

Introduction to
Reversible Computing

Chapman & Hall/CRC
Computational Science Series

PUBLISHED TITLES

SERIES EDITOR

Horst Simon
Deputy Director

Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

PETASCALE COMPUTING: ALGORITHMS
AND APPLICATIONS
Edited by David A. Bader

PROCESS ALGEBRA FOR PARALLEL AND
DISTRIBUTED PROCESSING
Edited by Michael Alexander and
William Gardner

GRID COMPUTING: TECHNIQUES AND
APPLICATIONS
Barry Wilkinson

INTRODUCTION TO CONCURRENCY IN
PROGRAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson,
and Craig E Rasmussen

INTRODUCTION TO SCHEDULING
Yves Robert and Frédéric Vivien

SCIENTIFIC DATA MANAGEMENT:
CHALLENGES, TECHNOLOGY, AND
DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

INTRODUCTION TO THE SIMULATION OF
DYNAMICS USING SIMULINK®

Michael A. Gray

INTRODUCTION TO HIGH PERFORMANCE
COMPUTING FOR SCIENTISTS AND
ENGINEERS
Georg Hager and Gerhard Wellein

PERFORMANCE TUNING OF SCIENTIFIC
APPLICATIONS
Edited by David Bailey, Robert Lucas,
and Samuel Williams

HIGH PERFORMANCE COMPUTING:
PROGRAMMING AND APPLICATIONS
John Levesque with Gene Wagenbreth

PEER-TO-PEER COMPUTING: APPLICATIONS,
ARCHITECTURE, PROTOCOLS, AND
CHALLENGES
Yu-Kwong Ricky Kwok

FUNDAMENTALS OF MULTICORE SOFTWARE
DEVELOPMENT
Edited by Victor Pankratius,
Ali-Reza Adl-Tabatabai, and Walter Tichy

INTRODUCTION TO ELEMENTARY
COMPUTATIONAL MODELING: ESSENTIAL
CONCEPTS, PRINCIPLES, AND PROBLEM
SOLVING
José M. Garrido

COMBINATORIAL SCIENTIFIC COMPUTING
Edited by Uwe Naumann and Olaf Schenk

HIGH PERFORMANCE VISUALIZATION:
ENABLING EXTREME-SCALE SCIENTIFIC
INSIGHT
Edited by E. Wes Bethel, Hank Childs,
and Charles Hansen

CONTEMPORARY HIGH PERFORMANCE
COMPUTING: FROM PETASCALE
TOWARD EXASCALE
Edited by Jeffrey S. Vetter

DATA-INTENSIVE SCIENCE
Edited by Terence Critchlow and
Kerstin Kleese van Dam

INTRODUCTION TO REVERSIBLE COMPUTING
Kalyan S. Perumalla

Introduction to
Reversible Computing

Kalyan S. Perumalla
Oak Ridge National Laboratory

Knoxville, Tennessee, USA

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130822

International Standard Book Number-13: 978-1-4398-7341-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

List of Figures xiii

List of Tables xv

List of Algorithms xvii

Preface xix

About the Author xxi

Acknowledgments xxiii

Book Organization xxv

I Introduction 1

1 Scope 3
1.1 Notions of Computing . 3
1.2 A Whole New Dimension . 4
1.3 Related Terms and Synonyms 5
1.4 Similar yet Unrelated Concepts 7

2 Application Areas 9
2.1 General Reversible Computing Problem 9
2.2 Energy-Optimal Computing 10
2.3 Parallel Computing and Synchronization 11

2.3.1 Asynchronous Computing 11
2.3.2 Supercriticality . 12
2.3.3 Performance Effects 14

2.4 Processor Architectures . 15
2.4.1 Speculative Execution 15
2.4.2 Very Large Instruction Word 16
2.4.3 Anti-Memoization . 16

2.5 Debugging . 17
2.6 Source Code Control Systems 18
2.7 Fault Detection . 19
2.8 Fault Tolerance . 20

v

vi Contents

2.9 Database Transactions . 22
2.10 Quantum Computing . 23
2.11 Additional Applications . 23

3 Reversible Computing Spectrum 25
3.1 Spectrum . 25

3.1.1 Components . 25
3.1.2 Common Cases . 26

3.2 Partial Reversibility . 27
3.3 Unit of Reversibility . 28

3.3.1 Reversing a Child’s Play 28
3.3.2 Reversing the Movement of Library Books 29
3.3.3 Reversing Different Units of Computation 29

II Theory 31

4 Systems and Principles 33
4.1 Logical Computations and Physical Processes 33
4.2 System Theoretic View of Computation 34

4.2.1 A Computation Example 35
4.2.2 Basic Components of Computational Energy 35
4.2.3 Dissipated Energy as Theoretical Energy Cost of Com-

putation . 37
4.2.4 Theoretical Lower Bound on Dissipated Energy . . . 37
4.2.5 Reversibility for Zero Dissipated Energy 38

4.3 Reversible Circuits as Bit Compressors 40
4.3.1 Irreversible User Circuit within an Expanded

Reversible Circuit . 40
4.3.2 Clean and Dirty Bits 40
4.3.3 Custom Computation Circuit 41
4.3.4 General-Purpose Computation Circuit 41
4.3.5 Energy Cost of the Circuit 42
4.3.6 Analogy with Refrigeration 42
4.3.7 Reversibility in the Eye of the Beholder 43

4.4 Deterministic versus Non-Deterministic Reversal 44
4.4.1 Bit Erasure Cost versus Bit Reset Cost 45
4.4.2 Zero Energy Cost Schemes 45

5 Reversibility-Related Paradoxes 49
5.1 Entropy . 49
5.2 Reversibility and Entropy . 50
5.3 Ehrenfest’s Urn Model . 51

5.3.1 Model Configuration and Operation 51
5.3.2 Analysis . 52
5.3.3 Forward and Reverse Algorithms 53
5.3.4 System versus Computational Reversibility 53

Contents vii

5.4 Kac-Ring Model . 55
5.4.1 Model Configuration and Operation 55
5.4.2 Analysis . 56
5.4.3 Forward and Reverse Algorithms 57
5.4.4 An Entropy Function 57
5.4.5 System versus Computational Reversibility 57

5.5 Relation to Maxwell’s Demon 59
5.5.1 Development . 59
5.5.2 Setup and Operation 60
5.5.3 Operation as a Computer Program 60
5.5.4 Paradox Resolution 61

5.6 Relation to Other Paradoxes 63
5.6.1 Loschmidt’s Paradox 63
5.6.2 Zermelo’s Paradox 63
5.6.3 Berry’s Paradox . 64

5.7 Algorithmic Entropy . 66
5.7.1 Definition . 66
5.7.2 Non-Computability 67

5.8 Further Reading . 68

6 Theoretical Computing Models 71
6.1 Overview . 71
6.2 Turing Machine Model . 72
6.3 Sources of Irreversibility in the Turing Machine Model 73
6.4 Definition of a Reversible Model 74

6.4.1 Rewriting Transition Rules: Quintuples to Quadruples 75
6.4.2 Adding History and Output Tapes 75
6.4.3 Canonical Turing Machine Model 76

6.5 Mapping Conventional Model Programs to a Reversible Model 77
6.6 Universality of Computation and Its Reversal 79
6.7 Space and Time Complexity of Reversible Execution 80

6.7.1 Complexity of Simple Reversal with One Segment . . 80
6.7.2 Partitioning Execution into Two Segments 80
6.7.3 Partitioning Execution into g Segments 83
6.7.4 Optimizing g for Minimal Total Space 83
6.7.5 Generalizing the Time-Space Trade-Off 84

6.8 Pebble Games . 86
6.8.1 Rules and Objective 86
6.8.2 Analogies with the Reversible Turing Model 87
6.8.3 Complexity Analysis 88
6.8.4 Partial Reversibility 88

6.9 Further Reading . 89

viii Contents

7 Relaxing Forward–Only Execution into Reversible Execution 91
7.1 Overview of Paradigms . 91
7.2 Compute–Copy–Uncompute Paradigm 92

7.2.1 Equivalence Conditions 92
7.3 Forward–Reverse–Commit Paradigm 92

7.3.1 Equivalence Conditions 93
7.3.2 Sequence Conditions 94
7.3.3 Sequence Examples 95

7.4 Undo–Redo–Do Paradigm . 95
7.5 Begin–Rollback–Commit Paradigm 97

III Software 101

8 Reversible Programming Languages 103
8.1 Role of Reversible Languages 103
8.2 Language-Level Reversibility Issues 105

8.2.1 Sequence and Recursive Reversal 105
8.2.2 Destructive Updates 106
8.2.3 Arithmetic . 106
8.2.4 Conditionals . 107
8.2.5 Loops . 109
8.2.6 Additional Control Flow Issues 110

8.3 Procedural Languages . 111
8.3.1 SRL and ESRL Reversible Languages 112
8.3.2 EPA Reversible Language 113
8.3.3 Janus Reversible Language 114
8.3.4 R Reversible Language 123

8.4 Functional and Logic Languages 125
8.5 Further Reading . 126

9 Adding Reversibility to Irreversible Programs 127
9.1 Overview . 127
9.2 Checkpointing . 129

9.2.1 Full Checkpointing 129
9.2.2 Periodic Checkpointing 130
9.2.3 Incremental Checkpointing 131
9.2.4 Differential Checkpointing 133
9.2.5 Example Application 135

9.3 Reverse Computation . 136
9.3.1 Automated: Compiler-Based 136
9.3.2 Automated: Interpreter-Based 140
9.3.3 Automated: Library-Based 143
9.3.4 Programmer-Assisted: Source Code-Based 143
9.3.5 Programmer-Assisted: Model-Based 144

9.4 Unified Composite . 144

Contents ix

9.5 Further Reading . 146

10 Reverse C Compiler 147
10.1 Reversibility of C Language Programs 148
10.2 Source-to-Source Method for Reversible C 150

10.2.1 Notation . 151
10.2.2 Definition of Correctness of Reversible Execution . . 151
10.2.3 Runtime Tape Interface 152
10.2.4 Compilation Phases 152

10.3 Normalization . 153
10.3.1 Declarations . 153
10.3.2 Side-Effect Expressions 153
10.3.3 Function Calls . 154
10.3.4 Arithmetic Expressions 154
10.3.5 for Statements . 154
10.3.6 do-while Statements 155
10.3.7 while Statements . 156
10.3.8 return Statements 157
10.3.9 continue Statements 158
10.3.10 break Statements . 158
10.3.11 switch Statements 158
10.3.12 Post-Normalization State 159

10.4 Transformation . 160
10.4.1 Expression Statements 160
10.4.2 Function Calls . 161
10.4.3 Jump Statements . 161
10.4.4 Compound Statements 163
10.4.5 Jumps across Nested Blocks 163
10.4.6 if Statements . 164
10.4.7 switch Statements 165
10.4.8 while Statements . 166
10.4.9 Libraries and I/O . 167
10.4.10 Pragmas . 168

10.5 Optimization . 168
10.5.1 Value Recovery or Reconstruction 168
10.5.2 Irreversible and Environment Slices 168
10.5.3 Eliminating Reversal of Initialization 170
10.5.4 Invariant Expressions 171
10.5.5 Common Sub-Expression Elimination 172
10.5.6 Switch Statement Trade-Offs 172
10.5.7 Tape Compression 172

10.6 Tape Size Upper Bounds . 173
10.7 Tape Size Determination . 175

x Contents

11 Reversal of Linear Codes 177
11.1 Automated Generation . 177
11.2 Example: Fibonacci Sequence 178
11.3 General Linear Codes . 179
11.4 Linear Code Reversal Algorithm 179

11.4.1 Preprocessing . 180
11.4.2 Matrix Representation 180
11.4.3 Eliminating Singularity 182

11.5 Fast Backward . 184
11.6 Other Common Linear Codes 185

12 Reversible Random Number Generation 187
12.1 Random Stream Traversal: Forward versus Reverse 187
12.2 Memory-Based Method to Make a Generator Reversible . . . 189
12.3 Pseudorandom Numbers . 192

12.3.1 Forward Generation 192
12.3.2 Reversible Generation 193

12.4 Reversible Generation from the Uniform Distribution 194
12.4.1 Open versus Closed Ranges 194
12.4.2 Linear Congruential Generators 195
12.4.3 Counting-Based Generators 196

12.5 Reversible Generation from Invertible Cumulative Distribu-
tions . 197

12.6 Reversible Generation from Probability Density Functions . 197
12.6.1 Reversibility Problem 198
12.6.2 Upper-Bounded Rejection-Based Sampling 199
12.6.3 Upper- and Lower-Bounded Rejection-Based

Sampling . 202
12.7 Further Reading . 204

13 Reversible Memory Allocation and Deallocation 207
13.1 The Problem: Reversible Dynamic Memory 207
13.2 A Simple Solution with Poor Memory Utilization 208
13.3 A Memory-Efficient Solution 209

13.3.1 Verification of Correctness of Allocation 210
13.3.2 Verification of Correctness of Deallocation 211

14 Reversible Numerical Computation 213
14.1 Software and Hardware Views 213
14.2 Sources of Irreversibility in Software 214
14.3 Considerations in Adding Reversibility 215
14.4 Defining Reversibility of Numerical Computation 216

14.4.1 Software-Level Operator Reversal 216
14.4.2 Operators with Constants 217
14.4.3 Operation Sequence Reversal 217

Contents xi

14.4.4 Hardware Circuit-Level Reversal 217
14.5 Reversal of Basic Arithmetic Operations in Software 218

14.5.1 Illustration of Basic Approach 218
14.5.2 Integer Operands . 219
14.5.3 Floating Point Operands 225

14.6 Alternative Integer Framework for Reversibility 227
14.6.1 Internal Representation 227
14.6.2 Encoding Certain Error Conditions 228
14.6.3 Notation . 229
14.6.4 Signed Values and Modulo Adjustment 229
14.6.5 Backward Compatibility 229
14.6.6 Computing Q̂ and R for Base v 231
14.6.7 Bit Representation Examples 231
14.6.8 Reversible Set of Arithmetic Operations 231
14.6.9 Combined Operation: A Simple Illustration 235
14.6.10 Reversal of Multiple Arithmetic Operations 237

14.7 Reversal of Basic Arithmetic in Hardware 237
14.8 Further Reading . 239

15 Reversing a Sorting Procedure 241

16 Implementing Undo–Redo–Do 243
16.1 Application Model . 243
16.2 Data Structures . 244
16.3 Algorithms . 245
16.4 Deletions and Memory Reclamation 246
16.5 Alternative Implementations 247

16.5.1 Undo and Redo Stacks 247
16.5.2 State Recreation via Reverse Computation 247

IV Hardware 249

17 Reversible Logic Gates 251
17.1 Basic Concepts . 251

17.1.1 Inadequacy of 2-Bit Gates 252
17.1.2 w-Bit Gate Candidates, w ≥ 3 252

17.2 3-Bit Reversible Gates . 253
17.3 Fredkin Gate . 254

17.3.1 Reversibility . 254
17.3.2 Universality . 255

17.4 Toffoli Gate . 256
17.4.1 Reversibility . 256
17.4.2 Universality . 257
17.4.3 Increasing the Width to w Bits 257

17.5 Conservative Logic . 259
17.6 Synthesis of Reversible Circuits 260

xii Contents

18 Reversible Instruction Set Architectures 261
18.1 Instruction Set Issues . 261

18.1.1 Instruction Set for Memory Operations 262
18.1.2 Instruction Set for Simple Arithmetic 262
18.1.3 Instruction Set for Jumps 263
18.1.4 Implementation Considerations for Jumps 264

18.2 Reversible PDP-10-Like Instruction Set Architecture 264
18.2.1 Memory Operations 264
18.2.2 Arithmetic . 265
18.2.3 Branches . 266

