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1.0 Introduction

It was recently found that Ampere’s Treatise of 1826 has not been translated into English
in full. More seriously, the Google Books images do not contain the Figures. Thus the expla-
nations of the experiments, which are the sole point of the treatise, cannot be understood.
Original copies of the treatise are only available at major libraries, and typically are not
allowed for circulation. A few parts of the treatise were translated in Tricker[1]. This was
a book on early electrodynamics prepared for English school children, and it contains re-
productions of eleven of the Figures (figs. 1–6 and 29–33). These are the figures referenced
in the parts which were translated. This publication is useful, but is no longer in print.
Nevertheless Google classifies the treatise as under copyright. It is available on the web (at
abebooks.com, for instance). The Stanford Library Special Collections Section (not acces-
sible to Google) showed in the online Catalog that it had 2 copies, one in the “Newton”
collection and one in the “Samuel I. and Cecile M. Barchas” collection. They are both under
the same catalog index number and therefore the Library believed that they were both the
same edition. The date given was 1826. As it turned out the Newton Collection contains a
first edition, in quite poor condition, but the Barchas Collection contains 2 copies, one a
first edition and the other a second edition. Both of these copies are in surprisingly good
condition. Since all the copies were cataloged under one index number, it was a bit difficult
to explain to the Library staff which copy I wanted, particularly since the copy I really
wanted was not known by them to exist. However, they were very cooperative and patient.
I was able to obtain the Barchas first edition and, after several tries, I obtained 1x1 imaged
high-resolution (800ppi TIFF) images of the Figures from both Barchas editions. With these
Figures and copies of the text of both editions, I had all of the available information.

It was evident that a readable copy of this fundamental work would be of long-term
value. And, a translation into English would also be helpful. An effective plan would be to
create PDF copies using TEX which would also include fully readable figures. The text of the

[1] Tricker, R. A. R., Early Electrodynamics, The First Law of Circulation, Pergamon
Press, Oxford, 1965.
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two editions is identical except for typos, and for significant parts of the appended “Some
New Developments on the Subjects treated in the Preceding Treatise” (title as in the 2nd

editions). I have used the Notes from the other editions. In fact, the changes in the Notes were
first made in the version of the Treatise which appeared in the Mémoires de L’Académie des
Sciences de L’Institut de France, tome 6, année 1823, 1827. The changes include Ampere’s
improved understanding of the proof of the inverse square law for the electromagnetic force,
and other improvements. The Section III, (Application of this transformation...) in the first
edition was not included in the other editions. Also, the second edition lacked a table of
contents which appeared in the first edition.

Thus, the plan involved the following steps: start from the first edition but with the
“Notes” from the second edition, using Adobe Acrobat Professional to OCR the text. This
text was sent to Google Translate. The result was of use in that Google Translate would
fail to translate most incorrectly OCR’ed strings. This was useful as an OCR and spelling
check. However, after fairly complete spelling correction, the Google translation was not of
much use as a meaningful translation. But, Google Translate has been extremely helpful in
suggesting translations of individual words and phrases. Next, of course, all the mathematics
had to be entered by hand. Then, the two Plates showing the Figures, of size about 11′′×17′′,
required editing and conversion to PDF. These are now in the form of the two original Plates,
at the original scale but set to display at 8.5′′ × 11′′, each Figure is in a separate PDF so
that each can be placed on a separate page, and finally versions of the 2 Plates in PDF
which are set to print at 11′′ × 17′′. These provide about 1.5 times higher resolution than
the 8.5′′ × 11′′ ones. Next, the text and equations were proofread to yield near final copy.
It is certain that typos still exist and additional proofreading will be needed. This has been
done, in part, while carrying out the remaining translation.

Hyperlinks are provided to allow locating Sections, textual references, references to the
Figures, and the Figures themselves.

The translation was then completed. Use was made, after substantial editing, of parts of
the Tricker partial translation. All of the text was compared with the French text during the
preparation and editing of the files. Technically, single TEX files are used for both languages.
Each file contains a conditional flag which determines whether the original French or the
translated text should be used. Generally, the conditional statements enclose each paragraph
or the text between displayed equations. None of the displayed equations are conditional.

If generated in draft form, the translation contains marginal notes in the text which
provide the page numbers of the matching text in the original first edition, and indications
about the translation. This is useful for editing and checking. These are not present the final
version.

2.0 Historical Notes

The web site @. Ampère et l’histoire de l’électricité (www.ampere.cnrs.fr) contains a great
deal of information concerning Ampere and his works. I noticed this web site only after I
had completed a complete draft of this work. An important historical fact that I found on
the site is that Ampere’s publication[2] is an exact reprinting of his series of papers in the

[2] THÉORIE MATHÉMATIQUE DES PHÉNOMÈNES ÉLECTRODYNAMIQUES UNIQUEMENT DÉDUITE

DE L’EXPÉRIENCE, CHEZ FIRMIN DIDOT, PÈRE ET FILS, LIBRAIRES, 1827.

http://www.ampere.cnrs.fr
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Académie royale des Sciences.[3] Only the page numbers were changed. Through this web
site I learned of Andre Koch Torres Assis, Institute of Physics, University of Campinas who
has produced an excellent translation of Ampere’s Treatise into Portuguese.[4] He has also
produced other work concerning Ampere. See his web site.

Thus, it appears that there are just two versions of the Treatise, and the two versions
only differ in the appended “Notes.” The first edition, was published under two titles,
“Théorie des phénomènes électrodynamiques” and ”Théorie mathématique des phénomènes
électrodynamiques.” Both are dated 1826. The second edition contains the same text with
a number of typographical corrections and the revised “Notes.” The second editions started
with the publication in the Académie royale des Sciences, tome 6, 1823. This volume was
published in 1827. The editions with the revised “Notes” can all be viewed as second editions,
but the first to explicitly state “second edition” is the 1883 publication.

3.0 Explanation of changes in and additions to the original text

3.1 Changes to the text

In the text itself only minor typographical errors were found and corrected. Both the First
and Second editions were used in checking this. The Table of Contents from the First edition
was reformatted, moved to the front, and hyperlinked. There is no Table of Contents in the
Second edition.

3.2 Indices of and Corrections to the Figures

The Figures are shown on 2 Plates bound at the back of the treatise (pgs. 114–115 in this
version). The first Plate contains Figures 1–16, and the second contains 17–44. These were
originally foldout Plates of approximately 11x17 inches. (The fact they were foldouts is
the reason why they were not imaged by Google.) The Stanford Library Special Collections
Services imaged them, at 1x1 ratio, and at 800ppi TIFF. In order to reduce the size of
the files there are two versions: one with the two Plates and the individual Figures all
in one PDF, and another composed of a PDF without the Plates and Figures, but with
these as separate PDF files in a separate folder. This version also has hyperlinks that allow
referencing the Plates and Figures from the PDF, and they are configured so that they
can be viewed without replacing the current window. The Plates and Figures are as in the
original publication, with corrections and cleanup of the objects. In any case, the Figures
can be scaled up for closer examination.

Hyperlinks are used in the text to provide easy access to the Plates and Figures. The
links are set to open a new window so that the figures may be viewed along with the text.

Indices of the Figures and of names used in the text have been added.

The important corrections are as follows:

fig. 4 Figure 4 had M and N as labels at the edges of the table, but this conflicted with
the use on M and N within the equipment. The labels on the table edges were
changed to M′ and N′. The three circular circuits should have contained, from left

[3] Meetings of the Académie royale des Sciences, 4 and 26 December 1820, 10 June 1822,
22 December 1823, 12 September and 28 November 1825.
[4] Andre Koch Torres Assis and João Paulo Martins de Castro Chaib, Electrodinãmica de

Ampère, Editora da Unicamp, Campinas, Brazil.

http://www.ifi.unicamp.br/~assis
http://www.ifi.unicamp.br/~assis
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to right, the labels: O′′,O′,O. The front circular tab on the cantilever should have
been labeled a. And, the circular part of the cantilever should have been labeled
bcg. All of these labels are referred to in the text but were not present in the
Figure.

fig. 20 There are 3 labels e, d, and p and their primes which are hard to see, but they
are there. Actually, they were missing from the 1st edition but included in the
2nd. I copied them over. The p’s are located at the center of the 2 disks. The e
and d’s are located at the ends of the upper conductors, just above the S and S′.

fig. 21 This figure had missing labels in the 1st edn. These (e, e′, d, d′) are present in the
2nd edition, so they were copied over. Also, O and O′ were missing and copied
from the 2nd edition. And, p and p′ were missing from the centers of the lower
disks. These labels can only be seen after magnification.

fig. 25 It appears that the 2nd edition figure was redrawn incorrectly. The Figure requires
L instead of L2 and there should be no L3 which should be L2.

fig. 40 Figure 40 had T′ and T transposed. This is correct in the 2nd edition. But, also, it
should have a label Z. (See last Paragraph on pg. 87, or pg. 168 of the 1st edn.)
The text indicates that Z is opposite from R with respect to A. I inserted the label
Z.

Michael D. Godfrey
Statistics Department

Stanford University
michaeldgodfrey@gmail.com

Website: sites.google.com/site/michaeldgodfreyJanuary 2015

http://sites.google.com/site/michaeldgodfrey
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TREATISE

ON THE MATHEMATICAL THEORY

OF

ELECTRO-DYNAMIC PHENOMENA

UNIQUELY DERIVED FROM EXPERIMENTS

The collected works of M. Ampère from his communications to the Académie
royale des Sciences, Sessions of 4 and 26 December 1820, 10 June 1822, 22
December 1823, 12 September and 28 November 1825.

1. Exposition of the path followed in research into the laws of natural phenom-
ena and the forces that they produce

THE era of Newton’s work was marked in the history of science as not only that of the most
important discoveries made by man concerning the causes of the major natural phenomena;
it was also the era in which human imagination opened up a new method in the sciences
which has as its object the study of these phenomena.

Previously the causes of natural phenomena had been sought almost exclusively in the
impulse of an unknown fluid which entrained material particles in the same direction as its
own particles; and wherever rotational motion was observed, one imagined a vortex in the
same direction.

Newton taught us that motion of this kind, like all motions in nature, must be reducible
by calculation to forces acting always between two material particles along the straight line
between them, such that the action of one upon the other is equal and opposite to that
which the latter exerts at the same time upon the former and, consequently, assuming the
two particles to be in a fixed association between each other, that no motion whatsoever
can result from their interaction. It is this law, now confirmed by every observation and
every calculation, which he presented in the last of the three axioms at the beginning of the
Philosophiæ naturalis principia mathematica. But this was not sufficient for it to be raised
to this high conception, the law had to be found which governs the variation of these forces
with the respective situations of the particles between which they act, or, what amounts to
the same thing, to express the value by a formula.

Newton was far from thinking that this law could be discovered from abstract consid-
erations, however plausible they might be. He established that such laws must be deduced
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from observed facts, or preferably, from empirical laws, like those of Kepler, which are only
the generalized results of a large body of facts.

First observe the facts, while varying the conditions to the extent possible, accompany
this first effort with precise measurement in order to deduce general laws based solely on
experiments, and deduce therefrom, independently of all hypotheses regarding the nature
of the forces which produce the phenomena, the mathematical value of these forces, that
is to say, the formula which represents them, this was the path followed by Newton. This
was the approach generally adopted by the scholars of France to whom physics owes the
immense progress which has been made in recent times, and similarly it has guided me in
all my research into electrodynamic phenomena. I have relied solely on experimentation to
establish the laws of the phenomena and from them I have derived the formula which alone
can represent the forces which are produced; I have not investigated the possible cause of
these forces, convinced that all research of this nature must proceed from pure experimental
knowledge of the laws and from the value, determined solely by deduction from these laws,
of the individual forces in the direction which is, of necessity, that of a straight line drawn
through the material points between which the forces act. That is why I shall refrain from
discussing any ideas which I might have on the nature of the cause of the forces produced
by voltaic conductors, though this is contained in the notes which accompany the Exposé
sommaire des nouvelles expériences électromagnétiques faites par plusieurs physiciens depuis
le mois de mars 1821, which I read at the public session of the Académie des Sciences, 8 April
1822; one can see what I said in these notes on page 215 of my Collection of Electrodynamic
Observations. It does not appear that this approach, the only one which can lead to results
which are independent of all hypotheses, is preferred by physicists in the rest of Europe as
it is by the French; the famous scientist who first saw the poles of a magnet transported by
the action of a conductor in directions perpendicular to those of the wire, concluded that
electrical matter revolved about it and pushed the poles along with it, just as Descartes
made the matter of his vortices revolve in the direction of planetary revolution. Guided by
Newtonian philosophy, I have reduced the phenomenon observed by M. Ørsted, as has been
done for all similar natural phenomena, to forces acting along a straight line joining the
two particles between which the actions are exerted; and if I have established that the same
arrangement, or the same movement of electricity, which exists in the conductor is present
also around the particles of the magnets, it is certainly not to make them act by impulsion in
the manner of a vortex, but to calculate, according to my formula, the resultant forces acting
between the particles of a magnet and those of a conductor, or of another magnet, along the
lines joining the particles in pairs which are considered to be interacting, and to show that
the results of the calculation are completely verified by 1◦ the experiments of M. Pouillet
and my own into the precise determination of the conditions which must exist for a moving
conductor to remain in equilibrium when acted upon, whether by another conductor, or by
a magnet, and 2◦ by the agreement between these results and the laws which Coulomb and
M. Biot have deduced by their experiments, the former relating to the interaction of two
magnets, and the latter to the interaction between a magnet and a conductor.

The principal advantage of formulæ which are thus concluded directly from some general
facts gained from sufficient observations for their certitude to be incontestable, is that they
remain independent, not only of the hypotheses which may have aided in the quest for these
formulæ, but also independent of those which may later be substituted. The expression for
universal attraction deduced from Kepler’s laws does not depend at all on hypotheses which
some writers have advanced since they wanted to assign a mechanical cause. The theory of
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heat is founded on general facts which have been obtained by direct observation; the equation
deduced from these facts, confirmed by the agreement between the results of calculation and
of experiment, must be equally accepted as expressing the true laws of heat propagation, and
by those who attribute it to the radiation of calorific molecules, and by those who take the
view that the phenomenon is caused by the vibration of a fluid diffused in space; it is only
necessary for the first to show how the equation results from their view and for the second to
derive it from the general formulæ for vibratory motion; doing so does not add anything to
the certainty of the equation, but only substantiates the respective hypotheses. The physicist
who refrains from committing himself in this respect, acknowledges the heat equation to be
an exact representation of the facts without concerning himself with the manner in which
it can result from one or other of the explanations of which we are speaking; and if new
phenomena and new calculations should demonstrate that the effects of heat can in fact only
be explained in a system of vibrations, the great physicist who first produced the equation
and who created the methods of integration to apply it in his research, is still just as much
the author of the mathematical theory of heat, as Newton is still the author of the theory of
planetary motion; even though the theory was not as completely demonstrated by his works
as his successors have been able to do in theirs.

It is the same for the formula by which I represented electrodynamic action. Whatever
the physical cause to which the phenomena produced by this action might be ascribed, the
formula which I have obtained will always remain the expression of the facts. If it should
later be derived from one of the considerations by which so many other phenomena have
been explained, such as attraction by inverse square of the distance, those which become
unaffected at any appreciable distance between particles between which forces are exerted,
the vibration of a fluid diffused in space, etc., another step forward will have been made
in this field of physics; but this inquiry, in which I myself am no longer occupied, though I
fully recognize its importance, will change nothing in the results of my work, since to be in
agreement with the facts, it must always be that the adopted hypothesis must be in accord
with the formula which fully represents them.

From the time when I recognized that two voltaic conductors act on each other, some-
times attracting and sometimes repelling, since I distinguished and described the actions
which they exert in the various positions where they can be found with respect to each
other, and after I had established that the action exerted by a straight conductor is equal
to that exerted by a sinuous conductor whenever the latter only diverges by very short dis-
tances from the direction of the former and both terminate at the same points, I have been
seeking to express the value of the attractive or repellent force between two elements, or
infinitesimal parts, of conducting wires by a formula so as to be able to derive by the known
methods of integration, the action which takes place between two portions of conductors of
a given form and position.

The impossibility of conducting direct experiments on infinitesimal portions of a voltaic
circuit makes it necessary to proceed from observations of conductors of finite dimension
and to satisfy two conditions, namely that the observations be capable of great precision and
that they be appropriate to the determination of the interaction between two infinitesimal
portions of wires. It is possible to proceed in either of two ways: one is first to measure
values of the mutual action of two portions of finite dimension with the greatest possible
exactitude, by placing them successively, one in relation to the other, at various distances and
in various positions, for it is evident that the interaction does not depend solely on distance,
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and then to advance a hypothesis as to the value of the mutual action of two infinitesimal
portions, to derive the value of the action which must result for the test conductors of finite
dimension, and to modify the hypothesis until the calculated results are in accord with
those of observation. It is this procedure which I first proposed to follow, as explained in
detail in the paper which I read at the Académie des Sciences 9 October 1820(1); though
it leads to the truth only by the indirect route of hypothesis, it is no less valuable because
of that, since it is often the only way open in investigations of this kind. A member of this
Académie, whose works have covered the whole range of physics has aptly expressed this in
the Notice sur l’aimantation imprimée aux métaux par l’électricité en mouvement, which he
read 2 April 1821, saying that prediction of this kind was the aim of practically all physical
research(2).

However, the same end can be reached more directly by the path which I have since
followed: it consists in establishing by experiment that a moving conductor remains exactly
in equilibrium between equal forces, or between equal rotational moments, these forces and
these moments being produced by portions of fixed conductors whose shape and dimension
may be arbitrarily varied without the equilibrium being disturbed, under the conditions
determined by the experiment, and determining directly by calculation what the value of
the mutual action of the two infinitesimal portions must be for equilibrium to be, in fact,
independent of all variations of shape and dimension compatible with these conditions.

This last procedure can only be adopted when the nature of the action being studied is
such that cases of equilibrium which are independent of the shape of the body are possible;
it is therefore of much more restricted application than the first method which I discussed;
but since voltaic conductors do permit equilibrium of this kind, it is natural to prefer the
simpler and more direct method which is capable of great exactitude if ordinary precautions
are taken for the experiments. There is, however, in connection with the action of conductors,
a much more important reason for employing it in the determination of the forces which
produce their action: it is the extreme difficulty associated with experiments where it is
proposed, for example, to measure the forces by the number of oscillations of the body which
is subjected to the actions. This difficulty is due to the fact that when a fixed conductor
is made to act upon the moving portion of a circuit, the pieces of apparatus which are
necessary for connection to the battery act on the moving portion at the same time as the
fixed conductor, thus altering the results of the experiments. I believe, however, that I have
succeeded in overcoming this difficulty in a suitable apparatus for measuring the mutual
action of two conductors, one fixed and the other moving, by the number of oscillations in
the latter for various shapes of the fixed conductor. I shall describe this apparatus in the
course of this treatise.

It is true that the same obstacles are not encountered when the action of a conducting
wire on a magnet is measured in the same way; but this method cannot be employed
when it comes to determining the forces which two conductors exert upon each other, the
question which must be our first consideration in the investigation of new phenomena. It is
evident that if the action of a conductor on a magnet is due to some other cause than that
which produces the effect between two conductors, experiments performed with respect to a
conductor and magnet can add nothing to the study of two conductors; if magnets only owe

(1) This paper has not been published separately, but the principal results are included in
vol. XV of the Annales de Chimie et de Physique (1820), (See Part 2; Section 3).
(2) See Journal des Savants, p. 233, April 1821.
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their properties to electric currents, which encircle each of their particles, it is necessary, in
order to draw definite conclusions as to the action of the conducting wire on these currents,
to be sure that these currents are of the same intensity near to the surface of the magnet as
within it, or else to know the law governing the variation of intensity; whether the layouts of
the currents are everywhere perpendicular to the axis of a bar magnet, as I at first supposed,
or whether the mutual action of the currents of the magnet itself inclines them more to the
axis when at a greater distance from this axis, which is what I have since concluded from
the difference which is noticeable between the position of the poles on a magnet and the
position of the points which are endowed with the same properties in a conductor of which
one part is helically wound(1).

(1) I should insert here the following note which is an analysis extracted from work of
the Académie during 1821, published on 8 April 1822. (See the mathematical part of this
analysis, pg. 22–23.)

�The main difference between the manner of action of a magnet and that of a
conductor such that one part is coiled into a helix around another part, consists in
that the poles of the former are located more closely to the mid-point of the magnet
than toward its extremities, whereas the points that provide the same properties
in the helix are located exactly at the extremities of the helix : this produces
the effect that the current in the magnet diminishes from the midpoint towards
the extremities. But M. Ampere has since recognized another cause which could
produce this effect. After having completed his new experiments which showed
that the current in a magnet exists at each of its particles, it was easy for him
to see that it was not necessary to assume, as previously had been done, that the
planes of the currents are everywhere perpendicular to the axis of the magnet;
their mutual action tends to yield planes inclined to the axis, particularly at the
extremities, so that the poles, instead of being exactly situated, as they should be,
based on the results of the formulas given by M. Ampere, one may assume that
all the currents of the same intensity and in the planes perpendicular to the axis,
should approach the region of the magnet along its length will be larger than the
planes of a large number of inclined currents, and they dominate, that is to say,
as the magnet becomes thicker with respect to its length, this conforms to the
observed behavior. In the helical conductor, where one part returns along the axis
in order to cancel the effect of the currents of each coil which acts as if they were
parallel to this axis, these two conditions, according to what we just stated, are
not necessarily located within the magnets, but exist instead necessarily within
the wires: it is also observed in the experiments that the helices have poles similar
to those of the magnets, but located exactly at their extremities as shown by the
calculations.�

One sees from this note, from the year 1821, that I had concluded that the phenomena
show that magnets :

1◦ in considering each particle of a bar magnet as a magnet, the axes of these elementary
magnets should be, not parallel to the axis of the entire magnet as had been assumed, but
positioned in directions inclined to this axis and in directions as determined by their mutual
interaction;

2◦ that this effect is one of the causes that the poles of a bar magnet are not located
at its extremities, but between the extremities and the mid-point of the magnet.
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2. Description of the experiments from which one finds four cases of equilib-
rium which yield the laws of action to which are due the electrodynamic
phenomena

The various cases of equilibrium which I have found by precise experiments provide the
laws leading directly to the mathematical expression for the force which two elements of
conducting wires exert upon each other, in that they first make the form of this expression
known and then allow the initially unknown constants to be determined, just as Kepler’s
laws show in the first place that the force which holds the planets in their orbits tends
constantly towards the center of the sun, since it varies for a particular planet as the inverse
square of its distance to the solar center, so that the constant coefficient which represents its
intensity has the same value for all planets. These cases of equilibrium are four in number:
the first demonstrates the equality in absolute value of the attraction and repulsion which
is produced when a current flows alternately in opposite directions in a fixed conductor the
distance to the body on which it acts remaining constant. This equality results from the
simple observation that two equal portions of one and the same conductor which are covered
in silk to prevent contact, whether both straight, or twisted together to form around each
other two equal helices, in which the same electric current flows, but in opposite directions,
exert no action on either a magnet or a moving conductor; this can be established by the
moving conductor which is illustrated in Plate I, fig. 9 of the Annales de Chimie et de
Physique vol. XVIII, relating to the description of my electrodynamic apparatus, and which
is introduced here (Pl. 1 pg. 114, fig. 1 pg. 116). For this, a horizontal straight conductor
AB, repeated several times over, is placed slightly below the lower part dee′d′ such that
its mid-point in length and thickness is in the vertical line through the points x, y about
which the moving conductor turns freely. It is seen that this conductor stays in the position
where it is placed, which proves that there is equilibrium between the actions exerted by
the fixed conductor on the two equal and opposite portions of the circuit bcde and b′c′d′e′

which differ only in that the current flows towards the fixed conductor in the one, and
away from it in the other, whatever the angle between the fixed conductor and the plane of
the moving conductor: now, considering first the two actions exerted between each portion
of the circuit and the half of the conductor AB which is the nearest, and then the two
actions between each of the two portions and the half of the conductor which is the furthest
away, it will be seen without difficulty 1◦ that the equilibrium under consideration cannot
occur at all angles except in so far as there is equilibrium separately between the first two
actions and the last two; 2◦ that if one of the first two actions is attractive because current
flows in the same direction along the sides of the acute angle formed by the portions of
the conductors,the other will be repellent because the current flows in opposite directions
along the two sides of the equal and opposite angle at the vertex, so that, for there to be
equilibrium, the first two actions which tend to make the moving conductor turn, the one
in one direction, and the other in the opposite direction, must be equal to each other; and

Both of these assertions are today fully demonstrated by the formulas deduced by
M. Poisson and by which he has derived the distribution, in the magnets, of the forces
originating from each of their particles. These formulas are based on Coulomb’s law, and
as a consequence, nothing is changed when one adopts the explanation of magnetic effects
that I have given, since this law is a consequence of my formula, as will be shown later in
this Treatise.



DESCRIPTION OF THE EXPERIMENTS FROM WHICH ONE FINDS FOUR CASES 7

the last two actions, the one attractive and the other repellent, between the sides of the
two obtuse and opposite angles at the vertex and the complements of those about which we
have just been speaking, must also be equal to each other. Needless to say, these actions
are really sums of products of forces which act on each infinitesimal portion of the moving
conductor multiplied by their distance to the vertical about which this conductor is free to
turn; however, the corresponding infinitesimal portions of the two arms bcde and b′c′d′e′

always being at equal distances from the vertical about which they turn, the equality of the
moments makes it necessary that the forces are equal.

The second of the three general cases of equilibrium was indicated by me towards the
end of the year 1820; it consists in the equality of the actions exerted on a moving straight
conductor by two fixed conductors situated the same distance away from it, of which one
is also straight, but the other bent in any manner. This was the apparatus by which I
verified the equality of the two actions in the precise experiments, the results of which were
communicated to the Académie in the session of 26 December 1820.

The two wooden posts, PQ,RS (Pl. 1 pg. 114, fig. 2 pg. 117), are slotted on the sides
which mutually face each other, the straight wire bc being laid in the slot of PQ, and the
wire k l in that of RS, over its entire length this wire is twisted in the plane perpendicular
to that joining the two axes of the posts, such that the wire at no point departs more than
a very short distance from the mid-point of the slot.

These two wires serve as conductors for the two portions of a current which is made to
repel the part GH of a moving conductor consisting of two almost closed and equal rectangular
circuits BCDE, FGHI in which the current flows in opposite directions so that the effect of the
earth on these two circuits cancels out. At the two extremities of this moving conductor there
are two points A and K which are immersed in the mercury-filled cups M and N and soldered to
the extremities of the copper arms gM, hN. These arms make contact via the copper bushings
g and h, the first with the copper wire gfe, helically wound around the glass tube hgf , the
other with the straight wire hi which goes through the inside of this tube to the trough
ki made in the piece of wood vw which is fixed at the desired height against the pillar z
with the set screw o. In view of the experiment to which I referred above, the portion of the
circuit composed of the helix gf and the straight wire hi can exert no action on the moving
conductor. For current to flow in the fixed conductors bc and kl, the connecting wires of these
conductors are continued by cde, lmn in two glass tubes(1) attached to the cross-piece xy,
finally terminating, the first in cup e and the other in cup n. The current flows through the
conductors of the apparatus in the following order: pabcdefgMABCDEFGHIKNhildmnq; as a
result, the current flows up the two fixed conductors and down that part, GH, of the moving
conductor which is acted upon in its position midway between the two fixed conductors and
lies in the plane which passes through their axes. The part GH is thus repelled by bc and kl,
whence it follows that if the action of these two conductors is the same at equal distances,
GH must remain midway between them; this is, in fact, what happens.

It is good to point out: 1◦ that though the two axes of the fixed conductors are the
same distance from GH, it cannot be stated with rigor that the distance is the same for all
points of the conductor kl owing to its contours and bends. But since these bends are in a

(1) These tubes are used to prevent flexure of the enclosed wires by holding them at equal
distances from the two conductors bc, kl, so that their actions on GH, which reduce that of
these two conductors, should reduce them equally.
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plane perpendicular to the plane through GH and through the axes of the fixed conductors,
it is evident that the resulting difference in distance is as small as possible and as much less
than half of the width of the slot RS as this half is less than the interval between the two
posts (this difference, in the case when it is the largest possible, is equal to that between
the radius and the secant of an arc with tangent equal to half the width of the slot and
belonging to a circle of which the diameter is the interval between the two posts); 2◦ that if
each infinitesimal portion of the conductor kl is resolved in the same way as a force could be
resolved, into two minute portions which are projections, the one along the vertical axis of
the conductor and the other along horizontal lines drawn through all points of the conductor
in the plane in which it is bent, the sum of the first projections (taking as negative those
which, being in the opposite direction, must act in the opposite direction), will be equal to
the length of this axis; hence the total action resulting from all these projections is the same
as that of a straight conductor equal to the axis, that is to say, it is equal to that of the
conductor be situated on the other side at the same distance from GH. The other projections
will have zero effect on the moving conductor GH since the planes erected vertically at the
mid-point of each of them pass approximately through GH. The joining of these two series
of projections thus produces an action on GH equal to that of be; and since experiment also
proves that the sinuous conductor kl produces an action equal to that of be, whatever its
bends and contours, it follows that it acts in all cases like the combination of the two series
of projections, which cannot occur independently of the manner in which the conductor is
bent unless each part of it acts separately as the resultant of its two projections.

For this experiment to have the desired exactitude, it is necessary for the two posts to
be exactly vertical and at precisely the same distance from the moving conductor. To fulfill
these conditions, a support αβ is matched to the cross-piece xy and the posts are fixed by
two clamps η and θ, and two adjustable screws λ, µ, so that the posts may be moved apart
or brought closer together at will, keeping the same distance from the mid-point γ of the
support αβ. The apparatus is so constructed that the two posts are perpendicular to the
cross-piece xy, and this is made horizontal by the screws at the four corners of the base of
the device and the plumb line XY which corresponds exactly to a point Z as conveniently
marked on the base with the cross-piece xy perfectly level.

For the conductor ABCDEFGHIK to revolve about a vertical axis at an equal distance
from the two conductors bc, kl, this conductor is suspended by a very fine metal wire attached
to the center of a knob T which can rotate without altering the distance between the two
conductors; this knob is at the center of a small dial O, on which the letter L marks the place
where it is necessary to stop in order that the part GH of the moving conductor should hang,
without the suspension being twisted, at the mid-point of the interval between the two fixed
conductors bc, kl in order to be able immediately to return the needle to the position in
which it should be whenever it is desired to repeat the experiment. It is checked that GH is
an equal distance from bc and kl by another plumb line ψω which is attached to the copper
arm ϕχψ: carried, like the dial O, on the support UVO, in which this arm is free to revolve
about the axis of the knob ϕ at the end of it, thus making it possible to have the plumb-line
ω correspond to the line γδ in the mid-point of the support αβ. When the conductor is in
the appropriate position, the three verticals ψω, GH and CD are in the same plane, as can
easily be checked by placing one’s eye in this plane in front of ψω.

The moving conductor is thus arranged beforehand in the position where it will be
in equilibrium between the repulsions of the two fixed conductors, if these repulsions are
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exactly equal these actions are then produced by immersing into the trough ba and the cup
n respectively the wires ap and nq which connect to the two extremities of the battery, and
the conductor GH is found to remain in this position despite the great mobility associated
with suspensions of this kind. If the mark L is displaced, even slightly, which brings GH into a
position which is no longer equidistant between the fixed conductors bc, kl, it is seen to move
as soon as communication with the battery is established, swinging away from whichever
conductor is the nearest. At the time when I had this device constructed, I established in
this way that the actions of the two conductors are equal from sufficient experiments with
all the necessary precautions, for there to be no doubt about the result.

The same law can also be demonstrated by a simple experiment for which it is sufficient
to take a silk-covered copper wire and to wind a part around the straight portion without
being separated from it other than by the silk. It is then found that another portion of the
wire does not affect the assembly of two portions; and since it would be the same for an
assembly of two straight wires with a similar electric current in opposite directions (from
the experiment by which the first case of equilibrium was very simply established), it follows
that the action of the current in the wound portion is exactly equal to that of the current
in the straight part between identical extremities, because the action of both these two
conductors would be counterbalanced by the action of the current in a straight portion of
equal length, but in the opposite direction.

The third case of equilibrium is that a closed circuit of any arbitrary shape cannot
produce movement in a portion of conducting wire which is in the form of an arc of a circle
whose center lies on a fixed axis about which it may turn freely and which is perpendicular
to the plane of the circle of which the arc forms part.

On a foot TT′ (Pl. 1 pg. 114, fig. 3 pg. 118), in the form of a table, two columns EF

and E′F′ are erected which are joined by the cross-pieces LL′,FF′; an upright GH is held in
the vertical position between these two cross-pieces. Its two pointed extremities G,H fit into
two tapered holes, one in the lower cross-piece LL′, the other in the extremity of the screw
KZ carried by the upper traverse FF′ which locates the upright GH without locking it. At C

a support QO is fixed rigidly to this upright. At its extremity O is a hinge which engages the
mid-point of the circular arc AA′ (formed by a metal wire) which remains constantly in the
horizontal position and the distance from the point O to the axleGH in radius. This arc is
held in equilibrium by the counterweight Q, thus reducing the friction of the upright GH in
the tapered holes where its extremities are held.

Below the arc AA′ there are two small troughs M,M′ which are filled with mercury so
that the surface of the mercury, rising above the brim, just touches the arc AA′ at B and B′.
These two small troughs are connected by the metallic conductors MN,M′N′ to the cups P,P′,
which are full of mercury. The cup P and the conductor MN, which connects it to the trough
M, are fixed to a vertical upright which is bedded in the table, but leaving it free to turn. The
cup P′, to which the conductor M′N′ is connected, is traversed by the same upright, about
which it, too, can revolve independently. The cup is insulated from the upright by the glass
tube V which envelopes it, and by the glass ring U which separates it from the conductor of
the trough M so as to be able to arrange the conductors MN,M′N′ at any desired angle.

Two other conductors IR and I′R′, attached to the table, are immersed respectively in
the cups P and P′ and connect them to the cavities R,R′ which are made in the table and
filled with mercury. Finally, a third cavity S, likewise full of mercury, is situated in between
the other two.



10 MATHEMATICAL THEORY OF ELECTRODYNAMIC PHENOMENA

This apparatus is used in the following way: one of the battery wires, say, the positive
wire, is immersed in the cavity R, whilst the negative is immersed in S, which is made to
communicate with the cavity R′ by a curvilinear conductor of arbitrary shape. The current
follows the conductor RI, passes into the cup P, and thence to the conductor MN, the trough
M, the conductor M′N′, the cup P′, the conductor I′R′ and finally from the cavity R′ into the
curvilinear conductor which connects to the mercury of the cavity S, where the negative
wire of the battery is immersed.

With this arrangement the total circuit is formed by:

1◦ The arc BB′ and the conductors MN,M′N′;

2◦ A circuit consisting of the parts RIP and P′I′R′ of the apparatus, the curvilinear con-
ductor from R′ to S and the battery itself.

This latter circuit must act as a closed circuit since it is only interrupted by the glass
which insulates the two cups P,P′; it is therefore sufficient to observe its action on the arc
BB′ to determine the action of a closed circuit on an arc in various positions in relation to
each other.

When by means of the hinge O the arc AA′ is positioned such that its center lies outside
the axis GH, the arc moves and slides on the mercury of the troughs M,M′ owing to the
action of the closed curvilinear current flowing from R′ to S. If, however, its center is on the
upright; it remains stationary; hence, the two portions of the closed circuit which tend to
make it turn in opposite directions about the axis, exert on these rotational moments on
this arc which are equal in absolute value, no matter what the magnitude of the part BB′,
as determined by the opening of the angle of the conductors MN,M′N′. If, therefore, two arcs
BB′ are taken in succession which hardly differ from each other, since the rotational moment
is zero for both of them, it will also be zero for the slight difference between them, and, in
consequence, it is likewise zero for any element of circumference with center on the axis;
hence the direction of the action exerted by the closed circuit on the element is along the
upright and it is necessarily perpendicular to the element.

When the arc AA′ is positioned so that its center is on the upright, the conductors
MN,M′N′ exert equal, but opposite, repulsion on the arc BB′ with the result that no effect is
produced; since no movement occurs, it is certain that no moment of rotation is produced
by the closed circuit.

