉j

𝜕t

)
=
∑

j

(
𝜕Ak

𝜕𝜉j

)
vj (A18.1.2)

Therefore:

dFP

dt
= 1

T

∑
k,j

(
𝜕Ak

𝜕𝜉j

)
vjvk ≤ 0 (A18.1.3)

which follows from the general relation −
∑

i,j (𝜕Ai∕𝜕𝜉j)𝛿𝜉i𝛿𝜉j ≥ 0 valid for a system in local equilibrium

(12.4.5). This proof can be extended to open systems following along the lines of the proof for isothermal

diffusion given below.

A18.1.2 Isothermal Diffusion

In this case we begin with

dFP

dt
= −∫

∑
k

Jk ∙
𝜕

𝜕t
∇
(𝜇k

T

)
dV = −∫

1

T

∑
k

Jk ∙ ∇
(
𝜕𝜇k

𝜕t

)
dV (A18.1.4)

Using the identity ∇ ∙ (fJ) = f∇ ∙ J + J ∙ ∇f , the right-hand side can be written as

− ∫
1

T
Jk ∙ ∇

(
𝜕𝜇k

𝜕t

)
dV = −∫

1

T
∇ ∙
[
Jk

(
𝜕𝜇k

𝜕t

)]
dV + ∫

1

T

(
𝜕𝜇k

𝜕t

)
∇∙ JkdV (A18.1.5)

Using Gauss’s theorem, the first term on the right-hand side can be converted into a surface integral. Since

we assume that the value of 𝜇k is time independent at the boundary, i.e. the boundary conditions are time

independent, this surface integral vanishes. Using the relations

𝜕𝜇k

𝜕t
=
∑

j

𝜕𝜇k

𝜕nj

𝜕nj

𝜕t
and

𝜕nk

𝜕t
= −∇ ∙ Jk (A18.1.6)

the second term can be written as

∫
1

T

(
𝜕𝜇k

𝜕t

)
∇ ∙ JkdV = −1

T ∫
∑

j

𝜕𝜇k

𝜕nj

(
𝜕nj

𝜕t

)(
𝜕nk

𝜕t

)
dV (A18.1.7)
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Combining Equations (A18.1.7), (A18.1.5) and (A18.1.4), we arrive at

dFP

dt
= −1

T ∫
∑
jk

𝜕𝜇k

𝜕nj

(
𝜕nj

𝜕t

)(
𝜕nk

𝜕t

)
dV ≤ 0

The right-hand side of this expression is negative because

−
∑
jk

𝜕𝜇k

𝜕nj

(
𝜕nj

𝜕t

)(
𝜕nk

𝜕t

)
≤ 0

is valid for systems in local equilibrium (Equation (12.4.9)). The general validity of Equation (18.2.3) is

proved in the literature [1].

Appendix 18.2 General Expression for the Time Derivative of 𝜹2S

The relation

d

dt
𝛿2S
2

= ∫V

∑
k

𝛿Fk 𝛿JkdV (A18.2.1)

can be obtained as follows. We begin by taking the time derivative of 𝛿2S/2 as defined in Equation (18.3.4).

For notational simplicity, we shall denote the time derivatives of a quantity x byẋ ≡ 𝜕x∕𝜕t. The time derivative

of 𝛿2S can be written as

𝛿2Ṡ = ∫
[(

𝜕2s
𝜕u2

)
2𝛿u(𝛿u̇) + 2

∑
k

(
𝜕2s
𝜕u𝜕nk

)
(u̇ 𝛿nk + 𝛿u 𝛿ṅk)

+ 2
∑

k

(
𝜕2s

𝜕ni𝜕nk

)
𝛿ṅi𝛿nk

]
dV

(A18.2.2)

in which the factor 2 appears in the last term because we used the relation

𝜕2s
𝜕ni𝜕nk

= 𝜕2s
𝜕nk𝜕ni

Next, noting that (𝜕s∕𝜕u)nk
= 1∕T and (𝜕s∕𝜕nk)u = −𝜇k∕T , we can write Equation (A18.2.2) as

𝛿2Ṡ = ∫ 2

[(
𝜕

𝜕u
1

T

)
𝛿u(𝛿u̇) +

∑
k

(
𝜕

𝜕nk

1

T

)
𝛿u̇ 𝛿nk

]
dV

+∫ 2

[∑
k

𝜕

𝜕u

(−𝜇k

T

)
𝛿u 𝛿ṅk +

∑
ik

𝜕

𝜕ni

(−𝜇k

T

)
𝛿ni 𝛿ṅk

]
dV

(A18.2.3)

We now observe that, since u and nk are independent variables, we can write

𝛿

(
1

T

)
=
∑

k

(
𝜕

𝜕nk

1

T

)
𝛿nk +

(
𝜕

𝜕u
1

T

)
𝛿u (A18.2.4)

𝛿

(𝜇i

T

)
=
∑

k

(
𝜕

𝜕nk

𝜇i

T

)
𝛿nk +

(
𝜕

𝜕u

𝜇i

T

)
𝛿u (A18.2.5)
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Equations (A18.2.4) and (A18.2.5) enable us to reduce (A18.2.3) to the simple form

𝛿2Ṡ = 2∫
[
𝛿

(
1

T

)
𝛿u̇ +

∑
k

𝛿

(−𝜇k

T

)
𝛿ṅk

]
dV (A18.2.6)

This relation can be written in terms of the changes in thermodynamic forces 𝛿∇(1∕T) and 𝛿∇(−𝜇k∕T) and the

corresponding flows 𝛿Ju and 𝛿Jk, using the balance equations for energy density u and the concentrations nk:

𝜕u
𝜕t

= u̇ = −∇ ∙ Ju (A18.2.7)

𝜕nk

𝜕t
= ṅk = −∇ ∙ Jk +

∑
i

vkivi (A18.2.8)

in which 𝜈ki is the stoichiometric coefficient of reactant k in reaction i and vi is the velocity of reaction i.
If we denote the stationary state densities and flows by us, nks, Jus, Jks and vis, we have u̇s = −∇ ∙ Jus = 0

and ṅs = −∇ ∙ Jks +
∑

i 𝜈kivis = 0. Consequently, for a perturbation u = us + 𝛿u, Ju = Jus + 𝛿Ju, etc., from

the stationary state, we have

𝛿u̇ = −∇ ∙ 𝛿Ju (A18.2.9)

𝛿ṅk = −∇ ∙ 𝛿Jk +
∑

i

𝜈ki 𝛿vi (A18.2.10)

We substitute these expressions for 𝛿u̇ and 𝛿u̇ into (A18.2.6) and use the identity

∇ ∙ (fJ) = f∇ ∙ J + J ∙ ∇f (A18.2.11)

in which f is a scalar function and J is a vector field, and we use Gauss’s theorem

∫V
(∇ ∙ J)dV = ∫Σ J ∙ da (A18.2.12)

in which Σ is the surface enclosing the volume V and da is the element of surface area. All this allows

Equation (A18.2.6) to be written as follows:

1

2
𝛿2Ṡ = −∫Σ 𝛿

(
1

T

)
𝛿Ju ∙ da + ∫V

𝛿∇
(

1

T

)
𝛿JudV

+∫Σ
∑

k

𝛿

(𝜇k

T

)
𝛿Jk ∙ da − ∫V

∑
k

𝛿∇
(𝜇k

T

)
𝛿JkdV

+∫V

[∑
i

𝛿

(
Ai

T

)
𝛿vi

]
dV

(A18.2.13)

In obtaining this equation, we have used the relation
∑

k vki 𝛿(𝜇k∕T) = −𝛿(Ai∕T). The flows at the surface are

fixed by the boundary conditions and are not subject to fluctuations, so the surface terms vanish. This leads

us to the required result:

1

2
𝛿2Ṡ = ∫V

𝛿∇
(

1

T

)
𝛿JudV − ∫V

∑
k

𝛿∇
(𝜇k

T

)
𝛿JkdV + ∫V

[∑
i

𝛿

(
Ai

T

)
𝛿vi

]
dV

= ∫V

∑
𝛼

𝛿F𝛼 𝛿J𝛼dV

(A18.2.14)
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Exercises

18.1 Calculate the affinities of the following reaction systems for a range of concentrations (or partial

pressures) of the reactants and the products and compare them with RT at T = 298 K. Determine the

ranges in which the system is thermodynamically in the linear regime using appropriate data from

tables.

(a) Racemization reaction L ⇌ D (L and D are enantiomers).

(b) Reaction N2O4(g) ⇌ 2NO2(g) (with partial pressures PN2O4
and PNO2

).

18.2 (a) What factors would you identify to conclude that the Earth’s atmosphere is not in thermodynamic

equilibrium?

(b) Through an appropriate literature search, determine whether the atmospheres of Mars and Venus

are in chemical equilibrium.

18.3 For the chemical reaction A ⇌ B, verify the general property dFP ≤ 0.

18.4 (a) Obtain inequality (18.3.11) for a perturbation 𝛿[B] from the stationary states of reaction (18.3.9).

(b) Obtain the ‘excess entropy production’ (18.3.13) for a perturbation 𝛿[X] from the stationary states

of reaction (18.3.12).

18.5 Obtain the excess entropy production and analyze the stability of the stationary states for the following

reaction schemes:

(a) W ⇌ X ⇌ Z, in which the concentrations of W and Z are maintained fixed at a nonequilibrium

value.

(b) W + X ⇌ 2X, X ⇌ Z, in which the concentrations of W and Z are maintained fixed at a

nonequilibrium value.

18.6 Show that the stationary states of Equations (18.4.10) and (18.4.11) are Equations (18.4.12).

18.7 For a polynomial equation of the type 𝜔n + A1𝜔
n–1 + A2𝜔

n–2 + ∙ ∙ ∙ + An = 0 show that coefficient

A1 = – (𝜆1+ 𝜆2 + 𝜆3 + ∙ ∙ ∙ + 𝜆n) and coefficient An = (–1)n (𝜆1 𝜆2 𝜆3 ∙ ∙ ∙ 𝜆n), where 𝜆k are roots.

18.8 For the following equations, obtain the stationary states and analyze their stability as a function of the

parameter 𝜆 assuming A, B and C are positive:

(a)
dx
dt

= −Ax3 + C𝜆x

(b)
dx
dt

= −Ax3 + Bx2 + C𝜆x

(c)
dx
dt

= 𝜆x − 2xy,
dy

dt
= −y + xy

(d)
dx
dt

= −5x + 6y + x2 − 3xy + 2y2,
dy

dt
= −𝜆x − 14y + 2x2 − 5xy + 4y2
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18.9 Consider the reaction scheme:

A + X ⇌ 2X

Y + X ⇌ 2Y

Y ⇌ E

Far from equilibrium, we only keep the forward reactions and we assume A and E are fixed. Using

the linear stability theory, show that the perturbations around the nonequilibrium steady state lead

to oscillations in [X] and [Y], as was discussed in Section 18.2. This model was used by Lotka and

Volterra to describe the ‘struggle of life’ (see V. Volterra, Theorie Mathématique de la Lutte pour la
Vie, 1931, Gauthier Villars: Paris). Here X is the prey (lamb) and Y is the predator (wolf). This model

of the prey–predator interaction shows that the populations X and Y will exhibit oscillations.



19
Dissipative Structures

19.1 The Constructive Role of Irreversible Processes

One of the most profound lessons of nonequilibrium thermodynamics is the dual role of irreversible processes:

as destroyers of order near equilibrium and as creators of order far from equilibrium. For far-from-equilibrium

systems, there are no general extremum principles that predict the state to which it will evolve. The lack

of extremum principles that uniquely predict the state to which a nonequilibrium system will evolve is

a fundamental aspect of nonequilibrium systems. In stark contrast to equilibrium systems, which evolve

to a state that minimizes a free energy, nonequilibrium systems can evolve unpredictably; their state cannot

always be uniquely specified by macroscopic rate equations. This is because, for a given set of nonequilibrium

conditions, it is often possible to have more than one state. As a result of random fluctuations, or other random

factors such as small inhomogeneities or imperfections, the system evolves to one of the many possible states.

Which one of these states a particular system will evolve to is, in general, not predictable. The new states

thus attained are often ‘ordered states’ that possess spatiotemporal organization. Patterns in fluid flow,

inhomogeneities in concentrations exhibiting geometrical patterns with great symmetry or periodic variations

of concentrations are examples of such ordered states. Because of its fundamental character, we shall refer to

the general phenomenon of a nonequilibrium system evolving to an ordered state as a result of fluctuations

as order through fluctuations [1, 2].

In nonequilibrium systems, oscillating concentrations and geometrical concentration patterns can be a

result of chemical reactions and diffusion, the same dissipative processes that, in an isolated system, wipe out

inhomogeneities and drive the system to a stationary, timeless homogeneous state of equilibrium. Since the

creation and maintenance of organized nonequilibrium structures are due to dissipative processes, they are

called dissipative structures [3].

The two concepts of dissipative structures and order through fluctuations encapsulate the main aspects of

nonequilibrium order that we describe in this chapter.

19.2 Loss of Stability, Bifurcation and Symmetry Breaking

In the previous chapter we have seen that the stability of the thermodynamic branch is no longer assured when

a system is driven far from equilibrium. In Section 18.3 we have seen how a necessary condition (18.3.7) for
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a system to become unstable can be obtained by using the second variation of entropy, 𝛿2S. Beyond this point,

we are confronted with a multiplicity of states and unpredictability. To understand the precise conditions for

instability and the subsequent behavior of a system, we need to use the specific features of the system, such as

the rates of chemical reactions and the hydrodynamic equations. There are, however, some general features

of far-from-equilibrium systems that we will summarize in this section. A detailed discussion of dissipative

structures will be presented in the following sections.

The loss of stability of a nonequilibrium state can be analyzed using the general theory of stability for

solutions of a nonlinear differential equation. Here we encounter the basic relationship between the loss

of stability, multiplicity of solutions and symmetry. We also encounter the phenomenon of ‘bifurcation’ or

‘branching’ of new solutions of a differential equation from a particular solution. We shall first illustrate these

general features for a simple nonlinear differential equation and then show how they are used to describe

far-from-equilibrium systems.

19.2.1 An Elementary Example of Bifurcation and Symmetry Breaking

Consider the equation

d𝛼

dt
= −𝛼3 + 𝜆𝛼 (19.2.1)

in which 𝜆 is a parameter. Our objective is to study the stationary solutions of this equation as a function of 𝜆.

Equation (19.2.1) possesses a simple twofold symmetry: it remains invariant when 𝛼 is replaced by –𝛼. This

means that if 𝛼(t) is a solution, then –𝛼(t) is also a solution. If 𝛼(t) ≠ –𝛼(t), then there are two solutions to the

equation. In this way, symmetry and multiplicity of solutions are related.

The stationary states of this differential equation are

𝛼 = 0, 𝛼 = ±
√
𝜆 (19.2.2)

Note the multiplicity of solutions related to symmetry. When a solution does not possess the symmetries of

the differential equation, i.e. when 𝛼 ≠ –𝛼, it is said to be a solution with a broken symmetry or a solution that

has broken the symmetry. In this case, the solution 𝛼 = 0 is invariant when 𝛼 is replaced by –𝛼, but the solution

𝛼 = ±
√
𝜆 is not. Hence 𝛼 = ±

√
𝜆 is said to have broken the symmetry of the differential equation. (Though

this idea may seem rather trivial in this simple case, it has a rather important and nontrivial significance for

nonequilibrium systems.)

Let us assume that, for physical reasons, we are seeking only real solutions of Equation (19.2.1). When

𝜆 < 0 there is only one real solution, but when 𝜆 > 0 there are three solutions, as shown in Figure 19.1. The new

solutions for 𝜆 > 0 branch or bifurcate from the solution 𝛼 = 0. The value of 𝜆 at which new solutions bifurcate

0

0

0

Figure 19.1 The bifurcation of solutions 𝛼 = 0 and 𝛼 = ±
√
𝜆 to Equation (19.2.1) as a function of the parameter

𝜆. The dashed line represents an unstable solution.
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is called the bifurcation point. In Figure 19.1, 𝜆 = 0 is the bifurcation point. A similar bifurcation of new

solutions from a given solution occurs generally in nonlinear equations, be they a simple algebraic equation

as above, a set of coupled ordinary differential equations or more complex partial differential equations.

Turning to the question of stability, we shall now see that the solution 𝛼 = 0 becomes unstable precisely at

the point where new solutions 𝛼 = ±
√
𝜆 emerge. As we have seen earlier, a stationary solution 𝛼s is locally

stable if a small perturbation 𝛿(t) from the solution decays to the stationary state. Thus we must look at the

time evolution of 𝛼 = 𝛼s + 𝛿(t) to determine if 𝛼s is stable or not. Substituting 𝛼 = 𝛼s + 𝛿(t) into Equation

(19.2.1), and keeping only terms of the first order in 𝛿, we obtain

d𝛿

dt
= −3𝛼2

s 𝛿 + 𝜆𝛿 (19.2.3)

For the stationary state 𝛼s = 0, we see that the solution is stable if 𝜆 < 0, because 𝛿(t) decays exponentially.

On the other hand, if 𝜆 > 0 the solution is locally unstable because 𝛿(t) grows exponentially. At the same

time, if we use Equation (19.2.3) to analyze the stability of the stationary states 𝛼s = ±
√
𝜆, we find that they

are stable. These stability properties of the stationary states mean that, as 𝜆moves from a value less than zero

to a value greater than zero, the solution 𝛼 = 0 becomes unstable and the system makes a transition to one

of the two new solutions that bifurcate at 𝜆 = 0. To which of the two possible states the system will evolve

is not deterministic; it depends on the random fluctuations in the system. The loss of stability implies that a

random fluctuation will grow and drive the system to one of the two states, 𝛼s = +
√
𝜆 or 𝛼s = −

√
𝜆 .

The bifurcation of new solutions at exactly the point where one solution loses stability is not a coincidence,

it is a general property of the solutions of nonlinear equations. (This general relation between bifurcation

and stability of solutions of nonlinear equations can be explained using topological degree theory, which is

beyond the scope of this discussion.)

19.2.2 General Theory of Bifurcation

In far-from-equilibrium systems the loss of stability of the thermodynamic branch and the transition to a

dissipative structure follows the same general features shown in the above simple example. The parameter

such as 𝜆 corresponds to constraints – e.g. flow rates or concentrations maintained at a nonequilibrium value

– that keep the system away from equilibrium. When 𝜆 reaches a particular value, the thermodynamic branch

becomes unstable but at the same time new solutions now become possible; driven by fluctuations, the system

makes a transition to one of the new states. As we did in Section 18.4, let us specify the state of the system

by Xk, k = 1, 2,… , n which, in general, may be functions of both position r and time t. Let the equation that

describes the spatiotemporal evolution of the system be

𝜕Xk

𝜕t
= Zk

(
Xi, 𝜆

)
(19.2.4)

Here 𝜆 is the nonequilibrium constraint. If the system under consideration is a homogeneous chemical

system, then Zk is specified by the rates of chemical reactions. For an inhomogeneous system, Zk may contain

partial derivatives to account for diffusion and other transport processes. It is remarkable that, whatever

the complexity of Zk, the loss of stability of a solution of Equation (19.2.4) at a particular value of 𝜆 and

bifurcation of new solutions at this point are similar to those of Equation (19.2.1). As in the case of Equation

(19.2.1), the symmetries of Equation (19.2.4) are related to the multiplicity of solutions. For example, in an

isotropic system, the equations should be invariant under the inversion r → –r. In this case, if Xk (r, t) is

a solution then Xk(−r, t) will also be a solution; if Xk(r, t) ≠ Xk(−r, t) then there are two distinct solutions

which are mirror images of each other.

Let Xsk be a stationary solution of Equation (19.2.4). The stability of this state can be analyzed as before

by considering the evolution of Xk = Xsk + 𝛿k, where 𝛿k is a small perturbation. If 𝛿k decays exponentially,
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then the stationary state is stable. This generally happens when 𝜆 is less than a ‘critical value’ 𝜆c. When 𝜆

exceeds 𝜆c it may happen that the perturbations 𝛿k, instead of decaying exponentially, grow exponentially,

thus making the state Xsk unstable. Precisely at 𝜆c, new solutions to Equation (19.2.4) will appear. As we will

see in detail in the following sections, in the vicinity of 𝜆c, the new solutions often take the form

Xk(r, t; 𝜆) = Xsk(𝜆c) + 𝛼k𝜓k(r, t) (19.2.5)

in which Xsk(𝜆c) is the stationary state when 𝜆 = 𝜆c, 𝛼k are a set of ‘amplitudes’ that are to be determined

and 𝜓k(r, t) are functions that can be obtained from Zk in Equation (19.2.4). The general theory of bifurcation

provides a means of obtaining the time evolution of the amplitudes 𝛼k through a set of equations of the type

(see Reference [4] and references therein)

d𝛼k

dt
= G(𝛼k, 𝜆) (19.2.6)

These are called the bifurcation equations. In fact, though Equation (19.2.1) is an equation in its own right,

it is also a bifurcation equation for systems that break a twofold symmetry. The multiplicity of solutions to

Equation (19.2.6) corresponds to the multiplicity of solutions to the original equation (19.2.4).

In this manner, instability, bifurcation, multiplicity of solutions and symmetry are all interrelated. We shall

now give a few detailed examples of instability of the thermodynamic branch leading to dissipative structures.

19.3 Chiral Symmetry Breaking and Life

The chemistry of life as we know it is founded on a remarkable asymmetry. A molecule whose geometrical

structure is not identical to its mirror image is said to possess chirality, or handedness. Mirror-image

structures of a chiral molecule are called enantiomers. Just as we distinguish the left and the right hand, the

two mirror-image structures are identified as L- and D-enantiomers (L for ‘levo’ and D for ‘dextro’; R and S
is another convention of identifying the two enantiomers). Amino acids, the building blocks of proteins, and

deoxyribose in DNA are chiral molecules. In the entire biosphere, almost all amino acids that take part in the

chemistry of life are L-amino acids (Figure 19.2) and the riboses in DNA and RNA are D-riboses (Figure

19.3). As Francis Crick noted in his book Life Itself, ‘The first great unifying principle of biochemistry is that

the key molecules have the same hand in all organisms.’ This is all the more remarkable because chemical

reactions show equal preference for the two mirror-image forms (except for very small differences due to

parity-nonconserving electroweak interactions [5–7]).

Biochemistry’s hidden molecular asymmetry was discovered by Louis Pasteur in 1857. Nearly 150 years

later, its true origin remains elusive and it is a subject of active research. Nevertheless, we can see how such a

state might be realized in the framework of dissipative structures. First, we note that such an asymmetry can

C

H

NH2 COOH

CH3

Figure 19.2 Proteins are made exclusively of L-amino acids. The amino acid shown is L-alanine. In other L-amino
acids, different groups of atoms take the place of CH3.
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O
HOH2C

H

OH

OH H

HH

H

Figure 19.3 The 2-deoxy-D-ribose shown above is a basic chiral building block of DNA. Its mirror image struc-
ture, 2-deoxy-L-ribose, is excluded from the chemistry of life.

arise only under far-from-equilibrium conditions; at equilibrium, the concentrations of the two enantiomers

must be equal. The maintenance of this asymmetry requires constant catalytic production of the preferred

enantiomer in the face of interconversion between enantiomers, called racemization. (Racemization drives

the system to the equilibrium state in which the concentrations of the two enantiomers will become equal.)

Second, following the paradigm of order through fluctuations, we will presently see how, in systems with

appropriate chiral autocatalysis, the thermodynamic branch, which contains equal amounts of L- and D-

enantiomers, can become unstable. The instability is accompanied by the bifurcation of asymmetric states, or

states of broken symmetry, in which one enantiomer dominates. Driven by random fluctuations, the system

makes a transition to one of the two possible states.

In 1953 F.C. Frank [8] devised a simple model reaction scheme with chiral autocatalysis that could amplify

a small initial asymmetry. We shall modify this reaction scheme so that its nonequilibrium aspects, instability

and bifurcation of symmetry breaking states can be clearly seen (Figure 19.4). It includes chirally autocatalytic

reactions:

S + T
k1f
←←←←←←←←←←←⇀↽←←←←←←←←←←←
k1r

XL (19.3.1)

S + T + XL

k2f
←←←←←←←←←←←⇀↽←←←←←←←←←←←
k2r

2XL (19.3.2)

S + T
k1f
←←←←←←←←←←←⇀↽←←←←←←←←←←←
k1r

XD (19.3.3)

S + T + XD

k2f
←←←←←←←←←←←⇀↽←←←←←←←←←←←
k2f

2XD (19.3.4)

XL + XD

k3f
←←←←←←←←←←←⇀↽←←←←←←←←←←←
k3r

P (19.3.5)

Each enantiomer of X is produced directly from the achiral1 reactants S and T, as shown in reactions (19.3.1)

and (19.3.3) and autocatalytically, as shown in reactions (19.3.2) and (19.3.4). In addition, the two enantiomers

react with one another and turn into an inactive dimer, P. Due to symmetry, the rate constants for the direct

reactions, (19.3.1) and (19.3.3), as well as the autocatalytic reactions, (19.3.2) and (19.3.4), must be equal.