18.3 Pendulum Instruction Set Architecture 266
18.3.1 Memory Operations 268
18.3.2 Arithmetic . 268
18.3.3 Branches . 268
18.3.4 Hardware Stacks . 268
18.3.5 Input/Output . 269

18.4 Hardware Interface to Reversible Memory 269
18.5 Further Reading . 271

V Summary 273

19 Future Directions 275
19.1 Phased Transition from Irreversible to Reversible 275
19.2 Need for Additional Progress 276
19.3 Outlook . 278

References 279

Index 293

List of Figures

2.1 Schematic of asynchronous recovery sequence using reverse
computation-based rollback. 21

3.1 Reversible computing spectrum. 27

4.1 Reversibility at the intersection of computation and physics. 34
4.2 Computation and energy. 36
4.3 Problem-specific (custom) computational circuit Cs. 41
4.4 General-purpose computational circuit Cg. 42
4.5 Relation between the bits of interest to the user and the actual

set of bits reversibly computed. 43
4.6 Irreversibility and non-determinism in state updates. 46
4.7 Bennett’s scheme to incur zero energy cost in executing an ir-

reversible deterministic program on a reversible deterministic
machine. 48

4.8 Maroney’s scheme to incur zero energy cost in executing
an irreversible deterministic program on a reversible non-
deterministic machine. 48

5.1 The Ehrenfest’s Urn model illustrated with N = 10 balls. . . 52
5.2 Markov chain and probability distributions in the Ehrenfest’s

Urn model. 53
5.3 Illustration of the Kac-ring model with N = 12 sites contain-

ing B = 7 black balls, W = 5 white balls, and n = 6 markers. 55
5.4 Basic template of a Maxwell’s Demon 61
5.5 Illustration of ambiguity for Maxwell’s Demon regarding the

source chamber of a particle. 62

6.1 Reversible execution with half trace size. 82
6.2 Reversible execution with g-fold smaller trace size. 84
6.3 Pebble game board structure. 86
6.4 Pebble board Rule 1: Adding a pebble to the board. 87
6.5 Pebble board Rule 2: Removing a pebble from the board. . 88

7.1 Functional view of execution in the Compute–Copy–
Uncompute paradigm. 93

xiii

xiv List of Figures

7.2 Functional view of execution in the Forward–Reverse–Commit
paradigm. 94

7.3 Functional view of execution in the Undo–Redo–Do paradigm. 97
7.4 Functional view of execution in the Begin–Rollback–Commit

paradigm. 98

8.1 Classes of irreversible and reversible language programs. . . 104

9.1 Alternatives to convert irreversible programs into reversible
ones. 128

9.2 Full checkpointing for snapshots-based reversal. 130
9.3 Periodic checkpointing for snapshots-based reversal. 131
9.4 Incremental checkpointing for snapshots-based reversal . . . 132
9.5 Differential checkpointing for snapshots-based reversal. . . . 134
9.6 Example of the compiled approach to adding reversibility. . 139
9.7 Compiler-based reversal using the source-to-source method. 139
9.8 Compiler-based reversal using the augmented compiler

method. 140
9.9 Example of the interpreted approach to adding reversibility. 141
9.10 Interpreter-based reversal. 142

10.1 Reverse C Compilation Architecture. 150
10.2 Reverse compilation phases. 152

11.1 Sequence of transformations for Fibonacci sequence reversal. 182

12.1 Variable number of uniform distribution samples used for sam-
pling a complex distribution. 199

12.2 Upper-bounded rejection-based sampling. 200
12.3 Upper- and lower-bounded rejection-based sampling. 204

14.1 Alternative internal representation of an integer amenable to
reversible arithmetic. 228

16.1 Data structures to support Undo–Redo–Do mode of execu-
tion. 244

17.1 Realizing 2-bit and operation ⊗ with the Fredkin gate. . . . 255
17.2 Realizing 2-bit or operation ⊕ with the Fredkin gate. 256
17.3 Realizing 1-bit not and fan-out with the Fredkin gate. . . . 256
17.4 Realizing 2-bit nand operation ⊗ with the Toffoli gate. . . . 257

18.1 The irreversible and reversible constructs for jump instruc-
tions. 263

19.1 Transitioning from irreversible to reversible computing. . . . 275

List of Tables

4.1 Types of Computation in Terms of Reversibility and Deter-
minism . 46

6.1 Definition of a Canonical Irreversible Turing Machine 73
6.2 Definition of a Standard Irreversible Turing Machine 77
6.3 Definition of a Standard Reversible Turing Machine 78

7.1 Relaxation of Forward–Only Execution into the Compute–
Copy–Uncompute Paradigm 92

7.2 Relaxation of Forward–Only Execution into the Forward–
Reverse–Commit Paradigm 94

7.3 Relaxation of Forward-Only Execution into the Undo–Redo–
Do paradigm . 96

8.1 Grammar of the Janus Time-Reversible Language 115
8.2 Reversible Calling Semantics of Subroutines in Janus . . . 119
8.3 Reversal of the Janus Language Instructions 121

10.1 List of Example Pragma Specifications 169
10.2 Summary of State Bit Sizes for Various Statement Types . . 176

12.1 Summary of Reversible Random Number Generators 190
12.2 Example LCG Sequence for m = 7, a = 3, and c = 2 196

13.1 Simple Procedures for Dynamic Memory Management . . . 208
13.2 Reversible Procedures for Dynamic Memory Management . 210

14.1 Considerations in Adding Reversibility to Computer Arith-
metic Operations . 216

14.2 Computer Arithmetic Operations Considered for Reversibility 220
14.3 Internal Bit Widths for the Alternative Integer Representa-

tion Format Customized to Provide 2k Bits of Usable Integer
Precision . 230

14.4 Usable Integer Precision in the Implementation of the Alter-
native Integer Representation Format Using 2k Bits 230

14.5 A New Set of Alternative Arithmetic Operations Reversible
without Generating History 232

xv

xvi List of Tables

17.1 Number of Candidate Permutations for w-Bit Reversible
Gates . 253

17.2 Input–Output Relations in a 3-Bit Fredkin Gate 254
17.3 Truth Table for a 3-Bit Fredkin Gate 254
17.4 Truth Table for a 3-Bit Toffoli Gate 257
17.5 Truth Table for a w-Bit Toffoli Gate 258

18.1 Memory Operations in PDP-10-Like Reversible Instruction
Set Architecture . 265

18.2 Simple Arithmetic Operations in PDP-10-Like Reversible
Instruction Set Architecture 265

18.3 Reversible Memory Interface of a Rollback Chip 270

List of Algorithms

5.1 Forward and reverse algorithms for the Ehrenfest’s Urn model. 54
5.2 Forward and reverse algorithms for the Kac-ring model 58
5.3 Program q to disprove the computability of algorithmic entropy 67
8.1 Reversible execution semantics of conditionals in Janus . . . 117
8.2 Reversible execution semantics of looping in Janus 118
9.1 A simple irreversible program code fragment for adding

reversibility . 137
9.2 Example of reversal using the compiler-based approach 138
9.3 Example of reversal using the interpreter-based approach . . 142
11.1 Functions for reversible Fibonacci sequence generation 178
11.2 Linear code reversal algorithm 180
11.3 Preprocessing in linear code reversal algorithm 181
11.4 Automatically generated reversal for Fibonacci sequence . . . 182
11.5 Example code containing singularity preventing reversal . . . 183
11.6 Single- and double-stepping reverse functions for Fibonacci

sequence . 185
12.1 Reversing any forward random generator R∗() using a finite

M -sized circular buffer . 191
12.2 Uniform random number generator 194
12.3 Reversible linear congruential generator 196
12.4 Update function S() for counting-based generators 196
12.5 Random number generator for distributions with invertible

cumulative distribution functions 198
12.6 Reversible upper-bounded rejection-based sampling 201
12.7 Reversible upper- and lower-bounded rejection-based sampling 205
14.1 Reversal of the Multiply operation 222
14.2 Reversal of the Semi-Scale operation 222
14.3 Reversal of the Divide operation when A or B is forgotten . . 224
14.4 Irreversible integer arithmetic for Celsius–Fahrenheit conver-

sion . 236
14.5 Reversible integer arithmetic for Celsius–Fahrenheit conversion 236
16.1 Algorithms to support Undo–Redo–Do mode of execution . . 246
18.1 Realization of a reversible conditional statement using

reversible jump instructions 267
18.2 Realization of a reversible looping statement using reversible

jump instructions . 267

xvii

Preface

The concept of reversible computing is based on a combination of forward and
backward computation, in contrast to traditional forward-only computation.
This book provides an introduction to the many facets of reversible com-
puting, including theory, hardware and software aspects, fundamental limits,
complexity analyses, practical algorithms, compilers, efficiency improvement
techniques, and application areas. The topics covered here span several areas of
computer science, including high-performance computing, parallel/distributed
systems, computational theory, compilers, power-aware computing, and super-
computing.

The book includes sufficiently basic material for readers new to reversible
computing to easily get started. For those who are already familiar with a
certain topic within reversible computing, the book can serve as a one-stop
reference to other topics in reversible computing, providing an expanded view.
The expanded view of reversible computing includes the traditional energy-
motivated hardware views as well as the emerging application-motivated soft-
ware views.

Although there are other books on engineering and logic design for re-
versible computing, few comprehensively cover the software and programming
aspects. Filling this gap, new emphasis is introduced in this book on the soft-
ware, programming, applications, and usage aspects in the expanded view of
reversible computing.

The book itself is envisioned to be suitable at the senior undergraduate
and graduate levels. However, it is also intended as a handbook for profession-
als in the industry and government research laboratories. Students, faculty,
and professionals in computer science, computer engineering, applied physics,
applied mathematics, and related disciplines would benefit from this book.
The book may be used as supplementary reading in courses such as paral-
lel and distributed systems, high-performance computing, parallel simulation,
and computational physics.

In order to suit the broader readership of the book, simplicity was pre-
ferred over rigor, wherever the choice was warranted. Citations to original
articles on seminal results are provided so that interested readers may consult
the corresponding publications in the literature. Also, in chapters that cover
advanced material, pointers to the additional resources are provided for fur-
ther reading in specific sub-topics. No specific, conscious attempt is made to
recount a historical perspective of development in reversible computing.

xix

About the Author

Kalyan Perumalla, PhD, is a senior R&D staff and manager in the Compu-
tational Sciences and Engineering Division at the Oak Ridge National Labo-
ratory, Oak Ridge, and an adjunct professor in the School of Computational
Sciences and Engineering at the Georgia Institute of Technology, Atlanta. Dr.
Perumalla also founded and currently leads the High Performance Discrete
Computing Systems team in the Modeling and Simulation Group at the Oak
Ridge National Laboratory. He earned his PhD in computer science from the
Georgia Institute of Technology in 1999. His areas of interest include reversible
computing, high-performance computing, parallel discrete event simulation,
and parallel combinatorial optimization. Dr. Perumalla is a winner of the
prestigious US Department of Energy Career Award in Advanced Scientific
Computing Research, 2010–2015. His primary research contributions are in
the application of reversible computation to high-performance computing and
in advancing the vision of a new class of supercomputing applications using
real-time, parallel discrete event simulations. In addition to this book, he has
co-authored another book, three book chapters, and over 100 articles in peer-
reviewed conferences and journals. Four of his co-authored papers received
the best paper awards, in 1999, 2002, 2005 and 2008, and two were finalists
in 2010.

Dr. Perumalla has been actively serving the research community in the
roles of program committee member and reviewer for several international
conferences and journals. He serves on the editorial board of the ACM Trans-
actions on Modeling and Computer Simulation and the SCS Transactions of
the Society for Modeling and Simulation International. His research proto-
type tools in parallel and distributed computing have been disseminated to
research institutions worldwide. He has performed research as an investiga-
tor on several research programs sponsored by US federal agencies, including
the Department of Energy, Department of Defense, Department of Homeland
Security, and the National Science Foundation.

xxi

Acknowledgments

I would like to acknowledge the gracious reviewing efforts by Vladimir
Protopopescu, James Nutaro, and Sudip Seal, who provided many useful com-
ments and suggestions for improvement on the drafts of this book. The sup-
port and patience from the publisher, especially from Randi Cohen, are grate-
fully acknowledged. Regular bouts of warm encouragement and advice from
Vladimir Protopopescu served to keep my spirits high for many professional
goals, this book included. Finally, it would have obviously been impossible for
the book to materialize without help from the family—I enjoyed the luxury
of the most loving and considerate support from my wife and sons while I
completed this book.

xxiii

Book Organization

This book is organized into four parts: Introduction, Theory, Software, and
Hardware.

In Part I, Chapter 1 describes the scope of reversible computing. Chapter 2
covers the range of application areas in which reversible computing finds uses.
Chapter 3 presents the spectrum of implementation components that comprise
the realization of reversible computing in practice.

Part II deals with theory, models, and paradigms underlying reversible
computing. This part is aimed at providing a quick overview of some well-
known theoretical results related to reversible computing. Some of the most
fundamental results are described in Chapter 4 on the technology-independent
facets of reversible computing, especially with system-theoretic views. Chap-
ter 5 is devoted to the description and resolution of several related paradoxes.
This includes illustrations of the commonly misunderstood distinction of ther-
modynamical entropy from memory for reversal, and also a treatment of the
Maxwell’s Demon, among others. In Chapter 6, a pivotal development is pre-
sented, namely the construction of a reversible Turing machine model that can
simulate any conventional, irreversible Turing machine. A new categorization
of paradigms for relaxing irreversible execution into reversible execution is
described in Chapter 7.

Part III focuses on the software aspects of reversible computing, covering
the higher-level computing elements, including programming languages, com-
pilers, automated history reduction, random number generation, and numeri-
cal computation. Readers well versed in traditional forward programming will
benefit from these chapters on reversible software by learning (1) why and how
conventional software constructs are inadequate for reversible execution, (2)
different ways in which reversibility can be introduced into software, and (3)
techniques by which the efficiency of reversibility is increased in specific classes
of codes. Chapter 8 is devoted to the relatively new area of reversible program-
ming languages that provide reversibility by design, with articulation of the
issues and requirements in reversible programming language constructs, and
illustration of a few reversible languages. The issue of adding reversibility to
conventional, irreversible programs is addressed in Chapter 9, which describes
multiple checkpointing and backward computation schemes. For a practical
implementation, the challenge of making arbitrary C programs reversible is
studied in Chapter 10. In this chapter, a source-to-source methodology is de-
scribed to convert any C program to an equivalent but reversible version that

xxv

xxvi Book Organization

retains the original forward–only semantics. The potential for more efficient
reversal by transcending a localized view of program statements is described
in Chapter 11, with an algorithm for reversing a class of programs called lin-
ear codes. New, zero-memory methods for generating pseudo-random number
streams in a reversible fashion are described in Chapter 12. The methods
highlight the complexity of the reversibility problem and the solutions for use
in reversible execution of scientific applications that rely on complex random
number streams. New solutions to the problem of adding reversibility to dy-
namic memory allocation and deallocation operations are proposed in Chap-
ter 13. The immense challenge of making numerical computation reversible
is addressed in Chapter 14, identifying the sources of irreversibility and out-
lining the possible solution approaches. Automated ways for reversal relying
on history are given for conventional interfaces of computer-based arithmetic.
New, zero-memory solutions are also proposed for integer or fixed-point arith-
metic based on novel internal bit representations and an abridged set of novel
definitions of reversible arithmetic operations. In Chapter 15, the problem of
reversing the operation of sorting algorithms in a memory-efficient way is de-
scribed, along with three solution approaches. A generalized template for the
implementation of the Undo–Redo–Do paradigm of reversible computing is
presented in Chapter 16, which can be used in a wide range of user-interface
applications that provide undo capabilities for user-initiated actions.

