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Preface 

This text is intended for the beginning graduate student with minimal prep- 

aration. However since Lie groups abstract the analytic properties of matrix 

groups, the student is expected to have some knowledge of senior level algebra, 

topology, and analysis as given in some of the references. In Chapter 1 we review 
some advanced calculus and extend these results to manifolds in Chapter 2. 
Consequently the reader knowing these results can skip these chapters but should 
pay attention to the examples on matrix groups. After this the reader probably 
should follow the order given in the contents noting that the first part of the 
text is about Lie groups while the algebraic study of Lie algebras begins in 
Chapter 9. We have not attempted to prove all basic results so the serious student 
should take the indicated detours to such texts as those by Freudenthal and 
de Vries, Helgason, Jacobson, or Wolf. In particular the student must develop 
his own taste in this subject and ours is only one point of view. 

We are deeply indebted to the many authors and teachers in the subject and 

to them we express our gratitude. We would like to thank Dr. J. R. Schumi for 
his assistance, Professors Harry Allen, Charles Conatser, and Earl Taft for their 

timely suggestions, and the National Science Foundation for their support of 
mathematics. Also thanks are due to Barb Ketter and Els Sagle for their excellent 

manuscript preparation and to the people at T.S.V. and at the University of 

Minnesota for their encouragement. 
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CHAPTER 1 

SOME CALCULUS 

We shall present many familiar concepts of differential calculus in the 
terminology of linear algebra. Thus, for functions from one Euclidean space 
to another, derivatives are given as linear transformations, higher order 
derivatives are given as multilinear forms, and Taylor’s series is presented in 
this terminology. Instead of giving detailed proofs we present many examples 
involving matrix groups which will be abstracted in later chapters. 

1. Basic Notation 

We now informally review some basic concepts with which the reader 
should be familiar. Thus let Vdenote an n-dimensional vector space over a 
field K and let X,, . . . , X, be a basis of V. Then any point or vector p (or P) 
in Vcan be uniquely represented by 

p = cpixi 
i =  1 

and we call the pi E K the coordinates of p relative to the basis X:, . . . , X, 
of I/. In particular when we let e, = (0, . . . , 1 , O .  . .O) with 1 in the kth position 
and use the basis e l ,  . . , , en, then we frequently write p = (PI, . . . , p,) as a 

vector in V. For a fixed basis X,, . . . , X, of V, the functions 

u i :  V + K : p + p i  

1 
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for i = 1, , . , , n are called the coordinate functions for V relative to the basis 
X,, . . . , X, . Thus we obtain a “coordinate system” by a choice of basis in V 
and in particular obtain the usual coordinate system by choosing the el , . . . , en 
basis of V. 

Let Wbe an rn-dimensional vector space over K and with Vas above let 

Hom,(V, W )  

or just Hom(V, W) denote the set of linear transformations of V into W. 
Thus 

T :  V + W : X - + T ( X )  

is in Hom(V, W) if T(aX + bY) = aT(X) + bT(Y)  for all a, b E K and 
X, Y E V .  In particular Hom(V, W) is a vector space over K of dimension 
m n relative to the usual definitions: For S, T EHom(V, W) and a, b E K 
define (US + bT)(X) = aS(X) + bT(X)  for all X E V .  We shall also use 
the notation 

L(V, W) for Hom(V, W) 

and 

End(V) for Hom(V, V). 

Now let K = R, the real numbers, and let V = R” which we regard as the 
set of all n-tuples X = ( x , ,  . . . , xn) with x i  E R and with the operations 

ax + bY =(ax, + by1,. . * ,  ax, + by,) 

for Y = ( y , ,  . . . , y,,) and a, b E R. With this representation of V we have a 
natural inner product 

B : V x  V + R  

given by the formula 
n 

i= 1 
B ( X ,  Y )  = c xiyi. 

Thus for X, Y, Z E Vand a, b E R, B satisfies 

(1) B(UX + bY, 2) = aB(X, Z )  + bB(Y, 2); 

(2) w, Y) = B(Y,  XI; 
(3) B(X,  X) 2 0 and B(X,  X) = 0 if and only if X = 0. 

Any function B : V x V + R satisfying (1) and (2) above is called a symmetric 
bilinear form and if it also satisfies (3), B is called a positive definite symmetric 
bilinear form. 
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A norm on a vector space V is a function n : V + R satisfying 

( I )  n(X) 2 0 and n(X) = 0 if and only if X = 0; 
(2) if a E R and X E I/, then n(aX)  = laln(X); 
(3) n(X + Y) I n ( X )  i- n(Y) for all X, Y E V .  

We shall also use the notation 

n(X) = 1x1 = IlXll. 

In particular, if B is a positive definite symmetric bilinear form on the vector 
space V over R, then 

llXll = B(X,  X)'/2 

IB(X9 Y>l 5 I1XIlIlY11. 

4x9 Y )  = IIX - YII 

is a norm on Vand we have the inequality 

Using a norm on V we can define a metric d on V by 

for X, Y E V .  Thus d satisfies 

(1) d(X, Y )  2 0 and d ( X ,  Y) = 0 if and only if X = Y ;  

(2) 4x9 Y )  = d(Y, X ) ;  
(3) d(X, Y )  I d(X, Z )  + d(Z,  Y>. 

In particular, with I(X(I = B(X, X)'" = ( ~ x ~ ~ ) ' / ~  we obtain d(X,  Y) = 

We now consider some of the topological properties of V = R" which 
arise from a metric d obtained from a given fixed norm. Thus we define 
the open ball of radius r with center p by 

[CCxi - ~ i ) ~ ] ~ / ~ .  

B(p, r )  = {X E v : d(p, X) < r }  

and say subset S of Vis open in V i f  for every p E S there exists r > 0 so that 
the open ball B(p, r )  is contained in S. Using this definition we obtain the 
basic results on the metric topology of R" with which we assume the reader is 
familiar. 

Notice that it really does not matter which norm we start with when 
considering the topological properties of V = R" relative to a metric induced 
by a norm. Thus if n, and n2 are norms on V ,  we can show that there exist 
constants a and b in R so that for all X E V 

an1(X) 5 nz(X) I bn , (X) ;  

that is, n, and n2 are equivalent norms. Thus, if dk is the metric determined by 
the norm n k ,  then using the above inequality it is easy to see that the open sets 
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of Vrelative to d,  are the same as the open sets relative to d2 [DieudonnC, 
1960; Lang, 19681. Most often we shall determine a norm n on V by choosing 
a basis X,, . . . , X,of Vand for X = C x i X i  set n ( X )  = (cxi2)'".  In particular 
we obtain the usual inner product and norm by taking the basis e,, . . . , en of 
V = R" and call the vector space R" with the topology induced by this norm 
Euclidean n-space. 

With the topology in V = R" induced by a norm n as above we now note 
that V is complete. Thus a sequence of vectors {xk} in V is called a Cauchy 
sequence if given any E > 0 there exists N so that for all p, q 2 N we have 

n(xp - xq)  < E .  

We have the result that every Cauchy sequence in V has a limit; that is, V 

is complete [DieudonnC, 1960; Lang, 19681. Let { x k }  be a sequence in Vand 
let X , ,  . . . , X, be a basis of V. Then we can write 

x k  = xk1 x i  + * ' *  + x k n x n  

and note {xk} converges if and only if each sequence { x k i } ,  i = 1, . . . , n, 

converges. Thus, by a skillful choice of a basis, it might be obvious that the 
sequences {xki} converge so that { x k }  can be shown to converge easily. 

Let { x k }  be a sequence in V = R". Then the series of vectors c x k  in V 

converges if the sequence {s,,} given by the partial sums 

P 

k =  1 
s p  = c xk 

converges. Now associated with any series cxk  in Vis the seriesof real numbers 

formed by taking the series of norms of each term. We have the following 
expected results [DieudonnC, 1960; Lang, 19681. 

( I )  If the series c n ( x k )  converges in R, then the series c x k  converges in 
the Euclidean space R"; in this case we say c x k  converges absolutely. 

(2) If c x k  converges absolutely to the limit a, then the series obtained 
by any rearrangement of the terms also converges absolutely to a. 

Let V = R" and W = R" be Euclidean spaces as previously discussed 
and let U be a nonempty subset of V. Then for a choice of basis Y,, . , . , Y,,, 
of W a function 

f :  u+w:p+ f(p) 

has the coordinate representation 
m 
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The coordinate functions for f 

5 

f k :  u - t R : P - t f , ( P )  

can be used to describe the boundedness or continuity of the function 
f : U + W as follows. 

A function f : U -+ W is bounded on U if there exists a real number 
C > 0 so that n(f(u)) 5 C for all ci E U ,  where n is the Euclidean norm in W. 
If we let 

B(L! W )  

denote the set of bounded functions on U into W, then a straightforward 
computation shows B(U, W) is a vector space of functions over R relative to 
the usual operations 

+ k ) ( P )  = U f ( P )  + bg(P). 

Furthermore it is easy to see that f E B( U, W) if and only if each coordinate 
function fk E B( U, R). 

Similarly with the usual definition of a continuous function f : U + W 
we find that the set of all such functions is a vector space of functions over R 
which we denote by 

C(U, W ) .  

In particular, for a function f : U -+ W, we have thatf E C( U, W )  if and only 
if each coordinate functionf, E C(U, R). We shall frequently use the notation 

C(U)  = C(U, R) 

and note that C ( U )  is closed under the pointwise product 

( fg) (p)  = f(P)g(Ph 

Thus C( U )  becomes an associative algebra relative to this product. 
The vector space of bounded functions B(U, W) has a sup norm given by 

l l f l l  = sup{llfWll : x E w, 
and the uniform convergence of a sequence {f.} of functions 

f . : u + w  

is related to the norm as follows. Recall {f,} converges uniformly on U to a 
function f : U + W if for every E > 0 there is an integer N such that n 2 N 
implies for all x E U 

Ilf,(x) - fWII < 6.  
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Consequently in terms of norms, {fn} converges uniformly to f on U if for 
every E > 0 there is an integer N such that for all n 2 N,fn - f E B( U, W) and 

Ilfn - f I I  < 8.  

Using this together with the fact that if U is compact, then C( U) c B( U, 8) 
we obtain the following summary of results [DieudonnC, 1960; Lang, 19681: 

Theorem Let V, W be Euclidean spaces and let U be a nonempty subset 

(a) The space B( U, W) with sup norm is complete. 
(b) If {f,} is a sequence of functions in C(U, W) which converges uni- 

formly on U to a function f : U -P W, then f E C(U, W ) .  

(c) The space BC(U, W) of bounded continuous functions from U 
into W is complete and closed in B(U, W) (in the sup norm). In particular, 
if (I is compact, this applies to C(U) = BC(U, R). 

(d) (Weierstrass test) Let {f,} be a sequence in B(U, W) so that there 
exist real numbers M, with 11fn11 s M,, and EM,, convergent. Then the series 
ZJ ,  converges absolutely and uniformly. Furthermore if each f, is continuous 
on U, then Cfn is continuous on U. 

of v. 

REMARKS (1) If we use the field K = C, the complex numbers, then 
results analogous to those discussed in this section also hold. However, 
we must use a Hermitian form instead of the inner product to define the 
metric. Thus if V = C", a Hermitian form is a mapping H: V x V + C 
satisfying for X ,  Y, Z E V and a E C, 

(i) H ( X ,  Y + Z )  = H ( X ,  Y )  + H ( X ,  2); 
(ii) H(aX,  Y) = aH(X,  Y )  and H ( X ,  aY) = HH(X, Y )  where the over- 

(iii) H ( X ,  Y )  = H( Y, X ) ;  
(iv) H ( X ,  X )  > 0 if X # 0 and H ( X ,  X )  = 0 if and only if X = 0. 

bar denotes the complex conjugate; 

Note that from (iii) H ( X ,  X )  = H ( X ,  X )  so that H ( X ,  X )  E R.  Thus (iv) 
allows us to define a norm by llXll = H ( X ,  X ) 1 / 2  and consequently a metric. 
In particular, for X = ( x l ,  . . . , x,) and Y = (yl, . . . , y,) in V = C", H ( X ,  Y )  = 

C X k j j k  defines a Hermitian form and llxll = (Cxky$/2 ,  

(2) We use the following convention to obtain a matrix for 

T €Hom(V, W ) .  

Let X,, . , . , X, be a basis of V and let Yl, . . . , Y, be a basis of W and 
let T ( X , )  = c7=1 ail Y,. Then the matrix for T relative to these bases is 
(u,~);  that is, the ith column is the set of coefficients obtained from the above 
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expression for T(X,). In particular, the various canonical forms will have 
upper triangular matrices. 

Exercises ( I )  Let XI,  . . . , X, be a basis of V over C so that any T E 

End(V) = L(V, V) has matrix ( t i j )  relative to this basis. Show 

IITII =sup{ItijlI 

defines a norm on End(V). What happens when one changes basis? 

(2) For T E End(V) show that 

IlTll = suP{lITXII/lIXII : x f 01 

IITII 2 m a x { I r ~ l ~ * * * ,  lrnl1 

defines a norm on End(V) such that 

where the ri  are the characteristic roots of T. 

Example (1) We now consider some series in End(V). First we note 
that for T E End(V) the sup norm 

IlTll = SUP{ll~(X)ll/llXll : x f 01 = SUP{llT(Y)ll : IIYII = 1) 

II ST II 5 II SII II T II. 

satisfies, for S, T E End(V), 

In particular, ])T"ll I llTl]". Next in discussing the convergence of a series 
xu,, T" in End( V )  we make a choice of basis in V for which the matrix T has a 
desirable form. Then we can define a norm on V induced by this basis which 
can be used to compute the sup norm on End( V )  in terms of the matrix for T. 
Thus if T is represented by matrices A and B relative to different bases so that 
B = PAP-', then using the norms defined by these basis we see ~ u n A "  
exists if and only if xunBn exists. This is because 

XU,, B" = ~ U , , ( P A P - ' ) "  = P(xa,,A")P-'. 

Now note that we can regard the real vector space V as contained in a 
complex vector space W over C so that the norm in V is induced by a norm 
in W given by a Hermitian form. Thus we can use the complex canonical 
forms for the matrix of T to investigate convergence of xu, T". We use this 
now to sketch a proof of the following results [Jacobson, 1953, Vol. 111. 

Proposition Let c a j z i  be a power series over the complex numbers C 

with radius of convergence p and let T E End( W) be such that its character- 
istic roots r, satisfy 1 r,l < p. Then the power series XajTj exists in End(W). 
In particular this result holds for real power series. 
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PROOF Choose a basis of W so that the matrix A of T has canonical form 

A ,  
A = [  0 - 

0 

AP. 

where each block has the form 

where r is a characteristic root of T. Consequently, since the matrix of the 
powers Tk have the same block form, it suffices to consider the series for a 

matrix A of the form (*). Now if 

then the kth partial sum sk(A) for the series is of the form 

Thus if [ rl < p, then the sequences {sk(r)}, {sk’(r)}, etc., converge to s ( r ) ,  

s’(r), etc., so that the sequence {sk(A)} converges; that is, Tk exists. 

We apply this to the complex power series 

1 

2!  
ez = 1 + z + - zZ + 9 . .  

which converges for all z E C. Thus for any T E End(V) we note that the 
characteristic roots of Tare  bounded so that 

1 

2! 
exp(T) = eT = I +  T +- T 2  + . - .  
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exists. Thus we have the mapping 

exp : End( V )  -+ End( V )  : T + eT 

called the exponential mapping (for endomorphisms). 

form 
If T has a matrix A of the form (*) above, then exp A is a matrix of the 

exp r 
:xpr expr  - 

2!  

expr  expr  

0 exp r 

Thus in general exp T is computed from blocks of such matrices. 

Exercises Let V = R" be Euclidean n-space and let T E End(V). 

(3) Using the above canonical form for exp T, show det(exp T )  = errT, 

where tr T = trace T is the sum of the characteristic roots of T. Thus the 
exponential map has domair, End(V) and range contained in GL(V)  the 
group of nonsingular endomorphisms of V. We also use the notation 
GL(n, R) for GL(V) .  

(4) Show that the series for exp T is absolutely and uniformly convergent 
on any closed ball in End( V). (If possible, try not to use the Weierstrass test 
but estimate directly). Thus show exp : End( V )  -+ GL(V)  is continuous. 

( 5 )  Show GL( V )  is an open subset of the Euclidean space End( V ) .  

2. The Derivative 

In this section we formulate the basic facts on differentiation in terms of 
linear transformations. We do not give many proofs so the student should 
regard many of the statements as exercises or refer to DieudonnC [1960], 
Lang [1968], or Spivak [1965]. 

Definition 1.1 Let V and W denote the Euclidean spaces R" and R", 
respectively, and let U be an open subset of K Then the function 

f: C + W  
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is differentiable at p E (I if there exists a linear transformation T E L(V, W) 

so that for all X E V the limit 

= 0, 

where 11 11 denotes the usual Euclidean norm in V or W. 

entiable function 

Ilf(P + X) - f(p) - T(X)ll 
lirn 
x + o  II x II 

Thus for X sufficiently small in V we have the approximation for a differ- 

(*I f ( P  + X )  = f ( P )  + T ( X )  + IlXll&(X), 

where &(X) is a function such that 

lirn E ( X )  = 0. 

If such a linear transformation T exists, then T is called the derivative of f 

at p E U and is denoted by Df(p),,f’(p), or df(p). Thus 

x+o 

Df(P)X = T(X) 

for all X E K This definition uses the uniqueness part of the following result. 

Proposition 1.2 Let f : U -P W be differentiable at p E U and let 
TI, T2 E L( V, W) satisfy 

for i = 1, 2 and all X E K Then T,  = T2 = Df(p). Furthermore for all 
X E V  
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where we use the approximation (*). This implies T , ( X )  = T , ( X )  for all 
X E V. Using (*) we also have 

1 1 
Df(p)(X) = lim - Df(p)(tX) + lim - IItXIle(tX) 

1-10 t 1-0 t 

1 
= lim f [ f ( P  + t X )  - f ( p ) l .  

l + O  

Examples (1) Letf : V -+ W bea linear transformation. Then Of( p )  = f 

for all p E K For let X E V, then f(p + X) - f ( p )  = f ( X ) .  Thus for T = f 

we see f ( p  + X) - f ( p )  - T ( X )  = 0 so that the limit in the definition is 0 

and by uniqueness D f ( p )  = f: 
(2) Let V = W = R  and let f : U + W be differentiable at p in the usual 

calculus sense with 

Then the linear transformation T : R + R : X --+ f ‘ ( r ) X  given by multi- 
plication satisfies Definition 1 . 1 .  Thus Of@) has the 1 x 1 matrix ( f ’ ( p ) )  

relative to the basis of R consisting of the number 1. 

Proposition 1.3 Let V and W be Euclidean spaces with U an open 

(a) I f  ,f : U -+ W is differentiable at p E U ,  then f is continuous at p. 

(b) If$ g : U + W are functions differentiable at p E U and if a, b E R ,  

subset of 1/. 

then uf + bg is differentiable at p and 

W a f  + bg)(p) = aDf(p> + m J ( P ) .  

(c) Let V,,  Vz be Euclidean spaces and let B : V, x V, 3 W be a bilinear 
map. Suppose f : U + V, and g : U + V, are differentiable a t  p E U. Then the 
“ product ” B ( f ,  g )  : U --f W :  u -+ B(f (u ) ,  g(u) )  is differentiable at p and for 
x E V, 

[ D ( W  g)) (p) l (X)  = B(f’(P)X, d P ) )  + B(f(P), g’(p)X).  

(d) (Chain rule) Suppose U ,  is open in  V, ,  U,  is open in V,, and 
f : U ,  + U,  and g : U, 4 W. Let p be an element of U, such thatfis differenti- 
able at p and g is differentiable atf(p). Then the composition g 0 f : U ,  -+ W 

is differentiable at  p and 

D(g  O f )(P) = Dg( f (p ) )  O DfW. 

Thus the derivative of the composition is just the composition of the deriv- 
atives regarded as linear transformations. 
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which yields g 0 f differentiable at p and D(g o f ) ( p )  = T 0 S. 

Examples (3) Let B : V,  x V ,  -+ R be a bilinear form and let 

V = ( - l , l ) ~  V = R .  

For fixed Y E  V, ,  let 

f: u-+ V, : t +A(t)Y. 

where A(t) E End(V,) is such that A : t -+ A ( t )  is differentiable on (- 1, 1) 
and A(0) = I. Thus A(t )  has a matrix (uij(t)) such that aij(0) = aij and the 
uij are differentiable functions on (- 1, 1) to R. This gives a map 

g : U -+ R : t + B ( f ( t ) ,  f ( t ) )  = B(A(t)Y, A(t)Y), 

and for p = 0 E U and X = 1 E V in the formula for the product rule we have 

[Dg(O)l(l) = [D(B(f ,  f))(O)l(l) 

= B(f'(O)l, f ( 0 ) )  + B(f(0L f'(0)l) 

= B(A'(O)Y, Y )  + B(Y, A'(O)Y), 



2. THE DERIVATIVE 13 

where, with the notation duij/dt(0) = uij(0), A’(0) has the matrix 

(dai j /&O)).  

In particular let A ( t )  be a B-isometry; that is, for all Y E V, 

B(A(t)Y, A( t )Y)  = B(Y, Y ) .  

Then since the derivative of a constant function is 0, we obtain 

B(A’(O)Y, Y )  + B(Y, A’(0)Y) = 0 ;  

that is, A’(0)  is skew-symmetric relative to B. 

(4) Let f : R + R and g : R + R be differentiable functions such that 
g 0 f = idy, the identity function on R. Then from the chain rule, idy = 

D g ( f ( p ) )  0 D f ( p )  and applying this to the vector 1 E R we obtain 

1 = Dg(f (p ) )  . Df(P)( 1) = s’(f @)) . f’@> 
which gives the usual formula for the derivative of the inverse function. 

In order to compute a matrix for the derivative D f ( p )  of a differentiable 
function f : U + W we consider a coordinate representation for f. First let 

w = w, x w, x * . *  x w, 
be a product of Euclidean spaces. Then f : U 

functionsfi : U + Wi by 
W yields the “coordinate” 

f ( P )  = ( f i ( P ) ,  . . . ?  .UP)) 
and we leave the following as an exercise. 

Proposition 1.4 Let U be an open subset of V and let 

f : u+ w, x ‘ * .  x w, 
be given by f = (f,, . . . , fk) as above. Then f is differentiable at p E U if aiid 
only if each coordinate mapfi is differentiable at p; in this case 

In  particular for Yl,  . . . , Y,,, a basis of W and f =CLq we have for X E V 

w - ( P ) ( X )  = 1 [ D ! ( P ) ( X ) l T .  

V =  V, x V, x * * *  x v, 

j 

Next we use a factorization 

as a product of Euclidean spaces and consider partial derivatives. Thus let 
x = (xl ,  . . . , x,) E V be written in terms of its “coordinates” and for p , ,  

. . . , p i - l ,  p i +  ,, . . . , p ,  fixed we consider the map of an open set Ui c Vi 

fi : Ui + w :  xi + f(P1,. . . , x i , .  . . , p , ) .  
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I f f i  is differentiable at p i  E U i ,  we call its derivative the ith partial derivative 

off at 

p = (PI, . . . , p i , .  . . , p , )  E UI x * . .  x ui x * * *  x ur 

and denote it by D , f ( p ) .  Thus if this partial derivative exists, we have for 
Xi E Vi that 

1 
D i f ( p ) ( X i ) =  lim;Lf(p, ,..., p i + r X i ,  ..., pr)-S@*,...,~i,...,~r)l 

1-0 

= Df(p)(O, . , . , X i ,  0,. . . , O ) .  

In particular for W = Rand V = R" = R x * * * x R n-times, we use the familiar 
notation 

af laxi@) = Dif(p)(ei)  = Df(p)(ei), 

where ei = (0, . . . , 1, 0, . . . , 0) with 1 in the ith position. However, " partial 

derivatives" can be defined relative to any basis of R". 

Proposition 1.5 Let V = V, x * .  x V, be a product of Euclidean spaces 
and let U ,  be an open subset of V i .  Let W be a Euclidean space and let 

f : u, x . ' *  x u, + w 

be a function differentiable at p = (pl, . . . , p,) E U, x * x U, . Then each 
partial derivative D i f ( p )  exists and for X = ( X I ,  . . . , X,) E V, x . * * x V, we 
have 

i =  1 

PROOF We leave the proof to the reader as an exercise but the method 
should be familiar: Either adding and subtracting the same suitable terms 
from f@ + X )  - f ( p ) ,  or showing that Df(p) exists implies D i f @ )  exists, 
then using the linearity of Df(p) on X =C(O, . . ., X i ,  0, ..., 0) and the 
corresponding formula for D i f ( p ) X , .  

In particular note that if W = R and V = R x . . . x R with 

x = (x,, . .., x,) = E x l e t  E V, 

then we have 

Df(~)x = CDiS(p)(xiei)  = C x i  V/dxi@). 

We now put together the above results to obtain a matrix for Df(p). 
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Theorem 1.6 Let V and W be Euclidean spaces with X I ,  ..., X ,  a 
basis of V and Y , ,  . . . , Y, a basis of W. Let U be an open subset of V and let 

f : U + W  

be a function which is differentiable at p E U and is given by the coordinate 

functions 

where x = ZL x i  X i  E U. Then Df(p) has the matrix 

(Dif i (P)(Xi ) )  

relative to the basis X I ,  . . . , X ,  of V and Y , ,  . . . , Y, of W; this matrix is called 
a Jacobian matrix. In case we choose the basis e,, . . . , en of V and e,, . . . , em 

of W, then Df(p) has the matrix 

(af i /axi(p)) .  

PROOF For a typical basis element X i  we shall show 

Df(p)Xi  = C [Df,(p)(xi)I  5 
j 

which gives the desired matrix. Recall the convention that a linear trans- 
formation T : V +  W has matrix (aji) relative to the above bases provided 

T ( X i )  = cj uji 5 .  
From Proposition 1.4 we have each coordinate functionf, is differentiable 

and 

using Proposition 1.5 concerning the partial derivative D i f , @ )  evaluated at 
x i .  

REMARKS ( I )  A more basic proof using the approximation (*) after 
Definition 1.1  is as follows. 
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(2) The results of Propositions 1.4 and 1.5 can be used to find a Jacobian 
matrix for Of (p) in "block" form. Thus let V = V ,  x V2 and W = W, x W ,  

be factorizations into Euclidean subspaces and let U be open in V. Let the 

function f : U + W be given by the coordinate functions 

f, : U +  W, and f 2 :  U +  W,. 

Then iff is differentiable at p E U, the linear transformation Of(p) has the 
matrix 

[ D,f'(P) D2fi(P)] 
D'f2(P) D2f2(P) ' 

where the Or&) are represented by appropriate matrices. Note that some 

texts have the transpose of the above matrix for their derivative. This depends 
only on summation conventions and we shall write this in detail when neces- 
sary. 

Definition 1.7 Let U be open in V and let f : U + W be differentiable at 
every point p E U. Then f is continuously differentiable on U or of class C' on 
U if the map 

U + Hom( V, W) : p + Of (p) 

is continuous. We denote the set of these continuously differentiable functions 

by 

C'(U, W) 

and for W = R we use the notation 

C'(U) = C'(U, R). 

A straightforward computation shows C'(U, W) is a vector space and a 
differentiable function f : U -t W is in C'( U, W) if and only if we have a 
matrix representation (aij@)) of Of(p) with all aij : U + R : p + aij(p) 

continuous functions. 
Generalizing the results concerning term-by-term differentiation of series 

we have the following result (also see Dieudonnk [1960]). 

Proposition 1.8 Let V and W be Euclidean spaces with U open in V 

and let {f,} be a sequence of functions in C'(U, W) and let {Of"} be the cor- 
responding sequence of derivatives. Assume there exists a function f : U -, W 

so that for all x E U 

f 0  = lim L(X) 
n-rm 
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with pointwise convergence and assume that there is a function g : U + 

Hom(V, W )  so that 

Dfn + g  

with uniform convergence on U. Then f is differentiable on U and Df(p )  = 

g(p )  for all p E U. 

Exercises (1) Show the map 

,f : GL(V)  + G L ( V )  : T + T-'  

is differentiable at P and 

Df(P)T = - P- 'TP- ' .  

Thus show f E C1(GL( V ) ,  End( V ) ) .  

(2) (i) For T E End(V) show the function 

4 : R + End( V )  : t -+ exp(tT) 

is differentiable at  any point p E R. 
(ii) Show the exponential function 

exp : End( V )  + GL( V )  : T + eT 

is of class C' on a suitable neighborhood U of 0 in End( V ) .  

(3) Prove the following version of the mean value theorem. Let U be 
open in V and let f : U+ W be of class C' on U. Let p E U and X E V be 
such that the line segment p + rX for 0 I t I 1 is contained in U. Then 

Ilf@ + X) - f(p)Il 5 ~~Pl lDf(d l l l lx I l~  

where the sup is taken over all q on the line segment. 

(4) Let B : R2 x R2 + R be a bilinear form given by 

B((x1, X2L (Y l?  Y 2 ) )  = XlYZ - X 2 Y 1 .  

Relative to the usual basis of R2 let the following represent endomorphisms 
of R2 

C(r) = [: y ] ,  D(r) = A(ar)B(br)C(cr) 

for a, b, c E R,  and t in a suitable interval in R. 
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(i) Show A ( t ) ,  B(t),  C(t), D(t) are B-isometries [see example (3), 

(ii) Compute D'(0). 
Section 1.21. 

3. Higher Derivatives 

Let U be open in V = R" and let f : U + W be differentiable on U. Then 

O f :  U + L ( V ,  W ) : p + D f ( p )  

is a function defined on U with values in the vector space L(V, W) = 

Hom(V, W). Thus if the appropriate limits exist, we can define the second 

derivative at p E U by 

D Y ( P )  = D[Df l (P)  E L( V, L( K W ) ) .  

Next let L*(V, W) denote the space of bilinear maps from V x V into W. 
Then we can identify the elements of L(V, L(V, W)) with those of L2(V, W) 
as follows. Let X, Y E  V. Then for B E  L(V, L(V, W)) we see that B ( X )  E 

L( V, W). Thus [ B ( X ) ] (  Y ) =  B'(X,  Y) E W is linear in X and Y and therefore 
B' E L2( V, W). From this the mapping B + B' is an isomorphism of the above 
spaces but we shall consistently use the above identification. In  particular for 
a function f : U -, W differentiable on I/ such that B = Dzf (p )  exists for 
p E U, let 

= W ( P )  E L(V, W ) .  

Then for X, Y E  V we have 

Example (1) Let .f : U + R  be differentiable on U t V = R" and 
suppose D 2 f ( p )  exists. Then D2f(p )  : V x V + R is a bilinear form and we 
shall now compute its matrix. Let e,, ... , en be the usual basis of V =  R" 
and let gi(u) = Of (u)(ei);  that is, 

Then F(u) = Df(u) is given by 
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using (*) for the third equality and (**) for the fifth equality. Thus with the 

notation 

W d x i  dxj (p)  = D i  Dj f (p>(e j ,  e i )  

we see that the matrix for the bilinear form D 2 f ( p )  is the Hessian matrix 

For the general case of a differentiable function f : U + W we can find 
a formula for D 2 f ( p )  (assuming it exists) by putting together the Hessian 
matrices for the coordinate functions. Thus let Z l ,  . . . , F,,, be the usual basis 
for W = R”. Then writing f ( u )  = c f i ( u ) Z i ,  where fi : U + R, we have for 

x, Y E  v 

~ 2 f ( p > ( ~ ,  Y )  = f ~ 2 f i ( p ) ( ~ ,  Y)Fi 
i =  1 

noting D2 is linear and D2f,(p) exist. 

Exercise (1) Let f : R -, R be given by f ( x )  = cos 2x. Relate the 
“ usual ” second derivative off at p to the second derivative discussed above. 

Definition 1.9 A function/ : U -+ W of class C’ on U is of class C2 on U 

if for all p E U,  D 2 f ( p )  exists and the mapping 

u + L2( v, W )  : p -+ DZj”(p) 

is continuous on U. 
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It is easy to see that the set of all functions f : U + W of class C2 on U is a 
vector space and when W = R we frequently denote this vector space by C2 

(U). Thus f E C2(U)  if and only if all the partial derivatives of order less 
than or equal to 2 exist and are continuous on U. In this case it is known that 
we can interchange the order of differentiation and more generally we have the 
following result. (For the proof see DieudonnB [I9601 and Lang [1968].) 

Proposition 1.10 Let U be open in V and let f : U + W be of class C2 

on U. Then for all p E U and X, Y E  V, 

D2f (PW, Y )  = D2f(P>( y, X). 

Thus D2f(p) is a symmetric bilinear form on V x V into W. 

Thus we see that iff E C2(U),  then the Hessian matrix 

is actually a symmetric matrix. 

and p E U we set 

We now define higher-order derivatives by induction. Thus for f : U + W 

W P )  = D[D'-'fI(P) 

if the appropriate limit exists. The rth derivative 

Dy-@) E L(K L(K . . . , L(V, W )  . . .)) 

but, as in the case r = 2, we can identify this with the set of multilinear 
functionals from I/' = V x - * * x V to W which we denote by L'( V, W). 

Definition 1.11 (a) Let (I be open in V and letf : U --t W be continuous 
on U. Then f is of class C p  on U or a Cp function if for all u E U, D'f(u) exists 
and if 

D'f : U --t Lr(V, W) : u + D'f(u) 

is continuous for r = 1, . . . , p. We use the notation Cp(U) for the functions 
of class Cp when W = R. 

(b) A function f : U + W is of class C" on U or infinitely differentiable 
i f f  is of class C' for all r = 1, 2, . . . . When W = R we use the notation 
Cm( U )  for the class of infinitely differentiable functions. 

The following summarizes the results on Cr-functions and for proofs see 
DieudonnC, [ 19601 and Lang [ 1968 1. 
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Theorem 1.12 Let U be open in V = R". 

(a) Iff' : U + W is of class C' on U,  then for each p E U we have D'f (p )  
is a symmetric r-multilinear form; that is, 

D'f (p ) (X l ,  * . . , Xr) = D'f(P)(Xn(1,9 . * 9 Xz,r,), 

where X i  E V and n is a permutation of the numbers 1, . . . , r. 
(b) Iff : U -, W and g : U -+ Ware of class C' on U, then so is af+  bg, 

where a, b E R and D'(af + bg) = aD'f + bDrg; that is, the C-functions 
form a vector space. Also if W = R, then the pointwise product fg is of class 
C'; that is, Cr( U) is an algebra over R. 

(c) Let f : U -+ W be of class C'. Then for all m, n with rn + n = r we 
have 

Dn+mf = D"Dmf 

on U.  That is, for p E U,  

0"'"f @)(XI 9 * . . , X n + m )  = [ D"[O"f I(P)(XI 9 . . ., Xn>l(Xn+ 1, . . . *  Xn +m). 

(d) Let f : U + R be a function and let e,, . . . , en be the usual basis of 
V = R". Then f E C'(U) if and only if all of the partial derivatives 

a"f(p>/axil . . ax,, = D i ,  . * . Di, f (p) (e i , ,  . . . , eiq) 

for 9 = 1, . . . , r exist for all p E U and are continuous on U .  In this case we 

have for X 1 ,  . . . , X, E V, 

D'f (p ) (X , ,  . . ., X r )  = 1x1 i ,  . . . xri, J'f(p)/axi, . .. axi,., 

where the sum runs over all possible r-tuples i , ,  . . . , i, of I ,  ... r and 
X j  = x x j k e k .  

Exercises (2) Let f : U + W, where W = W, x . .. x W, and f is given 
by coordinate maps (f,, . . . , f,). Show f is of class C' on U if and only if 
each j ;  : U + Wi is of class c' on U. In this case show D'f = (D'f i ,  . . . , D'r,). 

Let Ubeopenin VandEbeopenin W.Letf:  U-Eandg  : E + Z ,  
where Z is some Euclidean space, both be C'-functions. Then show the 
compositions g 0 f : U - + Z  is of class C' on U. Also show Dr(T 0 f ) ( p )  = 

T 0 D'f(p)  for T E L(W, 2) and p E U. In particular this holds for C"- 

functions. 

(4) 

(3) 

Let f : U -+ W be of class C'on U ,  let A , ,  . . . , Ar- ]  E V, and let 

F :  U + W :  x + D'- ' f (x) (A, ,  . . . , A , - , ) .  

Show F is differentiable on (I and 

DF(P)(X) = D ' ~ ( P ) ( A , ,  -. . ,  Ar-1, X )  
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for X E V and p E U. This is the usual way for computing higher derivatives 
in terms of lower derivatives. 

( 5 )  (i) Show that the exponential mapping 

exp : End(V) --* GL( V) : X + ex 

is of class C" on a suitable ball about 0 in the Euclidean space End( V). 

Also show 

[D' exp(o)](x, X) = x2 

and find a formula for the bilinear form [D2 exp(O)](X,, X 2 ) ,  Show that 
[D' exp(O)](X, . . . , X) = X'. 

(ii) More generally, let ~ a , , t "  be a real power series with radius of 
convergence p. Then what can be said about the C" nature of the function 
f(T) = xu,, T" in End(V)? 

(6) Let n be a positive integer and let X E End(V) be fixed. Define 

f, : GL(V)  -+ GL(V)  : P +P-", 

gn : End( V) + End( V )  : P + P", 

h : End( V) + End( V )  : P + PXP. 

Show that: 

[ Dgn(P)]( X) =y PkXP"-k - 1, 

k = O  

n- 1 

[Df.(P)](X) = - c Pk-"XP-k-1, 
k = O  

[Dh(P)]  Y = PXY 4- YXP, 

[DZf,(P)](X, Y) = P - l X P - '  YP-' + P-'YP-'xP-'. 

4. Taylor's Formula 

We shall now discuss Taylor's formula for vector-valued functions which, 
when restricted to real-valued functions, gives the usual polynomial approxi- 
mation of such functions. Also this is the formula which is used when the 
multiplication of a Lie group is approximated at the identity element by its 
Lie algebra. This is the approximation which allows the analysis of a Lie 
group by algebraic methods. The vector spaces in this section are still real 
Euclidean spaces. 
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Taylor's formula Let U be open in V and let f : U + W be of class C' 
on U. Let p E U and X E V be such that the line segment p + tX  for 0 I t I 1 

is in U. Let X(" = ( X ,  . . . , X )  k-times and Dkf(p)X(k' = Dkf(p)(X, . . . , X). 
Then 

where the error term satisfies 

lim ~ ~ ( X ) / l l X l l ~  = 0. 
x + o  

For the proof and other estimates for the error term we refer to Dieu- 
donnC [1960] and Lang [1968]. However, this formulation is the most practical 

for our use. 

Definition 1.13 Let V and W be Euclidean spaces with U open in V. 

A function f : U -, W is (real) analytic on U iffis of class C" on U and if for 
each p E U,  there exists an open ball B c U with center p so that for all 
q = p + X in B the series 

" 1  I D'f(p)X"' 
r = O  r .  

converges absolutely in the Euclidean space topology and has value f (4). 
The function f : U + W is analytic at p in U iff is analytic on some neighbor- 
hood of p. We shall denote the set of functions f : U + W which are real 
analytic on U by C"(U, W )  or d ( U ,  W ) ;  see DieudonnC [1960] for more 
results on analytic functions. 

Examples (1) Let f : R + R be defined by 

for x > 0, 
for x 5 0. 

Then it is easy to see that f E C"(R) and by induction that Dkf(0) = 0. Thus 
since f is not identically 0 in any neighborhood of 0, f is not analytic at 0. 
Otherwise in a suitable open interval U about 0, 

X k  

k! 
f (x) = C D"f(0) - = 0 

for all x E U. Thus the classes of C" and analytic functions are definitely 
different. 

(2) Let V, W, and Z be Euclidean spaces and let U be an open neighbor- 
hood of 0 in V and D an open neighborhood of 0 in W. Let 

, f : U - + D  and g : D + Z  
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be functions of class C3 so thatf(0) = 0. Assumingf, g and f 0 g satisfy the 
hypothesis of Taylor's formula we have the following second-order approxi- 
mation for X E Vat p = 0. 

(9 f>(W = s ( f ( X ) )  

= d o )  + Dg(O)( f (X))  + -7j- 

where 

We shall use this later in an example on the matrix group GL(V)  in Section 
1.6. 

It is easy to see that if a function f : U -+ W is represented in terms of 
coordinates, thenfis analytic on U if and only if each coordinate function is a 
(real-valued) analytic function on U .  Thus if for each x E U and a basis 
Y,, ..., Yrn of W we have 

rn 

f ( x )  = c fJ(x>yi > 
j= 1 

thenfis analytic if and only if for each p E U there exists an open ball B c U 
with center p and m power series Pi, j = 1, . . . , m, in n variables so that 

fj(q)=Pj(q1 - ~ 1 ? * * * , q n - ~ p . )  

for q E B, where a basis X I ,  . . . , X, of V gives a coordinate system in V. 
As an application of this formulation of analyticity we consider the Euc- 

lidean space End(V) relative to the sup norm and the exponential mapping 

exp : End( V )  + GL( V )  : X -, ex. 

From Section 1.3 we have for fixed a that exp is of class C" on the open set 
U = { X  E End(V) : llXll < a} and since 

[D' exp(O)]~(~)  = Xk 
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we have the rth order Taylor's formula approximation is 

1 1 

2 
exp x = I + x + - X' + . . *  + 7 X' + E,(X),  

where 

W 

E,(X) = c X k / k ! .  
k = r +  1 

We shall now show that the exponential series converges absolutely. First 
we note from example (1) of Section 1.1 by induction 

llXkll 5 lIXIlk 

and that the real series x( l lXl lk /k!)  ( converges. Thus since 

we have that the exponential series is absolutely convergent. If we restrict 
ourselves to a closed ball of radius a 

B(0, a) = {X E End(V) : IJX(I I a}, 

then since the series C d / n !  is convergent, we see from the Weierstrass test for 
series that the exponential series is uniformly convergent on compact sub- 
sets of End(V). 

Now the exponential function is analytic on the open ball B(0, a) which is 
contained in the compact ball of radius a. By choosing the usual basis of 
End( V )  we determine coordinates x1 . . . , x,,,, and represent any X E U 
by the matrix (xij). Next we observe that each coordinate function for the 
partial sum of the series x X " / n !  is a polynomial in x, . . . , x,,, . Thus for 
each p E B(0, a) we can find a suitable ball B in B(0, a) so that each of these 
polynomials is of the form p i j ( q l  - p 1  I ,  . . . , q., - p,,,) on B. Therefore by 
the uniform convergence, each coordinate function for the series has a power 
series representation 

Pij(q11 - ~ 1 1 , * * * , q n n - ~ P n n )  

about p. 

Proposition 1.14 (a) Let V be a Euclidean space. Then the exponential 

mapping 

exp : End( V) -P GL( V )  : X + ex 

is analytic on End(V). 
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(b) If  S,  T E End(V) are such that ST = T S ,  then 

exp(T +S) = exp T exp S. 

(c) For a fixed S E End(V), the map 

Q : R + G L ( V )  : t +exp tS 

is an analytic homomorphism of the additive group of R into the multipli- 
cative group GL( V ) .  In particular (exp S)” = exp(nS) for any integer n. 

PROOF First note that the vector space End( V )  x End( V )  is a Euclidean 
space and in terms of coordinates the multiplication function p of endo- 
morphisms is an analytic map 

p : End(V) x End(V) + End(V) : (S, T) -, S 0 T 

where S 0 T = p(S, T). Now the curves 

and 

are defined for all t E R. These are analytic at t = 0 because the multiplication 
of endomorphisms is analytic and exp is analytic on any ball B(0, a) as 
discussed above. Now we use some results from elementary differential 
equations (which we shall consider in Chapter 2) and note that since ST = TS 
we have (exp S)T = T(exp S). Consequently f and g are solutions to the 
differential equation 

dY(r)/dt = SY(t)  with Y(0)  = exp T. 

However, by the uniqueness of solutions we have f ( t )  = g(r) in an interval 
about 0. Sincef(t) and g( t )  are defined for all t E R and analytic functions of 

t at 0, they are equal for all t E R. Thus for t = 1 we obtain (b). 
For s, t E R note that the endomorphisms sS, tS commute and therefore 

from (b) we see 

f ( t )  = exp(T + tS)  g( t )  = exp T exp tS 

$(s + r )  = exp(s + t)S = exp sS exp tS = Q(s)Q(t). 

We have shown that exp is analytic on any ball B(0, a). Thus exp is analytic 
at any p E End( V )  by choosing the ball B(0, a) above to contain p. 

Exercises ( I )  (i) Let U be open in V and D be open in W and let 

f : U + W  and g : D + Z  

be analytic functions so that f(U) c D .  Then show the composition g 0 f 
is analytic on U. 
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(ii) Let U be open in V and suppose g E d( U ,  R), the set of real- 
valued analytic functions on U. Show that &( U, R) is an algebra of functions 
relative to the pointwise product. 

(2) Show that the Taylor's series representation for an analytic function 
is unique. That is, iff : U -+ W is analytic and if for p E U and X E Vsatisfying 
the analyticity conditions we have for all t with 0 I t I 1 that 

with absolute convergence, then show ak(p) = b,(p) as multilinear forms. 
(3) ( i )  In more detail, why is the map 

6 : R + G L ( V )  : t +exp IS 

used in Proposition 1.14 analytic? 

1.14 actually satisfy the indicated differential equation. 

(PI, . . . , P,) and X = ( X I ,  . . . , X,) be in V". 

(ii) Show that the functionsf and g used in the proof of Proposition 

Let 1 E E(V, W) be a multilinear map from V" to W and let P = (4) 

(i) Show [DR(P)] (X)  = & X I ,  P ,  , . . . , P,) + * * .  + A(P,, P 2 ,  . . . , 

(ii) Find [DnR(P)]X("). 

(iii) Find the Taylor's series expansion for 1 about 

Pn - I ,  Xn). 

P = (0, . . . , 0). 

(5) For a fixed basis of V = R" let A E End(V) be represented by the 
matrix tl = (ai j )  so that tl can be considered as an element of R" x x R" 
by viewing the rows of tl as elements of R". Consequently the determinant 
function det : End(V) -+ R can be considered in terms of the coordinates 

given by the above matrix representation. 

(i) Show det : End(V) -+ R is differentiable (of what class?). 
(ii) In terms of matrices, let a,, . . , , a, E R" denote the rows of a and 

x,, . . . , x, denote the rows of any n x n matrix X .  Show 

(6) There exist differentiable " bump functions" which vanish outside a 
compact set as follows. Show if B(0, a) and B(0, b) with a < b are two 
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concentric balls about 0 E R", then there exists a C"-function 4 : R" -+ R 
such that 0 5 4 ( x )  5 1 for all x E R" and 

(Hint: Use the function f of example (l), Section 1.4 and consider 

9 ( x )  = f ( b 2  - llXll2)/[f(bZ - 11x112~ + f(11x1I2 - a2)1). 

5. Inverse Function Theorem 

We continue the notation of the preceding sections and investigate when a 
function f :  U+ W has a local inverse and the various consequences. The 
vector spaces are still real Euclidean spaces. 

Definition 1.15 Let f :  U -t W be of class C' on U and let p E U. Then f 
is locally invertible of class C' at p if there exists an open subset U, of U with 

p E U, such that there exists an open set D of W with f ( p )  E D and a function 
g : D -P U, of class C on D such that g 0 f and f 0 g are the identity maps on 
U, and D,  respectively. The function g is called a local inverse off at f ( p ) .  

With this notation we have the following (see Dieudonnt [1960], Lang 
[ 19681, and Spivak [ 19651). 

Inverse Function Theorem Let U be open in V ,  let p E U, and let f : U + W 
be of class C' on U. If Df(p)  E Hom(V, W) is an invertible linear transform- 
ation, then f is locally invertible of class C' at p. Furthermore if g is a local 
inverse o f f  and q = f(p), then Dg(q) = [Df(p)]- ' .  

REMARKS (1) Since the vector spaces V and W are finite-dimensional, 
Df ( p )  being invertible yields dim V = dim W. 

(2) Let f : U + D be continuous with a continuous inverse g : D -P U 
and let U, be an open subset of U. Then f ( U , )  is an open subset of D. Thus 
in particular i f f  : U + W is of class C' and Df (p)  is invertible, then for a 
suitable open subset U, of U with p E U,, we have f ( U , )  is open in W and 
f :  U, + f ( U , )  is a homeomorphism. 

(3) A C"-function can have a continuous inverse without the inverse 
being differentiable. Thus the function f : R + R : x + x3 is of class C" on R 
and has continuous inverse g : R + R : y +y1I3. However, g is not differenti- 
able at the point 0 (why?). 
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(4) The various results concerning the inverse function theorem also 
apply to C" and analytic functions. 

The inverse function theorem is used to obtain the following result. 

Theorem 1.16 (a) Let Vl, V , ,  W be real Euclidean vector spaces, 
let U be open in V, x V, and let f : U -+ W be of class c' on U .  If for (a, b) 

E U c V, x V, the linear transformation D 2 f ( a ,  6)  : V, + W is invertible, 
then dim V, = dim Wand the map 

F :  U - V ,  x W:(x,y)-+(x,f(x,y)) 

is locally invertible of class C' at (a, 6).  
(b) (Implicit function theorem) Let U be open in V, x V, and let 

f : (I + W be a map of class c' such that for a given (a, 6)  E U, f(a, b) = 0. 
If D2f(a ,  b) : V, + W is invertible, then there exists an open ball B in V, 

with center at a E V,,  and there exists a uniquely determined map g : B + V, 

of class c' on B such that 

g(a) = b and f(x, g(x)) = 0 

for all x E B. 

PROOF Briefly for part (a) we note that since D,f(a,  b) is invertible, 
dim V2 = dim W. Thus writing F in coordinates, we have F(x, y )  = 

(F,(x, y ) ,  F2(x, y ) )  where F,(x, y) = x and F2(x, y) = f( x, y). Consequently 
DF(a, b) has a matrix given by 

which is invertible. Now apply the inverse function theorem. 

For part (b) let 

h : u + V, x w : (x, y )  + ( x ,  f(x, y)). 

Then by part (a), h has a local inverse denoted by H.  Thus since H i s  a map- 
ping into V, x V, , it can be represented by coordinate functions H = ( H , , H , )  
such that 

m, z )  = (H, (x ,  4, H,(x, 4)= ( x ,  H,(x,  4). 

Then the desired function is given by g(x) = H2(x,  0). To see that y = g(x) 

satisfies the equation, we have for z = 0 that 

(x, 0) = O H)(x ,  0) 

= h(x, H2(x, 0)) 

= h(x, A x ) )  = (x, f(x9 g(x)))* 
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To see that g(a) = b, we note 

(a, s(4) = (a, H,(a, 0)) 

= (a, Hz(a, f (a, b))) 

= ( H  0 h)(a, b) = (a, b). 

The rest of the proof is not difficult and can be found in the work of Lang 
[1968] and Spivak [1965]. 

Example (1) The surface given by z = f(x, y )  = xz + y 2  - 1 defines 
a circle for those points (x, y )  withf(x, y) = 0. Choose (a, b) on the circle 
with b # 0. Then df(a,  b)/dy = 2b # 0 so that we can solve locally for y in 
terms of x. 

A variation of the preceding proof gives the following result which we shall 
use in Chapter 2. 

Proposition 1.17 Let U be an open set in R" which contains the point p 

and let f : U + Rq be of class C' on (I where q I n. If f ( p )  = 0 and Df(p) 
has rank q, then there exist an open subset D of R" containing p and a locally 
invertible function g : D + U of class C' such that for all (xl, . . . , x,) E D, 

(f Ogl(X1, * * * 3 Xn) = ( x n - q +  1 9  * - * 9 xn). 

Thus one can modify the coordinates of the point p by the open set D and the 
function g to obtain a simple expression forf locally. 

PROOF We regard R" = R"-" x Rq and U as an open set in R"-q x Rq. 
Thus p = (a, b) E U c R"-q x Rq is such that regarding f as a function of two 
variables we havef(a, b) = f ( p )  = 0. Since Df(p) isof rank q we see D, f (a, b) 

is of rank q (why?); that is, D , f ( a ,  6) : Rq + Rq is invertible. Thus we are in 
the situation of the preceding theorem as follows. If we let x = (xl, . . . , X,,-~),  
z = (x, ,-~.+~, . . . , x"), and g(x,, . . . , x,,) = H(x, z) as in the above proof, we 
have for 71 : (x, z) + z that 

(f O g)(x, 4 = (f O H)(x, 4 
= (n 0 h 0 H)(x, z) 

= (n 0 idy)(x, z) = z. 

This also uses the notation of the preceding proof h(x, y) = (x, f (x, y)) so that 
f = n 0 h, where H i s  the local inverse of h. 

Definition 1.18 Let Ui be open subsets of the Euclidean spaces Vi for 
i = 1, 2. Then the map f: U, --t U, is a diffeomorphism of class C' of U, onto 
U, iff is a homeomorphism of U, onto U,  so that f is of class C' on U, and 
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f -' is of class C' on U 2 .  We analogously define analytic diffeomorphisrnsand 
say f is a diffeornorphism iff is a diffeomorphism of class C". 

We continue our previous notation for the exponential mapping and have 
the following result. 

Proposition 1.19 There exists an open neighborhood Uo of 0 in End( V )  

and an open neighborhood UI of I in GL(V)  such that exp : Uo + U, is a 
diffeomorphism of Uo onto U, . Furthermore exp and its inverse are actually 
analytic. 

PROOF From the inverse function theorem and previous results, it suf- 
fices to show that D exp(0) is invertible. Thus using the series expansion, we 
have for A E End( V )  that 

1 

1-0 t 
[D exp(O)](A) = lim - [exp(O + rA) - exp(O)] 

I 

1-0 t 
= lim - [I + rA + ~ ( t ' )  - I] = A 

using lim,-,o e ( t 2 ) / t  = 0. Thus D exp(0) is the identity. 

REMARKS (5) For any X E End(V) we have t X  E U, for t E R in a 
suitable interval N of 0 in R. Thus exp maps this line segment t X  with t E N  
into an analytic curve segment 4(t) = exp t X  in GL(V)  which passes through 
I; that is, exp(0) = I and the "tangent vector " to this curve at t = 0 is X .  

(6) By considering the power series 

Z2 2" 
log(1 + z) = z - - + * * *  + (- 1y+1- + . * .  

2 n 

and the proposition in Section 1.1 we have 

A 2  

2 
lOg(I+ A) = A  - - + * 

A" 

n 
+ (-ly+l- + . . 

converges when the absolute value of the characteristic roots of A is less than 
1. Now if we use the usual sup norm for T E End(V), we have 
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where rl, . , . , r, are the characteristic roots of T and 11 11 on the right side of 
the first equation denotes length in V.  Thus choosing U, c {A E Hom(V, V) : 

llAll < l} and U, c {B E Hom(V, V )  : llB - 111 < l}, we can show 

and exp : U,, + U, 

log exp A = A 

log : U, + U,, 

exp log B = B. 

and 

and 

Thus log is the local inverse of exp and this inverse is analytic on U, . 

Exercises (1) Find two different 2 x 2 real matrices A and B such that 

(2) Use Taylor’s formula or the mean value theorem to prove a variation 

exp A = exp B; that is, exp is not globally injective. 

of the inverse function theorem. 

6. The Algebra gl(V) 

We shall now use many of the preceding results on the function exp to 
attach a nonassociative algebra g1( V )  to the general linear group GL( V). 

The relationship between the group GL(V)  and the algebra g1(V) is the basic 
model for studying a Lie group by its Lie algebra and we break down the 
analysis as follows. 

( I )  The map exp is used to show that the global multiplication in G L ( V  
induces a local analytic multiplication in End( V). 

(2) We use the second derivative of the local multiplication in End(V) to 
obtain a bilinear multiplication T on End( V )  which together yield the algebra 

(3) The properties of GL(V) are used to obtain a formula for T and the 

(4) Finally we show how automorphisms of GL( V )  induce automorphisms 

For the first step let 

d( V ) .  

identities it satisfies. 

of g1( V )  and indicate some important formulas. 

p : GL(V) x GL(V) + GL(V)  : ( x ,  y )  + p(x ,  y )=  xy 

be the multiplication in GL(V). Then since matrix multiplication is given in 
terms of polynomials of degree 2, the multiplication p is analytic. In particular 
by the continuity of p we have for any .neighborhood U of I E GL(V)  that 
there exists a neighborhood D of I so that 

D c U and p(D,  D) c U. 
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However, using the continuity of the map exp : End(V) + GL(V)  we can 
find for any neighborhood D of I E GL(V)  a neighborhood E of 0 E End(V) 
so that 

exp(E) c D. 

Now we choose the above neighborhoods according to Proposition 1.19 as 
follows: Let U c UI so that E c U ,  and exp(E) c D c U I .  Thus 

Cc(exp(E), exp(E)) = UI ' 

This means, using exp U, =I U, ,  that we can define a function analytic on 
E x E  

F : E x E + U , : ( X , Y ) + F ( X ,  Y) 

so that for X, Y E  E, 

p(exp X, exp Y) = exp F(X, Y). 

From the remarks following Proposition 1.19 we see 

F(X,  Y) = log p(exp X ,  exp Y). 

Thus the multiplication p in GL(V)  induces a local analytic multiplication F 

in End(V); that is, we have neighborhoods U, and E of 0 in End(V) so that 
E c U ,  and a '' multiplication " F : E x E + Uo . 

A variation of the above is as follows. Let X and Y be any (fixed) elements 
of End(V). Then there exists a neighborhood N of 0 in R so that for all 
s, t E N we have s X ,  r Y E E. Consequently we have the formula 

p(exp sX, exp t Y) = exp F(sX, t Y) 

which gives an analytic function 

N x N + U, : (s, t )  + F(sX, tY ) .  

Thus since F is analytic on E x E we have the Taylor's series expansion 
about 0 = (0,O) E E x E as follows. Let Z = (sX, t Y )  be as above. Then 
8 + 2 = (sX, t Y )  = 2 so that 

D'F(8) 

2! 
F(2) = F(0) + DF(8)Z + - 2") + * * * 

In particular for s = r we obtain 

D'F(8) 

2 !  
F(sX,  sY)  = F(0) + sDF(O)(X, Y) + s' - ( ( X  Y), (X, Y ) )  + . . *  . 
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For the second step we now compute the first few terms of this Taylor’s 
series. From exp 0 = I we obtain 

exp F(0,O) = p(exp 0, exp 0) 
= p(I ,  I )  = I = exp 0 

and since exp is injective on U ,  (that is, applying log) we have 

F(e)  = F(O, 0) = 0. 

Similarly since exp 0 is the identity element in  GL( V )  we have 

exp sX = p(exp sX, exp 0) = exp F(sX, 0) 

so that 

sx = F(sX, 0) 

Thus by comparing degrees (or differentiating term-by-term at s = 0) we 
obtain 

DF(B)(X, 0) = X and DkF(0)(X,  O ) ( k )  = 0 for k 2 2. 

Also we obtain 

DF(B)(O, Y) = Y and DkF(e)(O, Y ) ( k )  = 0 for k 2 2 

so that we have the following two formulas. 

DF(O)Z = DF(B)(sX, t Y )  

= DF(e)[(sx ,  0) + (0, tr)] 
= $mye)(x, 0) + mF(e) (o ,  Y )  = sx + t Y 

and 

D2F(e ) z (2 )  = D ~ F ( o ) [ ( ~ x ,  0) + (0, tr), ( S X ,  0) + (0, tu)] 

= D ~ F ( ~ ) ( S X ,  o)(2) + o2~(O)(O, t Y ) ( 2 )  + 2DZ~(6)[(sx,  o), (0, t Y ) ]  

where the last two equalities use the symmetric bilinearity of D2F(e) on 
End(V) x End(V) and D2F(0)(X,  0)‘2) = DzF(0)(O, Y)(*)  = 0. 

From DkF(e)(X, 0)Ck) = DkF(B)(O, Y ) ( k )  = 0 we see that in the Taylor’s 
series expansion for F(sX,  t Y )  the coefficients of sk and tk are 0. Consequently 
the error term 

E ~ ( s X ,  t Y )  = st&, t) ,  

= 2sto2~(e)[(x, o), (0, Y)I, 
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where 4(s, t )  + O  as s + O  and t -0. Thus Taylor’s formula for the local 
multiplication becomes 

F(sX, t Y )  = S X  + tY + m ( X ,  Y )  + st4(s,  t) ,  

T ( x ,  Y )  = OZF(O)[(X,  o), (0, Y ) ]  = tozqe)(x, Y)(z) .  

where 

Next, since the second derivative is a quadratic function defined on the 
whole vector space, we see 7 ( X ,  Y )  is defined for all X ,  Y E End(V). Also 

7 : End( V )  x End( V )  +End( V )  

is bilinear as follows. For X ,  Y ,  U E End(V) 

T ( x  + Y ,  U )  = o Z q e ) [ ( X  + Y,  01, (0, u)] 
= 02F(O”, O), (0, (711 + 0 2 m [ (  y,  01, (0, Vl 
= T(X,  u)  + Z( Y, u). 

Similarly 7(U,  X + Y )  = 7(U,  X )  + 7(U,  Y )  and for a E R, 7(aX, Y )  = 

T ( X ,  a Y )  = at (X,  Y ) .  Thus the vector space End(V) together with the bilinear 
map T : End( V )  x End( V )  + End( V )  becomes a nonassociative algebra as 
follows. 

Definition 1.20 (a) A nonassociative algebra A over a field K is a vector 
space A together with a bilinearmultiplication 7 E LZ(A,  A ) ;  note that “non- 
associative ” means not necessarily associative. 

(b) The nonassociative algebra g l ( V )  with multiplication z as above is 
called the Lie algebra of GL( V ) .  

From the above formulas we see that the algebra gZ(V) determines the 
multiplication in GL(V)  locally up to order two. Thus for s, t in a suitable 
neighborhood of 0 in R we have for all X ,  Y ~ g l ( V )  

p(exp S X ,  exp t Y )  = exp(sX + t Y + s t ~ ( X ,  Y )  + E ~ ( s X ,  t Y ) ) ,  (*) 

where X + Y is the addition in g l (V)  and 7 ( X ,  Y )  the multiplication. We shall 
show later (Campbell-Hausdorff theorem) that the error term Q(X,  Y )  is 
actually determined by the subalgebra of gZ(V) generated by X and Y. 

For the third step we use various properties of GL(V)  to determine 
identities for gZ( V ) .  

Proposition 1.21 If A’, Y, 2 E gZ(V), then 

(a) T ( X ,  Y )  = - T (  Y,  X ) ;  

(b) 7 ( X ,  7( Y,  Z ) )  + t( Y,  ~(2, X ) )  + ~(2 ,  t ( X ,  Y ) )  = 0; 
(c) 7 ( X ,  Y )  = + ( X Y  - Y X ) .  
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PROOF (a) Since (exp XI-' = exp( - X) the inverse of the left-hand side 
of (*) above becomes 

e x p ( - t Y ) e x p ( - s X ) = e x p ( - t Y - s X + s t z ( Y ,  X)+ - a * )  

and the inverse of the right-hand side of (a) becomes 

exp(-sX- r Y - s t r ( X ,  Y )  + -.*). 

The required identity now follows from comparing the terms of degree 2. 

the multiplication in End( V) as follows 
(c) The two sides of (*) can be expanded by power series methods using 

exp(sX) exp(tY) = (1 + sx + f s 2 P  + * - .)(I + tY + +t2  Y' + - * .) 

= I + s X + t Y + + s 2 X 2 + s t X Y + + t 2 Y 2  + . * . ,  

exp(sX+ t Y +  stz(X, Y )  + ..*) = I +  (sX+ t Y +  stz(X,Y) + . a * )  

+ f ( s X + t Y +  * - ) 2 + * . .  

+ 3 ( s Z X Z + s t X Y + s t Y X + r Z Y Z )  + " ' ,  
= I +  s X +  t Y  + str(X, Y )  

where the omitted terms are of degree greater than or equal to 3 in s and t. 

Equating the coefficients of st in the two expressions we have 

X Y  = T(X,  Y )  ++xu + + Y X  

and the desired identity now follows. 

(b) and using the associativity of multiplication in End(V). 
(b) This can be computed directly by substituting (c) into the left side of 

REMARKS (1) Part (c) above could have been proved directly as indicated 
and the property (a) obtained from this. We shall also indicate how to obtain 
(b) from facts on automorphisms and Taylor's series. 

(2) An abstract Lie algebra over a field Kis defined to be a nonassociative 
algebra whose multiplication satisfies the anticommutativity and Jacobi identity 
given, respectively, by (a) and (b) above. 

(3) When just the Lie algebra gl (V)  is considered the multiplication is 
usually denoted by 

[ X ,  Y ]  = X Y  - Y X  

which is called the commutator of X and Y. 

For the fourth part on automorphisms we manipulate more Taylor's 
series. 

Proposition 1.22 Let f be an analytic diffeomorphism of GL( V) which is 
also an automorphism of the group GL(V). Then Df(l) is an automorphism 
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of the Lie algebra gl (V);  that is, Df(Z) E GL(End(V)) and 

Df(OW, Y )  = +?f(l)X D f ( 0 Y )  

for all X ,  Y E  End(V). 

PROOF Sincefis a differentiable automorphism with differentiable inverse 
f -' we havef-' o f =  idy, the identity map on End(V). Therefore by the chain 

rule 

idy = D(idy)(l) 

= w-' O f m  = Df -'(scl>) O ~ f ( 0  
so that Df(Z) is invertible; that is, Df(Z) E GL(End(V)). 

of 0 E End( V )  so that Do c U0 and X E Do impliesf(exp X) E U,. Define 
Next notice that from the continuity offthere exists a neighborhood Do 

k : Do --* Uo : X + logf(exp X )  

f(exp X) = exp k ( X ) .  

so that for X E D o ,  

From this last equation it easily follows that k(0) = 0 and that 

(mo = (Df)(exp 0) O ( D  exp)(O) 

= w - 0  exp)(O) 

= D(exp 0 k)(O) 

= ( D  exp)(k(o)) 0 ( ~ k ) ( o )  = ~ k ( 0 )  

since (D exp)(O) is the identity. Thus 

k(0) = 0 and Df(Z) = Dk(0). 

As earlier in this section define F(X,  Y) E End(V) for X, Y in End(V) suf- 

ficiently close to 0 so that 

p(exp X ,  exp Y) = exp F(X,  Y). 

Then for X ,  Y close enough to 0 we have 

exp k ( F ( x ,  y)) =f(exp F ( X ,  y>) 

=f(Aexp X, exp Y)) 

= P(f(exP X),f(exp Y ) )  

= p(exp k ( W ,  exp k ( X ) )  

= exp F(k(X), HY)) 
so that 
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Let 0 = (0'0) and Z = ( X ,  Y ) .  Then the Taylor's series for a composite function 
calculated earlier yeilds 

(k F)(z) = D ~ ( o )  m(e)z + + D ~ ( o )  D ~ F ( o ) z ( ~ )  

+ +02k(o ) (oF(e ) z ) ( z )  + EZ(z) 

+ +D2k(0)(X + Yy2)  + E 2 ( Z )  

= Dk(O)(X + Y )  + Dk(O)(z(X, Y)) 

since DF(B)(Z) = X + Y and D2F(B)Z(2) = 2r(X,  Y). Similarly F(k( X), k( Y)) 
has a Taylor's series 

F ( ~ ( x ) ,  k ( ~ ) )  = m(e)(k(x) ,  k ( ~ ) )  + +ozqe)(k(x), ~ ( Y ) ) ( z )  + - .  
= k ( X )  + k( Y) + ?(k(X) ,  k( Y)) + * * . 
= Dk(O)(X) + Dk(O)( Y )  + +DZk(O)X'2' 

+ $Dzk(o)Y(z) + T(Dk(O)(X), Dk(O)( y)) + Ez'(Z), 

where ~ ~ ( 2 )  and E ~ ' ( Z )  in the two expansions involve only terms of degree 
greater than or equal to 3. 

Now if we substitute sXfor Xand t Y for Y in the two series, it is clear that 
the two coefficients of st must be equal. Thus 

Dk(O)z(X, Y )  + D2k(0)(X, Y )  = t (Dk(O)X,  Dk(0)Y). 

However, D2k(0)(X, Y) is symmetric in X and Y and z is an antisymmetric 
bilinear map so clearly Dzk(0)(X, Y) = 0 and 

Dk(O)z(X, Y )  = z(Dk(O)X, Dk(0)Y). 

Since Dk(0) = Df(Z) we have completed our proof. 

Examples (1) Let X' denote the transpose of X E End( V )  relative to the 
usual inner product in V = R"; that is, B(X'P, Q) = B(P, XQ). Then the map 

f: GL(V) -+GL(V) :  X - , ( X r ) - '  

is an automorphism of class C" with differentiable inverse. Thus Of([) is an 

automorphism of gl (V)  and is given by 

1 

s-10 s 

1 

s-ro s 

1 

s-10 s 

Of(]) Y = lim - If(Z + sY)  - f ( l ) ]  

= lim - [(I' + sY')-' - I ]  

= lim - [ I  - SY' + s2(y')' + * * * - r ]  = - Y'. 
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(2) Next we consider inner automorphisms 

f: GL(V)  -+GL(V) : Y +ZYZ-' 

for fixed 2 E GL( V ) .  Thusfis of class C" with differentiable inverse and Df(Z) 
is an automorphism of gl( V )  given by 

1 

s+o s 
D~(z) Y = Iim - [z(/ + SY)Z-' - Z(I)Z-'] = ZYZ-'. 

Moreover if Z = exp U for suitable U E End(V), then by multiplying power 

series we obtain 

Df(Z) Y = (exp U)Y(exp - U )  

= Y +  UY- YU++U2Y- U Y U + + Y U 2 + * . *  

= Y +  [U, Y] + t [u, [U, Yl] + * * .  . 
We shall use the notation 

ad U : g l ( V ) + g l ( V ) :  Y+[U, Y] 

and observing that 

ead Y = [I + ad U +$(ad U)' + * . .] Y = Y + [U, Y ]  + j [ U ,  [U, Y ] ]  + * * - 
we indicate below how to show 

~f(l) = ead '. 

Exercises (1) Prove the Jacobi identity [Proposition 1.21(b)] for g/( V )  

using inner automorphisms of GL(V)  possibly as follows: 

(i) For 2t(X, Y) = [ X ,  Y ]  the above formula for Z = exp tU becomes 
Df(Z) Y = Y + 2rs(  U, Y) + &(t2) ,  where &(t2) / t  + 0 as t + 0. Apply this replac- 

ing Y by t(X, Y ) .  

(ii) Similarly compute r (Df(Z)X,  Df(Z)Y) and use part (i) with the fact 
that Df(I) is an automorphism of the multiplication 7 .  

Let 2 = e" and let f = f ( U )  : Y +ZYZ-' as in example (2) above. 
To show Df(Z) = ead " one can proceed as follows. Let a(t) = e' ad ' Y for t E R 
and for Y E GL( V ) .  Then note that a(0) = Y and a'(t) = ad U(a(t)). Similarly 
letting P ( t )  = D[,f( tU)](Z)  Y, note that P(0) = Y and P(t)  = e" Ye-'". Conse- 
quently P'(t) = ad U(fl(t)) and using the uniqueness results for differential 
equations we obtain Df(r) = ead ". 

(2) 



CHAPTER 2 

MANIFOLDS 

A manifold is a topological space where some neighborhood of a point looks 
like an open set in a Euclidean space. Thus we are able to translate the cal- 
culus of the preceding chapter to this type of a space and we develop the 
formalism in this chapter. In the first few sections we consider differentiable 
structures, the definition of a manifold, and real-valued differentiable func- 
tions defined on a manifold. Next we consider submanifolds and how they 
arise from the inverse function theorem; we give many examples of sub- 

manifolds which are subgroups of GL(n, R) .  The derivative is generalized to 
a tangent at a point p in a manifold M and then the vector space spanned by 
these tangents generalizes the tangent plane of a surface. As the point p varies 
over M we obtain a variable tangent vector which is formalized via vector 
fields. We give many examples concerning GL(n, R) which will be abstracted 
in later chapters; in particular we consider the invariant vector fields on 

GL(n, R) and their integral curves. 
Most of this chapter is used in the rest of the book and the reader who 

knows this material need only look at the examples. However, if one is un- 
familiar with manifolds it might be best to read through Section 2.3, then read 
Chapters 3 and 4 for applications before finishing this chapter. The reader 
should note that we are assuming a neighborhood of a point is an open set in 
the space. 

40 
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1. Differentiable Structures 

We now extend the basic concepts of Euclidean space to a topological space 
which locally looks like Euclidean space via suitable choices of " coordinates." 

Definition 2.1 (a) Let V = R" and let X ,  , . . . , X ,  be a basis of V so that 
we can represent any point p = c p k  xk E Vuniquely. Relative tothis basis, we 
define coordinate functions ui for i = 1,  . . . , m on R" by 

We shall frequently use the usual orthonormal basis el , . . . , em to obtain the 
usual coordinates ui given by ui(al , . . . , a,) = a,. 

(b) Let M be a topological space and let p E M .  An m-dimensional chart 
at p E M is a pair ( U ,  x) ,  where U is an open neighborhood of p and x is a 
homeomorphism of U onto an open set in R". The coordinates of the chart 
(17, x)  are the functions x i  for i = I ,  . . . , m given by 

where x,(q) = u,(x(q)) and the ui are coordinates in R". We frequently write 
x = ( x l  , . . . , x,). The set U is called a coordinate neighborhood and (V ,  x )  is 
called a coordinate system at p E M .  

Definition 2.2 An m-dimensional topological manifold M is a Hausdorff 
space with a countable basis such that for every p E M there exists an m- 

dimensional chart at p .  In this case we say that the dimension of M is m. 

Thus in particular we can find a covering of M by open sets and each open 
set U in the covering is homeomorphic to the open m-ball B, = {a E R" : 

Examples (1) Any open subset N of R" is a manifold of dimension rn, 
since N itself is a coordinate neighborhood of each of its points and the 
identity map x is such that (A', x )  is an m-dimensional chart. Thus for V = R" 
we have GL(V) c R"* is a manifold of dimension n'. Note that for a fixed 
basis in V, any linear transformation A E GL(V) has a unique matrix repre- 
sentation (a i j )  and coordinate functions x i j  can be defined by x i j ( A )  = a i j .  

More generally, if N is an open subset of a manifold M ,  then N becomes 
a manifold by restricting the topology and charts of M to N ,  and N is called 
an open submanifold of M .  

(2) The unit circle M = S' = { a  E R2 : ((a(( = I}  with the topology in- 
duced from R2 is a one-dimensional manifold, and the collection of open sets 
which covers S' can be taken to have two elements. More generally, we shall 
show later that the n-sphere S" = {a  E R"" : llall = I }  is an n-dimensional 
manifold, and the collection of charts can be taken to have two elements. 

# i :  Rm + R  : Q k X k  + p , .  

x i  = ui 0 x : U+ R : + X i ( g ) ,  

llall < 11. 



42 2. MANIFOLDS 

(3) The closed interval M = [0, I ]  is not a one-dimensional manifold 
since the point 0 is not contained in an open set U c M which is homeo- 
morphic to an open set in R .  Is the loop M as indicated in Fig. 2.1 a manifold? 
Thus is the point of intersection contained in an open set U c M which is 

homeomorphic to an open set in R ?  

Fig. 2. I .  

The coordinate functions given for the manifold GL(L') are differentiable 
of class C" (actually analytic), and we now define such notions in general. 

Definition 2.3 A set d of (m-dimensional) charts of an rn-dimensional 

(a) For every p E M ,  there exists a chart ( U ,  x )  E d with p E U; that is, 

(b) If (U(x) ,  x )  and ( U ( y ) , y )  are in d, where U(z)  is the coordinate 
neighborhood corresponding to the homeomorphism z, then U ( x )  n U ( y )  is 
empty or the maps x 0 y-' and y 0 x-' are of class C". 

manifold M is called a C"-atlas if d satisfies the following conditions. 

M = (J { U : ( U ,  x) E d}. 

Note that x 0 y-' (respectively y 0 x - ' )  has domain y(U(x)  n U(y) )  

[respectively x ( U ( x )  n U(y))]  and transforms these subsets of R" homeomor- 
phically onto each other (Fig. 2.2). Thus since one of these maps is the inverse 

Fig. 2.2. 
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of the other, their derivatives are invertible linear transformations on R", 
using the chain rule. These maps are called a change of coordinates and one 
says that the corresponding coordinate (U(x ) ,  x) and (U(p), y )  systems of p 

are compatible when they satisfy condition (b). This will eventually lead to 
the fact that if a function f: M -+ R is differentiable in one coordinate system, 

then f is differentiable in any compatible coordinate system. 

Definition 2.4 Let d be a Cm-atlas on an m-dimensional manifold M. 
Then a chart ( U ,  x) is admissible to d or compatible with d if ( U ,  x) is com- 
patible with every chart in d ;  that is, for any ( U ( y ) , y ) ~ d ,  we have (U,  x) 

and (U(y ) ,  y )  satisfy condition (b) in Definition 2.3. 

Now given any atlas d,  one can adjoin all charts which are admissible to 

d and obtain a collection d which is again an atlas on M .  Thus d is maximal 

relative to properties (a) and (b) of Definition 2.3, and any atlas is contained 

in a unique maximal atlas. 

Definition 2.5 (a) An m-dimensional topological manifold M has a 
C"-differentiable structure or just a C"-structure if one gives M a maximal 

C"-atlas. Thus to give a C"-differentiable structure, one need only exhibit a 
Cm-atlas on M ,  then consider the maximal atlas containing it. 

(b) A differentiable manifold of class C" or  just a C"-manifold is an m- 
dimensional topological manifold M to which there is assigned a C"-dif- 

ferentiable structure. 

REMARKS ( I )  One obtains differentiable manifolds of class Ck, k 2 0, 
or real analytic manifolds by just demanding that the change of coordinates 
y o x- l  and x 0 y - *  given in Definition 2.3(b) is of class Ck or  analytic. 

(2) To define an m-dimensional complex manifold just replace R"' in the 
definition of differentiable manifold of class C" by the m-dimensional complex 

space C". Condition (b) in Definition 2.3 must be modified by demanding 
that the functions y 0 x-' and x 0 y-'  be holomorphic in the respective sets 
in C". 

Examples (4) Let M = R and define a coordinate system (U(x),  x) by 

U ( x )  = R and x : M -+ R : t 4 t .  Then d = { (U(x) ,  x)) is a C"-atlas which 
defines a differentiable structure and R is a differentiable manifold of class 
C" relative to this structure. Now let M ,  = R and define a coordinate system 
( U ( y ) ,  y )  by U ( y )  = R and y : M ,  -+ R : t -+ t 3 .  Then dl = {(U(y) ,  y)}  is a 
C"-atlas since U ( y )  covers M ,  and the map y 0 y-' ,  the identity, is ofclass C". 

Thus Definition 2.3 is satisfied. The atlas dl makes MI into a C"-manifold. 

The manifolds are distinct in the sense that the charts (U(x) ,  x) and (V(y) ,  y )  
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on R are not compatible since x 0 y-' : R + R : t --t t113 is not differentiable 
at f = 0. 

( 5 )  Let S" = {a E R"+l : llall = 1) be the n-sphere ,with the topology in- 
duced from R"', and lla1I2 = 112,' a,' for a = (al, . . . , a,,+l) E R"". We 
define a differentiable structure on S" as follows. Let p = (0, . . . , 0, 1) be the 
" north pole " and q = (0, . . . , 0, - 1) be the " south pole " of S". Then the 
open sets V(p) = S" - {p} and V(q) = S" - { q }  cover S", and we define co- 
ordinate functions x and y so that {( V(p), x),  (U(q), y)} is an atlas on S". The 
functions x and y are defined by stereographic projections as follows. For 
a E V(p)  let I be the line determined by the points p and a and let n be the 
plane in R"" given by u , , + ~  = 0. Then the value x(a) is the point in R"" 
where I and n intersect. Thus we have a map x : U(p)  + R" (see Fig. 2.3). 

Fig. 2.3. 

More specifically if a = (a,, . . . , a,,,,), then x(a) = ( x ,  , . . . , x,,), where xi = 

ai/l - an+ for i = 1, . . . , n. Similarly y is given by stereographic projection 
y : U(q) -+ R" : a + ( y ,  , . . . , y,,), wherey, = ai/l + a,,, for i = 1, . . . , n. From 
the formulas, the functions x and y are homeomorphisms onto R", and the 
formulas show that x 0 y-' and y 0 x-' are of class C". Thus we obtain an 
atlas which makes S" into a C"-manifold. 

Note that S" is a special case of manifolds defined by the implicit function 
theorem as follows. Let f: R"" + R be a C"-function and suppose that on 
the set M = {p E R"" : f ( p )  = 0} we have Df(p) # 0 or more generally 

D,,,f(p) # 0. Then one can apply the implicit function theorem to obtain 
a neighborhood of p E M which projects in a bijective manner onto the plane 
u,+, = 0 and yields an atlas which makes M into a C" n-dimensional mani- 
fold. Thus for S", take f ( x ,  , . . . , xn+,) = x, + ... + xi , ,  - 1 and note 
Df(p) # 0 for p E S" =f-'(O) (just compute Dfip) for p E S"). 

(6) We now consider the product manifold determined by two C"- 
manifolds M and N. Thus let (V(x),  x )  and (V(y ) ,  y )  be in the maximal atlases 

2 
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for M and N with U(x)  [respectively V ( y ) ]  a neighborhood o f p  E M (respec- 
tively q E N). Then define an atlas on the topological product space M x N 
by letting V ( x )  x V ( y )  be the coordinate neighborhood of ( p ,  q )  E M x Nand 

define the homeomorphism 

x x y : U(x)  x V ( y )  + Rm x R" : (u,  u)  + (x(u), y(u)). 

Thus the set of all these charts ( U ( x )  x V ( y ) ,  x x y )  defines a C"-atlas on 
M x N and the corresponding maximal atlas defines a C"-differentiable 
structure on M x N. The product manifold of M and N is the Hausdorff space 
M x N with the C"-structure as given above. Similarly one can define the 
product of any finite number of differentiable manifolds. 

Next let S' be the unit circle with the usual C"-differentiable structure and 
let T" = S' x ... x S' (n-times) be the product manifold. Then T" is called 
an n-dimensional torus. Thus, in particular, since T 2  = u { { x }  x S' : x E S'} ;  

that is, T 2  is a union of unit circles whose centers are on a unit circle, we 
obtain Fig. 2.4. 

Fig. 2.4. 

As shown in Fig. 2.5, T 2  can also be represented as a closed square whose 
points on the top edge are identified with those directly below on the bottom 
edge. The points on the right and left edges with the same heights are identi- 
fied; in particular, the four vertices are identified as the same point. This 
identification comes from appropriately cutting and bending the above 
diagram for T2.  Note that since S' = {exp 2nix : 0 I x I l}, we can identify 
T2 = {(exp 2rrix, exp 2rriy) : 0 I x < 1 and 0 I y < l} with [0, 1) x [0, 1) as 
above. 

Fig. 2.5. 
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2. Differentiable Functions 

A mappingf: ll.I + Nof two Cm-manifolds will be seen to be differentiable 

of class C" if its "coordinate expressions" are differentiable. Thus we shall 
reduce the differentiability off to investigating the differentiability of func- 
tions g : R" + R. 

Definition 2.6 

respectively, and let 
Let M and N be Cm-manifolds of dimension m and n, 

f : M + N  

be a map defined on a neighborhood of a point  EM. We say that f is 
differentiable at p of class C'" if there exists a coordinate system (U, x) at p 

in M and a coordinate system ( V ,  y)  atf(p) in N such that 

y o f 0  x-1: x ( U )  + y ( V )  

is differentiable at x(p )  of class C" (see Fig. 2.6). Note that x ( U )  c R" and 
y ( V )  c R". 

"1 

Fig. 2.6. 

Since differentiability is given in terms of specific charts, we must show 
that it is actually independent of the choice of charts. Thus let (U, 2)  [re- 
spectively (q  J ) ]  be any other elements of the atlas for M (respectively N )  

which are neighborhoods ofp [respectivelyf(p)]. Then we must show the map 

J 0 f 0 3- l :  Z(0)  + J ( V )  

is differentiable at X( p). However, since differentiability is a local property, 
it suffices to show this on neighborhoods. Thus for U n U and V n V(which 
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are nonempty), we have on the neighborhoods X(U n 0) and J (V  n V )  that 

J 0 f 0 x- ' = j 0 y - 1 0 ( y  0 f 0 x-1) 0 x 0 2-1. 

Thus since j 0 y - ' ,  y 0 f 0 x- '  and x 0 X-' are of class C", so is their com- 
position. I f f :  M -+ N is C"-differentiable at every point p E M ,  then f is a 
differentiable map of class C" from M into N .  

Now in terms of coordinates, it suffices to show that the functions 

f i  = ui 0 ( y  0 f o x - ' ) :  R m + R  

for i = 1, . . . , n are differentiable on an open subset D of x ( p ) .  Thus if (U, x) 
and ( V ,  y )  are the corresponding coordinate systems, then we obtain the co- 

ordinate expression 

yi = f i ( x l ,  . . . , x,) for i = 1, . . . , n 
which must be differentiable at x ( p )  = (pl , . . . , p,,). This yields the following; 
for example, see Bishop and Goldberg [1968, p. 371. 

Proposition 2.7 Let f :  M --t N be a continuous mapping of two C"- 
manifolds. Then f is of class C" on M if and only if for every real-valued 
C"-function y : V + R defined on an open submanifold V of N ,  the function 
y 0 f is of class C" on the open submanifoldf-'(V) of M .  

We shall write Cm(M) or F ( M )  for the set of real-valued C"-functions on 
M and Cm(p) or F(p)  for the set of those real-valued functions which are Cm- 
differentiable at p E M .  Note that since differentiability of f  at p E M also 
means f is defined on a neighborhood U of p ,  the elements of C"(p) are 
actually pairs (f, U ) .  Consequently one can define an equivalence relation for 

elements of C"(p)  such that (fl , U,) - (f2, U,) if and only if there exists an 
open set G with p E C and f i ( q )  = f2(q) for all q E G. The set of equivalence 
classes are called germs of C"-differentiable functions at p .  Note that the 
coordinate functions x i  on U are in C"(p). We shall usually not use this 
terminology but just the underlying ideas. 

Next note that F = C m ( M )  is an associative algebra over R with operations 
given by 

(af )(P) = a!((P) for a €  R ,  

(f9)(P) =f(P)g(P) for S , ~ E C " ( M )  

(f + d(P) =!(PI + 9(P) 

and F satisfies the following [Helgason, 1962, p. 51. 

( 1 )  If fl , . . . ,S, E F and if g : R' + R is of class C" on R', then g(fl , . . , , 
S,) E F. 
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(2) I f f :  M + R is a function on M such that for each p E M there is a 
g E F and there is a neighborhood U of p such thatf(q) = g(q) for all q E U, 
then f E F. 

( 3 )  For each p in the rn-dimensional manifold M, there exist m functions 
fl , . . . , fm in F and an open neighborhood U of p such that the mapping 

is a homeomorphism of U onto an open subset of R". The functionsf, , . . . , 
f ,  and the set U can be chosen so that for any f E F, there is g : R"' -+ R of 
class C" and 

f= dfi i * * * , f m )  

on U. 

Helgason [1962, p. 61 for a proof). 
These properties determine a differentiable structure on M as follows (see 

Proposition 2.8 Let M be a topological Hausdorff space and let m be an 
integer greater than 0. Let F be a set of real-valued functions on M satisfying 
properties (1)-(3). Then there exists a unique collection of charts d = {(U,, 
x,) : a E A} which form a maximal atlas of M such that the set of real-valued 
C"-functions on the manifold M with atlas JQ equal the set F. 

Definition 2.9 The C"-manifolds M and N are diffeomorphic if there 
exists a homeomorphism f: M -+ N such thatfandf- '  are of class C"; f is 
called a diffeomorphism. 

Thus a diffeomorphism yields an equivalence relation such that the two 
manifolds are not only topologically equivalent, but also they have equivalent 
differentiable structures. 

Examples ( I )  Let R be a manifold with the usual structure x : R + R : 
t -+ t and (- I ,  I )  be an open submanifold of R. Then 

f : ( - I ,  l ) + R : t + t / ( l  - t 2 )  

is a diffeomorphism. 

(2) Let R be the above manifold with the usual structure, and let M i  be 
the manifold with space R and coordinate function y : M1 --+ R : t --t t 3 .  Then 
the mapf: M1 + R : s + s3 is a C"-homeomorphism and the inverse homeo- 
morphism ,f-' : R + M1 : u 4 ul/' is actually differentiable of class C" 
relative to the above differentiable structures: For t E R we have the coordin- 
ate expression ( y  0 f 0 x- ' ) ( t )  = ( y  o f - ' ) ( t )  = y(t1I3)  = t .  However, note 



3. SUBMANIFOLDS 49 

that identity map g : M, -+ R : t + t is not C" since ( x  0 g 0 y - l ) ( t )  = t"' 

which is not C", that is, the identity map is not a diffeomorphism. 

Exercise Let M be a C"-manifold. Show that the charts ( U ,  x)and( V,  y )  

at p E M are compatible if and only if x and y are C"-related by y = f ( x )  and 
x = g(y )  for suitable C"-functionsf'and g. 

3, Submanifolds 

We shall now use the preceding results to study certain substructures of a 
manifold and return to these topics again after studying the differential of a 
function. 

Definition2.10 Let M and N be C"-manifolds of dimensions m and n 
respectively, and let f :  M -+ N be a C"-mapping. 

(a) We call f an immersion of M into N if for every p E M ,  there is a 
neighborhood U of p in  M and a chart ( V ,  y )  of f ( p )  i n  N such that if we 
write y = (yl, . . . , y,) in terms of coordinate functions, then x i  = y i  o f 1  U for 
i = I ,  . . . , m are coordinate functions on U in M .  That is if x = (xl, . . . , xm), 

then ( U ,  x )  is a chart at p in M .  We say that M is immersed in N if an im- 
mersion f: M -+ N exists. 

(b) We callfan embedding iffis injective andfis an immersion. Also M 
is said to be embedded in N .  Thus an immersion is a local embedding. 

(c) We call the subsetf(M) of N a submanifold of N iffis an embedding 
and,f(M) is given a C"-differential structure for which the mapping of mani- 
folds f: M + f ( M )  is a diffeomorphism. In particular if M is a subset of the 
C"-manifold N and M has its own C"-differentiable structure, then M is a 
submanifold of N if the inclusion map i : M -+ N :  x -+ x is an embedding. 
Thus a coordinate system on N induces a coordinate system on M. 

The subset f ( M )  is called an immersed submanifold if the above mapping 
f i s  just an immersion. The topology of a submanifold M c N need not be the 
induced topology of the containing manifold. However, since the inclusion 
map is C" and consequently continuous, the open sets in the induced topology 
are open sets in the submanifold topology. Also note that the dimension of a 
submanifold is less than or equal to the dimension of its containing manifold 
and in the case of equality we just obtain open submanifolds; this can be 
easily seen by using the inverse function theorem as stated in Section 2.5. 
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( 0 )  

8 
( b )  

Fig. 2.1. 

( C )  

Examples ( I )  Consider the mappings f: R -+ R2 indicated in Fig. 2.7. 

In (a) f is an immersion (why?) but not an embedding and f (R) is an immersed 
submanifold but not a submanifold. In (b) the figure “ 8 ”  is such that the 
arrow segments approach but do not touch the center p .  Then f is an embed- 
ding andf(R) is a submanifold when given the obvious Cm-structure. Note 
that the submanifold topology is that of a bent open interval and therefore a 
neighborhood of p in the submanifold topology is just a bent open interval 
containing p .  However, a neighborhood of p in the topology induced from 
R2 always contains part of the arrow curves near p .  Also the spiral in (c) 
yields an embedding and a submanifold. What can be said about the sub- 
manifold topology and the topology induced from R2 in (c)? 