When the arc AA′ moves in the other situation which we envisaged, the actions of the
conductors MN and M′N′ are no longer equal; it could be thought that the movement was
due solely to this difference if the movement did not increase, or decrease, according as the
curvilinear circuit from R′ to S comes nearer or moves further away, which leaves no doubt
that the closed circuit plays a prominent part in the effect.

This result, occurring for any length of the axis AA′, will necessarily occur for each of
the elements of which the arc is composed. The general conclusion may therefore be drawn
that the action of a closed circuit, or of an assembly of closed circuits, on an infinitesimal
element of an electric current is perpendicular to this element.

It is by the fourth case of equilibrium, about which I have still to speak, that the
constant coefficients occurring in my formula may be finally determined without recourse,
as I first had to have, to experiments where a magnet and a conductor interact. Here is
the device by which this determination may be made resting solely on observation of the
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interaction of two conductors.

A cavity A is made in the table M′ N′ (Pl. 1 pg. 114, fig. 4 pg. 119), the cavity is filled
with mercury and from it runs the fixed conductor ABCDEFG made from a sheet of copper.
The part CDE is circular, and the parts CBA and EFG are insulated from each other by a
silk covering. At G this conductor is soldered to the copper tube GH, which carries the cup I

which is in contact with the tube by means of the copper support HI. The moving conductor
IKLMNPQRS, of which the part MNP is circular, starts from the cup I; the parts MLK and
PQR are insulated by a silk covering. The conductor is held horizontal by the counterweight
a fixed on the circumference of a circle formed around the tube GH by the continuation bcg
of the sheet constituting the moving conductor. The cup S is supported by the rod ST which
has the same axis as GH, but from which it is insulated by a resinous substance which is
poured into the tube. The base of the rod ST is soldered to the fixed conductor TUVXYZA′,
which passes out of the tube GH through an opening large enough for the resin to insulate it
as completely at this place as in the rest of the tube GH with regard to ST. At the outlet from
the tube this conductor is covered with silk to prevent contact between the portions TUV

and YZA′. The portion VXY is circular and the extremity A′ is immersed in the mercury-filled
cavity A′ in the table.

The centers O,O′,O′′ of the three circular portions are in a straight line; the radii of the
circles which they form are in continuous geometric proportion and the moving conductor is
first placed in such a way that the distances OO′,O′ O′′ bear the same relation to each other as
consecutive terms in this proportion; hence the circles O and O′ form a system similar to that
of the circles O′ and O′′. The positive battery wire is then immersed in A with the negative
in A′, and the current flows in succession through the circles with centers at O,O′,O′′, which
repel each other in pairs, because the current flows in the opposite direction in neighboring
parts.

The purpose of the experiment is to prove that the moving conductor remains in equi-
librium in the position where the ratio of OO′ to O′ O′′ is the same as that of the radii of
two consecutive circles, and that if it is moved away from this position, it returns to it after
oscillating about it.

3. Development of the formula which expresses the mutual interaction of two
electrical conductors

I will now explain how to deduce rigorously from these cases of equilibrium the formula by
which I represent the mutual action of two elements of voltaic current, showing that it is
the only force which, acting along the straight line joining their mid-points, can agree with
the facts of the experiment. First of all, it is evident that the mutual action of two elements
of electric current is proportional to their length; for, assuming them to be divided into
infinitesimal equal parts along their lengths, all the attractions and repulsions of these parts
can be regarded as directed along one and the same straight line, so that they necessarily
add up. This action must also be proportional to the intensities of the two currents. To
express the intensity of a current as a number, suppose that another arbitrary current is
chosen for comparison, that two equal elements are taken from each current, and that the
ratio is required of the actions which they exert at the same distance on a similar element of
any other current if it is parallel to them, or if its direction is perpendicular to the straight
lines which join its mid-point with the mid-points of two other elements. This ratio will be
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the measure of the intensity of one current, assuming that the other is unity.

Let us put i and i′ for the ratios of the intensities of two given currents to the intensity
of the reference current taken as unity, and put ds and ds′ for the lengths of the elements
which are considered in each of them; their mutual action, when they are perpendicular to
the line joining their mid-points, parallel to each other and situated a unit distance apart, is
expressed by ii′dsds′; we shall take the sign + when the two currents, flowing in the same
direction, attract, and the sign − in the other case.

If it is desired to relate the action of the two elements to gravity, the weight of a unit
volume of suitable matter could be taken for the unit of force. But then the current taken
as unity would no longer be arbitrary; it would have to be such that the attraction between
two of its elements ds, ds′, situated as we have just said; could support a weight which
would bear the same relation to the unit of weight as dsds′ bears to 1. Once this current is
determined, the product ii′dsds′ would denote the ratio of the attraction of two elements of
arbitrary intensity, still in the same situation, to the weight which would have been selected
as the unit of force.

Suppose we now consider two elements placed arbitrarily; their mutual action will
depend on their lengths, on the intensities of the currents of which they are part, and on
their relative position. This position can be determined by the length r of a straight line
joining their mid-points, the angles θ and θ′ between a continuation of this line and the
direction of the two elements in the same direction as their respective currents, and finally
by the angle ω between the planes drawn through each of these directions and the straight
line joining the mid-points of the elements.

Consideration of the diverse attractions and repulsions observed in nature led me to
believe that the force which I was seeking to represent, acted in some inverse relation to
distance; for greater generality, I assumed that it was in inverse relation to the nth power of
this distance, n being a constant to be determined. Then, taking ρ for the unknown function

of the angles θ, θ′, ω, I took ρii′dsds′

rn as the general expression for the action of two elements
ds, ds′ of the two currents with intensity i and i′ respectively. It remained to determine
the function ρ. For that I shall first consider two elements ad, a′d′ (Pl. 1 pg. 114, fig. 5 pg.
120), parallel to each other, perpendicular to the straight line joining their mid-points, and
a distance r apart; their action being represented in accordance with the foregoing remarks
by ii′dsds′

rn , I assumed that ad remained fixed and that a′d′ was transported parallel to
itself in such a way that its mid-point was always the same distance from the mid-point of
ad; ω being always zero, the value of their mutual action could depend only on the angles
represented above by θ, θ′ and which, in this case, are equal, or complements of each other,
according as the currents flow in the same or opposite direction; in this way I obtained

the value ii′dsds′ϕ(θ,θ′)
rn . By putting k for the positive or negative constant to which ϕ(θ, θ′)

is reduced when the element a′d′ is at a′′′d′′′ on the continuation of ad and in the same
direction, I obtained kii′dsds′

rn to represent the action of ad on a′′′d′′′; in this expression the
constant k represents the ratio of the action of ad on a′′′d′′′ to that of ad on a′d′, a ratio
which is independent of the distance r, the intensities i, i′ and of the lengths ds, ds′ of the
two elements under consideration.

These values of the electrodynamic action are sufficient, in the two simplest cases, for
finding the general form of the function ρ by reason of the experiment, which shows that the
attraction of an infinitely small rectilinear element is the same as that of any other sinuous
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element, terminating at the ends of the first, and the theorem which I have just established,
namely that an infinitely small portion of current exerts no action on another infinitesimal
portion of a current which is situated in a plane which passes though its mid-point and
which is perpendicular to its direction. In fact, the two halves of the first element produce
equal actions on the second, the one attractive and the other repellent, because the current
tends to approach the common perpendicular in one of these halves and to move away
from it in the other. These two equal forces form an angle which tends to two right angles
according as the element tends to zero. Their resultant is therefore infinitesimal in relation
to these forces and in consequence it can be neglected in the calculations. Let Mm (Pl. 1
pg. 114, fig. 6 pg. 120) = ds and M′m′ = ds′ represent two elements of electric currents
with mid-points at A and A′; suppose that the plane MA′m passes along the straight line
AA′ which joins them; and through the element Mm. We replace the portion of current ds
which flows through this element by its projection Nn = ds cos θ on the straight line AA′

and its projection Pp = ds sin θ on the perpendicular erected at A to this straight line in
the plane MA′m; we then replace the portion of current ds′ which flows through M′m′ by
its projection N′n′ = ds′ cos θ′ on the straight line AA′ and its projection P′p′ = ds′ sin θ′

on the perpendicular to AA′ drawn through the point A′ on AA′ in the plane M′ Am′; finally,
we replace the latter by its projection T′t′ = ds′ sin θ′ cosω in the plane MA′m and its
projection U′u′ = ds′ sin θ′ sinω on the perpendicular to this plane through the point A′;
according to the foregoing law, the two elements ds and ds′ exert the same action as the
two portions of current ds cos θ and ds sin θ exert together on the three portions ds′ cos θ′,
ds′ sin θ′ cosω, ds′ sin θ′ sinω since the latter has its mid-point in the plane MAm to which it
is perpendicular, no action occurs between it and the two portions ds cos θ, ds sin θ which
are in this plane. For the same reason, there can be no action between the portions ds cos θ,
ds′ sin θ′, nor between the portions ds sin θ, ds′ cos θ′, since, imagining a plane through the
straight line AA′ perpendicular to the plane MA′m, ds cos θ, ds′ cos θ′ are in this plane and
the portions ds′ sin θ′ cosω and ds sin θ are perpendicular to it with their mid-points in this
same plane. The action of the two elements ds and ds′ therefore reduces to the two joint
remaining actions, namely the interaction between ds sin θ, and ds′ sin θ′ cosω and between
ds cos θ, and ds′ cos θ′, these two actions both being along the straight line AA′ joining the
mid-points of the currents between which they are exerted, and it suffices to add these to
obtain the mutual action of the two elements ds and ds′. Now the portions ds sin θ and
ds′ sin θ′ cosω are in one and the same plane and both are perpendicular to the straight line
AA′; accordingly, their mutual action along this straight line is

ii′dsds′ sin θ sin θ′ cosω

rn

and that of the two portions ds cos θ and ds′ cos θ′ along the same line AA′, is

ii′kdsds′ cos θ cos θ′

rn
,

thus the interaction of the two elements ds, ds′ is necessarily represented by

ii′dsds′

rn

(
sin θ sin θ′ cosω + k cos θ cos θ′

)
.

This formula is simplified by introducing ε for the angle between the two elements in
place of ω; for, by considering the spherical triangle with sides θ, θ′, ε, we have

cos ε = cos θ cos θ′ + sin θ sin θ′ cosω;
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hence
sin θ sin θ′ cosω = cos ε− cos θ cos θ′

substituting this in the foregoing formula and putting k − 1 = h, we get

ii′dsds′

rn

(
cos ε+ h cos θ cos θ′

)
,

It is good to point out that a change of sign occurs when one of the currents, say that of the
element ds, takes the diametrically opposite direction, for at that time cos θ and cos ε change
sign, whilst cos θ′ remains the same. This value of the mutual action of the two elements has
only been obtained by the substitution of projections for the element itself; but it may be
inferred without difficulty that an element can be replaced by some polygonal contour, or
by some curve which terminates at the same extremities, provided that all the dimensions
of this polygon or curve are infinitesimal.

Suppose, in fact, that ds1, ds2, . . . , dsm are different sides of the infinitesimal polygon
which is substituted for ds; AA′ may always be regarded as in the same direction as the lines
joining the respective mid-points of the sides with A′.

Let θ1, θ2, . . . , θm be the angles which they form respectively with AA′; and ε1, ε2, . . . , εm
be those which they form with M′m′; using to denote a sum of terms of like form, the sum
of the actions of the sides ds1, ds2, . . . , dsm on ds′, is

ii′ds′

rn

(
Σdsi cos εi + h cos θ′Σdsi cos θi

)
.

Now Σdsi cos εi, is the projection of the polygonal contour on the direction of ds′ and,
in consequence, it is equal to the projection of ds on the same direction, that is to say, it is
equal to ds cos ε; likewise Σdsi cos θi is equal to the projection of ds on AA′ which is ds cos θ;
the action exerted on ds′ by the polygonal contour terminated at the extremities of ds may
therefore be represented as

ii′ds′

rn

(
ds cos ε+ hds cos θ cos θ′

)
and it is the same as that of ds on ds′.

Since this conclusion is independent of the number m of sides ds1, ds2, . . . , dsm, it also
applies to an infinitesimal arc of a curve.

It could likewise be proved that the action of ds′ on ds can be replaced by that which
an infinitesimal curve, having the same extremities as ds′, would exert on each element of
the small curve which we have just substituted for ds, and which would therefore be exerted
on this small curve itself. Thus, the formula which we have obtained expresses the fact that a
curvilinear element produces the same effect as an infinitesimal portion of rectilinear current
with the same extremities, whatever the values of the constants n and h. The experiment
by which this result has been reached cannot therefore help in the determination of these
constants.

We shall therefore have to utilize two of the other cases of equilibrium which we have
discussed. But first we shall transform the foregoing expression for the action of two ele-
ments of voltaic currents by introducing the partial differentials of the distance of these two
elements.
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Let x, y, z be the coordinates of the first point, and x′, y′, z′ those of the second. We
get:

cos θ =
x− x′

r

dx

ds
+
y − y′

r

dy

ds
+
z − z′

r

dz

ds
,

cos θ′ =
x− x′

r

dx′

ds′
+
y − y′

r

dy′

ds′
+
z − z′

r

dz′

ds′
,

but since
r2 = (x− x′)2 + (y − y′)2 + (z − z′)2,

by successively taking the partial differential coefficients with respect to s and s′,

r
dr

ds
= (x− x′) dx

ds
+ (y − y′) dy

ds
+ (z − z′) dz

ds
,

r
dr

ds′
= (x− x′) dx′

ds′
+ (y − y′) dy′

ds′
+ (z − z′) dz′

ds′
,

therefore

cos θ =
dr

ds
, cos θ′ =

dr

ds′
.

To obtain the value of cos ε, note that

dx

ds
,

dy

ds
,

dz

ds
, and

dx′

ds′
,

dy′

ds′
,

dz′

ds′

are the cosines of the angles formed by ds, and ds′ with the three axes, and it follows that

cos ε =
dx

ds

dx′

ds′
+

dy

ds

dy′

ds′
+

dz

ds

dz′

ds′
.

Now, differentiating with respect to s′ the foregoing equation which gives r dr
ds , it is found

that

*
r

d2r

dsds′
+

dr

ds
· dr

ds′
= − dx

ds
· dx′

ds′
− dy

ds
· dy′

ds′
− dz

ds
· dz′

ds′
= − cos ε.

If in the formula for the mutual action of two elements ds, ds′, we substitute for cos θ, cos θ′,
cos ε, the values which have just been obtained, and putting k = 1 + h, the formula for the
mutual action of the two elements ds, ds′ becomes,

− ii
′dsds′

rn

(
r

d2r

dsds′
+ k

dr

ds
· dr

ds′

)
,

which can be written as

− ii
′dsds′

rn
· 1

rk−1
·

d
(
rk dr

ds

)
ds′

,

or finally

ii′r1−n−k d
(
rk dr

ds

)
ds′

dsds′.
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It could also be given the following form:

− ii′

1 + k
r1−n−k d

2
(
r1+k

)
dsds′

dsds′.

4. Relation given in the third equilibrium case and the two unknown constants
in the formula

Let us now examine the result of the third case of equilibrium which shows that the compo-
nent of the action of a closed circuit on an element in the same direction as this element is
always zero, whatever the form of the circuit. Putting ds′ for the element in question, the
action of an element ds of the closed circuit on ds′ is, according to the foregoing,

−ii′ds′r1−n−k d
(
rk dr

ds′

)
ds

ds,

or, substituting dr
ds′ with − cos θ′,

−ii′ds′r1−n−k d(rk cos θ′)

ds
ds;

the component of this action along ds′ is obtained by multiplying this expression by cos θ′,
and becomes

−ii′ds′r1−n−k cos θ′
d(rk cos θ′)

ds
ds.

This differential, integrated over the circuit s, yields the total tangential component and
it must be zero whatever the form of the circuit. Integrating it by parts, having written it
thus

−ii′ds′r1−n−2krk cos θ′
d(rk cos θ′)

ds
ds,

we then have
1

2
ii′ds′

[
r1−n cos2 θ′ − (1− n− 2k)

∫
r−n cos2 θ′dr

]
.

The first term r1−n cos2 θ′ vanishes at the limits. As for the integral
∫
r−n cos2 θ′dr, it is

very easy to imagine a closed circuit for which it does not reduce to zero. In fact, if this
circuit is cut by very close spherical surfaces with center at the mid-point of the element
ds′, the two points at which each of these spheres cuts the circuit, give the same value for
r and equal values and opposite signs for dr; but the values of cos2 θ′ may be different and
the squares of all the cosines corresponding to the points situated on one side of the extreme
points of the circuit may be made less than those relative to the corresponding points on
the other side in an infinite number of ways; now, in this case, the integral does not vanish;
and as the above expression must be zero, whatever the form of the circuit, the coefficient
1 − n − 2k of this integral must therefore be zero, which gives between n and k the first
relation 1− n− 2k = 0.

Before looking for a second equation for determination of these two constants, we start
by proving that k is negative, and, as a consequence that n = 1−2k is greater than 1; we will
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use the fact that is easily experimentally determined, that a rectilinear indefinite conductor
attracts a closed circuit, when the current in this circuit flows in the same direction as the
nearest conductor, and repels in the opposite case.

For UV (Pl. 1 pg. 114, fig. 7 pg. 120) an indefinite rectilinear conductor assume for
simplicity that the closed circuit THKT′ K′ H′ is in the same plain as the wire conductor UV,
and look for the action caused by some element MM′ on this last. For this draw from the
mid-point A of this element line vectors to all the points of the circuit, and find the action
perpendicular to UV caused by this element of the circuit.

The perpendicular component of UV of the action caused by MM′ = ds′ on an element
KH = ds is obtained by multiplying the expression of this action by sin θ′; is therefore,
observing that 1− n− 2k = 0,

ii′ds′ sin θ′rk
d(rk cos θ′)

ds
ds,

or
1

2
ii′ds′ tan θ′

d(r2k cos2 θ′)

ds
ds,

expression which should be integrated over the entire extent of the circuit. Integration by
parts yields

1

2
ii′ds′

(
r2k sin θ′ cos θ′ −

∫
r2kdθ′

)
.

The first term vanishes at the limits, there remains only

−1

2
ii′ds′

∫
r2kdθ′.

Now consider the two elements KH, K′ H′ made up of the same two consecutive rays, dθ′ is the
same for both, but must be taken with the opposite sign, and then taking AH = r, AH′ = r′,
one has for joint action of the two elements

−1

2
ii′ds′

[∫ (
r′2k − r2k

)
dθ′

]
,

where we assume that r′ is greater than r. The term in this integral which results from the
convex, toward UV, part of THT′ dominates over that which is produced by the action of the
concave part of TH′ T′ if k is negative; the reverse will hold if k is positive, and there will be
no action if k is zero. The same results hold for all the elements of UV, it follows that the
part convex toward UV has more influence on the movement of the circuit than the concave
part, if k < 0, as well as for k = 0, and less for k > 0. And, experiment shows this result.
One then takes k < 0, and taking n > 1, it follows that n = 1− 2k.

One deduces from this remarkable consequence that the parts of the same rectilinear
current repel each other; if one has chosen θ = 0, θ′ = 0, the formula which gives attraction
of two elements becomes kii′ds ds′

rn ; and if it is negative, which it is, there is repulsion. This
is what I verified by the experiment which I now describe. One takes a glass container PQ

(Pl. 1 pg. 114, fig. 8 pg. 121) separated by a partition MN into two equal compartments filled
with mercury, one connects a silk-covered copper wire ABCDE, with the branches AB, ED,
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situated parallel to the partition MN, floating on the mercury with the wire ends bare A and
E. While placing the cavities in the capsules S and T, so that the mercury connects with
that of the vase PQ by the pieces of conductor hH, kK, one establishes two currents, with
each one has as conductor one part of the mercury and a part solid : whatever the direction
of the current, one sees always the two wires AB, ED run parallel to the partition MN by
extending the bridges H and K, which indicates a repulsion for each wire between the current
established in the mercury and its extension in the wire itself. Following the direction of the
current, the movement of the copper wire is more or less simple, because, in this case, the
action of the earth on the portion BCD of the wire shows the obtained effect, and if it is the
reverse it diminishes and should be cut off.

5. General formulas which represent the action of a closed voltaic circuit or of
a system of closed circuits on an electric current element

Examine now the action exerted by an electric current which forms a closed circuit, or a
system of currents which also form closed circuits, on an element of electric current.

Take the coordinate origin at the location A′ (Pl. 1 pg. 114, fig. 9 pg. 121) of the
proposed element M′ N′, and take λ, µ, ν, the angles which it makes with the three axes. Let
MN be any element of the current in a closed circuit, where one of the currents forms equally
closed circuits that compose the system of currents that one considers, naming ds′ and ds
the elements M′ N′, MN, the distance AA′ of their centers and the angle of the current M′ N′ with
AA′, the formula that we previously found for express the mutual action of two elements
becomes, by replacing dr

ds′ by − cos θ′,

ii′ds′rk
d(rn cos θ′)ds

ds
.

The angles which AA′ makes with the three axes have for cosines x
r ,

y
r ,

z
r , one has

cos θ′ =
x

r
cosλ+

y

r
cosµ+

z

r
cos ν;

by substituting this value for cos θ′, and multiplying by x
r , we find as the expression of the

component following the x axis,

ii′ds′ rk−1xd
(
rk−1x cosλ+ rk−1y cosµ+ rk−1z cos ν

)
,

the sign d refers only, except in the factor ds′, to the differentials taken when varying only
s, this expression can be written as

= ii′ds′
[

cosλrk−1xd
(
rk−1x

)
+
x cosµ

y
yd
(
rk−1y

)
+
x cos ν

z
rk−1zd

(
rk−1z

)]
=

1

2
ii′ds′

[
cosλd

(
r2k−2x2

)
+
x

y
cosµd

(
r2k−2y2

)
+
x

z
cos νd

(
r2k−2z2

)]
=

1

2
ii′ds′

(
d
x2 cosλ+ xy cosµ+ xz cos ν

rn+1
− y2 cosµ

rn+1
d
x

y
− z2 cos ν

rn+1
d
x

y

)
=

1

2
ii′ds′

(
d
x cos θ′

rn
+
xdy − ydx

rn+1
cosµ− zdx− xdz

rn+1
cos ν

)
,
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by replacing 2k − 2 by its value −n− 1.

If one represents by r1, x1, θ
′
1, and r2, x2, θ

′
2, the values of r, x, θ′, at the two extremities

of the arc s, and by X resultant following the x axis of all the forces exercised by the elements
of this arc on ds′, one obtains

X =
1

2
ii′ds′

(
d
x2 cos θ′2
rn2

− d
x1 cos θ′1
rn1

+ cosµ

∫
xdy − ydx

rn + 1
− cos ν

∫
zdx− xdz

rn + 1

)
.

If this arc forms a closed circuit r2, x2, θ
′
2, will be equal to r1, x1, θ

′
1, and the value of X

reduces to

X =
1

2
ii′ds′

(
cosµ

∫
xdy − ydx

rn+1
− cos ν

∫
zdx− xdz

rn+1

)
.

by designating by Y and Z the forces following the axes of y and of z resultant of the action
of the same elements on ds′, one finds by a similar calculation

Y =
1

2
ii′ds′

(
cos ν

∫
ydz − zdy

rn+1
− cosλ

∫
xdy − ydx

rn+1

)
,

Z =
1

2
ii′ds′

(
cosλ

∫
zdx− xdz

rn+1
− cosµ

∫
ydz − zdy

rn+1

)
,

and by taking ∫
ydz − zdy

rn+1
= A,

∫
zdx− xdz

rn+1
= B,

∫
xdy − ydx

rn+1
= C,

it becomes

X =
1

2
ii′ ds′(C cosµ− B cos ν),

Y =
1

2
ii′ ds′(A cos ν − C cosλ),

Z =
1

2
ii′ ds′(B cosλ− A cosµ).

By multiplying the first of these equations by A, the second by B and the third by C, one
finds AX + BY + CZ = 0; and if one conceives at the origin a line A′ E which makes with the
axes whose cosines are respectively

A

B
= cos ξ1,

B

D
= cos η1,

C

D
= cos ζ1,

by supposing, for bevity, √
A2 + B2 + C2 = D,

they will be perpendicular on the resultant R of the three forces X, Y, Z, which make with
the axes angles whose cosines are

X

R
,
Y

R
,
Z

R
,

since one has, by virtue of the preceding equation,

A

D
· X
R

+
B

D
· Y
X

+
C

D
· Z
R

= 0.
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It should be remarked that the law which we have determined is completely independent of
the direction of the element M′ N′; because it is an immediate deduction from the integrals
A, B, C which depend only on the closed circuit and of the position of the coordinates of the
plane, and which are the sums of the projections on the coordinate plane of the area of the
triangles which have their top at the center of the element ds′, and as bases the various
elements of the closed circuit s, all of its areas being divided by the power n + 1 of the
vector ray r. The resultant is perpendicular on this line A′ E which I named director(1), it is,
regardless of the direction of the element, in the plane raised at the point A′ perpendicular
to A′E; I gave this plane the name director plane. If one forms the sum of squares of X, Y, Z,
on finds as the value of the result of the action of the unique circuit of the ensemble of
circuits which one has considered,

R =
1

2
D ii′ds′

√
(cos ζ1 cosµ− cos η1 cos ν)2 + (cos ξ1 cos ν − cos ζ1 cosλ)2

+(cos η1 cosλ− cos ξ1 cosµ)2

or, by naming ε the angle of the element ds′ with the director

R =
1

2
D ii′ds′ sin ε.

It is easy to determine the component of this action in a given plane through which the
element ds′ making an angle ϕ with the plane followed by ds′ and the director. In effect,
the resultant R being perpendicular to the last plane, its component on the given plane will
be

R sinϕ, ou
1

2
Dii′ds′ sin ε sinϕ.

Now, sin ε sinϕ is equal to the sin of the angle ψ which the director makes with the given
plane. The component in the plane will therefore have as its expression

1

2
Dii′ds′ sinψ.

This expression can be put in another form by observing that ψ is the complement of the
which the director makes with the normal to the plane in which one considers the action.
One has therefore, by naming ξ, η, ζ the angles that this last rule forms with the three axes,

sinψ =
A

D
cos ξ +

B

D
cos η +

C

D
cos ζ,

and the expression of the action becomes

1

2
ii′ds′

(
A cos ξ + B cos η + C cos ζ

)
,

or
1

2
Uii′ds′,

(1) Note by MDG: That is to say magnetic induction.
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by using

U = A cos ξ + B cos η + C cos ζ.

One sees that this action is independent of the direction of the element in the plane
that one has considered, we designate that under the name of the action exercised in this
plane, and we conclude that that which remains the same when one gives successively to
the element various directions in the same plane, when it is such that the Earth exercises on
a movable conductor in a fixed plane is produced by electric currents from closed circuits,
and thus the distances to the conductor are sufficiently large to be considered as constants
during the time that it moves in the plane, it will always have the same value in the various
positions which the conductor successively takes, because the actions exercised on each of
the elements of which it is composed always rest the same and always perpendicular to
these elements, their resultant can not vary mot in its size nor in its direction relative to the
conductor. This direction will change also in the plane fixed in y following the movement of
this conductor : it is in effect that which one observes with respect to the conductor which
is mobile in the horizontal plane, and which one directs successively in various azimuths.

6. Experiments by which one verifies a consequence of the formulas

One can verify this result by the following experiment : within a wooden disk ABCD (Pl. 1
pg. 114, fig. 10 pg. 121), one carves a circular channel KLMN in which one places two copper
vessels KL, MN of the same form, and which each occupy nearly the half-circumference of the
channel in a manner such that there are between them two cuttings KN, LM which one fills
with an insulating putty; on each of these vessels are two copper plates PQ, RS, embedded
in the disk and which have cuts X, Y, designed to allow, through the mercury which they
contain, the vessels KL, MN, in communication with the poles of a very strong battery; in
the disk there is embedded another plate TO carrying the cutting Z, where one also places a
small amount of mercury; this plate TO, is soldered at the center O of the disk to a vertical
rod to which is soldered to a fourth plate U, which has its bottom covered by a piece of
glass or agate to make more mobile the bracket which we will discuss, but whose edges are
sufficiently high so as to be in communication with the mercury which one places in this
cutting; it receives the tip V (Pl. 1 pg. 114, fig. 11 pg. 122) which forms the pivot of the
bracket FGHI, whose branches EG, EI are mutually equal and soldered from G and I to the
plates gxh, iyf which are submerged in the acidic water of the cutting U, and which are
attached by their other extremities h, f by arms EH, EF, without communicating with them.
These two plates are equal and similar and folded in an approximately 90◦ arc. When one
inserts the contacts, one in the cup Z, the other in one of the two cups X or Y, the current
only passes through one of the arms of the bracket, and one sees this one turn on the point
V due to the earth’s action, from East to West by the middle when the current goes from the
circumference to the center, and in the opposite direction when it goes from the center to
the circumference, conforming to the explanation of this phenomenon that I have given, and
which one can see in my Recueil d’Observations électro-dynamiques, page 284. But when
one inserts them in the cups X and Y, the current flows in the opposite direction through
the two arms EG, EI, the bracket remains stationary at the location where it was placed,
when, for example, one of these arms is parallel and the other perpendicular to the magnetic
meridian, and this one at the same time in pushing lightly on the disk ABCD, one increases,
by the small vibrations which result, the mobility of the instrument. By slightly bending
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the arms of the bracket around the point E, one can make them take different angles, and
the result of the experiment is always the same. It follows inevitably that the force with
which the earth acts on a portion of a conductor, perpendicular to its direction, to move
in a horizontal plane, and, by consequence, in a plane given a position with respect to the
system of terrestrial currents, is the same, that would be the direction, in this plane, of the
portion of the conductor, which is precisely the result of the calculation it was meant to
verify.

It is good to remark that the action of acidic water currents on their extensions on the
plates gh, if does not disturb in any manner the equilibrium of the device; since it is easy
to see that the action which is in question tends to cause the plate gh to turn about the
point V in the direction hxg, and the plate if in the fyi direction, from which the result,
due to the equality of these plates, the two rotational moments cancel since they are equal
and with opposite signs.

One knows that it is M. Savary who is responsible for the experiment by which one
found this action; this experiment can be made easier by replacing the copper wire spiral in
the device, which was first used, by a circular plate of the same metal. This plate ABC (Pl.
1 pg. 114, fig. 12 pg. 122) forms a circular arc nearly equal to a complete circumference; but
its extremities A and C are separated from each other by a piece D of insulating material.
One makes one of these extremities A, for example, in communication with one of the poles
at the point O which one places in the cup S (Pl. 1 pg. 114, fig. 13 pg. 122) filled with
mercury; this is joined by the metallic wire STR to the cup R in which one of the poles is
immersed. This point connects with the extremity A by the copper wire AEQ whose extension
QF supports by F the plate ABC by a strip of insulating material, which covers the copper
wire at this point. Since the point O rests on the base of the cup the plate ABC (Pl. 1 pg.
114, fig. 12 pg. 122) is immersed in the acidic water contained in the copper vessel MN (Pl.
1 pg. 114, fig. 13 pg. 122) which communicates with the cup P which contains the other
pole; one sees therefore turning of this plate in the direction CBA, and provided that the
battery is strong enough, the movement continues in this direction until one reverses the
communications with the battery, by reciprocally changing the two poles of the cup P with
the cup R, thus proving that this movement is not at all due to the action of the earth and
can only derive from the acidic water currents exercising on the circular plate current ABC

(Pl. 1 pg. 114, fig. 12 pg. 122), an action which is always repulsive, because if GH represents
one of the acidic water currents which extends to HK in the plate ABC, regardless of the
direction of this current, it will obviously travel one of the sides of the angle GHK while
approaching, and the other while flowing away from the top H. But it is necessary, so that
the movement which one observes in this case to take place, that the repulsion between two
elements, one in I and the other in L, take place following the line IL, oblique to the arc
ABC, and not following the perpendicular LT at the element situated in L, since the direction
of this perpendicular encounters the vertical drawn through the point O around which the
mobile part of the device is allowed to turn, a force directed along this perpendicular cannot
impart any rotational movement.

I have just said that, when one wants to be assured that the movement of this device
is not produced by the action of the earth, by establishing that it continues to happen
in the same direction when one reverses the connections to the battery by changing the
contacts, it is necessary to use a battery of sufficient strength; it is effectively impossible,
in this arrangement of a mobile conductor, to avoid the earth’s action on the vertical wire
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AE moving it to the west, when the current there is ascending, to the east when the current
is descending, and on the horizontal wire EQ, in order to make it turn about the vertical
passing through the point O, in the sense directly east, south, west, when the current goes
from E to Q, while approaching the rotational center, and in a retrograde western, southern,
eastern direction, when it goes from Q to E, while following the same center(1). The first
of these actions is hardly observable, at least when one gives to the vertical wire AE a
length only sufficient for the stability of the mobile conductor at its point O; but the second
is determined by the dimensions of the device; and since it changes direction when one
reverses the connections with the battery, it is added in the order of the connections with
the action exercised by the acidic water currents, and it reduces in the other; this is why
the observed movement is always more rapid in one case than in the other; this difference is
more pronounced when the current produced by the battery is weaker because the measure
of its intensity diminished, the electro-dynamic action being, all other things being equal, as
the product of the intensities of the two portions of the currents which act one on the other,
this action between the acidic water currents and those of the plate ABC, decrease as the
square of their intensity, while the intensity of the terrestrial currents remain the same, their
action, on those of the plate, will not be less than proportional to the same intensity : as
the measure of the battery’s intensity diminishes, the action of the earth becomes more and
more able to destroy that of the acidic water currents in the arrangement of the connections
with the battery where these actions are opposed, and one sees, when this energy becomes
very weak, the device will stop in this case, and the movement then appears in the contrary
direction; thus the experiment leads to a conclusion opposite to that which was expected to
be established, since the action of the earth became dominant one can ignore the existence
of those from the acidic water currents. For the rest, the first of these two actions is always
null on the circular plate ABC, because the earth as like a system of closed currents, the
force that they exert on each element being perpendicular to the direction of this element,
passes through the vertical set by the point O, and cannot, as a consequence, tend to cause
rotation about the mobile conductor.

7. Application of the preceding formulas to a circular circuit

We will, to serve as an example, apply the preceding formulas to the case where the system
reduces to a single closed circular current.

Since the system is only composed of a single current, traversing a circular circumference
of any radius m, one simplifies the calculation, by taking, for the plane of the xy, the plane
through the coordinate origin, that is to say through the center of A of the element ab (Pl.
1 pg. 114, fig. 14 pg. 123), parallel to that of the circle; and for the plane of the xz, the
one that goes perpendicularly through the plane of the circle by the same origin and by the
center O.

For p and q the coordinates of this center O; suppose that the point C is the projection
of O on the plane of xy, N that of any point of the circle M, and name the angle ACN; if
one projects NP perpendicularly on AX, the three coordinates x, y, z of the point M will be

(1) Note for these two kinds of actions acting on the earth, what is said in my recueil
d’Observations électro-dynamiques, pages 280, 284.
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MN, NP, AP, and one easily finds for their values :

z = q, y = m sinω, x = p−m cosω.

The quantities that we have designated by A, B, C, are respectively equal to∫
ydz − zdy

rn+1
,

∫
zdx− xdz

rn+1
,

∫
xdy − ydx

rn+1
,

we have

A = −mq
∫

cosωdω

rn+1
,

B = −mq
∫

sinωdω

rn+1
,

C = −mp
∫

cosωdω

rn+1
−m2

∫
dω

rn+1
,

If one integrates by parts those of these terms which contain sinω et cosω, while paying
attention that

r2 = x2 + y2 + z2 = q2 + p2 +m2 − 2mp cosω

gives

dr =
mp sinωdω

r
,

if one removes the terms which are null because their integrals are taken from ω = 0 to
ω = 2π, and one sets the values of A, B, C also found in that of U,

U = A cos ξ + B cos η + C cos ζ,

one obtains

U = m

[
(n+ 1)(p2 cos ζ − pq cos ξ)

∫
sin2 ωdω

rn+3
− cos ζ

∫
dω

rn+1

]
.