1Objects that do not possess a sense of handedness are called achiral. The molecule NH3 is an example of an achiral molecule.
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Figure 19.4 A simple autocatalytic reaction scheme in which XL and XD are produced with equal preference.
However, in an open system, this leads to a dissipative structure in which XL ≠ XD, a state of broken symmetry. A
bifurcation diagram shows some general features of transitions to dissipative structures.

It is easy to see that, at equilibrium, the system will be in a symmetric state, i.e. [XL] = [XD] (Exercise

19.3). Now let us consider an open system into which S and T are pumped and from which P is removed.

For mathematical simplicity, we assume that the pumping is done in such a way that the concentrations [S]

and [T] are maintained at a fixed level, and that due to removal of P the reverse reaction in (19.3.5) may be

ignored. Such an approximation does not limit its conclusions in any significant way – as can be seen in the

numerical simulations using the Mathematica codes that include the reverse reaction (see Appendix 19.1).

The kinetic equations of this system are

d[XL]

dt
= k1f[S][T] − k1r[XL] + k2f[XL][S][T] − k2r[XL]2 − k3[XL][XD] (19.3.6)

d[XD]

dt
= k1f[S][T] − k1r[XD] + k2f[XD][S][T] − k2r[XD]2 − k3[XL][XD] (19.3.7)

Since the equilibrium constants of the direct reaction and the catalyzed reaction should be the same; the rate

constants must be such that (k1f/k1r) = (k2f/k2r). To make the symmetric and asymmetric states explicit, it is

convenient to define the following variables:

𝜆 = [S][T], 𝛼 =
[XL] − [XD]

2
, 𝛽 =

[XL] + [XD]

2
(19.3.8)
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When Equations (19.3.6) and (19.3.7) are rewritten in terms of 𝛼 and 𝛽 (Exercise 19.4), we have

d𝛼

dt
= −k1r𝛼 + k2f𝜆𝛼 − 2k2r𝛼𝛽 (19.3.9)

d𝛽

dt
= k1f𝜆 − k1r𝛽 − k2f𝜆𝛽 − k2r(𝛽

2 + 𝛼2) − k3(𝛽2 − 𝛼2) (19.3.10)

The stationary states of these equations can be obtained after a little calculation (by setting d𝛼∕dt = d𝛽∕dt =
0). A complete analytic study of the solutions of Equations (19.3.9) and (19.3.10) and their stability is

somewhat lengthy and can be found in the literature [4]. We shall only state the main results of this analysis.

With the Mathematica code provided in Appendix 19.1, the reader can explore the properties of the equation

quite easily and verify the phenomenon of chiral symmetry breaking in this system (Figure 19.5).
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Figure 19.5 (a) Time evolution of XL and XD obtained using Mathematica Code A given in Appendix 19.1. For
𝜆 > 𝜆c a small initial fluctuation in XL grows to establish a state of broken symmetry in which the concentrations
of XL and XD are unequal. (b) Steady-state entropy production in the reaction model (19.3.1) to (19.3.5) as a
function of [S], where 𝜎P is the entropy production due to reaction (19.3.5), 𝜎D is the entropy production due
to reaction (19.3.3) and (19.3.4) and 𝜎L is the entropy production due to reactions (19.3.1) and (19.3.2). The
numerical values used in the model are: k1f = 0.5; k1r = 0.2; k2f = 0.5; k2r = (k1r/k1f)k2f; k3f = 1.5; k3r = 10–3 ;
[P] = 0.5; [T] = [S], and [S] varies in the shown range.
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For small values of 𝜆 the stable stationary state is

𝛼s = 0 (19.3.11)

𝛽s =
2k2r𝛽a +

√
(2k2r𝛽a)2 + 4(k2r + k3)k1f𝜆

2(k2r + k3)
(19.3.12)

in which

𝛽a =
k2f𝜆 − k1r

2k2r

This is a symmetric solution in which [XL] = [XD] (as indicated by the subscript s). Using the stability

analysis described in the previous chapter, it can be shown that this symmetric solution becomes unstable

when 𝜆 is greater than a critical value 𝜆c. The value of 𝜆c is given by

𝜆c =
s +
√

s2 − 4k2
2f

k2
1r

2k2
2f

(19.3.13)

where

s = 2k2fk1r +
4k2

2r
k1r

k3 − k2r

(19.3.14)

For the system of equations (19.3.9) and (19.3.10) it is possible to obtain an asymmetric stationary solution

analytically:

𝛼a = ±

√
𝛽2

a −
k1f𝜆

k3 − k2r

(19.3.15)

𝛽a =
k2f𝜆 − k1r

2k2r

(19.3.16)

in which the subscript a stands for asymmetric. (We recommend the reader to use Mathematica code A in

Appendix 19.1 to verify all these properties of the system.)

The simplest process that demonstrates chiral symmetry breaking is in the crystallization of NaClO3 under

far-from-equilibrium conditions [9]. During the last two decades, other chirally autocatalytic reactions were

discovered through the mechanism of catalysis in these systems but are not as simple as the one presented

in the above model [10]. These chirally autocatalytic reactions are capable of amplifying extremely small

initial asymmetries. The simple model, however, leads to interesting conclusions regarding the sensitivity of

bifurcation discussed below.

19.3.1 Entropy Production Is Chiral-Symmetry-Breaking Transitions

Dissipative structures are generated and maintained through irreversible processes that continuously generate

entropy. Let us look at the entropy generation in the model system studied above. We assume each of the

reactions (19.3.1) to (19.3.5) is an elementary step so that we can use the formula (1/V)dS/dt = R(Rf – Rr)

ln(Rf/Rr), which gives the rate of entropy generated per unit volume by that reaction (see Equation (9.5.10);

here Rf and Rr are the forward and reverse reaction rates and R is the gas constant. Though in the theoretical

analysis we have ignored the reverse reaction (19.3.5), we shall include it in calculating the rate of entropy

production to make the affinity of this reaction finite.
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Using the numerical values specified in the caption of Figure 19.3b, we calculate the entropy production

for each of the reactions in the above model. Our objective is to investigate how the rate of entropy production

changes when the system moves from a region below the critical point, where system evolves to a symmetric

steady state [XL] = [XD], to a region above the critical point, where the system evolves to an asymmetric

state, [XL] ≠ [XD]. The values of [S], [T] and [P] are the parameters of the system. Keeping [P] at a fixed

value and setting [S] = [T], we obtain the steady-state rates of entropy production of each of the reactions

in the model. We do the same for various values of [S] and tabulate the entropy production rates for each

value of [S]. The range of values of [S] extends from the region below the critical point to a value above

the critical point. Salient features of the results are shown graphically in Figure 19.5b. This graph shows

the entropy production due to the reactions that produce XL, (19.3.1) and (19.3.2), as 𝜎L; similarly, 𝜎D is

the corresponding entropy production for XD. The entropy production due to the reaction that produces P

is indicated as 𝜎P. The behavior of 𝜎L and 𝜎D is interesting: both increase identically till [S] reaches the

critical point and then they diverge. The entropy production due to the dominant XL decreases above the

critical point while that of XD continues to increase. This indicates that the dominant species, XL, is closer

to its equilibrium value compared with XD; through the reaction XL + XD ⇋ P, the dominant XL keeps the

concentration of XD at a low value and farther away from its equilibrium value. The bulk of the total entropy

production of the system comes from the reaction producing P, as 𝜎P indicates. Furthermore, for the above

model, by artificially making XL = XD above the critical point one can show that the entropy production is

lower for the asymmetric state. Thus, when the unstable symmetric state makes a transition to the asymmetric

state above the critical point, then entropy production decreases. The rate of entropy production is in general

not a widely studied topic. We encourage the reader to explore this aspect of nonequilibrium systems.

19.3.2 Nonequilibrium Symmetry Breaking and the Origin of Biomolecular Asymmetry

The above example shows how a far-from-equilibrium chemical system can generate and maintain chiral

asymmetry, but it only provides a general framework in which we must seek the origins of biomolecular

handedness. The origin of biomolecular handedness, or life’s homochirality, remains to be explained [11,12].

Here we shall confine our discussion to how the theory of nonequilibrium symmetry breaking contributes

to this important topic. We cannot yet say with confidence whether chiral asymmetry arose in a prebiotic

(i.e. before life) process and facilitated the evolution of life, or whether some primitive form of life that

incorporated both L- and D-amino acids arose first and subsequent evolution of this life form led to the

homochirality of L-amino acids and D-sugars. Both views have their proponents.

A related question is whether the dominance of L-amino acids in biochemistry was a matter of chance or

whether it was a consequence of the extremely small but systematic chiral asymmetry due to electroweak

interactions that are known to exist at the atomic and molecular levels [5–7, 13, 14]. Theories that support

both views have been put forward but there is no general consensus on this matter either, mainly because there

is a dearth of persuasive experimental evidence. However, the theory of nonequilibrium symmetry breaking

provides a valuable means of assessing the plausible role of different models. For example, if we consider a

prebiotic symmetry-breaking process that might have occurred in the oceans, it is possible to develop a general

theory of symmetry breaking. A parameter 𝜆, similar to the one in the above model, can be defined for any

symmetry-breaking system. When 𝜆 < 𝜆c, the system will be in a symmetric state; for 𝜆 > 𝜆c the symmetric

state will become unstable and evolve to an asymmetric state. Furthermore, regardless of the complexities of

the reaction scheme, based only on symmetry considerations, it is possible to describe the bifurcation of the

chiral symmetry-breaking states with an equation of the following type [15, 16]:

d𝛼

dt
= −A𝛼3 + B(𝜆 − 𝜆c)𝛼 + Cg +

√
𝜀f (t) (19.3.17)
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Figure 19.6 A symmetry-breaking transition or bifurcation in the presence of a small bias that favors one of the
bifurcating branches. It can be analyzed through the general equation (19.3.17) and the probability of the system
making a transition to the favored branch is given by Equation (19.3.18).

in which the coefficients A, B and C depend on the concentrations of the reactants and on the reaction rates

(Figure 19.6). The parameter g is a small systematic bias, such as due to the electroweak force [6, 14] or

other systematic chiral influences such as spin-polarized electrons that emerge from radioactive decay [17], or

circularity polarized electromagnetic radiation emitted by certain stars that might fill large regions of space for

long periods of time [11]. The systematic influence appears in the form of the rates of production or destruction

of one enantiomer being larger than that of the other. The term
√
𝜀f (t) represents random fluctuations with the

root-mean-square value
√
𝜀. Since the assumptions about rates of production for biomolecules, their catalytic

activities and their concentrations determine the coefficients A, B and C, rather than the details of the chemical

reaction scheme, the model is constrained by our general understanding of the prebiotic chemistry. Equation

(19.3.17) provides a way to assess whether a given prebiotic model can produce and maintain the required

asymmetry in a reasonable amount of time.

Furthermore, Equation (19.3.17) can also give us a quantitative measure for the systematic chiral influence

g. Detailed analysis [16, 18] of this equation has shown that the sensitivity of the bifurcation to the systematic

influence depends on the rate at which the system moves through the critical point 𝜆c; i.e. we assume that

𝜆 = 𝜆0 + 𝛾t, so that the initial value of 𝜆0 is less than 𝜆c, but that 𝜆 gradually increases to a value larger than

𝜆c at an average rate 𝛾 . This process may correspond, for example, to a slow increase in the concentrations

of biomolecules in the oceans. It has been shown [16, 18] that the probability P of the system making a

symmetry-breaking transition to the asymmetric state favored by the systematic chiral influence g is given by

P = 1√
2𝜋 ∫

N

−∞
e−x2∕2dx where N =

Cg√
𝜀∕2

(
𝜋

B𝛾

)1∕4

(19.3.18)

Although derived in the context of biomolecular handedness, this formula is generally valid for any system
that breaks a twofold symmetry, such as mirror inversion. Using this formula, it is possible to understand the

extraordinary sensitivity of bifurcation to small systematic biases that favor one enantiomer by increasing its

production rate. Calculations show that L-amino acids have a lower ground-state energy [14]. For example, it

can be estimated that the chiral asymmetry of the electroweak interaction can create differences of the order

of one part in 1017 between the production rates of the enantiomers. Application of the above theory shows

that if the autocatalytic production rate of the chiral molecules is faster than the racemization rates, then for

a period in the range 104 to 105 years, the enantiomer favored by the electroweak force will dominate [16].
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For such a scenario, there is currently no experimental evidence to show us how chiral autocatalysis with the

required properties can originate in prebiotic chiral molecules.

Many different scenarios have been suggested for the possible origins of biomolecular handedness. An

extensive review can be found in the literature [19]. Note that, even if one is considering a process of chiral

asymmetry generation after ‘life’ arose, equations of the type (19.3.17) can still be used to describe the

symmetry-breaking process, but this time the model will contain as ‘reactants’ the self-replicating unit of life.

19.4 Chemical Oscillations

Our next example of a dissipative structure illustrates how the breaking of time-translation symmetry leads to

oscillatory behavior. Some early reports of concentration oscillations were discounted because it was widely

believed that such behavior was not consistent with thermodynamics. That is why the report on oscillating

reactions by Bray in 1921 and Belousov in 1958 were met with skepticism [20]. Although it is true that

oscillations of the extent of reaction 𝜉 about its equilibrium value will violate the Second Law, oscillations

of concentration about a nonequilibrium value of 𝜉 do not violate the Second Law. When it was realized that

systems far from thermodynamic equilibrium could exhibit oscillations, interest in these and other oscillating

reactions rose sharply and gave rise to a rich study of dissipative structures in chemical systems.

Developments in the theoretical understanding of instability for nonequilibrium states in the 1960s [3]

stimulated the experimental study of autocatalytic chemical kinetics that could give rise to concentration

oscillations through the phenomenon of bifurcation. In 1968 Prigogine and Lefever [21] developed a simple

model that not only demonstrated clearly how a nonequilibrium system can become unstable and make

a transition to an oscillatory state, but also proved to be a rich source for theoretical understanding of

propagating waves and almost every other phenomenon observed in real chemical systems, most of which

are extremely complex to study. Due to its impact on the study of dissipative structures, it is often called the

Brusselator (after its place of origin, the Brussels School of Thermodynamics) or the ‘trimolecular model’

due to the trimolecular autocatalytic step in the reaction scheme. Because of its theoretical simplicity, we

shall discuss this reaction first and then present the experimentally studied Belousov–Zhabotinsky reaction.

The Brusselator reaction scheme and the corresponding rates are:

A
k1

−−−−−−→X, k1[A] (19.4.1)

B + X
k2

−−−−−−→Y + D, k2[B][X] (19.4.2)

2X + Y
k3

−−−−−−→ 3X, k3[X]2[Y] (19.4.3)

X
k4

−−−−−−→E, k4[X] (19.4.4)

The net reaction of this scheme is A + B → D + E. We assume that the concentrations of the reactants A

and B are maintained at a desired nonequilibrium value through appropriate flows. The products D and E are

removed as they are formed. We also assume that the reaction occurs in a solution that is well stirred and

hence homogeneous. If we further assume that all the reverse reactions are so slow they can be neglected, we

have the following rate equations for the species X and Y:

d[X]

dt
= k1[A] − k2[B][X] + k3[X]2[Y] − k4[X] ≡ Z1 (19.4.5)

d[Y]

dt
= k2[B][X] − k3[X]2[Y] ≡ Z2 (19.4.6)
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One can easily verify (Exercise 19.5) that the stationary solutions, [X]s and [Y]s, to these equations are

[X]s =
k1

k4

[A], [Y]s =
k4k2

k3k1

[B]

[A]
(19.4.7)

As was explained in Section 18.4, the stability of the stationary state depends on the eigenvalues of the

Jacobian matrix

⎡⎢⎢⎢⎣
𝜕Z1

𝜕[X]

𝜕Z2

𝜕[X]

𝜕Z1

𝜕[Y]

𝜕Z2

𝜕[Y]

⎤⎥⎥⎥⎦ (19.4.8)

evaluated at the stationary state (19.4.7). The explicit form of the Jacobian matrix that was derived in Chapter

18 is (see Equation (18.4.13)): [
k2[B] − k4 k3[X]2

s
−k2[B] −k3[X]2

s

]
= M (19.4.9)

The example in Section 18.4 shows how the stationary state (19.4.7) becomes unstable when a complex

conjugate pair of eigenvalues of the matrix M cross the imaginary axis; for the Brusselator this happens when

[B] >
k4

k2

+
k3k2

1

k2k2
4

[A]2 (19.4.10)

The system makes a transition to an oscillatory state and the resulting oscillations are shown in Figure 19.7.

The steady states and the transition to oscillations can easily be investigated using the Mathematica codes

provided in Appendix 19.1.

5 10 15 20
time

1

2

3

4

X     Y
A, B

E

A                 X 

B + X               Y + D

2X + Y               3X

X               E

Figure 19.7 Brusselator model, model flow reactor and oscillations in [X] and [Y] obtained using Mathematica
in Appendix 19.1.
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19.4.1 The Belousov–Zhabotinsky Reaction

Once it became clear that concentration oscillations are not inconsistent with the laws of thermodynamics

(as the theoretical models of oscillating reactions showed), interest grew in the neglected 1958 report by

Belousov and the later experiments of Zhabotinsky reported in a 1964 article [22]. These experimental

studies of Belousov and Zhabotinsky were conducted in the Soviet Union and made known to the Western

world through the Brussels School of Thermodynamics. In the United States, the study of the Belousov–

Zhabotinsky oscillations was taken up by Field, Körös and Noyes [23], who performed a through-study of the

reaction mechanism in the early 1970s. This was an important landmark in the study of oscillating reactions.

Field, Körös and Noyes identified the key steps in the rather complex Belousov–Zhabotinsky reaction and

developed a model – which we shall refer to as the FKN model – consisting of only three variables that

showed how the oscillations arise.

The Belousov–Zhabotinsky reaction is basically catalytic oxidation of an organic compound such as

malonic acid, CH2(COOH)2. The reaction occurs in an aqueous solution and is easily performed in a beaker

by simply adding the following reactants in the concentrations shown:

[H+] = 2.0 M [CH2(COOH)2] = 0.28 M

[BrO3
−] = 6.3 × 10−2M [Ce4+] = 2.0 × 10−3M

After an initial ‘induction’ period, the oscillatory behavior can be seen in the variation of the concentration

of the Ce4+ ion, due to which there is a change in color from colorless to yellow. Many variations of

this reaction – with more dramatic variations of color – are known today. (A wealth of detail about the

Belousov–Zhabotinsky may be found in the literature [24].)

Box 19.1 presents a simplified version of the reaction mechanism from which the FKN model was

developed. Later models of the Belousov–Zhabotinzky reactions have included as many as 22 reaction steps.

The FKN model of the Belousov–Zhabotinsky reaction makes the following identifications: A = BrO3
−,

X = HBrO2, Y = Br−, Z = Ce4+, P = [HBrO] and B= [Org], an organic species that is oxidized. In modeling

the reaction, [H+] is absorbed in the definition of the rate constant. The reaction scheme consists of the

following steps and corresponding rates:

� Generation of HBrO2

A + Y → X + P, k1[A][Y] (19.4.11)

� Autocatalytic production of HBrO2

A + X → 2X + 2Z, k2[A][X] (19.4.12)

� Consumption of HBrO2

X + Y → 2P, k3[X][Y] (19.4.13)

2X → A + P, k4[X]2 (19.4.14)

� Oxidation of the organic reactants

B + Z → (f∕2)Y, k5[B][Z] (19.4.15)
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Box 19.1 The Belousov–Zhabotinsky reaction and the FKN model

The Field–Köros–Noyes (FKN) model of the Belousov–Zhabotinsky reaction consists of the following

steps with A = BrO3
−, X=HBrO2, Y= Br–, Z= Ce4+, P=HBrO and B =Org. In modeling the reaction,

[H+] is absorbed in the definition of the rate constant.
� Generation of HBrO2 : A + Y → X + P

BrO3
− + Br− + 2H+ → HBrO2 + HBrO (1)

� Autocatalytic production of HBrO2 : A + X → 2X + 2Z

BrO3
− + HBrO2 + H+ → 2BrO2 + H2O (2)

BrO2 + Ce3+ + H+ → HBrO2 + Ce4+ (3)

The net reaction, (2) + 2(3), is autocatalytic in HBrO2. Since the rate-determining step is (2), the

reaction is modeled as BrO3
− + HBrO2

H+,Ce3+

−−−−−−→ + 2Ce4+ + 2HBrO2
� Consumption of HBrO2 : X + Y → 2P and 2X → A + P

HBrO2 + Br− + H+ → 2HBrO (4)

2HBrO2 → BrO3
− + HBrO + H+ (5)

� Oxidation of the organic reactants: B + Z → (f/2)Y

CH2(COOH)2 + Br2 → BrCH(COOH)2 + H+ + Br− (6)

CH4+ + 1

2
[CH2(COOH)2 + BrCH(COOH)2 →

f

2
Br− + Ce3+ + Products (7)

The oxidation of the organic species is a complex reaction. It is approximated by a single rate determining

step (7). In the FKN model, concentration [B] of the organic species is assumed to be constant. The value

of the effective stoichiometric coefficient f is a variable parameter. Oscillations occur if f is in the range

0.5–2.4.

The corresponding rate equations are

d[X]

dt
= k1[A][Y] + k2[A][X] − k3[X][Y] − 2k4[X]2 (19.4.16)

d[Y]

dt
= −k1[A][Y] − k3[X][Y] +

f

2
k5[B][Z] (19.4.17)

d[Z]

dt
= 2k2[A][X] − k5[B][Z] (19.4.18)

Stationary states of this equation can be found after a little calculation (Exercise 19.7). To study its stability

involves analyzing the roots of a third-degree equation. There are many analytical methods [25] to analyze

the oscillatory behavior of such a system, but these details are outside our main objective of giving examples

of oscillating chemical systems. The oscillatory behavior of these equations may be numerically studied quite
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Figure 19.8 Experimentally observed oscillations in [Br–] for the Belousov–Zhabotinsky reaction; the concentra-
tions were measured using electrodes. (Courtesy of John Pojman.)

easily using Mathematica Code C in Appendix 19.1 (Figures 19.8 and 19.9). For numerical solutions, one

may use the following data [25]:

k1 = 1.28 mol−1 L s−1, k2 = 8.0 mol−1 L s−1, k3 = 8.0 × 105 mol−1 L s−1

k4 = 2.0 × 103 mol−1 L s−1, k5 = 1.0 mol−1L s−1

[B] = [Org] = 0.02M, [A] = [BrO3
−] = 0.06M, 0.5 < f < 2.4 (19.4.19)

The Belousov–Zhabotinsky reaction shows oscillations of great variety and complexity; it even exhibits chaos.

In chaotic systems arbitrarily close initial conditions diverge exponentially; the system exhibits aperiodic

behavior. A review by Epstein and Showalter [26] summarizes these aspects. It also produces propagating

waves and multistability. A large number of very interesting phenomena have been studied using this reaction

[24, 25].
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Figure 19.9 Oscillatory solutions obtained numerically using the FKN model of the Belousov–Zhabotinsky reac-
tion: [X] = [HBrO2] and [Z] = [Ce4+]. The plots were obtained using Mathematica codes in Appendix 19.1.
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19.4.2 Other Oscillating Reactions

During the last two decades, many more oscillating chemical reactions have been discovered. Indeed, Irving

Epstein and coworkers in the United States [27–29] and De Kepper and Boissonade in France [30] developed

a systematic way of designing oscillating chemical reactions. In biochemical systems, one of the most

interesting oscillating behaviors is found in the glycolytic reaction. A recent monograph by Albert Goldbeter

[31] summarizes the vast amount of study on oscillatory biochemical systems.

19.5 Turing Structures and Propagating Waves

From the delicate beauty of the butterfly to the ‘fearful symmetry’ of the tiger, Nature if full of wondrous

patterns, both animate and inanimate. How do these patterns arise? Dissipative processes in systems far from

thermodynamic equilibrium may provide at least a partial answer.

The emergence of biological morphology during embryonic development – with hands and feet and eyes all

in the right place – is a fascinating subject (a popular account of this subject is Lewis Wolperts’s Triumph of
the Embryo, 1991, Oxford University Press). What mechanism produces the morphology of living organisms?

In 1952 the British mathematician Alan Turing suggested a mechanism based on the processes of chemical

reactions and diffusion [32]. He showed, by devising a simple model, how chemical reactions and diffusion

can work in consonance to produce stable stationary patterns of concentrations. Turing proposed it to explain

biological morphogenesis. Today we know that biological morphogenesis is a very complex process, too

complex to be explained entirely by the processes of diffusion and chemical reactions. However, Turing’s

observation has gained much attention since the 1970s due to the great interest in theoretical and experimental

study of far-from-equilibrium chemical systems. In this section we will briefly describe a Turing structure,
or a stationary spatial dissipative structure, using the Brusselator of Section 19.4.

