

Git: Version Control for Everyone
Beginner's Guide

The non-coder's guide to everyday version control for
increased efficiency and productivity

Ravishankar Somasundaram

BIRMINGHAM - MUMBAI

Git: Version Control for Everyone Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1170113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-752-2

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Author
Ravishankar Somasundaram

Reviewers
Giovanni Giorgi

Michael J. Smalley

Acquisition Editor
Robin de Jongh

Lead Technical Editor
Aaron Rosario

Technical Editors
Dipesh Panchal

Veronica Fernandes

Project Coordinator
Leena Purkait

Proofreaders
Maria Gould

Lawrence A. Herman

Indexer
Tejal Soni

Graphics
Sheetal Aute

Valentina D'silva

Aditi Gajjar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Ravishankar Somasundaram has over 6 years of techno-functional experience in
providing solutions to clients across multiple sectors and domains. Being passionate about
learning and teaching, he also strongly believes that the sole purpose of learning is to make
our minds think in different perspectives, and he facilitates this in his training sessions
through a blended learning approach mainly focused on how to "learn to learn".

Junior Scientist: Apart from winning several prizes in science projects in his lower schoolings,
he was awarded the title "Junior Scientist" by the committee consisting of people from the
Indian Space Research Organization (ISRO) in an Inter school Science Fest for a model display
on Evolution of Airplanes through Aerodynamics. This is one of his childhood achievements.

His final year college project, aimed at eliminating the scenario of English alone being the
medium of programming in all programming languages, which restricts people who don't
know English from getting into the IT field and implementing their ideas, was selected and
funded by MIT NRCFOSS and considered as a landmark.

By early 2010 he was an official third-party developer of Moodle code, one of the seven
people from India and the only one from Tamil Nadu. He shares his knowledge by helping
people on the Moodle official forum and on IRC. He has also presented a paper in the 9th
International Tamil Internet conference on Moodle: For Enhanced Learning which talks about
leveraging Modle's capability to expand user base for one of the oldest language known to
mankind - Tamil.

Ravi currently leads Thirdware technology solutions efforts on "Next Generation Mobility" by
playing with evolving technologies through its trends - predominantly focusing on Enterprise
mobility (MEAP segment) as a Senior Technical Analyst heading the R&D division.

Recently he represented his company at an international conference: "Yugma – Unleashing
the Innovation Potential", with an idea that uses Artificial Intelligence to empower the next
generation of enterprise mobile solutions.

Acknowledgement

I am thankful to all the people I have met, for they have contributed to my growth either by
being an inspiration or personally guiding and pointing me to the right direction when facing
challenging situations or throwing critiques continuously, making me recognize there is
always an area for improvement in my career and personal life.

Thanks to my clients, employers, and colleagues for providing invaluable opportunities to
expand my knowledge and shape my career.

Thanks to all the people who dwell in IRC. Special thanks to Ron for the Mac screenshots.

I dedicate all my accomplishments to my fun loving dad, my ever loving mom, my
supportive sister, my understanding wife Madhu, my friends (particularly Sridhar, Ranjith,
Ramya, Antano Solar, and Krishnan), and other relatives for all the guidance, faith, hope,
love, and support.

Finally, thanks to Packt Publishing for giving me this wonderful opportunity to share my
knowledge and thank you for reading!

About the Reviewers

Giovanni Giorgi is an IT professional with a strong cultural background, living in Milan, Italy.

Giovanni was born in 1974; he started playing with Commodore 8-bit computers when he
was an 11-year-old child.

During college he studied Latin, Greek during school time, and Turbo Pascal and
C programming language as a hobby.

He then attended university in September 1993. After one year he fell in love with open
source philosophy.

Giovanni got a Masters degree in Information Technology from DSI of Milan, Italy in 2000.
He currently works as an IT Consultant for NTT Data, and has 15 years of experience in
banking and finance projects.

He worked with his co-worker on a big project, and he chose Git as the revision control
system to coordinate the Pune-based team with the one based in Milan.

He currently write articles on his blog, http://gioorgi.com.

Michael J. Smalley is the founder of Smalley Creative LLC, a technology consulting,
education, and development organization originating in Philadelphia, PA. He is a
professional systems administrator and programmer, as well as the creator and
maintainer of the popular Smalley Creative Blog, a regularly updated source of tutorials,
news, and solutions of a technical nature. Michael is interested in entrepreneurship,
teaching, creative startups, and financial independence, as well as vintage computers,
gaming, road bicycling, and musicianship.

When he isn't hunched over a keyboard, he can be found leading the Bucks County Game
Creators Meetup, promoting the fact that technology and an opportunity to learn should
be accessible to everyone, singing the praises of being an extrovert in a proudly introverted
field, and traveling with his wife Kali.

My gratitude goes out to my intelligent, beautiful, and creative wife Kali
M. Whyte-Smalley for always believing in my bold, arguably crazy interests
and endeavors, and for encouraging my enthusiasm in bringing these ideas
to life and goals to fruition. Thank you to my elegant and selfless mother,
Lisa A. Smalley, for encouraging me to stay well-rounded, for showing me
the true meaning of fortitude, and for encouraging me to surround myself
with people who exemplify these qualities. Thank you to my father Michael
G. Smalley for his dedication to our family unit through hard work and
commitment, and for recognizing my constant questioning of the world
around me not as naivety, but as a desire for truth and knowledge. Thank
you to my brother David P. Smalley for continuing to stand as an unyielding
ally. Thank you to my charming Persian cat, Desmond, for unknowingly
demonstrating that even lifelong dog people can unwillingly become cat
people. Finally, thank you to Packt Publishing for giving me this opportunity
to share my knowledge, and thank you for reading!

"All men dream: but not equally. Those who dream by night in the dusty
recesses of their minds wake in the day to find that it was vanity: but the
dreamers of the day are dangerous men, for they may act their dreams
with open eyes, to make it possible." - T.E. Lawrence, Seven Pillars of
Wisdom.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Breathe Easy – Introduction to Version Control System 7

Do you need help 8
What is a version control system 8
Why you need a version control system 9
Types of version control systems 11

Local version control system 11
Tidbits 12

Centralized version control system 12
Distributed version control system 13

Falling for Git 15
Atomicity 16
Performance 16
Security 18

Summary 18
Chapter 2: Welcome Aboard – Installing Git 19

Choosing your type – download your OS specific package 19
Windows 20
Linux 21
Mac 21
Installation 21

Time for action – installing Git on Windows 22
Time for action – installing Git on Mac 26
Time for action – installing Git on Linux 29
Summary 33

Table of Contents

[ii]

Chapter 3: Polishing Your Routine – How to Increase Everyday Productivity 35
Suit up – getting ready for your Git 36
Initiation 36
Time for action – initiation in GUI mode 37
Time for action – initiation in CLI mode 39

Behind the screen 40
Configure Git 40

Time for action – configure Git in GUI mode 40
Out of flow 41

Time for action – configure Git in CLI mode 42
Adding your files to your directory 43
Time for action – adding files to your directory (GUI and CLI mode) 43

Ignore 'em 45
Bulk operations 46

.gitignore to the rescue 47
Time for action – usage of .gitignore 47

Undo addition 48
Committing the added files 48
Time for action – committing files in GUI mode 49
Time for action – committing files in CLI mode 50
Time for action – rescan in GUI mode 50
Checking out 51
Time for action – checking out using GUI mode 52
Time for action – checking out using CLI mode 55
Resetting 57
Time for action – reset using GUI mode 57
Time for action – reset using CLI mode 58

Git help 59
Summary 60

Chapter 4: Split the Load – Distributed Working with Git 61
Why share your files 62

Scenario 1: single player 62
Scenario 2: multiple players – one at a time 62

Kid's play – push and pull for a remote source 63
Scenario 1: solution 64

Going public – sharing over the Internet 64
Time for action – adding a remote origin using CLI mode 68
Time for action – resume your work from anywhere using CLI mode 69
Time for action – adding a remote origin using GUI mode 70

Table of Contents

[iii]

Time for action – resume your work from anywhere using GUI mode 74
Scenario 2: solution 77

Inviting users to your Bitbucket repository 78
Staying local – share over the intranet 80

Time for action – creating a bare repository in CLI mode 82
Time for action – creating a bare repository in GUI mode 82
Summary 84

Chapter 5: Be a Puppet Master – Learn Fancy Features to Control
Git's Functions 85

Why learn such fancy features 85
Prerequisites 86
Shortlog 86

Time for action – getting acquainted with shortlog 86
Time for action – parameterizing shortlog 88

Log search – git log 90
Time for action – skip commit logs 91
Time for action – filter logs with date range 92
Time for action – searching for a word/character match 94

Clean 95
Time for action – emulate the mess 95
Time for action – clean up your mess with pattern match 97
Time for action – wipe out your mess completely, no exceptions 98

Tagging 99
Time for action – lightweight/unannotated tagging 99
Time for action – referencing tags 101
Time for action – annotated tagging 102

Simple exercise 103
Summary 105

Chapter 6: Unleash the Beast – Git on Text-based Files 107
Git for text-based files – an introduction 108
Multiplayer mode – multiple players at a time 109

Multiple players – one at a time 109
Multiple players – all hands on deck (many at a time) 110

Sharing your repository 110
Time for action – getting ready to share 110
Time for action – distributed work force 112
Time for action – Bob's changes 113
Time for action – Lisa's changes 115
Time for action – Lisa examines the merge conflict 117

Table of Contents

[iv]

Time for action – Lisa resolves the merge conflict 117
GUI mode – get the repository's history graph 121
CLI mode – get the repository's history graph 121

Time for action – team members get sync with the central bare repo 122
Summary 123

Chapter 7: Parallel Dimensions – Branching with Git 125
What is branching 125
Why do you need a branch 126

Naming conventions 127
When do you need a branch 127
Practice makes perfect: branching with Git 129

Scenario 129
Time for action – creating branches in GUI mode 130
Time for action – creating branches in CLI mode 131
.config file – play with shortcuts 135
Time for action – adding simple aliases using CLI 135
Time for action – chain commands with a single alias using CLI 135
Time for action – adding complex aliases using GUI 137
Summary 139

Chapter 8: Behind the Scenes – Basis of Git Basics 141
Two sides of Git: plumbing and porcelain 142
Git init 142

Hooks 143
Info 143
Config 143
Description 143
Objects 144

Blob 144
Trees 144
Commits 144
Tags 144

HEAD 145
Refs 145

Bumper alert – directories inside heads and tags 145
Index 146

Git – a content tracking system 146
Git add 147
Git commit 148
Git status 149
Git clone 150
Git remote 150

Table of Contents

[v]

Git branch 151
Git tag 151
Git fetch 152
Git merge 152
Git pull 153
Git push 153
Git checkout 154
Relation across relations – Git packfiles 154

Transferring packfiles 155
Summary 156

Index 157

Preface
This book is a non-coder's guide to get a kick start in using the Git version control system
on a daily basis to improve their efficiency and productivity when dealing with all forms of
electronic data.

With step-by-step examples and illustrative screenshots, you will be guided through the
process of installing, configuring, and mastering the concepts needed to version control your
data with the help of the best in class tool, Git.

Concepts in every chapter are explained through simple, day-to-day examples and interesting
analogies which makes the learning itself an experience to cherish.

Specifically catered to address the needs of an audience from diverse backgrounds using
multiple operating systems such as Microsoft Windows, Linux, and Mac OS, all illustrations are
explained using both Graphical User Interface (GUI) and Command-Line Interface (CLI) modes.

The final chapter is dedicated to readers who want to understand the behind the scenes
operations of Git's functions which they performed in all other chapters, in simple terms.
This will also interest people who have been using Git prior to this book.

By the end of the book, you will not only gain theoretical knowledge but also a hands-on
practical understanding and experience about the concepts which are needed to make a
difference in the way you deal with digital files.

This book can also be used as a reference or to relearn the concepts that have been
discussed in each chapter. It has illustrative examples, wherever necessary, to make
sure it is easy to follow.

Preface

[2]

What this book covers
Chapter 1, Breathe Easy – Introduction to Version Control System, introduces the concept of
version controlled systems, its necessity along with its evolution, and more importantly why
Git is considered to be the best in class.

Chapter 2, Welcome Aboard – Installing Git, guides you through the installation of Git,
specific to your operating system.

Chapter 3, Polishing Your Routine – How to Increase Everyday Productivity, teaches you five
basic, important concepts (initiate your repository, add your files to it, start versioning by
committing them, travel back using checkout, and reset whenever it is needed) which is all
you need to get started with versioning your files using Git.

Chapter 4, Split the Load – Distributed Working with Git, teaches you the essentials of
collaborative development by sharing content with others over multiple mediums such as
the Internet and intranet and explores various methods to continue the work from different
locations with different people.

Chapter 5, Be a Puppet Master – Learn Fancy Features to Control Git's Functions, teaches you
a few tips and tricks which can be implemented in various situations to change Git's usual
behavior pertaining to the functions which we have come across in earlier chapters.

Chapter 6, Unleash the Beast – Git on Text-based Files, exposes to you a new feature called
merging that is considered to be one of the hallmarks of Git. You will learn how to merge
content and solve conflicts caused by such merges.

Chapter 7, Parallel Dimensions – Branching with Git, introduces one of Git's most applauded
features, the concept called branching, its importance, and the ways it can be implemented
to transform your mode of work.

Chapter 8, Behind the Scenes – Basis of Git Basics, takes a deep dive into Git's internals and
puts it in simple terms. You will get to know the underlying operations which Git performed
when you executed the various Git commands in all of the earlier chapters.

What you need for this book
The basic requirement for learning the concepts in this book will be an administrative (or at
least installation) access to a machine running a Windows, Linux, or Mac operating system.
And occasionally, Internet connectivity for the said machine.

Apart from this, it's good to have your favorite text editor along with a zip utility (your
machine will have one by default) and an office package such as MS Office, OpenOffice,
and LibreOffice to create word documents.

Preface

[3]

Who this book is for
This book is for any one who is computer literate and wants to maintain multiple
versions of his/her files in an efficient manner and travel back in time to visit such
different versions without juggling numerous files along with their confusing names
stored at different locations.

This book is even for people who have prior experience with Git or any other version control
system, as they will pick up interesting points from the final chapter which is focused on Git's
internals put in simple terms.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Create a directory called BCT on your desktop."

Preface

[4]

A block of code is set as follows:

[remote "capsource"]
url = https://github.com/cappuccino/cappuccino
fetch = +refs/heads/*:refs/remotes/capsource/*

Any command-line input or output is written as follows:

git add .

git commit –m 'Unfinished list of marketing team'

git checkout master

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the Add button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Breathe Easy – Introduction to

Version Control System

We might have wondered numerous times if there is a way we could travel
back in time to change what had happened in life. Well, as fictional as it
sounds, you are going to learn a method to perform this travel when it comes
to digitized files! Yes, you read that right; this chapter is going to introduce
you to a system that makes this possible. We will begin by giving you a solid
conceptual understanding about version control with Git.

This chapter will answer the following questions:

 � What is a version control system?

 � Where do you need one?

 � How did they evolve?

 � Why is Git your best bet?

By the end of this chapter you would be able to visualize how you can better handle
situations where frequent changes happen on different parts of your digitized files.
So let's get started right away!

Breathe Easy – Introduction to Version Control System

[8]

Do you need help
I learned to play computer games even before learning to switch a computer on or off, for
which I sought an adult's help. The early computer games, which put us in awe even at that
time, had a few frustrating moments when they wouldn't allow us to save our progress. Even
if they had a save option it was a single save slot at a time, which meant you could only save
your progress at the cost of your earlier save. This was a shame, because your previous save
might have been at an exceptionally fun part of the game that you would like to preserve
now and revisit later some day, or even worse, your present save might have been at an
unwinnable situation that you want to undo.

Computer games have evolved from this state while our way of working with digitized files
remains the same. Options like undo and redo help us momentarily when the file that we
are working with is still open, but fail to go beyond that. You cannot just open a file and start
undoing the changes that you have made before your last save to get back to an older state.

There are also several situations where we would like to maintain multiple versions of
the same file. Even the most widely used way of maintaining multiple versions of a file by
naming the new files sequentially, for example, Inventory_product_2011-09-21.
doc, System_requirement_specification_v6.xls, and so on, become a pain as the
number of versions increases because of the huge volume of the number of files that has to
be maintained.

Now if you have experienced or thought about any of these situations and wondered
whether there is a way to handle this better, you will be rejoicing at the end of this chapter.
This is where a version control system (VCS) comes into play.

What is a version control system
A system capable of recording the changes made to a file or a set of files over a time period
in such a way that it allows us to get back in time from the future to recall a specific version
of that file, is called a version control system.

To give you a more formal explanation, a version control system is a software package
that when initiated will monitor your files for changes and allow you to tag the changes
at different levels so that you can revisit those tagged stages whenever needed.

Chapter 1

[9]

When installed and initiated, this version control system creates a local directory at the same
place where your files reside, which it uses to manage the entire history of the changes
made to your files.

Why you need a version control system
Try answering the following questions with regards to your present system setup:

 � Can you maintain multiple versions of the same file under the same name,
thus avoiding cluttering of files with small differences in their names mentioning
their versions?

 � Do you have any means of marking a specific portion of your content in the file/files
that you might need in future before changing them for present needs?

 � Are you satisfied with the existing scenario where your only failsafe plan for getting
back your content is copying and pasting the file or group of files in a separate folder
that contains the word "backup" in its name? And updating it regularly?

If your answer to any of these questions is a big no, then that's exactly the reason you would
probably need a version control system and this book.

If your answers to these questions are yes, it means that you have probably managed
to find roundabout ways to solve these issues. Simple measures could include creating
a restoration point in latest releases of Windows, which internally stores versions of all
documents such as your Word, Excel, or PowerPoint files present at that point in time
as a part of creating your restoration point.

As varied as the potential solutions may be, allow me tell you that version control systems
will amaze you with their power, simplicity, and ease of use. They will allow you to achieve
much better results with less than half the time and effort that you would normally put into
your present solutions.

By using a version control system you have the power to play with the flow of changes
happening to your documents. Whenever you have to make considerable amount of changes
to the existing content you can mark those changes as a stage (with a tag) that you can
revisit later; this serves as a failsafe mechanism just in case things didn't go as per your plan
and you want to revert the content of the document back to a particular older state.

Breathe Easy – Introduction to Version Control System

[10]

The following figures demonstrate the flow of content creation with and without a version
control system:

The previous figure shows you the flow of a content creation matrix at different times spread
across sessions. As you can observe in a regular constructive context the flow is from left
to right, meaning you progress with content creation one way when it comes to building
content on different time periods. In this flow you cannot go back to a previous phase
from where you can take a different direction altogether when compared to what you have
already taken.