But, the angle ξ can be expressed by the mean of ζ; since, by designating by h, the perpen-
dicular OK projected onto the center O on the plane b AG for which one calculates the value
of U, one obtains h = q cos ζ + p cos ξ, and this value becomes

U = m2
{

(n+ 1)
[
(p2 + q2) cos ζ − hq

] ∫ sin2 ωdω

rn+3
− cos ζ

∫
dω

rn+1

}
.
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8. Simplification of the formulas when the diameter of the circular circuit is
very small

The evaluation is quite simple in the case where the radius m is very small when compared
to the distance l of the origin A to the center O; since, if one develops in series following the
powers of m, one has that when one neglects the powers of m higher than 3, the terms in
m3 disappear between the limits [0, 2π], and those that are in m2 obtain by replacing r by

l =
√
p2 + q2; it only remains therefore to calculate the values of∫

sin2 ωdω and of

∫
dω from ω = 0 to ω = 2π ;

which gives π for the first, and 2π for the second; the value of U therefore reduces to

U = πm2

[
(n− 1) cos ζ

ln+1
− (n+ 1)hq

ln+3

]
.

9. Application to a circuit layout which forms an arbitrary closed surface at
first in the case where all the dimensions are very small, and then when
they are large

For increased generality, we will now assume that the closed current, instead of being circular,
has any form, but still remains plane and very small.

For MNL (Pl. 1 pg. 114, fig. 15 pg. 123) a very small closed and plane circuit of which
the area is λ and which acts on an element placed at the origin A. Partition its surface into
infinitely small elements, by planes passing by the z axes, and where APQ the trace of one
of these planes, and M, N its meeting points with the circuit λ, projected on the xy plane
in P and Q. Extend the chord MN to the z axis in G; drop from A a perpendicular AE = q
on the plane of the circuit, and join EG. For A pq the trace of a plane infinitely close to the
first, make with it an angle dϕ; make AP = u and PQ = δ u. The action of the circuit on
the element in A depends, as we have seen, on three integrals designated by A, B, C, which
we will calculate. Consider first C, whose value is

C =

∫
xdy − ydx

rn+1
=

∫
u2dϕ

rn=1
.

This integral is relative to all the points of the circuit, ans if one considers simultaneously
the two elements including between the two adjoining planes AGNQ and AGnq, and those
that relate to these equal values and the opposite signs of dϕ, one will see that the actions of
these two elements should be removed one and the other, and that the one of the elements
which is the closest to A produces the stronger action. Observing that to have the action
from farther, it is necessary to replace u and r by u+ δ u et r + δ r, one finds

C =

∫
u2dϕ

rn+1
−
∫

(u+ δ u)2dϕ

(r + δ r)n+1
,

these two integrals are taken between the two values of ϕ relative to the extreme points L,L′

between which the circuit is included.
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The difference between these two integrals can be considered as the variation of the first
take with the sign reversed, if one neglects all the powers of the circuit dimensions whose
exponents are greater than unity, it becomes

C = − δ
∫
u2dϕ

rn+1
=

∫ [
(n+ 1)u2 δ r

rn+1
− 2udu

rm+1

]
dϕ.

Now
r2 = u2 + z2,

where

δ r =
u δ u+ z δ z

r
;

also the angle ZAE being equal to ζ, one has

AG =
q

cos ζ
, GH = z − q

cos ζ
,

and, due to the similar triangles MHG, MSN,

MH : MS :: GH : NS,

that is to say

u : δ u :: z − q

cos ζ
: δ z ;

by extracting from this proportion the value of δ z and carry it into that of δ r, one obtains

δ z =
z cos ζ − q
u cos ζ

δ u, δ r =
(u2 + z2) cos ζ − qz

ur cos ζ
, δ u =

r2 cos ζ − qz
ur cos ζ

δ u,

and by substituting that value into C, it becomes

C =

∫ [
(n+ 1)(r2 cos ξ − qz)

rn=3 cos ζ
− 2

rn+1

]
u δ udϕ

=

∫ [
(n− 1)

rn+1
− (n+ 1)qz

rn+3 cos ζ

]
u δ udϕ.

Since the circuit is very small, one can consider the values of r and of z as constants and
equal for example to those that occur at the center of gravity of the area of the circuit, in
order that the third order terms vanish, representing these values by l and z1 the preceding
integral takes this form

C =

[
(n− 1)

ln+1
− (n+ 1)qz1

ln+3 cos ζ

] ∫
udϕ δ u.

But u δ ϕ is the arc PK given by A as center with the radius u and PQ = δ u; therefore
udϕ δ u is the infinitely small area PQ qp, and the integral

∫
udϕdu gives the total area of
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the projection of the circuit, so to say λ cos ζ, since ζ is the angle of the plane of the circuit
with the plane of xy; one obtains therefore finally

C =

[
(n− 1) cos ζ

ln+1
− (n+ 1)qz1

ln+3

]
λ.

On obtiendra des valeurs analogues pour B et A, savoir :

B =

[
(n− 1) cos η

ln+1
− (n+ 1)qy1

ln+3

]
λ.

A =

[
(n− 1) cos ξ

ln+1
− (n+ 1)qx1

ln+3

]
λ.

One knows thus the angles that the director makes with the axes, since one has for their
cosines A

D ,
B
D ,

C
B , by

D =
√
A2 + B2 + C2.

As for the force produced by the action of the circuit on the element situated at the origin,
it will have, as one saw above, the expression; 1

2 ii
′ds′D sin ε, ε being the angle which this

element makes with the director, at which this force is perpendicular as is the direction of
the element.

In the case where the small circuit that is considered is in the same plane as the element
ds′ on which it acts, one has, by taking this plane as the one for the xy,

q = 0, cos ζ = 1, cos η = 0, cos ξ = 0,

and as follows

A = 0, B = 0, C =
n− 1

ln+1
λ;

D reduces thus to C; ε is equal to π
2 , and the action of the circuit on the element ds becomes

n− 1

2

ii′ds′λ

ln+1
.

I will now present a new manner of considering the action of circuit plans of any form
and size.

Whether any plane circuit MNm (Pl. 1 pg. 114, fig. 16 pg. 124); partition its surface
into infinitely small elements by parallel lines cut by a second system of parallels making
right angles with the first ones, and imagine around each of these infinitely small areas of
currents directed in the same direction as the current MNm. All the parts of these currents
which, are found following these straight lines, will be canceled, because there will be two
contrary signs which follow the same line; and there only remain the curved parts of these
currents, such as MM′,mm′, which form the complete circuit MNm.

It follows from what the three integrals A,B,C obtain for the plain finite size circuit, by
substituting in the values which we obtained for these three quantities, in place of λ any
element of the area of the circuit that we can represent by d2λ and integrate in all the extent
of this area.
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When, for example, the element is situated in the same plane as the circuit, and on
takes this plane as that of the xy, one has

A = 0, B = 0, C =(n− 1)

∫ ∫
d2λ

ln+1
;

and the value of the force becomes

n− 1

2
ii′ds′

∫ ∫
d2λ

ln+1
;

from which it follows that, if at each of the points of the area of the circuit one raises a
perpendicular equal to 1

ln+1 , the volume of the prism which has as its base the circuit and
which is terminated on the surface formed by the extremities of these perpendiculars, will

represent the value of
∫ ∫

d2λ
ln+1 ; and this volume multiplied by n−1

2 ii′ds′ expresses the sought
for action.

It is good to observe that the question was directed to the curvature of a solid, on could
adopt the system of coordinates, and the division of the area of the circuit into elements
which will lead to even simpler calculations.

10. Mutual interaction of two closed circuits located in the same layout, first
assuming that all dimensions are very small, and then for the case where
the two circuits are of one form and arbitrary size

Pass on to the mutual action of two very small circuits O or O′ (Pl. 2 pg. 115, fig. 18 pg.
124) situated in the same plane. For MN an arbitrary element ds′ of the second. The action
of the circuit O on ds′ is, after the preceding,

n− 1

2
· ii
′ds′λ dϕ

rn+1
.

Call dϕ the angle MNO, and writing the arc MP between the sides of this angle, one can replace
the small current MN by the two currents MP, NP of which the lengths are respectively rdϕ
and dr; the action of the circuit O on the element MP, which is normal to its direction, is
obtained by replacing in the preceding expression ds′ by MP, and becomes

n− 1

2
· ii
′λ dϕ

rn
;

the action on NP, perpendicular to its direction, becomes similarly

n− 1

2
· ii
′λ dr

rn+1
.

This last integrated over the entire closed circuit O′ is null, it suffices to consider the first
which is directed toward the point O, where it already results that the action of these two
small circuits is directed following the line which joins them.
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Extend the rays OM,ON until they encounter the curve in M′ and N′; the action of M′ N′

should be cut off from that of MN, and the resulting action is obtained by taking as before
the variation of that of MN with the sign reversed, this gives

n(n− 1)

2
· ii
′λ dϕ δ r

rn+1
ou

n(n− 1)

2
· ii
′λr dϕ δ r

rn+2
.

Where, rdϕ δ r is the measure of the infinitely small segment MNN′ M′. Taking the sum of all
the analogous expressions relative to different elements of the circuit O′, and considering r
as constant and equal to the distance between the centers of gravity of the areas λ and λ′

of the two circuits, one obtains for the action which one exerts on the other

n− 1

2
· ii
′ds′λλ′

rn+2
,

and this action will be directed following the line OO′. It results that the mutual action
of two finite circuits situated in the same plane is obtained by considering their areas as
partitioned into elements, infinitely small in all respects, and supposing that these elements
act on one another following the line that joins them, by direct reason of their surfaces and
by reason inverse of the strength n+ 2 of their distance.

The mutual action of closed currents therefore is a function only of the distance, one
draws this important consequence, that there can never result from this action a continuing
rotational motion.

11. Determination of the two unknown constants which enter into the funda-
mental formula

The formula which we just found for obtaining the mutual action of two circuits closed and
in the plane of those of the elements of the areas of these circuits, lead to the determination
of the value of n. In effect, if one considers two similar systems composed of two closed and
planar circuits, the similar elements of their areas will be proportional to the square of the
counterpart lines, and the distances of these elements will be proportional to the first powers
of the same lines. Calling m the ratio of homologous lines of the two systems, the actions of
two elements of the first system and their correspondents in the second will be respectively

n(n− 1)

2
· ii
′λλ′

rn+2
and

n(n− 1)

2
· ii

′λλ′m4

rn+2mn+2
;

their relationship, and hence the total action, will thus be m2−n. However, we have described
previously an experiment by which one can prove directly that these two actions are equal;
it is necessary that n = 2, and, due to the equation 1 − n − 2k = 0, that k = − 1

2 . These
values of n and of k reduce to a very simple form the expression

−1 + k

ii′
r1−n−k d

2(r1+k)

dsds′

of the mutual action of ds and of rds′; this expression becomes

−2ii′√
r
· d2√r

ds ds′
ds ds′.
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It follows from this that n = 2, in the case where the directions of the two elements stay
the same, the action is due to the inverse square of their distance. One knows that M.
de La Place established the same law, based on an experiment of M. Biot, in the case of
the mutual action of an element of a voltaic conductor and of a magnetic molecule : but
this result cannot be extended to the action of two conducting elements, assuming that the
action of the magnets is due to electric currents; while the experimental demonstration that
I just gave is independent of all the hypotheses that one could make about the constitution
of the magnets.

12. Behavior of a conducting wire which forms a segment of a circle on a recti-
linear conductor passing through the center of the segment

Whether MON (Pl. 2 pg. 115, fig. 17 pg. 124) a circuit forming a sector whose sides comprise
an infinitely small angle, and look for the action that it exerts on a rectangular conductor
OS′ passing through the center O of the sector, and calculate first that of an element MNQP

of the area of the sector on an element M ′N′ of the conductor OS′. Make OM = u, MP =
du, OM′ = s′, MM′ = r, S′ON = ε, NOM =dε. The moment of MNQP in order to cause M′ to turn
about O will, by observing that the area MNQP has as expression u dudε,

1

2
ii′ s′ ds′

ududε

r3
,

and the moment of the sector on the conductor s′ will obtain by integrating this expression
with respect to u and s′. One has

r2 = s′2 + u2 − 2us′ cos ε,

from which

r
dr

du
= u− s′ cos ε, r

dr

ds′
= s′ − u cos ε,

and, by differentiating a second time,

r
d2r

duds′
+

dr

ds′
· dr

ds′
= − cos ε,

or, by substituting for dr
ds′ and dr

du their values,

r
d2r

duds′
+

(u− s′ cos ε)(s′ − u cos ε)

r2
= − cos ε,

which becomes, by carrying out the calculation and reducing,

r
d2r

du ds′
+
us′ sin2 ε

r2
= 0,

from which one extracts
us′

r3
= − 1

sin2 ε
· d2 r

duds′
;
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substituting this value in the elementary moment, one has for the expression of the total
moment

1

2
ii′dε

∫ ∫
us′duds′

r3
=

1

2
ii′

dε

sin2 ε

∫ ∫
d2r

duds′
duds′.

By considering the portion L′L′′ of the current s′, and the portion L1, L2 of the sector, and by
making L′ L1 = r′1, L

′′ L1,= r′′1 , L
′ L2 = r′2, L

′′ L2 = r′′2 , the value of this integral is evidently

1

2
ii′

dε

sin2 ε
(r′2 + r′′1 − r′′2 − r′1).

Where it is from the center O that the sector starts and the conductor s′, the distance r′1 = 0;
and if one makes O L2 = a, O L′′ = b, L′′L2 = r, on finds that their mutual action is expressed
by

1

2
ii′

ds

sin2 ε

(
a+ b− r

)
.

When the conductor L′L′′ (Pl. 2 pg. 115, fig. 19 pg. 125) has for midpoint the center L1 of
the sector, and when its length is double the radius a of the sector, one has a = b, and by
making L′L1L2 = 2θ = π − ε,

r′1 = r′′1 = a, r′2 = 2a sin θ, r′′2 = 2a cos θ, dε = −2dθ,

of a kind such that the value of the moment of rotation becomes

a ii′
dε

sin2 ε
(sin θ − cos θ) =

1

2
· a ii

′dθ(cos θ − sin θ)

sin2 θ cos2 θ
.

One can deduce from this result a means of verifying my formula by means of an instrument
which I will now describe.

13. Description of an instrument designed to verify the results of the theory for
conductors of this form

At the two points a, a′ (Pl. 2 pg. 115, fig. 20 pg. 125) of the table mn are two elevating
supports ab, a′b′ of which the upper parts cb, c′b′ are insulated; they support a copper strip
HdeH′d′e′ folded in half along the line HH′, and which is terminated by two cups H and H′

where one places mercury. At points A, C, A′, C′, on the table are four cavities also filled with
mercury. From A starts a copper conductor AEFGSRQ, supported by HH′ and terminated by
a cup Q; from A′ there starts a second A′ E′ F′ G′ S′ R′ Q′ symmetric to the first; they are both
enclosed in silk, in order to be insulated from each other and the conductor HH′. In the cup
Q insert the point of a mobile conductor QPONMLKIH returning to itself from K en I, and
having in this part its two branches PO,KI enclosed in silk; it is terminated by a second
point inserted in the cup H; NML form a semicircle of which LN is the diameter, and K the
center; the stem PKp is vertical, and terminated at p by a point held by three horizontal
circles B,D,T which can turn about their centers and are designed to reduce friction.

XY is a fixed shelf which receives in a groove a conductor VUifkhgoZC returning on
itself from g to o and covered by silk in this part; ifkhg is a sector of a circle which has as
its center the point k; the parts U i and go are rectangular; they traverse at x the support
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ab, in which there is an opening for this purpose, and which separates from o in order to
insert respectively in the cavities A and C. To the right of FG there is an assemblage of con-
ductors both fixed and mobile exactly similar to those that we just described, and when one
inserts the positive pole of the battery into C, and the negative into C′, the electric current
passes through the conductors CZoghkfiUV,AEFGSRQ; from there it passes into the mobile
conductor QPONMLKIH, and connects to H′ by HH′; it then goes through the symmetric mo-
bile conductor H′ I′ K′ L′ M′ N′ O′ P′ Q′, arriving at Q′, then the conductor Q′ R′ S′ G′ F′ E′ A′ which
conducts it into the cavity A′, where it connects to C′ by the conductor V′ U′ i′f ′k′h′g′o′ Z′ C′,
and from there to the negative pole.

The current flowing in the direction LN in the diameter LN, and from h to k, then from
k to f , in the rays hk, kf , there is repulsion between the rays and the diameter; also, the
closed circuit ghkfi does not produce any action on the semi-circle LMN whose center is
found in the fixes axis p H, the mobile conductor can only be set in motion by the action of
the sector ghkfi on the diameter LN, it is seen that in all the other parts of the apparatus
two opposed currents flow whose actions cancel. Equilibrium will be obtained when the
diameter LN, makes equal angles with the rays kf, kh; and if one departs from this position,
there will be oscillation solely due to the action of the sector ghkfi on the diameter.

For 2η the angle at the center of the sector, one obtains at the equilibrium position

2θ =
π

2
+ η or θ =

π

4
+ η,

from which one concludes

cos θ − sin θ = cos θ − cos
(π

2
− θ
)

= 2 sin
π

4
sin
(π

4
− θ
)

= −
√

2 sin
1

2
η,

and

sin θ cos θ =
1

2
sin 2θ =

1

2
cos η;

But it is easy to see that when one displaces, from its equilibrium position, the conductor L′L
by an amount equal to 2dθ, the moment of the forces which tend to restore it are composed
of those which produce two small sectors whose angles are equal to this displacement, ans
whose actions are equal, moment whose value, after that which we have seen just now, is

1

2

aii′(cos θ − sin θ)

sin2 θ cos2 θ
dθ = −

2aii′
√

2 sin 1
2η

cos2 η
dθ.

From which it follows that the duration of these oscillations will be, for the same diameter,
proportional to √

sin 1
2η

cos η
.

Therefore by causing simultaneous oscillation of the mobile conductors in the two symmetric
parts of the apparatus, supposing the angles of the sectors are different one will have currents
of the same intensity, and one will observe if the numbers of oscillations in the same time,
are proportional to the two expressions√

sin 1
2η

cos η
and

√
sin 1

2η
′

cos η′
;
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calling the two angles at the center of the two sectors 2η, and 2η′.

14. Interaction of two rectilinear conductors

We now examine the mutual action of two rectilinear conductors; and we recall first the
angle β taken in the direction of the element ds′ and that of the line r, the value of the
action that the two electric currents ds and ds′ exert on each other has already been put
in the form

ii′ds′rkd(rk cosβ),

by multiplying and dividing by cosβ, and paying attention that k = − 1
2 gives r2k = 1

r , we
see that one can write it as :

ii′ds′

cosβ
rk cosβd(rk cosβ) =

1

2
· ii
′ds′

cosβ
d
(cos2 β

r

)
,

from which it is easy for us to conclude that the component of this action following the
tangent of the element ds′, is equal to

1

2
ii′ds′d

(cos2 β

r

)
,

and that the component normal to the same element, is as

1

2
ii′ds′ tanβd

(cos2 β

r

)
,

an expression which can be put in the form

1

2
ii′ds′

[
d
( sinβ cosβ

r

)
− dβ

r

]
.

These values of the two components can be found on page 331 of my Recueil d’Observat-
ions électro-dynamiques, published in 1822.

Apply this last to the case of two rectilinear parallel currents, situated at a distance a
one from the other.

One then has
r =

a

sinβ
,

and the normal component becomes

1

2
ii′ds′

[
d(sin2 β cosβ

a
− sinβdβ

a

]
.

Let M′ (Pl. 2 pg. 115, fig. 21 pg. 125) be any current point which travels in the line L1L2;
and β′, β′′ the angles L′M′L2, L

′′M′L2 formed with L1L2 by the extreme vector rays M′L′,M′L′′;
one obtains the action of ds′ on L′L′′ by integrating the preceding expression between the
limits β′, β′′, which gives

1

2a
ii′ds′(sin2 β′′ cosβ′′ + cosβ′′ − sin2 β′ cosβ′ − cosβ′);
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but one has at each limit, by representing the values of s by b′ and b′′,

s′ = b′′ − a cotβ′′ = b′ − a cotβ′, ds′ =
adβ′′

sin2 β′′
=

adβ′

sin2 β′
;

substituting these values and integrating anew between the limits β′1, β
′
2 and β′′1 , β

′′
2 , one

obtains for the value of the looked for force,

1

2
ii′
(

sinβ′′2 − sinβ′′1 − sinβ′2 + sinβ′1 −
1

sinβ′′2
+

1

sinβ′′1
+

1

sinβ′2
− 1

sinβ′1

)
,

where
1

2
ii′
(
a

r′′2
− a

r′′1
− a

r′2
+

a

r′1
+
r′′1 + r′2 − r′′2 − r′1

a

)
.

If the two conductors are of the same length and perpendicular to the lines which join the
two extremities of the same side, one has

r′1 = r′′2 = a, et r′2 = r′′1 = c,

naming c the diagonal of the rectangle formed by these two lines and the two current
directions, the preceding expression then becomes

ii′
( c
a
− a

c

)
=
ii′l2

ac
;

naming l the length of the conductors, and when this rectangle becomes a square, one has
ii′√

2
for the value of the force; finally, if one supposes that one of the conductors, indefinite in

the two directions, and that l is the length of the other, the terms of r′1, r
′
2, r
′′
1 , r
′′
2 are found

in the denominator disappear; one obtains

r′2 + r′′1 − r′′2 − r′1 = 2l,

and the expression for the force becomes

ii′l

a
,

which reduces to ii′ when the length l is equal to the distance a.

With regard to the action of two parallel currents in the s′ direction, one can obtain
what should be the form of the current s. In effect the component which follows ds′ is

r

2
ii′ds′d

(
cos2 β

r

)
,

the total action exerted by ds′ in this direction on the current L′L′′ (Pl. 2 pg. 115, fig. 21
pg. 125) has as its value

r

2
ii′ds′

(
cos2 β′′

r′′
− cos2 β′

r′

)
,
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and it is remarkable that it only depends on the position of the extremities L′,L′′ of the
conductor s; it is therefore the same, whatever the form of the conductor, which can be
folded following any line.

If one names a′ and a′′ the perpendiculars from the two extremities of the portion of
the conductor L′L′′ which one considers as being mobile, on the rectilinear conductor on
which it acts to calculate the parallel action in its direction, one obtains

r′′ =
a′′

sinβ′′
, r′ =

a′

sinβ
,

ds′ = − dr′′

cosβ′′
=
a′′dβ′′

sin2 β′′
= − dr′

cosβ′
=

a′dβ′

sin2 β′
,

and as a consequence
ds′

r′′
=

ds′′

sinβ′′
,

ds′

r′
=

dβ′

sinβ′
,

from which it is easy to conclude that the looked for integral is

−1

2
ii′
∫ (

cos2 β′′ds′′

sinβ′′
− cos2 β′dβ′

sinβ′

)

= −1

2
ii′
(
L

tan 1
2β
′′

tan 1
2β
′ + cosβ′′ − cosβ′ + C

)
.

It is necessary to take this integral between the limits determined by the two extremities
of the rectilinear conductor; naming, β′1, β

′
2 and β′′1 , β

′′
2 the values of β′ and of β′′ relative

to these limits, one has here-and-now that of the force exerted by the rectilinear conductor,
and this last value only depends on the four angles β′1, β

′′
1 , β

′
2, β
′′
2 .

When one wants the value of this force for the case where the rectilinear conductor
extends indefinitely in both directions, it is necessary to set β′1 = β′′1 = 0, and β′2 = β′′2 = π,
it appears at first glance they become null, which is contrary to experiments; but one sees
easily that the part of the integral where cosines of these four angles enter is the only place
where they vanish in this case, and that the rest of the integral

1

2
ii′
(
L

tan 1
2β
′′
1

tan 1
2β
′
1

− L
tan 1

2β
′′
2

tan 1
2β
′
2

)

=
1

2
ii′L

tan 1
2β
′′
1 cot 1

2β
′′
2

tan 1
2β
′
1 cot 1

2β
′
2

becomes, because one has β′′2 = π − β′′1 and β′2 = π − β′1,

1

2
ii′L

tan2 1
2β
′′
1

tan2 1
2β
′
1

= ii′L
tan 1

2β
′′
1

tan 1
2β
′
1

= ii′L
a′′

a′
.

This value shows that the force that is looked for can only depend on the relation of
the two perpendiculars a′ and a′′, dropped onto the indefinite rectilinear conductor whose
two extremities of the portion of the conductor on which it acts; which is also independent
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of the form of this portion, and is not null, as it should be, when the two perpendiculars are
equal to each other.

To obtain the distance of this force to the rectilinear conductor whose direction is
parallel to its own, it is necessary to multiply by its distance to the conductor, and integrate
the result with respect to the same limits; one will thus obtain the moment which must be
divided by the force in order to obtain the looked for distance.

One easily finds, using the values above, that the elementary moment has as its value

1

2
ii′ds′r sinβd

cos2 β

r
.

This value cannot be integrated unless one has substituted for one of the variables r or β its
value as a function of the other, taken from the equations which determine the form of the
mobile portion of the conductor; this is very simple when this portion is on a line elevated by
an arbitrary point of the rectilinear conductor which one considers as fixed, perpendicular
to its direction, because by taking this point for the origin of the s′, one has

r = − s′

cosβ
,

and since s′ is a constant relative to the differential

d
cos2 β

r
.

The value of the elementary moment becomes

1

2
ii′ds′

sinβ

cosβ
d(cos3 β) = −3

2
ii′ds′ sin2 β cosβdβ,

whose integral between the limits β′′ and β′ is

−1

2
ii′ds′(sin3 β′′ − sin3 β′).

By replacing ds′ by the values of this differential found above, and by integrating again, one
has, between the limits determined for the rectilinear conductor,

1

2
ii′
[
a′′(cosβ′′2 − cosβ′′1 )− a′(cosβ′2 − cosβ′1)

]
.

If one supposes that the conductor extends indefinitely in both directions, it would be
necessary to give to β′1, β

′′
1 and β′2, β

′′
2 , the values which we have already assigned to them

in this case, and one obtains
−ii′(a′′ − a′)

for the sought for value of the moment, which will be, as a consequence, proportional to the
length a′′ − a′ of the mobile conductor, and and will not change at all due to the fact this
length remains the same, whatever the values of the other distances of the extremities of
this last conductor which is considered as fixed.



INTERACTION OF TWO RECTILINEAR CONDUCTORS 37

Calculate now the action exerted by an arc of an arbitrary curve NM in order to turn
an arc of the circle L1L2, about its center.

For M′ (Pl. 2 pg. 115, fig. 23 pg. 126) the mid point of an arbitrary element ds′ of the
arc L1L2, and a the radius of the circle. The moment of an element ds of NM in order to
cause ds′ to turn about the center O obtained by multiplying the tangent component in M′

by its distance a at the fixed point; which gives

1

2
aii′ds′d

cos2 β

r
.

Taking β′, β′′ and r′, r′′ to be the values of β and r relative to the limits M and N, one has
for the rotational moment of ds′

1

2
a ii′ds′

(
cos2 β′′

r′′
− cos2 β′

r′

)
,

a result which only depends on the position of the extremities of M and N.

We carry out the calculation by assuming that the line MN has a diameter L′L′′ of the
same circle.

Take 2θ to be the angle M′OL′;M′T′ being the tangent at M′, the angles L′M′T′, L′′M′T′ are
respectively β′ and β′′, and one obviously obtains

cosβ′ = − cos θ, cosβ′′ = sin θ, r′ = 2a sin θ, r′′ = 2a cos θ.

The action of the diameter L′L′′ to cause turning of the element situated at M′ will then be

1

4
ii′ds′

(
sin2 θ

cos θ
− cos2 θ

sin θ

)
.

If one takes an arbitrary point A of the circumference as the origin of the arcs, and make
AL′ = C, one has

s′ = C + 2aθ et ds′ = 2adθ

which changes the preceding expression into

1

2
a ii′

(
sin2 θdθ

cos θ
− cos2 θdθ

sin θ

)
,

which must be integrated over the entire extent of the arc L1, L2, in order to have the
rotational moment of this arc about its center.

However one has ∫
sin2 θdθ

cos θ
= L tan

(
π

4
+

1

2
θ

)
− sin θ + C1,∫

cos2 θdθ

sin θ
= L tan

1

2
θ + cos θ + C′ :
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if then one calls 2θ1, and 2θ2, the angles L′OL1, and L′OL2, the total moment of the arc L1L2

becomes
a

2
ii′

{
L

tan
(
π
4 + π

2 θ2

)
tan 1

2θ1

tan 1
2θ2 tan

(
π
4 + 1

2θ1

) − sin θ2 − cos θ2 + sin θ1 + cos θ1

}
.

This expression, changing the sign, gives the value of the rotational moment of the diameter
L′L′′ due to the action of the arc L1L2.

In an apparatus which I just described, a conductor which has the form of a circular
sector, acts on another conductor composed of a diameter and of a half-circumference which
is mobile about an axis passing through the center of this semi-circumference and perpen-
dicular to its plane. The action which it experiences from the part of the sector est destroyed
by the resistance of the axis, since the contour which forms the sector is closed; there only
remains the action on the diameter. We have already calculated that of the arc, it remains
for us in addition to obtain whose of the radii of this sector on the same diameter.

For determining these, we will look for the rotational moment which results from the
mutual action of two rectilinear currents situated in the same plane, and which tend to cause
them to turn in the contrary direction about the point of intersection of their directions.

The normal component of the element ds′ located in M′ (Pl. 2 pg. 115, fig. 24 pg. 126),
is, as we have seen previously,

1

2
ii′ds′

(
d

sinβ cosβ

r
− dβ

r

)
.

The moment of ds which causes rotation of ds′ about O, is obtained by multiplying
that force by s′; one then obtains, naming M the total moment,

d2M

dsds′
dsds′ =

1

2
ii′s′ds′

(
d

sinβ cosβ

r
− dβ

r

)
,

from which, by integrating with respect to s,

dM

ds′
ds′ =

1

2
ii′s′ds′

(
d

sinβ cosβ

r
−
∫

dβ

r

)
.

But, following the manner in which the angles were determined in the calculation of
the formula which represents the mutual action of two elements of voltaic conductors, the
angle M M′L2 = β is exterior of the triangle OM M′; and, naming ε the angle MO M′ which is
between the directions of the two currents, one finds that the third angle OM M′ is equal to
β − ε, which gives

r =
s′ sin ε

sin(β − ε)
,

one has therefore

dM

ds′
ds′ =

1

2
ii′

ds′

sin ε

[
cosβ sinβ sin(β − ε) + cos(β − ε) + C

]
.

By replacing in this value cos(β − ε) by

cos2 β cos(β − ε) + sin2 β cos(β − ε),
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one easily sees that it reduces to

dM

ds′
ds′ =

1

2
ii′

ds′

sin ε

[
cos ε cosβ + sin2 β cos(β − ε) + C

]
which must be taken between the limits β′ and β′′; one has thus the difference between two
functions of the same form, one with β′′ the other with β′, which must be newly integrated to
obtain the rotational moment which is looked for : it suffices to make this second integration
on just one of these two quantities : since a′′ the distance OL′′ which corresponds to β′′, one
has, in the triangle OM′L′′,

s′ =
a′′ sin(β′′ − ε)

sinβ′′
= a′′ cos ε− a′′ sin ε cotβ′′, ds′ =

a′′ sin rdβ′′

sin2 β′′
;

and the quantity that we propose first to integrate, becomes

1

2
a′′ii′′

[
cos ε cosβ′′dβ′′

sin2 β′′
+ cos(β′′ − ε)dβ′′

]
,

whose integral taken between the limits β′′1 and β′′2 is

1

2
a′′ii′′

[
sin(β′′2 − ε)− sin(β′′2 − ε)−

cos ε

sinβ′′2
+

cos ε

sin′′1

]
.

By designating by p′′2 and p′2, the perpendiculars from the point O on the distances L′′L2 = r′′2 ,
L′′L1 = r′′1 , one has obviously

a′′ sin(β′′2 − ε) = p′′2 , a′′ sin(β′′1 − ε) = p′′1 ,
a′′

sinβ′′2
=

r′′2
sin ε

,
a′′

sinβ′′1
=

r′′1
sin ε

,

and the preceding integral becomes

1

2
ii′
[
p′′2 − p′′1 − (r′′2 − r′′1 ) cot ε

]
.

If one pays attention when designating the distance OL′ by a′, one has also, in the triangle
OM′L′,

s′ =
a′ sin(β′ − ε)

sinβ′
= a′ cos ε− a′ sin ε cotβ′, ds′ =

a′ sin εdβ′

sin2 β′
,

it is easy to see that the integral of the other quantity is formed from the one that we have
obtained, by there changing p′′2 , p

′′
1 , r
′′
2 , r
′′
1 , into p′2, p

′
1, r
′
2, r
′
1; which gives for the value of the

rotational moment which is the difference of the two integrals,

1

2
ii′
[
p′′2 − p′′1 − p′2 + p′1 − (r′′2 − r′′1 − r′2 + r′1) cot ε

]
.

This value reduces to the one that we found above, in the case where the angle ε is a right
angle, because then cot ε = 0.
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When one assumes that the two currents leave the point O, and that their lengths
OL′′, OL2 (Pl. 2 pg. 115, fig. 22 pg. 126) are represented respectively by a and b the per-
pendicular OP by p, and the distance L′′L2 by r, one has p′′2 = p, p′′1 = p′2 = p′1 = 0, r′′2 =
r, r′′1 = a, r′2 = b, r′1 = 0, and

1

2
ii′
[
p+ (a+ b− r) cot ε

]
,

for the value which is taken by the rotational moment.

The quantity a+b−r, excess of the sum of two sides of a triangle on the third, is always
positive : from which it follows that the rotational moment is larger than the value 1

2 ii
′p

which it takes when the angle ε of the two conductors is a right angle, since cot ε is positive,
that is as the angle is acute; but it becomes smaller when the same angle is obtuse, because
otherwise cot ε would be negative. It is evident moreover that its value is even greater than
the angle ε is smaller, and that it goes to infinity as cot ε proportionally as ε approaches
zero; but it is good to demonstrate that it stays always positive, however near the angle is
to two right angles.

It is sufficient for this to pay attention when naming α the angle of the triangle OL′′L2

between the sides a and r, and β which is the one between the sides b and r, one has

cot ε = − cot(α+ β), p = a sinα = b sinβ, r = a cosα+ b cosβ,

and as a consequence

a+ b− r = a(1− cosα) + b(1− cosβ),

= p tan
1

2
α+ p tan

π

2
β,

and
1

2
ii′
[
p+ (a+ b− r) cot ε

]
=

1

2
ii′p

(
1−

tan 1
2α+ tan 1

2β

tan(α+ β)

)
,

value which stays always positive, however small the angles α and β become, since tan(α+β),
for angles less than π

4 , is always larger than tanα+tanβ, and for stronger reason more than
tan 1

2α + tan 1
2β. This value tends surely toward the limit 1

4 ii
′p as the angles α and β

approach zero; they vanish with p when these angles become null.

Recall now the general value of the rotational moment in which enter only the distances
OL′′ = a′′ (Pl. 2 pg. 115, fig. 24 pg. 126), OL′ = a′, and the various angles, the value of which
is

1

2
ii′
[
a′′ sin(β′′2 − ε)− a′′ sin(β′′1 − ε)− a′ sin(β′2 − ε) + a′ sin(β′1 − ε)

−a
′′ cos ε

sinβ′′2
+
a′′ cos ε

sinβ′′1
+
a′ cos ε

sinβ′2
− a′ cos ε

sinβ′1

]
,

and apply this to the case where one of the conductors L′L′′ (Pl. 2 pg. 115, fig. 25 pg. 127)
is rectilinear and mobile about its center L1, and in the other part of this region. Taking
L′L′′ = 2a, one has

a′′ = a, a′ = −a, β′1 = π + ε, β′′1 = ε, sinβ′1 = − sinβ′′1 ,
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and by designating as before the perpendiculars dropped from L onto L′L2, L
′′L2, the expres-

sion for the moment becomes

1

2
ii′
(
p′′2 + p′2 −

a cos ε

sinβ′′2
− a cos ε

sinβ′2

)
.

Or
sinβ′′2 : a :: sin ε : r′′2 et − sinβ′2 : a :: sin ε : r′2,

and the values of r′′2 and of r′2 taken from these proportions and substituted into the pre-
ceding expression changing it to

1

2
ii′
[
p′′2 + p′2 + cot ε(r′2 − r′′2 )

]
.

When one assumes L1L2 to be infinite, one has p′′2 = p′2 = a sin ε, r′2− r′′2 = 2a cos ε, and
this value of the moment reduces to

1

2
aii′
(

2 sin ε+
2 cos2 ε

sin ε

)
=
aii′′

sin ε
;

it is therefore by the inverse of the sin of the angle between the two currents, and proportional
to the length of the finite current.