For simplicity, we shall consider a system with one spatial dimension, with coordinate r, in which diffusion

occurs (Figure 19.10). We assume the system extends from –L to +L. We must also specify spatial boundary

conditions; the usual boundary conditions are that either the concentrations of the reactants or their flows

are maintained at a constant value at the boundaries (or even a combination of both). For our example, we

shall assume that the flows of the reactants are zero at the boundaries. Since diffusion flow is proportional

to the derivative 𝜕C∕𝜕r (in which C is the concentration), the no-flow boundary conditions imply that the

derivatives of the concentrations are zero at the boundaries.

When diffusion is included as a transport process, the kinetic equations (19.4.5) and (19.4.6) become

𝜕[X]

𝜕t
= DX

𝜕2[X]

𝜕r2
+ k1[A] − k2[B][X] + k3[X]2[Y] − k4[X] (19.5.1)

𝜕[Y]

𝜕t
= DY

𝜕2[Y]

𝜕r2
+ k2[B][X] − k3[X]2[Y] (19.5.2)

The boundary conditions are

𝜕[X]

𝜕r

||||r=−L
= 𝜕[X]

𝜕r

||||r=+L
= 0

in which DX and DY are the diffusion coefficients and r is the spatial coordinate. As before, we assume that

[A] and [B] are maintained at a fixed uniform value along the entire system (an assumption that simplifies the

mathematics but which is difficult to achieve in practice). Diffusion usually homogenizes the concentration

in a system, but when coupled with autocatalytic chemical reactions under far-from-equilibrium conditions,

it actually generates inhomogeneities or patterns. For pattern formation, the diffusion coefficients must be

different. If the diffusion coefficients are nearly equal, then diffusion does not cause an instability; diffusion
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Figure 19.10 Above: Turing structure in a one-dimensional Brusselator model. Below: Turing structures observed
in a chlorite–iodide–malonic acid reaction in an acidic aqueous solution (Courtesy of Harry L. Swinney). The size
of each square is nearly 1 mm.

only tends to homogenize the instability that already exists. This can be seen as follows. We begin by

considering the stability of the stationary state (19.4.7), the concentrations being homogeneous in the entire

system:

[X]s =
k1

k4

[A], [Y]s =
k4k2

k3k1

[B]

[A]
(19.5.3)

The stability of this solution depends on the behavior of a small perturbation. If 𝛿X and 𝛿Y are the small

perturbations from [X]s and [Y]s, it is easy to see that equations linearized about the steady state (19.5.3) are

𝜕

𝜕t

(
𝛿X
𝛿Y

)
=
⎡⎢⎢⎢⎣

DX
𝜕2

𝜕r2
0

0 DY
𝜕2

𝜕r2

⎤⎥⎥⎥⎦
(
𝛿X
𝛿Y

)
+ M

(
𝛿X
𝛿Y

)
(19.5.4)
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in which we have used the matrix defined in (19.4.9):

M =
[

k2[B] − k4 k3[X]2
s

−k2[B] −k3[X]2
s

]
We will first see that a spatial structure will not arise when the diffusion coefficients are equal. If we assume

DX = DY = D, Equation (19.5.4) can be written as

𝜕

𝜕t

(
𝛿X
𝛿Y

)
= D

𝜕2

𝜕r2
I

(
𝛿X
𝛿Y

)
+ M

(
𝛿X
𝛿Y

)
(19.5.5)

in which I is the identity matrix. For a linear equation of this type, the spatial part of the solutions can

always be written as combinations of Sin Kr and Cos Kr, in which the wavenumbers K are chosen so that the

boundary conditions are satisfied. This means that if we understand the behavior of a perturbation of the type(
𝛿X(t)
𝛿Y(t)

)
Sin Kr and

(
𝛿X(t)
𝛿Y(t)

)
Cos Kr (19.5.6)

in which the spatial part is separated, then the behavior of all linear combinations of these basic solutions can

be deduced. If we substitute (19.5.6) into (19.5.5), we obtain

𝜕

𝜕t

(
𝛿X(t)
𝛿Y(t)

)
= (−DK2I + M)

(
𝛿X(t)
𝛿Y(t)

)
(19.5.7)

From this expression, it is clear that if 𝜆+ and 𝜆– are the eigenvalues of M, the addition of diffusion will

only change the eigenvalues to (𝜆+ – DK2) and (𝜆– – DK2). Since it is the positivity of the real part of the

eigenvalue that indicates instability, we see that diffusion does not generate a new instability; it only makes

steady states more stable to perturbations with K ≠ 0. So the solution to Equation (19.5.7) with K = 0 is the

least stable state because its eigenvalues will have the largest real parts.

For the emergence of spatial patterns, the diffusion coefficients must be unequal. In a small region, if one

species diffuses out more rapidly than the other, the growth of one species may be facilitated by the depletion

of the other. If this happens, the homogeneous state will no longer be stable and inhomogeneities will begin

to grow. When the diffusion coefficients are unequal, it is easy to see that in place of the matrix (–K2DI + M)

we have the matrix [
k2[B] − k4 − K2DX k3[X]2

s
−k2[B] −k3[X]2

s − K2DY

]
(19.5.8)

For an instability to produce stationary spatial structures, the two eigenvalues of this matrix must be real and

at least one must become positive. If the eigenvalues are real and one becomes positive due to the variations

in the parameters [B] and [A], then the unstable perturbation will be of the form(
c1

c2

)
Sin(Kr)e𝜆+t or

(
c1

c2

)
Cos(Kr)e𝜆+t (19.5.9)

in which 𝜆+ is the eigenvalue with a positive real part. This indicates a growth of a spatial pattern sin Kr or

cos Kr without any temporal oscillations; it will evolve to a stationary pattern or a Turing structure.

On the other hand, if the eigenvalues are a complex–conjugate pair, then the solutions to the perturbation

equation (19.5.4) will be of the form(
c1

c2

)
Sin(Kr)e(𝜆re±i𝜆im)t or

(
c1

c2

)
Cos(Kr)e(𝜆re±i𝜆im)t (19.5.10)
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in which

(
c1

c2

)
is the eigenvector with the eigenvalue 𝜆 = 𝜆re ± i𝜆im, with its real and imaginary parts as

shown. If the real part 𝜆re is positive, the perturbation (19.5.10) will grow. The unstable perturbation contains

oscillations in time, due to the factor ei𝜆imt as well as variations in space due to the factor Sin Kr or Cos Kr.
Such a perturbation corresponds to a propagating wave.

For matrix (19.5.8), the condition for one of its two real eigenvalues to cross zero can be obtained as follows.

First we note that the determinant, Det, of a matrix is the product of the eigenvalues. If the eigenvalues are

𝜆+ and 𝜆–, we have

(𝜆+𝜆−) = Det = (k2[B] − k4 − K2DX) (−k3[X]2
s − K2DY)

+ (k2[B])(k3[X]2
s )

(19.5.11)

Before the onset of the instability, both eigenvalues are negative and hence Det > 0. Let us assume that when

the parameter [B] is varied, 𝜆+ crosses zero and becomes positive. Then, at the point where 𝜆+ = 0, we have

Det = 0 and when 𝜆+ > 0 we have Det < 0. Thus the condition for the instability may be stated as

Det = (k2[B] − k4 − K2DX)(−k3[X]2
s − K2DY) + (k2[B])(k3[X]2

s ) < 0 (19.5.12)

Using [X]s = (k1∕k4)[A] this inequality can be rewritten as

[B] >
1

k2

[k4 + K2DX]

[
1 +

k3k2
1
[A]2

k2
4

1

K2DY

]
(19.5.13)

This then is the condition under which a Turing structure will arise in the Brusselator model. As [B] increases,

the lowest value [B]c for which (19.5.13) is satisfied will trigger an instability. The value of [B]c can be found

by plotting

[B]c =
1

k2

[k4 + K2DX]

[
1 +

k3k2
1
[A]2

k2
4

1

K2DY

]
(19.5.14)

as a function of K2. As shown in Figure 19.11, this plot has a minimum. When [B] reaches this minimum

value, the corresponding Kmin will be the wavenumber of the stationary pattern. The minimum occurs at the

following values (Exercise 19.9):

K2
min = A

√
k3k2

1

k4DXDY

and [B]c = [B]min =
1

k2

⎡⎢⎢⎣
√

k4 + A

√√√√DXk3k2
1

DYk2
4

⎤⎥⎥⎦
2

(19.5.15)

Experimentally, traveling waves have been observed in the Belousov–Zhabotinsky reaction (Figure 19.12)

but only recently have the Turing patterns been realized in the laboratory [33].

The examples shown in this chapter are only a small part of the rich variety of behavior encountered in

far-from-equilibrium chemical systems. Here our objective is only to show a few examples; an extensive

description would form a book in itself! At the end of the chapter there is a list of monographs and conference

proceedings that give a detailed descriptions of oscillations, propagating waves, Turing structures, pattern

formation on catalytic surfaces, multistability and chaos (both temporal and spatiotemporal). Dissipative

structures have also been found in other fields such as hydrodynamics and optics.
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Unstable

[B]min

K2
0

[B]c

Figure 19.11 Stability diagram showing the value of [B] and the corresponding value of K2 that will become
unstable and grow. The values of K that are consistent with the boundary conditions are discrete modes char-
acterized by an integer m. As [B] increases, when it is just above [B]min, the mode m that becomes unstable first
grows into a spatial structure.

19.6 Dissipative Structures and Machines

Having studied some examples of dissipative structures, it is interesting to compare them with

machines/computers or designed structures, for there are some notable and interesting fundamental dif-

ferences that have been insightfully noted by Robert Rosen [34].

First, we note that most designed structures are based on time-reversible mechanics, classical or quantum;

i.e. their mathematical description is based on the reversible dynamical processes. The ideal designed structure

Figure 19.12 Traveling waves in the Belousov–Zhabotinsky reaction.
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does not include irreversible processes; for its best performance, entropy-generating dissipative processes

must be minimized. In stark contrast, the very existence of dissipative structures depends on dissipative

processes. Their mathematical description is based on irreversible thermodynamic processes. Their behavior

is not time symmetric.

Second, the structure of a designed structure originates from a processes external to the system and so is its

function: every designed structure is designed to perform a specific set of functions, as are its components. In

computers, ‘machine intelligence’ is, in fact, ‘borrowed intelligence’; the algorithms that enable it to perform

its function originate in processes external to the system. Even if a computer can generate an algorithm,

it can do so only because it has been supplied with a higher-level algorithm that enables it to do so. In

contrast, the structure in dissipative structures originates from processes within. Their behavior, if it could be

interpreted as a ‘function’, is entirely a consequences of self-organization. In a complex dissipative structure,

one may associate ‘functions’ to various subsystems, but those functions are entirely self-generated. If one

could associate an ‘algorithm’ for its behavior, that too originates from within.

Finally, thermodynamic stability of dissipative structure means dissipative processes restore the structure if

it is perturbed or ‘damaged’ – within bounds, of course. This bestows them with the property of ‘self-healing’.

This is clearly not the case with machines or computers.

From these observations, one may surmise that dissipative structures are more akin to biological organisms

than are machines and computers. The machine paradigm is inappropriate as a theory of biological organism.

This aspect will be discussed further in the concluding Chapter 21.

19.7 Structural Instability and Biochemical Evolution

We conclude this chapter with a few remarks on another kind of instability often called ‘structural instability’

and its relevance to biochemical evolution. In the previous sections we have seen instabilities giving rise to

organized states. These instabilities arose in a given set of chemical reactions. In nonequilibrium chemical

systems, instability may also arise by the introduction of a new chemical species that gives rise to new

reactions; these new reactions may destabilize the system and drive it to a new state of organization. In this

case the ‘structure’ of the chemical reaction network is itself subject to changes. Each new species alters the

reaction kinetics and this may drastically alter the state of the system; i.e. due to the appearance of a new

chemical species the system may become unstable and evolve to a new state.

This type of structural instability can be seen most easily in the evolution of self-replicating molecules with a

steady supply of monomers. Let us consider a set of autocatalytic polymers that are capable of self-replication

through a template mechanism. In this case, each new polymer is a new autocatalytic species. Let us further

assume that this self-replication is subject to random errors or mutations. Each mutation of a self-replicating

molecule introduces a new species and new chemical reactions. Thus if we write a set of kinetic equations

for such a system, each time a random mutation occurs, the set of equations itself will change. Under a given

set of nonequilibrium conditions or ‘environment’ some (or perhaps most) of the mutations may not produce

a polymer whose rate of self-replication is larger than those of others. The appearance of such a new species

may cause a small change in the population of various polymers but no significant change will arise. However,

some of the mutations might give rise to a polymer with a high rate of self-replication. This would correspond

to fluctuation to which the system is unstable. The new polymer may now dominate the system and alter

the population significantly. This of course corresponds to Darwinian evolution at the molecular level, the

paradigm of the ‘survival of the fittest’. Many detailed studies of such structural instabilities and molecular

evolution have been conducted [35–38]. These models are beyond the scope of this text but we will note

an interesting thermodynamic feature summarized in Figure 19.13. Each new structural instability generally

increases the dissipation or the rate of entropy production in the system because it increases the number of
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Figure 19.13 Structural instabilities during molecular evolution give rise to new processes that tend to increase
entropy production.

reactions. This is in contrast to the near-equilibrium situations discussed in Chapter 17 in which the entropy

production tends to a minimum. Structural instability may progressively drive far-from-equilibrium systems

to higher rates of entropy production and higher states of order. Needless to say, biochemical evolution and

the origin of life is a very complex process that we are only beginning to understand. However, now we

see instability, fluctuation and evolution to organized states as a general nonequilibrium process whose most

spectacular manifestation is the evolution of life.

Appendix 19.1 Mathematica Codes

The following codes give the numerical solutions for the kinetic equations for the systems discussed in this

chapter. As in Chapter 9, NDSolve is used to obtain numerical solutions. The results can be plotted using the

Plot command. Numerical output can be exported to graphing software using the Export command.

CODE A: CHIRAL SYMMETRY BREAKING

(*Code to show chiral symmetry breaking. Kinetic constants are
chosen such that the equilibrium constant,(kf/kr), for direct and
catalyzed reactions are equal*)

k1f=0.5;k1r=0.2;k2f=0.5;k2r=(k1r/k1f)*k2f ;k3f=1.5;k3r=10ˆ-3;
S=1.25;T=S;P=0.5;

R1f:=k1f*S*T;R1r:=k1r*XL[t];
R2f:=k2f*S*T*XL[t];R2r:=k2r*(XL[t])ˆ2;
R3f:=k1f*S*T;R3r:=k1r*XD[t];
R4f:=k2f*S*T*XD[t];R4r:=k2r*(XD[t])ˆ2;
R5f:=k3f*XL[t]*XD[t];R5r:=k3r*P;

(* Initial values of XL and XD are set at steady state values for S=0.5 *)

Soln1=NDSolve[{XL'[t]==R1f-R1r+R2f-R2r-R5f+R5r,
XD'[t]==R3f-R3r+R4f-R4r-R5f+R5r,
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XL[0]==0.2502,XD[0]==0.2500},{XL,XD},{t,0,2000},
MaxSteps->10000]

tmax=100;

Plot[Evaluate[{XL[t],XD[t]}/.Soln1],{t,0,tmax},
AxesLabel->{"time","[XL]&[XD]"},
AxesStyle->Directive[Black,14],
PlotStyle->{{Black,Thick},{Gray,Thick}},PlotRange->All]

{{XL->InterpolatingFunction[{{0.,2000.}},<>],
XD->InterpolatingFunction[{{0.,2000.}},<>]}}

20 40 60 80 100
time

0.5

1.0

1.5

2.0

2.5

[XL]&[XD]

To write output files for spreadsheets, use the Export command and the file format List. For more detail see

the Mathematica help file for the Export command. In the command below, the output filename is: data1.txt.

This file can be read by most spreadsheets and graphing software.

The command X[t]/.Soln1 specifies that X[t] is to be evaluated using Soln1 defined above. TableForm

outputs data in a convenient form.

Export["data1.txt",Table[{t,{XL[t],XD[t]}/.Soln1},{t,1,50}]//
TableForm, "List"]

data1.txt

To obtain a table of t versus X(t) the following command can be used.

Table[{t,{XL[t],XD[t]}/.Soln1},{t,1,5}]//TableForm

1 0.774193 0.773908
2 0.860958 0.860593
3 0.86964 0.869178
4 0.870507 0.869924
5 0.870658 0.869922
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The rate of entropy production due to each of the reactions in the above scheme can be calculated using the

following code. The Plot command plots the total rate of entropy production. The Table command outputs a

table of the rates of entropy production for each reaction at the last three time points.

RR=8.314;
Sig1:=RR*(R1f-R1r)*Log[R1f/R1r];
Sig2:=RR*(R2f-R2r)*Log[R2f/R2r];
Sig3:=RR*(R3f-R3r)*Log[R3f/R3r];
Sig4:=RR*(R4f-R4r)*Log[R4f/R4r];
Sig5:=RR*(R5f-R5r)*Log[R5f/R5r];
SigTot:=Sig1+Sig2+Sig3+Sig4+Sig5;

Plot[Evaluate[SigTot/.Soln1], {t,10,tmax},
AxesLabel->{"time","[XL]&[XD]"},
AxesStyle->Directive[Black,14],
PlotStyle->{Black,Thick},PlotRange->All]

Table[TableForm[{Evaluate[{t,SigTot,Sig1,Sig2,Sig3,Sig4,Sig5}
/.Soln1]}], {t,tmax-2,tmax}]

40 60 80 100
time

85

90

95

100

[XL]&[XD]

98 99 100
80.4352 80.4352 80.4352
0.765395 0.765395 0.765395
2.05282 2.05282 2.05282
17.4965 17.4965 17.4965
3.92293 3.92293 3.92293
56.1976 56.1976 56.1976



Dissipative Structures 445

CODE B: THE BRUSSELATOR

The following is the code for the Brusselator. Since no reverse reactions are involved, we shall not use the

subscripts f and r for the reaction rates and rate constants.

(* Chemical Kinetics: The Brusselator *)

k1=1.0; k2=1.0; k3=1.0; k4=1.0; A=1.0; B=3.0;
R1:=k1*A; R2:=k2*B*X[t]; R3:=k3*(X[t]ˆ2)*Y[t];
R4:=k4*X[t];

Soln2=NDSolve[{X'[t]== R1-R2+R3-R4,
Y'[t]== R2-R3,
X[0]==1.0,Y[0]==1.0},
{X,Y},{t,0,20},
MaxSteps->500]

{{X->InterpolatingFunction[{{0.,20.}},<>],
Y->InterpolatingFunction[{{0.,20.}},<>]}}

Plot[Evaluate[{X[t]}/.Soln2],{t,0,20},PlotRange->{0,4},
PlotStyle->{Black,Thick},
AxesLabel->{"time"},
AxesStyle->Directive[Black,14]]

0 5 10 15 20
time

1

2

3

4

Plot[Evaluate[{X[t],Y[t]}/.Soln2],{t,0,20},
PlotStyle->{{Black, Thick},{Gray,Thick}},
AxesLabel->{"time"},
AxesStyle->Directive[Black, 14]]
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5 10 15 20
time

1

2

3

4

Table[{t,Evaluate[{X[t],Y[t]}/.Soln2]},{t,0,10,1}]
//TableForm

0 1. 1.
1 0.336806 2.13473
2 0.316947 2.83679
3 0.344197 3.48043
4 0.389963 4.0695
5 0.476012 4.556
6 0.766335 4.6843
7 3.45363 0.851828
8 1.36836 1.6496
9 0.526035 2.63
10 0.373265 3.36134

CODE C: THE BELUSOV–ZHABOTINSKY REACTION

The following is the FKN model of the Belousov–Zhabotinsky reaction. Since no reverse reactions are

involved, we shall not use the subscripts f and r for the reaction rates and rate constants.

(* The Belousov-Zhabotinsky Reaction/FKN Model *)

(* X=HBrO2 Y=Br- Z=Ce4+ B=Org A=BrO3- *)

k1=1.28; k2=8.0; k3=8.0*10ˆ5; k4=2*10ˆ3; k5=1.0;
A=0.06; B=0.02;f=1.5;

R1:=k1*A*Y[t]; R2:=k2*A*X[t]; R3:=k3*X[t]*Y[t];
R4:=k4*X[t]ˆ2; R5:=k5*B*Z[t];

Soln3=NDSolve[{X'[t]== R1+R2-R3-2*R4,
Y'[t]== -R1-R3+(f/2)*R5,
Z'[t]== 2*R2-R5,
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X[0]==2*10ˆ-7,Y[0]==0.00002,Z[0]==0.0001},
{X,Y,Z},{t,0,1000}, MaxSteps->2000]

{{X->InterpolatingFunction[{{0.,1000.}},<>],
Y->InterpolatingFunction[{{0.,1000.}},<>],
Z->InterpolatingFunction[{{0.,1000.}},<>]}}

Plot[Evaluate[{Z[t],10*X[t]}/.Soln3],{t,0,900},
PlotRange->{0.0,1.5*10ˆ-3},
PlotStyle->{{Black, Thick},{Gray,Thick}},
AxesStyle->Directive[Black, 14]]
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Exercises

19.1 Analyze the stability of solutions 𝛼 = 0 and 𝛼 = ±
√
𝜆 for Equation (19.2.1) and show explicitly that

when 𝜆 > 0 the solution 𝛼 = 0 becomes unstable whereas the solutions 𝛼 = ±
√
𝜆 are stable.

19.2 Write a Mathematica or Maple code to obtain the solutions of the equations in Exercise 19.1. Plot

these solutions as a function of time for various initial conditions and show explicitly that the solutions

evolve to stable stationary states.

19.3 For the reaction scheme (19.3.1) to (19.3.5), using the principle of detailed balance, verify that the

concentrations of XL and XD will be equal at equilibrium.

19.4 Using the variables 𝛼, 𝛽 and 𝜆 defined in (19.3.8), show that the kinetic equations (19.3.6) and (19.3.7)

can be written in the forms of (19.3.9) and (19.3.10).

19.5 Show that Equation (19.4.7) are the stationary states of the kinetic equations of the Brusselator equations

(19.4.5) and (19.4.6).

19.6 (a) Write the kinetic equations for [X] and [Y], assuming that [A] and [B] are fixed, for the following

scheme (called the Lotka–Volterra model):

A + X → 2X, X + Y → 2Y, Y → B

(b) Obtain its steady states and analyze their stability as a function of the parameters [A] and [B].

19.7 (a) Using the dimensionless variables defined by

x = [X]

X0

, y = [X]

Y0

, z = [Z]

Z0

and 𝜏 = t
T0

in which

X0 =
k2[A]

2k4

, Y0 =
k2[A]

k3

, Z0 =
(k2[A])2

k4k5[B]
, T0 =

1

k5[B]
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show that the kinetic equations (19.4.16) to (19.4.18) can be written as

𝜀
dx
d𝜏

= qy − xy + x(1 − x)

𝜀′
dx
d𝜏

= −qy − xy + fz

dz
d𝜏

= x − z

in which

𝜀 =
k5[B]

k2[A]
, 𝜀′ =

2k5k4[B]

k3k2[A]
and q =

2k1k4

k3k2

(See Tyson, J.J., Scaling and reducing the Field–Körös–Noyes mechanism of the Belousov–

Zhabotinsky reaction, J. Phys. Chem., 86 (1982), 3006–3012.)

(b) Find the stationary states of this set of equations.

19.8 Using Mathematica Code C in Appendix 19.1, obtain the range of values for the parameter f in which

oscillations occur. Also plot the relation between the period of oscillations and the value of f.

19.9 Show that the minimum of Equation (19.5.14) occurs at the values given by Equation (19.5.15).



20
Elements of Statistical Thermodynamics

Introduction

In the kinetic theory of the nineteenth century, the ideas Daniel Bernoulli published a century earlier in his

Hydrodynamica came to fruition. When the atomic nature of matter became evident, James Clerk Maxwell,

Ludwig Boltzmann and others began to formulate the kinetic theory of gases. Kinetic theory demonstrated

how random molecular motion gives rise to pressure in accordance with the ideal gas law, pV = NRT (as

discussed in Section 1.6). It gave us the precise relationship between temperature and molecular motion:

the average kinetic energy of a molecule is directly proportional to the temperature, ⟨mv2/2⟩ = (3/2)kBT.

The concepts introduced through kinetic theory could also explain other properties of gases, such as heat

conductivity, diffusion and viscosity [1], the so-called transport properties. Once the connection between

the temperature and energy of an individual molecule was established, the relationship between energy as

formulated in thermodynamics and mechanical energy of a molecule became clear. The thermodynamic

energy of a system is the sum of all the energies of the molecules. Random molecular motion distributes

the total energy of the system into all possible modes of motion, i.e. translation, rotation and vibration,

and the amount of energy in each mode of motion depends on the temperature. If the average energy of

a single molecule is known, then the total energy of the system can be calculated; in turn, the average

energy of a molecule is related to the system’s temperature. The success of these developments still left

one big question unanswered: what is the microscopic explanation of entropy? What is the relationship

between entropy and molecular properties? Boltzmann’s answer to that question, which has already been

introduced in earlier chapters, is S = kB lnW. This fundamental formula opened the way for the formulation

of statistical thermodynamics, a theory that relates thermodynamic quantities to the statistical properties

of molecules.