(2 )  Consider the torus of Section 2.1 

T2 = {(exp 2nix, exp 2niy) : 0 I x < I and 0 I y < I} 

f: R + T2 : t --* (exp 27riat, exp 27ribt) 

where a/b  = a is an irrational number. Then f is injective (by solving the re- 
sulting equations and using a is irrational) and f is C“. Thus by giving,f(R) 
the obvious C“-structure so that f: R +f(R) is a diffeomorphism,f(R) is a 
submanifold. Furthermore f(R) wraps around T 2  in a nonintersecting manner 
and is actually dense in T2 (exercise or see the text of Auslander and Mac- 
Kenzie [1963]). Representing TZ as a square with opposite sides identified as 
discussed in Section 2.1, we see f(R) can be represented by the line segment 
(x, y )  = (at, bt) and their displacements as in Fig. 2.8. Also we should note 

and define 

Fig. 2.8. 
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that points close together in T2 need not be close inf(R); that is, the topology 

inf(R) is not the induced topology. 

Exercises (1) In general, can one find a one-dimensional submanifold 

(2) Show i f f :  M + N defines a submanifold and if M is compact, then 
What can be said about a con- 

of T" which is dense in T"? 

f :  M + f ( M )  is a homeomorphism. (Hint: 
tinuous map of a compact space onto a Hausdorff space?) 

If z = f ( x ,  y )  is a well-behaved function, then it defines a surface M c R3 
which is a two-dimensional submanifold. For a point p E M we can define, 

in a suitable neighborhood V in R3 of p ,  coordinates ( x ,  y,  u), where u = z - 
f ( x ,  y) .  Thus the surface is given locally by the equation u = 0. The familiar 

upper hemisphere given by z = (1  - x 2  - y2)"' > 0 is an example of such a 
situation. We have the following generalization of this. 

Proposition 2.11 Let M be an m-dimensional C"-submanifold of the n- 
dimensional C"-manifold N and let p E M .  Then there exists a coordinate 

system ( V ,  z )  of N with p E V such that: 

(a) z l ( p )  = . . . = z J p )  = 0 where the zi are the coordinate functions; 
(b) the set W = { r  E V :  z ,+ l ( r )  = = z,,(r) = 0} together with the 

Conversely, if a subset M c N has a manifold structure with a coordinate 

restriction of z1 , . . . , z ,  to W form a chart of M with p E W. 

system at each p E M satisfying the above, then M is a submanifold of N .  

PROOF Let f: Q -+ N be an embedding which defines M =f( Q )  and let 
p =.f(q) for a unique q E Q. Now let (T,  y )  be a chart for p in N and we can 

assume y ( p )  = 0 in  R". Let U be a neighborhood of q = f - ' ( p )  in Q and let 
x = y 0 . f 1  U be such that ( U ,  x) is a chart for q in Q. Thus x(q)  E R" and for 
i = I ,  . . . , nz we have x i  = y i  o f 1  U are the corresponding coordinate func- 

tions. 
Nowthecompositiony 0 f 0 x - l  = FdefinesaC"-functionF: x ( U )  +y(T) ,  

where x ( U )  c R" and y (T)  c R", and we can write F i n  terms of coordinates 

y i  = f i ( x , ,  ..., x,) for i = 1, ..., n. 

The hypotheses M =f(Q) is a submanifold, y of'= F o  x ,  and x = y of1  U 

yield y i  = x i  for i = I ,  . . . , m in the above expression for F. Thus the rank of 

DF(x(q)) is m ;  that is, the m x m matrix (8fi/8xj) ,  i,j = 1, . . . , m, is the 
identity. By the inverse function theorem there exists a neighborhood D of 

x(q )  with D c x ( U )  where the first m equations can be locally inverted 

x i  = g i ( y , ,  . . . , y,) for i = 1, . . . , m, 
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where y1 , . . ., y, are actually the coordinate functions defined on f 0 
x-'(D) c T but are also used above to denote "coordinates" in y(T). (Note 
that due to the simple expression of the first m equations yi  =fi(xl, . . . , x,), 
the functions g i  can be explicitly computed. What are they?) 

We now change from the y-coordinates to the z = (zl , . . , , z,,) coordinates 
given by 

z j = y j  for j = l  ,...,m 

Z, = yi -A( 91(~1, * - * 9 ym), * * * 9 grn(y19 * * * 3 ym)) 

for i = m + I ,  . . . , n. These equations for y's are defined on f 0 x- ' (D)  c T 
and are C". They form a change of coordinates because z- l  exists locally 
[show det(dz,/dy.( )) # 01 and y 0 z-' and z 0 y-' are C" on their domains. 

Let V ~ f o  xi (0) be the subset of the domain of y in T where z is defined. 

Then V is a neighborhood of p in N and by unscrambling the definitions off, 
and 9, and using y (p )  = 0 we have z (p )  = 0. Now the set Win  (b) given by 

W = { r E V : z ,  + l(r) = * * * = z,(r) = 0} 

containsp and is in M since in terms of the defining equations for z,+~ , . , , , z,, 

we see W c f ( x - ' ( D ) )  c f (U)  cf(Q) = M and also W is open in M. The 
restriction of zi = y ,  for i = 1, . . . , m to W equals x ,  (second paragraph) and 
so are coordinates on W. 

The converse follows from various definitions. 

REMARK The above proof contains some machinery which is not neces- 
sary in view of our definition of a submanifold and for a more direct proof 
see the book by Bishop and Goldberg [1968, p. 421. However, it can be modi- 
fied to obtain the following result which is frequently used as the definition 
of a submanifold [Helgason, 1962; Singer and Thorpe, 19671. 

Corollary 2.12 Let P be an m-dimensional C"-manifold, let N be an n- 
dimensional C"-manifold with n 2 m, and let f: P-, N be an injective C"- 
function. If for every q E P, there exists a chart (U, x )  of q in P and there exists 
a chart (T, y )  off(q) = p in N such that the linear transformation 

D(y  o f 0  x-')(x(q)) : R" -+ R" 

is injective, then M =f(P) is a submanifold of N providedf(P) is given a 
C"-structure so that f: P -+f(P) is a diffeomorphism. 

PROOF We shall use the converse of Proposition 2.1 1 by showing (a) and 
(b) hold. By a simple translation argument we can assume that x(q) = y(p)  = 0. 
Now near x(q) we can represent the composition y 0 f 0 x - l  = F i n  terms of 
coordinates 

y ,  =A(xl,. .., x,,,) for i = 1, ..., n. 
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Since D ( y  of o x- ' ) (x (q ) )  has rank m we have that some subsystem of m 
equations 

is such that m x m matrix (8fi,/8xk) is invertible. We can assume this sub- 
system consists of the first m equations and consequently can define a function 

F : x ( U )  + R" : (xl , . . . , x,) + (yl, . . . , y,) 

where we use the coordinate function to also denote the corresponding point. 
Thus by the inverse function theorem there exists a neighborhood D of x(q) 

and D c x ( U )  on which F has a local inverse G. Thus the first m equations 

can be locally inverted 

yi, = f i , ( x l ,  . . ., x,) for j =  1, ..., m 

x i  = gi(yl ,  . . . , y,) for i = 1, . . . , m, 

and we proceed as in the above proof. Note that from the defining equations of 
z we see that x(q)  = y ( p )  = 0 implies z ( p )  = 0. 

REMARK Let M be an m-dimensional C"-manifold. Then it can be 
proved that M is diffeomorphic to a submanifold of R" with n 5 2m + 1. 
This theorem of Whitney can be found in the work of Auslander and Mac 
Kenzie [ 19631. 

Proposition 2.13 Let M and N be C"-manifolds of dimension m and n, 
respectively, with m 2 n. Let f: M + N be a C"-map and for some fixed 
p E N let f - ' ( p )  = {q  E M : f (q)  = p}. Let every q ~ f - ' ( p )  have a chart ( V ,  x )  
in M and letp have a chart (T, y )  in N such that D(y  0 f 0 x- ' ) (x(q))  : Rm + R" 
is surjective. Then f - ' ( p )  is a closed (m - n)-dimensional submanifold of 
M or f - ' (p )  is empty. 

PROOF This follows from the variation of the inverse function theorem 
given in Proposition 1.17 using the inverse image of the set { p }  is closed (or 

see the book by Spivak [1965, p. 1 1  11). 

A C"-map f: M + N such that for every q E M there is a chart ( U ,  x )  at 
q and a chart (T, y )  at&) with D(y  0 f 0 x- ' ) (x (q ) )  surjective is called a sub- 

mersion. Thus the injective or surjective nature of D(y  0 f 0 x-')(x(q)) deter- 
mines submanifolds. 

Exercise (3) If ,f: R + R" is C", then show the graph of f  given by 
G(f) = { ( t , f ( t ) )  : t E R }  is a submanifold of R"" = R' x R" with the in- 
duced topology. Does f: R + RZ : t + ( t ' ,  t 3 )  define a submanifold? The 
above can be generalized to C"-functionsf: A4 + N. 
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Definition 2.14 Let M be a C"-manifold. A C")-curve in M is a C"-map 
ffrom some interval I contained in R into M such that f has an extension f 
which is a C"-map of an open interval J 3 I into M. Thus if I = [a, 61, then 
there exists an E > 0 such that J = (a - E ,  b + E )  and there exists a C"- 
function?: J -, M such thatf(t) =f(f) for all f E I. Thenfis frequently called 
a curve segment in case I= [a, b]. A broken Cm-curve in M is a continuous 
map f: [a, b] + M together with a partition of [a, b] such that on the cor- 

responding closed subintervals f is a C"-curve. 

Examples (3) The mapf:  R -, R2 : t + (t2, t ' )  is a C"-curve in R2 with 

(4) The "wrap around" map on the torus T2 given in Section 2.3 with 

( 5 )  The mapf:  [0, I ]  -+ R2 given by 

a cusp at (0,O). 

"irrational slope" is actually a C"-curve which is dense in T2. 

f(r) = (;;, ;; if t # 0, 
if t = O  

is not a Cm-curve in R2 since it does not have a C"-extension to an open 
interval containing 0. 

We recall that a topological space M is connected if it satisfies any of the 
following equivalent conditions: 

( I )  M is not the union of two nonempty disjoint closed subsets; 
(2) M is not the union of two nonempty disjoint open subsets; 
(3) the only subsets of M which are both open and closed are M and the 

empty set; 

(4) if M = u, E, , where E, are open and E, n E,  is empty if a # b, then 
only one of the E, is nonempty; 

( 5 )  i f f :  M + N is a continuous map into a discrete set, thenf(M) is a 
single point. 

A topological space M is path connected if for every p, q E M, there exists 
a continuous curvef: [a, b] + M with p =f(a) and q =f(b). We have the fact 
that a path connected space must be connected [Singer and Thorpe, 19671. 

Proposition 2.15 Let M be a C"-manifold. 

(a) If M is connected, then every pair of points can be joined by a broken 
COD-curve. 

(b) M is connected if and only if M is path connected. 

PROOF Part (b) follows from the preceding remarks and part (a). Thus 
let p E M and for q E M, define q - p if and only if q can be joined t o p  by a 
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broken Cm-curve. Then since - is an equivalence relation, M is the union of 
the disjoint equivalence classes 

E,  = { q E  M : q - p } .  

Now each E ,  is open in M, for if q E E, ,  let ( U ,  x) be a chart of M such that 
q E U with x(q) = 0 and x ( U )  = B,,, , an open m-ball. Now for each u E U the 
point X ( U )  E B,,, can be joined to x(q) by a Cm-curve I in B,,,; that is, A a 
straight line segment. Therefore U E  U can be joined to q by the Cm-curve 
x- '  0 I and consequently U E  U can be joined to p by a broken Cm-curve. 
Thus u - p .  so that U c E, and E, is open. However, since M = u E, (dis- 
joint), we have by condition (4) that all the E, are empty except one. Thus 
every point in M can be joined to p by a broken Cm-curve. 

Let V = R" and let G = GL(V). Then G is an open n2- 
dimensional submanifold of R"'. Now let 

Example (6) 

SL(V)  = { A  E GL( V )  : det(A) = 13. 

Then SL( V )  is clearly a subgroup of GL( V )  and is called the special linear 
group and is sometimes denoted by SL(n, R) .  Now SL(V) is a closed sub- 

manifold because if we let 

f: GL(V) -+ R - (0) : A det(A), 

then using exercise (5 ) ,  Section 1.4 for the derivative of det we see that for 
all A E GL(V), D ( f ) ( A )  is surjective; that is, of rank 1. Thus by Proposition 
2.13, S L ( V )  =f- ' ( l l  is closed and of dimension nz - 1. 

We shall now use exp to obtain a coordinate system at the point Z E SL(V) 

and then for any point A E SL( V ) .  For g = gl( V )  we let 

sl(V) = { X  E g : t r  X = O } .  

Thus since tr is linear and tr[X, Y ]  = tr X Y  - tr Y X  = 0 we see that sl(V) is 
a Lie subalgebra of 9; that is, d ( V )  is a vector subspace of g so that for all 

X ,  Y E  sl( V )  we have [ X ,  Y ]  = X Y - Y X  E sl( V ) .  Also for any X E 9, 

1 

n 

where tr Y = 0. Consequently dim sl(V) = nz - 1. Next note that exp re- 
stricted to d( V )  is actually in SL( V ) ,  since we have from exercise (3), Section 
1.1 that 

det(exp X )  = e"* = 1 

if XE d( V ) .  Thus if we let F = expIsl(V), we have from the proof of Propo- 
sition 1.19 that DF(0) is the identity. Therefore by the inverse function 
theorem there exists a neighborhood U ,  of 0 in s&V) and a neighborhood U, 
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of I in SL(V) such that F :  U, + UI : X +  exp X is a diffeomorphism of U, 
onto UI . Thus for t in a sufficiently small interval ( -6 ,6 )  of 0 E R and for X 
fixed in d ( V )  we see that the map 

exp : s f (V)  + SL(V) : tX+exp rX 

maps the line segment t X  into a Cm-curve segment in SL( V). 

marks following Proposition 1.19 we have the local C"-diffeomorphism 
To coordinatize SL(V)  by exp we proceed as follows. First as in the re- 

log : u, --* u, ' 

and since U, is open in sf( V) we find that ( U , ,  log) is a chart at I in  SL( V) 
[noting that tr(1og exp X) = 01. Now for any other point A E SL(V)  we have 
that 

is a diffeomorphism of SL(V) and therefore the set 

L(A) : SL( V )  -+ SL( V )  : B + AB 

L(A)U, = AU,  = { A u  : u E U,) 

is an open neighborhood of A, using A = AZ. Let V =  AU, and let 
y = log 0 L(A)-' .  Then (V, y) is a chart at  A in SL( V )  as shown in Fig. 2.9. 

Finally we remark that G = GL( V) is not connected; for if it were, then since 
det is continuous, det(G) = R - (0)  is connected, a contradiction. However, 
SL( V) is connected and this follows from Proposition 2.15 and the following 
result. 

Fig. 2.9. 
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Exercise (4) 

Now to show SL(V)  is connected we note that the map 

Let P( V )  = { A  E GL( V )  : det A > O}. Then P( V )  is path 
connected. 

8 : P( V )  -, SL( V )  : A + (det A)-""A 

is a continuous surjection so that SL( V )  is connected. 

Example (7) Again let V = R" and let 

B : V x V +  R : ( X ,  Y) + B(X,  Y) 

be a nondegenerate bilinear form (symmetric or skew-symmetric). Then the 

adjoint A* relative to B is uniquely given by 

B ( A X ,  Y) = B ( X ,  A * Y )  

for A E End(V). We have the usual rules 

(aA + bB)* + aA* + bB* and (AB)* = B*A*. 

Let 

K = { B  E End( V )  : B* = B } .  

Then K is a vector space and a manifold and the manifold dimension equals 
the vector space dimension. Also for any A E G = GL( V )  let 

f: G+ End(V) : A + AA* - I .  

Then,f(A) E K and let 

H = { A  E G : B ( A X ,  A Y) = B(X,  Y) all X ,  Y E  V }  

= { A  E G : AA* - I = 0} 

= f -yo). 
Then H is clearly a subgroup of G and H is a closed submanifold of G of 
dimension n2 - dim K as follows. 

To see this we shall use Proposition 2.13. Thus we must show for every 
A E G such thatf(A) = 0 that Df(A) : End( V )  + K is surjective. For any A E G 
and any Y E  K,  let X = + YA*-' E End( V ) .  Then we shall show 

y = [ D f ( A ) I ( X )  

so that Df(A) is surjective. Thus 

1 

1-0 t 

1 

t + o  t 

[ D f ( A ) ] ( X )  = lim - I f (A + t X )  - f ( A ) ]  

= Iim - { [ ( A  + t X ) ( A  + tX)* - I ]  - (AA* - Z)]) 

= XA* + (XA*)* = Y. 
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To coordinatize H we proceed as follows. Let g = g1(V) and let 

h = {P E g : B(PX, Y) = - B ( X ,  PY) all X, Y E  V }  

Then h is a Lie subalgebra of g; that is, h is a vector subspace of g and for 
P, Q E ~  we have [P, Q] =PQ - Q P E ~ .  Thus for P, Q E ~  and a, 6~ R we 
have 

= { P E g : P *  = -P}. 

(UP + bQ)* = aP* + bQ* = -(UP + bQ) 

so that h is a subspace and 

[PI el* = V Q ) *  - (QP)* = -(pQ - Qp) 

so that [P, Q] E h as desired. 
Now for any P E h we have for all X, Y E  V that 

f?((exp P ) X ,  (exp P)Y) = B ( X ,  (exp f)*(exp f ) Y )  

= E( X, (exp P *)(exp P) Y) 

= B(X,  exp(-P)(expP)Y) = B ( X ,  Y). 

Thus exp : h + H so that as in the preceding example there exist a neighbor- 
hood U, of 0 in h and a neighborhood U, of I in H such that exp : Uo + UI 
is an analytic diffeoniorphism and (U,, log) is a chart at I in  H which induces 
the chart (ALI,, log 0 L ( A ) - ' )  at A in H. Also if for any P E g we demand that 
the Cm-curve R + G : t + exp rP actually be in H for r in an interval about 0 
in R ,  then by differentiating the formula B((exp f f ) X ,  (exp r P ) Y )  = B ( X ,  Y) 
we obtain P E  h using example (l), Section 1.2. Note that the manifold di- 
mension of H equals the vector space dimension of h. 

There are various subcases depending on B.  

B Symmetric (1) (i) Let B be positive definite; that is, B ( X ,  X) = 0 
implies X = 0. Thus there exists a basis e, , . . . , e, of Vsuch that if X = E x i  e,, 

Y = x y , e , ,  then B ( X ,  Y) = cxiyi. In this case H is called the orthogonal 

group and denoted by O(n). We also note that the vector space K = { B  E 

End (V) : B = B*} is just the set of symmetric matrices and has dimension 
n(n + 1)/2. Thus the manifold dimension of H = O(n) is n2 - n(n + 1)/2 = 

Now for A E O(n), AA* = I yields (det A ) 2  = 1 so that det A = & 1. Thus 
n(n - 1)/2. 

noting 

we have, since det : O(n) + R - (0) is continuous, that O(n) is not connected. 
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Let 

SO(n) = { A  E O(n) : det A = I} 

= O(n) n SL(n, R )  

which is called the special orthogonal group. We know that SO(n) is also a 
manifold of dimension n(n - 1)/2 and we shall show later that SO(n) is con- 
nected. In this case the Lie algebra h n s/( V )  associated with SO(n) is denoted 
by so(n). 

(ii) Now assume the general form for the nondegenerate form B ;  that is, 
there exists a basisf, , . . . , fn of V such that for X = c x i f i ,  Y = c y i f i ,  then 

P n 

i =  1 i = p +  I 
B ( X ,  Y )  = -c x iy i  + x i y ,  

[Jacobson, 1953, Vol. 111. In this case the group H n SL(n, R )  is frequently 
denoted by SO@, q) ,  where p i- q = n and the Lie algebra h n sl(n) is denoted 

by MP, 4). 
Next we shall consider V = R" as column vectors with 

relative to the basisf, , . . . ,f, so that we can write B ( X ,  Y )  in block form 

- I p  0 

0 4 
B ( X ,  Y )  = x" ] Y = X'BY,  

where t denotes transpose and I p ,  I, are the appropriate identity matrices. 
Then for 

P E SO(P,  4) = {P E d(n) : B(PX,  Y )  = - B ( X ,  P Y ) }  

we have 

0 = (PX)'B Y + X'B(PY) = X'(P'B + B P )  Y.  

Thus P'B + BP = 0 and if we partition P into appropriate blocks 

then P i ,  = -PI1, P i 2  = - P 2 2 . P 1 z  = Pi,, andP,, arbitrary. Thus we obtain 
the form of the Lie algebra so (p ,q )  and that it is of dimension 

P(P - 1 )/2 + q(q - 1 )/2 + pq = n(n - 1 )/2 

using p + q = n. 
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As before we can use (U,, log) to coordinatize SO(p,q)  where log: 
U, + U, c so(p, 4). Thus we see that SO(p, q )  is an n(n - 1)/2-dimensional 
manifold. 

Exercise ( 5 )  Show 
matrices of the form 

SO(p, q )  is not connected (Hint: Investigate 

where A,, are orthogonal matrices of the appropriate size satisfying 
det Al l  det A Z 2  = 1). 

B Skew-symmetric (2) Thus B(X, Y) = -B( Y, X) and there exists a 
basis f l ,  . . . , fn  of V such that n = 2p and using the preceding notation 
B(X,  Y) has the block form [Jacobson, 1953, Vol. 111 

In this case we shall consider H n GL(2p, R) which is freqently denoted by 
Sp(p,  R), where n = 2p, or Sp(p) ,  or Sp(n, R) and is called the symplectic 
group. The Lie algebra associated with Sp(p,  R) equals h n g42p) and is de- 
noted by sp(p, R). Next for P E sp(p, R) we put it into block form and find 

where P Z 2  = -Pil, P i l  =PI,,  Pil = PZ1 , and PI1 arbitrary. Thus p 2  + 
p ( p  + 1)/2 + p ( p  + 1)/2 = 2p2 + p = dim sp(p, R) which equals the manifold 
dimension of Sp(p, R). 

For future reference we present a short list of important Lie groups and 
Lie algebras in Tables 2.1 and 2.2. We will describe the groups and algebras 
entirely in terms of matrices. For convenience we include the groups and 
algebras that have been previously discussed. First define Ip, E GL(p + q,  R) 

and Jn E GL(2n, R) by 

In the definition of the unitary group U(n) the matrix X = (Z,,) is the com- 
plex conjugate matrix of X = (ai,). 
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TABLE 2.1 

LIE GROUPS 

nonsingular n x n complex matrices, 
nonsingular n x n real matrices, 

{XE CL(n, C) : det(X) = 1}, 

{XE CL(n, R) : det(X) = I } ,  

{A'EGL(n,R):  XI= A'-'}, 
O(n, R) n W n ,  R),  

O(P, 4) S U P  + 4, R) ,  
{A'€ CL(2n, C )  : J. X*J.-' = X - I } ,  

Sp(n, C )  n GUn,  R),  
{XE CL(n, C )  : X' = A'-'}, 
U(n) n SL(n, C ) .  

{XE CL(p + q ,  R)  : l p . q X r l i ~ =  A'-'}, 

TABLE 2.2 

LIE ALGEBRAS 

n x n complex matrices, 

n x n real matrices, 
{ X E g l ( n ,  C )  : tr(X) = O), 

sl(n, C )  n d ( n ,  R),  
{A'€&, R )  : X' = -X}, 

{ X ~ g 1 ( 2 n ,  C )  : JnXrJn- '  = -A'}, 
sp(n, C )  n g U n ,  R ) ,  
{ X € g l ( n ,  C )  : X ' =  -A'}, 
u(n) n sl(n, C ) .  

{A'€ g f ( p  + q, R )  : I,,, X ' I i  = -X}, 

For more details on matrix groups the reader should consider the work of 

Chevalley [1946, Chapter 11 and Helgason [1962, p. 3391. 

4. Tangents and Cotangents 

Let M c R 3  be a well-behaved surface given by the differentiable function 

z = f ( x ,  y )  and going through the point p = (0, 0,O). Then from calculus the 

tangent plane to M at p is given by the equation 

z = x df(0, O)/dx + y df(0, O)/dy for x, y E R.  
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If this plane is cut by the plane x = 0, then the equation of the line of inter- 
section is z = y df(O,O)/ay and we obtain the vector (0, I ,  df(0, O)/dy) in the 
tangent plane. Similarly (1,0, df(0, O)/dx) is in the tangent plane. These two 
vectors which give the tangent plane are determined by the partial differentia- 
tion off. Thus we are led to study operators on real-valued functions which 
have the properties of differentiation and we now abstract this situation to 

manifolds. 
First recall that for a C"-manifold M and for p E M the set F ( p )  = Cm(p) 

of C"-functions at p E M is an associative algebra using the pointwise opera- 
tions: Let U, V be open sets of M containing p and let f :  U -+ R, g : V + R 

be in F(p) .  Then define for a ,  b E R 

a f + b g :  U n  V + R : q + a f ( q ) + b g ( q )  and fg: U n  V + R : q + f ( q ) g ( q ) .  

Definition 2.16 A tangent at p E M is a mapping L : F ( p )  

(a) L(af + bg) = aL(f  1 + bL( 9) ; 
(b) U f g )  = Wlg(p)  + f ( p ) U g ) .  

R such that 

for allf, g E F ( p )  and a ,  b E R ,  

That is, L is a derivation of F ( p )  into R.  Let T,(M), or T ( M ,  p ) ,  or M ,  denote 
the set of tangents at p E M .  

Example ( I )  For p E M = Rm and for fixed X E R" the map 

Lx : F(P) + R :f + "(P)l(W 

is a tangent at p using Proposition 1.3 concerning the product rule. 

Proposition2.17 Let M be an rn-dimensional Cm-manifold and let p E M .  

(a) I f f ,  g E F ( p )  andf(q) = g(q) for all q in a neighborhood U o f p ,  then 

(b) T ( M ,  p )  is a vector space over R .  

L(f)=L(g)forallLET(M,p).  

PROOF (a) The function k defined on U by k(q) = 1 for all q E U is in 

F(p)  and we have for any L E T ( M , p )  that 

L(k) = L(k2),  using 1 = l 2  

= L(k)k(p) + k(p)L(k) 

= 2L(k). 

Thus L(k)  = 0. Now we have f = kf = kg on U and therefore 

L(f) = U k l f ( p )  + WP)L(f 1 
= L ( k f )  = L(kg) 

= U k l d P )  + k(PW(9) = U g ) .  
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(Can the "bump function" of exercise 6 ,  Section 1.4 be used above?) 

(b) For L,  and L2 in T ( M ,  p )  and for a, b E R we see that aL, + bL2 is 
a linear operator; that is, it satisfies (a) of the definition. Also forf, g E F(p) 
we have 

(aL, + bL2)(fg) = aL,(fg) + bL2(fg) 

= @ , ( f ) d P )  + f ( p ) L , ( g ) )  + b(L,(flg(p) + . m L , ( g ) )  

= (a& + bL2)(f lg(p)  + f (p ) (aL ,  + b M g ) .  

Thus aL1 + bL2 E T ( M ,  p ) .  

We shall now show that the vector space dimension of T ( M , p )  is m ;  that 
is, equal to the manifold dimension of M .  We shall do this by taking a chart 
( U ,  x )  of M at p such that for ui : x( V) + R where the ui are coordinate func- 
tions of R", the partial derivative operators D,(x(p)) = d/au,(x(p)) in R" for 
i = I ,  . . . , m eventually yield a basis d i ( p )  for i = I ,  . . . , m of T ( M , p ) .  

Thus let ( U ,  x )  be a fixed chart at p in M and IetfE F(p) ,  wherefis defined 
on an open neighborhood Vofp withf: V +  R of class C". Nowfis of class 
C" on the neighborhood U n V c  U so that we can write f in terms of the 
fixed coordinates x = ( x ,  , . . . , x,) where xi  = ui 0 x .  Therefore for D = x( U) 
an open set in R" the function g = f 0 x- l  : D --t R is C" on D .  Thus f = 

g 0 x = g ( x , ,  . . . , x,) where we write g = g(u, , . . . , urn) on D. We now define 

the maps 

ai : F ( p )  + F ( p )  : f 3 a(f0 x-') /au, 0 x 

which are called coordinate vector fields relative to (U,  x ) ;  that is, we form the 
real-valued C"-function h = d ( f 0  x- ' ) /du,  = dg/du, defined on D to obtain 
the function h 0 x which is in F ( p ) .  Sometimes the notations 

di = dpx,  and a i f  = af/ax, 

are used. The mapping d i  has the following properties for f , g ~ F ( p )  and 

(I, b E R ,  

( I )  
(2) d i ( f . >  = ( d i f l g  + f ( a i g ) .  

di(af+ bg) = a d i f +  b di 9; 

Note that for the coordinate functions xi = uj 0 x on U we have from the 
above definition 

a i x j  = auj/au, = ai j  

and for the constant function,f(q) = c for q E U, we have ai f = 0. 

obtain d i f €  F ( p ) ,  then evaluate ( d , f ) ( p )  E R .  Thus 
Next we define an element d i ( p )  E T(M, p )  as follows: For JE F ( p )  we 

ai(p)f= ( a i f > ( P )  
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and from ( I ) ,  (2) above we see d,(p)  satisfies the definition of a tangent at p. 

Proposition 2.18 Let (U, x )  be a fixed chart at p E M where x = (xl , . . . , 
x,,,). Then the vector space T(M, p) has basis 

a l ( ~ ) ,  - * * > d m ( P )  

and any L E T ( M ,  p) has the unique representation 

m 

i= 1 
L = 1 a,d,(p) ,  

where a, = L(xi) E R. Thus the manifold dimension of M equals the vector 
space dimension of T ( M ,  p ) .  

PROOF We can assume that x ( p )  = 0 since ' a  translation xi = yi  + t 
yields d/dxi = d/dy,. Now from Section 1.4 it is easy to see that any real- 
valued C"-function g defined on D = x ( U )  has the Taylor's formula expan- 
sion about the point 8 = (0, . . . , 0) e D c R" 

rn 

i =  1 
9 =g(e)  + 1 uigi, 

where ui are coordinates on R" and g, are C" at 8 E D. Thus for the real 
valued functionf = g 0 x E F(p)  as previously discussed we obtain on U 

.f = g 0 x = + CCuj 0 x)( gj  0 x )  

= + 1.j fi s 

wheref;. = g, 0 x e F(p). We apply di(p) to this equation 

di(plf= (ai f ) ( ~ )  
= 0 + 1 ai (x j f i ) (p)  

= C [ ( a i x , ) ( ~ ) . f i ( ~ )  + xj(P) difi(~>I =Ji(P) 

using d , x j  = 6 ,  and xj (p)  = 0. Next we apply L to the same equation 

L ( f )  = L( g<@) + 1 Wjf;.) 
= 0 + 1 [(Lxj)fi(P) + xj(P)Ufi)I = 1 aj aj(PY 

using the preceding equation. Thus L = 

d,(p) in T ( M ,  p) are linearly independent. For if 
to coordinate functions, 

a, dj (p) .  The elements dl(p), . . . , 
uj aj(p) = 0, then applying 

0 = O(Xi) = C uja,(p)(x,) = a, 

using aj(p)(xi) = d j x i ( p )  = 6,. 
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REMARK Let ( U ,  x )  and ( V ,  y )  be charts at p E M .  Then on U n V we 
have the coordinate functions x i  and y j  defined. Then d / d x i ( p )  and a/dyj(p) = L 
are in T ( M ,  p )  and according to Proposition 2.18 we can represent L by 

In 

a/ayj(p) = 1 axi/ayj(P) a/axi(p), 
i =  I 

where the matrix ((dxi/dyk)(p)) is the nonsingular Jacobian matrix obtain by 

writing xi = x i ( y l ,  . . . , y"). Thus we have the matrix for the change of basis 
in T ( M ,  p )  when we change charts at p E M .  

Examples (2) For p E M = R"' and X E  R", let L, E T ( M ,  p )  be the 
tangent given in example (1) of this section. Then the map R" + T ( M , p )  : 
X +  L,  is linear because L a X + b Y ( f )  = Df(p)(aX + b Y )  = (aL, + bL,)(f) .  

Also this map is an isomorphism. (Why?) Thus at each point p E M = R" we 
can attach the tangent space which is isomorphic to M itself. 

(3) Let N be a group with identity e and let (x ,  y )  = xyx-'y-' be in N 
and for A ,  E subsets of N let ( A ,  E )  be the subgroup generated by all corn- 
mutators ( x ,  y )  with x E A ,  y E B.  Then for N ,  = ( N ,  N ) ,  N k + ,  = ( N k ,  N )  we 

have 

N x N l x * * * ~  N k ~ . * *  

and call N nilpotent if there exists k with Nk = {e}. Now let N be the sub- 
manifold of SL(V)  consisting of the nilpotent subgroup given by the set of 
triangular matrices 

where * denotes arbitrary elements from R .  We shall now show that the vector 
space T,(N) is isomorphic to the vector space of all triangular (nilpotent) 

matrices 

and denote this vector space of matrices by n. To show the isomorphism we 
shall use the exp mapping by showing exp : n -+ N is locally invertible. Now 
for A E n we see that the associative products A 2 ,  A 3 ,  . . . , Ak are all in n and 
since A is a nilpotent matrix A" = 0. Thus we see that 

expA = I +  A + + A"-'/(m - I)! 
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is in N so that exp : n -+ N .  Also D exp(0) is invertible. Thus as before, there 
exist a neighborhood Uo of 0 in n and a neighborhood of U,  of I in N so that 
(Ur ,  log) is a chart in N at I .  Consequently we have, since Uo is open in n,  

dim U,  = dim Uo = dim n. 

However dim Tr(N)  = dim U ,  and since the vector spaces T,(N) and n have 
the same dimension, they are isomorphic. 

Exercises (1) Show that n is a nilpotent Lie algebra. Thus first show 

[n,  n ]  = {c [ A , ,  B , ]  : A , ,  B ,  E n }  c n. Next define 

n' = [n,n] and nk+' = Ink, nl 

and note that n 3 n1 =I * * 3 nk 3 - * * . So finally show np = 0 for some p .  This 
will show that the nilpotent (Lie) group N is such that the tangent space 
T,(N) is vector space isomorphic to a nilpotent Lie algebra n. 

(2) Let M ,  N be Cm-manifolds and let p E M ,  9 E N .  Then show 

T(M x N ,  (P, 9)) E T ( M ,  P) x T W ,  9)  E T,(W CB T,(N). 

Recall that if V is an rn-dimensional vector space over R ,  then its dual 

space V* = Hom( V ,  R ) .  Elements of V* are called linear functionals and the 

map 

V x V* --* R : ( X , f )  + f ( X )  

is bilinear and is frequently written 

f ( X )  = (X , f>*  

Now for any basis X ,  , . . . , X,,, of V we have the dual basisf,*, . . . , f,* given 

by 

&*(Xi)  = ( X i , & * )  = 6 , .  

From this we see any XE Vcan be written in the form 

x = C f i * ( X ) X i .  

Definition 2.19 The cotangent space at p E M is the dual space of T p ( M )  
and is denoted by T,*(M), or T*(M,  p ) ,  or M,*. The elements of T*(M, p )  

are frequently called differentials at p and T*(M,  p )  is also called the space of 

differentials at p .  

Now let YE F(p)  and define the element df E T*(M,  p )  by 

df: T ( M , p ) - . R : L + L ( f ) ;  
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that is, df(L) = (L, df) = L(f). Sometimes a more specific notation df(p) or 

dfp will be used. In particular if (U, x )  is a chart with x i  the coordinate func- 
tions, then a basis for T ( M ,  p) is given by d , (p ) ,  . . . , a,(p) and a dual basis for 

T * ( M ,  p) is given by dx,(p),  . . . , dx,(p) because they satisfy 

(ai(p), dxj(P)) = a(xj)/axi(P) = 6ij * 

Now for any L E T ( M , p )  and anyfE F ( p )  we have from Proposition 2.18 
that L = L(x i )  a i (p)  and therefore 

df(L) = Uf) = 1 L(xi)(ai f ) ( p )  

= C ( a i f ) ( p W ( x i )  

= 1 ( a i  f ) ( p )  dxi(L) ; 

that is, 

= 1 ( a i f ) ( p )  dxi(P). 

Combining various facts we have the following result. 

Proposition 2.20 Let M be an m-dimensional manifold and let fi , . . . , 
fi E F ( p )  for p E M. 

(a) Each f~ F ( p )  equals g ( f l , .  . . ,h) on a suitable neighborhood 
V = V ( f )  ofp, where g : R' + R is of class C" if and only if dfl(p), . . . , dS,(p) 
generate the cotangent space T*(M,  p). 

(b) The functionsf,, . . . , f, (that is, r = rn) are the coordinates of some 
chart (U,f) at p wheref= (f, , . . . ,f,) i f  and only if the set dfl(p), . . . , df,(p) 
is a basis of T * ( M ,  p). 

PROOF (a) Let (U, x )  be a chart at p and suppose each f E F(p)  equals 
g ( f i  , . . . ,h) on V n U. Then each of the coordinate functions 

xi = g i ( f ,  9 * * * , h )  

and therefore dxi = akgi (p)  gk. However, since the dx's generate T * ( M ,  p), 

the df's also generate T * ( M , p ) .  Conversely, assume the df's generate T*(M,p)  

and represent f i  in coordinates 

f i  = h i ( X , ,  . . . , x,). 

Then we obtain 

dfi = C ak hi(p) dxk 9 

i = 1 ,  . . . , r. Now since the df's generate T * ( M ,  p) the m x r matrix (a,h,(p)) 

has rank m 5 r. Thus we can assume that there exists a system of m functions 

f i ,  = hi,(x1, . . . , x,) for j = 1, . . . , m 
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which define a function F: R" --+ R" : x = ( x l ,  . . . , x,) + (F,(x), . . . , F,(x)) 
where Fj(x) = fi ,(x).  Also DF(x(p)) is invertible so that by the inverse function 

theorem we can write locally 

XI = k, ( f , ,  9 ' ' * ,hJ, 

where ki : R" + R are C". However, each f E F(p) equals G(xl , . . . , x,) 
locally, where G is C", and using the above expression for x's in terms offi's 
we have the results. 

To show (b) just note that for r = m we have dfl , . . . , df, generate T,*(M) 

if and only if they form a basis. Then we can use the above equations expres- 

sing x ,  = k,(f ,  , . . . , f , )  a n d 4  = h,(xl, . . . , x,) to see fl , , . . , f ,  are coordin- 
ates for some chart at p E M. 

Exercise (3) Let U be open in R"' and let f :  U - P  R be of class C". 
Compare Df(p) and df(p) for p E U. 

5. Tangent Maps (Differentials) 

In the preceding section we considered a C"-map g from the manifold A4 
into the manifold R and noted that the differential df(p) is a linear map from 
the tangent space T ( M , p )  into the vector space R z T(R, f ( p ) ) ;  th' IS isomor- 

phism uses example (2) of Section 2.4. We shall generalize this situation by 
showing that a C"-map f :  M -P N between two manifolds induces a linear 
map df (p )  : T ( M ,  p) + T(N, f (p ) ) .  However, by means of coordinate functions 
this generalized situation reduces to that of the preceding section. 

Definition 2.21 Let M and N be C"-manifolds and let f :  M -P N be a 
C"-mapping. The differential off at p E M is the map 

43 : T ( M ,  P) -+ T(N,f(P))  

given as follows. For L E T(M, p) and for g E F(f(p)),  we define the action of 

df(P)(L) on g by 

[df(P)(L)l(d = L ( g  o f  1. 

REMARKS (1) We shall frequently use the less specific notation df for 
d f ( p )  when there should be no confusion. Also we shall use the notation 

Tf = Tf(P) = dfw 
and also call Tf(p)  the tangent map off at  p. This notation is very useful in dis- 
cussing certain functors on categories involving manifolds. 
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(2) We note that for g E F(f(p)) the function g of is in F(p) so the opera- 
tion L ( g  of) is defined. We must next show TfiL) is actually in T(N, f (p ) )  by 
showing it is a derivation. Thus for g ,  h E Cm(f(p)), 

Tf(L)(as + bh) = L ( 4 g  o f )  + 4 h  of)) 

= aL(g of) + bL(h of) 

= m . f i L ) l ( g )  + w ! W ) l ( h )  

and the product rule is also easy. 

The following result shows that df(p) is the correct generalization for 
Df(p) of Section 1.2, where f: U + W is a C"-map of an open set U in R" and 
W is some Euclidean space. 

Proposition 2.22 Let f: M + N be a Cm-map of C"-manifolds and let 
p E M. Then the map 

is a linear transformation; that is, Tf(p) E Hom(T(M, p), T(N, f (p ) ) ) .  Further- 
more if (U, x )  is a chart at p and ( V ,  y )  is a chart atf(p), then Tflp) has a matrix 
which is the Jacobian matrix off represented in these coordinates. 

TfW : T(M9 P) + T ( N f ( P ) )  

PROOF Let X, YE T ( M ,  p). Then for a, b E R and g E F(f(p)) we have 

[TfW + bY)I(g)  = + b Y ) ( g  of) 

= a m  o f )  + b Y ( g  o f )  

= [a Tf(X)  + b ~f(YY)l(g)  

so that Tf(uX + b y )  = a T f ( X )  + b T'( Y ) .  Next let x = (x ,  , . . . , x,) and 
y = (yl , . . . , yn) be the given coordinate functions so that we can represent 
f i n  terms of coordinates in the neighborhood V by 

Now let d/ax, = d i ( p )  and a/ayi = a , ( f ( p ) )  determine a basis for T(M,  p) and 
T(N, f (p ) ) ,  respectively. Thus to determine a matrix for Tf we compute its 
action on the basis a/&, in T ( M ,  p). Let 

i 

fk = yk . f = f k ( x l ,  . , . , x,) for k = 1, . . . , n. 

~-y(a/ax,) = c bji a p y j  

be in T ( N , f ( p ) ) .  Then we evaluate the matrix (bi,) using the fact that yk E 
F(f(p)) as follows 

a ! / a x i ( p )  = ai(p)(yk O f )  

= [Tf(ai(p))l(Yk) 

= bji a(yk)/aYj = bki  

i 

using a(yk)/+j = 6,. Thus (bii) = (dh/dx,(p)) is the desired Jacobian matrix. 
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Proposition 2.23 (Chain rule) Let M ,  N, and P be C"-manifolds and let 

f :  M + N  and g :  N - P P  

be Coo-maps. Then for p E M ,  

which is a composition of homomorphisms of tangent spaces. 

REMARKS (3) If U is open in a C"-manifold M ,  then U is a C"-sub- 
manifold such that the inclusion map i : U + M : x + x is C". Also for u E U, 

Ti(#) : T(U,  u) + T ( M ,  u) is an isomorphism and we identify these tangent 

spaces by this isomorphism. 
Many of the preceding results on submanifolds can be easily expressed in 

terms of tangent maps and are usually taken as definitions. Thus let M and 
N be C"-manifolds of dimension m and n, respectively, and let 

f : M + N  

be a C"-map. Then we have the following results. 
The inverse function theorem can be stated as follows: I f p  E M is such that 

Tf(P) : T ( M ,  P) + T(N, f (P) )  

is an isomorphism, then m = n and f is a local diffeomorphism. Thus there 
exists a neighborhood U o f p  in M such that 

(1) f( U) is open in N; 
(2) f: U + f ( U )  is injective; 

(3) the inverse mapf-' :f(U) -+ U is C". 

We now consider separately the injective and surjective parts of the above 
homomorphism TAP); this was discussed in Section 2.3. 

We have f is an immersion if and only if Tf(p)  is injective for all p E M .  In 
casefis injective, f is an embedding. A l s o f ( M )  is a submanifold of N iffis an 
embedding and iff(M) has a C"-structure such thatf:  M + f ( M )  is a diffeo- 
morphism. Thus from preceding results we have that the following are 
equivalent : 
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(1 )  Tf(p) is injective; 

(2) there exists a chart ( U ,  x) at p in M and a chart (V,  y )  atf(p) in N 
such that m In and x i  = y i  0 f for i = I , .  . ., m and y j  0 f = 0 f o r j  = m + 1, 

..., n; 
(3) there exists a neighborhood U of p in M and a neighborhood V of 

f(p) in N and there exists a C"-map g : V +  U such thatf(U) c V and g 0 f 

is the identity] U. 

A C"-function f: M + N satisfying (1) at p E M is called regular at p .  

Iff is regular at every p E M ,  then i t  is also called a regular function. 

We have f is a submersion if and only if Tf(p) is surjective for all p E M. 
Also the following are equivalent: 

(1) Tf(p) is surjective; 

(2) there exists a chart ( U ,  x) at p in M and a chart (V ,  y )  atf(p) in N 
such that m 2 n and x i  = y i  0 f for i =  1 , .  . ., n; 

(3) there exists a neighborhood U of p in M and a neighborhood V of 
f(p) in N and a Cm-map g : V-+  U such that f( U )  2 V and f o  g is the iden- 
tity I V.  

Using the surjective nature of T'(p) we reformulate Proposition 2.13 and 
construct submanifolds using the following version of the implicit function 

theorem: Letf: M + N be a C"-map of C"-manifolds and let m = dim M 2 
dim N = n. Let q E ~ ( M )  be a fixed element and let 

f -l(d = {P E M  : f ( p )  = 9.1. 

If for each p E f - l ( q )  we have Tf((p) : T ( M , p )  + T ( N , f ( p ) )  is surjective, then 
f - ' ( q )  has a manifold structure for which the inclusion map i : f -'(q) + M 
is C". Thus f - ' ( q )  is a submanifold of M .  Furthermore the underlying 
topology of the submanifoldf-'(q) is the relative topology and the dimension 
off-'(q) is m - n. 

Examples (1)  We next consider the special case o f f :  M + N where 
M = R or N = R .  First let N = R ;  that is, f E C"(M).  Then combining the 
notation of Sections 2.4 and 2.5 we have TAP) = @(p) and for X E  T(M,p)  

we have Tj (p ) (X)  E T ( R , f ( p ) )  E R .  Thus for u : R + R : t + t the coordinate 
tunction on the manifold R ,  we have for some a E R 

Tf(P)X = a(d/du) 

and as before a = a(d(u)/du) = [T'p)X](u) = X(u of) = X ( f ) ,  using u(t) = t. 

Consequently the map 

T ( R , f ( p ) )  + R : a(d/du) + a 
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is the isomorphism which yields 

?Xp) : T ( M ,  P) + R ; 

that is, which yields the cotangent space. 

(2) Next consider f: R + M formulated in terms of curves. Thus let 
I = (a, b) and let a : I + M be a Cm-curve which admits an extension ii : (a - E ,  

b + E )  -+ M (Definition 2.14). The tangent vector to a at t E Z is denoted by 

d( t )  and defined by 

%t)  = [Ta(t)l(d/d4, 

where u : R + R is the coordinate function discussed above. 
Now let X E  T ( M , p ) .  Then there exists a curve a : I +  M ,  where I is an 

interval containing 0 E R such that a(0) = p and d(0 )  = X, fox let ( U ,  x )  be a 
coordinate system at p with x(p )  = 0 and find a curve jl : R + x ( U )  c R" with 

B(0) = 0 and B(0) = [Tx(p)](X);  that is, B a straight line. Then a = x-' 0 a is 
the desired curve 

d(0) = [T(x- 0 P)(O)](d/dU) 

= T x - ' ( ~ ( p ) )  * B(O), using the chain rule and x ( p )  = 0 

= Tx-'(x(p)) ' [Tx (p ) ] (X)  = X 
and 

a(O) = x-'(/?(O)) = p .  

Also forfE F(p)  we have 

X(f) = WNf)  
= [ ( T a ( O ) ) ( 4 W l ( f )  = d/du(O)(f 0 a). 

Let (U, x )  be a chart on M and let a : (a,  b) -+ U c M be a Cm-curve as 
above. Then for t E (a, b) we can represent 

d ( t )  = [Ta(t)l(d/du) = c ak ak(a(t)) E T ( M ,  a(t))  

and evaluate the coefficients a, = a,(t) using the dual basis of differentials as 
follows. 

at = dx i (c  ak a k )  

= dxi(d) 

= dx,[da(d/du)], notation 

= d(x, 0 a)(d/du), 

= d/du(x, 0 a), 

chain rule 

where we use the definition of differential of a function applied to a tangent 
(note paragraph following Definition 2.19). Thus as in calculus the tangent 
vector to a curve a is obtained by differentiating its coordinate representation. 
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(3) Consider the special case when M = G =GL(n, R). We shall con- 
struct an explicit vector space isomorphism of g = gl(n, R )  onto T,(G). Thus 
for any fixed X E ~  let 

a : R + G : t - + e x p t X .  

Then a =  d and define an element X E T,(G) by 

Z ( f >  = Lw)(f) 
for any f E F ( I ) .  From the preceding example we actually have X E T,(G) 

since a(0) = I .  Next note that 

Now define the mapping 

c p : g + T , ( G ) : X + X ,  

where cp is well defined and for A’, Y E  g and a,  b E R we use Eq. (*) to obtain, 
for any f~ F ( I ) ,  

cp(aX + b Y ) ( f )  = U X  + b Y ( f )  

= [Qf(Z)l(ax + b Y )  

= @ f ( l ) ( X )  + bDfU)( Y )  

= a X ( f )  + bY((f)  

= [acp(X) + bcp(Y)l(f) 

so that cp is a vector space homomorphism. Next suppose X = 0 and let 
u l ,  . . . , urn (rn = n’) be coordinates in g ( zR”’) corresponding to a basis 
X I ,  . . . , X,,, of g. Let X = x i  X i  E Q  with cp(X) = X = 0 and let f i  = 

ui 0 log E F ( I )  as previously discussed. Then f i ( I )  = 0 and since X = 0, 

0 = Ifi 

= lim [fi(exp tX) -fi(Z)]/t, 

= xi 

Eq. (*) 
1-0 

so that X = 0 and cp is an isomorphism. We frequently omit this isomorphism 
and just use the most convenient identification for a given problem. 

Let . f :  G + G be a C”-automorphism of G = GL(V). Then from (4) 
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Section 1.6 we see that the "tangent map" Df(Z) is an automorphism of the 
Lie algebra g = gl( V) .  Thus relations on the Lie group are translated to  
relations on the Lie algebra by the tangent map. 

6. Tangent Bundle 

In this section we shall show how to make the collection of tangent spaces 
of a manifold into a manifold. We also discuss mappings of such manifolds 
and use them to define vector fields in the next section. 

Definition 2.24 Let M be a C"-manifold of dimension m and let 

which is a disjoint union. We call T(M) the tangent bundle of M .  

We now make T ( M )  into a manifold (Fig. 2.10). We shall frequently 
denote the points of T ( M )  by the pairs ( p ,  Y )  where p E M and Y E  T ( M ,  p ) ;  
thep is unnecessary in this notation but convenient. First T ( M )  is a Hausdorff 
space as follows. Let 

n : T ( M )  -+ M : ( p ,  Y )  + p  

be the projection map. For ( p ,  Y )  E T ( M )  let ( U ,  x) be a chart at p in the atlas 
d of M .  Then n- ' (V)  = ((4, X )  E T ( M )  : q E U } .  Now if (q, X )  E n-'(U), 

then in terms of coordinates x(q)  = (x , (q) ,  . . . , xm(q)) and X = 1 uj J/dxj(q), 
where a, = aj(q). The map 

4~ : n- ' (u)  4 Rzm : (4 ,  X )  -+ (X, (q) ,  * * * ,  Xm(q), a1 9 * am) 

is injective and there is a unique topology on T ( M )  such that for all ( U ,  x) E a?, 
the maps Cpu are homeomorphisms (why?). This topology defined by the sets 
n - ' ( U )  can easily be seen to be Hausdorff using the fact that M and R" are 
Hausdorff. Also note that since M has a countable basis of neighborhoods, 
then so does T ( M ) .  

Next we define a Cm-atlas on T(M)  so that the projection map 
n : T ( M )  -+ M is a C"-map. Thus for each ( p ,  Y) E T ( M )  let n - ' ( U )  be a 
neighborhood of ( p ,  Y )  where (U, x )  is a chart at p and let 4(V)  = : 
n- ' (U) + RZm be the above homeomorphism. We claim that (n- '(  U ) ,  +(V)) is 
a chart at ( p ,  Y ) .  Thus we must show any two such coordinate neighborhoods 
are compatible. Therefore, let (V, x), ( V ,  y )  be charts at p where the x and y 
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are C"-related by x =f(y)  on U n V ;  that is, j =  x o y - l .  Now in terms 
of coordinates let xk =fk(yl, . . . , ym), 

4 ( U )  = ( z I  9 * .  zm, zm+19 * - - ,  Z Z m ) ,  4 ( V )  = ( ~ 1 ,  . * * ,  w m ,  w m + l ?  . * * ,  ~ 2 m )  

where 

zi(q, X )  = xi (q)  for i = 1, . . . , m, 
for j =  1, ..., m, zj + m ( q ,  X )  = aj 

and similarly wi(q, X )  = yi(q) for i = 1, . . . , m and wi+,(q, X) = bi where 

X = C bi a/ayi(q>* 
Now for (q, X )  E n- ' (U) n C 1 ( V )  we have first for i = 1, . . . , m 

Zi(q3 X )  = xi(q) =fi(yl(q) ,  * * * 9 ym(q)) =f;:(wl(q, X ) ,  * * * 9 wm(q, X)) 
so that the first m coordinate functions are C"-related. Next for] = 1, . . . , m 
and for X = 1 ai a/ax,(q) we note that 

Zj+m(q, X )  = aj(q) = x ( x j )  = dxj (X)  

and similarly d y j ( X )  = wj+,(q, X )  f o r j  = 1,  . . . , m. Thus by the transforma- 
tion law for differentials (note remark following Proposition 2.18), 

zj + m ( q ,  = d x j ( x )  = 1 axj/ayk(q) & k ( x )  
k 

= z f j k ( y l ( q ) ,  * * * 3 y m ( q ) )  dyk(x) 

= Cfjk(Wl(q, 

k 

* * * Y w m ( q ,  x))wrn+k(q, x ,  
k 

which is a C"-relationship where f i k  = dfi/Jyk recalling x i  =fi(yl,  . . . , ym). 

Thus all the coordinates are compatible. The Hausdorff space T(M) with the 
maximal atlas determined by the above charts is a C"-manifold and we shall 
always consider the tangent bundle with this C"-structure. 

Finally we note that the projection map K : T ( M )  -+ M : ( p ,  Y )  + p  is C". 
For let (V ,  x) be a chart at p and let +(U)  = (zl  , . . . , zZm) be a coordinate 
system at ( p ,  Y) as above. Then in terms of coordinates, x i  0 n(q, X )  = zi(q, X )  
for i = I ,  . . . , m which shows that the coordinate expressions x i  0 II = z i  are 
C" (see Fig. 2.10). 

P M 

Fig. 2.10. 
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We now discuss real vector bundles [Lang, 1962; Loos, 19691. 

Definition 2.25 A vector bundle E over a C"-manifold M is given by the 

following. 

(a) E is a C"-manifold. 

(b) There is a C"-surjection n : E + M called the projection map. 

(c) Each fiber E,  = n-l(p)  has the structure of a vector space over R .  

(d) E is locally trivial; that is, there is a fixed integer n so that for each 
p E M there exists an open neighborhood U of p such that U x R" is diffeo- 
morphic to n-'(V) by a diffeomorphism 4 so that the accompanying diagram 
is commutative, where p r ,  is the projection onto the first factor; specifically, 

I/ x Rn - x - ' ( U )  
4 

U 

n 0 4(q, X) = q, Furthermore we require for each q E U that 4(q, ) is avector 
space isomorphism of R" onto E,  = x - l ( q ) .  

Examples (1) E = T(M) the tangent bundle where n = m and 

(2) Let M be a C"-manifold and let 

R" T ( M , p )  = E , .  

T * ( M )  = u {T*(M,  p ) }  : P E MI, 

which is called the cotangent bundle. Then analogous to the construction of 
T(M) we make T*(M) into a C"-manifold. Thus for E = T*(M) we see that 

T * ( M )  is a vector bundle and E, = n-l(p) = T * ( M , p ) .  

Definition 2.26 Let M and N be C"-manifolds and let E and E' be vector 
bundles over M and N,  respectively. A bundle homomorphism is a pair of 
(surjective) maps (F,  f) such that: 

(a) F :  E 4 E' and f: M + N are C"-maps; 
(b) the accompanying diagram is commutative; that is, n' o F = f 0 x. 

F 
E - E' 
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Thus for each p E M ,  F(rc-'(p)) c (n')- '( f(p)).  
E'l(p)  of the fibers is a linear 

transformation of the corresponding vector space structures. Also ( F J )  is a 

bundle isomorphism of E onto E' if it is a bundle homomorphism such that 
the maps F andfare  surjective diffeomorphisms. It is easy to see that in this 

case the pair ( F - ' , f - ' )  is a bundle isomorphism of E' onto E .  

(c) For each p E M ,  the restriction F : E ,  

Examples ( 3 )  Let g : M + N be a C"-map. Then we define the map 

where XE T ( M ,  p )  and therefore [ T ( g ) ( p ) ] ( X )  E T(N, g ( p ) ) .  Then (Tg, g) is a 
bundle homomorphism of T(M)  into T ( N )  because the diagram 

M - N  
(I 

is commutative and T ( g ) ( p )  : T ( M ,  p )  + T(N, g ( p ) )  is a vector space homo- 

morphism. 
Next note if we also have another C"-map h : L + M of manifolds, then 

g 0 h :  L +  N is a C"-map and 

T ( g  0 h )  = T(g)  0 T(h) : T(L) + T(N),  

so that (T(g 0 h),  g 0 h) is a bundle homomorphism. Thus Tcan be regarded 
as a covariant functor from the category whose objects are manifolds and 

morphisms are C"-maps into the category whose objects are vector bundles 
and morphisms are bundle homomorphisms [Loos, 19691. 

It will be easy to see later that if G is a Lie group, then the tangent bundle 
T(G) is a Lie group and is isomorphic as a vector bundle and as a Lie group 

to the Lie group g x G (semi-direct product) where g is the Lie algebra of G. 
Thus the tangent bundles which we want to consider are of a relatively 

simple nature. 

Exercise (1 )  Let M and N be C"-manifolds and let M x N be the 

corresponding product manifold. Show the tangent bundle T(M x N )  is 
bundle isomorphic to T ( M )  x T(N).  
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7. Vector Fields 

We have previously discussed the coordinate vector fields 8, = a/dx, and 
saw that they were functions defined on a neighborhood U of p E M which 
assigns to each q E U a tangent vector ai(q) E T ( M ,  q) .  

Definition 2.27 Let M be a C"-manifold and let T ( M )  be the correspon- 
ding tangent bundle. A vector field on a subset A c M is a map X : A -, T(M)  

such that x o X = idy I A .  Thus X assigns to each p E A a tangent vector X(q) ,  
where X(q)  E T ( M ,  q) ,  but such that p = idy(p) = (n 0 X ) ( p )  = x ( X ( q ) )  = q. 

That is, the tangent vector assigned to p by X is actually in T ( M ,  p ) .  Also X 

is a C"-vector field on A if A is open and if for eachfe Cm(A)  the function 
Xfis in C m ( A )  where we define Xfby the action of the corresponding tangent 
vector: (Xf)(p) = [ X ( p ) ] ( f ) .  Thus Xis C" on M if and only if X :  A4 + T ( M )  

is a C"-mapping of manifolds, 

Example (1) Let M = R2 and let A = B(0, r )  the open ball of radius I 

and center 0. Then with coordinates u l ,  u, on A a C"-vector field X on A can 
be written 

X = al(u, , u,) W u ,  + a,(% 2 4 m u ,  

where the al and a, are C"-functions on A as shown below. Thus a C"-vector 
field is a well-behaved variable tangent vector. 

REMARKS We now consider a vector field on M locally in terms of co- 
ordinates. Thus let ( U ,  x) be a chart on M with U open in M ,  then we have 
the following. 

(1) The coordinate vector fields d, = d/dx, are Cm-vector fields on U. 
This follows from the previous discussion: d,(p) E T ( M ,  p )  so that 
( 7 ~  0 a,) (p) = p .  Next if fe C"(U),  then g = S o  x- '  : x ( U )  -t R is C" on the 
open set x(U)  c Rm. Also d,(f) = i3g/dui 0 x is C" on U where u l ,  , , , , urn 

are coordinates on R". 

(2) If X is a Cm-vector field on U, then there exist functions a, E C"(V) 
such that X = a, 8, on U. Furthermore the ai = X(x,).  Thus the functions 
a, : U - ,  R exist because for each q E U, the tangents d,(q) ,  i = 1, . . . , m, form 
a basis of T ( M ,  q )  and X(q)  = a,(q) d i ( q )  for some a&) E R .  The a, are C" 
since dk(xi )  = 6,, and a, = 1 ak &(xi )  = X(x i )  which is in C"(U). Also note 
that if X is a C"-vector field on M ,  then the restriction XI U is a COD-vector 
field on U and has the above expression in coordinates. Thus summarizing 
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we see that a vector field Xis C" on M if and only if for every chart ( U ,  x) the 
corresponding component functions a, = X ( x i )  are in Cm(U). 

The following result is frequently taken as a definition [Helgason, 19621. 

Proposition 2.28 We have that X is a C"-vector field on M if and only 
if X i s  a derivation of the algebra Cm(M) into C"(M). 

PROOF For eachf, g E Cm(M) and a,  b E R the properties 

X(af+ bg) = Mf) + b W g )  and X(Sg) = (Wig + A X . )  

follow from the corresponding properties for tangents (Definition 2.16). Also 

by definition X is C" if and only if Xf E Cm(M). 

We have seen that a C"-vector field X on M restricts to  a tangent X ( p )  
and we now consider the converse of extending a tangent to a vector field. 

Proposition 2.29 Let M be a C"-manifold and let X E  T ( M , p ) .  Then 
there exists a vector field r7 which is C" on M such that x ( p )  = X. 

PROOF We can choose a chart ( U ,  x) at p such that X = 1 bi a i ( p ) .  Thus 

defining the constant functions a,  : U -+ R : q -+ bi we see that Y = a,  d i  
is a Cm-vector field on U such that X = Y ( p ) .  Now let 4 : M -+ R be a C" 

"bump function" at p ;  that is, from exercise (6) ,  Section 1.4 we have 
P E  D c  U, where D is an open neighborhood of p and the C"-function 4 
satisfies 0 I &x) I I for all x E M and $(q) = 1 if q E D and +(x) = 0 K 
x E M - U .  Then we define 

f = (y on U ,  

on M - U. 

Thus r?(p) = $ ( p )  Y ( p )  = Xand by construction i s  a Cm-vector field on M .  

Example (2) For the manifold G = GL( V )  we identified in Section 2.5, 
T,(G) with g = g&V) and for X E  g we define a C"-vector field x on G by its 
action on f E Cm(G) at p E G 

where L(p)  : G G : q -+ pq.  Then 8 is C" since the right side of the equality 
consists of C"-operations and note (ff)(Z) = X(f) SO that 8 ( Z )  = X. Also 
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x ( p )  = [TL(p)(l)]X€ T(G, p )  so that [n 0 Z](p) = p which shows x is a 
vector field. Using (*) of example (3), Section 2.5 we have 

(xf)(P) = X ( f 0  UP)) 
[f 0 L(p)l(exp tX) - [ f o  L(P)l(Z) 

= lim 
t+O t 

We shall let D ( M )  denote the set of all Cm-vector fields on M. Then we 
have the following algebraic results concerning these derivations 

Proposition 2.30 (a) D ( M )  is a Lie algebra over R relative to the 

(b) D(M) is a left F-module over the ring F = Cm(M). 

bracket multiplication [X, Y] = XY - YX. 

PROOF (a) Clearly if X, Y E  D(M) and a, b E R, then a X  + b Y E  D(M)  
by just checking the properties of a derivation. Next we shall show 
[X, Y] = X Y  - Y X  is a derivation 

[X, Yl(f9) = m Yf)9 +f( Y9)I - Y[(x.f>g +f(Xg>l 
= (XYflS + ( Yf) (Xg)  + (XfN y.1 +f(XYg) 

= ( [ X  YIf19 +f([X, Yld. 

- ( Wflg - (Xf)( Yg) - ( Yf)(Xg) - f( YXg) 

The multiplication [X, Y] is bilinear and satisfies [X, Y] = - [ Y, XI. Also the 
Jacobi identity 

[X ,  [ y, ZI] + [ Y, [Z, XI] + [z, [ X ,  YI] = 0 

is a straightforward computation which is always satisfied for the bracket of 

endomorphisrns. 

(b) It is easy to see that the various defining properties of a left module 
are satisfied; for example, (f+ g)X =fX + gX or (fg)X =f(gX) forfi g E F 
and XE D(M).  However, note that D ( M )  is not a “ Lie algebra” over F since 
for “scalars” fi g E F we do not obtain the correct action relative to the 
product 

[fX gY1 =fg[X, YI + f ( X g )  y - 9( Y f ) X  Z f g [ X ,  YI. 
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REMARK If for a chart ( U ,  x )  on M we let X = ai ai and Y = b i  d, 
be in D ( U ) ,  then for anyfe Cm(U), ( X Y ) ( f )  = X ( Y f )  E Cm(U) and 

k 

which shows X Y  is not a tangent vector. However because the order of 

differentiation can be interchanged, the second-order derivatives vanish in 

[X, YI. 

Example (3) Let u1 , u , ,  u3 be coordinate functions on M = R 3  and let 

x = u ,  a, - u ,  a,, Y = tl, d, - u1 a 3 ,  z = u1 a, - u2 a,. 

Then X ,  Y,Z are linearly independent (over R )  C"-vector fields and the 

vector space L spanned by X ,  Y ,  Z is a Lie algebra because the products 

[ X ,  Y l =  -2, [ Y , Z ] =  -X, [Z ,X]=  - y  

are all in L. 

Next we consider the action of a Cm-mapj :  M -+ N on vector fields. First 
we note thatfinduces a map Tf(p) : T ( M ,  p )  -+ T ( N , f ( p ) )  which maps tangent 
vectors into tangent vectors. However, in general, it is not possible to map 

vector fields on M into vector fields on N by Tf. Thus for any X E  D ( M )  
define the map 

TfV) : M -+ T(N)  : p -+ [Tf(P)lX(P) 

noting that [Tf(p)IX(p) E T ( N , . f ( p ) ) .  
One would like to use ( T f ) X  to define a vector field over N or even over 

f ( M )  by taking a point r = f ( p )  E Nand defining [ (Tf )X] ( r )  to be [Tf(p)]X(p). 

However, this is not always possible as shown by the following. Suppose 
p # q  but , f ( p )  =f(q). Let X E  D ( M )  be a Cm-vector field such that 
T f ( p ) X ( p )  # Tf(q)X(q) both of which are in T ( N , f ( p ) ) .  Then we can not assign 

a unique value to ( T f ) X  at r E N by the desired process. 

Exercise ( I )  I f f :  M 3 N is a diffeomorphism, then show that a vector 

field can be defined on N by the formula [(Tf)X] of-' : N + T(N). 

Definition 2.31 Letf: M -+ N be a C"-map and let X E  D ( M ) ,  Y E  D ( N )  

be vector fields. Then X and Y areflrelated if ( T f ) X  = Y 0 f; that is, for all 

P E M ,  Tf((P) * X(P) = Y(f (P) ) .  
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Definition 2.32 Let f: M -+ M be a C"-map and let XE D ( M )  be a 
vector field on M. Then X isf-invariant if X isfirelated to X .  Thus X ''corn- 

mutes" with the action off  by means of the formula TfX = X o  f; that is 

m J ) X ( P )  = X ( f ( P ) ) .  

Another way of viewing thef-invariance of X is by noting that Tf(p)X(p) 
and X ( f ( p ) )  are both in T ( M , f ( p ) )  so that the,f-invariance of X means they 
are equal. 

Example (4) For G = GL(V) and XEgf(V) we defined the vector 
field 8 on G by (xg)(p) = X(g o L(p))  where g E C"(G). Now for any a E G ,  

8 is L(a)-invariant. Thus l e t f=  L(a), then for any g E C"(G) 

[m(P)Rp)l(g) = 8?(P)(9 0.f) 
= [ R g  Of)l(P) 

= X((g 0 . f )  0 L(p)) ,  

= X(g 0 L(a) 0 L(p)) ,  

definition of 8 

usingf= ~ ( a )  

= X(g = ( m a p )  = [8(ap)l(g). 

Thus Tf(p)R(p) = r ? ( f ( p ) ) ;  that is, TL(u)x = 8 0 L(a). The vector field 8 is 
called left invariant or G-invariant and will be used in yet another definition of 
the Lie algebra of G. 

Proposition 2.33 Let X ,  and Y,  , Xz and Y, bef-related. Then [XI ,  X , ]  
is firelated to [ Y, , Y,]. 

PROOF Since the X ' s  and Y's aref-related we have using the paragraph 
following Definition 2.31 for any g E Cm(N) that 

YZ( YI d f ( P )  = X,( y, 9 " f ) ( P )  

= X, (X , ( s  Q f ) ) ( P )  = [ X ,  X , ( s  Of)l(P). 

Thus since a similar formula holds for Yl Y, we have 

([ YI 3 Yzlg)f(p) = ([XI 3 X,l(S O f ) ) ( P )  

so that [ Y, , Y,] is firelated to [XI ,  X,]. 
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Proposition 2.34 Let f: M + N be a C"-map. 

(a) I f f  is an immersion, then for every Y E  D(N) there is at most one 
X E D ( M )  such that X and Y aref-related. In this case the X E  D ( M )  exists 
if and only if for every p E M we have Y ( f ( p ) )  E Tf(p)T(M, p) .  

(b) I f f  is a surjection, then for every X E  D ( M )  there is at most one 
Y E  D ( N )  such that X and Yare f-related. 

PROOF (a) Let Y E  D ( N )  and let X ,  Z E  D ( M )  with Tf(p)X(p) = 

Y(f(p) )  = Tf(p)Z(p). Then since Tf(p) is injective X ( p )  = Z ( p ) ;  that is, X = 2. 

Now if X exists, then by definition Y ( f ( p ) )  = Tf(p)X(p) E Tf(p)T(M, p) and 
conversely one can define X by X ( p )  = TAP)-' Y ( f ( p ) )  and this defines a 
vector field on M .  

All that remains to show is that Xis  C". Now since Tf(p) is injective we 
have from Section 2.5 that forp  E M there is a chart ( V ,  y )  atf(p) in N so that 
( U ,  x )  is a chart at p where x i  = y ,  of for i = 1, . . . , rn. Now with these co- 
ordinates we let X = x a, d, on U, then for q E U we have 

ai(q) = X(Xi)(q) = [X(Yi of) l (q)  

= [ (TfX)(~i ) l (q)  = [ ( T f x ) ( q ) l ( ~ i )  

= [ Y ( f ( q ) ) I ( ~ i )  = [( Yyi) ofI(4) 

which shows a, is C" because Yyi andfare  C". 

The proof of (b) is a straightforward exercise. 

Exercises (2) Let f: M + M be a C"-map. Show that the set of f- 

(3) Let G = GL(V) and let p be an analytic multiplication on G ;  that is, 

invariant vector fields in D ( M )  is a Lie subalgebra of D(M) .  

p : G x G + G : (x, y )  + p(x,  y )  

is an analytic mapping of manifolds. Now form the differential 

T ,  : T(G, x) x T(G, Y )  + T(G, P ( X ,  y ) ) ;  

[ (TP)(X, Y)l(X, Y )  E T(G, A x ,  Y)) .  

that is, for X E  T(G, x )  and Y E  T(G, y )  we have 

(i) For X E T,(C) = gl (V)  show the map 

N P ,  X )  : G + T(G) : x + [ ( W ( X ,  I ) l (O,  X) 

is an analytic vector field on G if and only if p(x,  I )  = x for all x E G ;  

(ii) Similarly discuss the function 

0, X )  : G + T(G) : x + [(TPlV, x)l(X, 0); 
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(iii) In case p is the usual associative multiplication on G ,  compare the 
of example (2). 

(4) What can be said about a functionfe Cm(R") such that v;U, Y] = 

vector fields / (p,  X), r ( p ,  X), and 

f [ X ,  Y] for all Cm-vector fields A', Y E  D(R") (note Proposition 2.30)? 

8. Integral Curves 

Let a be a Cm-curve defined on (a, b) into M as discussed in Section 2.5. 
Then the tangent vector & ( t )  is given by &( t )  = [Ta(d/du)](t) E T ( M ,  a(t)). 

Thus d : (a, b) -P T ( M )  is a C"-map such that the accompanying diagram is 
commutative. 

M 

Definition 2.35 Let M be an rn-dimensional Cm-manifold and let X be 
a Cm-vector field on M. An integral curve of X is a C"-curve a : (a, b) --* M 

such that the tangent vector to a at each t E (a, b) equals the value of X at 
a(t); that is, d( t )  = X(a( t ) )  all t E (a, b).  Thus the accompanying diagram is 
commutative. 

(a, b) e T ( M )  

M 

In terms of a chart (U, x) of M we have from Section 2.5, 

d = c d(x, 0 a)/dt a, 

X = 1 a, aj 

and writing X in coordinates on U 
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we obtain a as an integral curve of X if and only if 

for i = 1, . . . , m. d(xi o a)/dt = ai(xl 0 a, . . . , x,, 0 a) 

We now summarize the facts we shall need concerning the solutions of 
such differential equations and the proofs can be found in the work of 
DieudonnC [ 19601 and Lang [ 19681. 

Proposition 2.36 Let U be an open subset of R", let P E  U ,  and let 

a,  E C"(U) for i = 1, . . . , m. Then 

(a) there exists an open neighborhood D of p with D c U ;  
(b) there exists an open interval ( -  E ,  E )  c R ;  
(c) there exists a C"-mapf: ( -  E ,  E )  x I) -+ U : ( t ,  w) -+f(t ,  w) such that 

for each w E D the function a, : ( -  E ,  E )  + U : t - + f ( f ,  w) with a, = ui 0 a, for 

i = 1, . . . , m satisfy 

( i )  dai/du(t) = ai(al(t) ,  . . . , a,(?)) all t E ( -  E ,  E ) ,  and 

(ii) ai(0) = wi where w i  = u,(w).  

Moreover if Z, : (- 6, E )  -+ U with ( -  E ,  E )  c ( -  E ,  E )  satisfies (i) and (ii), then 
ti, = a,\ ( -  E ,  E ) .  

Thus the unique solutions to the above differential equations depend in a 
Coo-manner on the initial conditions. We now translate these facts to mani- 

folds [Bishop and Goldberg, 1968; Singer and Thorpe, 19671. 

Theorem 2.37 (a) Let M be a C"-manifold and XE D ( M )  a C"-vector 

field on M and let p E M .  Then there exists an open neighborhood D of p 
in M and an open interval ( -  E ,  E )  c R and a C"-map f: (- E ,  E )  x D -+ M 

such that for each w E D the curve 

c(, : ( -  E ,  E )  -+ M : t +f(t, W) 

is the unique local integral curve of X defined on ( -  E ,  E )  with a,(O) = w. In 
particular ap is a local integral curve through  EM. 

(b) For each t E ( -  E ,  E )  the C"-map $( t )  given by $ ( t )  : D -+ M : w -+ 

f ( t ,  w) satisfies: 

(i) if s, t and s + t are in ( - E ,  E ) ,  then 4(s + t )  = &s) 0 &t) on 

(ii) if tE(-&,E),then$(t)- 'existson D n+(t)(D)and$(t)-'=$(-t). 
4(V1(D) n D ;  
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A map (p : ( -  E ,  E )  x D --t M such that (p(t) satisfies (i) and (ii) above is 

called a local one-parameter group on M .  

PROOF (a) Let (U ,  x) be a chart at p in M and let U’ = x ( U )  c Rm. 
Then on U’ we have X = C a , d ,  where U ~ E  C”(V’). By Proposition 2.36, 
there exist D’ c U‘ and (- E ,  E )  c R and f‘ : ( -  E ,  E )  x D‘ + U‘ with the 
desired properties which can be translated back to M by x-’. 

(b) We use the uniqueness part of Proposition 2.36 as follows. For fixed 
t E (- E ,  E )  the curves u(s) =f(s + t ,  w) and u(s) = f ( s ,  (p(t)(w)) are integral 
curves of X defined on a subinterval of ( -  E ,  E )  which contains 0 and by the 
initial conditions we have u(0) = u(0) =f(t, w). Thus by the uniqueness 
u = u ;  that is, $(s + t )  = $(s) 0 $( t ) .  Also 4(t)-’ = (p( - t ) .  

The preceding results on differential equations are also true when C“ is 
replaced by “analytic.” Furthermore, if the vector field depends analytically 
upon a parameter, then the integral curve does also as follows. 

Definition 2.38 Let M be an analytic manifold and let V be a Euclidean 
vector space over R. Let A denote an element in Vand let X ( A )  be an analytic 
vector field which is a function of A E V.  Then X ( A )  depends analytically on 

the parameter A E V if for any p E M and any function f analytic at p ,  the 
mapping Dom(f) x V - t  R : (4, A )  -t [ X ( A ) ( f ) ] ( q )  is analytic. 

Using the results of DieudonnC [1960] and Lang [1968] on this dependence 
we have the following. 

Theorem 2.39 Let M be an analytic manifold, Va Euclidean vector space 
over R ,  and X ( A )  an analytic vector field which depends analytically upon 
the parameter A E V.  Then for anyp E M ,  there exist an open interval (- E ,  E )  

c R and an open convex neighborhood U of 0 in V and an analytic map 
u : (- E ,  E )  x U + M : ( t ,  A )  4 u(t, A )  which is the unique local integral curve 
of X ( A )  through p E M .  

PROOF Since this is a local result, we can assume M is an open set in 
R” so that the vector field X ( A )  can be represented by analytic functions 
a,(x, A )  on M x V for i =  1, .  .., rn; that is, X ( A )  = E a , d  where 
a, : M x V - t  R are analytic. Thus we now have as before a system of (para- 
meterized) differential equations for the integral curve, and the results follow 
from DieudonnC [1960, Theorem 10.7.51, for example. 

Exercise (1) Show that the vector fields 8, /(p, X ) ,  and r(p, X )  in 
exercise (3), Section 2.7 depend analytically on the parameter X E  g l ( V ) .  
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Example ( 1 )  Let p = (0,O) E RZ = M with coordinates (u, , uz )  and 
let X = d,  + exp( - u2)  d 2  be a vector field on all of M .  Then the equation for 
the integral curve a is 

dul/dt = 1 and dccz/dt = exp( - a z ) .  

Let D = {(x, y )  E RZ : - 1 < y < 1)  be an open neighborhood of p and let 
E = e- ' .  Then for t E ( -  E ,  E )  and for w = (wl, wz)  E D, the C"-map 

f : ( - E ,  E )  x D + M : ( t , w )  + ( t  + w1 , log( t + exp wz)) 

is such that 

with 

a,(t) = (al(t), az(t)) 

a l ( t )  = t + w1 and q ( t )  = log(t + exp wz) 

is a solution to the above equation with cc,(O) = w .  

REMARK Theorem 2.37 gives only local existence and uniqueness of 
integral curves and it is not always possible to find global curves; that is, it is 

not always possible to extend the domain ( -  E ,  E )  to all of R. Thus, for ex- 
ample, let M = RZ - ((0,O)) with coordinates (u, , uz)  and let X = 8, , Then 
the integral curve a(t) of Xthrough (1 ,O)  is a(t) = ( t  + 1 , O )  which cannot be 
extended to a curve in M defined on all of R because (0,O) is not in M .  

Let M = RZ and let X = - uz 8, + u1 8, be a vector field on M .  Then the 
general form for the integral curve a,(?) is 

a,(t) = (w ,  cos t - w2 sin t ,  wz cos t + w, sin t )  

and a,(O) = w. Note that a,(t) is defined for all t E R .  

Definition 2.40 A vector field is complete if all its integral curves have 

domains all of R. 

Exercise ( 2 )  Show X =  - u z  d ,  + u1 d z  is complete on RZ. Is X =  

exp ( - ul) dl + d z  complete on Rz ? 

Examples ( 2 )  Let G = GL(V) and let g = gl (V)  be identified with 
T,(G). For X E g we have defined the G-invariant vector field R by (r?f)(a) = 

X ( f 0  L(a)) for all a E G and f E C"(G). Let E i ,  be the usual matrix basis of 
End( V )  which gives coordinate functions uij  on G; that is, uij(a) = (ai j ) .  We 
write r? = 1 X i j  d /du i j  so that X i j  = x(u i , )  are in C"(G) and we now compute 
the coordinate functions X i j .  

For a, x E G we have 
m 

(uij L(a))(x) = uij(ax) = uik(a)ukj(x), 
k =  1 
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using matrix multiplication. Thus applying X to this formula for ui j  0 L(a) we 
have 

x(uij "(a)) = x(c uik(aIUkj) 
k 

= uik(a)X(ukj) = uik(a)xkj > 
k k 

where we write X = c xij d/du,(I) E g and have xpq = X(upq) = Xpq(Z). Thus 
lettingf= uij in the definition of 8 we obtain 

Xij(U) = ( h i j ) ( U )  

= X(uij L(a)) = c uik(a)xkj 9 
k 

so that the equation for an integral curve a of x is 

d(uij 0 a)/ds = 1 (uik 0 c ( ) x k j  

From example ( 2 )  in  Section 2.7 on r? we have 

for i = I ,  . . . , m. 
k 

(Xf)(P) = df(P exp tX)/dt I f = 0 

so that for p = q exp sX we have 

(8f)(q exp sX) = df[q * exp(s + t )X] /d t  I = 

= df(q exp uX) /du  I u=s = df(q exp sX) /ds ,  

where associativity is used in the first equality. Thus for q = I andf=  uij  we 

have 

duij(exp sx)/ds = (Xuij)(exp S X )  = 1 uik(exp S x ) x k j  

using (*) above for the last equality. This shows that a(s) = exp sX is the 
solution of the equation for the integral curve of x 

daij/ds = c a i k x k j  and a(0) = I, 

where aij  = uij  0 a. In terms of the given matrix X = ( X i j )  this equation can 
be written: du/ds = aX which yields a(s) = exp sX which is a one-parameter 
group defined on all of R .  If the initial condition is changed to a(0) = A ,  then 
for we obtain the integral curve aA(s) = A * exp sX and aA(0) = A .  From 
this we see 8 is a complete vector field on G. 

(3) We now consider a Taylor's series expansion for a real-valued an- 
alytic functionfon the analytic manifold G = GL(V). Thus let X E g  and r? 
be as in the preceding example and let f be analytic at p E G. Then from this 
example we have 

k 

k 

d f ( ~  exp sX) /ds  = (Q) (P  exp S X )  = [RP exp s x ) I ( f )  

and by induction 

# f ( p  exp sx)/ds" = [8(p exp s ~ ) ] ( P - ' ( f ) )  = (Pf ) (p  exp SX). 
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Thus if we write g(s) = f ( p  exp s X ) ,  we have, since g is the composition of 
analytic functions, the power series in a suitable interval containing 0 E R 

where the a, E R are computed by differentiation as usual 

a, = d y ( p  exp sx)/ds”(  s = o  = ( X ” f ) ( p ) .  

Thus if we define the operator formula 

we obtain the following version of Taylor’s formula for GL(V)  

f ( P  exp 4 = [(exp S X > ( f ) l ( P ) .  

Exercise (3) ( i )  Consider the Coo-vector field on R 3  defined by 

N P )  = P2 ( ~ / d X , ) ( P )  + P3 ( d / d X , ) ( P )  + P1 ( a / a x , ) ( P )  

where p = ( p ,  , p 2  , p 3 ) .  Find the integral curve ~ ( t )  of X so that a(0) = 

Let the Cm-vector field on R 3  be given by Y ( p )  = p 1 p 2  ( d / d x 3 ) ( p ) .  
( - 1 ,  1, 1). 

Compute [ X ,  Y ] ( p ) .  
(ii) 



CHAPTER 3 

TOPOLOGICAL GROUPS 

In our previous discussion of some matrix groups it was observed that we 
were studying not only the group operations but also the continuity of these 
operations. Thus in this chapter we abstract the situation and consider groups 
which are topological spaces so that the group operations are continuous 
relative to the topology of the space. We then prove facts for these topological 
groups which indicate that much information can be obtained from a neigh- 
borhood of the identity element; this leads to local groups and local iso- 
morphisms. Next we consider topological subgroups, coset spaces, and normal 
subgroups. Finally, for connected topological groups, we show that any 
neighborhood of the identity actually generates the group as an abstract 

group. 

1. Basics 

In the next chapter, we shall apply the results of the preceding chapters to 
obtain elementary results on Lie groups. However, since a Lie group is a 
topological group, we shall briefly discuss this more general situation. 

Definition 3.1 A topological group is a set G such that: 

(a) G is a Hausdorff topological space; 
(b) G is a group; 

(c) the mappings G x G + G : ( x ,  y )  -+ xy and G + G : x + x-' are 
continuous, where G x G has the product topology. 

90 
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Thus the set G has two structures-topological and algebraic-and they 

are related by property (c); that is, the group structure is compatible with the 

topological structure. 
The compatibility conditions in (c) are equivalent to the following single 

condition: 

(c') the mapping G x G -+ G : (x, y )  -+ xy-' is continuous. 

This condition holds for if (c) holds, then we have that G x G -+ G x G : 
(x, y )  -+ ( x ,  y - ' )  is continuous. Consequently the map G x G -+ G : (x, y )  -+ 

(x, y - ' )  + xy-' is continuous. Conversely if (c') holds, then set x = e (the 

identity) to obtain y -, (e,  y )  -+ ey-' = y-'  is a continuous map. Also from 
xy = x(y-')-'the map (x, y )  4 xy is continuous. 

We can express (c) in terms of neighborhoods as follows. For any x, y E G 
and for any neighborhood W of xy  in G, there exist neighborhoods U of x and 
V of y with UV c W. Also for any neighborhood U of x-', we have U-' = 

{a-' : a E U }  is a neighborhood of x. Thus replacing x by x - l ,  we have if V is 
a neighborhood of x, then V-'  is a neighborhood of x-I. 

Definition 3.2 Let G be a topological group and let a E G. Then the map 

L(a) : G + G : x -+ ax 

is called a left translation. Similarly the map R(a) : G -+ G : x -+ xu is called a 
right translation. 

It should be noted that the maps L(a) and R(a) for a E G are homeo- 
morphisms of G. Furthermore given any two points x, y E G,  then the homeo- 
morphism L(yx-  ') maps x onto y. In particular, there always exists a homeo- 

morphism which maps e E G onto any other element a E G and using this, we 
shall see many of the local properties of a E G are determined by those of e. 
Thus, for example, U is a neighborhood of a E G if and only if U = L(a) V = aV 

where V is a neighborhood of e E G .  

Proposition 3.3 Let G be a topological space which is also a group. Then 

(a) the set {e}  is closed; 
(b) for all a E G the translations R(a) and L(a) are continuous; 
(c) the mapping G x G + G : (x, y )  -+ xy-' is continuous at the point 

PROOF Let a, b E G with a # 6.  Then we shall find disjoint neighborhoods 
of a and b as follows. Since L(a)-' = L(a-')  is continuous, L(a) is a homeo- 
morphism. Thus {a} = L(a){e} and {b} = L(b){e} are closed, and there exists a 

G is a topological group relative to these two structures if and only if: 

(e ,  el. 
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neighborhood U of b such that U n {a} is empty. Otherwise if U n {a} is not 

empty for every neighborhood U of b, then since {a} is closed, b = a. Now 
using (b) the neighborhood U = bV where V is a neighborhood of e. Thus 
from (c) and using e = ee-' we can find a neighborhood Wofe with WW-' c 
V .  We shall now show that a W n b W is empty, and therefore G is Hausdorff. 

Thus suppose x E a W n b W .  Then x = awl = bw, with wi E Wand therefore 

~ = b w , w ; ' ~ ( b W ) W - ' c b V c  U 

which contradicts U n {a} being empty. 
Next we shall show that the topology and group operations are compatible 

by showing the map G x G -, G : ( x ,  y )  + xy-' is continuous at any point 

(a, b) E G x G .  First we note that R(a)-' = R(a-')  is continuous, and there- 
fore R(a) is a homeomorphism. Now let W be a neighborhood of ab-'. Then 
a-' Wb = R(b)L(a)-' W is a neighborhood of e .  Using the fact that ( x ,  y )  -+ 
x y - I  is continuous at (e,  e), we let U and V be neighborhoods of e so that 
UV-' c u-'Wb. Then we have for the neighborhoods aU and bV of a and b 

that 

(aLl)(bV)-' = aUV-'b-' c a(a-'Wb)b-' = W ,  

and this shows continuity. The converse follows from various preceding 
remarks and is left as an exercise. 

Lemma 3.4 Let U be a neighborhood of e in a topological group G .  
Then there exists a neighborhood V of e such that V c  U,  V =  V-' 

(= { u - l  : u E V } )  and VV = VV-' c U. We shall call such a neighborhood V 

of e symmetric. Furthermore, in this case Vc U where Bis the closure of V. 

PROOF Since multiplication G x G --t G is continuous, there exists neigh- 
borhoods P and Q of e in G such that P Q  c U. Now let W = P n Q and 
V =  W n W - ' .  Then V is a neighborhood of e with V =  V-' and also 
VV c PQ c U. Next let x E V. Then xV is a neighborhood of x and conse- 
quently V n X V  is not empty. Thus for some u, u1 E V we have xu = u1 and 
therefore x = ulu-' E VV-'  c U. 

Exercise (1) Show in detail that the neighborhoods U and V in the 
above proof are such that V c U. 

Definition 3.5 A subset of a topological group G which contains an 
(open) neighborhood of the identity e is called a nucleus of G. 

Now since the topology of a topological group G is determined by the 
family of neighborhoods at  each of its points, we see by using the left or 
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right translations that the topology is determined by the family of nuclei of G 

as follows [Chevalley, 1946; Cohn, 19571: 

Proposition 3.6 Let Y be the family of all nuclei of a topological group 
G .  Then Y satisfies: 

(a) V l ,  V ,  E Y implies V,  n V, E Y ;  

(b) V ,  E 9'- and V ,  c W c G implies W E  V ;  
(c) for any V, E V ,  there exists V E  Y such that VV-'  c V, ; 
(d) if V E  Y and a E G, then aVa-' E Y ;  
(e) n { V :  VEV"} ={e}. 

Conversely, given a group G and a family of subsets Y of G satisfying 
(a)-(e), then there exists a unique topology for G relative to which G becomes 

a topological group and Y is exactly the family of nuclei for this topological 

group. 

PROOF Properties (a)-(e) are immediate and the converse can be regarded 
as a straightforward exercise. For example, define the topology on G by 

saying that W is open if x E W implies there exists V E  Y and X V  c W. The 
family of such sets W satisfies the axioms of a topology which makes 

G x G + G : ( x ,  y )  + xy- '  continuous. This topology is Hausdorff since { e }  
is closed: If a # e,  then a- l  # e and by (e) there exists V E  Y with a-' = 

u-' - e $ V. Thus e 4 aV so that a is not in the closure of { e } ;  that is, {e} is 

closed. 

Examples (1) The matrix groups of the preceding chapters are topo- 
logical groups, as are discrete groups: Let G be any group and let the topology 

be such that every subset of G is open; that is, the discrete topology. Then G 
is a Hausdorff space, and since G x G has the product topology (which is 

discrete), any map G x G + G is continuous. 

(2) The additive group of R with the usual metric topology is a topo- 
logical group. However, if the topology is changed to another topology where 
the half-open intervals [a, a + E )  with E > 0 are taken to be a neighborhood 
basis at a E R ,  then the operation R -+ R : x -+ - x  is not continuous at  0 E R 

so R, with this topology, is not a topological group. 
Let G, and G, be topological groups. Then the product space 

GI x G ,  with the product topology and the pointwise operations 

product group of G ,  and G ,  . This example can be generalized to the semidirect 

product of G ,  and G, as follows [Hochschild, 19651. Let Cp be a homomorphism 

of G ,  into the automorphism group of GI denoted by Aut(Gl). On the product 

(3) 

(xl, x 2 ) ( y I ,  y,)-' = (xlyl - I  , x2 y 2 - ' )  becomes a topological group called the 
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space G,  x G, ,  put the product topology and require that the map G, x G ,  + 

G ,  : ( y ,  x) -, 4 ( y ) x  be continuous. Then G ,  x G ,  with the product topology 
and product defined by 

( x ,  Y)(Xl ,  Y1) = (X[d)(Y)X,l, YY,)  

is a topological group called the " semidirect product " and denoted by 

GI x G,  . When the homomorphism d) : G2 -, Aut(G,) is such that 4 ( y )  is 
the identity, then we obtain the direct product. 