When L1L2 = 1
2L
′L′′ = a and if one represents the angle by L′L1L2 by 2θ, one has

p′′2 = a sin θ, p′2 = a cos θ, r′2 = 2a sin θ, r′′2 = 2a cos θ, cot ε = − cot 2θ, and the moment
becomes

1

2
aii′
[

cos θ + sin θ + 2 cot 2θ(cos θ − sinθ)
]
,

by replacing 2 cot 2θ by its value

1− tan2 θ

tan θ
=

cos2 θ − sin2 θ

sin θ cos θ
=

(cos θ + sin θ)(cos θ − sin θ)

sin θ cos θ
,

one finds that that of the moment is equal to

1

2
aii′(cos θ + sin θ)

[
1 +

(cos θ − sin θ)2

sin θ cos θ

]
=

1

2
aii′(cos θ + sin θ)

(
1

sin θ cos θ
− 1

)
.

To obtain the sum of the actions of two radii between which is an infinitely small sector
of which the arc is dε, it is necessary to pay attention that these two radii will be traversed
in a contrary direction, this sum is equal to the differential of the preceding expression; one
finds thus that it is represented by

1

2
aii′
[
(cos θ − sin θ)

( 1

sin θ cos θ
− 1
)
− (cos θ + sin θ)(cos2 θ − sin2 θ)

sin2 θ cos2 θ

]
dθ

=
1

2
aii′(cos θ − sin θ)

( 1

sin θ cos θ
− 1− cos θ + sin θ)2

sin2 θ cos2 θ

)
dθ

= −1

2
aii′(cos θ − sin θ)

( 1

sin2θ cos2 θ
+

1

sin θ cos θ
+ 1
)

dθ.
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But the action of the arc L2L3 on the diameter L′L′′ is equal and opposed to that which
the diameter exerts on the arc to cause it to turn on its center; the moment of this action,
following that which we just saw, is therefore equal to

1

2
aii′
(

cos2 θ

sin θ
− sin2 θ

cos θ

)
dθ =

1

2
aii′(cos θ − sin θ)

(
1

sin θ cos θ
+ 1

)
dθ;

by adding to the preceding, one has for this result of the action of the infinitely small sector
on the diameter L′L′′

−1

2
aii′(cos θ − sin θ)

dθ

sin θ cos θ
.

This value only differs in the sign of the one we have already found for the same moment,
the difference comes obviously from what we extracted from the last formula relative to the
action of a very small closed circuit on an element where we have changed the sign of C to
make it positive;

Examine now the action of two rectilinear currents, which are not in the same plane,
exerting on one another, whether to move in parallel with their common perpendicular, or
to turn about this line.

For the two currents AU, A′U (Pl. 2 pg. 115, fig. 26 pg. 127); AA′ = a, their common
perpendicular; AV a parallel to A′U′ : the action of two elements located in M and M′, if one
sets n = 2 and h = k − 1 = − 3

2 in the general formula

ii′dsd′

r
(cos ε+ h cos θ cos θ′),

becomes
1

2
·
ii′dsds′

(
2 cos ε+ 3 dr

ds ·
dr
ds′

)
r2

,

because

cos θ =
dr

ds
, cos θ′ = − dr

ds′
;

but on making AM = s, A′ M′ = s′, VAU =ε, one has

r2 = a2 + s2 + s2′ − 2ss′ cos ε,

where

r
dr

ds
= s− s′ cos ε, r

dr

ds′
= s′ − s cos ε, r

d2r

dsds′
+

dr

ds
· dr

ds′
= − cos ε;

and as
d 1
r

ds
= −

dr
ds

r2
,

d2 1
r

dsds′
= −

r d2r
dsds′ −

dr
2ds ·

dr
ds′

r3
=

cos ε+ 3 dr
ds ·

dr
ds′

r3
,

the value of the action of the two elements becomes

1

2
ii′dsds′

(
cos ε

r2
+ r

d2 1
r

dsds′

)
.
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In order to have the component parallel to AA′, it is necessary to multiply that expression
by the cosine of the angle MM′P which makes MM′ with M,P parallel to AA′, that is to say by
M′P
M′M or a

r , which gives

1

2
a ii′dsds′

(
cos ε

r3
+

d2 1
r

dsds′

)
;

and by integrating over the total extent of the two currents, one finds for the total action

1

2
a ii′

(
1

r
+ cos ε

∫ ∫
dsds′

r3

)
.

If the two currents form between them a right angle, one has cos ε = 0, and the action
parallel to AA′ is reduced, by taking the integral between the natural limits, and by employing
the same notation as above, to

1

2
ii′
(
a

r′′2
− a

r′′1
− a

r′2
+

a

r′1

)
.

This expression is proportional to the shortest distance of the currents, and becomes as a
consequence null when they are in the same plane, as should be obvious. If the currents are
parallel, one has ε = 0 and

r2 = a2 + (s− s′)2,

from which ∫ ∫
dsds′

r3
=

∫
ds′
∫

ds

[a2 + (s− s′)2]
3
2

=

∫
ds′

s− s′

a2
√
a2 + (s− s′)2

= −
√
a2 + (s− s′)2

a2

= − r

a2
,

that is to say between the limits of the integrations

r′2 + r′′1 − r′1 − r′′2
a2

;

and since cos ε = 1, the total action becomes

1

2
ii′
(
a

r′′2
− a

r′2
− a

r′′1
+

a

r′1
+
r′′1 + r′2 − r′′2 − r′1

a

)
.

We will see later how to carry out the integration in the case where the angle ε is arbitrary.

We search now the rotational moment about the common perpendicular: for this it is
necessary to know first the component following MP, and multiply it by the perpendicular
AQ from A onto MP, which amounts to multiplying the force following MM′ by M P

M M′ · AQ, or

by ii′ sin ε
r ; one thus obtains

1

2
ii′ sin ε

(
ss′

d2 1
r

dsds′
dsds′ + ss′

cos εdsds′

r3

)
;
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setting ss′

r = q, one obtains

dq

ds
=
s′

r
+
ss′d 1

r

ds
,

and
d2q

dsds′
=

1

r
− s′

r2
· dr

ds′
− s

r2
· dr

ds
+ ss′

d2 1
r

dsds′

=
1

r
− s′(s′ − s cos ε) + s(s− s′ cos ε)

r3
+ ss′

d2 1
r

dsds′
;

and by reducing

d2q

dsds′
=
a2

r3
+
ss′d2 1

r

dsds′
,

from which one extracts

ss′
d2 1

r

dsds′
=

d2q

dsds′
− a2

r3

Now, we have previously found

r
d2r

dsds′
+

dr

ds
· dr

ds′
= − cos ε;

where

r
d2r

dsds′
+

(s− s′ cos ε)(s′ − s cos ε)

r2
= − cos ε;

carrying out the multiplication and replacing s2 + s′2 by its value

r2 = a2 + s2 + s′2 − 2ss′ cos ε,

one obtains by reduction

d2r

dsds′
+
ss′ sin2 ε+ a2 cos ε

r3
= 0,

from which
ss′

r3
= − 1

sin2 ε

(
d2r

dsds′
+
a2 cos ε

r3

)
.

Substituting this value and also that of ss′
d2 1

r

dsds′ into the expression for the rotational moment
of the element, it becomes

1

2
ii′ sin εdsds′

[
d2q

dsds′
− a2

r3
− cos ε

sin2 ε

(
d2r

dsds′
+
a2 cos ε

r3

)]
=ii′dsds′

(
sin ε

d2q

dsds′
− a2 sin ε

r3
− cot ε

d2r

dsds′
− cos2 ε

sin ε
· a

2

r3

)
=ii′dsds′

(
sin ε

d2q

dsds′
− cot ε

d2r

dsds′
− 1

sin ε
· a

2

r3

)
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and integrating with respect to s and s′, one has for the total moment

1

2
ii′
(
q sin ε− r cot ε− a2

sin ε

∫ ∫
dsds′

r3

)
;

the calculation is thus reduced, as before, to finding the value of the double integral
∫ ∫

dsds′

r3 .

If the currents are in the same plane, one has a = 0, and the moment reduces to

1

2
ii′(q sin ε− r cot ε),

a result which coincides with that which we have obtained in directly treating two currents
situated in the same plane. Since q is nothing but ss′

r and r and r becomes MP, one has

q sinε =
ss′ sinε

r
=

MP,AQ

MP
= AQ;

and we have found by the other procedure,

1

2
ii′(p− r cot ε);

p designates the perpendicular AQ : the two results are therefore identical. The integration
carried out between the limits gives

1

2
ii′
[
p′′2 − p′′1 − p′2 + p′1 + cot ε(r′′1 + r′2 − r′′2 − r′1)

]
;

if the angle ε is a right angle, this moment reduces to

1

2
ii′(p′′2 − p′′1 − p′2 + p′1).

When ε = π
2 , but a is not null, the moment above becomes

1

2
ii′
(
q − a2

∫ ∫
dsds′

r3

)
.

The integral that needs to be calculated in this case is∫
ds′
∫

ds

r3
=

∫
ds′
∫

ds

(a2 + s2 + s′2)
3
2

=

∫
s

(a2 + s′2)
√
a2 + s2 + s′2

ds′,

which must be integrated over again with respect to s′; it becomes∫
sds′

(a2 + s′2)
√
a2 + s2 + s′2

=

∫
(a2 + s2)sds′

(a4 + a2s′2 + a2s2 + s2s′2)
√
a2 + s2 + s′2

=

∫ s(a2 + s2) ds′√
a2+s2+s′2

a2(a2 + s2 + s′2) + s2s′2

=

∫
s(a2 + s2)ds′

(a2+s2+s′2)
3
2

a2+ s2s′2
a2+s2+s′2

=

∫ dq
ds′ ds′

a2 + q2

=
1

a
arctan

q

a
+ C.
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For M the value of the rotational moment when the two electric currents, of which the
lengths are s and s′, starting points where their directions meet the line which measures the
shortest distance, one obtains

M =
1

2
ii′
(
q − a arctan

q

a

)
,

an expression which reduces, when a = 0, at M = 1
2 ii
′q, which accords with the value M =

1
2 ii
′p which we have already found for this case, because then q becomes the perpendicular

which we have designated by p. If one assumes a infinite, M becomes null, as it should be,
so that there results

a arctan
q

a
= q.

If one names z the angle of which the tangent is

ss′

a
√
a2 + s2 + s′2

,

it follows

M =
1

2
ii′q

(
1− z

tan z

)
;

this is the value of the rotational moment which is produced by a force equal to

1

2
ii′
(

1− z

tan z

)
,

acting along the line which joins the two extremities of the conductors opposed to those
where they are met by the line which measures the shortest distance.

It is sufficient to quadruple these expressions to have the rotational moment produced
by the mutual action of two conductors such that one is mobile about the line which measures
their shortest distance, in the case where this line touches the two conductors at their center,
and where their lengths are respectively represented by 2s and 2s′.

It is, for the rest, easy to see that if, instead of assuming that the two currents start
from the point where they encounter the line, one had made the calculation for arbitrary
limits, one should obtain a value of M composed of four terms of the form of those that
we obtained in this particular case, two of these terms are positive and the two others are
negative.

Consider now two rectilinear currents A′S′,L′L′′ (Pl. 2 pg. 115, fig. 27 pg. 127), not
situated in the same plane and whose directions form a right angle.

Let A′A be their joint perpendicular, and find the action of L′L′′ which turns A′S′ about
a parallel OV at L′L′′ carried out at the distance A′O = b from A.

For M,M′ two arbitrary elements of these currents; the general expression for the compo-
sition of their action parallel with the joint perpendicular AA′, becomes, by making, ε = π

2 ,

1

2
aii′

d2 1
r

dsds′
dsds′;
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its moment in relation to the point O is therefore, by taking A′ as the origin of the s′, equal
to

1

2
aii′(s′ − b)

d2 1
r

dsds′
dsds′;

by integrating with respect to s, it becomes

1

2
aii′(s′ − b)

d 1
r

ds′
ds′;

and naming r′ and r′′ the distances M′L′,M′L′′ of M′ to the points L′,L′′, and integrate between
these limits the action of L′L′′, to cause turning of the element M′, is

1

2
aii′(s′ − b)ds′

(
d 1
r′′

ds′
−
dr 1

r′

ds′

)
,

expression which must be integrated with respect to s′. Or

1

2
aii′

∫
(s′ − b)d

1

r′′
=

1

2
aii′
(
s′ − b
r′′

−
∫

ds′

r′′

)
,

and it is also easy to see that in naming c the value AL′′ of s which corresponds to r′′, and
which is a constant in the actual integration, one has A′L′′ =

√
a2 + c2, from which it follows

that

r′′ =

√
a2 + c2

sinβ′′
, s′ = −

√
a2 + c2 cotβ′′, ds′ =

√
a2 + c2

sin2 β′′
dβ′′;

therefore ∫
ds′

r′′
=

∫
dβ′′

sinβ′′
= L

tan π
2β
′′
2

tan π
2β
′′
1

;

the second term integrates in the same manner, and one obtains finally for the rotational
moment to be found

1

2
aii′
(
s′2 − b
r′′2

− s′1 − b
r′′1

− s′2 − b
r′2

+
s′1 − b
r′1

− L
tan 1

2β
′′
2 tan 1

2β
′
1

tan 1
2β
′′
1 tan 1

2β
′
2

)
.

In the case where the axis of rotation parallel to the line L′L′′ where s passes by the point
of intersection A′ of the lines a and s′, one has b = 0; and if one assumes, furthermore, that
the current which flows in s′ parts at this point of intersection, one obtains in addition

s′1 = 0, β′1 =
π

2
, β′′1 =

π

2
,

so that the value of the rotational moment reduces to

1

2
aii′
(
s′2
r′′2
− s′2
r′2
− L

tan π
2β
′′
2

tan π
2β
′
2

)
.

I will now search for the action of a conducting wire folded following the perimeter of a
rectangle K′K′′L′′L′ for turning a rectilinear conductor A′S′ = s′2, perpendicular on the plane
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of this rectangle, and mobile about one of its sides K′K′′ that it meets at the point A′ : the
moment produced by this action of the side K′K′′ is then obviously null, it will for the one
that is acted on by the action of L′L′′ and thus we come to calculate the value, adding the
moment produced by K′L′ in the same direction as that of L′L′′, and by removing the one
that is by K′L′′ whose action tends to cause the turning of A′S′ in a contrary direction; or,
following the preceding calculations, by naming g and h the shortest distances A′K′,A′K′′,
from AS′ to the lines K′L′,K′′L′′ which are both equal to a, one has for the absolute values
of these moments

1

2
ii′
(
q′ − g arctan

q′

g

)
,

1

2
ii′
(
q′′ − h arctan

q′′

h

)
,

by setting

q′ =
as′2√

g2 + a2 + s′2
=
as′2
r′2
, q′′ =

as′2√
h2 + a2 + s′2

=
as′2
r′′2

,

that of the total moment is then

1

2
ii′
(
h arctan

q′′

h
− g arctan

q′

g
− aL

tan 1
2β
′′
2

tan 1
2β
′
2

)
.

Such is the value of the rotational moment resulting from the action of a conductor having
as its form the perimeter of a rectangle, and acting on a mobile conductor at one of the
sides of the rectangle, which will also be its distance to the other sides of the rectangle and
its dimensions. By determining by experiment the instant at which the mobile conductor is
in equilibrium with respect to the opposing actions of two rectangles situated in the same
plane, but of various sizes and at various distances from the mobile conductor, one has a
quite simple means to obtain some verifications of my formula which are susceptible of great
precision; it is this that one can carry out easily with the aid of an instrument of which it
is too easy to conceive the construction for it to be necessary to explain it here.

Integrate now the expression
∫ ∫

dsds′

r3 in the extent of two rectilinear currents not
situated in the same plane, and making between them an arbitrary angle ε, in the case
where these currents start at the common perpendicular; the other cases can be deduced
immediately.

Let A (Pl. 2 pg. 115, fig. 28 pg. 128) the point where the common perpendicular meets
the direction AM of the current s, AM′ a parallel conducted by this point to the current s′,
and mm′ the projection on the plane MAM′ of the line which joins the two elements ds, ds′.

Conducted by A a line An parallel and equal to mm′, and form in n a small parallelogram
nn′ having its sides parallel to the lines MAN,AM′, and equal to ds, ds′.

If one repeats the same construction for all the elements, the parallelograms so formed
will compose the entire parallelogram NAM′D, and, their surfaces having for their extent
dsds′ sin ε, one obtains the proposed integral multiplied by sin ε, in searching for the volume
having as its base NAM′D, and terminated on the surface whose ordinates elevated to various
points of this base have for value 1

r3 ; r being the distance of the two elements of currents,
which correspond, after our construction, to all their points of the surface NAM′D.

Now, to calculate this volume, we can partition the base into triangles having for com-
mon top the point A.
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Let Ap a line connected to any of the points of the surface of the triangle AND, and
pqq′p′ the surface included between the two infinitely close lines Ap, Aq′ and the two arcs of
a circle described by A with the radii Ap = u and Ap′ = u+ du : we will, because the angle
NAM′ = π − ε and by naming ϕ the angle NAp,

sin ε

∫ ∫
dsds′

r3
=

∫ ∫
ududϕ

r3
.

Now, if a designates the perpendicular common to the directions of the two conductors, and
s and s′ the distances counted in A on the two currents, one has

r =
√
a2 + u2, u =

√
s2 + s′2 − 2ss′ cos ε :

therefore, by integrating first from A up to u = AB = u1,

sin ε

∫ ∫
dsds′

r3
=

∫ ∫
ududϕ

(a2 + u2)
3
2

=

∫
dϕ

(
1

a
− 1√

a2 + u2
1

)
.

It remains to integrate this last expression with respect to ϕ : for this we will calculate u, as
a function of ϕ by the proportion AN : AB :: sin(ϕ+ε) : sin ε, ou s : u1 :: sin(ϕ+ε) : sin ε; and
by substituting in a2 + u2

1, the value taken from this proportion, we will have to calculate∫
dϕ

[
1

a
− 1√

a2 + s2 sin2 ε
sin2(ϕ+ε)

]
=
ϕ

a
−
∫

dϕ sin(ϕ+ ε)√
s2 sin2 ε+ a2 sin2(ϕ+ ε)

=
ϕ

a
+

1

a

∫
d cos(ϕ+ ε)√

a2+s2 sin2 ε
a2 − cos2(ϕ+ ε)

=
1

a

[
ϕ+ arcsin

a cos(ϕ+ ε)√
a2 + s2 sin2 ε

+ C
]
.

Name µ and µ′ the angles NAD,M′AD, and take the preceding integral between ϕ = 0 and
ϕ = µ, it then becomes

1

a

[
µ+ arcsin

a cos(µ+ ε)√
a2 + s2 sin2 ε

− arcsin
a cos ε√

a2 + s2 sin2 ε

]
,

and, since µ+ ε = π − µ′, it changes to

1

a

[
µ− arcsin

a cos(µ′)√
a2 + s2 sin2 ε

− arcsin
a cos ε√

a2 + s2 sin2 ε

]
,

or

cosµ′ =
AK

AD
=

s′ − s cos ε√
(s′ − s cos ε)2 + s2 sin2 ε

=
s′ − s cos ε√

s2 + s′2 − 2ss′ cos ε
,

from which one extracts for the integral the following expression :

1

a

[
µ− arcsin

a(s′ − s cos ε)√
a2 + s2 sin2 ε

√
s2 + s′2 − 2ss′ cos ε

− arcsin
a cos ε√

a2 + s2 sin2 ε

]
,
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where, in changing from sin to tangent for the two arcs,

1

a

[
µ− arctan

a(s′ − s cos ε)

s sin ε
√
a2 + s2 + s′2 − 2ss′ cos ε

− arctan
a cot ε√
a2 + s2

]
,

and since one finds the integral relative to the triangle M′AD in changing in this expression
µ to µ′ and s to s′, one has for the total integral, because µ+ µ′ = π − ε,

1

a

(
π − ε− arctan

a(s′ − s cos ε)

s sin ε
√
a2 + s2 + s′2 − 2ss′ cos ε

− arctan
a cot ε√
a2 + s2

− arctan
a(s− s′ cos ε)

s′ sin ε
√
a2 + s2 + s′2 − 2ss′ cos ε

− arctan
a cot ε√
a2 + s′2

)
.

In calculating the tangent of the sum of the two arcs whose values contain s and s′, one
changes this expression to

1

a

(
π − ε− arctan

a sin ε
√
a2 + s2 + s′2 − 2ss′ cos ε

ss′ sin2 ε+ a2 cos ε

− arctan
a cot ε√
a2 + s2

− arctan
a cot ε√
a2 + s′2

)
;

and since
π

2
− arctan

a sin ε
√
a2 + s2 + s′2 − 2ss′ cos ε

ss′ sin2 ε+ a2 cos ε

= arctan
ss′ sin2 ε+ a2 cos ε

a sin ε
√
a2 + s2 + s′2 − 2ss′ cot ε

one has, by dividing by sin ε,∫ ∫
dsds′

r3
=

1

a sin ε

(
arctan

ss′ sin2 ε+ a2 cos ε

a sin ε
√
a2 + s2 + s′2 − 2ss′ cos ε

− arctan
a cot ε√
a2 + s2

− arctan
a cot ε√
a2 + s′2

+
π

2
− ε
)

;

expression which, since one assumes that ε = π
2 , reduces to

1

a

(
arctan

ss′

a
√
a2 + s2 + s′2

)
,

as we have found previously.

One can remark that the first term of the value that we have found in the general case
is the indefinite integral of

dsds′

(a2 + s2 + s′2 − 2ss′ cos ε)
3
2

,

as one can verify by differentiation, and that the three others obtain by application succes-
sively into this indefinite integral :

1◦ s′ = 0; 2◦ s = 0; 3◦ s′ = 0 et s = 0.
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If the currents do not leave the common perpendicular, one will obtain an integral still
composed of four terms which will all be of the same form as the indefinite integral.

15. Action on one wire conductor element by an assembly of closed circuits of
very small dimensions, which have been designated under the name electro-
dynamic solenoid

Until now we have considered the mutual action of currents in the same plane and recti-
linear currents situated arbitrarily in space; it still remains to consider the mutual action
of curvilinear currents which are not in the same plane. First we shall assume that these
currents describe planar and closed curves with all their dimensions infinitesimal. As we
have seen, the action of a current of this kind depends on the three integrals A,B,C, whose
values are

A = λ

(
cos ξ

l3
− 3qx

l5

)
,

B = λ

(
cos η

l3
− 3qy

l5

)
,

C = λ

(
cos ζ

l3
− 3qz

l5

)
.

Now imagine any line in the space MmO (Pl. 2 pg. 115, fig. 29 pg. 128), which the electric
currents encircle forming very small circuits closed around this line, in infinitely close planes
which are perpendicular to this line, such that the areas occupied by these circuits are all
equal to each other and represented by λ, that their centers of gravity are on MmO, and
that these planes have the same distance, measured along this line, between two consecutive
planes. Putting g for the infinitesimal distance between neighboring planes, the number of
currents found to correspond to an element ds of the line Mm O will be ds

g ; and it is necessary
to multiply by this number the values of A,B,C which have just been found for a single circuit
so as to obtain the values which refer to the circuits of the element ds; by integrating over
the arcs from one extremity L′ of the arc s, to the other extremity L′′ of this arc, one obtains
the values of A,B,C relative to the assembly of all circuits which encircle it, an assembly
which I have called an electrodynamic solenoid, from the Greek word σωληνoειδὴς, which
means that which forms a canal, that is to say the surface of this form on which are located
all the circuits.

Thus, for the entire solenoid,

A =
λ

g

∫ (
cos ξ ds

l3
− 3qx ds

l5

)
,

B =
λ

g

∫ (
cos η ds

l3
− 3qy ds

l5

)
,

C =
λ

g

∫ (
cos ζ ds

l3
− 3qz ds

l5

)
.

Now, since the line g which is perpendicular to the plane of λ, is parallel to the tangent to
the curve s, it follows that

cos ξ =
dx

ds
, cos η =

dy

ds
, cos ζ =

dz

ds
.
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Moreover, q is evidently equal to the sum of the projections of the three coordinates x, y, z
on its direction; thus

q =
x dx+ y dy + z dz

ds
=
l dl

ds
,

since l2 = x2 + y2 + z2. Substituting these values into the expression which has just been
found for C, it becomes

C =
λ

g

∫ (
ds

l3
− 3z dl

l4

)
=
λ

g

(
z

l3
+ C′

)
.

Putting x′, y′, z′, l′ and x′′, y′′, z′′, l′′ for the respective values of x, y, z, l at the two extrem-
ities L′,L′′ of the solenoid, we have

C =
λ

g

(
z′′

l′′3
− z′

l′3

)
.

Likewise, finding similar expressions for the two other integrals A,B, the values for the three
quantities which it is proposed to calculate for the entire solenoid are:

A =
λ

g

(
x′′

l′′3
− x′

l′3

)
,

B =
λ

g

(
y′′

l′′3
− y′

l′3

)
,

C =
λ

g

(
z′′

l′′3
− z′

l′3

)
.

For a solenoid with a closed curve as its director, one has x′′ = x′, y′′ = y′, z′′ = z′, l′′ = l′,
and therefore A = 0, B = 0, C = 0; if they extend to infinity in both directions, all the
terms of the values of A,B,C will be zero separately, and it is evident that in these two cases
the constant of integration and the expression on the left hand side of the equation. The
two are, of course, not the same action exerted by the solenoid will be reduced to zero.
Assuming that it only extends to infinity on one side, which I shall indicate by referring to
it as a semi-infinite solenoid, it is only necessary to consider the extremity with coordinates
x′, y′, z′ of finite value, because the other extremity is assumed to be infinitely remote and
the first terms of the values which have just been found for A,B,C are necessarily zero; thus

A = −λx
′

gl′3
, B = − λy

′

gl′3
, C = − λz

′

gl′3
,

and therefore A : B : C :: x′ : y′ : z′; hence the normal to the directing plane which passes
through the origin and forms angles to the axes with cosines

A

D
,

B

D
,

C

D

where D =
√

A2 + B2 + C2, also passes through the extremity of the solenoid with the
coordinates x′, y′, z′.
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As we have seen, in the general case, the total resultant is perpendicular to this normal;
thus the action of an indefinite solenoid on an element is perpendicular to the straight line
joining the midpoint of this element to the extremity of the solenoid; and since it is likewise
perpendicular to the element, it follows that it is also perpendicular to the plane drawn
through this element and through the extremity of the solenoid.

Its direction being determined, it only remains to find its value; now, according to the
analysis for the general case, this value is

−D ii
′ ds′ sin ε′

2
,

where ε is the angle between the element ds′ and the normal to the directing plane; and
since D =

√
A2 + B2 + C2, it is easily found that

D = − λ

g l′2
,

which gives for the value of the resultant

λii′ds′ sin ε

2gl′2
.

It is therefore seen that the action exerted by an indefinite solenoid with its extremity at
L′ (Pl. 2 pg. 115, fig. 29 pg. 128) on the element ab is normal at A to the plane b AL′,
proportional to the sine of the angle of b AL′, and is inversely proportional to the square
of the distance AL′, and it always remains the same, whatever the shape and direction of
the indefinite curve L′ L′′ on which all the centers of gravity of the currents composing the
indefinite solenoid are assumed to lie.

If it should be desired to consider a definite solenoid with its two extremities situated
at two given points L′,L′′, it is sufficient to assume a second indefinite solenoid commencing
at the point L′′ of the first and coinciding with it from this point to infinity, with currents
opposite in direction, but equal in intensity, the action of the latter being opposite in sign
to that of the first indefinite solenoid from L′, and destroying its action over the part ex-
tending from L′′ to infinity in the direction L′′O where they are superposed. The action of
the solenoid L′L′′ will therefore be the same as that which would be exerted by joining the
two indefinite solenoids and, in consequence, it consists of the force which has just been
calculated and another force which acts in the opposite direction, passing likewise through
point A, perpendicular to the plane bAL′′, and having for value

λ ii′ds′ sin ε′′

2gl′′2
,

where ε is the angle bAL′′, and l′′ is the distance AL′′. The total action of the solenoid is the
resultant of these two forces and, like them, it passes through point A.
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16. Action affecting a one element solenoid of a portion of a wire conductor, a
closed circuit or a system of closed circuits

Since the action of a definite solenoid can be deduced directly from that of an indefinite
solenoid, we shall in all that remains to be said on the subject proceed from the indefinite
solenoid. This simplifies the calculations and conclusions can readily be drawn for a definite
solenoid.

Let L′ (Pl. 2 pg. 115, fig. 30 pg. 128), be the extremity of an indefinite solenoid, A the
mid-point of an element ba of the current M1A M2, and L′ K a fixed straight line through the
point L′; we put θ for the variable angle K L′ A, µ for the inclination of the planes b A L′, AL′K
to each other, and l′ for the distance L′A. Since the action of the element ba on the solenoid
is equal and opposite to that which the solenoid exerts on the element, for its determination
it is necessary to consider the mid-point of A which is permanently associated with the
solenoid, and which is influenced by a force which, ignoring the sign, may be represented as

λii′ds′ sin b A L′

2gl′2
where

λii′dν

gl′2
,

where dν is the area aL′ b equal to

i′ds′ sin b AL′

2
.

Since this force is normal at A to the plane AL′ b, to obtain its moment about the axis L′K,
it is necessary to find the component which is perpendicular to AL′K and to multiply it by
a perpendicular to AP dropped from point A on to the straight line L′K. Since µ is the angle
between the planes AL′ b,AL′K, this component is obtained by multiplying the foregoing
expression by cosµ; but dν cosµ is the projection of the area dν on the plane AL′K, whence
it follows that in representing this projection by dµ, the value of the required component is

λii′dµ

gl′3
.

Now, the projection of the angle aL′b on AL′K can be regarded as the infinitesimal difference
between the angles KL′a and KL′b; it is therefore dθ and we obtain

dµ =
l′2dθ

2
;

which reduces the previous expression to

λii′dθ

2gl′
;

but since AP = l′ sin θ, for the required moment we have

λii′

2g
sin θdθ.
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This expression, integrated over the curve M1AM2, yields the moment of the current making
the solenoid revolve about L′K : now, if the current is closed, the integral, which is in general

C− λii′ cos θ

2g
,

vanishes between the limits, and the moment is zero in respect of any straight line L′K

through the point L′.

Hence, in the action of a closed circuit, or of any system of closed circuits, on an
indefinite solenoid, all the forces applied to the various elements of the system produce the
same moments about the axis as if they were at the extremity of the solenoid; their resultant
passes through this extremity and in no case can the forces tend to impart rotational motion
to the solenoid about a straight line through its extremity, which is in agreement with the
results of the experiments. If the current represented by the curve M,AM were not closed, its
moment for rotation of the solenoid about L′K, putting θ′1 and θ′2 for the extreme values of
θ in respect of point L′ for the extremities M1, M2 of the curve M1AM2, would be

λii′

2g
(cos θ′1 − cos θ′2).

Consider now the definite solenoid L′L′′ (Pl. 2 pg. 115, fig. 31 pg. 129) which may only
revolve about the axis through its two extremities. We shall again be able to replace it by
two indefinite solenoids; the sum of the actions of the current M1AM2 on each of them is
equivalent to its action on L′L′′. The rotational moment of the first has just been found;
putting θ′′1 , θ

′′
2 for the angles corresponding to θ′1, θ

′
2, but in respect of the extremity L′′, one

obtains for that of the second

−λii
′

2g
(cos θ′′1 − cos θ′′2 );

the total moment produced by the action of M1AM2 for rotation of the solenoid about its axis
L′L′′ therefore is

λii′

2g
(cos θ′1 − cos θ′′1 − cos θ′2 + cos θ′′2 ).

This moment is independent of the shape of the conductor M1AM2, its magnitude and its
distance from the solenoid L′L′′, and it remains so as long as any such variation entails no
change in the angles θ′1, θ

′′
1 , θ
′
2, θ
′′
2 ; it is zero not only when the current M1M2 forms a closed

circuit, but also when the current is assumed to extend to infinity in both directions, because
in that event, the two extremities of the current being infinitely remote from the extremities
of the solenoid, the angle θ′1 becomes equal to θ′′1 , and the angle θ′2 to θ′′2 .

All the moments of rotation about straight lines drawn through the extremity of an
indefinite solenoid being zero, this extremity is the point at which the resultant of the forces
exerted on the solenoid is applied by a closed circuit, or by a system of currents forming more
than one closed circuit; it may therefore be assumed that all these forces are transported
there and this point may be taken as the origin of coordinates A (Pl. 2 pg. 115, fig. 32 pg.
129) : suppose that BM is a portion of one of the currents acting on the solenoid. From
the foregoing the force due to some element Mm of BM is normal to the plane AMm and
represented as

λii′dν

gr3
,
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where dv is the area AMm and r is the variable distance AM.

To obtain the component of this action along AX, it has to be multiplied by the cosine
of the angle which it forms with AX, which is the same as the angle between the planes
AMm,ZAY; but dν, multiplied by this cosine, is the projection of AMm on ZAY, which is
equal to

ydz − zdy

2
:

if therefore it is desired to find the action exerted along AX by currents forming closed
circuits, it is necessary to take the following integral over the entire range of the currents

λii′

2g

∫
ydz − rdy

r3
which is

λii′A

2g
,

the quantity A being the same as before, where n was replaced by its value 3; likewise the
action along AY is

λii′B

2g
,

and along AZ
λii′C

2g
.

The resultant of these three forces, which is the total action exerted by a number of
closed circuits on an indefinite solenoid, is therefore equal to

λii′D

2g
,

where D =
√
A2 + B2 + C2; and the cosines of the angles which it forms with the axes of x,

of y and of z are:
A

D
,
B

D
,
C

D
,

which are the values of the cosines of the angles between the same axes and the normal to the
directing plane as if the action of the circuits on an element situated at A were considered.
Now this element would be transported by the action of the system in a direction contained
within the directing plane; hence the remarkable conclusion is reached that when a system
of closed circuits acts alternately on an indefinite solenoid and on an element situated at the
extremity of this solenoid, the respective directions in which the element and the extremity
of the solenoid are carried, are mutually perpendicular. If the element is itself situated in
the directing plane, the action exerted upon it by the system is at its maximum and equal
to

ii′Dds′

2
.

The action which this system exerts on the solenoid was found just now to be

λii′D

2g
:
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these two forces are therefore always in a constant ratio for a particular element and a
particular solenoid which is equal to

ds′ :
λ

g
;

that is to say, the forces are in the same relation as the length of the element bears to
the area of the closed curve described by one of the currents of the solenoid divided by
the distance between two consecutive currents; this ratio is independent of the form and
magnitude of the currents of the system acting on the element and solenoid.

17. Interaction of two soleniods

Where the system of closed circuits is itself an indefinite solenoid, the normal to the directing
plane through point A is, as we have just seen; a straight line joining point A to the extremity
of the solenoid; hence the mutual action of two indefinite solenoids takes place among the
straight line joining the extremity. of one solenoid to the extremity of the other; in order to
determine its value, we put λ′ for the area of the circuits formed by the currents of this new
solenoid, g′ for the distance between the planes of two of these consecutive circuits, l for
the distance between the extremities of the two indefinite solenoids, and we get D = − λ′

g′ l2 ,
which yields for their interaction

λii′D

2g
= −λλ

′ ii′

2gg′l2
,

which is inversely proportional to the square of the distance l. When one of the solenoids
is definite, it can be replaced by two indefinite solenoids and the action is then made up
of two forces, one attractive and the other repellent, along the straight lines which join the
two extremities of the first solenoid to the extremity of the other. Finally, if two definite
solenoids L′L′′, L1, L2 (Pl. 2 pg. 115, fig. 33 pg. 129) interact with each other, there are four
forces along the respective straight lines L′L1, L

′L2, L
′′L1, L

′′L2 which join the extremities in
pairs; and if, for example, there is repulsion along L′L1, there will be attraction along L′L2,
and repulsion along L′′L2.