Part IV covers the hardware concepts in implementing reversible comput-
ing and the descriptions of some of their actual realizations. The circuit and
gate-level reversibility is covered in Chapter 17 on reversible gates and their
synthesis. Chapter 18, on the computer architectural designs, presents the low-
level instruction sets for reversible machine languages and memory interface
units.

The book concludes with Part V identifying some important research di-
rections in the future of reversible computing.

Part I

Introduction

1

Chapter 1

Scope

1.1 Notions of Computing . 3
1.2 A Whole New Dimension . 4
1.3 Related Terms and Synonyms . 5
1.4 Similar yet Unrelated Concepts . 7

1.1 Notions of Computing

Consider the word computation. For some strange and unknown reason, the
notion that naturally arises in one’s mind is that of forward computation. The
unidirectionality of computational flow seems to be the natural and intuitive
notion for many people. Even more interestingly, no notion of computation in
the opposite direction seems to be naturally triggered in one’s mind—neither
a mental model nor even a recollection of any related reversible phenomenon.
Nevertheless, technically savvy persons, when prodded by even a minor hint
of the reversal possibilities, are able to quickly pursue the line of thought
a bit further and soon uncover a rough idea of the immense challenges and
limitations of reversible computation. Often, it seems to be easy to arrive at a
quick (and hasty) conclusion that reversibility is impossible and consequently
not worth contemplating further. The author had the occasion to bring the
topic of reversible computing into conversations with people from a variety
of backgrounds; in almost all cases, the notion was encountered with initial
surprise, followed by brief disbelief, followed by a more sustained opinion that
varied with the background of the person. For example, the simple response
is usually one of “...but that is impossible, right...?” or “...but why would one
ever use that?” The response from technically educated people (e.g., scientists
from other domains) is “...but there are computations that are fundamentally
irreversible, so it would not work...” or “...entropy always increases, so there
is fundamentally no such thing as reversible,” and so on.

Given that this has been the state of affairs with respect to knowledge
about reversibility of computation, it is probably not surprising that reversible
computing has experienced modest and slow progress. Admittedly, computing
backwards is not at all common in daily life. In situations where it does appear
in real life, the process is not easily understood (take, for example, mortgage
escrow payment calculators, which require computing backward and forward).

3

4 Introduction to Reversible Computing

Forward-only computing has enjoyed the benefits of enormous efforts in
its research, development, and education all over the world, in academia, in-
dustry, and government. Electronic computing essentially started with the
de-facto forward-only mode at least six decades ago (for the history of com-
putation, see, for example, [Goldstine, 1980]), and has since been exercised in
very many domains. Prior to that, mechanical computing, dating back to the
1800s, was also focused exclusively on the forward-only mode [Swade, 2001].
Thus, considering the product of the number of people and the length of time
spent by the people (man-years), forward-only computing has already en-
joyed several thousand man-years of research, even by conservative estimates.
In contrast, as of this writing, all the researchers worldwide in reversible com-
puting can indeed fit in a small auditorium, with room to spare. Relative to
conventional forward-only computing, the know-how in reversible computing
is currently limited. Nevertheless, some recent advances and a corresponding
increase in the base of expertise in reversible computing have now reached no-
ticeable levels, both of which experiencing a spurt in just the past two to three
decades. There is now a sizable, albeit scattered, body of works in various dis-
parate subareas within reversible computing. More importantly, reversibility
is emerging as one of the most exciting new dimensions in computing for the
future, positioned for inevitable progress and expansion in the coming decades.

1.2 A Whole New Dimension

In a way, it can be argued that reversible computing is to computing what
imaginary numbers are to real numbers. Just as imaginary numbers subsume
real numbers, reversible computing subsumes traditional computing, making
it a special case, and generalizes it. The consideration of reversibility adds an
entirely new, “orthogonal” dimension to almost all aspects of traditional com-
puting. The “orthogonality” of this new dimension has profound and wide
implications. The word “reversible” now becomes an adjective that can be
used to qualify every traditional (forward-only) computing concept. For ex-
ample, computer arithmetic gives two relaxations: conventional arithmetic and
reversible arithmetic. Similarly, conventional dynamic memory management
results in two relaxations: forward-only dynamic memory and reversible dy-
namic memory. For all concepts in computing, reversibility gives rise to a new,
fertile class of open research problems.

Scope 5

1.3 Related Terms and Synonyms

Reversible computing means different things to different people. Together with
the concept of reversible computing, several other concepts and related terms
are encountered. A few of them are used somewhat synonymously, while other
terms and phrases appear in relation to some specific aspect of reversible
computing. Among the common ones are

� Reversible computing This is the most recognized phrase for referring
to the largest set of concepts related to computing in which backward
execution is used. Although historically this has been associated with
certain technologies aimed at minimizing the energy consumption of any
computation, it has been the term of choice to refer to hardware as well
as software aspects. In this book, by reversible computing, we refer to all
concepts traditionally associated with the term, and also include other
computing paradigms (see Chapter 7) within which reversible computing
appears in various forms.

� Reversible logic This is often used to refer to the low-level hardware
aspects of reversible computing, namely the gate-level concepts such as
reversible truth tables, reversible logic gates, and synthesis of reversible
circuits.

� Adiabatic computing Adiabatic computing is another term that has been
often used to denote the hardware circuit technology whose energy con-
sumption can be (ideally) fully recovered and reused. Note that the term
itself is a misnomer (see, for example, Section 7.3 of [Frank, 1999]). While
an adiabatic process involves zero heat transfer, an “adiabatic” circuit
does not necessarily preclude heat transfer. Because it is entropy that
is being conserved (suggesting the adjective isentropic), and even en-
tropy can never be completely conserved unless the operating frequency
is close to zero (suggesting the adverb asymptotically), a more appro-
priate alternative term for adiabatic computing would be asymptotically
isentropic computing, as suggested in [Frank, 1999].

� Reverse execution This term is used to refer to program-level reversibil-
ity, especially in relation to actual execution techniques for inverting
the control flow. Almost invariably, this phrase conveys the software
dimension of the execution, as opposed to the hardware aspects.

� Reverse computation This is used synonymously with reverse execution,
but perhaps with more implied emphasis on the data and arithmetic
aspects of reversibility, in addition to the control flow.

� Invertible programming This term typically alludes to reversibility at the

6 Introduction to Reversible Computing

programming language and software level of application. It implies a no-
tion of built-in reversibility into the language constructs, which naturally
results in programs that can be reversed.

� Inverse programming This term typically alludes to reversibility at
application-level, similar to that of invertible programming, except that
the emphasis is more on the program and less on the programming lan-
guage support.

� Bi-directional execution This term applies to any program execution
that carries with it the notion of a runtime choice between forward or
backward execution, regardless of the granularity of the execution unit.
Examples include support for undoing actions in word processing, and
algorithms for physics simulations that can simulate particle motion
forward or backward in time.

� Backward execution This term, sometimes intended as general reversible
execution, refers to the backward part of a bi-directional execution.

� Reversible execution This term is used synonymously with bi-directional
execution.

� Anti-computation This term is used to signify the nullification aspect
of reversible computing. By analogy to matter and anti-matter, when
computation and anti-computation come together, they annihilate each
other, leaving no trace of either. This notion brings with it the allowance
for units of computation and anti-computation to be generated in arbi-
trary order, and for the annihilation to occur regardless of their histories.

� Injective programming This term is used to highlight the functional view
of reversible execution, namely that the function defined by the compu-
tation (input-to-output mapping) is required to be injective (one-to-
one). Sometimes the term bijective programming is also used to denote
those injective mappings that are also onto, ensuring that every value
belonging to the range (output) also has a uniquely mapped value in the
domain (input). Thus, in bijective programming, one could start with
any output value and work backward toward its corresponding input
value. In injective programming, this is not always possible.

� Others Other related terms include speculative execution, optimistic ex-
ecution, and quantum computing, although each of these terms is specific
to a particular implementation approach or usage of reversible comput-
ing.

Scope 7

1.4 Similar yet Unrelated Concepts

There are a few other concepts that are different from reversible computing
but often confused with it.

� Reverse Engineering This is a concept that appears in software engi-
neering. Reverse Engineering is concerned with the art of deciphering a
previous form of a software artifact before it was transformed or con-
verted to the current form. The most common example is the process of
deciphering the source code from the executable object code, the former
being unavailable (e.g., due to proprietary concerns), but the latter be-
ing available. Because the compiler transforms the source code to object
code in very complex ways, it is not an easy task to arrive at the most
likely source code that produced a given object code. Another example is
the uncovering of the pseudocode of an algorithm from its expression in
source code or object code, especially when the code is intentionally ob-
fuscated. Tools for reverse engineering are typically based on heuristics
with domain know-how, and do not provide general solutions. Although
notionally there is a conceptual element of reversal in the action, this is
not reversible computing.

� Backtracking This is a concept appearing in logic programming in which
multiple paths are explored in a backward mode in an attempt to find
the path that best matches a given outcome. Although it is not the same
as reversible computing, backtracking could be an algorithmic approach
in solving some reversible computing problems such as in finding a way
to trade-off computation time for storage so that past state(s) can be
recreated from current state by exploring past states that best match
the current state.

� Inverse Methods There is a range of numerical methods used in complex
scientific simulations to determine the initial conditions that lead to spe-
cific final conditions. The simulations use numerical models of complex
phenomena, typically described by coupled partial differential equations,
and the inversion requires a combination of analysis and numerical in-
version to arrive at the initial conditions of interest. Again, there is an
element of reversal involved in inverse methods, but the context is very
specific to the numerical methods.

� Encryption and Decryption Cryptography is related to reversible com-
puting to the extent that encryption and decryption are reversals of
each other. However, encryption and decryption only happen to be just
one of the forward-reverse pairs of functions in the vast, general set of
functions in reversible computing.

Chapter 2

Application Areas

2.1 General Reversible Computing Problem . 9
2.2 Energy-Optimal Computing . 10
2.3 Parallel Computing and Synchronization . 11

2.3.1 Asynchronous Computing . 11
2.3.2 Supercriticality . 12
2.3.3 Performance Effects . 14

2.4 Processor Architectures . 15
2.4.1 Speculative Execution . 15
2.4.2 Very Large Instruction Word . 16
2.4.3 Anti-Memoization . 16

2.5 Debugging . 17
2.6 Source Code Control Systems . 18
2.7 Fault Detection . 19
2.8 Fault Tolerance . 20
2.9 Database Transactions . 22
2.10 Quantum Computing . 23
2.11 Additional Applications . 23

2.1 General Reversible Computing Problem

At a high level, the challenge of reversible computing may be stated as follows:
Given a program, the program must be executed in such a way that its forward
progress could be paused at any moment and the direction of its execution can
be reversed to retrace its previous steps exactly. The backward execution can
also be paused at any moment and the forward execution of the program can
be resumed. This ability to pause the forward or backward execution at any
point and the ability to switch the direction of execution is the generalized
challenge of reversible computing. Specific variants and specializations of this
general reversible computing problem arise in different contexts. Historically,
low power computing has been a major motivating factor behind the devel-
opment of reversible computing. Over time, additional areas have emerged in
which reversible computing has found applications.

9

10 Introduction to Reversible Computing

2.2 Energy-Optimal Computing

When contemplating ways to reduce the energy consumed to accomplish a cer-
tain computation, the thought process naturally leads to the determination
of the fundamental lower bound for the same. In this process, it was dis-
covered that the theoretical lower bound on energy is directly related to the
reversibility of computation [Landauer, 1961]. More precisely, there are ways
in which the original (forward) computation could be relaxed into a more gen-
eralized setting of reversible computing, (these ideas are elaborated more later
in Chapter 4 and Chapter 5). Arguments based on thermodynamics helped
keep the treatment beyond any specific hardware technologies [Bennett, 2003].
In an ideal setting, it was shown that no energy need be fundamentally lost
in performing any given computation [Bennett, 1973, 1982]. As a corollary,
this implies that, in theory, arbitrarily large fractions of the energy consumed
for a computation should be recoverable for useful work again, although there
would be an underlying trade-off between the efficiency of such recovery and
the speed of computation (i.e., computation time approaches infinity as the
recoverable fraction approaches unity). Based on the thermodynamics of com-
putation, various hardware technologies have been proposed, designed, and
explored, and some have even been implemented as proofs of concept [Ren
and Semenov, 2011].

The theory about the minimality of energy spent for computation is built
over the most basic bit operation, namely bit erasure (e.g., resetting a bit to
0 independent of whether its current bit value is 0 or 1 [Bub, 2001]). First,
it is argued that bit erasure is the only operation that fundamentally con-
sumes energy in any computation. An equivalent way of saying the same is
the following: any computation can be carried out in such a way that only
the bit erasures performed as part of that computation consume irrecoverable
energy, while the energy used in all other bit operations is fully recoverable
and reusable.

Given that the bit erasures form the sole cause of irrecoverable energy
consumption, the important question that follows is whether every compu-
tation can be performed without bit erasures. This question was answered
in the positive by introducing reversible computing. A notion of the reverse
of any computation is introduced, which is then used in a higher-level algo-
rithm to accomplish any computation without bit erasures (see Chapter 4 and
Chapter 6). In this way, the reduction and recycling of energy is one of the fun-
damental applications of reversible computing, holding far-reaching potential
in the future of computing.

Application Areas 11

2.3 Parallel Computing and Synchronization

Reversible computing finds use in addressing some of the challenges in large-
scale parallel computing such as reduction of synchronization overheads and
increasing the concurrency dynamically. As of this writing, parallel computers
with millions of processing units is a reality [TOP500.org, 2013], and the scale
is only envisioned to increase in the future.

Synchronization is that critical aspect of parallel computation which en-
sures that the overall execution obeys and incorporates all the inter-processor
data dependencies of the application [Grama et al., 2003, Raynal, 2012]. A
runtime component of parallel computing is needed in all applications to
realize proper synchronization, and this runtime synchronization costs the
application some wasted processing time (also called blocked time) at some
processors during different periods of execution. Some of this synchronization
is fundamental in nature, in the sense that the inter-processor data dependen-
cies impose a theoretical total parallel execution time (given by critical path
analysis). However, this lower bound is often difficult to achieve in practice,
and the programs are written with very conservative order of execution. For
example, global barriers are invoked in the program to ensure all processors
reach known points in the program before proceeding further. The cost for
each such synchronization operation becomes significantly large as the num-
ber of processors increases, with some applications spending more than 50%
of their time in synchronization versus actual, useful computation.

Note that any synchronization operation is pure overhead, in the sense that
it only adds a component of execution time (and energy) that is simply absent
in sequential computation. The synchronization problem is an important issue
at the highest scales of hardware, despite some advances in underlying network
hardware technologies to speed up the synchronization operations themselves.

2.3.1 Asynchronous Computing

The synchronization problem can be solved by finding ways to increase con-
currency across processors such that there is increasingly more useful compu-
tation performed per synchronization operation. One approach is to incremen-
tally reorganize operations to overlap some computation with communication
or synchronization operations. The more general method is to use a relaxation
to a generalized asynchronous reversible execution, allowing the application
to uncover maximum concurrency at runtime.

� Computation–communication overlap One specialized way to in-
crease concurrency is by using non-blocking synchronization operations,
by which processors perform some local operation while a synchroniza-
tion operation is in progress. For example, non-blocking collective op-
erations such as global barriers or global reductions may be initiated

12 Introduction to Reversible Computing

and completed asynchronously. However, the amount of increased con-
currency uncovered by this approach is limited to the amount of local
computation that can be performed during synchronization.