In this chapter, we introduce the reader to the basic formalism of statistical thermodynamics and illustrate

how thermodynamic properties of some simple systems can be related to statistical properties of molecules.

We will begin by giving the reader a brief overview of the theory.

In previous chapters the thermodynamic quantities were written as functions of moles N and gas constant

R. In this chapter, it is more convenient to use molecular quantities, Ñ the number of particles and the

Boltzmann constant kB. Conversion to N and R may be done by noting that Ñ = NNA and R = NAkB. Also,

when discussing general statistical thermodynamic concepts that are valid for electrons, atoms or molecule,

we shall use the term ‘particles’.

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Ludwig Boltzmann (1844–1906).
(Reproduced by courtesy of the AIP Emilio Segre Visual Archives, Segre Collection.)

20.1 Fundamentals and Overview

On the one hand, quantum mechanics describes the behavior of electrons, atoms and molecules with remark-

able success through the concepts of quantum states, quantized energies and energy eigenstates. On the

other hand, an equally successful thermodynamics describes the macroscopic behavior of matter in terms

of variables such as entropy S, Helmholtz energy F and chemical potential 𝜇. Statistical thermodynamics

relates these two theories. It enables us to calculate thermodynamic quantities, such as the Helmholtz energy

F, given all the energy states of constituent particles: electrons, atoms or molecules as the case might be.

In quantum theory, particles such as electrons, atoms or molecules are described by their quantum states|𝜓⟩. Among these states are energy eigenstates, states with definite energy. Statistical thermodynamics uses

these ‘energy eigenstates’ |Ek⟩, associated with an energy Ek, in which the subscript k = 1, 2, 3,… indexes

the quantized energies. There could be several states that have the same energy; the energy level is then said

to be ‘degenerate’. A microstate of a system is the detailed specification of the state of every particle in

the system. For a given total energy U there are a large number of different ways in which that energy can

be distributed among the particles in the system. In general, there are a large number of microstates that

correspond to a given thermodynamic state. Boltzmann’s fundamental postulate is that entropy is related to

the number of microstates W through

S = kB lnW (20.1.1)

in which the constant kB is now named after Boltzmann. W is sometimes called the thermodynamic proba-
bility, a term introduced by Max Planck. In Chapter 3 (Box 3.2) we considered simple examples to illustrate

how W is calculated. We will discuss more such examples in the following sections. For a brief overview
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of statistical thermodynamics, we shall focus on two basic relations that follow when Equation (20.1.1) is

applied to systems in thermodynamic equilibrium.

� Statistical thermodynamics uses the concept of statistical ensembles, a large collection of Ñ identical

particles or entire systems, to calculate average values. There is an alternative way of expressing Equation

(20.1.1). For an ensemble of particles or systems, if Pk is the probability that the particle or system is in

state k, then in Section 20.4 we show that S can also be written as

S = −ÑkB

∑
k

Pk lnPk (20.1.2)

� When a system is in thermodynamic equilibrium at a temperature T, the probability P(Ei) that a particle

will occupy a state with energy Ei is

P(Ei) =
1

q
e−Ei∕kBT (20.1.3)

The term

q =
∑

i

e−Ei∕kBT (20.1.4)

is the normalization constant; it is introduced so that
∑

i P(Ei) = 1, as required by the very definition

of probability. Expression (20.1.3) for the probability of a state k is called the Boltzmann probability
distribution. In many situations, it is found that several distinct states have the same energy. If g(Ei) is the

number of states having the same energy Ei, then the probability that a particle has an energy Ei occupying

any one of the g(Ei) states is

P(Ei) =
1

q
g(Ei)e

−Ei∕kBT , where q =
∑

i

g(Ei)e
−Ei∕kBT (20.1.5)

and g(Ei) is called the degeneracy of the energy level Ei.

Statistical thermodynamics of equilibrium systems is based on the fundamental expressions (20.1.2) and

(20.1.3). Thus, given the quantum energy levels Ek, and their degeneracies g(Ek), the average value of the

energy of a single particle, which we shall denote by ⟨E⟩, is calculated using Equation (20.1.3):

⟨E⟩ = m∑
i=1

EiP(Ei) (20.1.6)

To calculate the average energy of a system of Ñ particles, an ensemble of systems is used (the reason for

using an ensemble of systems is explained in Section 20.4). In this case, the total energy of all the particles

Ui takes the place of Ei in Equation (20.1.6), in which P(Ui) is the corresponding probability. The ensemble

average ⟨U⟩ = U is the energy of the system. The entropy of the system can be calculated using Equation

(20.1.2). From these two quantities, the Helmholtz energy F = U − TS and other thermodynamic quantities

can be obtained.

In the following sections we shall see that thermodynamic quantities can be obtained from q defined in

Equation (20.1.4). Because of its importance, it is given a name, the partition function.1 To be more precise

1The letter z is also used for the partition function, because in German the sum (20.1.4) is called Zustandsumme (which means ‘state

sum’).
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with terminology, q defined above is called the ‘single-particle canonical partition function’. The partition

function of a system of Ñ particles is usually denoted by Q. For Ñ identical noninteracting particles, q and Q
have the following relation:

Q =
qÑ

Ñ!
(20.1.7)

For interacting particles, Q is a more complicated function of T, V and Ñ. Expressing Q as a function of

V, T and Ñ, and using Equation (20.1.2), one can derive the following general relation between Q and the

Helmholtz energy F:

F = −kBT lnQ(V , T , Ñ) (20.1.8)

From the Helmholtz energy, other thermodynamic quantities can be calculated:

𝜇(p, T) =
(
𝜕F
𝜕N

)
V ,T

, p = −
(
𝜕F
𝜕V

)
T ,N

, S = −
(
𝜕F
𝜕T

)
V ,N

(20.1.9)

Statistical thermodynamics of a system usually begins with the calculation of the partition function Q. If Q
can be obtained in a convenient analytic form, then all thermodynamic quantities can be calculated from it.

This is the basic framework of equilibrium statistical thermodynamics. In the following sections we develop

this formalism and present illustrative applications.

20.2 Partition Function Factorization

When the total energy of a particle can be written as a sum of independent energies with independent quantum

numbers, the partition function can be expressed as a product of partition functions. The total energy of a

molecule consists of energies of translation, rotation, vibration and the energies in the electronic and nuclear

states. We can write the total energy E as the sum

E = Etrans + Erot + Evib + Eelec + Enuc (20.2.1)

in which the superscripts stand for translation, rotation, etc. Each of the energies is quantized and has

independent quantum numbers. (Depending on the conditions, the energies may also depend on external

factors, such as gravitational and electromagnetic fields, but those terms are not included in the above

expression.) The above expression assumes that energy of each type of motion is independent of another.

Though this may be a good approximation in many situations, it is not strictly true. For example, the rotational

energy of a molecule may depend on its vibrational state; in such situations, one could deal with the combined

vibrational–rotational energy levels. For simplicity, we shall assume that energy levels of each type of motion

have independent quantum numbers. In this case, the single molecule partition function can be factorized:

q =
∑

j,k,l,m,n

g(Ej)g(Ek)g(El)g(Em)g(En)e
−𝛽(Etrans

j +Erot
k
+Evib

l
+Eelec

m +Enuc
n )

=
∑

j

g(Ej)e
−𝛽Etrans

j
∑

k

g(Ek)e−𝛽Erot
k
∑

l

g(El)e
−𝛽Evib

l
∑

m

g(Em)e−𝛽Eelec
m
∑

n

g(En)e−𝛽Enuc
n

(20.2.2)

For each molecule, quantum theory gives us the energy levels of each mode of motion. As shown in Box 20.1,

the spacing of energy levels increases from translation to rotation to vibration. Translational energy levels are

very closely spaced compared with the average thermal energy of a molecule, which is of the order of kBT.

The electronic energies generally have a much larger spacing than vibrational energies. If the ground-state

energy is taken to be zero, then the electronic partition function is close to unity.
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Box 20.1 Energy levels associated with different types of motion

m2m1

Energy levels of a molecule are given for various types of motion. Translational energy levels are very

closely spaced compared with rotational energies, which are more closely spaced than vibrational energies.

The energy level spacing shown is not to scale; these are just meant to give a qualitative idea.

ENERGY LEVELS

Translational Rotational Vibrational

� Translational energy levels of a particle of mass m in a box of sides lx, ly and lz (volume V = lxlylz) are

specified by quantum numbers nx, ny and nz:

Enx,ny,nz
= h2

8m

(
n2

x

l2x
+

n2
y

l2y
+

n2
z

l2z

)
, nx,ny,nz = 1, 2, 3,…

in which h = 6.626 × 10−34 J s is Planck’s constant.
� Energy levels for rotation about an axis with moment of inertia I are specified by the quantum

number L:

EL =
ℏ2

2I
L(L + 1), L = 0, 1, 2, 3,… , g(EL) = 2L + 1 and ℏ = h∕2𝜋

� Vibrational energy levels of a diatomic molecule with reduced mass 𝜇 = m1m2/(m1 + m2) and force

constant k are specified by the quantum number v:

Ev = ℏ𝜔
(

v + 1

2

)
, 𝜔 =

√
k
𝜇

, v = 0, 1, 2, 3,…
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The energy of the nucleus is also quantized and the spacing is so large that transition from an excited

state to the ground state is through the emission of high-energy 𝛾 rays or the ejection of 𝛼 or 𝛽 particles (the

latter being electrons or positrons). Transitions between nuclear states do not occur as a result of thermal

collisions between atoms and molecules, so we can assume that the nuclei are in their ground states (except

for radioactive nuclei). However, at temperatures that are encountered in the interior of stars, transitions

between nuclear states must be considered. Box 20.1 lists commonly used expressions for the energy levels

in molecules. With these energy levels, the corresponding partition functions can be calculated.

20.3 The Boltzmann Probability Distribution and Average Values

To illustrate the use of the Boltzmann probability distribution (20.1.5) let us consider Ñ particles whose

energy can be any of the m possible values E1, E2,… , Em. At equilibrium, let Ñ1, Ñ2,… , Ñm be the number

of particles in these energy levels, which implies Ñ = Ñ1 + Ñ2 +⋯+ Ñm. The probability that we will find

a particle in energy level Ek is proportional to Ñk, the number of particles in that state. According to the

Boltzmann principle:

P(Ek) =
g(Ek)e−Ek∕kBT

q
=

Ñk

Ñ
(20.3.1)

Ñk is often called the occupation number of the state with energy Ek. From Equation (20.3.1), it follows that

the relative number of particles in energy states Ek and El is

Ñk

Ñl

=
g(Ek)

g(El)
e−(Ek−El)∕kBT (20.3.2)

Thus, the ratio of occupation numbers is a function of the difference in the energies and the ratio of the

corresponding degeneracies.

The average value of a variable or physical property can be calculated using the Boltzmann probability

distribution. We shall denote the average value of a quantity X by ⟨X⟩. Thus, the average energy of a single

particle ⟨E⟩ is

⟨E⟩ =
m∑

k=1

EkÑk

Ñ
=

m∑
k=1

EkP(Ek) (20.3.3)

The total energy of all particles is U = Ñ⟨E⟩.
More generally, the average values of any physical property X can be calculated if its value in the state|Ek⟩, which we denote by Xk, is known:

⟨X⟩ =
m∑

k=1

XkÑk

Ñ
=

m∑
k=1

XkP(Ek) (20.3.4)

The average value of any function of X, f(X), can similarly be calculated using

⟨f (X)⟩ =
m∑

k=1

f (Xk)Ñk

Ñ
=

m∑
k=1

f (Xk)P(Ek) (20.3.5)
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For example, the average value of ⟨E2⟩ is

⟨E2⟩ = m∑
k=1

E2
k P(Ek) (20.3.6)

The standard deviation in E is defined as (ΔE)2 ≡ ⟨(E − ⟨E⟩)2⟩. An elementary calculation shows that

(ΔE)2 ≡ ⟨(E − ⟨E⟩)2⟩ = ⟨E2⟩ − ⟨E⟩2 (20.3.7)

In this manner, statistical quantities such as the average and standard deviation of physical variables associated

with an equilibrium system can be calculated. When an ensemble of systems is considered, the energy Ek is

replaced by the total energy Ui.

20.4 Microstates, Entropy and the Canonical Ensemble

A macroscopic thermodynamic state of a system corresponds to a large number of ‘microstates’. For instance,

if the total energy of an ensemble of Ñ particles (molecules, electrons, etc.) in a volume V is specified, then

this energy can be distributed among the Ñ particles in a number of ways. Each distinct distribution of the

energy among the Ñ particles corresponds to a microstate. We now show how expression (20.1.2) is derived

from the fundamental formula

S = kB lnW (20.4.1)

in which W is the number of microstates corresponding to the given thermodynamic state (also called a

macrostate). To illustrate how W is calculated, let us consider an ensemble of Ñ particles each of which can

be in any one of the m states. These could be ‘numbered particles’ on a crystal lattice. A microstate specifies

the energy state of each particle. As in the previous sections, we assume Ñk particles are in a state with energy

Ek. The number of microstates W is the number of distinct ways in which the Ñ particles can be distributed

in m states. W can be calculated as follows (Figure 20.1). First, we note that if a particle, say particle 26, is

Ñ2

Ñ3

Ñ1

E3

E1

E2

Em

Figure 20.1 An ensemble of Ñ particles distributed in m energy levels. Ñk particles are in the energy level Ek
and Pk = Ñk/Ñ is the probability that a particle will occupy a state with energy Ek. The entropy of the system
S = −ÑkB

∑
k Pk ln Pk.
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in energy state E5 and another particle, say particle 14, is in energy state E2, then an interchange of these

two particles gives a different microstate; but if both particles 26 and 14 are in the same energy state, say

E5, then interchanging them does not give a new microstate. Thus, only permutations that do not correspond

to an interchange of particles with the same energy Ek correspond to distinct microstates. The number of all

possible permutations is Ñ! The number of permutations of particles with the same energy Ek is Ñk! Thus,

the total number of microstates W is given by

W = Ñ!
Ñ1!Ñ2!…!Ñm!

(20.4.2)

The entropy S is

S = kB lnW = kB ln
(

Ñ!
Ñ1!Ñ2!… !Ñm!

)
(20.4.3)

We assume Ñk is large. Then, for the term ln(Ñk!) we can use Stirling’s approximation (see Appendix 20.1):

ln(a!) ≈ a ln a − a (20.4.4)

Using this approximation one can show that (Exercise 20.1)

lnW = −
∑

k

Ñk ln
(

Ñk

Ñ

)
= −Ñ

∑
k

(
Ñk

Ñ

)
ln
(

Ñk

Ñ

)
(20.4.5)

Since Ñk/Ñ = Pk, the probability of occupying a state with energy Ek, we immediately see that

S = kB lnW = −kBÑ
∑

k

(
Ñk

Ñ

)
ln
(

Ñk

Ñ

)
= −kBÑ

∑
k

Pk lnPk (20.4.6)

which is Equation (20.1.2) if we replace P(Ek) with Pk. We derived (20.4.6), the relationship between entropy

and probability, from Equation (20.4.1) without any assumption about the system being in equilibrium.

Hence, this definition of entropy is valid for nonequilibrium systems as well. Sometimes it is considered the

definition of statistical entropy and used in contexts other than thermodynamics, such as information theory.

In Chapter 5 we noted that the entropy reaches its maximum value when the energy of a system U is

constant. Now, we show that the Boltzmann equilibrium distribution (20.1.3) maximizes S when the total

energy is constant. In other words, we show that, with the constraint of fixed total energy, S will reach its

maximum value when Pk ∝ e−𝛽Ek . This result can be obtained by using Lagrange’s method of finding the

maximum of a function subject to constraints. Our constraints are the constancy of total energy E and the

total number of particles Ñ. They can be expressed as

E =
∑

k

EkÑk = Ñ
∑

k

Ek(Ñk∕Ñ) = Ñ
∑

k

EkPk (20.4.7a)

Ñ =
∑

k

Ñk (20.4.7b)

in which we have used Pk = Ñk/Ñ. Lagrange’s method now stipulates that, to maximize −
∑

k Pk lnPk with

the constraints (20.4.7), one needs to maximize the function

I = −
∑

k

Pk lnPk + 𝜆

(
E − Ñ

∑
k

EkPk

)
+ 𝜉

(
Ñ −

∑
k

Ñk

)
(20.4.8)
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in which 𝜆 and 𝜉 are arbitrary constants whose values can be determined by additional requirements. Now it

is straightforward to see that the condition 𝜕I/𝜕Pk = 0 leads to the relation

lnPk = −𝜆ÑEk + 1 − 𝜉

As a function of Ek, we can now write

Pk = Ce−𝛽Ek (20.4.9)

in which C = exp(1 − 𝜉) and 𝛽 = 𝜆Ñ. This is essentially the Boltzmann distribution (20.1.2) once we identify

𝛽 = 1/kBT. That 𝛽 must be 1/kBT can be deduced by calculating the average kinetic energy of a particle and

equating it to 3kBT/2, as required by kinetic theory. Since
∑

k Pk = 1, we see that C = 1/q by comparing

Equation (20.4.9) with Equation (20.1.3). Equation (20.4.9) is valid for every state that has energy Ek. Taking

into account the degeneracy g(Ek), the probability that the system will occupy any one of the g(Ek) states

with energy Ek can be written as

P(Ei) =
1

q
g(Ei)e

−Ei∕kBT (20.4.10)

If each state with energy Ei is counted separately, then the degeneracy factor need not be included. In

expression (20.4.6) the Pk values are the probabilities of occupying a particular state with energy Ek.

20.4.1 The Canonical Ensemble

In the following sections we will see that thermodynamic quantities of a system are calculated using the

concept of a statistical ensemble. In deriving Equation (20.4.10) it was assumed that the number of particles

Ñk occupying a state k is large. This is a good assumption for rotational and vibrational states of molecules,

but it is not valid for the occupation of translational states. Translational energies are very closely spaced.

At ordinary temperatures, the average kinetic energy 3kBT/2 is much larger than the energy spacing of the

translational quantum states. For example, if we assume T = 298 K, then a simple calculation for N2 gas in

a cube of side 10 cm shows (Example 20.1) that there are roughly 1029 states with energy less than 3kBT/2.

At ordinary pressures, this is much larger than the number of N2 molecules; hence, most translational states

are unoccupied. Thus, we cannot assume that Ñk is large. In such cases we use the concept of an ensemble of

systems. The energy U of each system in the ensemble is itself subject to fluctuations, and in that respect is

similar to the energy of a single particle. The system’s energy can take values U1, U2,…with probabilities

P1, P2,… ; i.e. the probability P(Uk) that the total energy U of a system in the ensemble has a particular

value Uk can be defined just as P(Ek) was defined for a single particle. It is assumed that the thermodynamic
properties of a single system are the same as the average properties of the ensemble.

One such ensemble is the canonical ensemble shown in Figure 20.2. It consists of a large number Ñ of

identical systems in contact with a thermal reservoir at a temperature T. In this figure, Ñk is the number
of systems (not particles) with total energy Uk. Each system’s energy can take values Uk with probabilities

P(Uk). The thermodynamic energy of a system is the average energy calculated using this ensemble. With

this formalism, we see that all the calculations done above for a single particle could be carried out for the

canonical ensemble with the following result:

P(Uk) = 1

Q
e−Ui∕kBT , Q =

∑
i

e−Ui∕kBT (20.4.11)

We note here that Ui is the total energy of all the particles of the system at a given temperature T. The partition

function Q of a canonical ensemble is called the canonical partition function. The entropy of a system is

S = −kB

∑
k

P(Uk) lnP(Uk) (20.4.12)
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U4

T

U1

U2

U3

Um

Ñ1

Ñ2

Ñ3

Ñ4

Figure 20.2 A canonical ensemble is a large set of Ñ identical systems in contact with a temperature reservoir.
The system’s total energy U can take many possible values, U1, U2,… , Um. At any instant, the ensemble of
systems is distributed among the possible energy states, Ñk systems with energy Uk. Pk = Ñk/Ñ is the probability
that a system’s energy will be Uk. The entropy of the system S = −ÑkB

∑
k Pk ln Pk.

In the following section, we shall see how thermodynamic quantities can be obtained from these two

expressions.

20.5 Canonical Partition Function and Thermodynamic Quantities

There is a general procedure for calculating thermodynamic quantities from the partition functions. The

partition function for a system of Ñ particles is

Q =
∑

i

e−Ui𝛽 , 𝛽 = 1∕kBT (20.5.1)

in which we have introduced a convenient notation 𝛽 = 1/kBT. The total energy Ui =
∑

k Ñi
kEk, in which Ñi

k
is the number of molecules in state k with energy Ek. The superscript i indexes a particular set of Ñi

k whose

total energy adds up to Ui. The value of each Ñi
k can vary from 0 to Ñ, the total number of molecules in the

system, but
∑

k Ñi
k = Ñ. The entropy of the system is

S = −kB

∑
i

P(Ui) lnP(Ui) = −kB

∑
i

P(Ui) ln(e−𝛽Ui∕Q)

= −kB

∑
i

P(Ui)(−𝛽Ui − lnQ) = kB𝛽
∑

i

P(Ui)Ui + kB lnQ
∑

i

P(Ui) (20.5.2)

= U
T
+ kB lnQ
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where we have used U =
∑

i P(Ui)Ui and
∑

i P(Ui) = 1. From Equation (20.5.2), it follows that F ≡ U − TS =
−kBT lnQ. When we compute Q explicitly in the following sections, we will see that Q is a function of the

system volume V, the temperature T and Ñ. Making this explicit, we write

F(V , T , Ñ) = −kBT lnQ(V , T , Ñ) (20.5.3)

The total energy U can also be calculated directly from the partition function Q. It is easy to verify that

U = −𝜕 lnQ
𝜕𝛽

(20.5.4)

Using Equations (20.5.3) and (20.5.4), other thermodynamic quantities could be calculated. For example, the

chemical potential 𝜇 = (𝜕F/𝜕N)V,T and p = −(𝜕F/𝜕V)N,T.

20.6 Calculating Partition Functions

For simple systems, such as an ideal gas of noninteracting particles and the vibrational and rotational states

of a diatomic molecule, the partition functions can be calculated without much difficulty. In these cases,

the partition function Q of the entire system can be related to the partition function of a single particle or

molecule. The calculation of the translational partition function is done as follows.

20.6.1 Translational Partitions Function

For a gas of Ñ identical noninteracting particles the total energy Ui =
∑

k Ñi
kEk, in which Ek is the translational

energy of state and Ñi
k are the number of particles in that state. We have already noted (Section 20.4) that

translational states are sparsely occupied. Therefore, most of the Ñi
k are zero and the partition function for

the translational states is a sum that looks like

Qtrans =
∑

i

e−𝛽Ui =
∑

i

e
−𝛽
∑

k
Ñi

kEk

= e−𝛽(1∙E1+0∙E2+0∙E3+1∙E4+⋯) + e−𝛽(0∙E1+0∙E2+1∙E3+1∙E4+⋯) +⋯

(20.6.1)

The terms in this sum can be interpreted as terms in a single-particle partition function. Each of the factors e−𝛽Ek

is a term in the single-particle partition function q =
∑

k e−𝛽Ek . Since the number of available translational

states is much larger than the number of particles, an overwhelming number of terms correspond to only one

particle in a translational state. Hence, the right-hand side of Equation (20.6.1) can be approximated as the

product of Ñ partition functions q =
∑

k e−𝛽Ek . However, as explained in Box 20.2, such a product will have

permutations between particles that are not in Qtrans. The overcounting is corrected by dividing qÑ by Ñ!.

This leads to the relation

Qtrans =
qÑ

trans

Ñ!
(20.6.2)
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Box 20.2 Relation between q and Q

The approximation Qtrans = qÑ
trans∕Ñ! can be made clear by considering 100 translational states occupied

by two identical particles. Every pair of energy states that the two particles occupy corresponds to a

state of the system. In identifying distinct system states, every pair of energies should be counted only

once; exchanging the two particles does not result in a different system state because the particles are

identical.

E3

E1

E100

E4

E99

E34

E2

For two particles and 100 states, there are 100 × 90∕2! = 4500 system states in which the two particles

occupy different energy states, but there are only 100 in which both particles are in the same system state.