In order to justify the manner in which I have conceived magnetic phenomena, regarding
magnets as assemblies of electric currents forming minute circuits round their particles,
it should be shown from consideration of the formula by which I have represented the
interaction of two elements of current, that certain assemblies of little circuits result in
forces which depend solely on the situation of two determinate points of this system. These
are endowed with all the properties of the: forces which may be attributed to what are
called molecules of austral fluid and of boreal fluid, whenever these two fluids are used to
explain magnetic phenomena, whether in the mutual action of magnets, or in the action of a
magnet on a conductor. Now the physicists who prefer explanations based on the existence
of such molecules to the explanation which I have deduced from the properties of electric
currents, are known to admit that each molecule of austral fluid always has a corresponding
molecule of boreal fluid of the same intensity in each particle of the magnetized body. In
saying that the assembly of these two molecules, which may be regarded as the two poles of
the element, is a magnetic element, an explanation of the phenomena associated with the
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two kinds of action in question requires: 1◦ that the mutual action of magnetic elements
should be made up of four forces, two attractive and two repellent, acting along straight lines
joining the two molecules of one of these elements to the two molecules of the other, with
intensity is inversely proportional to the squares of these lines; 2◦ that when one of these
elements acts on an infinitesimal portion of conducting wire, two forces result, perpendicular
to the planes passing through the two molecules of the element and the small portion of
wire, and proportional to the sines of the angles between the wire and the straight lines
joining the wire to the two molecules, and which are inversely proportional to the squares
of these distances. So long as my concept of the behavior of a magnet is disputed and so
long as the two types of force are attributed to molecules of austral and boreal fluid, it will
be impossible to reduce them to a single principle; yet no sooner than my way of looking
at the constitution of magnets is adopted, it is seen from the foregoing calculations that
the actions of these two kinds and the values of the resulting forces are deducible directly
from my formula. To determine their values it is sufficient to replace the assembly of two
molecules, the one of austral and the other of boreal fluid, by a solenoid with extremities
that are the two determinate points on which the forces in question depend, and which are
situated at precisely the same points where it is assumed that the molecules of the two fluids
are placed.

18. Identity of solenoids and magnets when the effect on them is from con-
ducting wires, or by other solenoids or other magnets. Discussion of the
consequences that can be drawn from this identity, relative to the nature
of magnets and of the action that one observes between the earth and a
magnet or a conducting wire

From the above, two systems of very small solenoids act on each other, according to my
formula, like two magnets composed of as many magnetic elements as there are assumed
to be solenoids in the two systems. One of these systems will also act on an element of
electric current in the same way as a magnet. In consequence, in as much as all calculations
and explanations are based either on the attractive and repellent forces of the molecules
in inverse proportion to the squares of the distances, or on the rotational forces between a
molecule and an element of electric current, the law governing which I have just indicated
as accepted by physicists who do not accept my theory, they are necessarily the same
whether the magnetic phenomena in these two cases is explained in my way by electric
currents, or whether the hypothesis of two fluids is preferred. Objections to my theory, or
proofs in its favor, therefore, are not to be found in such calculations or explanations. The
demonstration on which I rely results above all from the fact that my theory explains in a
single principle three sorts of actions that all the associated phenomena prove are due to
one common cause, and this cannot be done otherwise. In Sweden, Germany and England
it has been thought possible to explain the phenomena by the interaction of two magnets
as determined by Coulomb. Our experiments involving continuous rotational motion are
manifestly at variance with this idea. In France, those who have not adopted my theory, are
obliged to regard the three kinds of action which I have brought under one law, as though
absolutely independent. It should be remarked, in this context, that one can deduce from
the law proposed by M. Biot for the interaction of an element of a conducting wire and
that of what he termed a “magnetic molecule,” the law that Coulomb established for the
action of two magnets if one accepts that one of these magnets is composed of small electric
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currents, like those which I have suggested; but then how can it be objected that the other
is not likewise composed, thereby accepting all of my point of view?

Moreover, though M. Biot determined the value and direction of the force when an
element of conducting wire acts on each particle of a magnet and defined this as the elemen-
tary force(1), it is clear that a force cannot be regarded as truly elementary which manifests
itself in the action of two elements which are not of the same nature, or which does not
act along the straight line which joins the two points between which it is exerted. In the
memoire which this gifted physicist communicated to the Académie on 30 October and 18
December 1820(2). he still regarded the force which an element of conducting wire exerts on

(1) Précis élémentaire de physique, vol. II, p. 122, 2nd edn.
(2) Since the latter memoire has not been published separately, the formula for the force
is only known to me from the following passage in the second edition of Précis élémentaire
de physique expérimentale, vol. II, pp. 122–3.

�By imagining the length of the connecting wire Z′C′ (fig. 34) to be divided
into infinitely many very fine sections, it is seen that each section must act on
the needle with a different energy according to its distance and direction. Now,
these elementary forces are just the simple result which it is especially important
to know; for the total force exerted by the complete wire is nothing other than
the sum of their individual actions. However, calculation is sufficient to analyze
from the resultant the simple action. This is what Laplace did. He deduced from
our observations that the individual law of the elementary forces exerted by each
section of the connecting wire was inversely proportional to the square of the
distance, that is to say, it is precisely the same as what is known to exist in
ordinary magnetic actions. The analysis showed that to complete our knowledge of
the force, it remained to determine whether the action of each section of the force
was the same in all directions at the same distance, or whether the energy was
greater in some directions than in others. To decide this question, in the vertical
plane I bent a long copper wire ZMC at M (fig. 34), in such a way that the two arms
ZM,MC were at the same angle of the horizontal MH. In front of this wire I stretched
another piece Z′M′C′ of the same material, the same in diameter and of the same
grade; this piece I set up vertically, being separated from the first piece at MM only
by a strip of very fine paper. I then suspended the magnetized needle AB in front of
this system at the height of the points M,M′ and observed the oscillations at various
distances whilst passing current successively through the bent and straight wires.
In this way I found that the action was reciprocal for both wires to the distance
to the points M,M′; but the absolute intensity was weaker for the oblique wire than
for the straight wire in the same proportion that the angle ZMH is to unity. An
analysis of this result appears to indicate that the action of each element µ of the
oblique wire on each molecule m of austral or boreal magnetism is reciprocal to
the square of its distance µm to this molecule and proportional to the sine of the
angle mµM between the distance µm and length of the wire.�

It is remarkable that this law, which is a corollary of the formula by which I have
represented the interaction of two elements of conducting wires when, according to my
theory, each magnetic element is replaced by a very small electrodynamic solenoid, was first
found through a mathematical error; indeed, for the law to be valid, the absolute intensity
ought to have been proportional, not to the angle ZMH, but to the tangent of half this angle,
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a molecule of austral or boreal fluid as elementary, that is to say, the action exerted on the
pole of a magnetic element, and he considers the mutual action of two elements of voltaic
conductors as a composed phenomenon. But, one can easily conceive that if in effect there
exist magnetic particles, their mutual action can be considered as the elementary force : this
was the point of view of the Swedish and German physicists who could not support the fact
of experiments, that this force is proportional to a function of the distance, and could never
consider motion always accelerating in the same direction, even though, as they supposed,
the magnetic molecules are considered fixed at the points determined by the conducting
wires which they view as assemblies of small magnets, and therefore the two other types of
actions would be composed phenomena, since the voltaic element is also. One can equally
conceive that this is the mutual action of two conducting wire elements which offer the
elementary force : then the mutual action of two magnetic elements, and in which one of
these elements acts on a infinitely small portion of the voltaic conductor, when these actions
are composed, since the magnetic element should, in this case, be considered as composed.
But how can it be conceived that the elementary force is that which is manifested between
a magnetic element and an infinitely small voltaic conductor, in other words between two
bodies actually of a small volume, but such that one is necessarily composed, how should
these two conditions that we have just discussed be interpreted?

The circumstance which presents the force exercised by an element of a conducting
wire on a pole of a magnetic element, acting in a perpendicular direction to the line which
joins the two points between which the force is determined, while the mutual action of two
conducting elements follows the line which joins them, is not a proof less convincing than
the one that the first of these two forces is a composed phenomenon. In any case when two
points act on one another, whether due to an inherent force, or due to which comes from
some other cause, whether a chemical phenomenon, a decomposition or recomposition of
neutral fluid, resulting in reunion of the two currents, one cannot conceive this force other
than as a tendency of these two points to move closer or farther one from the other following
the law which joins them, with speeds reciprocally proportional to their masses, and this
in spite of the fact that force does not transmit material from one to the other particle by
means of an interposed fluid, since the mass of a bullet is not carried in advance at a certain
speed, by the air resistance clear of the powder, as the cannon mass is carried backwards
according to the same line, passing through the centers of inertia of the bullet and cannon,
with a speed which is relative to that of the bullet, as its mass is to the mass of the cannon.

This is a necessary result of the inertia of matter which Newton showed to be one of
the principal foundations of the physical theory of the universe, in the last of the three

as demonstrated later by M. Savary in his dissertation at the Académie, 3 February 1823,
and which has meanwhile been published in the Journal de physique, vol. XCVI, pp. 1–25
cont’d. It appears that M. Biot later discovered the error himself, for in the third edition
which has just appeared, he describes, without reference to the Memoire where it had first
been corrected, new experiments where the intensity of the total force is, in accordance
with the calculation of M. Savary, proportional to the tangent of half the angle ZMH, and he
concludes therefrom, with more reason than he had with his first experiments, that the force
which he calls elementary, is proportional for equal distance to the sine of the angle between
the direction of the element of conducting wire and the direction of the straight line joining
its mid-point to the magnetic molecule. (Précis élémentaire de physique expérimentale, 3rd
edn., vol. II, pp. 740–745.)
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axioms that he gave at the beginning of the Philosophiæ naturalis principia mathematica,
by stating that the action is always equal and opposite to the reaction; since two forces
which impart to two masses speeds inverse to the masses, are the forces that would produce
equal pressure against an invincible obstacle with respect to which they move; in other words
of equal forces. In order for this principle to be applicable in the case of mutual action of
two material particles which are traversed by an electrical current, while one assumes this
action by an elastic fluid which fills the space, and such that the vibrations are light(1),
it must be admitted that this fluid has no appreciable inertia, as air with respect to the
bullet and the cannon; but it is this that one cannot doubt, since it does not oppose any
resistance to motion of the planets. The phenomenon of the rotation of an electrical reel
has led many physicists to admit an appreciable inertia in the two electrical fluids, and as a
consequence in what results from their combination; but this supposition is in conflict with
all that we otherwise know of these fluids, and with the fact that the planetary motions
show no resistance due to the ether; there is not otherwise any motive to admit, since I have
shown that the rotation of an electrical reel is due to an electrodynamic repulsion produced
between the point of the reel and the ambient air particles, by the electrical current which
escapes from this point(2).

When M. Ørsted discovered the action which a conductor exerts on a magnet, it really
ought to have been suspected that there could be interaction between two conductors; but
this was in no way a necessary corollary of the discovery of this famous physicist. A bar of
soft iron acts on a magnetized needle, but there is no interaction between two bars of soft
iron. Inasmuch as it was only known that a conductor deflects a magnetized needle, could
it have been concluded that electric current imparts to wire the property to be influenced
by a needle in the same way as soft iron is so influenced without requiring interaction
between two conductors when they are beyond the influence of a magnetized body? Only
experiments could decide the question; I performed these in the month of September 1820,
and the mutual action of voltaic conductors was demonstrated.

As regards the action of our earth on a conducting wire, the analogy between the
earth and a magnet is doubtlessly sufficient to most probably produce this action, and I
do not see why several of the most senior European physicists think that the effect does
not exist; not just like E. Erman, before I had made the experiment which showed it(3),
but after this experiment had been presented at the Académie des Sciences, in the session
of 30 October 1820, and repeated several times, during November of the same year, in the
presence of the members and a great number of other physicists, who permitted me, at
this time, to cite them as testifying to the actions produced by the motion of the Earth on
the movable parts of the equipment described and shown in the Annales de chimie et de

(1) This fluid can only be that which results from the combination of the two electric
currents. In order to avoid repeating the phrase for this, I think that one should employ,
like Euler, the name ether, to mean the fluid as defined here.
(2) See the note that I read before the Académie, on 24 June 1822, and which is included
in the Annales de chimie, tom. XX, pag. 419–421, and in my Recueil d’observations électro-
dynamiques, pag. 316–318.
(3) In a very remarkable Mémoire, printed in 1820, this well-known physicist said that
the conducting wire had this advantage over the magnetic needle that it could be used for
delicate experiments because the motion that it takes in the experiment would not influenced
at all by motion of the Earth.
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physique, tome XV, pages 191–196, pl. 2, fig. 5, and pl. 3, fig. 71, and also in my Recueil
d’observations électro-dynamics, pages 43–48, close to a year later, the English physicists
still raised doubts about these complete experiments which were demonstrated before a
large number of witnesses(1). It was of little value that I should merely have discovered the
action of the earth on a conductor and the interaction of two conductors and verified them
by experiments; it was more important:

1◦ To find the formula for the interaction of two elements of current.

2◦ To show by virtue of the law thus formulated (which governs the attraction of currents
in the same direction and the repulsion of currents in the opposite direction, whether
the currents are parallel or at an angle)(2), that the action of the earth on conducting
wires is identical in all respects, to the action which would be exerted on the same wires
by a system, (fasces, Latin) of electric currents flowing in the east-west direction, when
situated in the middle of Europe where the experiments which confirm this action were
performed.

3◦ To calculate first, from consideration of my formula and the manner in which I have ex-
plained magnetic phenomena associated with electric currents forming very small closed
circuits round particles of a magnetized body, the interaction between two particles of
magnets regarded as two little solenoids each equivalent to two magnetic molecules, the
one of austral and the other of boreal fluid; and the action which one of these particles
exerts on an element of conducting wire; then to check that these calculations give
exactly, in the first case the law established by Coulomb for the action of two magnets,
and in the second case, the law which M. Biot has proposed for the forces which develop
between a magnet and a conducting wire. It is thus that I reduced both kinds of action
to a single principle and also that which I discovered exists between two conducting
wires. Doubtless it was simple, having assembled all the facts, to conjecture that these
three kinds of action depended on a single cause. But it was only by calculation that this
conjecture could be substantiated, and this is what I have done. I draw no premature
conclusion as to the nature of the force which two elements of conducting wires exert on
each other, for I have sought only to obtain the analytical expression of this force from
experimental data. By taking this as my starting point I have demonstrated that the
values of the other two forces given by the experiment (the one between an element of
conducting wire and what is called a magnetic molecule, the other between two of these
molecules) can be deduced purely mathematically by replacing, in one or the other case,
as is necessary, according to my conception of the constitution of magnets, each mag-

(1) See M. Faraday’s Mémoire, published on 11 September 1821. The translation of this
Mèmoire appears in the Annales de chimie et de physique, tom. XVIII, pag. 337–370, and in
my Recueil d’observations électro-dynamics, pag. 125–158. Due to a mistake in printing it
shows the date 4 September 1821, instead of 11 September 1821.
(2) The experiments which demonstrate the action of two currents parallel in both cases,
were communicated to the Académie in the session of 9 October 1820. The apparatuses that
I employed are described and drawn in the tome xv of the Annales de chimie et de physique,
specifically : 1◦ that for the mutual action of two parallel currents, pg. 72, Pl. 1, fig. 1, and
in more detail in my Recueil d’observations électro-dynamiques, pg. 16–18; 2◦ that for the
mutual action of two currents forming an arbitrary angle, pg. 171 of the same volume XV of
the Annales de chimie et de physique, Pl. 2, fig. 2, and in my Recuell, pg. 23. The Figures
in my Recueil carry the same numbers as in the Annales.
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netic molecule by one of the two extremities of an electrodynamic solenoid. Thereafter,
all that can be deduced from these values of the forces is necessarily contained in my
manner of considering the effects which are produced and it becomes a corollary of my
formula, and that alone should be sufficient to demonstrate that the interaction of two
conductors is, in fact, the simplest case and that from which it is necessary to proceed in
order to explain all other cases. The following considerations seem to finish a complete
confirmation of these general results of my work; they are founded on the simplest of
notions about the composition of forces in reference to the interaction of two systems of
infinitely close points in the various cases which can arise–whether these systems only
contain points of the same type, that is to say, points which attract or repel similar
points of the other system, or whether one of the systems, or both, contains points of
the two opposite types of which those of one type attract what those of the other repel,
and repel what they attract.

Initially suppose that both of the two systems are made up of molecules of the same
type, that is to say those that act on the other entirely by attraction or entirely by re-
pulsion, with forces proportional to their masses; such as M,M′,M′′, etc. (Pl. 2 pg. 115, fig.
35 pg. 130), the molecules which compose the first, and m any collection of the second :
in successively composing all the actions ma,mb,md, etc., caused by M,M′,M′′, one obtains
the results mc,me, etc., such that the last is the of the system MM′M′′ at the point m, and
passes near the center of inertia of the system. By the same reasoning relative to the other
molecules of the second system, one finds that the corresponding resultants all pass very
close to the center of inertia of the second system, and will have a general resultant which
passes close to the center of inertia of the second we call the action centers the two points
closest to the respective centers of inertia of the two systems by which the general resultants
pass; it is evident that they will not tend, due to the small distances where they are the
centers of inertia, to impart to each system a translation motion.

Suppose, in a second case, that the molecules of the second system are all of the same
type, those of the first are the ones which attract and the others repulse with respect to
the molecules of the second system, the first will give a result of (Pl. 2 pg. 115, fig. 36 pg.
130), passing by their centers of action N, and by the center of action o of the other system
: similarly, the repulsive particles yield a resultant oc, passing by their center of action P

and by the same point o : the general result is then the diagonal og; and since it passes
close to the center of inertia of the second system, it will not tend to impart a translation
motion. This resultant is therefore in the same plane with the three centers of action o, N,P;
and when the attracting molecules are of the same number as the repulsing ones, and acting
with the same intensity, its direction is, moreover, perpendicular to the line oO which divides
the angle PoN in two equal parts.

Consider finally the case where the two systems are both composed of molecules of
differing types. Let N and P (Pl. 2 pg. 115, fig. 37 pg. 131) be the action centers respectively
of first, attractive and repulsive molecules, taking n and p be the corresponding centers of
the second, of a type such that they have attraction between N and p, as well as between n
and P, and they have repulsion between N and n, as well as between P and p. The combined
actions of N and P on p give a resultant following the diagonal pe : similarly, the actions of
N and P on n give a resultant nf . To produce the general resultant, one extends these two
lines until they meet in o, and taking oh = pe, and ok = nf , the diagonal ol will be the
sought for resultant which gives the action produced by the system PN on the system pn.
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But since the point o does not take part in the system pn, it is necessary to conclude that
it enters into this in an invariable manner without being in the first system PN; and the
force ol tends in general due to this connection, to operate on pn a translation motion and
a rotational motion about its center of inertia.

Now examine the reaction of the second system on the first : following the fundamental
axiom of mechanics, that the action and reaction of two particles on each other are equal and
directly opposed, it is necessary in order to obtain this to successively compose the equal
and directly opposed forces which the particles of the first system exert on the particles of
the second, and it is evident that the total reaction that is thus found is always equal and
directly opposed to the total action.

In the first case, the reaction is of course represented by the line mε (Pl. 2 pg. 115,
fig. 35 pg. 130), equal and opposed to the resultant me, and that which one can assume
is applied at the action center of the first system which is located in that direction; from
which it follows, always neglecting the small difference of the position of the action center
and the center of inertia, that one will have no translation motion.

In the second case, the reaction will be represented by the line oγ (Pl. 2 pg. 115, fig. 36
pg. 130), equal and opposite to og. But, since the point o is not part of the first system, and
since in general it will not be traversed by the direction oγ, it must be considered that this
point o must be invariably in the first system not in the second; and, by this relationship,
the force oγ tends in general to induce on the system PN a double translation and rotational
motion. In addition, this force oγ is in the plane PoN; and since the attractive molecules are
of the same number as the repulsive ones and act with the same intensity; its direction is,
like that of og, perpendicular to oO.

Finally, in the third case, the reaction is represented by the line oλ (Pl. 2 pg. 115, fig.
37 pg. 131), equal and opposed to the resultant ol, and applied like it at the point o. To
find the action of ol on pn, we concluded just now that this point o is located in the second
system pn without being in the first PN. In order to now have the reaction exercised on this
one, we consider the force oλ applied at a point located in o, and in the first system PN

without being in the second. This force tends in general to operate on PN a double motion
of translation and rotation.

If one compares these results with the experimental measurements, relative to the di-
rections of the forces which occur in the three types of actions that we distinguished above,
it is easy to see that the three cases that we examined correspond with them exactly. If
two voltaic conductor elements act on each other the action and reaction are, as in the first
case, determined by the line which connects the two elements; when it concerns the force
which acts between an element of a conducting wire and a magnetic particle containing two
poles of opposite types, which acts in the opposite sense with equal intensities, the action
and reaction are, as in the second case, pointed perpendicular to line which connects the
particle and the element; and two particles of a magnetic rod, which are not themselves
but two very small magnets, exert on each other a more complex action, resembling that
of the third case, and thus one cannot draw a conclusion without considering the result to
be of four forces, two attractive and two repulsive : it is thus easy to conclude that there
is only an element of a conducting wire such that one can suppose that all the points exert
the same type of action, and to judge that it is, of the three kinds of force which are here
considered, the one that one can view as the simplest.
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But what the force is between two elements of conducting wires is quite simple, and
that those which develop, one between one of its elements and a magnetic particle where
there always exist two poles of the same intensity, the other between two such particles,
are results more or less complicated, thus is it necessary to conclude that the first of these
forces should be considered as truly elementary? It is this that I have always, and after
long consideration in the Notes sur l’exposé sommaire des nouvelles expériences électro-
magnétiques, published in 1822(1), I sought to find an explanation through the reaction of
fluid distributed in space, and such that the vibrations produce the phenomenon of light : I
have only said that one should consider as elementary, in the sense that chemists arrange in
the class of simple bodies all that they cannot further decompose, those that are otherwise
presumptions based on the analogy that can indicate that they are really composite, and
since after one has determined the value from experiments and from calculation shown in
this Treatise, it was starting with this specific value that it was necessary to calculate those
of all the forces that are manifest in the more complicated cases.

But even so it is true, whether the reaction of a fluid of rarity such that one cannot
suppose that it reacts due to its mass, whether a combination of inherent forces of the
two electric fluids, it does not follow unless the action would still always be opposed to
the reaction following the same line; because, as one has seen in the considerations just
discussed, this circumstance necessarily enters into all the complex actions, since it occurs
for all the really elementary forces since they make up the complex action. By applying the
same principle on the force which acts between that which one calls a magnetic molecule and
an element of a conducting wire, one sees that this force, considered as acting on the element,
passes through it, the reaction of the element on the molecule should also be directed in
a manner to pass through the location and not through the molecule. This consequence of
a principle which has until now been admitted by all physicists, does not appear easy to
demonstrate by experiment, in the case of the force which we are discussing, because in all
the experiments where one causes an action on a magnet a part of the conducting wire forms
a closed circuit, the result that one obtains for the total action is the same, whether one
supposes that this force passes through the element of the conducting wire or through the
magnetic molecule, as one can see in this Treatise; it is this that has led many physicists to
suppose that the action exercised by the element of the conducting wire passes only through
this element, and that the reaction which is opposed and parallel is not directed along the
same line, when it passes through the molecule and forms with the first force that which
they call a primitive couple.

The following calculations will provide me the occasion to examine in detail this sin-
gular hypothesis. One will see, by this examination, that it is not only opposed to one of
the fundamental principles of mechanics, but that it is otherwise completely useless for ex-
plaining the observed facts, and a false interpretation of these facts could only be adopted
by the physicists who do not admit that magnets obtain their properties from the action of
electric currents through their particles.

The phenomena produced by the two electric fluids moving in voltaic conductors that
appear to be different from those which manifest their presence when they are stationary
in their electric bodies in an ordinary manner, for which one has also pretended that the
first were not attributable to the same fluids as the second. Is is exactly as if one concluded
that the suspension of mercury in a barometer is a phenomenon entirely from that of sound,

(1) Recueil d’observations électro-dynamiques; page 215.
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that one should not attribute to the same fluid atmospheric, at rest in the first case and
in motion in the second; but it must be admitted, for two facts sufficiently different, two
fluids such that one acts solely to press on the open surface of the mercury, and the other
transmits the vibratory motions which produce the sound.

Nothing proves otherwise than the force expressed by my formula cannot resolve the
attractions and the repulsions of molecules of the two electric fluids, with relation of inverse
square of the distance between the molecules. The fact of a rotational motion continually
accelerating until the friction and resistance of the liquid in which the magnet or voltaic
conductor is immersed that presents this kind of motion renders the velocity constant,
appears at first absolutely opposed to the kind of explanation of electrodynamic phenomena.
In effect, the principle of conservation of active forces, which is a necessary consequence of
the laws of motion, it necessarily follows that when the elementary forces, which are here
the attractions and replulsions with inverse square of the distances, are expressed by simple
functions of the mutual distances between the points between which they act, and that one
part of these points are invariably fixed with respect to each other and by virtue of these
forces, the others remain fixed, the first cannot return to the same situation, as regards
the second, with velocities larger than those that they had when they shared this same
situation. However, for the rotational motion continuously applied to the mobile conductor
by the action of a fixed conductor, all the first points return to the same position with
greater and greater velocities for each revolution, until the friction and the resistance of
the acid in which the crown of the conductor is immersed add an additive term to the
rotational velocity of the conductor : it will be therefore constant, despite the frictions and
the resistance.

It is thus completely demonstrated that one cannot provide reasons for the phenomena
produced by the action of two voltaic conductors, by supposing that the electric molecules
act by reason of the inverse square of the distance are distributed over the conducting wires,
in a manner which leaves them fixed and can, in consequence, be regarded as invariably fixed
between them. On must conclude that these phenomena are due to the two electric fluids
as flowing(1) continuously in conducting wires, of extremely rapid motion, in alternatively
joining and separating in the intervals of the particles of these wires. It is because the

(1) Since the first work by physicists on electrodynamic phenomena, many scientists be-
lieve they can explain this by the distributions of molecules, whether electric, or magnetic,
residing in the voltaic conductors. Since the discovery of the basic rotational movement by
M. Faraday was published, I saw immediately that this completely upsets this hypothesis,
and here are the terms in which I announced this observation, while that which I say here is
just the development, in the Exposé sommaire des nouvelles expériences électro-magnétiques
conducted by various physicists since the month of March 1821, which I read in the public
session of the Académie royale des Sciences on 8 April 1822.

�Such is the new progress which is becoming a branch of physics, as far as we know
in existence for only two years, and has already revealed quite astounding facts it
may be that all that science has up to the present offered of marvelous phenomena.
A motion which continues forever in the same direction, despite frictions, despite
resistance of the medium, and this motion produced by the mutual action of two
bodies which remain constantly in the same state, is a fact without example in
all that we know of the properties offered by inorganic matter; it demonstrates
that the action which emanates from the voltaic conductors cannot be due to a



IDENTITY OF SOLENOIDS AND MAGNETS 67

phenomena here in question cannot be produced but by electric motion, I believe it should
be designated by the name electrodynamic phenomena; those of electromagnetic phenomena,
as they were named until now is well suited since it only indicates the action discovered by
M. Ørsted between a magnet and an electric current , but it can only be seen as a false idea
since I have found that one produces phenomena of the same kind without a magnet , and
by only the mutual action of two electric currents.

It is only in the case where one assumes the electric molecules are at rest within the
body where they manifest their presence by the attractions or repulsions produced by them
in this body, if one demonstrates that an indefinitely accelerating motion cannot result from
the forces which excite the electric molecules in this state of rest can only be dependent
on their mutual distances. When one considers the contrary that, if set in motion in the
conducting wire by the action of the battery, they change continually their location, if they
recombine at each instant with the neutral fluid and separate again, and then promptly
reunite with other fluid molecules of opposite nature, it is not contradictory to admit that
these actions due to the inverse square law of the distances which controls each molecule,
it can result between two elements of conducting wires a force which depends not only on
their distance; but also on the directions of the two elements following which the electric
molecules move, and reunite with the molecules of opposite type, and separate in the next
instant to unite with others. But, it is exactly and uniquely from this distance and from
these directions that the force which envelops then depends, and thus the experiments and
the calculations shown in this Treatise have given me the value. In order to make a clear
idea of what happens in the conducting wire, it is necessary to pay attention to what enters
the metal molecules as it is composed of a common fluid made up of positive and negative
fluid, not just in the proportions which constitute the neutral fluid, but with an excess
of the fluid which is naturally opposed to proper electricity of these metal molecules, and
which conceals this electricity, as I have explained letter that I wrote to M. Van-Beek at
the beginning of 1822(1) : it is in this intermolecular electric fluid that all the motion takes
place, all the decompositions and recombinations which consitute the electric current.

As the liquid is interposed between the plates of the battery is, without comparison,
a less strong conductor than the electric wire which joins the extremities, it takes a time,
very short in fact, but even so appreciable, during which the electricity inter-molecular,
supposed at first to be in equilibrium, it decomposes during each of the intervals between
the two molecules of the wire. This decomposition gradually augments until the positive
electricity in an interval matches up with the negative electricity of the following interval
in the sense of the current, and its negative electricity with the positive electricity from the
previous interval. This reunion cannot be other than instantaneous like a Leyden jar; and
the action between the conducting wires, which envelop them, while they are located, in
the contrary direction from which they then exercise decomposition, cannot by consequence

particular distribution of certain fluids at rest in these conductors, since they are
ordinary electric attractions and repulsions. One cannot attribute this action of
fluids in motion in the conductor where they flow so as to rapidly carry from one
extremity of the battery to the other.�

See the Journal de physique where this exposition was inserted during this time, vol.
XCIV, page. 65, and my Recueil d’observations électro-dynamiques, page 205.
(1) Journal de physique, tome XCIII, pages 450–453, et Recueil d’observations électro-
dynamiques, pages 174–177.
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diminish the effect of this, since the effect produced by a force is due to its intensity and the
time during which it acts; thus here the intensity should be the same, since the two electric
fluids separate and reunite : but the time during which they are separating is without
comparison much larger than that during their reunion.

The action varies with the distances between molecules of the two electric fluids during
this separation, it is necessary to integrate, with respect to time and during the entire period
of separation, the value force occurring at each instant, and divide afterwards, by this period,
the integral so obtained. Without making this calculation, for which the data are required,
which are still missing, over the manner in which the distances of the electric molecules vary,
with time, during each interval for the inter-molecular conducting wire, it can thus be seen
that the forces produced in this manner, between two elements of this wire, should depend
on the direction of the electric current in each of its elements.

If it were possible, starting from this consideration, to find that the mutual action of
two elements is in effect proportional to the formula by which I have represented it, this
explanation of the fundamental fact of all the theory of electrodynamic phenomena would
clearly be preferred to all others; but it would require research that I have not had time
to carry out, in addition that research even more difficult would have to be carried out in
order to find if a contrary explanation, where one attributes the electrodynamic phenomena
to motions in the ether by electric currents, could lead to the same formula. For any of
these hypotheses and other suppositions which one could make to explain these phenomena,
they will always be represented by the formula that I have deduced from the results of
experiments, interpreted by calculation; and it would remain demonstrated mathematically,
when considering magnets to be assemblies of electric currents arranged about their particles
as I have said, the values of these forces which are, in each case, given by experiment, and
all the circumstances of the three types of actions which occur, one between two magnets,
another between a conducting wire and a magnet, and the third between two conducting
wires, are derived from a single force, acting between two electric current elements following
the line which joins the media.

As for the expression of this force, it is one of the most simple among those that do not
depend only the distance, but also on the directions of the two elements; as these directions
only enter in terms that contain second derivatives of the square root of the distance of
the two elements, taken by varying alternately two arcs of electric currents of which this
distance is a function, differential which depends itself on the directions of the two elements,
and which enters elsewhere in the value given by my formula in a very simple manner, when
one has the second derivative for this value, multiplied by a constant coefficient and divided
by the square root of the distance; by observing that the force is repulsive when the second
derivative is positive, and attractive when it is negative. It is this that explains the sign –
which is found at the beginning of the general expression

−2ii′√
r
· d2√r

ds ds′
ds ds′

of this force, following the usage where one take the attractions as positive forces, and the
repulsions as negative forces.
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19. Identity of the effects, either on the pole of a magnet, or the extremity of
a solenoid, by a closed electric circuit and by an assembly of two closely
spaced surfaces which terminate this circuit, and to which two fluids are
connected supposing the magnetic fluids, austral and boreal, in a manner
such that the magnetic intensity is everywhere the same

Throughout history, whenever hitherto unrelated phenomena have been reduced to a single
principle, a period has followed in which many new facts have been discovered, because
a new approach in the conception of causes suggests a multitude of new experiments and
explanations. It is thus that Volta’s demonstration of the identity of galvanism and electricity
was accompanied by the construction of the electric battery with all the discoveries which
have sprung from this admirable device. Judging from the important results of the work of
M. Becquerel on the influence of electricity in chemical compounds, and that of M M. Prevost
and Dumas on the causes of muscular contraction, it may be hoped that their discovery of
new knowledge over the past four years and its reduction to a single principle of the laws of
attractive and repellent forces between electric conductors, will also lead to a host of other
results which will establish the links between physics, on the one hand, and chemistry and
even physiology, on the other, for which there has been a long-felt need, though we cannot
flatter ourselves for having taken so long to realize it.

It still remains to consider the actions exerted by a closed circuit of arbitrary shape,
magnitude and position on a solenoid, or on some other circuit of arbitrary shape, magnitude
and position; the principal result from such inquiries is the similarity which exists between
the forces produced by a circuit, whether acting on another closed circuit or a solenoid, and
the forces which would have been exerted by points whose action were precisely that which
is attributed to molecules of what is called austral and boreal fluid. Let us assume that these
points are distributed in the manner which I have just explained over surfaces terminated
by circuits, and that the extremities of the solenoid are replaced by two magnetic molecules
of opposite types. The analogy seems at first to be so complete that all electrodynamic
phenomena appear to be reduced to the theory associated with these two fluids. It is soon
seen, however, that this only applies to conductors which form solid and closed circuits, that
it is only phenomena which are produced by conductors forming such circuits that may be
explained in this way, and that in the end it is only the forces which my formula represents
that fit all the facts. It follows from this same analogy that I deduced a demonstration ofan
important theorem which can be expressed as : the mutual action of two solid and closed
circuits, or that of a solid and closed circuit and a magnet, can never produce continuing
movement with a velocity which accelerates indefinitely due to the fact that the resistances
and the frictions in the apparatus will render this velocity constant.

Finally in order to leave nothing out on this subject, I will start by giving the formulas
relative to the mutual action of two conducting wires a more general and symmetric form.
For this take s and s′ any two curves that are assumed traversed by electric currents of
which we continue to designate the intensities by i and i′. Let ds = Mm (Pl. 2 pg. 115, fig.
38 pg. 131) an element of the first curve, ds′ = M′m′ and element of the second; x, y, z and
x′, y′, z′ the coordinates of their location o, o′, and r the line oo′ which joins them, which
should be considered as a function of two independent variables s and s′ which represent the
arcs of the two curves evaluated from two fixed points taken on them. The mutual action
of the two elements ds, ds′, is, as we have seen above, a force directed following the line r,
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and having the value

ii′dsds′rk
d
(
rk dr

ds

)
ds′

.

One can write this more simply as :

ii′ rkd′(rkdr),

to distinguish by the characteristics d and d′ the differentials relative to the variation of only
the coordinates x, y, z of the element ds, which one obtains by varying only the coordinates
x′, y′, z′ of the element ds′; a distinction which we will use in all cases where we consider
differentials taken the ones from one of the two forms, and the others from the other.

This force being attractive, it must, in order to have those of its components which are
parallel to the x axis, by multiplying the value by x−x′

r or by −x−x
′

r , then one considers it
as acting on the element ds′ or on the element ds; in this last case, the component is then
equal to

ii′ rk−1(x− x′)d′(rkdr).

One can put this expression in another form by making use of the value that one obtains
for udv, u and v representing any quantity, as long as one adds, member by member, the
two identical equations

udv + vdu = d(uv),

udv − vdu = u2d
( v
u

)
,

this value is

udv =
1

2
d(uv) +

1

2
u2d

v

u
,

and by making
u = rk−1(x− x′), v = rkdr,

in conclusion

rk−1(x− x′)d′(rkdr) =
1

2
d′
[
r2k−1(x− x′)dr

]
+

1

2
r2k−2(x− x′)2d′

rdr

x− x′

=
1

2
d′

(x− x′)dr

rn
+

1

2

(x− x′)2

rn+1
d′

rdr

x− x′
,

since 2k + n = 1, which gives

2k − 1 = −n, 2k − 2 = −n− 1.