To explain it using our flow diagram, you cannot go back to any of the intermediate stages
from the final stage to write an entirely different third paragraph to serve a new purpose
without any data loss. (You cannot use the undo feature as the content was built across time
periods, and you cannot undo something once you have saved and closed your file.)

Presently we achieve this using the "save as" option, giving the file a different name, deleting
the third paragraph, and starting to write a new one.

In contrast, when you use a version control system, it's a multi-directional free flow context.
You mark each and every change you consider important as a new stage and proceed with
your content creation. This allows you to get back to any earlier stages that you have created,
without any data loss.

Chapter 1

[11]

And the best part is you are not limited by the following:

 � Number of hops

 � Number of stages between the hops

 � Direction of the hop

This means we can, without any concern, jump to and fro between and across stages in any
direction without any data loss. Now doesn't that sound like the need of the hour?

Types of version control systems
There are three types of version control systems available. These are classified based on their
mode of operation:

 � Local version control system

 � Centralized version control system

 � Distributed version control system

Let's quickly go through the history in brief.

Local version control system
After understanding that maintaining multiple versions of files by just following a file naming
convention is highly error prone, a local version control system was the first successful
attempt to solve this issue.

Revision control system (RCS) was one of the most popular version control systems in
this cadre.

Breathe Easy – Introduction to Version Control System

[12]

This tool basically works by keeping patch sets (that is, the difference between the file's
content at progressive stages) using a special format in the version tracker that is stored in
your local hard disk.

It can then recreate the file's contents exactly at any given point in time by adding up
all the relevant patches in order and "checking it out" (reproducing the content to the
user's workplace).

Tidbits
Version tracker is nothing but a file with its own file format holding structured content
format through which it can perform its functionalities.

When a file is put under RCS it creates a version tracker entry that will hold details such
as RCS configuration for that particular file at the top followed by version number, date,
time, author, state, branch, and a link to the next stage followed by contents of the file in a
specially formatted manner. After this process your file is deleted!

Retrieval of the file, as stated previously, is done through reconstruction of patches.

Centralized version control system
As with any other software package or concept, as the requirements kept evolving, users felt
that local version control systems limited their activities.

People were not able to work collaboratively on the same project, as the files with their
versions are stored in somebody's local computer and were not accessible to other people
working on the same files.

Chapter 1

[13]

So how do you solve this problem?

It is solved by keeping the files in a common place (server) that everybody has access to from
their local machines (clients). Hence, the birth of a centralized version control system.

Whenever people want to edit single or multiple files only the last version of the files
are retrieved.

This setup not only provides access to the files for people who require them but also offers
visibility on what other people are working towards.

As the files are stored in one single location from which everybody needs to share the files,
any changes made to the files are automatically shared with other individuals as well.

Distributed version control system
Whenever you bet big time on one single unit, the probability of losing is also high. Yes,
there is a high degree of risk involved in using a centralized version control system because
the users only have the last version of files in their system for working purposes; there is a
chance you might ultimately lose the entire history of your files if the server gets corrupt and
if you don't have fail-safe procedures implemented.

Now people get confused. You risk everything when you store your entire history in one
single place using a centralized version control concept; on the contrary you lose the power
to work collaboratively when you use local version control.

So what do you do?

Breathe Easy – Introduction to Version Control System

[14]

Exactly! You combine the advantages of both and make a hybrid system. And that's one of
the key reasons why distributed version control systems came into the picture.

Distributed version control systems have the advantages of local version control systems,
such as the following:

 � Making local changes without any concern of full time connectivity to the server

 � Not relying on a single copy of files stored in the server

These are combined with the advantages of centralized version control systems, such as
the following:

 � Reusability of work

 � Collaborative working, not relying on history stored on individual machines

Chapter 1

[15]

A distributed version control system is designed to act both ways. It stores the entire history
of the file/files on each and every machine locally and also syncs the local changes made by
the user back to the server whenever required so that the changes can be shared with others
providing a collaborative working environment.

There are several other advantages in terms of performance, ease of use, and
administration. It's a general saying that "you name anything that a centralized version
control system can perform; a distributed version control system can handle the same thing
and perform much better".

Falling for Git
We came across different types of version control systems in the previous section, from
which we clearly understood that a distributed version control system is what will make our
lives easy, safe, and secure.

Now, there are lots of distributed systems available in the market, so which one to choose?

Git is a relatively new software package (April 7, 2005 with its first prototype) that was
designed from the ground up to avoid flaws that existed in many other version control systems.

Linus Torvalds, the man who gave us the Linux kernel, is the proud initiator of this project as
well. The very architecture of GIT is tailored for better speed, performance, flexibility, and
usability. When I first heard the previous sentence I had the same thought that you have in
mind right now: "It talks the talk; can it walk the walk?"

As a matter of fact there are several live case studies; I got convinced when I saw Git
handling the complex Linux kernel source code so gracefully.

For those of you who don't have any idea about Linux kernel or why it's tagged complex, just
think about approximately 9 million lines of content spread across 25,000 files subjected to
all kinds of content manipulation, travelling back and forth, numerous times every day by
several hundred developers across the world. And still the response time of Git's operations
are in seconds.

Why they trust Git for such challenging tasks and how Git meets their expectations is
through the following:

 � Atomicity

 � Performance

 � Security

Breathe Easy – Introduction to Version Control System

[16]

Atomicity
Atomicity is nothing but a property of an operation that appears to occur at a single instant
between its invocation and its response.

As an example let's take a banking system. When you transfer money from your account
to another account, the operation is either completed fully or rejected meaning either the
money gets debited from your account and gets credited to the recipient's account or the
entire operation gets dropped and no money is debited from your account in the first place.

These systems avoid partial completions such as the amount getting debited from your
account but not getting credited to recipient's account.

Another example would be a seat reservation system in which the following are the
possible states:

 � Both pay and reserve a seat

 � Neither pay nor reserve a seat

Git creators understood the value of our data, and implemented the same when handling
content with Git. It ensures there is no data loss or version mismatch happening due to
partial operations, which increases reliability.

Performance
No matter how good a car's interiors are, if it isn't quick enough, it isn't fit enough for racing
against time. Git is proven to be manyfold faster than its competitors.

Even when handling several million files, an operation performed using Git takes only
seconds to complete. One of the main reasons for this would be the way Git handles your
files. Conceptually most other systems (CVS, Subversion, Perforce, Bazaar, and so on) look
at your data as a set of files and changes made to each of them as the version proceeds.

Chapter 1

[17]

The following is a pictorial representation of how other systems handle files and their versions:

In contrast, Git sees a relation between your files and works upon it. It takes a snapshot of
the entire set of files instead of storing the difference between versions of each file; this
contributes to the lightning speed of Git in certain operations like reverting your file's contents
to earlier versions (which we will see in later chapters). Each time a version is created, a
snapshot is taken. This doesn't mean that Git stores multiple replicas of your files; if Git finds
that there is no change in any of your files' content, just a reference to that file that points to
the previous snapshot is stored in the new snapshot, as shown in the following figure:

Breathe Easy – Introduction to Version Control System

[18]

The best part is that Git tries to occupy as little space (again, several times less when
compared to other version control systems) as possible to maintain version histories of your
files. A live case study in handling the source code of Mozilla Firefox published by Keith P.
(http://keithp.com/blogs/Repository_Formats_Matter/) showed how effectively
version control systems utilize space when it comes to maintaining the history of your files.

Mozilla's CVS repository was 2.7 GB in size; when imported to Subversion the size grew
to 8.2 GB, and when put under Git the size got shrunk to 450 MB. For a source code of
size 350 MB it's fairly nice to have the whole project history (from 1998) with just 100 MB
more space.

Security
When you use Git, you can be sure that no one is tampering with your files' content.
Everything that goes into Git is check-summed using an SHA-1 hash before it's stored,
and after that it is referred to using that checksum.

This means it's impossible to change the contents of any file or directory without Git
knowing about it. The SHA-1 hash used here is a collection of 40 hexadecimal characters
(a-f and 0-9) which is generated based on the contents of a file or directory structure. The
following is an example of a hash:

9e79e3e9dd9672b37ac9412e9a926714306551fe

For those of you who would like to know more about it, you can hear from the very creator,
Linus Torvalds, who gives a presentation at Google's tech talk event.

Summary
In this chapter we discussed problems faced in our daily lives when it comes to digitized
files, followed by exactly addressing those issues and assuring a solution to those challenging
problems with the help of a version control system.

We also quickly went through the evolution of version control systems and obtained a solid
understanding of how a distributed version control system can make our lives easy.

Then we got introduced to the best-in-class distributed version control system, Git, and
discussed a few reasons for such a claim with some interesting statistics and case studies.
This was followed by a view on a few of its internals such as atomicity, performance,
and security.

Now that we've done enough ground work, we're ready to get our copy of Git and get it
running in our system, which is the topic of the next chapter.

2
Welcome Aboard – Installing Git

In the previous chapter we got enlightened on how a version control system can
change the way we face everyday situations when it comes to digitized files,
followed by the evolution of version control systems.

We also understood why Git is considered the best in class and how it can serve
our purposes.

In this chapter we will get to know how you can install and configure Git. We shall cover
the following:

 � Choosing the Git type that suits your environment

 � Installing Git

Choosing your type – download your OS specific package
Like many other tools, Git can be downloaded from the Internet and the best part is it's free,
thanks to the open source community. Git can be installed on a variety of operating systems
such as Mac OS X, Windows, Linux, and Solaris. We will consider the top three operating
systems in terms of user base in discussing our concepts:

 � Windows

 � Linux

 � Mac OS X

Welcome Aboard – Installing Git

[20]

To start, you need to download your operating system specific Git package; we can get the
list of downloadable packages from http://git-scm.com/downloads. Go ahead and
download the latest stable release relevant to your OS, which you can find on the website,
as shown in the following screenshot (Version 1.8.0.2 was the latest stable release at the
time of writing this chapter):

For those of you Linux and Mac users who enjoy using a command-line
interface (CLI) mode to get things done, there's no need to go through the
following procedures of downloading and installing via GUI. You can use
your OS specific installer to get things done. For example, if you are using
a Debian based Linux OS, apt-get install git-core is enough
for installing Git on your system, whereas if you are using a Mac you can
either use Apple's Xcode IDE, which is an Apple approved method to install
things, or Macports or Fink to install Git for you.

Windows
If you are trying to download from a Windows machine, the website detects that and
automatically provides the Download for Windows button. Upon clicking that, you will be
prompted to save the setup file. Choose your preferred location to save the file and you are
good to go.

Chapter 2

[21]

Linux
There are always multiple ways of doing things in Unix operating systems. We will take the
easiest possible route which everybody can follow. So unless you are a person who loves
installing packages through compiling, there is no need for downloading them from this
website. You can move to the Installation section directly from here.

For people who want to install Git by getting the source code and compiling it,
perform the following steps:

 � Click on the Git source repository link; you will be taken to a page
that lists the contents of the source code package. Click on the button
called Zip, which will prompt you with the file download. Save it in
your preferred location.

 � You can then go through the regular unzip, configure, make,
and make install commands, which we won't discuss here.

Mac
If you are trying to download from a Mac machine, the website detects that and
automatically provides the Download for Mac button. Upon clicking that, you will be
prompted to save the setup file. Choose your preferred location to save the file and
you are good to go.

The download file usually follows a naming convention like Git-latest.stable_release_version_
here-min-required-os-info.dmg, for example, git-1.8.0.2-3-intel-universal-snow-leopard.dmg.

You can use the same 1.8.0.2 installer for any version of Mac OS on or above Snow Leopard.
For Leopard users there are lower versions of Git available, which you can get from
http://code.google.com/p/git-osx-installer/downloads/list.

Installation
Now that you have got your own copy of Git, let's proceed to the installation phase. Let's go
over the installation process for different operating systems one at a time.

As with any other installation, you need administrative
rights to install this software.

Welcome Aboard – Installing Git

[22]

Time for action – installing Git on Windows
Perform the following steps:

1. Double-click on the downloaded setup file to get started with the installation.

2. The first and second steps of the installation process are self-explanatory. It first
greets you with a welcome message and informs you about the "safe to follow"
procedures before installation, that is, to close all other opened applications before
continuing (just to avoid the remote chance of any shared dll/exe being overridden
or a simple case of your system running out of memory, which is required in large
amounts whenever you perform an installation). Then it shows you the details about
the GNU public license Version 2 by which our Git is governed.

To get to know more about what you can and cannot do
with the software package, go ahead and read it.

3. Clicking on the Next button on the screen brings us to the following screen, which
gets your preferred location for the installation:

Chapter 2

[23]

The default location is inside the Program Files directory of your Windows
installation. If you group all custom software installations in a separate partition
to safeguard your data in case of an OS crash, you can go ahead and select your
preferred path by clicking on the Browse… button.

4. After clicking on Next you will be facing a component configuration screen in which
you need to select Git Bash Here and Git GUI Here options under the Context menu
entries section, as shown in the following screenshot:

These options are going to provide us quick access to interfaces that we can use to
command Git. We will see more about them in the oncoming chapters.

5. Next we are prompted to select a group name under which shortcuts are placed in
the start menu for easy and quick access. Let us leave it to the default value Git and
click on Next.

Welcome Aboard – Installing Git

[24]

6. This brings us to the following screen, in which we select the second option, which
says Run Git from the Windows Command Prompt:

This setting is basically for people who will be using command lines to control Git
and its activities. This option is going to allow us to command Git additionally from
the native Windows command-line interface DOS.

After making the selection, click on the Next button.

7. The remaining two main steps are configurations that we will need while working
remotely and/or collaboratively across operating systems.

If and only if you have any SSH sessions in your registry will the installation file
detect that and prompt you with the following screen:

Chapter 2

[25]

If you are a user to whom the very term SSH is new but happen to have SSH sessions
in your system through other means, or an experienced user who wants to switch to
OpenSSH, go ahead and select the Use OpenSSH option.

If you are comfortable using other SSH applications to connect to remote systems,
select the Use (Tortoise)Plink option. Make a selection on the Choosing the SSH
executable screen and click on Next.

OpenSSH keys are created with ssh-keygen and cached with ssh-agent.
With the putty suite, keys are created with the graphical program puttygen
and loaded/cached with pageant, and SSH is done using putty.

8. Anybody who has worked with files across different types of operating systems will
definitely know about the problem with different styles of line endings.

Welcome Aboard – Installing Git

[26]

9. Now you need to tell Git how it has to treat those line endings. In the following
screen select Checkout Windows-style, commit Unix-style line endings so as to
ensure that there is no clash between carriage return line feed (CRLF) and line feed
(LF) when working across platforms:

That's about it. Your installer should finish the installation now.

What just happened?
Congratulations! Your Windows machine is now ready to control the versions of any content
with Git.

Time for action – installing Git on Mac
Perform the following steps:

1. Double-click on the .dmg file to get started with the installation. The following
screen should appear:

Chapter 2

[27]

2. Double-click on the .pkg file to start the installation process. The window
appearing in front of you welcomes you by providing information on what's
going to happen henceforth.

3. On clicking the Continue button, you will be provided with information about how
much space the software is going to occupy on your disk, along with access level of
this software for other users of your computer, as shown in the following screenshot:

4. You can customize this as per your needs, but as of now let's go ahead with the
defaults and install it for all users by clicking on the Install button.

Welcome Aboard – Installing Git

[28]

5. You will be asked to provide your administrative password for continuing
the installation.

6. If the authentication is successful your installation will be finished, which is indicated
by a success message, as shown in the following screenshot:

Chapter 2

[29]

What just happened?
Congratulations! Your Mac machine is now ready to control the versions of any content with
the help of Git.

Time for action – installing Git on Linux
As we discussed earlier, we are going to perform a Git installation on a Linux operating
system with the help of your distribution's inbuilt graphical software management system.
In this tutorial I have used a distribution called Ubuntu, which is based (downstream) on the
famous Debian operating system.

In here the software management system is called synaptic. Perform the following steps:

1. Open up the run utility prompt by pressing Alt + F2 and type synaptic.

Welcome Aboard – Installing Git

[30]

2. Matching tools automatically get displayed below; let's click on the first one,
which says synaptic-pkexec. This pops up an authentication dialog box, since the
installation requires elevated privileges, as stated earlier. So give it your password
that has administrative access and click on Authenticate.

3. This should open up the Synaptic Package Manager window, which shows you the
available packages on the centre pane and available repository sources on the left.
Let's type the name of the package that we want to install now which is git in
the Quick filter text box. It automatically populates the matching packages on the
content pane below it.

Chapter 2

[31]

4. Now we can see a package named git whose version, which is shipped by default, is
1.7.5.4 (don't worry about the version mismatch; the concepts we are going to learn
henceforth are the same for all) and its description says fast, scalable, distributed
revision control system. This is the package that we want to install, so let's right-
click on it and select Mark for Installation.

5. Now the checkbox next to the package name will have a tick option indicating that
you have selected that particular package for installation. To handle things much
more easily we are going to need two more packages associated with Git, namely
Git GUI and Gitk. So let's right-click on the same package again and select the option
Mark Suggested for Installation and select git-gui from it.

Welcome Aboard – Installing Git

[32]

6. The package manager will prompt you, asking about the required package changes,
that is, adding gitk to the installable list; so click on Mark. Now that you have
marked your packages to be installed let's go ahead! Wait, we did not select the
gitk package which we said we would need! Yes that's right, we didn't. But that will
be automatically installed, as it is a dependent package. You will see that in the
oncoming steps.

7. Now go ahead and click on the green Apply button on the shortcut bar below the
menu bar. You will be prompted with a confirmation dialog box as follows:

8. On clicking on Mark you will be given a summary of the packages that are going to
be installed and asked for confirmation.

Chapter 2

[33]

9. Upon confirmation the installation gets started and when done you get to see a
success page as follows:

What just happened?
Congratulations! Your Linux machine is now ready to control the versions of any content with
the help of Git.

Summary
Having learned about the power of Git in the previous chapter, in this chapter we got a copy
of Git and made it your own.

Then we successfully installed Git on your operating system, making it usage ready.

Now that we've got Git installed, our next step will be to personalize it, after which we will
see various magic words that will make the tool help us to increase our productivity. This is
the topic of the next chapter.

3
Polishing Your Routine – How to
Increase Everyday Productivity

We scratched the surface of version control system concepts to understand how
Git can make us more efficient in doing our work. Without any delay we also
quickly grabbed a copy of it and got it up and running in our systems.