� Generalized asynchronous reversible execution A generalized way
to increase concurrency is to relax the parallel execution model to one
in which all processors can execute the application both forward and
backward, and let processors execute local computation asynchronously
with respect to each other. Communication and synchronization proceed
in the background, and any violations of data dependency order are
detected at runtime and corrected by relying on reversible execution.
Executing backward, the processor is rolled back from its current point of
execution to the point of dependency violation, and, after incorporating
the correction (e.g., new data arriving from another processor), forward
execution is restarted from the corrected point.

In the specialized communication–computation overlap approach, execu-
tion follows conventional computation, that is, it is still fundamentally forward
execution-based, with no tolerance for any data dependency violation. In the
generalized asynchronous reversible execution, the view of execution is fun-
damentally different, that is, execution is assumed to be reversible from the
outset, with a runtime component (supervisor, coordinator, controller, or en-
gine) orchestrating the global execution such that the overall execution even-
tually provides the same answers as one that incorporated all inter-processor
data dependencies. Without reversibility, it is not possible to relax execution
to uncover any more concurrency than the most conservative one that avoids
even transient violations of dependencies.

The best demonstrations of the potential for the reversible execution to
reduce synchronization overheads in large-scale parallel computing has been
in the area of parallel discrete event simulation (PDES). The Time Warp al-
gorithm [Jefferson, 1985] for PDES has been gainfully employed in multiple
large-scale applications (e.g., epidemiological outbreak simulations) using roll-
back-based synchronization implemented on supercomputers. The algorithm
is built on relaxation to a reversible execution, in which local events at a pro-
cessor are processed optimistically even while lower bound guarantees on the
global virtual time are being computed across all processors. Also, theoretical
analyses have been performed to show the gains with rollback dynamics in the
presence of primary and secondary rollbacks in Time Warp [Akyildiz et al.,
1992].

2.3.2 Supercriticality

Critical Path (CP) analysis of a parallel application is the determination of
the inherently sequential path(s) of data dependencies from the start to end
of the computation [Yang and Miller, 1988, Hollingsworth, 1998]. Clearly, the
longest path from start to end is the most critical one. It is well-known that the

Application Areas 13

critical path(s) in any application determine(s) a fundamental lower bound on
the parallel application’s total computation time. In particular, CP imposes
an absolute upper bound on the achievable parallel efficiency or speedup. How-
ever, an important aspect about this CP-bounded parallel efficiency is that
it rests on the fundamental assumption of conventional forward-only (irre-
versible) computation. If the assumption of irreversibility is relaxed, and the
lower bound is examined with a new assumption of reversible execution, it is
in fact possible to sometimes exceed the theoretical CP-based lower bound on
computation time (and, consequently, upper bound on parallel efficiency and
speedup).

To illustrate, suppose computations appear as a sequence of updates, of
the form

Uij : xi ← fj(Rij),

where xi is a variable being updated, Rij is the set of all variables that xi

depends on for update j, and fj is a computable expression on that set of
variables. In normal execution, the exact values of all variables in Rij should
be available before the update can be performed. In this model, the chain of
these dependencies gives the CP-bounded computation time.

Now, consider the new computation model in which the computation is
relaxed to be reversible, i.e., f−1

j exists and is available for every j. In this
reversible model, suppose Uij is computed without waiting for the most re-
cent values of Rij . After this out-of-order update, when new values R∗

ij for
Rij are available, the correct new value for xi must be recomputed. This is
accomplished by first invoking f−1

j , then incorporating R∗
ij , and finally re-

computing Uij . This reversal and recomputation can reduce synchronization
effects via reversible execution, yet it does not defeat the fundamental critical
path-based lower bound on computation time.

To improve the execution beyond the CP limit, consider the following
variation: when new values R∗

ij of Rij are received, a temporary value x∗
i =

fj(R
∗
ij) is first computed and compared with the current value of xi that was

computed out of order. If they are equal, that is, if xi = x∗
i , then there is no

need to overwrite/update xi because it already has the correct value. There
are two extremely important implications of this obviation of update to xi:

� No succeeding nodes in the dependency graph will need updates, that
is, no Uik, j < k, needs to be recomputed (in case they have already
been computed).

� Due to computation of Uij ahead of its position in the dependency graph,
its computation is overlapped with other preceding computations Uik for
some k < j, thereby reducing the overall completion time of the graph.

This phenomenon of the potential to defeat the lower bound dictated by the
critical path is called supercriticality [Jefferson and Reiher, 1991]. It not only
preserves the correctness of the final answer, but, more importantly, defeats

14 Introduction to Reversible Computing

the lower bound on computation time if Uij is in the critical path of the over-
all computation Note that supercriticality is only possible due to reversible
execution. In the example, if xi is not equal to x∗

i , then f−1 would have to
be invoked to correct the execution to conform to the dependencies. Thus,
reversible computing can be used to sometimes provide supercritical paral-
lel computation that exceeds the parallel efficiency and speedup otherwise
prescribed by the critical path.

2.3.3 Performance Effects

When reversibility is introduced to relieve synchronization costs, the program
must be instrumented to enable forward as well as backward modes of compu-
tation. Two broad approaches are (1) saving copies of variables to a memory
trace before they are modified in the forward mode and copying back from
the trace in reverse mode, or (2) avoid saving values of variables in forward
mode, but instead invoke inverses of individual operations in reverse mode.
In hardware technologies that have high memory latencies (i.e., time taken
to read from or write to memory locations) compared to speed of compu-
tation (such as computing arithmetic operations), it is vastly more efficient
to perform inverse computations rather than store and retrieve values from
memory.

The so-called “memory wall” being faced in the 2000s-2010s exhibits this
situation in which the increasing speeds of central processing units (CPUs)
make memory operations relatively very expensive. This is because of the in-
creasing ratio of CPU clock rates compared to those of memory units, and also
because of multi-core technologies that result in an increase in the number of
CPUs accessing the same number of memory units. This widening gap be-
tween the speeds of arithmetic/logic operations and memory storage/retrieval
operations can be bridged via reversible computing.

Operationally, the performance differences manifest themselves in terms
of memory behavior such as caching effects at all levels (L1, L2, L3), and
Translation Look-aside Buffer (TLB) effects. Memory-based (checkpointing)
reversal suffers from the following drawbacks: (1) the total amount of memory
needed for the reversible program is larger than that without reversible execu-
tion; (2) the time cost of copying values before being modified in the forward
mode adds to the forward execution overhead, potentially slowing down for-
ward execution; and (3) memory subsystem behavior (cache and TLB) can be
negatively impacted due to decrease in locality and due to memory accesses
spilling over cache size limits. Computation-based reversal can relieve these
drawbacks because (1) little additional memory is needed for reversal of arith-
metic operations; (2) the forward code is largely unaffected, thus retaining the
original forward execution speed; and (3) memory subsystem effects are not
significantly altered from the original forward mode.

Application Areas 15

2.4 Processor Architectures

In processor architecture technology, the need for reversible execution arises
in two distinct ways: (1) speculative execution, and (2) very large instruction
word. In both cases, reversible execution is used to correctly uncover dynamic
parallelism from an otherwise sequentially specified computation.

2.4.1 Speculative Execution

Consider a single sequence of instructions S =< . . . , Ii, . . . > being fetched,
decoded, and executed by a processor. In general, instruction Ii must be ex-
ecuted only after all instructions Ij , j < i are completed, because the set of
variables Ii depends on may be modified by those prior instructions. How-
ever, such dependency may not always be actually present in a small window
of the sequence, and some of the instructions may be safely processed concur-

rently without waiting for the others to finish. For example, I1= a← b× c

and I2= d← e+ f can be processed concurrently even if specified sequen-

tially because there is no intersection of variables being read or modified.
More complex instances involve implied dependencies such as from array op-
erations, dereferences, and register conflicts. The problem is that the correct
execution order cannot be determined statically, a priori. In general, the set
of variables being modified by an instruction is not necessarily known until it
is actually decoded and executed (e.g., when indirect references such as array
indices or pointers are used to refer to the variable being read or modified).
Thus, there is a conflict between the possibility of executing a few instructions
concurrently to increase the overall processing speed and the possibility of the
concurrently executed instructions incorrectly affecting each other that might
result in wrong results.

A way to dynamically exploit the potential concurrency is via specula-
tive execution in which a later instruction is issued even before the earlier
instructions are completed [Dubois et al., 2012]. After the speculatively exe-
cuted instruction is executed, conflict detection is performed to see whether
there was an intersection in the set of affected variables (i.e., a violation in
read/write dependencies). If a conflict is detected, the results of the specula-
tively executed instruction are quashed and that instruction is restarted from
the beginning. Alternatively, fix-up code may be invoked to repair the incor-
rectly (speculatively) computed results, instead of discarding everything and
restarting the speculatively executed instructions from scratch. A fair amount
of processor infrastructure and compiler support is usually needed to accom-
plish speculative execution. For example, at the processor-level, instruction
execution must be relaxed so that modifications to registers are held in tem-
porary (shadow) registers for every speculatively executed instruction, and
the changes are committed from the temporary to actual registers only when

16 Introduction to Reversible Computing

conflict resolution succeeds. Reverse computation could be used to avoid these
temporary registers by invoking an inverse instruction to restore the affected
register value if the speculative instruction was found to be conflicting. Spec-
ulative execution is widely used in many modern processors to increase the
processor instruction throughput.

2.4.2 Very Large Instruction Word

In a manner complementary to speculative execution, suppose each instruc-
tion Ii is in fact a vector of sub-instructions, Ii = [si1, . . . , sij , . . . , sin], where
the sub-instructions sij can all be processed concurrently to constitute the ex-
ecution of Ii. Because the number of sub-instructions can be large, the width
of each instruction becomes large, giving the name Very Large Instruction
Word (VLIW) [Fisher, 1983, Dubois et al., 2012]. Determination of which
sub-instructions are possible to execute as an aggregate instruction is accom-
plished within the compiler that generates the VLIW code. While the processor
is responsible for determining the concurrency and reversal of instructions in
speculative execution systems, the compiler is responsible to determine the
concurrency and reversal of sub-instructions in VLIW systems. The VLIW
compiler attempts to generate instructions that have a dense packing of sub-
instructions; however, it may have to reorder sub-instructions in generating
such dense packings. The compiler is then responsible for generating com-
pensation code that reverses the effects of incorrectly (speculatively) ordered
sub-instructions if they result in data conflicts at runtime. The most well-
known packing method is the Trace Scheduling approach [Fisher, 1981, 1983]
in which the path taken by the code in an execution is used to generate the
basic instruction sequence (independent of branch conditions), and reversal or
compensatory code is added to this sequence to recover from deviations from
the assumed path.

2.4.3 Anti-Memoization

A form of reversible computing can be employed in recovering temporary val-
ues that are usually pushed from registers to main memory when a register
conflict occurs (due to register file size limitation or due to named registers
being reused and overwritten across operations). If a register value is poten-
tially about to be lost, it is usually pushed to memory and later loaded back
from memory when it is again needed/used. Because memory operations are
orders of magnitude slower than register speeds, it is desirable to keep op-
erations confined to register accesses as much as possible. Thus, when the
intermediate value that is lost in a register (due to being overwritten) is again
needed, it is sometimes possible to either recompute or reverse compute ear-
lier operations to recover the lost register value, instead of relying on storage
to/retrieval from main memory.

A generalization of such memory versus computation trade-off is the con-

Application Areas 17

cept of memoization and anti-memoization. The method of storing the value
of an intermediate computation in memory for reuse in later computation is
called memoization [Hoffmann, 1992] (note that the term memoization is dif-
ferent from memorization). Such an optimization that trades off memory for
computation arises either from explicit programmer intent or from automation
techniques such as code generation by compilers. While memoization works
best when memory is cheaper than recomputation, it can in fact degrade per-
formance compared to recomputation when memory access cost is much higher
than recomputation cost. However, if the code has already been written using
memoization, the memoized values must be recovered using recomputation.
This can be done via reverse computing to the most recent position at which
the variable was last stored to memory, and then recomputing the expression
that led to the stored value. We call this approach anti-memoization, which is
the process of undoing memoization. An instance of this high-level approach
has been applied at the level of register value recovery (called register remate-
rialization) [Bahi and Eisenbeis, 2011, 2012] to improve the overall application
performance.

2.5 Debugging

Reversibility of execution is very useful in the process of debugging programs
in an efficient and convenient fashion. When running a program, if an unex-
pected condition or undesirable results occur, the program’s execution needs
to be retraced to find the precise point where the deviation from desired be-
havior actually originated. In order to be able to step backward, the program
state needs to be saved before every forward operation. However, the amount
of saved state can become extremely large because the computer executes
millions of instructions per second; in fact, the accumulated state grows so
quickly that it may be infeasible to store the program trace for long program
execution length. The trace for only a small window of execution may be
stored. Yet, the distance between the point of the bug’s manifestation and the
original source location of the bug may be large, making it infeasible to step
backward to the correct origin of the bug via trace traversal. This is where
reversible computing can be applied—instead of saving/restoring the values of
the variables to/from memory, the inverses of the instructions can be executed
backward to traverse the program in reverse from the bug manifestation point
until the bug’s source is determined.

The difficulty in debugging is especially pronounced in (1) assembly-level
debugging, due to very large sizes of traces; and (2) parallel computing. Re-
versible computing is either a significantly more efficient method or the only
feasible method in these cases.

In debugging programs at the level of its assembly language, since the

18 Introduction to Reversible Computing

number of assembly instructions or machine code is extremely large, the
trace sizes needed to enable backward traversal in assembly code grows ex-
tremely quickly. Reversible computing is the only feasible method to enable
bi-directional movement in assembly instruction streams for efficient debug-
ging. Without reversible computing, assembly-level debugging either slows
down forward execution tremendously (due to the introduction of the high
cost of trace generation operations before every assembly instruction) or is
infeasible because the trace does not fit in the available computer memory.

The problem of debugging has been described and various methods sur-
veyed extensively in the context of high-level programs such as text editors
and user interface systems [Teitelman, 1975, 1984, Archer et al., 1984, Lee-
man, 1986]. General bi-directional movement for debugging in general has
been studied [Boothe, 2000], especially taking care of logging all the rele-
vant states including system call data to provide determinism in repeated
bi-directional movement across already-executed instructions. Assembly-level
debugging via reverse execution was studied and optimizations proposed to
significantly reduce the amount of memory trace needed for backward traver-
sal [Akgul and Mooney III, 2004, Lee, 2007]. While reversible execution has
been successfully applied in parallel computing applications (e.g., [Carothers
et al., 1999]), full-scale application of reversible debugging in large parallel
systems is a relatively open item of research.

2.6 Source Code Control Systems

Source code control systems provide a world view in which modifications to a
set of objects can be tracked, traversed, and manipulated along different logical
timelines. The timelines are formed by sequences of individual or grouped
modifications to objects. In general, the timelines are related to each other
in the form of directed acyclic graphs (DAGs). Most often, each object is a
named file in a file system. Modifications to the file are characterized in terms
of edits or changes to the individual lines, assuming that the file is a text file.
Popular source code control systems such as git [Loeliger and McCullough,
2012, Somasundaram, 2013] and mercurial [O’Sullivan, 2009], as well as older
systems such as svn [Collins-Sussman et al., 2009] and cvs [Thomas and Hunt,
2003], provide reversible sequences of edits to sets of files. They also provide
ways to identify and extract, via user-specified or system-generated naming,
individual paths along the DAG of timelines.

Overall, the systems provide a way to view the evolution of the object
values as a reversible computation that can be traversed forward or backward
and also merge different timelines. When each object is viewed as a program
variable holding data, changes to the values of the variables can be made
in a reversible fashion to save and restore the data values. Thus, although

Application Areas 19

the granularity of the objects is different from the variables in a conventional
computer program (files often have much larger bit lengths than typical pro-
gram variables), the notion of reversibility in source code control systems is
analogous to that of a program’s state evolution. Concepts common to both
include the undo and commit operations, while the branching and merging are
operations that are somewhat specific to source code control systems.