As an example of a product group we note that the unit circle S' = 

{eZnix : x E R }  is a topological group relative to multiplication in the complex 
numbers. Then the torus T" = S' x x S' as given in Section 2.1 can be 
regarded as a topological product group. 

Exercise (2) Let G = G ,  x o  G2 be the semi,direct product as in the 
above example (3). 

(a) Show the multiplication of G is associative. 
(b) What is the inverse of ( x ,  y )  in G? 

(c) Show Hl = G1 x 4 { e }  = { ( x ,  e)  : x E G,} is a normal subgroup of G .  
(d) Is H ,  = { e }  x G, necessarily a normal subgroup of G ?  

Definition 3.7 A local group is a Hausdorff space N such that: 

(a) there is a binary operation in N ,  ( x ,  y )  + x y  which is defined for 
certain pairs (x ,  y )  E N x N; 

(b) the operation is associative when defined. Thus if x ,  y ,  z E N and 
(xy)z,  x (yz )  E N ,  then (xy )z  = x(yz) ;  

(c) there exists an identity element e E N .  Thus for all x E N ,  xe and ex 
are defined and xe = ex = x ; 

(d) there exists an inverse operation in N ,  x -, x-' which is defined for 
certain elements x E N such that if x- l  is defined, then x x - l  and x - l x  are 
defined and xx- '  = x - l x  = e ;  

(e) the maps ( x ,  y )  -, xy  and x -, x-'  are continuous where defined. 

Thus if xy  = z is defined in N ,  then for any neighborhood U of I in N 
there exist neighborhoods V of x and W of y in N such that V W =  

{uw : u E V and w E W }  is defined and VWc U. Similarly for the map 

x + x - I .  

REMARK (1) Any open nucleus of a topological group is a local group, 
and we use local groups later in discussing Lie groups. 

Analogous to the proof of Lemma 3.4, we have the following result: 
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Proposition 3.8 Let N be a local group. Then there exists a neighborhood 
U of e i n  N such that: 

(a) (xy)z = x(yz) all x, y ,  z E U ;  
(b) xx-' = x-'x = e all x E U ;  
(c) ex = xe = x all x E U ;  

(d) for all x E U we have x- l  E U; 

where all the above products and inverses actually exist in N .  A neighborhood 
LI satisfying these conditions is called a germ of the local group N .  

Definitions 3.9 (a) The local groups N and N' are topologically iso- 

morphic if there exists a homeomorphismf: N 4  N' : x + f ( x )  such that the 

product xy is defined in N if and only if the productf(x)f(y) is defined in N' 

and in  this casef(xy) =f(x)f(y). 

(b) The topological groups G and G' are locally isomorphic if they have 
open nuclei which as local groups are topologically isomorphic. 

Example (4) The topological groups R and the torus T' have neighbor- 
hoods Nand N' of the respective identities which are topologically isomorphic 

as local groups. Thus R and 7'' are locally isomorphic but not isomorphic 

as groups. 

REMARK (2) In the definition of a topological group, we assumed the 

topological space G to be Hausdorff. However, using the group structure of 
G, we can start with weaker separation axioms for G and obtain stronger 

separation theorems than being Hausdorff. Good accounts of these theorems 

can be found in the work of Hewitt and Ross [I9631 and Montgomery and 

Zippin [1955], and we now summarize some of the results. 

Definitions (a) A topological space M is a To-space if for any given pair 

of distinct points x, y E M ,  there exists an open set U of M which contains 
one of these points but not the other. A To-topological group is a group G 

which is a To-space and such that the map G x G - ,  G : (x, y )  -, xy-' is 
continuous. 

(b) A metric (or pseudo-metric) d on a group G is left invariant (respec- 
tively right invariant) if for all a,  x, y E G we have d(ax, ay) = d(x, y) [respec- 
tively d(xa, ya)  = d(x, y ) ] .  If d is both left and right invariant, then d is called 

two-sided invariant or just invariant. 

Theorem Let G be a To-topological group. Then G is metrizable if and 
only if there is a countable (open) basis at the identity e E G .  If this is the case, 

then the metric can be taken to be left invariant. 
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Corollary Let G be a T,-topological group such that every point of G 

has a neighborhood U so that D is countably compact; that is, every countable 
open covering admits a finite subcovering. Then G has a left invariant metric 
which yields the original topology if and only if {e} equals the intersection of a 
countable family of open sets. 

Corollary Let G be a To-topological group which is compact and such 
that { e }  equals the intersection of a countable family of open sets. Then G has 
an invariant metric which yields the original topology of G. 

Definition A topological space M is a T,-space if for distinct points 
x # y in M ,  there exists an open set U with x E U but y 4 U, and there exists 
an open set V with y E V but x # V. 

Exercise (3) Show that a T,-topological group is a TI-space. 

Definitions Let M be a T,-space. Then: 

(a) M is regular if for every closed set F in M and every x 4 F, there 
exist disjoint open sets U and V such that x E U and F c V ;  

(b) M is completely regular if given any x E M and given any closed set F 
with x 4 F, there exists a continuous function g : M + [0, I ]  such that 
g(x) = 0 and g(F) = 1 ; 

(c) M is normal if for every pair of disjoint closed sets F, and F2 in M ,  
there exist disjoint open sets U, and U2 of M such that F, c U ,  and F2 c U2 ; 

(d) M is paracompact if every open covering of M has a locally finite 
refinement. Recall that an open covering % is locally finite if for each x E M, 
there exists an open set V(x) which contains x and such that 

{ U E : U n V(x) # $} is a finite set. Also recall that a locally finite refine- 
ment means that if % is any open covering, then there exists a locally finite 
open covering Y such that V E  Y implies there exists U E % with V c U. 

We have (d) implies (c) implies (b) implies (a). 

Theorem Let G be a T,-topological group. Then G is completely regular 
and consequently Hausdorff. 

Theorem Let G be a locally compact To-topological group. Then G is 
paracompact and consequently normal. 

There exist To-topological groups which are not normal topological spaces 
[Husain, 19661. 
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2. Subgroups and Homogeneous Spaces 

We shall consider subgroups H of a topological group G and the cor- 
responding space of left cosets G/H = { a H  : a E G}. Then we eventually con- 
sider the case when His  a normal subgroup so that G/H becomes a topological 

group. 

Definition 3.10 Let G be a topological group and let H be a subset of G 
such that HH-'  c H.  Then H is a subgroup of G (in the abstract sense). The 
topology of G induces a topology on the subgroup H by requiring U c H to 
be open if and only if U = H n V where V is open in G. If with this induced 
topology, the subgroup H becomes a topological group we call H a  topological 

subgroup. 

REMARK (1) We shall be interested in closed subgroups H of G; that is, 
H is closed as a subset of G. However, we note that if H is an open subgroup of 
G, then H is closed. For, since H is open, so is aH for all a E G. Therefore 
K =  U ( a H  : a $ H )  is open so that the complement of K ,  which is H ,  is 
closed. 

Exercise (1) If H is a subgroup of the topological group G, then show 
its closure B is also a subgroup of G. More generally, one can show that for 

subsets A ,  B of a topological group G that 2 B c z, (2)-' = (7') and 

aAb = aAb for all a, b E G. 

Theorem 3.11 Let H be a topological subgroup of the topological 
group G and let z : G + G / H :  a + a H  be the natural projection. Then 

(a) G / H  can be made into a topological space such that: 

( i )  the projection I[ : G --t G / H  is continuous, and 
( i i )  if N is a topological space and if f :  G / H +  N is such that f 0 II : 

G + N is continuous, thenfis continuous. 

The topology defined on C / H  is uniquely determined by (i) and (ii) and is 
called the quotient topology. 

GIH with the quotient topology is such that z is an open map; that is, 
U is open in G implies z(U) is open in GIH. 

The quotient topology is Hausdorff if and only if H is a closed subset 

of G.  

(b) 

(c) 

PROOF We define the topology on G/H by requiring a subset U of G/H 

to be open in G / H  if and only if the inverse image z - ' (U)  is open in G. Then 
the axioms for open sets of a topology in G / H  are satisfied. Furthermore, if U 
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is open in G/H, then by definition n- ' (U) is open in G so that n is continuous. 
To prove (ii), let f o  n : G + N be continuous and let W be open in N .  Then 
(fo n)-'( W) = n-'(f-'( W)) is open in G.  Thus by definition of the quotient 

topology,f-'(W) is open in G/H so thatfis continuous. 
Let F be the topology given above on G / H  and let Y' be any other topo- 

logy on G/H satisfying (i) and (ii). Let f be the identity map of G / H  with 
topology Y onto G/H with topology F'. Then f o  n is continuous since 
f 0 n(a) = aH = n(a) and Y' satisfies (i) for n : G + G/H. Thus since G / H  
with topology Y satisfies (ii) where N = (G/H,  Y'), we see thatfis contin- 
uous. Interchanging the roles of Y and F', we obtainf-' is continuous so 
that the identity map f is a homeomorphism; that is, Y = Y'. 

Next, to show that n is an open map, we note that if U is open in G, then 

Ua is open for all a E G.  Consequently UH = u { Ua : a E H }  is open in G.  
However, since UH = n-'[n(U)], we have by the definition of the quotient 
topology that n(U)  is open in GIH. 

For (c), we note that G/H being Hausdorff yields the fact that { eH}  is 
closed in GIH. This implies H = n-'{eH} is closed in G because n is contin- 
uous. Conversely, suppose H is closed in G and let aH # bH in GIH. Then 
a 4 bH. Thus since bH is closed, there exists a neighborhood U of e in G such 
that Ua is a neighborhood of a in G and Ua n bH is empty. From Lemma 3.4, 
there is a neighborhood Vof e such that V-' V c U and consequently (Va)H = 

V(aH) and V(bH) are neighborhoods of aH and bH, respectively. This uses 
n : G + G / H  as an open map and Va and Vb as neighborhoods of a and b in 
G. These neighborhoods are disjoint, for if p E V(aH) n V(bH), then p = 

uah = ulbhl for u, u1 E V and h, hi E H. Therefore q = u;'ua = bhlh-' is in 
Ua n bH, a contradiction. 

Definition 3.12 A subgroup H is a normal subgroup of G if aHa-' c H 
all a E G and then G / H  is a group relative to aH * bH = abH which is called 
the quotient group. 

Corollary 3.13 Let H be a closed normal subgroup of the topological 
group G and let GJH be the quotient group. Then relative to the quotient 
topology, G / H  becomes a topological group such that the projection n : G + 

G/H is an open continuous homomorphism. 

PROOF It suffices to show that 

G / H  x G / H  + G / H  : (aH, bH) -+ ab-'H 

is continuous. Let U be a neighborhood of ab-'H = n(ab-') in GIH. Then 
n- ' (U) is a neighborhood of ab-' in G .  Now there exist neighborhoods Vof a 
and W of b in G such that VW-' c n-'(U). However, since n is open, n( V )  
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and n( W )  are neighborhoods of aH = .(a) and b H  = n(b), respectively. Thus 

n( V)[n( I+')]-' = n(VW-')  c U which proves continuity. 

Corollary 3.14 If H is an open normal subgroup of the topological group 
G, then G/H is discrete. 

PROOF Since H is open, the cosets aHfor  a E G are open in G.  Thus since 
n is an open map, the sets { a H }  in G/H are open. Therefore G / H  is discrete. 

Corollary 3.15 Letf: G + G be a homomorphism of topological groups. 
Then f is continuous if and only iff is continuous at the identity e E G.  

PROOF Assumefis continuous at the identity. Let a E G and letf(a)D be 
a neighborhood off(a) in G where 0 is a neighborhood of t? in G.  Since f is 
continuous at e E G and since t? = f ( e ) ,  there exists a neighborhood U of e in 
G such thatf(U) c D which proves continuity at a since aUis  a neighborhood 
of a in G withf(aU) c f ( a ) D .  

Using the preceding results with the isomorphism theorem for groups, we 
have the following result which we leave as an exercise [Cohn, 19571. 

Theorem 3.16 Let f: G --t be a continuous homomorphism of the 
topological groups G and G and let H = { x  E G : f ( x )  = t?} be the kernel off 
where 2 is the identity of G .  Then: 

(a) His  a closed normal subgroup of G and K : G -+ G / H  is a continuous 
homomorphism ; 

(b) there is a continuous monomorphism g : G/H -+ G such thatf= g 0 K ;  

(c) let Hand  N be closed normal topological subgroups of G such that 
N c H. Then G/H is topologically isomorphic to (G/N) / (H/N) .  

Example (1) Let R be the additive group of the reals with the usual 
metric topology and let Z be the additive subgroup of the integers. Then Z is 
closed in R and the quotient group is topologically isomorphic to the multi- 
plicative group of complex numbers of absolute value 1 denoted by T' or S' ; 

that is, the one-dimensional torus. Then R/Z is frequently called the (one- 
dimensional) torus group or the group of reals modulo 1. The above iso- 
morphism uses the fact that the map f: R + S' : x -+ eln ix  is a continuous 
epimorphism with kernel Z .  Thus, from Theorem 3.16, S' is topologically 
isomorphic to R/Z .  

Exercise (2) Generalize the above example by finding an explicit homo- 
morphism f: R" -, T" of the topological groups. What is the kernel of this 
map ? 
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Definition 3.17 Let M be a Hausdorff topological space and let G be a 

topological group. Then: 

(a) G operates on M if there is a surjection 

G x M - t  M :  (g, p )  -t g * p 

such that (g1g2) * p = g1 * (g2 * p) and e * p = p for all gl, g2 E G and p E M 

where e is the identity of G. 

(b) G operates transitively on M if for every p, q E M, there exists g E G 
such that g * p = q. 

(c) G operates continuously on M if the map G x M -t M : (9, p )  -t g p 
is continuous. 

(d) G is called a topological transformation group on M if G operates 
continuously on M. [Note that for each g E G, themap r ( g )  : M -t M : p -t g * p 

is a homeomorphism.] 

(e) G is effective if a * p = p for all p E M implies a = e. 
(f) Let p be fixed in M. Then G(p) = {g E G : g p = p} is a group called 

the isotropy subgroup of G at p or fixed point subgroup at p. The set G - p = 

{g p E M : g E G} is called an orbit under G. 

Exercise (3) If G acts transitively on M, then for given p, q E M the 
isotropy subgroups G(p) and G(q) are conjugate in G. 

Example (2)  Let G be a topological group and let H be a closed sub- 
group. Then the space M = GIH is a Hausdorff space according to Theorem 
3.1 1 and G operates continuously on M by the map G x M -+ M : (9 ,  x H )  -+ 

( g x ) H .  For each g E G the map ?(g) : M -t M : x H  + gxH is a homeomorph- 
ism, and using this, we see G acts transitively on M. The coset space M = G/H 
is called a homogeneous space. 

Exercise (4) Show that G is effective on GIH if and only if H contains 
no proper normal subgroup of G. 

Theorem 3.18 Let M be a Hausdorff space and let G be a transitive 
topological transformation group operating on M. Let p be some (fixed) 
point in M and let G(p) be the isotropy group at p .  Then G ( p )  is a closed 
subgroup of G, and the map f: G -t G p : a -, a . p induces a continuous 
bijection f : G/G(p) -t M such that $ 0  n = f; that is, the accompanying dia- 
gram is commutative. 
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PROOF First, since G is transitive, the orbit G * p equals M. Next, since 
the mapf: G + M : a --$ a p is continuous and { p }  is closed in the Hausdorff 
space M ,  we have G ( p )  = f - ' ( p )  is closed. 

Now note that for a E G and h E G ( p )  we havef(uh) = ah * p = a * (11 * p )  = 

a * p =f'(a).  Thus the map 

.f : G/G(p) -+ M : aG(P) +f(4 

is actually a well-defined function, for if aG(p) = bG(p), then b = ah for some 
h E G(p)  and thereforef(b) = f ( a h )  = f ( a ) .  Next f i s  bijective sincef(a) =f(b) 
implies a-'b * p = p and therefore a-'b E G ( p ) ;  that is, aG(p) = bG(p). 

Finally, since we clearly havef= f a  7c and since f: G + M is continuous, we 
have from Theorem 3.11 that f is continuous. 

Corollary 3.19 If 3: G/G(p)  + M is open or if G/G(p) is compact, then f 
is a homeomorphism; that is, M is a homogeneous space. 

PROOF I f f  is open, then by definition of continuity f- '  is continuous. 
If G/G(p)  is compact, then we use the following general results: Let S be a 
compact space and let T be a Hausdorff space. Then any continuous bijection 
g : S + T is a homeomorphism [Singer and Thorpe, 1967, p. 241. 

REMARK (2) If G is compact, then M is a homogeneous space, for in 
this case G/G(p)  is compact since 7c : G + G/G(p) is continuous. Note there is 
almost a converse statement: If His  a closed compact subgroup of G such that 
G/His compact, then G is compact [Chevalley, 1946, p. 31 ; Hochschild, 1965, 

P. 81. 

Corollary 3.20 If G is a locally compact group with countable basis and 
if M is a locally compact Hausdorff space, then f is a homeomorphism of 
G/G(p)  onto M .  

The proof of this can be found in the work of Helgason [1962, p. 11 11. 

Example (3) For n 2 2, let S"-' = {x E R" : ((XI( = 1) be the unit sphere 
where llx112 = B(x, x) is the usual inner product on R". Let G = O(n) = 

( A  E GL(n, R) : B(Ax, A x )  = B(x, x) all x E R"} and let p = (1, 0, . . . , 0 )  E S"-'. 
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Then O(n) operates continuously and transitively on 5'"-' by the map 

O(n) x sn-' -+ sn-' : (A ,  x )  -+ Ax. 

From this we see that Ap = p if and only if 

where B E  O(n - 1) so that we obtain G(p) = O(n - 1). Thus using O(n) is 
compact [exercise ( 5 )  below], its continuous image O(n)/O(n - 1) is compact 
and therefore O(n)/O(n - 1) is homeomorphic to S"-'. 

In the work of Chevalley [1946, p. 321 it is similarly shown that some of 
the other groups discussed in Section 2.3 also yield homogeneous spaces 
which are homeomorphic to spheres. For example, if n 2 2, then we also have 
SO(n)lSO(n - 1) is homeomorphic to S"-'. 

Exercise ( 5 )  Show O(n) is compact possibly as follows. First using the 
above representation of O(n) in terms of B, show O(n) is a closed subset of 
End(R"). Next using AA* = Z, show O(n) is bounded; thus it is compact. 

3. Connected Groups 

In this section we shall show that much of the topology and many other 
relations are determined by the connected component of the identity element 
of a topological group. 

Definition 3.21 Let M be a topological space and let p E M .  Then p is 
contained in a unique maximal connected subset C(p). This set C(p) is closed 
and is called the connected component of p .  For M = G a topological group, 
the connected component of the identity e E G is called the identity component 

of G and is denoted by Go.  

Theorem 3.22 Let G be a topological group, and let Go be the identity 

(a) Go is a closed normal topological subgroup of G and the connected 

(b) If G is locally connected (that is, if every point a E G has a connected 

component. Then : 

component C(a) of a E G equals aGo ; 

neighborhood), then G/G, is discrete. 
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PROOF First, since Go is the component C(e), we have Go is closed. Next 
let a E Go. Then since multiplication is continuous, a-'Go is connected and 
contains e. Thus a-'Go is a connected set containing e, and since Go is the 
maximal connected set containing e, we have a-'Go c Go so that Go is a 
subgroup. Also for any x E G we see x-'Go x contains e and is connected. 
Therefore x-'G0 x c Go so that Go is normal. 

Next since x --f ax is a homeomorphism of G, then aGo is connected and 
contains a so that aGo c C(a). Also a-'C(a) is connected and contains e so 
that a-'C(a) c Go ; that is, C(a) = aG,.  

For (b), let G be locally connected so that there is a connected neighborhood 
U of e in G. Then since n is an open map, n(U) is a neighborhood of eGo in 
G/Go . However, since U is connected we have U c Go so that n(U) = {eG,}. 
Thus {eG,} is open so that GIG, is discrete. 

Proposition 3.23 Let G be a topological group, let Go be the identity 

(a) If U is a symmetric neighborhood, then H = up=l U k  is an open and 

(b) Go = (u?=l uk) n Go. 
(c) If G is connected, then G = Ukm,' Uk.  Thus any open neighborhood 

of eis a set of generators of a connected topological group as an abstract group. 

component, and let U be any open neighborhood of e E G. 

closed subgroup of G .  If U is connected, so is H, 

PROOF (a) If Uis symmetric, then for x E Urn, y E U", we have xy E Urn+" 

and x-l  E ( U - l ) m  = Urn so that H is a subgroup. Next since U is open, 
U 2  = U {aU : a E U} is open and by induction U k  is open. Thus H is an open 
subgroup. However, from remark (1) of Section 3.2, H is also closed. If U is 
connected, then so is each U k  and therefore H is connected (using e E Uk). 

(b) Let V be a symmetric neighborhood of e such that V c  U and let 
W = V n Go, Then W is a symmetric neighborhood of e in Go and H = u W k  c [) V k  n Go. However, H is a nonempty open and closed subgroup 
of Go and since Go is connected we have Go = H. Since u V k  c Uk, we 

obtain the result. 

(c) Part (c) follows from (b) since G = Go. 

Definition 3.24 Let G be a topological group. Then the center C of G 
equals { x  E G : xa = ax for all a E G}. The center is a normal subgroup of G 
and is also denoted by Z(G). 

Proposition 3.25 Let G be a connected topological group and let H be a 
discrete normal topological subgroup of G. Then H c C, the center of G.  
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PROOF Let a E H .  Then the map G +  H :  x + x - ' a x  is continuous. 
However, since G is connected and H i s  discrete, the image is a single point 
p E H.  In particular p = e-'ae = a so that x- 'ax  = a for all x E G; that is, 
H c C. 

Proposition 3.26 Let G be a topological group and let H be a closed 

topological subgroup such that H i s  connected and G/H is connected. Then G 
is connected. 

PROOF Let Hand G/H be connected and assume G = U u V where U and 
V are nonempty open sets. The open map n : G + G / H  maps U and V onto 
open sets U, = UH and V ,  = VH in GIH. Since G = U u V ,  we have G/H = 

U1 u V,, and since G/His connected, there exists aH E U, n Vl = UH n VH.  
Thus aH E UH yields h E H with ah = u E U. Thus aH n U is not empty. 
Similarly aH n V is not empty. However, since G = U u V ,  we have a H  = 

(aH n U) u (aH n V ) ,  and since H i s  connected and aH is homeomorphic to 
H, we have a H  is connected. Thus (aH n U) n (aH n V )  is not empty. This 
implies U n V is not empty so that G is connected. 

Definition 3.27 A topological space M is locally Euclidean of dimension 
m if each point p E M has a neighborhood which is homeomorphic to an open 
set in R". Note that an open subset of R" cannot be homeomorphic to an open 
subset of R" if m # n. 

Examples (1) The torus T' = R/Z is connected and R is connected, but 
Z is not connected. Thus the connectedness of a subgroup H cannot be 
deduced from that of G and G / H .  Also note T' is locally Euclidean of dimen- 
sion 1. 

(2) Using the result that the sphere S"-' is connected and from Section 
3.2 that SO(n)/SO(n - 1) is homeomorphic to S"-', we shall show SO(n) is 
connected. Consequently, since SO(n) is actually a C"-manifold, we have 
from Proposition 2.15 that SO(n) is path connected. First note that SO( 1) is 
just the identity linear transformation I. Assume SO(n - 1) is connected. Then 
since SO(n)/SO(n - 1) is connected (because it is homeomorphic to S"-l) we 
have by Proposition 3.26 that SO(n) is connected. Also we previously noted 
that O(n) is not connected, but note that SO(n) is the identity component of 
O(n) and the order of O(n)/SO(n) is 2. Thus O(n) has two components, one 
which consists of matrices of determinant -1 and the other is SO(n). In a 
similar manner, it is shown by Chevalley [1946, p. 361 that various other 
matrix groups are connected. 



CHAPTER 4 

LIE GROUPS 

We now discuss some elementary results of Lie groups which can be easily 
done without introducing the Lie algebra. First we see that a Lie group is a 
topological group which is an analytic manifold so that there is compatibility 
between the topological, manifold, and group structures. Next we give results 
which tell when a topological group is a Lie group and when a local group 
generates a Lie group. Finally we discuss Lie subgroups and when an abstract 
subgroup can be considered as a Lie subgroup. 

1. Basic Structures 

In this section we give the basic definitions for a Lie group and show how 

the analytic structure of a Lie group is uniquely determined. 

Definition 4.1 

(a) G is a group; 

(b) G is an analytic manifold; 
(c) the group multiplication in (a) of the product manifold 

A Lie group is a set G such that: 

p :  G x G - + G : ( x , y ) + x y  

and the group inversion operation in (a) 

I : G -+ G : x -, x - ~  

are analytic functions relative to the structure in (b). 

105 
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REMARKS (1) A Lie group is, in particular, a topological group relative 
to the topology induced by its analytic structure, and the question arises 
when is a topological group actually a Lie group. This is discussed by 
Montgomery and Zippin [1955, p. 1841, and among the many results is the 
following : A connected locally Euclidean topological group is isomorphic to 
a Lie group. 

(2) The fact that i : G + G : x -+ x - l  is analytic follows from (a) and 
(b) and p : G x G + G is analytic by using the implicit function theorem. 
Briefly, let (U, x )  be an analytic chart at e in G and for u, u in a suitable open 
nucleus V c U, we have that x i  0 p(u, u) = pi@, u) defines an analytic function 

with pi(u, e) = pi(e, u) = u i .  Thus D , ( x  0 p)(e, e) = (3pi/3xj(e, e)) = (ai j ) .  By a 
variation of the implicit function theorem, the equation x 0 p(z, 0)  = x(e) has 
a solution z = B(o) in some neighborhood of e where 0 is actually analytic; 
that is, Bi = xi 0 0 are analytic. However, zu = e has the solution z = 0 - l  so 

that the map tr + u - l  is analytic at e. Now by using the analyticity of the left 
and right translations (from p : G x G + G is analytic), we have 1 is analytic 
on all of G. 

Examples (1) The matrix groups GL( V ) ,  SO(n, R), etc. previously con- 
sidered are Lie groups. Also the torus T' and more generally T" is a Lie group. 

For this, we use x +  eZnix is analytic and so is the multiplication 
p(e2nix, = e 2 n i ( x + ~ )  . N ext use the fact that if G1, . . . , G, are Lie groups, 
then GI x x G,, with the product group and analytic structure is again a 
Lie group which we leave as an exercise. 

(2) If G is a discrete topological group, then e has the open neighborhood 
{e} which is homeomorphic to Ro = (0); that is, a discrete topological group 
can be considered as a zero-dimensional Lie group and conversely. 

(3) Let R denote the manifold of the real numbers with the usual co- 
ordinate u : R + R : t + t and define 

p : R x R + R : (x ,  y )  + ( x 3  + y3) l I3 .  

Then (R, p) is a topological group but not a Lie group, since p is not analytic 
at (0, 0) relative to the above coordinate. 

Exercise ( I )  Show that R with the above multiplication p becomes a 

Lie group relative to the analytic structure on R given by u : R -+ R : t + t 3 .  

We now consider the existence and uniqueness of an analytic structure 
determined by a nucleus. 

Proposition 4.2 Let G be a connected topological group with multiplica- 
tion p(s, 1 )  = st, let (U, x) be a chart at e in G, and let V c U be an open 
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nucleus such that p( V, V) c U. If the function x 0 p is analytic on V x V, then 

there exists a unique analytic structure d on G which makes G into a Lie 
group Y such that ( W, x )  E d where W is a suitable open nucleus contained 

in U. In this case the topology induced by the analytic structure on 9 equals 
the original topology of G. 

PROOF First we define the analytic structure d on G. Let the nucleus V 
be as above and let W be an open nucleus such that WW-' c V. Then since 
e E W we note W c V c Uand for any a E G we have a W is a neighborhood of 
a in G. Now (W, x)  defines an analytic chart at e E G and we now define 
coordinates on the neighborhood a W by 

y : a W + x ( W )  : au+x(u). 

Thus since x( W )  is open in R", we obtain a chart (a W, y ) ,  where for p E a W 

we have y (p )  = x 0 L(a)-'(p). Furthermore since x : W + R" is analytic so is 

y :aW- ,R" .  
We shall next show that these charts a Wwith a E G are actually analytical- 

ly related. Thus they form an analytic atlas &l which covers G, and we obtain 

an analytic structure by taking the maximal atlas d which contains 9. So 
suppose (a W,  y) and (b W, J )  are charts, and let p E a W n b W. Then we must 
show y 0 1-' and J 0 y - '  are analytic. We have from p = p(a, u) = au E aW 
and p =  bvE bW that b-'a = vu-l E WW-'  c V .  Therefore the map 

L(b-'a) : V +  U :  z + p(b-'a, z )  is analytic on V by hypothesis. Next we have 
from y = x 0 L(a)-' and 1 = x 0 L(b)-' that 

1 o y-' = x o L(b)-' o L(a) o x-' = x 0 L(b-'a) 0 x-' 

is an analytic function from x( W )  c R" into x(V)  c R". Similarly y 0 jj-' is 

analytic. 
By definition, the chart (W, x )  is in the analytic structure d defined above. 

Let Y denote the analytic manifold G with the analytic structure d.  Then by 

definition of d the map L(a-') is an analytic diffeomorphism which maps a 
neighborhood of a E 59 onto a neighborhood of e E 9. Consequently, since the 
multiplication p is analytic at (e, e) E Y x 9, it is analytic on all of 59 x Y; 
that is, Y is a Lie group; (see exercise (2) below). 

The analytic structure d on the Lie group 9 is unique, since it is completely 
determined by the given chart (U, x )  at e E G. Thus if another open nucleus 
W, c U determines an analytic structure dl on G using the coordinate map 
x; then by considering W n W,,  we see that the identity i : 9 + Yl and its 
inverse i : 9, + Y are both analytic, where 9' is the group corresponding to 
the analytic structure d, on G. Finally the map i : G -+ Y is a homeomorphism 
at e and therefore everywhere; that is, the topology induced by the analytic 
structure on Y equals the original topology on G. 
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Definition 4.3 Let G and G1 be Lie groups. Then the map 4 : G + GI is 
an analytic homomorphism if 4 is an analytic mapping which is a homo- 
morphism of the groups. Thus 4 is an analytic isomorphism if 4 is an analytic 
homomorphism such that 4-l exists and 4 and 4-l are both analytic 
(diffeomorphisms). 

REMARKS (3) From Proposition 4.2, we see that in a topological group 
a chart at e E G with local analytic multiplication determines a unique Lie 
group structure. Now suppose that two charts at e are given such that the 
multiplication p is analytic relative to these charts. Then possibly two distinct 
analytic structures dl and d, can be determined which give rise to two Lie 
groups Y1 and Y2.  However, we shall show that this is not possible by eventual- 
ly showing continuous isomorphisms of Lie groups are analytic isomorphisms. 
Thus the analytic structure is completely determined by the topology. 

Exercise (2) Show in detail that the multiplication p in the proof of 
Proposition 4.2 is analytic at  any point (a, b) E Y x Q possibly as follows. First 
show inversion I : Y --+ Y : x -+ x-' is analytic at e. Using this and Y is con- 
nected, show for any a E Q that R(u) = i 0 &-') 0 i is analytic at e. Next 
observe the map a x fi : Y x Y + 9 x Y : (x, y )  -+ (u-'x, yb-')  is analytic and 
use the factorization p = R(b) 0 L(u) 0 p 0 (a x /I) and p is analytic at (e, e) 
to show p is analytic at (a, b). 

2. Local Lie Groups 

We now consider local groups which are manifolds and use these to also 
determine Lie groups. Since we are considering locally Euclidean groups, we 
shall henceforth assume nuclei to be connected. 

Defmition 4.4 A local Lie group is a set B such that: 

(a) B is a connected analytic manifold; 
(b) B is a local group relative to the topology induced from the analytic 

structure in (a); 

(c) there is an open germ U of the local group B such that for the multi- 
plication function p in B, the map p : U x U + B : (x, y )  -+ p(x, y) is analytic. 

REMARK (1) As discussed for Lie groups, a local Lie group defines an 
analytic inverse operation i : W -+ W : x + x-' defined on a suitable open 
neighborhood W of e in U. 
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(2) An analytic vector field yields a local one-parameter group $ on an 

(3) An open nucleus of a Lie group is a local Lie group. 

analytic manifold M and 4 is a local Lie group. 

Definition 4.5 (a) Two local Lie groups, B,  and B, , are locally analyti- 

cally isomorphic if there exists a local isomorphism f: B, --* B, such that f 
and f -' are analytic. 

(b) Two Lie groups G and G' are locally isomorphic if they have open 
nuclei which as local Lie groups are locally analytically isomorphic. 

Example (1) An open neighborhood B,  of e in the torus T' and an open 
neighborhood B, of 0 E R yield locally analytically isomorphic local Lie 

groups, but T' and R are not isomorphic Lie groups. 

Related to Proposition 4.2 is the following result [Cohn, 19571 

Proposition 4.6 Let G be an abstract group and let B be a subset of G 

such that: 

(a) B generates G as a group; 
(b) B is a (connected) local Lie group relative to the multiplication in G. 

Then there is defined on G exactly one analytic structure d which makes G 

into a connected Lie group 9 so that: 

(i) the group structure of 9 is the group structure of G ;  

(ii) for some open nucleus U of B with coordinate map x, the chart 
(U ,  x) E d.  

Corollary 4.7 Let G be a connected topological group which is a (top- 

ological) manifold and let $ : G x G -+ G : (x, y )  -+ x y - '  [= p(x ,  y - ' ) ] .  Let U 
be an open neighborhood of e which has a given analytic structure so that the 
map $-'(I!/) n (U x U )  + U :  (x, y) -+ xy-' is analytic. Then there exists a 
unique analytic structure d on G relative to which G becomes a Lie group Q 
such that the topology of G equals the topology of 9 and the analytic structure 
of Y restricted to a suitable open nucleus V c U is equivalent to the given 

analytic structure on U. 

PROOF (of Proposition 4.6) First we define the topology on Gas follows. 

Let V be the family of nuclei of B, and let W = { W c G : W n B E V} .  Then 
W is nonempty, since V c W and W satisfies the conditions of Proposition 
3.6 as follows. Conditions (a) and (b) are clear. For (c), let W, E W so that 
W, n B E  V .  Then there exists V E  Y c W with V V - '  c W, n B c W,.  For 
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(d), let WE W and a E G. Then since B generates G as a group, we can write 
a = a, - a, where a, or a;' is in B. Now since a;'eai = e and Wis a neighbor- 
hood of e, we have by continuity of the multiplication that there exists V,, E V 
with a;' V,, a,, c W. Similarly there exists V,,-' E Y such that 

an->l V,,-la,,-l c V,, , and by induction, there exists Vk E Y such that 
aL'Vka,t Vk+,fOrk=l ,  ..., n-1.Thus 

a-'V,a = a;' ... a;'V1a1 * . .  a, 

c a,' * .  * a;' V,a2 - * * a, 

c a,'V,a,, c w. 
Thus Vl c a Wa-', and since Vi E Y c W ,  we have by condition (b) applied 
to  W that a Wa-' E W ,  Condition (e) holds for W ,  since it holds for V .  Thus 
by Proposition 3.6, G becomes a topological group with W as a family of 
of nuclei. 

Now the topology defined on G by W restricts to the original manifold 
topology given on B. For V c W and, conversely, any W E  W contains a set 
W n B which is in Y .  Therefore W is a nucleus of G. Thus the topological 
group operations on (G, W )  are actually analytic near e so that by Proposition 
4.2, G can now be defined to be a Lie group Y [noting by Proposition 3.23(a), 
B generates G so that G is connected]. 

3. Lie Subgroups 

We shall now define the concept of a Lie subgroup of a Lie group G and 
note that this concept differs from a topological subgroup because a Lie 
subgroup need not have the induced topology. 

Definition 4.8 Let G be a Lie group and let H be a Lie group. Then H i s  a 
Lie subgroup of G if H is an analytic submanifold of G and if H is a subgroup 
of G. 

Examples (1) The torus T2 is a Lie group when regarded as a product 
group T' x T' and has as a submanifold the " irrational wrap around " curve 
as discussed in Section 2.3 (see Fig. 4.1). This curve is given by f ( t )  = 

(exp 2ziat, exp 2nibt), where a/b = c1 is irrational. As we saw, this curve is a 
one-dimensional submanifold which is dense in T2,  and since f(s + t )  = 

f ( s ) f ( t )  in T2,  it is therefore a Lie subgroup which is not closed. This Lie 
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Fig. 4.1. 

subgroup does not have the induced topology since there are points on the 
curve which are arbitrarily close in the topology induced from T2 but are 
arbitrarily far apart in the topology of the curve. 

(2) The integers Z are a zero-dimensional Lie subgroup of R. 

Exercise (1) Every discrete subgroup of a Lie group is a closed Lie 
subgroup (Hint: {e} is a neighborhood of e.) 

We shall now give various criterion for a subgroup to be a Lie subgroup 
and we need the following result [Helgason, 1962, p. 781. 

Lemma 4.9 Let M and N be C" (analytic) manifolds, and let f: M +  N 
be a C" (analytic) mapping such that f ( M )  is contained in a submanifold P. 
If the map f: M P is continuous, then this map is also C" (analytic). 

PROOF We shall show this as follows. Let the accompanying diagram be 

f 
M - N  

P 

commutative, where f is C", F continuous, and i an immersion (since P is a 
submanifold). Then by the remarks following Proposition 2.23, for each p E P 
there is a neighborhood U of p, and a neighborhood V of i (p )  E N and a 
C"-map g : V + (I so that g 0 i = identity) U. Thus since f = i 0 F, we have 

locally that 

F =  identity 0 F =  g 0 ( i o  F )  = g 05 

and since the right side is a composition of Cm-functions, F is C". In partic- 
ular, letting F = f and i be the identity; that is, letting P be a submanifold, we 
obtain the result. 
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Proposition 4.10 Let G be a Lie group and let H be a submanifold of G 
which is also an abstract subgroup of G. If H is also a topological group 
(relative to the topology induced from its analytic structure), then H is a Lie 
subgroup of G. 

PROOF It suffices to show H is a Lie group and this follows from the 

preceding lemma. The mapping f: G x G --t G : ( x ,  y )  -+ xy- '  is analytic and 
its restriction fH : H x H + G is also analytic. Now since H is a topological 
group, the map fH : H x H +  H is continuous. Thus by Lemma 4.9, fH is 
analytic so that H is a Lie group. 

The next result follows from previous facts. 

Proposition 4.11 Let G be a Lie group and let H be a connected topo- 
logical subgroup of G. Then there is at  most one analytic structure d ( H )  on H 
which makes H into a Lie subgroup of G. 

We now give some computational results which determine Lie subgroups. 

Proposition 4.12 Let H be a Lie group which is an abstract subgroup of 
the Lie group G. Assume at the identity e E G there exist an analytic chart 
(17, x )  in G and an analytic chart ( V ,  y) at e in H such that xi I H = yi and 
(dyi/dxj(e)) has rank equal to  the dimension of H. Then H is a Lie subgroup 

of G. 

PROOF We first translate the charts at e to any point U E H  by theanalytic 
diffeomorphisms L(a) (of H and G) so that we can now apply Corollary 2.12 
to obtain H is a submanifold. 

This result can also be stated in terms of local Lie groups which generate 
a subgroup. 

Corollary 4.13 Let G be a Lie group and let B be a local Lie group relative 

to the group operations in G. If there exist charts (U, x )  at e in G and (V,  y )  at 
e in B such that x i  I B = yi and rank (dy,/dx,(e)) = dim B, then the subgroup H 
generated by B is a connected Lie subgroup of G. 

We now note that the topological and manifold structure is mostly in the 
identity component. This will also become more evident when the Lie algebras 
are also taken into consideration. 
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Proposition 4.14 Let G be a Lie group and let Go be the identity compo- 

(a) Go is an open normal Lie subgroup of G ;  

(b) T(G, e) = T(Go, e) and therefore dim G = dim Go ; 
(c) G/Go is a Lie group which is discrete. 

PROOF Since G is locally Euclidean, it has a connected open neighborhood 
U of e in G and from Proposition 3.23, U generates a connected subgroup H of 
G .  Since Go is the identity component, we have by maximality that Go 2 H. 
However, H contains the neighborhood U of e in Go and Go is connected. 
Therefore Go = H .  Now Go contains the neighborhood U of e and U is open 
in G so that any a E Go is in the open neighborhood aU. Thus Go is open in G.  
This means Go is an open submanifold of G so that dim G = dim Go and 
T(G, e) = T(Go, e). Also by Theorem 3.22, G/Go is discrete. 

nent of G (as a topological group). Then: 

REMARKS ( 1 )  If G is a connected Lie group and H a proper Lie sub- 
group, then dim H -= dim G for otherwise H contains an open nucleus of G 

which generates G ;  that is, G = H .  

(2) We shall show later that if G is a Lie group and if H is a closed sub- 
group of G, then H is a Lie subgroup of G .  Thus the previously discussed 
subgroups O(n), SL(n), and Sp(n) are all closed Lie subgroups of GL(n, R ) .  

We shall consider later normal Lie subgroups when we discuss homo- 

morphisms. 
(3) 



CHAPTER 5 

THE LIE ALGEBRA OF A LIE GROUP 

We have seen from previous examples that the tangent space T(G, e) of a 
Lie group G can be used to give local information about G. In this chapter we 
formalize this situation by introducing the set of G-invariant vector fields 
Y ( G )  and seeing that it is a vector space which is isomorphic to T(G, e). Also 
Y ( G )  is a Lie algebra over R and induces a Lie algebra structure on T(G, e). 

Using this we define the exponential map exp : Y ( G )  -+ G in terms of homo- 
morphisms of R into G. The exponential map is a local diffeomorphism 
exp : U, + U, of a suitable neighborhood Uo of 0 in Y ( G )  onto a neighbor- 
hood U, of e in G. Using the inverse function log : U, + Uo we define canoni- 
cal coordinates (U, , log) at e in G. Thus by the action of L(a) : G + G : x -+ ax 

we obtain coordinates at any point a E G. 
The exponential map is used to obtain a local representation of the multi- 

plication in G analogous to the results of Section 1.6. Thus for X and Y 
sufficiently near 0 in Y ( G )  we can write exp Xexp Y = exp F(X,  Y) where 
F: Y ( G )  x Y ( G )  + Y ( G )  is analytic at (0,O) E Y ( G )  x Y ( G ) .  We show that 
the terms Fk(O, O)(X, Y) (k)  of the Taylor’s series for F are in the subalgebra of 
Y ( G )  generated by Xand Y. We briefly discuss the actual formula for F(X, Y) 
which is known as the Campbell-Hausdorff formula. Finally we show that a 
continuous homomorphism of Lie groups is analytic. This yields the fact that 
the analytic structure of a Lie group is uniquely determined by its topology. 

114 
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1. The Lie Algebra 

We now introduce the Lie algebra of a Lie group G in terms of invariant 
vector fields. Thus the Lie algebra will be determined by the tangent space 
T(G, e) and the action of G determines the values of the vector fields at any 
other point in G. 

Definition 5.1 An analytic vector field X E D(G) defined on a Lie group 
G is called invariant if for all a E G 

[(7ua))(e)lX(4 = x(4. 

Thus as in Section 2.7 we have that since (TL(a))(e) : T(G, e)  + T(G, a), then 
the value [(TL(a))(e)]X(e) actually equals X(a). 

Next we note that if Xis invariant, then Xis  L(a)-invariant for all a E G ;  

that is, X is actually G-invariant or left invariant according to Section 2.7. For 
let p E G, then 

X ( W ) P )  = X(ap)  = [(T@p))(e)lX(e) 

= [T(L(a) O L(p))(e)lX(e) 

= [TW)(P)l . ( W p ) ( e ) ) ( X ( e ) )  

= T W ) ( P )  * X(P) 

which gives the result. 

Proposition 5.2 Let G be a Lie group, let X E  T(G, e), and let 

r? : G + T(G) : p + r?(p), 

where T(G) is the tangent bundle of G with projection map n and x ( p )  is given 

by 

(2.m) = Vf-0 U P ) )  

wherefis any real-valued analytic function on G. Then x i s  a G-invariant ana- 
lytic vector field on G such that r?(e) = X .  Furthermore f is the unique 
G-invariant vector field on G such that 8 ( e )  = X .  Thus any G-invariant 

vector field is of the form r?. 

PROOF Letting TL(p) = TL(p)(e) we first note that ( x f ) ( p )  = (TL(p)X)( f )  
so that x ( p )  E T(G, p )  and therefore (n o f ) ( p )  = p .  Thus r? is a vector field 
on G. Since r?(p) = TL(p)X we have r?(e) = X and the above computations 
show r? is G-invariant. For the uniqueness we use Proposition 2.34 with 
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f = L(a) for any a E G or directly as follows. Let Z be a G-invariant vector 
field with Z(e) = X. Then Z(p)  = TL(p)(e)Z(e) = TL(p)(e)X = r?(p). Finally 
we shall show x" is analytic and derive another formula for it. Thus let 
a : I +  G : t + a(t) be an analytic curve on an interval Z containing 0 E R so 
that ci(0) = X [= x"(e)] and a(0) = e. Then analogous to the results in Section 
2.7 we use the results on curves in Section 2.5 to obtain 

(x"?f)(P)  = X ( f 0  L(P)) 
= ~ / 4 0 ) ( f o  U P )  a> = ~ / d t [ f ( P a ( m , = o  (*I 

where pa(?) is the analytic product in G. Thus sincef, a, and the multiplication 
in G are analytic we have r? f is an analytic function; that is, r? is analytic. 

Let Y ( G )  denote the set of G-invariant vector fields on G. Then from the 
above result we see that 9 ( G )  consists of all vectors of the form r? for 
XE T(G, e). From x"(p) = TL(p)(e)X and TL(p)(e) being injective we obtain 
the following. 

Corollary 5.3 The map 4 : Y ( G )  --f T(G, e) : r? + X is a vector space 
isomorphism. In particular, the dimension of Y ( G )  over R equals the dimen- 
sion of G and is finite. 

Corollary 5.4 Y ( G )  is a Lie algebra relative to the bracket operation 
[Z, Y] = XY - YX, 

PROOF This follows from Proposition 2.33. 

Definition 5.5 (a) The Lie algebra of a Lie group G is the Lie algebra 
9 ( G )  of G-invariant vector fields on G. 

(b) The Lie algebra g with product [ I B  is homomorphic to the Lie algebra 
h with product [ ] h  if there is a vector space homomorphism 4 : g 4 h such that 
6 [ X Y ] ,  = [+X+Y]h for all X ,  Y E  g. If is a vector space isomorphism, then 
g and h are isomorphic Lie algebras. 

By means of Corollary 5.4 we can make T(G, e) into a Lie algebra as 
follows. Let X ,  Y E  T(G, e) and let x", P E B(G) as above. Then define the 

product [XY]  = [r?, P](e) which is in T(G, e) and makes T(G, e) into a Lie 
algebra. This yields the following. 

Corollary 5.6 The map (p : Y ( G )  + T(G, e) : x" -+ X is a Lie algebra 

isomorphism. 

Frequently the Lie algebra T(G, e) is also called the " Lie algebra of G." 
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Example ( I )  Let G = GL( V ) .  Then from Corollary 5.6 we have the map 

4 : 2 ( G )  + T(G, I )  is a Lie algebra isomorphism using the product [ X Y ]  = 

[r?, 8](1) in T(G, I ) .  However, we also have the Lie algebra g f ( V )  attached to G 

and we now show that 9 ( G )  is isomorphic to g f ( V )  as Lie algebras. Recall 
from example (3), Section 2.5 that for each A E gl (  V )  we defined an element 

A E T(G, I )  by 

(Ah) = [Dh( l ) ]A ,  

h analytic at I .  The map g f ( V )  -, T(G, I )  : A -, A is a vector space isomorphism. 

Thus we obtain a vector field A" in  8 ( G )  and consequently a vector space 
isomorphism g f ( V )  -+ Y ( G )  : A 47. We now show this is a Lie algebra 

isomorphism; that is, [A, 81 = [=I. Usually T(G, 2) and g f (  V )  are considered 

the same and the overbar is omitted as done before but we shall not do this 
now. Let p E G, and A ,  B E  gZ( V ) .  Then using L(p)A = p A ,  the product in 
End( V ) ,  we have for fanalytic on G 
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Interchanging A and B, subtracting the equations, and using the fact that 
D2f(p) is symmetric we obtain 

(2s - m ( f ) ( P >  = Df(P)(PAB - P W  

= Df(P)(P[A B1) 

= " l - 0  L(P))(Ol[A, BI 

= [ A , I ( f o  L(P)) 

= ([Zl)(f )(P) 
which proves the result. 

Exercises (1) Let C be a Lie group with group multiplication p : 
G x G + G and consider the tangent map (Tp)(a, b) : T( G, a) x T(G, b) -+ T(G, 
p(a,b)) as in exercise (3), Section 2.7. From that exercise we obtain vector 

fields given by 4p, X>(a> = [(Tp)(a, e)l(o, Wand ~ ( p ,  W a >  = K T p k  a)l(X, 0)  
for X E T (C, e) and 0 E T(G, a).  

(i) Are the vector fields l (p ,  X) or r ( p ,  X) left invariant or right invariant 
under the action of G; that is, invariant under the set of functions L(G) or 
R(G)? 

(ii) If they are invariant, how do they compare with the vector field 
given in this section? 

(2) Let G and H be Lie groups with Lie algebras g and h. Then as in 
Section 4.1, the product group G x H is a Lie group. Show g x h with the 
pointwise operations is the Lie algebra of G x H ;  that is, use the product 

(3) Let W(C) be the set of vector fields which are R(G)-invariant. Show 
W(G) is a Lie algebra. How is it related to .Y(G)? [Possibly consider R(a) 0 I = 
1 0 L(a-')  and [Tz(u-')]f(u-')]. 

(4) Show the vector field X E ~ ( G )  depends analytically on the para- 
meter X E  T(G, e) (see Section 2.8). 

KXl, YdX, 3 Y2)l = ([XlX,l, Wl Y21). 

2. The Exponential Map 

In this section we generalize the map exp : g l (V)  -, GL(V) to the map 
exp : Y ( G )  -+ G which allows us to coordinatize G so that the multiplicative 
properties of G are nicely translated into properties of the Lie algebra 9 ( C ) .  

First let us recall the function exp : gl(V) --f GL(V) as discussed in Chapter 1. 
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We saw that there exist neighborhoods U, of 0 in g/( V) and U, of I in GL( V )  

so that exp : U ,  + (I, is an analytic diffeomorphism. Also for any X E g1( V )  

and s, t ,  s + t near enough 0 E R we have exp sX, exp t X  defined, and 
exp(s + t ) X  = exp sX. exp t X  in GL(V). Thus identifying X with x in 
8 ( G L (  V)) we have the fact that 4(t) = exp t X  is a local one-parameter group 
on GL(V)  determined by X (see Section 2.8). Furthermore we saw that 4 is 
actually defined on all of R; that is, 4 : R -P GL( V) is an analytic homo- 
morphism of Lie groups. 

Now for an arbitrary Lie group G we would like to start with an arbitrary 

G-invariant vector field E Y ( G ) ,  form the local one-parameter group 4(t) 
determined by R, and then extend # ( t )  to a global one-parameter group 
6 : R -, G. Using this we define exp .f = $(1) which is consistent with the 
results for GL(V) .  Thus in this section we shall first consider the extension 
problem so that the exponential map can be defined as described. It should be 
noted that there are many other possible approaches to this definition depend- 
ing on the properties one wants to assume [Chevalley, 1946; Helgason, 1962; 

Loos, 19691. 

Lemma 5.7 Let V =  R” be the rn-dimensional vector space with the 
usual Euclidean topology and let B be an open ball with center 0 E V. Let G be 
a topological group and let 4 : B -, G be a continuous local homomorphism 
of the additive group structure of V ;  that is, if x ,  y ,  x + y E B, then $(x + y) = 

4 ( x ) # ( y )  in G. Then there exists a unique continuous homomorphismf: V -, G 

such that f l  B = 4. 

PROOF Let x E V and let p be a positive integer such that x/n  E B for all 
n 2 p .  Then we setf(x) = ~ ( X / P ) ~ .  We now showfis well defined; that is ,f is  
a function. Thus let q be a positive integer such that x/n E B for all n 2 q. Then 

4 ( X l P d P 4  = [4(y/qNP, where Y = X/P E B 

= [4(y/q) - . * 4(Y/dlP 
= [dJ(y/q + * - + Y / d I P  = 4(X/P)”, 

so that interchanging p and q we obtain d(x/p)‘ = 4(x/q)q. Thus the definition 
offis independent of the choice of p so thatfis a function. Next, for x, y E V, 

let p be such that x / p ,  y / p ,  and (x + y ) / p  E B. Then since $(x /p )4 (y /p )  = 

4((x + Y Y P )  = 4((Y + X Y P )  = 4(Y/P)4(X/P> we obtain 

f ( x  + Y )  = [4((x + Y)/P)lP 

= “4P)4(Y/P)lP 

= 4(x/P)p4(Y/P)p = f ( X > f ( Y ) .  

Thus f: V +G is a homomorphism. 



120 5. THE LIE ALGEBRA OF A LIE GROUP 

We now showfl B = 4 .  Thus let x E B with p as above so that x / p  E Band 

x = x / p  + * - + x / p  in B. Then using 4 as a local homomorphism, we obtain 

Finallyfis unique, for if g : V-+ G is another continuous homomorphism 
with g I B = 4, then if x E V and p such that x/n  E B for all n 2 p ,  we have 

Q ( X )  = Q ( P ( X / P ) )  = Q(x/P)p = $ ( X / P Y  = f ( x ) .  

Corollary 5.8 An analytic local homomorphism a of an interval I about 
0 E R into a Lie group G can be extended uniquely to  an analytic homomorph- 
ismfof R into G. 

PROOF Just note that I contains an open interval with center 0 and that 
the above definition off is given in terms of analytic operations in R and G. 

Theorem 5.9 Let G be a Lie group, let X E  T(G, e),  and let g E 9 ( G )  be 
the corresponding G-invariant vector field. Then there exists exactly one 
analytic homomorphismf: R -+ G such thatf(0) = X .  Thusfis the maximal 
integral curve of x through e E G;  that is, f(t) = x(f(t)) for all t E R. 

PROOF Let Z = ( - 8 ,  E )  and a : I - +  G be the integral curve of r? such that 
a(0) = e as discussed in Theorem 2.37. We shall now show that a is an analytic 
local homomorphism. Let J be a suitable subinterval of I containing 0 E R 
such that for t fixed in I the analytic maps 

u : J -+ G : s -+ a(t + s) and u : J -+ G : s -+ a(t)a(s) 

are defined. Then u(s) = [a 0 r(t)](s),  where ~ ( t )  : R -+ R : x + t + x and u(s) = 

[L(a(t)) 0 a](s). Using the results on curves we have 

w = [T(a O md/du)l(s) 

= ( W T ( t ) ( S ) )  O [(7-m)(s>l(wu) 

=ci(t + s) = X(a( t  + s)) = f ( u (s ) ) ,  

= (Ta)(t + s)(d/du) 

where we use the chain rule for the second equality, [Ts(t)](s) is the identity 
for the third equality, and a is an integral curve for the fifth equality. 
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Next we have 

fi@) = [T(L(a(t)) O a)(d/Wl@) 

= [7-L(a(t>)l(49) O (W(s) (d /du)  

= [(TL(a(t))(a(s))l(~(s)) 

= [TL(cc(t))(a(s))lS(cc(s)) 

= [TL(a(t))X"I(a(s)) 

= [S O L(a(t))l(.(s)) 

= f (a ( t )a (s ) )  = r?(u(s)), 

where we use the chain rule for the second equality and r? is G-invariant for 
the sixth equality. Thus we see that u(s) and u(s)  are solutions to the dif- 

ferential equation i(s) = x(z ( s ) )  and satisfy u(0) = u(0) = a(t). Thus by 

Theorem 2.37 there is a neighborhood J' of 0 E R where u(s) = u(s ) ;  that is, 
there is a suitable neighborhood N of 0 E R so that a :  N -+ G is an  analytic 
local homomorphism. The theorem now follows from Corollary 5.8 and the 

following which shows f ( t )  = f ( f ( t ) )  for all t E R.  Thus let I = t ,  + t ,  E R ,  

where t , ,  t 2  E N which is a neighborhood of 0 E R such that f is an integral 

curve; that is ,f= a. In particular, A t 2 )  = R(.f(t,)) andf(t, + t,) =f(fl)f(t2). 

Now since r? is defined on G,  we have from various definitions and the G- 

invariance of X 

mt>) = X(f(tl + t 2 ) )  

= W4f(fl))f(fZ)) 

= [TL(f(tl))lf(t2)r?(f(IZ)) 

= W(f(t1 ))l(f(t2>)f(f,) 

= [T~(f(tl))I(f(t,)) * [(7md/d4l(t,) 

= [T(L(f(tlN of)(d/du)l(t,) 

= [ U f o  7(~1))(Wu)l(t2)  

= (Tf>(tl + t 2 )  O (73(t,))(t,)(d/du) 

= (~f)(W/du) = f(0. 

Noting that any t E R can be written as t = cy=, t i ,  where t i  E N ,  we usefas  
a homomorphism and induction on n to obtain the result. Also because the 

domain off equals R ,  f is the unique maximal integral curve through e E G. 

Exercise ( I )  How can the results of Theorem 2.37(b) be formulated in 
the present context to give the above result directly? 
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Definition 5.10 Let G be a Lie group and let X E Y ( G )  be the vector 
field corresponding to X E T(G, e). Let fz denote the unique analytic homo- 
morphism of R into G of Theorem 5.9 such that fz(t) = 8(f(t)). Then we 
define the exponential map exp or exp, to be the map with domain Y ( G )  

given by 

exp : U ( C )  + G : X +fz(l). 

We first note that for all t E R, 

exp t X  =hz( l )  =fz(t), (*) 

The first equality is the definition. To see the second let t be fixed (but 

arbitrary) and let 

g : R + G : s +fz(ts). 

Then g is an analytic homomorphism and if z*(t) : R + R : x -, tx we have 
g(s) = [fi 0 r*(t)](s). Consequently 

do)  = [ W z  T*(0)v/du)I(o) 

= ( V - d ( T * ( O ( O ) )  O [TT*(0l(O)(d/4 

= (Tfi)(O)(t(d/du)) = t X  

using ~ * ( t )  as a linear transformation of R for the third equality. However, 
the homomorphism fti : R + G is also such that f iz(0)  = t X  so that by the 
uniqueness part of Theorem 5.9 we obtain =fz(st) which gives the 

result. 

From formula (*) we see that the curve R + G : t --f exp t8 
can be characterized as the curvef: R + G such that: 

REMARK (1) 

(i) f is an analytic homomorphism, 

(ii) f(t) = r?(f(t)) all t E R. 

We also have for all s, t E R and x E Y ( G )  that 

exp(s + t )X  = exp s 8  * exp tr?, [exp t r 7 1 - I  = exp( - t8) 

sincefz is a homomorphism. 

Theorem 5.11 Let G be a Lie group with Lie algebra Y ( G ) .  Then the 
exponential map exp : Y ( G )  + G is analytic and T(exp)(O) : T(Y(G) ,  0) -+ 

T(G, e) is a nonsingular linear transformation. 

PROOF Since the vector field depends analytically on the parameter 
X E  T(G, e) we have from Theorem 2.39 that there exist an open interval 
( - 8 ,  E )  of 0 E R, an open convex neighborhood U of 0 in T(G, e), and an 
analytic mapping u : ( - 8 ,  E )  x U + G such that for each t E ( - 8 ,  E )  and each 
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X E U we have u(t ,  X )  =f:(l). Now let a E ( - E ,  E )  be a fixed number such that 
0 < a < 1 and let U' = aU c U. Then the map U' -+ G : X +  u(a, a - ' X )  is a 
well-defined analytic function since a E ( - E ,  E )  and ~ - ' X E  u-'U' = U. 

However, we have 

u(a, a - ' ~ )  =f,- ,g(a) =fi(a-'a) = exp 8. 

Thus using the isomorphism 4 : Y(G)  -+ T(G, e)  : -+ X of Corollary 5.3 we 
see exp 0 4-l is analytic on U' since 4 is a linear transformation which is 
analytic; that is, exp 0 4-l is analytic at 0 E T(G, e).  

Next we shall show exp 0 4-l is analytic on all of T(G, e),  for let X be any 
element in T(G, e) .  Then there is a neighborhood D of Xand an integer p > 0 
so that l / p D  c U'. However, since [exp(l/pX)Ip = exp X and exp is analytic 
on U', we see that exp Xis the (analytic) product of analytic functions so that 
exp is analytic on D.  Finally, T(G, e) is isomorphic to Y ( G )  by the analytic 
linear transformation 4-l. Thus exp = (exp 0 4-l) 0 4 is analytic on Y(G) .  

Next, to show T(exp)(O) is nonsingular we recall from Section 2.4 that the 
tangent space of the finite-dimensional vector space Y(G) at the point 
0 E Y ( G )  equals the vector space of all directional derivatives evaluated at 0; 
that is, T(Y(G) ,  0) = { Di(0 )  : 2 E Y ( C ) }  and JI : T(Y(G) ,  0) + Y ( G )  : &(O) -+ 

8 is a vector space isomorphism. Now let f:(t) = exp tr? and let k be any 
function which is analytic at e E G. Then 

[(T(exP)(o>)(oi(o)l(k) = (Di(O))(k O exp) 

1 

1-0 t 
= lim - Ik o f i ( t )  - k o f i ( O ) ]  

where the fourth equality uses formula (*) in Section 5.1 and the fifth equality 
uses 8 ( e )  = X .  Thus 

T(exp)(O) . Di(0)  = X .  

However, the isomorphisms 4 and JI above give 4 8  = X and JI(Di(0)) = 

so that T(exp)(O) = 4 0 JI which is nonsingular. 

NOTATION In the above proof we kept track of the various vector spaces 
by the isomorphisms 4 and JI. However, to simplify notation, these vector 
spaces (and Lie algebras) are usually identified and the isomorphisms are 

ignored-it all depends on which space one takes as the definition of the Lie 
algebra. We shall identify as much as possible and use the Lie algebra which is 
most convenient. Thus we shall write Y(G)  = T(G, e) = g or equal to any 
other useful isomorphic characterization; for example, Y(GL(  V ) )  = 

T(CL( V ) ,  I )  = gl( V ) .  We can now consider the exponential map as defined on 
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T(G, e) = g and note that, using 4 = $ = I,  Theorem 5.11 is frequently 

stated as follows. 

Corollary 5.12 Let G be a Lie group with Lie algebra g. Then the expo- 
nential map exp : g -, G is analytic and T(exp)(O) = I ,  the identity in End(g). 

Example (1) For the Lie group G = GL(V)  we have identified its Lie 
algebra Y ( G )  with gl(V). Thus for X E  gl(V) we havef(t) = exp tXas defined 
in this section is characterized by (i) and (ii, of remark (1) preceding Theorem 
5.11. However, we have previously seen that the matrix function erx = 

tnXn/n! satisfies the same conditions. Thus by the uniqueness we obtain the 
consistent result exp tx = e'X. 

Proposition 5.13 Let G be a Lie group with Lie algebra g. Then there 
exist a bounded open connected neighborhood Uo of 0 ~ g  and an open 
neighborhood U, of e E G such that exp : Uo + Ue : X + exp X is an analytic 
diffeomorphism. 

PROOF We use the inverse function theorem as stated in Section 2.5 for 
analytic functions. 

Definition 5.14 Let log : Ue -, Uo denote the analytic inverse of 
exp : Uo + U, given above and let q : g -+ R" be a vector space isomorphism. 
Then Do = q(Uo) is open in R" and the pair (U, , q 0 log) is a chart at e E G 
called a canonical or normal chart at e E  G and Ue is called a canonical or 
normal neighborhood of e. 

The isomorphism q is frequently omitted and we just consider the pair 
(U,, log) as a canonical chart. Thus if X , ,  . . . , X,,, is a basis of g, then Do = 

{(x,, . . . , x,) E R" : 1 x i  X i  E Uo)  and the explicit coordinate map is 

m 

log : U, + Do : exp( C x i  xi) -+ (x,, . . . , x,,,). 
i =  1 

As discussed for the Lie group GL(V), we see in general that any point a in a 
Lie group G has an (analytic) chart given by (aU,, log 0 L(u)-'). 

REMARK (2) The image exp : g -+ G is contained in the connected com- 
ponent of the identity G o .  However, expneed not be surjective, for let 
G = SL(2, R) which is the Lie group of 2 x 2 matrices of determinant 1. We 
shall now briefly show there exists an element A not of the form exp X = ex. 

Thus let 
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where r < - 1. Then if A = ex, the characteristic roots of A are of the form e" 
and e" where a, b are characteristic roots of X .  Suppose r = e" and l /r = eb. 

Then a = - b + 2kni. However, since r < 0, a is actually complex and there- 
fore its conjugate is also a characteristic root; that is, b = a. This gives a as 
pure imaginary. Thus we obtain a contradiction 1 = leal = I r l  > 1, by the 
assumption r < - 1. This contradicts A = ex. 

3. Exponential Formulas 

In  this section we use the exponential function to develop a Taylor's 
series expansion for a real-valued analytic function defined on a Lie group 
(see Section 2.8). Then using this we obtain the first few terms in the expansion 
of the analytic function F given by 

exp X exp Y = exp F ( X ,  Y )  

for Xand Y in a suitable neighborhood of 0 in T(G, e) = g. Thus for 6 = (0,O) 
in g x g we obtain the local approximation for the multiplication in G by 

analogous to the results in Section 1.6. We shall show that the higher-order 
terms Fk(0)(X,  Y ) ( k )  are all contained in the subalgebra of g generated by X 
and Y .  Finally we discuss the Campbell-Hausdorff formula for F(X,  Y ) .  

Proposition 5.15 Let G be a Lie group, let f be a real-valued function 
analytic at p E C ,  and let 8 E Y(G)  with XE T(G, e). Then there exists E > 0 

such that, for 1 ? I < E ,  

We shall refer to this formula as a Taylor's series expansion for f: 

PROOF From formula (*) in Proposition 5.2, we have for a(?) = exp t X  

that 

( m P )  = [(Wt)f(P exp t m 1 ,  = 0 

(X"f>(P)  = [(~/wm exp tX>l,=o 

which proves the formula 
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for n = 1, and we now continue by induction. Thus 

where the fourth equality uses exp tXexp sX = exp(t + s)X and u = t + s. 

Now sincefis analytic at p, then for some E > 0 and for 1 t I < E we have 
the fact that f(p exp t X )  is an analytic function of t at 0 E R. Thus we can 
write the power series 

m 

f(p exp t X )  = C a" t"/n! 

for I t I < E ,  where the a,, equal the nth derivative off@ exp t X )  at t = 0; that 
is, an = (x"f)(p), which proves the Taylor's series expansion. 

n = O  

Theorem 5.16 Let G be a Lie group and let X ,  Y E  T(G, e). Then there 
exists E > 0 such that for I t I < E :  

(a) exp tXexp t ~ =  exp(tX+ Z Y  + +~'[xY] + 427); 
(b) exp t X  exp t Y exp( - t X )  = exp(t Y + t'[XY] + o(t3));  

(c) exp(-tX)exp(-tY)exp tXexp t~ = e x p ( t ' [ ~ ~ ]  + o(t3));  

where in each case 4 2 ' )  is a vector in T(G, e) such that for I t I < E ,  (l/t3)o(t3) 
is bounded and analytic. 

PROOF (a) Let f be analytic at p E G. Then using the formula 

(x"f)b) = W/dt)"f(P exp t Wlf = 0 

(x" Pmg)(e) = [(d/dt)"(d/ds)"g(exp t~ exp S Y ) ] ~  = o, = . 

twice we obtain for a function g analytic at e E G 

Therefore we obtain the Taylor's series expansion 

for s, t sufficiently near 0 E R. Thus for s = t we obtain 

,m+n 
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where the coefficient of t 1  is (r?g)(e) + ( y g ) ( e )  and the coefficient of t2  is 

However, by Proposition 5.13 and the analyticity of the multiplication in G 
f ( f 2 g ) ( e )  + [X m e )  + f (P2s)(4.  

exp t X  exp t Y = exp F(t) 

where F :  I+ T(G, e )  is an analytic map of an open interval Z c  R which 
contains 0 E R.  Since e = exp 0 = exp 0 exp 0, we see that F(0) = 0. Thus for 
t E I, F has the Taylor’s series expansion 

F(t) = tFl + t2F2 + 4 t 3 )  

for fixed F,, F2 E T(G, e). 
Since we are working near e E G,  we can assume the operations take place 

in a normal neighborhood U,, and we now have for g analytic at e E G that 

g(exp t X  exp t Y )  = g[exp F(t)] 

= g[exp(tF, + t2F2 + o(r3))] 

= g[exp(tFl + t ’ ~ ~ ) ]  + o‘(t3) 

where the last equality uses Taylor’s formula for tF, + t2F2 and where o’(t3) 

denotes a real number such that for some E > 0, ( l / t3 )o’ ( t3)  is analytic and 
bounded for I t I c E .  From the expression in the last equality we see that the 
coefficient of t ’  is [Flg](e) and the coefficient of t2  is [F2g](e) + f[F12g](e).  

Thus comparing the coefficients of t and t 2  in formulas (1) and (2) we 
obtain 

(F,d(e) = (Xs) (e)  + (y.’s)(e) and (F2s)(e) = ( t [Z  m e > .  

Since g is an arbitrary analytic function at e E G we obtain Fl = X + Y and 
F2 = + [ X Y ]  which shows 

exp t~ exp t Y = exp F(t) = exp(tX + t Y + +~’[xY] + o(t3)). 

For t small enough, we use (a) to compute (b) as follows. 

[exp t X  exp t Y ]  exp( - tx) = [exp(tX + t Y + t t 2 [ X Y ]  + o(t3))] exp( - tx) 
= exp S(t), 

where from (a) 

s ( t ) = ( t x + t ~ + t t ~ [ X ~ I )  + (-tx)++[tx+tr+ t t 2 [ x y ] ,  -MI+ 4’) 
= t Y + t’[XY] + o(t3) 

which proves (b). 

(c) Part (c) is proven similarly. 
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REMARKS (1) With the conditions and formulas of Theorem 5.16 we 

can show 

(d) exp t(X + Y) = exp t X *  exp t Y  * exp o( t2 ) ;  

(e) exp(t’[X~]) = exp( - t X )  exp( - t Y) exp t X  exp t Y * exp o(t3).  

Also we have the following formulas which we shall use later. For any t E R, 

( f )  exp t(X + Y) = lim,,,[exp (t/n)X exp (t/n) Y]”; 

(g) exp(t’[X~I) = lim,,,(exp[ - (t /n)XI exp[-(t/n) Y] 
exp(t/n)X exp(t/n) Y>”’. 

For example, to see (f), let t be fixed in R and let n be sufficiently large. Then 
from Theorem 5.16, 

(n13)l t t t 2  

n n [: 2n2 
exp-Xexp- Y=exp - ( X +  Y)+-[XY]+o - 

and consequently 

t Z  

n 2n 
t ( X +  Y)+-[XY]+o 

t 

which yields the result. 

are frequently expressed as follows. 

we have exp Xexp Y = exp(X+ Y + t[XY] + E(X,  Y)) where 

(2) Let G be a Lie group with Lie algebra g. Then the above formulas 

(a’) There exists a neighborhood U of 0 in g such that for all A’, Y E  U 

lim E(X ,  Y)/IIXII~ 11 Yl12 = 0. 
x ,  r-o 

= exp(sX + t Y + +st[XY] + ~(s ,  t ) )  where lim,, 

plication on G. Then 

(a”) For any X ,  Y E  g and for s, t sufficiently near 0 E R, exp sX exp r Y 

(3) Now let p : G x G: (x, y )  --* p(x,  y )  s xy denote the analytic multi- 

E(S, ?)/st = 0. 

(Tp)(e, e)  : T(G, e) x T(G, e)  -+ T(G, e) : (X, Y) -+ X + Y, 

for let t be near 0 E R. Let p(exp t X ,  exp t Y) = exp F(t) where F(t) = t X  + 
t Y + o(t2). Then using the chain rule, T(exp)(O) = I ,  and d/du(O)(F) = X + Y 
we obtain the formula. 

Proposition 5.17 Let G be a Lie group and let g,, . . . , gk be subspaces of 
the Lie algebra g such that g is the subspace direct sum g1 + . . . + gk . Then 
the analytic map 

: g1 + - * * + gk + G : XI + * * * + X ,  -+ (exp XI) * * * (exp Xk) 
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is such that T4(0) = I .  Thus there exist bounded open connected neighbor- 
hoods of Ui  of 0 in g i  and U, of e in G such that the map 

4 : U ,  + * - * + uk -, U, : XI + * * * + Xk -, (exp XI).  . . (exp X,) 

is an analytic diffeomorphism. 

PROOF Using induction and the inverse function theorem it suffices to 

show T4(0) = I for the caseg = g, + g, . Thus let exp, = exp,lg,. Then since 
gi t g  we see T(expi)(0) is the identity map on 9,. Therefore identifying 

g1 + g, with g1 x gz we have for X i  E gi that XI + X ,  = (Xl, X , )  and there- 

fore, with p the multiplication in G, 

( W ) ( O ) ( X ,  + X , )  = [ ( W J ) ( O ,  O)l(Xl, Xd 

= [T(p O exp, x exp,)(O, O)l(XlX,> 

= (Tcl)(e, e > ( V  exPl)(W,? (Texp,)(O)X,) 

= X, + X , ,  

using 4 = 

the result. 

0 (exp, x exp,), the chain rule, and remark (3) above. This proves 

REMARKS (4) Using this result we can introduce coordinates as follows. 

Let X , ,  . . . , X,,, be a basis of g so that XI, . . . , X r ( l )  is a basis of g,, Xr(l)+l,  
. . . , X,,,, is a basis of g, , etc., for g = g, + . . * + gk as above. Let CJ, = 

$(U,  + . . .  + uk) be as in Proposition 5.17 so that elements of Ue are of 

the form 

r (  1 ) r ( k )  

$ ( C x i X i )  = (exp 1 xi xi ) .  . * (exp 1 x , ~ , ) .  

Let Do = { (x , ,  . . .  , x,) E R ” :  CX,X,E U ,  + + U, cg} .  Then the map 

u e  -+ Do : 4 ( C x i  xi) -+ (XI, . . ., x,) 

yields a coordinate system called a canonical or normal coordinate system of 

the second kind. 

(5) From formula (c) of Theorem 5.16 we see that [ X Y ]  is the tangent 
vector to the “commutator curve” 

s -+ exp( - sl/’ X )  exp( - Y )  exp(s’/’ X )  exp(s’/, Y ) ,  s 2 o 

at s = 0. Thus frequently the operation [ X Y ]  in g is referred to as the “com- 

mutator operation in the Lie algebra.” In the work of Pontryagin [I9461 this 
is actually used as the definition of a bilinear multiplication on T(G, e) which 

makes it into a Lie algebra. 

(6) Let Uo be the open neighborhood of 0 E g as given in Theorem 5.13. 



130 5. THE LIE ALGEBRA OF A LIE GROUP 

Then since exp : Uo 

F: Uo x Uo+g by 

U, is a diffeomorphism we can define a composition 

F ( X ,  Y )  = log(exp X exp Y )  

for X ,  Y E  Uo provided exp Xexp Y E  U,.  Thus Uo with this composition 
becomes a local Lie group with 0 as the identity and - X as the inverse of X. 

Now for any X ,  Y E  g and t sufficiently near 0 E R we have from formula (a), 

F ( f X ,  t Y )  = t X +  t Y  ++tZ[XY]  + o(t3), 

where the error term o(t3) is also a function of X,  Y ~ g .  Actually, o(t3) can 
be expressed quite nicely by a series which is contained in the Lie algebra 
generated by X and Y ;  that is, looking ahead to Chapter 6, we define a Lie 
subalgebra h of the Lie algebra g to be a subvector space of g such that for 
all X ,  Y E  h we have [ X Y ]  E h. In particular if L(X,  Y )  denotes the subalgebra 
of g generated by X and Y; that is, 

L(X, Y )  = n { h  : h is a Lie subalgebra of g and X, Y E  h}, 

thenL(X, Y )  is spanned as a vector space by X, Y,  [ X U ] ,  [ X [ X Y ] ] ,  [ Y [  Y X ] ] ,  

etc. Thus we shall show that the above formula has the form 
m 

F(tX, t Y )  = 1 F,(tX, t Y )  
i= 1 

where each Fi(tX,  t Y )  E L(X,  Y ) .  This result is known as the “ Campbell- 
Hausdorff theorem.” Note that since a subvector space is closed we also 
have F(tX, t Y )  E L(X,  Y ) .  Consequently the multiplication in the neighbor- 

hood of U, is completely determined by the Lie algebra. We shall express this 
more accurately later by noting that two Lie groups are locally isomorphic 
if their corresponding Lie algebras are isomorphic. 

Exercises (1 )  As in the proof of Theorem 5.16 we can write exp t X .  

exp t Y = exp F(t), where 

F(t) = tF, + t2F2 + t3F3 + o(t4). 

Show that the third-order term is 

(2) Let G be a Lie group with Lie algebra g = T(G, e). 

(i) If X ,  Y E  g are such that [ X U ]  = 0, then show exp X exp Y = 

exp(X + Y ) .  A Lie algebra is called commutative or Abelian if [XY] = 0 for 
all X ,  Y E  g .  

(ii) Let G be a connected Lie group with Lie algebra g .  Then G is 
commutative if and only if g is commutative. 
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We shall now prove that Canipbell-Hausdorff theorem as mentioned in 

remark (6); this proof is essentially that given by Eichler [1968]. Following 

his notation we shall call an expression G ( X ,  Y ,  . . . , Z )  a Lie polynomial if 
G ( X ,  Y,  . . . , Z )  E L ( X ,  Y ,  . . . , Z )  which is the Lie subalgebra of g generated 

by X ,  Y,  . . . , Z in g. Thus G ( X ,  Y )  is a Lie polynomial if it is a linear com- 

bination of X ,  Y,  [ X Y ] ,  etc. An expression G ( X ,  Y ,  . . . , Z )  is homogeneous 

of degree k if for any s E R, G(sX, s Y ,  . . . , sZ)  = skG(X,  Y,  . . . , Z) .  By pre- 

vious results of this section we have for X ,  Y E  g and s near enough 0 E R 

that 

exp s X  * exp s Y = exp F(sX, s Y ) ,  

where F is analytic at 0 = (0.0) E g x g and has the series expansion 

skFk(6) 
F(sX, S Y )  = c - ( X ,  Y)? 

k = l  k !  

Thus F'(O)(X, Y )  = X +  Y and Fz(0) (X,  Y)( ' )  = [ X Y ]  are Lie polynomials 

which are homogeneous of degree 1 and 2, respectively. We can now state 

the result as follows. 

Theorem 5.18 (Campbell-Hausdorff theorem) Let G be a Lie group 

with Lie algebra g. Let X ,  Y ~g and let s be sufficiently near 0 in R so that 
the multiplication is represented locally by 

exp sX exp s Y = exp F(sX, s Y )  

where the analytic function F is given by the above series. Then each 

Fk(0)(X,  Y ) ( k )  is a Lie polynomial in X and Y and is homogeneous of degree k .  

PROOF We first note the following facts which we leave as brief exercises. 

(a) For X ,  Y E  g and s near enough 0 E R ,  

Fk(0)(sX + o(s'), s Y)(k)  = skFk(0)(X, Y)ck)  + o(s~+') .  

[Just use the multilinearity of Fk(0) and write ( s X  + o(s2), s Y )  = ( s X ,  sY)  + 

(b) IfG(X, Y ,..., Z ) , H ( X ,  Y, . . . ,  Z )  , . . . ,  K ( X ,  Y ,..., Z ) E L ( X ,  Y ,..., 2); 
that is, Lie polynomials in X ,  Y ,  ..., 2, then G(H(X,  Y , .  . . , Z ) ,  ..., K 
( X ,  Y ,  . . . Z ) )  is also a Lie polynomial in X ,  Y,  . . . , Z .  

(c) If G ( X ,  Y,  . . . , Z )  is a Lie polynomial and G ( X ,  Y,  . . . , 2) = 

E k  Gk(X, Y,  . . . , Z) ,  where the Gk(X, Y,  . . . , Z )  are the homogeneous com- 
ponents of degree k into which G decomposes, then each Gk(X, Y, . . . , Z )  
is a Lie polynomial. 

(O(S2>, O).I 
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We shall now use the notation 

S k  

k !  

and show by induction that each Fk(sX, s Y )  is a Lie polynomial in X and Y .  
For k = 1 , 2  this has already been done and we assume for all k < n that each 
Fk(sX, s Y )  is a Lie polynomial in X and Y. From the associative law 

Fk(A!?X, A!? Y )  = - Fk(e)( X ,  y)ck)  

(exp sX exp s Y )  exp sZ = exp sX(exp s Y exp sZ)  

we obtain 

Expanding the left side of (1) we see [using (a) and Fl(X, Y )  = X + Y ]  that 

the homogeneous term of degree n is 

S"F,(X, Y ) + f [ F , - , ( X ,  Y ) Z 1 + * * . + F n ( X +  Y , Z ) } .  

Thus by the induction hypothesis, the only possible term in this expression 

which might not be a Lie polynomial is 

sn{Fn( X ,  Y )  + F,( x + Y, Z ) }  . 

Similarly expanding the right side of (1) we see that the only possible homo- 
geneous term of degree n which might not be a Lie polynomial is 

s"{F,(X, Y + Z )  + F,( Y, Z ) } .  

This relation can be expressed as follows: We write U N V if U - V is a Lie 
polynomial. Thus we have 

FAX, Y )  + F,(X + Y, Z )  - F,(X, Y + Z )  + Fn( Y, Z )  

F,(X, Y )  - 0 ;  

(2) 

and using (2) we will show 

that is, Fn(X, Y )  is a Lie polynomial in X and Y .  

F(asX, bsX) = (a + b)sX so that for k > 1, 
We now compute. First from exp aXexp bX = exp(a + b)X we see 

Fk(aX, b X )  = 0 (3) 

and using exp X exp 0 = exp X we also have for k > I 

Fk(X, 0) = Fk(0, X )  = 0. (4) 
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We now omit the s near 0 E R for the following computations and let Z = - Y 

in (2) to obtain 

F,(X, Y )  + F,(X + Y, - Y )  - F,(X, Y - Y )  + F,( Y,  - Y )  

F,(X,  Y )  - -F,(X + Y, - Y ) .  

so that by (3) and (4), 

( 5 )  

Let X = - Y in (2) to obtain 0 - F,( - Y,  Y + Z )  + F,( Y, Z) .  Thus replacing 
Y by X and Z by Y we obtain 

F,(X, Y )  - -F,(- X ,  x + Y ) .  (6 )  

This yields 

F,(X, Y )  - -F,( - x, X + Y ) ,  using (6)  

using (5) 

homogeneity 

- - (F , ( -X+ ( X +  Y) ) ,  - ( X +  Y)) ,  

= F&(- Y ) ,  - ( X +  Y ) )  

= ( -  IyFfl( - Y, x + Y),  

- ( - l)"F,( Y,  X I ,  using (6).  (7) 

(8) 

Next Let Z = - 4  Y in (2) to obtain 

FJX,  Y )  - --FAX + Y, - 4 Y )  + FAX, + Y ) .  

Similarly let X = - f  Y in (2) to obtain F,(JY, Z )  - F,( -+ Y, Y + Z )  + 
F,( Y,  Z )  so that replacing Y by X and Z by Y we obtain 

f'n(X, Y )  - Fn(tX,  Y )  - Fn(-+X, X + Y ) .  (9) 

We now use (8) on the two terms on the right of (9) to obtain 

F,(X, Y )  Iv -F , ( tX  + Y, - t Y )  + F,(*X, t Y )  + Fn(+X + Y,  -+x - + Y )  

- F , ( - t X , + X +  + Y )  

+F,(+X+ Y, - + X - + Y ) ,  (10) 

= (+)"F,(X Y )  - (+YF,(- x, X + Y )  - F,(tX + Y, -4 Y )  

Next 

and 

F,(+X+ Y ,  -+x - + Y )  - -F,(+X + Y + ( - + X -  +Y) ,+X+ + Y )  

= - (+)"F,( Y,  x + Y )  (12) 
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where we again use (5 ) .  Thus, since from (6) we have -Fn( - X ,  X + Y )  - 
Fn(X, Y ) ,  we substitute (11) and (12) into (10) to obtain 

Fn(X, y> (#"-'Fn(X, Y )  + (.))"Fn(X + Y, Y )  - (H"Fn( Y, X + Y). (13) 

Thus, using (7) we have from (1 3) 

[l - (+)"-'lFn(X, Y )  - (+)"(1 + (- I)")F,(X + Y, Y ) .  (14) 

In case n > 1 is odd we obtain the desired result F,,(X, Y) - 0. In case n is 
even we replace X by X - Y in (5 )  and use (14) to obtain 

-Fn(X, - Y )  - Fn(X - Y, Y )  

-(+>"(I + (-1)"[1 - (+)9-lFn(X, Y) .  (15) 

We apply (15) twice to obtain 

Fn(X, Y )  = -(-Fn(X, - (- Y)))  - -(+)"(I + (-1))yl - (+)"-l]-lF"(X, - Y )  

- (+)2"(1 + ( -  1)")2[1 - (+y-l]-ZFn(X, Y) .  

Since the coefficient on the right in (16) equals 1/(2"-' - 1)' # 1, we again 
obtain F,,(X, Y) - 0. This completes the proof of the Campbell-Hausdorff 
theorem. 

REMARKS (6) The above proof is a relatively straightforward computa- 
tion not involving much machinery. However, with more development the 
proofs in Jacobson [I9621 and Serre [1965] give the following explicit for- 
mula (Campbell-Hausdorff formula) : For a suitable neighborhood U, of 0 
in g we have for X ,  Y E  U, that 

where the second sum runs over the integers pi, qi 2 0 with p i  + qi 2 1 for 
i = l ,  ..., nand 

where we use the notation 

[U'V"] = ".~~"[VU]U].. .V]V].. .V] -- 
r 

for k > l  and r ( X ' ) = X , t ( Y ' ) =  Y. 
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If we let ad(X) : g -+ g : Y -+ [XY], then the above expression for 7 is 

7 ( X p 1 ,  Yql, . . . , X p n ,  Yqn) = (ad X)P1(ad Y)'I ... (ad Y)qn-l Y 

if q,, 2 1 and 

z ( X p l ,  Yql, . . . , X p n )  = (ad X)j"(ad Y)q l  * .  (ad X ) p n - l X  

if q,, = 0. From these formulas observe that if qn 2 2, or if q,, = 0 and pn 2 2, 
then 7 ( X p 1 ,  . . . , XPn,  Y'") is 0. Thus possible nonzero terms occur only when 
q,,= 1 orwhenq, ,=Oandp, ,= 1. 

Exekise (3) Compute the term F4(0)(X, Y)(4)/4! using the Campbell- 
Hausdorff formula. 

4. Homomorphisms and Analytic Structure 

We use previous results of this chapter to discuss elementary facts on 
homomorphisms from which we obtain the fact that the topology of a Lie 
group uniquely determines its analytic structure. 

Proposition 5.19 Let G and H be Lie groups with Lie algebras g and h, 

respectively, and let f: G + H be a group homomorphism which is an 
analytic map of manifolds; that is, an analytic homomorphism. Then 
Tf(e) : g -+ h is a Lie algebra homomorphism and for X E g 

f(exp, = exp,[(Tf(e))(X)I. 

Thus for C the identity in H, the accompanying diagram is commutative. 

( T / ) ( e )  

f G 

PROOF For X E g the map 

4 : R + H :  t -+f(exp t X )  

is an analytic homomorphism and for a(t) = exp t X  we see 

d(0) = [ W o  a)(d/d41(0) 

= ( V ) ( e ) W )  = (Tf>(e)X. 
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However p : R -+ H : t -+ exp, t(Tf(e)X) is an analytic homomorphism and 
b(0) = Tf(e)X. Thus by the uniqueness of Theorem 5.9 we obtainf(exp t X )  = 

exp t(T'(e)X). Next, since Tf(e) : g -+ h is a vector space homomorphism, we 
must show Tf(e)[X r] = [Tf(e)XTf(e) Y] for all X ,  Y E  g. Notice that the two 
maps p : G x G -+ H : (x, y)  -+f (x- 'y - 'xy)  and g : G x G -+ H : (x, y )  -+ 

f(x)-'f(y)-'f(x)f(y) are equal. Thus for t near O E  R we apply this to  
x = exp t X ,  y = exp t Y and use Theorem 5.16(c) together with the formula 
of the preceding paragraph to obtain Tf(e) as a Lie algebra homomorphism. 

Exercises (1) Let f: G -+ H be an analytic homomorphism of Lie 
groups. Then Tf(e):  g - + h  is surjective (injective) if and only if Tf(a) : 
T(G, a) -+ T(H,f(a))  is surjective (injective) for all a E G. Thusfis an immer- 
sion or submersion depending only upon the value Tf(p) at the single point 
p = e. 

(2) If in (1) the map f :  G -+ H is injective, then f is regular; that is, 
Tf(a) is injective for all a E G. (Note Proposition 5.19.) 

(3) If G is a commutative connected Lie group with Lie algebra g, then 
exp : g + G is surjective. (See exercises in Section 5.3 and regard exp as a 
homomorphism of a commutative groups.) 

REMARK (1) From the preceding results we see that an analytic iso- 
morphism of Lie groups implies an isomorphism of the corresponding Lie 
algebras. The converse is true locally, and globally if the groups are simply 
connected. Consider the locally isomorphic groups R and Ti for a counter- 
example. It is this converse which allows a classification of certain Lie groups 
by classifying their Lie algebras. 

Proposition 5.20 Let a, p be two analytic homomorphisms of the Lie 
group G into the Lie group H. If Ta(e) = Tp(e), then there exists an open 
neighborhood U of e in G on which a and p are equal. Furthermore, if G is 
connected, then a = p on G. 

PROOF Let (Ue, log) be a canonical chart at  e E G and set U = U,. 
Then from Proposition 5.19 we have for a = exp X E  U, that 

= a(exp(X)) 

= exP[ (WNX) l  

= exp[(V(e))(X)I = P ( 4  

which proves part of the result. The other part follows from the fact that U 
generates G and ci, fl are homomorphisms. 
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The first fact needed to prove that the topology of a Lie group determines 
is analytic structure is the following result. 

Lemma 5.21 Let G be a Lie group with Lie algebra g, let f: R -, G be a 
homomorphism of the additive group R into the group G, and let f be a 
continuous map of the corresponding topological spaces. Then these exists 
X E g such that f ( f )  = exp t X .  Thus a continuous homomorphism f: R + G is 
actually analytic. 

PROOF Let (U, log) be a canonical chart at e E G and let V be a neigh- 
borhood of e in G with V V c  U. We shall now show that the map V-+  U :  
a + a ‘ is injective. For if a E V,  then a’ E U so that log a and log a’ are de- 
fined. Thus 4 : R + G : r + exp(f log a)  is a homomorphism such that 
a’ = exp(2 log a). However, since a’ E U, a’ = exp(1og a’) and since exp I U 

is injective, 2 log a = log a*. Thus a = exp(1og a) = exp(4 log a’) so that 
a’ E U uniquely determines a E V. Thus “square roots” exist and are unique. 