The corresponding terms in Q are

(a)
Q =

100∑
i>k

100∑
k=1

e−𝛽(Ei+Ek) +
100∑
k=1

e−𝛽2Ek

In the first term, i > k assures that each pair of energy states is included only once. The single-particle

partition function q =
∑100

k=1
e−𝛽Ek . Comparing Q with

q2 =
100∑
i=1

e−𝛽Ei

100∑
k=1

e−𝛽Ek =
100∑
i=1

100∑
k=1

e−𝛽(Ei+Ek)

we see that, when i ≠ k, each pair of Ei and Ek occurs twice in q2 but only once in Q. In q2, exchange

of particles is counted as a different system state. We compensate for this overcounting by dividing q2

by 2! and get

(b) q2

2!
= 1

2

100∑
i=1

100∑
k=1

e−𝛽(Ei+Ek) =
100∑
i>k

100∑
k=1

e−𝛽(Ei+Ek) + 1

2

100∑
k=1

e−𝛽2Ek

Comparing (a) and (b), we see that they differ only in the second term, which corresponds to two particles

in the same energy state. Since such states are far fewer than those in which the two particles are in different

energy states, the difference between (a) and (b) is not significant. The above argument can be extended

to Ñ particles by replacing 2! with Ñ!. Thus, when the number of available states far exceeds the number

of particles, Qtrans = qÑ
trans∕Ñ! is a very good approximation.
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Our task now is to calculate the single-particle translational partitions function qtrans. As shown in Box 20.1,

for a gas of particles with mass m in a cubical box of sides lx, ly, lz, the translational states are specified by

the quantum numbers nx, ny, nz with energies

Enx,ny,nz
= h2

8m

[(
nx

lx

)2

+
(ny

ly

)2

+
(

nz

lz

)2
]

To obtain qtrans, the following sum is to be evaluated:

qtrans =
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

e−𝛽C[(nx∕lx)2+(ny∕ly)2+(nz∕lz)2] =
∞∑

nx=1

e−𝛽C(nx∕lx)2
∞∑

ny=1

e−𝛽C(ny∕ly)2
∞∑

nz=1

e−𝛽C(nz∕lz)2

in which C = h2/8m. Each of these sums can be approximated by an integral because the energy level spacing

is very small. The sum over nx can be written as the integral (which is evaluated using the table of integrals

in Appendix 20.1):

∞∑
nx=1

e−𝛽C(nx∕lx)2 =
∞

∫
0

e−𝛽C(nx∕lx)2
dnx =

1

2

(
𝜋l2x
𝛽C

)1∕2

=
lx
h

(2𝜋mkBT)1∕2

When similar integrals for ny and nz are evaluated, the partition function can be written as

qtrans =
lxlylz

h3
(2𝜋mkBT)3∕2 = V

h3
(2𝜋mkBT)3∕2 (20.6.3)

in which the volume of the system V = lxlylz. The translational partition function of the gas is thus

Qtrans =
1

Ñ!

[ V
h3

(2𝜋mkBT)3∕2
]Ñ

(20.6.4)

This expression can be given another interpretation leading to another form in which Qtrans is often written.

Since the average kinetic energy of a gas particle is 3kBT/2, the average momentum of particles at temperature

T is (3mkBT)1/2. The de Broglie wavelength (𝜆 = h/p) associated with this momentum equals h/(3mkBT)1/2.

For this reason, a thermal wavelength Λ = h∕(2𝜋mkBT)1∕2 is defined (replacing 3 with 2𝜋). In terms of Λ,

the partition function Qtrans can be written in the following simple form:

Qtrans =
1

Ñ!

[ V
Λ3

]Ñ
, Λ = h√

2𝜋mkBT
(20.6.5)

20.6.2 Thermodynamic Quantities

For particles that have no internal structure or for particles whose internal energy at the temperature of interest

can be neglected, all the energy is translational (kinetic energy). A monatomic ideal gas is an example. The

Helmholtz energy of a gas of such particles is

F(V , T , Ñ) = −kBT lnQtrans = −kBTÑ ln
[ V

h3
(2𝜋mkBT)3∕2

]
+ kBT ln Ñ!
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Using Stirling’s approximation, ln(Ñ!) ≃ Ñ ln Ñ − Ñ, the above expression can be written as

F(V , T , Ñ) = −kBT
{

Ñ ln
[ V

h3
(2𝜋mkBT)3∕2

]
− Ñ ln Ñ + Ñ

}
= −kBÑT

{
ln
[

V
Ñh3

(2𝜋mkBT)3∕2

]
+ 1

} (20.6.6)

Since the gas constant R = kBNA and amount in moles N = Ñ/NA, the above F can be expressed as

F(V , T , N) = −RNT

{
ln
[

V
NNAh3

(2𝜋mkBT)3∕2

]
+ 1

}
(20.6.7)

Other thermodynamic quantities can now be obtained from F. For example, since p = −(𝜕F/𝜕V)T,N, it follows

that

p = −
(
𝜕F
𝜕V

)
T ,N

= RTN
V

(20.6.8)

which is the ideal gas equation. Similarly, since entropy S = −(𝜕F/𝜕T)V,N, a simple calculation shows that

the ideal gas entropy is

S = N

{
R ln
[

V
NNAh3

(2𝜋mkBT)3∕2

]
+ 5R

2

}
(20.6.9)

This expression was obtained in 1911 by O. Sackur and H. Tetrode in the early stages of the development

of quantum theory. It is called the Sackur–Tetrode equation for the entropy of an ideal gas. It shows us

that quantum theory (Planck’s constant being its signature) gives the absolute value of entropy without any

arbitrary constants. In Chapter 3 we derived the following expression for the entropy of an ideal gas:

S(V , T , N) = N
[
s0 + R ln

(V
N

)
+ CV lnT

]
(20.6.10)

in which s0 was an undetermined constant. Comparing Equations (20.6.9) and (20.6.10), we see that CV =
3R/2 and

s0 = R ln
[

(2𝜋mkB)3∕2

NAh3

]
+ 5R

2

We have noted that the energy U of the system can be obtained from Q using relation (20.5.4), U =
−(𝜕 lnQ∕𝜕𝛽), in which 𝛽 = 1/kBT. Because ln Q = −F/kBT, using Equation (20.6.6), Q can be expressed in

terms of 𝛽 thus:

lnQ = Ñ

{
ln
[

V
Ñh3

(2𝜋m∕𝛽)3∕2

]
+ 1

}
From this, it follows that the energy of an ideal gas of particles whose energy is entirely translational is

U = −𝜕 lnQ
𝜕𝛽

= 3

2
ÑkBT = 3

2
NRT (20.6.11)

From the fundamental quantities U and S, all thermodynamic quantities of an ideal gas of structureless

particles are obtained.
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20.6.3 Rotational Partition Function

For molecules, we must consider energy and entropy associated with rotational motion. At ordinary tempera-

tures, a large number of rotational states above the lowest energy state are occupied by molecules (this can be

seen by comparing kBT with rotational energy levels). For simplicity, we consider a diatomic molecule whose

atoms have masses m1 and m2, as shown in Box 20.1. Since the rotational energies are EL = (ℏ2∕2I)L(L + 1)

with degeneracy g(EL) = 2L + 1, the single-molecule partition function is

qrot =
∞∑

L=0

(2L + 1)e−𝛽(ℏ2∕2I)L(L+1) (20.6.12)

For diatomic molecules with masses m1 and m2, the reduced mass 𝜇 is defined as

𝜇 =
m1m2

m1 + m2

(20.6.13)

If the distance between the two nuclei (bond length) is R, then the moment of inertia I is given by

I = 𝜇R2 (20.6.14)

To compare the rotational energy-level spacing with kBT, a characteristic temperature 𝜃rot ≡ ℏ2∕2IkB is

defined. Then the rotational partition function qrot is written as

qrot =
∞∑

L=0

(2L + 1)e−L(L+1)𝜃∕T (20.6.15)

Using bond length data, and assuming R equals the bond length, the moment of inertia I and 𝜃rot can be

calculated. For H2 it is found that 𝜃rot = 87.5 K and 𝜃rot = 2.1 K for O2. At very low temperatures, i.e. when

T ≪ 𝜃rot, this sum can be approximated by

qrot = 1 + 3e−2𝜃rot∕T + 5e−6𝜃rot∕T +⋯ (20.6.16)

At high temperatures, i.e. when T ≫ 𝜃rot, the sum (20.6.15) may be approximated by the following integral:

qrot =
∞

∫
0

(2L + 1)e−L(L+1)𝜃rot∕TdL

=
∞

∫
0

e−L(L+1)𝜃∕Td[L(L + 1)] = T
𝜃
=

2IkBT

ℏ2

(20.6.17)

For diatomic molecules with identical atoms, such as H2 or N2, the quantum theory of identical particles

stipulates that only half the rotational states are allowed. Hence, a factor of 2 has to be introduced in the

denominator of the above expression. In general, when identical atoms are present in a molecule, a symmetry
number 𝜎 must be included in the expression for the partition function. Thus, the general expression for the

partition function for a rotation around a given axis with moment of inertia I is

qrot =
2IkBT

𝜎ℏ2
(20.6.18)

The symmetry number 𝜎 for a larger molecule is determined by the symmetries of the molecule. It is equal

to the number of proper rotations, including the identity, in the symmetry group of the molecule.
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20.6.4 Vibrational Partition Function

Molecules also have vibrational motions that stretch and bend bonds. Each vibration is associated with

frequency 𝜈 = 𝜔/2𝜋. Box 20.1 lists expressions for the energy levels for the vibrational motion:

Ev = ℏ𝜔
(

v + 1

2

)
, v = 0, 1, 2,… (20.6.19)

Using this expression, the partition function for vibrational energies can easily be calculated because the

energy levels are equally spaced. We shall assume that the degeneracy of the energy levels is 1. Then, the

vibrational partition function is

qvib =
∞∑

v=0

e−𝛽ℏ𝜔[v+(1∕2)] = e−𝛽ℏ𝜔∕2
∞∑

v=0

xv

where x = e−𝛽ℏ𝜔. Since x < 1, the series on the right-hand side can be summed:

qvib = e−𝛽ℏ𝜔∕2
∞∑

v=0

xv = e−𝛽ℏ𝜔∕2 1

1 − x

Thus, the single-molecule vibrational partition function is

qvib = e−𝛽ℏ𝜔∕2 1

1 − e−𝛽ℏ𝜔
(20.6.20)

At ordinary temperatures, the level spacing between vibrational energy states is generally larger than the

thermal energy kBT. Hence, only very few energy states higher than the ground state are occupied by

molecules. As was done for rotational states, this aspect can be quantified by defining a characteristic

vibrational temperature 𝜃vib ≡ ℏ𝜔∕kB. Then the partition function (20.6.20) can be written as

qvib = e−𝜃vib∕2T 1

1 − e−𝜃vib∕T
(20.6.21)

The characteristic vibrational temperatures for some diatomic molecules are:2

H2 N2 O2 Cl2 HCl CO NO

𝜃vib (K) 6210 3340 2230 810 4140 3070 2690
(20.6.22)

Thus, at T in the range 200–400 K, only a few of the lowest vibrational states are occupied. The charac-

teristic temperatures for electronic states are even higher, so electronic states are mostly in their lowest or

ground state.

Combining all the partition functions for a diatomic molecule, we can write

q = qtransqrotqvib =
V
h3

(2𝜋mkBT)3∕2 2IkBT

𝜎ℏ2
e−𝜃vib∕2T 1

1 − e−𝜃vib∕T
and Q =

qÑ

Ñ
(20.6.23)

From this partition function, thermodynamic quantities U, p, 𝜇, etc., can be calculated (see Exercises). The

total energy of the system is the sum of energies in each mode of motion U = Utrans + Urot + Uvib + Uelec.

The heat capacity CV = (𝜕U/𝜕T)V. By expressing U as the sum of energies, we can know the contribution of

each of the modes of motion, i.e. translation, rotation, vibration, etc., to the heat capacity CV.

2Source: T.L. Hill, Introduction to Statistical Thermodynamics, 1960, Addison-Wesley: Reading, MA.
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20.7 Equilibrium Constants

The formalism of statistical thermodynamics can also be used to relate equilibrium constants of chemical

reactions to partitions functions. In doing so, we relate molecular energies to equilibrium constants. Let us

consider the simple reaction

X ⇌ Y (20.7.1)

At equilibrium, the chemical potentials of X and Y are equal. We use the subscripts X and Y to represent the

quantities for the two species. The chemical potential of X is 𝜇X = (𝜕FX/𝜕NX)T,V; and since FX = −kBT lnQX,

in which QX = qÑX

X
∕ÑX!, we can establish a relationship between the qX and 𝜇X. Here, Ñ is the number of

molecules and N is the amount in moles. Since Q is expressed as a function of Ñ, we note that 𝜇X = (𝜕FX/

𝜕NX) = (𝜕FX/𝜕ÑX)(𝜕ÑX/𝜕N) = NA(𝜕FX/𝜕ÑX).

When considering a system of reactants and products that interconvert, care must be taken to use the same

scale of energy for all molecules when computing partition functions. In the calculations of q presented in

the previous sections, generally the zero of energy was taken to be the lowest energy or ground state of that

molecule. When more than one molecule is involved, their energies must be measured using a common zero.

The lowest energy of a molecule can then have a nonzero value with respect to the common zero. As shown

in Figure 20.3, the lowest energy states of X and Y can be different. We shall use E0
X

and E0
Y

to represent the

lowest energies of X and Y, respectively, in the common energy scale. This means that the energies of X will

all get an additive term E0
X

and this in turn adds a factor exp(−𝛽E0
X

) to qX. Thus, with respect to the common

zero of energy:

QX =

(
qXe−𝛽E0

X

)ÑX

ÑX!
=

qÑX

X

ÑX!
e−𝛽ÑXE0

X (20.7.2)

The Helmholtz energy F is

FX = −kBT lnQX = −kBT
(
ÑX ln qX − ÑX ln ÑX + ÑX − 𝛽ÑXE0

X

)
(20.7.3)

and a simple calculation shows that

𝜇X =
(
𝜕FX

𝜕NX

)
T ,V

= NA

(
𝜕FX

𝜕ÑX

)
T ,V

= −NAkBT

[
ln
(

qX

ÑX

)
− 𝛽E0

X

]
(20.7.4)

Ek

X

Y

EX
0

EY
0

Figure 20.3 Energy levels of two molecules X and Y on a single energy scale. E0X and E
0
Y are the ground states on

the single energy scale.
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This expression relates the chemical potential to the partition function and the number of molecules Ñ. We

can invert this equation and write

ÑX = qXe

(
𝜇−NAE0

X

)
∕RT

(20.7.5)

or in units of moles of X:

NX =
qX

NA

e(𝜇−U0X)∕RT (20.7.6)

in which U0X = NAE0
X

.

As a side remark, we note here that for a monatomic ideal gas qX = (V/h3)(2𝜋mkBT)3/2. Using this

expression in Equation (20.7.6), we find

NX

V
=

(2𝜋mkBT)3∕2

NAh3
e(𝜇−U0X)∕RT = 1

NAΛ3
e(𝜇−U0X)∕RT (20.7.7)

Thus, the molar density is related to the chemical potential. Equation (20.7.7) is the same as relation (12.6.4)

if we identify z(T) in (12.6.4) with (1/NAΛ3) and U0 with MXc2. When the chemical potential is zero, the

molar density is a function of T only.

For the reaction X ⇌ Y, let us assume when equilibrium is reached that the moles of X and Y are NX,eq

and NY,eq respectively. Using Equation (20.7.4) and equating the chemical potentials of the two species, we

obtain

𝜇X = −RT

[
ln
(

qX

NX,eqNA

)
− 𝛽E0

X

]
= 𝜇Y = −RT

[
ln
(

qY

NY,eqNA

)
− 𝛽E0

Y

]
This expression can be rewritten as

NY,eq

NX,eq

=
qY∕NA

qX∕NA

e−(U0Y−U0X)∕RT (20.7.8)

in which U0X = NAE0
X

and U0Y = NAE0
Y

. Since the equilibrium concentrations [X]eq = NX,eq/V and [Y]eq =
NY,eq/V, we can relate the equilibrium constant Kc ≡ [Y]eq/[X]eq to the partition functions:

Kc =
[Y]eq

[X]eq

=
NY,eq∕V

NX,eq∕V
=

qY∕NAV

qX∕NAV
e−ΔU0∕RT (20.7.9)

in which ΔU0 = U0Y − U0X is the difference in the ground-state energies of the reactants and products. The

above result can be generalized to the reaction

aX + bY ⇌ cZ + dW (20.7.10)

Kc =
[Z]c

eq[W]d
eq

[X]a
eq[Y]b

eq

=
(qZ∕NAV)c(qW∕NAV)d

(qX∕NAV)a(qY∕NAV)b
e−ΔU0∕RT (20.7.11)

in which ΔU0 = (cU0Z + dU0W − aU0X − bU0Y). Thus, if the partition functions and the ground-state

energies of the reacting molecules are known, the equilibrium constants can be calculated. The term ΔU0 is

very nearly the heat released in the reaction; i.e. it is essentially the reaction enthalpy.
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20.8 Heat Capacities of Solids

In Chapter 6 we noted that the heat capacities of solids at low temperatures are proportional to T3. This

was experimentally established. At high temperatures, experiments showed that the molar heat capacities of

most solids were nearly the same, close to 3R. The latter is called the law of Dulong and Petit, after the

nineteenth century physicists who proposed it. Classical theories of solids could not explain the behavior at

low temperatures. Only the use of quantum theory was able to explain why the molar heat capacity of a solid

decreased when the temperature decreased. During the early years of quantum theory, the first explanation

of the observed low temperature behavior of heat capacities using the then new ideas of energy quantization

came from Einstein. Einstein’s theory was a big step toward theoretically explaining experimentally observed

behavior at low temperatures. However, its predictions did not agree very well with experiments because of the

simplifying approximations Einstein made. An improved theory was formulated by Peter Debye (1884–1966)

which was able to explain the low temperature ‘T3 behavior’. We shall look at both theories.

20.8.1 Einstein’s Theory of Solids

Solids have a crystalline lattice structure in which atoms are arranged as a regular crystal array. The kinetic

energy of each atom is in its vibrational motion about its position in the lattice. To understand the heat

capacity, we need to calculate the energy of the crystal; i.e. we need to calculate the total vibrational energy

of all the atoms in the solid. Einstein made the simplifying assumption that all atoms vibrate at the same

frequency 𝜈 and that energy levels of the vibrational motion are that of a simple harmonic oscillator:

En = h𝜈(n + 1∕2), n = 0, 1, 2,… . (20.8.1)

Since the probability of an atom’s energy being En is proportional to exp[–En/kBT], the partition function,

Qx, for vibration along the x axis is given by the expression:

Qx = e−(𝛽h𝜈∕2)
∞∑
0

e−𝛽h𝜈n = e−(𝛽h𝜈∕2) 1

1 − e−𝛽h𝜈
, 𝛽 = 1

kBT
(20.8.2)

The same expression holds for the partition functions Qy and Qz for vibrations along the y and zdirections.

The total partition function Q = Qx Qy Qz. The average energy U of an atom, vibrating with a frequency 𝜈

can now be obtained using the general relation (20.5.4):

U = −𝜕 ln(Q)

𝜕𝛽
= 3h𝜈

2
+ 3hv

ehv𝛽 − 1
(20.8.3)

In a solid consisting of one mole of atoms, the total energy is NAU. The molar heat capacity CmV =NA(𝜕U/𝜕T)V
can now be calculated. The result is

CmV = NA

(
𝜕U
𝜕T

)
V
= NA

3h𝜈(h𝜈∕kBT2)eh𝜈𝛽

(eh𝜈𝛽 − 1)2
= 3R(h𝜈𝛽)2

(eh𝜈𝛽∕2 − e−h𝜈𝛽∕2)2

in which we have used NAkB = R and rewritten the denominator so that the final expression can be written in

the form:

CmV (T) = 3R
(h𝜈∕2kBT)2

[sinh(h𝜈∕2kBT)]2
(20.8.4)

It is easy to see that CmV → 0 as T → 0, in agreement with experimental observations. For very large values

of T, the value of CmV approaches 3R in accord with the law of Dulong and Petit.
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20.8.2 Debye’s Theory of Solids

Though Einstein’s theory shows that the quantization of the vibrational energy is behind the observed low-

temperature behavior of the molar heat capacity, the assumption that all atoms vibrate with the same frequency

is not physically realistic. In fact, the atoms vibrate with a range of frequencies given by the normal modes

of the large vibrating solid. The normal vibrational modes in a solid are collective motion of atoms in which

the atom positions have a wave form. When the volume of the solid is finite, standing vibrational modes are

established such that the waves have zero amplitude at the boundaries. For simplicity we shall consider a

rectangular solid of sides lx, ly and lz.
The standing waves can be represented by a function W as

W(x,y,z) = Ax sin
(

2𝜋x
𝜆x

)
Ay sin

(
2𝜋y

𝜆y

)
Az sin

(
2𝜋z
𝜆z

)
The boundary conditions that W must be zero at x = 0 and x = lx, and similarly for y and z, implies that

lx = nx
𝜆x

2
, ly = ny

𝜆y

2
and lz = nz

𝜆z

2
(20.8.5)

in which nx, ny and nz, are positive integers. The product of the wavelength 𝜆 and the frequency 𝜈 equals the

velocity C of the sound wave in the solid in a particular direction. Vibrational motion in solids, however, has

three independent modes: two transverse modes, in which the vibration is perpendicular to the direction of

wave propagation, and one longitudinal mode, in which the vibration is parallel to the direction of propagation.

In general, the transverse and longitudinal modes have differing velocities, which we shall denote as Ct and

Cl respectively. Having made a note of this, let us calculate the number of states in the frequency range 𝜈 and

𝜈 + d𝜈 for each mode.

From (20.8.5) it follows that the vibrational states are characterized by frequencies

𝜈x = nx
C
2lx

, 𝜈y = ny
C
2ly

and 𝜈z = nz
C
2lz

(20.8.6)

C being the velocity, Ct or Cl. Note that the frequencies representing each standing mode are positive numbers.

We may visualize these frequencies as points in a three-dimensional lattice with one lattice point in a volume

equal to (C3/8lxlylz) = (C3/8V), in which V is the volume of the solid. We shall write the number of states in

the frequency range 𝜈 and 𝜈 + d𝜈 as 𝜌(𝜈)d𝜈, in which 𝜌(𝜈) is the density of states. The term 𝜌(𝜈)d𝜈 can be

computed as the number of lattice points in the spherical shell of radius 𝜈 and width d𝜈:

𝜌(𝜈)d𝜈 = 1

8

4𝜋

(C3∕8V)
𝜈2 d𝜈

The 1/8 factor is included because 𝜈x, 𝜈y and 𝜈z should be positive. For the two transverse and one longitudinal

modes, the total density of states of the solid is

𝜌(𝜈)d𝜈 = 4𝜋V

(
2

C3
t

+ 1

C3
l

)
𝜈2 d𝜈 (20.8.7)

In a solid of N atoms, there is an upper bound to the frequency, which we shall denote by 𝜈max. For a solid

with N atoms, there are a total of 3N independent modes of oscillations. Hence:

𝜈max

∫
0

𝜌(𝜈)d𝜈 = 4𝜋V

(
2

C3
t

+ 1

C3
l

)
𝜈3
max
3

= 3N
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Using this relation, we can rewrite (20.8.7) in terms of 𝜈max:

𝜌(𝜈)d𝜈 = 9N
𝜈3
max

v2 d𝜈 (20.8.8)

To calculate the total energy distributed in all the modes of vibration of the N atoms, we begin by noting that

the average energy in each mode of frequency 𝜈 is equal to one-third of the expression (20.8.3) (which is for

three independent modes):

U(𝜈) = h𝜈
2
+ h𝜈

eh𝜈𝛽 − 1

The total energy Utot in all the available modes is therefore obtained by integrating this expression using the

density of modes 𝜌(𝜈) given in Equation (20.8.8). Thus

Utot =
9N
𝜈3
max

𝜈max

∫
0

(h𝜈
2
+ h𝜈

eh𝜈𝛽 − 1

)
𝜈2 d𝜈 (20.8.9)

As before, an expression for the molar heat capacity can be obtained by taking the derivative of Utot with

respect to T:

CmV =
(
𝜕Utot

𝜕T

)
V
=

9NA

𝜈3
max

𝜈max

∫
0

(
(h𝜈)2(eh𝜈𝛽∕kBT2)

(eh𝜈𝛽 − 1)2

)
v2 d𝜈 (20.8.10)

It is easy to see that this expression can be rewritten as

CmV =
9NAkB

(𝛽h𝜈max)3

𝛽h𝜈max

∫
0

x4 dx
(ex∕2 − e−x∕2)2

(20.8.11)

It is not possible to express this integral in a closed from, but we can see that it is a function of 𝛽h𝜈max. For

solids, a characteristic temperature called the Debye temperature is defined as

ΘD ≡ h𝜈max
kB

(20.8.12)

By combining all terms in Equation (20.8.11) involving 𝛽h𝜈max, the heat capacity is written in terms of ΘD

and a Debye function D(ΘD/T):

CmV = 3RD(ΘD∕T) (20.8.13)

In which

D(ΘD∕T) = D(𝛽h𝜈max) = 3

(𝛽h𝜈max)3

𝛽h𝜈max

∫
0

x4 dx
(ex∕2 − e−x∕2)2

.

The properties of the Debye function have been studied and it can be shown that it has the following limiting

behaviors:



472 Modern Thermodynamics

As (ΘD∕T) → 0, D(ΘD∕T) → 1

and

As (ΘD∕T) → ∞, D(ΘD∕T) →

(
4𝜋4

5

)(
T
ΘD

)3

(20.8.14)

This limiting behavior of the Debye function implies that, at high T, the heat capacity CmV approaches the

Dulong and Petit value of 3R; for low T, however, it decreases as T3. It is this latter ‘T3 law’ that was

in close agreement with the experimentally observed values of heat capacities. It is sometimes called the

Debye T3 law.