2.7 Fault Detection

In fault detection, the idea is to utilize reversible computing to periodically
verify if the forward computation was performed correctly, as follows. Given
a code fragment P , after it has been executed forward as F (P), it is to be
ascertained if there had been a faulty execution of any portion of P (for
example, values of some variables may become incorrect due to low-probability
errors in the memory subsystem that flip one or more bits randomly due to
electrical faults). If the code is executed backward as R(F (P)), then the initial
values of the variables prior to execution of F (P) will not match the values
restored byR(F (P)); such a mismatch can be used to signal an error condition.
This method of detection relies on two important, reasonable assumptions:

1. The type of errors encountered in the forward path are rare events, and
hence the backward path is not susceptible to the same errors as well.
Because F (P) executed under errors and R(P) did not, their net results
can be expected to differ from each other.

2. In the rare event that the backward path also encounters errors, we can
reasonably assume that the forward errors and backward errors do not
cancel each other.

Reversible computing can be used for fault detection and, in some cases,
fault correction. Reverse execution can be used in trapping errors in either
forward code or the reverse code, or even in the implementation of the reverse
compiler. This is achieved by checking the following simple necessary correct-
ness condition at runtime [Bishop, 1997], which, when applied on every local
variable and global variable, is useful in detecting errors in the code or the
compiler.

Suppose a variable var is initialized to expression in the for-
ward execution. At the end of the reverse execution, the final value
of the variable var must equal expression.

Another simple correctness condition is the following, which is a general-
ization of the end-of-tape condition described in [Bishop, 1997]:

20 Introduction to Reversible Computing

Suppose the bit/byte tape is at position P before the forward
execution of a function f , and later the reverse of the function is
executed. Then, by the end of the reverse execution, the tape must
be rewound to the same position P .

2.8 Fault Tolerance

Fault tolerant computation in a parallel or distributed system is the ability
to gracefully continue execution of an application despite transient faults or
failures of system components at runtime. Fault tolerance is an extremely dif-
ficult capability to achieve in parallel systems, particularly when the number
of components in the system is very large. Simplistic schemes rely on period-
ically saving the entire application state to persistent storage and restoring
this state at all processors for recovering from failures. However, such schemes
are woefully non-scalable and break down with large numbers of processors.
More scalable solutions do not rely on global checkpoint/restart views, but use
in-memory solutions. Among them, rollback-based recovery is an important
algorithmic core underlying scalable parallel computing, appearing in the form
of system support, middleware, or applications. For example, efficient rollback-
based fault tolerance approaches (e.g., [Manivannan and Singhal, 1996, Kim
et al., 1996], among many others) rely critically on the ability of processors
to revert their state back to a point in the past.

Thus, processors need the ability to go back to a previous point in execution
dynamically on demand, when they are informed of a fault. The definition of
a fault varies with application. Often, a fault is the detection of a failure of a
processor. In other software-level rollback schemes, a fault is the detection of
a violation of application-specific event order for correctness. For example, in
large-scale Time Warp [Jefferson, 1985, Perumalla, 2007], a primary rollback
results when an event is received with timestamp smaller than the current
virtual time of the receiving processor. When previously sent messages are
taken back as a result of primary rollback, further rollbacks, called secondary
rollbacks, are transitively propagated to other processors.

Figure 2.1 shows the schematic for this general setting [Perumalla and
Park, 2013]. When a processor Pf encounters a fault, it restarts from the
most recently saved checkpoint LCf and informs all other processors {Pr} to
roll back to the point corresponding to the program state of LCf . Every rolling
back processor Pr can invoke reverse code to recover the state corresponding
to LCf .

Note that LCf and LCr are in general different because, for maximum
efficiency, each processor is allowed to asynchronously and infrequently initiate
a checkpoint of its own state to persistent storage. Note also that every rolling

Application Areas 21

Pr

Forward computation

LCr

Pf

Forward computation

LCf

Pr

LCr

Pf

LCf Fault
point

State of
Pr when
Pf faulted

Pr

LCr

Pf

LCf
Recomputation

Recomputation

Pr

LCr Reverse computation

Pf

LCf

State of
Pr when
Pf faulted

Restart
point

Pf=Faulted processor
Pr=Rolled-back processor
LC=Latest checkpoint

FIGURE 2.1: Schematic of asynchronous recovery sequence using re-
verse computation-based rollback.

Each thin vertical line denotes an update to the local state of a processor.
Each thick vertical line marks a full checkpoint of the processor state to
persistent storage. Note that there are very many processors indicated
by Pr that are affected due to the fault at Pf . All of them need to be
rolled back, although, for simplicity, only one processor is shown in the
illustration.

back (non-faulted) processor Pr need only use reverse computation, but does
not have to access its own checkpoint LCr. The checkpoint is only used by
a processor if and only if it is the faulted processor. This particular aspect
dramatically relieves congestion in the system in terms of lowered pressure on
the memory bus and on the file system.

In Figure 2.1, Pr’s corresponding state of LCf is joined by the dashed line
between the processors. The faulted processor Pf restarts from LCf , because
the state from LCf to the fault point is assumed to be lost or unavailable due
to failure.

22 Introduction to Reversible Computing

2.9 Database Transactions

The concept of reversal of operations is fundamental to the backbone of
databases, namely, database transactions. Databases provide the key prop-
erties of atomicity, consistency, isolation, and durability (ACID properties)
for any groups of operations called transactions [Date, 2003]. Applications
can be written correctly and conveniently using these properties. Database
systems internally provide sophisticated and elaborate implementations to
provide support for transactions [Berstein and Newcomer, 2009], fundamen-
tally relying on the concepts of reversal and replay of indivisible groups of
operations. Operations are logged into persistent storage, and complex algo-
rithms ensure that the state of the logs and the state of the data stored in the
database are always consistent with each other. Reversibility of a transaction
is key to correct operation because a transaction may be aborted at any time
(either intentionally by the user due to change of mind, or unintentionally
by the user such as from loss of network connection, or automatically by the
system due to faults such as power failures). When a transaction is aborted
mid-way, all operations performed as part of the transaction must be undone
to preserve the critical ACID properties.

In a common example often used to illustrate the reversal of operations for
transactions, two transactions T1 and T2 operate on a database of two bank
accounts A1 and A2. Transaction T1 attempts to transfer x dollars from A1

to A2, while T2 attempts to transfer y dollars from A2 to A1. To transfer, T1

first debits A1 by x dollars and then credits A2 by the same amount. Simi-
larly, T2 first debits A2 by y dollars and credits A1 by the same amount. Thus,

T1= A1 ← A1 − x;A2 ← A2 + x and T2= A2 ← A2 − y;A1 ← A2 + y . If the

database state before either transaction is S , then the transaction system
ensures that the final system state after the transactions is only one among

S 7→ T1 , S 7→ T2 , S 7→ T1 7→ T2 , or S 7→ T2 7→ T1 , where P 7→ Q de-

notes the state obtained by application of transaction Q on state P . In other
words, it ensures that at most one transaction succeeds, or if both succeed, the
state is exactly as though one transaction is entirely preceded by the other
(i.e., not interleaved). To achieve these semantics, reversal of operations is
employed if and when any transaction is aborted before it is executed to com-
pletion (i.e., “committed”). For example, if T1 is aborted after its first step

A1 ← A1 − x , this partially executed transaction can be undone by executing

the inverse A1 ← A1 + x . Similarly, if T1 completes both steps, but somehow
fails before it is committed, both steps are to be undone, in reverse order; That

is, by executing the inverse A2 ← A2 − x;A1 ← A1 + x . While this simple

example illustrates the reversal of aborted transactions in databases, in prac-
tice the database system infrastructure is much more elaborate and complex
to support very fast operation of a large number of transactions containing

Application Areas 23

a richer set of operations. Different reversal technologies are employed to roll
back transactions, the superset of which is in the realm of reversible comput-
ing.

2.10 Quantum Computing

Reversible computing is an inherent feature of Quantum Computing [Bennett
et al., 1997, Rieffel and Polak, 2011]. In Quantum Computing, computation is
a sequence of unitary operation of the computer state. Because every unitary
matrix is reversible by definition, the entire sequence is inherently reversible.

2.11 Additional Applications

Reversible computing finds use in different forms and to varying degrees in
several other applications. The adjoint methods in Automatic Differentiation
(AD) can exploit reversible computation in the so-called reverse mode of eval-
uation [Griewank and Walther, 2008]. User-friendly graphical interface-based
applications commonly provide interfaces to allow users to perform certain
operations that can be undone on demand, allowing the user to explore dif-
ferent operations. Sports scoreboard maintenance and recording systems are
built using reversible computing principles to enable automated generation of
inverse actions for normal actions, to deal with inherently error-prone pro-
cesses in real-time scoring [Briggs, 1987]. Computer file systems, such as the
Apple Macintosh Operating System’s Time Machine R© functionality, provide
a reversible view of all changes to the file system contents.

24 Introduction to Reversible Computing

Interesting Contexts

Software for reversible execution found an interest-
ing application in the 1980s when J. Briggs reported a
way to use reverse code generation and reversible ex-
ecution to undo incorrect updates to the scoreboard
in cricket matches [Briggs, 1987]. Reversal code was
automatically generated with the objective of mini-
mization of the state information to be stored to en-
able reversal.
In the game of cricket [Knight et al., 2007], as in other
sports, mistakes and corrections inevitably occur in
recording and publishing the scores even as the game
is in progress. Errors can appear in two ways: (1) the
scoreboard operators may commit errors of omission
or commission in entering events into the comput-
ing system, or (2) the game itself may experience re-
versals of decisions and other sport-specific updates,
such as umpire’s corrections. In each of these types,
there are many occasions where updates are rolled
back and corrected, naturally warranting reversible
execution in the scoring program software.

In an unrelated context, reversibility appears in musi-
cal compositions in the concepts of the mirror canon
and the crab canon (also called cancrizans) in which
the musical notes are mirror images of themselves
(or palindromic) [Hugo, 1904]. A popular reference
to crab canons is the collection by J. S. Bach titled
“The Musical Offering” [Bach, 1747]. The notes of
a crab canon written over a Möbius strip [Pickover,
2007] can be played back and forth ad infinitum.

Chapter 3

Reversible Computing Spectrum

3.1 Spectrum . 25
3.1.1 Components . 25
3.1.2 Common Cases . 26

3.2 Partial Reversibility . 27
3.3 Unit of Reversibility . 28

3.3.1 Reversing a Child’s Play . 28
3.3.2 Reversing the Movement of Library Books 29
3.3.3 Reversing Different Units of Computation 29

3.1 Spectrum

The spectrum of reversible computing is wide, spanning from programming
languages that are closest to the applications, down to hardware circuitry that
ultimately realizes the computation in the form of modeled physical processes.
The components in the spectrum are illustrated in Figure 3.1, which shows
them in traditional (irreversible) computing in correspondence with those in
reversible computing. There are also possibilities to transition from the irre-
versible column to the reversible column, and vice versa, at different levels
of the spectrum. These transition options give rise to possibilities of realizing
reversible computation over irreversible computation, and vice versa, in the
intermediate points of the spectrum.

3.1.1 Components

At the top of the spectrum is the set of programming languages: conventional
languages such as C and C++ are irreversible in general, while specially de-
fined languages such as Janus are entirely reversible by design. A subset of
programs written in irreversible languages can be reversible (if, for example,
they only utilize reversible operations). Theoretically, these programs can be
translated into reversible languages. Thus, we have the set of irreversible pro-
grams and the set of reversible programs; the set of reversible programs can
be written in a specially designed reversible language or in a subset of an
irreversible language.

The compilation of programs itself could be qualified as reversible or irre-

25

26 Introduction to Reversible Computing

versible. When the compiler is viewed as a program that accepts source code
as input and generates object code as output, the execution of the compiler
program could itself be reversible or irreversible. A reversible compiler accepts
source code as input, generates object code, makes a copy of the object code
to the output, and uncomputes back, leaving only the object code as output.
The best example of a reversible compiler is the Janus interpreter [Yokoyama
and Glück, 2007] that itself is written in the reversible Janus (hence, also
called a self-interpreter). Almost all traditional compilers, such as the GNU C
Compiler, are irreversible compilers. Note that some irreversible compilers can
generate object code for reversible programs. For example, source-to-source
translators such as the Reverse C Compiler (RCC) execute irreversibly but
generate reversible code.

The target of the compilers for object code can be conventional irreversible
instruction set architectures (ISA), such as the Intel X86 ISA, or they can be
reversible instruction sets, such as the Pendulum Instruction Set Architecture
(PISA) [Vieri, 1995, Vieri et al., 1998, Vieri, 1999, Frank, 1999]. Reversible
ISA can be natively executed reversibly on reversible hardware, but they can
also be executed irreversibly on irreversible hardware. Similarly, irreversible
ISA can be emulated reversibly on reversible hardware, and, of course, irre-
versibly executed on conventional irreversible hardware. This is the last layer
at which transitions between irreversible execution and reversible execution
spectrum can happen. Below this layer, the nature of computation with re-
spect to reversibility cannot be changed.

The hardware technologies for computing come in both flavors: (1) conven-
tional irreversible gates, or (2) reversible gates providing assured reversibility
(potentially with consequent thermodynamic implications such as low energy
consumption). The NAND and NOR universal gates are examples of irre-
versible gates, while CNOT and CCNOT family of gates are well-known ex-
amples of reversible gates.

Using the basic gates, large circuits are built for general-purpose and com-
plex computations. These circuits are necessarily distinguished as reversible or
irreversible, depending on the specific types of gates used. Large circuits are
synthesized from the basic gates as building blocks, with different synthesis
technologies that are different for reversible and irreversible gates.

3.1.2 Common Cases

For reversible computing, the common case has programs written in a re-
versible programming language, compiled with an irreversible compiler on an
irreversible computer, with the resulting program executed on a reversible
computer supporting a reversible instruction set. In another common case,
a reversible program is generated by an irreversible compiler executed on an
irreversible computer, and the resulting reversible program is used in an other-
wise irreversible, larger program executed on an irreversible computer. A few
demonstrations have included actual reversible execution all the way from

Reversible Computing Spectrum 27

the programming language level down to the level of reversible circuits, with
the exception of the compilation process that is typically performed with an
irreversible compiler on an irreversible computer.

CNOT,

CCNOT

NAND,

NOR

Sort,

Math

Sort,

Math

C, C++

FORTRAN
Janus,

R

GCC,

RCC

Janus

Interpreter

x86 Pendulum

Reversible

Circuits

Reversible

Gates

Reversible

Computer

Reversible

Instruction Set

Reversible

Compiler

Reversible

Program

Reversible

Language

Irreversible

Circuits

Irreversible

Gates

Irreversible

Computer

Irreversible

Instruction Set

Irreversible

Compiler

Irreversible

Program

Subset

Sim
ulate Em

ula
te

Computational

Component

Computational

ComponentExample Example

FIGURE 3.1: Reversible computing spectrum.

3.2 Partial Reversibility

Between the two extremes of irreversible computation and fully reversible com-
putation, one can contemplate an intermediate notion of partial reversibility.
In partial reversibility, two options exist: (1) a small loss of information is
allowed to occur during execution, and (2) a small amount of memory trace
is allowed to accumulate during execution.