I hear you shouting with excitement, "Let's dive in!".

Aye aye, Captain, here we go. In this chapter you will look at five important concepts, which
is all you really need most of the time in your workplace:

 � Initiating the process

 � Adding your files to the cabin (repository)

 � Committing the added files

 � Checking out

 � Resetting

That's right, just five concepts are all you need to create a difference. And of course we
shall learn how to get back on track with Git's built-in helper functions if you get lost
along the way.

Polishing Your Routine – How to Increase Everyday Productivity

[36]

Suit up – getting ready for your Git
Let's say you have a magic wand, and it will do exactly what you order it to do! Yeah, that's
right, you have Git now. You need to command Git to do what it has to do for you.

Sounds fun, right?

We already read that to maintain multiple versions of files they have to be kept inside a
directory (folder), so we shall create a directory called Workbench on your desktop to learn
the concepts explained in chapters hands on.

When it comes to handling computers there are people who would like to get the job done
with either of the following:

 � GUI mode (graphical user interface)

 � CLI mode (command-line interface)

A combination of both can also be used. In the interest of serving a diverse audience,
we shall try to cover both modes of implementation.

Initiation
Initiation is nothing but a process of pointing your finger towards that directory so that Git
will know it has to monitor its contents for changes from then on.

As we discussed earlier, we shall cover both ways (GUI and CLI) of performing these operations.

Chapter 3

[37]

Time for action – initiation in GUI mode
To create/initiate a repository, perform the following steps:

1. Open Git Gui from your desktop or from your applications menu and select the
option Create New Repository, as shown in the following screenshot:

2. Git will present you with a new screen, expecting from you the location of the
directory that you want to make a repository. So click the on the Browse button,
select our Workbench directory from the desktop, and click on the Create button.

Polishing Your Routine – How to Increase Everyday Productivity

[38]

3. You should get a screen as follows:

Now don't close this window; we shall continue from this screen for our
remaining concepts.

What just happened?
You have successfully commanded Git to monitor your Workbench directory and its contents.

The previous image showed the master page, which we will be interacting with very often.
It consists of four panes; let's call them the following:

 � Unstaged Changes pane (top left)

 � Staged Changes pane (bottom left)

 � Differential Content pane (top right)

 � Action pane (bottom right)

In our example we created a new directory called Workbench and initiated it as a
repository. You can also follow the same procedures to convert an existing directory
that already holds your files into a repository for Git to monitor. When you do that,
your files inside the repository will initially appear in the Unstaged Changes pane.

Chapter 3

[39]

Time for action – initiation in CLI mode
For those who like to hear the sounds of more keystrokes instead of clicks, there's always
command-line interface (CLI) mode.

There has been a constant increase in the percentage of people who are quick with
keyboard's key strokes, giving more priority to performing operations using keystrokes
instead of mouse clicks wherever possible. This is also a main reason why Gmail introduced
shortcut keys for almost all of its functions.

To create or initiate the repository using the command-line interface mode you need to do
the following:

1. Open your shell (command prompt in Windows or Terminal/Console in Mac/Linux).

2. Go to your Workbench directory on your desktop using the cd (change directory)
command.

3. Once you are inside the Workbench directory type git init and hit Enter to
complete the initiation process.

4. You should get a status message from Git saying Initialized empty Git repository in
your/path/to/Workbench/directory/goes/here.

Ah! The sound of keystrokes, so good to hear.

What just happened?
You have successfully commanded GIT to monitor our Workbench directory and its contents.
Init is the operational keyword that initializes the repository.

Polishing Your Routine – How to Increase Everyday Productivity

[40]

Behind the screen
This initiation process will create a directory called .git inside our Workbench directory.
This directory is usually made read-only and hidden by Git to safeguard itself from accidental
deletion or tampering by users. It's the place where Git will hold all the history about your
files and changes made to them.

So be careful with that directory; deleting it will wipe out the entire history of your files
present in that directory.

Configure Git
Gear up your Git installation for usage by configuring it properly. There are several reasons
why you should configure Git before starting to use it, but discussing all of them now would
be premature, so we shall learn about them as and when the necessity occurs. For now, as a
bare minimum configuration to get started, we will tell our name and e-mail address to Git
so that it can log the changes under our identity.

Time for action – configure Git in GUI mode
To convey to Git our name and e-mail address using GUI mode follow these procedures:

1. Select Options from the Edit menu of the screen that you left open after the
initiation process.

The configuration screen is divided into two halves.

 � Local configuration (left side – particularly our Workbench Repository)

 � Global configuration (right side – applies to all the repositories created
using this installation)

2. Don't let the big screen with numerous options overwhelm you. Let's focus on the
top portion alone for now and type our name and e-mail address in both local and
global configurations as shown in the previous image, and hit the Save button.

Chapter 3

[41]

What just happened?
By giving out our username and e-mail address both locally and globally we have provided
ways for Git to identify and group the changes made to files present in any repository.

Out of flow
Just in case you closed the screen after the initiation process and were wondering how to go
about getting to the same screen again, don't worry. There are two ways of getting back.

1. Open up Git Gui where you will see a newly added option called Open Recent
Repository, under which you can find our Workbench repository.

2. Locate the Workbench directory on the desktop and right-click with your mouse
on the folder. In the menu select Git GUI here. People who want to switch from
CLI mode to GUI mode can use this option as well.

Polishing Your Routine – How to Increase Everyday Productivity

[42]

Time for action – configure Git in CLI mode
To configure Git using CLI you can use the following commands:

git config --global user.name "your full name"

git config --local user.name "your full name"

git config --global user.email "your email id"

git config --local user.email "your email id"

git config -l

What just happened?
By giving out our username and e-mail address both locally and globally we have provided
ways for Git to identify and group the changes made to files present in any repository.

config is the operational keyword that needs to be used with git to set up the
configuration of Git. To set a global value we add the --global parameter with the
command, and to set a local value we add the --local parameter with the command.

As the name indicates, global configuration is nothing but a global value for all repositories
created in the system by that system user, whereas local configuration is the exact opposite.
As you would have guessed by now, the parameters user.name and user.email are used
to record the user's name and e-mail address, respectively.

To get a list of configurations set till date you can use the last command, which had the –l
parameter. It lists all the configuration variables for you.

Chapter 3

[43]

Adding your files to your directory
Now that you have set a perfect base to operate on, let's move one step ahead by adding
your files to the repository that you have created.

Whoa, wait! What's that term that we often came across earlier – repository?

Moving forward, we will address a directory/folder that has been pointed to Git to monitor
as a repository.

Yeah, baby, learn Git lingo and impress your date! The process of adding files is as simple as
copying and pasting or creating your files inside our repository and asking Git to watch them.

Time for action – adding files to your directory (GUI and CLI
mode)

Let's create a Word document called content.docx that contains the text "I love working with
Git. It's a simple, fast, and superb version control system" to learn and put in practice the
functionalities mentioned at the beginning of our chapter (people who are not able to create
a .docx file can proceed with any other document format such as .odt, .txt, and so on).

Git will report to you about the files that have been added to our repository and will stand
by for your instructions to proceed. Now we can go ahead and tell Git to monitor these files
for changes by performing the steps that we will discuss next.

Polishing Your Routine – How to Increase Everyday Productivity

[44]

If you are using GUI mode, perform the following steps:

1. Click on the Rescan button (or press F5 on your keyboard) present in the
Action pane.

2. Click on the page-like icon next to the filename to push the file to the Staged
Changes pane.

If you are using the CLI mode, use the following commands:

git status

git add content.docx

What just happened?
We have successfully added our files to the repository.

By clicking on the Rescan button or typing the git status command we ordered our slave
to list the changes that were made to the repository since its previous state. These changes
are called unstaged changes, meaning changes that have happened since our last confirmed
state of the repository.

These changes have to be confirmed by the user by moving them to the staged changes state,
which is done by clicking on the file icon next to the filename or using the git add command.

Chapter 3

[45]

Ignore 'em
We just saw ways to put your files under Git's radar but there are numerous situations
where one might want to avoid adding certain files into one's working repository. As a
live case, after adding some content in the content.docx file and trying to add your
files into the repository as seen in the previous step, some might have encountered the
situation where Git reports (of course, after refreshing the Git GUI or using the git status
command in CLI) changes made in two files, content.docx and ~$ontent.docx, as shown in
the following screenshot:

This happens only if the opened content.docx Word document is not closed before
refreshing or hitting the git status command.

Polishing Your Routine – How to Increase Everyday Productivity

[46]

This is because Microsoft's Word application has a habit of saving your current workspace at
regular intervals (which can be configured) in a temporary file for disaster recovery.

It is only because of this mechanism that Word prompts you with a file recovery dialog from
where you can retrieve your latest changes when a proper save is not done before abrupt
closure of the document.

Not only Microsoft Word but all smart applications and editors follow such a procedure
to comfort the end users. These files are automatically deleted once the corresponding
source file is saved and closed properly. There would be no value added in controlling the
versions of these temporary files.

So while adding files to your repository it is important that you exclude these temporary files
before proceeding to the committing concept as the reversal would be a painful process.

This way of adding files to Git holds good for a few files, but when it comes to handling
several files in the repository, clicking on the icon next to each of them or performing a
git add for each file is going to be a time consuming and tiresome activity.

Bulk operations
When you want to move several files from the Unstaged Changes area to the Staged
Changes area you can use the following:

 � GUI: Press Ctrl + I and select yes if there is a prompt about adding unknown files
instead of clicking at each and every icon next to that file.

 � CLI: The command git add . is the equivalent of pressing Ctrl + I when using GUI
mode. It will stage all your changes at a single shot. The use of wildcard characters
like *.docx is also permitted.
git add .

git add *.docx

Chapter 3

[47]

Using these options we can eliminate our tiresome process of adding a single file at a
time, but it defeats the objective of excluding the temporary files from being added to the
repository. So how do we combine the power of bulk operations along with the control to
exclude certain files or file types?

.gitignore to the rescue
To handle this smartly, Git has a provision. By creating a file called .gitignore inside the
repository and entering the names of files or pattern of the filenames we can make Git
exclude them.

Time for action – usage of .gitignore
1. Open your text editor and type the following:

~*.*

2. Save the file as .gitignore inside our Workbench repository, as shown in the
following screenshot:

Make sure to select the All Files option from the Save as type listbox when you save
the file.

Polishing Your Routine – How to Increase Everyday Productivity

[48]

What just happened?
We have successfully commanded Git to ignore the temporary file created by the Word
application. Go ahead and refresh your GUI or get the status from your CLI now. The
only addition to your content.docx file in the Unstaged Changes area would be the
.gitignore file and not the temporary file.

Every time Git wants to check for new files (untracked changes) present in the repository
it checks with the .gitignore file for exclusions. By observing the temporary file's name
(~$ontent.docx) we can guess that any temporary file created by Word is going to start
with the special character ~ so we put an entry in .gitignore to match all files starting
with that character. The very entry ~*.* under the .gitignore file says to exclude any
filename starting with the character ~ with any extension.

Though addition of the .gitignore file itself is a one-time process,
the exclusion rules inside the file have to be updated as per the nature
and content type of the files added in the repository as required.

Undo addition
At any given point of time before committing, if you want to move a file from the Staged
Changes to the Unstaged Changes area you can do the following:

 � GUI: Click on the tick icon next to that particular filename present in the Staged
Changes pane

 � CLI: Use the following command:
git reset filename.extension

Committing the added files
Until now we have initiated the repository, added our files into the repository, and confirmed
those changes by staging them (pushing them to the staged changes stage) but until they are
committed the files are not said to be under version control. (This is because only when you
commit does Git record the content of the files and save it as a new phase of that file/files,
so that next time it can identify whether the files have any change of content by comparing
the existing version to the last saved version).

This is a new addition to your Git lingo: This process is called committing.

So let's make an initial commit of your files. The first time you add a file to the repository and
make a commit, Git registers the new file. Any further commits made to these files inside the
same repository will be a commit for the changes based on the previous version of the same
file available in the repository.

Chapter 3

[49]

Though Git follows your orders it has a healthy habit of associating a comment at the time
of every single commit so that it can learn about your behavior and moods with respect to
various file types and build an artificially intelligent system based on observed patterns to
automate your routines.

Basically comments that you provide at each commit is just to help yourself or any other
person reading the history of your repository understand the purpose of, and/or changes
to, the files.

It's good to make a comment, which can be anything informative. Having learned the theory
behind it, let's see it in action.

Time for action – committing files in GUI mode
1. Let's type our reason for this commit in the space provided under the Initial Commit

Message label present in the Action pane.

2. Click on the Commit button. Once the commit is done Git gives you a status message
at the bottom of the pattern status commit ID: your comment for the commit.

Polishing Your Routine – How to Increase Everyday Productivity

[50]

Commit ID is nothing but a unique identifier for Git to recollect your commit in
future. We will see the other usages of our comments on the commit and the Git
commit ID in the oncoming functionalities.

Time for action – committing files in CLI mode
Assuming you already have the command prompt opened by doing the steps mentioned
under initiation process, give Git the following command:

git commit –m "your comments for the commit"

If you see a status message similar to the one mentioned previously it's a sign
of an affirmation.

What just happened?
You have successfully committed your files to the repository. Henceforth any changes made
to these files will be relative.

Let's see what happens when you change the contents of the file inside the repository.

I suddenly feel that I need to convey how Git impacts my work instead of just saying "It's a
simple, fast, and superb version control system" in our content.docx file. So I am replacing
this with the text "It increases my productivity manyfold when working with files that have
frequent content changes."

Git tracks the change and indicates it to us when asked about a status update.

Time for action – rescan in GUI mode
If you already have Git Gui open then just hit the Rescan button to get the latest status
update from Git. If you don't have the tool opened already, I'm assuming you know how to
open it.

And you see, it shows the files that have changed from their earlier state in the Unstaged
Changes area.

Chapter 3

[51]

You recently learned how to stage a file's change and how to commit it, so I'll leave the rest
to you. Just so that you know, my commit message for this commit was "Added more text
that explains why I use Git."

The Content pane shows the change that you have made in the file.
Green text indicates addition and red text indicates deletion when
compared to the previous version of the file. We shall explore more
about this in later chapters.

For CLI lovers, we have been using the status command from the time we added files
to check the status of the repository, and it is no different here. Employ the git status
command to get to know about the changes in your repository.

Checking out
Well, until now we have been moving forward in versioning our files by giving orders to
Git with the concepts we learned. Whatever you have learned up to now is just a one
way process!

To make it clearer – how do you feel about not knowing how to use the undo and redo
features of your Word application?

So let's learn how to travel back in time with respect to content using Git.

Polishing Your Routine – How to Increase Everyday Productivity

[52]

Checking out is one of the processes that helps you jump to and fro between the changes
that you have made in any single file or the entire subset of files that you have in your
repository at the time you committed.

You can go back to a commit that you have made earlier to view the contents of a single file
or group of files and return to the latest version of the same file with the latest changes – all
in an instant.

How good is that?

There are several things you can do other than just viewing the file in an earlier commit,
which we will discuss in later chapters under the topic called branching.

Having learned the theory behind it, let's put it in action.

Time for action – checking out using GUI mode
1. Select the Repository menu and then the Visualize All Branch History option in the

opened Git Gui screen to open gitk; you will get a screen like the following:

Chapter 3

[53]

Gitk is a powerful graphical repository browser allowing us to perform various kinds
of operations such as visualizing the repository, tagging, resetting, and so on.

Again, don't worry about the overwhelming information on the screen; we shall get
there step-by-step.

For now let's focus on the top-left pane, which shows a pathway in which the
colored circles indicate the commits you have made; alongside the circles are
your comments.

And directly beneath it is a field called SHA1 ID, which shows you the commit ID for
the commit that you have selected above. As we discussed earlier we will use this
commit ID to identify a particular commit to travel back in time.

2. Select our first commit, which says Initial commit to showcase the commit
functionality of Git, to get its commit ID displayed in the SHA1 ID field and copy the ID
(by double-clicking to select the entire line's content and pressing Ctrl + C to copy it).

3. Switch to Git Gui and select Branch | Checkout to open the checkout operation
window (alternatively you can press Ctrl + O). Paste the SHA1 ID that you have
copied into the Revision Expression textbox and click on the Checkout button,
as shown in the following screenshot:

Polishing Your Routine – How to Increase Everyday Productivity

[54]

4. Click on the OK button on the dialog window that appears (we will discuss more
about the term detached checkout in later chapters under the branching topic).

What just happened?
You have successfully travelled back in time. If we open our document now, we can see the
content we had initially created in the document.

At any given point of time you can revert to your latest changes by selecting Branch |
Checkout | Localbranch; ensure master is selected, and click on the Checkout button.

Chapter 3

[55]

As you can see, you have jumped back to your contents with the latest changes.

Yeah, awesome, isn't it?

Time for action – checking out using CLI mode
1. Let's learn two more commands to add to your Git lingo.

Git log

Git checkout ___commit_id___

Git log is for showing the history of a repository; it gives us information such as
commit ID, author, date, and the commit comment given by us.

We need the commit ID for use later.

Don't worry about memorizing a sequence of 40 characters. Our magic wand, Git,
does the hard work of filling in the remaining characters for you to identify a commit
if you supply it with the first five characters.

Polishing Your Routine – How to Increase Everyday Productivity

[56]

2. Let's see it in action.

Now you have travelled back to a previous commit, and your files will contain the
contents of the previous commit. You can view the contents of the file now.

When you have checked back to a previous commit you are hanging
in the air; any changes to your files now will be lost once you go back
to the master. We'll see how to handle this in later chapters with a
concept called branching.

3. To return to the latest changes run git checkout master; this will bring you to
the latest changes.

If you see a message similar to the one in the previous screenshot, you have
returned to your latest changes. Again, you can view the contents of the file.

Chapter 3

[57]

Resetting
Unlike the checkout function that we learned previously, resetting is a permanent travel back
in time with respect to the content. There are three types of resetting.

 � Soft

 � Hard

 � Mixed

Our aim of ignoring all the changes made after a particular commit can be achieved only by
performing a hard reset, so we will learn about the hard type alone in this chapter.

Time for action – reset using GUI mode
1. Select the Repository menu and then the Visualize All Branch History option on the

opened Git Gui screen to open Gitk.

2. On the top-left panel you can see how your repository history is shaping up. Right
now it's linear with two commits. Now right-click on the first commit, which has the
commit message Initial commit to showcase the commit functionality of Git, and
choose the Reset master branch to here option, as shown in the following screenshot:

Polishing Your Routine – How to Increase Everyday Productivity

[58]

3. You will get a confirmation dialog box with three types of reset options as
discussed earlier; let's select Hard and click on the OK button, as shown in
the following screenshot:

4. Gitk should automatically reload to show you the altered history of our repository.
If it does not reload by itself we can manually do it by selecting the File | Reload
option or pressing Ctrl + F5.