Next since the given homomorphism f: R + G is continuous, there exists 
E > 0 such that f ( r )  E V if I f  I I E .  Now we can assume E = 1 otherwise we 
can make a change of parameter to s = At where now f ( s )  is defined for 
Is1 _< 1. Using this let 

a = f ( l ) ~  V and X = l o g a E g .  

From the preceding paragraph exp + X  is the unique square root of a E V. 

Thus since f ( 1 )  is also a square root of a = f ( l )  we obtain by uniqueness 
f(+) = exp + X .  Applying this argument to f()) and taking its unique square 
root we obtain f (4 )  = exp + X  and therefore logf(;t) = ax. Using induction 
one obtains f( 1 /2“) = exp( 1 /2”X) and for any integer p we have since f is a 
homomorphism 

f ( p / 2 ” )  = f (1/2”)P = exp(( I/~”)x)P = exp((p/Y)X). 

Thus for every dyadic rational number q we have f ( q )  = expqX and by 
continuityf(f) = exp tXfor all t E R. 

Analogous to Corollary 3.15 we have the following result. 

Exercise (4) Letf:  G -+ H be an (algebraic) homomorphism of the Lie 
groups G and H .  Iff is analytic at e E G, thenfis analytic on all of G. 

Theorem 5.22 Let G, H be Lie groups and letf:  G + H be a continuous 
homomorphism of the corresponding topological groups. Thenfis an analytic 
homomorphism of the Lie groups. 
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PROOF Let g be the Lie algebra of G and let g = g1 + * * + g,,, be a sub- 
space direct sum of the one-dimensional spaces gi = R X ,  where X,, . . . , X,,, 

is some basis of g. Let exp, = exp I gi and let 

4 : g --f G : A ,  + - + A,,, -+ exp A, exp A,,, 

be the map which gives the canonical coordinates of the second kind where 
A ,  = t i  X i  Eg, [see remark (4), Section 5.31. Then, since 

f 0 $(Al + * + A,) = f(exp, Al * * - exp, A,) = f(exp, A,) * .f(exp,,, A,,,), 

we have an expression for f o  4 : g -+ H in terms of analytic functions, 
applying Lemma 5.21 to each f o  exp, for i = 1 ,  . . . , m. Thus f o  4 : g -, H is 
analytic. However 4 is a local analytic diffeomorphism of a neighborhood 
U,, of 0 in g into a neighborhood U, of e in G. Therefore, since 4-l : U, -+ U, 
is analytic, f = (f’o 4) 0 4-l is analytic on U,; that is, f i s  analytic at e E G, 

and by the preceding exercisefis analytic on all of G. 

Corollary 5.23 Two real Lie groups which are isomorphic as topological 
groups are actually isomorphic as Lie groups. 

REMARK (2) Let G be a Lie group with analytic structures d,  and d2 
which give topologies F, and F2. Let Y i  denote the Lie groups (G, di) and 
let Gi denote the topological groups (G, Si). Then G, z G2 as topological 
groups implies 9, z B2 as Lie groups; that is, the continuous isomorphism 
which expresses G, E G2 is actually analytic and therefore an analytic iso- 
morphism which expresses Bl E g2. Thus the analytic structures are uniquely 
determined. In particular, if we say G, = G2 via the continuous identity 
isomorphism, then 9, = Y2 as Lie groups. 



CHAPTER 6 

LIE SUBGROUPS AND SUBALGEBRAS 

In this chapter we consider Lie subalgebras of a Lie algebra and show their 
basic relationships with Lie subgroups. Thus each Lie subgroup yields a Lie 
subalgebra and conversely each Lie subalgebra is the Lie algebra of a Lie sub- 
group. Next we show that two Lie groups are locally isomorphic if and only 
if their Lie algebras are isomorphic; in Chapter 8 we extend this to a global 
result. In  the third section we prove the very useful result that an abstract 
subgroup of a Lie group, which is a closed subset, is actually a Lie subgroup. 
Next we discuss homogeneous spaces G / H  where H is a closed subgroup of 
the Lie group G and show how to coordinatize G / H  using the exponential 
mapping, Then we apply these results to quotient groups. Finally we show 
that a commutative connected Lie group is isomorphic to R4 x T p  where Rq 
is a q-dimensional Euclidean space and T p  is a p-dimensional torus. 

1. Lie Subalgebra and Uniqueness of Analytic Structure 

From the various characterizations of a Lie subgroup H of a Lie group G, 

(1) H is a Lie group; 
(2) the injectionf: H +  G : x + x is an analytic immersion. 

we see that the Lie subgroup H c G must satisfy: 

Thus (Tf)(b) : T(H, 6) 4 T(G, b) is injective for every b E H. We use Tf(e) to 
identify the Lie algebra of H with a subalgebra of the Lie algebra of G and 
show how a Lie subalgebra can be used to generate a Lie subgroup of G.  

139 
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Definition6.1 Let g be an (abstract) Lie algebra; that is, g has an 
anticommutative bilinear multiplication [ X Y ]  such that the Jacobi identity 
holds (Section 1.6). Then a subvector space h c g is a Lie subalgebra if for all 
X, Y E  h we have [ X Y ]  E h. 

Proposition 6.2 Let H be a Lie subgroup of the Lie group G given by 

f :  H +  G as above. Then Tf(e) : T(H, e) + T(G, e) is an injective homomor- 
phism. Thus we can consider the Lie algebra of H as a Lie subalgebra of the 

Lie algebra of G. 

PROOF We just note that the identity map f :  H +  G : x + x is a homo- 
morphism and therefore Tf(e) is a Lie algebra homomorphism. Also, by 
definition of immersion. Tf(e) is injective. 

Corollary 6.3 Let H be a Lie subgroup of a Lie group G and let h, g be 
the corresponding Lie algebras and regard h c g. Then exp, = exp, I h. 

PROOF Let f :  H -, G : x + x, Then from Proposition 5.19 we have for 

X E  W, 4, 

exp, x = f(exp, X) = exp,(Tf(e)X). 

Thus after the above identifications, we obtain the result. 

Proposition 6.4 Let G be a Lie group with Lie algebra g and let H be a 
Lie subgroup of G with Lie algebra h. Then h = {X E g : all t E R, exp t X  E H 
and R + G : t + exp t X  is continuous}. 

PROOF For XE h, we have from Lemma 5.21 that u : R + H: t -, 

exp, t X  = exp, t X  is analytic which gives one inclusion. Conversely, suppose 
for X E  G that the map a : R + H :  t + exp, t X  is continuous. Then from 
Lemma 4.9 (with f = exp,, M = R, N = G, and P = H), we see that u is ana- 
lytic. Thus since u(t) E H with a(0) = e E H, we obtain X = d ( 0 )  E T(H, e)  = h. 

Exercise (1) Let Hl and H2 be connected Lie subgroups of a Lie group 
G, and let hl and h2 be the corresponding Lie subalgebras. If hl = h 2 ,  then 

Hl = H2 as Lie groups. 

From the above results or from Corollary 5.23, we have the following: 

Corollary 6.5 If Hi and H2 are two Lie subgroups of the Lie group G 
such that HI and H2 are equal as topological groups. then they are equal as 
Lie groups. 
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Theorem 6.6 Let G be a Lie group with Lie algebra g. If H is a Lie sub- 

group of G with Lie algebra h, then h is a Lie subalgebra of g. Conversely, 
for each Lie subalgebra h of g, there exists a unique connected Lie subgroup 
H of G which has h as its Lie algebra. This Lie subgroup H is the smallest 

Lie subgroup of G containing exp h. 

PROOF From the previous results, it suffices to prove the converse. First, 

the uniqueness follows from the above exercise. We now use the Campbell- 

Hausdorff theorem to obtain a local Lie group B of G as follows. Let m be a 
subspace of g such that g = m + h (subspace direct sum). Then using can- 

onical coordinates of the second kind [Section 5.3, remark (4)], there exist 

open, connected, symmetric neighborhoods V (respectively W )  of 0 in  h 
(respectively m) and a neighborhood U of e in G such that the map 

4 :  W +  V + U : X +  Y-texpX-exp  Y 

is an analytic diffeomorphism. Now let B = exp V where V c h. Then since 

h is a subalgebra, we have for all Y and Z i n  a suitable neighborhood of 0 in  
h,  F( Y, Z) = log(exp Y exp Z) E h which uses the Campbell-Hausdorff 

theorem. Thus using Theorem 5.16 we see that B is a local Lie group relative 

to the operations in G (brief exercise). Note that the topology on B is given 
by prescribing as a family of neighborhoods of e E  B the system of sets 

exp S where S ranges over the neighborhoods of 0 in V .  

Next, using the canonical coordinates of the second kind as given above, 

we see (U ,  4-l) is a chart at e in G. Also defining y : B + V : exp Y + Y for 

Y E  h, we obtain a chart ( B ,  y )  of e in B such that $ - ' I  B = y and the Jacobian 

matrix (d(4- ')Jdyj(e)) has rank equal to dim B (= dim h). Thus by Corollary 

4.13, B generates a connected Lie subgroup H of G .  
Let 9 ( H )  denote the Lie algebra of H. Then from Proposition 6,4 we see 

h c 9 ( H ) .  However, since dim h = dim B = dim H = dim Y ( H ) ,  we have 

equality. 

We can use Theorem 6.6 to show that an (abstract) finite- 

dimensional Lie algebra L over R occurs (up to an isomorphism) as the Lie 
algebra of some Lie group. First we state Ado's theorem (see Jacobson's proof 

[ 19621). 

Let L be a finite-dimensional Lie algebra over a field K.  
Then there exists some finite-dimensional vector space V over K such that L 
is isomorphic to a Lie subalgebra h of g[ (V) .  

REMARK (1) 

Ado's Theorem 

Now g f ( V )  is the Lie algebra of GL(V),  so that the connected subgroup 

H of GL( V )  generated by exp h is a Lie group with Lie algebra h isomorphic 
to L. Note that this does not give much information on L but just says that 
gl( V )  and GL( V )  are rather complicated. 
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2. Local Isomorphisms 

We now determine what type of information about a Lie group can be 
obtained from its Lie algebra-roughly those properties preserved by a Lie 
algebra isomorphism. 

Proposition 6.7 Let f: G -+ H be a local homomorphism of the Lie 
groups G and H.  Let g and h be the corresponding Lie algebras and assume 
the Lie algebra homomorphism (Tf)(e) : g + h is bijective. Then f is a local 
isomorphism. 

PROOF Since Tf(e) is bijective, we have by the inverse function theorem 
neighborhoods U of e in G and V of Z in H such that f :  U -+ V is an analytic 
diffeomorphism. However, since f is a local homomorphism, we have on 
suitable neighborhoods that the analytic inverse off is also a local homo- 
morphism; that is, f i s  a local isomorphism. 

Theorem 6.8 Let G and H be Lie groups with Lie algebras g and h.  

(a) I f f :  g -+ h is a Lie algebra homomorphism, then there exists a local 

(b) G and H are locally isomorphic as Lie groups if and only if g and h 

Lie group homomorphism 4 : G --f H such that (T4)(e) =f. 

are isomorphic as Lie algebras. 

PROOF Part (b) follows from (a), Proposition 6.7, and the obvious 
modification of Proposition 5.19. For (a) we follow the proof of Chevalley 
[1946, p. 1121 and note that k = { ( X , f ( X ) )  : X E g }  is a Lie subalgebra of 
g x h as in  exercise (2) in  Section 5.1. Let K be the connected subgroup of 
G x H with Lie algebra k (Theorem 6.6), and let TI : G x H +  G : (x, y )  + x 
be the analytic projection map. Now the map r = TI I K : K -+ G is a Lie group 
homomorphism and 

(Tr)(e, 2) : k -+ g : ( X , f ( X ) )  -, X 

is actually a Lie algebra isomorphism since X = 0 implies ( X , f ( X ) )  = (0,O) 
and the map is clearly surjective. Thus by Proposition 6.7, r is a local iso- 
morphism with local inverse s : V+ W where V c G and W c K are suitable 
neighborhoods of the corresponding identity elements. Also we have 
(Ts)(e) : g -+ k and 

T W X  = (Ts)(e)[(Tr)(e, Z>(X,f(W)l 
= T(s O r>(e, a(X,f(x)) = ( X , f W ) ) .  
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Now let p : G x H +  H be the natural analytic projection. Then p is a 
Lie group homomorphism. Thus if we let 

$ = p o s : G - r H ,  

we obtain the desired local homomorphism because 

(T$)(e)X = T(p O s>(e)X 

= (Tp)(e, Z)(Xf (X) )  = f ( X ) .  

REMARKS (1) As previously stated, we shall use simple connectivity to 
obtain the following result: Let G be a connected and simply connected Lie 
group, and let f : G + H be a local homomorphism of G into a Lie group H. 
Then there exists a unique extension o f f to  a (global) homomorphism of G 

into H. 

(2) The proof of Theorem 6.8 uses indirectly the Campbell-Hausdorff 
theorem, and we now sketch a more direct approach. Using the notation of 
Section 5.3, let U, be a neighborhood of 0 E g and U, a neighborhood of e E G 

such that we have the composition for X ,  Y E  U,,  

exp Xexp Y = exp F(X,  Y), 

where F ( X ,  Y) = X + Y + +[XY] + + I/k! Fk(0)(X, Y)ck) + - - - is given 
by the Campbell-Hausdorff theorem. From this theorem each term 
Fk(0)(X,  Y)(k) is a Lie polynomial in X and Y. Therefore, for the homo- 

morphismf: g + h we havef[Fk(0)(X, Y)(k’] = Fk(0)(f(X),f(Y))(k), using the 
definition of a Lie polynomial. Becausefis linear (and continuous) this gives 

f [ F ( X  Y)l = ~(f(X),f(Y>). 

We can assume that U,  is small enough in g so similar results hold in some 
neighborhood of 0 E h which contains f(U,). Now for x = exp X E  U,, define 

$ by 

4(x) = expH f ( x )  

and note that for x = exp X ,  y = exp Y E  U, 

$@Y) = $(exp F ( X  Y)) 

= exPHf[F(x Y)1 

= expH F(f(x),f(y)) 

= expH f ( x )  * expH f(y) = ’. $(Y)* 

Also we see T$(e)X = f ( X ) .  
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3. Closed Subgroups 

We have previously given criterion for a subgroup H of a Lie group G to 

be a Lie subgroup, and we now give an extremely useful criterion concerning 
a closed subgroup. 

Theorem 6.9 Let G be a Lie group, and let H be an (abstract) subgroup 
of G which is a closed subset of the topological space G. Then there exists a 
unique analytic structure on H such that H is a Lie subgroup of G and the 
topology on H induced by this analytic structure is the topology induced by 
G; that is, H is a topological subgroup of G. Furthermore the Lie algebra of 
H equals {X E g : exp, t X  E H for all t E R}. 

PROOF First note that the uniqueness of this analytic structure follows 
from Corollary 6.5. From the definition of a Lie subgroup, it suffices to show 
His  an analytic submanifold of G. We shall use the various group properties 
and closure, and separate the proof into several parts. 

(a) Let h = { X E  g : exp t X  E H for all t E R}. Then h is a Lie subalgebra 
of g. For XE h implies sX E h for any s E R. Next, for X ,  Y E  h, we have from 
the formulas (f) and (9) of remark (1) following Theorem 5.16 that for any 
~ E R ,  exp t ( X +  Y) E H since H is closed. Thus X +   YE^ and similarly 
[XU] E h so that h is a Lie subalgebra of g. 

(b) Let m be a subspace of g such that g = m + h (subspace direct sum). 
Then there is a neighborhood D of 0 in m such that 0 # X E  D implies 
exp X $ H. Suppose this is false. Then there is a sequence { Yi}  c m such that 
lim Yi = 0 and exp Yi E H. Now we can regard m as a Euclidean space with 
norm )I 11 and let k = {XE m : 1 5 llXll S 2). Then we can choose integers 
ni such that X i  = ni Yi E k. Thus since k is compact, we can assume that 
0 # X = lirn X i  exists in k c m (passing to a subsequence if necessary). 
Furthermore, since lim Yi  = 0, we see that lirn l / n i  = 0 and exp(l/n, Xi) = 

exp Yi E H. 
We shall now show that the above X is in h and obtain the contradic- 

tion X E ~  n h = { O } .  Thus let ti  = I/nr so that lirn t i  = O .  Then since 

exp( - t i  X i )  = (exp t i  Xi) -  E H ,  we can assume t i  > 0. Similar reasoning 
shows that X E h if exp t X  E H for all t > 0. Now for each t > 0, let 

k,(t) = largest integer s t / t i .  

Then since (t/ri) - 1 c k,(t)  s t / t i  and lirn t i  = 0, we see 

lirn ki(t)t,  = t. 
i 
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Since exp ti X i  E H, we see exp ki(t)ti Xi = [exp ti 
exp is continuous and lim ki(t)ti X = rX, we obtain 

E H. However, since 

exp rX = lim exp ki(t)ti Xi E H .  

Thus by definition of h in (a) we have the contradiction X E h. 

(c) For some neighborhood U in G with e E U, we have 

U n H = U n e x p h = e x p V  

for some neighborhood V of 0 in h. For using the coordinates of the second 
kind relative to g = h + m, we can find neighborhoods V (respectively V') of 
0 in h (respectively m) and U of e in G such that for W = V + V' the map 

4 :  W - + U :  X+X' -+expXexpX '  

is a diffeomorphism. Now for x E U = 4(W) ,  we have x = exp Xexp X' with 
X E  V c  h and X ' E  V' c m. Thus if X E  U n H ,  then x = exp XexpX'E H 
implies exp X' E H since H is a group. Thus from (b) (shrinking V' to D if 
necessary) we see that X' = 0; that is, U n H = U n exp h = exp V. 

(d) The set H is an analytic submanifold of G. To show that H is the 
underlying set of a submanifold, we use the converse of Proposition 2.11. 
Thus for p E H, we must show that there is a neighborhood U in  G with p E U 
such that U n H i s  a submanifold of U ;  that is, there is a coordinate function 
z so that (U, z)  is a coordinate system of G at p which satisfies (a) and (b) of 
Proposition 2.1 1. However, we can multiply by p - l  and translate the situa- 
tion to e E G. But these results follow from (c) above when we take zl, . . . , 
z , ,  . . . , z, to be canonical coordinates on U as given in (c), and we take the 
neighborhood W (in Proposition 2.11) to be exp V = U n H .  Also because 
U is open in G, this formula yields the topology, induced by the analytic struc- 
ture, equals the topology induced on H by G. With this induced topology, we 
see that the map R -+ H : t -+ exp t X  for X E h is continuous, and therefore 
from Proposition 6.4, h equals the Lie algebra of H. 

REMARK (1) Let H be a closed Lie subgroup with Lie algebra h as given 

above, and let E > 0 be given. Then 

h={XEg:expsXE Hfora l l sERwith  Is1 < E } .  

For any given r E R, there exists m so that t = x t l s i ,  where Isi[ < E and 
we have exp rX = exp s1 X - . exp s,X E H .  

Definition 6.10 Let A denote a finite-dimensional nonassociative algebra 

over R. Thus A is a finite-dimensional vector space with a bilinear map 
a : A x A -+ A. Let B be another finite-dimensional (nonassociative) algebra 
with multiplication function f i .  
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(a) A linear transformation F :  A + B is an algebra homomorphism if 

(b) The kernel of an algebra homomorphism F : A -+ B is the set ker F = 

(c) A subspace D of an algebra A is an ideal if for all X E  A, 

F(a(X, Y ) )  = P(F(X),  F( Y ) )  for all X ,  Y E  A. 

{XE A : F ( X )  = O } .  

a(X,  D )  = {a (X ,  Z )  : Z E D }  c D 

and 

a(D,  X )  = {a(Z,  X )  : Z E D }  c D .  

Exercise (1) Analogous to the case for associative algebras show: D is 
an ideal of A if and only if D is the kernel of some algebra homomorphism 
F :  A + B .  

Proposition 6.11 Let G and H be Lie groups with Lie algebras g and h 
and let f: G -+ H be a Lie group homomorphism. 

(a) Kerf is a closed normal Lie subgroup of G and the Lie algebra of 
Kerf equals ker(Tf(e)) which is an ideal in g where Tf(e) : g + h is the cor- 
responding Lie algebra homomorphism. 

(b) If G is connected, then Im(f), the image off, is a Lie subgroup of H 
and the Lie algebra of Im(f) equals Im(Tf(e)). 

PROOF (a) Let 2 be the identity element in H. Then Ker(f) = { x  E G : 
f ( x )  = 2} =f- ’ (2 )  is a normal subgroup which is closed in G. Thus by Theorem 
6.9, Ker(f) is a Lie subgroup and its Lie algebra 

Y(Ker f) = {X E g : f(exp tx) = 2 for all t E R}. 

Thus X E  .%’(Kerf) if and only if C =f(exp, tx) = exp,(tTf(e)X) for all t E R. 
This implies Tf(e)X = 0 using exp as injective for t near enough 0 E R ;  that 
is, 9(Kerf) c ker(Tf(e)). From the same formulas, the other inclusion is 
clear. Also by the preceding exercise, ker(T’(e)) is an ideal. 

For (b) note that since Tf(e) is a Lie algebra homomorphism, k = Im(Tf(e)) 
is a Lie subalgebra of h. Thus let K be the connected Lie subgroup of H with 
Lie algebra k. Then K is generated by elements exp(Tf(e)X) with X E ~ .  

However, ImCf) = f(G) is generated by elements f(exp X) for X E g, since G 
is connected. Therefore sincef(exp X) = exp(Tf(e)X), we have K =f(G) since 
both of these subgroups are connected. 

We shall consider the corresponding quotient groups in the next section 
on homogeneous spaces. 
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Exercises (2) Let G and H be connected Lie groups and let f: G + H 
be a Lie group homomorphism and let Tf(e) : g -+ h be the corresponding 
Lie algebra homomorphism. Then show : 

(i) f is surjective if and only if Tf(e) is surjective; 
(ii) f is injective implies Tf(e) is injective. What about the converse? 

(3) Let G be a Lie group and H an open subset which is a subgroup of 
G. Then show H is a Lie subgroup of G such that Go = Ho (identity com- 
ponents). 

REMARK (2) Using the results of this chapter, we briefly review the 
subgroups SL(n), SO(n), etc. of GL(n, R) discussed in Section 2.3. Thus let 
R* be the multiplicative (Lie) group of the nonzero real numbers. Then 
det : GL(n, R) -+ R* is an analytic homomorphism of Lie groups. From this 
SL(n) = Ker det = {A E GL(n, R) : det A = I} is a closed subgroup of 
GL(n, R) and consequently a Lie subgroup (see Proposition 6.11). From 
det(exp A) = elrA we see det 0 exp = exp 0 tr and using the chain rule we 
obtain T(det)(Z) = tr. Thus from Proposition 6.1 1 the Lie algebra of Ker det 
equals ker T(det)(Z) = ker tr = {A ~ g f ( n ,  R) : tr A = 0) = sf(n). 

Let V be an n-dimensional vector space over R and let B : V x V +  R be 
a nondegenerate bilinear form on V. For G = GL(V) let 

H = {A E G : B(AX, A Y )  = B ( X ,  Y) for all X ,  Y E  V } .  

Then H is a closed subgroup of G. Thus by Theorem 6.9, H is a Lie subgroup 
of G. Let h be the Lie algebra of H. Then, from Theorem 6.9, A E h if and 
only if B((exp tA)X, (exp tA)Y)  = B ( X ,  Y) for all t E R and X ,  Y E  V. Thus 
as before we obtain 

h = { A  ~ g l ( V )  : B(AX,  Y )  + B ( X ,  AY)  = 0 for all X ,  Y E  V } .  

In particular, when B is positive definite and symmetric, we obtain the 
orthogonal group H = O(n). Next since f = det : O(n) -+ R* is an analytic 
homomorphism we have the special orthogonal group SO@) = Kerf: Thus 
if superscript ' denotes the transpose, the Lie algebra of SO@) equals 
ker Tf(Z) = {A E gl(n) : A' = - A }  = so(n). As before dim SO@) = n(n - 1)/2 
and since SO@) is connected we have Theorem 6.6 that SO(n) is the unique 
connected Lie group generated by exp so(n). Recall from exercise (5). Section 
3.2 that O(n) is compact. Thus SO(n) is compact since it is closed in O(n). 

Similarly the other groups SO(p, q) and Sp(p, R) are Lie groups with Lie 
algebras so(p, q) and sp(p, R) as discussed in Section 2.3. Are these groups 
compact? 
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4. Homogeneous Spaces 

In this section we consider the coset space GIH and make it into an ana- 
lytic manifold so that the projection x : G + GIH is analytic and the action of 
G on G / H  given by G x G / H  4 G / H  : (a, x H )  + uxH is also analytic. From 
a Lie algebra decomposition g = m + h we use m to coordinatize G / H  and 
give examples. Then we apply these results to quotient groups. 

Thus let H be a closed subgroup of G so that H is a topological Lie sub- 
group according to Theorem 6.9. Consequently from Theorem 3.1 1, GIH is a 
Hausdorff space relative to the quotient topology and the natural projection 
II : G + G / H  is open and continuous. Now let g and h be the Lie algebras of 
G and H, and let m be a subspace of g so that g = m + h (direct sum). Then 
we use the canonical coordinates of the second kind to prove the following 
result [Helgason, 1962, p, 1131. 

Lemma 6.12 There exists a compact nucleus D of 0 in m and there exists 
a compact set N containing a neighborhood of Z = eH in G/H such that 
explm : D + exp(D) is a homeomorphism, and x : exp(D) + N is a homeo- 
morphism. Thus x 0 exp I m : D + N is a homeomorphism. 

PROOF As in the proof of Theorem 6.9 we use canonical coordinates of 
the second kind. Thus relative to g = m + h (direct sum) we can find neigh- 
borhoods W (respectively W’) of 0 in m (respectively h) and a neighborhood 
U of e in G such that 

+ ( W +  W ’ ) n  H =  U n  H = e x p  W’, 

where U = I$( W + W‘) is a coordinate neighborhood of e in G and + is given 
by +(X + X’) = exp Xexp X’. Now let = explm and let D c W be a 
compact nucleus of 0 in m such that exp( - 0) exp D c U. Then the restriction 
I(/ : D + I(/@) is a homeomorphism. 

Set N = x($(D)). We now show x : $(D) --t N is injective. For let X, Y E  D 
and assume x(exp X) = x(exp Y). Then (exp X)H = (exp Y ) H  so that 

exp( - X )  exp Y E  H n U = exp W’. 

Therefore there is 2 E W’ so that 

exp X exp Z = exp Y exp 0. 

However, since we are using coordinates of the second kind we have that 
4 I W + W‘ is injective. Thus Z = 0 which implies II : I(/(D) + N is injective. 
Thus x I $(D) is a continuous injective map of the compact set $(D) onto 
N and consequently a homeomorphism. 
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Note N is compact but it also contains an open neighborhood of Z as 
follows. Since D contains an open neighborhood of 0 in  m, D + W' contains 
a neighborhood of (0,O) in  W + W'. Therefore exp D exp W' contains an 
open neighborhood of e in G and since n :  G +  G / H  is an open map, 
n($(D)) = n(exp D exp W ' )  contains an open neighborhood of B in GIH. 

REMARKS ( 1 )  Let N o  be the interior of the set N = n($(D)), let Do be 
the interior of D ,  and let k = n I $(D). Then for a fixed basis XI, . . . , X,  of 
m the map 

$-' 0 k-'  : N o  -+ Do : n(exp xixi) + x i X i  

is a homeomorphism which defines a chart ( N o ,  x )  at B E G/H where x = 

$-' 0 k - ' .  Consequently we can use this to define an analytic structure (on 
NO). 

(2) Using the coordinates of the second kind as above we see the map 

g -+ G : X + X '  + exp Xexp X '  

is an analytic diffeomorphism of a suitable neighborhood of 0 onto 
E = exp Do exp W'.  Thus the map CJ : E -+ m : exp Xexp X '  -+ X is analytic. 
However, on E we see n = x- '  0 CJ is analytic where x is the coordinate map 

above. 
Next, using N o  = n(E) with E as above, we have forp = exp Xexp X'  E E 

that x : N o  + m : p H  -+ X .  Thus the map r = exp 0 x : N o  + G is analytic. 
Furthermore (n  0 r ) ( p H )  = (n 0 exp 0 x ) ( p H )  = n(exp X )  = p H ;  that is, 

n o r = identity I No.  Combining these results we obtain that there exist neigh- 
borhoods E of e in G and N o  of B in G/H so that: 

(i) 
(ii) there is an analytic map r : N o  + G so that n 0 r = identity1 N o .  

: E + N o  is analytic; 

We apply these results to show the following. 

Theorem 6.13 Let G be a Lie group, let H be a closed (Lie) subgroup, 
and let G/H have the quotient topology as before. 

(a) Then G / H  has a unique analytic structure such that: 

(i) the projection map n : G + G/H is analytic; 
(ii) every jj E G / H  has a neighborhood P and an analytic map i; : P --t G 

(b) With the analytic structure in (a) on G / H  we have for every a E G that 

so that n 0 ? = identity I P. 

the map ?(a) : G / H  -+ G / H  : x H  + axH is an analytic diffeomorphism. 
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(c) With the analytic structure in (a) on G / H  the map 4 : G x G / H  -+ 
G / H  : (a, xH) + uxH is analytic. 

~ O O F  First we assume (a) holds and prove (b). Since z(u) has inverse 

z(u-') it suffices to show z(u) is analytic. Then z(u-') is also analytic. We now 

note fur x E G that 

?(a) 0 A(X)  = UXH = A 0 L(u)(x) 

so that on G we have z(u) 0 A = A 0 L(u). Therefore for R = xH E P as above, 
we see z(u)(X) = z(u) o (identity)@) = z(u) 0 A 0 r(R) = A 0 L(u) 0 r(X). Thus on 
P we see z(u) = n o L(u) o r is a composition of analytic maps and therefore 
is analytic. 

This implies that it is sufficient to prove the existence and uniqueness of 
the analytic structure at the point Z = e H  in G/H,  for if a coordinate system 
exists on a neighborhood N o  of Z, then we obtain a coordinate system at any 
other point p = p H  by translation via the analytic map z(p). Futhermore if 
(i) and (ii) hold for N o ,  then they hold for z (p)No = P. Briefly, if r satisfies (ii) 
for N o ,  then 7 = L(p) 0 r 0 z (p- ' )  satisfies (ii) for P using z (p)  o A = n o L(p). 
The proof is similar for (i). 

Now from the preceding remarks we have shown the existence of an 
analytic structure at 2 satisfying (i) and (ii) of (a) and we prove uniqueness. 
Suppose N o  has two analytic structures with two coordinate maps x1 and x2 
and maps rl and r2 from E into G satisfying (a) where E is given in remark (2). 
We shall show x1 0 x;' is analytic. Thus xi  o x;' = x1 o n o r2 o x;'.  How- 
ever from (i), x1 0 A is an.analytic map of G into some Euclidean space and 
from (ii), r2 0 x 2 - l  is analytic. Similarly x2 0 xi-' is analytic so that from 
Section 2.2 we see that the analytic structures are equivalent. 

To show 4 : G x G/H 4 G / H  : (a, xH) + uxH is analytic, it suffices to 
show that its restriction to G x N o  is analytic. Thus for r as defined in remark 
(2) above and for p : G x G 4 G the multiplication function on G, we see 
4 I G x N o  can be factored as follows. 

f o x r  P 
G x NO- G x G -  G"- G/H, 

and since these are analytic, so is 4 = A o p o (iG x r).  

REMARKS (3) Let G be a Lie group and let M be an analytic manifold 
such that G is a topological transformation group on M (Section 3.2). Then 
G is a Lie transformation group of M if the map G x M + it4 : (a, x )  + ux is 
analytic. Thus in the above theorem G is a Lie transformation group of G/H. 
Furthermore, it is proved by Helgason 11962, p. 1131 and Tondeur [1965, 
p. 1551 that the above analytic structure on GfH is the unique analytic structure 
such that G (with the above action) is a Lie transformation group on G/H. 
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(4) For p E G, the coordinates at jj = p H  as discussed in the above proof 
are explicitly given as follows. Let ( N o ,  x) be the coordinates at e given in 
remark (1) where 

x : N O  -, D O  : .n(exp 1 x i  Xi)  -+ C x i  X i .  

Then for the neighborhood P = r(p)No we have that 

y : P -, D O  : n(p exp 1 x i  Xi) -, 1 x i  Xi 

is a coordinate map where we regard m = R" 

Exercise (1) Let H be a closed subgroup of the Lie group G and let 
g = m + h be a fixed decomposition of the Lie algebras as above. Show that 
the map n : C -+ G/H yields the epimorphism Tn(e) : T(G, e) -+ T(G/H,  2). 
Thus identifying g = T(G, e) show that ker Tn(e) = h and consequently 
T(G/H,  t?) 2 g/h  E m. 

Example (1) Let G = SO(n) and forp + q = n let H = SO(p) which can 
be considered as a subgroup G by regarding H as matrices of the form 

where A is a p  x p orthogonal matrix with det A = 1 and I the  q x q identity 
matrix. The Lie algebra of G isg = sofn) which is the set n x n skew-symmetric 
matrices. Thus the Lie algebra h = so(p) is given by the set of matrices 

where B22 is a p x p skew-symmetric matrix and m is given by the obvious 
complementary set of matrices in g, namely 

Thus for X given by (*) in a suitable neighborhood of 0 in m, the coordinates 
at P E G/H as discussed above are given by 

(exp X ) H  X. 

Exercise (2) Let S"-' be represented by SO(n)/SO(n - 1) as in example 
(4), Section 3.2. Compare the coordinates near the point I E SO(n)/SO(n - 1) 
as given above with the stereographic projection coordinates given in example 
(9, Section 2.1. 
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Definition 6.14 Let A be a nonassociative algebra with multiplication 

function a and let D be an ideal of A.  Then the coset vector space A = 

A / D  ={X + D : x E A }  is made into an algebra as follows. For x = X + D 

and P= Y + D in A, define B :  2 x A + A  by 

B(X,  F) = a ( X ,  Y )  + D = a ( X ,  Y ) .  

The algebra A is called a quotient algebra. 

As in the associative case, it is easy to verify that B is a function which is 
bilinear so that A with multiplication B becomes an algebra. Furthermore the 
map A + A : X - l  x is an algebra homomorphism. 

Proposition 6.15 Let G be a Lie group with Lie algebra g and let H be a 

closed normal (Lie) subgroup with Lie algebra h. Then the factor group G / H  
with the analytic structure given in Theorem 6.13 is a Lie group and its Lie 
algebra is isomorphic to the quotient algebra g /h  where h is an ideal of g. 

PROOF The factor group G / H  is a topological group relative to the 
quotient topology and is an analytic manifold relative to the analytic structure 
of Theorem 6.13. Thus we must show that the operation 

G/H x G/H + G / H  : (xH, y H )  + xy-'H 

is analytic. However, by remark (2), Section 4.1 and the uniqueness of the 
analytic structure of a Lie group, it suffices to show the multiplication 

ji : G / H  x G/H + G/H : (xH,  y H )  + xyH 

is analytic at (2, 2). Thus let N o  be the neighborhood of 2 in remark (2) with 
x 0 r = identity1 N o  where r : N o  + G is analytic. Then for X, 1 E N o  we use 
x : G + G / H  as a group homomorphism to obtain 

ji(% 1) = j i (x  0 r G ) ,  II 0 r(R) = np(r(X), r(jj)), 

where p is the multiplication in G. Thus ji = x 0 p 0 ( r  x r )  which is analytic 

at (2, 2). 
Now x : G -1 G/H is an analytic homomorphism of Lie groups and if 

Y ( G / H )  is the Lie algebra of GIH, then Tn(e) : g + Y ( G / H )  is a Lie algebra 
homomorphism. Thus since Ker x = H,  we have by Proposition 6.1 1 and the 

characterization of h in Theorem 6.9 that ker(Tn(e)) = h is an ideal. Thus 
Y ( G / H )  is isomorphic to g/h.  

Corollary 6.16 Let f: G -, H be a Lie group homomorphism and ass- 
ume that G is connected. Letf : G/Ker f+ f ( G )  be the induced isomorphism 
as abstract groups. Then f is an isomorphism of Lie groups where the Lie 
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group structure of f(G) (respectively GIKerf) is given by Proposition 6.11 
(respectively Theorem 6.13). 

Exercise (3) Let f :  G + H be a surjective analytic homomorphism of 
the Lie groups G and H .  Let H' be a closed normal subgroup of H and let 
G' = f - ' ( H ' ) .  Then show that the isomorphism GIG' 2 H/H'  of abstract 
groups is actually a Lie group isomorphism. 

5. Commutative Lie Groups 

We shall apply some of the preceding results on homomorphisms to show 
that a connected commutative (i.e., Abelian) Lie group G is isomorphic to 
R4 x T p  for suitable integers p and q. This also shows that a connected Lie 
group G is commutative if and only if its Lie algebra g is commutative. 

Recall (Section 3.1) that a topological subgroup H of a topological group 
G is a discrete subgroup if H is a discrete subspace of G ;  that is, every subset 
of H is open i n  H .  If G is a Lie group, then a discrete subgroup H can be re- 
garded as a zero-dimensional Lie group and in this case H is a closed sub- 

group of G.  

Proposition 6.17 The set H is a discrete subgroup of the additive Lie 
group R" if and only if H is isomorphic to ZP = Z x -.. x 2 (p-times) for 

some p with 0 I p  I n. 

PROOF It is clear that Zp is a discrete subgroup of R". Conversely, we 
shall now show there are linearly independent elements u l ,  . . . , up of R" which 
generate the discrete group H as a 2-submodule of R". Thus H = Zu, + * + 
Zu, which gives the result. 

Lemma 6.18 Let H be a nonzero discrete subgroup of R". Then H is 
generated as a group by elements which are linearly independent in R". 

PROOF We show this by induction on the dimension n. Thus for n = 0, 
the result follows. Now for n 2 1,  assume the lemma is true for n - 1 and let 
H be a nonzero discrete subgroup of R". Let {ul , . . . , u,} be a maximal set of 
linearly independent elements (over R )  of H .  First assume m < n. Then for 
n = 1 this set is empty. Thus for n > 1, we see that H is contained in a proper 
subspace; that is, H c Ru, + . - -  4- Rum = R" for m < n. We can now apply 
the induction hypothesis to obtain the result. 
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Next assume m = n and let V be the subspace of R" generated by {ui , . . . , 
u , , - ~ } .  Then H n V is a discrete subgroup of V and so by the induction hy- 
pothesis we can assume H n Vis generated by { u l ,  . . . , u , - ~ }  as a Z-module. 

Let Q = { C ; = l b i u i  : 0 4 bi 4 1 for i = 1 , .  . . , n> be the compact cube 
in Rn. Since H is discrete, Q contains only finitely many elements of H. Let 

Then u, E P and let u be an element in P with 6 ,  minimal (since there are only 
finitely many elements in P). We shall now show that the basis {ul , . . . , 
u , , - ~ ,  u} of R" generates H as a group; that is, H = Zu, + + Zu,-, + Zu. 
Thus let h = C1=ihiui + h,u E H for hi E R with i = 1, . . . , 11. Now we shall 
show h, E Z. Then since h - h,u E H n V, we have by the results of the pre- 
ceding paragraph that h, , . . . , A , -  E 2. Let u = Z;= lbi  ui E P(with b, minimal) 
and let k, be the largest integer smaller than h, and let ki  be the largest integer 
smaller than hi + bi(h, - k,) = ci for i = 1, . . . , n - 1. The following element 
in H 

n-  1 n -  1 

i =  1 i =  1 

h - C kiui - k , ~  = C (hi - k&i + (h, - k,)u 

n -  1 n 

i =  1 i =  1 

n -  1 

i =  1 

= 2 [ci - bi(h, - k,) - ki]ui + (h, - k,) C bi ui 

= 1 (ci - ki)ui + (h, - k,)b,u, 

is in Q because by definition 

0 < ci - / t i  < 1 

and by definition 0 < h, - k ,  c 1 yields 

O < b , ( h , - k , ) < b , <  1. 

Therefore this element is in P. However, this last equation also contradicts 
the definition of b, as minimal in the choice of u E P if we assume h, is not an 
integer. Thus we must have h, E Z. 

Proposition 6.19 Let G be a commutative Lie group with Lie algebra g. 

Then, regardingg as an additive Lie group R", the map exp : g -, G is a homo- 

morphism of Lie groups and Ker exp is a discrete subgroup of g. 

PROOF From Section 5.3 we have seen exp : g + G is a homomorphism. 
Now there exist neighborhoods Uo of 0 in  g and U, of e in G such that 
exp I U, : Uo + U, is a diffeomorphism. Therefore, since exp is injective on U,, , 

(Ker exp) n Uo = (0). 
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Thus since Uo is open in  g, the set {0} is open in Ker exp. However, transla- 
tions are homeomorphisms so that {a} is open for every u E Ker exp. Thus 
since any set W of Ker exp is of the form W = UaoW {a}, Wis open; that is, 
Ker exp is discrete. 

Theorem 6.20 Let G be a connected commutative Lie group of dimension 
n. Then there exists an integer p ,  0 ~p s n, so that G is isomorphic to 
R"-p  x Tp. 

PROOF Since exp X exp Y = exp( X + Y) and the connected group G is 
generated by a neighborhood U = exp U,,  we see that the homomorphism 
exp : g + G is surjective (also Section 5.3). From Corollary 6.16 (or directly), 
we have G and g/Ker exp are isomorphic as Lie groups. However, regarding 
g as the additive group R", we have from the preceding results Ker exp is 
isomorphic to some Zp. Thus G is isomorphic to Rn/ZP = ( R"-P x Rp) /Zp  

which gives the results since TP is isomorphic to RP/ZP extending example 
(l) ,  Section 3.2. 

Exercise (1) The results outlined below will be used in the chapter on 
solvable Lie groups. 

(i) Let G be a commutative group with + as its operation. Then G is 
called divisible if for any integer n E Z and any x E G we have x E nG = 

{ny : y E G}. Show if G and H are commutative divisible groups, then the 
direct sum G @ H r G x H is also divisible. Show that the additive groups 
R and T' = R/Z are divisible. Thus R4 x T p  is divisible. 

(ii) Let H be a subgroup of the commutative group G. Then H is a 
divisible subgroup if H is divisible as a group. Show that if H is a divisible 

subgroup of a commutative group G, then there exists a subgroup K of G 
such that G = H @ K.  (This is not too easy [MacLane, 1963; Barns, 19651.) 

(iii) Now let G be a commutative Lie group (written additively). Then 
we know that the identity component Go E R4 x T p  is divisible. Therefore we 
hahe an exact sequence 

0 - Go - G L G/Go - 0 

which splits since G = Go @ K. Because of this G 5 G/Go + 0 splits and 
therefore there exists a Lie group homomorphismf: GIGo + G with 71 ofthe 
identity on G/Go. Using this and the fact that G/Go is discrete (Theorem 
3.22), show that K is a discrete Lie subgroup of G. Thus we have shown that 
if G is a commutative Lie group (written additively), then G = Go @ K where 
the connected component Go s' Rq x T P  is a divisible subgroup and K is a 
discrete subgroup. 

i 



CHAPTER 7 

AUTOMORPHISMS AND ADJOINTS 

We have already considered some results on automorphisms of Lie groups; 
for example, an automorphism 4 : G -, G induces an automorphism T+(e) : 
g + g of the corresponding Lie algebra. We now develop some of the " struc- 
tural" results for groups of automorphisms. Thus we first show that the 
automorphism group of a nonassociative algebra A is a Lie group whose Lie 
algebra is the derivation algebra of A. Next we develop the concept of inner 
derivations of a nonassociative algebra and the corresponding inner auto- 
morphisms. When the algebra is associative these reduce to the usual concepts 
of inner derivations and automorphisms. Using these results we use the differ- 
ential of an inner automorphism 4(a) : G + G : x -, axu-' of a Lie group G to 
obtain an automorphism (T4(u))(e) : g -, g of the corresponding Lie algebra g. 

Then we obtain a mapping Ad : G -, GL(g) : u -, (T+(u))(e) called the " adjoint 
representation of G." We develop formulas for the adjoint representation 
which lead to the result that the inner automorphism group of a connected 
Lie group G equals Ad(G). The fact that for a connected Lie group G, Aut(G) 
is a Lie group is proved in Chapter 8. 

156 
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1. Automorphisms of Algebras 

Let A be a finite-dimensional nonassociative algebra over a field K with 
bilinear multiplication function a and define a ( X ,  Y) = X Y = XY. Let 
Aut(A) denote the automorphism group of A ;  that is, the set of maps 
4 E GL(A) with +(X Y) = 4 ( X ) 4 (  Y). Then Aut(A) is a subgroup of GL(A). 

Proposition 7.1 Let A be a nonassociative algebra over R. Then Aut(A) is 
a closed subgroup of GL(A ). Thus Aut(A) is a closed Lie subgroup of GL(A). 

PROOF For X ,  Y fixed in A we note that since the multiplication in A is 
continuous (it is a bilinear map of the finite-dimensional space A), the set 
S(X,  Y) = {$ E GL(A) : &XY) = 4(X)$(Y)) is closed. Thus Aut(A) = 

0 { S ( X ,  Y )  : X ,  Y E  A) is  closed in GL(A). 

Definition 7.2 A derivation D of a nonassociative algebra A is a linear 
transformation of A satisfying D(X - Y) = DX * Y + X D Y for all X ,  Y E  A. 

Let Der(A) denote the set of derivations of A. Then it is easy to see that 
Der(A) is a Lie subalgebra of gl (A) .  

Proposition 7.3 

R. Then: 

(a) exp tD E Aut(A) for all t E R; 

(b) the Lie algebra of Aut(A) equals Der (A). 

PROOF Since Aut(A) is a closed subgroup of GL(A), (a) follows from (b) 
and Theorem 6.9. So to show (b), let D be in the Lie algebra of Aut(A). Then 
from Theorem 6.9, we have exp rDEAut(A) for all t~ R. Therefore for 
X, Y E A  

(exp t D ) ( X .  Y) = (exp tD)X . (exp tD) Y 

and using the product rule, we differentiate with respect to t at t = 0 to obtain 
D(X . Y) = DX * Y + X . D Y ;  that is, D E Der(A). To show the converse, we 
let D be a derivation and let 

a(t) = (exp tD)(XY) and p(t)  = (exp tD)X (exp tD) Y. 

Then we see a(0) = p(0) = XYand &(t)  = Da(t) in A. Also using D as a deriva- 
tion we have 

b(t) = D(exp tD)X * (exp tD) Y + (exp tD)X - D(exp tD) Y 

= D[(exp t D ) X *  (exp tD)Y] = Dp(t). 

Thus tl and /? are solutions to i = Dz satisfying the same initial conditions. 
This implies the desired result a(t) = p(t) using Proposition 2.36. 

Let D be a derivation of a nonassociative algebra A over 
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2. Inner Derivations and Automorphisms 

Recall that for a nonassociative algebra A over R we have defined the 
mappingsL(X) : A + A  : Y - +  XY and R(X) : A + A  : Y +  YXfor all X E A .  

In particular, if A = g a Lie algebra, we have set 

L(X) = ad(X) 

called the adjoint mapping in g. 

Definition 7.4 Let A be a nonassociative algebra over R and let P be the 
subspace of End(A) spanned by L(X) and R( Y) for all X, Y E  A. The Lie 

transformation algebra of A, denoted by L(A), is the Lie subalgebra of gl (A)  

generated by P [Schafer, 19661. 

Examples (1) If A is a Lie algebra with multiplication [XY], then 
L(X) = ad(X) = - R(X) so that P = {ad(X) : X E A}. Using the Jacobi 
identity, we see that 

[ad X, ad Y] = ad([XY]) 

so that P is a Lie algebra of linear transformations; that is, L(A) = P 

(2) If A is associative, then we have 

L(X)L( Y)Z = X( YZ) = (XY)Z = L(X Y)Z L(X)L( Y) = L(X Y); 

R(X)R( Y)Z = (Z Y)X = R( YX)Z R(X)R( Y) = R( YX); 

L(X)R( Y)Z = X(Z Y) = R( Y)L(X)Z L(X)R( Y) = R( Y)L(X). 

Thus in this case P is also closed under commutation; that is, L(A) = P. We 
shall give examples later when L(A) is more complicated. 

and 

and 

and 

Definition 7.5 A derivation D of a nonassociative algebra A is inner if 
D E L(A). Let Inn@) denote the set of inner derivations of A. 

Examples ( 3 )  If A is a Lie algebra, then for any X E A we have D = ad(X) 
is an inner derivation. 

(4) Let A be associative, and let D = L(X) + R( Y) be an inner deriva- 
tion. If A has an identity element 1, then 

D(1) = D(1 * 1) = D(1) * 1 + 1 * D(1) 

so that 0 = D(1) = (L(X) + R( Y))(l) = X + Y. Thus for an associative 
algebra with identity, inner derivations are of the form D = L(X) - R(X). 
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Proposition 7.6 The set Inn(A) of inner derivations of a nonassociative 
algebra A is an ideal in the Lie algebra Der(A). 

PROOF We first find a formula for L(A)  as follows. Let PI = P be as in the 
definition of L(A)  and let P i + 1  = [ P l ,  P i ] .  Then we have 

[ P i ,  Pm] c Pi+m for i, rn = I ,  2 , .  .. . 
The case i = 1 follows from the definition. Now assume the results for i = k 
and all m. Then we use the Jacobi identity in gl (A)  as follows for i = k + 1. 

[Pk+l,  PmI c [[PI, PkI9 Pm] 

c [ [ p l i P m l , P k ] + [ P 1 ,  [Pk,Pml] 

iPm+l, p k l  + P k + m l  

Pk+m+i, 

where we use the induction hypothesis on the third containment. Thus 
1; Pi is a Lie subalgebra of L(A)  which contains P so that by definition we 
have 

m 

i =  1 

L(A) = 1 Pi. 

Next we note by induction that if D E Der(A), then [D,  P i ]  c P i .  For 
i = 1, this uses the formulas 

[D, L ( X ) ]  = L(DX) and [ D ,  R ( X ) ]  = R(DX) 

which follow from the definition of a derivation. For i > 1, we use the Jacobi 
identity again. Now since L(A) = P i ,  this yields 

[ D e w ) ,  L ( 4 I  = W).  
Finally, since Inn(A) = Der(A) n L(A)  is a subspace of Der(A), we see 

[Inn(& Der(A)] t L(A) n Der(A) = Inn(A); 

that is, Inn@) is an ideal in Der(A). 

Definition 7.7 An automorphism $ of A is inner if $ is contained in the 
subgroup of Aut(A) generated by exp(Inn(A)). Thus $ = exp D, * * * exp D, 
where Di E Inn(A). Let Int(A) denote the subgroup of inner automorphisms 
of A .  

Example ( 5 )  Let A be a finite-dimensional associative algebra of 
endomorphisms containing the identity I. Let D = L ( X )  - R ( X )  E Inn(A). 
Then since L ( X ) R ( X )  = R(X)L(X) we have 

exp D = exp(L(X) - R ( X ) )  

= exp L ( X )  exp( - R(X) )  = exp L(X) exp R( - X )  
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using exp(S + T )  = exp S exp T if ST = TS. However, [exp L(X)](Z) = 

(xL(X)”/n!)Z = (c X”/n!)Z = (exp X)Z and similarly, [exp R(X)]Z = 

Z(exp X). Thus we obtain 

(exp D)Z = [exp L(X) exp R( - X)]Z 

= (exp X)Z(exp - X) = (exp X)Z(exp X ) - ’  

which conforms to the usual definition of an inner automorphism as an 
endomorphism #J E GL(A) of the form #J(Z) = UZU -’ for some U E A. 

Later we shall give a criterion which shows that for many simple algebras, 
all derivations are inner. 

3. Adjoint Representations 

We now consider the differential of inner automorphisms to obtain a 
representation of a Lie group G in its Lie algebra g. 

Definition 7.8 Let V be a finite-dimensional vector space over a field K,  

let G be a group, let g be a Lie algebra over K, and let A be an associative 
algebra over K. Then a group representation of G in V is a group homomor- 
phism G + GL(V). A Lie algebra representation of g in Y is a Lie algebra 
homomorphism g -, g1(V). An associative algebra representation of A in V 

is an associative algebra homomorphism A + End (V). An injective repre- 
sentation is called faithful. 

Examples (1) If g is a Lie algebra over R and if ad(g) = {ad X : X E g}, 
then ad : g + ad(g) : X-, ad X is a Lie algebra representation called the 
adjoint representation. For in this case we use the Jacobi identity to obtain 
ad[XY] = [ad X, ad Y] so that the map ad is a homomorphism. Next note 
that ker(ad) = { Z  E g : [XZ] = 0 for all X E g} is the center Z(g) of g. Con- 
sequently the Lie algebras ad(g) and g/Z(g) are isomorphic. Thus if Z(g) = (0) 
theng is isomorphic to a Lie algebra of linear transformations. 

(2) If A is an associative algebra, then the map A + End(A) : X + L(X) 
is a representation which is faithful if A has an identity element. 

(3) Let G be a connected Lie group, and let 4 E Aut(G) be an analytic 
automorphism. Then T#J(e) E GL(g), and the map 

Aut(G) + GL(g) : #J + T#J(e) 
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is a faithful representation of the subgroup of analytic automorphisms of 
Aut(G) in g. [Note Theorem 8.14 for the Lie structure of Aut(G).] To see this 
is a representation, we note for analytic automorphisms 4, $ E Aut(G), 

T(4 O M e )  = T 4 ( W  T W )  = T4(e) O W(4. 
This representation is faithful; for if (7$(e))(X) = I(X) = X for all X E g, 
then by Proposition 5.19, 

4(exp X) = exp(T&(e)(X)) = exp X. 

Thus 4 = idy on a neighborhood U of e in G and since G is connected, G is 

generated by U. Thus since 4 is an automorphism, it is the identity on G (or 
we can use Proposition 5.20). Since continuous automorphisms of G are 
actually analytic, this example extends to a representation of the group of 
continuous automorphisms of G. 

Definition 7.9 Let G be a Lie group with Lie algebra g and for a E G 

let 4(a) : G 4 G : x 4 axa-' be the corresponding (analytic) inner auto- 
morphism. Then the mapping 

Ad : G 4 GL(g) : Q + (T&a))(e) 

is called the adjoint representation of G. 

Proposition 7.10 The adjoint representation is an analytic homomor- 
phism of G into the Lie group Aut(g). 

PROOF Since $(a) is an analytic automorphism of G, (T4(a))(e) is an 

automorphism of g and 

T4(ab)(e) = (T(4(4 O 4(W)(e) = T4(a)(e) O ~4(b)(e). 

Thus Ad@) = Ad@) 0 Ad@) so that Ad is a representation of G. To show 
that it is analytic, let X1,. . . , X, be a basis of g and let {xl, . . . , x,} be the 
corresponding canonical coordinate system. Now let 

Ad(a)(Xi) = [T~(Q) (~ ) I (X~)  = C aji(a)xj 
j 

be the matrix representation of Ad(a). If x = exp tXi , then from Proposition 
5.19 

4(aN = 4(a)(ex~ txi)  

= ex~[rT4(a)(e)(Xi)I = exp[t C aji(a)XjI* 
i 

Thus for t near enough to 0 E R, taji(a) are the canonical coordinates of &)x. 
However, the canonical coordinates for c#+)x are given by commutator 
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formula in Theorem 5.16(b) and are analytic for a in a suitable neighborhood 
of e in G. Thus Ad is analytic at e E G and since it is a homomorphism of Lie 
groups, Ad is analytic on all of G. 

We shall now derive some formulas for Ad. 

Theorem 7.11 Let Ad : G -+ Aut(g) be the adjoint representation of a Lie 
group G. Then 

(TAd)(e) = ad; 

that is, the differential at e of the adjoint representation of the Lie group is the 
adjoint representation of the Lie algebra. 

PROOF Since Ad : G + Aut(g) we have TAd(e) : T(G, e) -+ T(Aut(g), I ) .  
Thus for X E g = T(G, e) we have the value X* = (TAd)(e)X E T(Aut(g), I) = 

Der(g); that is, X* E End(g). Since Ad is a homomorphism, we have for t near 
0 in R 

(Ad)(exp tX) = exp[t(TAd)(e)X] = exp tX*. (1) 

Thus since Ad(exp tX) E End(g), we have for Y E  g and from the series exp tX* 
for the linear iransformation X*, 

1 

1-0 t 

1 

1-0 t 

X * ( Y )  = lim - (exp tX* - I)( Y )  

= lim - (Ad(exp tX) - I)(Y). (2) 

Now for s and t sufficiently near 0 in R we have 

exp[s Ad(exp tX)Y] = exp[s(T$(exp tX)(e))( Y ) ]  

= &exp tX)[exp(sY)I 

= (exp tX)(exp sY)(exp - tx) 
= exp(sY + st[XY] + so(t2)) 

using the definition of Ad, the fact a(exp X) = exp(Ta(e)X) for an analytic 
automorphism CT of G, and Theorem 5.16(b). Therefore we can conclude for t 
near 0 in R 

Ad(exp tX)Y = Y + t[XY] + o(t2). (3) 

Thus substituting (3) into (2) we obtain 

1 

1-0 t 
X*(Y) = lim - ( Y +  t[XY] - Y) = [XY]; 

that is, [TAd(e)](X) = X* = ad X. 
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Corollary 7.12 For X E g and a E G we have 

(a) Ad(exp X) = exp(ad X) ( =eadX) 

(b) a(exp X)a-' = exp[Ad(a)(X)]. 

PROOF Part (a) is just a restatement of formula (1) in the above proof. 
For (b) we have as in the above proof that for the inner automorphism 
$(a) : G + G : x -, axa- I ,  

a(exp X)a-' = 4(a)(exp X )  

= exp[( ~4(~)(e))(x)l = exp[Ad(a)(X)I 

using the definition of Ad. 

Corollary 7.13 If G is a connected Lie group with Lie algebra g, then 
Ad(G) = {Ad a : a E G} is a Lie group with Lie algebra ad(g). Thus Int(g) the 
inner automorphism group of g equals Ad(G). 

PROOF From Proposition 6.1 1, we have for the homomorphism f = Ad 
that f ( G )  is a Lie group [a Lie subgroup of GL(g)]. Also the Lie algebra of 
Ad(G) equals Y(f (G))  = Y(1mf) = Im(Tf(e)) = Im(ad) = ad(g). 

Next if 4 E Int(g), then c$ = exp D, . . *  exp D, where Di = ad Xi .  How- 
ever, exp(ad Xi) = Ad(exp Xi) so that c$ = Ad(exp X ,  - * - exp X,). Since G is 
connected every element is of the form exp X ,  * * .  exp X ,  and the results now 
follow. 

Corollary 7.14 Let G be a connected Lie group with Lie algebra g and let 

(a) Z(G)  is a Lie group and its Lie algebra is the center of g. 

(b) The kernel of the analytic homomorphism Ad : G + Int(g) is Z(G)  
and G/Z(G) Int(g) = Ad(G) as Lie groups. Thus if Z(G)  = {e}, then 
Ad : G -, Int(g) is a Lie group isomorphism. 

Z(G) be the center of G. Then 

(c) If the center of g is {0}, then the center of Int(g) is {I}. 

PROOF Since Z(G) = {b E G : bxb-' = x for all x E G} we see from con- 
nectedness of G that b E Z(G)  if and only if b(exp X) = (exp X)b for all 
X E g. Thus using Corollary 7.12(b) 

exp X = b(exp X)b-' = exp[Ad(b)(X)]. 

This is the case if and only if 

Ad(b) = I 

which is the case if and only if b E Ker Ad. Thus we see Z(G)  = Ad-'(l) 
which is a closed Lie group by Proposition 6.1 1. Thus Z(G) = Ker(Ad) so that 
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by Proposition 6.11, the Lie algebra 9 ( Z ( G ) )  = ker(TAd(e)) = ker(ad) = 

(2 E g : ad Z = 0} which is the center of g. The rest of (b) follows from the 
isomorphism theorem (Corollary 6.16) and (c) is an exercise. 

We shall now consider ideals and normal subgroups in more detail and 
extend the results of Proposition 6.15. 

Lemma 7.15 Let G be a Lie group with Lie algebra g, let V be a finite- 
dimensional vector space over R, and let $ : G + GL(V) be an analytic map. 

(a) If $ : G + GL( V )  is a representation of G in V, then T$(e) : g -P g1( V )  
is a representation of g in V. 

(b) If $ is a representation and W is a subspace of V with $(a) W c W 
for all a E G, then [T$(e)(X)]( W) c W for all X E g. 

(c) Conversely, if G is connected and $ is a representation and W is a 
subspace of V with [T$(e)(X)]( W) c W for all X E g, then $(a) W c W for all 
u E G. 

PROOF Part (a) is just a restatement of Proposition 5.19. For (b), let 
X ~g and w E W. Then since [T$(e)](X) is a linear transformation and 
$(exp tX) = exp[tZV(e)(X)] we have 

[T$(e)(X)lw = [d/df exp t(T$(e)(X)) I *=OlW 

= d/dt[(exp tTW(X))wl,=o 

= d/dt[$(exp tX)w], = o .  

Thus if for all a E G we have $(u)w E W, then [T$(e)(X)]w E W. This is the 
case because the difference quotient for the derivative and its limit are in W. 

Conversely for (c) let [T$(e)(X)lw~ W. Then using the formula expZ= 
1 Z"/n! for a linear transformation Z we have $(exp tX)w = exp(tT$(e)(X))w 
is in W. Thus $(ll)w E W for some neighborhood U of e in G and since G is 
connected and $ is a homomorphism $(u)w E W for any u E G. 

Corollary 7.16 Let G be a connected Lie group with Lie algebra g. 

(a) If H is a normal Lie subgroup of G, then its Lie algebra h is an ideal 

(b) If h is an ideal of g, then the connected subgroup H generated by 

of g. 

exp h is a normal subgroup of G. 

PROOF Let $ = Ad with V = g in the preceding results. Then for 
&~)x = uxu-' we have T$(u)(e) = $(a). Thus if H is normal, then for any 
a E G we have b(u)H = aHu-' c H so that, by Corollary 7.12, 

V4(a)(e)l(h) c h;  



3. ADJOINT REPRESENTATIONS 165 

that is, Ad(a)h c h. Thus for $ = Ad we have ad = T$(e) so that by Lemma 
7.15 for all X e g ,  

(ad X)(h) = [Xh] c h. 

Thus h is an ideal of g. 

have T$(e) = ad is such that for any X E g, 
Conversely if h is an ideal ofg,  then ad(g)h = [gh] c h. Thus for t,b = Ad we 

[T$(e)(X)]h = [Xh] c h. 

Therefore by Lemma 7.15(c), $(a)h c h ;  that is, Ad(a)h c h. Consequently, 

a * exp(h) 1 a-  = $(a)(exp h) 

= exp ~7,$(4(e)(h)l 

= exp[Ad(a)(h)] c exp h. 

Thus since the subgroup H generated by exp h is connected and 4(a) is a 
homomorphism, H is normal. 

Exercises (1) If G is a connected Lie group with Lie algebra g, then 

(2) Use Theorem 5.16 to deduce Corollary 7.16(a). 

Ad G is a normal subgroup of (Aut g)o (the identity component of Aut 9). 

Example (4) Let G be a connected Lie group with Lie algebra g and let 
H be a closed Lie subgroup with Lie algebra h. The pair (G, H) or (9, h) is 
called a reductive pair if in the Lie algebra g there exists a subspace m such 
that g = m + h (subspace direct sum) and (Ad H)(m) c m. In this case the 
corresponding homogeneous space G / H  is called a reductive homogeneous 

space. For the (fixed) decomposition g = m + h we can introduce an algebra 
multiplication in m as follows: For A', Y E  m let [XY] = XY + h(X, Y) 
where XY = [XY], (respectively h ( X ,  Y) = [XY],) is the projection of [XY] 
in g into m (respectively h). Thus m with the multiplication X Y  becomes an 
anticommutative algebra; that is, XY = - YX. This algebra is analogous to 
the Lie algebra of a Lie group and can frequently be used to obtain informa- 
tion about the space GIH. 

Exercise (3) Show that the Lie algebra identities o fg  yield the following 
identities for the above algebra m and the decomposition g = m + h. 

(i) X Y  = - Y X  (bilinear); 
(ii) h(X,  Y) = -h(Y,  X) (bilinear); 

(iii) [Zh(X, Y)] + [Xh( Y ,  Z)] + [Yh(Z, X)]  = (XY)Z + ( Y Z ) X  
+ ( Z X )  Y ;  

(iv) h(X Y,  Z) + h( YZ, Y) + h(ZX, Y) = 0; 

(v) [Ph(X,  Y)l = h([PXl, Y) + h(X, [PYl); 
(vi) [P XU] = [PXIY + X[PY] 
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for all X, Y, 2 E m and P E h. In particular (vi) says that the mapping D ( P )  = 

ad, P : m + m : X + [PX 3 is a derivation of the algebra m for each P E h. 

(4) Show that Ad H c Aut(m) where m is the above algebra. 

As an example consider G = SO(n) and H = SO(p) for p c n as given in 
Section 6.4. Then relative to the decomposition g = m + h of Section 6.4, one 
obtains (G, H) or (g, h) as a reductive pair (exercise). Note that the following 
situation arises: For p < n - 1, m is not the zero algebra; that is, XY f 0. 
However, for p = n - 1 we have m is the zero algebra; that is, XY = 0. In 
general the pair (G, H) or (9, h) is called a symmetric pair if there exists a 
subspace m of g with g = m + h (direct sum) and Ad(H)m c m and [mm] c h. 
The corresponding homogeneous space G / H  is called a symmetric space 

[Helgason, 1962; Loos, 19691. 

Exercise ( 5 )  For n = 2p what can be said about the pair (G, H) for 
G = GL(n, R) and H = Sp(p, R)? 



CHAPTER 8 

SIMPLY CONNECTED LIE GROUPS 

In this chapter we review some basic facts on homotopy, fundamental groups, 
and covering spaces and apply these results to simply connected Lie groups. 
For example we show that if G is a simply connected Lie group, H is a Lie 
group, and f: g + h is a homomorphism of the corresponding Lie algebras, 
then there is a unique Lie group homomorphism i,h : G -, H with Ti,h(e) =f. 
In particular, this implies simply connected Lie groups can be " classified " 
by their Lie algebras; that is, if G and H are simply connected Lie groups with 
isomorphic Lie algebras, then G and H are isomorphic Lie groups. This 
classification is nonvacuous since we show for a given Lie group G with Lie 
algebra g, there exists a simply connected Lie group G with Lie algebra iso- 
morphic to g. Finally we use various results to show that if G is a connected 
Lie group, then Aut(G) is a Lie group. 

1. Homotopy Review 

In this section we briefly discuss the basics of homotopy, the fundamental 
group, and show that the fundamental group of a Lie group is commutative. 

Definitions 8.1 Let M and N denote (Hausdorff) topological spaces and 

(a) Letf, andS, denote continuous maps M -, N. Thenf, is homotopic 

let Z denote the closed interval [0, 11. 

tofi (denoted by fo -f,) if there is a continuous map 

h : M x I -+ N : (x, t )  -, h(x, t )  

167 
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satisfying h(x, 0) = f o ( x )  and h(x, 1) = f l ( x )  for all x E M. 

(b) Let x o ,  xI E M. Then a path in M from xo to x, is a continuous map 
(curve) a : I 4  M so that a(0) = xo and a(1) = xl. The end points of a are xo 

and x1 and a is a closed path in case xo = xl.  

(c) Let a and be paths from xo to x1 in M .  Then a and p are homotopic 

or equivalent (also denoted by a - p )  if there is a continuous map 
h : Z x I + M : ( t ,  s) --* h(t, s) satisfying 

(i) h(0, s) = xo and h(1, s) = x1 for all s E I; 
(ii) h(t, 0) = a(t) and h(t, 1) = p(t) for all t E I. 

Thus a and p are homotopic as functions with the additional restriction that 
the end points are fixed throughout the homotopy. The function h is called 
a homotopy of a to p. 

REMARK (1)  The homotopy of paths is an equivalence relation. Thus 
for a path a with endpoints xo and xI we let [a] denote the equivalence class 
of a ;  that is, [a] is the set of all paths homotopic to a. 

Definitions 8.2 Let M be a topological space and let xo , x1 x2,  E M. 

(a) Let a be a path from xo to xI and let p be a path from x1 to x 2 .  Then 
the product of a and fl  is the path ap : I +  M given by 

(b) The inverse of a path a from xo to x1 is a path c 1 - I  from x1 to xo 
given by 

a-'(t)  = a(l - t ) .  

REMARKS (2) The product of two paths is continuous and so is the 

(3) Let a. - a ,  and Po - /I1 be paths. Then: 

inverse. 

(i) a;' - a ; ' ;  

(ii) if a. Po is defined, then a l p l  is defined and e0 Po - a l p ,  

This allows us to define the product and inverse of equivalence classes by 

[a][B] = [ap] if ap is defined 

and 

[a]-' = [a-'1. 
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(4) For any z in M let e, : I + M : t + z.  Then e, is a path in M with both 
endpoints equal to z. Let a be a path from xo to x , .  Then we have 

These considerations lead to the following result; see the work of Singer and 
Thorpe [I9671 for various proofs. 

Proposition 8.3 Let M be a topological space and let xo E M. 

(a) The set of equivalence classes of closed paths with endpoints xo form 
a group under the operations of [a] [B]  = [aB], [a]- ' = [a- ' ] ,  and identity 
[e,,] as above. This group is called the fundamental group of M relative to the 
base point xo and denoted by nl(M, xo). 

(b) If M is pathwise connected, then for any x o ,  x, E M we have n,(M, x o )  
and n 1 ( M , x 1 )  are isomorphic groups. Thus in this case the fundamental 
group is essentially independent of the base point and we frequently write 
n , (M)  for n , ( M ,  x,,) and call nl(M) the fundamental group of M .  

(c) I f f :  M -, N is a homeomorphism of topological spaces, then the 
map f* : n , (M,  xo)  + n I ( N , f ( x O ) )  : [a] + u o  a] is an isomorphism of funda- 
mental groups. 

REMARK ( 5 )  Let G be a connected Lie group. Then, since it is a mani- 
fold, G is also pathwise connected. Thus the fundamental group of G, nl(G), 
is isomorphic to n,(G, e). 

Exercises (1) Let G and H be connected Lie groups. Show nl(G x H) 
is isomorphic to nl (G)  x n,(H) as product groups. 

(2) Using Theorem 6.20, show that the fundamental group of a con- 
nected commutative Lie group is isomorphic to Z x * * .  x Z, p-times, for 
some integer p. [Recall that n l ( R )  (0) and n,(S ' )  r 2.1 

The following result shows that the fundamental group of a connected 

Lie group is Abelian. 

Proposition 8.4 Let M be a topological space with a continuous " multi- 
plication" function p : M x M + M such that there exists e E M with 
p(x,e)  = p(e, x) = x for all x E M. Then n , (M,  e) is Abelian and the pro- 

duct [al[B1 = b 0 (=, PI1 in nl(M,  4 where p 0 (a, B)(O = p(a (0 ,  BO)). 

PROOF Let [a], [B] be in n , ( M ,  e) and letf: I +  M be a closed path which 
is a representative of [a] and similarly let g : I -, M be a representative of [B ] .  
Since p(e, e) = e we can define a closed path k : I+ M with endpoints e by 

k(r) = P ( f ( t ) ,  s(0) 
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for t E 1. Then k represents an element [y] in n l ( M ,  e) and [y] depends only 
on [a] and [B]. We shall show [a][B] = [y] = @][a] and this also shows the 
formula [.][PI = [cr 0 (a, P)]. 

First to prove [y] = [a]@] we can assume that the representative paths f 
and g satisfyf(t) = e for i I t and g(t) = e for t I 4. Then using e as a two- 
sided identity we have 

f(t) for 0 I t I f, 
k( t )  = 

Now we define a continuous map h : I x I - +  M : ( t ,  s) + h(t,  s) by 

for O s t ~ f ,  OISII,  
h(t,  s) = 

and note h(0, s) = h ( l ,  s) = e for all s E I. Also since h(t, 0) = k(t)  and since 
h(t, 1) = (fg)(t), the product fg, we see that k is homotopic to fg; that is, 

To show [y] = [B][a] we first choose the representatives f and g so that 
f ( t )  = e for t I f and g(t) = e for f I t .  Then from k(t)  = p(f(t), g(t)) we see 

[y] is represented by 

[Yl = ""1. 

However, as above, k is homotopic to the product gS; that is, [y] = [P][a]. 

Definition 8.5 A topological space M is simply connected if it is pathwise 
connected and its fundamental group n , ( M )  consists of the identity element. 
The space M is locally simply connected if for each p E M and each neighbor- 
hood U of p there is a simply connected neighborhood V with p E V c U. 

Theorem 8.6 Let G be a simply connected Lie group with Lie algebra g 
and let H be a Lie group with Lie algebra h. Iff: g + h is a Lie algebra homo- 
morphism, then there exists a unique Lie group homomorphism + : G -+ H 
such that T+(e) =f: 

PROOF Since G is simply connected, it is connected, and consequently by 
Proposition 5.20 if + exists, it is unique. Furthermore from Theorem 6.8 there 
is a local homomorphism 4 : G -, H with Ti(e)  =f: We shall show that we 
can extend 4 to the desired homomorphism + with 4 = + on a suitable nucleus 
in G. We follow the proof of Hausner and Schwartz [1968]. 

Thus let U be a connected symmetric nucleus in G so that +(xy) = +(x)+(y) 

for x ,  y E U and also let V be a connected nucleus in G with V c U and so 
that V- '  V c U. For a path a : I - ,  G : t + a(t) with endpoints x,, and x1 we 
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define a fine partition of Z relative to the path a (and U) as follows. Let 
0 = to < t ,  < - .  . < t, = 1 be a partition of I so that for all subintervals 

s, t E Zk implies a(s)-'a(?) E U. 

Such a partition is called fine. A fine partition exists as follows. Since Z is 
compact and since the group operations are continuous we have that there 
exists a 6 > 0 so that if 1s - 11 < 6, then a(s) - la( t )  E U. Also note that a 
refinement of a fine partition is fine. 

For a fixed fine partition as above set Aka = a- l ( tk - l )a ( tk )  and define 

Zk = [ f k - 1 ,  t k ]  for k = 1, . . . , We have 

F(a) = 4(Ala)4(Az a )  * * * 4(Ana)* 

We now show that F(a) does not depend on the partition of Z but depends only 
on the equivalence class of the path a. First we show that if a point p is added 
to the above partition, then the value of F is unchanged. Thus we add p to 
the partition and obtain a new fine partition by considering the interval 

[ f k - l ,  f k ]  being replaced by [ t k - l ,  p ]  U [ p ,  t k ] .  Then 

Aka = a-l(tk-l)a(tk) 

= a-l(tk-l)a(p)a(p)-'a(t,) = A'aA"a. 

Since A'a and A'a are in U and 4 is a local homomorphism on U we have 

4 ( A k  a> = 4(A'a)4(A"a)* 

Thus using this new fine partition we see that the value F(a) remains the same. 
Therefore since any two fine partitions have a common refinement (which is 
fine), we see that F(a) does not depend on the partition. 

Next F(a) depends only on the equivalence class [a] ,  for let 

h : I x I +  G : ( t ,  s) + h(t, s) 

be a homotopy with h(t,  0) = f ( t )  and h(t,  1) = g(t) where bothfand g are in 
[a] (with endpoints xo and xl). Now let p E I be fixed and let 0 = to < t ,  < * * 

< t ,  = 1 be a fine partition for the path h( t ,  p). By continuity of h we can 
choose s E I sufficiently close to p so that 

{ t o ,  t , ,  . . . , t,} is a fine partition for h( t ,  s), (1) 

h(tk, S)-'h(tk,p) E u for k = 1, . . . , n, (2) 

h(fk,  p)-'h(tk, s) E u for k = 1, . . . , n. (3) 

Briefly, for each t k  we can find neighborhood " balls " Bk of p in I so that 

h(fk-1, a)-'h(fk,  a)  E u 



172 8. SIMPLY CONNECTED LIE GROUPS 

for each CI E Bk . Thus since there are only finitely many balls B k  , choose the 
one with the smallest radius B. Then for all s E B we see h(tk- , s)-'h(tk, s) E U 
which proves (1). For (2) continue making the finitely many necessary choices 
of balls to obtain h ( t k ,  a)' ' h ( t k ,  p) E U and then take the one with the smallest 
radius (or B) to obtain (2). For (3) use the fact that U is symmetric (U-' = U ) .  
We use these equations and induction to obtain for 1 5 k 5 n, 

4 [ h ( t o ~ p ) - 1 h ( t ~ ~ ~ ) l  ' *  * +[h(tk-l,p)-lh(tk, PI1 

= 4[h(tO, s)-'h(tl, s)] * * * 4[h(tk-I, s ) - ' h ( t k  9 s)] * 4[h(fk 9 s)-'h(tk 9 (4) 

For k = 1 we use 4 is a local homomorphism on U and h ( t o , p )  = 

h(to,  s) = xo , and Eqs. (1) and (2) to obtain 

4[h( to ,p ) - 'h ( t , , p ) l  = 4 " t O ,  s)-'h(t1,4 .h( t , ,  s)-'h(t,,p)I 

= 4 " t O  Y s)-'h(t , ,  s)W[h(t,, s)-'h(t , ,  P)l. 

To pass from k to k + 1 we use 4 as a local homomorphism, Eqs. (1)-(3), and 
multiply both sides of (4) by 

4[h(tk,  p)-lh(ck+l, PI1 

=4[h(fk,p)-'h(tk,s)'h(tk,s)-'h(tk+I, 8) 'h(tk+l,s)-lh(fk+l,P)l 

= $[h(tk,p)- 'h( tk ,  s)] ' 4[h(tk,  s)-'h(tk+l~ s)l * 4[h ( tk+ l ,  s)-lh(tk+l Y ~ ) I *  

Thus for k = n in (4) we use h(t, , p )  = h(t,, s) = x1 to obtain 

F ( W  9 PI) = F(W Y 4) 
for s sufficiently near p in I .  Since p is arbitrary in I we can use the transitivity 
ofthe homotopy of paths to conclude that iff, g E [a], then F(f) = F ( g )  = F(a). 

Now let xo and x1 be arbitrary elements in the simply connected group G. 
Since G is pathwise connected, there exists a path a : I -+ G from xo to x1 and 
any two such curves are homotopic since G is simply connected. Thus we can 

set 

because F(a) depends only on the equivalence class [a]. In particular for 
xo = e and x1 = x arbitrary in G we define the desired homomorphism by 

$ : G -+ H : x -+ F(e, x). 

First we shall show $ equals 4 on a connected nucleus V of G where V c U 
and V-' V c U. For choosing such a neighborhood V we have for x E V and 
a a path entirely in V which joins e to x that 0 = to < t l  = 1 is a fine partition 
of I and 

m o  Y XI) = m) 

$(4 = 4[4t0)-1a(t1)1 = 4(a(l)) = 4 w  
Next we prove a few more formulas to show $ is a homomorphism. 

F(x, xy) = F(e, y) for x ,  y E G, ( 5 )  
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for let a join e to y .  Then using (xu)-'(xb) = a-'b we have 

F(e, Y )  = F(a) 

= w 1 c o w z  a )  . * * 4 0 "  a )  

= 4[a(tO)- 'a(tl)I  * * *  d ~ [ a ( t n - , ) - ' a ( t n ) I  

= ~[(xa(to>)-'(xa(tl))I * .  . 6[(xa(tn- 1))-'(xa(tn))I 

= F(xa) = F(x,  xy)  

using the independence of the path for the last equality. 
Next let a join e to x and let b join x to xy. Then F(aj) = F(a)F(B) where 

a p  is the product of paths (Definition 8.2). This follows because the interval 
may be finely partitioned so that the end point of a and the starting point of 
/? are in the partition. Thus since F depends on the equivalence class of a 

path, F(aj) = F(a)F(p) gives 

F(e, xy) = F(e, x)F(x, xy) for x ,  y E G. (6)  

Thus for x, y E G we have 

$(v) = F(e, xy) 

= F(e, x)F(x ,  xy), 

= F(e, x)F(e, y),  

using (6) 

using ( 5 )  

= $ ( X ) $ ( Y ) .  

Thus $ is a homomorphism which is clearly continuous and consequently 

analytic. 

From this result we see that simply connected Lie groups can be "classi- 
fied " by their Lie algebras as follows. 

Corollary 8.7 Let G and H be simply connected Lie groups with Lie 

algebras g and h. If g and h are isomorphic Lie algebras, then G and H are 
isomorphic Lie groups. 

2. Simply Connected Covering Groups 

We shall now show that given a Lie group G with Lie algebra g there exists 
a simply connected Lie group 5: with Lie algebra isomorphic to g .  As an 
application, we shall use G to show that Aut (G) is a Lie groupforaconnected 
Lie group G.  
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Definition 8.8 Let M be a (Hausdorff) topological space. Then: 

(a) M is locally connected if for each point p E M and each neighborhood 

(b) M is locally pathwise connected if for each p E M ,  every neighborhood 

V of p, there exists a connected neighborhood U of p with U c V ;  

of p contains a pathwise connected neighborhood of p .  

Exercises (1) Let M be the space in R 2  which is the union of the graph 
sin lc/x for x E (0, I ]  and a path joining the points (1,O) and (0, 1). Show that 
M is pathwise connected but not locally pathwise connected. 

(2) Is a manifold locally pathwise connected ? 

Definition 8.9 Let M and fi be pathwise connected and locally pathwise 
connected spaces and let p : fi --t M be continuous. Then the pair (A, p) is a 
covering space of M if: 

(a) p is surjective; 

(b) for each p E M there exists a neighborhood U of p so that p-'(V) is 
a disjoint union of open sets, each of which is mapped homeomorphically 
onto U by p .  

REMARK ( 1 )  If (A, p) is a covering space of M ,  then the mapp : fi -+ M 

is an open map; that is, for each open set 0 of A? we have p( if) is open in M 

[Singer and Thorpe, 19671. 

Examples (1) Let M = S' and fi = R ,  and let p : fi -+ M : x -+ elnix.  
Then (A, p) is a covering space for M .  For each z E M we have that p-'(z) 

consists of infinitely many points. 
(2) Let M = = S' and let p :  a M : x x2. Then ( f i , p )  is a 

covering space of M .  In this casep-'(x) consists of two points for each x E M ;  

that is, we have a " double covering." 

(3) Let M = T 2  (= S' x S')  and let A? = R 2 .  Define p : fi -+ M : 

( x ,  y )  --f (e2nix,  elniy). Then (A, p) is a covering of M .  

We shall assume all spaces are pathwise connected and locally pathwise 
connected. For the proofs of the following see the work of Chevalley [1946] 

and Singer and Thorpe [1967]. 

Theorem 8.10 Let ( f i , p )  be a covering space of M and let N be simply 

connected. 

(a) If  f :  N -+ M is continuous, then there exists a continuous map 
f : N - + f i s o t h a t f = p o f .  

(b) Iff, 9" : N -+ fi are continuous maps so that p of = p 0 and f ( a )  = 

g(a) for some a E N,  then f = g. 
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(c) Let a : I + M be a path in M so that a(0) = xo.  Let 2, E fl be such 
that p ( Z o )  = xo . Then there exists a unique path d : I +  fi so that p o d = a 

and a(0) = Zo . 

Theorem 8.11 Let (A, p) be a covering space of M and let a E M, a" E fi 
be such that p(G) = a. Then there exists a one-to-one correspondence between 

p - ' { a }  and the coset space n l ( M ,  a)/p* n,(fi, a"); recall p*n,(f i ,  a") = 

([p 0 a]  : [a] E n , ( A ,  a")}. 

Theorem8.12 Let M be a pathwise connected, locally pathwise connected, 
and locally simply connected space. Let H be a subgroup of n l ( M ,  a). Then 
there is a covering space (A, p) so that p* n,(fi, a") = H where a" E fi is such 
that p(G) = a. In  case H = {e} we see fi is simply connected; that is, there is 
a covering space (A, p) with 121 simply connected. 

PROOF Using the above theorems we sketch the construction of (fi, p); 

for the remaining details, see the proof of Singer and Thorpe [1967]. For 
motivation, note that if (A, p) exists, then each path d in fi starting at d(0) 
is the unique lift of a = p o d in M and also the point d(1) in h? is determined 
by [a]  = [p 0 4. Consequently we are led to construct the points of fi from 
paths in M as follows. Let Q be the set of paths in M beginning at  the point 
a E M and define an equivalence relation = on Q by a = if and only if 
a(1) = b(1) and [ap- ' ]  E H. (For the simply connected covering, this is just 
a - B . )  Let ( a )  denote the equivalence class of a under the relation = and 
let fi be the set of all equivalence classes (a) .  We define p : fi + M by 
p ( ( a ) )  = a(1) and (A, p) is the desired covering space. 

Theorem 8.13 Let G be a connected Lie group. Then there exists a unique 
simply connected Lie group G which is locally isomorphic to G; that is, G and 
c have isomorphic Lie algebras. There is a mapping p : G + G so that (G, p) 

is a covering space of G and p is a homomorphism and a local isomorphism. 
Also Ker(p) is a discrete subgroup of G which is isomorphic to nl(G) and 
Ker(p) is in the center of G. 

PROOF The uniqueness up to isomorphism follows from Corollary 8.7. 
For the existence, we let (G, p) be the simply connected covering space of G 
as constructed in Theorem 8.12; the points are the equivalence classes [a] of 
curves a : I +  G with a(0) = e and p([a] )  = a(1). We make G into a group as 
follows. The product is given by [a][b] = [ y ]  where y(f) = a(t)B(r) which is well 
defined since a homotopy of a and a homotopy of fl multiply to give a homo- 
topy of y. The identity is i? = [el where e(t) = e the identity in G. Inverses are 
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given by [a]-' = [a-'1 where a-'(t) = a(t)- '. The map p : G -+ G is a homo- 
morphism because p(  [a][B]) = a( 1)p( 1) = p(  [a])p( [PI). Next note that p maps 
a neighborhood of E in G homeomorphically onto a neighborhood of e in G. 
Consequently the analytic manifold structure on G defines an analytic mani- 
fold structure on G with which G becomes a Lie group. Now p : G + G is a 
Lie group homomorphism which is a local isomorphism. 

Next since p is a local isomorphism Ker p is a discrete normal subgroup 
of G. Therefore by Proposition 3.25, Kerp  is in the center of G. Since G is 
simply connected, Theorem 8.1 1 implies that Ker p = p- ' { e }  is isomorphic 
to nl(G). Note this argument also shows nl(G) is Abelian. 

We now use the simply connected covering group to sketch the proof that 
the automorphism group of a connected Lie group is a Lie group; for more 
details see the proofs of Chevalley [1946], Hochschild [1965], and Loos [1969]. 

Theorem 8.14 Let G be a connected Lie group. Then Aut(G) is a Lie 
group. 

PROOF First let G be simply connected with Lie algebra g. From Theorem 
7.1 we know Aut(g) is a Lie group. Let ct E Aut(g). Then there is a unique 
8 E Aut(G) with (TO)@) = a (Theorem 8.6). Using the chain rule, the map 
Aut(G) + Aut(g) : 8 + a is a group isomorphism. This isomorphism induces 
an analytic structure on Aut(G) where the topology of Aut(G) is given as 
follows [Chevalley, 1946; Hochschild, 19651. Let K be a compact subset of G 
and let Va  neighborhood of e in G. Let N(K, V) denote the set of all elements 
8 in Aut(G) so that 8(x)x-' and K ' ( x ) x - '  are in Vfor every x in K. Then the 
family of these sets N(K, V) forms a family of nuclei for the identity of Aut(G). 
Thus in this case Aut(G) is a Lie group. 

Next suppose G is not simply connected and let (G, p) be the simply con- 
nected covering group of G. We shall show that Aut(G) is isomorphic to a 
closed subgroup of Aut(G) so that Aut(G) can be regarded as a Lie group 
using Theorem 6.9. Now with N = = G in the notation of Theorem 8.10 
we have for 8 E Aut(G) that 8 o p  : G + G is continuous. Consequently there 
exists a unique continuous map 0 : + G with 8 0 p = p 0 0 and &E) = E .  Let 
H = Kerp which is discrete and note that we have the mapping 

G x G + H : (x,  y) + &xy)t7(y)-'&x)-', 

for using 8 0 p = p o 0 and p as a homomorphism we see 

P(&~Y)&Yo-'4xY- '1 = P & ~ Y ) P & Y ) - ' P m -  

= ~P(xy)@(Y) - M x )  - ' 
= q P ( x l P ( Y ) ) w ) -  '@(x)-'  = e 
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using 8 E Aut(G). Therefore since G x G is connected and H is discrete we 
have from Section 2.3 that &.xy)&y)-'&x)-' = 2 and consequently 0 is an 
analytic homomorphism of G. Since 8 is an automorphism we also easily 
obtain that 0 is an automorphism. Now note for x E H = Ker p that e = 

8(p(x))  = 8p(x) = p8(x)  so that Q(H)  c H. Also we have H c &H). Thus 
O(H) = H. Therefore if we let K = (0 E Aut(G) : &H) = H} we obtain K as a 
subgroup of Aut(G) and a homomorphism Aut(G) + X : 8 + 8. Also K is a Lie 
sub)Troup of Aut(G) using H is closed and Theorem 6.9. 

Conversely, let 0 E K ,  let x E G and let i be any element in G so that 
p(S)  = x.  Then noting that the value p ( @ ) )  depends on x and not on the 
choice i, we set 8(x)  =p(&)) .  Then 8 is an analytic automorphism of G. 
Thus the mapping Aut(G) + K : 8 + 0 is an isomorphism which makes 

Aut(G) into a Lie group. 

REMARKS (2) If Go denotes the identity component of a Lie group G, 
it is shown in Loos [1969] that if G/G, is finitely generated, then Aut G is a 
Lie transformation group acting on G. 

(3) For the construction of the simply connected covering group (G, p) of 
specific groups G we refer to the work of Chevalley [1946], Freudenthal and 
deVries [1969], and Tits [1965]. 



CHAPTER 9 

SOME ALGEBRA 

Since a more algebraic approach will be taken in the remaining chapters, 
we now introduce some of the necessary algebra. Many of the proofs do not 
actually depend on the use of real or complex numbers but only on the 
characteristic; consequently all the fields we use will be of characteristic 0. 
First we discuss tensor products of vector spaces and linear transformations. 
Using this we consider how to extend the underlying field of the vector 
space to its algebraic closure and apply this to real Lie algebras. Thus we 
discuss the complexification, the realification, and real forms of a Lie algebra. 
Next elementary results on semisimple (i.e. completely reducible) associative 
algebra and Lie algebra modules are derived and finally Cayley algebras are 
considered. 

1. Tensor Products 

Since we shall eventually compute characteristic roots, compare real and 
complex Lie algebras, etc., we now review some general concepts concerning 
tensor products. 

Dewtion 9.1 Let V and W be finite-dimensional vector spaces over a 
field K of characteristic 0. A tensor product over K of the vector spaces V 

and W is a vector space T over K together with a bilinear map 

2 :  V x  W + T  

178 
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so that for every bilinear map 

B:  V x  W+E, 

where E is any vector space over K ,  there exists a unique vector space homo- 
morphism h : T-1 E satisfying h 0 T = B ;  that is, the accompanying diagram 
is commutative. 

V x W  T 

E 

Thus the bilinear map can be factored by the linear map h and the unique 
‘‘ universal ” bilinear map T .  The following facts are proved by Jacobson 

[1953, Vol. 111 and Lang [1965]. 

Theorem 9.2 Let V and W be vector spaces over K. 

(a) A tensor product of V and W over K exists. 
(b) If (T, T )  and (T‘, T ‘ )  are tensor products over K of V and W, then 

there exists a unique isomorphism f : T-r T’ so that f 0 T = T‘. Thus tensor 
products are unique up to isomorphism and we speak of “ the ” tensor product. 