20.9 Planck’s Distribution Law for Thermal Radiation

In radiation in thermal equilibrium with matter, the energy is distributed among all the frequencies, which

range from zero to infinity. According to classical electromagnetic theory, each of these modes must have

some energy. An increase in the temperature T would imply an increase in the energy of all the modes. Since

the frequencies range from zero to infinity, this implies that the energy density of radiation must be infinite,

as must the heat capacity. It was to address this problem that Max Planck introduced the quantum hypothesis.

In doing so, Planck used one of the most powerful aspects of thermodynamics: its universality regardless of

the complexity or simplicity of the system. Radiation in thermal equilibrium with matter at a temperature T
will have the same properties regardless of the type of molecules it is interacting with. Hence, any deductions

made about thermal radiation interacting with idealized oscillators will also be valid for radiation reacting

with complex molecules. Thus, Planck assumed that the oscillators absorbing and emitting radiation were

simple harmonic and introduced the quantum hypothesis that the energy absorbed or emitted is in quanta

of energy E = h𝜈. It became clear from later development of quantum theory that electromagnetic radiation

itself is quantized and that it had particle properties, the particles we call photons.

To calculate the energy density of thermal radiation, the well-known Planck distribution, we shall assume

that the radiation is in a rectangular box as standing waves. Mathematically we may treat these standing

waves just as we treated the vibrational modes in a solid. Thus, the number of frequencies in the range 𝜈 and

𝜈 + d𝜈 for each independent mode is given by the expression

𝜌(𝜈) d𝜈 = V4𝜋

c3
𝜈2 d𝜈 (20.9.1)

in which V is the volume of the box and c is the velocity of light. Since electromagnetic waves are transverse

waves, there are two independent modes corresponding to two independent states of polarization. Hence, for

thermal radiation we must use

𝜌(𝜈) d𝜈 = V8𝜋

c3
𝜈2 d𝜈 (20.9.2)

Using energy levels of a simple harmonic oscillator, h𝜈(1/2 + n), for the energy of the each mode of radiation,

we can write the partition function for the mode with frequency 𝜈:

Q = e−(𝛽h𝜈∕2)
∞∑
0

e−𝛽h𝜈n = e−(𝛽h𝜈∕2) 1

1 − e−𝛽h𝜈
, 𝛽 = 1

kBT
(20.9.3)

As was done in the case of Einstein’s theory of solids, we can calculate the average energy in each mode of

frequency 𝜈, obtaining the expression:

U(𝜈) = −𝜕 ln(Q)

𝜕𝛽
= h𝜈

2
+ h𝜈

e𝛽h𝜈 − 1
(20.9.4)
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The first term is the zero point energy, which does not contribute to thermodynamic properties of radiation

(though it is real and its presence can be seen in physical phenomena). We shall therefore drop it in the

expression for the energy. Combining Equations (20.9.2) and (20.9.4), we can now write the energy density,

u(𝜈) = U(𝜈)/V, as

u(𝜈) d𝜈 = 8𝜋h
c3

𝜈3 d𝜈

e𝛽h𝜈 − 1
(20.9.5)

This is the celebrated expression Planck derived for the energy density of thermal radiation. The quantum

hypothesis makes the energy density finite because the modes of higher frequencies require higher energy

quanta to increase their energy. Hence most of the very high frequency modes are in their ground state. This

is in contrast to classical theory in which the energies of mode of all frequencies can be increased equally

with heat.

The properties of thermal radiation that were discussed in Chapter 11, such as the Stefan–Boltzmann law

and Wien’s displacement law can be derived from the Planck distribution. For example, the total energy

density over the entire spectrum of frequencies is

utot =
∞

∫
0

u(𝜈) d𝜈 = 8𝜋h
c3

∞

∫
0

𝜈3

e𝛽h𝜈 − 1
d𝜈 (20.9.6)

The integral can be evaluated by defining x = 𝛽h𝜈 and rewriting the integral in terms of x. The result is

utot =
∞

∫
0

u(𝜈) d𝜈 = 8𝜋h
c3(𝛽h)4

∞

∫
0

x3

ex − 1
dx (20.9.7)

The integral over x can be evaluated in closed from (using tables or Mathematica). It equals (𝜋4/15). Thus,

the above expression becomes

utot =
∞

∫
0

u(𝜈) d𝜈 = 8𝜋h
c3(𝛽h)4

(
𝜋4

15

)
= 8

15

𝜋5k4
B

c3h3
T4 (20.9.8)

which shows that the total energy density of thermal radiation is proportional to T4, which is the Stefan–

Boltzmann law.

To derive Wien’s displacement law from the Planck distribution, we first write the energy density in terms

of the wavelength 𝜆 = c/𝜈:

u(𝜆) d𝜆 = 8𝜋hc
𝜆−5 d𝜆

ehc∕kBT𝜆 − 1
(20.9.9)

This expression can be written as a function of T𝜆 by defining y = T𝜆, writing the energy density as a function

of y:

u(y) = 8𝜋hcT5 y−5

ehc∕kBy − 1

This function reaches its maximum value at a particular value of y, say ymax, independent of the value of T
(though the value of the function at the maximum depends on T). That is the maximum is reached when

T𝜆max = ymax (20.9.10)
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which is Wien’s displacement law. The value of ymax = 2.8979 × 10−3 m K. Similarly, other thermodynamic

properties of thermal radiation can be derived from the partition function using the methods outlined in

this chapter.

Appendix 20.1 Approximations and Integrals

A20.1.1 Stirling’s Approximation

When N is a large number, N! is a very large number. One can estimate the value of N! using Stirling’s

approximation:

N! ≈ NNe−N
√

2𝜋n (A20.1.1)

Using this approximation, we see that

lnN! = N lnN − N + (1∕2) ln(2𝜋N) (A20.1.2)

For large N, the last term in Equation (A20.1.2) is small compared with the other two terms and it can be

neglected. The resulting expression lnN! ≈ N lnN − N has been used in this chapter. One could also arrive

at this result by using the approximation

lnN! =
N∑

k=1

ln k ≈
N

∫
1

ln y dy = (y ln y − y)|N
1
= N lnN − N + 1 (A20.1.3)

in which the sum is approximated by an integral, an approximation valid for large N.

A20.1.2 Integrals used in Statistical thermodynamics

(a)

∞

∫
0

e−ax2
dx = 1

2

(
𝜋

a

)1∕2

(b)

∞

∫
0

xe−ax2
dx = 1

a

(c)

∞

∫
0

x2e−ax2
dx = 1

4a

(
𝜋

a

)1∕2

(d)

∞

∫
0

x3e−ax2
dx = 1

2a2

More generally:

(e)

∞

∫
0

x2ne−ax2
dx = 1 × 3 × 5 ×⋯ × (2n − 1)

2n+1an

(
𝜋

a

)1∕2

(f)

∞

∫
0

x2n+1e−ax2
dx = n!

2

(
1

an+1

)
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Reference

1. Chapman, S., Cowling, T.G., The Mathematical Theory of Nonuniform Gases: An Account of the Kinetic Theory of
Viscosity, Thermal Conduction and Diffusion in Gases. 1970, Cambridge University Press: Cambridge.

Example

Example 20.1 For the gas N2 in a cube of side 10.0 cm, at T = 298 K, estimate the number of translational

states that are below 3kBT/2 and compare this with the number of molecules in this cube at p = 1.0 bar.

Solution The translational energies for a cube (lx = ly = lz = 1) are given by (Box 20.1)

Enx,ny,nz
= h2

8ml2

(
n2

x + n2
y + n2

z

)
The value of n2 = n2

x + n2
y + n2

z for which the energy is 3kBT/2 is

n2 =
3kBT

h2∕8ml2

Substituting values kB = 1.38 × 10−23 J K−1, T = 298 K, h = 6.626 × 10−34 J s, m = (28 × 10−3/NA) kg and

l = 0.1 m, we find n2 = 5.2 × 1019. That means all quantum states in the sphere of radius n have energies less

than 3kBT/2. Since only positive values of nx, ny and nz must be included:

Total number of states with energy E <
3kBT

2
is

1

8

4𝜋

3
n3 = 1

8

4𝜋

3
(5.2 × 1019)3∕2 = 1.96 × 1029

Number of molecules Ñ =
NApV

RT
=

NA × 1.0 × 105 Pa × 10−3 m3

R × 298 K
= 2.4 × 1022

This calculation shows that the number of available translational states is much higher than the number of

particles in a gas at ordinary pressures and temperatures.

Exercises

20.1 Obtain Equation (20.4.5) using Stirling’s approximation.

20.2 Using an H H bond length of 74 pm and an O O bond length of 121 pm, calculate the characteristic

rotational temperatures for H2 and O2.

20.3 Using qvib = e−𝛽ℏ𝜔∕2[1∕(1 − e−𝛽ℏ𝜔)] show that

⟨Evib⟩ = ℏ𝜔(1

2
+ e−ℏ𝜔∕kBT

1 − e−ℏ𝜔∕kBT

)
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20.4 In earlier chapters we have expressed the chemical potential of an ideal gas 𝜇 = 𝜇0(T) + RT ln(p/p0)

(in which p0 is the pressure of the standard state). In expression (20.7.4) the chemical potential is

expressed in terms of the partition function and other molecular quantities. For a monatomic gas,

rewrite (20.7.4) in the form 𝜇 = 𝜇0(T) + RT ln(p/p0) and identify 𝜇0(T) as a function of T.

20.5 The bond length of H2 is 74 pm. (a) Calculate the moment of inertia and express the rotational

partition function as a function of T. (b) Obtain an expression for its molar energy as a function of T.

(c) Calculate the molar heat capacity.

20.6 Calculate the equilibrium constant for the reaction H2 ⇌ H + H.



21
Self-Organization and Dissipative

Structures in Nature

21.1 Dissipative Structures in Diverse Disciplines

21.1.1 Limitations of the Local Equilibrium Assumption

Before presenting the diverse situations in which dissipative structures are known to appear, let us note the

limitations of our method. The method based on local equilibrium that we followed is satisfactory in a large

domain of experimentation and observation. Still there are situations where some extension and modification

are necessary. Let us enumerate a few of them.

To begin with, we have rarefied media where the assumption of local equilibrium is not valid. The

average energy at each point depends on the temperature at the boundaries. There are important situations in

astrophysics that belong to this category.

We then have the case of strong gradients where we expect linear laws, such as the Fourier law for

heat conduction, to fail. Experiments in these situations are difficult to perform and a general theoretical

description, as in the case of the Fourier law, does not exist. Attempts to introduce such nonlinear out-

comes into the thermodynamic description lead to the ‘extended thermodynamics; [1] already mentioned

in the text.

Finally, we have very interesting memory effects that appear for long times (as compared to characteristic

relaxation times). This field started with important numerical simulations by Alder and Wainright [2], who

showed that nonequilibrium processes may have ‘long-time tails’. In other words, the approach to equilibrium

is not exponential as it was generally thought to be but polynomial (e.g. t–3/2), which is much slower. To

understand this effect, consider a molecule we set in motion with respect to the medium; its momentum is

transmitted to the medium, which in turn reacts back on the molecule. This leads to memory effects, which

are discussed in many papers [3, 4]. As a result nature has a much longer memory of irreversible processes

than it was thought before. Again this shows that local equilibrium is an approximation, albeit a very

good one.

However, already the formulation of nonequilibrium thermodynamics as used in this book has led to

innumerable applications in most diverse fields. To whet the appetite of the readers, we shall quote a few of

them, but the list is far from being extensive.

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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21.1.2 Material Science

Concepts such as fluctuations, dissipative structure and self-organization play an essential role in important

advances in this field. A good introduction is given by Walgraef [5, 6]. Through new technologies (laser and

particle irradiation, ion implantation, ultra fast quenches) it is now possible to produce materials in highly

nonequilibrium conditions – and thus escape from the tyranny of the equilibrium phase diagram. Here are

some examples studied in Walgraef’s book:

� Materials such as quasi-crystals, high T superconductors, semiconductor heterostructures and superlattices

are typical examples of nonequilibrium materials.
� It is now possible to produce complex structures or composites that simultaneously satisfy very diverse

requirements. To do so, one has to control the material on length scales that vary from the atomic to the

micrometer level. Self-organization is a precious ally for the design of such materials.
� Many materials are used in very hard conditions: they are submitted to deformations corrosion, irradiation

and so on. In such conditions, their defect populations acquire complex behaviors described well by

reaction–diffusion equations, and may therefore become organized in very regular structures that affect

their physical properties. It is also clear now that instabilities and patterns occur all the time in materials

science. They affect the properties of the materials and, hence, need to be understood and controlled.
� It is well known that defects play an important role in determining material properties. Point defects play

a major role in all macroscopic material properties that are related to atomic diffusion mechanisms and

to electronic properties in semiconductors. Line defects, or dislocations, are unquestionably recognized

as the basic elements that lead to plasticity and fracture. While the study of individual solid-state defects

has reached an advanced level, the study of collective behavior of defects, which arises in nonequilibrium

conditions, is still in its infancy. Nonetheless, significant progress has been made in dislocation dynamics

and plastic instabilities over the past several years, and the importance of nonlinear phenomena has also

been assessed in this field. The dislocation structures have been observed experimentally.

Curiously, the instabilities and self-organization that occurs in far-from-equilibrium systems as a result of

basic physical processes, such as chemical reactions and diffusion, also occur at a much more complex level

of living systems. A mathematical modeling of these complex systems also consists of irreversible nonlinear

equations. A basic feature in all these systems is the possibility of amplification of small fluctuations

under certain conditions, which makes the system unstable. These systems undergo instabilities often due

to autocatalytic processes and make a transition to states with distinctly different organization. Thus the

paradigm of ‘order through fluctuations’ also holds here.

21.1.3 Multicellular Systems

One example of pattern formation in complex systems occurs in the life cycle of the Dictysostelium dis-
coideum. Figure 21.1 describes the life cycle of this species. In (a), the amoebas are at the unicellular stage.

They move in the surrounding medium; they feed on such nutrients as bacteria and proliferate by cell division.

Globally speaking they constitute a uniform system, inasmuch as their density (number of cells per square

centimeter) is essentially constant. Suppose now that the amoebas are subjected to starvation; in the laboratory

this is induced deliberately, in Nature it may happen because of less favorable ambient conditions. This is

the analog of applying a constraint in a physical or chemical experiment. Interestingly, the individual cells

do not die. Rather, they respond to the constraint by aggregating (b) toward a center of attraction. The initial

homogeneity is broken; space becomes structured. The resulting multicellular body, the plasmodium (c), is

capable of moving, presumably to seek more favorable conditions of temperature and moisture. After this
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(d) 
Pluricellular body  

(e) 
Isolated Spores 

(a) 
Isolated Ameba 

(b) 
Aggregation 

(c) 
Plasmodium 

Figure 21.1 Life cycle of the slime mold (amoeba) Dictyostelium discoideum.

migration the body differentiates (d) and gives rise to two kinds of cells, one of which constitutes the stalk

and the other a fruiting body within which spores are formed. Eventually the spores are disseminated (e) in

the ambient medium, and if the conditions are favorable they germinate to become amoebas and the life cycle

begins again.

Let us investigate the aggregation stage in more detail. The following phenomena are observed during

this process. First, after starvation some of the cells begin to synthesize and release signals of a chemical

substance known as cyclic adenosine monophosphte (cAMP) in the extracellular medium. The synthesis and

release are periodic, just as in the chemical clock of the BZ system, with a well-defined period for given

experimental conditions. The cAMP released by the ‘pioneer’ cells diffuses in the extracellular medium and

reaches the surface of the neighboring cells. Two types of events are then switched on. First, these cells

perform an oriented movement called chemotaxis toward the regions of higher concentration of cAMP, i.e.

toward the pioneer cells. This motion gives rise to density patterns among the cells that look very much like

the wave patterns in the BZ reagent (Figure 21.2). Second, the process of aggregation is accelerated by the

ability of sensitized cells to amplify the signal and to relay it in the medium. This enables the organism to

control a large territory and form a multicellular body comprising come 105 cells.

Thus, the response to the starvation constraint gives rise to a new level of organization resulting from

the concerted behavior of a large number of cells and enabling the organism to respond flexibly to a hostile

environment. What are the mechanisms mediating this transition? Let us first observe that the process of

chemotaxis leads to an amplification of the heterogeneity formed initially, when the pioneer cells begin to

emit pulses of cAMP. Because it enhances the density of cells near the emission center, chemotaxis enhances

movement of the other cells toward it. This constitutes what one usually calls a feedback loop, very similar

to chemical autocatalysis.

As it turns out, a second feedback mechanism is present in Dictyostelium discoideum that operates at the

subcellular level and is responsible for both the periodic emission of cAMP and the relay of the chemotactic
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Figure 21.2 Concentric and spiral wave patterns of aggregating Dictyostelium discoideum cells. Periodic pro-
duction of cAMP (shown in Figure 21.3) causes this pattern formation.

signal. This mechanism is related to the synthesis of cAMP by the cell. cAMP arises from the transformation

of another important cellular constituent, adenosine triphosphate (ATP), which (through its phosphate bond)

is one of the principal carriers of energy within living cells. The ATP → cAMP transformation is not

spontaneous however; a catalyst is needed to accelerate it to a level compatible with vital requirements. In

biological systems, the tasks of catalysis is assumed by enzymes. Some enzymes have a single active site that

the reactants must reach in order to transform into products. However, in many cases there are cooperative

enzymes, which have several sites; some of the sites are catalytic and others are regulatory. When special

effector molecules bind to the latter sites, the catalytic function is considerably affected. In some cases the

molecules reacting with or produced from the catalytic site may also act as effector molecules. This will

switch on a feedback loop, which will be positive (activation) if the result is the enhancement of the rate of

catalysis, or negative (inhibition) otherwise. The enzyme that catalyzes ATP → cAMP conversion is called

adenylate cyclase and is fixed at the interior of the cell membrane. It interacts with a receptor fixed at the

exterior phase of the membrane in a cooperative fashion. The cAMP produced diffuses in the extracellular

medium through the cell membrane and can bind to the receptor and activate it, as shown in Figure 21.3. In

this way it enhances its own production, thereby giving rise to a feedback loop capable of amplifying signals

and of inducing oscillatory behavior.

21.1.4 Geological Systems

There have also been promising applications of ideas of self-organization to geology [7]. In numerous

geological deposits spectacular regular mineralization structures are observed at a variety of space scales:

metamorphic layers millimeters to meters thick, granites of centimeter-scale structure, agates with millimeter-

to centimeter-wide bands, and others. Figure 21.4 shows an example of patterns in geological formulation. The

traditional interpretation attributes these structures to sequential phenomena, tracing the effect of successive

environmental or climatic changes. It appears, however, that a more satisfactory interpretation would be to

attribute them to symmetry-breaking transitions induced by nonequilibrium constraints.
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Figure 21.3 Oscillatory synthesis of cAMP in slime mold Dictyostelium discoideum and its diffusion out of
the cell.

Figure 21.4 Geological pattern formation.
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Figure 21.5 Bifurcation in the behavior of social insects such as ants can be seen in their choice of a path to the
food source.

21.1.5 Social Insects

Many other examples may be found in the literature. Bifurcations can be found in the behavior of social

insects as well [8–11]. Suppose we realize the following situation. There is a nest and food sources with two

identical bridges of equal distances leading from the nest to the food source (Figure 21.5). At first, the same

number of ants are traveling on the two bridges. After some time, practically all are found on the same bridge

due to the chemical substance ‘pheromones’ and their catalytic effects. Note that which bridge will be used

is unpredictable. This corresponds to a typical symmetry-breaking bifurcation.

21.1.6 Periodicity in Climate

The climatic conditions that prevailed in the last two or three hundred million years were extremely different

from those of the present day. During this period, with the exception of the Quaternary era (our era, which

began about two million years ago), there was practically no ice on the continents and the sea level was about

80 meters higher than at present. Climate was particularly mild and the temperature differences between

equatorial (25–30 ◦C) and polar (8–10 ◦C) regions were relatively lower.

It was during the Teritary era, some 40 million years ago, that a sharper contrast between equatorial and

polar temperatures began to develop. In the relatively short time of 100 000 years, the sea temperature south

of New Zealand dropped by several degrees. This was probably the beginning of the Antarctic current, which

reduces the exchange of heat between high and low latitudes and contributes to a further cooling of the masses

of water ‘trapped’ in this way near the polar regions. Once again, we see a feedback mechanism in action.

At the beginning of the Quaternary era this difference was sufficiently important to allow for the formation

and maintenance of continental ice. In the northern hemisphere a series of glaciations took place in an

intermittent fashion, sometimes pushing the glaciers as far as the middle latitudes. These climatic episodes

present an average periodicity of about 100 000 years, though with considerable random-looking variations,

as shown in Figure 21.6.

The last advance of continental ice in the northern hemisphere attained its maximum some 18 000 years

ago, and its relics are still with us. While the amount of continental ice today is about 30 million cubic

kilometers, confined essentially to Antarctica and Greenland, there was at that time about 70 to 80 million

cubic kilometers covering, in addition, much of North America and Northern Europe. Because of the huge

quantities of water trapped in the glaciers, the sea level was some 120 meters lower than today. Since then a

large part of the ice has melted, thus defining the coastlines and most of the other features of the present-day

landscape. The fact that our ecosystem is unstable makes it difficult to separate the ‘anthropic signal’ from

the spontaneous evolution of the system.
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Figure 21.6 Variation of global ice volume during the last 1 million years, inferred from oxygen isotopes.

In conclusion, we cannot escape the feeling that we live in an age of transition, an age that demands a better

understanding of our environment. We must find and explore new resources and achieve a less destructive

coexistence with Nature. We cannot anticipate the outcome of this period of transition, but it is clear that

science and especially nonequilibrium thermodynamics is bound to play an increasingly important role in

our effort to meet the challenge of understanding and reshaping our global environment.

21.2 Towards a Thermodynamic Theory of Organisms

In the previous section, we have seen how wide spread structures created by dissipative processes are in Nature.

However, we do not have a satisfactory thermodynamic understanding of the most spectacular dissipative

structure of all: the biological organism. In Section 19.6, we have noted a few fundamental differences

between dissipative structures and designed structures, the latter referring to machines or computers. Upon

reflection, it is clear that Newtonian science, based on reversible laws, has put us on the path to the world of

machines that we inhabit – a world that is very different from that of organisms. The difference, arguably, is the

difference between reversible mechanics and irreversible thermodynamics. Let us explore this fundamental

difference in some detail.

The organization of a machine, its structure and function, comes from processes external to it. So when we

encounter a machine that we have never encountered before, taking it apart and analyzing how its components

are made and arranged also gives us a way to build one – assuming we have the necessary external processes

we call ‘technology’. Not so with organisms, as noted by the theoretical biologist Robert Rosen [12]. We have

been analyzing the structure and organization of a living cell for well over a century, and although we have an

immense knowledge of its makeup, all the way down to the molecular level, we do not know how to build a

living cell or even one that vaguely resembles one. Why this difference between machines and organisms? It

is because the processes that bring about an organism are not a part of our technology. Organisms are based on

self-organization brought about by internal irreversible processes. The organization of machines comes from

processes external to it, and ideal machines are reversible. We have not yet developed a technology based on

irreversible processes and self-organization that can emerge from it. The study of dissipative structures that
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Table 21.1 A comparison of designed structures and dissipative structures.

Designed structures (machines/computers) Dissipative structures (nonequilibrium systems and organisms)

� Based on the reversible laws of mechanics
� Structure designed and assembled through
processes external to the system

� Dissipative processes limit the efficiency of
the system

� Structure and function are clearly
differentiated in the design

� Structure designed to perform a certain
function

� Generally not self-healing

� Based on irreversible processes and the law of
thermodynamics

� Structure arises spontaneously through entropy generating
dissipative processes

� Dissipative processes are essential to the system; without
them the structure ceases to exist

� Structure and function cannot always be clearly
differentiated.

� Context-dependent function arises because of structure
� Self-healing

began over 50 years ago has yet to give us insight into processes that produce organisms. It is a challenge for

the future. How might we meet this challenge?

To lay a conceptual framework, we may begin by looking deeper into the differences between dissipative

structures and machines. Table 21.1 gives a list of differences, some of which we have already discussed in

Section 19.6. In addition to these differences, in organisms we see both structure and function resulting in

behavior that seems directed towards a particular end, such as seeking food or avoiding adverse conditions.

Organisms interact with their environment and respond in ways that enable them to reach a particular end.

From a thermodynamic point of view, we may interpret it as end-directed evolution, by which we mean that

the system may take several different paths, but reach the same final state. End-directed evolution is a familiar

concept in thermodynamics; after all, according to the Second Law, systems evolve to states of maximum

entropy or minimum Gibbs or Helmholtz energy. We might not know the mechanism or the path a system

will take to its final extremum state, but we can be sure that it will reach that state. In this case, the final state

is an equilibrium state in which there is no entropy production. It is possible that end-directed evolution may

also be a property of far-from-equilibrium systems. The studies of dissipative structures to date, however,

have mostly been done on structures and the processes that produce and maintain the structure. End-directed

evolution in dissipative structures have not been investigated much.