Time for action – reset using CLI mode
Resetting can be done by using the following commands in the CLI mode:

git log

git reset --hard 8b4fe

Chapter 3

[59]

Git log is used to get to know the commit ID of the particular commit that you want to
reset and the command git reset --hard your_commitid is to convey to Git that you
want to reset all changes that have happened after the commit mentioned by its ID.

What just happened?
Congratulations! We have successfully reset our repository to an earlier state permanently.
You can verify this by checking the content of your files and logs of your repository.

Git help
Git is a continuous learning platform. No matter how good you are with it already, the
chances are you will learn something new every time you use it because there are multiple
ways of doing things. Any command you will need to get started with Git CLI to perform basic
operations always has the following pattern: git operation_keyword parameters
and/or values.

When we say that almost all operations are local/offline in Git, we mean it!

Git has a built-in help module that can help you whenever you are unsure about the usage
of a specific command or even the command itself. You can immediately refer to the built-in
documentation by using the following commands:

 � git help to get a list of command-line parameters and most commonly used
operation keywords with description

 � git help operation_keyword to get a complete reference sheet of that
particular operation keyword opened in your default browser

Have a go hero – try out the help module
Try listing out the commonly used Git commands, pick one command, and try opening up
the helper page for it.

Polishing Your Routine – How to Increase Everyday Productivity

[60]

Summary
We have learned how to do the following in both the GUI and CLI modes:

 � Initiate a repository

 � Configure Git

 � Add files to our repository

 � Ignore unwanted files being added to our repository

 � Commit the new files/changes in existing files

 � Check out to previous commits in case we need to refer old data

 � Reset the repository to permanently travel back to an earlier recorded state

 � Use the built-in help modules

Very soon you will learn how to do the following and much more:

 � Maintain multiple environments and switch between them as though they are
logged into multiple user accounts

 � Continue making changes from a previous commit, thereby maintaining multiple
routes (technically called branches) from one source

4
Split the Load – Distributed

Working with Git

So far we have worked entirely with a single local repository. It's high time to
go one step further and explore the most highlighted feature of Git in earlier
chapters: distributed working with Git.

In this chapter you will learn the essentials for collaborative development:

 � How to share your files/projects over the Internet and intranet

 � Various concepts such as:

 � Git clone

 � Git fetch

 � Git merge

 � Git pull

 � Git push

 � Git remote

These concepts are involved in sharing your files over the Internet and intranet progressively
and continuously.

Split the Load – Distributed Working with Git

[62]

Why share your files
Let's take the same computer gaming analogy which has helped us to understand the basics
of Git.

Scenario 1: single player
Think of your favorite game that allows you to save the state of the game in your system at
any given point of time and resume it later on. Now let's consider a situation where you are
in some remote location with access to a computer and want to resume the game, but are
not able to because the saved game file is not accessible from that system.

Apply the same situation to your data files. On average we spend most of our time of the
day at two to three different locations; think about how productive it might be to continue
our work across systems without having to start from scratch on each new system we lay our
hands on.

Scenario 2: multiple players – one at a time
Think of your favorite adventure game that has multiple levels. Consider a scenario where
you are stuck in a level without knowing how to proceed forward. After desperate attempts,
which ended in vain, you suddenly realize that your friend is an expert on that level, and you
want to use your friend's help. So you quickly share the last saved state of the game file with
him so he can finish that level for you, save the state, and push the file back to you, which
will enable you to continue the game.

The same situation can apply to you when you are working with datafiles, especially when
you are working as a team where different people take care of different parts of a bigger task
to produce a single result. Another possibility might be that you want the domain experts to
handle specific portions of the work, and so on.

When it comes to sharing files over the network there can be only two modes.

 � Internet

 � Intranet

The appropriate method is employed based on proximity.

Chapter 4

[63]

Kid's play – push and pull for a remote source
Before getting into the concept of a distributed file system as in Scenario 1 or collaborative
development as in Scenario 2, it's time we add five more entries to our Git lingo, namely:

 � Git clone

 � Git fetch

 � Git merge

 � Git push

 � Git remote

Let's quickly understand what these terms mean and where can they be put to use.

Cloning ain't banned here
Yes, we are talking about Git's clone functionality. Git clone is used when we need an exact
replica or a copy of an existing repository along with its history.

So a question may arise as to how all the cloned repositories maintain sync with each other.

Well, the answer to that lies in the remaining four Git commands, which are listed previously
after git clone, namely git fetch, git merge, git push, and git remote.

 � Git fetch: This command is used to fetch the changes from source to destination.

 � Git merge: Merge is used to combine two workspaces (technically called branches)
into one. It is frequently used to combine the current user's workspace with the one
from the remote user, after fetching the changes from the remote source.

Git pull: Executing git pull will internally execute git fetch
followed by git merge. Hence, it is used as an alternate to fetch
plus merge.

 � Git push: This command is used to push our contents from source to destination.

 � Git remote: This command is used to manage one's source and destination. It says
where and how you can share your work with others and vice versa.

Any operation which enables data sharing makes use of remote connections, which are
established by git remote. Here, git fetch, git push, and git pull make use
of the remote connections established by git remote.

Now that we have a heads up on a few concepts, let's see how they are put to use.

Split the Load – Distributed Working with Git

[64]

Scenario 1: solution
We shall learn how to utilize Git to serve you in the case of Scenario 1 as mentioned previously.

Going public – sharing over the Internet
There are several online Git hosting providers available for use with different pricing models.
Broadly speaking a few of them offer a free service for limited functional use and ask you to
pay for additional usage; a few others offer full functional access for a limited time and ask you
to choose a payment plan to continue, and there are a few others who combine a bit of both.

I am going to choose Bitbucket, a reliable service provider belonging to the third category,
from now on to take you through the concepts related to sharing over the Internet.

Bitbucket is a product of Atlassian, which currently offers free, unlimited public and private
repositories with the only restriction being the number of users with whom your private
repositories are shared. This means we can share our private repository over the Internet
with five people who have read and write access to it, for free.

There are a few other competitive products such as GitHub, Codaset,
and others. We chose Bitbucket as it provides private repositories
for free.

A bit of Bitbucket
Let's do a quick signup for their services; open up your browser, go to http://bitbucket.
org, click on the Pricing and Signup button, and then click on the first Sign up button under
the free quota. It then leads you to the registration page where you choose an individual
account type for now (it is possible to have a entire team use a single account) and choose
your username and password for the username and password fields respectively, and enter
your active e-mail address in the Email address field, whereas your First name and Last
name are optional fields as shown in the following screenshot:

Chapter 4

[65]

After completing the procedures you can expect a confirmation e-mail from Bitbucket to
validate your e-mail address.

As an alternative to going through this entire sign up process,
you can also sign in with your OpenID if you have one.

The beauty of Bitbucket is that it has keyboard shortcuts for almost all actions like in Gmail.
Similar to Gmail you can press Shift + ? to see the list of shortcuts available. The following is a
tabulation of frequently used shortcut keys for your reference:

Key combination Action

? Display keyboard shortcuts help.

c + r Create repository.

i + r Import repository.

g + d Go to dashboard.

g + a Go to account settings.

g + i Go to inbox.

/ Focus on the site search. Puts your cursor on the site field.

Esc Dismiss the help dialog or remove the focus from a form field.

u Go back up the stack you just went down with the shortcuts. Like the back
button in a browser, this takes you back through the Bitbucket pages you
just paged through.

Let's start our journey by creating a new repository in your account. You can either press
c + r, or click on the Create repository option from the Repositories menu at the top, or
simply click on the Create a repository link from the repositories block at your right side
and this will take you to the page that will guide you in creating a new repository/repo
(repo is a widely used shortform for repository).

Field name Value Reason

Name online_workbench We are going to import the same
Workbench repository on our desktop to
this online portal.

Description An online Git
repository to showcase
the collaboration
function of Git

This is a brief description of your
repository. You can have your own
description here that best describes the
purpose of the repository.

Split the Load – Distributed Working with Git

[66]

Field name Value Reason

Access level Checked A private repo is only visible to you and
those you give access to (more about this
later). If this box is unchecked, everyone
can see your repo.

Repository type Git Bitbucket supports both Git and Mercurial
version control systems.

As we are going to import a Git repository,
let's select that.

Enter the values in the fields as shown in the following screenshot:

Chapter 4

[67]

Click on the Create repository button to complete the repository creation process. Now that
you have an empty repository, Bitbucket prompts us for immediate action as shown in the
following screenshot:

Here we have two different startup options.

 � Create a new directory in our machine, initialize it as a repository, and link that to
the remote Bitbucket repository that we just created, which is represented by the
I'm starting from scratch link

 � Skip to the later part, which is linking our existing repository to the remote Bitbucket
repository and pushing our contents to it, which is represented by the option I have
code I want to import link

As we already have our repository created, let's select the second option which leads us to a
screen as follows:

Split the Load – Distributed Working with Git

[68]

We are getting to the core part now. Shown in the screen are instructions for CLI users to
link the Workbench repository from the desktop to the online_workbench repository
in Bitbucket.

Time for action – adding a remote origin using CLI mode
Linking or adding a remote origin to your repository (yet another addition to your Git lingo) is
a simple process. Fire up your command-line interface and enter the following commands:

cd /path/to/your/Workbench/repo

git remote add origin https://your_bitbucket_repo_identity_here/online_
workbench.git

git push -u origin master

After the execution of the git push command you will be prompted for your Bitbucket
account password to complete the process as follows:

If you see a similar message in your window, the linkage cum transfer was successful.

What just happened?
We just created a remote link for our Workbench repository with the online_workbench
repository and pushed our files to it making them available online, thus opening the door for
a distributed file system, using the CLI mode.

git remote add is the command to add a Git repository identified by its path to
your present repository's configuration file so that your changes in one repository get
tracked in another. Let's just say origin is nothing but an alias for the path representing
the remote repository.

Chapter 4

[69]

The parameter –u origin master, which is used with git pull is to default the
repositories' push and pull operations to that specified remote branch.

If –u is not used initially, then for each and every pull and push request we
need to specify origin master along with the request. Now it's enough
for us to say git push for pushing and git pull for pulling.

This means you can continue your work from anywhere if you have access to a computer
with Git and your application software installed on it (it's Microsoft Word in this case as we
are dealing with a Word document).

Time for action – resume your work from anywhere using CLI
mode

Now let's enter the second phase, where we would like to resume our work from a
remote machine.

There are only three stages involved here.

1. Clone the repository from the server.
git clone https://raviepic3@bitbucket.org/raviepic3/online_
workbench.git /path/where/you/would/like/the/clone_to_be

2. Make your changes to the files needed.

3. Add/stage the modifications made in files, commit, and push.
git add *

git commit –m 'Your commit message'

git pull

git push

As an alternative to git pull, we can also use git fetch
followed by git merge @{u}.

Split the Load – Distributed Working with Git

[70]

What just happened?
We just practiced a working solution for maximizing productivity by effectively handling
situations as described in Scenario 1.

Git add * stages/adds all your changes, which is confirmed and recorded by the git
commit command. Git pull is used to check whether there are unsynced updates in the
server; if present, they are synced appropriately followed by git push, which updates the
server's files with the changes that you have made and committed in your local repository.

You might happen to think why we are doing git pull before git push
when our sole intention was to push the updated files to the server. Wonderful
question – hold that thought right there; you will get to know more about it
when we discuss the concepts of branching.

Time for action – adding a remote origin using GUI mode
Linking or adding a remote origin to our Workbench repository present in our desktop and
syncing the contents using the Git GUI is performed as follows:

1. Open up your Git GUI window for our Workbench repository from the desktop.

2. Click on the Add option from the Remote menu in your GUI window.

3. This opens up the Add New Remote window where we enter the following details:

Field name Value

Name origin

Location https://your_bitbucket_repo_identity_here/online_
workbench.git

Further Action Do Nothing Else Now

Chapter 4

[71]

4. This is shown in the following screenshot; click on the Add button:

5. We have now successfully added a remote to our Workbench repository.

6. To push our code to the online_workbench repository, go to the same Remote
menu and select the option Push, which will lead you to the Push Branches window
as shown in the following screenshot:

Split the Load – Distributed Working with Git

[72]

7. By default, master will be selected under Source Branches, and origin will be
selected in the listbox for the Remote option under Destination Repository. Leave
it as it is, click on the Push button, and wait for some time; it should lead you to a
screen where you will be prompted for your Bitbucket account password to proceed
as shown in the following screenshot:

8. Upon successful authentication, your content will be synced with the online_
workbench repository, which can be understood from the following screenshot:

Chapter 4

[73]

It says that the master branch of your local Workbench repository is synced with
the master branch of the online_workbench repository (more on branches in
later chapters).

What just happened?
We just created a remote link for our Workbench repository with the online_workbench
repository and pushed our files to it making them available online, thus opening the door for
a distributed file system, using GUI mode.

Now if you open your Bitbucket account in your browser you will see history updated on
your dashboard as shown in the following screenshot:

This means you can continue your work from anywhere if you have access to a computer
with Git and your application software installed on it (it's Microsoft Word in this case as we
are dealing with a Word document).

Go ahead and browse through the different tabs available to make yourself comfortable with
it. Once you are done with it, let's move to the next half to see how we can resume our work
form distributed locations.

Split the Load – Distributed Working with Git

[74]

Time for action – resume your work from anywhere using GUI
mode

Here, we are reaping the benefits for what we did earlier by creating an online repository,
remoting to it, and syncing our local files to the online one. Resuming your work on any
machine you lay your hands on is an easy three-phase process.

1. Clone the repository from the server.

i. Open Git GUI and select the Clone Existing Repository option as shown
in the following screenshot:

ii. This leads you to the respective window where you are prompted
for Source Location and Target Directory where you enter the
values as follows:

Field name Value

Source location https://your_name@bitbucket.org/username/
online_workbench.git

Target Directory /Path/where/you/want/to/have/the_cloned_
repository_for_ease_of_work

Chapter 4

[75]

This is shown in the following screenshot; click on the Clone button:

iii. Once the clone process starts you will be prompted for your Bitbucket
account password. Upon successful authentication, you will have a
cloned repository with the files with which you can resume your work.

2. Make your changes to the files as needed.

3. Add/stage the modifications made in files, commit, fetch, merge, and push.

i. We already know how to add/stage the modifications made to files
and commit them to the repository. So let's start from fetch now. To
perform a fetch operation, go to the Remote | Fetch from | Origin
menu option. This should bring you the remote fetch window, which
will prompt you for your Bitbucket account password as shown in the
following screenshot:

Split the Load – Distributed Working with Git

[76]

Upon entering the correct password and a successful authentication, if there are any
new changes to the files in the server that are not updated in your local repository,
those changes are synced.

The previous screenshot shows you the sync process and the status of the
sync. Upon success we can close the window and proceed to merge these
two workspaces.

ii. Merging two workspaces, namely local master (your local workspace,
which you have been using to make changes) and remote master (the
workspace which is present in the server), is performed by selecting
the Merge | Local merge menu option. This opens up a local merge
window as shown in the following screenshot:

Chapter 4

[77]

The default selected option would be origin/master; leave it as it is, and click on the
Merge button.

iii. If there are no conflicts in merging you should see a success message
like the one shown in the following screenshot:

This marks that you have successfully down-synced the contents present in the
server with yours. Now let's up-sync your content with the one present in the
servers by using the git push functionality, which can be accessed from the
Remote | Push menu option.

What just happened?
We just practiced a working solution for maximizing productivity by effectively handling
situations as described in Scenario 1, using Git GUI.

Scenario 2: solution
Handling Scenario 2 is very easy now that we know how we handled Scenario 1. The only
addition to Scenario 2 when compared to the former is the involvement of multiple people
to the same repository.

Split the Load – Distributed Working with Git

[78]

Inviting users to your Bitbucket repository
Inviting your friend to access your game file so that he can finish that level for you is an easy
two-step process from your side as follows:

1. From your repository homepage, click on the Share icon or the invite button as
shown in the following screenshot:

2. This will prompt you to enter the details about the user whom you wanted to invite
or share your repository with. If it's an existing user you can enter his/her username
and if it's a new user you can enter his/her e-mail ID and click on the Add button as
shown in the following screenshot:

3. Now the username/e-mail ID gets added to the list and you will be prompted to
specify the access level for the user that you have added. Click on the Write button
and then click on the Share button as shown in the following screenshot:

Chapter 4

[79]

4. That's it! You will see a success message at the top of your page, as shown in the
following screenshot, as an acknowledgement for sharing:

And the user you have added will receive an e-mail mentioning that you wanted to
share your repository with him/her as shown in the following screenshot:

5. Upon clicking the link you will be given two options.

 � Sign up: If your friend is a new user of Bitbucket, he/she needs to go
through the registration process as discussed earlier in this chapter. Post
registration you will be routed to your dashboard.

 � Log in with your existing username: If your friend already has a Bitbucket
account and once he/she logs in with his/her credentials, he/she will be
prompted for acceptance to the shared repository as shown in the
following screenshot:

When the Accept invitation button is clicked, the user will be taken to
his/her dashboard.

Split the Load – Distributed Working with Git

[80]

And the dashboard will contain affirmation in the form of an onscreen notification
as shown in the following screenshot along with an e-mail which is sent to your
registered e-mail ID which contains the details of the repository that you have been
given access to:

And an e-mail is sent to that user with the details about the repository which he/she
has access to.

What just happened?
Voila! We have successfully practiced a working solution for handling Scenario 2
cases effectively.

This means you can split a bigger task into smaller ones, and share those tasks and related
files with others so that they can fill in their sectors to produce a common output.

Staying local – share over the intranet
There are situations where you work within a local network, like in different floors of a
building, and don't want to upload your files to the web due to various reasons such as
cost involved, bandwidth consumption for every put and get, security, and others.

In such cases there are several ways to handle this – the most commonly used are:

 � Gitolite server

 � Common shared directory with bare repositories

We shall look at procedures to create a bare repository inside a shared directory so that it
can be shared within your network.

Concept of a bare repository
As soon as it is said that you need a bare repository to share your files with others, a few
basic questions you might have in your mind would be:

 � What is a bare repository?

 � Why do we need such a thing to share the files of our repository with others?

Chapter 4

[81]

Let's see them one by one.

 � Bare repository: A bare repository is the one where no working directory is present.