(c) If { X ,  , . . . , X,}  is a basis for V over K and {Y, , . . . , Y,} is a basis 
for W over K, then { r (X i  , Y j )  : i = 1, . . . , n and j = 1, . . . , m} is a basis of the 
tensor product T over K. Thus T is finite-dimensional over K and dim T = 

(dim V)(dim W). 

We shall use the notation 

V C ? I ~ W  or V O W  

for the tensor product T and 

x € 3 y  

for the elements T ( X ,  Y )  in T .  Thus elements in V €3 W are finite sums 
C X i  €3 Y i  for X i  E V and Y i  E W. This uses 

a ( X @  Y ) = a X @ Y = X @ a Y  

for X E V, Y E  W, and a E K .  

T: W -, W’ be homomorphisms of vector spaces over K and let 
We now consider tensor products of homomorphisms. Let S : V +  V’ and 

S x T : V x W - r  V’  x W’ : ( X ,  Y )  + (S(X),  T(Y)) .  

For the tensor products ( V  €3 W, T) and (V‘ @I W’, T’) we note that 

T’ 0 (s X T )  : V X w-t V ’  €3 W’ 
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is bilinear. Thus by definition, there exists a unique vector space homomorph- 
ism P : V @ W + V‘ @ W’ so that P 0 z = z’ 0 ( S  x T). From this we obtain 

P(X @ Y )  = S ( X )  @ T ( Y )  

and we use the notation P = S @ T  or S €3, T called the tensor product of 
the homomorphisms S and T. 

Now let A and B be nonassociative algebras over the field K. We shall now 
construct a multiplication on the tensor product T = A @, B as follows. 
Since T is generated by elements of the form X @ Y, we define for X = 

Xi @ Yi and X’ = c X,’ @ Y,’ in Tthe bilinear function 

p : T  x T+T: (X,X’ )+xXiX, ‘@ YiYj‘. 

Thus A @, B becomes an algebra over K called the tensor product of the 
algebras A and B. 

Exercises (1) How can an algebra A with bilinear multiplication 

(2) Let U, V, W be vector spaces over K. Then show the following 

p : A x  A+AbedefinedintermsofA@A? 

isomorphisms 

V @ , K z V z K O K V ,  V @ K W ~ W @ K V ,  

~ @ , ( V @ , w ) = ( ~ @ , V ) @ K w ,  

End,( V )  @ End,( W) E End,( V @ W), 

V = c V i  and W = c q  implies V @  W g c  V i @  q. 

(3) If V and W are nonzero vector spaces over K, show that the tensor 
map T : V x W +  V@ W is not injective. 

(4) Let S: V +  V’ and T : W +  W’ be vector space homomorphisms. 
Find the kernel of S @ T. Show that if S and T are isomorphisms, so is 
S @ T. 

( 5 )  Let A and B be associative algebras over K. Show that A 8, B is 
an associative algebra over K. 

2. Extension of the Base Field 

We continue the notation of the preceding section and discuss how one 
can extend the base field of a vector space to a larger field-in particular, the 
extension to the algebraic closure of the original field; see the work of Jacob- 
son [1953, Vol. 11; 19621 and Lang [1965]. We also consider extensions of 
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homomorphisms and discuss in detail the real and complex case in the next 

section. 

Definition 9.3 Let V be a vector space over the field K and let P be a 
field extension of K which is a finite-dimensional vector space over K. Form 
the tensor product P BK V and regard it as a vector space over P by defining 

p ( C p i @ X i > = C p p i  @ X i #  

This is well defined and the vector space axioms for P 8, V over P hold. We 
denote this vector space over P by V ( P )  and call it the vector space obtained 
from V by extending the base field K to the field P. 

Proposition 9.4 Let V be a vector space over K with basis X I ,  . . . , X, . 
Then the vectors 1 63 X I ,  . . . , 1 @ X ,  form a basis of V(P) over P where P 
is a field extension of K. Thus the dimension of Vover Kequals the dimension 
of V(P) over P. 

PROOF Let X i  = 1 @ X i .  Then for p E P we have p X i  =p(1 @ X i )  = 

p 0 X i .  Thus since any X in V(P)  has the form p i  8 X i ,  X also has the 
form 1 p i x i .  Thus the X i  are generators for V(P)  over P and they are also 
linearly independent over P (exercise). 

REMARKS (1) The vector space V(P)  = P BK V is also a vector space 
over K and in this case dim, V(P) = (dim, P)(dim, V) as noted in Theorem 
9.2. 

(2) For a basis XI,  . . . , X ,  of V over K, the set of K-linear combinations 
of the elements 1 @,XI,  . . . , 1 @ X ,  form a subset V =  {I @ X : X E V }  
of V(P). Then Vis a K-subspace of V(P)  and the map V +  V :  X+ 1 @ X 
is a K-vector space isomorphism. Thus V can be identified as a K-subspace 
of V(P)  and V satisfies the following: 

(i) The vector space spanned by Vover P equals V(P). 
(ii) If m is a subset of Vconsisting of linearly independent vectors over 

K, then m consists of linearly independent vectors over P. 

Next let A be a nonassociative algebra over K with P a field extension of 
K and let A(P)  = P B, A be the vector space obtained by extending the base 
field. Then regarding A ( P )  as the tensor algebra of P and A as in Section 9.1, 
A(P)  becomes an algebra over P by the multiplication 
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(3) Let X I ,  . . . , X ,  be a basis of the algebra A over K and let the structure 
constants c:j E K be given by 

x i x j  =c CkjXk. 
k 

As above the vectors XI, . . , , X, with X i  = 1 @I X i  are a basis of A(P)  over 
P, and from various definitions 

X i X j  = (1 8 X J ( 1  8 X j )  

= 1 8 X , X ,  = C C f j x k ;  

k 

that is, the structure constants relative to corresponding basis in A ( P )  are 
the same. 

Exercise (1) Let A be an associative or Lie algebra over K and let P 
be a field extension of K. Show that the corresponding extension A(P)  is an 
associative or Lie algebra. 

We next consider the extension of the linear transformation T: V +  W 
of vector spaces over K. Thus since V(P) = P €31~ V and W ( P )  = P @IK W 
we let 

T =  Z@ T : V(P)+ W ( P )  

be as in Section 9.1. Then T is called the extension of T and is specifically 
given by 

T(Cpi  8 X i )  =Cpi 8 TXi. 

In particular, if XI, . . . , X, is a basis of V and T ( X i )  = c uji  X j  , then for the 
corresponding basis X1, . . . , X, of V(P)  we have 

Thus the matrix of T relative to XI, . . . , X, is the same as the matrix of T 
relative to X 1 ,  . . . , X , .  

REMARK (4) A variation of these results is frequently applied when the 
extension field P is the algebraic closure of K; in particular when the base 
field R is the real numbers and the extension C is the complex numbers. 
Thus one starts with a real vector space V and an endomorphism T: V +  V 

for which one needs to know information about the characteristic roots. 
Then we pass to the extension T: V(C) -, V(C)  to compute this information. 
Frequently the results are already in R or one can prove certain results hold 
over R if and only if they hold over C. 
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More specifically, let V be a vector space over K. Then an endomorphism 
T :  V +  V is called split if all the characteristic roots of Tare in K. An assoc- 
iative or Lie algebra A over K is called split if all the left multiplications 
L ( X )  : A -, A : Y -, X Y  and all the right multiplications R ( X )  : A -, A : 

Y -, Y X  are split endomorphisms. 

3. Complexification 

We now apply the preceding results to the case when the base field is the 
real numbers R and the extension field is the complex numbers C. We develop 
some terminology for this case and give an example of a real simple Lie 
algebra for which the complex extension is not simple. 

Let V be a vector space over R. Then noting that for X ,  Y E V we have 
X + i @I Y E V(C) = C BR V, we can formally think of 

V(C)  = { X  + i Y :  X ,  Y E V and i = (- l)”’} 

with the complex number multiplication 

(a + ib)(X + i Y )  = ( a x  - b y )  + i(bX + a Y ) .  

Note that V c V(C)  by identifying V = V + i {O}.  

Definition 9.5 Let g be a Lie algebra over R.  Then the complexification 

of g is the Lie algebra g ( C )  = C BR g .  

We also use the notation 

g = g + i g  

and note that the multiplication in g is given by 

[ U + i V  X + i Y ] =  [ U X I - [ V Y ] + i ( [ V X ] +  [ U Y ] ) .  

Example ( 1  ) We now consider various ways of obtaining complex and 
real Lie algebras from a given Lie algebra. Thus let g be the three-dimensional 
Lie algebra with basis E, F, Hover C with multiplication given by 

[HE]  = 2E, [HF] = -2F, [EF]  = H .  

Then g is a simple Lie algebra; that is, g has no proper ideals (Definition 6.10). 
For suppose h is a subspace of g so that [gh]  c h and let 

X = a H  + bE + C F E  h 
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with a # 0. Then from the multiplicative relations 

[X  E]  = 2aE - CH E h 

so that 4aE = [ H [ X E ] ]  is in h. Thus since a # 0 we see E is in h. From the 
multiplicative relations of g this implies h = g. If a = 0, then similar argu- 
ments also show h = 9. 

Next let X = iH,  Y = iE, and Z = iF be in g and let gR be the six-dimen- 
sional vector space over R with basis H, E, F, X ,  Y, Z .  With the multiplication 
in gR induced from g; for example, 

[ X Y ]  = [iH iE] = i2 [HE]  = -2E, 

we obtain the accompanying multiplication table for gR , where * is computed 

H E F  X Y Z  

0 2E -2F 0 2 Y  - 2 2  
0 H - 2 Y  0 X 

0 2 2  -x 0 

0 -2E 2F 
0 - H  I* Z 0 

using the anticommutivity of the multiplication. Thus gR becomes a six- 
dimensional Lie algebra over R which is simple (exercise). 

NOW let gR = C BR gR be the complexification of gR as above. Then g R  
is six-dimensional over C but g is three-dimensional over C. With the basis 
H, E, F, X ,  Y,  Z of gR over C let k (respectively I t )  be the complex subspace 
of gR spanned by 

H + i X ,  E + i Y ,  F + i Z  

(respectively H - iX ,  E - iY,  F - iZ). From the multiplicative relations 
in the above table we obtain [kk] = k,  [kk]  = {0}, and [LEI = li so that k and It  
are ideals of g R ,  Also note the direct sum 

g"R = k @ I t .  

The C-linear map 4 : g --t k given by 

d(H) = 3(H + W ,  4 ( E )  = HE + iY), 

is a Lie algebra isomorphism. Similarly IE is isomorphic to g. In summary, we 
see that the simple complex Lie algebra g yields a simple real Lie algebra gR . 
However, the complexification gR of this real simple algebra is not a simple 
complex Lie algebra. 

d(f? = f ( F  + iZ) 
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Example (2) There exist real Lie algebras which are not isomorphic 
but have the same complexification. Let n > 1 and let 0 I k 5 [n/2] ,  where 
[n/2]  means the largest integer less than or equal to 4 2 .  Let 

where lj is thej  x j identity matrix. Then 0, defines a symmetric nondegener- 
ate bilinear form Bk on the real vector space V =  R" [note example (7), 
Section 2.31. Let 

SO(k, n - k)  = {T  E SL(R") : Bk(TX, T Y )  = Bk(x, Y )  all x ,  Y E R"} 

which has Lie algebra 

so(k, n - k )  = { S  E Sl(R") : Bk(sx ,  Y )  + Bk(x, s y )  = 0 all x, Y E R"}. 

Then so(k, n - k) and so(1, n - 1) are not isomorphic if k # 1 (exercise). 
However, the complexification of so(k, n - k) for any k is just 

so@, C )  = { S  E gl(C") : B(SX,Y)  + B(X,  S Y )  = 0 all X ,  Y E C"} 

where B is the complex symmetric bilinear form with matrix r~ = I, .  

Exercise (1) A conjugation in a complex Lie algebra g is a function 
C : g + g so that for X ,  Y E g ,  u E C, and ii the conjugate of a in C, we have 

C [ X Y ]  = [CX CY] ,  c2 = I, 

C ( X  + Y )  =cx + CY, C(UX) = ZC(X). 

(i) Let g be a real Lie algebra and lets" = g + ig be its complexification. 
Show that C : g + g : X + iY + X - iY  is a conjugation and g is the fixed 
point set of C. 

(ii) For the Lie algebras k and E in the above example (l) ,  show that 
there exists a conjugation of g such that C : k --+ k. 

(iii) Let h be a real Lie subalgebra of the Lie algebra g and let s' be the 
complexification of g as in (i). Show that the complexification h = C aR h 
is a subalgebra of 9". Conversely, show that if h" is a subalgebra of J so that 
C(h) c h" where C is given in (i), then h" is the complexification of some real 
subalgebra of g .  

Definition 9.6 Let g be a Lie algebra over C of complex dimension n. 

(a) By restricting the scalars to R, the Lie algebra g can be considered as 
a Lie algebra of dimension 2n over R denoted by gR and is called the realiza- 

tion or realification of g .  
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(b) Let gR be the realization of the complex Lie algebra g, let h be a real 
subalgebra of gR , and let h = h + ih be the complexification of h. Then h is 
called a real form ofg provided there exists a complex Lie algebra isomorphism 
4 : g --t h so that +(X) = X for all X E h. 

REMARK ( I )  Frequently in the definition of real form, it is required 
that g = fi. 

Example ( 3 )  Let g be the three-dimensional complex Lie algebra of 
example (l), this section. Then the six-dimensional algebra gR is the realization 
of g. The real subalgebra h of gR generated by { H ,  E, F }  is a real form of g. 

Exercise (2) Is the realization k, of k in example (1) a real form 
of JR? 

Proposition 9.7 Let g be a complex Lie algebra and let h be a subset of g. 
Then h is a real form of g if and only if h is the set of fixed points of a con- 
jugation of g. 

PROOF Let C be a conjugation of g which has h as its set of fixed points. 
Then clearly h is a subalgebra of the realification gR . Next let h be the com- 
plexification of h and define a map 

x + C ( X )  x - C ( X )  

2 +i( 2i ) 4 : g - t h :  X-P 

which is an isomorphism so that for all X E h 

4(X) = C ( X )  = x. 
Thus h is a real form of g. 

Conversely if h is a real form of g, we can identify g with h by the iso- 
morphism in the definition of real form; that is, let g = h + ih as a direct 
sum. Then the map 

C : g - t g  : X + iY + X  - iY 

is a conjugation with h as its set of fixed points. 

Exercises ( 3 )  Show that the map q$ defined in the above proof actually 
maps g into the complexification of h. Thus what can be said about the 
expressions (X + C(X)) /2  and ( X  - C(X)) /2i  for all X E g? 
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(4) Let h be areal form ofg = h + ih,andlet C : g + g  : X + iY X - iY 

be a conjugation. Let e be another conjugation of g with h as its fixed point 
set. Show that C = c. What can be said if we regard g %’ h + ih? 

( 5 )  Show that there exists a complex Lie algebra which has no real form, 
possibly as follows : 

(i) Let g = CX + CY + CZ where the basis, X ,  Y, Z of this three- 
dimensional algebra has multiplication [ X Y ]  = aY, [ X Z ]  = PZ, [ Y Z ]  = 0 
for some a, 

(ii) Assume h is a real form of g. Then h is the set of fixed points of a 
conjugation C of g. Show that h‘ = g’ n h is a real form for g’. 

(iii) Let U = aX + bY +cZ be in h but not in h so that a # 0. Then 
ad,, U leaves h’ invariant and so induces a real endomorphism of h’. Show 
that (ad U)Y = aaYand (ad U)Z = PaZ so that aa and Pa are real character- 
istic roots. Thus a/P = aa/Pa E R. However a and j3 can be chosen in C so this 
cannot happen which contradicts the assumption of a real form. 

E C. Then g’ = [gg] = CY + CZ. 

Definition 9.8 Let g be a complex Lie algebra. The conjugate Lie 
algebra g* of g is given as follows. The algebra g* is the same Abelian group 
as g and has the same algebra multiplication as g. However, the scalar multi- 
plication * in g* is given by a * X = ZX,  where ii is the complex conjugate of 
a E C and the scalar multiplication aX is that in g. 

With these definitions g* is clearly a Lie algebra over C. 

Theorem 9.9 Let g be a complex Lie algebra and let gR be its realization 

and GR be the complexification of gR. Then 

# R g g @ g *  

where the (external) direct sum of g and its conjugate algebra g* containsthese 

algebras as ideals. 

PROOF I f  A .+ B denotes the elements in g @ g*, then we define the map 

T : g~ -+ g @ g* : x + i Y -+ (x + i Y )  + (x + i * Y) 
where the X, Y € g R  are uniquely determined by X -t iY € Q R  = C @J gR. 

Thus the elements X + iY E g and X + i * Y E g* are well defined as elements 
of these algebras over C. Therefore T is well defined and is a Lie algebra 
isomorphism. For example, let X + i Y ,  U + iV E g R .  Then 

[ X  + i Y  U +  iV[  = [ X U ]  - [ Y V ]  + i ( [ Y U ]  + [XI‘]) 
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in fiR gives 

T ( [ X  + i y  U + iv]) = ( [ X U ]  - [ Y V ]  + i ( [ Y U ]  + [ X U ) )  

= ( [ X U ]  - [ Y v ]  + [ iYU]  + [X iV) ] )  

+ ( [ X  U ]  - [ Y V ]  + [ i  * Y U ]  + [ X i  * V ] )  

= [ X + i Y U + i V ] + [ X + i * Y  U + i * V ] .  

t ( [ X U l  - [YVI + i * ([YUI + [XVI)) 

However from the definition of multiplication in a direct sum we also have 

[ T ( X  + iY)T(U + iV) ]  = [ (X + i Y )  + ( X  + i * Y) (U + iV)  + ( U  + i * V ) ]  

= [ X + i Y  U + i V ] + [ X + i *  Y U + i *  V ]  

which shows T preserves products. The proof that T is a vector space iso- 
morphism is left to the reader. 

Exercise (6) Compare example (1) of this section with Theorem 9.9. 

4. Modules and Representations 

We briefly review the basics of modules and representations for associa- 
tive algebras and make the corresponding definitions for Lie algebras. 
However, throughout most of the text we shall view these concepts in the 
framework of algebras of endomorphisms acting on a vector space. 

Definition 9.10 Let A be an associative algebra over a field K and let V 

be a vector space over K. Then V is a (left) A-module provided there exists a 
bilinear mapping A x V - r  V :  (S,  X )  -+ SX satisfying (ST)X  = S ( T X )  for 
all S, T E A, and X E V, and a(SX)  = (uS)X = S(aX) for all a E K. 

REMARKS (1) Given an A-module V, for each S E A we can define the 
endomorphism p(S) : V - r  V by p(S)X = S X .  Thus since p(S)p(T)= p(ST) 

we see that the action of A on V is given by the action of the algebra of 
endomorphisms p(A)  = {p(S) : S E A} on V. Conversely if A is an associative 
algebra acting on V according to the above formulas, then V is an A-module. 

(2) According to Definition 7.8, the above mapping p : A -r p(A)  : S -r 
p(S) is a representation of A in V. Conversely given a representation p of 
A in V ,  then we can make V into an A-module by defining the action 
A x V +  Y :  (S, X) + p ( S ) X .  Thus the concepts of an associative algebra of 
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endomorphisms acting on a vector space, A-modules, and representations 
are the same. 

(3) We assume the reader is familiar with submodules, quotient modules, 
module homomorphisms, etc., but we discuss completely reducible (i.e., 
semisimple) modules in the next section. 

Definition 9.11 Let g be a Lie algebra over a field K and let V be a vector 
space over K.  Then V is a g-module provided there exists a bilinear mapping 
g x V +  V :  (S ,  X )  + S X  satisfying 

[STIX = S ( T X )  - T ( S X )  

for all S,  T E g and X E V ,  and a(SX)  = (aS)X = S(aX)  for all a E K. 

REMARKS (4) As for the associative case, one has the definitions of Lie 
submodules, quotient modules, homomorphisms, etc. Thus if V and W are 
g-modules, then 4 : V +  W is a g-homomorphism if 4 is a homomorphism 
of the vector spaces and commutes with the action of g ;  that is, &SX) = 

S ( 4 X )  for all S ~g and X E V.  

( 5 )  If V is a g-module, then for each S ~g we can define the endomor- 
phism p ( S )  : V-, V by p(S)X = S X .  From the definition we see 

m T 1 )  = P(S)P(T) - P(T)P(S) = [P(S), p m 1  

so that the mapping p : g + p(g) : S + p ( S )  isarepresentationofgin Vaccord- 
ing to Definition 7.8. Thus a g-module yields a representation and also 
conversely; for if p is a representation of g in V ,  then V becomes a g-module 
by defining g x V +  V :  ( S ,  X )  + p(S)X .  

(6) Let P be a set of linear transformations acting on the finite-dimen- 
sional vector space Vover K ;  that is, we have a mappingP x V +  V : (S,  X ) +  
SX so that S(aX + b y )  = a S ( X )  + bS(Y)  and we can regard P c End(l/). 
Then we can form the associative algebra of endomorphisms d ( P )  or the 
Lie algebra of endomorphisms U ( P )  generated by P. Thus d ( P )  consists of 
all finite sums of products of elements of P, and Y ( P )  consists of all finite sums 
of commutators of elements of P; note Proposition 7.6. In either case we can 
regard V as an sd(P)-module or a U(P)-module, and the P-invariant sub- 
spaces are just submodules. 

Examples (1) Let V be a vector space over R ,  let G be a Lie group, 
and let p : G + GL( V )  be a (differentiable) representation of G in V. Thus 
regarding V as a manifold, G operates differentiably on V by the action 

G x  V + V : ( S , X ) + p ( S ) X  

(recall Definition 3.17). From Lemma 7.1 5 we see that i fg  is the Lie algebra of 
G, then Tp(e) : g + gl( V )  is a representation ofg in V. Thus Vis ag-module. 
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A more direct computational way of viewing this is to regard G c GL( V) 
with Lie algebra g c g1(V). Then for S, T E ~  we have for t near 0 in R that 
for X E V, 

(erserT)X = ers(erTX). 

Using this formula and the Campbell-HausdorfT formula for computing 
exp tS exp tT = exp(tS + tT + $t2[S, TI + * * -) one obtains 

[S, T]X = S(TX) - T(SX)  

as expected. 

(2) We can construct more modules using tensor products as follows. 
First let A be an associative algebra over the field K and let V and W be 
A-modules. Then V BK W becomes an A-module when the action of A is 

given by P ( c  Xi 8 Yi) =c PX, 8 PY, for P E A and X i  E V, Yi E W. Simi- 
larly if g is a Lie algebra over K and V and W are g-modules, then V BK W 
becomes a g-module when the action of g is given by 

P(C Xi B YJ = C P X i  B Yi + Xi 8 Pyi 

for P EQ and Xi  E V, Yi E W (that is, “differentiate” the associative action). 

5. Semisimple Modules 

We continue the notation of the preceding section and discuss irreducible 
modules and their direct sum. We also review the basics of finite-dimensional 
semisimple associative algebras and their modules; for elementary ref- 
erences see the work of Jacobson [1953, Vol. 11; 19621, Lang [1965], and 
Paley and Weichsel [ 19661. 

Definition 9.12 Let V be a finite-dimensional nonzero vector space over 
K .  Let A be an associative subalgebra of End( V) or let A be a Lie subalgebra 
of gl(V),  thus V is either an associative or Lie module. 

(a) The vector space V is a simple or irreducible A-module if the only 
A-submodules of Vare Vand (0). In this case A is called an irreducible algebra 

of endomorphisms on V and say A acts irreducibly on V.  
(b) The vector space V is a semisimple or completely reducible A-module 

if V is a vector space direct sum of irreducible A-modules. In this case we 
frequently say that A acts in a completely reducible manner on V or A is a 
completely reducible algebra of endomorphisms on V. 
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We summarize some standard results [Jacobson 1953, Vol. 11; Lang, 

19651. 

Proposition 9.13 Let V be a vector space over K and let A be an associa- 
tive or Lie algebra of endomorphisms of V so that V is an A-module. 

(a) Then V is a completely reducible A-module if and only if for every 
A-submodule W of V there exists an A-submodule W’ so that V = W + W ’  
which is a submodule direct sum. 

(b) If V is completely reducible with decomposition V = V, + - .  * + V ,  
into irreducible subspaces V i ,  then the Vi are uniquely determined up to an 
A-isomorphism and the length t is unique. In this case, we can choose a basis 
of V consisting of bases of the components Vi so that each S E A has block 

matrix 

The matrix Si represents the action of S on Vi  . 

Now we restrict A to be associative. 

Proposition 9.14 Let V be a vector space over K and let A be an associa- 

tive algebra of endomorphisms of V so that V is an A-module. Let A = 

{T E End( V )  : T S  = STfor all S E A }  be the centralizer of A in End(V). 

(a) (Schur’s lemma) If V is an irreducible A-module, then A is a 
division ring; that is, A is an associative algebra over K for which every non- 

zero element has an inverse. In  this case, if the field K is algebraically closed, 
then A = K I  where I is the identity endomorphism. 

(b) (Burnside’s theorem) If A is an irreducible algebra of endomorph- 

isms on V and if the field K is algebraically closed, then A = End,(V). 

Examples (1) Let A be a nonassociative algebra over K with bilinear 
multiplication function ct. Then we have previously considered an ideal 
B of A as a subspace so that a@, A )  c B and a(A,  B) c B. Now, as in Section 
7.2, we let R ( X )  and U X )  be the right and left multiplication functions on A 

and let P be the subspace of End(A) spanned by all R ( X )  and L(Y) for 
X, Y E A .  Then an ideal is just a subspace B which is invariant under the 
associative algebra d ( P )  or the Lie algebra Y ( P ) .  In particular an algebra A 

is simple if and only if A’ # (0) and A has no proper ideals; that is, A2 # (0) 
and A is d ( P ) -  or Y(P)-irreducible. 
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In particular, if A is an associative algebra over K which is simple, then 
A is isomorphic to a suitable n x n matrix ring E over some division ring 
D 3 K; that is, the matrix ring of all n x n matrices (ajj) where aij E D. See 
the elementary proofs of Lang [1965] and Paley and Weichsel [1966]. 

(2) There are many starting points for the definition of a semisimple 
nonassociative algebra-depending on the class of algebras being studied. 
However, regardless of the starting definition, the usual conclusion is that A 
is a semisimple algebra if A’ # (0) and A = A l  @ CD A, a direct sum of 
ideals which are simple algebras. Thus A is a completely reducible d ( P ) -  or 
Y(P)-module. 

In particular, let A be a finite-dimensional associative algebra over K.  
An ideal N of A is nilpotent if there exists an integer k so that {0} = Nk 
( = N N  . . . N ,  k-times). One can show that the sum of two nilpotent ideals is a 
nilpotent ideal and consequently define the radical of A, rad(A), to be the 
maximal nilpotent ideal. We shall show in Chapter 12 that if A is an 
associative algebra so that A’ # {0}, then A = A, €B * * G3 A,  is a direct sum 
of ideals which are simple algebras if and only if rad(A) = (0); that is, A is a 
semisimple A-module if and only if A has no nonzero nilpotent ideals. 

Note that if A is semisimple, then A = A, @ * * -  @ A, where each Ai 
is isomorphic to some ring of all ni x n, matrices over some division ring. 
Thus, in particular, each A ,  has an identity e ,  so A has an identity 1 = 

el + . . a +  8 , .  

These remarks can be used to prove the following results. 

Proposition 9.15 Let V be a finite-dimensional vector space over K and 
let A be an associative subalgebra of End(V) such that V is a completely 
reducible A-module. Then A is semisimple. 

PROOF Let N=rad(A) be the maximal nilpotent ideal in A and let 
. * .  G3 V, where the Vi are nonzero A-irreducible submodules. Let V = V ,  

NVi = {c TkXk : Tk E N and x ,  E Vi}. 

Then since N is an ideal in A we see that NV,  is an A-submodule of V which is 
contained in V j .  Since Vi is irreducible, N V ,  equals Vi or (0). If N V ,  = V l ,  

then 

NZ Vi = N(NVi)  = NV,  = Vi 

and by induction Vi = N k V i .  However, since N is nilpotent, this equation 
implies V ,  = {0}, a contradiction. Thus NV,  = (0) for all i ,  so that N = (0); 
that is, A is semisimple. 
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REMARKS ( I )  Before proving the converse statement we briefly review 
results on a simple associative algebra A over K in terms of an n x n matrix 

algebra E over a division algebra D 3 K ;  see the more formal proofs of 
Lang [1965] and Paley and Weichsel [1966]. First the identity matrix I = 

E, + * + En where EiZ = Ei are idempotents which are matrices of the 

form with 1 in the (i ,  i)-position. Thus EEi is an irreducible E-submodule con- 
sisting of matrices of the form 

where up, E D. Consequently E = EE, + - * * + EE,, is the direct sum of these 
irreducible E-modules. Going back to A we see that the identity 1 E A can be 

decomposed 1 = e ,  + + en so that the Bi = Ae, are irreducible A-sub- 
modules (i.e., left ideals) and A = B, + * - + B,, is a direct sum. 

( 2 )  Let Bi = A ei be an irreducible left ideal of A as above and let V be an 
A-module. If X E V is such that e i X  # 0, then Bi X # (0) and B i X  is an 
A-module. The map 

4 : B, + B i X  : b + bX 

is an A-module homomorphism and ker(4) is an A-submodule of B i .  Since Bi 
is an irreducible A-module and B,X # (0) we have 4 is an isomorphism; 
that is, Bi X is an irreducible A-submodule of V.  

(3) Let A be an associative algebra with identity 1 and let V be an 
A-module. Then V is called a unital A-module if IX = X for all X E V. 

Let A = B ,  0 3 . * 0 B,, as in remark (I) ,  let V be a unital A-module, and 
let 0 # X E V. Then X = IX = e ,X + + e,,X so there exists e ,  with 

e ,  X # 0. Thus B, X is an irreducible A-module and X E B, X + + B,, X ,  
a sum of irreducible A-modules. This implies V is a completely reducible 

A-module. Thus we leave as an exercise : Let { Wj : j E a}  be a family of irre- 
ducible A-submodules of V so that every X E V can be expressed as a finite 
sum of elements from the Wj’s. Then V is a direct sum of irreducible A- 

su bmodules. 
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For a semisimple algebra A we combine the above remarks to obtain the 
following. 

Proposition 9.16 Let A be a finite-dimensional semisimple associative 
algebra over K and let V be a finite-dimensional A-module. Then V is a 
completely reducible A-module. 

PROOF Since 1 E A let Yo = (2 E V :  12 = 0). Then Vo is an A-submodule 
of V such that AVO = (0). Next note any X E Y can be written 

x = 1x + (X - 1X) 
where l(1X) = 1X and 1(X - 1X) = 0; that is, X = Y + 2 where 2 E Vo 
and Y E V, = {U E V :  1 U = U). This gives the direct sum V = V,  + Vo 

where V, is a unital A-module and therefore completely reducible. Now 
choosing a basis for V ,  we can write Yo = KX, + + KX, as a direct sum 
of one-dimensional A-modules which are irreducible. Combining these de- 
compositions, V is completely reducible. 

REMARK (4) Concerning complexification, we shall use bilinear forms 
in Chapter 12 to easily show a (finite-dimensional) associative algebra A 
over R is semisimple if and only if the associative algebra C BR A over C 
is semisimple. This with the preceding results shows that if 1 E A and V is an 
A-module, then V is a completely reducible A-module if and only if C BR V 

is a completely reducible C aR A-module. 

6. Composition Algebras 

We will now construct some nonassociative algebras which will be very 
useful in describing certain simple Lie algebras in Chapters 13 and 14. This 
material also yields some interesting applications of the previous material in 
this chapter. 

Dewtion 9.17 A composition algebra %' over a field K of characteristic 
0, is a nonassociative algebra V over K with an identity element denoted by 1 
and a map N : %' + K called the norm of %? such that the following three 
properties hold : 

(a) N(uX)  = a*N(X) for any a E K and any X E V ;  
(b) N ( X Y )  = N(X)N(Y) for any X, Y E V; 
(c) B(X, Y) = [N(X + Y) - N(X) - N(Y) ] /2  for all X, Y E %? defines a 

nondegenerate symmetric bilinear form on %'. 
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Exercises ( 1 )  Show that N(1) = 1 and B ( X ,  X )  = N ( X )  for all X E V 
where V is any composition algebra. 

(2) Suppose A E K is not a square in K. Let V = K(A1'*) be the quadratic 
field extension of K and define N(a + bA112) = a2 - b2A. Show that %f is a 
composition algebra. 

(3) Show that the associative algebra of 2 x 2 matrices over K is a 
composition algebra if we define N ( X )  = det(X). 

Definition 9.18 For any composition algebra V and any X E V define 
X = 2B(X, 1)l - X .  Then X is called the conjugate of X and the overbar is 
called the involution of %'. Notice that B ( X ,  1)l = ( X  + x)/2 and that if we 
write X = a1 + Y with B(Y,  1) = 0, then X = a1 - Y. 

Proposition 9.19 For any X ,  Y ,  Z, W in a composition algebra V we 

(a) B ( X Y , X Z )  = N(X)B(Y,  2) = B ( Y X ,  Z X ) ;  
(b) E ( X Y ,  W Z )  + B(XZ,  W Y )  = 2E(X, W)B(Y,  2); 

(d) B ( X Y , Z )  = B(Y,  KZ) = B ( X ,  ZP). 

have 

(c) x2 - 2B(X,  1)X + N(X) l  = 0 ;  

PROOF (a) From Definition 9.17 we see 

2B(XY,  X Z )  = N ( X Y  + X Z )  - N ( X Y )  - N ( X Z )  

= N ( X ( Y  + Z))  - N ( X Y )  - N ( X Z )  

= N(X)(N( Y + Z )  - N( Y )  - N(Z) )  = N(X)2B( Y, Z) .  

This lund of proof is routine and is referred to as " linearizing " equation 
9.17(b) with respect to Y. 

(b) This is proved by linearizing (a) with respect to X .  
(c) We note that 

B(X2 - 2B(X,  1)X + N ( X ) l ,  2) = B(X2, Z )  - 2B(X,  l ) B ( X ,  Z )  

= B(X2,Z  * 1) + B(X * 1,z. X )  

+ Ww(1, Z )  

- 2B(X, Z)B(X,  1 )  = 0. 

Both (a) and (b) above were used in the computation. Now the formula in (c) 
follows from the nondegeneracy of B ( X ,  Y). 

(d) From (b) we have 

B ( X Y ,  Z )  + B(XZ,  Y )  = 2B(X,  l)B(Y, Z) ,  

and thus 

B(X Y, 2) = E( Y, 2B(X,  l)Z - X Z )  = B( Y, X Z ) ,  
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and finally the other parts of (a) and (d) which were not proved follow from 
obvious symmetries. 

Exercise (4) Prove that the following formulas hold for any X and Y 
in a composition algebra: 

(i) XX = XX = N(X)I ; 
(ii) XY = PX 

(iii) X = x 
Properties (ii) and (iii) are often used to define an involution. 

Definition 9.20 Given a composition algebra V over K and any 0 # a E K, 
define a new algebra V ( a )  with underlying vector space V x V and a multi- 
plication and quadratic form N’ given by the following Cayley-Dickson 
formulas for X, Y, 2, W E V 

(X, Y)(Z, W) = (XZ + a WY, wx + YZ), 
”((X, Y)) = N(X) - aN(Y). 

We will shortly state a theorem which shows that deciding when the algebra 
V ( a )  is a composition algebra is a way of classifying all composition algebras. 

REMARKS (1) Rather than using pairs (X, Y), one can describe %(a) 

by using a symbol, say u. Then %(a) = % + %u = {X + Yu : X, Y E V} with 
N’(X + Yu) = N(X) - aN(Y) and X(Wu) = (WX)u, (Yu)Z = (YZ)u and 

(2) Since K is a composition algebra if we define N(a) = a’, we can 
consider K ( a )  for any 0 # a E Kand if this is a composition algebra, consider 
K(a,  8) = K(a)(P)  and continue until one obtains an algebra which is not a 
composition algebra. The K(a)’s are called quadratic algebras, the K(a, 8)’s 
are called (generalized) quaternion algebras and the K(a, 8, 7)’s are called 
(generalized) Cayley algebras. We are justified in giving names to these 
algebras by Hurwitz’s theorem, the proof of which can be found in the work of 
Schafer [1966, Chap. 31. 

(Yu)(Wu) = a wr. 

Theorem 9.21 (Hurwitz) All quadratic, quaternion, and Cayley algebras 
are composition algebras. If % is a composition algebra over K of dimension 
greater than 1, then %‘ must be isomorphic to some quadratic, quaternion, 
or Cayley algebra over K. Quadratic algebras are commutative and associa- 
tive, quaternion algebras are associative but not commutative, and Cayley 
algebras are neither commutative nor associative. 
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REMARK (3) Proposition 9.19(c) can be used to show that any algebras 
isomorphism of two composition algebras also leaves the norms and bilinear 
forms invariant. Thus the isomorphisms referred to in Theorem 9.21 can be 
thought of as isomorphisms of only the algebra structures or as norm-invariant 

isomorphisms. 

Example (1) We often refer to R ( -  1, -1) as “the” quaternion 
numbers. It can be described as the real associative algebra with basis 1, u, u, 

uu, where u2 = u2 = - 1, uu = -uv, and N(a + bu + cu + duu) = u2 + b2 
+ c2 + d2. Then R( - I ,  - 1) is a division algebra. 

Definition 9.22 A composition algebra %? over K is said to be a split 
composition algebra if it possesses zero divisors or equivalently if it is not a 
division algebra. 

Proposition 9.23 The following statements about a composition algebra 
V over K are equivalent: 

(a) V is a split composition algebra; 
(b) there exists a nonzero X E %? with N(X) = 0; 
(c) there exists an X E %? with B(X,  1) = 0 and N ( X )  = - 1. 

PROOF (a) implies (b) The algebra %? split implies there exist nonzero 
X, YEVwithXY = O a n d O = N ( X Y ) = N ( X ) N ( Y ) s o N ( X )  =OorN(Y)=O. 

(b) implies (c) Suppose N(X) = 0 for 0 # X E ‘3. If B(l, X) # 0, set 
Y = 1 - B(1, X)-’X and compute that B(Y, 1) = 0 and N ( Y )  = -1. If 
B(1, X) = 0, then from the nondegeneracy of the bilinear form on %? we 
must have that V is four- or eight-dimensional and there exists some Z E V 
with B(1, 2) = 0 and B ( X ,  Z) = 2. Let Y = Z - (N(2) + l)X and compute 
B( Y ,  1) = 0 and N( Y) = - 1. 

(c) implies (a) If X E V with B(X, 1) = 0 and N ( X )  = - 1, then, by 
Proposition 9.19(c), X2 = 1 ; so (X + 1)(X - 1) = 0 and so X + 1 is a zero 
divisor and ‘3 is a split composition algebra. 

Proposition 9.24 Over any field K there exist split quadratic, quaternion, 
and Cayley algebras. Any two split composition algebras over K of the same 
dimension are isomorphic. 

PROOF We see K( l), K( 1, l ) ,  and K( 1, 1, 1) are split algebras from 
Proposition 9.23. Thus it suffices to show that any split composition algebra 
over K must be isomorphic to one of these three algebras. 
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Assume 69 is split. Proposition 9.23(c) shows that there exists an U E '3' 
with B(1, U )  = 0 and N(U)  = -1. Since CJ2 = 1, d = K1 + KU is a sub- 
algebra of % and it is trivial to check that a1 + bU + (a, b) is an isomorphism 
from d onto K( 1). 

If 69 has dimension greater than 2, we must continue. Choose any 
0 # Y E V with B(X, Y) = 0 for all X E d. If X E d with N(X) = 0, then 
N(XY) = 0 and by Proposition 9.19(d) B(Z, XY) = 0 for all Z E at. Now 
repeating an argument used in the second part of the proof of 9.23 there exist a 
V E Y with B(2, V) = 0 for all 2 E d and N ( V )  = - 1. It is claimed that 
d + d V  is isomorphic to d( 1) E K( 1, 1 ). Using Proposition 9.19(d) it is 
easy to show that N(X + ZV) = N(X) - N ( Z )  as required so we need only 
check the nontrivial multiplication formulas. 

Assume X, Y, 2 E d in this paragraph. Since B(X, Y V) = B(XF, V) = 0 
and B(XV, YV) = -B(X, Y) it is clear that the bilinear form restricted to 
I V is nondegenerate and d V is orthogonal to d. For any W E V, X, Y E d 
and Vas above 

B(YV,WX)+B(YX, W V ) = 2 B ( Y ,  W)B(V,X)=O 

so B(( Y V)X, W) = B(( YX) V ,  W) for all W E % and (YX) V = (Y V ) X .  
Applying the involution to both sides of this equation yields X( Y V) = (YX)V 
which is one of the three multiplication formulas required. 

The second formula (XQY = (XP)V follows easily from the first and 
involution formulas. 

Finally, for any W E  W 

B( W( Y V), VX) + B( WX, V( Y v)) = 2 4  W, V)B( Y V,  X) = 0 

so (XV)( Y V )  = (V( Y V))X. However B( W, V( Y V)) = - B( VW, V F) = 

B(W, 7) so V(Y V )  = Pand (XV)(Y V) = YX. 
This completes the proof that D = d + d V  is a subalgebra of V iso- 

morphic d(1) which is isomorphic to K(1, 1). If % is eight-dimensional, 
we now repeat the above argument word for word to complete the proof of 
the proposition. 

Exercises ( 5 )  Show that the algebra of 2 x 2 matrices over K is a split 
quaternion algebra. Also show that K(a) P K(a'12) if 0 # a E K is not a 
square in K and K(a) is split otherwise. 

(6) Show that if 69 is a composition algebra over K and L is a field 
extension of K ,  then %(L) = L @K 69 is a composition algebra over L where 
N(u @ X) = a2N(X)  for u E L  and X E W. Also show that if V is split, then 
so is %(L). 

(7) Suppose that % is a division (nonsplit) composition algebra of 
dimension greater than 1, over K and that N(X) = a # 0 for some X E V 
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with B(X,  I )  = 0. Show that V(K(( - c t ) ’ / 2 ) )  = K((-ct)”’) aK %is a split com- 
position algebra over K((-a)’/’). Use this result to show that if g1 and V2 
are any two composition algebras of the same dimension over K,  there exists 
a field extension L of degree at most 4 over K so that Wg,(L) E W,(L). 

Example ( 2 )  The following matrix-type description of a split Cayley 
algebra is sometimes useful. Let K be any field of characteristic 0 and let V 
denote the set of three-dimensional column vectors over K. For any u, u E Y 
let u x u and (u, u) denote the usual cross product and inner product, respec- 
tively. Let 

1 W = ( [ :  i]  : a , b ~ K , u , u ~ Y  

and define 

1 ac - (u, z )  aw + du + v x z [:: :] [: wd] = [ cu + bz + u x w bd - (u, W) 

and 

f o r a l l u , b , c , d ~ K a n d u , u , w , z ~ V .  

To show that W is a composition algebra we must verify the three formulas 
in Definition 9.17 for composition algebras. Formulas (a) and (c) are trivial 
to verify and (b) is equivalent to 

( ~ b  + (u, o))(cd + ( ~ 7 ,  z ) )  = (UC - (u, z))(bd - (v,  w ) )  

+ ( u w + d u + u  x z , c u + b z + u  x w) 

It is easy to check that this formula follows from two well-known vector 
equations, namely (14 x u, u) = (u x u, u) = 0 for all u, u E V and 
(u x w, u x z )  = (u, u)(w,  z )  - (u, z)(u, w) for all u, u, w, z E V .  Finally it is 
very easy to choose nonzero elements of V of norm 0 so V is a split eight- 

dimensional composition algebra ; that is, a split Cayley algebra. 

Exercise (8) Let % be any composition algebra over K, let L be a 
field extension of K of finite degree, and let 9 ( W )  denote the derivation algebra 
of W. Show that 9(g(L))  E (9(W))(L). 

REMARK (4) One of the important properties of quaternion and Cayley 
algebras is that they are simple nonassociative algebras. This fact can be used 
to show that all derivations of these two types of algebras are inner; that is, for 
these algebras 9(V) is contained in L(%) which is the subalgebra of gl(W) 
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generated by the linear transformations L(X) : Y + X Y  and R ( X )  : Y 4 Y X .  
The proof of these results can be found in the work of Schafer [1966, Chap. 31 

or Section 12.5, exercise (3). 

Exercise (9) Let 2 be a quaternion algebra over K and for X E 9 
define D(X)  = L ( X )  - R(X).  Assuming the results mentioned in the above re- 
mark show that 9(9) = {D(X) : X E 9, B(X,  1) = 0) and that [ D ( X ) ,  D(Y)]= 
D(XY - YX).  Also show that for any 2 there exists a field extension L of 
K of at most degree 2 over K such that (9(9))(L) E $42, L). 

Example (3) It is much more difficult to describe the derivation 
algebra of a Cayley algebra but it is not quite so difficult for the split Cayley 
algebra as described in the previous example. For any A E 343, K )  and any 
x, y E Y define D(A, x ,  y )  : V+% by 

I. D(A, XY Y )  : [u b] + [ - A %  + (a - b)y + x x u -(x, u) - b, u) 

0 u (x,  d + OI, 4 A u + ( u - b ) x - y x  u 

A long computation involving a few vector formulas verifies that D(A, x, y )  E 

a(%) and a similarly easy but unpleasantly long computation shows that 

[D(A,,  x1, Yl),  D(Az Y xz Y Y z ) l =  D(A3 9 x3 9 Y 3 ) ,  where 

~3 = [ A , ,  -421 + 3x1~2' - 3x2~1' + ((x, ~ 1 )  - (xi, Y J ) ~ ,  
x3 = A1xz - Azx, - 2Yl x Y z  9 

yJ = -AIty,  + A,'y, + 2x1 x x z .  

Some of these computations can be found in Schafer's book [1966] which also 
has a proof that 9(V)  = {D(A,  x, y )  1 A E sZ(3, K ) ,  x, y E Y}.  

Using exercise (8) we can now conclude that for any composition algebra 
V, g(48) must be fourteen dimensional because we can extend the base field 
to say L so that %(L) is split and then notice that we can compute the dimen- 
sion of 9(VB(L)) from the description above. Also notice that for any X E '3 
and D E 9(V)  we have B(D(X),  1) = 0 since this is easy to verify in the split 
case. Since D(1) = 0 we can conclude that 9(V) also can be thought of as the 
set of derivations of V acting on the elements of trace 0 that is acting on 
Vo = (X E V : B(X,  1) = 0). This may be restated as: Vo is an invariant 
submodule of V or the action of 9(V)  on Vo gives a seven-dimensional 
representation of 9(V). We will see in Chapters 13 and 14 that 9(%) is 

simple. 

Exercise (10) If V is any Cayley algebra, show that 9(V) acts irreduc- 
ibly on Vo . Notice that you may assume the '3 is split. 



CHAPTER 10 

SOLVABLE LIE GROUPS 

AND ALGEBRAS 

We now start the structural development of Lie groups and algebras. 
First we define a Lie group to be solvable if it is solvable as an abstract 
group. Then using the “derivative” of these results we discuss solvable Lie 
algebras. Thus we show that a connected Lie group is solvable if and only if 
its Lie algebra is solvable. Finally we discuss Lie’s theorem which involves 
finding a common characteristic vector for a solvable Lie algebra of endomor- 
phisms acting on a complex vector space. This eventually yields that the 
matrices representing a solvable Lie algebra of endomorphisms acting on a 
complex vector space can be put into triangular form by using a suitable basis 
of the vector space. Once again, all fields in this chapter will be assumed to 

be of characteristic zero. 

1. Solvable Lie Groups 

Let G be an abstract group and let A and B be subgroups of G. Then we 

(1) We denote by (A, B) the subgroup of G generated by all elements 

(2) If A is a normal subgroup of G we write A 4  G or GPA. 

Note that if A and B are normal subgroups of G, then (A, B) is a normal 

have the following notation. 

xyx-’y-’  for x E A ,  y E B.  

subgroup of G. 

20 1 
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Definition 10.1 Let G(') = (G, G) and define by induction G('+') = 

(G'", G(k)). Then we have the sequence of normal subgroups 

G bG(1)  pG(2) p . . . . 

Thus G is solvable if this sequence is finite and terminates at {e}; that is, there 
exists n so that G(,) = {e} and G is called solvable of length n. 

From results of Lang [1965] we have the following theorem: 

Theorem 10.2 Let G be an abstract group. Then the following are 
equivalent. 

(a) The group G is solvable. 
(b) There is a finite sequence of subgroups G = G o b  G1 P G2 * * - t= G, = 

{ e} such that Gk/Gk+, is commutative for k = 0, 1, . . . , n - 1. 

PROOF First we observe that by induction each G(k) is a normal subgroup 
of G. Now assume (a). Then note from the definition of (G, G) that G/G(') is 
commutative and by induction and definition, G(*) /G(*+' )  is also commutative. 
Thus we have (b) by taking Gk = G"). Conversely, assume we have a descend- 
ing sequence 

G = G o b G l r > . . .  r>G, = {e} 

with GI/G,+ ,  commutative. Then G/G, being Commutative implies 
xyx-'y-'G1 = eGl which yields G, 3 G"). Now assume 

Gk 3 G'k' 

Then since Gk/Gk+l is commutative we see 

(Gk)(l) = (@) @)') = 
G k + l  

However, since G, = {e} we see G'") = {e} which gives (a). 

Corollary 10.3 (a) A subgroup H of a solvable group G is solvable. 

(b) If G is a solvable group of length n and H a normal subgroup, then 
G/H is a solvable group of length less than or equal to n. 

(c) If G is a group and H is a normal solvable subgroup of length n such 
that G / H  is solvable of length m, then G is solvable of length less than or equal 
to n + m. 

PROOF (a) We just note that by induction H"' c G'k). 

(b) Let G = G / H .  Then by induction we see that (G)'k' = G(') using 
II : G + G/H = x + ff = xH is a homomorphism. Thus the series for G yields 
the series GbG(')r> ..* I>@") = {eH} .  

- 
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(c) Note that from the series GDG"'P*** p G ( " ) = { e H )  we obtain 
GDG(')D * + DG(") and G'") c H .  However, since H is solvable we have 

H D H ( ' ) D  H(*)D . . . m{e} and we put these two series together to see that 

G is solvable. 

Definition 10.4 Let G be a Lie group. Then G is a solvable Lie group if G 

is solvable as an abstract group. 

Theorem 10.5 Let G be a Lie group. Then the following are equivalent. 

(a) The Lie group G is solvable. 
(b) There exists a finite sequence of subgroups, 

G = G o ~ G 1 ~ G z r = - ~ ~ ~ c - G , = { e }  

such that each Gk is a closed Lie subgroup of G with Gk/Gk+l commutative 

f o r k = 0 , 1 ,  ..., n-1 .  

(c) There exists a finite sequence of closed Lie subgroups 

G = Gor>G,r> - . *  DG, = { e }  

such that for k = 0, . . . , r - 1, we have Gk/Gk + is a connected one-dimensional 

group or a discrete group. 

PROOF To show (a) implies (b), we recall that if H is a normal subgroup 
of G, then its closure R is a closed normal subgroup of G. Next assume G is 
solvable so we obtain the series 

and let 

GDG(')DG(*)D 9 . -  r>G(") = {e}, 

Go = G and Gk = G(k). 

Then the Gk are closed normal subgroups (and, therefore, Lie subgroups) 
such that Go D G1 r> * * * D G,,, = { e } .  Furthermore Gk/Gk+I is a Lie group which 
is commutative, for let n : G -P G/Gk+l. Then since n(G(')) is commutative, 

we have 

is commutative. However, since n is continuous, 

- 

n(G(") 

n(Gk) = n(G'k') C n(G'k') 

so that Gk/Gk+, = n(G,) is commutative. 
The converse (b) implies (a) is clear. Also (c) implies (b) is clear, so it 

remains to show (b) implies (c). Thus let H k  be the connected component of 
the commutative Lie group Gk/Gk+l. Then by the results outlined in the 
exercise (l) ,  Section 6.5, we have for the Gk in (b) 

where Dk is a discrete group, and H k  E' Rq(lr) x Tp(k) by Theorem 6.20. 

G k / G k + l  = H k  Dk 
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Next let n : Gk Gk/Gk+ Then in the series for (b) we replace each of the 
terms G, by the series [with p = p(k) ,  q = q(k)] 

n-'(RP x T9 x Dk)bn- ' (RP- '  x x Dk)r> " '  r>n-'(Tq x Dk) 

b n - ' ( p - '  x Dk)r> * "  L)n-'(Dk). 

Thus we obtain the series in (c). 

Exercise (1) Let V be a real vector space of dimension rn and regard 
GL(I/) as the set of all nonsingular m x m real matrices. Let H be the subset 
of all matrices of GL(V) of the form 

where a,, # 0 and * arbitrary real numbers. Show H is a solvable Lie subgroup 
of GL(V)?. 

2. Solvable Lie Algebras and Radicals 

Let g be a finite-dimensional Lie algebra over a field K and let h, k be 

(1) We denote by [hk] the subspace of g generated by all products [xy ]  

(2) If h is an ideal of g ,  then we write g c-h or h-=~ g .  In particular, note 

subspaces of g .  Then we shall use the following notation. 

for x E h and y E k .  In particular, g(') = [gg] is a subalgebra of g .  

gc-g"). A Lie algebra g is abelian or commutative if g(')  = (0). 

Definition 10.6 Let g be a finite-dimensional Lie algebra over K, set 
g ( l )  = [gg] ,  and define by induction 

From the Jacobi identity for g we obtain 

gc-g (1 ) ' )g (2 )b . .  . 

and we call g solvable if there exists n with g(") = (0). The smallest such n is 
called the length of the solvable algebra 8. 
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Theorem 10.7 Let g be a finite-dimensional Lie algebra over K. Then 
the following are equivalent. 

(a) The algebra g is solvable. 
(b) There exists a sequence of subalgebras g = go c-g1 D - * - b g r  = (0) 

so that the quotient algebra gk/gk+l is commutative. Each gk can be taken 
to be an ideal in g .  

D 

gs = (0) such that dim gk/gk+l is 1. In general gk is not an ideal in g but only 
(c) There exists a finite sequence of subalgebras g = g o ~ g l  D 

In gk-1. 

PROOF The equivalence of (a) and (b) is similar to those for groups in 
Section 10.1. Thus, for example, if g is solvable, then take gk = g(k)  for k = 1, 
. . . , r to obtain the sequence in (b) and also note [g(k)g(k)] = g ( k + l )  so the 

desired quotient algebra is commutative. 
Next assume (c) where we have gk/gk+l =KX = K X  + gk+l since gk/gk+l 

is one dimensional. Then since [XX] = 0 we have gk/gk+l is a commutative 
Lie algebra. Thus (c) implies (b). Conversely, if the sequence in (b) is such 

that gk/gk+l = K X ,  + + K X ,  + gk+1 is commutative, then each subspace 
h ( i ) = K X ,  + . . * + K X i + g k + l  is an ideal in gk/gk+l for i =  1, ..., r.  

Thus the corresponding subspace h(i) generated by { X l ,  . . . , X i }  u g k + l ,  where 
x i  + g k + 1  = X i  ~ g k / g k + l ,  is an ideal in gk. Thus we obtain a sequence 

so that the quotient ideals are one dimensional and this yields (c). 

The proof of the following is similar to Corollary 10.3. 

Corollary 10.8 Let g be a Lie algebra containing the Lie subalgebra h. 

(a) If g is solvable, then h is solvable. 
(b) If g is solvable and h an ideal of g, then g / h  is solvable of length 

(c) If h is a solvable ideal of g such that g / h  is solvable, then g is solvable. 

less than or equal to the length of g .  

Exercises (1) Let g denote the set of rn x rn matrices of the form 
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where ajj are arbitrary in K. Show g is a solvable Lie subalgebra of g1(V). 

(2) Prove the following isomorphism theorems for Lie algebras. 

(i) Let f: g +# be a homomorphism of the Lie algebra g onto the Lie 
algebra if and only if the 

inverse image f -'(h) = h is an ideal of g such that h 3 k .  If this is the case, 
we have g /h  

(ii) Let h and k be ideals of the Lie algebra g and let f: g + g / k  be 
the natural homomorphism. Then h + k =f-'( f (h)) and (h + k ) / k  z h/h n k .  

(iii) Also show that the sum h + k and product [hk] of the ideals h 
and k are again ideals of g .  

(3) Let g be a solvable Lie algebra of dimension n over K. Show that g 
is a semidirect sum of an ideal h of dimension n - 1 and a one-dimensional 
subalgebra. 

(4) Show that if g is a solvable Lie algebra over K, then P O K g  is a 
solvable Lie algebra over the algebraic closure P of K. 

and let k = ker(f). Then h is an ideal of 

# /h;  that is, g/h  z (g /k) / (h /k) .  

Theorem 10.9 Let G be a Lie group with Lie algebra g .  

(a) If G is solvable, then g is solvable. 
(b) If G is connected and g is solvable, then G is solvable. 

PROOF (a) If G is a solvable Lie group, then we have a sequence 
G = Goc-Gl c-"- c-G, = {e} with each Gk a closed normal Lie subgroup 
so that Gk/Gk+' is commutative. Then we obtain the corresponding sequence 

g = g o D g l b * * *  D g n  = (0) of ideals of g so that is a commutative 
Lie algebra. 

(b) If G is connected and g is solvable, then we shall show G is solvable 
by induction on the length of g .  Thus let gc-g(')b...bg("-')r>g(") = (0) 
be the sequence for g and let K be the Lie subgroup of G generated by 
exp g(,-') .  Then K is a commutative normal subgroup of G (since g("- ' )  is 
a commutative ideal of g )  and its closure K = H is also a commutative normal 
Lie subgroup of G. Now let h be the Lie algebra of H. Then h is a commutative 
ideal of g and g( , - ' )  c h. From this we have [exercise (2) above], g / h  2 

(g/g'"'~)/(h/g'"-'') and since g/g("-') is solvable of length less than or equal to 
n - 1 we have g / h  is solvable of length less than or equal to n - 1 (Corollary 
10.8).Thus by the induction hypotheses G/H is solvable and since H is solv- 
able, we have G is solvable using Corollary 10.3. 

Exercise ( 5 )  If G is a connected solvable Lie group, then there exists 
a sequence G = Go D GI D a * c- G, = {e} where all the Gk are closed connect- 
ed Lie subgroups such that Gk/Glr+' are one dimensional. In particular, G 
contains a connected solvable normal subgroup H with dim H = dim G - 1. 
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Lemma 10.10 Let g be a finite-dimensional Lie algebra over K. Then 

there exists a unique maximal solvable ideal of g: namely the sum of the 
solvable ideals of g. This maximal solvable ideal is called the radical of g 

and is denoted by r .  Moreover g / r  is {b} or contains no proper solvable ideals ; 
that is, the radical of g / r  is {O}. 

PROOF Let h and k be solvable ideals of g .  Then the vector subspace h + k 
is an ideal of g .  Now by the above exercise (2) we see (h + k)/k E h / ( h n k )  
and since h n k c h is solvable we have h/(h u k) is solvable. Thus we have 
(h + k)/k is solvable and k is solvable so that by Corollary 10.8, h + k is 
solvable. Thus since g is finite dimensional, the solvable ideal of maximum 
dimension is unique and by the above, contains every solvable ideal of g; 
denote this maximal solvable ideal by r .  

Next let h = h/r  be a solvable ideal of S = g / r  where h is some ideal of g 

with h =) r .  Then since h/r  is solvable and r is solvable we have by Corollary 
10.8 that h is solvable. Thus h c r ,  so that h = (8). 

Definition 10.11 Let G be a Lie group with Lie algebra g and let r be 
the radical ofg.Then we define the radical of G, R = rad G, to bethe connected 
Lie subgroup of G whose Lie algebra is r = rad g .  

Proposition 10.12 Let G be a Lie group with radical R .  Then R is closed 
and R is the maximal solvable normal connected Lie subgroup of G.  

PROOF Let R denote the closure of R .  Then R is a normal, solvable Lie 
subgroup (since it is closed).Thus its Lie algebra P is solvable (Theorem 10.9) 
so that r = T and consequently R = R ;  that is, R is a closed, normal, solvable 
Lie subgroup of G.  The fact that R is maximal among connected Lie subgroups 
with these properties also uses the maximality of r .  

Corollary 10.13 The radical of G / R  equals {eR} .  

Exercise (6) Show that the radical of a Lie algebra g is the smallest 
ideal h ofg such that the radical of g/h is {O}; that is, if h satisfies this condi- 
tion, then r c h. 

Definition 10.14 (a) A finite-dimensional Lie algebra is called semi- 

simple if it has no proper solvable ideals. Thus g is semisimple if and only if 
r = (0). Similarly a Lie group G is semisimple if its radical R = {e}. 

(b) A Lie group G is simple if its Lie algebra g is simple. That is, 
[gg] # (0) and g has no proper ideals. 



208 10. SOLVABLE LIE GROUPS AND ALGEBRAS 

We shall eventually show that a semisimple Lie algebra over a field of 
characteristic 0 is a direct sum of simple Lie algebras which are ideals. Con- 
sequently many problems involving semisimple Lie groups can be done in 
terms of simple Lie algebras. 

Exercise (7) Show that the center of a simple Lie group is discrete (note 
Section 6.5 and Corollary 7.14). 

3. Lie’s Theorem on Solvability 

We now describe how a solvable Lie group or Lie algebra of endomor- 
phisms can be represented by triangular matrices. To do this we must com- 
pute characteristic roots so we consider real Lie groups or algebras as acting 
on complex vector spaces. 

Definitions 10.15 (a) Let K be a field of characteristic 0 and let V be 

a finite-dimensional vector space over K. Let T E End#) and I E K. Then set 

v, = {X E V: Tx = AX} 

and 

V(A) = {X E V: (T- 11)” X = 0 for some n E N }  

where N is the set of natural numbers (which are greater than 0). If V, # {0}, 
then A is called a characteristic value or eigenvalue of Tand 0 # X E V, is called 
an eigenvector or characteristic vector of T with characteristic value L. If 
V(I)  # {0}, then I is called a weight of Tand V(A) a weight space and 0 # 
X E V(I)  is called a weight vector of T. 

A characteristic value or a weight I of T is a solution of the equation 
det(Zx - T) = 0 and if all the solutions to this (characteristic) equation are in 
K, then we say that the characteristic values or weights are in K; recall the 
definition of a split endomorphism in Section 9.2. 

Vf = {X E I/: for all T E N ,  TX = f ( T ) X }  

(b) Let N c E n d # ) ,  let f: N -rK be a function, and set 

and 

V ( f )  = {X E V: for all T E  N, there exists n > 0 with (T-f(T)Z)”X = O}. 

If V, # {O},thenfis called a characteristicfunctionon Nand0 # X E  Vfiscalled 
a characteristic vector of N for the characteristic function f. Similarly one 
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defines a weight function, weight space, and weight vector in case V ( f )  # (0). 
Thus these functions on N assign to each Tin  N a characteristic rootf(T) 

of T. Of course, in actual computations, the characteristic roots discussed 
above might be in the algebraic closure of K. 

With these definitions and results on canonical forms of endomorphisms 
[Jacobson, 1953, Vol. 11; Lang, 19651 we state the following: 

Proposition 10.16 Let V be a finite-dimensional vector space over K 
and let T E End,( V )  have its (distinct) weights I,, . . . , I, in K. Then the weight 
spaces V(I,) are T-invariant and V = V(Il) + * * * + VU,) (direct sum). 

REMARK (1) This direct sum decomposition will be generalized in the 
next chapter to a direct sum decomposition of weight spaces of a nilpotent 
Lie group or Lie algebra. 

Exercise (1) Let V be a finite-dimensional vector space over K, let g 
be a Lie subalgebra of gl(V), and let f: g + K  be a characteristic function on 
g. Showfis a linear transformation. 

Proposition 10.17 Let V be a finite-dimensional vector space over R, 
let G be a Lie subgroup of GL('V),and letf: G + R be acharacteristic function 
withf(@ c R* = R - (0). Then regarding R* as a multiplicative Lie group, 
the map f: G + R* is an analytic homomorphism of Lie groups. .f is fre- 
quently called a character of G. 

PROOF Let S, T E  G. Then for 0 # X  E Vf we have SX =f(S)X and 
TX = f ( T ) X .  Thus 

STX = Sf (T)X  =f(T)SX = f ( T ) f ( S ) X .  

However since (SnX = f ( S T ) X  this givesf( ST) = f ( S ) f ( T )  so that f: G- ,  
R* is a homomorphism. To see that f is analytic, let X,, . . . , X, be a basis 
of Vso that X1 is a characteristic vector of G for the characteristic function$ 
Noting that the mappingsr : G + V :  S + S ( X , )  and s : V +  R : xr! &Xi + L, 
are analytic, so is the mapf= s o r : G + R*. 

Analogous to Lemma 7.15 we have the following result: 

Lemma 10.18 Let V be a finite-dimensional vector space over R and let G 
be a real connected Lie group which is a subgroup of GL(V) and has real Lie 
algebra g. Let W be a subspace of V. 
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(a) W is invariant under the action of G if and only if W is invariant 
under the action of g. 

(b) For A ~ g ,  the vector X E V is a characteristic vector of A with 
characteristic value I if and only if X is characteristic vector of the subgroup 
{exp tA  : t E R} for the characteristic function f: exp tA  + etA. 

Exercise (2) Prove results analogous to Proposition 10.17 and Lemma 
10.18 when we take Vto be a finite-dimensional vector space over C and let G 
be a real Lie group which is a subgroup of GL( V, C). For example, consider 
the real matrix Lie group G = GL(n, R) as acting on C" and regard G as a 
subgroup of GL(n, C). 

The following result or some of its equivalent consequences is known as 
"Lie's theorem on solvability." We follow the work of Tits [1965] for the 

group proof. 

Theorem 10.19 (Lie's theorem) Let V be a finite-dimensional vector 
space over C and let G be a real connected solvable Lie group which is a 
subgroup of GL(V, C). Then there exists a nonzero characteristic vector of G 
for some characteristic function. 

PROOF We shall prove the results by induction on the dimension of G. 
First, if G is one dimensional and 0 # A ~g which is the Lie algebra of G, 

then since g c gl (V)  we see that A has a nonzero characteristic vector X E K 
However, by Lemma 10.18 and exercise (2), X is also a characteristic vector of 
G. Next assume G is of dimension n and assume as an induction hypothesis 
that we have shown the result for all such groups of smaller dimension. Now 
since G is connected and solvable, G has a connected solvable normal subgroup 
H of dimension n - 1 [exercise (5 ) ,  Section 10.21. Thus by the induction 
hypothesis we can conclude there is a characteristic function f: H + C* = 

C - {0} and analogous to Proposition 10.17 we havefis continuous. 
We shall now show that the subspace V, = {A'€ V :  SX = f ( S ) X  for 

all S E H} is invariant under G. Thus let X E V', S E H, and T E  G. Then 

(*I 

using T- 'STe  H. Thus the number f (T- 'ST)  is a characteristic value of S 
with characteristic vector T(X)  and also the function k : G + C* : T + 

f ( T - ' S T )  is continuous. However, since G is connected and the set of 
characteristic values of S is discrete, the image k(G) consists of a single point. 
(This uses the characterization: the topological space M is connected if and 
only if M is mapped continuously into a discrete space implies the image 

S ( T ( X ) )  = ( S T ) ( X )  = T(T-'ST)(X) =f (T- 'ST)T(X)  
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of M consists of a single point.) Thus we have k(T) = k(Z) =f(S). Using this 
in (*) we have for any X E V,, T E  G, and S E H that S ( T ( X ) )  = f ( S ) T ( X )  
which shows by the definition of V, that Vr is invariant under the action of G. 

Next by Lemma 10.18 we have that V, is invariant under the action of 
g c gl(V). Therefore if A E g and A 4 h which is the Lie algebra of H, then, 
since the subspace V, is invariant under the linear transformation A ,  there is 
a characteristic vector 0 # X  E V, for A .  Thus since g/h = RA + h (using the 
hypothesis that dim H is n - 1) we see that X is a characteristic vector forg.  
For let B = a A  + bC E g  with C E h and for A X  = AX E VJ and C X  = pX 
[using Lemma 10.18(b) applied to h and HI we have 

BX = (uA + bC)X = (d + bp)X.  

Thus by Lemma 10.18, X is a characteristic vector for G. 

Definition 10.20 Let V be an rn-dimensional vector space over the field 
K. Then a sequence of subspaces (0) c V, c V, c c V, = V such that 
dim Vi = i for i = 1,. . . , m is called a flag in V. Let G c GL(V) be a Liegroup. 
Then the flag is G-invariant if for every T E  G we have T( y )  c 6 for i = 1, . . . , 
m. Similarly for a Lie algebra g of endomorphisms, we define a g-invariant 

flag. 

Proposition 10.21 Let V be an n-dimensional vector space over C and 
let G be a real connected Lie group which is a subgroup of GL(K C). Then 
the following are equivalent. 

(a) The group G is solvable. 
(b) There exists a flag which is G-invariant. 
(c) There is a basis of Vsuch that the matrices for the elements in G 

can be put simultaneously into triangular form. (The matrices might have 

complex entries). 

PROOF Assume G is solvable. Then to show (b) we use induction on the 
dimension of V. From Lie's theorem there is a one-dimensional subspace W 
of V which is invariant under G. Therefore an element T E  G induces a non- 
singular linear map 

T : V / W + V / W : x +  W + T x +  W 

and the map G --* GL( V/ W, C) : T 4  Tis an analytic homomorphism. Thus the 
image G = {TE GL( V /  W, C )  : T E G} is a real connected solvable Lie group 
which is a subgroup of GL(V/ W ,  C) and by the induction hypothesis there 
exists a flag in V /  W which is invariant under G 

{ b ) c  v2c v 3 c * . * c  v = V/W.  
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Now let 71 : V- ,  V/W, let Vi = z-'(&), and set V, = W = z-'({o}). Then 
dim Vi = i and (0) c V, t V, t - c V,, = V is a Aag which is invariant 

under G. 
Next to show (b) implies (c) we choose a basis of Vfrom the corresponding 

flag as follows. Let V, = {Xl}. Then since TV, c V, for all T E  G we have 
TX, = d , , ( T ) X 1 .  Next let V, = {X,, X,} where XI and X, are independent 

using dim V,/V, = 1. Then since TV, c V, we have TX, = a, , (T)X,  
+a , , (T)X ,  for all TEG. Continuing in this manner we can choose a 

basis of Vso that any T E  G has a matrix of the form 

with 0 # all(T) * - .  a,,,,(T) = det T. 
Finally to show (c) implies (a) let G be represented by the group triangular 

matrices as above. Let GI be the normal subgroup of triangular matrices of 
the form 

with 1's on the diagonal. Let G2 be the normal subgroup of G, of the form 

* 

* * .  ] 
with 1's on the diagonal and 0's on the next superdiagonal. Continuing 
this way we obtain the sequence 

G t z G 1 t z G 2 b * * *  tzG,={Z} 

with C,/G, , ,  commutative. 
The preceding results on Lie groups can be translated into results on 

Lie algebras via the exp mapping or directly as follows. This proof involves 
some computations we shall see again in Chapter 11. 

Theorem 10.22 (Lie's theorem) Let P be the algebraic closure of the 

field K and let V be a nonzero finite-dimensional vector space over P. Let g 
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be a solvable Lie algebra over K and let p be a homomorphism of g into 
g1( V,  P). Then there exists a vector 0 # X  E I/ which is a characteristic vector 
for all the members of p(g) for some characteristic function. 

PROOF We prove this by induction on the dimension of g. For dim g = 1, 
the theorem follows from results on canonical forms (Proposition 10.16). 
We assume the results hold for Lie algebras of dimension less than dimg. 
From Theorem 10.7(d) we can find an ideal h in  g so that dim g / h  = 1. By 
Corollary 10.8 we have h is solvable so that by the induction assumption there 
exists a characteristic function f: h + P so that for all S E h 

P(S)X = m x .  
From dim g/h = 1 we can find T E ~  so that T &  h. Thus g = KT + h. Let W 

be the subspace of Vspanned by all the vectors 

X ,  = X  and Xk+l  = p ( T ) k X  

for k = 1, 2 , .  . . . Note that W is p(T)-invariant subspace of V. 

W is p(h)-invariant and furthermore p(S) = f ( S ) I  on W. 

We shall now show: For all S E h, p(S)Y = f ( S ) Y  for all Y E  W ;  that is, 

We first prove by induction that for all S E h and k = 1, 2,. . . 

p ( S ) x k  = f ( S ) x k  + uk-1xk-j  + ’ * *  + a1XI (*) 

where uj = uj(S) are in P. By the choice of X ,  = X  the result holds for k = 1. 

Assuming (*) for k ,  we have 

p ( S ) x k + ,  = p ( S ) p ( T ) X k ,  definition of xk+, 

= d [ S T ] ) x k  + p(T)p(S)Xk 

= p ( [ S q ) x k  + p(T)( f (S)xk  + u k - l X k - l  + ”. + a lXl )  

= f ( S ) p ( T ) X k  + bkXk + * * *  + b1X1 

= f ( S ) x k + ,  + bkXk + “ *  + b l X l  

using [ST] E h and the induction assumption. 
We next prove p ( S ) Y  = f ( S ) Y  for all Y E  W. From (*) and the definition 

of X k  we first observe that Wis p(g)-invariant. Next note that from the above, 
the restriction p(S)  I W has matrix 

so that tr p(S) I W = f ( S )  dim W for S E h. Next note p(S) and p(T)  map W 

into W so that p ( [ S A )  = p(S)p(T) - p(T)p(S) as endomorphisms of W. 
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Thus since tr(AB) = tr(BA) for endomorphisms, we see 0 = tr p([ST] )  = 

f([STI)dim W. Since dim W > 1 this givesf([ST]) = 0. Thus 

p(S)xk+  1 = dS)p(T )xk  

= P(tST1)Xk + P ( T ) P ( S P k  

= f ( [ S r ] ) x k  + f ( S ) p ( T ) x k  = f P ( S ) x k +  1 

that is, p ( S ) Y  = f ( S ) Y  for all Y E  W. 
Since W is p(T)-invariant and P is algebraically closed we see that p(T)  

has a characteristic vector A E W:p(T)A = rA. Also p(S)A = f ( S ) A  for all 
S E h and since g = KT+ h we have for any Z = aT + S that p(Z)A  = ap( T)A 

+ p(S)A =(at  + f ( S ) ) A .  Thus A is a characteristic vector of p(g) and 
F : aT + S + at + f ( S )  defines the corresponding characteristic function. 

The formalities in the proof of Proposition 10.21 yield the following: 

Proposition 10.23 Let P be the algebraic closure of the field K and let V 

be a nonzero finite-dimensional vector space over P. Let g be a Lie algebra 
over K and let p be a homomorphism of g into 91(V, P). Then the following 

are equivalent. 

(a) The Lie algebra p ( g )  is solvable, 
(b) There is a flag in V which is invariant under p ( g ) .  

(c) There is a basis of Vsuch that the matrices for the endomorphisms 
in p ( g )  can be put simultaneously into triangular form. (The matrices might 

have entries from P.) 

These results apply when we take the field K to be algebraically closed 
itself. Thus K = P and we obtain the following: 

Proposition 10.24 Let g be a Lie algebra over the algebraically closed 
field K. Then g is solvable if and only if there exists a flag in g 

such that each gi is an ideal of g. 

PROOF Assume g is solvable. Then since g + ad(g) : X -+ ad X is a 
homomorphism of Lie algebras over K, we see that ad(g) is a solvable Lie 
algebra of endomorphisms acting on the vector space g. By Proposition 
10.23(b) there is a flag (0) c g1 c * c gn = g which is invariant under ad(g); 
that is, each gi is an ideal of g. 

Conversely, assuming such a flag exists we see that ad(g) is solvable; 
using (b) implies (a) in Proposition 10.23. However, ad : g + ad(g) is a 
homomorphism so that ad(g) E g/ker(ad). Since ker(ad) is the center of g 
which is solvable and since g/ker(ad) is solvable, we have by Corollary 10.8 
that g is solvable. 

{OIcg, c g 2 c  . . *  C g n = g  



CHAPTER 11 

NILPOTENT LIE GROUPS 

AND ALGEBRAS 

We continue the concepts given in the preceding chapter and call a Lie group 
nilpotent if i t  is nilpotent as an abstract group. Then we discuss nilpotent 

Lie algebras and obtain the result that a connected Lie group is nilpotent if 
and only if its Lie algebra is nilpotent. In the last section we consider the 

vector space decomposition which yields the Jordan canonical form for an 

endomorphism and extend this decomposition to a nilpotent group of auto- 

morphisms. 

1. Nilpotent Lie Groups 

We now give a variation of the results on solvable groups using some of 

the notation of the preceding chapter. 

Definition 11.1 

(a) 

Let G be an abstract group. 

Let COG = G and let C""G = (G, C"G). Then C"G DC"+ 'G and we 

have the descending central series 

G = COG b C ' G  D C 2 G  D"' .  

(b) Let C O G  = { e }  and let C,G = n-*(Z(G/C,,-,G)), where Z(G/C,-,G) 
is the center of G/C,-lG noting by induction C , G a  C , + , G a  G and where 

21 5 
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n : G -, G/C,-,G is the corresponding projection map. Thus we have the 

ascending central series 

{e} = C o G ~  C,GQ C Z G a  * . a .  

Theorem 11.2 
equivalent. 

(a) There is a series of normal subgroups of G 

Let G be an abstract group. Then the following are 

G = Go DG, D * * *  DG, = {e}  

such that (G, G,) c G,+, for n = 0, .  . ., s - 1 .  

(b) There exists a positive integer p such that 

G DC'G D . * *  DCPG = {el. 

(c) There exists a positive integer q such that 

{ e } a  C,Ga C,G = G. 

PROOF Assume there is a series as given in (a). Then by induction we 
have G, 3 C"G. Thus C"G = {e).  Conversely if (b) holds, then we automati- 
cally have a series satisfying (a). 

Next we have (a) implies (c), for if we have a series as in (a), then we shall 
show by induction G,-" c C,G so that for n = s we obtain C,G = G. Thus 
{e}  = G, c Co G = {e}  and assume G,-,. c Ci G Then 

(G/Ci G, G,- i-I/Ci G) c G,- i/Ci G c Ci G/Ci G = {2} 

using the induction hypothesis for the second inclusion; that is, 
(G, Gs-i . - l )  c C i G .  Thus if n : G -+ G/CiG is the projection, we see that 
Gs-i-l c n-'(Z(G/C,G)) = C i + , G ,  using the definition of C , + , G .  

Conversely to see (c) implies (a), we first note that 

(G, CiG)/Ci-,G c (G/Ci-,G, CiG/Ci-,G) = {2} 

using CiG = n-'(Z(G/Ci-,G)), where n : G 4 G/C,-,G. Thus (G,CiG) c 

Ci-,G so that for C,G = G = G o ,  C,-lG = GI , . . . , C,-,G = G,,, etc., we 
see that the series in (c) yields the series in (a). 

Definition 11.3 An abstract group G is nilpotent if it satisfies any one of 
the conditions of Theorem I I .2. 

REMARKS ( I )  Note that nilpotency involves a descending series using 
commutators of the terms of the series with the group, whereas solvability 
involves a descending series using commutators of the terms of the series with 
itself. 
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(2) Subgroups, quotient groups, and finite direct products of nilpotent 
groups are nilpotent. The proofs run as expected. For example, if Gi are 
groups with C"Gi = {ei}  for i = 1, . . . , rn and if G = C, x * * x G,,  then 
C"G = {e} ,  where n = max{nl , . . . , n,}. 

Example ( I )  Let V be an m-dimensional vector space over K and let 
G c GL(V) be the set of triangular m x m matrices of the form 

for a # O  in K.  Then G is nilpotent group, for let G1 be the subgroup of 
matrices of the form 

and let G, be the subgroup of matrices of the form 

Then G DG, r>G2 D . * *  bG,,,-, = { I }  and (G, G,,) c G,+, . 

Theorem 11.4 Let G be a Lie group. Then the following are equivalent. 

(a) As an abstract group G is nilpotent. 
(b) There exists a series G = Go D G1 D . . . D G, = {el where each G, is 

a closed normal Lie subgroup of G and (G, G,) c G,,,, . 
(c) If COG = G and C"+'G = (G, C"G), then there exists a positive integer 

p such that G DC'G c-.** t>CPG = {e} .  

PROOF Showing (c) if and only if (b) is similar to Theorem 11.2; (b) 
implies (a) is also clear. Next assume (a). Then there is a series of normal 
subgroups G bC;, D * * -  PG, = {e} with (G, G,) c G,,+l. Consequently we 
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obtain E,  = {e}, using G as Hausdorff, and G b G l  
(G, C,,) c G,,+l which proves (b). 

BG, = {e} with 

Definition 11.5 A Lie group G is a nilpotent Lie group if it is nilpotent as 
an abstract group. 

Exercises (1) Let G be a Lie group. Show that CPG = {e} if and onlv if 

(2) Show that if G is a nilpotent Lie group and H is a closed normal 

(3) Let G be a Lie group and H a nilpotent subgroup. Then show its 

CPG = {e} if and only if CpG = G. 

subgroup of G, then G/H is a nilpotent Lie group. 

closure R is nilpotent. 

2. Nilpotent Lie Algebras 

Let G be a Lie group with Lie algebra g. We shall now define the notion 
of a nilpotent Lie algebra so that if G is connected, then G is a nilpotent Lie 
group if and only if g is a nilpotent Lie algebra. 

Definition 11.6 (a) Let g be a Lie algebra over a field K and let Cog = g 

and C"+'g = [g Cng]. Thus we see that 

C'g = [ gg], . . . , Ckg = (ad g)'(g), . . . 
areidealsofgand we obtain thedescending central seriesg = Cog E- C'g b * * . 

(b) Set Cog = (0) and C,+lg = x-'(Z(g/C,,g)), where by induction 
C n g 4  g and II : g +g/C,,g is the Lie algebra homomorphism and Z(g/C,,g) 

is the center of the Lie algebrag/C,,g. Thus we see that Cog = {0}, Clg = Z(g), 

etc. are ideals of g and we obtain the ascending central series 

(0) =Cogs C l g d  -... 

Theorem 11.7 Let g be a Lie algebra over K. Then the following are 
equivalent. 

(a) There exists a sequence g = go bgl c- - * * bgs = {0} where all the 
g,, are ideals of g such that [ggn] c gn+i. 

(b) There exists a positive integer p such that g =  

(c) There exists a positive integer q such that {0} = 
cog P e g  b*.* bcpg = {O}. 

cog4 c,g4 "'4 c ,g  =g. 
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(d) There exists a positive integer r such that for all X ,  , . . . , X, E g we 
have ad X ,  o ad X ,  o - * * o ad X, = 0. 

PROOF The equivalence of (a)-(c) are similar to Theorem 11.2. To see 
(b) if and only if (d) just use the fact that Ckg is generated by the elements 
(adX, o a d X 2 ~ . * . o a d X k ) Y f o r a n y X ,  ,..., & ,  Y€g;seeDefinition 11.6. 

Definition 11.8 A Lie algebra g is called nilpotent if i t  satisfies any one of 
the conditions of Theorem 11.7. 

REMARKS ( I )  Subalgebras, quotient algebras, and finite direct sums of 

(2) A nilpotent Lie algebra is solvable, for by induction we obtain 

nilpotent Lie algebras are again nilpotent. 

C"g 3 g(n+? 

Exercises (1) What can be said about the following: Let g be a Lie 

algebra with h an ideal of g so that g/h  is nilpotent and h is nilpotent. Then g 
is nilpotent? 

(2) Let g denote the set of m x m matrices with elements in Kof the form 

where a,, = az2 = 

the subalgebra of matrices of the form 
* = amm. Then g is a nilpotent Lie algebra, for let g ,  be 

0 * 

[oo-'*.l 
[I : : J, etc. 

and let g2 be the subalgebra of matrices of the form 

* 

Show that g p g ,  mg2 D * - *  D g m  = (0) and [ggnl ~ g " + ~ .  
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Proposition 11.9 Let g be a Lie algebra over K. Then g is solvable if and 
only if [gg] is nilpotent. 

PROOF Suppose [gg] is nilpotent. Then [gg] is solvable. Also since g/[gg] 
is a commutative Lie algebra, it is solvable. Thus by Corollary 10.8, g is 
solvable. 

Conversely, first let P be the algebraic closure of K and let g be a solvable 
Lie algebra over P contained in gl( V, P), where Vis a finite-dimensional vector 
space over P. Then by the results following Lie’s theorem (Proposition 10.23) 

there is a basis of V so that the matrices of g have triangular form 

and consequently the matrices for elements in [gg] have the form 

0 .  I 
Thus by exercise (2), [gg] is a nilpotent Lie algebra. 

Next if g is an arbitrary solvable Lie algebra over P, then ad(g) is solvable 
and therefore [ad(g), ad(g)] = ad([gg]) is nilpotent. However, since ad : g + 

ad(g) is a Lie algebra homomorphism with ker(ad) = Z(g) we see that 
g = g/Z(g) z ad(g). Therefore $’) = [gg] ad([gg]) is nilpotent. Con- 
sequently, there exists a positive integer p such that 

(0) = CP+lg(a = CP+l (2) 
9 /ZW. 

Thus CPt1g(’) c Z(g) so that CP”g”) = (0); that is, g(2) = [gg] is nilpotent. 
Finally, if g is a Lie algebra over K, we let h = P Bk g be the tensor pro- 

duct of the algebras P and g over K as in Section 9.1. Then h is a Lie algebra 
over P and a straightforward computation shows that if g is solvable, then 
h is solvable. Thus since [gg] c [hh] we use the results of the preceding para- 
graph to conclude [gg] is nilpotent. 

Exercise (3) If g is a nilpotent Lie algebra over R, then show that its 
complexification gc is also nilpotent. 
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Theorem 11.10 (Engel's theorem) Let V be a nonzero finite-dimen- 
sional vector space over the field K and let g be a Lie subalgebra ofgl( V )  which 
consists of nilpotent linear transformations (that is, A" = 0 for some n). Then 
there exists a nonzero vector X E V such that for all A E g, we have A X  = 0. 

PROOF First we shall show that A E g being a nilpotent linear transforma- 
tion implies ad, A is a nilpotent linear transformation acting on g. Thus since 
g1( V )  = End( V )  as sets, we can define the endomorphisms 

and 

and see (ad A ) ( Z )  = AZ - Z A  = (L(A)  - R ( A ) ) ( Z )  in gl (V) .  Also noting that 
L(A)R(A)  = R(A)L(A) we have by the binomial theorem for any integer 

R ( A )  : g1( V )  -+ g1( V )  : 2 + Z A  L(A) : g1( V )  + gl( V )  : Z --f A Z  

k20, 
(ad A)'Z = [L(A) - R(A)lkZ 

k 

i = O  

However, since A Eg is nilpotent, all the factors Ak-'  or A' are 0 for suitably 
large k or i. Thus ad, A is nilpotent. 

Next we shall use induction on m = dim g to prove the result. For m = 1 
we have g = K A  where A is a nonzero nilpotent linear transformation. Thus 
since there exists XE V with A X  = 0, the same result holds for every B = 

bA E g. Now assume as an induction hypothesis that the result holds for Lie 
algebras of dimension less than m and let h be a proper subalgebra of g of 
maximum dimension. Then by the results of the above paragraph, ad, A is 
a nilpotent endomorphism on g for all A E h. Thus since ad A : h + h we see 
ad A induces a nilpotent endomorphism A on the vector space g = g / h .  

Furthermore the set 6 = { A  : A E h} is a subalgebra of g@) which consists of 
nilpotent endomorphisms and dim 6 < m. 

By the induction hypothesis with V =  g we can conclude that there exists 
B # b in g such that for all A E h we have AB = b; that is, there exists B E g 

with B 4 h and [h,  B ]  c h. Thus the subspace h + KB ofg is a subalgebra which 
contains h. However, by the maximal choice of h we have h + KB = g. 

Finally let W = { Z  E V : AZ = 0 for all A E h}. Then by the above induc- 
tion hypothesis W # (0). Furthermore for A E h and B ~g as above we have, 
since [ A ,  B] E h, that for any Z E W, 

A(BZ)  = (AB)Z = [A ,  BIZ + (BA)Z = 0. 

Thus by the definition of W we obtain BW c W .  However, since B ~g is 
nilpotent on V we have B is nilpotent on W. Consequently there exists 
0 # X E  W with B X =  0 and since g = h + K B  we see this X has the desired 
property. 
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Corollary 11.11 Let V be a finitedimensional vector space over K and 

(a) There exists a basis of Vsuch that the matrices of the endomorphisms 

let g c gl (V)  be a Lie algebra of nilpotent endomorphisms of V.  

in g relative to this basis have the form 

(b) g is a nilpotent Lie algebra of endomorphisms. 
(c) The associative algebra g* generated by the endomorphisms of g is 

a nilpotent associative algebra; that is, there exists a positive integer r such 
that for any endomorphisms A ,  , . . . , A, Eg* we have A,A,  - A, = 0. 

PROOF (a) Let X, E V be such that A X ,  = 0 for all A ~ g .  If the sub- 
space V, = KX, # V, then each A ~g induces a nilpotent endomorphism 2 
on the nonzero vector space V =  V/V,. Thus we can find X, = X, + V, # 0 
in Vsuch that AX, = 0 for all A ~ g ;  that is, there exists X, E Vand X, 4 V, 

with 

A X ,  = U,l(A)X, + OX, 
for all A €9. Continuing by induction we obtain a basis XI , . . . , X,,, of Vsuch 
that for all A E g, 

AX, = O  and AX,,= 0 mod (X,, ..., Xn-,) 

where (X, , . . . , X,,-,) denotes the subspace spanned by these vectors. Thus 
the matrix for A has 0's on and below the diagonal. 

Part (b) follows from (a) and exercise (2), while (c) follows from (a) and 
matrix multiplication. 

Corollary 11.12 Let g be an abstract Lie algebra over K. Then g is a 
nilpotent Lie algebra if and only if for all X E g we have ad, X is a nilpotent 
endomorphism on g. 

PROOF If g is nilpotent, then from Theorem 11.7(d) we have ad X is nil- 
potent. Conversely, if each ad Xis nilpotent, then by Corollary 1 1.1 I ,  (ad g)* 
is a nilpotent associative algebra. Thus there exists a positive integer p with 
(0) = (ad g)pg = Cpg; that is, g is nilpotent. 

Theorem 11.13 Let G be a connected real Lie group with Lie algebra g. 
Then G is a nilpotent Lie group if and only if g is a nilpotent Lie algebra. 
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PROOF First assume that G is nilpotent and let G = 

Go c- G1 c- * - [> G,, = {e} be a series of closed normal subgroups of G such 
that (G,  Gk) c G k + l .  Consequently we have the corresponding series g = 

go c-g1 D * * *  c-gn = (0) of ideals of g. Next (G, Gk) c G,+, implies 

[ggk] c g k +  1, for let X E g, Y E  g k .  Then for t near 0 E R we have from 
Theorem 5.16(c) that 

(exp t X ,  exp tY) = exp(t2[xy] + o(t3)) 

is in Gk+l .  However, from the characterization of the Lie algebra of G,+, in 
Theorem 6.9, this implies t2[XY] + o ( P )  E g k + l  which yields [ X Y ]  Egk+l; 

We now sketch the main parts of the proof of the converse and leave the 
details as exercises. First, since g is a nilpotent Lie algebra, we see that ad g is 
a nilpotent Lie algebra of endomorphisms (with index of nilpotency N). 
Thus for any 2 E g, ad 2 is nilpotent. Consequently in the expansion of 

Theorem 5. I8 

exp X .  exp Y = exp F ( X ,  Y) 

for X ,  Y in g near the origin 0 ~ g ,  we have that the Campbell-Hausdorff 

formula 

that [ggkl = g k + l  

F(X,  Y )  = X + Y + +[XU] + * * * 

is of finite length since (ad X ) N  = (ad Y)N = 0. 
Secondly, from the chain of ideals 

g c-91 Dg2 c-"' c-gn = (01, 

where [ggk] c gk+l,  we obtain for the connected subgroup Gk generated by 
exp g k  the chain 

G c-G1 c-G2 [ > * * a  c-G,, = {e}.  