28 Introduction to Reversible Computing

In the former, the execution is mostly reversible except for the loss of a
relatively small number of bits compared to the number of bits comprising
the entire state of the system. For example, in a simulation of molecular
dynamics of millions of particles, the number of bits comprising the state of the
whole system of particles may be extremely large. However, perfectly reversible
execution may not be possible because of the complexity of modeling certain
collision operators such as a multi-particle collision involving three or more
particles simultaneously. Although irreversible processing of such collisions
results in a loss of information, the error may be acceptable because such
collisions are rare and may not adversely affect the overall dynamics of interest.

In the latter, the relatively small amount of information that is being lost
in the rare dynamic conditions may be recorded in memory to be able to
reverse them. Although theoretically the trace length is proportional to the
execution length, the size of the trace may be extremely small in practice and
hence negligible [Perumalla and Protopopescu, 2013].

Similar considerations can be applied as well to the synthesis of circuits
for low power computing. In reversible hardware designs that reduce energy
usage in exchange for a lower speed of computation, partial (ir)reversibility
in the form of (ir)recoverable energy is possible, which may provide a better
trade-off between energy savings and computation speed or memory size [Li
and Vitanyi, 1996, Buhrman et al., 2001].

3.3 Unit of Reversibility

The notion of reversibility (at least in relation to the inanimate world) is
rather relative. Indeed, many levels of reversibility, and thereby irreversibility,
can be defined without contradiction or inconsistency across the levels. The
levels are defined by the level of abstraction or amount of detail one chooses
to use to describe a system and view it as such.

Because computing involves transformation of an input vector to an output
vector, one could easily propose a trivial form of reversibility in which a copy of
the input vector is saved before computation, and restored when computation
is to be undone. There are two assumptions underlying this view: (1) the
computation overwrites the input vector with the output vector, and (2) an
unmodified copy of the input vector is unavailable elsewhere.

3.3.1 Reversing a Child’s Play

Consider a child playing with toys in his room. Before he starts playing, the
room is neatly organized, with every item of the room in its prescribed place.
After, say, an hour of playing, the room gets quite disorganized, with toys
scattered in various directions. Suppose one were to pose the question of re-

Reversible Computing Spectrum 29

versibility of the child’s play. The unit of reversibility becomes important here.
If the unit is the whole hour’s play, then it is easy to achieve reversibility: sim-
ply reset all the items to their original, prescribed places—we know that they
started that way before the child started playing, and so, by restoring all the
toys to their original places, we have reversed the child’s entire playing activity.
On the other hand, if the unit of reversibility is any finer than the whole hour
of play, then the reversibility problem gets significantly harder. For example,
if we must be prepared to restore the room to any intermediate position x
minutes into play, where x is specified only after all the play is done, then
the activity needs to be tracked at a fine time resolution throughout the play.
Issues of interpolation also arise if camera-based snapshots are not sufficiently
frequent, and so on.

3.3.2 Reversing the Movement of Library Books

Another example that illustrates how the desired unit of reversibility deter-
mines the difficulty or ease of reversal is the restoration of books to their
numerically sorted order in a library. After the movement of books by people
within a library over the course of a day, if the unit of reversal is the entire
day, then reversal is trivially achieved simply by picking up every book that
is not in its correct place and placing it back in its right place within its
designated shelf. On the other hand, if the reversal problem is generalized to
that of restoring the state of the library any x minutes into the day, then the
problem becomes much more difficult. The movement of the books must be
recorded sufficiently often to remember the location of every book at every
instant of time in the day, in anticipation of the requirement to restore the
state to any point in time. The information to be remembered includes the
identity of every book that is being moved, its current location, its new lo-
cation, and the time of the movement. Thus, what required zero memory for
reversal of an entire day’s movement now requires a trace of all movement of
all books within the day.

3.3.3 Reversing Different Units of Computation

Analogous to the preceding examples, the problem of reversal varies with the
unit of computation that needs to be reversed in reversible computing. The
cost of reversibility in computing depends on the specific usage context and
the specific unit of reversal. For example, any user process (e.g., UNIX pro-
cess) can be reversed simply by resetting the memory and restarting from the
beginning. However, the difficulty of reversal increases if the process may be
paused during execution to be rolled back to an arbitrary point in its past.
To reverse it to an intermediate point in the past, the computation must be
tracked and the state of the reversal point must be accurately recreated upon
reversal. Thus, the unit of reversal can range all the way from the transforma-
tions at the bit-level to the level of processes or even higher (e.g., rebooting

30 Introduction to Reversible Computing

the computer). The objective and the unit of computation together determine
the reversal semantics.

Part II

Theory

31

Chapter 4

Systems and Principles

4.1 Logical Computations and Physical Processes 33
4.2 System Theoretic View of Computation . 34

4.2.1 A Computation Example . 35
4.2.2 Basic Components of Computational Energy 35
4.2.3 Dissipated Energy as Theoretical Energy Cost of

Computation . 37
4.2.4 Theoretical Lower Bound on Dissipated Energy 37
4.2.5 Reversibility for Zero Dissipated Energy 38

4.3 Reversible Circuits as Bit Compressors . 40
4.3.1 Irreversible User Circuit within an Expanded Reversible

Circuit . 40
4.3.2 Clean and Dirty Bits . 40
4.3.3 Custom Computation Circuit . 41
4.3.4 General-Purpose Computation Circuit 41
4.3.5 Energy Cost of the Circuit . 42
4.3.6 Analogy with Refrigeration . 42
4.3.7 Reversibility in the Eye of the Beholder 43

4.3.7.1 Reversal via Expanded Function 43
4.3.7.2 Relating Energy and User Interest 44

4.4 Deterministic versus Non-Deterministic Reversal 44
4.4.1 Bit Erasure Cost versus Bit Reset Cost 45
4.4.2 Zero Energy Cost Schemes . 45

4.4.2.1 Bennett’s Scheme . 47
4.4.2.2 Maroney’s Scheme . 47

4.1 Logical Computations and Physical Processes

In pursuit of scientific inquiry into the physics of the universe, one encounters
a phase at which reversibility plays an important role. Quantum mechanics
and the Maxwell’s Demon are some salient indicators of this intriguing facet
of Nature. Equally intriguing, a pursuit of scientific inquiry into the thermo-
dynamic limits of computing also leads to the role of reversibility in terms
of information represented in physical processes. A provocative discussion by
Charles Bennett titled “Is Information Physical or Physics Informational?”

33

34 Introduction to Reversible Computing

highlights, among other things, this uncanny yet critical relation [Bennett,
2005]. Thus, strangely, reversibility appears in the center of both concepts
(see Figure 4.1): the informational aspects of phenomena in physics and the
energy limits in the physics of computation. Historically, the former was in-
vestigated in great depth in relation to physical systems as varied as steam
engines and astrophysical bodies. Along the way, principles that transcend
almost all technology-specific details evolved in the form of concepts such as
entropy and laws of thermodynamics. Much later, the latter appeared when
the physical needs of information processing were investigated in the context
of energy-efficient computation.

Physics

of

Computation

FIGURE 4.1: Reversibility at the intersection of computation and
physics.

4.2 System Theoretic View of Computation

A major scientific advance closely tied to reversible computing is in under-
standing the theoretical limits on the energy needs of computation, indepen-
dently of any specific computing hardware technologies. The limits are under-
stood by applying the principles of thermodynamics to the physical processes
used to realize computation, specifically the energy components that underlie
any computation. It is envisioned by many researchers that the theoretical
limits are destined to be reached in practice within a decade or two when
computing capabilities (e.g., number of bit operations per second per unit
volume) are scaled by two to three orders of magnitude relative to today’s
scale (see, for example, [Frank, 1999, 2005]). Hence, an understanding of the

Systems and Principles 35

theoretical limits is seen as relevant today in order to better prepare for the
impending practical limitations.

4.2.1 A Computation Example

Consider a simple computational problem, namely the computation of the
square root of a number. Suppose we have an algorithm A that accepts a
number x as input and computes y =

√
x as output. Now we ask the question:

what is the minimal amount of energy needed (on average, per input) to
executeA on a computer? Alternatively, we may ask what exactly is the nature
of energy consumption within the computer (e.g., where does the energy go?).

There are clearly many parameters to take into account in answering the
question. For example, there is a wide range of computing technologies that
could be used, such as mechanical machines or electrical/electronic devices or
even non-traditional technologies such as DNA-based computing [Paun et al.,
2006]. The algorithm A may manifest itself as several logical operations, each
of which may consume energy for execution. The condition of the computer’s
environment (e.g., temperature) may affect the energy needs. And so on. Is it
possible to answer such a seemingly open-ended question?

To arrive at an answer, we will first review the components of energy con-
sumption in a computing system, and then examine the fundamental results
about the minimal energy needed for any computation.

4.2.2 Basic Components of Computational Energy

Let us examine the elements of energy consumption in a practical computer
and make a distinction between the theoretical and engineering-specific com-
ponents of the energy in actual operation.

Figure 4.2 shows the abstract operation of any computing device, which
transforms input bit sequences into output bit sequences based on some set
of physical processes that use the following energy components. For example,
when algorithm A is executed, the input bit sequence consists of the list of
w-bit integers x1, . . . , xn, and the output bit sequence consists of y1, . . . , yn,
where yi =

⌊√
xi

⌋
, where ⌊x⌋ is the largest integer less than or equal to x.

The energy components are as follows:

1. Energy, Ein, is input to the computing system to drive the process of
computation. For example, this would include the electrical energy to
drive the electro-mechanical components, and to run the cooling system
that maintains a safe operating temperature for the electro-mechanical
computing devices.

2. An irreversibly lost portion of energy, Eirr, is predicated as a fundamen-
tal loss that is solely a function of the logical transformation function on
the input bits and the operating temperature of the device, and indepen-
dent of all physical characteristics of the device. This is the theoretical

36 Introduction to Reversible Computing

...101110101011110 1001011101010...

FIGURE 4.2: Computation and energy.

minimum amount of loss that would be necessarily incurred by any com-
putational hardware, independent of efficiencies and engineering details.

3. An unrecovered portion, Eunr, of the input energy represents the com-
ponent that can be traced to engineering limitations, and is subject to
change with technologies employed to realize the computation. This por-
tion can be reduced via better design and engineering, and sometimes
by adopting different physical processes. At present, a major fraction
of energy consumed in modern computers is in the form of unrecovered
energy.

4. A recovered portion, Erec, of the input energy that is fed back into the
system as part of Ein. This energy component is also an artifact of design
and engineering. The recovery could be realized by tapping into some of
the energy stored in the machine while changing the computing states,
and also by tapping into the thermal energy dissipated as heat from the
computer. For example, steam could be generated from the dissipated
heat for partial conversion back to electrical energy. In many modern
installations, the fraction of recoverable/recovered energy is often too
small to be useful in feeding back into actual operation of the computing

Systems and Principles 37

infrastructure. However, as the efficiency of computation improves, this
fraction may become significant.

From conservation of energy, Ein = Eirr + Eunr + Erec. In most existing
computing systems, Eunr + Erec ≫ Eirr [Frank, 1999]. Also, usually Erec ≪
Ein.

As a side note, an important engineering problem is cooling the computer.
Energy lost in the form of Eunr not only wastes energy, but also (more im-
portantly) often manifests itself as heat. This heat raises the temperature of
the computing system and can make it difficult to cool down the machine
sufficiently rapidly when computational hardware density increases, that is,
when heat generated per unit volume increases. Thus, even if it is possible
to increase the input energy Ein to meet the needs of the computation, the
unrecovered energy Eunr may become so large that it accumulates heat to
a level sufficient to melt the computer. This consideration imposes limits on
input energy different from the considerations of efficiency and infrastructural
capacity.

4.2.3 Dissipated Energy as Theoretical Energy Cost of Com-
putation

To set the lower bound on the theoretical energy cost of any computation
(independent of physical process technologies or current design limitations),
it is reasonable to assume that appropriate physical processes can be designed
and engineered to either store or transform energy from one type to another
without losing the ability to control all the energy to do useful work. In other
words, all energy in the computing system will remain in a form usable to do
computation work, except, potentially, a portion of energy that is postulated
as necessarily “lost” due to some fundamental causes arising from the logic of
computation. Thus, we may theoretically assume an implementation in which
there is no unrecovered energy (making Eunr = 0) and all recovered energy
is recycled into input energy (which may be viewed as Erec = 0). The energy
component Eirr is entirely a property of the computation and not that of the
physical manifestation of the comptuation.

In this light, the energy cost Eirr is called dissipated energy, that is, energy
on which we lost control to do useful work solely due to the fact that the energy
was used as part of computation. Hence, the energy cost of computation is
the amount of dissipated energy in accomplishing that computation.

4.2.4 Theoretical Lower Bound on Dissipated Energy

If we turn our attention to the theoretical limits, it is not immediately clear
what would reduce Eirr . In particular, how low can Eirr be made in principle?
This question was answered in a set of during in the period from the 1950s to

38 Introduction to Reversible Computing

the 1980s (see Bennett [1988] for a recount). The development may be viewed
as taking three main steps.

1. A hypothesis was initially prevalent that every logical operation or mea-
surement incurred an energy cost [Brillouin, 1956]. For example, John
von Neumann opined that every “elementary act of information” per-
formed at an operating temperature T (Kelvin) necessarily dissipates
at least kT ln 2 joules, where k is the Boltzmann constant [Neumann,
1966].

2. It was subsequently identified that only a certain type of logic operations
results in energy cost because they destroy information, but other logic
operations may be performed in principle without dissipating energy.
Specifically, only operations of the form x← 0 or x← 1 result in energy
dissipation, given that the bit value currently held in the location x
is not known to be available anywhere else [Landauer, 1961, Bennett,
1973, 1982, 1988, 2003]. Such operations are called bit erasures. The
energy cost is kT ln 2 joules for every such bit erasure performed by
the computation [Landauer, 1961]. This result, known as Landauer’s
Principle, is the one of the most well-known, direct relations between
physical (thermodynamic) systems and logical computation.1

3. The remaining issue to settle the question about the energy lower bound
was whether there is any computation-specific lower bound on the num-
ber of bits erased by a program. This was settled by an even stronger
result that showed that any computation can be carried out with zero
bit erasures [Bennett, 1973, 1982].

The developments were based on system-theoretic arguments, which
helped overcome the difficulty of technology-specific analyses. Thus, Eirr has
been theoretically shown to be proportional to the number of bit erasures
performed by a computation, independent of the specific computation tech-
nology, and that Eirr can be made arbitrarily close to zero by avoiding bit
erasures. However, the theoretical elimination of dissipated energy is only ap-
proached asymptotically by sufficiently slowing the physical processes to avoid
energy dissipation. This aspect of “asymptotically zero-energy” computation
has earned reversible computing the name of adiabatic computing.

4.2.5 Reversibility for Zero Dissipated Energy

In the preceding development of the lower bound on the energy cost of com-
putation, the notion of reversibility appears in the arguments as follows. To
establish the lower bound, it is necessary to choose a computational hardware

1Nearly four decades after Landauer’s Principle was proposed, an experimental verifica-
tion of the energy dissipation model has been successfully undertaken and reported [Bérut
et al., 2012, Drechsler and Wille, 2012].