 � Working directory: This is nothing but a directory with your source files, for
example, content.docx inside the Workbench directory.

The contents of the .git directory alone would be the contents of your entire
directory if it is a bare repository.

 � Why bare repository: Think about a situation where there are multiple people
working on the same file at the same time. Now what happens when you are in the
process of changing some content in the file from the repository and another person
working on the same file makes his own changes and pushes it to your repository!

The contents of your file will be altered, or the file itself may cease to exist based on
the actions performed from the other end, whereas you would have the file opened
for manipulation.

It causes a great deal of confusion in handling such scenarios, so the people
who have created Git have done the smart thing of avoiding such situations by
implementing the bare repository concept. This bare repository acts as a middle
man between all such clones and your source repository, which contains the
working directory. So you cannot simply push from a clone to the source of the
clone, if the source contains the working directory.

Let's create a bare repository and take a quick peek into it to understand it better.

Split the Load – Distributed Working with Git

[82]

Time for action – creating a bare repository in CLI mode
The command for creating a bare repository would be the same as the one that you used to
clone a repository except for the --bare parameter, which makes all the difference.

git clone --bare C:\Users\raviepic3\Desktop\Workbench C:\generic_share\
Bare_Workbench

Executing the preceding code in your console should create a bare clone of our Workbench
repository in your common shared folder called generic_share.

Time for action – creating a bare repository in GUI mode
Creating a bare clone from an already existing repository using GUI is an easy process. All you
need to do is:

1. Copy the .git directory from the existing repository and paste it with a
different_name.git (whatever name you want to give to your new bare
repository) outside the repository.

In our case we have a non bare repo called Workbench at C:\Users\raviepic3\
Desktop\ inside which we have content.docx. And now I want to create a new
bare repository from this using GUI. I'll copy C:\Users\raviepic3\Desktop\
Workbench\.git and paste it as C:\generic_share\Bare_Workbench.git.

2. Open the config file inside Bare_Workbench.git with a text editor and find the
line which says bare = false and replace the string false with true.

3. Save and exit.

Chapter 4

[83]

What just happened?
By performing the previous actions through CLI or GUI we have just created a bare repository
out of the Workbench repository inside a directory called generic_share under the name
of Bare_Workbench whose contents are as shown in the following screenshot:

For a better understanding, a content comparison between the two repositories is shown in
the following figure:

If you are in a local network, you can control who has access to the repository by controlling
the visibility of the shared folder generic_share, the same way you control visibility of
other shared folders within your network.

Split the Load – Distributed Working with Git

[84]

Summary
We have learned what is and how to:

 � Clone a repository

 � Differentiate between bare and non bare repositories, their usage,
and implementation

 � Add a remote to a repository

 � Fetch, merge, and push content to the added remote repository or a cloned repository

 � The pull operation and its alternates

Additionally, you have also learned how to:

 � Share your repositories over the Internet and intranet using:

 � Git CLI

 � Git GUI

 � You are also ready to get productive with the concepts that you have learned
starting from day one, as you already have a Bitbucket account with which you can
create and manage unlimited public and private repositories and share them with at
the most five users without spending a penny on it

5
Be a Puppet Master – Learn Fancy

Features to Control Git's Functions

Having laid a perfect base by learning, practicing, and validating the concepts
covered so far, we are ready to learn some fancy features that will build on our
base knowledge to extend the functional usage.

In this chapter you will learn concepts that will help you to perform the following with
respect to the content in your repositories:

 � Shortlog

 � Log search

 � Clean

 � Tag

Why learn such fancy features
Why would you need the "S" power in Contra or an M4 rifle in Counter-Strike when you have
the default weapons?

Though you will be able to achieve the ultimate goal of killing the opponent even with the
basic tools given to you, usage of those specialized tools facilitate the ease of achieving the
said goal, that's why.

Be a Puppet Master – Learn Fancy Features to Control Git's Functions

[86]

Similarly these functions that we are about to learn are going to provide us with easy ways
of controlling Git to provide data according to the various situations which you can decide
where it fits in, based on your job role. And moreover, it's fun to have some ready-made
tricks in your pocket to pull out when the need arises, making you the apt person for the job.

Prerequisites
To learn these concepts better, we need to have a repository where there are quite a few
commits and multiple people involved in the development of the repository's content. So we
shall download any repository from famous Git hosting sites like GitHub or Bitbucket itself.

Here, I have downloaded a project called cappuccino and reduced the repository to fit
our purpose.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

You can also download your own from the Git hosting sites specified previously to carry out
your learning.

Shortlog
Though information is wealth, sometimes Too Much Information kills the purpose it
serves. Think about the value that is associated with the filter option in a spreadsheet
application. Shortlog is one such function to command Git to limit the information it shows
when viewing logs. It arranges all the users who were involved in building the data of the
repository in alphabetical order mentioning the number of commits they made along with
their commit descriptions.

Time for action – getting acquainted with shortlog
Let's quickly fire up your CLI window from our cappuccino repository and try out the
following command:

git shortlog

Chapter 5

[87]

This should give an output as shown in the following screenshot:

What just happened?
We just listed out comments of 24 commits segregated by the authors who were responsible
for those commits; the authors were arranged in alphabetical order in a single shot. Sounds
compact and presentable, right?

It's not over yet! Shortlog has a few defined parameters which can be used to reorder or
narrow down your search to extract a particular set of information from your logs.

Be a Puppet Master – Learn Fancy Features to Control Git's Functions

[88]

Time for action – parameterizing shortlog
Just add the parameter –n to your earlier command.

git shortlog –n

You should see an output as shown in the following screenshot:

Chapter 5

[89]

What just happened?
By adding the –n (numbered) parameter, what you have is an output that is weighted based
on the number of commits instead of alphabetical ordering.

Now that we have got the idea, let's quickly run through the remaining parameters which we
can put to use. To get metadata such as the e-mail of the author appended to the existing
output, we shall use the –e parameter.

git shortlog -e

You can expect an output as shown in the following screenshot:

Be a Puppet Master – Learn Fancy Features to Control Git's Functions

[90]

Wondering how you can quickly get the number of stages/commits that the repository has
gone through from different users? Allow me to introduce the -s parameter, which should
give us the count history for each user.

git shortlog –s

To summarize the parameters with their functions, refer to the following tabulation:

Parameter Action description

Short form Full form
-n --numbered Sorts output according to the number of commits per author

instead of alphabetical order
-s --summary Provides commit count history for each user
-e --email Gets the e-mail address of each author involved in

committing to our repository
-h --help Prints a short usage message

Log search – git log
In continuation with the shortlog, add a few more weapons to your arsenal that will aid in
data extraction as per your needs. What you know about Git log from earlier chapters might
be as a command to view commit ID and related meta-information alone. But what you will
learn here is how flexible the logging command is by itself and a glimpse of what it packs.

Chapter 5

[91]

Time for action – skip commit logs
Let's quickly try out the following in the CLI window that we opened earlier from the
cappuccino repository:

git log --skip=2

This should give an output as follows:

Be a Puppet Master – Learn Fancy Features to Control Git's Functions

[92]

What just happened?
Though the output might look similar to the usual git log ones at first, when they are
compared you will see that you have skipped off the last two commits from listing.

The --skip=number makes this possible. The number parameter can take any integer value
to skip that number of commits for you.

There would be numerous situations where you would want to filter content based on date.
This can be done with the since/after and until/before operators with git log.

Time for action – filter logs with date range
After performing a git log, select two dates, which we shall use to filter in our following
command:

git log --since=2008-09-08 --until=2008-09-09

Chapter 5

[93]

This should give an output as follows:

Be a Puppet Master – Learn Fancy Features to Control Git's Functions

[94]

What just happened?
Using the --since=date operator filters the logs starting from the specified date and limits
it before the date specified using the –until parameter.

Note that you can also specify relative dates like –since=2.days
or --since=3.months to filter the output.

If you are wondering if there is a way to perform a search based on a keyword across
commits – yes you can, with the –grep parameter of git log.

Time for action – searching for a word/character match
Type the following command in your CLI window:

git log --grep="Merge"

This should give an output as follows:

Chapter 5

[95]

What just happened?
We have used the grep utility associated with git log to search for a given keyword,
"Merge" in our case, across the commit messages provided for different commits.

To perform a search without being case sensitive, the -i option can
be appended at the end of the previous command.

To summarize the parameters with their functions, refer to the following tabulation:

Parameter Action description
--skip=number Skips the number of commits in showing the log output
--since,after=<date> Shows commits made since the given date
--until,before=<date> Shows commits made until the given date
--grep=<pattern> Limits the log output matching the commit message with the

given pattern

Clean
There are several situations where we would need to Ctrl + Z our bloopers away when
handling files. One classic example is in the middle of working when you unzip a ZIP package
inside a directory that already contains some files, only to discover that the ZIP package
straight away put those files inside the directory without creating a separate directory for the
files which were unpacked. I see you nodding, and I know you're smiling.

Well, situations like these can be easily handled if the directory where you unzipped the zip
package was watched by Git (a Git repository). Let's reproduce this scenario and see how it
can be handled within seconds.

Time for action – emulate the mess
Perform the following steps:

1. Download the ZIP package named readme_package.zip from http://www.
packtpub.com/support and place it in the cappuccino repository on which we
have been working to learn these commands.

Be a Puppet Master – Learn Fancy Features to Control Git's Functions

[96]

2. Unzip the contents of the ZIP right inside the cappuccino directory in a way so you
see seven README files as shown in the following screenshot:

3. Now open your CLI window and type the following command:
git status

This will give you the current status as follows:

Chapter 5

[97]

What just happened?
We have successfully emulated the scenario of accidental unpacking as discussed earlier.

But under Git, the files that you have unpacked are listed down as untracked files. This
means that irrespective of the number of files that have got mixed because of the unzip
action with your original files, Git can easily identify them and let you know about it.

We can remove either all or a selected few files by specifying a pattern, which when
matched, the clean command will skip them from removal. We shall get to know more
about this in the following Time for action items.

Time for action – clean up your mess with pattern match
Let's skip those README files from deletion and first remove the ZIP package which we
copied and pasted inside our repository. Type the following command in your terminal:

git clean –f –e*.txt

This should give you an output as shown in the following screenshot:

What just happened?
Git clean needs a force (–f) operator to be specified to remove files that are not
monitored by it, whereas the –e operator takes a pattern following it and excludes the files
matching the specified criteria.

In our case *.txt was the pattern, which matched all the .txt files that were created in
the repository as a result of unpacking, therefore the only file left out was the readme_
package.zip file, which got removed.

We can avoid specifying the –f parameter every time we run a
git clean command if we set the clean.requireForce
configuration variable to false.

Be a Puppet Master – Learn Fancy Features to Control Git's Functions

[98]

Time for action – wipe out your mess completely, no exceptions
To remove these files, which have been populated in our repository unwantedly, you just
call for a napalm strike on them! That's right, from the earlier command you just exclude the
exclusion part.

git clean –f

This should give an output as shown in the following screenshot:

What just happened?
The clean command removes all untracked files from your current repository. The –f
parameter forces git clean to remove those untracked files from your repository.

The following is the list of parameters you can put to use with git clean:

Parameter Action description

Short form Full form
-f --force Removes untracked files
-d Removes untracked directories along with

files
-n --dry-run Doesn't remove anything, but show what

will be done
-q --quiet Stays quiet and only reports errors but not

the files that were successfully removed
-e<pattern> --exclude=<pattern> Excludes the files matching the specified

pattern along with the ones specified in
.gitignore (per directory)

Chapter 5

[99]

Tagging
Tagging comes in handy when you want to mark a specific point in your history with some
metadata and refer to it henceforth with the same tag. We have two types of tags in Git.

 � Lightweight: This method of tagging tracks the tag name alone without worrying
about by whom or when the tag was created. This might come in handy when you
have only one person working on the files in your repository or if the tags that you
create are just for simple reference of different phases that your project files in the
repository have gone through.

 � Annotated: This method of tagging tracks the author's name, time of tag creation,
and the tag name with a description, if given. This might come in handy when
you want a retracement to be done on the attained milestones or when you have
multiple people working on the same repository, and so on.

When you use Annotated tags, it is possible for the project owner to
maintain authorization access over the tagging process; in advanced
setups it is even possible to have control over who tags, when they
do, and mark their authorization identity for future reference.

Having said enough, let's understand it better by trying it out.

Time for action – lightweight/unannotated tagging
1. First, let's list out the existing tags with the cappuccino repository by executing

git tag in your CLI window. This should produce an output like the following:

Be a Puppet Master – Learn Fancy Features to Control Git's Functions

[100]

The supplied git tag command has retrieved all the tags available in the
repository and lists them in alphabetical order.

2. Now let's create a lightweight tag in our cappuccino repository by executing
the following:
git tag edge_v1.1

If there are no errors returned, your tag should have been created. You can verify it
by doing a tag listing, which we learned in the previous step.

3. Or you can visualize it by opening gitk, which will give you the following appearance:

You can open gitk either from Git Gui's repository menu or
by just typing gitk in your CLI window.

Chapter 5

[101]

4. If you want to browse the changes to the files for a given commit that is tagged, you
can either look at the bottom left of the gitk window or use git show <tagname>
as shown in the following line:
git show edge_v1.1

This will give an output as shown in the following screenshot:

What just happened?
We have successfully created and attached a lightweight/unannotated tag to a specific
commit. We also learned to list out all the tags available in the repository and if needed,
view granular level changes associated with any given tag.

We read about referencing a commit with the tag names instead of the commit SHA1 ID.
Let's understand what this means, practically.

Time for action – referencing tags
We have learned git checkout as a function to travel back in history. As you know,
this process needs the SHA1 ID of the commit, which you would like to visit. Now let's
see how it can be done when it comes to handling tags. Type the following commands
in your CLI window:

git checkout 2e361b44

git checkout edge_v1.1

Be a Puppet Master – Learn Fancy Features to Control Git's Functions

[102]

This should give you an output as shown in the following screenshot:

What just happened?
We checked out to a commit made at an earlier date using the usual checkout (git checkout
SHA1 ID) method but came back to the latest commit with the usage of the tag name
associated with the commit (edge_v1.1).

Time for action – annotated tagging
Having learned the method for creating an unannotated/lightweight tag, the process of
creating an annotated tag is as simple as adding the –a parameter to it. Let's type the
following in the CLI window:

git tag –a ann_v1.1 –m 'Annotated tag v1.1'

Chapter 5

[103]

What just happened?
If the command does not return any error upon execution, it indicates that your
annotated command has been created successfully. We have created an annotated
tag called Ann_v1.1. Here –a denotes the annotated tag name and –m takes a string
value as the description for the created tag.

Note that we have created both the annotated and unannotated tag
for the same commit so that they can be compared later.

Simple exercise
1. To verify the creation process, do a tag listing and verify that the tag that you

created exists there.

2. Check out the content changes associated with the commit for which you have
created an annotated tag.

To understand the difference between the lightweight and annotated tag, their outputs are
shown side by side.

While creation differs a little bit, the procedure for the deletion of both the annotated and
unannotated tags is identical. You just associate the –d parameter followed by the tag name
as follows:

git tag –d edge_v1.1

git tag –d Ann_v1.1

Be a Puppet Master – Learn Fancy Features to Control Git's Functions

[104]

This should produce an affirmation as shown in the following screenshot:

What just happened?
We just deleted the tags edge_v1.1 and Ann_v1.1, which we created in the process of
learning about tags inside the cappuccino repository.

The –d parameter will delete the tag whose name is passed as an argument to it, irrespective
of it being an annotated or unannotated tag. You can perform a tag list to verify this as
shown in the previous image after the deletion.

Chapter 5

[105]

Summary
We have learned what is and how to:

 � Use shortlog:

 � To sort and quantify commits made per author

 � To summarize commit logs

 � To get metadata like e-mail addresses for each author performing commits
to our repository

 � Use different parameters with git log, which enables us to:

 � Skip the specified number of commits while displaying log entries

 � Extract data from commit logs within a date range

 � Search for a string value across commit messages to identify commits

Additionally, we have also learned how to clean our repository in case we or anybody else
has messed it up by injecting files into it that do not belong there.

Not only that, we also saw, in practice, how to mark the milestones of our repositories'
content using annotated and lightweight tags.

6
Unleash the Beast – Git on

Text-based Files

We have seen two different modes of working with our content managed by Git
in earlier chapters, with a gaming analogy calling it the single/solo player mode
and multiplayer mode.

Hold on to your seats. This chapter is an answer to your long awaited
question: What about the real multiplayer mode with several people playing
in parallel? In other words, having multiple people work on the same stuff at
the same time.

The concepts that we are going to learn about in this chapter are as follows:

 � Merging and

 � Resolving conflicts, making your way through the content in the way you or your
team want to

Unleash the Beast – Git on Text-based Files

[108]

Git for text-based files – an introduction
Git arms itself with several functionalities when it comes to handling text files. On a higher level
let's understand the different file types and what they really mean using the following stack:

Going from the top to the bottom, it is a layered approach starting with how a user sees a
file, how a computer sees it, until its storage at the bottommost layer.

Binary data: Any file whose contents can be read only through specific
programs, such as Microsoft Word for documents and picture viewer for
images, is called binary data/values.
Text data: Any file, irrespective of its extension or nature, whose content
is pure text and can be opened with a normal text editor like notepad or
WordPad is considered to contain text data.

To quote an example for giving more clarity, open up your .git directory inside your project,
and you will see a file structure as shown in the following screenshot:

Chapter 6

[109]

Here the file called index is considered to contain binary data whereas the files
COMMIT_EDITMSG, config, description, and HEAD are considered to have
textual data. Open them with your text editor and you'll understand why.

Make sure you don't alter anything in those files or else you might end
up with a screwed up version of your repository, which might need a
few maneuvers to fix, which we are not interested in at the moment.

As another example, you can also try opening an image file with a text editor to view its
raw content.

This is the basic difference that we were talking about. Let's talk more about it once we have
understood the concept of branching and merging.

Multiplayer mode – multiple players at a time
Let's continue our gaming analogy from earlier chapters to relate to the multiplayer mode
concept we have learned so far.

Multiple players – one at a time
Think of your favorite adventure game that has multiple levels. Consider a scenario where
you are stuck in a level without knowing how to proceed forward. After desperate attempts,
which ended in vain, you suddenly realize that your friend is an expert on that level, and you
want to use your friend's help. So you quickly share the last saved state of the game file with
him with which he can finish that level for you, save the state, and push the file back to you,
which will enable you to continue the game.