Finally, for X E g, Y E  g k  near enough the origin 0, we have for x = exp X ,  

y = e x p  Y 

xyx-ly-' = exp( [~Y]  + . a * )  = expP(X, Y) 

where P ( X ,  Y) is a finite sum of commutators, using the first part of the proof. 
Now each commutator term in P ( X ,  Y) contains Y E  gk. However, g k  is an 
ideal of g so that [ggk] cgk+1 and therefore P ( X ,  Y ) ~ g k + l .  Thus 
xyx-ly-l ~expg, . ,  c Gk+l  and by induction on the length of products of 
elements G and Gk we obtain (G, Gk) c Gk+l .  

Exercise (4) Show that each commutator term in P ( X ,  Y) contains 
Y €gk.  Also complete the induction. 
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( 5 )  Let g be a finite-dimensional Lie algebra over K.  

(i) If h, and h2 are ideals o fg  which are nilpotent Lie subalgebras, show 
that hl + h2 is a nilpotent ideal of g. 

(ii) Show that a maximal nilpotent ideal n of g exists; n is called the 
nilpotent radical of g. See the work of Bourbaki [1960] and Jacobson [1962] 

for more results of this nature. 

3. Nilpotent Lie Algebras of Endomorphisms 

We shall now generalize the process of finding the Jordan canonical form 
matrix of an endomorphism to the process of decomposiilg a vector space 
into weight spaces relative to a nilpotent Lie algebra of endomorphisms; that 
is, finding simultaneously “Jordan forms” for a nilpotent Lie algebra of 
endomorphisms. Recall from Section 9.2 that a Lie algebra over K is split if 
all the characteristic roots of ad X are in K for all X E g. 

Theorem 11.14 Let V be a finite-dimensional vector space over K ,  and 
let g be a split nilpotent Lie subalgebra of gl( V ) .  

(a) There exists a direct sum decomposition 

V = V4,) + * a * + V(4m), 

where V(&) = {XE V :  for all T E ~ ,  (T- +k(T)I)’X = 0) are g-invariant 
weight spaces for g for k = I ,  . . . , m. 

(b) There exists a basis of V so that the matrices of the endomorphisms 
in g relative to this basis all have the block form 

0 

0 

(c) The functions & : g 3 K are linear; that is, 4 k  Eg*. Furthermore 

4k([gi gll = (‘1. 
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PROOF We break the proof into several parts. First we have the following 
formula for an associative algebra A .  Let s, t E A ,  and let do) = s, s(') = 

ts - st = (ad t)s, and dk)  = (ad t)ks. Then we obtain by induction for k = 1, 
2, ... 

Next we have the following result. 

Lemma 11.15 Let V be a finite-dimensional vector space over K, and let 
g be a split nilpotent Lie subalgebra of gi(V). Let T E g ,  I E K and let 

V(A) = {XE V :  ( T -  AZ)"X= 0 for some n} 

be a weight space for T. Then V ( I )  is a g-invariant subspace of V. 

PROOF We noted in Section 10.3 that V(A) is a subspace. Since g is a 
nilpotent Lie algebra, the Lie algebra h = g + KZ is also nilpotent where Z is 

the identity endomorphism. Therefore, by Corollary 11.12, [ad(T- IZ)IN = 0 
for some fixed N .  Now for S E g  c End(V) let = [ad(T- IZ)]S ,  S(*) = 

[ad(T- I I ) ] * S ,  etc. Then for X E  V ( I )  with ( T -  IZ)"'X = 0, we see by choos- 
ing k = N + m and using (*) that 

( T -  AZ)k(SX) = f S"'(T- I z ) k - i x =  0 
i = o  (.) 1 

noting S(N)= [ad(T- IZ)INS = 0. Thus by definition of V(A) we see 
S X E  V ( 2 ) ;  that is, V ( I )  is g-invariant. 

PROOF OF THEOREM 11.14 (continued) To prove part (a), we use in- 
duction on the dimension rn of V. If m = 1, then every TE g has a characteris- 
tic root so that TX = I (T )X  for V = K X .  This yields the result in this case. 
For m > 1 we let TEg, and by Proposition 10.16 we have the direct sum 
V =  V(A,) + + V(A,) where the V ( I i )  are weight spaces for T. By Lemma 
11.15 the V(Ai) are g-invariant, and consequently g restricts to a nilpotent 
Lie algebra of endomorphisms on each V ( I i ) .  Thus we conclude the proof by 
induction, because we can assume T has at least two distinct characteristic 
roots (why?) so that the dimension of V(A,) is less than the dimension of V. 
Now since V is finite dimensional, we see that there are only finitely many 
distinct weights r$i of g. 

To construct the basis of V which gives the matrix in (b), it suffices to find 
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a basis for each V(4,)  which gives the corresponding block matrix. Thus let 
V(4)  be a typical weight space as in (a). Then there is a nonzero X E  V ( 4 )  
such that TX = +(T)X.  To see this, we use Lie’s theorem (Theorem 10.23) 
replacing algebraic closure by “ split ” as follows. Since g is nilpotent on V(4) ,  
it is solvable on V(4) .  Thus there is a nonzero X E  V ( 4 )  and a characteristic 
function F so that for all T E ~ ,  TX= F(T)X.  Therefore 

[W) - 4 ( T ) I X  = [T- 4 ( T ) I I X ,  

[F(T)- 4(T) ]kX = [ T -  4 ( T ) I ] k X  = 0 

and by induction 

for k large enough, remembering X E  V(4) .  Thus F(T) = 4 ( T ) ;  that is, 4 ( T )  
is the only characteristic root. 

Thus, for Xl = X as above, the one-dimensional subspace W = KX, is 
g-invariant. Set v =  V(+)/W. Then g induces a nilpotent Lie algebra of 

endomorphisms J by ==. From this the characteristic roots of Tare 
&T), and Vis a weight space of dimension less than the dimension of V. By 
induction we can find a basis X2 , . . . , X, of Vso that 

TI2 = 4(T)X2 

m3 = a23(T)X2 + 4mx3 

m, =yl a,,(T)X, + 4(T)X, .  
j=2 

Thus for X, = X, + W and W = KX, , we can find a basis X, , . . . , X, of 
V(4)  so that 

TXl = 4 m X l  

TX2 = a12(T)X1 + 4(T)X2 

TX, = y1 a,,(T)X, + ~ ( T ) X , .  
j =  1 

Thus we have the desired basis for V(4) .  
For part (c), we show a weight 4 is a linear functional as follows. As in 

(b), let 0 # X E  V(4)  be such that for all T E ~ ,  TX = +(T)X. Then for S, T E  g 

we have S + TE g and 

4(S + T ) X  = (S + T ) X  = SX + TX = [&S) + 4(T) ]X  

4([S, T n X  = [S, TIX = (STW - (Ts)X = 4(s)4(T)X - 4(T)4(S)X = 0. 

so that r$(S + T) = &(S) + 4(T).  Similarly $(US) = a&S) for a E K, and also 
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Thus since the elements of [g, g] are of the form [S, TI, this implies 

4([9,91) = 0. 

Exercises (1) State results analogous to those in Theorem 11.14 for 
nilpotent Lie groups. [Recall i f f :  G + R* is an analytic character (Proposi- 
tion 10.17), then Tf(e) : g -P R is an algebra homomorphism.] 

(2) (i) Let D be a nilpotent Lie algebra of derivations of a non- 
associative algebra A over an algebraically closed field. Decompose 

A = A(&,) + - * + A($,) into weight spaces relative to 9. Show A(+,)A(41) = 

(0) if 4, + 4, is not a weight, and A(4,)A(4,)  c A ( 4 i  + 4,) if 4, + 4j is a 

weight. 

(ii) Let g be a Lie algebra over an algebraically closed field and let h 
be a nilpotent subalgebra of g. Then what can be said about a weight space 
decomposition of g relative to ad h? 

(iii) Let g be a Lie algebra over an algebraically closed field, and let D 
be a nonsingular derivation of g. Show that g is a nilpotent Lie algebra. 



CHAPTER 12 

SEMISIMPLE LIE GROUPS 

AND ALGEBRAS 

We have previously defined a Lie group G to be semisimple in case its Lie 
algebra g is semisimple. Consequently in this chapter we discuss generalities 
on semisimple Lie algebras over a field K of characteristic 0 and in the re- 
maining chapters investigate them in more detail. First we consider a non- 
associative algebra A with a certain invariant bilinear form f : A x A -+ K 
and show that if this form is nondegenerate, then A is a direct sum of 
ideals which are simple algebras. We apply this to the case where A is associ- 
ative and the form f ( X ,  Y) = trace L(X)L( Y) and discuss the semisimplicity 
of A. 

With the associative algebra as a model, we prove results due to Cartan 
which lead to the fact that a Lie algebra g over K is semisimple if and only if 
the form f ( X ,  Y) = trace ad X ad Y is nondegenerate. As immediate corol- 
laries we prove that a nonzero ideal of a semisimple Lie algebra is also semi- 
simple and that a derivation of a semisimple Lie algebra is inner. We eventu- 
ally use this to show that for a large class of " semisimple" nonassociative 
algebras every derivation is inner. 

Next we come to the very important result that a Lie algebra g is semi- 
simple if and only if every g-module is completely reducible. Using this we 
show that if a Lie algebra g of endomorphisms acts in a completely reducible 
manner on a vector space V, then g = c @ g', where c is the center of g and 
g' = [g, g] is semisimple or (0). As applications of these results we discuss the 
nilpotent radical of a Lie algebra and the tensor product of completely 
reducible g-modules. 

228 
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1. Invariant Bilinear Forms 

We shall show in this section how certain bilinear forms can be used to 

decompose nonassociative algebras into a direct sum of ideals which are 
simple algebras. In particular, this will yield for Lie and associative algebras 
that they are semisimple; that is, the algebras contain no proper solvable 
ideals. 

Definitions 12.1 (a) Let g be a Lie algebra over the field K of character- 
istic 0 and let p : g + gQV) be a finite-dimensional representation of g where 
V is a finite-dimensional vector space over K. Then the map 

7 : g  x g +  K :  ( X ,  Y ) +  tracep(X) 0 p ( Y )  

is a symmetric bilinear form on g called the trace form for g relative to p.  

In particular, for V = g and p = ad the corresponding trace form is called 
the Killing form and we shall frequently denote this form by Kill(X, Y ) .  

(b) Let f be a bilinear form on the vector space V, let G c GL(V) be a 
Lie group, and let g c g&V) be a Lie algebra. Then f is called G-invariant 
if for all X ,  Y E Vand A E G we have 

f ( A X ,  A Y )  = f ( X ,  Y ) .  

Similarly f is g-invariant if for all X ,  Y E V and D E g we have 

f ( D X ,  Y )  + f ( X ,  D Y )  = 0. 

Note Corollary 12.6 for the relationship between the G-invariance and 
the g-invariance off when g is the Lie algebra of G. 

Proposition 12.2 Let g be a Lie algebra and let p be a finite-dimensional 
representation of g in I/. Then the trace form t(X, Y )  = trace p(X)p(Y)  is 
ad(g)-invariant. 

PROOF First recall for endomorphisms S and T that trace ST = trace TS. 
So let X ,  Y ,  Z ~ g ,  then for D = ad(X)  we have 

Z(DY, z) = t ( [ x Y ] ,  z) 
= trace p( [XY] )p (Z)  

= trace [P(X), P(Y)lP(Z) 

= trace P(X)P( Y)P(Z)  - trace P( Y)P(X>P(Z) 

= trace P(Y)P(Z)P(X)  - trace P(Y)P(X)P(Z) 

= trace p( Y)p( [ Z X ] )  = - t( Y, DZ). 
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Corollary 12.3 (a) The Killing form of g is ad(g)-invariant ; that is, for 
X, Y, Z E g we have 

Kill([XY], 2) = Kill(X, [YZ]). 

(b) The Killing form of g is Der(g)-invariant, where Der(g) is the deri- 
vation algebra of g. 

PROOF To see (b) note that if D is a derivation of g, then ad(DX) = 

Kill(DX, Y) = trace ad(DX) ad(Y) 

[D, ad XI. Thus as in the calculations in Proposition 12.2 we have 

= trace (D - ad X - ad X * D) ad Y 

= trace ad X(ad YD - D ad Y) 

= -trace ad X ad DY = -Kill(X, DY). 

Definition 12.4 Let A be a nonassociative algebra over a field K. 
A symmetric bilinear form f : A x A --* K is called invariant or associative 
if for all X, Y, Z E A we have 

f(XY, Z) = f(X, YZ). 

Proposition 12.5 Let V be a finite-dimensional vector space over R and 
let A E End(V) and let f be a bilinear form on V. Then the following are 
equivalent. 

(a) For all X, Y E V we havef(AX, Y) + f(X, AY) = 0. 
(b) For all X, Y E V and t E R we have f ((exp ?A)X, (exp rA)Y) = 

f (X,  Y). 

PROOF If we assume (b), then we obtain (a) by using the product rule for 
differentiation as in Section 1.2. Conversely, assuming (a), we obtain (b) by 
showing $( t )  = f((exp rA)X,(exp tA)Y) and $(t)  = f(X, Y) are both 
solutions to the differential equation dz/dt = 0 with z(0) = f ( X ,  Y). Clearly 
#(z) is a solution. Next using the product rule we obtain 

$' ( t )  = f ( ( A  exp rA)X,(exp tA)Y) + f((exp tA)X,(A exp tA)Y) = 0, 

where we use (a) replacing X [respectively Y] by (exp tA)X [respectively . 
(exp tA)Y] to obtain the last equality. Thus by uniqueness of solutions 

d(t) = W). 

Corollary 12.6 Let G c GL(V) be a connected Lie group of automor- 
phisms of V over R and let G have Lie algebra g c gl( V) .  Let f be a bilinear 
form on V. Thenfis G-invariant if and only iff is g-invariant. 
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Exercises (1) Let g be a Lie algebra over R and letfbe a bilinear form 
defined on 9. Show f is invariant under the identity component of Aut(g) 
if and only iff is invariant under Der(g). 

(2) The Killing form of a Lie algebra g over K is Aut(g)-invariant. 
[Note forf E Aut(g) thatf 0 ad X 0 f =ad(fX).] 

Definition 12.7 Let W be a subspace of V and let f be a symmetric or 
skew-symmetric bilinear form on L'. Then 

W' = (X E I/: for all Y E W, f(x, Y) = 0) 

is the orthogonal complement of W relative tof. Then f is nondegenerate if 

From results in algebra [Jacobson, 1953, Vol. 11; Lang, 19651 we have the 

v1 = (0). 

following : 

Proposition 12.8 Let f be a nondegenerate symmetric bilinear form on 
V and let W be a subspace of V such that W n W' = (0); that is, W is 
nonisotropic. Then V = W + W' as a subspace direct sum. . 

Lemma 12.9 Let A be a finite-dimensional nonassociative algebra 
over K with a symmetric nondegenerate invariant form f : A x A + K and 
let B be an ideal in A. Then: 

(a) B' (relative tof) is an ideal in A. 
(b) B n B' is an ideal with (B n EL)' = (0). 

PROOF For any X E A, Y E B, and Z E B' we use AB c B to obtain 

f(ZX, Y )  = f(z, XY) E fV', B) = (0) 

so that B'A c B'. Similarly 

f(XZ, Y) = f(Y, XZ) = f(YX, Z) E f(B, B') = (0) 

so that AB' c B', which yields B' is an ideal of A. 
To show (b) we use B n B' is in both B and B' to obtain 

f((B n B')*, A) = f(B n B', (B n B')A). 

However, B n B' c B' and (B n B')A c BA c B so that usingf(B', B) = (0) 
we obtain 

f(B n B', (B n B*)A) = (0). 

Thus (B n B')' c A' = (0) usingfis nondegenerate. 
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Following Jacobson's proof [ 19621 we now prove a structure theorem, 
due to Dieudonne, for algebras with a nondegenerate invariant form. Recall 

that a nonassociative algebra is simple if A' # (0) and A has no proper ideals. 

Theorem 12.10 Let A be a finite-dimensional nonassociative algebra over 
K with a symmetric nondegenerate invariant form .J Furthermore assume A 

has no ideals B with B2 = (0). Then A is a direct sum of ideals which are 
simple subalgebras. 

PROOF Since A is finite dimensional we let B be a nonzero minimal ideal 
of A. Then B n B' is an ideal of A such that ( B  n B1)2 = (O), using Lemma 
12.9. Thus, using the hypothesis, we have B n B1 = (0) so that by Proposition 
12.8 we have A = B 0 B1 (direct sum of ideals of A) with B' an ideal of A and 
furthermore BB' c B n B1 = (0). From this B is a simple algebra for if C is a 
proper ideal of B, then since CB* = B1 C = (0) we see C is an ideal of A. 
This contradicts the minimal choice of B. 

off to B* x B1 defines an invariant 
form on B1 which is also nondegenerate, for iff(B', X )  = 0 with X E B', 
then since A = B 0 B' we have f (A, X) = (0) so that X = 0. Thus B1 satisfies 
the same hypothesis as A and by induction on the dimension we can conclude 
B* = A 2  @ * @ A,, where the Ak are ideals of B1 (and therefore of A) 
which are simple subalgebras. Therefore with A, = B we have the desired 

results A = A ,  0 A 2  0 * 0 A, .  

Next we see that the restriction 

We also have the following uniqueness for the above decomposition. 

Proposition 12.11 Let A be a finite-dimensional nonassociative algebra 

such that 

A = A1 0 * * *  @ A ,  = B1@ a * *  @ B,, 

where the A i  and Bj are ideals of A which are simple subalgebras. Then 
m = n and for each A i  there is a Bj( i )  with A i  = Bj(i). 

PROOF For eachf = 1, . . . , n consider the ideal A ,  n Bj . If A ,  n Bj = (0) 

for each j = 1, . . . , n, then we have 

A ,  Bj c A, n Bj = (0) 

using both A, and Bj as ideals of A. Thus since A = B1 0 * .  . @ B, we obtain 
A I A  = (0) so that A 1 2  = (0) which contradicts the simplicity of A , .  Thus for 
some j = j(1) we have the ideal A, n Bj(,) # (0) so that 

A1 = A1 n BjU) = Bj(1) 



1. INVARIANT BILINEAR FORMS 233 

using 

using 

A ,  = 

the simplicity of the ideals A, and Bj(]). Similarly there existsj(2) with 

Bj(2) so that A, @ A ,  = Bj(]) @ Bj(2). Thus we can conclude the proof 
induction by noting every Bj is equal to some A i ( ] ) .  

Exercise (3) Let g be a finite-dimensional Lie algebra over K with 

g = g, 0 g2 @ * @ gn where the gj are ideals of g which are simple sub- 
algebras. Show g = [gg] and for every ideal p of g there exists a unique ideal q 
of g so that g = p 0 q and p n q = (0). Is a similar result valid for a general 
nonassociative algebra over K? 

Example (1) Let A be a finite-dimensional associative algebra and 
L(X) : A -+ A : Y + XY be the left multiplication by X. Let 

f(X, Y) = trace L(X)L(Y). 

Then using L(XY)Z = (XY)Z = X(YZ) = L(X)L(Y)Z we see 

f(X, Y) = trace L(XY). 

Using A is associative, this showsfis an invariant form on A. 
Next iff is nondegenerate, we shall show there are no ideals B of A with 

B2 = (0); for suppose B is such an ideal and extend a basis of B to a basis of A 

as follows: {XI, . . . , X,, X,+,, . . . , X,} is a basisof A where X,, . . . , X, E B. 
Then for Z E B and X E A, L(Z) and L ( X )  have the following block matrices, 
respectively, 

which uses B as an ideal and ZB = (0). Thus we obtain 

J(Z, XI = trace [: x12] =o, 
x2 2 

and since we are assumingfis nondegenerate we have 2 = 0; that is, B = (0). 
This proves the following result. 

Proposition 12.12 Let A be a finite-dimensional associative algebra 
over K and letf(X, Y) = tr L(X)L(Y) be nondegenerate. Then A = A, @ - . -  
@ A, where each A, is an ideal of A which is a simple subalgebra. 

From Chapter 9 recall that a simple associative algebra is isomorphic to a 

complete matrix algebra over some division ring. We now sketch some rel- 
ationships between the radical of a finite-dimensional associative algebra A 
andf(X, Y) = tr L(X)L( Y). First, the radical N of A is usually characterized 
as the maximal nilpotent ideal of A. However, using associativity we see N is 
also the maximal solvable ideal of A. 
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Lemma 12.13 Let A E End(V), where V is an rn-dimensional vector 
space over a field K of characteristic 0. Then A is nilpotent if and only if 
trace A' = 0 for k = 1,2, . . . , m. 

PROOF From results on the characteristic polynomial det(A - xZ) 
we have that trace A = '&Ai where 1, are the characteristic roots of A. Since 
the characteristic roots of A k  are (AJk  we also have trace Ak = xi (lJk. First, 
if A is nilpotent, then extend A to an endomorphism of V = P 69 V where P 
is the algebraic closure of K. Thus since A is nilpotent on V, it is nilpotent on 
V so all the characteristic roots are 0 and therefore trace A' = 0 for k = I ,  2, 
..., m. 

For the converse we use the fact that 

F(x) = det(x1- A) = x" - pix"-' + - * * + (- l),,,prn 

where 

pn = A,&.  . .Arn 

are the elementary symmetric polynomials in the characteristic roots Ai E P; 
that is, writing F(x) = (x - 1,) * - * (x - A,,,) in P[x]. Next use the fact for 
Sk = Ci(A,)' for k = 1, . . . , rn that we have the following relation proved by 
induction [Jacobson, 1953, Vol. I, p. 1101. 

O = S k - p l S k - ,  + p z s k - 2  + " ' + ( - l ) k - ' p k - l S 1  + ( - l ) k p k .  

Thus using the hypothesis that s k  = trace Aq = 0 for q = I ,  . . . , m we have 
pk = 0 for k = 1, . . . , m so that F(x) = x". Thus A" = 0. 

Proposition 12.14 Let A be a finite-dimensional associative algebra over 
a field K of characteristic 0, let N be the radical of A, and let . f ( X ,  Y )  = 

trace L(X)L( Y ) .  Then 

N = A' = {Z E A : f(Z, X) = 0 for all X E A}. 

PROOF Let Z E N .  Then for any Y E  A we have L(Z)Y E N  and 
[L(Z)lk"Y E N k  = N . . . N ,  k-times. Thus since N is nilpotent, L ( Z )  is nil- 
potent. However, for any X E A we have L(Z)L(X)  = L ( Z X )  is nilpotent 
since Z X  E N. Therefore 

f(Z, X )  = trace L ( Z X )  = 0 

so that N c A'. 
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Conversely, let Z E A' and let T = L(Z)2 = L(Z2). Then 

trace T = f ( Z ,  Z )  = 0. 

Next using associativity we have 

T 2  = L(Z2)L(Z2)  = L(Z3)L(Z)  

and by induction 

T k  = L(ZZk- '  )L(Z) .  

Thus since Z E A' we obtain trace Tk = 0 for k = 1, 2, . . . which implies T 
is nilpotent. Thus L(Z)  is nilpotent. Therefore if m = dim A, then the ideal 
A' is such that each Z E A' satisfies Zm+' = 0 and this implies A' is nilpotent 
using the exercise below. Since the radical N is the maximal nilpotent ideal, 
A' c N. 

Exercise (4) Let C be an ideal of the finite-dimensional associative 
algebra A so that for each Z E C, there exists m with Z" = 0. Then C is 
nilpotent; that is, there exists N so that {0} = CN = C * - C, N-times. 

Corollary 12.15 Let A be a finite-dimensional associative algebra over a 
field K of characteristic 0. If A has no proper nilpotent ideals, then A = A,  

@ - - @ A, where each Ak is an ideal which is a simple subalgebra. 

Exercise ( 5 )  Let A be a finite-dimensional associative algebra over R. 
Show A is semisimple over R if and only if C BRA is semisimple over C. 

(Possibly compare the degeneracy of the trace form on A with that on 
C BRA.)  This result extends to a field K of characteristic 0 and using the 
results in Section 9.5 on complete reducibility show the following: V is a 

completely reducible A-module over Y if and only if PBKV is a completely 
reducible P@,A-module where P is the algebraic closure of K.  

2. Cartan's Criteria 

We now prove results for Lie algebras analogous to those on associative 
algebras involving bilinear forms and semisimplicity. 

Theorem 12.16 (Cartan's criterion for solvability) Let V be a finite- 
dimensional vector space over a field K of characteristic 0 and let g be a Lie 
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subalgebra of gl( V). Then g is solvable if and only if trace(X Y) = 0 for all 

X Eg and Y ~ [ g g ] .  

Recall from Section 10.2 that a Lie algebra is semisimple if it has no 
proper solvable ideals. 

Theorem 12.17 (Cartan’s criterion for semisimplicity) Let g be a 
finite-dimensional Lie algebra over a field of characteristic 0. Then g is semi- 
simple if and only if its Killing form Kill(X, Y) = trace ad X ad Y is non- 
degenerate. 

For the proof of Cartan’s criterion for solvability we use the methods of 
Bourbaki [ 19601, Serre [ 19651, and Tits [ 19651. These differ from the methods 
of Hausner and Schwartz [1968] and Jacobson [1962] since the latter introduce 
the Cartan subalgebra first to obtain Theorem 12.16. However, in both cases 
a careful examination of certain rational-valued linear functionals is necessary. 
We shall need the following facts on linear algebra [Jacobson, 1953, Vol. 11; 

Lang, 19651. 

Definition 12.18 Let Y be a finite-dimensional vector space over a field K 
of characteristic 0. Then A E End(V) is called a semisimple endomorphism if 
the associative algebra K [ A ]  generated by A is a semisimple algebra; note 
l = A0 E K[A]. 

REMARKS (1) We have A E End(V) is semisimple if and only if its 
minimum polynomial p(x)  E K [ x ]  is a product of distinct prime polynomials. 
For suppose A is semisimple and its minimum polynomial p(x)  = pl(.x)k(l)-. 

p,(x)’(‘), where some k( i )  > 1. Then the element Z = p , ( A )  * . .p , (A)  is nilpotent 
since Zq = pl(A)4..*p,(A)q = 0 for large enough q. Since K[A] consists of 
polynomials in A and is commutative, we see that K [ A ]  * Z is a nilpotent ideal 
in K[A]. This contradicts the semisimplicity of K[A]. Conversely, suppose the 
pk(x)  are distinct and each k( i )  = 1. Assume K [ A ]  is not semisimple so that 
some Z = f(A) is nilpotent. Then 0 = Zk = f (A)k  implies that the polynomial 
f(# is divisible by p(x). Thus since all the k( i )  = l,f’(x) is divisible by p(x) ;  

that is, f ( x )  = g(x)p(x) so that Z = f ( A )  = g(A)p(A) = 0. 

(2) Using the result that an associative algebra B with B2 #{O} is 
semisimple if and only if every B-module is completely reducible (Section 9.5) 
we see that the endomorphism A is semisimple if and only if for any K[A]- 
invariant subspace W of V,  there exists a K[A]-invariant subspace W’ so that 
V = W + W‘ with W n W’ = (0). 

(3) If K is algebraically closed, we can compute characteristic roots and 
vectors to obtain A as a semisimple endomorphism if there exists a basis 
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XI ,  . . . , X ,  of V so that A X ,  = A, X i  for some l i  E K ;  that is, A is diagonal- 

izable. [This uses remark ( I ) . ]  

Using Jordan canonical forms we have the following result: 

Proposition 12.19 Let V be a finite-dimensional vector space over the 
algebraically closed field K of characteristic 0 and let A E End(V). Then 
there exists a semisimple S E End( V )  and a nilpotent A’ E End(V) such that 

A = S + N  and S N = N S .  

Furthermore, S and N are uniquely determined by these conditions. There 
exist polynomials s(x), n(x)  E K [ x ]  without constant terms such that S = s(A) 

and N = n(A) .  Then S (respectively N) is called the semisimple (respectively 
nilpotent) component of A.  

PROOF Let F(x)  = det(x1- A) = (x - * .(x - lJkP be the factor- 
ization of the characteristic polynomial where the A,, . . . ,A, are distinct. Then 
following the proof of Jacobson [1953, Vol. 11, p. 1301 the 

p , ( x )  = F(x) / (x  - /lip 

for i = 1, . . . , r are relative prime. Thus there exist &(x) E K [ x ]  with 

Substituting A into this expression we obtain 

which gives the direct sum decomposition 

v =  v, + * . .  + v,. 
where the V j  are the A-invariant subspaces 

vj = 4Jj(A)Pj(A) v 
= { X  E v : ( A  - 2, Iy’X = O}. 

Thus define S by S X j  = A j X j  for X j  E V,  and set N = A - S .  Then S is 
semisimple and N is nilpotent and furthermore, by construction, [A, S ]  = 0 

so that N S  = S N .  

A straightforward computation shows that for the polynomial s(x) = 

C l ,  4i(x)pi(x) we have S = s(A) and for n(x)  = x - s(x) we have N = n(A). 
We can furthermore assume s(0) = 0 as follows. If A is invertible, then the 
characteristic polynomial F(x)  has a constant term so that I is a polynomial in 
A without constant term. Thus if I appears in the expression S = s(A),  make 
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the above substitution to obtain another polynomial expression for S in 
terms of A without constant terms. In this case we also see n(0) = 0. I f  A is not 
invertible, then ker A # {O} is invariant under N and N )  ker(A) is also nil- 
potent. Thus there is a nonzero X E ker(A) such that NX = 0. Thus since 
N = n(A) and AX = 0, we see that the constant term of n(x) is 0. Thus 
n(0) = 0 so that s(0) = 0 from the construction n(x) = x - s(x). 

Exercise (1) The representation A = S + N with SN = NS is unique; 
that is, if A = S + N = S’ + N‘,  where S,  S‘ are semisimple and N, N‘ 
nilpotent and [ S ,  N] = [S’ ,  N’] = 0, then S = S’ and N = N’. 

Example (1) Let A Egl(V) ,  where V is finite-dimensional over an 
algebraically closed field K, and let A = S + N be the decomposition into 
semisimple and nilpotent components. Then ad S and ad N are the semi- 
simple and nilpotent components of ad A. Since [S, N] = 0 we see 0 = 

ad[S, N] = [ad S, ad N] so that we must show ad N is nilpotent and ad S 
is semisimple. 

First for any X E gl (V)  we see 

(ad N)X = N X  - XN = (L(N)  - R(N))X ,  

where L(N)  and R ( N )  are left and right multiplications in End(V) and 
[L(N) ,  R(N)] = 0 using the associative law. Thus using the binomial expansion 
we obtain as before 

(ad N)kX = (L(N)  - R(N))kX 

k 

i = O  

= 1 ( - l ) i C k , i N k - i X N i .  

Thus if Nq = 0, ad N is nilpotent. Next since S is semisimple, there exists a 
basis X I , .  . . , X ,  of V so that S X ,  = A i X i  with li E K.  For the basis 
{ E i j  : i , j  = 1, . . . , m) of g l (V)  defined by E , X ,  = 6jkXi  we obtain the usual 
matrices and consequently the matrix computations give 

(ad S)Ei j  = (1, - Aj)Eij. 

Thus ad S is diagonalizable on gl( V); that is, ad S is semisimple. 

Lemma 12.20 Let V be a finite-dimensional vector space over an alge- 
braically closed field K of characteristic 0. Let T and W be subspaces of gl( V )  

with W 3 T and let P = {A ~ g l ( V )  : [ A ,  W ]  c T}. Let A E P be such that 

trace A 2  = 0 

for all 2 E P. Then A is nilpotent. 
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PROOF Let A = S + N be the decomposition of A into its semisimple 
and nilpotent components and let XI,  . . . , X, be a basis of V so that SX, = 

l i  X i  with Ai E K and N is given by a nilpotent matrix. Now let L be the vector 
space spanned by the %i’s over the rational field Q. Thus L c K and to show A 
is nilpotent we shall show L = (0) by proving f(L) = (0)  for every Q-linear 
functional f EL*. 

Thus let XI, . . . , X, be the above basis of V and let U E End(V) be the 
semisimple endomorphism defined by 

uxk = f ( A k ) X k  7 

where f is any given linear functional in  L*. Let { E i j  : i, .j = 1,  . . . , m} be the 
basis of g1(V) defined by the basis XI ,  . . . , X, as in the preceding example. 
Then from this example we can deduce 

(ad S)kEi j  = (A i  - l j ) k E i j  for k = 0, I ,  2 , ,  

and 

(ad u)Eij = ( f ( l i )  - f ( A j ) ) E i j  = f ( A i  - l j )Ei j  9 

using U as semisimple and f as linear. 
Next by the interpolation formula we can find a polynomial p(x )  E K [ x ]  

which goes through the finitely many points 0, f ( A i  - Aj). Thus p(x )  has 0 
constant term and p(Ai - l j )  = f ( l i  - Lj ) .  Using this and the above formula 
for (ad S)kEi j  = ( A i  - Aj)kEi j  we see 

(ad U)Ei j  = f ( A i  - l j ) E i j  

= p(Ai - l j ) E i j  = p(ad S ) E ,  

so that ad U = p(ad S). From the example, ad S = s(ad A), where s(x) is a 

polynomial without constant term, and since (ad A) W c T we see (ad U) W = 

[(p o s)(ad A)] W c T. Thus by the definition of P, we have U E P. 

Since U E P we have by hypothesis and the construction of U, S, and N 
relative to the same basis X,, . . . , X, of V, that 

o = trace A u = trace ( S  + N ) U  = trace su = C A i f ( l i ) .  

Therefore since f ( A i )  E Q and f is a Q-linear functional, we apply f to the 
above equation to obtain 

which implies f ( A i )  = 0. Thus f(L) = (0)  and since f is arbitrary in L* we 
have L. = {0}, so that A is nilpotent. 

0 = C f ( A J 2  

We now use this to prove Cartan’s criterion for solvability: If g is a sub- 
algebra ofgl( V )  where Vis finite-dimensional over a field K of characteristic 0, 
then g is solvable if and only if trace X Y = 0 for all X E g and Y E [g, g]. 
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First assume the field K is algebraically closed and suppose trace X Y  = 0 
for all X E g  and Y E [g ,  g ] .  Then we shall apply Lemma 12.20 with W = g 

and T = [g ,  g ]  to obtain 

[g ,  sl = p = {Z E g 4 v  : [Z, sl = [a sl>. 
Thus for any X ,  Y E g and Z E P we have 

trace [ X ,  Y ] Z  = trace X [ Y ,  Z] = 0, 

where we use trace X A  = 0 for all X E g and A E [g,  g ]  for the second equality. 
Thus by the linearity of “trace” on g l (V)  we have trace AZ = 0 for all 
A E [g ,  g ]  and Z E P. Therefore by Lemma 12.20, every A E [g ,  g ]  is a nilpotent 
endomorphism. Thus by Corollary 11.12 to Engel’s theorem [g, g ]  is a 
nilpotent Lie algebra. However since g / [g ,  g ]  is Abelian and [g ,  g ]  solvable, 
we have by Corollary 10.8 that g is solvable. 

Conversely, if g is solvable, then by Lie’s theorem (Proposition 10.23) 

we can find a basis which simultaneously puts the matrices for [g ,  g ]  in 
triangular form with 0’s on the diagonal. Thus for X E g and Y E [g ,  g ] ,  

which proves the result if K is algebraically closed. 
Next if the field K is not algebraically closed, let P be its algebraic closure 

and let g = P O K g .  If g is solvable, then from Section 10.2, is solvable. 
Thus trace X P = 0 for all X E g and 5 E [g, 81 implies trace X Y = 0 for all 
X E g  and Y E  [g ,  g] .  

Conversely, if trace X Y =  0 for all X E g and Y E [g, g ] ,  then for any 

X = c w i X i  Egand B = z u p , [ X p ,  X ,]  E [g,#],where wi ,upq  E P  and X , ,  . . ., 
X, is a basis of g, we obtain 

trace X P = C wi upq trace XJX,, x,] = 0. 

Thus # is solvable and since g c we have that g is solvable. 

Exercise (2) Using the fact that for A ,  B E End(V), 

2 trace AB = trace(AB + BA) 

= trace@ + B)2 - trace A’ - trace B2 

show the following result: 

Corollary 12.21 I f  g is a Lie algebra over a field of characteristic 0, then 
g is solvable if and only if trace(ad X ) 2  = 0 for all X E [gg]. 
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We can now prove Cartan's criterion for semisimplicity: If g is a Lie 
algebra over a field of characteristic 0, then g is semisimple if and only if the 
Killing form of g is nondegenerate. 

First assume g is semisimple and let h = g' = (Z E g : Kill(X, 2) = 0 for 
all XEg}. Then h is an ideal of g. Furthermore we have for each Z E h 
and Y E [gg] that 

trace ad 2 ad Y = Kill@, Y) = 0. 

Therefore by Cartan's criterion for solvability we see ad h is a solvable sub- 

algebra of gl(g). However, ad h is isomorphic to h/Z  where 2 = ker ad is 
commutative. Thus since h/Z is solvable (since ad h is solvable) and Z is 
solvable, h is a solvable ideal. Therefore h c rad g = (0) which shows the 
Killing form is nondegenerate. 

Conversely, assume that the Killing form is nondegenerate. Then g has no 
proper ideals h with [hh] = (0); for assume h is such an ideal and extend a basis 
of h to a basis of g. Thus as in example ( I )  in Section 12.1 for an associative 

algebra, we have for Z E h and X E g that 

so that Kill(2, X) = 0;  that is, h = (0). However, if r = rad g # 0, then in the 
series r p r ( 2 )  I>-*. c-r("-l' b y ( " )  = (0) we see r ( " - l )  is a nonzero ideal of g 
which satisfies [ r ( n - l ) r ( n - ' ) ]  = 0 (This uses that if h and k are ideals of a Lie 
algebra g, then the product [hk] is an ideal of 9). Thus this contradiction 
shows r = (0). 

Corollary 12.22 Let g be a semisimple Lie algebra over a field K of 
characteristic 0 and let p be a faithful (injective) representation of g in a 
finite-dimensional vector space V over K. Then the bilinear form 7(X, Y) = 

trace p(X)p( Y) is nondegenerate. 

PROOF Analogous to the preceding proof one sees that h = (2 ~g : 
~ ( 2 ,  Y) = 0 for all Y E g }  is an ideal of g such that p(h)  is solvable in gl(V). 
However, since ker p = (0) we have h is solvable. Thus h = (0) so that 7 is 
nondegenerate. 

Corollary 12.23 Let g be a finite-dimensional Lie algebra over a field K 

(a) g is semisimple if and only if g = g 1  @ * - * @ gn where each gk is an 

(b) g is semisimple if and only if g has no ideals h with [hh] = (0). 

of characteristic 0. Then : 

ideal of g which is a simple subalgebra; 
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PROOF This follows from the fact that g is semisimple if and only if 
Kill(X, Y) is nondegenerate, and Theorem 12.10 which then expresses g as a 
direct sum of simple subalgebras which are ideals. 

REMARKS (4) We shall now outline the proof that if g is a simple Lie 
algebra of endomorphisms over an algebraically closed field K of characteristic 
0, then for all X, Y ~g 

Kill(X, Y) = I trace XY 

for some I E K. 

Exercises (3) Letfbe any nondegenerate invariant form on the simple 
Lie algebra g. Show that there exists S E GL(g) so that for all X, Y E g 

f(X, Y) = Kill(SX, Y) and KilI(SX, Y) = Kill(X, SY). 

(4) Using the invariance and nondegeneracy offand Kill, show [ad X, S] 
= 0 for all X E g. Since g is simple, conclude by Schur's lemma [Proposition 
9.14(a)] that S = M. 

(5 )  (i) Let f(X, Y) = trace X Y and show f is an invariant form. 
(ii) Use the fact that g is simple to show that g1 (relative to f) is g or 

(iii) Use Lemma 12.20 and (ii) to show that f is nondegenerate and 
conclude the desired formula. 

(iv) What can be said about an invariant form of a semisimple Lie 
algebra? 

(6) Let g be the Lie algebra of n x n matrices of trace 0 over the field K 
as above. 

(i) Show g is simple as follows. With the usual matrix basis E ,  note that 
the E i j  for i # j and Hk = E,, - En, for k 5 n - 1 form a basis of g. Relative 
to this basis of g find the multiplication table. Assume h is a nonzero proper 
ideal and let Z = Cui Hi + Cz,, E,, E h. Carefully grind out products 
[ H i ,  [Zf, , Z]] and compare with Z to eventually show h = g. A better method 
will be given later. 

{Oh 

(ii) Show Kill(X, Y) = 2n trace XY for g as in (i). 

(7) Let g be a semisimple Lie algebra and let h be a semisimple sub- 
algebra. 

(i) Show that p : h ad(g) : X + ad X is a faithful representation of h 
in g where ad is the adjoint in g. Thus g is an h-module. 

(ii) Show that g has the direct sum decomposition g = m + h where 
m = h l ,  the orthogonal complement of h relative to the Killing form; note 
Corollary 12.22. 
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(iii) For the decomposition in (ii) define an anticommutative multi- 
plication XY on m by XY = [XY], which is the projection of [XY] in g 

into m. Denote this algebra by (m, XY). For X, Y E  m letf(X, Y) = Kill(X, Y) 
and showfis a nondegenerate invariant form on (m, XU). Sagle and Winter 
[1967] show that if g is simple, h is semisimple, and the multiplication 
mm # {0}, then (m, XY) is a simple algebra. 

3. Ideals and Derivations of Semisimple 
Lie Algebras 

If h is an ideal of semisimple Lie algebra g over a field of characteristic 0, 

then we shall show that h itself is a semisimple Lie algebra. In particular, 
this will yield the proposition that all the derivations of g map h into h and 
also that Der(g) = ad(g); that is, the derivations of g are inner. 

Theorem 12.24 Let h be an ideal of a Lie algebra g over a field of char- 
acteristic 0 and let Kill (respectively C) denote the Killing form of g (respect- 
ively h). 

(a) If X, Y E h, then C(X, Y) = Kill(X, Y). 
(b) If g is semisimple and A E h is such that C(A,  Y) = 0 for all Y E h, 

then A = 0. 

(c) If g is semisimple, then h is a semisimple Lie algebra. 

PROOF (a) Since h is an ideal of g we can decompose the vector space 
g = h + b (subspace direct sum) where [hb] c h and [hh] c h. Thus choosing 
a basis from this decomposition we obtain for any X E h, 

where X,, is a matrix for ad, X. Thus for X, Y E h we have 

Kill(X, Y) = trace Ell ,,,I [o"l 0"2] 

= trace X, Y, 

= trace ad, x ad, Y = c ( x ,  Y). 

(b) Let A E h be such that C(A,  Y) = 0 for all Y E  h and let W ~ g .  
Then we use [XW] E h for any X E h to obtain 

Kill([AX], W) = Kill(A, [XW]) = C(A, [XV) = 0 
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using part (a) for the second equality. However since we are assuming g to 
be semisimple, we have by Cartan's criterion for semisimplicity (Theorem 
12.17) that [AX] = 0 for all X E h. Thus using g = h + b we see 

and since 

Wll w12 

ad, =[o w2?] 

we obtain 

Kill(A, W) = traceE ;l2] [gw" w22 w12] =O. 

Thus A = 0 using the nondegeneracy of the Killing form of g. 

(c) Use part (b) and Cartan's criterion for semisimplicity. 

Exercise (1 )  Let g be a semisimple Lie algebra over a field of character- 
istic 0 and let g = g(1) @ * * * @ g(n) be its decomposition into simple ideals. 
If h is an ideal of g, show h = g(il) @ * * * @ g(ik) for suitable i,, . . . , ik . In 
particular, this shows [hh] = h. 

Corollary 12.25 Let h be an ideal of a semisimple Lie algebra g over a 
field of characteristic 0. 

(a) If g / h  # {O}, then g/h is a semisimple Lie algebra. 
(b) If D is a derivation of g, then Dh c h. 

PROOF Since g/h is not (6) we use g = g(1) @ - * * @ g(n) and h = g(il) 

@ * . @ g(ik) to see that g/h is isomorphic to the semisimple Lie algebra g(jl) 

@ @ g(js) where j ,  4 {ill . . . , ik}. To prove (b) we use h = [hh] and 
D [ X Y ]  = [ D X Y ]  + [ X D Y ]  to obtain 

Dh = D[hh] c [Dhh] + [hDh] c h 

since h is an ideal of g. 

Theorem 12.26 If g is a semisimple Lie algebra over a field K of char- 
acteristic 0, then Der(g) = ad(g). 

PROOF We follow the proof given by Jacobson [1962] where just the 
nondegeneracy of the Killing form is used. Thus let D E Der(g) and let 

: g + K : X + trace(ad X 0 0). 
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Then 4 is a linear functional on g and since the Killing form of g is non- 
degenerate, there exists A E g such that for all X E g 

4(X) = Kill(X, A). 

(See the works of Lang [1965] and Jacobson [1953, Vol. 111 for the rep- 
resentation of linear functionals in terms of a nondegenerate bilinear form.) 

Let E = D - ad A. Then E is a derivation of g and for any X Eg we have 

trace(ad X 0 E) = trace(ad X 0 D) - trace ad X 0 ad A 

= $(X) - Kill(X, A) = 0. 

Using this we have for any X, Y E Q  that 

Kill(EX, Y) = trace ad(EX) ad Y 

= trace[& ad XI ad Y 

= trace@ ad X ad Y - ad X E ad Y) 

= trace@ ad X ad Y - E ad Y ad X) 

= trace E[ad X, ad Y] 

= trace E ad[XY] = 0 

where the second equality uses ad(EX) = [E, ad XI for any derivation E 
and the fourth equality uses trace P Q  = trace QP for endomorphisms P 
and Q. Thus by the nondegeneracy of the Killing form we have EX = 0 so 
that D = ad A is inner. 

Exercise (2) According to Definition 7.7 what can be said about the 
automorphisms of a semisimple Lie algebra over R ?  

4. Complete Reducibility and Semisimplicity 

In this section we shall discuss results for Lie algebras analogous to those 
for associative algebras concerning semisimplicity and complete reducibility. 
In particular, we shall prove Weyl’s theorem which states that a Lie algebra 
g is semisimple if and only if every g-module is completely reducible. Then 
we apply this to find the structure of a Lie algebra of endomorphisms which 
acts in a completely reducible manner on a vector space. As before, let K 

denote a field of characteristic 0. 
Recall the following from Section 9.5. Let V be a finite-dimensional g- 

module and let p be the corresponding representation. Then V or p is called 
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irreducible or simple if the g-module V has no proper g-submodules. Also 
V or p is called completely reducible or semisimple if the g-module V is a 
direct sum of irreducible g-submodules. 

As for associative algebras, V is a completely reducible g-module if and 
only if for every g-submodule W of V, there exists a g-submodule W' so 

that V = W + W' (subspace direct sum). For example, if g is a semisimple 
Lie algebra, then g is a completely reducible g-module. We now follow 
Bourbaki's proof [1960] of Weyl's theorem. 

Lemma 12.27 Let g be a Lie algebra over the field K, let h be an ideal of g, 
and let p be a representation of g in the finite-dimensional vector space V. 

Assume that the bilinear form 

T(X, Y) = trace p ( X ) p ( Y )  for X, Y E g 

is nondegenerate when restricted to h x h. Let { X I ,  . . . , X,} be a basis of h 
and let { X I ' ,  . . . , X,'} c h be a dual basis; that is, T ( X , ,  X,') = d i j .  

(a) The element 
I 

is an endomorphism of V which commutes with every endomorphism p(A) 
for A EQ. We call C the Casimir operator (of h) corresponding to p. 

(b) If V is an irreducible g-module, then the Casimir operator of g is an 
automorphism of V. 

(c) trace (C) = n (= dim h), where C is the Casimir operator of h. 

PROOF A straightforward calculation shows that the bilinear form z is 
invariant. Thus for A, X ,  Y ~g we have t([AX], Y) + z ( X ,  [AY]) = 0. 
Now for A E g and X i ,  Xi E h as above set 

[ A X , ]  = q l X j  and [AX,'] = 1 uikXP' 
i P 

using [gh] c h. Then we obtain 

Uj[  = z ( [AX, ] ,  Xi') = - z ( x [ ,  [AX,']) = -a;,. 

Now for any A EQ we have 

M A ) ,  CI = M A ) ,  C AxJp(Xi ' ) I  

= c ([P(A), P(X,)lP(X,') + P(X,"(A), Pm," 

= c (P([AX,l)P(X") + P(X,)P([AXi'I)) 

= C aji p(Xj)AXi ' )  + a;, P(XJP(X,')  = 0 

1 

1 

i i  
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using a,, = -a:,. Thus the endomorphism C commutes with every endo- 
morphism p(A) for all A EQ. Next we have 

trace(C) = C trace p(X,)p(X,’) 
1 

= 1 ? ( X i ,  X i ‘ )  = n 
1 

using ? ( X i ,  Xi’) = a,, and n = dim h. Thus C # 0. In particular, for the 
Casimir operator C of g we have from [C, p(g)] = (0) that ker C is p(g)- 
invariant. Thus by Schur’s lemma [Proposition 9.14(a)], C is an automorphism 
if V is g-irreducible. 

Exercises (1) Show the Casimir operator is independent of thechoiceof 
basis. 

(2) The following result on linear algebra is used in the next proof. 
Let W be a subspace of the vector space V and let T E End(V) be such that 
T : W + W and TI W = AI, where I is the identity endomorphism on W. 
Then T I W is called a homothetic endomorphism (relative to W). 

(i) Show that M = {T E End(V) : T(V)  c Wand T I W is homothetic} 
is a subspace which contains the subspace N = {T E M : T (  W) = (0)). 

(ii) Decompose V = W + P into a subspace direct sum and let T E M 
be as in (i). Relative to a basis chosen from this decomposition show T has a 
matrix of the form 

[f F] 
for A E K. Thus show that T = AE + T’, where E2 = E and T‘ E N is as in (i). 

(iii) Use (ii) to show N is of codimension one in M; that is, dim M/N = 1. 
Also show we can choose E V = Wand P = ker E in (ii). Thus V = W + ker E 
is a direct sum. 

Lemma 12.28 Let g be a Lie algebra over the field K. Then the following 
are equivalent. 

(a) Every representation of g in a finite-dimensional vector space is 
completely reducible. 

(b) If p is a representation of g in a finite-dimensional vector space M 
and if N is a subspace of M of codimension 1 so that for every X E g we have 
p(X)M c N, then there exibts a direct sum complement of N in M which is 
annihilated by p(g). 

PROOF First assume (a). Then for the subspace N of (b) we have 
p(g)N c N so that N is actually a g-submodule. By the complete reducibility 
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there exists a submodule N with M = N + N (direct sum). Thus p(g)N' c N' 
but also by hypothesis p(g)N' c N. Consequently p(g)N' c N n N' = (0) 
which proves (b). 

Next assume (b) and let o be a representation of g in the finite-dimensional 
vector space V ;  that is, o(g) is a Lie subalgebra of gl(V), Let W be o(g)- 
submodule of I/. Then we shall show W has a o(g)-invariant direct complement 
in V.  Let v denote the adjoint representation of gl(V) and define p by 

p=voo:g+ad(gl(V));  

that is, for X ~g we have p ( X )  = ad(o(X)) so that for T ~ g l ( V )  we have 
p(X)T = [o(X), TI. Thus p is a representation of g in the space gl(V). Let 

M = (T ~ g l ( V )  : T ( V )  c Wand TI Wis homothetic}, 

Then from the preceding exercise we have N is a subspace of M such that 
dim M/N = 1 and also p(g)M c N as follows. Let X E g, T E M, and A E W. 
Then using W is a(g)-invariant 

N = {T E M : T ( W )  = 0). 

(P(X)TP = b(X), TIA 
= o(X)(TA) - To(X)A 

= o(X)(LA) - L(a(X)A) = 0 
so that p(X)T E N. 

Now from our asumption (b) we can find a direct sum complement N' 
of N in M which is annihilated by p(g). Since M = N + N' and dim N = 

dim M/N = 1 we can assume N = KE where E is the endomorphism of the 
preceding exercise. Thus since p(g)N' = (0) we have for all X ~g that 

0 = p(X)E = [o(X), E] 

and therefore ker E is a(g)-invariant. Thus from exercise (2iii) V = W + ker E 
is a o(g)-invariant direct sum decomposition so that o is completely reducible. 

Lemma 12.29 Let g be a semisimple Lie algebra, let p be a representation 
of g in a finite-dimensional vector space M, and let N be a subspace of co- 
dimension 1 so that for every X E g we have p(X)M c N. Then there exists a 
direct sum complement of N which is annihilated by p(g). 

PROOF For X E g let o(X) = p ( X )  I N. Then we have the following two 

Irreducible case Assume cr is simple; that is, N is irreducible. If a = 0, 

cases. 

then for X, Y E g we have using the hypothesis 

p(X)p(Y)M c d X ) N  = a(X)N = (0) 
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so that p(X)p(Y)  = 0. Thhs since g is semisimple, g = [gg] and therefore 

p(g) = p([gg]) = [p(g), p(g)] = (0). Consequently cr = 0 implies p = 0. 
If a # 0, let k = ker cr. Then k is an ideal of g and since g is semisimple, 

there exists an ideal h of g so that we have the direct sum of ideals 

g = h @ k .  

Now h # (0) otherwise g = k so that a = 0 and also p I h is injective. To see the 
latter let X E h and suppose p ( X )  = 0. Then a(X) = p(X)I N = 0. Thus 
X E ker a = k and therefore X E h n k = (0). Using this we have from 
Corollary 12.22 that the bilinear form 

t ( X ,  Y )  = trace p(X)p(Y)  

for X ,  Y E h is nondegenerate and from Lemma 12.27 we obtain the Casimir 
operator C E End(M). From the formula 

for X , ,  X i ‘  E h we have, using the nypothesis p(g)M c N ,  that 

C ( M )  c N .  

Therefore by extending a basis of N to a basis of M we obtain 

trace(C1 N) = trace C = dim h # 0 

so that C [  N # 0. From this and our assumption that N is irreducible we 
obtain C I N as an automorphism. Thus if we let P = ker C, we obtain 

P n N = {0}, 

but from C ( M )  c N we obtain N = Image(C) and the direct sum 

M = N + P .  

However, from Lemma 12.27 we have [p(A) ,  C] = 0 for all A E g and therefore 
P is p(g)-invariant. This with the hypothesis gives p(g)P c P n N = (0); that 
is, P is a direct complement of N annihilated by p(g). 

General case We do this case by induction on the dimension of M. 

In the a(g)-module N let S be a nonzero minimal a(g)-submodule; that is, 
S c N and S is an irreducible o(g)-submodule of M. If S = N, then we are in 
the preceding case; otherwise let 

M ’ =  MIS and N = N / S .  

Now for every X E g the mapping p ( X )  induces an endomorphism p’ (X)  : 
M’ --+ M’ and the mapping 

p’ : g -+ gl(M’) : X + p ’ ( X )  
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is a representation of g in the space M'. By the hypothesis we have 

and by the isomorphism (M/S) / (N/S)  r M / N  we have N' is of codimension 
1 in M'. Thus by induction we can assume there exists a subspace P' c M' of 
dimension 1 such that 

M' = N + P' (direct sum) and p'(g)P' = (0). 

Now let P c M be the inverse image of P' relative to the homomorphism 
M + M'. Then since P 3 S and 

p'(g)(M') c N' 

1 = dim P' = dim P / S  and p(g)P c S 

we can now apply the first part of this proof to the irreducible module S and 
its ambient module P. Thus there exists a subspace Q c P so that we have the 
direct sum 

P = Q + S and p(g)Q = {O}. 

From the direct sum M' = N' + P' we have (0') = N' n P' so that 

S = N n P c N .  

Also from M' = N + P we have for any A E M that there exist B E N ,  
C E P, and D E S so that 

A = B + C + D = C + B' 

for some B' E N (using S c N ) .  However, from the decomposition P = Q + S 
we can write C = F +  Hfor FE Q and H E S  c N .  Thus we obtain A = F +  
B" where F E Q and B" E N ;  that is 

M = Q + N .  

This sum is direct: if Z E Q n N c  P n  N = S,  then Z E Q and 2 ES; that 
is, Z E Q n S = (0) using the direct decomposition P = Q + S. Thus we have 
the desired direct sum 

M = Q + N with p(g)Q = (0). 

Theorem 1230 (Weyl's theorem) Let g be a finite-dimensional Lie 
algebra over the field K of characteristic 0. Then g is semisimple if and only if 
every g-module is completely reducible. 

PROOF Combining Lemmas 12.28 and 12.29 we find that semisimplicity 
implies complete reducibility of modules. For the converse we note the hypo- 
thesis shows that the adjoint representation is completely reducible. Thus every 
ideal h of g has a complementary ideal k such that g = h @ k and the map 

4 : g + g / k  r h 
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is a representation of g. Now if g is not semisimple, then from Section 10.2, g 

has an Abelian ideal h. Writing the direct sum h = K X ,  + . * -  + KX,, for a 
basis XI, . . . , X,, of h we have that the map $ 

$ : h + K X , g K  

is a representation of h (using [hh] = (0)). Thus 

$ 0 4 : g + K  

is a representation of g. However, the one-dimensional algebra K has a 
representat ion 

[: :] p : K+g1(2, K )  : x +  

which is not completely reducible. Thus p 0 $ 0 4 is not a completely reducible 
representation of g. This contradiction shows that no Abelian ideals exist in 
g; that is, g is semisimple. 

Exercises (3) Show the above representation p is not completely 
reducible . 

(4) Let h be a semisimple Lie subalgebra of the Lie algebra g. Show there 
exists a subspace m of g such that g = m + h (direct sum) and [hm] c m; 
that is, (g, h) is a reductive pair. Note Section 12.2, exercise (7). 

REMARKS (1) If g is a semisimple Lie algebra of endomorphisms acting 
on the finite-dimensional vector space V over a field K ,  then V is completely 
reducible relative to g. Consequently the associative algebra g* generated by 
the endomorphism in g is a semisimple associative algebra (Propositioa 9.15). 
Thus results on representations of semisimple associative algebras can be 
applied to representations of semisimple Lie algebras. For example, let g be a 
Lie subalgebra of gl(V).  Then from complete reducibility we see g is com- 
pletely reducible in V if and only if g* is completely reducible in V. However, 
using exercise (5) of Section 12.1, g* is completely reducible in V if and only if 
P @K g* is completely reducible in P BK V. Combining these we obtain the 
following which allows one to assume algebraic closure of the field when 
discussing complete reducibility. 

Proposition 12.31 Let g be a Lie subalgebra of gl( V) where V is a vector 
space over K and let P be the algebraic closure of K .  Then g is completely 
reducible in Y if and only if P BKg is completely reducible in P @K V. 

We now consider the explicit form of a completely reducible Lie algebra of 
endomorphisms. 
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Theorem 12.32 Let V be a nonzero finite-dimensional vector space over 
a field K of characteristic 0 and let g be a Lie subalgebra of gl(V). Then g is 
completely reducible in V if and only if 

(a) g = c @ g' (direct sum), where c is the center of g and g' = [g, g]  is 
semisimple or (0); 

(b) all the endomorphisms of c are semisimple. 

We divide the proof into several lemmas. 

Lemma 12.33 Let V be a nonzero finite-dimensional vector space over 
the field K and let g c gl(V) act irreducibly in V. Let h be an ideal of g so that 
every endomorphism of h is nilpotent. Then h = 0. 

PROOF Using AX - X A  E h for all A E g and X E h we see that the sub- 
space hV is a g-submodule of V. By the irreducibility of V we have hV = (0) 
or V. If hV = V, then by induction 

y = hV = h2 V = . . . = h'V = - * . . 
However by Corollary 11.11 to Engel's theorem we have h" = (0) for suitable 
n. Thus we obtain the contradiction V = (0). Therefore hV = (0). 

Lemma 12.34 Let V be a finite-dimensional vector space over the field 
K and let T E gl(V) be of the form 

where A,  , Bk ~ g l ( V )  and [T, A,.. = 0 for k = 1, . . . , r.  Then T is nilpotent. 

PROOF From [T, A,] = 0 we have [TP,  A,] = 0 for p = 0, 1, 2, . . . and 
therefore for p = 0, 1 , 2. . . 

Tp+' = c TP(A,B, - Bk A,) 
k 

= c A, TPBk - TPBk A, = 1 [Ak , TPBk]. 
k k 

Thus since the trace of any commutator is 0 we have trace 2"''' = 0 for 
p = 0, 1, . . . . By Lemma 12.13 we obtain T as nilpotent. 

Lemma 12.35 Let g be a Lie algebra over the field K,  let g' = [gg], and 
let c be the center of g. Assume 

(a) c n g' = (0) and 
(b) all Abelian ideals of g are contained in c. 

Then g = c @ g' (direct sum) where g' is semisimple or (0). 
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PROOF Assume g' is not (0) and using (a) let p = c 0 g' and let q be a 
complementary subspace of p in g. Thus we have the direct sums of subspaces 

g = p  + q  = c + g ' + q  

and we let m = g' + q. Therefore m n c = (0)  and since m 3 g' we have 
[gm] c [gg] c m so that m is an ideal of g. Therefore g = c @ m as a direct 
sum of ideals. To show that m is semisimple let h be an Abelian ideal of m. 
Then using g = c @ m we have 

[gh] c [ch] + [mh] c h 

so that h is an Abelian ideal of g. However, from assumption (b) we have 
h c c and therefore h c c n m = (0). Consequently by Corollary 12.23(b), 
m is semisimple. Thus since m = [mm] we have g' = [gg] = [c + m c + m] = 

[mm] = m. 

PROOF OF THEOREM 12.32. We first show conditions (a) and (b) above 

T E c n g'. 

Then T = 1 [Ak, Bk] and [T, Ak] = 0 (since T E c). By Lemma 12.34 we 
have T as nilpotent. Thus since every element of the ideal c n g' is nilpotent 
we have by Lemma 12.33 that c n g' = (0). Thus condition (a) of Lemma 
12.35 is satisfied. For condition (b) let h be an Abelian ideal of g and let 
T E [h, g] which is an ideal of g. Then 

hold for the irreducible case, for let g act irreducibly on V and let 

= 1 [Ak, Bkl 

for Ak E h and Bb E g. Since h is an ideal we have T E h and since h is Abelian, 
[T, Ak] = 0. Thus, by Lemma 12.34, Tis nilpotent and as before, from Lemma 
12.33, [h, g] = (0). Therefore h c c. 

Next assume V is g-completely reducible with direct sum decomposition 

V =  V,  + * * *  + v, 
where each Vi is g-irreducible. The set 

ki  = (A Eg : AVi = (0)) 

is an ideal in g and note that n;=, k i  = (0). Let gi = g/ki and let Zi be the 
center of Qi . Then Vi is an irreducible gi-module (where the action is defined 
by TX = TX for T =  T + ki  €gi and X E K). Now conditions (a) and (b) hold 
for Si on Vi; that is, for the irreducible case, and they hold for g on V as 

follows. 

(a) Let A €9' n c. Then for each i = I ,  . . . , r 

A + ki  egi' n Zi = {bi}. 
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Thus A E k,, that is, A E n ki  = (0) so that g’ n c = (0). 
(b) If h is an Abelian ideal of g, then h = h + k i  is an Abelian ideal of 8 , .  

Therefore li c E i  so that [h, gi] = {Oi}. Thus [h, g] c kl for i = 1, . . . , r which 
yields [h, g] c n ki  = (0) and therefore h c c. 

We now show that the endomorphisms of c are semisimple, for suppose 
A E cis not semisimple. Then from Section 12.2 the algebra K[A] generated by 
A has a nilpotent ideal R. However, since A commutes with every endo- 
morphism of the associative algebra g*, the set N = Rg* is an ideal of g* 
which is nilpotent. To see the latter we just note NZ = Rg* * Rg* c R2g* so 

by induction N k  c P g *  = (0) for large enough k. Since Y is a completely 
reducible g-module, Y is also a completely reducible g*-module. Thus from 
Proposition 9.15, g* is semisimple and therefore we must have N = (0); that 
is, A = 0. 

To show the converse part of Theorem 10.32 we assume conditions 
(a) and (b) hold and note from Proposition 12.31 we can assume the field K is 
algebraically closed. By (b) and Theorem 11.14 we have the weight space 
direct sum decomposition 

where V(4k) = (X E V :  for all T E c implies (T - &(T)I)X = O}. By (a) we 
have c is the center of g = c @ g‘ and therefore the weight spaces Y(+k) 
are g-invariant. However, the g-submodules of each V(&) are the same as the 
g’mbmodules. Thus if g‘ is semisimple, we can apply Weyl’s theorem (12.30) 
to conclude each V(4k) is g-completely reducible. By the above direct sum 
decomposition V is g-completely reducible. 

If g’ is {0), then each of the weight spaces V(f$k) is c-completely reducible 
(why?) so that V is actually g-completely reducible. 

v = V ( 4 , )  + * * + V(+,) 

REMARK (2) The preceding direct sum decomposition g = c @ g’ has 
the following generalization; see the proofs of Jacobson [1962] and Serre 
[ 19651. 

Theorem (Levi-Malev) Let g be a finite-dimensional Lie algebra 

(a) There exists a subalgebra h of g such that 

over the field K and let r = rad g. 

g = r + h  

is a subspace direct sum. Furthermore h z g/r is semisimple or (0). The de- 
composition g = r + h is called a Levi decomposition. 

(b) Let g = r + h = r + k be two Levi decompositions of g. Then there 
exists 4 E Aut(g) such that &h) = k. Furthermore the automorphism 4 can 
be chosen to be of the form 4 = exp(ad X) where X E [gg] n r. 
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We can use this to prove the following variation of a result of Lie [Cohn, 
1957, p. 99; Hochschild, 1965, p. 1331. 

Theorem Let g be a finite-dimensional Lie algebra over R. Then there 
exists a real Lie group C whose Lie algebra is g. 

Briefly, we write a Levi decomposition g = r + h and note that this is a 
semidirect sum. Next we use the result of Section 10.2 which states that the 
solvable Lie algebra r is the Lie algebra of a solvable Lie group R. Thus since 
the semisimple algebra h is such that the adjoint representation is faithful, 
then the group H generated by exp(adh) has a Lie algebra isomorphic 
to h. Therefore the semidirect product G = R x H has Lie algebra (iso- 
morphic to) g. 

The above result also follows from Ado's theorem which states: If g is a 
finite-dimensional Lie algebra over the field K, then g has a faithful finite- 

dimensional representation. Thus if p : g + gl( V )  is such a faithful representa- 
tion of a real Lie algebra, then the subgroup G generated by exp p(g) c 

GL( V )  has Lie algebra (isomorphic to) g. 

5. More on Radicals, Derivations, and Tensor Products 

In this section we use preceding results to discuss relationships between 
radicals of Lie and associative algebras, the complete reducibility of tensor 
products, and derivations of simple nonassociative algebras. Following 
Jacobson [1962] we have the next lemma; compare with Lemma 12.33. 

Lemma 12.36 Let V be a finite-dimensional vector space over the field K ,  

let g c g l ( V )  be a Lie algebra of endomorphisms, and let h be an ideal of g 

such that every endomorphism in h is nilpotent. Then the associative algebra 
h* generated by h is contained in the radical N of the associative algebra g*. 

PROOF The subspace n = g*h* + h* is an ideal of g* noting first 

g*n c g*(g*h*) + g*h* c g*h* c n. 

Next using AX - XA E h for all A E h, X E g we have by an easy induction 

hh.  . . h g  c g h . .  . h  + h . .  . h .  - - -  
k k k 
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Therefore h*g* c g*h* + h* and 

ng* c g*h*g* + h*g* 

c g*(g*h* + h*) + g*h* + h* c n. 

Also nk c g*h* -t so that from Corollary 1 1.1 1 to Engel’s theorem h* is 
nilpotent and therefore for k large enough nk c g*h*. Now by induction we 
can show 

and consequently 

(h*)’g* c g*(h*)’ + (h*)’ 

(g*h*)’ c g*(h*)’. 

Using this and h* as nilpotent we see that (nky c g*(h*)’ = (0) for suitably 
large r.  Thus the nilpotent ideal n is contained in N ;  that is, h* c n c N .  

Lemma 12.37 Let V be a finite-dimensional vector space over the field K 
and let g c gf( V) be a solvable Lie algebra. If N is the radical of g*, then 
g*/N is a commutative (associative) algebra. 

PROOF First assume g* is semisimple. Then V is a completely reducible 
g*-module (Theorem 9.16) so that V is a completely reducible g-module. 
Thus from Theorem 12.32 we conclude that g = c 6 g’ whereg’is(0)or semi- 
simple (and therefore g‘ = [g’, 8’1). However, since g is solvable we must have 
g’ = (0). Thus g * / N  = g*/{O} = c* is a commutative algebra. In particular, g 
is an Abelian Lie algebra. 

For the general case we note that since N is an ideal of g* and since as sets 
g* c gf( V) = End( V) we can regard N as solvable Lie subalgebra of gf( V); 
still denoted by N .  Thus since g is solvable, the Lie algebra (g + N ) / N  is 
solvable and the associative algebra generated by this Lie algebra is g*/N 
which is semisimple. Thus from the preceding paragraph (g + N ) / N  is an 
Abelian Lie algebra which means in terms of cosets (X + N)(Y  + N )  = 

(Y  + N ) ( X  + N) for endomorphisms X, Y E g. However, these cosets 
generate g*/N so that g*/N is commutative. 

Theorem 12.38 Let g be a Lie algebra of endomorphisms acting on the 
finite-dimensional vector space V over the field K and let r be the radical of g 

and N be the radical of g*. Then: 

(a) g n N is the set of nilpotent endomorphisms in r;  

W [r ,  g l c  N. 

PROOF Let ro be the set of nilpotent endomorphisms of r .  Then since N 
is an associative nilpotent ideal, we have g n N c r. Since the endomorphisms 
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of N are nilpotent g n N c ro  . If rad(r*) denotes the radical of the associative 
algebra r* generated by r ,  then from Lemma 12.37, r*/rad(r*) is commutative. 
However, this implies r*/rad(r*) has no nonzero nilpotent elements as follows. 
A nonzero nilpotent element in the commutative algebra generates a nilpotent 
ideal and therefore is in the radical of the algebra; but r*/rad(r*) has 0 
radical. Thus rad(r*) equals the set of nilpotent elements of r* and therefore 
ro c rad(r*). From this we obtain 

ro = r n rad(r*) 

and in particular ro  is a subspace of g. 

characterization of the radical of an associative algebra A as 
We shall next show ro is an ideal of the Lie algebra g. For this we use the 

rad A = {Z E A  : f(Z, X) = 0 for allX E A }  (*I 
where f ( X ,  Y) = traceL(X)L(Y); see Proposition 12.14. First for any 
X, Y, Z E A we have 

where [Z, XI = ZX - XZ. Now let A = r* and since r is an ideal in g we 
have for Z E g and X, Y E r that 

[Z, XU] = [Z, X]Y + X[Z, Y] E r* 

so that by induction 
[g, r*] c r * .  

Now let U E ro = r n rad(r*) and let Z E g. Then [Z, U] E r and we now show 
[Z, U] E rad(r*) as follows. For any X E r* 

f(V, XI, Y) = f(Z, [X, YI) 

f(X, [Z, Ul) = f(W9 ZI, U). 

However, [X, Z] E [ r* ,  g] c t* and U E rad(r*) so that from formula (*) 
we havef([X, Z], U )  = 0. Thusf(X, [Z, U]) = 0 so that from (*) we obtain 
[Z, U] E rad(r*). Therefore [g, r,] c ro . 

Since r ,  is an ideal in g all of whose elements are nilpotent we can apply 
Lemma 12.36 to conclude ro c rad(g*) = N .  Thus since ro c g we have 
ro c N n g and therefore ro = N n g which proves part (a). 

For (b) we use the fact that if L is a Lie algebra of endomorphisms so 
that L* is semisimple, then rad L is contained in the center of L; this follows 
from Theorem 12.32. We apply this to L = (g + N ) / N  as discussed in Lemma 
12.37 and note that the associative algebra generated by L is L* =g*/N 
which is semisimple or {O}. If L* is{O}, then wearedone. Otherwise the radical of 

(g + N ) / N  is in the center of (g + N ) / N .  However, (r + N ) / N  is a solvable 
ideal of (g + N ) / N  and therefore in the radical of (g + N ) / N .  Thus 

that is, [ r ,  g] c N .  

[(r + W N ,  (g + W N I  = 
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Exercise (1) Show how (g + N ) / N  in the above proof is actually a Lie 
algebra of endomorphisms. 

Corollary 1239 Let 9 be a finite-dimensional Lie algebra over the field 
K. Then 

rad(g) = (X e g : Kill(X, [AE]) = 0 for all A, B E g}; 

that is, rad(g) = g’* relative to the Killing form of g. 

PROOF Let r = rad(g) and let A E r and X, Y E g. Then Kill(A, [XY]) = 

Kill([AX], Y). However, from Theorem 12.38 we have that 

ad[AX] = [ad A, ad XI E [rad(ad g), ad g] 

which is contained in the radical of the associative algebra (adg)*. Thus 
ad[AX] ad Y is in the radical of (ad g)* because the radical is an ideal. 
Since this radical consists of nilpotent endomorphisms, 

0 = trace ad[AX] ad Y = Kill(A, [XY]). 

Thus A e g’l so that r c g‘l. 
For the other inclusion we first note that h = g’l is an ideal of g. Next if 

X E h’ = [hh], then we have 0 = Kill@, X) = trace(ad X)’. Therefore by 
Cartan’s criterion (Corollary 12.21) we have h is a solvable ideal of g ;  that is, 
g‘l c r. 

Recall [Section 11.2, exercise (5)] that the nilpotent radical n of a finite- 
dimensional Lie algebra g is the maximal nilpotent ideal of g. 

Corollary 12.40 Let g be a finite-dimensional Lie algebra over the field K 
and let r be its radical and n its nilpotent radical. Then [rg] c n. 

PROOF From Theorem 12.38 we have [ad r, ad g] is in the radical of 
(ad g)*. Since this radical is associative nilpotent, there exists k so that for any 
A,, . . . , A, E r and XI, . . . , X, E Q  that 

0 = [ad A,, ad X,] - - [ad A t ,  ad X,] 

= ad[A,X,] * .ad[A, X,]. 

Thus by Corollary 11.12, the Lie algebra [rg] is nilpotent. However, [rg] is 
an ideal of g (using the Jacobi identity) so that [rg] c n. 

We generalize this result as follows: 
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Corollary 12.41 Let g be a finite-dimensional Lie algebra over the field 
K and let r be the radical of g and n the nilpotent radical of g .  Then every 
derivation of g maps r into n. 

PROOF Let D be a derivation of g .  Then from r = g'l we have for X E r 
and A ,  B Eg that 

Kill(DX, [AB])  = -Kill(X, D[AB])=  0 

where we use 

D[AB] = [ D A  B]  + [ A  DB] ~ g '  and Kill(DX, Y )  = - KilI(X, D Y )  

from Corollary 12.3. Thus Dr c r.  

Clearly h is an ideal of r and let 
Next we shall show that the subspace h = r' + Dr is a nilpotent ideal of r.  

L = r x K D = r @ K D  

be the (external) direct sum of r and the one-dimensional space K D .  Define 
a multiplication on L which extends the multiplication of r by 

[X + uD, Y + b D ]  = [ X Y ]  + uDY - b D X .  

This makes L into a Lie algebra in which r is an ideal. However, L / r  is one- 
dimensional and therefore solvable. Since r is solvable, this implies L is 
solvable. By Proposition 11.9 L' = [LL]  is a nilpotent ideal in L, but 

L' = r' + Dr 

is contained in r ;  that is, the subspace h = r' + Dr is a nilpotent ideal of r. 
Next since the nilpotent radical n of g is a nilpotent ideal of r we have that 

k = h + n  

is a nilpotent ideal of r. However, k is an ideal of g as follows. Since n and r' 
are ideals of g it suffices to show [Dr  g ]  c k .  For X E g and A E r we have 

[DA XI = D [ A X ]  - [A  D X ]  

where D [ A X ]  E D[rg] c Dr and [A  D X ]  E [rg] c n by Corollary 12.40. 
Thus [ D r g ]  c Dr + n c k so that k is actually a nilpotent ideal of g ;  that is, 
r' + Dr + n c n. Since r' c n we obtain Dr c n. 

As another application of Theorem 12.32 on complete reducibility we 
have the following results on derivations due to Jacobson for algebras with 
an identity element [Schafer, 19661. For a nonassociative algebra A ,  recall 
that the Lie transformation algebra L(A)  is the Lie algebra generated by the 
left and right multiplication endomorphisms of A (Section 7.2). 
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Proposition 12.42 Let A be a finite-dimensional nonassociative algebra 
over an algebraically closed field K of characteristic 0 such that A is a direct 
sum of ideals which are simple subalgebras. If D is a derivation of A, then 
D = U + ul where U E [L(A), L(A)], 1 is the identity endomorphism, and 
U E K .  

PROOF If A = A(1) @ @ A(n) is the given direct sum decomposition 
into simple ideals, then analogous to the proof of Corollary 12.26 we have for 
i = l ,  ..., nthat 

DA(i) = D(A(i)A(i)) c A(i)(DA(i)) c A(i). 

Thus D : A(i )  + A( i )  induces a derivation of A(i). Also using the corresponding 
decomposition L(A) = L(A( 1)) + - - * + L(A(n)), it suffices to consider the 
case when A is a simple algebra. 

Let 9 = L(A) be the Lie transformation algebra of A which is generated 
by the left and right multiplications L(X) and R ( Y )  for all X, Y E A. Since A 
is simple 9 acts irreducibly on A. Therefore according to Theorem 12.32, 
9 = C 8 9’. Now since C is the center of 9, any endomorphism T E C 
commutes with an irreducible set of endomorphisms and therefore T = aI 
where a E K, using Schur’s lemma [Proposition 9.14(a)]. Thus C equals KI 
or (0). 

From [D, L(X)] = L(DX) and [D, R(X)] = R(DX) we see [ D ,  2’1 c 9. 
However, since 9 = C @ 9” with C as above we obtain [ D ,  9’1 c 9’. 
First we assume 9‘ # (0). Then the mapping 

B : 9’ + 9‘ : P 4 [D, PI 

is a derivation of the semisimple Lie algebra 9’. Thus there exists U E 9‘ 
such that B = a d  U .  Thus for any V =  b I +  V’ E 9 = C @ 9‘ we see 

[D, V] = [D, V’] = BV’ = ad U(V’) = [U ,  V] 

so that [D - U ,  V] = 0. Thus D- U commutes with an irreducible set of 
endomorphisms which implies D - U = ul. 

In case 9’ = (0) we see 2’ = KL Thus for any X E A, L(X) = aI and 
R(X) = /I1 so that 0 = [D ,  L(X)] = L(DX) and similarly R(DX) = 0. Since 
A is simple, this implies DX = 0; that is, D = 0 which is in 9. 

Exercises (2) Let A be a simple nonassociative algebra over K and let 

(3) Let A be a simple nonassociative algebra over an algebraically closed 

X E A be such that L(X) = R ( X )  = 0. Show X = 0. 

field of characteristic 0 and let D be a derivation of A. 

(i) If A contains an identity element, then show that D E L(A) .  

(ii) If trace D = 0, then show that D E L(A). [This is the case for Lie 
algebras since Kill(DX, Y) = -Kill(X, DY).] 
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Recall from Section 9.4 that if g is a Lie algebra over the field K and V 

and W are g-modules with corresponding representations p and 6, then the 
vector space tensor product V 6 W becomes a g-module where the action 
of g is defined by 

A ( C  x 6 Y )  = c p ( A ) X  6 Y + x 6 u(A)Y. 

Proposition 12.43 Let g be a Lie algebra over the field K and let V and 
W be completely reducible g-modules. Then the tensor product V 6 W is a 
completely reducible g-module. 

We outline a proof as follows. From Proposition 12.31 we can assume K is 
algebraically closed. 

Exercises (4) Show the (external) direct sum P = V 0 W is a g-module 
which is completely reducible. Also show V 6 W is a submodule of P @ P. 
Thus since a submodule of a completely reducible module is also completely 
reducible, it suffices to show P 0 P is completely reducible. 

Let 7 be the completely reducible representation of g in P and 
assume T is faithful. Show that g = c 0 g’ (direct sum) where c is the center 
of g and g’ = [gg] is semisimple or (0). 

(ii) Show that it suffices to assume 7 is faithful in (i) for the proof of the 
proposition. 

(6) (i) Let ? be the representation of g in P @ P and show that 
?(g) = ?(c) 0 ?(g’) where ?(c) is the center of ?(g)and?(g’) is semisimple or(0). 

(ii) Recalling K is algebraically closed, show that for any A E c, the 
endomorphism ?(A) = 7 ( A )  6 I + I 6 7 ( A )  is semisimple. [If X, Y E K are 

characteristic roots of ?(A),  what are the characteristic roots of z“(A)?] Thus 
by Theorem 12.32 conclude the Proof of Proposition 12.43. 

( 5 )  (i) 

6. Remarks on Real SimpIe Lie Algebras and Compactness 

We combine the results of Section 9.2 on complexification with some of the 
results on semisimplicity to obtain the form of a real simple Lie algebra. 
Analogous to the last part of the proof of Cartan’s criterion for solvability, 
we have the following result. 

Lemma 12.44 Let g be a Lie algebra over K, and let P be the algebraic 
closure of K. Then g is semisimple over K if and only if J = P BK g is a semi- 
simple Lie algebra over P. 
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PROOF Let X, , . , . , X, be a basis of g over K, and let bij = Kill(X,, X,), 
let XI, . . . , x, be the corresponding basis for 8,  and let 6, = Kill(X,, X,). 
Then using the computations analogous to the last part of the proof of Cartan's 
criterion for solvability [preceding exercise (2)], we see bij = bij . Thus g 

(respectively 8) is semisimple if and only if its Killing form is nondegenerate 
which is the case if and only if the matrix (b,,) [respectively (6,)] is non- 
degenerate. This yields the result, since bij = 6 , j .  

For a real Lie algebra g, we see that g is simple over R implies g = C 8 g 
is semisimple over C. From Section 9.2 we notice that # need not be simple. 
However, we have the following result. 

Theorem 12.45 Let g be a simple Lie algebra over the reals R. Then g is 
isomorphic to the realification of a simple complex Lie algebra, or g is 
isomorphic to a real form of a simple complex Lie algebra. 

PROOF If J = C @ g is simple, then g is a real form for the simple complex 
Lie algebra 8. For the other case we have 8 is not simple, but, from Lemma 
12.44 # is semisimple. Let h be a proper simple ideal in 8, and let C be the 
conjugation given by C : g 4 8 : X + iY + X - iY. Then it is easy to see that 
h n C(h) is an ideal in g, and since g is simple, h n C(h) = (0) or h n C(h) = 

g. In the first case, the set {X + C(X) : X E h} is an ideal in g and therefore 
equals g. Thus 8 = h @ C(h) using h n C(h) = (0). Therefore g @ g z g R  z 
hR @ (C(h)), z hR @ hR . This shows g is isomorphic to the realification hR of 
the simple complex algebra h. The case h n C(h) = g is left as an exercise. 

REMARK (1) From Theorem 12.45 we see that in order to find the real 
semisimple Lie algebras, it suffices to find the simple complex Lie algebras 
and then find their realifications and real forms. We do this in Chapter 15 
noting that the " realification " part of the problem can be done as follows. 

Proposition 12.46 Let g be a simple real Lie algebra which is not iso- 
morphic to a real form of a simple complex Lie algebra. Then g is isomorphic 
to the realification of a simple complex Lie algebra, and conversely every 
realification of a simple complex Lie algebra is a simple real Lie algebra. 

PROOF It suffices to show the converse. Thus let be a simple complex 
Lie algebra, then clearly g R  is semisimple. Now let h be a nonzero ideal in 
g R .  Then h is semisimple, and therefore h = [hh]. Now for X, Y E h c we 
have by definition of scalar multiplication in 8 that i[XY] = [iXY] E [Jh] c h 
noting J = g R  as sets. Thus ih = i[hh] c h so that h is closed relative to scalar 
miiltiplication by complex numbers. Thus h is an ideal of the simple complex 
Lie algebra 8 so that h = 8; that is, h = g R .  
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REMARK (2) We shall see in Section 15.1 how real forms are related to  
compactness, which we now discuss. 

Theorem Let G be a connected real semisimple Lie group with Lie 

algebra 3. 

(a) If G is compact, then its universal covering group is compact. 
(b) The group G is compact if and only if the Killing form of g is neg- 

ative definite. 

For the proofs we refer to the work of Hausner and Schwartz [1968] and 
Helgason [1962]. Thus we say a Lie algebra is compact if its Killing form is 
negative definite. For example, the compact Lie group SO(n) has Lie algebra 
so(n) of skew-symmetric matrices and Kill(X, Y) = (n - 2) trace XY. How- 
ever, since 0 # X is skew-symmetric, we see trace XX < 0. 



CHAPTER 13 

CARTAN SUBALGEBRAS 

AND ROOT SPACES 

In this chapter we start the detailed analysis of semisimple Lie algebras over 
a field K of characteristic 0. In the first section the Cartan subalgebra h of a 
Lie algebra g is introduced. Since h is a nilpotent Lie subalgebra of g, we 
consider the weight space decomposition of g relative to the nilpotent Lie 
algebra of endomorphisms ad, h. Thus in the second section we consider the 
relationships between these weight spaces for a split semisimple Lie algebra 
and give examples. It turns out that a split semisimple Lie algebra g is a sum 
of simple subalgebras which are isomorphic to sl(2, K). Consequently, in the 
third section we discuss the representations of d(2,  K) and apply this to a 
further analysis of the weight spaces of g. 

1. Cartan Subalgebras 

All Lie algebras in this chapter will be assumed to be finite-dimensional 
over a field K of characteristic 0. Recall that a Lie algebra g over K is said to 
be “split” if for each X E g all the characteristic values of ad X are in K. All 
algebras over an algebraically closed field, in particular the complex numbers, 
are split. 

264 
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Definition 13.1 Let g be a Lie algebra over K.  

(a) For any subalgebra h of g let N(h) = { X E ~  : [Xh] G h}, then N(h) 
is called the normalizer of h and is the largest subalgebra of g which contains 
h as an ideal. 

(b) A subalgebra h of g is called a Cartan subalgebra if it is nilpotent and 
N(h) = h. 

For any X E g  and A E K set 

g(A, X) = { Y E  g : (ad X - AZ)" Y = 0 for some n}. 

Notice that if A is a weight of ad X ,  then g(A, X )  is merely a weight space 
of g for the linear transformation ad X.  If A , ,  . . . , A,, the weightsof ad X ,  all 
lie in K,  then it is clear that g = g(1, , X) + * * + g(A,,,, X )  as a vector space 
direct sum; recall Section 10.3. From exercise (2) of Section 11.3 we have 
that if A + p is a weight, then 

[ g ( L  X)g (p ,  XI1 c g(A+ X )  

which implies g(0, X) is a subalgebra of g and [g(O, X)g (p ,  X)] c g(p ,  X). 
Briefly, to see this we note that D = ad X is a derivation of g. Then for 

U E g(A, X) and V E g(p, X) 

( D  -(A + p)Z)[UV]  = [ ( D  - AZ)U V ]  + [ V ( D  - p I ) V ] .  

Thus by induction we obtain 

and for p large enough, the right side of this equation is 0; that is, 
[VV] E ~ ( A  + p, X ) .  Note that if L + p is not a weight of ad X, then 

tg(A9 X)g(ll ,  X>l = {O>. 

An element X E g is called a regular element ofg if the dimension ofg(0, X) 
is minimal. This minimal dimension is called the rank of g .  

Example (1) Let g = g42,  K )  the Lie algebra of 2 x 2 matrices over K. 
As usual let I denote the identity matrix 

H =  [' 0 - I  "1 and E =  [: i]. 
One can compute that g(0, Z) = g(0, E )  = g so Z and E are not regular. But 
g(0, H )  = KZ + KH which is equal to the diagonal matrices of g and it is not 
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too difficult to show that H is regular, g(0, H) is a Cartan subalgebra of g, 

and so 942, K) has rank 2. 

Proposition 13.2 Let g be any finite-dimensional Lie algebra over a field 
K of characteristic 0, X E g a regular element, and h = g(0, X). Then h is a 
Cartan subalgebra of g. 

PROOF We must show that h is nilpotent and that N(h) = h. By Engel’s 
theorem we can show that h is nilpotent by showing that for all H E h, ad H 
acts as a nilpotent linear transformation on h. 

Let p( t )  = det(ad X - 11) = fq( t )  be the characteristic polynomial of ad X 
where r = dim h is the rank of g and t and does not divide q(t). We then have 
h = { Y E g : ( a d X ) ’ Y = O }  and if we let k={YEg:q(adX)(Y)=O}, the 
primary decomposition theorem of linear algebra tells us that g = h + k, a 
vector space direct sum, and that h and k are invariant under ad X ;  that 
is, (adX)h ch and (ad X ) k  c k. In order to show that h is nilpotent 
and N(h) = h we can extend the field K to its algebraic closure if need be 
and so we may assume that all the weights of ad X lie in K. In this case k = 

xi+,, g(L, X) where the sum is over nonzero weights of ad X. 
Now assume Y = H + Yl + Y, + ..- + Y,, e N(h) where Y, E ~ ( A , ,  X), 

A, # 0, and H E h = g(0, X). Since X E h we have 

[XU] = [XH] + [XU,] + * . *  + [XU,] E h. 

Thus using the above direct sum g = h + k and using the ad X-invariance 
of g(A,, X) we see [XU,] = 0. Thus Y, Eg(A, ,  X) n h = (0). Consequently 
Y = H E h and N(h) = h. 

To show that ad H is nilpotent on h for all H E h we first choose a basis 
X , ,  X, ,  . . . , X, for g with X , ,  X,, . . ., X,E h and X,,, , . . . , X, E k. With 
respect to this basis the matrices associated with the linear transformations 
ad X and ad H look like 

a d X =  [o A 0  B ] ,  a d H =  [t i] 
where we know that A is an r x r nilpotent matrix and B is an (n - r) x (n - r) 
nonsingular matrix, and we want to show that the r x r matrix C is nilpotent. 
Assume to the contrary that C is not nilpotent and let x ,y ,  and t be three 
i ndeterm inants. Define 

p(x ,y ,  t )  = det(xad X + yad H - 11) = det(xA + yC - t l )  det(xB + y D  - t l ) .  

Then B nonsingular implies I does not divide det(B - t Z )  nor does t divide 
det(xB + yD - t Z ) ,  and C not nilpotent implies t‘ does not divide det(C - t l )  

nor does tr divide det(xA + yC - 11). Thus t‘ does not divide p(x, y, t).  
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However, then one can find a, B E K so that r‘ does not divide p(a, 8, t )  = 

det(ad(aX + B H )  - 11) which is the characteristic polynomial of ad(aX + BH).  
This contradicts the fact that X is regular and completes the proof. 

Corollary 13.3 Every Lie algebra possesses Cartan subalgebras. 

Proposition 13.4 If h is a Cartan subalgebra of a Lie algebra g and X E h 
with X regular, then h = g(0, X). 

PROOF For any Y E  h, (ad X)“‘ Y = 0 for some m because h is nilpotent 
so YE g(0, X) and h c g(0, X). 

Now assume that h # g(0, X). Then N(h) = h implies that (ad Z)h $ h for 
any Z Eg(0,  X) with Z $ h. However, then by induction, for any positive 
integer n, there exist H 1 ,  H2, . . . , H, E h with 

[ * ’ “ZHlIHZI * * - H”]  # h 

and this contradicts the nilpotence of g(0, X); note Proposition 13.2. 

Proposition 13.5 If g is a split Lie algebra over K and h is a Cartan sub- 
algebra of g, then h = g(0, X) for some regular X E h. 