But
r2 = (x− x′)2 + (y − y′)2 + (z − z′)2,

and as a consequence
rdr

x− x′
= dx+

y − y′

x− x′
dy +

z − z′

x− x′
dz,

where

d′
rdr

x− x′
=

(z − z′)dx′ − (x− x′)
(x− x′)2

dz′ − (x− x′)dy′ − (y − y′)dx′

(x− x′)2
dy.
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The component parallel to the axis x has therefore the value

1

2
ii′d′

(x− x′)dr

rn
+

1

2
ii′
[

(x− x′)dx′ − (x− x′)dz′

rn+1
dz − (z − z′)dy′ − (y − y′)dx′

rn+1
dy

]
.

The two terms of this expression can be considered separately as two forces such that
the union is equivalent to the force being looked for. Or, it is easy to see that when the
curve s′ forms a closed circuit, all the forces such that they have for expression in part
1
2 ii
′ d′ (x−x

′)dr
rn , from the action of all the elements ds′ of the circuit s′ on the same element

ds, which mutually cancels. In effect, all the forces are applied at the same point o, in the
element ds, after a similar line parallel to the axis of the x; it is necessary then, to have
the force produced following this line due to the action of any portion of the conductor s,

integrated 1
2 ii
′ d′ (x−x

′)dr
rn to one of the extremities of this portion at the other, and one finds

1

2
ii′
[

(x− x′2)dr2

rn2
− (x− x′1)dr1

rn1

]
;

defining x′1, r1, dr1, the quantities which are attached to an extremity, and x′2, r2, dr2 those
that are relative to the other, this value becomes evidently null when, the circuit is closed,
its two extremities are at the same point.

When the conductor s′ so forms a closed circuit, it follows, to obtain more simply the
action that it produces on the element ds parallel to the axis of the x, remove, from the

expression of the parallel component parallel to this axis, the part 1
2 ii
′ d′ (x−x

′)dr
rn , and only

consider the other part.

1

2
ii′
[

(z − z′)dx′ − (x− x′)dz′

rn+1
dz − (x− x′)dy′ − (y − y′)dx′

rn+1
dy

]
which we represent by X.

By applying the same considerations to the other two components of the same force
which are parallel to the axes of y and of z, one substitutes into them the forces Y,Z,
obtaining for values

Y =
1

2
ii′
[

(x− x′)dy′ − (y − y′)dx′

rn+1
dx− (y − y′)dz′ − (z − z′)dy′

rn+1
dz

]
,

Z =
1

2
ii′
[

(y − y′)dz′ − (z − z′)dy′

rn+1
dy − (z − z′)dx′ − (x− x′)dz′

rn+1
dx

]
.

Thus, when a closed circuit is considered, the resultant R of the three forces X,Y,Z, to
which the composition of the force −ii′rkd′(rkdr) is reduced, replace this force; and the
ensemble of all the forces R is equivalent to that of all the forces exercised by each of the
elements ds′, of the closed circuit s′, and represent the total action of this circuit on the
element ds. See now what is the value and the direction of this force R.

Take u, v, w, the projections of the line r on the plane of the yz, the xz and the xy,
making respectively the angles ϕ, χ, ψ, with the axes of the y, the z, and the x. Consider
the sector M′om′ (Pl. 2 pg. 115, fig. 38 pg. 131), which has as base the element ds′, and for
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top the point o within ds, thus the coordinates of which are x, y, z. Call λ, µ, ν the angles
which make the normal with the plane of this sector, and θ′ the angle made between the
directions of ds′ and of r. Twice the area of this sector is rds′ sin θ′, and its projections on
the coordinates of the planes are

u2d′ϕ = r ds′ sin θ′ cosλ = (y′ − y)dz′ − (z′ − z)dy′,

v2d′χ = r ds′ sin θ′ cosµ = (z′ − z)dx′ − (x′ − x)dz′,

w2dψ = r ds′ sin θ′ cos ν = (x′ − x)dy′ − (y′ − y)dx′.

We can express this new form in the values of forces X,Y,Z,

X =
1

2
ii′
(v2d′χ

rn+1
dz − w2dψ

rn+1
dy
)

=
1

2
· ii
′ds ds′ sin θ′

rn

( dz

ds
cosµ− dy

ds
cos ν

)
,

Y =
1

2
ii′
(w2d′ψ

rn+1
dx− u2dϕ

rn+1
dz
)

=
1

2
· ii
′ds ds′ sin θ′

rn

( dx

ds
cos ν − dz

ds
cosλ

)
,

Z =
1

2
ii′
(u2d′ϕ

rn+1
dy − v2dχ

rn+1
dx
)

=
1

2
· ii
′ds ds′ sin θ′

rn

( dy

ds
cosλ− dx

ds
cosµ

)
,

Now these values give

X
dx

ds
+ Y

dy

ds
+ Z

dz

ds
= 0,

X cosλ+ Y cosµ+ Z cos ν = 0;

that is to say that the direction of the force R makes with that of the element mM = ds, and
with the normal op to the plane of the sector M′ om′, the angles for which the cosines are
zero, so that this force is both in the plane of the sector and perpendicular to the element
ds. As to its intensity, one has by known formulas

R =
√

X2 + Y2 + Z2 =
1

2
· ii
′dsds′ sin θ′ sin pom

rn
=

1

2
· ii
′dsds′ sin θ′ sinmok

rn
;

ok being the projection of om on the plane of the sector M′om′. One can decompose this force
in the plane of the same sector into two others, one S directed following the line oo′ = r,
the other T perpendicular to this line. This one is

T = R cos To R = R coshok =
1

2
· ii
′ds′ sin θ′ cosmok coshok

rn
;

and since the trisected angle formed by the directions of om, ok and oh give

cosmok coshok = cosmoh = cos θ,

it becomes

T =
1

2
· ii
′ds ds′ sin θ′ cos θ

rn
.

The force S following oh is
S = R sinhok = T tanhok.



IDENTITY OF THE EFFECTS 73

But by designating by ω the inclination of the plane moh on the plane hok, which is itself
in the sector M′om′, one has

tanhok = tan θ cosω;

thus

S =
1

2
· ii
′ds ds′ sin θ sin θ′ cosω

rn
.

If one integrates the expressions for X,Y,Z for the full range pf the closed circuit s′, one
obtains the three components of the action exercised by all this circuit on the element ds;
by replacing n by its value 2, the three components become

1

2
ii′
(

dz

∫
v2d′χ

r3
− dy

∫
w2d′ψ

r3

)
,

1

2
ii′
(

dx

∫
w2d′ψ

r3
− dz

∫
u2d′ϕ

r3

)
,

1

2
ii′
(

dy

∫
u2d′ϕ

r3
− dx

∫
v2d′χ

r3

)
.

The similar forces applied to all the elements ds that the curve s provides the total
action exerts through the circuit s on the circuit s′. One may obtain by integration again
the preceding expressions over all the extent of the last circuit.

Imagine now two surfaces chosen at random σ, σ′, terminated by two contours s, s′,
such that all the points must lie invariably between them and with all those of the surface
corresponding, and on these surfaces an infinitely thin cover of the same magnetic fluid
which is held by a coercive force sufficient so that it cannot be displaced. Considering on
these two surfaces two portions infinitely small of second order that we will represent by d2σ
and d2σ′, whose positions are determined by the coordinates x, y, z for the first, x′, y′, z′

for the second, and whose distance is r, their mutual action will a repulsive force directed

following the line r and represented by −µεε
′ d2σ d2σ′

r2 ; ε, ε′ designating here that which one
calls the thickness of the magnetic cover on each surface; µ is a constant coefficient, such
that µεε′ represents the repulsive action that will occur, if one connects two points located
at a distance equal to unity, on the one hand all the fluid spread on an area equal to unity
of the surface, where the spreading will be constant and equal on ε, on the other all the
fluid spread on another area equal to unity of the surface, where the spreading will also be
constant and equal on ε′.

In decomposing this force parallel to the three axes, one obtains the three components

µεε′d2σd2σ′(x− x′)
r3

,
µεε′d2σd2σ′(y − y′)

r3
,
µεε′d2σd2σ′(z − z′)

r3
.

Imagine now a new surface terminated by the same contour s which limits the surface
σ, and such that all portions of normals to the surface σ comprise between them and the
new surface are very small. Suppose that on this last surface a magnetic fluid is distributed
of contrary type from the surface σ, so there is the portion of the new surface circumscribed
by the normals directed by all contour points of the element of the surface d2σ of a quantity
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equal to that of the fluid distributed on d2σ. Taking h as the length of the small portion of the
normal to the surface σ, connected by the point which has coordinates x, y, z, and between
the two surfaces, which measures over the full extent of the area indefinitely small d2σ the
distance of its points to the corresponding points of the other surface, and designating by
ξ, η, ζ the angles which this normal makes with the axes, the three components of the mutual
action between the element d2σ′ and the small portion of the new surface circumscribed as
we just said, which is always equal to d2σ since h is very small and one neglects it in the
calculation, as we do here, the powers of h greater than the first are obtained by replacing
in the expression which we just found, x, y, z par x+ h cos ξ, y + h cos η, z + h cos ζ. And
since the two fluids spread on the two areas equal to d2σ are of opposite type, it will be
required to reduce the new values of these components whose values which were just found;
the reduction, if one neglects the powers of h greater than the first, by differentiating thes
values, replacing in the result the differentials of x, y, z by h cos ξ, h cos η, h cos ζ, and by
changing the sign. These differentials having been taken by passing from the first surface σ
to the other one, we designate them by δ, following the notation of the calculus of variations;
we have thus for the component parallel to x which becomes −µεε′d2σd2σ′δ x−x

′

r3 , when one
there replaces δx by h cos ξ, that is to say

µεε, d2σd2σ′h cos ξ

(
3(x− x′) δrδx

r4
− 1

r3

)
.

We will now determine the form and the position of the element d2σ.

Designate as before by u, v, w the projections of the line r on the planes of the yz, the zx
and the xy, and by ϕ, χ, ψ, the angles which these projections make with the axes of y, of z
and of x respectively. Decompose the first surface σ into an infinity of zones infinitely close,
such that abcd (Pl. 2 pg. 115, fig. 42 pg. 132), by a sequence of perpendicular planes of yz led
by the coordinate m′p′ = x of the point m′. Each area ends with two edges of the contour
s of the surface σ, will be for the projection on the plane of yz an area decomposable itself
into infinitely small quadrangular elements, which correspond to elements of the surface σ
on the area where it acts. These are the elements which one should consider as the values
of d2σ. Thus this is the position, with respect to the element d2σ′, that is determined by
the polar coordinates r, u, ϕ, is equal to its projection u du dϕ on the plane of yz divided
by the cosine of the angle ξ made between this plane and the plane tangent to the surface
σ with which the element d2σ coincides. It is thus necessary to replace d2σ by ududϕ

cos ξ in the
preceding formula, and it will be

µhεε′d2σ′ududϕ

(
3(x− x′) δrδx

r4
− 1

r3

)
.

In order to calculate the value of (x−x′) δrδx , taking mx as the prolongation of the coordinate
mp = x of the point m the extension of the coordinate mp = x of the point m where is
situated the element d2σ, mu a parallel of the plane of yz directed in the plane pmm′p′,
and mt perpendicular to the last plane at the point m. It is easy to see that the line mn,
following which pmm′p′ cuts the plane tangent in m, on the surface σ, makes with the three
lines mx,mu,mt, which are mutually perpendicular, the angles the cosines of which are
respectively

dx√
dx2 + du2

,
du√

dx2 + du2
and 0,
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and which the normal mh makes with the same directions of the angles whose cosines are

δx√
δx2 + δu2 + δt2

,
δu√

δx2 + δu2 + δt2
,

δt√
δx2 + δu2 + δt2

,

δt taking the position of the projection of mh on mt. One obtains therefore

dxδx+ δuδu√
dx2 + du2

√
δx2 + δu2 + δt2

for the cosine of the angle between the line mn and the normal mh and that this is a right
angle, dxδx+ duδu = 0, where dx

du = − δuδx . But, the equation

r2 = (x− x′)2 + u2,

gives
rδr = (x− x′)δx+ uδu,

and
rdr = udu+ (x− x′)dx,

from which one deduces
δr

δx
=
x− x′

r
+
u

r
· δu
δx
,

and
dr

du
=
u

r
+
x− x′

r
· dx

du
=
u

r
− x− x′

r
· δu
δx

;

by eliminating δu
δx between these two equations, it becomes

(x− x′) δr
δx

+ u
dr

du
=

(x− x′)2

r
+
u2

r
= r.

If we now extract from the equation the value of (x − x′) δrδx to substitute it in that of the
force parallel to the axis of x, we obtain

µhεε′u du dϕ

(
3r − 3u dr

du

r4
− 1

r3

)
= µhεε′dϕ

(
2udu

r3
− 3u2 dr

r4

)
= µhεε′dϕd

u2

r3
.

The height h and the thickness ε of the infinitely thin fluid layer over the surface σ, can
vary from one point of the surface to another; and to obtain the goal that we propose to
represent with the aid of magnetic fluids, the actions of voltaic conductors, it is necessary to
assume that these two quantities ε, h, vary in inverse relation one to the other, in a manner
such that their product hε maintains the same value over the entire extent of the surface σ.
Calling g the constant value of this product, the previous expression becomes

µgε′d2σ′dϕ d
u2

r3

and it can immediately be integrated. Its integral µgε′ d2σ′ dϕ
(
u2

r3 − C
)

expresses the sum

of the forces parallel to the axis of the x′s which act on the elements d2σ of the area of
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the surface σ closed by the two planes determined by m′p′ which include the angle dϕ.
The surface σ being terminated by the closed contour s, it is necessary to take this integral
between the limits determined by the two elements ab, cd of this contour which are within
the angle dϕ of the two planes of which we have just spoken, such that by taking u1, r1, and
u2, r2 to be the values of u and of r relative to these two elements, one obtains

µgε′d2σ′dϕ

(
u2

2

r3
2

− u2
1

r3
1

)

as the sum of all the forces acted on by the element d2σ′, on the zone parallel to the x axis.

If the surface σ, instead of being terminated by a contour, encloses from all sides a
space of any shape, the zone of this surface contained in the dihedral angle ϕ will be closed,
and one will have u2 = u1, r2 = r1; ensuring that the action exercised on this zone parallel
to the axes of the x will be null, and as a consequence also that which the element d2σ′

exercises on the entire surface σ made up then of similar zones. And since the same thing
will take place relative to the forces parallel to the axes of the y and the z, one sees that
the assemblage of two surfaces very close to each other, enclosing from all sides a space
of any shape, and covered, in the manner that we just described, one of austral fluid, the
other of boreal fluid, is without action on a magnetic molecule, in whatever position it may
be placed, and as a consequence on a magnet in whatever manner. Recall the preceding
expression

µgε′ d2σ′
(
u2

2dϕ

r3
2

− u2
1dϕ

r3
1

)
,

and it will be easy for us to see that, in order to have the total sum of the forces parallel
to the axes of the x that the element d2σ′ exercises on the entire surface σ, one must
integrate, with respect to ϕ, the two parts that make up this expression, respectively in the
two portions AabB, BabA of the contour s determined by the two tangent planes p′m′A, p′m′B,

determined by the line m′p′. But this becomes the same as integrating µgε′ d2σ′ u
2dϕ
r3 over

the entire range of the circuit s; since if one puts for u and ϕ their values as functions of r
deduced from the equations of the curve s, one sees that in passing from the part AabB to
the part BcdA, dϕ the sign changes, and that as a consequence the elements of one of these
parts are of the contrary sign from the others.

Following this, if we designate by X the sum of these forces parallel to x which influence
the element d2σ′ on the assemblage of the two surfaces terminated by the same contour s,
we have

X = µgε′d2σ′
∫
u2dϕ

r3
,

or, which is the same thing,

X = µgε′d2σ′
∫

(y − y′)dz − (z − z′)dy

r3
,

the x, y, z are only relative to the contour s.

One will have, just the same, designating by Y and Z the sums of the forces parallel to
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the y and to z which act on the same assembly of surfaces,

Y = µgε′d2σ′
∫
v2dχ

r3
= µgε′d2σ′

∫
(z − z′)dx− (x− x′)dz

r3
,

Z = µgε′d2σ′
∫
w2dψ

r3
= µgε′d2σ′

∫
(x− x′)dy − (y − y′)dx

r3
.

(1)

Like all the elementary forces which act on the element d2σ′ on its surfaces which pass by
where the point m′ is situated, one sees that all these forces have a unique resultant since
the direction passes through the same point m′, and since the parallel components of the
axes are X,Y,Z. The moments of this resultant with respect to the same axes are therefore

Yz′ − Zy′, Zx′ − Xz′, Xy′ − Yx′.

Suppose now that instead of these forces one applies at the middle of each of these
elements ds of the contour s a force equal to µgε′d2σ′ ds sin θ

r2 , and perpendicular to the
plane of the sector which has ds as its base, the point m′ as its top, and such that the area
is 1

2rds sin θ. The three components of this force with be respectively equal to

µgε′d2σ′
u2dϕ

r3
, µgε′d2σ′

v2dχ

r3
, µgε′d2σ′

w2dψ

r3
,

parallel to those which pass through the element d2σ and point in the same direction, we
will have the same values for the three forces X,Y,Z which tend to move the circuit s; but
the sums of the rotational moments which result, instead are given by

µgε′d2σ′
(
z′
∫
v2dχ

r3
− y′

∫
w2dψ

r3

)
, µgε′d2σ′

(
x′
∫
w2dψ

r3
− z′

∫
u2dϕ

r3

)
,

µgε′d2σ′
(
y′
∫
u2dϕ

r3
− x′

∫
v2dχ

r3

)
,

will be

µgε′d2σ′
(∫

zv2dχ

r3
−
∫
yw2dψ

r3

)
, µgε′d2σ′

(∫
xw2dψ

r3
−
∫
zu2dϕ

r3

)
,

µgε′d2σ′
(∫

yu2dϕ

r3
−
∫
xv2dχ

r3

)
,

It appears at first that change should result in action exercised on the contour s, but
it is not like that provided that the contour forms a closed circuit, since if one subtracts
the first sum of the moments, relative to the axes of the x for example, from the fourth

(1) It is unnecessary to remark that these X,Y,Z express forces entirely different from those
that we have already designated by the same symbols, since they casue mutual action of
two elements of voltaic circuits.
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which refers to the same axis, while paying attention that x′, y′, z′ should be considered as
constants in these integrations, one obtains

µgε′d2σ′
∫

(z − z′)v2dχ− (y − y′)w2dψ

r3
=

µgε′d2σ′
∫

(z − z′)2dx− (z − z′)(x− x′)dz − (y − y′)(x− x′)dy + (y − y′)2dx

r3
=

µgε′d2σ′
∫ [

(z − z′)2 + (y − y′)2
]
dx− (x− x′)

[
(z − z′)dz + (y − y′))dy

]
r3

=

µgε′d2σ′
∫ [

r2 − (x− x′)2
]
dx− (x− x′)

[
rdr − (x− x′)dx

]
r3

=

µgε′d2σ′
∫ [

rdx− (x− x′)dr

r2

]
= µgε′d2σ′

(
x2 − x′)
r2

− x1 − x′

r1

)
,

by naming x1, x2, and r1, r2 the values of x and of r at the two extremities of the arc s
for which one calculates the value of the difference of the two moments. If this arc forms a
closed circuit, it is evident that x2 = x1, r2 = r1, which results in the integral so obtained
to be null; therefore one obtains

µgε′d2σ′
∫
zv2dχ− yw2dψ

r3
= µgε′d2σ′

(
z′
∫
v2dχ

r3
− y′

∫
w2dψ

r3

)
.

We find by a similar calculation that the moments relative to the other two axes are
the same, for a closed circuit, if one supposes that the direction of the forces

µgε′d2σ′
u2dϕ

r3
, µgε′d2σ′

v2d′χ

r3
, µgε′d2σ′

w2dψ

r3

passing through the element d2σ′ or through the milieu of ds; where it follows that in these
two cases the action on the contour s is exactly the same, this contour being invariably
bound to the two very close surfaces which it terminates : the action on these two surfaces
by the element d2σ′ thus reduces, provided that the contour s is a closed curve, to forces
applied as we just said to each of the elements of this contour, those that act on the element
ds have as value

µgε′d2σ′
ds sin θ

r2
.

The force applied on the milieu o of the element ab = ds, which is proportional to
ds sin θ divided by the square of the distance r of this element from the point m, and that
the direction is perpendicular to the plane which passes through the element ab and through
the point m′, is precisely that which acts, as we have seen, on the element ds the extremity
of an indefinite electrodynamic solenoid if one places this extremity at the point m′; this is
also what is produced, based on the last experiments by M. Biot, by the mutual action of
an element ab, and of a magnetic molecule located in m′.

But in giving to this force the same value and the same direction perpendicular to the
plane m′ab, which one should give it as one determined it, as I have done, by replacing the
magnetic molecule by the extremity of an indefinite solenoid, M. Biot assumed that it is
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in m′ that its point of application, or rather that of the force equal and opposed that the
element ds exercises on the point m′, since it is at this last with which the experiments which
he made agree; instead of the direction of the force exerted by this element on the extremity
situated in m′ by an indefinite solenoid should pass through the point m, like that which
the solenoid exerts on the element, when one determines this force from my formula. Thus,
keeping the notation which we have used, and by representing, to abbreviate, the constant
coefficient gµε′d2σ′ by ρ, the sums of the moments, following the manner in which M. Biot
places the points of application of the forces, would for the three axes, and by changing the
signs, will yield the forces which act on the point m′,

−ρ
∫
z′v2dχ− y′w2dψ

r3
,

−ρ
∫
x′w2dψ − z′u2dϕ

r3
,

−ρ
∫
y′u2dϕ− x′v2dχ

r3
;

if one takes the points of application as I have found them, one obtains for the sums of the
moments

−ρ
∫
zv2dχ− yw2dψ

r3
,

−ρ
∫
xw2dψ − zu2dϕ

r3
,

−ρ
∫
yu2dϕ− xv2dχ

r3
.

But we have just seen that these last values are respectively equal to the three preceding
ones, when the portion of the conductor forms a closed circuit; where this is the case, an
experiment cannot determine if the point of application of the forces is really at the point
m′ or in the milieu m of the element ds. And as, in those done by the skillful physicist
to whom we owe the experiments which are here in question, there was in effect a closed
circuit, composed of two rectangular portions forming an angle to which he gave successively
different values, of the rest of the conducting wire and to the battery, that he caused to act
on a small magnet, in order to deduce the relation of the corresponding forces for various
values of this angle the number of oscillations of the small magnet, during a given time,
which corresponded to various values; therefore, the results of these experiments made in
this manner should have been identically the same, whether one assumes that the point of
application of the forces in o or in m′, cannot serve to decide which of these two hypotheses
should be preferred, this question about the situation of the point of application can only
be resolved by other considerations; this is why I think that it is necessary, before going
further, to examine this in some detail.

It is in the Treatise that I read at the meeting of 4 December 1820, that I communicated
to the Académie the fundamental formula of all the theory explained in this Treatise, a
formula which gives the value of the mutual action of two conducting wires expressed as :

ii′ds ds′(sin θ sin θ′ cosω + k cos θ cos θ′)

r2
(1),

(1) Journal de physique, tome xci, page 226–230.



80 MATHEMATICAL THEORY OF ELECTRODYNAMIC PHENOMENA

k being a constant, for which I have since determined the value, by proving, by other
experiments, that it is equal to − 1

2 .

20. Examination of the three hypotheses that are proposed concerning the na-
ture of the interaction of an wire conductor element and what one calls a
molecular magnet

Sometime later, in the meeting of the 18th of the same month, M. Biot read a paper in which
he described the experiments which he conducted on the oscillations of a small magnet under
the action of an angular conductor, and where he concluded from these experiments, due
to the error in calculation shown above, that the action of each element of the conductor
on that which one calls a magnetic molecule, is represented by a force perpendicular to the
plane defined by the molecule and by the element, by reason of the inverse square of their
distance, and proportional to the sine of the angle determined by the line which measures
this distance and the direction of the element. One sees from the preceding calculations,
that this force is exactly that which my formula gives for the mutual action of an element
of conducting wire and the extremity of an electrodynamic solenoid, and which is also that
which results from Coulomb’s law, in the hypothesis of two magnetic fluids, when one looks
for the action which takes place between a magnetic molecule and the contour elements
which terminate two very close surfaces, one covered by an austral fluid, the other of boreal
fluid, by supposing that the molecules of these fluids are distributed on the two surfaces as
I have just explained.

In the two ways of conceiving of these things, one finds the same values for the three
components, parallel to the three axes chosen at will, of the resultant of all the forces
exercised by the contour elements, and, for each of these forces, the action is opposed to the
reaction following the rules which join, pair by pair, the points between which they exercise;
it is the same for the resultants themselves and of its reaction. But in the first case, the
point O (Pl. 2 pg. 115, fig. 36 pg. 130) represents the extremity of the solenoid to which
the points P,N, and o belong being those where the element is situated, the two equal and
opposite forces og, oγ pass through this element; in the second case, on the contrary, it is
in O that one must design to place the contour element of the surfaces covered by magnetic
molecules P,N, and in o the molecule which acts on these surfaces, to ensure that the two
equal and opposed forces pass by the molecule. Since one admits that there could be no
action of one material point on another, without that it reacts on the first with a force equal
and directed in in the contrary direction following the same line, that which leads to the
same condition relative to the action and to the reaction of two systems of two fixed points,
one has only to choose between these two hypotheses. And due to the experiments by M.
Faraday, on the rotation of a piece of conductor about a magnet, is, as I will shortly explain,
in manifest contradiction with the first, there is no further difficulty in viewing, with me,
as the only one admissible that passes, through the location of the element, the line along
which the two forces are directed. But many physicists imagine that, in the mutual action
of one element AB (Pl. 2 pg. 115, fig. 39 pg. 131) of a conducting wire and of a magnetic
molecule M, the action and reaction, though equal and directed in opposite directions, will
not follow the same line, but follow two parallel lines, such that, the molecule M, acting
on the element AB, tends to move it following the line OR directed by the middle O of the
element AB perpendicularly to the plane MAB, and that the action which acts reciprocally
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to this element on the molecule M will tend to carry it, with an equal force, in the direction
MS parallel to OR.

It would result from this singular hypothesis, if it were true, that it would be math-
ematically impossible ever to return the phenomena produced by the mutual action of a
conducting wire and a magnet to the acting forces, like all those that one has known up
to the present to exist in nature, in such a manner that the action and the reaction are
equal and opposite in the direction of the lines which join in pairs the points between which
they act; because, in all cases where this condition is satisfied for any elementary forces,
it is evident, following the principle of the composition of forces, for their resultants. Also,
the physicists who have adopted this opinion are forced to admit a real elementary action,
made up of two equal forces directed in opposite directions following two parallel lines, and
thus forming a primitive couple, which cannot be directed toward the forces for which the
action and the reaction will be opposed following the same line. I have always viewed the
hypothesis of primitive couples as absolutely contrary to the first laws of mechanics, among
which one should count, with Newton, the equality of action and reaction acting in opposite
directions following the same line; and I have considered the phenomena which one observes
when a conducting wire and a magnet react one on the other, as all the other electrodynamic
phenomena, an action between two current elements, from which two equal and opposite
forces result, both determined by the line which joins the two elements. This basic charac-
teristic of other forces observed in nature is found to be justified; and when for those which
consist of those where the forces that one considers as real elementary or in other words
simply functions of the distances of the points between which they exert, nothing opposes,
as I have already remarked, that the force, of which I have determined the value by precise
experiments, can not be reduced one day to elementary forces which also satisfy the second
condition, provided they enter continuous movement into the calculation, in the conducting
wires, the electric molecules for which these last forces are inherent. The consideration of
these motions necessarily introduces in the values of the force which results between two
elements, in addition to their distance, the angles which determine the directions following
which the electric molecules move, and on which depend the directions of these elements
themselves; these are exactly the angles, or, what leads to the same, the differentials of the
distance of the two elements considered as a function of the arcs formed by the conducting
wires, which enter only with the distance in my formula. It should not be forgotten that,
in the manner of conceiving the things that which seemed to me only admissible, the two
equal and opposite forces OR et OT are the resultants of an infinity of forces equal and op-
posite pair by pair; OR is that of the forces On′, Op′, etc., which all pass through the point
O, such that their resultant 0R also passes there, but that OT is the resultant of the forces
Nn, Pp, etc., exerted by the element AB on the points such that N,P, etc., invariably lies at
the extremity M of the electrodynamic solenoid by which I propose to replace it by what one
calls a magnetic molecule. These points are very close to M when this solenoid is very small,
but they are always distinct, and this is why their resultant OT does not pass through the
point M, but through the point O toward which all the forces Nn, Pp, etc., are directed.

One sees, by all that we have said, that keeping equal the two forces that result from
the mutual action of a conducting wire and of a magnet, and which act, one on the wire
of which the element AB forms a part, and the other on the magnet of which the point M

is a part, the same value, and the same direction perpendicular to the plane MAB, one can
form three hypotheses on the point of application of these forces : in the first, one supposes
that the two forces pass through the point M; in the second, which is the one which results
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in my formula, the two forces pass through the center O of the element; in the third, where
the forces are OR and MS, that which acts on the element is applied at the point O, and the
other at the point M. These three hypotheses are entirely in agreement, 1◦ with regard to
the value of these forces which are equal, in all three, due to the inverse of the square of
the distance MO, and by reason direct of the sin of the angle MOB which the line OM which
measures this distance made with the element AB; 2◦ with regard to the direction of these
same forces, always perpendicular to the plane MAB which passes through the molecule and
through the direction of the element : but with regard to their points of application, they
are placed differently for the two forces, in the first two hypotheses; and there is identity
between the first and the third only for the forces which act on the magnet, and between
the second and the third only for the forces which act on the conductor.

By virtue of the identity of the values and the directions of the forces which exist in
the three hypotheses, the components of their resultants, taken parallel to three arbitrary
axes, will be the same; but the rotational moments, which depend only on the points of
application of these forces, will not, in general, be the same, with regard to the forces which
move the magnet, for the first and third, and, with regard to the forces which act on the
conducting wire, only for the second and the third.

We have seen that in the case where it is a question of the action of a portion of a
conducting wire, forming a closed circuit, the values of the moments are the same, whether
one takes, for each element, the point of application of the forces in O or in M; in this
case, therefore, it will be, furthermore, identical for the values of the moments in the three
hypotheses.

21. Impossibility of producing an indefinitely accelerating movement due to the
interaction of a closed solid circuit and a magnet

The movement of a body, such that all the parts are invariably linked together, can depend
only on the three components parallel to three axes taken arbitrarily, and the three moments
about the same axes; where it follows that there is complete identity in the three hypotheses
for the movement produced, whether in the magnet, whether in the conductor, as long as
this forms a solid and closed circuit. This is the reason for the impossibility of an indefinitely
accelerating movement, being in general a necessary result of the first hypothesis, since the
elementary forces are here simply functions of the distances of the points within which they
interact, it follows evidently that this movement is equally impossible, in the two other
hypotheses, only because the conductor forms a solid and closed circuit.

It is easy to see, for the rest, that the demonstration thus obtained of the impossibility
to produce an indefinitely accelerating movement by the mutual action of a solid and closed
electric circuit, and of a magnet, is not only a necessary result of my theory, but it results
also, in the hypothesis of primitive couples, that the only value given by M. Biot for the
force perpendicular to the plane MAB, as I have directly demonstrated, with all the details
that could be desired, in a letter that I wrote on this subject to M. le docteur Gherardi.
If therefore on could produce an accelerating movement by action on the magnet by a
conductor which forms a solid and closed circuit, it would not only be my formula which
would defective, but also that which M. Biot had done, as all the observations which have
since been done have completely demonstrated, and since the physicists who admit the
hypotheses of the primitive couples have never contested the exactness.
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22. Examination of the various cases where an indefinitely accelerating move-
ment can result from the action of an electric circuit of which a part is
movable with respect to the rest of the circuit

When one makes a portion of the voltaic circuit mobile one should distinguish three cases :
that where it forms a nearly closed circuit(1); that where it can only turn about one axis,
and has its two extremities in this axis; that where the mobile portion does not form a closed
circuit, and where one of its extremities travels at least within a sufficient space to measure
that it moves : this last case includes that where this portion is formed by a conducting
liquid.

We have just seen that, in the first of the three cases, the movement that acts on the
movable portion by the action of a magnet, is identically the same in the three hypotheses,
and can never indefinitely accelerate, but tends only to lead the mobile portion to a deter-
mined position where it stops in equilibrium after having for some time oscillated about this
position in accordance with the acquired speed.

It is the same for the second, which only differs from the first in appearance : since if one
adds in the axis, a current, which connects the two extremities of the mobile portion, one will
have a closed circuit without having changed anything about the moment of rotation about
this axis, because the moments of the forces acting on the added current will necessarily
null; from which it follows that the movement of the mobile portion will be identically the
same as that for the closed circuit already obtained.

But when the mobile portion does not form a closed circuit, and if its two extremities
are not in an axis about which it is subject to turning, the moments produced by the action,
whether of a magnetic molecule, whether of the extremity of an indefinite solenoid, are no
longer the same as in the second and the third hypotheses, and have a value different in the
first. Taking for the axis the x the line about which one assumes that the mobile portion is
connected in a manner such that it can only rotate about this line, and in preserving the
designations that we used in the preceding calculations, we conclude that the value of the
rotational moment produced by the forces which act on the mobile portion will be

ρ

∫
z′v2dχ− y′w2dψ

r3
,

in the first hypothesis, and

ρ

∫
z′v2dχ− y′w2dψ

r3
+ ρ

(
x2 − x′

r2
− x1 − x′

r1

)
in the two others.

It is due to this difference in the values of the rotational moments that provides the
possibility to show by experiment that the first hypothesis is in contradiction with the facts.

(1) The circuit formed by a mobile portion of conducting wire is never rigorously closed,
because it is necessary that its two extremities communicate separately with those of the
battery; but it is easy to make the interval which separates them sufficiently small so that
one can consider them as if they were exactly closed.
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Because if one considers a magnet to be reduced to two magnetic molecules of an infinite
force placed at its two poles, and that after having placed a vertical line joining them, one
introduces a portion of a conducting wire to be turned around this line taken as the axis
of the x′s, then the two rotational moments relative to the two poles will be given by the
preceding formula in y replacing x′, y′, z′, by x′1, y

′
1, z
′
1 for one of the poles, and by x′2, y

′
2, z
′
2

for the other, taking care to change the sign of one of the moments, the first, for example,
since the two poles are necessarily of opposed nature, one austral and the other boreal.

When the two poles are, as we assume here, situated on the axis of x, one has y′1 =
0, y′2 = 0, z1 = 0, z′2 = 0, and the two rotational moments about the axis of the x
become null in the first hypothesis : which was easy to foresee, since under this hypothesis
the directions of all the forces applied to the mobile conductor pass through one of the poles
and y meeting the fixed axis, which renders necessarily null the moments of these forces.

In the two other hypotheses, on the contrary, where the directions of the forces pass
through the middle of the elements, the parts of the moments equal to those of the first
hypothesis are the only ones which disappear; and since after they are deleted, one restores
that which remains of each moment, one has

ρ

(
x2 − x′2
r2,2

− x1 − x′2
r1,2

− x2 − x′1
r2,1

+
x1 − x′1
r1,1

)
,

designating by r2,2; r1,2; r2,1; r1,1 the distances of the points such that their abscissas are
respectively x2, x

′
2;x1, x

′
2;x2, x

′
1;x1, x

′
1. It is easy to see that the four terms of the quantity

which is contained between the parentheses in this expression, are precisely the cosines
of the angles which form with the axis of the x the lines which measure the distances
r2,2; r1,2; r2,1; r1,1 : which yield the value we just found for the moment produced by the
action of the two poles of the mobile conductor, identical to those which we have already
obtained for those which result from the action of the same conductor of a solenoid such that
the extremities are situated at its poles, and whose electric currents will have an intensity
i and respective distances such that one has

λii′

2g
= ρ,

i′ being the intensity of the current in the conductor.