The same situation can apply to you when you are working with data files, especially when
you are working as a team where different people take care of different parts of a bigger task
to produce a single result. Another possibility might be that you want the domain experts to
handle specific portions of the work, and so on.

This also means that having multiple people working on the same document one topic at
a time, where one passes the file to another to get the work done in a sequence, might go
smoothly, but having multiple people working on the same file on the same topic might end
up in chaos when it comes to files containing binary data.

Unleash the Beast – Git on Text-based Files

[110]

Multiple players – all hands on deck (many at a time)
I'm a big fan of first person shooter (FPS) games. Counter-Strike stays at the top of my list
even today. Let's take Counter-Strike or any other team game for comparison here. Each
team member will be a specialist in not only one but two or three weapons to adapt to
situations. And when required, they pitch in to take out the opponent together and
complete the objective.

Similarly, when you deal with textual data in files, you can have multiple people collaboratively
working on the same file, topic, and line, and manage to produce a unified output with Git.
Let's learn how to put this feature to better use.

Sharing your repository
There are two commonly used modes to share your repository with others.

 � Intranet

 � Internet

Having got used to the way of sharing over the Internet using Bitbucket, this time let's
emulate sharing over the intranet using the bare repository concepts we learned in
Chapter 4, Split the Load – Distributed Working with Git.

If you are not able to recall, I suggest you go through the Staying
local – share over intranet topic in Chapter 4, Split the Load
– Distributed Working with Git to understand what the bare
repository is, why we need one, and how it operates.

Time for action – getting ready to share
To keep things clear and simple we shall start with a fresh instance with minimal data, so
that the changes are evident.

1. Let's create a new directory and call it collab_source.

2. Within the directory create a new text file called mycontent.txt.

3. Open up the text file that you just created, and enter the following:
Unchanged first line from source

Second line

Third line

4. Save and close the file.

Chapter 6

[111]

5. Now make the collab_source directory a Git repository; then add the
file mycontent.txt and make a commit with a commit message saying
"Base commit from source".

6. Now this copy will reside in your machine for your own manipulation. Let's create a
bare repository from your copy to put it in a common place from where your team
members can clone it to have their own copy of the files.

7. For creating a bare clone of your existing repository, use the following command:
git clone --bare /your/path/to/collab_source /your/path/to/bare_
collab

For this example, to convey the concept I have cloned the bare_collab
repository in my local system itself instead of a common network share
directory. But the procedures are one and the same.
The main aim of this topic is to convey the multiuser concept so I have
chosen only one mode (CLI) of execution. Mostly the GUI equivalent of
these commands is already known to you. In case of an exception a quick
note on the GUI options is provided.

What just happened?
We have created a source repository with our content and then cloned a bare repository
out of our source repository, which in turn has opened up the clone option for our team
members. If you have followed the preceding steps, you should see a structure like the one
shown in the following figure:

Unleash the Beast – Git on Text-based Files

[112]

Time for action – distributed work force
Now to get their own copy of the files, Bob and Lisa, our fictitious team members, can
execute the usual git clone command with the source as the bare_collab repository
and the destination as their preferred location.

git clone /path/to/repository/bare_collab /path/of/local/copy/Bob_collab

git clone /path/to/repository/bare_collab /path/of/local/copy/Lisa_collab

What just happened?
Unless Git reported an error, Bob and Lisa have cloned the files from our bare repository
named bare_collab. Now, the structure of how these repositories evolved is shown
in the following figure:

Chapter 6

[113]

And how the commit tree looks like is shown in the following figure:

Time for action – Bob's changes
1. Now Bob feels that he needs to change the content of the file. So he opens and

changes the first line's text to "First line from source - Changed by Bob" so that
the content of the file looks like the following lines:
First line from source - Changed by Bob

Second line

Third line

Unleash the Beast – Git on Text-based Files

[114]

2. Then he adds the change and commits the same as shown in the following screenshot:

3. In the interest of sharing the change with team members, he wants to push his
changes to the common bare repository but as a rule of thumb, when working with
multiple people on Git, pull before pushing so as to incorporate the changes first in
case somebody has already pushed before you. Bob does a git pull first and then
a git push as shown in the following screenshot:

Chapter 6

[115]

What just happened?
Because of this push operation, the bare repository has progressed its level along with
Bob's changes whereas the repository at our machine (collab_source) and Lisa's are
still behind. Now the commit tree looks like the following:

Time for action – Lisa's changes
1. While Bob was doing all these operations, Lisa made her own changes. She also

happened to change the first line of the file and appended one more line to it,
which made the content of the file look like the following:
Unchanged first line from source = Not any more ;) - Lisa

Second line

Third line

Fourth line by Lisa

Unleash the Beast – Git on Text-based Files

[116]

2. Then she adds the change and commits the same as shown in the following screenshot:

3. In the interest of sharing the change with team members, Lisa wants to push her
changes to the common bare repository, but as the rule of the thumb, when working
with multiple people, do a pull before pushing so as to incorporate the changes first
in case somebody has already pushed before you. She does a git pull first, which
gives her the following error message:

Chapter 6

[117]

What just happened?
Lisa made changes, added, committed, and when she tried to pull from the central
bare_collab repository, got bumped into a merge conflict.

If you focus on the last three lines, it would be evident why the pull got stopped. Git
automatically tried to merge the changes Lisa made with the changes already pushed by
Bob in the file mycontent.txt. Because both have changed the first line, Git smartly
stops the merging and asks us to fix the conflicts.

Time for action – Lisa examines the merge conflict
Lisa opens up the file to see the conflict that is stopping her and finds a pattern as follows:

<<<<<<< HEAD

Unchanged first line from source = Not any more ;) - Lisa

=======

First line from source - Changed by Bob

>>>>>>> 9bab0336e6c9ab984b538f1f7724bf8a9703f55e

Second line

Third line

Fourth line by Lisa

What just happened?
The first line, which has continuous left arrows with the word HEAD is nothing but Lisa's
current position in the repository. The next line shows the changes made by her to the file.

This is followed by continuous = signs, which marks the end of Lisa's content and beginning
of Bob's content. It's a separator, which is immediately followed by Bob's content in the next
line, which is then followed by the commit ID generated when Bob made that change.

Time for action – Lisa resolves the merge conflict
Perform the following steps:

1. Resolving the conflict is a very simple procedure. You are given four choices.

 � Specify an order and have both the changes (which in our case are Lisa's
and Bob's changes)

 � Delete the existing change and impose yours

 � Delete your change and apply the change fetched

 � Delete both

Unleash the Beast – Git on Text-based Files

[118]

However, the fourth option is very unlikely to happen.

To perform any of these operations on the content, one can use a common
text editor or an interactive merge tool, which will give you three views
(local, base, and remote) using which you need to solve your commits.
Local view is the current modified version, base is our earlier version
before modification, which gets decided by Git automatically, and
remote is the modified remote version, which we are trying to fetch and
merge. You need to move and order your changes along with the remote
version using the arrows and indicators available. A screenshot of how an
interactive merge tool (I have showcased meld, which is a python based
utility) looks as follows:

We will use a normal text editor to solve this situation now,
so as to understand the underlying concept.

Lisa is going to go with the first option of ordering and incorporating both the
changes; let's see how she does it.

Chapter 6

[119]

2. Lisa feels that having Bob's changes up the order is better followed by hers. After
deciding the order, she opens the file using an ordinary text editor and changes the
content as follows:
First line from source - Changed by Bob

Unchanged first line from source = Not any more ;) - Lisa

Second line

Third line

Fourth line by Lisa

After making the previously mentioned changes, she adds the change and commits
it with the message "Merge - Posted Bob's change to the top followed by mine" as
shown in the following screenshot:

Unleash the Beast – Git on Text-based Files

[120]

3. Following this, Lisa pushes her commits to our central bare repository
(bare_collab) with the usual push command, as shown in the following screenshot:

What just happened?
Lisa has successfully resolved the conflicts and made her changes available to other
members of the team by pushing the changes to the central bare repository.

This should give a commit tree structure as shown in the following flow diagram:

As you can see from the diagram, C3 (the local commit made by Lisa) and C2 (the commit
made and shared by Bob) are being merged to form a new commit called merge commit C4.

Chapter 6

[121]

At any given point of time you can get such graphical representations both from the GUI as
well as CLI mode.

GUI mode – get the repository's history graph
Select Visualize all branch history form the Repository menu of Git Gui. Once Gitk opens, at
the top left you have your repository's history visualization. Lisa's visualization is as shown in
the following screenshot:

CLI mode – get the repository's history graph
In your terminal/console, switch to the Git repository's location and then use the following
command to get a tree representation of its history:

git log --graph

You will see a representation as shown in the following screenshot:

Unleash the Beast – Git on Text-based Files

[122]

Time for action – team members get sync with the central
bare repo

1. Bob feels it's been a while since he received updates from the bare repos so he pulls
to get the latest changes, with the results being as follows:

2. Well, finally let's not forget the source repository, mother of all these repositories,
for the update. Before doing a git pull from there we should point to the origin
as the bare repository, and then perform a pull operation. The commands are
as follows:
git remote add origin /path/to/bare_collab

git pull –u origin master

Chapter 6

[123]

This gives us an output as shown in the following screenshot:

As we have learned in Time for action – adding a remote origin in Chapter 4, Split the
Load – Distributed Working with GIT, adding a remote would be a one time operation.

We can manually open the file or do a git log to see the changes taking effect
across repositories.

What just happened?
We have successfully synced the changes across different repositories made by different
people on the same file, and the same line at the same time thereby achieving the promised
collaborative work environment.

Summary
We have learned:

 � The difference between files' content

 � How powerful Git can be on textual files

Additionally, we have also learned how to merge and manage conflicts occurring
while merging.

Not only that, we did a role play and practically learned how to set up a collaborative work
environment with multiple people working on the same file, topic, and even the same line.
We also learned how to integrate work from different people together to form one output.

7
Parallel Dimensions – Branching

with Git

Cheap branching and merging are the two most well known and applauded
features of Git. In this chapter we shall see what branching is, why you need
a branch, and when you need a branch. And since we have already tried our
hand at merging, having used it to merge two files for solving a merge conflict
in Chapter 6, Unleash the Beast – Git on Text-based Files, we shall go one step
ahead and see how to merge branches when needed.

All these are explored from an organization's point of view. We will also learn and practice
methods to simplify our work by:

 � Creating simple alias for frequently used lengthy commands

 � Chaining of multiple commands for frequently used workflows

What is branching
Branching in Git is a function that is used to launch a separate, similar copy of the present
workspace for different usage requirements. In other words branching means diverging from
whatever you have been doing to a new lane where you can continue working on something
else without disturbing your main line of work.

Let's understand it better with the help of the following example.

Parallel Dimensions – Branching with Git

[126]

Suppose you are maintaining a checklist of some process for a department in your company,
and having been impressed with how well it's structured, your superior requests you to
share the checklist with another department after making some small changes specific to the
department. How will you handle this situation?

An obvious way without a version control system is to save another copy of your file and
make changes to the new one to fit the other department's needs. With a version control
system and your current level of knowledge, perhaps you'd clone the repository and make
changes to the cloned one, right?

Looking forward, there might be requirements/situations where you want to incorporate the
changes that you have made to one of the copies with another one. For example, if you have
discovered a typo in one copy, it's likely to be there in the other copy because both share
the same source. Another thought – as your department evolves, you might realize that
the customized version of the checklist that you created for the other department fits your
department better than what you used to have earlier, so you want to integrate all changes
made for the other department into your checklist and have a unified one.

This is the basic concept of a branch – a line of development which exists independent of
another line both sharing a common history/source, which when needed can be integrated.
Yes, a branch always begins life as a copy of something and from there begins a life of its own.

Almost all VCS have some form of support for such diverged workflows. But it's Git's speed and
ease of execution that beats them all. This is the main reason why people refer to branching in
Git as its killer feature (we'll cover the intricacies of Git branching in the next chapter).

Why do you need a branch
To understand the why part, let's think about another situation where you are working in a
team where different people contribute to different pieces existing in your project.

Your entire team recently launched phase one of your project and is working towards phase
two. Unfortunately, a bug that was not identified by the quality control department in the
earlier phases of testing the product pops up after the release of phase one (yeah, been
there, faced that!).

All of a sudden your priority shifts to fixing the bug first, thereby dropping whatever you've
been doing for phase two and quickly doing a hot fix for the identified bug in phase one.
But switching context derails your line of work; a thought like that might prove very costly
sometimes. To handle these kind of situations you have the branching concept (refer to the
next section for visuals), which allows you to work on multiple things without stepping on
each other's toes.

Chapter 7

[127]

There might be multiple branches inside a repository but there's only one
active branch, which is also called current branch.
By default, since the inception of the repository, the branch named master is
the active one and is the only branch unless and until changed explicitly.

Naming conventions
There are a bunch of naming conventions that Git enforces on its branch names; here's a list
of frequently made mistakes:

 � A branch name cannot contain the following:

 � A space or a white space character

 � Special characters such as colon (:), question mark (?), tilde (~), caret (^),
asterisk (*), and open bracket ([)

 � Forward slash (/) can be used to denote a hierarchical name, but the branch name
cannot end with a slash

For example, my/name is allowed but myname/ is not allowed, and myname\ will
wait for inputs to be concatenated

 � Strings followed by a forward slash cannot begin with a dot (.)

For example, my/.name is not valid

 � Names cannot contain two continuous dots (..) anywhere

When do you need a branch
With Git, There are no hard and fast rules on when you can/need to create a branch. You can
have your own technical, managerial, or even organizational reasons to do so. Following are
a few to give you an idea:

 � A branch in development of software applications is often used for self learning/
experimental purposes where the developer needs to try a piece of logic on the
code without disturbing the actual released version of the application

 � Situations like having a separate branch of source code for each customer who
requires a separate set of improvements to your present package

 � And the classic one – few people in the team might be working on the bug
fixes of the released version, whereas the others might be working on the
next phase/release

Parallel Dimensions – Branching with Git

[128]

 � For few workflows, you can even have separate branches for people providing their
inputs, which are finally integrated to produce a release candidate

Following are flow diagrams for few workflows to help us understand the utilization
of branching:

 � Branching for a bug fix can have a structure as shown the following diagram:

This explains that when you are working on P2 and find a bug in P1, you need not
drop your work, but switch to P1, fix it, and return back to P2.

 � Branching for each promotion is as shown in the following diagram:

Chapter 7

[129]

This explains how the same set of files can be managed across different phases/
promotions. Here, P1 from development has been sent to the testing team (a branch
called testing will be given to the testing team) and the bugs found are reported
and fixed in the development branch (v1.1 and v1.2) and merged with the testing
branch. This is then branched as production or release, which end users can access.

 � Branching for each component development is as shown in the following diagram:

Here every development task/component build is a new independent branch, which
when completed is merged into the main development branch.

Practice makes perfect: branching with Git
I'm sure you have got a good idea about what, why, and when you can use branches when
dealing with a Git repository. Let's fortify the understanding by creating a few use cases.

Scenario
Suppose you are the training organizer in your organization and are responsible for conducting
trainings as and when needed. You are preparing a list of people who you think might need
business communication skills training based on their previous records.

Parallel Dimensions – Branching with Git

[130]

As a first step, you need to send an e-mail to the nominations and check their availability
on the specified date, and then get approval from their respective managers to allot the
resource. Having experience in doing this, you are aware that the names picked by you from
the records for training can have changes even at the last minute based on situations within
the team. So you want to send out the initial list for each team and then proceed with your
work while the list gets finalized.

Time for action – creating branches in GUI mode
Whenever you want to create a new branch using Git Gui, execute the following steps:

1. Open Git Gui for the specified repository.

2. Select the Create option from the Branch menu (or use the shortcut keys Ctrl + N),
which will give you a dialog box as follows:

3. In the Name field, enter a branch name, leave the remaining fields as default for
now, and then click on the Create button.

Chapter 7

[131]

What just happened?
We have learned to create a branch using Git Gui. Now let's go through the process
mentioned for the CLI mode and perform relevant actions in Git Gui.

Time for action – creating branches in CLI mode
1. Create a directory called BCT in your desktop. BCT is the acronym for Business

Communication Training.

2. Let's create a text file inside the BCT directory and name it participants.

3. Now open the participants.txt file and paste the following lines in it:
Finance team

 � Charles

 � Lisa

 � John

 � Stacy

 � Alexander

4. Save and close the file.

5. Initiate it as a Git repository, add all the files, and make a commit as follows:
git init

git add .

git commit –m 'Initial list for finance team'

6. Now, e-mail those people followed by an e-mail to their managers and wait for the
finalized list.

7. While they take their time to respond, you should go ahead and work on the next
list, say for the marketing department. Create a new branch called marketing using
the following syntax:
git checkout –b marketing

8. Now open the participants.txt file and start entering the names for the
marketing department below the finance team list, as follows:
Marketing team

 � Collins

 � Linda

 � Patricia

 � Morgan

Parallel Dimensions – Branching with Git

[132]

Before you finish finding the fifth member of the marketing team, you receive a
finalized list from the finance department manager stating he can afford only three
people for the training as the remaining (Alexander and Stacy) need to take care of
other critical tasks. Now you need to alter the finance list and fill in the last member
of the marketing department.

9. Before going back to the finance list and altering it, let's add the changes made for
the marketing department and commit it.
git add .

git commit –m 'Unfinished list of marketing team'

git checkout master

10. Open the file and delete the names Alexander and Stacy, save, close, add the changes,
and commit with the commit message Final list from Finance team.
git add .

git commit –m "Final list from Finance team"

git checkout marketing

11. Open the file and add the fifth name, Amanda, for the marketing team, save, add,
and commit.
git add .

git commit –m "Initial list of marketing team"

12. Say the same names entered for marketing have been confirmed; now we need to
merge these two lists, which can be done by the following command.
git merge master

13. You will get a merge conflict as shown in the following screenshot:

14. Open the participants.txt file and resolve the merge conflict as as learned in
Chapter 6, Unleash the Beast – Git on Text-based Files, then add the changes, and
finally commit them.

Chapter 7

[133]

What just happened?
Without any loss of thought or data, we have successfully adopted the changes on the first
list, which came in while working on the second list, with the concept of branching – without
one interfering with another.

As discussed, a branch begins its life as a copy of something else and then has a life of
its own.

Here, by performing git checkout –b branch_name we have created a new branch from
the existing position.

Technically, the so-called existing position is termed as the position of
HEAD and this type of lightweight branches, which we create locally,
are called topic branches. Another type of branch would be the remote
branch or remote-tracking branch, which tracks somebody else's work
from some other repository. We already got exposed to this while
learning the concept of cloning.