PROOF By the previous proposition we need only show that h contains a 
regular element. Since g is split and since ad,(h) is nilpotent g = 

h + g1 + ..- +gm,  a vector space direct sum of weight spaces of the weight 
functions of ad,@); Section 11.3. The condition N(h) = h guarantees that h 
is precisely the weight space of the weight function which is identically 0 on 
ad, (h). Thus for each i = I ,  2, . . . , m there exists an H I  E h with ad H i  acting 
as a nonsingular linear transformation on gi . Now a standard argument over 
infinite fields can be used to choose an H E h equal to a linear combination of 
the Hi’s  such that ad H is nonsingular on g1 + - * * + gm. Then g(0, H) = h 
and H is regular as required. 

REMARKS (1) This proposition can be used to help prove that if K is 
algebraically closed, then any two Cartan subalgebras of g are conjugate by 
an automorphism ofg [Jacobson, 1962, p. 273; Hausner and Schwartz, 19681. 

(2) In the next section we consider split semisimple Lie algebras so by 
Proposition 13.5 in this case all Cartan subalgebras will contain regular 
elements and the dimension of any Cartan subalgebra will be equal to the rank 
of the algebra. 

(3) Let h be a Cartan subalgebra of g. Then since h is nilpotent, ad, h is a 
nilpotent Lie algebra of endomorphisms acting cn g, for if n is an integer such 
that for all H I ,  H,, . . . , H, in h we have [ ... [H,H,] H,] = 0, then 
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[ * * - [ad, H I ,  ad, H,] - * * , ad, H,] = ad,([ * * * [ H , H , ]  * * - H,]) = 0. In the next 
section we use results of Section 11.3 on decomposing a vector relative to a 
nilpotent Lie algebra of endomorphism to find a weight space decomposition 
of g relative to ad, h. 

2. Root Spaces of Split Semisimple Lie Algebras 

In this section g will always denote a split semisimple Lie algebra over K 
and h will always denote a fixed, but arbitrary, Cartan subalgebra of g. Since 
ad, h = {ad H : g + g : H E h} is a nilpotent algebra of split linear transfor- 
mations of g we know that g is a vector space direct sum of the weight spaces 
of the weight functions of ad, h. 

Definition 13.6 The weight functions of ad, h are called the roots of g and 
their weight spaces are called the root spaces of g ;  note Definition 10.15. 

REMARKS (1) Strictly speaking the weight spaces should be called the 
“ root spaces of g with respect to h,” but we will see later than the structure of 
root spaces does not depend on the choice of h. 

(2) Using the previous notation for weight spacesg(a) will denote the root 
space of the root a. Proposition 13.4 implies that g(0) = h. It will be very useful 
to express g as the vector space direct sum 

where W denotes the nonzero roots of g. As in Section 13.1 we obtain for 
a, /I roots of h that 

if a + /I is a root, 
otherwise . 

Proposition 13.7 Let g be a split semisimple Lie algebra over K, h a 
Cartan subalgebra of g, and as usual let Kill(X, Y) denote the Killing form 

(a) If a,/? are roots of g with a + j? 20 and XEg(a), Y~g(f i ) ,  then 

(b) If a E 9, then -a E W and dim(g(-a)) = dim(g(a)). 
(c) Kill(X, Y) restricted to h is nondegenerate. 

of g. 

Kill(X, Y) = 0. 

( 4  [hhl = {Oh 
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PROOF (a) Let T = ad Xad Y and notice that Tk( g(y) )  E g(y  + k(a + p)) 
for those positive integers k for which y + k(a + 8) is a root of g .  Since the 
number of roots are finite we have that, for some largeenoughk,y + k(a + /3) 
will not be a root o f g  and T k ( g ( y ) )  = (0). Since g is a direct sum of its root 
spaces, this implies that Tis a nilpotent linear transformation so that Kill 
( X ,  Y )  = trace T =  0. Notice that we have included the possibility that a 

or 8 is the zero root and have used only the fact that a +  p # 0. 

(b) Suppose crew but - ~ $ 9 .  Then from (a) it follows that 
Kill(g(a), g ( p ) )  = Oforall roots p of g and Kill(g(a), g) = 0 which contradicts 
the nondegeneracy of KiII(X, Y )  ong. I n  fact, general arguments about non- 
degenerate bilinear forms allow us to conclude that g ( a )  and g( -a) have bases 
XI,  X , ,  . . . , X,, and Y I ,  Y , ,  . . . , Y,,, respectively, with KiII(Xi, Xj) = Kill 
( Y i ,  Y j )  = 0 for all i , j  and KiII(Xi, Yj)  = hi j  which is the Kronecker 
S-symbol. In particular, the dimensions of g ( a )  and g(  -a)  are the same. 

(c) 0 # HI E h implies KilI(HI, x , , a g ( a ) )  = 0. If also Kill(H1, h) = 0, 
then KiII(H,, g )  = 0 contradicts the nondegeneracy of Kill(X, Y ) ;  so there is 
some H ,  E h with KiII(H,, H , )  # 0. 

(d) ad, h is a nilpotent and therefore a solvable Lie subalgebra of g l ( g ) .  
By Cartan’s criterion for solvability we have 

Kill(H, , [ H ,  H 3 ] )  = trace(ad H,)(ad[H, I f 3 ] )  = 0 

for all HI , H , ,  H ,  E h ;  that is Kill(h, [hh]) = 0. Now (c) implies [hh] = 0. 

Definition 13.8 (a) Let h* denote the dual space of h ;  that is, h* is the 
set of linear functions from h into K .  Notice that W is a finite subset of h*. 

(b) For each a ~ 9  let H ,  denote the unique element of h such that 
KiIl(H,, H )  = a ( H )  for all H E h. It is clear that such an H ,  exists because of 
an elementary result which states that the conclusion is true for any symmetric 
nondegenerate bilinear form on a vector space and any function in the dual 
space of the vector space. 

Proposition 13.9 Let g be any  split semisimple Lie algebra with the 

(a) Then KilNH,, H 2 )  = ~ u E a n , a ( H 1 ) a ( H 2 )  for all H ,  , H ,  E h where n, 

(b) Then & spans h*. 

(c) If XE g(a) ,  Y Eg( -a), and (ad H ) X  = a ( H ) X  for all H E h, then 

notation as before. 

is  the dimension of g(cr). 

[ X Y ]  = KillfX, Y)H, .  

PROOF (a) KiII(HI , H , )  = trace(ad H1 ad H2) and the formula follows 
by looking at the matrices for ad H1 and ad H ,  in Jordan canonical form. 
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(b) Let f~ h*. Then using the remarks in Definition 13.8, we have an 
H, E h such that f ( H )  = Kill(H,, H) for all H E h. However, from (a), 

f ( H )  = 

(c) For any H E h, 

naa(H,)a(H) so that CR spans h*. 

Kill([XY], H) = Kill([HX], Y )  

= a(H)  Kill(X, Y )  = Kill(Kill(X, Y)H, ,  H) 

and the formula follows from the nondegeneracy of Kill(X, Y )  on h. 

Proposition 13.10 Let g be a split semisimple Lie algebra as before. Then 
the root spaces g(a) for a E W are not only weight spaces but are in fact 
characteristic spaces; that is, [ H X ]  = a(H)X  for any H E h and X E g ( a ) .  

PROOF Choose a basis forg so that the matrices for each ad H with H E h 
restricted to g(a)  look like 

For a fixed H E h write ad H = S + N where S is semisimple and N is nil- 
potent. Then S ( X )  = a(H)Xfor any X ~ g ( a )  and since [g(a)g(p) ]  E g(a + p) 
one finds that 

S( [XYl )  = (a + B)(H)[XYI = [a(H)XYI + [XB(H)YI = P(X) YI + [XS(Y)I  

for all X Eg(a) and Y E  g w ) .  This shows that S is a derivation of g and from 
Section 12.3, S = ad Z for some Z E Q .  By noticing that S = ad Z consist of 
the diagonal part of the matrix for ad H we find that S = ad Z commutes with 
all the matrices of ad, h and so [Zh] = (0) and Z E N(h) = h. We must show 
that S = ad Z = ad H; that is, N = ad(H - Z) is 0. The matrix for ad(H - Z) 
is strictly upper triangular so Kill(H, , H - Z) = trace(ad H ,  ad(H - 2)) = 0 

for all HI E h, and H - Z = 0 by the nondegeneracy of Kill(X, Y) restricted 
to h. Thus ad(H - Z) = 0 as required. 

REMARK (3) Notice that Proposition 13.10 implies that the formula in 
Proposition 13.9 (c) holds for all X E g(a) .  This formula and some facts about 
representations of s42, K) will be used in the next section to prove some 
further properties of root spaces. First, however, this section will be concluded 

with some examples. 
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Exumpfes (1) Let g = sl(n, K )  and let E i j  be as usual, the matrices in 
gl(n, K) with I in the ith row andjth column and zeros elsewhere. We first 
compute the Killing form for sl(n, K). Since I commutes with everything in 
gl(n, K) and gl(n, K) = KI + sl(n, K), the Killing form of sl(n, K) is equal to 

the Killing form of gl(n, K) restricted to sl(n, K). Thus for any A = [a,], 

B = [b,] E Q  = sl(n, K ) ,  Kill(A, B) = trace(ad A ad B )  where the trace is 
computed by using the E,'s as a basis for gl(n, K ) .  

n 

(ad A ad B)Ei j  = (ad A )  2 (bki Ekj - bjk E l k )  
&= 1 

= 1 1 ( a m k  bki Emj  - ajn bki E k n  - bjk + aknbjk 
n=l  k = l  

This contributes 
sum over all 1 I i, j I n we find 

(aik bki + akj bjk) - ajj b,, - ail bjj to the trace and if we 

n n  n n  

i = 1  j = l  i = 1  j = 1  

Kill(A, B) = 2n c c aij bji - 2 1 1 a,, bjj = h(trace(AB)) 

since trace(d) = C;=l aii = 0; note exercise (3), Section 12.2. 
Notice that Kill(A, B) = h(trace(AB)) is nondegenerate which shows 

that sl(n, K) is semisimple. 

Let h = {c;=l a,, Eii : aii = 0} which is the set of all diagonal matrices 
of sl(n, K). It is easy to check that h is a Cartan subalgebra of 9 = sl(n, K )  and 
so g has rank n - 1. The nonzero roots of g are W = {ajk : j # k, 1 < j ,  k I n} 
where 

ajk( i= 1 a,,.,,) = ajj - a, 

and the corresponding root spaces are 

d a j k )  = K E j k  - 
Notice that -ajk = akj and that each g(ajk) is one-dimensional. If we define 

uji - a, so Hajk = Hjk  where Ha,, is given in Definition 13.8. It is also very 
easy to check that the conclusions of Proposition 13.9 also hold for this 
algebra. Thus sl(n, K) will be an important example for later results and the 
above formulas will be used at that time. 

(2) Consider the derivation algebra 9(V) of a split Cayley algebra V 
over K as described in example (3) at the end of Section 9.6. Thus 9(V) = 

{D(A,  x, y) : A E 4 3 ,  K) and x, y EV = K'}, where Y is the three- 
dimensional vector space of column vectors over K. The action of the 
derivations on V can be found in Chapter 9. However, the Lie multiplication 

H j k  = (Ejj - E&n, then, for any H = cy=: 1 aii Eii E h, Kill(Hjk, H )  = 
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El = E], E ,  = [: , E 3  = [8] 

TABLE 13.1 
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that this implies that g is split. Notice that V being a split Cayley algebra 
implies that 9 ( U )  is a split semisimple Lie algebra even though the definition 
of a split Cayley algebra did not even involve characteristic roots of a linear 
transformation. It is in fact known that for any Cayley algebra V, 9(g) is 
split if and only if V is split as a composition algebra. The following exercises 
are related to the examples in Section 2. 

Exercises ( I )  For any integer n 2 1 let 

be a (2n + 1) x (2n + 1) matrix where 0, and Z,, are, respectively, n x n zero 
and n x n identity matrices. Let W(n, K) be the Lie algebra of all (2n + 1) x 

(2n + 1) matrices A over K such that J,, A’J,, = -A. The notation for g(n ,  K) 
is chosen for historical reasons and will be explained in the next chapter. Verify 
the following facts about W(n, K): 

(i) g ( n ,  K) is just the set of matrices 

o u  

[ - u ‘  R “1 
where u, u are n x 1 matrices, R, S, Tare n x n matrices, S’ = -S, T‘ = - T, 
The dimension of W(n, K) is 2nZ + n. 

(ii) Kill(A, B) = (2n - 1) trace AB for any A, B E  a(n, K) and so 
W(n, K) is a semisimple algebra. 

(iii) The subalgebra h of g ( n ,  K) of diagonal matrices in a ( n ,  K) is a 
Cartan subalgebra. The rank of W(n, K) is n. 

(iv> 
element of h. The roots and root spaces of g = W(n, K) are described in 
Table 13.2. 

-u‘ T -R‘ 

Let H = C;=i ai+l,  i+ t (E i+ l ,  i + l  - E i + n + l ,  i + n + l )  be an arbitrary 

TABLE 13.2 

Root A W )  Basis for g(A) 
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(2) For any n 2 1, let 

On I n  

Ln = [In 0.1 

be the 2n x 2n matrix where On and I,, are as in the previous exercise. Let 
B(n, K) be the Lie algebra of all 2n x 2n matrices A over K such that 
L, A'L, = -A. Verify the following facts about B(n, K): 

(i) Q(n, K) is just the set of matrices 

where R, S, Tare n x n matrices and S' = - S, T' = - T. The dimension of 
B(n, K) is 2n2 - n. 

(ii) Kill(A, B) = (2n - 2) trace AB for any A, B E  9 ( n ,  K), so B(n, K) 
is semisimple. 

(iii) The subalgebra of O(n, K) of diagonal matrices is a Cartan sub- 
algebra of 9 ( n ,  K). The rank of 9 ( n ,  K) is n. 

(iv) Use (iv) of the previous exercise to produce a table of roots and 
root spaces of Q(n, K). 

(3) For any n 2 1, let 

be the 2n x 2n matrix where On and In are as before. Let W(n, K) be the Lie 
algebra of all 2n x 2n matrices A over K such that M,A'M;' = -A. Verify 
the following facts about W(n, K): 

(i) W(n, K) is just the set of matrices 

[; - i t ]  
where R, S, T are n x n matrices and S' = S, T' = T. The dimension of 
W(n, K) is 2 +n2 n. 

(ii) Kill(AB) = (2n + 2) trace AB for any A, B E W(n, K) so %(n, K) is 
semisimple. 

(iii) The subalgebra of W(n, K) of diagonal matrices is a Cartan sub- 
algebra. The rank of W(n, K) is n. 

(iv) Let H = cs=, ai, i(El, - El+,,, I + n )  be an arbitrary element of h. 
The roots and root spaces of g = q ( n ,  K) are described in Table 13.3. 

REMARK (4) The examples and exercises above include all but four of 
the simple split Lie algebras over a fixed field Kof characteristic 0. The proof 
of this fact (which follows in the next chapter) includes many algebraic com- 
putations, but the reader should be assured that the above matrix computa- 
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TABLE 13.3 

Root h h(H ) Basis for g(h) 

tions comprise the bulk of the tiresome details needed in describing the simple 
Lie algebras. 

( 5 )  The algebras a(n, K), %(ti, K), and 9 ( n ,  K) are often described as 
the set of linear transformations that are skew with respect to certain bilinear 

forms. Thus let J be one of the matrices J, , L,, , or M, appearing in the exer- 
cises and let X and Y be column vectors of the appropriate size so that 
B(X,  Y) = X'JY defines a bilinear form. Notice that B(X,  Y) is nondegenerate 
in all three cases, that it is symmetric in the first two cases, and that it is anti- 
symmetric in the third case. For a linear transformation A on the given vector 
space of column vectors let A* be the unique linear transformation such that 
B(AX,  Y) = B ( X ,  A*Y)forallXand Y,onecaneasilycheckthatA* = J-lA'J.  

Then g, the Lie algebra of all linear transformations with A* = -A, is iso- 
morphic to the Lie algebras of matrices that were described in the exercises. 

(6) Summarizing some of the results for a split semisimple Lie algebra 
g we have 

g = h + C g ( c o = h + C g ( c c ) + g ( - a ) ,  

where h is a Cartan subalgebra of g and a varies over 9. The second sun1 is not 
direct, since we are duplicating some root spaces. In the next section we will 
show h = 1 KH, for H, E h of Definition 13.8 and a varies over 9. Thus 

and we shall show KH, + g(a) + g( -a) is isomorphic to $42, K); that is, 9 

is built up of three-dimensional Lie subalgebras which are isomorphic to 

d(2,  K). 

3. Irreducible Representations of sZ(2, K )  

The following basic theorem completely characterizes the finite-dimen- 
sional irreducible representations of d(2, K). This theorem will be used to 
obtain further properties of roots of split semisimple Lie algebras. 



276 13. CARTAN SUBALGEBRAS AND ROOT SPACES 

Theorem 13.11 Let g be an abstract Lie algebra over K with basis H, E,  

F where [HE] = 2E, [HF]  = -2F, and [ E F ]  = H so that g is isomorphic to 
sl(2, K). For any positive integer n 2 2 define a linear map p : g +gl(n, K) by 

setting 

3 - n  0 
- 0 1 - n  

- n - 1  0 0 
0 n - 3  0 
0 0 n - 5  

p ( H )  = 

0 

0 0 OJ 

0 0 0  
1 0 0  0 
0 2 0  

- 

* o  0 0  
0 n - 2  0 0 

P(F) = 

L 0 n - 1  OJ 

Then p is an irreducible representation of g. Conversely, given any finite- 
dimensional irreducible representation p : g + gl (V) ,  there exists a basis for 
V so that the matrices for p(H), p ( E ) ,  and p(F) are precisely those above with 
n being the dimension of V .  

PROOF A straightforward matrix computation will show that [ p ( H ) ,  

p(E)I = M E ) ,  [p(H), p(F)I = -2p(F), and ME), p(F)I= AH). Then p is a 
representation of g. To show that p(g) acts irreducibly on the n-dimensional 
vector space V of column vectors we first consider the usual basis for V. Thus 
X,isthevectorwitha 1 inthekthrowandzeroselsewhere.Let X =ck=l x k X k  

be any nonzero vector in V.  We must show that any subspace of Vcontaining 
X which is invariant under p(g) must be equal to V itself. 
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Suppose xk = 0 for 1 I k < m I n but x,, # 0. Then notice if m # n that 
n -  I n -  1 

p ( F ) X =  1 k X k X k + l  = 1 k X k X k + l  
k =  1 k = m  

so p(F)"-"X = n?(m t 1) . * * (n - I)xm X,, . Thus any nontrivial invariant 
subspace of V contains X,, . However, P ( E ) ~ X ,  = k !  X,,-k so any invariant 

subspace contains all the vectors in the basis of V and must be V itself. We 

have shown that p is an irreducible representation ofg  and will now show that 
these are the only possible finite-dimensional irreducible representations. 

Conversely, given p, we first claim that there exists a 0 # X E  V with 
p ( H ) X  = aX for some a # 0 and p ( E ) X  = 0. So first assume K is algebraically 

closed so that p ( H )  has a characteristic vector, say p(H)Y = by. We will see 
shortly that b must be an integer so at that point we no longer need the as- 
sumption of algebraic closure. If p(E)Y = 0, we are finished. Otherwise let 
Y2 = p(E)Y and notice that 

p(H)Y, = p(H)p(E)  y 

= (P([HEI) + p ( E ) p ( W )  y 

= 2p(E)Y + bp(E)Y = (b  + 2 ) Y 2 .  

If p ( E ) Y z  # 0, set Y, = p ( E )  Y ,  and compute that p(H)Y,  = (b + 4 ) Y 3 .  In 
this way we obtain a sequence Y, Y , ,  Y , ,  . . . of characteristic vectors of 

p(H) each with a different characteristic value so the vectors of this sequence 

are linearly independent. Since V is finite-dimensional there can be only a 
finite number of vectors in this sequence; that is, p(E)Y, = 0 for some k and 

Yk is the vector desired. 
Let X ,  be a vector as constructed in the previous paragraph so 

p ( H ) X ,  = a X ,  and p ( E ) X ,  = 0. For each positive integer k define xk = 

p(F)k- lX, / (k  - l ) !  = p(F)Xk-l/(k - I). As in the previous paragraph it is 
easy to verify that p(kf)Xk = (a - 2k + 2)Xk so only a finite number of the 
Xk's are nonzero. Choose n so that X,, is the last nonzero vector in the sequence. 

The X , ,  X , ,  . . . , X,, form a basis for V since the following three formulas 

show that the subspace spanned by these vectors is invariant under p ( H ) ,  

P(E), p ( F )  

p(H)Xk = ( a  - 2k + 2)Xk, 

d F l X k  = k X k + l  for 1 I k < n, p ( F ) X ,  = 0, 

We must still prove the last formula. However, first notice that the formulas 
precisely coincide with matrix entries we are interested in if a = n - 1. 

p(E)Xk = ( a  - k -k 2)Xk-l for 2 k _< n, p(E)Xi  = 0. 

To prove the formula for p(E)  notice that 

p ( W f 2  = P(E)P(F)X, 

= ( d H )  + p ( F ) p ( E ) ) X ,  = ax,. 
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Now proceed by mathematical induction and assume the result for k - 1 .  

Then 

(k  - l)p(E)Xk = p(E)p(F)Xk-l  

= ( d H )  + P(F)P(E))Xk-l 

= (a - 2k + 4)Xk-i + (k  - 2)(a - k + 3)Xk-i 

= (k  - l)(a - k + 2)Xk-1. 

The desired formula now follows. Finally to show that a = n - 1 notice that 
the matrix for p ( H )  = [p (E) ,  p ( H ) ]  is of trace 0 so a + (a - 2) + (u - 4) + * * 

+ (a - 2n + 2) = 0 = nu - n(n - 1 ) .  This completes the proof of the theorem. 

Example (1) If n = 2 in the theorem, one obtains the usual matrices 

for d(2,  K). 

Exercise ( 1 )  The algebra B(1, K) described in the first exercise of the 
previous section is a three-dimensional algebra of 3 x 3 matrices and is iso- 
morphic to $42, K ) .  An explicit isomorphism from the algebra g described in 
Theorem 13.1 1 to a(1, K )  is indicated by H 4 H', E + E', F +  F', where 

0 0  0 0 -2  0 1 0  

- 1  0 0 
H I =  -3, E ' =  X X], F ' =  [ 0 0 01. 

Show that the matrices of a ( 1 ,  K) describe an irreducible representation of 
s42,K) of degree 3. Find a nonsingular 3 x 3 matrix P so that PH'P-'  = p ( H ) ,  
PE'P-' = p(E) ,  PF'P-' = p(F) ,  where p ( H ) ,  p(E), p ( F )  are as in  Theorem 
13.11 with n = 3. 

REMARK (1) For the remainder of this section we will return to in- 
vestigating split semisimple Lie algebras. The notation will be as in the 
previous section so g is a split semisimple Lie algebra over a field K of charac- 
teristic 0 and h is a Cartan subalgebra ofg. We know that g = h + CUELag(cc) 
as a vector space direct sum where W denotes the nonzero roots of g and each 
root space g(a) is a characteristic space. We wish to find a subalgebra of g 
isomorphic to s42, K). To find such a subalgebra we can use Proposition 
13.9(c) that says that for any XEg(a) and YEg(-a) we have [XY] = 

Kill(X, Y)H, where Kill(H, H,) = a ( H )  for all H E h. 

Proposition 13.12 With the notation as above we have: 

(a) a(H,) = Kill(H,, H,) # 0 for each a E 9; 
(b) the dimension of g(a) is 1 for each a E W; 
(c) if we define h(a) = [g(a)g( -a)] = KH,, then h(a) + g(a) + g( -a)  is a 

subalgebra of g isomorphic to s42, K). 
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PROOF (a) Suppose for a fixed a E W we have a(H,)  = 0. Then choose 
any X E  g(a), Y E  g( -a)  so that Kill(X, Y) = 1 .  Notice [ H a  XI = a(Ha)X = 0, 
[ H a y ]  = 0, [ X Y ]  = H a .  Thus H a ,  X ,  Y span a three-dimensional nilpotent 
subalgebra of g and ad H a ,  ad A', ad Y span a three-dimensional nilpotent 
(and solvable) subalgebra of g l (g ) .  Since ad Ha = [ad X, ad Y ]  and 
[ad H a ,  ad A'] = 0, we have by Lemma 12.34 that ad Ha is a nilpotent 
linear transformation. By Proposition 13.10, ad Ha is a diagonalizable linear 
transformation. A linear transformation which is both nilpotent and diago- 
nalizable must be 0 so ad Ha = 0. This clearly contradicts the semisimplicity 

(b) and (c) For a fixed a E W choose any X E g(a) and Y E  g( -a) so that 
Kill(X, Y) = 2/a(H,)  and set H = 2Ha/a(Ha).  Then [ H X ]  = a ( H ) X  = 2 X ,  
[ H Y ]  = - 2 Y ,  and [ X Y ]  = Kill(X, Y ) H a  = H so Q, the subspace ofg spanned 
by H ,  X, Y,  is a subalgebra ofg isomorphic to s42, K ) .  To complete the proof 
we must show that g(a) is one dimensional or equivalently that g( -a) is one 

dimensional. 
Suppose the dimension of g(-a) is greater than I ,  then choose some 

0 # Z Eg( -a)  with KilI(X, Z) = 0; note the proof of Proposition 13.7(b). 
Then 

(ad X ) Z  = [ X Z ]  = Kill(X, Z ) H ,  = 0, (ad H ) Z  = [ H Z ]  = - a ( H ) Z  = - 2 2 .  

This is precisely the situation described in the last part ofthe proof of Theorem 
13.1 I ,  except for an unfortunate clash of notation. We could follow the com- 
putations there to show that Z, = Z, Z ,  = (ad Y ) Z ,  Z ,  = (ad Y ) * 2 / 2 ! ,  . . ., 
2, = (ad Y)"-'Z/(n - I ) !  forms a basis for a subspace W ofg invariant under 

ad X, ad Y, and ad H .  Furthermore we can conclude from previous com- 
putations that ad H restricted to W has a matrix 

of 9. 

[ - ; - : * *  0 0  0 1  

L ( H )  = 

- 2n 

where I = ad restricted to W. On the other hand L(H)  = [L(X), L(Y)] on W, 
so that trace ; Y H )  = 0. This is a contradiction which shows that g( -a) is one- 

dimensional. 

Definition 13.13 For each a E W, let 

Ha' = 2 H a / 4 H a ) ,  

where, as before, Ha is the unique element of It such that Kill(Ha, H )  = a ( H )  
for all H E h. 
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REMARK ( 2 )  Clearly [Ha'X] = 2 X  for any X ~ g ( a )  and [Ha'Y]  = - 2  Y 
for any Y E g ( - a ) .  Given any nonzero X E g ( a ) ,  there exists a unique 
Y ~ g ( - u )  with [ X u ]  = Ha' and then Ha', X ,  Y multiplies like the usual basis 

for 4 2 ,  K). 

Definition 13.14 For any a, p E W ,  define <a, p)  = Kill(Ha, Ha). Since 
9 spans h*, the dual space of h, this definition can be extended to a symmetric 
nondegenerate bilinear form (A, p )  on h*. 

REMARK (3) Definition 13.14 can be thought of as a simplification 

of notation. Thus Ha' = 2Ha/(u,  a) ,  and from Proposition 13.9 

(Arc> = 1 ( A ,  a m ,  a> 
a € a  

for any A, p E 92. Now if the base field K is either the real numbers or the 
rational numbers, then for any p E W 

Thus (A, p )  is positive definite in  this case. 

We make a few more observations. For A E h*, let A(H) = Kill(H,, H). 
Then if A = 1 ai a, by Proposition 13.9, we have Ha = 1 a, Ha,, for A(H) = 

1 aiai(H) = 1 a, Kill(Ha,, H )  = KiII(x ai Ha,, H) and the result follows. 
Next note for A, p E h* that 

(4 P )  = Kill(H, H,,), 

for writing 1 = 1 a,a, and p = b j a j ,  we see ( A ,  p )  = 1 a ib j (a i ,  a j )  = 

aibj KiIl(lf=, , Ha> = KiII(Ha, H,,) using the preceding paragraph. 

Proposition 13.15 If a, p E W and p is not a multiple of a, then rn = 

2(a,  /?)/(a, a )  is an integer, and 8, p - a,  p - 2a, . . . , p - ma are all in 9 if 

m =- 0 and B, f i  + a ,  B + 2a, ...,/I - ma are in 9 if m <O. 

PROOF Choose X E g ( a ) ,  Y E g (  -a)  so that Ha', X, Y are a basis for a 
subalgebra ofg isomorphic to 842,  K). Now ad H a f ,  ad X, and ad Y act on g ,  
so these maps restricted to an irreducible submodule of g must have matrices 
like those of Theorem 13.1 I .  Any root space of g must also be a weight space 
in an irreducible submodule of g;  in particular, this is true for g(p). For any 

[Ha'Z] = B(2H,/(a, a>)Z = (2(a, P>l(a, a))Z = mZ. 

Thus m is a characteristic value of ad Ha'. Thus by comparing with p(H) in 
Theorem 13.1 1, m must be an integer. We are finished with the proof if m = 0. 

z E d B )  
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If m > 0, then by again examining p ( H )  we find that m, m - 2, m - 4, , . . , 
-m are all characteristic values of characteristic spaces of ad(H,') in the same 
irreducible subspace of g as g(p), in fact Z ,  (ad Y ) Z ,  (ad Y)'Z,  . . . , (ad Y)"Z,  
form a basis for these spaces, and these elements lie ing(P),g(/? - a),g(p - 2a), 

. . . , g(p - ma) as required. The same argument works for M < 0 by using 
ad X instead of ad Y. Also note exercise (4) of this section. 

Proposition 13.16 Let a,, a, , . . . , a,, E W be a basis of h* over K and let V 
denote the vector space over the rational numbers Q spanned by al, a,, . . . , 
a,,. If a, p E 9, then (a,  p)  E Q and thus (A, p )  E Q for all A, p E V. Also 
(A, p )  is positive definite on V. 

PROOF By remark (3), (p ,  p)  = caegl (D, a)' > 0 and therefore 

4/(P, P> = 4(P, P)I(P, m2 = c 4(P, co21(P, 
a e d  

which is a sum of integers squared, using Proposition 13.15. Thus (p, p)  E Q 
and since 2(a, p)/(p, /?) is an integer, (a, p) E Q. Since A, p E Vare rational 
linear combinations of elements of 9, (A, p )  E Q also. 

Now (A, p )  is positive definite on V as follows. From remark (3) we see 
for A E V, with A(H)  = Kill(H,, H) for H E h, that 

(A, A) = KiII(H,, H,) 

= c nu a ( H , ) W , )  = 1 
using Proposition 13.9, and the dimension of g(a) is 1. Thus (A, A) = 0 im- 
plies a(H,) = 0 for all a E W, which gives H ,  = 0 since W spans h*. Thus 
A =o. 

Proposition 13.17 If a, p E W and p, q are the largest nonnegative integers 
such that p + p a  €8 and /? - q a e W ,  then p -qCr,,P - (q - I)a, .. ., p +pa 
are all roots of g and 2(a, p)/(a, a)  = q - p .  

PROOF Continue the notation in Proposition 13.15 so that m = 

2(a, P)/(a, a ) .  For Z ,  E g(p + par) and Z ,  E g(p - qa), we have 

(ad H,')Z, = ( m  + 2 p ) Z , ,  

(ad H,')Z, = (m - 2 q ) Z , ,  

(ad X)Z, = 0, 

(ad Y ) Z ,  = 0. 

Both Z ,  and Z ,  can be used to generate irreducible subspaces m, and m, 
under the action of the algebra spanned by ad H a ,  ad X, and ad Y. Using 
irreducibility, these two subspaces must either coincide or have zero inter- 
sections. By checking the matrices of Theorem 13.1 1, we discover that the 
dimensions of m, and m2 are m f 2 p  + 1 and - (m - 2 q )  + I .  The sum of 
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the two dimensions is 2(p + q + l), so the spaces coincide and are in fact 
equal to g ( p -  qa) + g@ - (q - 1)a) + * * * + g(j3 + pa). Thus all /3 + ka  are 
roots for -q s k s p (with k integral). Finally, since the dimension of m1 is 
p + q  + 1, we see p + q  + 1 = m  + 2p+ 1 =2q - m +  1 so that m = q  - p  
as required. 

Exercises (2) Suppose r is the largest positive integer such that, for a 
given a E 9, we also have ra E 9. Let 

k = g( - a)  + KH,' + g(a) + g(2a) + * - + g(ra). 

Show that k is a subalgebra of g which is invariant under ad H,', ad X, and 
ad Ywhere XEg(a) ,  Y E g ( - a ) .  

(3) By considering the trace of ad H,' = [ad X, ad Y] restricted to k in 
exercise (2), show that 0, a, -a  are the only integral multiples of a that are 
also roots of g. 

(4) Show that if a E 9, r E: K, and ra E 9, then r = 0 or & 1. 
( 5 )  Consider the Lie algebra g = 9 ( W )  of example (2) of the previous 

section. Letting p =  a4 and a = a s ,  verify directly the properties in the con- 
clusion of Proposition 13.17. 

(6) Given g an arbitrary semisimple split Lie algebra as before, show 
that if a,  j?, a + /3 E W and 0 # X E g(a), 0 # Y E  g(@, then [XY] # 0. 

Proposition 13.18 Consider a semisimple split Lie algebra g over a field 
K of characteristic 0 as before. If al ,  a 2 ,  . . . , a,, E W is a basis for h* over K 
and if Yis the vector space over the rational numbers Q spanned by al ,  . . . , 
an, then W c V. 

PROOF Following the proof of Jacobson [1962], suppose /3= 
Cy=l t ,a,  E W .  We must show that each t ,  E Q. Consider the system of 
equations 

n 

I= 1 
2 0 ,  .,>/<a, 9 a,> = c ti 2(ai 9 .,>/<a, 9 a,> 

f o r j  = 1,2, . . . , n. This system of equations in t, ,  t z ,  . . . , tn has integral co- 
efficients and will have a rational solution if that solution is unique. However, 
the uniqueness follows from the linear independence of the a,'s over the 
field K. 

REMARK (4) Given g as in Proposition 3.18 and a fixed ci E 9, define a 
nonsingular linear transformation S, : V +  V by 

S,(4 = 1 - 2((a, 1>/(a, a>). 
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for all It E V. Proposition 13.15 guarantees that Sa(A) E V and at the same 
time shows that Sa(p) E W for all B E W. Thus Sa(W) = B ;  that is, S, permutes 
the finite number of elements of W. Notice also that Sa(a) = - a  and U = 

{A E VI SJ1) = It} is a subspace of V of dimension one less that the dimension 
of V. These will be properties of W and V that will be very important in the 
next chapter. 

One can consider the group W of linear transformations on V generated 
by the S,’s as a varies over the elements of 9. This group is finite because it 
can also be thought of as a set of permutations on the finite set W. Moreover 
this group actually only depends on the Lie algebra g and is called the Weyl 
group of g. 

Exercise (7) Find the Weyl groups of sZ(2, K) and 843, K). 



CHAPTER 14 

SIMPLE SPLIT LIE ALGEBRAS 

In this chapter we examine the important results on roots of a semisimple 
split Lie algebra given in Chapter 13. This leads to the study of abstract 
root systems by means of Dynkin diagrams, and we classify the irreducible 
root systems. Conversely, in the second section we construct some models of 
simple Lie algebras corresponding to the irreducible root systems. These 
algebras consist of four classical matrix types which we have previously 
considered in examples and five exceptional types. In the third section we 
discuss the inner automorphisms of these simple algebras in terms of sym- 
metries of the corresponding Dynkin diagram. 

1. Root Systems 

We now consider some of the previous results on roots and study abstract 
root systems. The Dynkin diagram of a root system is introduced, and by 
means of these diagrams we find the root systems which correspond to simple 
split Lie algebras. 

Definition 14.1 Let V be a finite-dimensional vector space over Q, the 
field of rational numbers, and let (x ,y )  be a positive definite symmetric 
bilinear form on K 

(a) A finite subset W of nonzero vectors of Vis called a root system in Vif: 

(i) 4p spans V ,  
(ii) aEWandraE4pwithtE Q , then t=  +1, 

284 
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(iii) a, B E 9, then 2(a, P)/(a, a) is an integer; 
(iv) a, B E 9, then P - 2[(a, @/(a, a)] a E 9. 

The elements o f 9  are called mots. 

such that (a, 8)  = 0 for all a E Y and p E W but B 4 9. 
(b) A root system is called irreducible if there is no proper subset 9’ E W 

(c) For each a e W define the a-symmetry of V,  S, : V +  V ,  by S,(x) = 

x - 2Ka, M a ,  dl a. 

The Weyl group W of the root system W is the group generated by the Sls  
as a varies over the roots ofW. 

Example (1) Let g be a split semisimple Lie algebra over a field of 
characteristic 0,9 is its nonzero roots, Vas in Proposition 13.18, and (A, p)  is 
the restriction of (A, p )  to V. Various propositions of Chapter 13 show us 
that W is in fact a root system in V. 

REMARKS ( I )  Many authors give a less restrictive definition of root 
systems and then prove properties (i)-(iv) in Definition 14.1(a). Our definition 
was chosen to correspond with properties already proved in Chapter 13. 
Also authors use different names for irreducible systems such as indecom- 

posable systems. 

(2) Certain properties proved for roots in Chapter 13 are obvious from 
Definition 14.1. Thus S,(W) =9 for all a E 5t; the elements of the Weyl group 
are completely determined by their action on R; the Weyl group is finite; 
and if a E 9, then -a = &(a) E 9. 

Proposition 14.2 If W c V is any root system, then there exist subspaces 
V,  c V with V =  V, + V2 + -.. + V,,, as a vector space direct sum, and 
(x, y) = 0 if x E Vi ,  y E V,, i # j .  Furthermore R =W, u W2u.-. u W,,, as a 
disjoint union where @, = W n V, is an irreducible root system in V,. Thus to 
determine all root systems, we need only find the irreducible ones. 

PROOF If W c Vis not irreducible by definition, W = 9, u W2, a disjoint 
and orthogonal union. Now set V, as the span ofW,, i = 1,2, so V, and V, 

are orthogonal and V =  V, + V, . Clearly W i  is a root system in V, . Now repeat 
as often as necessary. 

Proposition 14.3 For any root system W in V and any a E W, we have 

(S,(X),S,dv>) = ( x ,  y )  for all x, y E V. 
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PROOF From the definition we have 

PROOF By extending the base field of V to the real numbers R, we can 
consider 9 to be a subset of R'", where m is the dimension of V and (x, y )  

on Vis just the restriction of the usual inner product on R". If we let 8 denote 
the angle between a and 8 thought of as vectors in R", we have 

COS' 8 = (a, 8)2/(a, 8) 

so that N(a, / l)N(p, a) = 4 cos' 8 5 4. Since N(a, 8) and N(8,  a) are both 
integers, - 4 5 N(a,  8) 5 4. We must rule out the possibility that N(a, /?) = 

f 4. Assume N(a, 8) = 4. Then N(B, a) = 1 and cos 8 = 1. Thus (a, a) = 

2(a, 8) = 4(8,8). However, then 0 = 0 and (a - 28, a - 28) =O so that a = 28, 
a contradiction. Similarly if N(a, 8) = - 4, then 0 = R and a = - 28, again a 
contradiction. 

Examples (2) The following is a list of the possible root systems when 
V is two-dimensional (see Fig. 14.1). In each case we describe a V c  RZ, 
draw a graph, and assign to the root system a certain " type." The notation 
for the types follow a scheme that will be explained later in this section; also 
see the work of Samelson, [1969, p.471. 

(i) Type A, x A,, V =  Qz, a = (l,O), P =  (0, I), and W ={+a, kb}. 
(ii) Type A,, V =  {(s, 3'4) : s, f E Q}, a = (l,O), 8 = (- 1/2, 3'/'/2), 

andB = {+a7 &B,+(a +B) ) .  
(iii) Type B,, V = Q z ,  a=(l,O), P = ( - l , I ) ,  and W = { + a ,  */3, 

*(a + 81, f(2a + 8)). 
(iv) Type G,, V =  {(s, 3'/*t : s, t E Q}, a = (1,0), 8 = (- 3/2,3'/'/2), and 

43 = {*E, k8, +_(a + 81, 4(2a + B),  f (3a  + 81, +(3a + 28)). 

Notice that the root system of type A, x A, is not irreducible but the other 
three root systems are. 

(3) Suppose we wish to compute the Weyl group of the above root 
system of type Gz . The short (or long) roots are the vertices of a hexagon. 
It is clear that the Weyl group W must be a subgroup of the dihedral group 
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A3a+2P 

P 3a +P 

1 

(iii) ( i V )  

Fig. 14.1. Root systems. (i) Type. A l  x A l  . (ii) Type A 2 .  (iii) Type B2. (iv) Type C2.  

of order 12 consisting of all rotations and reflections of this hexagon. We see 

SbS,+a(a) = Sa(20r + j?) = 2a i- p and SbSa+b(2a + j?) = Sb(a) = a + j?, so 

SaSugb rotates the hexagon counterclockwise 60 degrees. Thus W is clearly 
the entire dihedral group of order 12. 

Exercises ( I )  Find the Weyl groups of the other three root systems in 
example (2) above. 

(2) Show that there are seven possibilities for the angle B between 
roots a and p # +a of a root system, namely 8 = n/6, 4 4 ,  4 3 ,  4 2 ,  2nJ3, 
344, 5x16. Show that all of these angles occur in the graphs of the toot 

systems of example (2). Show that ifN(a, p) = +2, then N u ,  a) = & l ,B = n/4 
or 3~14,  and (a, a) = 2(p, p). Also if N(a, j?) = f 3, thenN(P, a) = & 1 , O  = n/6 
or 5 ~ 1 6 ,  and (a, a) = 3(p, p). Finally if N(a,  p) = N(P,  a) = & 1, then 8 = n/3 

or 2n/3, and (a, a) = (PI 0). 
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Proposition 14.5 If a and /3 are two roots in a root system W with/? # f a  
and (a, /3) > 0, then a - E W. 

PROOF Since (a, f l )> 0 implies N(a, P)  > 0 and NU, a) > 0, exercise (2) 
implies N(a, /I) = 1 or N(B, a) = 1. If N(a, /3) = 1, then S&a) = a - N(a, /3)P = 

a - /3 E 9. If N(B, a) = 1 , then - SJP) = - + NU, a)a = a - /I E W, recalling 
from remark (2) that a E W implies -a E 9. 

Proposition 14.6 If a, f l  E 9, /3 # f a ,  and p and q are the largest integers 

(a) B + ka E W for all integers k with -q  ~k 5 p ;  

such that f l +  pa E W and P -  qa E 9, then 

(b) N(B, a) = 2(ay P)l(a, a) = 4 - P. 

PROOF (a) The result is obvious unless p> 1 or q> 1. Assume that 
p > 1. Then - 3 5 N(B, a) = 2(a, P)/(a, a )  5 3 so that - +(a, a )  5 (a, b) 5 
3 (a, a), and fork 2 2 we have (a, /3 + ka) = (a, P )  + k(a, a)  > 0. By Proposition 
14.5, (/I + ka) - a = /3 + (k - 1)a E W if P +  ka E 9. Thus P, /3 + a, /3 + 
2a,. . . ,fl +pa E 9. By considering -a instead of a, we find /3 - qa, P -  
(q - l)a, . . . , /3 E 9. 

(b) Since 

Sa@ + ka) = f i  + ka - 2[(8 + ka, a)/(a, a)]a = /3 - (k + N(!, a)).. 

we must have Sa(B +pa) = P -  qa and /3 - ( p  + N(/3, a))a = P -  qa. Thus 

N(B, a) = q - p  as required. Notice that this is precisely the result in 
Proposition 13.17 proved for root systems of split semisimple Lie algebras. 

Definition 14.7 (a) A subset A3 CW is called a root system basis for 
the root system W in V if W is a vector space basis for V and, for any PEW 
we have P =  1 ;= mi ai where 3 = {a1, az,  . . . , a,,}, and either all the mis 
are nonnegative or they are all nonpositive. 

(b) A root system basis A3 CW is said to be irreducible if there is no 
nontrivial disjoint union I = WluA3, with (a, /3) = 0 for all a E W 1  and 

P E. g z -  

Proposition 14.8 Every root system possesses a root system basis. 

PROOF Given the root system W in V, choose any vector space basis 
for V from W, say {Pi, Bz,. . . ,fin}. Any /3 E W can be written uniquely as 
f i  = C;=l t i p i  with t ,  E Q. We define a total ordering of W by prescribing 
x > 0 for x E V if the first nonzero coefficient of x = tipi is positive, 
and for a, /3 E W set a > /3 if a - /3 > 0. The usual properties for inequalities 
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now hold. Define& = {a E W : a > 0} andW- = { - a  : E 9') = {a E W : -a  
> 0). Finally define W = {a E 9' : for all /3, y E a+, a # p + y}.  The proper- 
ties of the next lemma show that W is a root system basis for 9. 

Lemma 14.9 With the notation as above, we have the following. 

(a) W spans K 

(b) If a, fi E W and a # j3, then (a, 8) 5 0. 
(c) W is a vector space basis of K 
(d) If 1 = {a1,.  . . ,an} and /3 E 9+, then either /3 E W or there is some 

(e) If p EW', then there exist positive integers mi for i = 1,. . . ,n with 

ai E W with /3 - ai E 9'. 

f i  = CYZ1 m i a i .  

PROOF (a) It suffices to show that W spans 9'. Suppose a E 9' but 
is not in the span of W, Then a = /3 + y where /I, y €9'. Now p > a, y > a,  
and either p or y is not in the span of 8. Thus by repeating this process we 
find there is no smallest element ofW+ not in the span of W, a contradiction. 

(b) If a, p E W ,  a # p, and (a, 8) > 0, then by Proposition 14.5 either 
a - /3 E 9' or p - a E 9'. However, then either a = (a - p) + p with p, 
a - f l  E W+, or p = (p  - a)  + a with a, p - a E W', a contradiction. 

(c) We must show that the vectors of W are linearly independent. 
Suppose they are not. Then we can write riai = 0 where each ai E W, 
and the ai's are ordered so that t i  > 0 for each i 4 k, t i  4 0 for i > k and some 
k 2 1. Then 

which is a contradiction. 
- ai $a+ for 

each ai E W. If for some ai we have j? - ai E 4&-, then ai = (at - p) + p with 
(ai - p), p E W+, a contradiction. Thus p - ai q! W for all ai E 1, and by 
Proposition 14.5, (p, ai) 4 0. Using this fact and (b), we can follow the proof 
of part (c) to show that {p, al ,  . . . , a,,} is linearly independent, a contradiction. 

(e) This follows easily by induction using (d). Thus if p # W, then there 
exists ai E W with /? - a,  E 9'. Since p - ai < p, we can assume by induction 
that p - ai = C nkak  with nk positive integers; this gives the results. 

(d) Assume p is a root such that p E R+, /? q! 93, and 

Proposition 14.10 If W is a root system basis for a root system W in V, 

then W is irreducible if and only ifW is irreducible. 
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PROOF Suppose B is not irreducible so W = Wl u B, with (a, 1) = 0 for 

a E W, and fl E g,. Let W i  be the roots i n 9  spanned by B i ,  i = 1,2. Then we 
claim that W =W1 u 9, , for suppose a E W but a # W 1  and a 4 9,. Then by 
Lemma 14.9(d) we can assume that a E W with a = af + fl, ai E a,, and fl 
in the span of $?if,. Now S,,(a) = Sa,(ai + /I) = -a ,  4- /I E W, and this contra- 
dicts the definition of a root system basis. Conversely, suppose W =Wl u 4e2 
is not irreducible; then = $?ifl u B2 where Bi = 9, n W. This shows that 

is not irreducible. 

Example (4) For each of the root systems in example (2), the notation 
has been chosen so that W = {a, /I} forms a root system basis. 

Dewtion 14.11 Given a basis W = (al, a,,. . . , a,} for a root system W 

(a) The matrix (N(a , ,  a])) is called the Cartan matrix of the root system% 
(b) If a = !=, miai E W', then c!=l mi is called the height of a 

(with respect to 9). 
(c) Two root systems W i  in Vi , i = 1,2, are said to be isomorpbic if and 

only if there exists a nonsingular linear transformation T from Vl onto V, 

such that T(W,) = W z  and (Tx, Ty)  = c(x, y) for all x, y E Vl where 0 < c E Q 
and (x, y) is the bilinear form for Vl and <x, y )  is the form for V,. 

Example (5)  The Cartan matrices of the root systems in example (2) are 

in V, let N(cr, 1) = 2(a, /I)/@, 1) for any a, fl E W as in Proposition 14.4. 

Also notice that the last three root systems have unique roots of maximal 
height. 

REMARK (3) Notice that every Cartan matrix has 2's down the diagonal 
and negative integers or 0's elsewhere. Also notice that an isomorphism of 
root systems takes a basis of the first onto a basis of the second in such a way 
as to preserve the Cartan matrix. 

Proposition 14.12 (a) All the roots of a root system 9 can be determined 

(b) Two root systems with bases such that their Cartan matrices are 

from a basis B for W and the Cartan matrix for 9 with respect to W. 

identical are isomorphic root systems. 

PROOF (a) We will proceed by induction on the height of roots to 
find all roots ofW+. The roots of height 1 are just those in W. Assume we 
know the roots of W+ of height k and we wish to find the roots of height k + 1 .  

By (d) of Lemma 14.9, every root of this height is of the form a + ai with 
a E W +  of height k and at E 1. The Cartan matrix allows us to compute 
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N(a, ai). By Proposition 14.6(b), N(a, ai) = q - p where a + ka ,  E W for 
- q  I k I p. By the induction hypothesis q is known, so we are able to deter- 
mine p and decide whether a + ai E 9 or not. 

(b) This follows easily from (a). 

REMARK (4) At this stage we have not shown a given root system has 
the same Cartan matrix up to a permutation of rows and columns no matter 
what basis is chosen. This is in fact true but will only become clear once we 
show that essentially different Cartan matrices correspond to root systems 
of nonisomorphic Lie algebras. 

Definition 14.13 The Dynkin diagram A of a root system W in V with 
basis 1 = {al , .  . . , a,,} consists of a graph in the real space RZ with n vertices 
labeled with a,, . . . , a,, and N(a, ,  aj)N(aj ,  ai) line segments joining the vertex 
of ai to the one aj . Finally if N(a, j.?) # 0 and (By 8) > (a, a), draw an arrow 
on the line segments from the vertex of j.? to the vertex of a. 

Example (6) The accompanying graphs are Dynkin diagrams of the 
four root systems of example (2). 

Q 0 0-0 

a P '  a B '  a 

Proposition 14.14 The Dynkin diagram A of a root system W in Y with 
basis 1 = {a1,. . . , a,,} completely determines the corresponding Cartan 
matrix ofW. 

PROOF We must merely show that N(a,,  aj)  can be determined for i # j .  

If vertices ai and a j  are not joined, then N ( a l ,  a j )  = 0. If they are joined 
by a single line, then N(ai ,  a j )  = N ( a j ,  ai) = - 1 and (a l ,  ai)  = (aj  ,aj). If 
N(a, ,  aj)N(a,,  aj)  = 2, then the roots cannot have the same length with the 
longer being indicated by the arrow. Assume (a j ,  aj)  > ( a i ,  ai). Then 

-N(a i ,  aj)  = -Wl, aj)/(aj, aj) < -2(ai9 aj)/(ai, ail = - N(aj ,  ail, SO 

N ( a i ,  ajJ = - 1 and N(aj , ai) = - 2. Finally if N(ai ,  aj)N(aj ,  ai) = 3 and 
( a j ,  a j )  > (a i ,  ai), then a similar argument yields N(ai , aj) = - 1 and N(a, , at) 

= -3 .  

REMARK (5) We have thus reduced the problem of finding all irreducible 
root systems to that of finding all Dynkin diagrams which (by Proposition 
14.10) must have each vertex joined to at least one other vertex; that is, the 
diagram is connected. 
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We shall show at the end of this section that there are only four infinite 
classes and five exceptional cases for Dynkin diagrams arising from irreducible 
root systems. These diagrams are listed in Proposition 14.15, and the notation 
used to label the diagram is historical with subscripts denoting the number 
of vertices and the letter the “ shape” of the graph. 

Proposition 14.15 The list of Dynkin diagrams arising from irreducible 
root systems {a I ,  u 2 , .  . . , a,,} are precisely the accompanying. 

o-o-. . .-0 / O U n  , 

“an-1 
an -A TypeD,,, n24 

a1 a2 

Type E6 
0-0-0-0-0 

a1 a2 a3 a4 a5 ’ 

0-0-0-0-0-0 

a1 a2 a3 a4 a5 ’ 

i 
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Example (7) Let a, = ( - 1,0,0,0), a2 = (3,4, 4, $1, a3 = (0, - 1,0, O), 
a4 = (0, 0, - 1, 0), and let W be the system of roots 

+a i ,  i = 1, 2, 3, 4 ; &(a2 + ai), i = 1, 3,4;  

&(al + a2 + a3) ,  

+(al + a2 + a3 i- a4), 

+(a1 + a2 + a4), +(az + a3 + a4), 

+(a, + 2a2 + a3 + a4). 

Then9 is an irreducible system of roots with A3 = {a,, a2, a3, a4} as a basis. 
The Cartan matrix and Dynkin diagram are 

2 - 1  0 0 
- 1  2 - 1  - 1  

0 - 1  2 0 [ 0 - 1  0 2 

and 

0-0 / O  a4, 

QI 

The Dynkin diagram is of type D4. 
We now prove Proposition 14.15 in many steps. First we shall find the 

diagrams without the arrows and put them in later; we shall still call these 
diagrams without arrows " Dynkin diagrams." Thus if W = {al ,  . . . , a,} is a 
root system basis, we replace the ai by the unit vector Xi = ai/llaill where 
llailJ is the length of ai determined by the form (x, y )  on Vconsidered as in R"; 
note Definition 14.1. Consequently we study the set {X,, . . . , X,} satisfying 

(Xi, X,) = 1, (Xi, X,) 20, 4(X,, X,IZ = 0, 1, 2, 3 (*I 

for i # j  and i, j = 1,. . . , n. These conditions come from Lemma 14.9 and 

Proposition 14.4 using ai = (Jai(JXi so that N(a, ,  a,)N(a,, a,) = 4(Xi, X,)'. 
The corresponding Dynkin diagram, still denoted by A, consists of the 

points X,, . . . , X, in R" as vertices with the number of lines joining Xi  and X, 

given by : X, and Xi are connected by 4(Xi, Xi)' = 0, 1 ,  2, or 3 line seg- 
ments. Since we want to find the irreducible root systems, we see from 
remark (5) that the corresponding diagrams must be connected; that is, for 
points U, V in A there is a sequence U1 = U, U2,. . . . , U, = V in A so that 
U, and U i + ,  are connected in the diagram [note Proposition 14.6 and 
exercise (I), Section 14.21. 

We now determine the connected diagrams using the following steps. 

(1) Let A be a Dynkin diagram corresponding to the vectors X,, . . . , X, . 
Let A' be the graph obtained by omitting a number of points and the lines 
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joining these points. Then A’ is a Dynkin subdiagram corresponding to the 
remaining vectors X i , ,  . . . , X , .  

This follows from the definition of a Dynkin diagram. For example, 

becomes 

0-0 0-0-0. 

Using conditions (*) we also have the following. 

(2) A correspondence between diagrams and values of inner products 
is given by 

( X i ,  Xi) = -2192, 0- 

xt Xi’ 

(Xi, X j )  = - 3’/’/2. 0-0 

xi x,, 

(3) There are no closed polygons. 

PROOF Suppose X,, . . . , Xk are the vertices of a polygon where X i  is 
connected to Xi+, for 1 5 i s k - 1 and xk is connected to X , .  Then set 
X = C X ,  , and use (2) to compute 

( X ,  X )  = c (Xi, Xj) so. 
Thus (X, X )  = 0 so that C X, = 0. This contradicts the linear independence 
of X , ,  . . . , X ,  over Q. 

(4) There are at most three lines coming from a vertex. 

PROOF Let X be a vertex with Y,,  ..., Yk connected to X .  Since there 
are no closed polygons, no two Yi are connected. Thus ( Y i ,  5) = 0 for i # j .  

In the vector space spanned by X ,  Y, , . . . ,Y,, we can choose a vector Yo so 
that (Yo, Yo) = 1 and ( Y o ,  Y,) = 0 for i = 1, . . , , k. We also have ( X ,  Yo) # 0, 
otherwise X is dependent on Y o ,  Yl ,  . . . , Y, which implies X is dependent on 
Yl,  . . . , Y,,  a contradiction to the choice of vertices in a diagram. Since 
X = (X, Yi )Y ,  is an orthogonal representation of the unit vector X ,  we have 

I = (X, X) = ( X ,  Yo)z + ( X ,  Y,)’ + ’ * * + ( X ,  Y,)’ 

> ( X ,  Y,)’ + ... + ( X ,  YkY. 
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However, 4 ( X ,  Yi)’ is the number of lines joining X and Yi so that 4 >  
4 ( X ,  Yi)’ which is the total number of lines coming from X .  

( 5 )  The only connected Dynkin diagram in which three lines join two 
vertices is of type Gz . 

PROOF If this were not the case, there would be more than three lines 
coming from one vertex, contradicting (4) .  

We now consider the remaining cases where one or two lines join two 
vertices. Using (4),  we note that the accompanying graphs are not Dynkin 
diagrams : 

This can be be generalized as follows. 

(6) Let X 1 , X z , . .  ., X i ,  X i + ,  ,..., X i + k  ,..., X ,  be a set of vectors 
satisfying condition (*) and let A be the corresponding Dynkin diagram. 
Suppose the vertices X i ,  X i + , , .  . . , Xi+k are such that X i + p  is connected 
to X i + p + ,  by a single line forp = 0, .  . . , k - 1 and let X = xi=,, X i + , , .  Then 
the vectors X l , ,  . . , X i - , ,  X ,  X i + k + l , .  . ., X ,  satisfy condition (*) and the 
corresponding Dynkin diagram A‘ is that of the original diagram except all 
the X i , .  . . , Xi+k have been replaced by the vector X. 

PROOF Since X i + p  is connected to Xi+ , ,+ ,  by a single line, we have 
2 ( X I + , ,  X l + p + l )  = -1. Sincethereareno closed polygons, ( X i + p ,  Xi+,,) = 0 
for p < q unless q = p + 1. Thus we can compute 

k 

p . 4 = 0  
( X ,  X )  = C ( X i + p ,  Xi+ , , )  

= k + 2  1 ( X i + p , X i + q )  

= k + ( k - l ) = l  
P < 4  

to obtain X as a unit vector. Now let Y be a vector in A with Y # Xi+p. Then 
since there are no closed polygons, Y is connected to at most one X i + ,  for some 
r. Thus (Y,Xi+, , )=0 if p f r  which implies (X, Y ) = c ( X i + p , Y ) =  
( X i + r ,  Y ) .  Therefore 4(X ,  Y)’ = 4 ( X i + , ,  Y)’ = 0, 1,2,3;  that is, conditions 
(*) are satisfied for X , ,  . . . , X i -  1, X ,  X i +  k +  ,, . . . , X ,  and has Dynkin diagram 
as described. 
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REMARK (6) In the following examples, the diagram A' is obtained from 
A by shrinking the vectors X i , .  . . , X i + k  (together with the single line joining 
them) to a single point X. If the accompanying graphs were Dynkin diagrams 
A, then they can be shrunk to Dynkin diagrams A' of the form following (5).  

,.-c-3-. . '-0-0-09 

However, these small graphs are not Dynkin diagrams so the large graphs 
are not Dynkin diagrams. 

(7) The only connected Dynkin diagrams are the accompanying ones. 

G2 9 
0-5 

I 

i o-. . .-o-----o-o-'. '-0-0 0- 

PROOF If a connected Dynkin diagram A has three lines joining two 
vertices, then A is of type G2. If A has two lines joining two vertices, then, 
from remark (6), A is of the second type above. Finally we have the case 
where any two given vertices have one line joining them. Thus if there are 
two endpoints, we obtain a diagram of type An . If there are three endpoints, 
we obtain the third diagram. By remark (6) there cannot be four or more 
endpoints. 

(8) If a connected Dynkin diagram has three endpoints, then it is one 
of the accompanying. 
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PROOF The third diagram in (7) is the only possibility, and one of the 
branches must contain only one vertex (besides the center vertex). If this is 
not the case, we use step (1) to obtain the accompanying subdiagram where 

0-0- 0- 0-3 

‘1 y2  y3  y6 y7 

{Y, ,..., Y7}c{X, ,..., X,}.LetX= Y , + 2 Y 2 + 3 Y 3 + 2 Y 4 +  Y , + 2 Y 6 +  Y 7 ,  
and using step (2)  we compute ( X ,  X) 5 0. Thus X = 0 which contradicts 
the linear independence of Y,, . . . ,Y7. Next a subdiagram of the form shown 
in the accompanying figure is impossible. Otherwise, let 

X = Y, + 2Y2 + 3Y3 + 4Y4 + 2Y5 + 3Y6 + 2Y7 + Y, 
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and we obtain (X, X) < 0 which contradicts the independence of Yl, . . . , Ys . 
Thus only two vertices can occur at one end. 

Finally the form of the accompanying subdiagram is impossible. Other- 

I" 
I 

0̂-0-3-0-0-0-0 

yl y2 YS y4 y5 u6 y9 

wise, X = Yl + 2Y2 + 3 Y3 + 4Y4 + 5Y, + 6Y6 + 3Y7 + 4Y8 + 2Y9 yields 
(X, X) I 0  and a contradiction. Thus the possibilities where one branch has 
one vertex (the endpoint) and the other branches have two or more vertices 
are of type E 6 ,  E7, Es . When two branches have only one vertex (which must 
be an endpoint) we obtain a diagram of type D,, . 

(9) The Dynkin diagrams which contain two vertices joined by two 
lines must be one of the accompanying. 

PROOF From step (7) we must have the accompanying diagram where 

the Y's and Z's are just a relabeling of the original X's. Let Y =  Cf=, iYi 

and Z =  x:=IkZk. Then using 2 ( ~ , ,  Y i + l ) =  - I  = ~ ( Z , , Z , + ~ )  and the 
fact other obvious vertices are not joined, we compute 

( Y ,  Y) = C ( i Y i , j ~ ,  
i .  j 

= p 2  - p(p - 1)/2 = p ( p  + 1)/2 

and 
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Next using certain vertices are not connected and step (2), we compute 

(Y ,  2) = C ik( Y i ,  Z,) 
i .  k 

= pq( Yp , Zq) = -pq2"2/2. 

From Schwarz's inequality (and the independence of Y and Z) ,  

p2q2/2 = ( Y 7 a 2  < II YI12112 II = [P(P + 1)/21/[q(q + 1)/21, 

and since p q  =- 0 we obtain 2pq < (p + I)(q + I )  ; that is, (p - I)(q - 1) < 2. 

Because p and q are positive integers, the only possibilities are p = 1 with q 

arbitrary, q = 1 with p arbitrary, and p = q = 2. This gives the desired 
diagrams. 

We now put the arrows on the diagrams replacing the unit vectors X, 
by the ai = IlaillXi for i = 1 , .  . . , n in the root system basis 33. Since multiply- 
ing every ai by a nonzero real number does not change the situation, we assume 
one of the ai  is a unit vector which we choose as an endpoint. Also note that ai 

and aj are connected by the same number of lines as X i  and Xi. Thus if 
a, p E W are connected by one line 

N ( a ,  P W ( B ,  a) = 1, 

and since N(a,  p) and N ( p ,  a) are negative integers, we have 

- 1 = N(a,  = 2(a, S)/(PI B) = N(B, 4 = 2(P, a)/(a, 

which implies (a, a) = -2(a, p) = (p, p). Thus there are no arrows on the 
Dynkin diagrams o f  type A,, , D, , E 6 ,  E, , E8 . 

If a, p E 93 are connected by two lines, then N(a,  p ) N ( p ,  a) = 2 which gives 
two possibilities : N(a ,p )  = - 1,  N(p ,a )  = -2 orN(a ,p )  = -2, N(p,a) = - 1 
so that (p, p)  = 2(a, a) or (a, a) = 2(p, p) .  Thus depending upon the choice 
of endpoint as a unit vector and using the results above for vertices joined 
by a single line, we obtain diagrams of type B,,, C,, and F4 (since F4 is a 
symmetric graph, the choice of unit vector is immaterial). Similarly we obtain 
the diagram of type G2 ; this completes the proof of Proposition 14.15. 

We have followed Jacobson [I9621 and Samelson [1969] for the above 
proof and other variations are by Bourbaki [1968, Chap. 61 and Hausner and 
Schwartz [1968]. A method for choosing the vector X with ( X , X )  < 0 is 
given by Samelson [1969]. However with a little practice, it is easy to see how 
to make a guess for the desired coefficients; see exercise (6). 

Exercises (3) 
diagram is of type A , .  

Find a root system in R3 of type A , ,  that is, whoseDynkin 
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(4) I f 9  is any root system and a E 9, set a’ = 2a/(a, a). Show that Sat = S, 
and that N(a’, p’) = N ( p ,  a). Let W* = {af : a E W} and show that W* is a root 
system called the dual system of 9. If LB is a basis for 9, show that A?* = 

(af : a E A?} is a basis for@*. Finally show that i f 9  is of type B, , thenW* is 

of type C, and conversely. 

(5 )  Complete the determination of the arrows in the diagram of type G2. 
(6) (i) Show directly, without the above classification, that a diagram 

of type G, is not contained in any larger connected diagram. [Hint : Assume a 

diagram 

with three vertices X,, X,, X3. Then consider X = rX, + sX, + rX, and 
use step (2) to find r, s, t so that (X, X) SO.] 

(ii) As above show directly that the accompanying diagrams are impos- 
sible. 

o=o-0 

2. Classification of Split Simple Lie Algebras 

In this section we will construct split simple Lie algebras corresponding 

to the Dynkin diagrams of type A,, B, , C, , D,, G,, and F4 . Let g denote a 
split semisimple Lie algebra over a field K of characteristic 0, h a Cartan 
subalgebra, W the set of nonzero roots with A its Dynkin diagram, and we 
continue the previous notation. 

Proposition 14.16 The algebra g is simple if and only i f 9  is an irreducible 
root system. 

PROOF Let a, fl E 9. If (a, /I) = Kill(H, , H,) = 0 then [H, YJ = P(H,)Y = 

(a, P)Y = 0 for YE g(p). Suppose W is not irreducible so W =W, u W, with 
(a, p) = 0 if a E W,, p E 9,. Set hi as the span of all Ha with a E 9, andg, = h, 
+ xasgl, g(a), i = 1,2. From above it is clear that [h, g,] = 0 and [h, gl] = 0. 
Now consider X E g(a), YE g(p) with a E W1 and p E 8,. Since (a, a + p) = 

(a, a) # 0 and (8, a + p) = (8, 8)  # 0, we have CL + j3 4 9 so [Xu] = 0 and 
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[ g l  g 2 ]  = 0. Thus g = g 1  @ g 2 ,  a direct sum of ideals. The argument is revers- 

ible if g is not simple. 

Exercise ( I )  Show g is simple if and only if the Dynkin diagram A 
(corresponding to 9 and W) is connected. 

Proposition 14.17 Let g be a split semisimple Lie algebra with nonzero 
root system% and let W be a root system basis for W. For each ai  E a, set 

Hi = H i ,  = 2H,,/(ai, ai) .  

Choose any 0 # X i  Eg(ai)  and then let Yi E g ( - a i )  be the unique element 
such that [ X i Y i ]  = H i .  Now let 

d = { H , , X , , Y ,  : i = 1,2,. . . ,n}, 
where n is the dimension of h (and which equals the number of roots in a). 
Then 

(a) d generates g ; 

(b) d is a part of a basis for g such that all the basis elements not in d 
can be determined from A as well as all of the structure constants relative 
to this basis; 

(c) The structure constants of the basis above are all rational numbers 
and any such basis for g is called a Weyl basis. 

PROOF We will show all of the properties ofthe proposition simultaneous- 
ly by showing by induction on the height of roots that we can step-by-step 
add basis vectors from higher root spaces which continue to satisfy the desired 

properties. 
First a basis for root spaces of height 1 is contained in d.  We can compute 

explicit 1 y 

[Hi  Hj]  = 0, 

[Hi X j ]  = N(aj 9 ai>Xj 9 

[ H i  y i ]  = - N ( a j ,  ai)yi,  

[ X i  Yil = H,, 
[ X , y i ] = O  if i p j .  

Also [ X i X j ]  and [ Yi 51 are in higher root spaces. Here the root space g ( - a )  
will always be considered at the same time as g(a) .  Notice that the nontrivial 
structure constants are entries of the Cartan matrix and ca;. be determined 
from the Dynkin diagram A. 

Next assume for all a E .!A'+ with a of height k or less that X, E g(a)  and 
Y, E g( -a )  have been defined so that for any product of these elements 
which also lies in such a root space, all of the properties of the proposition 
hold. For any /l E 9' of height k + 1, we can write p = a i  + a with ai E 
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and a of height k using Lemma 14.9. Define X, = [X,XaJ and Ys = [Yi Y,]. 
Suppose in a similar manner y = ofi + 6 .  We can now list some products which 
shows that the products at this height also satisfy the required properties. 
Thus using the Jacobi identity, we obtain 

[x, ypI = [Xi[Xa[Yi YJI] + [[XJYi YaIIXa] 

= [XJXa YtIYJj + [Xi[yi[Xa YaII] + N(a,  aJIXa Ye1 

+ [[yi[XiYaIIXa]* 

There is a similar formula for 

w, 51 = “X,X,I[Yi Yul] 9 

[Hi X,I = N Y ,  a,)X, * 

[Xi[X,XaI] = [xj[XiXeI] + {[X,XjIXa], 

This completes the proof. 

The following is an easy consequence of the preceding result: 

Corollary 14.18 For any split simple Lie algebra g over a field K of 
characteristic 0, there exists a subset go c g such that go is a split simple Lie 
algebra over Q. The root system of go is the same as that of g, and g E 

90(m = 90 @Q K. 

Theorem 14.19 Given a field K of characteristic 0, then: 

(a) there exist split simple Lie algebras which have root systems deter- 
mined by each of the Dynkin diagrams listed in Proposition 14.15; 

(b) two such algebras are isomorphic if and only if they produce the 
same Dynkin diagram. 

(c) the algebras are described in Table 14.1 where we use the notation 
d ( n ,  K) = sl(n + 1, K), O(n, K), W(n, K), 9 ( n ,  K) for the algebras defined in 
Chapter 13. 

We separate the discussion of Theorem 14.19 into several parts and give 

TABLE 14.1 

Root system Model Rank Dimension 

n 2 1 
n 2 2  (2n+ 1)n 
n 2 3  e n +  1)n 
n 2 4  (2n- 1)n 

6 78 
7 133 
8 248 
4 52 
2 14 

(n + 2)n 
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some examples. First we assume part (a) and now consider (b). Let g1 and g2 

be two split semisimple Lie algebras and suppose 4 : g1 + g2 is an isomor- 
phism. Then Cartan subalgebras, weight spaces, etc., of g1 map onto a 
corresponding item in g 2 .  Also if Kill,(, ) denotes the Killing form in g i ,  

then Kil12(4X, 4 Y )  = Killl(X, Y). To see this we just note that from 4[Xu] = 

[ $ J X ~ Y ]  that ad #X = 4 ad X 4 - l .  Now take the trace according to the 
definition of the Killing form. The Dynkin diagrams are determined by the 
number of roots (which is the same for g1 and g2) and the numbers Ni(a, /I) 
for i = I ,  2 using Proposition 14.14. These numbers are in turn determined 
by the Killing forms which are equal as above. Thus the Dynkin diagrams 
are the same up to possible relabeling. 

Conversely, suppose g1 and g2 have the same Dynkin diagram. Then 
Proposition 14.17 applied to the corresponding sets of generators d, and d2 
show that we obtain the same structure constants for a basis determined by 
d1 and d2 .  Choosing such a basis, we see that the linear map which assigns 
the corresponding basis elements is an isomorphism; also note the proof of 
Samelson [1969, p. 521 for a similar argument. 

Example ( I )  When part (a) is proved, we shall see that g = d ( 3 ,  K) 
has a root system of type A , ,  To illustrate the details of constructing g 

solely from the Dynkin diagram, we apply Proposition 14.17. First we have 
the accompanying Dynkin diagram and the Cartan matrix 

0-0 

a1 a2 

where N(a,,  a2)  = N ( a 2 ,  a l )  = - 1. Also N(al ,  a2)  = q - p  where a1 + ka, E W 
for -9 I k I p .  However q = 0 so p = 1 and a1 + a2 E W. We can assume 
(a1, a l )  = ( a 2 ,  a2) = 1 so ( a l ,  a2) = -+, and we can compute (a1 + a2 ,  a1 + a2) 

= 1, (a l  + a 2 ,  a l )  = (a1 + a2 ,  a2) = 4. This gives 

N(al + a 2 ,  a l )  = N(al + a2,  a2) = 1. 

Thus 9 = I and p = 0 in these cases, so 2a1 + a2 $9, al + 2u2 4 9. Let 

{Xl, H, ,  Y,, X2 ,  H 2 ,  Y2} be as in the proof of Proposition 14.17. For 
al  + a 2 ,  the root of height 2, set X3 = [X,X,], Y3 = [YlY2]. We can 
compute 

[x,y31 = [xi~[x2yi1y21] f [xi[yi[x2y211] -I- N(az,ai)[X2Y21 

+ [ [Yl [X1~2llXZ] 

= [x,[YlH2I] - H2 

= -Hi -H2, 

[YJ,l= “YlXlIX2] + [Xl[YlX,1] = x2 , 

[Xi Y3I = Yz - 
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Now let 9 be the Lie algebra spanned by X I ,  X z ,  X 3 ,  H,, HZ , Yl, Yz, Y3 

with multiplication determined as in Proposition 14.17 and listed in the 

0 X3 0 -2Xi  XI Hi 0 Y2 

0 0 X i  -2Xz 0 H2 - Y, 

0 0 - 2 Y ,  Yz - Y3 

0 Y,  -2Y* - Y3 

0 -X3 -X3 -X2 Xi - H , - H 2  

(1) 0 Y3 0 

0 0 
0 

accompanying tabulation, where (*) is determined by anticommutivity. Now 
g is a split Lie algebra of type A,. 

REMARK (1) Once we know that the Lie algebras of Theorem 14.19 
exist, Proposition 14.17 could be used to construct an algebra of the proper 
type from the Dynkin diagram. The above example shows that if the Dynkin 
diagram is very large, there will be many computations involved. 

We now consider parts (a) and (c) by giving models of algebras corres- 
ponding to a given Dynkin diagram. We do this for types A, B, C, D, G, , and 
F4. Most of the computations have already been done in the examples in 
Section 13.2. Since the Dynkin diagrams will be connected, these Lie algebra 
models are actually simple algebras. 

Type A, Let g = sl(n + 1, K) with n 2 1 as in example (l), Section 13.2. 
Recall that it was determined that the roots of g were the set of all ajk  : h -+ K 
such that a j k ( ~ y ~ :  aii E i i )  = ujj - a k k  where cyz: aii = 0. More precisely 

W = ( a j k : j # k , I I j , k l n +  1) 

with aiJ + a,k = aik and ct jk  = -ak,. Set a ,  = a l k ,  a2 = a23, ,  . . ,a ,  = en,,+,, 

and let W = {a l ,  a 2 ,  . . , ,a,}. We claim that a determines a Dynkin diagram 
of type A,,. Thus if i < j, then ajk  = ajj+l  + a j + l j + z  + - * I  + a k - l k ,  and 
since ajk = -ak,, it is clear that W is a root system basis for 43. 

It was also shown that 
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Thus by computing this trace, we see (ajk, ajk) = l / (n  + 1) and 

(ai i+lr  r i+ l i+2)  = - 1/2(n + 1). Finally ( c l i i + l ,  a j j + l )  = 0 f o r j  > i + 1. 
To construct the Dynkin diagram, we join the n vertices a l , .  . . ,a, by 

various lines: ai and aj are joined by N(a, ,  aj)N(aj ,  ai) line segments where 
N(a,  p) = 2(a, j)/(/3, 8) .  From the above computations, we see the adjacent 
roots ai and are joined by N(a i ,  ai+l)N(ai+l ,  ai) = 1 line segments, 
while nonadjacent roots ai and aj are joined by N ( a , ,  a j )N(aj ,  ai)  = 0 line seg- 
ments. If ai and aj are joined by a single line, then N(a,,  aj) = N(cr,, ai)  = - I 
and (ai, a r )  = (a,, a,). Thus there are no arrows. Consequently the Dynkin 
diagram for s/(n + 1, K) is 

O-O-O-. . .-o 
a1 a2 a3 an 

and so sl(n + 1, K) is a split simple Lie algebra of type A,. A notation which 
would agree with the other notation in Chapter 13 is to define d ( n ,  K) = 

sl(n + I ,  K). 
To obtain the dimension given in Theorem 14.19, just use the dimension 

of sl(n + 1, K) as (n  + 1)’ - 1. Also note Section 2.3 for arguments concerning 

the other dimensions. 

Type B, Let W(n, K) with n 2 2 be the Lie algebra given in exercise (l), 
Section 13.2. Thus B(n, K) consists of all (2n + 1) x (2n + 1) matrices over 

K such that J,A‘J, = - A  where 

r [! L n  i n ] ;  

0 i n  0, 

that is, a(n, K) consists of all skew-symmetric matrices relative to  the non- 
degenerate symmetric bilinear form determined by J ,  on a 2n + I-dimensional 
vector space over K. 

From the table of roots for g ( n ,  K), let crl = a1,2, a2 =a~,~,.. ., 
a,-l = and a,, = E , ,  and let W = { a l , .  . . ,a,}. Then a straightforward 
computation shows W is a root system basis. For example, let H = 

C ai+,,i+l(Ei+l, i + l  - Ei+,+l, be in the Cartan subalgebra h. Then 
f o r p <  q 

a p . q ( H )  = a p + 1 , , + 1  - aq+1,q+1 

+ ... 
= a p + 1 , p + 1  - a p + z . p + z  + a p + z , p + 2 -  a p + 3 . p + 3  

+aq,q-a,+1,q+1 

= (a,  + - * . + aq - &H). 

Similarly /I,,, = a,, + * * +a,-l + 2a,, etc. 
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Instead of using direct computations as in the A,,-type, we shall use 
Proposition 14.6 to determine the B,-type Dynkin diagram. First let H E h 
and al ,  . . . , a,, be as in the preceding paragraph. Then we compute the numbers 

N(a,  9 a,) 

by computing the corresponding numbers p and q according to Proposition 
14.6. Thus consider ai and for i = 1,. . . , n - 2. We shall show 

- a,  and ai+l + 2a, 

are not roots while 

al and + a ,  

are roots. Consequently q = 0, p = 1, and N(a,, ai+l)  = - 1. Thus for H E h 
as above we see 

(%+I - a 3 ( m  = a,+1,,+2(H) - a,. ,+l(H) 

= 2ai+2, i + 2  - 1+3 - ai+l. i + l '  

Comparing this value with the possible values of roots given in exercise ( I ) ,  
Section 13.2, we see - a,  is not a root. Similarly 

(%+l + 2a,)(H) = (ar+1, 1+2 + 2%. i+l)(H) 

= % + l ,  i +1  - ai+2,1+2 - ai+3,1+3 

which also shows a,+l + 2a, is not a root. Next 
because 

+ a, = a,, i + 2  is a root 

(%+l + a W )  = %+l ,  r + m  + a,, r+m 
=a,+1,,+1 -ai+3,1+3 =a,,1+2(H). 

Thus for the root a, and we see N(a,,  a i + J  = - 1 as desired. Similarly 
we can show N(ai+l ,  at) = - 1 so that in the Dynkin diagram the vertices 
a ,  and a,+1 are joined by N(a, ,  a,+l)N(ai+l, a J  = 1 line segment. 

Next for ai and a, withj # i + 1 # n and j # n, we see 

(a,  - aj)(H) = ai + 1, i + 1 - a,  + 2, i + 2 - aj + 1 . j  + 1 + a, + 2. j + 2 

which shows a,  - a, is not a root. Similarly ai + a, is not a root so that p = 

q = 0 and N(a,,  a,) = 0. Thus in this case the a,  and a, are joined by 
N(a, , a,)N(a, , at) = 0 line segments. 

Consider a,,-1 and a,,. A computation shows a,,-1 - a,, is not a root, but 

(an-1 + 2an)(H) = an,n + an+l,n+l = Pn-1,AHh 

sothata,,,, +2a,,=~,,+l,nisaroot.Thusq=0,p=2,andN(a,,-l,  a,,) = -2. 

A similar computation shows N(a,, a,,-l) = - 1 so that a,,-1 and a,, arejoined 
by N(an-l ,  a,,)N(a,,, a,,-l) = 2 line segments. 
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The roots a l , .  . . , a,,-1 are all the same length, since 

Na,, ai+l) = N a i + l ,  = - 1 

implies [using Proposition 14.6(b)] 

(ai+i, a,+i) = -2(a,, ai+l) = (sit ai). 

Next 

and 

- 1 = N(a,, a,,-i) = 2(an-i, an)/(an-i9 an-1) 

-2 = N(a,,-i, an) =2(an, an-i)/(an, an) 

implies ( u , , - ~ ,  a,,-l) = 2(a,,, a,,) so that a,,-l is longer than u,,. This gives an 
arrow from a,,.-l to a, and the accompanying Dynkin diagram. 

-O. 
o-o-o-. . .-o-o 

a1 u2 a3 an-2 an-1 an 

The same process can be used for the C,,-type and D,-type which we now 

Type C,, Let %(n, K) with n 2 3 be the Lie algebra of exercise (3), 

sketch and leave the computations to the reader. 

Section 13.2. From the table of roots, we set 

a1 = a l ,  2 ,  u2 = a2, 3 ,  . . . , a,,- = a,, - 1, ,, , a,, = 26,. 

Then L% = {a l , .  ..,a,,} is a root system basis. The roots air. . . ,a,,-1 are the 
same length, but (u,, ct,) > (a,,-l, u , , - ~ ) .  Thus we obtain the accompanying 
Dynkin diagram. 

-. o-o-. . .-0-0 
a1 a2 an-2 an-1 an 

Type D,, Let 9 ( n ,  K) with n 2 4 be the Lie algebra of exercise (2), 
Section 13.2. Then the root system of 9 ( n ,  K) can be considered as consisting 
of precisely the roots ui ,  , , pi ,  j ,  and y i ,  listed as roots of L%(n, K). Thus if we 
let 

at = ~ 1 , 2 , * .  - 9 ~ n - 1  = ~ n - 1 ,  n ,  an = B n - 1 .  n ,  

then L% = { u l , .  . . , u,,} is a root system basis. The roots a l l . .  . , a,-2 are con- 

nected by a single line segment. Also the roots and are connected 
by a single line segment and so are the roots and a,,. Thus we obtain 
the accompanying Dynkin diagram. 

/ O  cr, 
o-o-. . .-0- 

a1 a2 an-3 "Y O %-I 
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Exercises (2)  Complete the computations to determine the Dynkin 
diagram for the C,- and D,-types. 

(3) In the statement of Theorem 14.19, we make restrictions on the rank 
to obtain nonisomorphic algebras. When these restrictions are removed, 
show the following isomorphism between types; we denote these isomor- 
phisms symbolically by 

(i) A, r B, r C,, 
(ii) B, z C,, 

(iii) A, z D,, 
(iv) D, r A, + A, ; that is, a member of type D, is a direct sum of 

two of A ,  (see the book by Freudenthal and De Vries [I9691 for details). 

Next we consider some exceptional simple Lie algebras. 

Type G, Consider the derivation algebra of a split Cayley algebra 
as described in example (2),  Section 13.2. Thus let g = 9(%) = {D(A,  x, y )  : 
A E sl(3,  K) and x,  y E K 3 } ,  and let h = {D(H, 0,O) : H E sl(3, K), H diagonal}. 
It was shown that W = { f a, : i = 1,2, .  . . , 6 } ,  where the ai)s can be described 
by setting H = 1 :=, ail E,, ~ s 1 ( 2 ,  K )  so a,, + a,, + a,, = 0 and listing 
the a,(D(H, 0,O)) in the accompanying tabulation. Set a = a5 and j? = a l .  
Then = {a, P}  is a root system basis for@ since a + P = a 4 ,  2a + P = - a 6 ,  

3a + P =  a,, 3a + 28 = a,, and W = { & a ,  +_/?, +_(a + j?), +_(2a + /I), 
f ( 3 a  + P), f ( 3 a  + 2PN. 

Now from this listing of roots, we see P, /? + a, /3 + 2a, P + 3a are roots, 
but j? - a is not a root. Therefore, from Proposition 14.6, we see N(j?, a)  = - 3. 
Similarly, since a and a + j? are roots while a - /!l is not a root, we see 
N(a, /I) = - 1 .  Thus a and j? are joined by N(a, j?)N(j?, a)  = 3 line segments. 
From 

-3 = w, a) = %a, P ) k ,  a) 

we see 3(a, a) = -2(a, j?). Similarly - 1 = N(a, P) implies (P,  P )  = -2(cl, p). 
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Thus (f i ,  8) = 3(a, a)  so that fl is longer than a. This gives the accompanying 
Dynkin diagram so that 9(%) is a split simple Lie algebra of type G2. 

From Section 9.6 we note that %? is a simple nonassociative algebra with 
an identity element. Thus from exercise (3), Section 12.5, every derivation 
of %' is inner. More explicitly, if P is the subspace of End(%') spanned by all 
L(X)  and R(Y)  for X ,  Y E  V, then the Lie transformation algebra Y ( W )  = 

P + [ P ,  PI ; see Section 7.2. Now the identities for %? yieldforanyX,YE Vthat 

w, Y )  = ~ ~ ( X ) ,  V ) l +  [W), R( Y)1+ "X), R W I  

is an inner derivation of V, and consequently any derivation D of %' equals 

x i  D ( X i ,  Yi) for suitable X i  ,Yi E V. 

Type F4 We again use derivations of a suitable nonassociative algebra 
to construct a Lie algebra of type F4. First recall from example (3), Section 
9.6 that the split Cayley algebra V given by 2 x 2 matrices has an involution 
X + w given by 

a u  b - U  

[ v  b ] + [ - v  01' 

Now let M,' denote the 3 x 3 Hermitian matrices with entries from %' and 
with this involution. Thus M,* is the set of all matrices 

at E] 
Y z a3 

where a, E K and X ,  Y, Z E %. If S ,  T E  M38,  then the product 

S T =  +(ST+ TS) E M,' 

where STand TS is the usual matrix product. Thus M3* is a Jordan algebra; 
that is, a nonassociative algebra which satisfies the identities 

S .T= T . S  and ( S 2  . T ) .  S = Sz ( T .  S). 

Let J = M,' and let g = 9 ( J ) .  Then from the identities we see the Lie 
transformation algebra Y ( J )  = P + [ P ,  PI where P is the subspace spanned 
by all L ( X )  for X E J .  Since J is a simple nonassociative algebra with an 
identity element 1, every derivation D of J is inner. Thus if D = 

L(Z)  + [ L ( X i ) ,  L(Yi)],  then 0 = D(1) = Zso that D = 1 [ L ( X , ) ,  L(Y,)] for 
suitable X, ,Yr E J .  We now sketch the proof that g is of type F4 [Jacobson, 
1971a, b, p. 407; Schafer, 19661. 
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Let Ell denote the usual matrix basis and Ei = E,, for i, j = 1, 2, 3. Then 
from the above matrix description of J ,  we set 

Aij = AEij + A&", 

for A E V. Thus Ail E J and 

J i j = { A , :  A € % }  

is a subspace such that J ,  = J , , ,  and we have the direct sum 

J = K E 1  + KE2 + K E 3  + J 1 2  + J 1 3  + J z 3 .  

Let Do = (D E g : DEi = 0 for i = 1.2, 3). Then D E Do implies W, c J ,  

using a few matrix computations involving E ,  * S. Thus D induces an endo- 
morphism of J , .  This, in turn, induces an endomorphism D ,  of %' by the 
formula DA, = ( D ,  A), for D E D o ,  A E Q, and A ,  E J ,  as above. From this 
we obtain the following result [Jacobson, 1971a; Schafer, 19661. The Lie 
algebra L of all endomorphisms of the Cayley algebra Q which are skew- 
symmetric relative to the bilinear form induced by the norm in Q is of type D4. 
Furthermore the map Do + L : D + D ,  is an isomorphism of Do onto L. 

Using these results, we can decompose 

9 = DO + 9 1 2  + 9 1 3  + 9 2 3  (*I 

where g12 = { W E l ) ,  W1JI : A E Qp>, 9 1 3  = {[W1), L(Ad1:  A %I, and 
~ 2 3  = {[L(E2), L(AZ3)]  : A E Q). Now choose a four-dimensional Cartan 
subalgebra h for Do as discussed in type D,, and use sk to express the roots 
to obtain for i # j 24 roots ai ,  I = s, - s lS  pi ,  7 si + s l ,  y l ,  = - si  - el for 
1 s i, j I 4. Thus since the dimension of the giI IS 8, we obtain the dimension 
of g is 52. 

In the above decomposition (*) for g, ad,, h acts diagonally on g12, gI3 ,  

and 9 2 3  and for i = 1, 2, 3, 4 has roots fs,; *Ai where Ar = +(sl + s2 + s3 

+ s4) - si ; and &Mi where M I  = +(s1 + e2 + s3 + s4), M 2  = +(sl + s2 - s3 

- s4), M3 = f ( s l  - s2 + s3 - e4), M4 = +(sl - s2 - s3 + e4). From this h is 
a Cartan subalgebra for g. 

Next let al = f(sl - s2 - E~ - s4), a2 = s4, c13 = s3 - e4, a4 = s2 - s3.  

Then = {a1, a2, a3,  aq}  is a root system basis. To obtain the Dynkin 
diagram, we use the usual process to compute the N(a,  , aj) noting we can add 
a2 twice to a3 and still have a root; this gives the accompanying diagram. 

0-0 <=,-0 

#1 a2 a3 a4 

Exercise (4) Let A denote either of the algebras %? or M3* given by 
the above matrices, and let A ,  denote the subspace of matrices of trace 0. 

Show that g = 9 ( A )  acts irreducibly on A,. 
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For an abstract detailed construction of algebras of type E, we refer to 
Hausner and Schwartz [ 19683 and for construction relating derivations and 
nonassociative algebras, details can be found in Jacobson [1971a, b] and 
Schafer [1966]. 

3. On Automorphisms of Simple Complex Lie Algebras 

In this section we restrict ourselves to simple Lie algebras over the com- 
plex numbers and sketch results on automorphisms of their algebras. The 
algebras must automatically be split, so each must be of one of the types 
A,,, . . . , G2, etc. 

If a closer study of the relationship of Cartan subalgebras and the corre- 
sponding root systems to automorphisms of split simple Lie algebras is made, 
then we find that the Dynkin diagram is also related to automorphisms of 
the algebra. We state without proof an important theorem about this rela- 
tionship; this theorem is part of Theorem 33.9 of Freudenthal and de Vries 

[I9691 and another variation is given by Jacobson [1962, Chap. 91. 

Theorem 14.20 Let g be a simple complex Lie algebra, let Aut(g) and 

Int(g) be the complex Lie groups of all automorphisms of g and the subgroup 
of inner automorphisms, let 9 be a root system basis for a system of roots 43 
of g, and let A be the corresponding Dynkin diagram. Let Aut(A) denote 
the group of automorphisms of A. More precisely Aut(A) is the group of the 
permutations of 9 = {al,. . . ,a,,} which preserve lengths of the ai’s and angles 
between pairs of them (this information is easily read from A). Then the group 
Aut(g)/Int(g) is isomorphic to Aut(A). 

Proposition 14.21 Table 14.2 lists Aut(g)/Int(g) for all simple Lie algebras 
g over the complex numbers. 

TABLE 14.2 
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PROOF The only Dynkin diagrams having one symmetry are those of 
types A,, D, , E 6 .  The nonidentity automorphism of A in these cases are given 
by arrows shown in the accompanying diagrams. The only Dynkin diagram 

0-0-0-0-0. 