Systems and Principles 39

technology whose physical operation (independent of the logical functions in
computation whose energy bounds we are attempting to establish) admits the
potential for incurring the least energy cost (ideally, zero). To this end, the
availability of conservative processes is assumed for the physical realization
of computation, which ensure that no energy need be lost at the physical
operation per se, ignoring computational viewpoints for the moment. Also,
time-reversible physical operation is assumed for the processes. Several tech-
nologies such as ferrites, ferroelectrics, and thin magnetic films are identified
in Landauer [1961] that satisfy the assumptions of time-reversible, conserva-
tive operation. The conservative processes can be used to construct elements
with switchable stable states to realize bits for computation. The switching is
assumed to be deterministic, that is, the state after any given switching oper-
ation is unique. The following deterministic switching operations on every bit
are reasonably assumed to be physically realizable without dissipating energy:
switching from 0 to 1, switching from 1 to 0, staying at 0 while being at 0, and
staying at 1 while being at 1. Crucially, conservative operation of a switch is
not possible if the current state value for a bit is not known, that is, energy
is necessarily dissipated when switching from an unknown bit value to either
0 or 1. Such a switch from an unknown bit value to a specific bit value is not
possible to perform conservatively because it violates the time-reversible op-
eration of the conservative process. Otherwise, a time-reversed operation after
reaching the specific bit value must result in two different bit values, which
contradicts determinism. The switch from an unknown bit value to a specific
bit value is called bit erasure. Because it is possible to switch from 0 to 1 or
vice versa with zero energy cost, the bit erasure can be defined without loss of
generality as resetting an unknown bit value to 0. Landauer placed the lower
bound on the dissipated energy per bit erasure as kT ln 2 joules, as mentioned
earlier.

From the aforementioned observations, it follows that, in principle, only bit
erasures impose a non-zero lower bound on the amount of dissipated energy
for any computation. If bit erasures are avoided in a computation, Landauer’s
Principle says it would be theoretically possible to accomplish such a compu-
tation with no dissipation of energy. Now consider any reversible computation
whose input bits can be uniquely recovered from its output bits. The set of
all reversible computations is exactly the same as the set of all computations
that incur no bit erasures. Hence, by Landauer’s Principle, reversible computa-
tions can be theoretically performed without any dissipated energy. However,
historically, conventional computers have been designed for irreversible pro-
grams, and hence, for the findings to be relevant, it is necessary to analyze
the energy cost of irreversible computations as well. It is in this context that
the results of Bennett [1973] and others bear relevance, providing methods by
which irreversible computations may be performed over reversible systems,
albeit trading off some cost in time and space to avoid energy cost.

In the next sections, the preceding principles are examined in the context
of logic circuits and machines, respectively. The former concerns a system-

40 Introduction to Reversible Computing

theoretic view of reversible logic circuits. The latter concerns a relaxation of
the requirement of deterministic execution assumed in the development of the
Landauer’s Principle.

4.3 Reversible Circuits as Bit Compressors

In this section, we will examine the implication of Landauer’s Principle on
a logic circuit view of computations, and how the reversibility and energy
concerns are manifested in the operation of a logic circuit.

4.3.1 Irreversible User Circuit within an Expanded
Reversible Circuit

With logic circuits, the desired computation is specified as a function F on
input bits I = [I1, . . . , In], n ≥ 1, giving output bits O = [O1, . . . , Om],m ≥ 1.
Because in general the mapping of the input to output may be irreversible,
the function must be embedded in an expanded mapping that can be as-
sured to be reversible by design. For reversibility, the expanded function
introduces additional bits L = [L1, . . . , Ll], l ≥ 0 on the input side, and
D = [D1, . . . , Dd], d ≥ 0, on the output side. Note that n+ l = m+ d, because
reversibility requires the number of input bits to be equal to the number of
output bits. Due to the fact that the desired function is only concerned with
I and O, the circuit must internally supply all the bits L and consume all the
bits D for every evaluation of F .

4.3.2 Clean and Dirty Bits

Conventionally, the L bits are called clean bits, and the D bits are called dirty
bits. The “cleanliness” of the L bits means that the value of the bits is fixed,
independent of I, and, more importantly, independent of any prior values
for previous inputs of I as well. Similarly, the “dirtiness” of the D bits, as
counterparts, means that the values of D are dependent on actual values for I
given by the user. Thus, the circuit is tasked with the job of converting input-
dependent D into input-independent L between two consecutive computations
of F . This task of conversion requires erasure (and eventually resetting) of D
into L. Here we can assume that D only contains dirty bits (i.e., whose values
vary with I), and does not contain any clean bits. This is because any clean
bits in D can only originate from L.

The circuit implementation is not obligated to perform the conversion of
D to L soon after every evaluation, and may in fact choose to postpone con-
version to be performed in batches. However, it cannot postpone every con-

Systems and Principles 41

version indefinitely because of the physical resource constraints (e.g., bounded
physical size) of the circuit. Nevertheless, the compression may be logically
considered to be carried out after every reversible function evaluation.

4.3.3 Custom Computation Circuit

The design of a custom circuit Cs using these principles is illustrated in Fig-
ure 4.3. The functionality is separated into two distinct components of the user
circuit: one called the Core circuit Cs

c and the other called the Compressor
circuit Cs

r . The core circuit captures the functional aspect for the reversibility
of F . The compressor circuit logically captures the operating functionality,
namely the generation of clean bits and consumption of dirty bits. Note that
the external interface to the circuit is only in terms of I and O, conforming
to the user specification. Additional control circuitry is needed (e.g., timing
circuitry is not shown) to synchronize and/or choose the direction of execution
(F or F−1).

User Circuit

Cs

Cs
c

Core Circuit

Cs
r

Compressor

✲
✲...✲In

p
u
t
b
it
s

I1
I2

In

✲
✲... ✲ O

u
tp
u
t
b
it
s

O1
O2

Om

✲
✲...✲

L1
L2

Ll

C
le
a
n
b
it
s

...

...

D1
D2

Dd

D
ir
ty

b
it
s

✛
✛
...

✛

FIGURE 4.3: Problem-specific (custom) computational circuit Cs.

4.3.4 General-Purpose Computation Circuit

To design a general-purpose circuit Cg, the custom circuit template of Cs

can be extended to include as input an additional program bit vector P =
[P1, . . . , Pp], p ≥ 1. For reversibility, n + p + l = m + d. This is shown in
Figure 4.4. At a conceptual level, these can be included in the input vector I,
but the logical separation helps distinguish the intended purposes of the two
sets of vectors.

42 Introduction to Reversible Computing

User Circuit

Cg

Cg
c

Core Circuit

Cg
r

Compressor

✲
✲...✲In

p
u
t
b
it
s

I1
I2

In

✲
✲... ✲ O

u
tp
u
t
b
it
s

O1
O2

Om

✲
✲...✲

L1
L2

Ll

C
le
a
n
b
it
s

...

...

D1
D2

Dd

D
ir
ty

b
it
s

✛
✛
...

✛

❄❄· · · ❄

P1P2 Pp

Program bits︷ ︸︸ ︷

FIGURE 4.4: General-purpose computational circuit Cg.

4.3.5 Energy Cost of the Circuit

Landauer’s Principle says that an unavoidable energy loss occurs when d bits
are returned to the compressor and converted to l clean bits. This is because
the conversion is a bit erasure operation on the dirty bits. Hence, when a
circuit is embedded into an expanded reversible circuit that results in d bit
erasures to be performed for every circuit evaluation, the bit compressor at
temperature T Kelvin necessarily dissipates at least kT ln 2d joules per cycle.

4.3.6 Analogy with Refrigeration

An interesting analogy exists between the compressor in a refrigerator and the
notion of a bit compressor in a reversible logic circuit. Just as the refrigerator
compressor cannot be made to convert hot refrigerant to a cooler one with
100% thermodynamic efficiency, so too the bit compressor cannot be made
to convert dirty bits to clean bits with 100% thermodynamic efficiency. Also,
just as the refrigerator needs a compressor for its operation because it can-
not be supplied with an unlimited amount of cool refrigerant, the reversible
machine needs a bit compressor because it cannot be supplied with an unlim-
ited amount of clean bits. The core circuit in the logic circuit, however, does
not suffer from any fundamental limitations on efficiency and can be made
arbitrarily high, in exchange for an increase in the time taken to compute

Systems and Principles 43

and/or the amount of intermediate state (space) used. This is analogous to
the possibility of making the cooling operation itself (namely, achieving and
maintaining the temperature differential between the exterior and the interior
of the refrigerator) as efficient as one desires so long as there is a continu-
ous supply of cool refrigerant or the cooling process is allowed to proceed
sufficiently slowly.

4.3.7 Reversibility in the Eye of the Beholder

Let us denote the computation of the user-specified irreversible circuit by the
functional relation O = F(I), where I is the vector of input bits and O is
the vector of output bits, as described before. The reverse evaluation of F is
defined as the recovery of I from F(I).

System Environment

✗
✖

✔
✕

Source of

I✗
✖

✔
✕

User of

F(I)
Computer of

G(I,L)

❄
✻

LD

✲

✛ F(I)

I

(a) Forward

System Environment

✗
✖

✔
✕

User of

F−1(F(I))✗
✖

✔
✕

Source of

F(I)

Computer of
G−1(F(I),D)

❄
✻
LD

✛

✲F(I)

I

(b) Reverse

FIGURE 4.5: Relation between the bits of interest to the user and the
actual set of bits reversibly computed.

4.3.7.1 Reversal via Expanded Function

Because in general F may not be invertible, F is embedded inside a new
functional relation (O,D) = G(I,L) defined as shown in Figure 4.5(a). The

44 Introduction to Reversible Computing

input I can only be recovered by inverting G instead of inverting F alone. In
the simplest case, F = G and L = D = ∅, but this is not true in general.

The function F−1 that recovers I from F(I) is obtained indirectly by rely-
ing on the reversibility of the expanded function G, as shown in Figure 4.5(b).
The inverse function G−1 for G has the property

(I,L) = G−1(O,D).

Among all possible G for a given F , let G∗ be an optimal function that mini-
mizes the number of dirty bits produced, that is, d∗ = |D∗| produced by G∗ is
the smallest among all G. Reversible computing techniques deal with realizing
a G∗ corresponding to any given F . Importantly, this problem of minimizing
the number of dirty bits only arises from the specific nature of F as defined
by the user.

In particular, if indeed the user were to be interested in a new function

O′ = H(I ′),

where I ′ = I ∪ L, O′ = O ∪ D, and O = F(I), then the new function of
interest, H, is perfectly reversible without the need to expand into a different
reversible function G. In the reversible computation of H, no clean bits are
needed from the system, and no dirty bits are pushed into the environment.

4.3.7.2 Relating Energy and User Interest

Given the function F and the corresponding G∗, the minimum energy dis-
sipated in computing F(I) with perfect efficiency is given by Emin = kT ln 2d

∗

due to the fact that d∗ bits are erased at temperature T . A key observation
is that the dissipated energy is due to information that is being discarded,
apparently from disinterest on the user’s part. The disinterest is manifested
implicitly in the definition of the irreversible function F(I) specified by the
user. On the other hand, if the user had been willing to expand his interest
from F to its corresponding function H, the computation can be theoretically
made to operate with zero dissipated energy because H generates no dirty
bits. In other words, any energy used in the (forward) computation of H is
possible to be recovered without loss in the computation of H−1. This varia-
tion of the minimum dissipated energy with user’s specific interest makes the
effects of reversibility dependent on the eye of the beholder, or on the user’s
choice in the demarcation of the system boundaries.

4.4 Deterministic versus Non-Deterministic Reversal

Here we revisit Landauer’s Principle, focusing on the assumption of determin-
ism that underlies its proposition, and examine an alternative view in which

Systems and Principles 45

non-determinism due to irreversible computation is accepted. An important
outcome of this relaxation is that the energy cost of bit erasures may be over-
come not only by methods that avoid bit erasures but also by a different
method that exploits non-determinism.

4.4.1 Bit Erasure Cost versus Bit Reset Cost

Recall that the energy cost of kT ln 2 per bit erasure as stated by Landauer’s
Principle is based on the requirement of deterministic computation. Maroney
revisited the analysis and offered certain clarifications to the principle’s scope,
interpretation, and generalization [Maroney, 2004, 2005, 2009]. Maroney
pointed to the importance of the subtle difference between a bit erasure and
bit reset operation. When a bit is being “forgotten” as part of a computation,
it is the reset operation on that bit, and not the erase operation on the bit’s
current value, that necessarily dissipates energy. Bit erasure is the act of los-
ing track of the bit’s current value. Bit reset takes the unknown bit value and
sets it to a known value (say, 0). Hence, in a more precise understanding of
the energy cost of logical computation, a distinction must be made between
the energy costs of the two operations. Maroney observed that the bit erasure
does not require dissipation of energy, but it is only a subsequent determin-
istic bit reset that incurs that cost. Moreover, after a bit has been erased,
it may be non-deterministically reset (to a value dynamically determined by
the current state of the system) such that the net energy cost for the bit era-
sure and non-deterministic reset is zero. In light of Maroney’s correction and
generalization, the energy cost in Landauer’s Principle must be qualified as
deterministic bit reset cost, as opposed to a bit erasure cost. This distinction
leads to two different ways of executing irreversible computations with zero
energy cost. Both deal with the ability to produce the output of arbitrary
programs with no dissipated energy. However, their difference only lies in the
restoration of the input, based on the distinction between deterministic or
non-deterministic execution, as elaborated next.

4.4.2 Zero Energy Cost Schemes

In general, a computation can be deterministic or non-deterministic in the
forward execution. The same computation may also be deterministic or non-
deterministic in the backward direction. Thus, there are four types of compu-
tation, as shown in Table 4.1. A program that has non-determinism in back-
ward execution is conventionally called an irreversible program. Nevertheless,
since the notions of forward and reverse are interchangeable, the notions of
(ir)reversibility and (non-)determinism may be equally applied to either for-
ward or reverse mode of execution.

The notions of irreversibility and non-determinism of any state sequence
are illustrated in Figure 4.6. Each black disk represents a state. An arrow
from state s to state d represents that the execution of the program takes the

46 Introduction to Reversible Computing

TABLE 4.1: Types of Computation in Terms of Reversibility and Determin-
ism

Code Forward Execution Backward Execution

T1 Non-deterministic Deterministic
T2 Deterministic Deterministic
T3 Deterministic Non-deterministic
T4 Non-deterministic Non-deterministic

state from s to d. In the figure, irreversibility corresponds to n > 1, and non-
determinism corresponds to m > 1. Again, note that the notions of irreversible
and non-deterministic evolutions in the figure can be applied to both forward
and reverse modes.

�
��✒

❅
❅❅❘

s1
· · · ✈

...

sn· · · ✈
d✈· · · �

��✒

❅
❅❅❘

d1
· · ·✈

dm· · ·✈
...

s ✈· · ·

n-to-1 1-to-m

(a) Irreversible execution (b) Non-deterministic execution

FIGURE 4.6: Irreversibility and non-determinism in state updates.

With the preceding background, let us examine the two different ways of
executing any computation O = F(I) with zero energy cost.

1. Bennett’s scheme: The first method is part of the previously men-
tioned result that showed that any computation can be performed with
zero bit erasures. Using this method, the system starts with the original
input I = Iin and terminates with the pair (Iout,O), where O is the
output of the computation and Iout = I is the same as the original in-
put. Determinism is assumed as a requirement of execution; as a result,
Iout must be equal to Iin even if F is not one-to-one. To ensure de-
terministic execution, this method generates an intermediate log of bits
that are reversibly erased before the computation terminates. Hence,
extra bit space (and some extra operations) are needed in this method.

2. Maroney’s scheme: This method exploits the possibility of non-
deterministic execution to obviate extra space and time needed in the
Bennett’s scheme. The computation is performed to produce the output
O on termination. However, unlike Bennett’s scheme, the copy of the

Systems and Principles 47

input Iout remaining at the end of computation is not necessarily equal
to the original input, but can be potentially any other input that gives
the same output, that is, F(Iout) = O.