The rotational moment being always null under the first hypothesis, the mobile portion
of the voltaic circuit will never turn by the action of a magnet situated, as we have said, on
the axis of this magnet; under the two other hypotheses, it should on the contrary turn due
to the rotational moment whose value we have just calculated, always the same, under these
two hypotheses. M. Faraday, who first produced this movement, as a necessary consequence
of the laws which I have established on the mutual action of voltaic conductors, and of the
manner in which I considered the magnets as assemblages of electric currents, demonstrat-
ing thus the direction of the action exercised by the pole of a magnet on the element of a
conducting wire passes in effect through the middle of the element, conforming to the expla-
nation that I have given of this action, and not through the pole of the magnet. Therefore
the ensemble of elecrodynamic phenomena can no longer be explained by the substitution
of the action of austral and boreal magnetic molecules, distributed in the manner that I
just explained on two surfaces very close and terminated by conducting wires of the voltaic
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circuit, at the point of the action, expressed by my formula, which expresses the currents in
these wires. This substitution cannot be carried out except when it deals with the action of
solid and closed circuits, and its principal utility is to demonstrate the impossibility of an
indefinitely accelerating movement, whether by the mutual action of two solid and closed
conductors, or whether by that of such a conductor and a magnet.

Since the magnet is mobile, it is also necessary to distinguish three cases : one where
all the parts of the voltaic circuit which can act on this magnet are fixed; one where some
parts of the circuit are mobile, but without connection with the magnet, these portions can
also be formed by a metallic wire, or by a liquid conductor; finally one where one part of
the current passes through the magnet, or through a portion of a conductor connected to
the magnet.

In the first case, the total circuit composed of the conductors and the battery, is nec-
essarily closed; and as all its parts are fixed, the three sums of the moments of the forces
acting on the points of the magnet which is considered, whether as molecules of austral or
boreal fluid, whether as extremities of electrodynamic solenoids, are identical in the three
hypotheses, and so are the resultants of the forces; so that the movements caused to the
magnet, and all the circumstances of these movements, are precisely the same, whichever of
the hypotheses one adopts. It is this which applies, for example, to the duration of oscilla-
tions of the magnet, under the influence of this closed and immobile circuit; and it is for this
reason that the last experiments by M. Biot, where he found that the force which produces
these oscillations is proportional to the tangent of the quarter of the angle formed by the
two branches of the conductor that he used, this accords also well with this consequence
of my theory that the directions of the forces which act on the magnet pass through the
middle of the elements of the conducting wire, with the hypothesis which he adopted and in
which he admits that the directions pass through the points of the magnet where he placed
the magnetic molecules.

The identity which exists in this case between the three hypotheses shows as the same
time the impossibility that the movement of the magnet could accelerate indefinitely, and
proves that the action of the voltaic circuit can only tend to direct it to a determined
equilibrium.

It seems, at first glance, that the same impossibility should be present in the second
case, that which is contrary to experiments, at least when one part of the circuit is formed
by a liquid. It is evident, in effect, that the mobility of a portion of the conductor does not
prevent that this portion acts at each instant as if it were fixed at the position it occupies
at that instant; and we do not see at first how this mobility can change the conditions of
movement of the magnet, so that it becomes susceptible to indefinite acceleration whose
impossibility is demonstrated when all the parts of the voltaic circuit are immobile.

But, after one examines with some attention what should happen, following the laws of
mutual action of a conducting body and a magnet, when the conductor is liquid, and when
a vertical magnetic cylinder floats in this liquid, and when the surface of the cylinder is
covered with an insulating varnish so that the current cannot pass through it, which takes
place in the third case, one recognized quickly how there results from the mobility of the
liquid portion of the voltaic circuit that the floating magnet acquires a movement which
indefinitely accelerates : it is only necessary to apply to this case the explication that I
have given, in the Annales de Chimie et de Physique (tome XX, pag. 68–70), of the same
movement, when one assumes that the magnet is not varnished, the currents in the liquid
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where it floats traverse it freely.

In effect, this explanation being based on that the portions of the currents which are
within the magnet cannot have any action on it, and that those that are within the liquid
outside the magnet act entirely to accelerate its movement always in the same direction, it
follows necessarily that all that happens in this case should also occur when the insulating
substance, which covers the magnet, removes only exactly the portions of the current which
produce no action, and which leave in place and act, always in the same manner, those
that, being outside the magnet, all tend to accelerate its movement constantly in the same
direction. In order that one can better judge that, in effect, that is nothing that needs
changing in the explanation that I just discussed, I should repeat it here, as applied to the
case where the magnet is covered with an insulating substance. I will assume, for simplicity
in the explanation, that one substitute for the magnet an electrodynamic solenoid, whose
extremities are at the poles of the magnet, although, according to my theory, it should be
considered as a bundle of solenoids. This assumption does not change the effects that are
produced, because the currents of mercury act in the same manner and in the same direction
on all the solenoids in the bundle, they impose a movement similar to that which they would
give to a single one of the solenoids, and one can always assume that these electric currents
have sufficient intensity so that the movement will be substantially the same as that of the
bundle.

For ETFT′ (Pl. 2 pg. 115, fig. 40 pg. 132) the horizontal section of a glass jar filled
with mercury in contact with a ring of copper which provides the interior edge and which
communicates with one of the electrodes, the negative electrode for example, while one
inserts the positive electrode at P; then there form currents in the mercury which flow from
the center P of the ring ETFT′ to its circumference.

Represent the horizontal section of the solenoid by the small circle etft′, whose center is
at A and whose circumference etft′ is one of the electric currents of which it is composed : by
assuming that this current moves in the direction etft′, it will be attracted by the currents
of mercury such as PUT, which is located at, in the figure, to the right of etft′, because the
semi-circumference etf , where the current goes in the same direction, is closer than ft′e
where it goes in the contrary direction. Set AS this attraction equal to the difference of the
forces exerted by the currents PUT on the two semi-circumferences, and which necessarily
pass by their center A, because the result of the forces which these currents exert on all the
elements of the circumference etft′ of which they are perpendicular, and are, by consequence,
directed following the rays of this circumference. The same current etft′ of the solenoid is,
on the contrary, pushed by the currents which, like PU′T′, are, in the figure, to the left of
the current etft′, because they are in the opposite direction in the semi-circumference ft′e
the closest to PU′T′. Let AS′ be the repulsion which results from the difference of the actions
exerted by the currents PU′T′ on the two semi-circumferences ft′e, etf , they will be equal
to AS, and form, with the ray PAF, the angle FAS′ = PAS, as all are equal to thew two
sides of this ray : the resultant AR of these two forces will be perpendicular to it; and since
it passes through the center A, as well as that its two components AS,AS′, the solenoid will
have no tendency to turn on its axis, as one observes in effect with respect to the floating
magnet which represents this solenoid; but it will tend, at each instant, to move following
the perpendicular AR of the ray PAF, and since, when one conducts this experiment with a
floating magnet, the resistance of the mercury cancels at each instant the acquired speed,
one sees this magnet describe the curve perpendicular to all the lines which pass as PAF by
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the point P, that is to say the circumference ETFT′ of which this point is the center.

This outstanding experiment, by M. Faraday, has been explained by the physicists
who do not admit the theory, by attributing the movement of the magnet to the electrode
immersed in the mercury at P, to which one ordinarily gives a direction perpendicular to the
surface of the mercury. It is true that, in this case, the current in this electrode tends to carry
the magnet in the direction that it actually moves; but it is easy to establish, by comparative
experiments, that it is with a force very much too weak to overcome the resistance of the
mercury, and produces, despite this resistance, the movement that one observes. I was at
first surprised to see that these physicists did not take account of the action that the currents
in the mercury would exert in their own theory, my surprise was augmented when I found
the cause in a manifest error which is found to be explained in these terms in a publication
already cited(1) : �The transversal action of this fictitious wire (the electric current which
is in the mercury) on the austral magnetism of A (Pl. 2 pg. 115, fig. 43 pg. 133) will tend
therefore also to constantly push A from the right to the left of an observer who has his
head at C′, and his feet at Z. But the contrary tendency will be exerted on the pole B, and
also with an equal energy, if the horizontal line C′FF′Z is found at the height exactly at the
center of the bar; so, one summarizes that there will result no translational movement. This
will be therefore the only force exerted by CF which determines the rotation of the bar AB.�

How the author did not see that the actions that the fictitious wire, placed as he said, exerts
on the two poles of the bar AB, tend to carry it in the same direction, and that they add
instead of subtract, since they are of contrary type, their poles are found at the two sides
opposite from the wire?

It is important to remark on this subject, that if the parts of the currents, forming a
part of those of the mercury, could be found in the interior of the small circle etft′ and act
on them they would tend to cause rotation about the point P in the contrary direction, and
with a force which, instead of being the difference of the actions exerted on the two semi-
circumferences etf , ft′e, are the sum, because if uv represents one of these portions, it is
evident that it attracts the arc utv and repels the arc vt′u, from which result two forces which
together move etft′ in the direction AZ opposite to AR. This circumstance obviously cannot
take place with the floating magnet which occupies all the interior of the small circle etft′,
because by excluding the currents when it is covered by insulating material, and because,
in the contrary case, the portions of currents contained in the circle, being in the particles
of the magnet invariably lying on those on which they act, the action that they produce is
canceled by an equal and opposed reaction; of a kind that there only remain, in the two
cases, the forces exerted by the currents of the mercury, which all tend to move the magnet
following AR. It is uniquely for this reason that it turns about the point P in this direction,
as one is assured by replacing the magnet by a mobile conductor xzetft′sy (Pl. 2 pg. 115,
fig. 41 pg. 132), formed of a quite thin copper wire, covered by silk, whose intermediate part
etft′ is wound in a circle, and whose two extreme portions, tied together with e en z, will,
the one ezx connects to x in a cup of mercury communicating with one of the electrodes,
and the other t′sy immersed in P (Pl. 2 pg. 115, fig. 40 pg. 132) in the mercury which
communicates, as we have said, with the other rheostat : we suspend this mobile conductor
in a manner such that the circle etft′ (Pl. 2 pg. 115, fig. 41 pg. 132) is very close to the
mercury surface, and one sees that it rests immobile, by virtue of the equilibrium which is
established between the forces exerted by the portions of the currents contained in the circle

(1) Précis élémentaire de physique expérimentale, troisième édition, tome II, page 753.
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etft and those that are due to currents and current portions exterior of the circle. But as
soon as you remove the portions of the currents included in the space etft (Pl. 2 pg. 115,
fig. 40 pg. 132), by inserting in the mercury below the circle etft (Pl. 2 pg. 115, fig. 41 pg.
132) a cylinder of insulating material whose base is such as to imitate that which happens
to the floating magnet, one sees it move, like this magnet, in the direction AR. When one
leaves the cylinder of insulating material where first was the circle etft′, it does not turn
indefinitely like the magnet, but stops after a few oscillations, in a position of equilibrium;
the difference comes from the fact that the magnet left floating, behind it, fills the space
which it occupied at first with mercury, and drives the mercury successively to various places
to which it is transported. It is this change in the situation of a part of the mercury which
is entrained in the electric currents, and causes, while the total voltaic current is closed,
the movement of the magnet continues, which is impossible by the action of a solid and
closed circuit, cannot take place in this case where the closed circuit changes shape by the
movement of the magnet itself. To produce this movement by using, instead of the magnet,
a mobile conductor as described above, it is necessary, since one has established that it will
only move if one removes, by the cylinder of insulating material, the portions of currents
interior to the small circle etft′, and when one leaves the cylinder in the same place, it
stops at a position of determined equilibrium after having oscillated about it, imitating that
which takes place when one acts on a floating magnet, by sliding the cylinder of insulating
material at the base of the vase, in a manner such that it is always under the circle etft′

(Pl. 2 pg. 115, fig. 41 pg. 132), and such that its center always corresponds vertically to
that of the circle, the mobile conductor therefore starts to turn indefinitely about the point
P (Pl. 2 pg. 115, fig. 40 pg. 132) as does the magnet.

It is, in general, when substituting for magnets mobile conductors wound in a circle,
that one can form a correct idea of the causes of the various movements by experiment
without recourse to calculation, because this substitution provides the means to vary the
conditions in various manners, which are very often impossible to obtain with magnets, and
only can clarify the difficulties which are presented by often so complicated phenomena.
It is thus, for example, that in what we have just said, it is impossible, with a magnet,
to verify this result of the theory, that the portions of currents of mercury could traverse
the magnet, and the direction that they should have in the mercury when one removes the
magnet, which does not turn about the point P, and that the verification becomes easy when
one substitutes for it, as we have said, the mobile conductor shown here (Pl. 2 pg. 115, fig.
41 pg. 132).

The identity of the action that one consistently observes between the movements of
a mobile conductor and that of a magnet, in all cases that they are found in the same
circumstances, does not permit any doubt, when one has done the preceding experiment,
that the magnet will not remain immobile, since it is traversed by the portions of currents
interior to the circle etft′, if the portions can act on it; and as one sees, on the contrary,
that when it is not covered by an insulating material, and that the currents freely traverse
it, it moves exactly as when it is and that no portions of currents can penetrate into the
interior of this magnet, one has a direct proof of the principle on which rests a part of the
explanations that I have given, namely : that the portions of currents which traverse the
magnet do not act in any manner on it, because the forces which result from their action
on the currents proper to the magnet, or on those that one calls the magnetic molecules,
occur between the particles of a same solid body, are necessarily destroyed by an equal and
opposite reaction.
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I admit that this experimental evidence of a principle which is nothing else but a
necessary consequence of the first laws of mechanics, appears to me completely useless,
since it should have been clear to all the physicists who considered this principle which
is one of the foundations of science. I would not have made this remark, if one had not
assumed that the mutual action of one element of a conducting wire and of a magnetic
molecule, consists of a primitive couple composed of two forces equal and parallel without
being directly opposed, by virtue of which a portion of current which is located in a magnet
could cause motion; consider contrary to the principle which is here the question, and which
is denied by the previous experiment from which there is no action exerted on the magnet
by the portions of currents which traverse it when it is not covered by an insulating envelop,
since the movement which takes place in this case stays the same if one prevents the currents
from traversing the magnet, by enclosing it in the envelop.

It is from this principle that one must start in order to see what phenomena should yield
a mobile magnet under the influence of a voltaic current, in the third case which we still
remain to consider, where a portion of the current passes through the magnet, or through
a portion of a conducting wire which is rigidly bound to it. We will see that when there is
a rotational movement of a magnet about a conducting wire, the movement should be the
same, and is in effect, as if the current traverses or does not traverse the magnet. But this
is not the case when it is a question of continuous rotational movement of a magnet about
the line that joins the two poles.

I have demonstrated by theory and by various experiments of diverse kinds whose
results always confirmed those of the theory, that the possibility or impossibility of this
movement holds uniquely by that a portion of the voltaic circuit that in total is in all its
points separated from the magnet, or that what happens, whether in the magnet, or in a
portion of the conductor bound invariably with it. In effect, in the first case, the assembly
of the battery and the conducting wires forms an always closed circuit, and since all the
parts act the same on the magnet, whether they are fixed or mobile; in this last case, they
exert, at each instant, precisely the same forces as if they were fixed in the position where
they are at that instant. Therefore, we have demonstrated, first synthetically with the aid
of considerations which are provided in (Pl. 2 pg. 115, fig. 30 pg. 128) and (Pl. 2 pg. 115,
fig. 31 pg. 129), together with direct calculation of the rotational moments, that a closed
circuit cannot imprint on a magnet a continuing movement about the line which joins its
two poles, whether one considers them, conforming to my theory, as the two extremities
of a solenoid equivalent to the magnet, or as two magnetic molecules whose intensity is
sufficiently large so that the actions exerted stay the same when one substitutes them for all
those of which one regards the magnet as composed under the hypothesis of the two fluids.
The impossibility of rotational movement of the magnet about its axis, since the totally
closed circuit is everywhere separated, thus is found sufficiently completely demonstrated,
not only for the application of my formula for currents of a solenoid substituted for the
magnet, but also by taking into consideration a force which will exist between an element of
conducting wire and a magnetic molecule perpendicular to the plane which passes through
this molecule and in the direction of the magnet, with the reason of the inverse square of
the distance, and which is proportional to the sine of the angle composed between the line
that measures this distance and the direction of the element. But if one assumes, in this
last case, that the force passes through the center of the element, whether it acts on it or
reacts on the magnetic molecule, only that it is present, following my theory, with respect
to the solenoid, the same movement becomes possible since a portion of the current passes
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through the magnet, or by a portion of the conductor invariably bound with it; because all
the actions exerted by this portion on the particles are destroyed by the equal and opposite
reactions that exert on the same particles, it only remains that the actions exerted by the
rest of the total circuit which is not closed, and can as a consequence cause turning of the
magnet.

In order to fully understand all that relates to this sort of mobement, conceive that the
rod TVUS (Pl. 1 pg. 114, fig. 13 pg. 122), which supports the small cup S in which insert
the tip o of the mobile conductor oab, which is folded about V and U as one sees in the
figure, in such a manner as to leave free the portion VU of the line TS taken as the axis of
rotation, so that one may suspend the cylindrical magnet GH, by a very thin wire ZK, from
the hook K attached to U on this rod, and so that the mobile conductor oab is maintained
in the position where one sees it in the figure by the counter weight c, is terminated at b
by a copper plate bef , which is inserted into the acidic water with which one has filled the
vase MN, so that the conductor communicates with the electrode pP inserted into mercury
in the cup P, while the other electrode rR is in communication with the rod TVUS through
the mercury which one puts in the cup R, and with the battery pr closes the total circuit.

At the instant when one establishes the current in the apparatus, one sees the mobile
conductor turn about the line TS; but the magnet is only led to a determined position about
which it oscillates for some time, and where it then comes to rest. By the principle of the
equality of action and reaction, which applies with regard to the rotational moments about
a common axis as with regard to the forces, if one represents by M the rotational moment
induced, by the action of the magnet, on the mobile conductor oab, the reaction of this tends
necessarily to cause the magnet to rotate about its own axis with the moment –M, equal to
M, but acting in the contrary direction.

The immobility of the magnet obviously derives from that if the mobile conductor oab
acts on it, the rest bMPprRTS of the total circuit can not fail to act equally; the moment of
the action that it exerts on the magnet, taken with that of oab, is null; from which it follows
that the moment of bMPprRTS is M, equal and opposed to –M.

But if one connects the magnet GH to the mobile conductor oab, there results a system
of an invariable form, in which the action and reaction that they exert one on the other
mutually cancel; and the system obviously rests immobile, if the part bMPpr RTS does not
act as before on the magnet in order to cause it to turn by imparting to it the rotational
moment M. It is due to this moment that the magnet and the mobile conductor, are combined
in a system of invariable form, turning about the line TS; and since this moment is, as we
just saw, and of the same value and the same sign as that which relates the magnet to
the conductor oab when the conductor was separated and turned by itself, one sees that
these two movements necessarily take place in the same direction, but with speeds which
are reciprocally proportional to the moment of inertia of the conductor and to the sum of
this moment of inertia and of that of the magnet.

I made an abstraction, in the preceding considerations, of the action exerted by the
portion bMPprRTS of the total circuit on the mobile conductor oab, whether in the case
where the conductor is separated from the magnet, or in the case where it is connected,
not only because it is very small relative to that which affects the magnet, but because
it tends uniquely to carry the mobile conductor into a position determined by the mutual
repulsion of the elements of these two portions of the total circuit, and does not contribute,
as a consequence, in the two cases, to the rotational movements of oab, which can make a
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small variation of speed; which without this would be constant.

In order to easily unify and separate alternatively the magnet and the mobile conductor,
without interrupting the experiments, it is convenient to fix to the hook Z by which the
magnet is suspended by the wire ZK, a piece of copper wire ZX terminated at X by a fork
with two branches Xx, Xy encompassing the mobile conductor oab, which is located close
between them, when one properly folds the rod ZX; by folding in the contrary direction, one
places it where it is shown in the figure, and the conductor again becomes free.

I have explained in detail these experiments, because it seems, more than any other, to
support the hypothesis of the primitive couple, when one does not analyze it as I have just
done. In effect one accepts as I do, in this hypothesis, that the forces exerted by the magnet
GH, on the elements of the mobile conductor oab, pass through these elements, and assuming
they are all in the vertical plane TSab, they tend therefore to cause turning of oab always in
the same direction about TS : these forces are, after the law proposed by M. Biot, precisely
the same, in size, in direction and relatively at their application points, as the forces given
by my formula; they produce therefore the same rotational moment M by virtue of which the
conductor oab moves if it is free. But, following the physicists who accept the hypothesis
here in question, the forces due to the reaction of the elements of the conductor on the
magnet are no longer the same in size and for those that are perpendicular to the plane
TSab; they think that these forces are applied to the magnetic molecules, or, that which
comes to the same, to the two poles of the magnet GH which are on the line TS; thus their
rotational moments are null relative to this line. It is due to this cause that they attribute
immobility to the magnet when it is not attached to any portion of the voltaic circuit; but
to explain the rotational movement of the magnet in the case where one connects to the
mobile conductor oab, with the aid of the rod ZX, they assume that the connection of these
two bodies into a system of invariable form, does not prevent the magnet to always act to
impose on the mobile conductor the same rotational moment M, without that the conductor
reacts on the magnet in a manner to prevent movement of the system, which should turn
as a consequence in the same direction as the mobile conductor turns before having been
rigidly attached to the magnet, but with a speed less than in the reciprocal reason of the
moments or inertia of the conductor alone and of the conductor recombined to the magnet.

It is thus that one finds in this hypothesis the same results as when one assumes that
the action opposed to the reaction follows the same line, and one takes account of the action
exerted on the magnet by the rest bMPprRTS of the voltaic circuit. The result of all that has
been demonstrated in this treatise, that this identity of effects produced and the values of the
forces that we have found, in the case that we have examined, from the manner that I have
explained the phenomena and hypotheses of the primitive couple, is a necessary consequence
that the voltaic circuit that one has made act on the magnet is always closed, and since it
acts on a closed circuit, not only the three parallel to three axes which result in the action
that such a circuit exerts on a magnet, but the same in the two ways of conceiving these
things, just as that the movement of the magnet, can only depend on these six quantities.

The same identity is found, as a consequence, in all the experiments of the same type,
and it is not, neither form the experiments, neither form the measurement of the forces
that develop between the conducting wires and the magnets, that such a question can be
decided; it should be by :

1◦ By the necessity in principle, that the mutual action of the diverse parts of a system
of invariable form cannot, in any case, impose on this system an arbitrary movement; a
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principle which is only a consequence of the same idea that we have of forces and of inertia
of matter.

2◦ From this circumstance, that the primitive couple hypothesis was not imagined, by
those who proposed it, that because they had known that the phenomena of which they are
part could not be explained otherwise, failing to take into account the action exerted on
the magnet by the totality of the voltaic circuit; because they have not paid attention to
the fact that the circuit is always closed, and that they did not deduce, as I did, that the
law proposed by M. Biot, the rigorous consequence that, for a closed circuit, that the forces
and the moments are identically the same, whether one assumes that the directions of the
forces acting on the magnet pass through the magnetic molecules or through the centers of
the elements of the conducting wires.

3◦ About this, when one accepts that the phenomena with which we are concerned can
be produced, in the final analysis, by forces expressed as functions of the distances exerted
by molecules of the two electric fluids, and that one attributes also to the two magnetic
fluids when one views them as the cause of the phenomena, purely electric as I think,
posed by the magnets, one can well conceive that if these molecules are in movement in the
conducting wires, there then results between their elements forces that do not only depend
on the distances of these elements, but also on the directions of the movement of the electric
molecules in which the currents flow, such are precisely the forces which give my formula,
provided that these forces satisfy the condition that the action and the reaction are directed
following the same line, whereas it is contradictory to assume that the forces, whatever
were otherwise their values as functions of distances, directed following the lines which join
the molecules with the ones that they exert, can produce, by any combination whatsoever,
since these molecules are in movement, the forces for which the action and reaction are not
directed following the same line, but following two parallel lines, as in the primitive couple
hypothesis.

One knows, in effect, that whenever electric or magnetic molecules are in movement,
they act at each instant as if they were at rest at the point where they are at that instant.
If therefore one considers two systems of molecules, such that each molecule of one exerts
on each molecule of the other a force equal and opposite, following the line that joins them,
to the force exerted by the second molecule on the first, and stop all these molecules in
their current location at that instant, one assumes that they are all rigidly connected at this
location, there will necessarily be equilibrium in the rigid system, composed of two others,
which results from this assumption, since there will be equilibrium between the elementary
forces taken pairwise. The resultant of all the forces exerted by the first system on the
second will therefore equal and opposed, following the same line, as that of all the forces
exerted by the second on the first; and these two resultants can never produce a couple
capable of turning the total system, since all of its parts are rigidly bound together, as is
assumed by those, while adopting the hypothesis of a couple in the mutual action of one
magnetic molecule and of one element of conducting wire, while pretending that this action
results that the magnet does not act on the molecule which since it is itself an assemblage of
magnetic molecules, whose actions on those which one considers are such that as Coulomb
has established, that is to say directed following the lines which join them to this last, and
by reason of the inverse square of the distances.

It suffices to read with some care that which M. Biot has written on the phenomena
that occupy us, in the ninth book of the third edition of his Traité élémentaire de physique
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expérimentale, to see that after having considered carefully the forces that the elements
of conducting wires exert on magnets, as applied to magnetic molecules perpendicular to
the planes passing through each element and each molecule, he then assumes, when he
speaks of the movement of conducting wires about magnets, that the forces exerted by
the magnetic molecules on the elements of the wires, passing through these elements in
the directions parallel to those of the forces exerting on the magnet, and forming, as a
consequence, couples with the first, due to their being opposed following the same lines;
which he explains in particular on page 754, tome II of this work, the rotational movement
of a magnet about its axis, when a portion of the current traverses it, by assuming that the
magnet turns due to the action that this portion itself exerts on the rest of the magnet,
which forms in the mean time with it a system of fixed form such that all the parties are
invariably tied to them (1) : which obviously implies that the action and the reaction of
this portion of current and the rest of the magnet form a couple. How from that position
can it be imagined that the physicist who admits such a supposition, can express in these
terms on page 769 of the same book : � If one calculates the action that acts at a distance
on a magnetic needle of infinitely short length and almost molecular, one will easily see
that one can form assemblages of such needles, which exert transversal forces. The unique,
but without doubt very large, difficulty is in combining of such systems, in a manner that
results, for the slices of a conducting wire of considerable dimension, the precise laws of
transversal action which experiments show, and that we explained above.� Without doubt
the action of two systems of small magnets, whose austral and boreal molecules attract or
repel by reason of the inverse square of their distances, following the lines which join them
in pairs, it could result from transversal actions, but not from actions which are not equal

(1) I do not know if it is necessary to recall on this subject that which I have already
remarked elsewhere, namely that the electric fluids, after all the facts, above all after the
nullity of the action on the bodies the electrically lightest which move in a vacuum, should
be considered as incapable of action due to their mass which one can say is infinitely small
with respect to those of ponderable bodies, and which therefore all attraction or repulsion
exerted between these bodies and the electric fluids can well put these in motion, but not the
ponderable bodies. For these last to move, it is necessary, when it comes to ordinary electric
attractions and repulsions, the electricity is retained on their surface, so that the force that
overcomes the inertia of one, applies, if one can so express it, on the inertia of the other. It
is necessary all the same, for the mutual action of two conducting wires to put these wires
in motion, that the decompositions and recombinations of the neutral fluid which is present
at each instant in all the elements along the length of the two wires, determine between
their ponderable particles the forces capable of overcoming the inertia of their particles
in imparting to the two wires the speeds proportionally reciprocal to their masses. When
one speaks of the mutual action of two electric currents, one never understood, and it is
evident that one cannot understand, other than those of the conductors that they traverse :
the physicists who accept magnetic molecules acting on the elements of a conducting wire,
conforming to the law proposed by M. Biot, accept without doubt also that this action does
not move the wire because the magnetic molecule is retained by the ponderable particles
of the magnet which constitutes magnetic element of which it is a part; and it is therefore
evident that in assuming that the magnet is moved by the action of the portion of the
electric current which traverses it, one necessarily assumes that its movement results from
the mutual action which exists between each of those of its particles which traverse the
current and all the other particles of the same body.
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and opposed from the reactions directed following the same lines, as those supposed by M.
Biot.

In one word, the value of the action of two elements of conducting wires, which I have
deduced uniquely from experiments, depends on the angles which determine the respective
directions of the two elements : following the law proposed by M. Biot, the force which
develops between an element of conducting wire and a magnetic molecule, depends also
on the angle which determines the direction of the element. If I called elementary the
force of which I determined the value, because it is exercised between two elements of
conducting wires and because it has not yet been reduced to simpler forces : he has also
called elementary the force that he introduces between a magnetic molecule and an element
of conducting wire. Up to here all is similar with respect to these two sorts of forces; but for
those that I have admitted, the action and the reaction are opposed following the same line,
and nothing prevents conceiving that they result from attractions and repulsions inherent
in the molecules of the two electric fluids, provided that one assumes these molecules in
motion in the conducting wires, to give reason for the influence of the direction of the
elements of these wires on the value of the force; whereas that M. Biot by admitting a
force for which the action and the reaction are no directed in contrary directions on the
same line, but on lines parallel and forming a couple, this makes it absolutely impossible
to reduce this force to attractions and replusions directed following the lines which join
pairwise the magnetic molecules, such are admitted by all the physicists who use this to
explain the mutual action of two magnets. Is it not evident that this hypothesis of M. Biot,
on the revolving forces for which the action and the reaction are not opposed following a
single line, which one should say that which they say (page 771) on the subject of mutual
action of two elements of conducting wires, as I have determined by my experiments and
the calculations that I derived, namely : that a similar supposition is firstly itself completely
outside the similarities which all the other laws of attraction present to us? Does there exist
a hypothesis more contrary to these similarities, than to imagine forces such that the mutual
action of the diverse parts of a system of invariable form can set this system in motion?

There is no point in my thus elaborating one of the laws that Newton viewed as a
foundation of the physical theory of the universe, since after having discovered a great
number of facts that no one had observed before me, I determined, solely by experiment and
following the path traced by this great person, first the laws of electrodynamic action, then
the analytic expression of the force that develops between two elements of conducting wires,
and finally I deduced from this expression all the consequences expressed in this Treatise.
M. Biot, by citing the names of a group of physicists who had observed new facts or invented
instruments which were useful in science, mentioned neither the means by which I came to
render mobile the portions of conducting wires, by suspending them on steel points in cups
filled with mercury, a method without which one can learn nothing of the actions exerted
on these wires, whether by other conductors, or whether by the earth or by magnets; nor
the apparatus that I constructed to make evident all the circumstances which display these
actions, and to precisely determine the equilibrium states from which I concluded the laws
to which they are subject; nor these laws themselves as determined by my experiments;
nor the formula that I concluded; nor the applications that I made of this formula. And
as regards the facts that I was the first to observe, he cites just one, that of the mutual
attraction of two conducting wires; and as he cites it, it is to give an explanation which
had been first proposed by several foreign physicists, at a time when one had not done the
experiments which have demonstrated since long ago that it was completely inadmissible.
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This explanation consists, as one knows, of assuming that two conducting wires exert one on
the other, as they would by virtue of the mutual action of infinitely small magnetic needles,
tangent to circular sections that one can make in all the length of the wires assumed to be
cylindrical; the ensemble of small needles of one same section form thus a magnetic ring,
similar to that which MM. Gay-Lussac and Velter made use of to carry out, in 1820, a decisive
experiment on the subject of the explanation which is here in question. This experiment
proved, as one knows, that such a ring exercises absolutely no action, even though it forms
a complete circumference, even though it is strongly magnetized and formed from a pure
steel to preserve, when one breaks it, all of its magnetism, one finds, in breaking it, that all
of the pieces are strongly magnetized.

Sir H. Davy and M. Erman obtained the same result as regards a steel ring of any
shape. It is, for the remainder, a necessary consequence of the theory of two magnetic fluids
such as mine, thus it is easy to be convinced by a calculation entirely similar to that which I
demonstrated, in this Treatise, of the nullity of action of a solenoid forming a closed curve,
conforming to that which M. Savary first found, by a calculation which does not differ
essentially from mine, and as one can see, whether in the addition which is found at the
end of the Treatise on the application of calculations to electrodynamic phenomena, that
he published in 1823, or whether in the Journal de Physique, tome XCVI, pages 295 et suiv.
In giving once again this explanation, M. Biot shows that he does not know either the MM.
Gay-Lussac and Velter experiment, nor the calculation of M. Savary.

In addition, the small needles tangent to the circumferences of the sections of the
conducting wires, are considered by M. Biot like the particles of the surface of the conducting
wire magnetized by the electric current which separates in these particles the austral and
boreal fluid, by carrying them in the contrary direction, without that the molecules of
these fluids can leave the wire particles where they were originally found combined in the
neutral fluid. Therefore, when the current is established after some time in the fluid and
continues indefinitely, the distribution of the magnetic molecules in the conducting wires
can no longer change; it is thus as if there exists in these wires a multitude of determined
points that will not change position as long as the current continues with the same intensity,
and which emanate attractive and repulsive forces due to the magnetic molecules, and as a
consequence reciprocally proportional to the square of the distance.

Thus two conducting wires do not act one on the other except by virtue of forces
expressed as a function of the distances between the points fixed by one of the wires and
of the other points equally fixed in the other wire; but then one of the wires, assumed to
be fixed, can only direct the other in a situation of equilibrium where the integral of the
live forces, which always obtain in functions of the coordinates of the points of the mobile
wire when the forces are functions of the distances, attaining its maximum value. Never can
such forces produce a rotational movement whose speed will always be in augmentation in
the same direction, just as that of this speed becomes constant, because of frictions, or of
resistance of the liquid in which it is necessary to insert the mobile conductors to maintain
the communications. Now, I have obtained this rotational movement by making to act a
spiral conductor, formed close to a circle, on a rectilinear conducting wire, turning about
one of its extremities situated at the center of the circle, even though its other extremity is
located quite close to the spiral conductor.

This experiment, where the movement is very rapid and can last several hours, when
one uses a battery of sufficient strength, is in manifest contradiction to the point of view
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of M. Biot; and if it is not with the opinion that the action of two conducting wires results
in attractive and repulsive forces inherent in the molecules of the two electric fluids, it is
that these molecules do not remain circumscribed, like those that one assumes compose the
two magnetic fluids, in the very small spaces where their distribution is determined by a
permanent cause, but on the contrary they travel all the length of each wire by a sequence
of compositions and decompositions, which succeed each other in very short intervals : from
which it can result, as I have observed, movements always continuing in the same direction,
incompatible with the supposition that the points from which the attractive and repulsive
forces emanate do not change position in the wires.

Finally, M. Biot repeats in the third edition of his Traité élémentaire de physique (tome
II, page 773), that which he already said in the note which he published, in the Annales
de Chimie et de Physique, on the first experiments relative to the subject which we have
addressed, that he made with M. Savary, it is known : that when an element of a very
thin conjunctive and indefinite wire acts on a magnetic molecule, � the nature of its action
is the same as that of a magnetic needle which is placed on the contour of the wire in
a direction determined and always constant with respect to the direction of the voltaic
current.� However the action of this needle on a magnetic molecule is directed following
the same line as the reaction of the molecule on the needle, and it is anyhow easy to see
that the force which results is by reason of inverse of the cube, and not of the square of the
distance, as M. Biot found himself is the that of the element of the wire.

23. Identity of the mutual interaction of two closed electric circuits and of two
assemblages each composed of two very closely spaced surfaces terminated
by the circuit to each assemblage, and on which are distributed and fixed
two magnetic fluids, austral and boreal, in such a manner that the magnetic
intensity is everywhere the same

It remains for me to extend to the mutual action of two close circuits, of arbitrary size and
shape, the considerations relative to surfaces terminated by these circuits and thus whose
points act as so-called molecules of austral fluid and of boreal fluid, which I have previously
applied to the mutual action of a arbitrary closed circuit and of an element of conducting
wire. I have found that the action of the element d2σ′ on the two surfaces terminated by
the contour s, are expressed by the three forces

µgε′d2σ′
u2dϕ

r3
, µgε′d2σ′

v2dχ

r3
, µgε′d2σ′

w2dψ

r3
,

applied to each of the elements ds of this contour, I will now apply to the circuit s′, what
I have done before with regard to the circuit s. For this consider a new surface terminated
on all sides, like for surface σ′, by the closed curve s′, and is such that the portions of the
normal of the surface σ′ comprised with them and this new surface, are everywhere very
small. Assume, on the new surface, fluid of type contrary to that of the surface σ′, in such a
manner that the quantities of the two fluids in the corresponding parts of the two surfaces
are the same. Designating by ξ′, η′, ζ ′ the angles that the normal at the point m′, whose
coordinates are x′, y′, z′, forms with the three axes, and by h′ the small portion of this
normal which is located between the two surfaces, we can, as we have done for the element
d2σ′, recover the action of the element of the new surface which is represented by d2σ′,
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on the ensemble of the two surfaces which are terminated by the contour s, by the applied
forces, as one has seen, on page 77, for various elements of the contour; those which are
relative to the element ds and parallel to x are obtained by substituting in the expression
which we found for this force

µgε′d2σ′
u2dϕ

r3

or

−µgε′d2σ′
(y′ − y)dz − (z′ − z)dy

r3
,

the new coordinates x′+ h′ cos ξ′, y′+ h′ cos η′, z′+ h′ cos ζ ′ in place of x′, y′, z′. Since the
forces thus obtained act in the sense contrary to the first, it is necessary to subtract them,
which results in, if one neglects in the calculation the powers of h greater than the first,
differentiating

−µgε′d2σ′
(y′ − y)dz − (z′ − z)dy

r3
,

by varying x′, y′, z′, replacing δx′, δy′, δz′ by h′ cos ξ′, h′ cos η, h′ cos ζ, and changing the sign
of the result, while x, y, z, and dx, dy, dz, should be considered as constants since they
belong to the element ds.