I 

I 
with more than one symmetry is Dq, and in this case the outside roots 
can be permuted in any manner. Thus two possibilities are illustrated in the 
accompanying diagrams. 

Proposition 14.22 Let g = d ( n ,  C) with n 2 2 and cp E Aut(g). Then 
there is some U E SL(n, C) such that 

q ( X )  = uxu-' 

q(X) = - U X W '  

for all X E g, 

for all X ~ g .  

or 

PROOF It is easy to check that both definitions give automorphisms of g. 

If Y E g ,  then (exp ad Y)(X) = (exp Y)X(exp Y)-' where exp Y E  SL(n, C). 
Thus if cp E Int(g), then cp can be written as an automorphism of the first 
type above. Since, by Proposition 14.21, Aut(g)/Int(g) has order 1 if n = 2 
and has order 2 otherwise, we need only show that X + -X' is not an 
inner automorphism if n 2 3. Equivalently we need the fact that there is no 
U E SL (n, C )  such that UX = -X'U for all X E d(n, C). This is easy to 
show for n 2 3 by choosing in succession the usual basis for g to substitute in 
for X and show that certain entries of U are 0 until one obtains a contra- 
diction. For n = 2 we have the following result. 

Exercise (1) Find a matrix UE SL(2, C) such that UXU-' = -X' 
for all X E d(2, C). 
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Proposition 14.23 Let W be a Cayley algebra over the complex numbers, 
let g = 9(U) be its derivation algebra, and let Aut(W) be the automorphism 
group of W. If cp E Aut(g), then there exists some T E  Aut(U) with p(D) = 

TDT-' for all D E g .  

PROOF Since g is of type G2,  we have Aut(g) = Int(g). If E E 9(%), 
the exp E E Aut(W) and exp(ad E )  E Int(g). However, (exp(ad E))(D) = 

(exp E)D(exp E ) - ' ,  and since the maps exp(ad E) generate Int(g), we obtain 
the results. 

Exercises (2) Fjovc a result analogous to  Proposition 14.23 for the 
algebra M,*. 

(3) Each of the simple Lie algebras B(n, C), U(n, C), 9(n,  C) can be 
described as a set of matrices X satisfying JX'J-' = -X for some fixed J .  
Consider the corresponding groups B(n, C), C(n, C), D(n, C) as the set of 
nonsingular matrice, U such that JU'J-' = U-' .  

(i) Show that any inner automorphism of the three Lie algebras above 
can be written as X + UXU- '  with U in the corresponding group. 

(ii) Show that for g of type B,, or C,, that Aut(g) = Jnt(g); note Propo- 
sition 14.21. 

(iii) For g of type D,, with n 2 4, show Aut(g) has an automorphism 
which is not inner [Consider the map X + PXP-' where P is given by the 
interchange map 

( X i ,  . . 9 X A  + (XI, * * * Xn- I r  Xn+ 1, Xn Xn+ 2 * * 9 XZn).] 

What can be said about X + - X ' ?  

(iv) For n > 4 and g of type D,,, show Aut(g)/Int(g) is of order 2. 
What is the general form of an element in Aut(g) ? Type D4 is morecomplicat- 
ed, and we refer to the work of Hausner and Schwartz [1968] and Jacobson 
[ I971 a]. 



CHAPTER 15 

SIMPLE REAL LIE ALGEBRAS 

AND GROUPS 

In Section 12.6 we showed that a finite-dimensional simple Lie algebra over 
the real numbers is either isomorphic to the realification of a simple complex 
Lie algebra or is isomorphic to a real form of a simple complex Lie algebra. 
We have classified the simple complex Lie algebra and have shown that a 
realification of a simple complex Lie algebra is a simple real Lie algebra. 
Thus i t  suffices to describe the real forms to obtain a classification of the 
simple Lie algebras over the real numbers, and we do this in Section 15.1. 
Next we consider the irreducible representations of simple real and complex 
Lie algebras discussing the maximal weight and how they are determined, 
the basic representations, and how an irreducible representation is obtained 
from these. We also discuss Weyl's formula for the dimension of an irre- 
ducible representation and give examples showing how the Dynkin diagram 
determines an irreducible representation. Finally in Section 15.3 we discuss 
how the previous results apply to Lie groups. 

1. Real Forms of Simple Complex Lie Algebra 

In this section we first discuss generalities about real forms of a simple 
complex Lie algebra Q" by noting they are given in terms of a conjugation 
operator C : # + Q". These conjugations can be written in the form C = +C- 

314 



1. REAL FORMS OF SIMPLE COMPLEX LIE ALGEBRA 315 

where C- is a conjugation of a compact real form and $J is a suitable 
automorphism ofg with 4' = I. In the second part of this section, we discuss 
the real forms for the classical Lie algebras by explicitly computing the 
automorphisms 4. This discussion follows closely the general approach of 

Hausner and Schwartz [1968]. 

Definition 15.1 Let @ be a simple complex Lie algebra. 

(a) If C is a conjugation of#, then the fixed point set g = {X E : C ( X )  = 

(b) Two conjugations C1 and C, of # are called equivalent conjugations 

X} is called the real form of C and C is called the conjugation of g. 

if the real forms of C1 asd C2 are isomorphic. 

Thus from results in Section 9.2 we have for the real form g the decom- 
position @ = g + ig and relative to this decomposition C(X + iY) = X - iY 
for X, Y E g. Also since the isomorphism of real forms defines an equivalence 
relation, it induces an equivalence relation on conjugations, and we seek a 
suitable representative for each equivalence class. 

Proposition 15.2 Two conjugations C, and C, of a simple complex Lie 
algebra @ are equivalent if and only if there exists an automorphism cp of 

such that C,rp = 'pC, . 

PROOF Let g, and 9, be the real forms of C1 and C,. If cp is an auto- 
morphism of # with C, rp = @,, then for all X ~ g ,  we have C2((p(X)) = 

(p(C,(X)) = rp(X) so q ( X )  E g2 and rp restricted to g1 is an isomorphism onto 

g2. 
Conversely if C, and C, are equivalent so that g1 and g, are isomorphic, 

choose a particular isomorphism $ : g1 + g 2 .  Any element of # can be 
written uniquely as X + iY with X, Y E g l ,  so we can define cp : # + @  by 
rp(X + iY) = $(X) + i$( Y). For all X, Y E g1 

C,(rP(X 4- iY)) = C,(+(X) + ill/(Y)) 
= $(X) - i$(Y) = cp(X - iY) = d C , ( X  + iY)) 

so C,cp = rpC, as required. It is easy to check that cp is an automorphism ofg. 

Proposition 15.3 Let # be a simple complex Lie algebra. 

(a) If C, and C, are conjugations of @, then C,C, is an autoinorphism 

(b) If Co is any fixed conjugation of 8 and C is any other conjugation, 
then C = cpC, where rp is an automorphism of # such that C,rpC, = cp-'. 

of #. 
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(c) If Co is a fixed conjugation of 8 and C1 = cplCo, C2 = qtCo are 
two conjugations as above, then C1 and C, are equivalent if and only if 

there exists an automorphism cp of Q such that cp2 = cpcplCo cp-'C0. 

PROOF (a) This consists of some straightforward computations which 
will be left to the reader. 

(b) Since C,' = Z we note C = (CC,)C,, so C = 'pCo where cp = CC, 
is an automorphism of 6. Now I = C2 = cpC, qC0 so C, 'pCo = cp-'. 

(c) By Proposition 15.2, C, and C, are equivalent if and only if there 
exists an automorphism cp with cp, C, cp = C ,  cp = cpC, = 'pcplC, or 

'pz = (P'PlCO cp-'c,. 

REMARKS (1) Given a real form g of a simple complex Lie algebra g, 
the Killing form of g is equal to the Killing form of 8 restricted to g, since a 

basis forg over the real numbers is also a basis for Q over the complex num- 
bers This fact will be helpful in  computing the Killing forms of real forms. 

(2) The Killing form of a real form g is a nondegenerate symmetric 
bilinear form over the real numbers. Consequently by Sylvester's theorem, 
there exists an orthogonal basis for g such that Kill(Xi, X,) = f 1 for each 
basis element X i ,  and the signature, or the number of + 1's minus the number 
of - l's, is independent of the basis chosen. The signature of the Killing form 
will be referred to as the signature ofg. Notice that isomorphic real forms have 
equal signature; that is, more importantly, if two real forms have different 
signatures, then they are not isomorphic. 

Definition 15.4 A real form g of a simple complex Lie algebra is called a 
compact real form if the Killing form of g is negative definite; that is, if the 
signature of g is -m where m is the dimension of g. 

Proposition 15.5 Any simple complex Lie algebra possesses at least two 
nonisomorphic real forms, a compact real form and a split real form. The 
signature of a split real form g is equal to the rank of g ;  that is, equal to the 
dimension of any Cartan subalgebra of g. 

PROOF Given a simple complex Lie algebra g, choose a Cartan subalgebra 
h" of J and a basis @ for the root system W of 6. By Proposition 14.17, Q 
possesses a Weyl basis; that is, a basis such that the Lie product of any two 
basis elements is equal to a linear combination of the basis elements with 
rational coefficients. Let g be the set of linear combinations of these basis 
elements with real coefficients. It is clear that g is a split real form of 8; 
that is, a split real Lie algebra and a real form of Q. 

To compute the signature of g we construct an orthogonal basis for g 
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from the Weyl basis of g. Clearly one can choose an orthogonal basis for 
h = g  n h, and the Killing form restricted to h is positive definite (note 

Proposition 13.16). Thus this part of the basis forg will contribute + n  to the 
signature of g where n equals the dimension of h. For each positive root a E W 
there exist X, E g(a) and Y, E g( - a) so that [X,Y,] = Ha’ E h with [H,’X,] = 

2X, and [H,’Y,] = -2Y,. However, then 

a = 2 KilI(X,, Y,) = Kill([H,’X,], Y,) 

= KiIl(H,’, [X,Y,]) = KiIl(H,‘, H i )  > 0, 

so we can set 

U, = (X, + YJu1/’ and 

Consequently KiIl(U,, U,) = 2 Kill(X,, Ya)/u = I ,  KiIl(V,, V,) = - 1, 
KiIl(U,, U,) = KilI(U,, H )  = KiIl(V,, H )  = 0 for all H E  h and positive 
roots a, B E 9, and finally KiIl(U,, U,) = KiIl(V,, V,) = 0 for all positive 
roots a # 8. It is clear that the set of all U,’s and V,’s complete an orthogonal 
basisforg and contribute nothing to the signature ofg. Thus the signature ofg 
is n as required. 

We can alter the above basis slightly to obtain a basis for a compact real 
form of g. Thus consider an orthogonal basis for # as follows: iHk for 
k = 1, . . . , n with Hk E h and iU, ,  V, as a varies over all positive roots of W. 
Let g1 denote the set of all linear combinations of these basis elements with 
real coefficients. Clearly the Killing form of 8“ restricted to g1 is negative 
definite, so we must merely show that 9, is a subalgebra of g or, what is 
equivalent, that g, is the fixed point set of a conjugation ofg. We see g1 is the 
real form of the conjugation rpC where C is the conjugation of the split real 
form g, and rp is an automorphism of g such that rp(H) = - H  for all H E h, 
and for any positive root a, rp(X,) = - Y,, rp(Y,) = -Xa. It should be 
clear that Xu’s and Y,’s can be chosen so that they satisfy the properties of the 
previous paragraph and also so that rp defines an automorphism of fi; note 

Helgason [1962, p. 1551 for a slightly different proof. 

V, = (X, - Ya)/a1lZ. 

Example (1) Let J = sl(n + 1, C), so it is of type A,. We have pre- 
viously shown that, for X, Y EB, Kill(X, Y) = 2(n + 1) trace(XY), and a 
Weyl basis is given by setting H ; , k + l  = Ek,k - for k = 1, 2, . . . , n 
and for 1 I j c k I n + 1 ,  xjk = Ejk , and r j k  = Ekj. To find an orthogonal 
basis for the split real form, we first choose H,, Hz , . . . , Hn E h where h is 
the set of real diagonal matrices of trace 0 such that Kill(&, Hk) = 1 and 
Kill(Hj, Hk) = 0 if  j # k. Also Ujk = (E,, + Ek,)/2(n + 1) l I2  and Fk = 

(Ejk - Ekj)/2(n + for 1 I j  < k I; n + 1 and so clearly all these elements 
span the split real form g = sl(n + 1, R). The corresponding compact real 
form with basis iHk ,  k = 1 ,  2, . . . , n and iUjk,  Qk, 1 s j  < k s n + 1 clearly 
is the algebra su(n + 1 )  = { X  EG : X - ‘  = - X}. 
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Similarly in Table 15.1, # is a simple classical Lie algebra over C of the 
type listed with n the rank of3 and g- the compact form of 3 up to isomorph- 
ism (note Proposition 15.6(b) and the book by Chevalley [1946] for a com- 
plete discussion of the compact sp(n)). The notation is given in Section 12.6, 
but we shall change it slightly later. 

TABLE 15.1 

Proposition 15.6 Let # be a simple complex Lie algebra, and let g- be a 

(a) If C is any conjugation of #, then C = 4C- where E Aut(g), 

(b) If K- is a conjugation of 3 corresponding to any other compact form 

compact real form with conjugation C- . 

4' = I, and C- 4 = $ C - .  

of #, then C- and K- are equivalent. 

PROOF (a) From Proposition 15.3, C = 4,C- where C- 4,C- = 4;', 
so all we have to do is show there is a conjugation 4C- equivalent to C with 

C- 4C- = 4. Moreoverwecanassume that 4 has the form = t&C-t,b-'C- 
for some JI E Aut(#) which we give below. 

For any Z, = XI + iY,, Z, = X2 + iY, E# = g- + ig- with Xi, Yi EQ- 
we compute 

Kill(C-(Zl), C-(Z,)) = Kill(X, - iYl, X, - iY,) = KilI(Z,, 2,) (*) 

where Z is the conjugate of a in the complex numbers. We define the form on 

(Z,, Z,) = -Kill(Zl, C-(Z,)) 

and see it is a positive definite Hermitian inner product on as follows. The 
form is linear in the first variable, additive in the second, and satisfies 

-(Zl, Z,) = Kill(Z1, C-(Z,)) = KilI(C-(C-(Z,)), C-(Z , ) )  = Kill(C-(Z,), 

C-(C-(Zl))) = Kill(Z,, C-(Z,)) = -(Z2, Zl), using (*). Also (Zl, 2,) = 

-Kill(X1 + iYl, X, - iY,) = -KiIl(X,, X,) - Kill(Y,, Y,) 2 0 so that the 
form is positive definite. 

3 by 
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For an endomorphism A of 9" we define the adjoint A* by (AZ, W) = 
(Z, A*W) and note that if Kill(AZ, AW) = Kill(Z, W), then 

(AZ, W) = -Kill(AZ, C - ( W ) )  

= -Kill(Z, A- 'C- (W))  = (Z, C - A - ' C - ( W ) )  

so that A* = C - A - ' C - .  Consequently A* = A if and only if A = C- A- 'C-  
if and only if A-' = C- AC-  . In particular, this gives 4' = 41*; that is, +1 

is a Hermitian linear transformation so has real characteristic roots and is 
diagonalizable by a unitary transformation. If we regard 4l as a complex 
matrix where the adjoint matrix is the transpose of its complex conjugate, 
then we can write (pl =PDP-' where D is a real diagonal matrix and 
P* = B' = P-' .  Now set JI = PDP-' where b is the diagonal matrix with 
entries equal to the positive square root of the absolute values of the cor- 
responding diagonal entries of D-' .  Note by construction that JI* = JI. 

Using this we see $4' = +'JI, $'+'' = Z, and C- JI-lC- =I) = $*; 
that C- $-'C- = @ is just a matrix computation using C-4;'C- = 41. 
Finally JI is an automorphism as follows. Let A1, . . . , A,,, be the characteristic 
roots of 4 which give the matrix D, and let gal, . . . , id, be the characteristic 
spaces. Let X E a,, and Y E g,, . Then [X Y] = 2 E gl l r l j  if A i  Aj is a character- 
istic root, otherwise [XY] = 0. Now the spaces g,, are the same characteristic 
spaces which give the matrix b for $, and if [XY] = Z as above, then 

[JIX$Y] = I n , (  - ' '2 lAj1  -l',z 
= ~ t l i A j ~ - " z Z  = $Z = JI[XY] 

which yields JI E Aut(g'). 
Now let r#J = &PlC-JI-'C- = $z41. Then C- 4C- = 4-l = 4 since 

Cp2 = I .  Thus, by Proposition 15.3(c), #J'C- is equivalent to CpC- with 4 
having the required properties. Note from the construction of 4 = JI'41 
we have 4* = relative to the form (Z1, Z,), and therefore 4 is diagonal- 

izable. 

(b) Let K- be a conjugation corresponding to another compact real 
form h-  of g. Then up to equivalence, we can write K -  = CpC- where 
42 = I, 4C- = C-4 ,  and 4* = 4 E Aut(g') as above. We also have from these 
that 4 = C- K -  = K- C- . Let (Zl, Z,) = -Kill(Zl, K-(Z,)) for Zj €6 = 

h- + ih- . Then as for formula (*) in part (a), 

KilI(K-(Zi), K-(Z,))  = Kill(Zl, Z,) = Kill(C-(Zl), C-(Z,)) (**) 

Next 4 is positive definite, for if 4X = AX with A < 0, then using (**) 

= -Kill(K-(C-(X)), K-(X)) 

= -Kill(C-(C-(X)), C - ( X ) )  = (X, X) 

and also (Zl ,  2,) is a positive definite Hermitian form. 

0 > A(X ,  X) = (4X, X) 
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which contradicts (Zl, 2,) is positive definite. Since 4 is diagonalizable with 
real positive characteristic roots and 4' = Z we see 4 = Z. Thus, since we have 
written K- = 4C- up to equivalence, we see K- is equivalent to C- . 

REMARK (3) We use the preceding results to classify the real forms of a 
simple complex Lie algebra s' as follows. The real forms are determined by 
conjugations with isomorphic forms giving equivalent conjugations. Thus 
we must choose a suitable representative of the equivalence class which gives 
isomorphic real forms. From Propositions 15.5 and 15.6 we can choose a 
conjugation C- corresponding to a compact real form, and it does not make 
any difference (up to equivalence) what compact form is chosen. However, 
any other conjugation C can be written C = 4C- with the automorphism 4 
given according to Proposition 15.6(a). Thus it suffices to discuss such auto- 
morphisms which we do for those algebras whose automorphism groups were 
computed in Chapter 14. 

Exercises (1) Let 9- be a compact real form of a semisimple complex 
Lie algebras'. Let S E Aut(8) be such that S2 = Z, and let k = {X E g : SX = X} 
andp = {X E G  : SX = -X}. Show that the direct sum k + ip is a real form of 
g and every real form of s' is obtained this way up to an automorphism of g. 
Also note the book by Helgason [1962, pp. 152-1591. 

(2) Let s' be a simple complex Lie algebra, and let h be a maximal 
compact subalgebra of 8 [note Section 12.6, remark (2)]. Show that h is a 
real form of s'. 

Proposition 15.7 Let s' = sl(n + 1, C) for n 2 2 be the complex Lie 
algebra of type A,. Then C- : X + -X' is a conjugation of a compact real 
form. Any given conjugation of 3 is equivalent to precisely one of the follow- 
ing conjugations: 

(a) c- ; 
(b) C+:X+X";  

(c) ck : X + - qjrt Tk for k = 1,2, . . . , [(n + 1)/2] where Tk is a diagonal 
matrix with the first n + 1 - k entries down the diagonal equal to 1 and the 
last k equal to - 1. 

(d) Co : X + TXTif n + 1 is even, where Tis a matrix with all entries 0 
except for a series of the matrices [ti  d] down its diagonal. 

PROOF Since the real form of C- is compact [example (l)], every con- 
jugation of g is equivalent to some cpC- where cp is an automorphism of s', 
cp' = I, and C- cpC- = cp. 
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From Proposition 14.22, the automorphisms of 8 are given by 

a(A) : X -, AXA-'  and 7 ( A )  : X -, -AX'A-' 

where A E SL(n + 1, C). One can compute that o(A)o(B) = a(AB), a(A)t(B) = 
t(AB), t ( A ) O ( f ? )  = T(A((B')-')), r(A)T(B) = O(A((B')-')), O(A)- '  = O ( A - ' ) ,  

T(A)- '  = T(A') ,  and a(A) = a(B) or t (A)  = t (B )  if and only if B is a scalar 
multiple of A. 

We first show that any conjugation a(A)C- is equivalent to one of the 
conjugations in (a) or (c). We may assume o ( A ) ~  = a(A2) = Z and C- a(A)C- 

= a(@')-') = a(A) noting the proof of Theorem 15.6(a). Thus A2 = al  
and AX' = bl for some complex numbers a and b. Since det A = 1 we have 

- 1. By replacing A with cA where c is a square root of 5, we 
may assume A 2  = I and AA' = bl .  Now (n + 1)b = trace(AA') > 0 so b = 1 
and A' = A-' = A. Thus A is a Hermitian matrix. By possibly replacing A 
with -A,  we may assume that A has + 1 and - 1 as its only eigenvalues with 
at least as many + 1's as - 1's. Moreover since A is Hermitian, i t  is diagonal- 
izable by a unitary matrix, so we can choose a matrix B with B' = B-' 
and BAB-' equal to Z or one of the matrices 7'' of (c). Finally 

= n + l  - b 

a( B)a( A )  c - a( B )  - 1 c - = a(BA B') = a(BAB - I),  

and so a(A)C- is equivalent to o(BAB-')C- which must be one of the con- 

jugations in (a) or (c). 
Next consider the conjugations of the type r(A)C-.  Assuming I =  

z ( A ) ~  = o(A(A')-')and C-r(A)C-  = t((A')-') = r(A),wefindthatA(A')-' = 

al  and AA' = bl. As in the first case we find that b = 1 so (A')-' = A  
and A A  = a l =  AA. Now Zl= A A  = AA = al  so a is real and by taking 
determinants a"+' = 1 recalling A E SL(n + 1, C). There are two possibilities 
either a = 1 or if n + 1 is even we could have a = - 1. 

So consider 7(A)C- with A A  = I and A' = A-' .  We claim each such 
conjugation is equivalent to 7(l)C- : X + X, the conjugation of (b). Since 

a(B)t(A)C- a(B)-'C- = 7(BAB-'), 

i t  suffices [by Proposition 15.3(c)] to show that there exists a B E SL(n + 1, C)  
with 

or equivalently B-'B = A. Since A is unitary its eigenvalues have absolute 
value 1 and it is diagonalizable. Thus we need only define the action of 
B on eigenvectors of A in order to determine B completely. If X is an eigen- 
vector of A with corresponding eigenvalue a, then define BX = flX where 

/?' = Cr; note this gives /?? = 1. Since 

B A B - ~  = I  

A X  = A-'X = E-'X = ax, 
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X is also an eigenvector of A with eigenvalue a ,  and we can assume that we 
have BX = px. Then 

B-'BX = B-'flX = fl-'flx = 8'X = a x  = AX 

and B-'B = A as required. 
The last case to be considered is r(A)C- with A A  = - I ,  A'= A-',  

and n + 1 is even. We shall proceed precisely as above in order to show that 
each of these conjugations is equivalent to r(T)C- where T is as in (d). 
We need to define B on eigenvectors of A in such a way that BAB-' = T. 
If AX = a x ,  then AX = -A-'X = -K1x = - a x ,  so eigenvectors of A 
occur in pairs X ,  X with corresponding eigenvalues the negatives of each other. 
If AX = aX define BIX = fix where 8' = E .  Then clearly we can assume 

B,X =fix so that B;'X = B;'X = fi-'x = f i x ,  BIAB;'X = fi2aX = X ,  
and B,AB;'X = -pZaX = -X. Using the fact that A' = B,AB;' has half 
of its eigenvalues equal to + 1 and the other half equal to - 1, A' has the 
same Jordan canonical form as T and consequently B,A'B;' = T for some 
B, , Next from the form of T notice that iT is a real matrix. Also for eigen- 
vectors X ,  X as above we see A'X = X and A'X = -X implies A'X = X 
and A'X = -X which gives A' = -A'. Therefore iA'= IA' = (- i)( - A') = 

iA' so that iA' is also a real matrix. This gives for the real matrix iT = 

B,(iA')B;'. Thus the real matrices iTand iA' can be assumed to be similar by 
a real matrix B, since they are similar by a complex matrix. We can conclude 
T =B2 A'B;' with B, a real matrix. However, then B;' = B;' and for 
B = B, B, we see 

-- 

- 

- 
BAB-' = (B,  B,)A(B, Bl)-' = B, A'B;' = T 

as required. 

The fact that none of the conjugations listed are equivalent follows from 
the fact that their real forms are not isomorphic, and in fact all have distinct 
signatures. The signatures are listed in the following corollary, and showing 
that the list is correct is left as an exercise. 

Corollary 15.8 Any real form of 8 = sl(n + 1, C) of type A,, n 2 2 
must be isomorphic to precisely one of the algebras shown in Table 15.2. 

Exercises (3) Use remark (2) of this section to verify that the correct 
signatures are given in the above tabulation. Also show that none of the 
signatures can coincide for a fixed n. 

(4) Show that the 2 x 2 matrices X of complex numbers such that 
ToXTo = X where To = [?!,A] form an algebra over the real number which 
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TABLE 15.2 

Name Signature 

(a) s u ( n + l ) = { X ~ g ' :  P = - X }  -n2 - 2n 
(b) d ( n + l , R ) = ( X E g ' : X = X }  n 

(c) d ( n ,  k, It) = { X E  : -TI X'Z = A') I - ( n + l - 2 k ) Z  
for k = 1,2, . . . , [(n + 1)/2] and 
Tk as in Proposition 15.7. 

(d) If n + 1 is even, sl(n + 1/2,J) is the set of 
(n + 1)/2 x (n + 1)/2 matrices with 
entries from 9, the real quaternion 
numbers, such that the trace of the 
matrices is a quaternion number of 
trace 0. 

-n - 2 

is isomorphic to the quaternion numbers. Also show that sl((n + 1)/2, 9) is 
isomorphic to go = {X E # : TXT = X }  where n + 1 is even, # = sl(n + 1 , C), 

and Tis as in Proportion 15.7(d). 

( 5 )  Show that any real form of # = sl(2, C) of type Al must be iso- 
morphic to sl(2, R) or su(2). 

Proposition 15.9 Let # be a simple complex Lie algebra of type G 2 .  

Then there are only two isomorphism classes of real forms of #, the split 
real forms and the compact real forms. 

PROOF We may assume # = 9(Y) ,  the derivation algebra of V the 
complex Cayley algebra as described in example (2) of Section 9.6. Let 
I : V 4 Y denote the map which sends an element [:: $1 into i ]  where 
these elements were defined in the example mentioned above. Clearly A' = I, 
A(aX) = iI(A') where a E C and X E W, and V+ = {X E Y : A ( x )  = X} is a 
split real Cayley algebra. Define C+ :g-+# by C+ : D - ,  ADA. Then it is 
easy to verify that C,  is a conjugation of # and its real form is 9(V+),  a 
split algebra of type G2 . By following the similar arguments for Lie algebras, 
it can be shown that every real Cayley algebra is the fixed point set of some 
TI with T ~Aut(%' ) ,  and the real algebras Wl and V2 corresponding to  
TII and T2A are isomorphic if and only if there is some T ~ A u t  W with 
T2 = TT,RT-'I. However, it follows from Proposition 14.23 that Aut(#) 
is equal to the set of automorphisms q ( T )  : D 4 TDT-' with T E Aut(Y). 
Finally one can check that the real form of q(Tl)%'+ is 9(W1)  where Yl is the 
fixed point set of TI and that 9(%,) and 9 ( Y 2 )  are isomorphic if and only if 
Yl and W 2  are isomorphic. Since we have mentioned that there are only two 
isomorphism classes of real Cayley algebras, the same must be true for their 
derivation algebras. 
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Proposition 15.10 Let # = 9(n,  C) be the simple complex Lie algebra of 

type D, and assume-n 2 5 ;  that is, # = {X Eg1(2n, C) : LX'L = -X} where 

The following is a listing of one representative from each isomorphism class 
of real forms of #. 

(a) 9 ( n ,  k, R) = {X E #  : -TkJztTk = X} where k = 0, 1, 2, . . . , n and 

n - k  

k 

n - k  

k 

The signature of 9 ( n ,  k, R) is 242n - k) - n(2n - I), and for k = 0 the 

form is compact. 
(b) 9 ( n ,  - l , R ) = { X € # :  -T-,X'T::=X}where 

The signature of 9(n,  - 1, R) is -n. 

PROOF We must first describe Aut(#). It was seen in Chapter 14 that the 
inner automorphisms of # consists of all q(T)  : X + TXT-'  where LTL = 

T-' and det(T) = 1. It is clear that q(T)  is an automorphism even if det(T) = 

- 1, and it is claimed that such cp(T)'s are not inner automorphisms. Thus 
Aug(#) = {q (T)  : LTL = T-' and det T = f 1). To show that we cannot have 
cp(T,) = q(Tl) with det(T2) = - 1 and det(Tl) = + 1, merely notice that this 

would imply q(T;'T,) = I  so T;'T, = fZ and det(fI) = 1 # -1 = 
det ( T ;  T,) . 

It is clear that 9 ( m ,  0, R) = {X EB : -X' = X} is a compact real form so 

denote its conjugation by C- : X -+ -xt .  Every conjugation of# is equivalent 
to one of the type (p(T)C- where V ( T ) ~  = q(T2) = I  and C- (p(T)C- = 
( p ( ( I I Y ) - I )  = q(T).  The first condition implies T2 = fZ and the second 

implies TF = Z. 



1. REAL FORMS OF SIMPLE COMPLEX LIE ALGEBRA 325 

7''' = [ :  

We first consider the case T2 = I. Then T has eigenvalues f 1 and we can 
assume that the + 1 eigenspace has at least the dimension of the - 1 eigen- 
space. We can consider the nondegenerate symmetric bilinear form on the 
2n-dimensional complex vector space V of column vectors defined by (x, y )  = 

x'Ly so 8 ={X E g l ( V ) :  ( X x ,  y) + (x ,  Xy) =0} and LT'L = T-' if and 
only if (Tx, Ty) = (x ,  y). Now with T as above, suppose T x = x  and 
Ty = -y .  Then (x ,  y) = (Tx, y) = (x,  T-'y) = - (x ,  y )  so the + 1 eigenspace 
and - 1 eigenspace are orthogonal with respect to (x ,  y). Next notice that for 
each Tk of (a) we have Tk2 = I ,  Tk Tk' = Zand the + 1 eigenspace is orthogonal 
to the - 1 eigenspace for &. It is also easy to verify that the - I eigenspace 
of Tk has dimension k, so it follows that there exists an S with LS'L = S-' 
and for some k, STS-' = Tk. Since T' = T-' = Tand Tis Hermitian, we can 
assume that S is unitary; that is, s' = S-'. However, then noting 

c- r$(s)-'c-(x) = c- r$(S)-- '(-F) 

=c-(-S-'X's) = s'x(s')-' = f$(S3(X), 

we obtain r$(S)&T)C- 4(S)-'C- = r$(STs') = r$(STS-') = r$(Tk). There- 
fore by Proposition 15.3(c), +(T)C- is equivalent to &T,JC-. 

For the second case T2 = -Z, we repeat the now familiar agruments once 
more. Thus T has eigenvalues + i  and if Tx = ix, Ty = iy, then i(x, y) = 

(Tx,y)  = (x ,  T-'y) = -i(x,  y), so (x ,  y) = 0 for all x, y in the + i  eigen- 
space. This implies the + i  and - i  eigenspaces have the same dimension. 
For T-, as in statement (b) we see T?' = - I  and T-' has eigenspaces like 
T , so once again we can show that (p(T)C- and (p(T-')C- are equivalent. 

It remains to show that none of the algebras on our list are isomorphic. 
First we would have to verify that the correct signatures are listed and then 
check that this helps imply the desired conclusion. The calculation of the 
signatures will be omitted since they are straightforward but long and cum- 
bersome. The remainder of the calculations are given in the following exercise. 

Exercise (6) Assume the signatures as given in the previous pro- 
position, Then show that for a given n the only algebras which have the same 
signatures are Q(n, n - n1'2, R) and Q(n, - 1, R) if n happens to be a perfect 
square. Show that these two algebras are not isomorphic. 

-- 
: k 1  



326 15. SIMPLB Rw LIE ALGEBRAS AND GROUPS 

for k = 0, 1, 2, . . . , n and Tk is as in Proposition 15.10. The signature of 
a(n, k, R) is (2 - n ) ( h  + 1) - 2kz, and fork = 0 the form is compact. 

Proposition 15.12 Let Q" = W(n, C) with n 2 3. Then the following list 

(a) W(n, k, R) = {X E #  : -SkxfSk = X} for k = 0, 1, 2, , . . , [n/2] and 

gives one representative for each isomorphism class of real forms of #. 

s,= p?yi:; - 

- 
-I }k 

The signature of W(m, k, R) is 8k(n-k) - n(2n + l), and for k = 0 the form 
is compact. 

(b) U(n, - 1 ,  R ) = { X E Q " :  -T- lX 'TS:=X}  where T-I is as in 
Proposition 15.10. The signature of U(n, - 1, R) is n. 

Exercises (7) Show that a proof of Proposition 15.11 is actually 

(8) Prove Proposition 15.12. 
contained in the proof of Proposition 15.10. 

REMARK (4) We do not have enough information about the auto- 
morphism groups of the complex Lie algebras D,, F4, E,  , E7 , and E,  to 
classify their real forms in the same manner as the others. We list the number 
of real forms of each type and their signatures in Table 15.3 without proof. 
A very explicit proof of all of these facts can be found in the work of 
Freudenthal and De Vries [1969]. 

TABLE 15.3 

Number of classes 
Type of real forms Signatures 

D4 5 4 2 ,  -4, -14, -28 
F4 3 4, -20, -52 
Es 5 6.2, -14, -26, -78 
EI 4 7, -5, -25, -133 
ES 3 8, -24, -248 
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2. Representations of Real and Complex Simple 
Lie Algebras 

Since the simple complex Lie algebras and their real forms are all com- 
pletely reducible, the finite-dimensional representations of these algebras are 
all direct sums of irreducible ones. In this section we will describe the irre- 
ducible representations of the simple complex Lie algebras and their relation- 
ship to the representations of the real forms. 

REMARK (1) For the remainder of this section j j  will denote a simple 
complex Lie algebra, h" a Cartan subalgebra of j j ,  W the set of nonzero roots 
of j j ,  and W a basis for 9. We wish to determine the equivalence classes of 
finite-dimensional irreducible representations of j j  where two representations 
Cl : 4 -+ gl( Vi), i = 1, 2, are called equivalent representations if there exists a 
nonsingular linear transformation T :  V, -+ Vz with c 2 ( X )  = T[,(X)T-' for 
all X ~ j j .  As in the case of the adjoint representation, if [ : j j  +g1(V) is a 
representation of 4, then V is a direct sum of weight spaces of [(h). More 
explicitly let V(1) = {u E V :  ( [ ( H )  - 1(H)Z)'Iu = 0 for all H E h" and some 
positive integer k}. Here 1 is any linear transformation 1 : h + C and 1 is 
called a weight of [ if V(1) is nonzero. Let W denote the set of all weights of 
C (including 0 perhaps). Then 

v =  1 V(1) 
A €  W 

as a vector space direct sum. 

Proposition 15.13 (a) If a E 9, X ~g" (a) ,  1 E W ,  and u E V(1), then 
[(X)(u) E V(a + 1) if a + 1 E W and otherwise [ (X)(u)  = 0. 

(b) The weight spaces are in fact eigenspaces; that is, c(H)(u) = 1(H)u 
for all H E h" and u E V(1). 

(c) If W = {a1, a2, . . , , an}, then there exists a unique weight 1, E W 
such that 1, + ak $ W for k = I ,  2, . . . , n, and 1, is called the maximal 

weight of [. 
(d) If L E W ,  then 1 = 1, - 
(e) The dimension of V(L,) is 1. 

tk ak for some positive integers t k .  
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so either t;(X)(u) = O  or c(X)(u) is an eigenvector of c(H) and [ (X)(u)  E 
V(a + A). Now it is clear that ZI generates a &submodule of V which consists 
entirely of eigenvectors of ((h). Since V is irreducible this &submodule must 
be all of V .  

(c)-(e) Let A, E W be a weight such that 1, + ak # W for k = 1,2,. . . , n. 
Such a weight must exist because V is finite dimensional and so has only a 
finite number of weights, and given any weight we can continue to add aL)s 
to this weight until it satisfies this property. 

fixed uo E V(A,). Then since V is irreducible, it is clear that V is spanned by 
vectors of the type T(u,) where Tis a product of certain [ ( X k ) ’ s  and c ( Y k ) ’ s .  

Also notice that Lo + ak # W implies that [ ( x k ) ( u o )  = 0 for k = 1, 2, . . . , n. 
We claim that Vis  spanned by a vector of the type T(u,) where Tis a product 
of certain ( ( Y k ) k  To see this set Hk = [X,, Y k ]  so that Hk E h and notice that 
if j # k, then using Proposition 14.17 

k t  o # x k E j ( a k )  and o # Y k E g ( - a k )  for k = l ,  2, ..., n. Choose a 

c ( x j ) c ( y k ) ( u O )  = c ( [ x j h l ) ( u O )  + c ( y k > c ( x j > ( v O >  = 0 

and 

c ( x k ) c (  yk)(’O) = c(HdUO) + c( yk)c(xk)(oO)  = AO(Hk)’O ’ 

By making repeated use of the above procedure we see that we can eliminate 
any c(&)’S from longer products. 

Now suppose that T(u,) # 0, where T is a certain product of l;(Yk)’s 
where [ ( Y k )  occurs t k  times. Then T(u,) E V(A) where 

This proves (d). 
To see that the dimension of V(A,) is 1 ,  notice that the formula above 

guarantees that none of T(uo)’s, with T a  nontrivial product of l;(Yk)’s, are in 
V(Lo). Thus V(A,) consists of all multiples of uo and the proof of (e) is 
completed. 

Finally we must show that Lo is the unique maximal weight. Our proof has 
shown that all weights of 1; can be found from a maximal weight by the formula 
in (d) and it is clear that only one weight can satisfy this property. 

REMARKS (2) Proposition 15.13 implies in particular that each root 
system of a simple complex Lie algebra has a unique root of maximal height; 
that is, there is a unique root E= t k  c(k E g+ with & f k  maximal. 

( 3 )  Although dim V(L,) = 1 we may have dim V(A) > 1 for other 
L E W. In fact this is always true for the weight 0 of the adjoint represen- 
tation of a Q“ with rank # > 1.  
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Proposition 15.14 For any a E W let Ha' E h be as usual so that we can 
choose X ~ g ( a ) ,  Y ~ g ( - a )  with [H,'X] = 2 X ,  [Ha'Y] = -2Y, and 

[ X Y ]  = H i .  Then l (Ha' )  is an integer for each 1 E W .  

PROOF Let g' be the subalgebra of J generated by H,', X and Y so that 
g' z 4 2 ,  C). Choose any u E V(1). Then the action of g' on u generates an 
irreducible g' subspace V' of V. Now [(H,')(u) = A(Hi)v and &Ha') must be 
an integer by Theorem 13.11. 

Example (1) Let g = 4 2 ,  C) .  Then for R = { -a ,  a}  we have H,' = 

[A -:I. The weights of the adjoint representation are W l  = { - a ,  0, a}  

and a(H,') = 2. Let V be the vector space of two-dimensional complex 
column vectors with g acting on V as usual by matrix multiplication. Then 
the weights of this representation are W2 = { -a/2,a/2} and V(a/2) is spanned 
by the vector [A]. Finally fa(Ha')  = 1 an integer as guaranteed by the 
proposition. 

be a simple complex Lie algebra and 1, : h +  C 

a linear transformation such that each 1,(Hh,) is a positive integer or 0 for 
c(k E 99. Then there exists an irreducible representation [ : + g l ( V )  with 1, 
as maximal weight. The representation is finite-dimensional, determined up to 
equivalence by 1, and every finite-dimensional representation of J is equi- 
valent to some such 1. 

PROOF It is clear from the proof of Proposition 15.14 that l ,(HLk) 
is a nonnegative integer if 1, is the maximal weight of a finite-dimensional 
representation of J .  Therefore, all we need show is that c is completely 
determined once we are given some 0 # u, E V(Ao), J and the nonnegative 
integers l , (Hik )  = ak . 

so that Hk, X k ,  Yk forms the usual basis for a subalgebra gk of g with gk z 
s42, C ) .  By Theorem 13.11 the number ak completely determines the action of 
gk on an irreducible subspace of I/ with u, in the weight space of the maximal 

weight. More precisely [( Yk)'(t+,), j = 0, 1, 2, . . . , p, for some p is a basis for 
one of the modules described in Theorem 13.1 1. 

It suffices to show that we can determine the action of all of J on 

basis elements of the type 

and we proceed by induction on cJ4=ltj. Since [(xk)[(Yk) = c(Yk)[(xk) 
+ [ (Hk) ,  [ (Xi ) [ (  yk) = [( Y,)[(X,) i f j  # k and [ ( x k ) ( u o )  = 0, we can determine 
the action of [ ( X )  on u for all X ~ g " ( a )  with a E R'. For any H E  h 

Theorem 15.15 Let 

NOW for k = 1, 2, . . . , n, let Hk = H i k  and choose Xk E J(cCk),  Yk E g( -0Lk) 

u = (( Yk,)'' * * * [ (yk , )"(yO)  
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Next to determine whether or not C(Y,)(v) is 0 we first set 

v1 = [(xk.(U) # O where c(&y+'(v) = 0. 

Then the integer c(&)(v,) determines an irreducible representation of gk 
with u, as maximal weight vector. From this we determine whether or not 

To show that the module generated is finite dimensional we need only 
show that for each k = 1, . . . , n there are only finitely many irreducible gk 
submodules of our &module. From the fact that each weight space of our 
module is finite dimensional and there are only a finite number of weights A 
of our representation with A(Hk) > 0, we conclude there are only finitely 
many maximal weight spaces for irreducible representations of Q k  . 

c ( y k ) ( v )  is O. 

Finally we must determine a basis for each weight space. 

Exercise (1) Finish the proof of Theorem 15.15 by showing that a 
basis for each weight space can be determined from 9" and the integers 
a,, . . . , a,, . 

Definition 15.16 The representations t, k = 1, . . . , n of 3 with maximal 
such that &(Hk) = 1 and &(HI) = 0 f o r j  # k are called the basic weights 

representations of 3. 

Proposition 15.17 If p1 and p2 are finitedimensional representations of 
5 with p , :  J +gl(V,), j =  1, 2 and pj has maximal weight A,, then define 

P1 63 Pz on Vl 03 V2 by 

011 @ PZ)(X) : u 63 0 + PI(XX4 63 0 + f4 @ Pz(X)(v). 

Let 0 it u, E Q(A,) for j = 1, 2, then p, @I p2 : # -+gl(V, @I V,) is a rep- 
resentation of a such that the submodule of V, @ V, generated by v1 @ v2 

is the module of an irreducible representation with maximal weight A, + &. 

PROOF Some trivial computations show that p, 63 p, is a representation; 
note Sections 9.4 and 12.5. Now 

O L l  @ P z ) ( ~ ) ( ~ 1  @I vz) = (4 + &)(H)(Ul @ 02) 

and clearly v ,  @ v2 belongs to a maximal weight space of V, @ V, so the 
proposition follows. 

Corollary 15.18 Any finite-dimensional irreducible representation of 3 
can be obtained from some tensor product of basic irreducible representations 
as in the previous proposition. 
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PROOF Let [ be an irreducible representation ofij  with maximal weight 1 
and set ak = L(Hk) tor k = 1 , 2 ,  . . . , n.  Each ak is a nonnegative integer so we 

can set V equal to a tensor product of Vk’s with vk occurring t?k times where 
I ( k  : 9’ -+ g1( vk) are the basic irreducible representations defined in Definition 
15.16. This tensor product yields a representation as defined in Proposition 
15.17, and the tensor product of the maximal weight vectors of the vk’s 

generates a gj-submodule of V with has the same maximal weight as [. 

Exercises ( 2 )  Show that the adjoint representation of the complex 
Lie algebra of type G, is a basic representation. Also show that the rep- 
resentation of this algebra as derivations of a Cayley algebra is basic and not 

equivalent to the adjoint representation. 

(3) Is theadjoint representation ofg = sl(n + 1 ,  C)a basic representation? 

REMARK (4) Often a representation is described by adding tothe Dynkin 

diagram of 9’ the number &(Hk) to the vertex of the diagram corresponding 
to the root a,,.  Since the Dynkin diagram completely determines the structure 
of 9’ and an irreducible representation is completely determined by the 

numbers &(Hk) for its maximal weight I , ,  theoretically one could construct 
the Lie algebra and its representation using only the diagram. In practice, of 
course, the computations are prohibitive, but it is not too difficult to determine 
the maximal weight 1, from the diagram. 

Example ( 2 )  Consider the accompanying diagram with 0’s and 1’s 
attached to the roots which is the diagram for a basic irreducible represen- 

0 0 0 1  0 0 
o-o-o-o-----o 

a1 a2 a3 a4 a5 
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and so forth. Thus 

&(HI) = 21, - 12 = 0, 

IO(H2) = -t1 + 21, - t 3  = 0, 

IO(H3) = - - f2  + 213 - f 4  - f 6  = 0, 

Io(H4) = - 1 3  + 214 - 2, = 0, 

Ao(H5) = -14 + 2t5 = 0, 

IO(H6) = - f J  + 2t6 = 1. 

Solving the system of equations one finds that tl  = t 5  = 1, t2  = r4 = 16 = 2, 
and 1, = 3 so I ,  = a1 + 2a2 + 301, + 2a4 + a5 + 2a6 .  This is, in fact, the 
maximal weight of the adjoint representation of the complex Lie algebra of 
type E 6 .  There are convenient tables listing the maximal weights of all of the 
basic representations for all of the simple complex Lie algebras as well as a 
listing of all of the weights of the adjoint representations in the appendix 
of the book by Freudenthal and de Vries [1969]. 

REMARK (5) Given an irreducible representation [ : 8 +g1(V)  with 
maximal weight I ,  and with 9’ the positive roots of& then the dimension of 

V can be obtained from Weyl’s formula 

dim V =  0 0  + P, a>/(P, a> 
a&@ 

where /? = + xaEa+ a. The proof of Weyl’s formula uses properties of rep- 
resentations we have not discussed so it will not be given here. A proof can 
be found in the book by Jacobson [1962]. 

Exercise (4) Let 8 be a complex Lie algebra of type A, and c : 8 --t g1( V) 
a basic irreducible representation corresponding to the accompanying 
diagram. Assuming Weyl’s formula and assuming that we know that 

0 1 0 

a1 a2 a3 

9’ = {aI, a,, a,, al + a2 , a, + a3 , a1 + a2 + a3}, find the maximal weight 
I ,  of c as a linear combination of the alr)s and find the dimension of V. 

0-0-0. 

Examples (3 )  The complex Lie algebras of type A,, B,, C,, and 0, 
were all defined as certain sets of matrices so this definition includes the 
description of a representation on a set of column vectors. Thus sl(n + 1, C), 
W(n, C), V(n, C), and 9 ( n ,  C) are descriptions of representations on spaces 
of dimension n + 1, 2n + 1, 2n, and 2n, respectively. In each case these are 
representations on spaces of minimal dimension. 



2. REPRESENTATIONS OF REAL AND COMPLEX SIMPLE LIE ALGEBRAS 333 

(4) Consider two irreducible representations rk : g +gl(Vk), k = 1, 2, 
such that the diagram for c2 is obtained by permuting the numbers assigned 
to the vertices of the Dynkin diagram by reflecting them through a symmetry 
of Dynkin diagram. From the symmetries involved in constructing g and the 
representations from the diagrams it is clear that dim Vl = dim V2 and there 
will be a natural correspondence between weight spaces. Thus we can assume 
that V, = V, = V and the representations rl and rZ will resemble each other 

even if they are not equivalent. For example, if g = sl(n + 1, C )  for n 2 2 
(so gj is of type An) and we consider the representations corresponding to the 
accompanying diagrams. It can be shown that in this case dim(V) = n + 1 

1 0 0 0 0 0 0 1 
0-0- . . . -0-0 9 0- 0-. . .-0-0 . 
a1 at an-1 an a1 at '%-I an 

61 r 2  

and we can let V be the vector space of complex n + 1-dimensional column 
vectors. For A ~ g l ( n  + 1, C )  and x E V we can set c,(A)(x) = Ax the usual 
matrix multiplication and r2(A)(x) = -A'x.  The statement that c1 and r2 are 
not equivalent is the same as saying that A + -A' is not an inner automor- 

phism of 3. 

REMARK (6) We will now consider representations of real forms of a 
simple complex Lie algebra. Given a real form g of and 5 : g -+gl(p)  a 
representation of g, then restricted t o g  is clearly a representation o f g  but is 
considered to be unsatisfactory in certain ways because this gives an action 
of the real algebra g on a complex vector space p. This can be remedied by 
restricting the scalar multiplication on p to the real numbers, but a more 
useful solution is described in the next definition. Notice that we have altered 
our notation slightly, for the remainder of this section g, p, 5 will denote the 
complex Lie algebras, vector spaces and representations and g, V,  ( will 

denote real ones. 

Definition 15.19 (a) Given a finite-dimensional complex vector space 
P and C : p+ p a nonsingular linear transformation of p when we restrict 

scalar multiplication in p to the real numbers. If Cz = I and C(ux) = bC(x) 
for all a E C and x E p, then C is called a conjugation of p and 

V =  {x  E v: C(x)  = x} 

is said to be the real form of pcorresponding to C .  

(b) Given a real form g of gj, a simple complex Lie algebra, and 5 : fi --t 
gl(p) an irreducible representation of g, then 5 is said to be real for g if 
there exists a conjugation C of p with corresponding real form V such that 
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s (X)(x)  E V for all X E g and x E V. In this case the restriction C of 5 to g 

acting on Vis said to be a real form of 5. 

Proposition 15.20 (a) If V is a real form of P, then V is a real vector 
space with the dimension of V over R equal to the dimension of Pover C. 

(b) If 5 : g +gl( p) is an irreducible representation of g, then any real 
form of 5,  say C : g -+ g1( V), is an irreducible representation of g. 

(c) If 5, : 6 +gl(  p,) and c, : g +gl(  p,) are two equivalent irreducible 
representations of g, then el is real for a real form g of # if and only if 5, 
is real for g. 

PROOF (a) and (b) are trivial to prove. 

(c) Choose a T : pl -+ v2 such that t Z ( X )  = TC1(X)T-' for all X E 

and let Cl : g +gl( V J  be a real form of 5,. Then V2 = {T(x) : x E V,} is a 

real form of V2 and for all X ~ g ,  x E V, we have [ , (X)T(x)  = 

Tl,(X)T-'(T(x)) = Tr , (X) (x )  E V2 as required. 

Examples (5) Obviously the adjoint representation of any complex 
Lie algebra 3 is real for all real forms of @. 

(6) The representations of the complex Lie algebras of type A,, B,, 
C,,, and 0, discussed in example (3) above are real for their split forms 

because we know that sl(n + 1, R), B(n, R), %(n, R), and Q(n, R) are rep- 
resentations of the split real forms in terms of real matrices of the required 

type. 

Exercises (5) Let 6 be the complex Lie algebra of type A,, g a compact 
real form of g, and 5 : 6 -+ gl(n + 1, C) the usual representation of 6 as the set 
of (n + 1) x (n + 1) complex matrices of trace 0. Show that [ is not real for g. 

(6) Show that both basic irreducible representations of a complex Lie 
algebra of type G2 are real for both real forms. 

3. Some Simple Real and Complex Lie Groups 

In this section we make a few brief comments on how the results we have 
obtained for representations can be applied to Lie groups. We will concern 
ourselves only with simple Lie groups; that is, Lie groups whose Lie algebras 
are among the finite-dimensional simple Lie algebras we have discussed. 
Also see Definition 10.14. 
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Definition 15.21 A Lie group G is said to be a linear Lie group if there 
exists some finite-dimensional vector space V and some G, c GL(V) with 

G and G, isomorphic as Lie groups. 

Examples ( I )  If 5 : ij -+ gl( P) is a representation of a simple complex 

Lie algebra i j  and exp : g1( v) - GL( P) is the usual exponential map, then the 
subgroup of GL( v) generated by exp(&j)) is clearly a complex linear Lie 

group. I f  ( : g -g1( V )  is a real form of t, then the subgroup of GL( V )  gener- 

ated by exp([(g)) is a real linear Lie group. 

(2) For n 2 2 let i j  be a complex Lie algebra of type A ,  and let tl, 
tZ : ij +g&n + I ,  C )  be the two representations of example (4), Section 15.2. 

Thus t, and t, are not equivalent. The groups generated by exp(t,(g")) and 
exp(rz(ij)) are equal to SL(n + 1, C). Therefore the complex linear Lie groups 

corresponding to the two inequivalent representations can be viewed as the 

same set of matrices. 

REMARK ( I )  Recall that the centers of connected simple Lie groups are 

discrete and are finite if, in addition, the groups are compact. If G is a con- 

nected simple Lie group, G ,  is the simply connected covering group of G and 
2 is the center of G,, then there exists a subgroup H of Z such that G is Lie 

isomorphic to G,/H. If we are given a simply connected simple Lie group 
G, and [ a representation of the Lie algebra g of G,, then G, the group 

generated by exp(((g)), is Lie isomorphic to some G , / H .  One reason that  
representations of Lie algebras are so important is that the subgroups H 

may not be isomorphic for inequivalent representations [. It is also known 

that for certain subgroups H of Z ,  the group G,/H is not Lie isomorphic to 
the group generated by exp([(g)) for any irreducible representation [ of g. 

For certain subgroups H the groups G , / H  may even fail to be linear groups. 
It is a difficult problem determining the relationship between the real forms of 

irreducible representations of a simple Lie algebra and the corresponding 
subgroups of the center of the appropriate simply connected group. We will be 
satisfied stating a few results for the case that the Lie algebra is simple complex 
or is a compact real form. A very interesting set of tables containing the results 

for all real forms can be found in the book by Tits [1967]. 

Proposition 15.22 If g is a compact real form of a simple complex Lie 
algebra i j  and ( : g + g/( V )  is the real form of some irreducible representation 

of g, then G, the group generated by exp([(g)), is a real compact Lie group; 
that is, G is compact as a manifold. 
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PROOF Since any covering group of a simple compact Lie group is 
compact (Section 12.6), we need only consider the case when 5 is the adjoint 
representation of g. Thus let G be generated by exp(ad(g)) and recall that 

Kill(T(X), T( Y ) )  = KiII(X, Y) 

for all X ,  Y E g and T E G .  We can define a positive definite bilinear form 

on g by B ( X ,  Y )  = -Kill(X, Y), and we have G c O(g) = {T E GL(g) : 
B(T(X) ,  T( Y)) = B(X, Y)}.  Thus G must be compact since O(g) is compact. 

REMARKS (2) A much stronger result is known and is not too difficult 
to prove, namely a simple connected Lie group is compact if and only if its 
Lie algebra is a compact real form of some complex Lie algebra. 

(3) We conclude this section by stating a theorem which lists the centers 
of simply connected, compact, simple Lie groups. Several texts, including 
those by Wolf [1967], Loos [1969], Fieudenthal and de Vries [1969], and 
Tits [I9671 give a proof of the theorem or parts of it. The last book mentioned 
also lists similar information for noncompact groups and lists the centers of 
the groups generated by exp([(V)) for various representations of simple 
Lie algebras. 

Theorem 15.23 Let GI be a connected, simply connected, simple, 
complex Lie group. Let G be the maximal compact subgroup of GI,  and let 
g1 and g be the Lie algebras of GI and G ,  respectively. Then g is a compact 
real form of g1 and G is simply connected. If Z ( G , )  and Z ( G )  denote the 
centers of GI and G, then Z ( G , )  = Z ( G )  and these centers are listed in the 

Table 15.4. 

TABLE 15.4 

Type of 
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Multiplications 1 - _ _ - - - - - _ _ _ - _ _ - -  E 

In  such texts as those by Helgason [1962], Kobayashi and Nomizu [1963], 

Loos [ 19691, and Wolf [1967], a differential geometric approach to Lie groups 

is used. In this chapter we briefly introduce some of the basic concepts of 
differential geometry and relate them to sone ofthe algebra we have developed. 
We give few proofs but sufficient references. 

Thus, after generalizing differentiation in Euclidean space to " differentia- 
tion " on a manifold M by using a connection V, we discuss the basic concepts 
of geodesics, parallel translation, pseudo- Riemannian structures, and 
holonomy groups. Then we apply these results to the G-invariant connections 
on M = G/H which is a reductive homogeneous space. The G-invariant 
connections are in one-to-one correspondence with certain nonassociative 
algebras which are rather general, as shown in Fig. A.l, where the dashed 
arrow denotes a local correspondence. Next we show how these algebras 
correspond to certain multiplications p : G / H  x G/H + G/H analogous to 

the Lie group results in  Sections 1.6 and 5.3. These results generalize facts 
on Lie groups and Lie algebras and we indicate how simple nonassociative 
algebras are related to irreducible G-invariant connections on G/H and how 
to construct general results from these components. Finally we give a way 
of computing those nonassociative algebras which induce pseudo-Riemannian 
G-invariant connections on G/H in terms of a Jordan algebra of endomor- 
phisms. 

Algebras I 

I Connections I 

- I I 

Fig. A. 1 

337 
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1. Connections on Manifolds 

We now consider the concept which generalizes differentiation in R" to 
differentiation on a C"-manifold M. Then the geometric concepts of geodesics, 
curvature, torsion, holonomy, and Riemannian connections are discussed. 

Definition A.l Let M be a C"-manifold and let D ( M )  be the vector space 
of Cm-vector fields on M. An a t h e  connection on M is an R-bilinear map 
V : D ( M )  x D ( M )  -+ D ( M )  : (X, Y )  + V, Y satisfying 

V,x+&) = f  v,z + 9 V Y Z  

V,(f Y )  = f v x  y + (Xf) y9 

wheref, g E Cm(M). The operator V x  is called covariant differentiation re 
to x. 

ative 

Note that for M = R", a vector field Y can be regarded as a function 
Y :  R" R"; thus the above definition reduces to that given in Chapter 1. 

Also it is shown by Kobayashi and Nomizu [I9631 that connections exist on 
a manifold. 

In terms of a coordinate neighborhood U of p E M  with coordinate 
function x = (xl, . . . , x,,), the connection V is determined by n3 real-valued 
C"-functions r:, on U by 

where a/ax, are the usual coordinate vector fields on U. 
These functions r:, completely determine V on U, for given vector fields 

X = C al a/dxi and Y = 1 b, a/&, on U, we can use the properties of V to 
show 

Conversely, given any real-valued C"-functions r:, on U, we can define 
V, Y by (*). This can then be extended to all of M provided certain compati- 
bility conditions are satisfied [Helgason, 1962, p. 271. 

Definition A.2 Let M be a C"-manifold with affine connection V, let 
0 : I + M be a C"-curve in M with tangent vector field X; that is, X( t )  = &(t )  

for all t in the open interval I, and let J be a closed subinterval of I. A Cm- 
vector field Y on c is parallel along CT (restricted to J) if (V, Y)(c( t ) )  = 0 for 
all t E J. The curve 0 is a geodesic if (V,X)(a(t))  = 0 for all t E J. 
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The proofs of the following results on parallel fields and geodesics can be 
found in the work of Helgason [1962], Hicks [I9651 and Kobayashi and 
Nomizu [ 19631 and simply involve the solution to differential equations. 

Theorem A.3 Let M be a C"-manifold with affine connection V, let 
u : I + A4 be a C"-curve in M, and let [a, b] c I. For each Y E  T ( M ,  a@)) 
there is a unique Cm-vector field Y(t)  on ul [a, b] such that Y = Y(a) and 
Y(t)  is parallel along u (restricted to [a, 61). Furthermore the map 

o(a, 6) : T ( M ,  a(a)) --f T ( M ,  ~ ( b ) )  : Y(a) + Y(b) 

is a vector space isomorphism called parallel translation along cr from a(a) to 

4 b ) .  

OUTLINE OF PROOF Without loss of generality we can assume u lies in 
a coordinate neighborhood U and has no double points. For x l ,  . . . , x, 
coordinate functions on U, we can write o(t) = 1 ai( t )  a/dx,(a(t)) and 
X(t) = &(t) =I ai'(t) d/dxi(u(t)) and Y(t)  = a,(?) d/ax,(u(t)). Then Y(t )  

parallel along u implies 

on cr. This gives for t E [a, b] the equation for the ak , 

dak/dt + 1 ajai'rfj = 0 

for k = 1, . . . , n where we use the chain rule on ak(t) = ak(al(t), . . . , o,,(t)). 

The unique solution to this system of linear differential equations gives the 
results concerning the isomorphism a(a, b). If cr is to be a geodesic, we obtain 
for X( t )  = Y(t)  the system 

i ,  i 

d2ak/dtz + rfj du,/dt daj/dt = 0 
i .  j 

whose unique solution with specified initial conditions gives the following 
result. 

Theorem A.4 Let M be a C"-manifold with affine connection V, let 
p E M, and let X E T ( M ,  p). Then for any real number a there exists a real 
number E > 0 and a unique geodesic cr : [a - E ,  a + E] --f M such that cr (a) = p 

and $a) = X. 

Note that if we let u = a(t, p, X, a) be the curve given by the above 
theorem, then from the theory of differential equations cr is a C"-function of 
the parameters t ,  p ,  X, and a. Also note that for M = R" and rfj = 0 on M 
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we obtain from the above differential equations that the geodesics are straight 
lines. We now consider some functions related to affine connections. 

Definition A S  Let M be a C"-manifold with affine connection V and 

let X ,  Y, Z be Cm-vector fields on M. The torsion tensor, Tor is given by 
Tor(X,Y) = V x  Y - Vy X - [X, Y] and the curvature tensor, R is given by 

R ( X ,  Y)Z = (Vx  V y  - V y  V x  - Vex, YJZ. 

We also use the notation Tor, and R, . 
Note that Tor(X, Y) and R ( X ,  Y)Z are again vector fields which are multi- 

linear in X, Y, 2 and satisfy several algebraic identities. The following results 
can be found in the work of Hicks [1965] and Kobayashi and Nomizu [1963]. 

Theorem A.6 Let M be a C"-manifold. 

(a) If 0 is an affine connection, then there exists a unique connection V 

(b) Two connections V and 0 on M are equal if and only if they have 

with the same geodesics as 0 and Tor, = 0 on M .  

the same geodesics and Tor, = TOG on M. 

Definition A.7 Let M be a C"-manifold, let p E M, and let E(p) denote 
the set of nondegenerate symmetric bilinear forms on T ( M , p ) .  A pseudo- 

Riemannian structure on M is a map 

(,>:M--+ u =.(PI 
P E  M 

such that for all p ,  q E M, the bilinear forms ( , ) ( p )  and ( , ) ( q )  have the 
same index and such that ( , ) is C" as follows. For each pair of C"-vector 
fields X ,  Yon M, the function (X, Y) : M + R given by 

( X  Y)(P)  = (X(Ph Y(P))(P) 

is C" on M. We often use the notation ( , ) p  for the bilinear form ( , ) ( p )  on 
T ( M ,  p ) .  If each bilinear form ( , ) ( p )  is positive definite, then ( , ) is a Rie- 

mannian structure on M. A pseudo-Riemannian manifold is a C"-manifold 
with a pseudo-Riemannian structure. 

REMARKS (1) If the manifold M is connected, then we see that the 
index is automatically the same on each tangent space. This uses the C"- 
nature of the function ( , ) and consequently if the index did change at  a 
point, then the form becomes degenerate at that point. 

(2) I f  M is a paracoinpact C"-manifold, then there is a Riemannian 
structure on M ;  see the work of Singer and Thorpe [1-9671. 
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Example (1) Let G be a connected Lie group and H a closed (Lie) 
subgroup. Then on the homogeneous space G/H the diffeomorphisms 
?(a) : G/H + G / H  : p H  + upH for u E G induce the tangent maps 

~ ( r ( u ) ) ( p )  : T ( G / H ,  jj) + T(G/H,  GI. In particular, for u E H we use 
the notation ?(u) = T(T(U))(?) : T(G/H,  2) + T(G/H, 2) and note ? ( H )  = 

{‘i(u) : u E H} is a subgroup of GL(T(G/H, Z)). Let C be a nondegenerate 
symmetric bilinear form on T(G/H,  e) such that for all X, Y E  T(G/H, 2 )  we 
have C(?(u)X, ?(u)Y) = C ( X ,  Y) and for p = z(u)Z E G/H define a nonde- 
generate symmetric bilinear form ( , )(jj) on T(G/H, F )  by 

( U ,  V ) ( F )  = C(TzW1)(F)U, TW1)(F)V) 

for U ,  V E  T(G/H, p ) .  Using C(?(u)X,  P(u)Y) = C ( X ,  Y )  for X ,  Y E  T(G/H, 2) 

we see that ( , ) ( F )  is independent of the choice of u E G so that z@)2 = p. A 
homogeneous space with a pseudo-Riemannian metric ( , ) given as above 

is called a pseudo-Riemannian homogeneous space. Note that when H is com- 
pact there exists a positive definite form C. Thus in  this case G/H is a Rieman- 
nian homogeneous space. For another example, let g and h be semisimple and 
write g = m + h with m = h’ relative to the Killing form Kill of g. Then 
identifying m with T(G/H, F), note that C = Killlm x n7 is a nondegenerate 
symmetric bilinear form such that C(?(u)X,  ‘i(u)Y) = C ( X ,  Y) for all X ,  Y E  m. 

Thus we obtain a pseudo-Riemannian metric ( , ) on G/H. 

The proof of the following can be found in the work of Helgason [1962], 

Hicks [1965], and Kobayashi and Nomizu [1963]. 

Theorem A.8 Let M be a Cm-pseudo-Riemannian manifold. Then there 
exists a unique affine connection V satisfying the following conditions. 

(a) The torsion Tor is zero. 
(b) Parallel translation preserves the bilinear form on the tangent 

spaces; that is, if X ,  Yare parallel vector fields along a curve cr, then the func- 
tion ( X ,  Y )  is a constant on cr. 

The connection V given above is called the pseudo-Riemannian connection 

relative to the pseudo-Riemannian structure on M. It should be noted that 
conditions (a) and (b) can be expressed as: 

(a’) V x  Y - V,, X - [ X ,  Y] = 0; 

for Cm-vector fields X ,  Y ,  2 on M .  
We shall now show how parallel translation induces a group acting on a 

tangent space T ( M ,  p); a detailed expository discussion of this can be found 
in the text by Nomizu [1961]. Thus let V be an affine connection on M and 

(b‘) Z ( X ,  Y )  = (V, X ,  Y >  + ( X ,  Vz Y )  
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for p E M let H(p) be the set of vector space isomorphisms of T ( M ,  p) ob- 
tained by parallel translation around all broken Cm-curves a which start and 
end at p. We shall let the same letter a also denote the parallel translation 
along the closed curve a. For two such parallel translations 6, T along closed 
curves a, 7 at p ,  the parallel translation along the composite curve a7 is just 
the endomorphism product of the parallel translations a and T. With this we 
see that H(p) becomes a group of endomorphisms of T ( M , p )  called the 
holonomy group of V at p. The restricted holonomy group H o ( p )  is the sub- 
group of the holonomy group H ( p )  obtained by restricting the parallel trans- 
lations to closed curves which are homotopic to 0. 

REMARKS (3) If M is connected, then for each p, q E M we have H ( p )  

is isomorphic to H ( q )  as groups. In this case we define up to isomorphism the 
holonomy group of M, denoted by Hol(V), by Hol(V) = H ( p )  for somep E M. 

(4) The holonomy group H ( p )  is a Lie group. 
( 5 )  Let M be a pseudo-Riemannian manifold with pseudo-Riemannian 

structure ( , ) and with the corresponding pseudo-Riemannian connection 
V. Then we define the holonomy group of the pseudo-Riemannian connection at 
p to be those endomorphisms of H ( p )  which are ( , )(p)-orthogonal endo- 
morphisms of T ( M ,  p). Thus in this case the elements of the holonomy group 
satisfy the additional condition of preserving the pseudo-Riemannian 
structure. 

A discussion of the above remarks and the following results is given by 
Nomizu [I9611 and Kobayashi and Nomizu [1963]. Let M be a connected 
Riemannian manifold with Riemannian structure ( , ) and let p ,  q E M. The 
distance d(p, q) between the two points p and q is defined to be the infimum of 
the lengths of all broken C'-curves joiningp and q. [The length of a C'-curve 
a(t) for a I t 5 b is jz < b(t), b(t) > dt where b(t) denote the tangent vectors 
of the curve.] The function d satisfies the axioms of a metric and gives the 
same topology on M as the original manifold topology. 

Definition A.9 A Riemannian manifold M is complete if the above metric 
d is complete; that is, if every Cauchy sequence relative to d has a limit point. 

REMARKS (6) Every compact Riemannian manifold is complete and 

(7) If M is a connected complete Riemannian manifold, then any two 

also every Riemannian homogeneous space GIH is complete. 

points p ,  q E M can be joined by a geodesic whose length equals d(p, q). 

Completeness is used in the global version of the following decomposition 
theorem due to deRham: 
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Definition A.10 Let the manifold M have affine connection V and let 
H ( p )  be the holonomy group at  p E M .  Then T ( M ,  p )  is holonomy irreducible 

if the group H ( p )  acts irreducibly on T ( M , p ) .  If M is connected, then M is 

holonomy irreducible if H ( p )  is holonomy irreducible relative to  some reference 
point p E M .  

Theorem A . l l  

nian connection V. 

Let M be a connected Riemannian manifold with Rieman- 

(a) There is an orthogonal direct sum decomposition T ( M , p )  = 

To + T, + * * . + T,  , where To = { X  E T ( M ,  p )  : A X  = X all A E H ( p ) }  and 
for 1 I i 5 s each Ti is H(p)-invariant and irreducible. 

If M is simply connected, then the decomposition in (a) is unique up 
to order and H ( p )  is the direct product H ,  x HI x * . .  x H ,  of normal sub- 
groups, where H ,  is the identity on T ( M ,  p )  and each H i  for 1 < i < s acts 
trivially on 7;. for j # i and irreducibly on Ti. 

If M is a simply connected and complete Riemannian manifold, then 

M is isometric to the direct product M ,  x M ,  x x M ,  where M ,  is a 
Euclidean space (possibly of dimension 0) and the M i  for 1 S i I s are simply 

connected complete holonomy irreducible Riemannian manifolds. This de- 
composition is unique up to order. 

(b) 

(c) 

2. Connections on Homogeneous Spaces and 
Nonassociative Algebras 

Let G be a connected Lie group with Lie algebra g and H a closed (Lie) 
subgroup with Lie subalgebra h. Then the pair (C, H )  or (9, h) is called a 
reductive pair if there exists a subspace m of g so that g = m + h (subspace 
direct sum) and (Ad H)(m) c m. This last condition gives the condition 
[hm] c In in terms of Lie algebras. The corresponding manifold M = G/H is 
called a reductive homogeneous space. The main example we shall be using is 
when H is semisimple and connected. In particular, when G is also semisimple 
we can decompose g = m + h where m = h' relative to the Killing form of g. 

in order to consider G-invariant connections on G/H we use the following 
definition [Helgason, 1962; Kobayashi and Nomizu, 19631. 

Definition A.12 Let 4 : M + M be a diffeomorphism of the manifold M 
with connection V.  Then 4 is an affine map or a connection preserving map if 
4'(VxY) = V,.,4'Y for all X ,  Y E  D ( M ) ,  where 4' is given by 4 ' X  = 

[(T4)X] 0 4-l;  see Section 2.7. 
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Definition A.13 Let GIH be a reductive homogeneous space and for 

a E G let ?(a) : G/H + G/H : xH + axH. A connection V on GIH is a G- 
invariant connection if for all a E G the functions ?(a) are affine maps. 

Let (A, a) denote a nonassociative algebra A where a is the bilinear 
multiplication on the underlying vector space A. Then continuing the same 
notation, the G-invariant connections on GIH are given by the following 
result and we use the notation of Nomizu [1954]; also note the work of 
Kobayashi and Nomizu [1968]. 

Theorem A.14 Let G/H be a reductive homogeneous space with a fixed 
Lie algebra decomposition g = m + h such that (Ad H)(m) c m and let Ad H 
denote the induced maps on m. Then there exists a one-to-one correspondence 
between the set of all G-invariant affine connections on G/H and the set of all 
nonassociative algebras (m, a) with Ad H c Aut(m, a) which is the group of 
automorphisms of the algebra (m, a). 

REMARKS (1) To obtain a ( X ,  Y )  for X ,   YE^ we evaluate V,, Y* 

at 2 = eH for certain vector fields X * ,  Y* determined by X, Y on a neigh- 
borhood N* of 2. 

(2) Let H consist of the identity so that G = G/H is an n-dimensional 
Lie group with Lie algebra g. Then any nonassociative algebra structure on 
the n-dimensional vector space g yields a G-invariant connection on G and 
conversely. Thus as with Lie groups and Lie algebras, we can use the results 

on nonassociative algebras to study G-invariant connections. 

(3) As discussed i n  example (4), Section 7.3, the subspace m in the de- 
composition g = m + h can be made into an anticommutative algebra as 
follows. For X, Y E  m let [XY] = X Y  + h(X,  Y ) ,  where X Y  = [ X Y ] ,  (re- 
spectively h(X,  Y )  = [XU],,)  is the projection of [ X U ]  in g into m (respec- 
tively h). This algebra is related to connections by the following result [Nomizu, 
1954; Kobayashi and Nomizu, 19681. 

Theorem A.15 On a reductive homogeneous space G/H with fixed de- 
composition g = m + h, there exists one and only one G-invariant connection 
which has zero torsion tensor and such that the curves y ( t )  = exp t X  for all 
X E m project by K : G + G/H into geodesics y * ( t )  = ny(t) in GIH. In this case 
we have a ( X ,  Y) = 3 X Y .  This connection is called the canonical connection of 

the first kind and we shall denote the corresponding algebra by (m, 3 X Y ) .  

These algebras are not too difficult to compute. Thus continuing exercise 
(7), Section 12.2 and example (l), Section 6.4 we have for g = so@), h = so(p) 

the decomposition g = m + h with m = h' consisting of matrices of the form 
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and h consisting of matrices of the form 

Consequently XY = [X, Y],,  is of the form 

REMARK (4) For a G-invariant connection determined by the algebra 

(m, a) the torsion and curvature tensors evaluated at Z = eH are given by 

Tor(X, Y) = a ( X ,  Y )  - a( Y, X )  - XY, 

R ( X ,  Y)Z = a(X ,  a( Y,  Z)) - a( Y, a ( X ,  2)) - a(XY, Z) - [h (X ,  Y) Z ]  

where X ,  Y, Z E m and XY, h(X,  Y) are given above. Letting R(X,  Y) be the 
endomorphism given by R ( X ,  Y )  : m + m : Z + R ( X ,  Y)Z  as above and 
letting L ( X )  : m + m : Y -, a ( X ,  Y) we have the following result [Nomizu, 
1961 ; Kobayashi and Nomizu, 19681. 

Theorem A.16 The Lie algebra of the holonomy group Hol(V) of a G- 

invariant connection V on G/H determined by the algebra (m, a) is the 
smallest Lie algebra h* of endomorphisms of m such that: 

(a) R ( X ,  Y )  E h* for all X ,  Y E  m; 
(b) [ L ( X ) ,  h*] c h* for all X E  m. 

Corollary A.17 If V is a holonomy irreducible connection of the first 

kind given by the algebra (m, +XY), then this algebra is simple or a zero 

algebra. 

PROOF Briefly, suppose XY f 0 and let k = L(m) + Der(m) where L(m) 
is the Lie transformation algebra of rn; see Section 7.2. Then k is a Lie algebra 
of endomorphisms of m such that [ L ( X ) ,  k ]  c k for all X E  m and such that 

N X ,  Y )  = [L(X) ,  UY)I - U X Y )  - D(h(X Y ) )  

is in k for all X ,  Y E  m. This uses the formula for R(X,  Y)Z and part (vi) of 
Exercise (3), Section 7.3, which shows D(h(X, Y ) )  = ad h(X, Y ) l m  E Der(m). 
Thus from the above theorem, h* c k. Now suppose m is not simple. Then 
from the work of Sagle and Winter [I9671 there exists a proper ideal n of m 
which is Der(m)-invariant. Thus h*n c kn c n which contradicts the holonomy 

irreducibility. 
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We now consider pseudo-Riemannian reductive homogeneous spaces G / H  

with the pseudo-Riemannian structure given in example ( I ) ,  Section 16.1 and 
have the following result [Nomizu, 1954; Kobayashi and Nomizu, 19681. 

Theorem A.18 Let G/H be a reductive homogeneous space with fixed 
Lie algebra decomposition g = m + h. Let C be a symmetric nondegenerate 
bilinear form on m which gives the pseudo-Riemannian metric ( , ) on G/H 

and let V be the corresponding pseudo-Riemannian connection. Then the 
algebra (m, a) induced by V is given by 

a ( X ,  Y )  = 4 X Y  + U ( X ,  Y )  

where U(X,  Y) = U(Y, X) is uniquely determined. Furthermore tl satisfies 

C(a(Z, X), Y )  + C(X, a(Z, Y)) = 0 and C((Ad u)X, (Ad u)Y)  = C ( X ,  Y )  

for all X ,  Y, Z E m and u E H. Denote such an algebra by (ni, a, C). 

REMARKS ( 5 )  From the work of Nomizu [1954] and Kobayashi and 
Nomizu [1968], U ( X ,  Y) is given by 

2C(U(X, Y ) ,  z) = C(ZX,  Y )  + C ( X ,  Z Y )  

for X, Y, Z E r n .  

(m, a) satisfies a ( X ,  Y) = + X Y ,  and for X ,  Y,  Z E rn, U E h, 
(6) For a pseudo-Riemannian connection of the first kind the algebra 

C ( X Z ,  Y) = C ( X , Z Y )  and C((ad U ) X ,  Y) = - C ( X ,  (ad V)Y) .  

Note this gives the possibility of applying Theorem 12.10 concerning asso- 
ciative forms. Examples of such algebras occur when g and h are semi- 
simple, m = h* relative to the Killing form of g, and C = Kill I m x m. 

(7) Let (m, $XU) be an algebra with positive definite form C satisfying 
the above conditions. Let s be an ideal of m so that ss = (0) and s is maximal 
relative to this property. Then write m = s + m' an orthogonal direct sum 
and note that since C is an associative form, m' is an ideal of m such that 
sm' = (0). Now C I m' x m' is nondegenerate and m' contains no ideals n with 

nn = (0). Thus we can apply Theorem 12.10 to conclude m' = m, + * + ink 

where each mi is a simple ideal. However, this corresponds to the decomposi- 
tion of Theorem A. 1 1  and we have the following result; note the work of 
Kobayashi and Nomizu [ 19681. 

Corollary A.19 Let M = G/H be a simply connected Riemannian reduc- 
tive homogeneous space with the connection of the first kind induced by the 
algebra (m, + X Y )  and let the Lie algebra of the holonomy group be nonzero. 
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(a) Then M is isometric to the direct product M ,  x M ,  x ... x M ,  of 
Riemannian reductive homogeneous spaces such that the holonomy group 
acts trivially on M ,  and irreducibly on M i  for 1 I i I k .  

+ mk be the corresponding decomposition 
of m E T ( M ,  2 )  and let s = m, + m i ,  + ... + m,, for suitable corresponding 
M, ,  M i , ,  . . . , M i l .  Then the algebra m = s + m' where sm = (0) and m' = 

mjl + * * . + mi, where the ideals mi, , . . . , mi, are simple algebras corres- 
ponding to the remaining holonomy irreducible spaces Mi,  , . . . , M j p .  

(b) Let m = m, + rn, + 

3. Multiplicative Systems and Connections 

We now show how a multiplication on a reductive homogeneous space 
G/H yields a G-invariant connection by obtaining an algebra (m, a) from the 
multiplication. This is analogous to the way the Lie algebra arises from the 
multiplication in a Lie group. Let G/H be a reductive homogeneous space and 

let 

p ; G/H x G/H + G/H 

be an analytic function such that p(t?, 2 )  = t? where t? = eH. Then the structure 
(GIH, p) is called a multiplication. If r(H) = { ~ ( u )  : u E H} is contained in 
Aut(G/H, p), the automorphism group of the multiplication, then(G/H, p) 
is called a multiplicative system. Analogous to the computations in Sections 
1.6 and 5.3, we show how a multiplicative system yields an algebra (m, a) 

with Ad H c Aut(m, a) and consequently yields a G-invariant connection. 

Thus let IT : G --t G / H  be the natural projection and let g = m + h be a 
fixed decomposition. Then from Section 6.4 we know that for the map 
t,h = explm there exists an open neighborhood D of 0 in m which is mapped 
homeomorphically into G under $ and such that IT maps $( D) homeomorphi- 
cally onto an open neighborhood N *  oft?  in G/H. Consequently from the 
analyticity of p and IT o $ there exists a neighborhood U of 0 in m such that 
for all A', Y E  U 

p(n exp X ,  IT exp Y )  = IT exp F ( X ,  Y )  

is in N *  where F :  U x U + D is analytic at 9 = (0,O) in m x m. 

pansion 
From this p is determined locally by F which has the Taylor's series ex- 

F ( X ,  Y )  = F(O) + FI(e)(x,  Y )  + ) F ~ ( o ) ( x ,  ~ ) ( 2 )  + - .  
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for X ,  Y E  U. As in Section I .6 we use p(2 ,2 )  = 2 to see F(0) = 0 and we also 

have 

F'(B)(X,  Y )  = P X  + Q Y  

where PX = F 1 ( 0 ) ( X ,  0) ,  Q Y = F'(B)(O, Y )  and 

F 2 ( 0 ) ( X ,  Y)") = F2(0)(X,  0)'" + F2(0)(0, Y)") + 2F2(0)[ (X,  0), (0, Y ) ] .  

As before we define for X, Y E  m, 

a ( X ,  Y )  = FZ(e", 01, (0, Y)1 

and see this is a bilinear function c1 : m x m + m. Therefore the multiplication 
p on G/H determines a nonassociative algebra (m, a). 

Note that the converse is true locally. Thus given a nonassociative algebra 
(m, a) we let F ( X ,  Y )  = X + Y + a ( X ,  Y ) .  Then there is a neighborhood U of 

0 in m so that for X ,  Y E  U, ji(n exp X, n exp Y )  = n exp F(X,  Y )  defines an 
analytic local multiplication f i  on some neighborhood N *  of 2. Note that 
2 F 2 ( 0 ) [ ( X ,  0), (0, Y ) ]  = F 2 ( 0 ) ( X ,  Y)(')  = 2a(X,  Y )  in this case. 

To obtain a connection from the algebra (m, a) induced by the multi- 
plicative system (GIH, p), we need Ad H c Aut(m, a) which follows from 
T ( H )  c Aut(G/H, p )  as follows. First for x E G, u E H note 

t(u)n(x) = UXH = uxu-'(uH) = nq5(u)(x) 

where $(u) : G + G : x --f #xu-' is the inner automorphism of the group G 
determined by u. Also recall from Section 7.3 that Ad u = T(q5(u))(e) and 
$(u)(exp X) = exp(Ad u ( X ) ) .  Next we have for X ,  Y near enough 0 in m 

~ ( u ) p ( n  exp X ,  n exp Y )  = p ( ~ ( u ) n  exp X ,  ~ ( u ) n  exp Y )  

= pL(n+(u) exp X ,  n$(u) exp Y) 
= p(n exp Ad u X ,  rt exp Ad u Y )  

= n exp F(Ad u ( X ) ,  Ad u( Y ) )  

and also 

~ ( u ) p ( n  exp X ,  TI exp Y )  = t(u)n exp F ( X ,  Y) 
= n$(u) exp F(X,  Y )  
= n exp Ad u(F(X,  Y)). 

Thus weconclude Ad u(F(X,  Y ) )  = F(Ad u ( X ) ,  Ad u( Y ) )  using (Ad h)(m) c m. 
This implies Ad u(a(X,  Y ) )  = a(Ad u ( X ) ,  Ad u( Y ) )  using the definition of 

Conversely, if Ad H c Aut(m, a), then for F ( X ,  Y) = X + Y + a ( X ,  Y) 
we see Ad u(F(X,  Y ) )  = F(Ad u X ,  Ad uY)  and consequently t(u) is an auto- 
morphism of the previously defined local multiplication p. Thus we obtain a 
local multiplicative system corresponding to the algebra (m, a) with 

U ( X ,  Y )  = F2(e)[(x, 01, (0, Y I I .  
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Ad H c Aut(m, a). We summarize the results as follows, and for more details 
see the work of Sagle and Schumi [to appear]. 

Theorem A.20 Let ( G / H ,  p) be a multiplicative system and let g = in + h 
be the fixed Lie algebra decomposition. Let p be given locally by 

p(n exp X ,  n exp Y)  = rc exp F ( X ,  Y )  where F ( X ,  Y )  = P X  + Q Y + fF' (0)  
(A', Y)(') + . . . and let a ( X ,  Y) = F 2 ( 0 ) [ ( X ,  0), (0, Y ) ] .  

(a) Then a is a bilinear function which determines an algebra (m, a) so 
that Ad H c Aut(nz, a). Thus the multiplicative system (C/H,  p) induces a 
G-invariant connection on G / H .  

(b) Conversely, an algebra (m, a) with Ad H c Aut(m, a) determines a 
local multiplicative system so that when the multiplication ji is represented 
by ji(n exp X ,  71 exp Y) = n exp F ( X ,  Y) we obtain a ( X ,  Y )  = F 2 ( 0 ) [ ( X ,  0), 

(0, Y)l. 

REMARKS ( 1 )  If the multiplicative system is a Lie group G with p the 
group multiplication, then F ( X ,  Y )  is given by the Campbell-Hausdorf 
formula and a ( X ,  Y )  = +[XY]. Thus the geodisics relative to the induced 
connection are of the form y ( t )  = exp t X  for X E ~ .  

(2) Conditions on the algebra (m, a) can be obtained by considering 
identities on the multiplicative system (G/H,  p). Thus (C/H,  p) is power- 

associative if 5 is an identity element and each X E G / H  generates an associative 
subsystem containing 5; that is, ( G / H ,  p) is a power associative " H-space." 
In particular, this means the powers X", for n a positive integer, are uniquely 
defined. Thus for each X E G / H  the map n -+ X" is a well-defined homomor- 
phism of the positive integers under addition into (G/H,  p). In this case it can 
be shown that the algebra (m, a) is anticommutative. Thus the geodesics rela- 
tive to the corresponding connection are of the form n exp t X  for X E  m ;  

note the work of Nomizu [1954, Section 101. 
A specific nonassociative example arises from the Cayley division algebra 

over R by considering the set M of elements of norm 1 (where the positive 
definite norm is used). In a paper by Schumi and Walde [to appear] it is shown 
that M = S7 = G / H  where G is of type B3 and H is of type G 2 ,  and the multi- 
plication p is the nonassociative multiplication of the Cayley algebra. Also 

( G / H ,  p) is a multiplicative system and the corresponding algebra (m, a) is 
given by a ( X ,  Y) = +X Y where this anticommutative multiplication satisfies 
J ( X ,  Y, X Z )  = J ( X ,  Y ,  Z ) X  where J ( X ,  Y ,  2) = (XY)Z + ( Y 2 ) X  + ( Z X )  Y. 

An anticommutative algebra satisfying this identity is called a " Malcev 
algebra"; note the work by Sagle [1965]. 

Since many properties of a Lie group are given by its Lie algebra 

considered as G-invariant vector fields, we can also use the functions 
I ( X )  : G / H  -, T(G/H) analogous to that discussed in exercise (3), Section 2.7, 

(3) 
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exercise ( I ) ,  Section 2.8, and exercise (l), Section 5.1 for the multiplica- 
tive system (G/H,p). Thus for P E G / H  and X ~ r n  we have I (X)(p)  = 

[(Tp)(P, ? ) ] ( O ,  X). Note as in the exercises I ( X )  is a vector field if and only i f ?  
is a right identity element; that is, p(X, 2) = X all X E G / H .  Many properties of 
I ( X )  are given in the work of Sagle and Schumi [to appear]. In  particular, 
if (G, p) is a multiplicative system with every 1(X) a G-invariant vector 
field, then the corresponding algebra (9, a) is given by a ( X ,  Y )  = + [ X Q Y ]  
where Q Y =F'(B)(O, Y ) .  If a is not the zero function and the corresponding 
connection is holonomy irreducible, then Q is nonsingular. 

4. Riemannian Connections and Jordan Algebras 

In the previous sections we showed how to find G-invariant connections 
on G/H in terms of multiplications and nonassociative algebras. For the 
pseudo-Riemannian case these algebras can be explicitly computed in terms 
of the algebra (m, tXY) and a certain Jordan algebra as follows; see the work 
of Sagle [to appear]. Let (m, + X Y ,  B) denote the algebra which induced 
the pseudo-Riemannian connection of the first kind on GIH according 
to Theorem A.18 where B is used instead of the C in Theorem A.18. Now 
suppose G/H has another pseudo-Riemannian connection given by the 
algebra (m, a, C). Then since the forms are nondegenerate there exists a 

unique S E GL(m) such that for all X ,  Y E  m 

C ( X ,  Y) = B(SX,  Y). 

Furthermore using the symmetry and Ad H-invariance of B and C we have 
for all u E H, 

Sb = s and [Ad u, S] = 0 (*) 

where b denotes the adjoint relative to B and Ad u = Ad u J  m. Using remark 
(9, Section A.2 we obtain the formula 

~ c ( ( x ,  Y) = XY + s - ' [ X ( S Y )  - (SX)Y]. 

Conversely given S E GL(m) satisfying (*) we can define C and c1 as above to 
obtain the algebra (m, a, C) which induces a pseudo-Riemannian G-invariant 
connection on GIH. 

Now the set 

J = {TE End(m) : Tb = Tand [Ad u, TI = 0 all u E H }  
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forms a Jordan algebra of endomorphisms relative to the usual multiplication 
S, . S, = +(S,S, + S2 S,);  see Section 14.2 concerning type F 4 .  

REMARKS (1) Using the fact that S = exp T is invertible for T E  J we 
obtain a correspondence between the above connections and elements of J .  

Also note for S = I we obtain the original connection determined by (m, 

+XY,  B) .  
(2) In case X Y  E 0; that is, G / H  is a symmetric space, the above results 

still hold for J .  

Using Lemma 7.15 and the obvious variation of Definition 9.12, the re- 
sults of Sagle [to appear] give the following: 

Theorem A.21 Let (G, H )  be a reductive pair with decomposition 
g = ni + h such that Ad H is completely reducible in m. Then J is a semisimple 
Jordan algebra; that is, a direct sum of simple Jordan algebras. 

Corollary A.22 Let (G, H) be a reductive pair with G and H semisimple. 

Let the decomposition g = m + h be given by m = h1 relative to the Killing 
form Kill of g and let B = Kill I m x tn. Then the algebra (177, + X U ,  B )  deter- 
mines a pseudo-Riemannian connection of the first kind and the Jordan 

algebra J is semisimple. 

Example (1) Let G = SO(n) and let H = SO(p) for p < n - 1. Then 
g = so(n) the n x n skew-symmetric matrices and embed h = so(p)  as in ex- 

ample ( I ) ,  Section 6.4. Thus m = h' is the set of matrices of the form 

[?: xd2] 
and the spaces KO and K2 of matrices of the form 

respectively, are J-invariant. Thus J = J o  0 J 2  where J o  and J 2  are iso- 
morphic to the simple Jordan algebra of symmetric r x r matrices where 
r = n -p .  As far as we know, i t  is an open problem to classify the Jordan 
algebras J for the reductive pairs (g ,  h)  with g and h semisimple. 
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