The command git checkout –b branch_name is equivalent to executing the following
two commands:

 � git branch branch_name: Creates a new branch of the given name at the given
position, but stays in the current branch

 � git checkout branch_name: Switches you to the specified branch from the
current/active branch

When a branch is created using Git Gui, the checkout process is automatically taken care of,
which results in it being in the created branch.

The command git merge branch_name merges the current/active branch with the
specified branch to incorporate the content. Note that even after the merge the branch will
exist until it's deleted with the command git branch –d branch_name.

In cases where you have created and played with a branch whose
content you don't want to merge with any other branch and want to
simply delete the entire branch, use –D instead of –d in the command
mentioned earlier.

Parallel Dimensions – Branching with Git

[134]

To view a list of branches available in the system, use the command git branch as shown in
the following screenshot:

As shown in the screenshot, the branches available in our BCT repository right now are
marketing and master, with master being the default branch when you create a repository. The
branch with a star in front of it is the active branch. To ease the process of identifying the active
branch, Git displays the active branch in brackets (branch_name) as indicated with an arrow.

By performing this exercise we have learned to create, add content, and merge branches
when needed. Now, to visually see how the history has shaped up, open gitk (by typing
gitk in the command-line interface or by selecting Visualize All Branch History from the
Repository menu of Git Gui) and view the top left corner. It will show a history like in the
following screenshot:

Chapter 7

[135]

Homework
Try to build a repository alongside the idea explained with the last flow
diagram given in the When do you need a branch section. Have one main
line branch called development and five component development branches,
which should be merged in after the customizations are made to its source.

.config file – play with shortcuts
As the name conveys, this text file, which is present inside your .git directory, is our
project/repository-specific configuration file. It can also contain aliases to commands which
you frequently use. An example of adding an alias is illustrated in the following section.

Time for action – adding simple aliases using CLI
In your command-line window, type the following:

git config --local alias.ad add

git config --local alias.st status

Now open your .config file, which is present inside the repository with your favorite text
editor and you will see the following lines at the bottom:

[alias]
 ad = add
 st = status

What just happened?
We have successfully created aliases for the Git commands add and status. To verify this,
switch back to your command-line window and type the command git st and observe the
output, which will be a spot on match to your git status command. Similarly we can use
git ad as a substitute for the git add command.

We can also chain two or more commands with one single alias. Let's learn how to do this.

Time for action – chain commands with a single alias using CLI
As learned that the .config file is a plain text file, let's familiarize ourselves by opening and
editing it directly this time instead of going via the command line.

1. Open your favorite text editor and the .config file with it if you have not done
so already.

Parallel Dimensions – Branching with Git

[136]

2. Due to the actions performed by the commands in the earlier section, there will be
a section created at the bottom of the file called [alias] under which we would
have entries for ad and st. Add another line after that and paste the following
characters:
ast = !git add . && git st
bco = "!f(){ git branch ${1} && git checkout ${1}; };f"
ct = "!f(){ git commit -m \"${1}\";};f"

It should appear as follows:

[alias]
ad = add
st = status
ast = !git add . && git st
bco = "!f(){ git branch ${1} && git checkout ${1}; };f"
ct = "!f(){ git commit -m \"${1}\";};f"

3. Switch back to your command line and execute the following command:
Git bco check_branch

4. Now add a new file called testfile.txt with some content to your repository and
execute the following commands:
Git ast

Git ct "Created test branch, file to practice alias functionality"

What just happened?
We have successfully chained multiple commands under a single alias.

From now on, whenever we need to create a branch inside this repository, we can do it by
using the Git bco command.

Similarly whenever you need to add all the changes and view the status of the repository in
series, we can use the following command:

Git ast

Whenever you need to do a commit on your repository, instead of git commit –m
"your_commit_messsage_here", we can use the following command:

Git ct "your_commit_message_here"

Notice the difference between adding an alias through the command line and our recent
modification directly on the file. The commands we have added are direct shell commands
which when inserted inside the .config file must have a prefix of an exclamation symbol (!).

Chapter 7

[137]

git add . adds all the changes made to the files present in your repository whereas the
&& symbol is used to join another command, namely git st with the previous one. Git st
displays the status of the repository. Because we have already created an alias for status,
which is st, we have the convenience of using that here.

Don't get afraid on seeing the next two lines which have all those curly braces pointing at
you; all you need to know is that we have written a shell script which has a function f()
within which we have chained the commands for execution. And like discussed, any shell
commands have to be prefixed with an exclamation (!) symbol.

${1} is a magic object technically called a variable which does the job of fetching the user
values (check_branch) and inserting them next to the command dynamically, such that
wherever you use ${1}, it's filled with the value that was provided by the user.

Note that all the configuration changes that we have made are with respect
to the .config file of one particular repository only and hence all these
customizations will stay local. To make it global these changes need to be
made inside your global .gitconfig file. This usually resides inside the
C:\Users\your_username directory if you are on Windows and inside
the ~/ directory if you are on Mac or Linux.

Time for action – adding complex aliases using GUI
Git Gui already has shortcuts for pretty much everything you will usually need, which we
have been learning as we come across different topics, so let's understand how to chain
commands using Git Gui.

1. Open Git Gui and select the Add option from the Tools menu, which will give you an
Add Tool window as follows:

Parallel Dimensions – Branching with Git

[138]

2. Enter the following values in the respective fields:

Field name Field value

Name Add and status

Command git add . && git status

3. Click on the Add button.

Now you will see the newly created alias as a menu item inside the Tools menu,
as shown in the following screenshot:

What just happened?
We have practically learned that we can create comfortable aliases for lengthy commands
that we frequently use. We also learned and practiced methods to combine multiple
commands and execute them in order, using both the CLI and GUI modes.

Homework
Create a simple alias for git log.
Then, create a chain with two commands and call it clog (git commit and
git log) in such a way that when you type git clog "my_commit_
message_here", your changes will shift from the changes to be committed
state to nothing to commit state (which means the changes that were added
but not committed are now committed with the commit message provided)
continued by a listing of all the commits and their relevant details (which are
usually displayed when using the command git log).

Chapter 7

[139]

Summary
We have learned:

 � What branching is

 � How and when it can be used with different workflows

We also practiced elements on how to work with different parts of the same repository
without one interfering with the other and merging these different parts to incorporate
content when needed.

Additionally, we also took a dip into the usage of aliases and practically performed the
creation of a simple alias for frequently used lengthy commands and the chaining of
multiple commands for frequently used workflows.

8
Behind the Scenes – Basis of

Git Basics

Those who had an awestruck expression on their face after experiencing the
awesomeness of Git would probably be wondering about the mechanisms
behind the magic.

This chapter is dedicated to users who are serious about getting to know the intricacies of
the following operations:

 � init

 � add

 � commit

 � status

 � clone

 � fetch

 � merge

 � remote

 � pull

 � push

 � tag

 � branch

 � checkout

Behind the Scenes – Basis of Git Basics

[142]

We begin by understanding the composition of a Git repository, followed by an analysis of
the ways in which Git intelligently manages content, and finally take an overview of ways
through which Git sees the relation between relations in order to store and transfer content.

Two sides of Git: plumbing and porcelain
Irrespective of the number of features highlighted in the sales brochure for your swanky new
car, it has to have a user friendly interface through which you can really appreciate and enjoy
the finer things it has to offer. Though the core work is done inside, the interface outside
serves as an enabler.

Similarly Git works on both the inner and outer levels with the following commands:

 � Plumbing commands: These commands take care of the low level operations, which
form the fundamental base on which Git is built

 � Porcelain commands: These are the ones that cover the underlying plumbing
operations at a high level with easy and appealing names for end users

The commands that we have learned in earlier chapters are of the porcelain type. Let's look
behind the scenes for each one of them.

Git init
What you know is that this command creates a new subdirectory named .git, which is
the source of versioning. Let's move one step further and explore the contents of the .git
directory, which should have a directory structure as shown in the following screenshot:

Chapter 8

[143]

Hooks
Hooks are customization scripts that can be injected into various Git commands and its
operations. It is possible to write our own hook and such a hook has to go into this directory.

There are a bunch of sample hooks automatically created inside this directory as part of git
init but not activated until we manually rename hook_name.sample to hook_name. To
learn more about the various hooks present in the directory open up the help document by
typing git help hooks in your command line.

Info
Additional information about the repository is recorded in this directory. Presently the only
file inside would be the one called exclude. This file serves as a master list of the files to be
excluded from being tracked by Git.

Sounds familiar, doesn't it? Indeed, the .gitignore file performs the same operation
except for the fact that any exclusion pattern written in the exclude file is reflected
only in the local repository and not in any subsequent clones; whereas when written
on .gitignore, it becomes a part of your history, which can be subjected to other Git
functions such as add, commit, merge, clone, pull, push, and others.

Config
The name conveys it all; this text file is our project/repository-specific configuration file. We
would have covered the finer workings of this file in earlier chapters, but the content we'd
need to cover would go beyond the scope of this book.

This is where Git maintains the entries for a remote section to or from wherever the
repository is cloned or data is exchanged. It also contains some core settings such as
whether the repository is a bare repository or not.

Description
There is a package called gitweb, which comes with your Git installation and will allow us
to set up a web interface for our Git repositories. This means that the repository can be
browsed using any web browser.

This description file contains a user-defined description of the repository, which is used by
the gitweb program to display it to the clients who are requesting a listing of repositories.

Behind the Scenes – Basis of Git Basics

[144]

Objects
As you have understood correctly, like any other VCS repository, a Git repository is nothing
but a database containing all the data that is needed to retain, reproduce, and manage the
revisions and history of your files, but the way Git handles these operations is what makes it
stand apart from others.

And this is possible because of the way Git considers everything that goes into it as objects.
There are four types of objects namely blobs, trees, commits, and tags with which it pulls
such a trick.

Blob
I'm sure that you're familiar with the building blocks game; we've all played it at some
point in our lives. When you think about it, you will recollect that irrespective of the type of
structure you build, it's basically made up of several independent blocks put together. And
when you are done with playing or want to preserve the incomplete structure to continue
later on, we put it in a cover or a box and store it safely.

Similarly when it comes to handling data on a computer, irrespective of whether it's an
image, or an audio or video clip, or a PDF document, it's basically constructed from several
bits of binary data. A binary large object (blob) is nothing but a collection of binary data
stored inside a box/cover as a single entity for later use.

Here, blobs store any type of data irrespective of their structure. They concentrate on the
content alone and not on the metadata of that content – not even the location of the file
or its name.

Trees
Tree objects are Git's internal representation of directories and the structure of your
content. They're similar to a directory in your file system, which refers to files and/or other
directories. Here, Git tree objects can refer to Git blobs and/or other Git tree objects.

Commits
The commit object holds all the metadata for changes introduced to the repository's content.
Metadata includes the author for the change, the committer of the change (yes, it's possible
to have two different people) along with their e-mail addresses, the date, and the time.

Tags
The tag object carries a human readable name, which can be attached to other objects,
usually a commit object for easy retrieval and other reasons that we saw under the tagging
topic in previous chapters.

Chapter 8

[145]

HEAD
HEAD is like a pointer which points the Git engine to the active branch (the branch we are
currently working on) for further operations. When opened using a text editor, you will see
the following if you are in the master branch:

ref: refs/heads/master

And you will see the following if you are presently working on the test_release branch,
and so on and so forth:

ref: refs/heads/test_release

Refs
If you have ever wondered how reaching google.com and 173.194.35.39 from your
browser both give you the same Google search page, you will realize that there should be a
reference somewhere that maps these two. Another simple example: bring your attendance
register where everybody's name is mapped to a unique employee/student ID, which can be
used to identify one person amongst several others with the same name and vice versa.

Similarly the refs directory serves the purpose of referencing for Git on a few operations.
It stores the SHA-1 IDs of important points in the repository, such as tags and branches.
Metadata for the tags is stored inside another directory situated at refs/tags and
metadata for branches is stored inside a different directory situated at refs/heads.

Each branch name is a file inside the heads directory, and the content of such files contains
the SHA-1 ID of the commit from where that particular branch was created (the parent in
Git terms). The same is the case for tags as well – each tag name is a file inside the tags
directory, which has a single SHA-1 ID for its reference.

Bumper alert – directories inside heads and tags
We have spoken about files inside both the tags and heads directory, which represent
the tag and branch names that you have created in the repository. Don't get puzzled if you
happen to see one or more directory structures inside the heads and tags directory.

This is simply a representation of the hierarchically structured name that one would have
given for the branch or tag. Things will get much clearer after looking at the following
example, which focuses on the branching concept, which is also applicable for tags.

Create a branch with the name mybranch (git branch mybranch). This will create a
file called mybranch located at heads/mybranch, whereas creating a branch with an
hierarchical name like kamia/kashin (git branch kamia/kashin) will create a file
called kashin located at heads/kamia/kashin.

Behind the Scenes – Basis of Git Basics

[146]

So far, we have explored the important segments of a freshly initiated (new) Git repository
that has no commits as yet. However there is one more key player called index, which gets
created as soon as you add content to your repository.

Index
The index file is where Git stores your staging area information to be committed. To put it
simply, the content of the index file becomes your next commit. In other words this is the
place where you keep your files that you want to be committed to your repository.

Git – a content tracking system
It's important for us to understand how Git perceives data; it is not through the filename
or the file's location in the directory structure; rather, it emphasizes the file's content.
This means that when two or more files, irrespective of where they are located inside the
repository, have the same content, Git sees the relation between them through their hashes.

Computing the hash is the first task for Git before storing any data
permanently. The hash value for a given content is unique across the
globe. This means that the hash value for a file containing "Hello world"
in your computer is the same as mine or anyone else's.

Finding out the similarities, Git puts the content under one single blob object and stores
it. Note that only one copy of the content is stored in the background thus minimizing
hardware usage and when asked to reproduce, it can bring out the exact storage pattern
with the usage of its metadata stored with tree objects.

This hash computing happens whenever required, at various stages, thereby even a small
change in one of those files will deliver a new hash, which makes Git store it separately. Since
these processes revolve (with major emphasis) around the content irrespective of the file's
name or location, Git is often called a content tracking system.

Chapter 8

[147]

Git add
When add is executed, Git updates the index using the current content found in the working
tree (staging your changes), and prepares the content staged for the next commit, which
involves the following steps:

1. Computing the hash for the content.

2. Deciding whether to create new content, or link to an existing blob object.

3. Actual creation or linking of blob takes place.

4. Creation of a tree object to track location of the content.

At this point the index is said to hold a snapshot of the content in the working tree for the
next commit.

As you already know, this command can be performed multiple times before a commit. It
only adds the content of the specified file(s) at the time the add command is run; if you want
subsequent changes included in the next commit, you must run git add again to add the
new content to the index.

More importance is to be given to the process where both the blob and
tree objects get created and linked with their respective hash IDs, as
shown in the following figure.

Blob af450...

Reunion list

k380g...

Tree object

Blob object
af450...

Behind the Scenes – Basis of Git Basics

[148]

As discussed earlier, a tree can not only point to a blob but also to another tree forming a
hierarchical network, as shown in the following figure:

Git commit
When the commit command is executed, a commit object gets created with the metadata of
the content/changes that were added earlier using the git add command. The metadata
includes the following:

 � Name of the person who authored the change and the relevant date and time along
with the time zone settings

 � Name of the person who committed the change and the relevant date and time
along with the time zone settings

Chapter 8

[149]

Then the created commit object gets linked to the tree object, which has already linked with
the blob thus completing the versioning process as shown in the following figure:

Note that the head contains the branch name and not the SHA-1 ID of the commit that it is
pointing to. This is because it becomes tough to identify a branch with its commit IDs when
the volume and position of commits inside a branch keep changing, hence the statement
"branch moves".

Do not worry about the blob and tree objects, which are created as a
part of the add operation when not committed; these are destroyed as
part of the garbage collection process after a few months.

Now if you do a git status you will see that the changes you staged are not in the staged
changes state any longer.

Git status
When the status command is executed, Git checks for the file's path and size. If there
are no differences, it leaves it as it is, but if any differences are found, it goes ahead and
computes the hash with which it checks for a relation to other hashes, as we saw earlier.

Behind the Scenes – Basis of Git Basics

[150]

The file path comparison as such happens in the following stages:

Stage number Comparison Related status message

1 File path present in index versus recent commit
(HEAD commit)

Changes to be committed

2 File path present in index versus working tree Changes not staged for commit

3 Paths in the working tree that are not tracked
by Git (and are not ignored by gitignore or
the exclude file)

Changes not staged for commit

The first status denotes changes that have already been added (staged) but not committed.
So executing git commit would complete the versioning process.

The second and third statuses denote that the changes are not yet added (staged) for a
commit. So to complete the versioning process, we need to add them first using git add
and then git commit.

Git clone
When the clone command is executed, the internal process order would be as follows:

1. Create the destination directory if it does not exist and execute git init on it.

2. Set up remote tracking branches in the destination repository for each branch
present in the source repository (git remote).

3. Fetch the objects, refs (inside the .git directory).

4. Finally do a checkout.

Git remote
When the remote command is executed, Git lists down all the remotes added to the
repository by reading it from the remote section of the local config file located at .git/
config. An example of the content inside the config file is as follows:

[remote "capsource"]
url = https://github.com/cappuccino/cappuccino
fetch = +refs/heads/*:refs/remotes/capsource/*

Chapter 8

[151]

The name capsource was the alias we gave preceding the URL while adding a new remote
to the repository. Under this section two reference parameters are captured:

Reference parameter Description
url This is the URL of the remote repository that you want to track, share,

and get content from, within your repository.
Fetch This is to convey to Git the refs (branches and tags) from the remote

that are to be tracked.

By default, it tracks all refs from the remote repository specified by
refs/heads/*. These are placed under your local repository's
directory capsource located at refs/remotes/capsource/*.

Git branch
When the branch command is executed, it performs the following steps:

1. Collects all branch names from .git/refs/heads/.

2. Finds the active/current working branch with the help of the entry in the HEAD
located at .git/HEAD.

3. Displays all the branches in ascending order with an asterisk (*) mark next to the
active branch.

Note that the branches listed this way are only local branches of your repository. When
you want all branches listed inclusive of remote tracking branches, which are stored inside
.git/refs/remotes/, you will use git branch –a.

Git tag
When the tag command is executed, Git performs the following steps:

1. Gets the SHA-1 ID of the referred commit.

2. Validates the given tag name with the existing tag names.

3. If it's a new name, it validates the name with the naming conventions.

4. If the name abides by the rules, a tag object gets created with the given name
mapped to the acquired SHA-1 ID, which is found inside .git/refs/tags/.