The formula into which one should substitute h′ cos ξ′, h′ cos η, h′ cos ζ, à δx′, δy′, δz′ is
therefore

µgε′
(

dz d2σ′δ′
y′ − y
r3

− dy d2σ′δ′
z′ − z
r3

)
,

which must be integrated after this substitution over all the extent of the surface σ′ to
have the total action of this surface and of that with which it is joined over the assemblage
of the two surface terminated by the contour s. On can carry out this double integration
separately on each of the two terms since this expression composes. Carry out first that
which is relative to the first term

µgε′dz d2σ′δ′
y′ − y
r3

.

For this, decompose the surface σ′ into an infinity of infinitely narrow zones by a series
of perpendicular planes in the plane of the xz determined by the coordinate y of the center
o of the element ds. We take, on one of these zones, for d2σ′ the element of the surface σ′

which has the expression
v d′v d′χ

cos η′
,

and we have thus to integrate the quantity

µgε′ dz
vd′v d′χ

cos η′
δ′
y′ − y
r3

,

which changes, by a transformation exactly similar to that which we used above relative to

d2σ =
udu dϕ

cos ξ
,
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in this

−µg dz h′ε′d′χd′
v2

r3
.

Assuming, as we did for the surface σ, that the quantities h′, ε′ vary together in a manner
such that their product maintains a constant value g′, one integrates this last expression,
assuming the angle χ to be constant, within all the length of the zone enclosed on the
surface σ′ between the two planes which include the angle d′χ from one of the borders of
the contour s′ up to the other. This first integration can be done immediately and gives

−µgg′dz d′χ

(
v2

2

r3
2

− v2
1

r3
1

)
,

r1, v1 et r2, v2 represent the values of r and of v for the two edges of the contour s′. The two
parts of this expression must now be integrated with respect to χ respectively in the two
portions of the contour s′ determined by the two tangent planes of this contour determined
by the ordinate y of the element ds; and after our remark on page 76, with respect to the
value of the force parallel to x in the calculation relative to the two surfaces terminated by
the contour s, it is easy to see that one has here

−µgg′dz
∫
v2d′χ

r3
,

in taking this integral over the total extent of the closed contour s′; the variables r, v and χ
are only relative to this contour.

One executes in the same manner the double integration of the other term which is
equal to

−µgε′dyd2σ′δ′
z′ − z
r3

over the entire extent of the surface σ′. It is necessary, for this, to divide this surface into an
infinity of zones, by planes determined by the coordinate z at the center of the element ds,
and take, on one of these zones, for d2σ′ an infinitely small area which has as its expression
wd′wd′ψ

cos ζ′ . The formula, after having been transformed as previously, is integrated first over
all the length of the zone; the integral will only contain quantities relative to the contour
s′. Then the second integration with respect to ψ over the extent of the closed contour s′,
gives

µgg′dy

∫
w2d′ψ

r3
.

Finally, bringing together the two results obtained by the double integrations, one obtains

µgg′
(

dy

∫
w2d′ψ

r3
− dz

∫
v2d′χ

r3

)
for the value of the force parallel to x, whose direction passes through the middle of the
element ds, and which derives from the action of the two surfaces terminated by the contour
s′ on the two surfaces terminated by the contour s.
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One obtains similarly, parallel to the two other axes, the forces

µgg′
(

dz

∫
u2d′ϕ

r3
− dx

∫
w2d′ψ

r3

)
,

µgg′
(

dx

∫
v2d′χ

r3
− dy

∫
u2d′ϕ

r3

)
.

24. Impossibility of producing an indefinitely accelerating movement by the
interaction of two solid and closed electric circuits and, consequentially, by
any assemblages of circuits of this kind

Thus, by assuming the application to each element ds of the contour s the forces which we
just determined, one obtains the action which results in attractions and repulsions of the
two magnetic fluids, distributed and fixed on the two assemblies of surfaces terminated by
the two contours s, s′.

But these forces applied to elements ds only differ in sign from those that we have
obtained on page 73, for the action of two circuits s, s′, by assuming they are traversed
by electric currents, provided we have µgg′ = 1

2 ii
′. This difference comes about in the

calculation that we gave, the differentials d′ϕ, d′χ, d′ψ were assumed to have the same sign
as the differentials dϕ, dχ, dψ, whereas they should be taken with opposite signs when the
two currents move in the same direction; therefore the forces produced by the mutual action
of these currents are exactly the same as those which result from the action of two surfaces
σ′ on the two surfaces σ, and it is thus completely demonstrated that the mutual action
of two solid and closed circuits, carrying electric currents, can be replaced by those of two
assemblages each composed of surfaces having as contours these two circuits, and on which
are fixed molecules of austral and boreal fluids attracting and repelling following the straight
lines which join them, based on the inverse square of the distances. Combining this result
with the rigorous consequence of the general principle of the conservation of strong forces,
already referred to several times in this publication, that all action which is reducible to
these forces, functions of distances, acting between the material points which form two solid
systems, one fixed, the other mobile, can never give rise to a movement which continues
indefinitely, despite the resistances and the frictions which affect the mobile system, we thus
conclude, as we did when it acted on a magnet and a closed voltaic solid, that this sort of
movement can never result from mutual action of two solid and closed circuits.

Instead of substituting for each circuit two surfaces very close to each other one covered
by austral fluid and the other by boreal fluid, these fluids being distributed as stated above,
one could replace each circuit by a single surface on which are uniformly distributed magnetic
elements such as were defined by M. Poisson, in the Treatise read to the Académie des
Sciences on 2 February 1824.

The author of this Treatise, in calculating the formulas by which he entered into the
field of analyzing all issues related to the magnetization of bodies, whatever the cause that
one assigns to them, has given(1) the values of the three forces exercised by a magnetic

(1) Treatise on the theory of magnetism, by M. Poisson, page 22.
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element on a molecule of austral or boreal fluid; these values are identical to those that I
deduced from my formula, for the three quantities A,B,C, in the case of a very small closed
and plane circuit, when one assumes that the constant coefficients are the same, and it is
easy to conclude a theorem from which one sees immediately :

1◦ That the action of an electrodynamic solenoid, calculated from my formula, is, in all
cases, the same as that of a series of magnetic elements of the same strength, distributed
uniformly along a straight or curved line which encloses all the small circuits of the solenoid,
by giving, to each of these points, on the axes of the elements, the same direction of this
line.

2◦ That the action of a solid and closed voltaic circuit, calculated as well following
my formula, is precisely that which would be exerted by magnetic elements of the same
strength, distributed uniformly on an arbitrary surface terminated by the circuit, when the
axes of the magnetic elements are everywhere normal to this surface.

The same theorem leads also to the consequence, that if one imagines a surface enclosing
on all sides a very small space; that one assumes, on one part, molecules of austral fluid
and of boreal fluid in equal quantities distributed on the small surface, as they should be
so that they constitute a magnetic element such as that considered by M. Poisson, and, on
the other part, the same surface covered by electric currents, forming on this surface small
circuits closed in planes parallel and equidistant, and that one calculates the action of these
currents from my formula, the forces exercised, in the two cases, whether on an element of
conducting wire, whether on a magnetic molecule, are precisely the same, independent of
the form of the small surface, and proportional to the volume that they enclose, the axes
of the magnetic elements being represented by the line perpendicular to the planes of the
circuits.

The identity of these forces once demonstrated, can be considered as having as simple
corollaries, all the results that I have given in this Treatise, on the possibility of substituting
for magnets, without changing the produced results, assemblies of electric currents which
form circuits which enclose their particles. I think that it would be easy for the reader to
deduce this consequence, and the theorem on which it is based, by the preceding calculations;
I have also developed them in another essay where I discussed at the same time, under this
new point of view, all that is relative to the mutual action of a magnet and a voltaic
conductor.

25. Experiments which confirm the theory which attributes the properties of
magnets to electric currents, proving that a spiral or helical conducting wire
carrying a current, attached to a moving metallic disc shows a movement
exactly like that discovered by M. Arago between a disc and a magnet

While I was writing this, M. Arago discovered a new type of action on magnets. This
discovery, equally as important as unexpected, consists of the mutual action which develops
between a magnet and a disk or ring of any substance, when the relative positions continually
change. M. Arago had the idea that one should be able, in this experiment, to substitute a
conductor wound in a helix for the bar magnet, and he engaged me to verify this conjecture
by an experiment the success of which could not be doubted. Defects in the equipment that
I used, with M. Arago, to verify the existence of this action prevented us from obtaining a
decisive result; but, M. Colladon having agreed to improve the equipment that we used, I
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verified with him in a complete manner, today 30 August 1826, M. Arago’s idea, by use of
a very short double helix which has turns of about two inches in diameter.

This experiment completes the identity of the effects produced, whether by magnets,
or by assemblies of electric circuits both solid and closed(1); it demonstrates that the series
of decompositions of neutral fluid, which constitutes electrical current, suffices to produce,
in this case as in all the others, the effects that one ordinarily explains by the action of
two fluids different from electricity, and that one designates by the names austral fluid and
boreal fluid.

(1) It seems at first that this identity ought only to take place with respect to closed
voltaic circuits of very small diameter; but it is easy to see that it is also true of circuits
of arbitrary magnitude since, as we have seen, they may be replaced by magnetic elements
distributed uniformly over surfaces terminated by these circuits, and the number of surfaces
that a particular circuit circumscribes can be multiplied at will. The set of surfaces may be
regarded as a bundle of magnets which are equivalent to the circuit. The same consideration
proves that without in any way affecting the resulting forces, the infinitesimal currents
which encircle the particles of a bar magnet can always be replaced by finite currents, these
currents forming closed circuits about the axis of the bar when those of the particles are
distributed symmetrically about this axis. For this it is sufficient to imagine surfaces within
the bar terminating at the surface of the magnet and cutting the lines of magnetization
everywhere at right angles and passing through the magnetic elements which can always
be assumed to be placed at the points where these lines are met by the surfaces. Thus,
if all the elements of a particular surface are of equal intensity on equal areas, they can
be replaced by a single current flowing along the curve formed by the intersection of this
surface and that of the magnet. If they should vary, increasing in intensity from the surface
to the axis of the magnet, they should first be replaced by a current at this intersection
such that it ought to be according to the minimum intensity of the particular currents of
the surface normal to the lines of magnetization under consideration, and then, for each line
circumscribing the portions of this surface where the small currents become more intense, a
new current should be imagined which is concentric to the previous one as required by the
difference in intensity of the adjacent currents, some outside and the others inside this line.
If the intensity of the particular currents decreases from the surface to the axis of the bar, a
corresponding concentric current should be imagined on the separation line in the opposite
sense. Finally; an increase of intensity which might follow the decrease would require a new
concentric current directed as in the first case.

I only add here these comments so as not to omit a remarkable consequence of the results
of this Memoire, and not in order to deduce some probabilities in favor of the supposition
that the electric electric currents of magnets form closed circuits about their axes. Having
at first hesitated between this supposition and the other way of conceiving currents as
encircling the particles of magnets; I have recognized for a long time that this latter concept
best fit all the facts, and in this respect my opinion has not changed at all.

Moreover, this conclusion is useful in that it renders the similarity of the actions pro-
duced by an electrodynamic helix, on the one hand, or by a magnet, on the other, as
completely from the point of view of theory as when found by experiments, and by which
the explanations where one substitutes, as I have done in those that I have given above on
the revolving movement of a floating magnet, a single closed circuit.
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26. General consequences of these experiments and calculations relative to elec-
trodynamic phenomena.

After long reflection about these phenomena and after the ingenious explanation that Mr.
Poisson has recently given for the new kind of action discovered by Mr. Arago, I think that
we can accept that the most likely current state of science, consists of following propositions.

1◦ Without our being allowed to reject explanations based on the reaction of the ether
set in motion by electric currents, there is no need, up to now, to resort to them.

2◦ Molecules of the two electrical fluids, distributed on the surface of conductors, on
the surface or in the interior of non conducting bodies, and at rest at points of these bodies
where they are located, whether in equilibrium in the first case, or whether due to the fact
that they are held fixed in the second case by the coercive force of the non-conductive bodies,
will produce, by their attractions and repulsions reciprocally proportional to the square of
the distances, all the phenomena of ordinary electricity.

3◦ When the same molecules move in conducting wires, they meet in neutral fluid and
separate at every moment, there results from their mutual action forces that depend first
on the length of extremely short periods between two consecutive meetings or separations,
next directions following which occur alternative compositions and decompositions of neutral
fluid. The forces thus produced are constant as soon as this dynamic state of the fluids in
the electrical conductors becomes permanent; it is these that produce all the phenomena of
attraction and repulsion that I have discovered between two such wires.

4◦ The action, whose existence I found, between the earth and voltaic conductors,
makes it difficult to doubt that the currents are similar to those of conducting wires in
the interior of our earth. Presumably these currents are the cause of the internal heat,
they occur mainly where the oxidized layer that forms a complete cover rests on a metalic
core, in accordance with the explanation that Sir H. Davy gave of volcanoes, and it is
they that magnetize magnetic minerals and bodies exposed under the right circumstances
by electrodynamic action of the earth. The identity of effects explained in the note earlier
provide no irrefutable proof that the terrestrial currents are not solely established around
the particles of the earth.

5◦ The same permanent electrodynamic state consisting of a series of decompositions
and recompositions of neutral fluid which take place in conducting wires, exists around
particles of magnetic bodies, and produces actions similar to those which occur in a wire.

6◦ In calculating these actions according to the formula that represents the two elements
of voltaic currents, we find specifically, for the forces that result either when a magnet acts
on a wire, or when two magnets interact with each other, the values that were produced
from the latest of Mr. Biot’s experiments in the first case, and those of Coulomb in the
second.

7◦ This identity, purely mathematical, confirms the most comprehensive view, based
also on the body of all the facts, that the properties of magnets are actually due to the
continual movement of the two electric fluids around their particules.

8◦ When the action of a magnet, or of a conducting wire, creates a movement around the
particles of a body, molecules of positive electricity and negative electricity, which must be
formed in the electrodynamic permanent state which results from actions which it exercises,
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whether on a wire or on a magnetized body, reach this state after a time always very short,
but which is never zero, and the duration of which depends in general on the resistance
that opposes the movement of the body fluids which it contains. During this movement,
before reaching a state of constant motion, or when this state is stationary, they must exert
forces that most probably produce the singular effects that Mr. Arago has discovered. This
explanation is, moreover, that of Mr. Poisson, applied to my theory, based on the assumption
of an electric current forming a very small closed circuit acting as precisely two molecules,
one of austral fluid, another boreal fluid located on its axis, the other in the plane of the
small current, at distances of these planes which are equal to each other, and all larger when
the electric current has more intensity, we must necessarily find the same values for the
forces that develop, or when it is assumed that the current which is established gradually
ceases to exist whether when one imagines that the magnetic molecules, first come together
in neutral fluid, or are separate, or successively move away to greater distances and then
approach to meet again.

In finishing this memoir I think that I should observe that I have not had time to build
the instruments shown in Figure 4 of the first Plate (Pl. 1 pg. 114, fig. 4 pg. 119) and Figure
20 (Pl. 2 pg. 115, fig. 20 pg. 125) of the second Plate. The experiments for which they are
intended have not yet been done, but since these experiments are only intended to verify
results obtained by other means, and they are mainly useful as proof against those that
provided these results, I have not thought it necessary to remove the descriptions.
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NOTES
[1]

CONTAINING

SOME NEW DEVELOPMENTS ON THE SUBJECTS TREATED

IN THE PRECEDING MEMOIR

I. On the method of demonstrating, using the four equilibrium cases explained
at the beginning of this Treatise (page 6), that the value of the mutual action
of two conducting wires is

−2ii′√
r
· dsds′

d2r
dsds′.

Following in order the transformations that I successively applied to this expression, one
finds first, due to the first two equilibrium cases, that the expression is

ii′(sin θ sin θ′ cosω + k cos θ cos θ′)dsds′

rn
;

one deduces from the third, between n and k, the relation n+ 2k = 1, and from the fourth
n = 2, from which k = − 1

2 ; this fourth equilibrium case is therefore the one employed in
the last place for the determination of the value of the force which develops between two
elements of conducting wires : but one can follow a different path using a consideration
provided by Mr. de Laplace, as he concluded from Mr. Biot’s first experiments, on the
mutual action between a magnet and an indefinite rectangular conductor, which showed
that the force exercised by an element of the wire on one of the poles of the magnet varies
inversely with the square of the distance, if the distance only changes in value and the
angle between the measured straight line and the direction of the element stays the same.
In applying this consideration to the mutual action of two elements of conducting wires, it
is easy to see, independent of any preliminary research on the value of the resulting force
that this force is also inversely proportional to the distance when only it is varied, and the
angles that determine the relationship between the elements are unchanged. In effect, based
on the considerations developed at the beginning of this Treatise, the force in question here
is necessarily directed along the line r, and has the value

ii′f(r, θ, θ′, ω)dsds′;

[1]

These are the NOTES from the 2nd editions, 1827–1883. They are substantially changed
from the NOTES in the 1st edition, but are the same as the NOTES published in the
Mémoires de L’Académie Royale des Sciences de L’Institut de France, Année 1823, Tome
VI, 1827.
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from which it follows, defining α, β, γ to be the angles that this straight line forms with the
three axes, the three results are expressed by

ii′f(r, θ, θ′, ω) cosα dsds′, ii′f(r, θ, θ′, ω) cosβ dsds′, ii′f(r, θ, θ′, ω) cos γ dsds′,

and the three forces parallel to the three axes which result between two circuits by the
double integrals of these expressions, i and i′ being constants.

Now it follows from the fourth equilibrium case, by replacing the three rings by any
similar curves such that the dimensions are homologous in continuous geometric progression,
that these three forces have equal values in the two similar systems; it is thus necessary that
the integrals which express them have null dimension relative to all the lines which enter,
following the remark by Mr. de Laplace which I just remember, and therefore by consequence
also the differentials of which they are composed, considering ds and ds′ among the lines
which are included, because the number of these differentials, though infinite of second order,
should be considered as the same in the two systems.

Now the product dsds′ is two dimensional : it then must be that f(r, θ, θ′, ω) cosα,
f(r, θ, θ′, ω) cosβ, f(r, θ, θ′, ω) cos γ, are of dimension — 2 ; and since the angles θ, θ′, ω, α,
β, γ are expressed by numbers which contribute nothing in the dimensions of the values of
the differentials, and since f(r, θ, θ′, ω) only contains the single line r, it is necessary that
this function is proportional to 1

r2 , so that the force applied from one to the other of the
two elements of the conducting wires is given by

ii′ϕ(θ, θ′, ω)

r2
dsds′.

The first two equilibrium cases then determine the function ϕ, where only k remains un-
known, and it has

ii′(sin θ sin θ′ cosω + k cos θ cos θ′)

r2
dsds′,

for the value of the sought force : it is, as is known, in this form that I presented it in the
Mémoire that I read before the Académie on 4 December 1820. By replacing sin θ sin θ′ cosω,
and cos θ cos θ′ by their values

− rd2r

dsds′
dsds′, − dr

ds
· dr

ds′
,

it becomes

− ii′

r2

(
d2r

dsds′
+ k

dr

ds
· dr

ds′

)
dsds′ =

− ii′(rdd′r + kdrd′r)

r2
= − ii

′rkdd′r + krk−1dr d′r

rk+1
=

− ii′d(rkd′r)

rk+1
= − ii

′dd′(rk+1)

(k + 1)rk+1
,

and shortening by substituting k+ 1 = m, one has this simple expression for the looked for
force

− ii
′ dd′(rm)

mrm
.
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It only remains to determine m in the equilibrium case which shows that the sum of the
components of the forces acting on an element of a conducting wire, taken in the direction
of the element, are always null when the conducting wire forms a closed circuit. This equi-
librium case, which I considered in this Treatise as the third, should be like the fourth, since
it is the last which one uses in the full determination of the sought after force. In replacing
d′r par — cos θ′ds′ in the value

− ii
′d(rm−1d′r)

rm

of the force that the two elements exert one on the other, one has, for its composition, in
the direction of the element ds′,

ii′ds′ cos θ′d(rm−1 cos θ′)

rm
=

1

2
· ii
′ds′d(r2m−2 cos2 θ′)

r2m−1
,

since it is necessary that the integral relative to the differentials which depend on ds are
null at all times that the curve s is closed; but it is easy to see, by integration by parts, that
it is equal to

1

2
ii′ds′

[
cos2 θ′2
r2

− cos2 θ′1
r1

+ (2m− 1)

∫
cos2 θ′dr

r2

]
.

The first part of this expression vanishes when the curve s is closed, because r2 = r1,
cos θ′2 = cos θ′1, with regard to the second one shows easily, as we have done, page 16, that∫

cos2 θ′dr
r2 cannot vanish, whatever the form of the closed curve s; it is therefore necessary

that has 2m− 1 = 0, m = 1
2 , and that the value of the force due to the mutual action of the

two elements ds, ds′ is

− ii
′dd′(rm)

mrm
= −2ii′dd′

√
r√

r
.

II. On a proper transformation which simplifies the calculation of the mutual
action of two rectilinear conductors.

When the two conductors are rectilinear, the angle formed by the directions of the two
elements is constant and equal to the same directions of the two conductors; it is supposed
to be known, and one has, as designated by *, on page 15,

r
d2r

dsds′
+

dr

ds
· dr

ds′
= − dx

ds
· dx′

ds′
− dy

ds
· dy′

ds′
− dz

ds
· dz′

ds′
= − cos ε,

from which it follows that

dd′(rm)

mrm
=

(m− 1)drdr′ + rdd′r

r2
=

(m− 2)drdr′ − cos εdsds′

r2
.

By designating by p some other exponent, one has equivalently

dd′(rp)

prp
− (p− 2)drd′r − cos εdsds′

r2
,
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and, by eliminating drdr′

r2 between the two equations, one obtains

(p− 2)dd′(rm)

mrm
=

(m− 2)dd′(rp)

prp
=

(m− p) cos εdsds′

r2
,

from which
dd′(rm)

mrm
=
m− 2

p− 2
· dd′(rp)

prp
=
m− p
p− 2

· cos εdsds′

r2
,

By substituting 1
2 for m in this equation, and multiplying its two parts which result by −ii′,

one has the value of the action of two elements of conducting wires transformed as

− ii
′dd′
√
r√

r
=

3
2 ii
′

p− 2
· dd′(rp)

prp
−

( 1
2 − p)ii

′

p− 2
· cos εdsds′

r2
,

and one can in this expression assign any value to p. The one that provides the most
convenience for calculation is p = −1, by adopting this it becomes

− ii
′dd′
√
r√

r
=

1

2
ii′dd′

1

r
+

1

2
· ii
′cosεdsds′

r2
=

1

2
ii′dsds′

(
cosε

r2
+ r

d2 1
r

dsds′

)
.

I have already found by another means, page 30, this expression of the force which is exercised
one on the other of two elements of conducting wires; one can only use it, for simplification
of calculations, when the conductors are rectilinear, because it is only then that the angle
ε is constant and known; but in this case, it is this that gives in the simplest manner the
values of the forces and the rotational moments which result from the mutual action of two
conductors of this type. If I have in this Memoire used other means to calculate these values,
it is because at the time that I wrote I did not yet know this transformation of my formula.

III. On the direction of the law given in this Memoire the name electrodynamic
action director at a given point, where this action is that of a closed and
planar circuit having a layout such that all of the dimensions are very small.

The law which I have named electrodynamic action director at a given point(1) is that
which forms with the three axes the angles whose cosines are proportional respectively to
the three quantities A,B,C; the values of these three quantities, found on page 26, become

A = λ

(
cos ξ

r3
− 3qx

r5

)
,

B = λ

(
cos η

r3
− 3qy

r5

)
,

C = λ

(
cos ζ

r3
− 3qz

r5

)
,

when one substitutes the number 2 for n; and one assumes the small circuit of arbitrary
form located as in (Pl. 1 pg. 114, fig. 14 pg. 123), so that after having placed the origin A of

(1) Note by MDG: i.e. magnetic induction.
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the coordinates at the given point, one takes as the z axis the perpendicular AZ lowered from
the point A on the plane of the small circuit, and for the plane of the xz that which passes
by this perpendicular and by the center of inertia O of the area LMS which relate the x, y, z
which enter into the values of A,B,C, it is evident that one has y = 0, q = z, ξ = η = π

2 , ζ = 0
and that these values reduce as a consequence to

A = −3λxz

r5
, B = 0, C = λ

(
1

r3
− 3z2

r5

)
=
λ(x2 − 2z2)

r5
,

because r2 = x2 + z2. Since B is null, the director AE is necessarily in the plane of the xz
determined as we have just said; it forms with the axes of the x an angle EAX whose tangent
is equal to C

A , one finds, for the value of the tangent of OAE,

tan OAE =
z
x −

2z2−x2

3xz

1 + 2z2−x2

3x2

=
(z2 + x2)x

(2x2 + 2z2)z
=

1

2
· x
z

=
1

2
tan COA,

from which it follows if one takes OB = 1
3A, and one elevates OA to the point B a perpendicular

plane at AO which intercepts in D the normal OC on the plane of the small circuit, the straight
line ADE determined by the points A,D, will be the director of the action exerted at the point
A by the electric current flowing in it, which gives

AB = 2OB, tanBDA = 2tanBDO,

and

tanOAE = cotBDA =
1

2
cotBDO =

1

2
tanCOA.

This construction gives in the simplest manner the situation of the director AE such as we
have seen, page 56, that the pole of a magnet placed in A is moved by the action of this
current. It is to be remarked that it is situated at the edge of the plane LMS of the small
circuit which was described, the same as the direction of the needle of inclination which
in general points to the magnetic equator; because the point O is considered as the center
of the earth, the planes LMS,OAC like those of the equator and of the magnetic meridian,
and the straight line AE like the direction of the needle of inclination, it is evident that the
angle OAE between the terrestrial ray OAE and the direction AE of the magnet’s needle is the
complement of the inclination, and that the angle COA is the complement of the magnetic
latitude LOA; therefore the preceding equation becomes:

cot incl. =
1

2
cot lat,

or
tan incl. = 2 tan lat.
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IV. On the value of the force applied by an indefinite angular conductor to the
pole of a small magnet, and on that which impresses on the pole a conductor
in the form of a parallelogram situated in the same plane.

Whether one considers the pole B (Pl. 2 pg. 115, fig. 34 pg. 130) of the small magnet AB as
the extremity of an electrodynamic solenoid or as a magnetic molecule, one can agree, in
both views, with respect to the expression of the force exercised on the pole by each element
of the angular conductor CMZ : one finds in general that in lowering the point B, on one of
its branches CµM extended toward O, the perpendicular BO = b, setting Oµ = s, BM = a,
Bµ = r, the angle BµM = θ, the angle CMH = BMO = ε and designating by ρ a constant
coefficient, the force which is exercised on the pole B of the element ds situated at µ is equal
to

ρ sin θ ds

r2
,

where the integration is from s = OM = a cos ε to s = ∞, or, what amounts to the same
thing, from θ = ε to θ = 0 : but, in the triangle BOµ, whose side 0B = b = a sin ε, one has

r =
a sin ε

sin θ
, s = a sin ε cot θ, ds = −a sin εdθ

sin2 θ
,

ds

r2
= − dθ

a sin ε
,

thus
ρ sin θds

r2
= −ρ sin θdθ

a sin ε
,

whose integral is
ρ

a sin ε
(cos θ + C),

where, taking between the limits determined above,

ρ(1− cos ε)

a sin ε
=
ρ

a
tan

1

2
ε,

value which is doubled to obtain the force exercised on the pole B by the indefinite angular
conductor CMZ; this force, for the inverse reason that BM = a, is therefore, for the same
value of a, proportional to the tangent of half the angle CMH, and not this angle itself, since
one has assumed that the value

ρ sin θds

r2

of the force exercised by the element ds on the pole B, is to be found from analysis by calcu-
lation the supposition that the force produced by the conducting wire CMZ is proportional
to the angle CMH. One cannot doubt that there has been an error in this calculation; but
it would be even more interesting to learn what is the purpose of determining the value of
a differential from that of the definite integral which results between the given limits, that
which no mathematician it appears to me, up to now, has believed possible.

Since one cannot, in practice, make the branches MC,MZ of the angular conductor actu-
ally infinite, nor elongate the ends of the wire since it is formed to connect its branches in
communication with the extremities of the battery, at a sufficiently great distance from the
small magnet AB so that they will effect absolutely no action on it, one should, rigorously,
regard the value that we will obtain as an approximation. Finally in order to experimentally
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verify an exact result, it is necessary to calculate the force exercised on the pole B of the
small magnet by a conducting wire PSRMTSN, whose portions SP,SN, which communicate
at the two extremities of the battery, are covered in silk and twisted together, as one sees in
SL, up to close to the battery, seeing that the actions that they produce cancel each other,
and since the rest form a lozenge SRMT situated in such a way that the direction of the
diagonal SM of this lozenge passes by the point B. But first, by preserving the preceding
names and adding the angle name BSO′ = −ε, the angle BRO′ = θ′1, the distance BS = a′

and the perpendicular BO′ = b′ = −a′ sin ε because the angle BSO′ = −ε, one easily sees
that the action of the portion RS of the wire conductor on the pole B is equal to

−ρ(cos ε− cos θ′1)

b′
,

so that, since b = a sin ε, one finds

ρ(cos θ1 − cos ε)

b
,

for that which affects the portion MR on the same pole B, by taking the preceding integral
from θ = 0 to θ = θ1.

By combining these two expressions, and doubling the sun, one gets the total action of
the lozenge contour MRST,

2ρ

(
cos θ1

b
− cos ε

b
+

cos θ′1
b′
− cos ε

b′

)
.

This value is susceptible to another form which one obtains by relating the positions
of the four angles of the lozenge to two axes BX,BY determined by the point B parallel to
its sides and which joins them at the points D,E,F,G; if one sets BD = BF = g, BE = BG = h,
one has

b = BO = g sin 2ε, b′ = BO′ = h sin 2ε,

cos θ1 =
OR

BR
=

h+ g cos 2ε√
g2 + h2 + 2gh cos 2ε

,

cos θ′1 =
O′R

BR
=

g + h cos 2ε√
g2 + h2 + 2gh cos 2ε

,

and from the average of these values, those of the force exercised on the pole B become

2ρ

(
h+ g cos 2ε

g sin 2ε
√
g2 + h2 + 2gh cos 2ε

+
g + h cos 2ε

h sin 2ε
√
g2 + h2 + 2gh cos 2ε

− cos ε

g sin 2ε
− cos ε

h sin 2ε

)
=

ρ

(
2
√
g2 + h2 + 2gh cos 2ε

gh sin 2ε
− 1

g sin ε
− 1

h sin ε

)
,

by replacing in the two last terms sin 2ε by its value 2 sin ε cos ε.

Now drop from the point D, perpendiculars DI,DK to the straight lines BM,BR : the first
is obviously equal to g sin ε, and the second is obtained by noticing that in multiplying it
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by BR =
√
g2 + h2 + 2gh cos 2ε, one has a product equal to twice the surface of the triangle

BDR, that is, gh sin 2ε, at the end by naming p1,1 and p1,2 their perpendiculars, it becomes

1

p1,1
=

1

g sin ε
,

1

p1,2
=

√
g2 + h2 + 2gh cos 2ε

gh sin 2ε
;

by dropping from the point E the two perpendiculars EU,EV on the straight lines BT,BS,
and representing them by p2,1 and p2,2, the first becomes equal to DK due to the equality
of the triangles BDR,BET, and the second will have the value h sin ε, from the fact that the
expression of the force exerted by the contour of the lozenge MRST on the pole B can be
written as :

ρ

(
1

p1,2
+

1

p2,1
− 1

p1,1
− 1

p2,2

)
.

In this form it applies not only to a lozenge one of whose diagonals is directed so as to
pass by the point B, but to an arbitrary parallelogram NRST (Pl. 2 pg. 115, fig. 44 pg. 133)
whose perimeter carries an electric current which acts on the pole of a magnet located in
the plane of this parallelogram. It results, in effect, as was already said, pages 27 and 56,
that the effect of NRST on the pole B is the same as if all the elements d2λ which compose its

surface acting on this pole with a force equal to ρd2λ
r2 ; from which it follows, labeling by x

and y the coordinates referring to the axes BX, BY, and at the origin B of an arbitrary point
M of the area of the parallelogram which gives

d2λ = dxdy sin 2ε, and r =
√
x2 + y2 + 2xy cos 2ε,

the total force, impinging on pole B of the small magnet AB, will then be

ρ sin 2ε

∫ ∫
dxdy

(x2 + y2 + 2xy cos 2ε)
3
2

.

Now we have seen, page 51, that the indefinite integral

dsds′

(a2 + s2 + s′2 − 2ss′ cos ε)
3
2

is
1

a sin ε
arctan

ss′ sin2 ε+ a2 cos ε

a sin ε
√
a2 + s2 + s′2 − 2ss′ cos ε

,

or

− 1

a sin ε
arctan

a sin ε
√
a2 + s2 + s′2 − 2ss′ cos ε

ss′ sin2 ε+ a2 cos ε
,

by removing the constant π
2 . When a = 0, this quantity takes the form 0

0 ; but since the arc
should be replaced by its tangent, the factor null a sin ε vanishes, and one has∫ ∫

dsds′

(s2 + s′2 − 2ss′ cos ε)
3
2

= −
√
s2 + s′2 − 2ss′ cos ε

ss′ sin2 ε
,
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which is easy to verify by differentiation. One concludes immediately that the expression of
the force that we have calculated, considered as an indefinite integral, is

−ρ
√
x2 + y2 + 2xy cos 2ε

xy sin 2ε
= −ρ

p
,

Defining p to be the perpendicular PQ dropped to the point P on BM, because the double of
the area of the triangle BPM is both equal to p

√
x2 + y2 + 2xy cos 2ε and to xy sin 2ε, which

gives

1

p
=

√
x2 + y2 + 2xy cos 2ε

xy sin 2ε
.

It only remains now to calculate the values taken by this indefinite integral at the four
vertices N,R,T,S of the parallelogram, and assign them convenient signs; continuing to des-
ignate respectively by p1,1, p1,2, p2,1, p2,2 the perpendiculars DI,DK,EU,EV, it is evident that
one thus obtains for the value of the force looked for

ρ

(
1

p1,2
+

1

p2,1
− 1

p1,1
− 1

p2,2

)
.

The direction perpendicular to the plane of the parallelogram NRST after which the pole
of a magnet located in B is carried by the action of the electric current which follows the
contour of this parallelogram, is the electrodynamic action director which acts at the point
B : where from which it follows that if there is at this point an electric current element in
the plane of the parallelogram, it will form a right angle with the action director, and thus
the action of this current on the element will be a force located in this plane, perpendicular
to the direction of the element, and equal to that the same current would exercise on the
pole of a magnet placed at the point B multiplied by a given constant, which is here that
of ρ at 1

2 ii
′ds, naming this element ds; so that the force thus directed which acts on the

element will have the value

1

2
ii′ds′

(
1

p1,2
+

1

p2,1
− 1

p1,1
− 1

p2,2

)
cosω.

When the element located in B is in the plane of the parallelogram, but forms with this plane
an angle equal to ω, one can replace it by two elements of the same intensity, one in this
plane, the other which is perpendicular to it : the action of the current of the parallelogram
on this last will be null, one should only take account of the one which acts on the first ; it
is necssarily in the plane of the parallelogram, perpendicular to the element and equal to

1

2
ii′ds′

(
1

p1,2
+

1

p2,1
− 1

p1,1
− 1

p2,2

)
.

END
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