End-directed evolution has two aspects: the state to which it will evolve and the stability of that state.

Regarding the former, it has been hypothesized that a nonequilibrium system will evolve to a state in which

the rate of entropy production is maximized [13–19]. According to this hypothesis, the great diversity of

behavior we see in organisms and the evolution of life is a result of nature evolving to states of an ever

increasing rate of entropy production. In Section 19.7, we have commented on structural instability caused

by the emergence of a new catalyst in a system. In general, whenever a catalyst enters a system, it will

increase the rate of entropy production by increasing the velocity of reaction if the corresponding affinity

is not significantly lowered. Such observations are in accord with this hypothesis. However, the maximum

entropy production hypothesis is a subject of much debate: while many studies have indicated its validity,

there are others that have indicated otherwise. Indeed, close to equilibrium, in the linear regime, we have seen

in Section 17.2 that the rate of entropy production in minimized, not maximized. Yet, the hypothesis has been

a useful tool to predict some far-from-equilibrium steady states [15–18]. Perhaps there is a set of conditions

that need to be fulfilled for its validity that has not yet been identified; perhaps there is a different principle,

or more than one principle depending on the system being studied. Future studies will shed light on this line

of thought.
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Let us turn to the second aspect, stability of the end state. This means that, when perturbed, the system

will find a path to return to the end state. In other words, if the end state is perturbed due to a change in the

environment, the system will find a means to restore the end state. The diversity of paths that the system is

capable of taking to reach the end state may lead to interesting behavior, which resembles those we see in

organisms.

As an example, let us consider a spatial dissipative structure that is maintained by the inflow of energy/matter

at one location. Let us further assume that the structure maximizes a thermodynamics quantity Y (such as

the rate of entropy production) and its form depends on the location at which the energy/matter flows into

the system. Now if the location of the energy/matter source is moved, the system is no longer in a state that

maximizes Y. In response to this perturbation, the system will evolve to a new state in which Y is maximized.

This type of end-directed evolution resembles the response of an organism to a change in the location of

the source of its ‘food’. To be sure, an organism is much more complex; nevertheless, studies of dissipative

structures will give us thermodynamic principles on which the behavior of organisms are founded.

There are several other traits of organisms, such as collective behavior, in which we see that functional

differentiation might also appear in much simpler dissipative structures that interact with each other. Here one

may introduce the concept of functional symmetry breaking. Consider N identical elements in a nonequilibrium

system that interact with each other. When the mutual interaction is weak – because N is small, for example

– one might expect the behavior of the N elements to be identical or functionally symmetric, i.e, statistically

their properties are identical. When the interaction strength increases – due to increasing N, for example –

the system might reach a transition point above which the elements no longer have identical behavior; they

might show cooperative behavior in which elements have a distinctly different behavior resulting in breaking
of functional symmetry. Such transitions might also be in accord with a general extremization principle.

Examples of functional symmetry breaking in interacting dissipative structures can already be found in recent

studies [20]. More examples are likely to emerge due to a growing interest in such studies.

Clearly, the above concepts and examples are but the tip of the iceberg of a thermodynamic theory of

organism. However, we can see in it the potential of concepts such as end-directed evolution, thermodynamic
stability and functional symmetry breaking in formulating a thermodynamic theory of origin of the behavior

we see in organisms.
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Epilogue

In the preface we remarked that science has no final formulation. So it is with thermodynamics. There are

more laws to be discovered that involve non-equilibrium quantities such as thermodynamic forces, fluxes and

the rates of entropy production. It has much to contribute to our understanding of living organisms, ecology

and our place in the web of life. The primacy of irreversible processes in Nature is indisputable. Yet, we have

been steeped in a world view of classical and quantum mechanics which posits that change, and the processes

that bring about change, are reversible, that irreversibility is merely a property of large systems which we can

only describe using probability, that it is a consequence of necessary approximations we must make, that it

is essentially an illusion. But, we see everywhere in nature change that is irreversible, and organization, and

life itself, born out of irreversible processes. It makes one wonder: is mechanics a convenient approximation

of natural processes that are fundamentally irreversible and not the converse, as the current dogma holds?

Why is it difficult to see that, because we ignore irreversible aspects of change in formulating the laws of

classical and quantum mechanics, we are left with idealized reversible change, and a world without an arrow

of time? Why is this idealized reversible world real and the arrow of time, manifest in irreversible processes

that bring about life itself, an illusion? However we see the relationship between Nature and time-reversible

mechanics, it is a fact that whenever we describe a natural process, we must always include some aspects of

irreversibility and thermodynamics for a complete description of that process.

Nature has a history – for long time the ideal of physics was geometry, as implied in Einstein’s general

relativity. Relativity is certainly one of the great achievement of the human mind. But the geometrical view

is incomplete. Now we see that narrative elements play also a basic role. This leads to a different concept of

nature in which the arrow of time is essential. After all, this arrow appears as the feature which is common to

all objects in the expanding bubble which is our universe. We all age in the same direction, all stars, all rocks

age in the same direction even if the mechanism of aging is different in each case.

Time, better the direction of time, is the fundamental existential dimension of human life. We discover

now that the flow of time is universal, it is not an illusion that separates us from nature.
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Physical Constants and Data

Avogadro constant NA = 6.022137 × 1023 mol−1

Boltzmann constant kB = 1.38066 × 10−23 J K−1

Gas constant R = 8.314 J mol−1 K−1 = 0.082058 atm L mol−1 K−1

= 1.9872 cal mol−l K−l

Faraday constant F = 9.6485 × 104 C mol−1

Stefan-Boltzmann constant 𝜎 = (c𝛽/4) = 5.6705 × 10−8 J m−2 K−4 s−1

Triple point of water∗ Ttp(H2O) = 273.16 K

Zero of Celsius scale∗ T(0◦C) = 273.15 K

Molar volume of ideal gas at 1 bar and 273.15 K V0 = 22.711 L mol−1

Permittivity of vacuum∗ 𝜀0 = 8.854187816 × 10−12 C2 N−1 m−2

Permeability of vacuum∗ 𝜇0 = 4𝜋 × 10−7 N A−2

Speed of light in vacuum∗ c = 2.99792458 × 108 m s−1

Planck constant h = 6.62607 × 10−34 J s

Elementary charge e = 1.60218 × 10−19 C

Electron rest mass me = 9.10939 × 10−31 kg = 5.486 × 10−4 u

Proton rest mass mp = 1.67262 × 10−27 kg = 1.00728 u

Neutron rest mass mn = 1.67493 × 10−27 kg = 1.00867 u

Gravitational constant G = 6.6726 × 10 −11 N m2 kg−2

Standard gravitational acceleration∗ g = 9.80665 m s−2 = 32.17 ft s−2

Mass of the Earth 5.98 × 1024 kg

Average radius of the Earth 6.37 × 103 km

Average Earth-Sun distance 1.495 × 108 km

Radius of the Sun 6.96 × 105 km

Sun’s energy incident at the top of the atmosphere 1340 J m−2 s−l = 0.032 cal cm−2 s−1

About 31% of this energy is reflected back into

space.

∗Exact values by definition.
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Conversion Factors

Bar 1 bar = 105 Pa

Standard atmosphere∗ 1 atm = 1.01325 × 105 Pa

Torr (mm Hg) 1 Torr = 133.322 Pa

Calorie∗ 1 cal = 4.184 J

Erg 1 erg = 10−7 J

Gauss 1 G = 10−4 T

Debye 1 D = 3.33564 × 10−30 C m

Atomic mass unit 1 u = 1.66054 × 10−27 kg

Electron volt 1 eV = 1.60218 × 10−19 J = 96.4853 kJ mol−1

Metric ton 1 metric ton = 1000 kg

Pound 1 lb = 16 oz = 0.45359 kg

Gallon (U.S.) 1 gal = 4 quarts = 3.78541 L

Gallon (British imperial) 1 gal = 4 quarts = 4.545 L

∗Exact values by definition.



Standard Thermodynamic Properties

The standard state pressure is 100 kPa (1 bar). An entry of 0.0 for ΔfH
0 for an element indicates the reference

state of that element.

Molecular ΔfH
0 ΔfG

0 S0 Cp

formula Name State kJ mol−1 kJ mol−1 J mol−1K−1 J mol−1 K−1

Compounds not containing carbon
Ac Actinium gas 406.0 366.0 188.1 20.8
Ag Silver cry 0.0 0.0 42.6 25.4
AgBr Silver bromide cry −100.4 −96.9 107.1 52.4
AgBrO3 Silver bromate cry −10.5 71.3 151.9
AgCl Silver chloride cry −127.0 −109.8 96.3 50.8
AgClO3 Silver chlorate cry −30.3 64.5 142.0
Al Aluminum cry 0.0 0.0 28.3 24.4

gas 330.0 289.4 164.6 21.4
AlB3H12 Aluminum borohydride liq −16.3 145.0 289.1 194.6
AlBr Aluminum bromide (AlBr) gas −4.0 −42.0 239.5 35.6
AlCl Aluminum chloride (AlCl) gas −47.7 −74.1 228.1 35.0
AlCl3 Aluminum trichloride cry −704.2 −628.8 110.7 91.8
AlF Aluminum fluoride (AlF) gas −258.2 −283.7 215.0 31.9
AlF3 Aluminum trifluoride cry −1510.4 −1431.1 66.5 75.1
All3 Aluminum triiodide cry −313.8 −300.8 159.0 98.7
AlO4P Aluminum phosphate

(AlPO4)
cry −1733.8 −1617.9 90.8 93.2

AlS Aluminum sulfide (AlS) gas 200.9 150.1 230.6 33.4
Al2O Aluminum oxide (Al2O) gas −130.0 −159.0 259.4 45.7
Al2O3 Aluminum oxide (Al2O3) cry −1675.7 −1582.3 50.9 79.0
Ar Argon gas 0.0 154.8 20.8
As Arsenic (gray) cry 0.0 35.1 24.6
AsBr3 Arsenic tribromide gas −130.0 −159.0 363.9 79.2
AsCl3 Arsenic trichloride gas −261.5 −248.9 327.2 75.7
AsF3 Arsenic trifluoride lip −821.3 −774.2 181.2 126.6
As2 Arsenic (As2) gas 222.2 171.9 239.4 35.0
Au Gold cry 0.0 0.0 47.4 25.4
AuH Gold hydride (AuH) gas 295.0 265.7 211.2 29.2
B Boron cry (rhombic) 0.0 0.0 5.9 11.1
BCl Chloroborane (BCl) gas 149.5 120.9 213.2 31.7

(continued)
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Molecular ΔfH
0 ΔfG

0 S0 Cp

formula Name State kJ mol−1 kJ mol−1 J mol−1K−1 J mol−1 K−1

BCl3 Boron trichloride liq −427.2 −387.4 206.3 106.7
BF Fluoroborane (BF) gas −122.2 −149.8 200.5 29.6
BH3O3 Boric acid (H3BO3) cry −1094.3 −968.9 88.8 81.4
BH4K Potassium borohydride cry −227.4 −160.3 106.3 96.1
BH4Li Lithium borohydride cry −190.8 −125.0 75.9 82.6
BH4Na Sodium borohydride cry −188.6 −123.9 101.3 86.8
BN Boron nitride (BN) cry −254.4 −228.4 14.8 19.7
B2 Boron (B2) gas 830.5 774.0 201.9 30.5
Ba Barium cry 0.0 0.0 62.8 28.1

gas 180.0 146.0 170.2 20.8
BaBr2 Barium bromide cry −757.3 −736.8 146.0
BaCl2 Barium chloride cry −858.6 −810.4 123.7 75.1
BaF2 Barium fluoride cry −1207.1 −1156.8 96.4 71.2
BaO Barium oxide cry −553.5 −525.1 70.4 47.8
BaO4S Barium sulfate cry −1473.2 −1362.2 132.2 101.8
Be Beryllium cry 0.0 0.0 9.5 16.4
BeCl2 Beryllium chloride cry −490.4 −445.6 82.7 64.8
BeF2 Beryllium fluoride cry −1026.8 −979.4 53.4 51.8
BeH2O2 Beryllium hydroxide cry −902.5 −815.0 51.9
BeO4S Beryllium sulfate cry −1205.2 −1093.8 77.9 85.7
Bi Bismuth cry 0.0 0.0 56.7 25.5
BiCl3 Bismuth trichloride cry −379.1 −315.0 177.0 105.0
Bi2O3 Bismuth oxide (Bi2O3) cry −573.9 −493.7 151.5 113.5
Bi2S3 Bismuth sulfide (Bi2S3) cry −143.1 −140.6 200.4 122.2
Br Bromine gas 111.9 82.4 175.0 20.8
BrF Bromine fluoride gas −93.8 −109.2 229.0 33.0
BrH Hydrogen bromide gas −36.3 −53.4 198.7 29.1
BrH4N Ammonium bromide cry −270.8 −175.2 113.0 96.0
BrK Potassium bromide cry −393.8 −380.7 95.9 52.3
BrKO3 Potassium bromate cry −360.2 −217.2 149.2 105.2
BrLi Lithium bromide cry −351.2 −342.0 74.3
BrNa Sodium bromide cry −361.1 −349.0 86.8 51.4
Br2Ca Calcium bromide cry −682.8 −663.6 130.0
Br2Hg Mercury bromide (HgBr2) cry −170.7 −153.1 172.0
Br2Mg Magnesium bromide cry −524.3 −503.8 117.2
Br2Zn Zinc bromide cry −328.7 −312.1 138.5
Br4Ti Titanium bromide (TiBr4) cry −616.7 −589.5 243.5 131.5
Ca Calcium cry 0.0 0.0 41.6 25.9
CaCl2 Calcium chloride cry −795.4 −748.8 108.4 72.9
CaF2 Calcium fluoride cry −1228.0 −1175.6 68.5 67.0
CaH2 Calcium hydride (CaH2) cry −181.5 −142.5 41.4 41.0
CaH2O2 Calcium hydroxide cry −985.2 −897.5 83.4 87.5
CaN2O6 Calcium nitrate cry −938.2 −742.8 193.2 149.4
CaO Calcium oxide cry −634.9 −603.3 38.1 42.0
CaO4S Calcium sulfate cry −1434.5 −1322.0 106.5 99.7
CaS Calcium sulfide cry −482.4 −477.4 56.5 47.4
Ca3O8P2 Calcium phosphate cry −4120.8 −3884.7 236.0 227.8
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Molecular ΔfH
0 ΔfG

0 S0 Cp

formula Name State kJ mol−1 kJ mol−1 J mol−1K−1 J mol−1 K−1

Cd Cadmium cry 0.0 0.0 51.8 26.0
CdO Cadmium oxide cry −258.4 −228.7 54.8 43.4
CdO4S Cadmium sulfate cry −933.3 −822.7 123.0 99.6
Cl Chlorine gas 121.3 105.3 165.2 21.8
ClCu Copper chloride (CuCl) cry −137.2 −119.9 86.2 48.5
CIF Chlorine fluoride gas −50.3 −51.8 217.9 32.1
ClH Hydrogen chloride gas −92.3 −95.3 186.9 29.1
ClHO Hypochlorous acid (HOCI) gas −78.7 −66.1 236.7 37.2
ClH4N Ammonium chloride cry −314.4 −202.9 94.6 84.1
ClK Potassium chloride (KCI) cry −436.5 −408.5 82.6 51.3
ClKO3 Potassium chlorate (KCIO3) cry −397.7 −296.3 143.1 100.3
ClKO4 Potassium perchlorate

(KCIO4)
cry −432.8 −303.1 151.0 112.4

ClLi Lithium chloride (LiCl) cry −408.6 −384.4 59.3 48.0
ClNa Sodium chloride (NaCl) cry −411.2 −384.1 72.1 50.5
ClNaO2 Sodium chloride (NaClO2) cry −307.0
ClNaO3 Sodium chlorate (NaClO3) cry −365.8 −262.3 123.4
Cl2 Chlorine (Cl2) gas 0.0 0.0 223.1 33.9
Cl2Cu Copper chloride (CuCl2) cry −220.1 −175.7 108.1 71.9
Cl2Mn Manganese chloride

(MnCl2)
cry −481.3 −440.5 118.2 72.9

Cl3U Uraniam chloride (UCl3) cry −866.5 −799.1 159.0 102.5
Cl4Si Silicon tetrachloride liq −687.0 −619.8 239.7 145.3
Co Cobalt cry 0.0 0.0 30.0 24.8
CoH2O2 Cobalt hydroxide (Co(OH)2) cry −539.7 −454.3 79.0
CoO Cobalt oxide (CoO) cry −237.9 −214.2 53.0 55.2
Co3O4 Cobalt oxide (Co3O4) cry −891.0 −774.0 102.5 123.4
Cr Chromium cry 0.0 0.0 23.8 23.4
CrF3 Chromium fluoride (CrF3) cry −1159.0 −1088.0 93.9 78.7
Cr2FeO4 Chromium iron oxide

(FeCr2O4)
cry −1444.7 −1343.8 146.0 133.6

Cr2O3 Chromium oxide (Cr2O3) cry −1139.7 −1058.1 81.2 118.7
Cs Cesium cry 0.0 0.0 85.2 32.2
CsF Cesium fluoride cry −553.5 −525.5 92.8 51.1
Cs2O Cesium oxide (Cs2O) cry −345.8 −308.1 146.9 76.0
Cu Copper cry 0.0 0.0 33.2 24.4
CuO Copper oxide (CuO) cry −157.3 −129.7 42.6 42.3
CuO4S Copper sulfate (CuSO4) cry −771.4 −662.2 109.2
CuS Copper sulfide (CuS) cry −53.1 −53.6 66.5 47.8
Cu2 Copper (Cu2) gas 484.2 431.9 241.6 36.6
Cu2O Copper oxide (Cu2O) cry −168.6 −146.0 93.1 63.6
Cu2S Copper sulfide (Cu2S) cry −79.5 −86.2 120.9 76.3
F2 Fluorine (F2) gas 0.0 0.0 202.8 31.3
F Fluorine gas 79.4 62.3 158.8 22.7
FH Hydrogen fluoride gas −273.3 −275.4 173.8
FK Potassium fluoride (KF) cry −567.3 −537.8 66.6 49.0
FLi Lithium fluoride (LiF) cry −616.0 −587.7 35.7 61.6

(continued)
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formula Name State kJ mol−1 kJ mol−1 J mol−1K−1 J mol−1 K−1

FNa Sodium fluoride (NaF) cry −576.6 −546.3 51.1 46.9
F2HK Potassium hydrogen fluoride

(KHF2)
cry −927.7 −859.7 104.3 76.9

F2HNa Sodium hydrogen fluoride
(NaHF2)

cry −920.3 −852.2 90.9 75.0

F2Mg Magnesium fluoride cry −1124.2 −1071.1 57.2 61.6
F2O2U Uranyl fluoride cry −1648.1 −1551.8 135.6 103.2
F2Si Difluorosilylene (SiF2) gas −619.0 −628.0 252.7 43.9
F2Zn Zinc fluoride cry −764.4 −713.3 73.7 65.7
F3OP Phosphoryl fluoride gas −1254.3 −1205.8 285.4 68.8
F3P Phosphorus trifluoride gas −958.4 −936.9 273.1 58.7
F4S Sulfur fluoride (SF4) gas −763.2 −722.0 299.6 77.6
F6S Sulfur fluoride (SF6) gas −1220.5 −1116.5 291.5 97.0
F6U Uranium fluoride (UF6) cry −2197.0 −2068.5 227.6 166.8
Fe Iron cry 0.0 0.0 27.3 25.1
FeO4S Iron sulfate (FeSO4) cry −928.4 −820.8 107.5 100.6
FeS Iron sulfide (FeS) cry −100.0 −100.4 60.3 50.5
FeS2 Iron sulfide (FeS2) cry −178.2 −166.9 52.9 62.2
Fe2O3 Iron oxide (Fe2O3) cry −824.2 −742.2 87.4 103.9
Fe3O4 Iron oxide (Fe3O4) cry −1118.4 −1015.4 146.4 143.4
H2 Hydrogen (H2) gas 0.0 0.0 130.7 28.8
H Hydrogen gas 218.0 203.3 114.7 20.8
HI Hydrogen iodide gas 26.5 1.7 206.6 29.2
HKO Potassium hydroxide

(KOH)
cry −424.8 −379.1 78.9 64.9

HLi Lithium hydride (LiH) cry −90.5 −68.3 20.0 27.9
HNO2 Nitrous acid (HONO) gas −79.5 −46.0 254.1 45.6
HNO3 Nitric acid liq −174.1 −80.7 155.6 109.9
HNa Sodium hydride cry −56.3 −33.5 40.0 36.4
HNaO Sodium hydroxide

(NaOH)
cry −425.6 −379.5 64.5 59.5

HO Hydroxyl (OH) gas 39.0 34.2 183.7 29.9
HO2 Hydroperoxy (HOO) gas 10.5 22.6 229.0 34.9
H2Mg Magnesium hydride cry −75.3 −35.9 31.1 35.4
H2MgO2 Magnesium hydroxide cry −924.5 −833.5 63.2 77.0
H2O Water liq −285.8 −237.1 70.0 75.3
H2O2 Hydrogen peroxide liq −187.8 −120.4 109.6 89.1
H2O2Sn Tin hydroxide (Sn(OH)2) cry −561.1 −491.6 155.0
H2O2Zn Zinc hydroxide cry −641.9 −553.5 81.2
H2O4S Sulfuric acid liq −814.0 −690.0 156.9 138.9
H2S Hydrogen sulfide gas −20.6 −33.4 205.8 34.2
H3O4P Phosphoric acid cry −1284.4 −1124.3 110.5 106.1

liq −1271.7 −1123.6 150.8 145.0
H3P Phosphine gas 5.4 13.4 210.2 37.1
H4IN Ammonium iodide cry −201.4 −112.5 117.0
H4N2 Hydrazine liq 50.6 149.3 121.2 98.9
H4N2O3 Ammonium nitrate cry −365.6 −183.9 151.1 139.3
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formula Name State kJ mol−1 kJ mol−1 J mol−1K−1 J mol−1 K−1

H4Si Silane gas 34.3 56.9 204.6 42.8
H8N2O4S Ammonium sulfate cry −1180.9 −901.7 220.1 187.5
He Helium gas 0.0 126.2 20.8
HgI2 Mercury iodide (HgI2)

(red)
cry −105.4 −101.7 180.0

HgO Mercury oxide (HgO)
(red)

cry −90.8 −58.5 70.3 44.1

HgS Mercury sulfide (HgS) cry −58.2 −50.6 82.4 48.4
Hg2 Mercury (Hg2) gas 108.8 68.2 288.1 37.4
Hg2O4S Mercury sulfate (Hg2SO4) cry −743.1 −625.8 200.7 132.0
I Iodine gas 106.8 70.2 180.8 20.8
IK Potassium iodide cry −327.9 −324.9 106.3 52.9
IKO3 Potassium iodate cry −501.4 −418.4 151.5 106.5
ILi Lithium iodide cry −270.4 −270.3 86.8 51.0
INa Sodium iodide cry −287.8 −286.1 98.5 52.1
INaO3 Sodium iodate cry −481.8 92.0
K Potassium cry 0.0 0.0 64.7 29.6
KMnO4 Potassium permanganate cry −837.2 −737.6 171.7 117.6
KNO2 Potassium nitrite cry −369.8 −306.6 152.1 107.4
KNO3 Potassium nitrate cry −494.6 −394.9 133.1 96.4
K2O4S Potassium sulfate cry −1437.8 −1321.4 175.6 131.5
K2S Potassium sulfide (K2S) cry −380.7 −364.0 105.0
Li Lithium cry 0.0 0.0 29.1 24.8
Li2 Lithium (Li2) gas 215.9 174.4 197.0 36.1
Li2O Lithium oxide (Li2O) cry −597.9 −561.2 37.6 54.1
Li2O3Si Lithium metasilicate cry −1648.1 −1557.2 79.8 99.1
Li2O4S Lithium sulfate cry −1436.5 −1321.7 115.1 117.6
Mg Magnesium cry 0.0 0.0 32.7 24.9
MgN2O6 Magnesium nitrate cry −790.7 −589.4 164.0 141.9
MgO Magnesium oxide cry −601.6 −569.3 27.0 37.2
MgO4S Magnesium sulfate cry −1284.9 −1170.6 91.6 96.5
MgS Magnesium sulfide cry −346.0 −341.8 50.3 45.6
Mn Manganese cry 0.0 0.0 32.0 26.3
MgNa2O4 Sodium permanganate cry −1156.0
MnO Maganese oxide (MnO) cry −385.2 −362.9 59.7 45.4
MnS Manganese sulfide (MnS) cry −214.2 −218.4 78.2 50.0
Mn2O3 Manganese oxide (Mn2O3) cry −959.0 −881.1 110.5 107.7
Mn2O4Si Manganese silicate