Behind the Scenes – Basis of Git Basics

[152]

The following figure shows the association of the tag object along with other objects:

Git fetch
When fetch is executed, Git performs the following steps:

1. Checks for the URL or remote name, which points to a valid Git repository specified
in the command git fetch remote_name (or) url.

2. If none is specified, it reads the config file to see if there is any default remote.

3. If found, it fetches the named refs (heads and tags) from the remote repository
along with their associated objects.

4. The retrieved ref names are stored in .git/FETCH_HEAD to aid a possible merge
operation in the future.

Git merge
While executing the merge command, Git will perform the following steps:

1. Identify both the merge candidates from the heads directory based on
specified parameters.

Chapter 8

[153]

2. Find the common ancestor of both heads and load all their objects in memory.

3. Perform a diff (difference) between the common ancestor and head one.

4. Apply the diff with head two.

5. If there are changes in common areas across heads, indicate the conflict with
markers and inform the user about it (expecting the user to solve the conflict, add
the changes, and make a commit).

6. If there are no conflicts, merge those contents, and make a merge commit
mentioning metadata stating this.

Git pull
On executing the pull command, Git internally performs the following operations:

1. Git fetch with the given parameters.

2. Calls git merge to merge the retrieved branch head into the current branch.

Git push
On executing the push command, Git will perform the following:

1. Identify current branch.

2. Look up the existence of a default remote in the config file (if none is found, it
prompts you to provide the remote name or URL as a parameter while executing
git push).

3. Get to know the remote's URL and the heads (branches) tracked.

4. Check whether the remote has changed since the last time you fetched changes
from it.

 � Get the list of references from the remote repositories (using git
ls-remote).

 � Check the existence of the entries from the list with the local history. If the
reference from the remote is a part of the local repository's history, it's
evident that there are no other changes since the last time you fetched/
pulled from the remote. So Git will allow you to directly push your changes
to the remote. If it's not a part of your local repository's history, Git
understands that the remote repository has undergone some changes since
the last time you fetched/pulled from it. So it will ask you to first do a git
fetch or git pull before pushing.

Behind the Scenes – Basis of Git Basics

[154]

Git checkout
When checkout is executed without any parameters, Git performs the following steps:

1. Fetches the named paths in the working tree.

2. Fetches the related objects from the index.

3. Updates the contents of the working tree with the ones from the index.

However the behavior changes according to the parameters used.

Parameter Description
-b This is used to spawn a new branch from the checked out position mentioned

with the commit ID.

git checkout –b <your_branch_name> is a short form of git
checkout branch followed by git checkout <branch_name>.

This command creates a new reference inside .git/refs/heads/ with that
particular commit ID.

--track This parameter is used to set up the upstream configuration usually while
creating a new branch with the –b parameter.

When executed, a separate section is added to the .config file inside the
.git directory as follows:

[branch "master"]
 remote = origin
 merge = refs/heads/master

This happens when a command like git checkout --track -b
master origin/master is executed.

Relation across relations – Git packfiles
We saw how Git sees the relation across files through its content and intelligently chooses
between whether to create a new blob for the content or have an existing blob referenced to
it. We also understood that even a small change in content will cause Git to store a separate
blob because the SHA-1 ID will change.

Think about a situation where you have two text files, 5 MB each, with the same content but
in different locations. Git will accordingly create a single blob as the same content will result
in the same SHA-1 ID, thus saving space.

Chapter 8

[155]

Now, append a line to the content of one of the files. Git will now create a new blob
(5+ MB in size) for the second file, which has changed. Observing this behavior of having
two nearly identical blobs of 5 MB, a few questions might arise.

 � Why does Git create a new blob for the entire content?

 � Why not still have the same old blob shared between both files, and additionally
create a new blob for the difference brought into the second file alone, thus
reducing storage and being more efficient?

Well, these are good questions; Git has an answer that addresses those with something
called packfiles. The objects created as mentioned in the scenario we just discussed are
called loose objects, and automatically but occasionally Git packs up several of these loose
objects into a single binary called a packfile.

Transferring packfiles
Git not only supports the transferring of refs and their associated plain blob, tree, commit,
and tag objects but also packfiles on operations such as clone, fetch, push, and pull. Talking
on a higher level, Git has two sets of protocols for transferring data between remotes.

 � One for pushing data from the client to the server

 � Another for fetching data from the server to the client

Implemented side Process invoked Description

Server side Upload-pack Invoked by git fetch-pack, it learns what
objects the other side is missing, and sends them after
packing.

Client side Fetch-pack This is responsible for receiving missing packages from
another repository.

This command is usually not called directly by the end
user, instead git fetch, which is a higher level
wrapper of this command, is executed.

Server side Receive-pack Invoked by git send-pack, this receives what is
pushed into the repository.

Client side Send-pack This is responsible for pushing objects over Git protocol
to another repository.

This command is usually not called directly by the
end user, instead git push, which is a higher level
wrapper of this command, is executed.

Behind the Scenes – Basis of Git Basics

[156]

Summary
We have learned about the following:

 � The structure of a Git repository and the role each one of them plays in the
versioning process

 � The different objects and how Git smartly manages the content using those objects

Additionally, we have also learned in detail about the internals of commands such as init,
add, commit, status, clone, fetch, merge, remote, pull, push, tag, branch, and
checkout, which we have used in earlier chapters to master the versioning concept.

Not only that, we also viewed at a high level about how Git not only understands
relations between files based on their complete content but also partial content in
the form of packfiles.

Index
Symbols
.config file 135
.dmg file 26
.git directory

about 40, 81, 142
config file 143
description file 143
HEAD 145
hooks 143
index 146
info 143
objects 144
refs 145

.gitignore file
about 47, 48, 143
using 47

--grep=<pattern> parameter 95
.pkg file 27
--since,after=<date> parameter 95
--skip=number parameter 92, 95
--until,before=<date> parameter 95

A
aliases

adding, CLI used 135
annotated tagging 99-102
apt-get install git-core 20
Atlassian 64
atomicity 16

B
bare repository

about 81
creating, in CLI mode 82
creating, in GUI mode 82, 83
need for 81

base 118
Bazaar 16
benefits, Git

atomicity 16
performance 16-18
security 18

binary data
about 108

binary large object (blob) 144
Bitbucket

about 64, 65, 86
keyboard shortcuts 65
repository, creating 65-67
URL 64

Bitbucket repository
users, inviting to 78-80

branch
ideas 127, 128
need for 126, 127

branches
creating, in CLI mode 131-134
creating, in GUI mode 130
naming conventions 127

[158]

branching
about 109, 125
example 126
scenarios 129, 130
utilization, example 128, 129

C
cappuccino repository 86
carriage return line feed (CRLF) 26
cd command 39
centralized version control system 12, 13
character match

searching for 94, 95
checkout

performing, CLI mode used 55, 56
performing, GUI mode used 52-54

CLI
about 20, 39
commands, chaining with single alias 135-137
used, for adding aliases 135

CLI mode
bare repository, creating in 82
branches, creating 131-134
files, committing 50
Git, configuring in 42
history graph, getting for repository 121
repository, initiating in 39
used, for adding remote origin to

repository 68, 69
used, for performing checkout 55, 56
used, for performing reset 59
used, for resuming work from

remote machine 69, 70
clone functionality 63
collaborative development 63
command-line interface. See CLI
commands

chaining, with single alias 135-137
commands, Git

fetch 63
merge 63
pull 63
push 63
remote 63

commit logs
skipping 91, 92

commit object 144
committing 48
complex aliases

adding, GUI used 137, 138
computer games 8
config 42
config file 143
configuration, Git

about 40
in CLI mode 42
in GUI mode 40, 41

content.docx file 45 81
content tracking system 146
CVS 16

D
date range

logs, filtering with 92-94
description file 143
directory

files, adding to 43, 44
distributed file system 63
distributed version control system

about 13
advantages 14

distributed work force 112

F
files

adding, to directory 43, 44
committing 48
committing, in CLI mode 50
committing, in GUI mode 49
moving 46-48
sharing, over Internet 62-64
sharing, over intranet 62, 80

filter option 86
Fink 20
first person shooter (FPS) games 110
force operator 97

G
Git

about 15, 19, 36, 146
clone functionality 63

[159]

configuring 40
configuring, in CLI mode 42
configuring, in GUI mode 40, 41
for text-based files 108, 109
installing 21
OS specific package, selecting 20, 21
packfiles 154, 155
plumbing commands 142
porcelain commands 142
URL, for downloadable packages 20

git add command 46, 135, 137 147, 148
Git bco command 136
git branch command 151
git checkout command 101, 102, 154
git clean

about 95
mess, cleaning with pattern match 97
mess, emulating 95-97

git clone command 112 150
git commit command 148-150
git fetch command 63, 152, 153
Git GUI 31
Git help 59
git help operation_keyword 59
GitHub 86
git init command 142, 150
Git, installing

on Linux 29-33
on Mac 26-29
on Windows 22-26

Gitk 31, 53
git log

about 55, 90
commit logs, skipping 91, 92
logs, filtering with date range 92-94
searching, for character match 94, 95
searching, for word 94, 95

git merge command 63, 152, 153
git pull command 122 63, 153
git push command 68 63, 68, 153
git remote command 63, 150
Git repository 144
git shortlog

about 86, 87
parameterizing 88-90

git status command 45, 135 149
git tag 99
git tag command 151
gitweb 143
Gmail 39, 65
graphical software management system 29
grep utility 95
GUI

used, for adding complex aliases 137, 138
GUI mode

bare repository, creating in 82, 83
branches, creating 130
files, committing 49
Git, configuring in 40, 41
history graph, getting for repository 121
repository, initiating in 37, 38
rescan, performing in 50, 51
used, for adding remote origin

to repository 70-73
used, for performing checkout 52-54
used, for performing reset 57, 58
used, for resuming work from

remote machine 74-77

H
hard reset 57
HEAD 145
hidden directory 40
hooks 143
hybrid system 14

I
index file 146
info 143
Init 39
initiation 36
installation, Git

on Linux 29-33
on Mac 26-29
on Windows 22-26

Internet
files, sharing over 62-64

intranet
files, sharing over 62, 80

[160]

K
keyboard shortcuts, Bitbucket 65

L
lightweight tagging 99-101
line feed (LF) 26
Linux

Git, installing on 29-33
local version control system

about 11
tidbits 12

local view 118
logs

filtering, with date range 92-94

M
Mac

Git, installing on 26-29
Macports 20
master 134
master branch

about 127
merging 109, 125
multi-directional free flow context 10
multiplayer mode concept

about 109
content, modifying in file 113-117
distributed work force 112
merge conflict, examining 117
merge conflict, resolving 117-121
repository, sharing 110
team members, getting sync with

central bare repo 122, 123

O
objects

about 144
blob 144
commits 144
tags 144
trees 144

OpenID 65
OpenSSH 25
origin 68

P
packfiles

about 154, 155
transferring 155

pageant 25
parameters, git clean

-d 98
-e<pattern> 98
-f 98
-n 98
-q 98

parameters, git shortlog
-e 90
-h 90
-n 90
-s 90

pattern match
mess, cleaning with 97

Perforce 16
plumbing commands 142
porcelain commands 142
putty 25
puttygen 25

R
read-only directory 40
refs directory 145
remote 118
remote origin

adding to repository, CLI mode used 68, 69
adding to repository, GUI mode used 70-73

repository
about 43
creating 65-67
initiating, in CLI mode 39
initiating, in GUI mode 37, 38
remote origin, adding to 68-73
sharing 110

rescan
performing, in GUI mode 50, 51

reset
performing, CLI mode used 59
performing, GUI mode used 57, 58

resetting
about 57
types 57

[161]

Revision control system (RCS) 11
run utility 29

S
searching

for character match 94, 95
for word 94, 95

SHA-1 hash 18
SHA-1 ID 145
shell 39
snapshot 17
ssh-agent 25
ssh-keygen 25
Subversion 16
synaptic 29

T
tagging 99
tag object 144
tags, Git

annotated 99-101
lightweight 99-101
referencing 101, 102

text data 108
tidbits, local version control system 12
tree objects 144

types, version control system
centralized 12, 13
distributed 13-15
local 11

U
users

inviting, to Bitbucket repository 78-80

V
version control system

about 8
need for 9-11
types 11-15

W
wildcard characters 46
Windows

Git, installing on 22-26
word

searching for 94, 95
Workbench directory 36, 38, 39, 81
working directory 81

X
Xcode IDE 20

Thank you for buying

Git: Version Control for Everyone Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

RapidWeaver 5 Beginner's Guide
ISBN: 978-1-84969-205-2 Paperback: 362 pages

Build beautiful and professional websites with ease
using RapidWeaver

1. Jump into developing websites on your Mac with
RapidWeaver

2. Step-by-step tutorials for novice users to get your
websites built and published online

3. Advanced tips and exercises for existing
RapidWeaver users

4. A great A-Z guide for building websites irrespective
of your level of expertise

TortoiseSVN 1.7 Beginner's Guide
ISBN: 978-1-84951-344-9 Paperback: 260 pages

Perform version control in the easiest way with the
best SVN client – TortoiseSVN

1. Master version control techniques with TortoiseSVN
without the need for boring theory

2. Revolves around a real-world example based on a
software company

3. The first and the only book that focuses on version
control with TortoiseSVN

4. Reviewed by Stefan Kung, lead developer for the
TortoiseSVN project

Please check www.PacktPub.com for information on our titles

jQuery Mobile Web Development Essentials
ISBN: 978-1-84951-726-3 Paperback: 246 pages

Learn to use the touch-optimized, cross-device,
cross-platform jQM web framework for smartphones
and tables

1. Create websites that work beautifully on a wide
range of mobile devices with jQuery mobile

2. Learn to prepare your jQuery mobile project by
learning through three sample applications

3. Packed with easy to follow examples and
clear explanations of how to easily build
mobile-optimized websites

Managing Software Development with Trac and
Subversion
ISBN: 978-1-84719-166-3 Paperback: 120 pages

Simple project management for software
development

1. Managing software development projects simply

2. Configuring a project management server

3. Installing, configuring, and using Trac

4. Installing and using Subversion

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Breathe Easy – Introduction to Version Control System
	Do you need help
	What is a version control system
	Why you need a version control system
	Types of version control systems
	Local version control system
	Tidbits

	Centralized version control system
	Distributed version control system

	Falling for Git
	Atomicity
	Performance
	Security

	Summary

	Chapter 2:�Welcome Aboard – Installing Git
	Choosing your type – download your OS specific package
	Windows
	Linux
	Mac
	Installation

	Time for action – installing Git on Windows
	Time for action – installing Git on Mac
	Time for action – installing Git on Linux
	Summary

	Chapter 3:
Polishing Your Routine – How to Increase Everyday Productivity
	Suit up – getting ready for your Git
	Initiation
	Time for action – initiation in GUI mode
	Time for action – initiation in CLI mode
	Behind the screen
	Configure Git

	Time for action – configure Git in GUI mode
	Out of flow

	Time for action – configure Git in CLI mode
	Adding your files to your directory
	Time for action – adding files to your directory (GUI and CLI mode)
	Ignore 'em
	Bulk operations
	.gitignore to the rescue

	Time for action – usage of .gitignore
	Undo addition

	Committing the added files
	Time for action – committing files in GUI mode
	Time for action – committing files in CLI mode
	Time for action – rescan in GUI mode
	Checking out
	Time for action – checking out using GUI mode
	Time for action – checking out using CLI mode
	Resetting
	Time for action – reset using GUI mode
	Time for action – reset using CLI mode
	Git help

	Summary

	Chapter 4:
Split the Load – Distributed
Working with Git
	Why share your files
	Scenario 1: single player
	Scenario 2: multiple players – one at a time
	Kid's play – push and pull for a remote source

	Scenario 1: solution
	Going public – sharing over the Internet

	Time for action – adding a remote origin using CLI mode
	Time for action – resume your work from anywhere using CLI mode
	Time for action – adding a remote origin using GUI mode
	Time for action – resume your work from anywhere using GUI mode
	Scenario 2: solution
	Inviting users to your Bitbucket repository
	Staying local – share over the intranet

	Time for action – creating a bare repository in CLI mode
	Time for action – creating a bare repository in GUI mode
	Summary

	Chapter5:
Be a Puppet Master – Learn Fancy Features to Control Git's Functions
	Why learn such fancy features
	Prerequisites
	Shortlog

	Time for action – getting acquainted with shortlog
	Time for action – parameterizing shortlog
	Log search – git log

	Time for action – skip commit logs
	Time for action – filter logs with date range
	Time for action – searching for a word/character match
	Clean

	Time for action – emulate the mess
	Time for action – clean up your mess with pattern match
	Time for action – wipe out your mess completely, no exceptions
	Tagging

	Time for action – lightweight/unannotated tagging
	Time for action – referencing tags
	Time for action – annotated tagging
	Simple exercise

	Summary

	Chapter 6:
Unleash the Beast – Git on
Text-based Files
	Git for text-based files – an introduction
	Multiplayer mode – multiple players at a time
	Multiple players – one at a time
	Multiple players – all hands on deck (many at a time)
	Sharing your repository

	Time for action – getting ready to share
	Time for action – distributed work force
	Time for action – Bob's changes
	Time for action – Lisa's changes
	Time for action – Lisa examines the merge conflict
	Time for action – Lisa resolves the merge conflict
	GUI mode – get the repository's history graph
	CLI mode – get the repository's history graph

	Time for action – team members get sync with the central
bare repo
	Summary

	Chapter 7:
Parallel Dimensions – Branching with Git
	What is branching
	Why do you need a branch
	Naming conventions

	When do you need a branch
	Practice makes perfect: branching with Git
	Scenario

	Time for action – creating branches in GUI mode
	Time for action – creating branches in CLI mode
	.config file – play with shortcuts
	Time for action – adding simple aliases using CLI
	Time for action – chain commands with a single alias using CLI
	Time for action – adding complex aliases using GUI
	Summary

	Chapter 8:
Behind the Scenes – Basis of
Git Basics
	Two sides of Git: plumbing and porcelain
	Git init
	Hooks
	Info
	Config
	Description
	Objects
	Blob
	Trees
	Commits
	Tags

	HEAD
	Refs
	Bumper alert – directories inside heads and tags

	Index

	Git – a content tracking system
	Git add
	Git commit
	Git status
	Git clone
	Git remote
	Git branch
	Git tag
	Git fetch
	Git merge
	Git pull
	Git push
	Git checkout
	Relation across relations – Git packfiles
	Transferring packfiles

	Summary

	Index