(Mn2SiO4)
cry −1730.5 −1632.1 163.2 129.9

N2 Nitrogen (N2) gas 0.0 0.0 191.6 29.1
N Nitrogen gas 472.7 455.5 153.3 20.8
NNaO2 Sodium nitrite cry −358.7 −284.6 103.8
NNaO3 Sodium nitrate cry −467.9 −367.0 116.5 92.9
NO2 Nitrogen dioxide gas 33.2 51.3 240.1 37.2
N2O Nitrous oxide gas 82.1 104.2 219.9 38.5
N2O3 Nitrogen trioxide liq 50.3

(continued)
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N2O5 Nitrogen pentoxide cry −43.1 113.9 178.2 143.1
Na Sodium cry 0.0 0.0 51.3 28.2
NaO2 Sodium superoxide (NaO2) cry −260.2 −218.4 115.9 72.1
Na2 Sodium (Na2) gas 142.1 103.9 230.2 37.6
Na2O Sodium oxide (Na2O) cry −414.2 −375.5 75.1 69.1
Na2O2 Sodium peroxide (Na2O2) cry −510.9 −447.7 95.0 89.2
Na2O4S Sodium sulfate cry −1387.1 −1270.2 149.6 128.2
Ne Neon gas 0.0 146.3 20.8
Ni Nickel cry 0.0 0.0 29.9 26.1
NiO4S Nickel sulfate (NiSO4) cry −872.9 −759.7 92.0 138.0
NiS Nickel sulfide (NiS) cry −82.0 −79.5 53.0 47.1
O Oxygen gas 249.2 231.7 161.1 21.9
OP Phosphorus oxide (PO) gas −28.5 −51.9 222.8 31.8
O2Pb Lead oxide (PO2) cry −277.4 −217.3 68.6 64.6
O2S Sulfur dioxide gas −296.8 −300.1 248.2 39.9
O2Si Silicon dioxide (𝛼-quartz) cry −910.7 −856.3 41.5 44.4
O2U Uranium oxide (UO2) cry −1085.0 −1031.8 77.0 63.6
O3 Ozone gas 142.7 163.2 238.9 39.2
O3PbSi Lead metasilicate (PbSiO3) cry −1145.7 −1062.1 109.6 90.0
O3S Sulfur trioxide gas −395.7 −371.1 256.8 50.7
O4SZn Zinc sulfate cry −982.8 −871.5 110.5 99.2
P Phosphorus (white) cry 0.0 0.0 41.1 23.8

Phosphorus (red) cry −17.6 22.8 21.2
Pb Lead cry 0.0 0.0 64.8 26.4
PbS Lead sulfide (PbS) cry −100.4 −98.7 91.2 49.5
Pt Platinum cry 0.0 0.0 41.6 25.9
PtS Platinum sulfide (PtS) cry −81.6 −76.1 55.1 43.4
PtS2 Platinum sufide (PtS2) cry −108.8 −99.6 74.7 65.9
S Sulfur cry (rhombic) 0.0 0.0 32.1 22.6

Sulfur cry 0.3
(monoclinic)

S2 Sulfur (S2) gas 128.6 79.7 228.2 32.5
Si Silicon cry 0.0 0.0 18.8 20.0
Sn Tin (white) cry 0.0 51.2 27.0

Tin (gray) cry −2.1 0.1 44.1 25.8
Zn Zinc cry 0.0 0.0 41.6 25.4

gas 130.4 94.8 161.0 20.8
Compounds containing carbon
C Carbon (graphite) cry 0.0 0.0 5.7 8.5

Carbon (diamond) cry 1.9 2.9 2.4 6.1
CAgN Silver cyanide (AgCN) cry 146.0 156.9 107.2 66.7
CBaO3 Barium carbonate (BaCO3) cry −1216.3 −1137.6 112.1 85.3
CBrN Cyanogen bromide cry 140.5
CCaO3 Calcium carbonate (calcite) cry −1207.6 −1129.1 91.7 83.5

Calcium carbonate
(aragonite)

cry −1207.8 −1128.2 88.0 82.3

CCl2F2 Dichlorodifluoromethane gas −477.4 −439.4 300.8 72.3
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CCl3F Trichlorofluoromethane liq −301.3 −236.8 225.4 121.6
CCuN Copper cyanide (CuCN) cry 96.2 111.3 84.5
CFe3 Iron carbide (Fe3C) cry 25.1 20.1 104.6 105.9
CFeO3 Iron carbonate (FeCO3) cry −740.6 −666.7 92.9 82.1
CKN Potassium cyanide (KCN) cry −113.0 −101.9 128.5 66.3
CKNS Potassium thiocyanate

(KSCN)
cry −200.2 −178.3 124.3 88.5

CK2O3 Potassium carbonate (KCO3) cry −1151.0 −1063.5 155.5 114.4
CMgO3 Magnesium carbonate

(MgCO3)
cry −1095.8 −1012.1 65.7 75.5

CNNa Sodium cyanide (NaCN) cry −87.5 −76.4 115.6 70.4
CNNaO Sodium cyanate cry −405.4 −358.1 96.7 86.6
CNa2O3 Sodium carbonate (NaCO3) cry −1130.7 −1044.2 135.0 112.3
CO Carbon monoxide gas −110.5 −137.2 197.7 29.1
CO2 Carbon dioxide gas −393.5 −394.4 213.8 37.1
CO3Zn Zinc carbonate (ZnCO3) cry −812.8 −731.5 82.4 79.7
CS2 Carbon disulfide liq 89.0 64.6 151.3 76.4
CSi Silicon carbide (cubic) cry −65.3 −62.8 16.6 26.9
CHBr3 Tribromomethane liq −28.5 −5.0 220.9 130.7
CHCIF2 Chlorodifluoromethane gas −482.6 280.9 55.9
CHCl3 Trichloromethane liq −134.5 −73.7 201.7 114.2
CHN Hydrogen cyanide liq 108.9 125.0 112.8 70.6
CH2 Methylene gas 390.4 372.9 194.9 33.8
CH2I2 Diiodomethane liq 66.9 90.4 174.1 134.0
CH2O Formaldehyde gas −108.6 −102.5 218.8 35.4
CH2O2 Formic acid liq −424.7 −361.4 129.0 99.0
CH3 Methyl gas 145.7 147.9 194.2 38.7
CH3Cl Chloromethane gas −81.9 234.6 40.8
CH3NO2 Nitromethane liq −113.1 −14.4 171.8 106.6
CH4 Methane gas −74.4 −50.3 186.3 35.3
CH4N2O Urea cry −333.6
CH4O Methanol liq −239.1 −166.6 126.8 81.1
C2 Carbon (C2) gas 831.9 775.9 199.4 43.2
C2Ca Calcium carbide cry −59.8 −64.9 70.0 62.7
C2CIF3 Chlorotrifluoroethylene gas −555.2 −523.8 322.1 83.9
C2Cl4 Tetrachloroethylene liq −50.6 3.0 266.9 143.4
C2Cl4F2 1,1,1,2-Tetrachloro-2,

2-difluoroethane
gas −489.9 −407.0 382.9 123.4

C2H2 Acetylene gas 228.2 210.7 200.9 43.9
C2H2Cl2 1,1-Dichloroethylene liq −23.9 24.1 201.5 111.3
C2H2O Ketene gas −47.5 −48.3 247.6 51.8
C2H2O4 Oxalic acid cry −821.7 109.8 91.0
C2H3Cl3 1,1,1-Trichlorothane liq −177.4 227.4 144.3

gas −144.6 323.1 93.3
C2H3N Acetonitrile liq 31.4 77.2 149.6 91.4

(continued)



498 Standard Thermodynamic Properties

Molecular ΔfH
0 ΔfG

0 S0 Cp

formula Name State kJ mol−1 kJ mol−1 J mol−1K−1 J mol−1 K−1

C2H3NaO2 Sodium acetate cry −708.8 −607.2 123.0 79.9
C2H4 Ethylene gas 52.5 68.4 219.6 43.6
C2H4Cl2 1,1-Dichloroethane liq −158.4 −73.8 211.8 126.3

gas −127.7 −70.8 305.1 76.2
C2H4O2 Acetic acid liq −484.5 −389.9 159.8 123.3

gas −432.8 −374.5 282.5 66.5
C2H5I Iodoethane liq −40.2 14.7 211.7 115.1
C2H6 Ethane gas −83.8 −31.9 229.6 52.6
C2H6O Dimethyl ether gas −184.1 −112.6 266.4 64.4
C2H6O Ethanol liq −277.7 −174.8 160.7 112.3
C2H6S Ethanethiol liq −73.6 −5.5 207.0 117.9
C2H7N Dimethylamine gas −18.5 68.5 273.1 70.7
C3H7N Cyclopropylamine liq 45.8 187.7 147.1
C3H8 Propane gas −104.7
C3H8O 1-Propanol liq −302.6 193.6 143.9
C3H8O3 Glycerol liq −668.5 206.3 218.9
C4H4O Furan liq −62.3 177.0 115.3
C4H4O4 Fumaric acid cry −811.7 168.0 142.0
C4H6 1,3-Butadiene liq 87.9 199.0 123.6
C4H6O2 Methyl acrylate liq −362.2 239.5 158.8
C4H8 Isobutene liq −37.5
C4H8 Cyclobutane liq 3.7
C4H8O Butanal liq −239.2 246.6 163.7
C4H8O Isobutanal liq −247.4
C4H8O2 1,4-Dioxane liq −353.9 270.2 152.1
C4H8O2 Ethyl acetate liq −479.3 257.7 170.7
C4H10O 1-Butanol liq −327.3 225.8 177.2
C4H10O 2-Butanol liq −342.6 214.9 196.9
C4H12Si Tetramethylsilane liq −264.0 −100.0 277.3 204.1
C5H8 Cyclopentene liq 4.4 201.2 122.4
C5H10 1-Pentene liq −46.9 262.6 154.0
C5H10 Cyclopentane liq −105.1 204.5 128.8
C5H12 Isopentane liq −178.5 260.4 164.8
C5H12 Neopentane gas −168.1
C5H12O Butyl methyl ether liq −290.6 295.3 192.7
C6H6 Benzene liq 49.0 136.3
C6H6O Phenol cry −165.1 144.0 127.4
C7H8 Toluene liq 12.4 157.3
C7H8O Benzyl alcohol liq −160.7 216.7 217.9
C7H14 Cycloheptane liq −156.6
C7H14 Ethylcyclopentane liq −163.4 279.9
C7H14 1-Heptene liq −97.9 327.6 211.8
C8H16 Cyclooctane liq −167.7
C8H18 Octane liq −250.1 254.6

gas −208.6
C9H20 Nonane liq −274.7 284.4
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C9H20O 1-Nonanol liq −456.5
C10H8 Naphthalene cry 77.9 167.4 165.7
C10H22 Decane liq −300.9 314.4
C12H10 Biphenyl cry 99.4 209.4 198.4
C12H26 Dodecane liq −350.9 375.8



Energy Units and Conversions

Metric units:

103 kilo (k) 106 mega (M) 109 giga (G) 1012 tera (T) 1015 peta (P) 1018 exa (E)

Million Billion Trillion Quadrillion Quintillion

Energy conversion table

Energy kWh Btu Calorie (103 cal) Joule (J)

kWh 1 3412 860 3.6 × 106

Btu 2.93 × 10−4 1 0.252 1054
Calorie (103 cal) 1.16 × 10−3 3.97 1 4.18 × 103

Joule (J) 2.78 × 10−7 9.5 × 10−5 0.24 × 10−3 1
Therm 29.31 100 000 25 200 105.5 × 106

MeV 1.6 × 10−19 J
TOE (tonne of oil equivalent) 1.16 × 104 3.97 × 107 1.00 × 107 41.85 × 109 J

Quad = 1015 Btu

CCF = 100 cubic feet

Energy content of fuels

Coal 25 million BTU/ton (short ton = 907.18 kg, ton = 1016 kg, metric ton = 103 kg)

Crude oil 5.6 million BTU/barrel (a barrel = 42 gallons = 158.97 L)

Oil 5.78 million BTU/barrel = 1700 kWh/barrel

Gasoline 5.6 million BTU/barrel (a barrel = 42 gallons = 158.97 L) = 1.33 therms/gallon =
39 kWh/gal = 10.3 kWh/L

Natural gas liquids 4.2 million BTU/barrel

Natural gas 1030 BTU/cubic foot

Wood 20 million BTU/cord

Other unit conversions

1 HP = 0.746 kW

1 gallon = 3.785 L 1000 L = 1 m3 1 barrel = 42 gallons = 158.97 L

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



Answers to Exercises

Chapter 1

Exercise 1.1 The pressure exerted by a gas depends on both the mass and the average speed of the molecules.

At a given temperature, the heavier molecules have a lower average speed in just such a way that the

pressures of two gases are equal if (N/V) is the same!

Exercise 1.3 (a) 40.9 mol, (b) About 7 × 1016 mol, (c) 4.3 × 1019 mol, (d) 9100 years

Exercise 1.4 150 atm and 180 atm

Exercise 1.5 (a) 0.08%

Exercise 1.6 U(ideal) − U(vw) = 263 J = 4.2% of U(ideal)

Exercise 1.7 (a) 24.5 L, (b) 1.174 L, (c) The Avogadro volume using the VW equation is 1.178 L.

Exercise 1.8 2.5 × 10–10 m

Exercise 1.12 Gas Tc (K) pc (atm) Vmc (L)
CO2 303.4 72.9 0.128

H2 33.1 12.7 0.0798

CH4 189.7 45.5 0.128

Exercise 1.13 The Mathematica code is in Appendix 1.2, Code C.

Chapter 2

Exercise 2.2 Energy turned to heat = 23.05 kcal; change of T of 1.0 L of water = 23.0 K

Exercise 2.3 (a) 4.54 amp, (b) 11.6 min

Exercise 2.4 (a) See Box 2.2, (b) 2.02 kJ

Exercise 2.5 Sound velocity for argon = 320 m s−1; for nitrogen = 352 m s−1

Exercise 2.6 He: 𝛾 = 1.667, M = 4.00 × 10−3 kg, C = 972 m s−1 (965 m s−1)

CO2: 𝛾 = 1.304, M = 44.01 × 10−3 kg, C = 259 m/s (259 m/s)

N2: 𝛾 = 1.404, M = 28.01 × 10−3 kg, C = 337 m s−1 (334 m/s)

Exercise 2.8 Final T = 334 K

Exercise 2.9 Enthalpy change = 4.22 kJ

Exercise 2.10 (a) −542.2 kJ, (b) −4817.2 kJ, (c) −1030 kJ

Exercise 2.11 Note that these values are only estimates and are not very accurate. Combustion enthalpy of

C7H16 = −3672 kJ mol−1; of C8H18 = −4168 kJ mol−1; of C9H20 = −4664 kJ mol−1. Divide these values

by the molecular weight of the corresponding compound to obtain the enthalpy per gram.

Exercise 2.12 Combustion energy of 1.0 g of sucrose = 16.8 kJ. Energy needed to lift 100 kg wt through 1 m

is 980 J. With 16.8 kJ, the 100 kg mass can be lifted (16.8 kJ/0.98 kJ m−1) = 17.1 m!

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Exercise 2.13 When 𝜉 = 0.25 mol, the amount of CH4 = 2.75 mol, O2 = 1.5 mol, CO2 = 0.25 mol, H2O =
0.5 mol. The amount of heat released = 222 kJ. When all the 2.0 mol of O2 (which is the limiting reactant)

has reacted 𝜉 = 1.0 mol.

Exercise 2.14 Change in the mass of the Sun in 1 million years = 1.37 × 1023 kg (for comparison: mass of

the Earth 5.98 × 1024 kg. Present mass of the Sun = 1.99 × 1030 kg)

Exercise 2.15 2.72 × 1012 J

Chapter 3

Exercise 3.2 201 K

Exercise 3.3 242 J

Exercise 3.4 (a) Maximum efficiency = 0.952, (b) Maximum energy available = 97 J

Exercise 3.5 30 m

Exercise 3.6 1.6 J/K

Exercise 3.7 Change in entropy = 2.2 × 10−4 J/K. Rate of change = 9.6 × 10−4 J K−1 s−1

Exercise 3.8 Entropy = 13.1 J K−1

Exercise 3.9 Maximum power = 1.2 kW m−2. Solar cells that cost about $540 m−2 produce power at a cost

of about $0.15 per kW h.

Chapter 4

Exercise 4.1 In a living cell, which is an open system, dS = diS + deS. The entropy deS due to the exchange

of matter and energy can be negative, but according to the Second Law diS > 0. Thus, though diS > 0,

since deS < 0, the total dS < 0; this does not violate the Second Law.

Exercise 4.2 Quantity Units
Entropy, S J K−1

Chemical potential, 𝜇 J mol−1

Affinity, A J mol−1

Exercise 4.3 S1 and S3 are not extensive.

Exercise 4.4 (c) S at any time t is given by

S(t) = (NA0 − 𝜉)

[
S0A + CVA ln T + Rln

(
V

NA0 − 𝜉

)]
+ 2𝜉(t)

[
S0B + CVB ln T + R ln

(
V
2𝜉

)]

Chapter 5

Exercise 5.2 Ff − Fi = −NRT ln

(
Vf

Vi

)
Exercise 5.8

ΔGf

Tf

=
ΔGi

Ti

+ ΔH

(
1

Tf

− 1

Ti

)
Exercise 5.9 For an ideal gas F = N(u0 + CVT) − TN[s0 + CV ln T + R ln(V∕N)]

Exercise 5.10 S = c
T2

− a and H = b + 2c
T

Exercise 5.12 (b) h = 3.1 cm

Exercise 5.13 (b) 1.5 atm
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Chapter 6

Exercise 6.1

(a) F(V , T , N) = N(u0 + CVT) − TN[s0 + CV ln T + R ln (V∕N)]

(b) G(p, T , N) = N(u0 + CVT + RT) − NT[s0 + CV ln T + R ln (RT)] + NRT ln p
(c) Thus 𝜇(T , n) = (u0 + CVT) − T[s0 + CV ln T − R] + RT ln (n),

where n = (N/V)

Exercise 6.2 van der Waals: a = 0.816 atm L2 mol−2, b = 30.0 × 10−3 L mol−1,

Berthelot: a = 80.0 atm L2 K mol−2, b = 30.0 × 10−3 L mol−1,

Dieterici: a = 2.00 atm L2 mol−2, b = 45.0 × 10−3 L mol−1,

Exercise 6.6 (a) U(ideal) = 8.54 kJ, U(ideal) − U(vw) = 0.728 kJ

Exercise 6.8

(a) Z =
[

Vm

Vm − b
− a

RT
1

Vm

]
(b) Fvw − Fideal = −3.59 × 101.3

V
J −
(
8.314 J K−1

)
T ln

(V − 0.0427 L

V

)
Chapter 7

Exercise 7.1 BP of hexane at 0.5 atm = 48.3 ◦C

Exercise 7.2 At an altitude of 2 miles water boils at about 87 ◦C

Exercise 7.4 Number of phases = 4

Chapter 8

Exercise 8.2

(a) Mole fractions: NaOH: 0.07, H2O: 0.93

(b) Molality = 4.17 mol kg−1

(c) Molarity = 4.0 M

Exercise 8.3

(a) PO2 = 0.21 atm, PN2 = 0.78 atm, etc.

(b) Concentration of O2 in lakes = 2.7 × 10−4 M

Exercise 8.4

(a) Concentration of N2 in blood = 5.1 × 10−4 M

(b) At a depth of 100 m N2 concentration in blood = 5.5 × 10−4 M

Exercise 8.5

(a) [N2] = 5.1 × 10−4 M

(b) [N2] = 5.5 × 10−3 M
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Exercise 8.6 Boiling point of sugar solution = 373.28 K

Boiling point of NaCl solution = 373.46 K

Exercise 8.7

(a) Tf = [273 − (0.032V)] K in which V is in mL per liter of water

(b) V = 312 mL perliter of water for a decrease of 10 ◦C in freezing point

(c) Tb = 102.67 ◦C

Exercise 8.8 Tb of nitrobenzene = 212.68 K

Exercise 8.9 X = 128.7 g/mol

Exercise 8.10

(a) Molecular weightt of hemoglobin is about 70 000

(b) 𝜋 = 31 atm

Exercise 8.11 Osmotic pressure of sea water = 27 atm

Exercise 8.12

(a) Pressure needed for reverse osmosis = 24 atm. Work = 2.4 kJ L−1

(b) Energy cost for 100 L is about $0.02

(c) Evaporation using sunlight

Exercise 8.13 1.66 × 108 N = 1.7 × 107 kg wt

Exercise 8.14 𝛾Ca2+ = 0.317, 𝛾Cl− = 0.750

Exercise 8.15 mAg+ = 1.33 × 10−5 m

Chapter 9

Exercise 9.1

(a) At about T = 33 000 the C H bond will break due to collisions.

(b) At about 5.6 × 1010 K, avg KE equals nucleon binding energy. So we may expect nuclear reactions

to take place at this temperature.

Exercise 9.2 At T = 300 K, k = 7.81 × 106 M−1 s−1.

At T = 350 K, Rf = 4.38 × 10−2 M s−1.

Exercise 9.3 Ea = 1.33 × 1013 s−1, ΔH† = 125.6 kJ mol−1 and ΔS† = −2.89 J K−1 mol−1.

Exercise 9.4

(a) Reaction velocity = −0.069 M/s

(b) [A]eq = [A]0 − 𝜉eq, [B]eq = [B]0 + 2𝜉eq

(c) [A]eq = 0.045 M, [B]eq = 0.007 M

Exercise 9.6 k = 3.83 × 10−12 s−1

Radioactive decay is unaffected by temperature.

Exercise 9.7 Chirping depends on a rate-limiting step that obeys the Arrhenius law.

Exercise 9.9 At 25 ◦C, pH = 5.77 and at 35 ◦C, pH = 5.75
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Exercise 9.10

(a) K = 6.74

(b) K = 1.32 × 1090

(c) K = 4.53 × 10−31

Exercise 9.12

(a) K = 5.80 × 105 at T = 25 ◦C

(b) K = 6.3 × 10−4 at T = 400 ◦C and ΔGrxn = 41.24 kJ/mol

Exercise 9.13 K = 2.6, At equilibrium Ntrans = 1.8 mol; Ncis = 0.7 mol

Chapter 10

Exercise 10.1 Using the molar mass of N2 the pressure at 2.5 km is 0.73 atm

Boiling point of water = 91.1 ◦C

Exercise 10.2 0.46 J K−1 s−1

Exercise 10.3

(a) K = 8.31 × 10148

(b) K = 1.12 × 1025

(c) K = 9.24 × 1018

(d) K = 5.36 × 10137

Exercise 10.4

(a) 0.70 V

(b) 0.79 V

(c) 0.78 V

Exercise 10.5
min

k+

mout
k+

= 33.2

Exercise 10.7 JN =
Dn(0)gM

RT
e−gMx∕RT

Exercise 10.8 F(T) = eC−𝜇0(T)∕RT

Exercise 10.9 Fraction of dipoles between 10◦ and 20◦ = 2.26 × 10−2

Chapter 11

Exercise 11.2 𝛽 =
∞

∫
0

8𝜋h
c3

(
kB

h

)4
x3dx

(ex − 1)

Exercise 11.4
V2.8 K

V1010 K

= 4.5 × 1028

Exercise 11.5 𝜆10000
max = 290 nm
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Exercise 11.6 u(𝜆, T)d𝜆 = 8𝜋hc
1(

ehc∕𝜆kBT − 1
) d𝜆

𝜆5

Exercise 11.7
dS
dt

= 6.58 × 1014 J K−1s−1

Chapter 12

Exercise 12.1 −c 3.7 × 10−23 atm L K−1 = −c 3.7 × 10−21 J K−1

Chapter 13

No numerical answers

Chapter 14

No numerical answers

Chapter 15

No numerical answers

Chapter 16

Exercise 16.3 For this system, we see that the cross-diffusional current could be of the order of 2 ×
10−9 mol m−2 s−1

Chapter 17

No numerical answers

Chapter 18

Exercise 18.1

(a)
A

RT
= ln

xL

xD

≪ 1 in which xL and xD are mole fractions. This will be true when xL nearly equals xD,

i.e. when the two concentrations are nearly equal.

(b) For notational simplicity we use x = N2O4 and y = NO2.

A
RT

= −4.71 kJ mol−1

RT
+ ln

px

p2
y

When T = 298 K,
A

RT
= −1.9 + ln

px

p2
y

In the linear regime, near equilibrium (A/RT)≪ 1 implies ln

(
px

p2
y

e−1.9

)
≪ 1 in which p is measured

in bars. At equilibrium, if px = 1.0 bar, py = 0.38 bar.
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Chapter 19

No numerical answers

Chapter 20

Exercise 20.2 Rotational temperature for H2 is 88 K, for O2 it is 2.06 K



Author Index

Andrews, Thomas 17, 20

Arrhenius, Svante August 235

Avogadro, Amedeo 13–14, 26

Bernoulli, Daniel 24–5, 26, 451

Bertholet, Mercellin 61

Betz, Albert 78

Black, Joseph 10–11, 46, 187

Boltzmann, Ludwig 25, 27–8, 111, 287, 327, 451,

452

Boyle, Robert 12–13, 24, 27, 46

Carnot, Lazare 90

Carnot, Nicholas Léonard Sadi 46, 90–3
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