4.4.2.1 Bennett’s Scheme

To show that computation can be (asymptotically) performed with zero
energy cost, Charles Bennett developed an ingenious scheme that takes any
conventional irreversible program and theoretically executes it with no bit
erasures. The scheme is a “compute–copy–uncompute paradigm,” illustrated
in Figure 4.7 (see also Section 7.2), which works as follows. The program is
first executed on the input to generate the output. This can be performed
without energy dissipation by keeping a record of all activity so that no bit
values are lost (thereby avoiding susbsequent bit erasures). A copy of the
output is made to save the output. The entire forward computation is then
undone by executing the program backward, thereby restoring all bits to their
original values. Because the net dissipated energy is zero, Ein = Eout. For
this scheme to work, the original program must be reversible to be able to
execute it in the reverse mode, but we must assume that the program can be
irreversible. Hence, the original irreversible program must first be converted to
a semantically equivalent reversible program. This can be achieved by logging
information during execution. When this converted program is executed in
the forward mode, a set of “clean” bits is needed to record the runtime log in
a reversible manner. These clean bits are converted to dirty bits at the end of
the forward execution. The reverse mode of the (modified) program restores
them to their clean state.

A crucial observation about this scheme is that both the forward and
reverse executions are required to be deterministic. This important assumption
or reliance on deterministic execution ensures that the entire execution not
only generates the output but also restores the input to exactly the same
value it had before the program started. In other words, it retains a one-to-
one mapping between the input and the output.

4.4.2.2 Maroney’s Scheme

It is also possible to compute with zero energy cost by relaxing the deter-
ministic execution requirement in the reverse mode [Maroney, 2004]. The only
change to the semantics of the reversible execution is that the input is now
no longer guaranteed to be the same as the original input. However, it does
guarantee that the restored input is in fact another valid input that would give
the same output as the original input. This can be easily expected because
irreversibility of the original program essentially means that there is more
than one valid input to the program that generates the same output. The new
scheme is shown in Figure 4.8. In this, the original program is executed in the
forward mode unmodified. The reverse of the program is allowed to contain
non-determinism; hence no special instrumentation of the program is needed.

48 Introduction to Reversible Computing

FIGURE 4.7: Bennett’s scheme to incur zero energy cost in executing an
irreversible deterministic program on a reversible deterministic machine.

This approach also obviates the notions of clean and dirty bits. Just as in
Bennett’s scheme, net energy loss, Ein − Eout, is zero.

FIGURE 4.8: Maroney’s scheme to incur zero energy cost in executing
an irreversible deterministic program on a reversible non-deterministic
machine.

Chapter 5

Reversibility-Related Paradoxes

5.1 Entropy . 49
5.2 Reversibility and Entropy . 50
5.3 Ehrenfest’s Urn Model . 51

5.3.1 Model Configuration and Operation . 51
5.3.2 Analysis . 52
5.3.3 Forward and Reverse Algorithms . 53
5.3.4 System versus Computational Reversibility 53

5.4 Kac-Ring Model . 55
5.4.1 Model Configuration and Operation . 55
5.4.2 Analysis . 56
5.4.3 Forward and Reverse Algorithms . 57
5.4.4 An Entropy Function . 57
5.4.5 System versus Computational Reversibility 57

5.5 Relation to Maxwell’s Demon . 59
5.5.1 Development . 59
5.5.2 Setup and Operation . 60
5.5.3 Operation as a Computer Program . 60
5.5.4 Paradox Resolution . 61

5.6 Relation to Other Paradoxes . 63
5.6.1 Loschmidt’s Paradox . 63
5.6.2 Zermelo’s Paradox . 63
5.6.3 Berry’s Paradox . 64

5.7 Algorithmic Entropy . 66
5.7.1 Definition . 66
5.7.2 Non-Computability . 67

5.8 Further Reading . 68

5.1 Entropy

Any discussion about reversibility inevitably touches on another important
concept, namely that of entropy. The entropy of a system is often loosely
defined as a measure of “disorder,” although such a definition is imprecise be-
cause disorder is a subjective concept. In reality, in a closed dynamical system,
any increasing function (or, more generally, any non-decreasing function that

49

50 Introduction to Reversible Computing

“eventually” increases) of the system’s variables that can be identified in that
system can be defined as an entropy function of that system. Functions that
never increase (i.e., which stay constant, because they also do not decrease)
are not interesting entropy functions, especially if at least one other entropy
function can be found that experiences some increase. To identify and/or de-
fine an entropy function of a system, the system is viewed as a composition of
two or more subsystems. The values of variables representing the enclosed sub-
systems are called microstates, and the aggregations of the enclosing system
are called macrostates. An entropy function of the system is then determined
as a function of possible mappings from macrostates to microstates as the
system evolves. When the system moves from an “old” macrostate to a “new”
macrostate, a potential ambiguity arises about the specific set of microstates
that underlie the old macrostate that gave rise to the new macrostate. In
general, if there is nothing in the system that can be used to resolve this
ambiguity, then the system accumulates this ambiguity about the previously
taken path during its evolution. Any function that captures this increase of
ambiguity about the system’s evolution path qualifies as an entropy function
of the system [Gottwald and Oliver, 2009].

5.2 Reversibility and Entropy

Historically, the concepts of reversibility and entropy were considered to be
tightly interlinked. An interdependence was assumed to exist between re-
versibility of system evolution and the increase in entropy of the system,
resulting in various implications and expectations. For example, if the steps
in a system’s evolution are individually reversible, it could be (incorrectly)
expected that there would be no necessary increase in entropy. Conversely,
an increase in entropy could be (incorrectly) expected to imply that there
is some source of irreversibility in the system evolution. In addition to such
considerations with respect to the evolution of any dynamical system, new
considerations apply to computation or simulation of such systems. For ex-
ample, when simulating a phenomenon in which an entropy measure exists,
it might be (incorrectly) expected that the increase in entropy would nec-
essarily manifest itself as an increase in memory that would be necessarily
accumulated in a reversible execution of that simulation.

All such incorrect expectations result from an incorrect assumption of
an allegedly necessary relation between the concepts of reversibility and the
concept of entropy. The independence of reversibility and entropy would be
clear if there are examples in which the system remains reversible at every step
of evolution and yet exhibit an increasing entropy measure (or, equivalently,
an “arrow of time” in the system evolution). Two commonly used examples
available in the literature are described in the next sections to illustrate this

Reversibility-Related Paradoxes 51

independence between reversible execution and entropy increase (and, thereby,
independence of entropy increase and the memory needed to perform reversible
simulations). The first example is the Ehrenfest’s Urn model, and the second
example is the Kac-Ring model. Both clearly exhibit perfect reversibility that
results in zero memory increase despite indefinite lengths of execution, yet
in both examples there exist increasing entropy functions. In particular, the
Ehrenfest’s Urn model shows a clear one-way evolution from any initial state
to an equilibrium state, that effectively gives an arrow of time for the system;
yet the system can be reversibly executed without any growing memory trace.
While both examples illustrate how irreversibility arises at a macro level even
though the systems remain reversible at the micro level, here we use them to
illustrate the reversibility with respect to computation (or simulation) on the
computer, and show how a reversible execution could be memory-less despite
the presence of an increasing entropy for the simulated system.

5.3 Ehrenfest’s Urn Model

The Ehrenfest’s Urn model is one of the simplest systems designed to under-
stand the relation between reversibility and increase of entropy. This example
has been used in the literature to clarify the apparent paradox of one-way evo-
lution always arising out of an otherwise reversible phenomenon. It can serve
to discuss concepts such as entropy increase and an arrow of time. Here, we
will also use this example to show how the classical view of reversibility (e.g.,
in physics) is different from the view needed for computer-based reversible
simulation of a physical phenomenon.

5.3.1 Model Configuration and Operation

The model consists of two urns and N numbered balls, as illustrated with
N = 10 in Figure 5.1. Initially, the N balls are divided across the two urns,
with N1 balls in the first urn and N−N1 in the other. In the initial conditions
of interest, N1 ≪ N . Due to the symmetrical and complementary nature of
the two urns, the model can focus on tracking the occupancy of only one of the
urns, say, the first urn. In each step, an N -way random number, RN ∈ [1, N],
is thrown, and the ball numbered RN is moved from its current urn to the
other urn. As the number of steps increases, the number of balls in the first
urn changes. The function of interest is the probability, Pj(t), 1 ≤ j ≤ N ,
that the ball numbered j would be found in the first urn after t steps. Clearly,
this probability distribution changes as t increases. Also of interest is the
probability distribution, Qj = limt→∞ Pj(t), that makes it independent of
time and gives the steady-state distribution.

52 Introduction to Reversible Computing

FIGURE 5.1: The Ehrenfest’s Urn model illustrated with N = 10 balls.

5.3.2 Analysis

Let the pair (j,N − j) represent the state of the system at some time step,
to denote that the first urn contains j balls and the second contains the
rest. Then, the behavior of the system can be modeled as a Markov chain of
transitions among the states, as shown in Figure 5.2. With an N -faceted die,
the probability of transition per ball is λ = 1

N . The state transitions from
(j,N − j) to (j + 1, N − j − 1) with probability (N − j)λ because there are
N − j balls in the second urn that are candidates for a ball to move from the
second urn to the first urn. Similarly, the state transitions from (j,N − j) to
(j− 1, N − j+1) with probability jλ because there are j possible balls out of
N currently in the first jar from which one ball can be moved out.

Starting with the initial conditions (e.g., starting with the state (N, 0)),
the system goes through transitions until it smears itself probabilistically, so
to say, throughout the entire Markov chain such that every state has been
visited very many times and historical effects become less and less relevant in
determining the probability associated with any state. In such a state, called
the equilibrium, a time-independent probability distribution of the states can
be determined by calculating the number of possible ways in which any given
state can be composed out of all the possibilities. This can be computed as
follows.

Consider an N -bit integer formed by setting its bth bit to 0 if ball b is in
the left urn, 1 otherwise. Because any ball can be in either the left urn or
the right urn, the integer can take on all the values from 0 to 2N − 1. Thus,
there are C = 2N possible configurations of the system. There are c =

(
N
j

)

Reversibility-Related Paradoxes 53

j, N-j

jλ

(N-j)λ

j = 0, . . . , N
λ = 1

N
Pj(t) = Probability system is in state (j,N − j) at time t
Qj = Probability system is in state (j,N − j) as t→∞

= Pj(∞) = 1
2N

(
N
j

)

FIGURE 5.2: Markov chain and probability distributions in the Ehren-
fest’s Urn model.

ways in which j balls can be chosen from N balls, all of which are the same
configuration when they are in the same urn, which occurs in one out of C
configurations. Hence, the probability of finding j balls in the left urn in the
equilibrium state is Qj =

c
C = 1

2N

(
N
j

)
.

5.3.3 Forward and Reverse Algorithms

The normal (forward) operation of the urn model and its reverse operation
algorithm are shown in Algorithm 5.1. The evolution processes are described
in the form of computer programs that can be executed to simulate the sys-
tem. The system is configured using the Initialize routine. Invocation of the
Forward routine followed by the Reverse program will restore the system
exactly to its initial state. This condition is verified after the reversal via as-
sertions in the Verify routine. The availability of a reversible random number
stream is assumed (see Chapter 12), from which samples are drawn to initial-
ize the system with N balls randomly assigned to the two urns. The same
stream is used after initialization to generate random identifiers of the balls
to be moved between the urns.

5.3.4 System Reversibility versus Computational
Reversibility

Consider the function

H(t) = −
N∑

j=1

Pj(t) log
Pj(t)

Qj
.

54 Introduction to Reversible Computing

Algorithm 5.1 Forward and reverse algorithms for the Ehrenfest’s Urn
model.

N=number of balls
T=number of operations (random swaps) performed

R(i..j)=random integer between i and j inclusive
R−1(i..j)=reverses the random stream, recovers recent R(i..j)

U []=array of N bits
U [b]=0 if ball b is in left urn, 1 if in right urn

Initialize

for b = 1 to N do
U [b]←R(0..1)

end for

Forward

for t = 1 to T do
b←R(1..N)
U [b]← 1− U [b]

end for

Reverse

for t = T down to 1 do
b←R−1(1..N)
U [b]← 1− U [b]

end for

Verify

for b = N down to 1 do
assert U [b] = R−1(0..1)

end for

This function is an entropy measure for this system because it can be
shown[Kelly, 1979] that H(t) is strictly increasing as t→∞.

At every t, for reversibility, the system requires us to record the deviation of
the actual distribution Pj(t) from the equilibrium distribution Qj. This record

will need, on average, hj(t) = logPj(t) − logQj = log
Pj(t)
Qj

bits for each pos-

sible j with probability Pj(t). Hence, on average, H(t) =
∑N

j=0 Pj(t) · hj(t)
bits are needed to remember the actual trajectory taken by the system, start-
ing from any given initial condition to the current time t. Thus, the system’s
entropy measures the loss of information over time with respect to system
reversibility. By contrast, there is no loss of information with respect to com-
putational reversibility: the steps can be retraced deterministically and without
additional information. With pseudorandom number streams, reversal of the
random number stream can be realized with zero memory cost. However, with
externally sourced streams, there is a bit cost incurred in remembering the
forward stream in order to go back in reverse. The bit cost then is equal to
t · w, where w is the bit precision of the random number.

It is clear that increasing entropy does not imply irreversibility, and that
the reversibility aspects of the system are different from those for a reversible
simulation of the system. Thus, although there is an “arrow of time” in the
evolution of the physical system, it does not interfere with the computational
reversibility of a simulation of the system.

Reversibility-Related Paradoxes 55

5.4 Kac-Ring Model

Another model that illustrates the difference between microscopic reversibility
and macroscopic entropy is the Kac-Ring model [Kac, 1956]. In the following
description, we borrow the common notation from the literature [Gottwald
and Oliver, 2009].

ForwardReverse

= Marker

= Black ball

= White ball

FIGURE 5.3: Illustration of the Kac-ring model with N = 12 sites
containing B = 7 black balls, W = 5 white balls, and n = 6 markers.

5.4.1 Model Configuration and Operation

A set of N balls is arranged in a circular fashion. Each ball is either white or
black in color. A wheel with n spokes turns inside the circular ring of balls.
Each spoke is called a marker, and the n markers are randomly placed in
the N slots along the circumference of the wheel. An example is shown in
Figure 5.3 for a small number of balls and markers. Whenever a marker goes
past a ball, the ball’s color is toggled (white becomes black, black becomes
white). If each turn of the wheel constitutes one time unit of evolution, the
object of interest is the state of the system after t turns, or after time t. The
following observations can be made about the system:

56 Introduction to Reversible Computing

1. If n is even, the system reverts back to the initial configuration after
t = N . If n is odd, the initial configuration is reached after t = 2N .

2. Reversibility is easily achieved: forward evolution is obtained by rotating
the marker wheel counterclockwise while reverse evolution is obtained
simply by flipping to clockwise rotation.

3. In general, as N →∞, it takes t→∞ for the system to revisit its initial
state.

5.4.2 Analysis

Let the number of white balls at time t be Wt. The number of black balls, Bt,
is equal to N −Wt. Among the Wt white balls, let wt balls be toggled by the
turn of the markers at time t; similarly, let bt of the Bt black balls be toggled.
For example, in the forward (counterclockwise) mode shown in Figure 5.3,
there are b = 4 black balls about to be toggled, and w = 2 white balls about
to be toggled. It follows that Wt+1 = Wt + bt −wt, and Bt+1 = Bt +wt − bt.
Let ∆t = Bt −Wt. Then ∆t+1 = Bt+1 −Wt+1 = (Bt −Wt) − 2(bt − wt) =
∆t− 2(bt−wt). This implies that the difference between the number of black
balls and the number of white balls depends only on wt and bt, which is
the microscopic information about precisely which balls are positioned at the
markers about to be toggled next.

Now consider a random configuration of a ring with N balls, in which N is
very large. Assuming uniformly random placement of markers and ball colors,
the ratio of markers to balls is the same as the ratio of the white balls in front
of markers to the total number of white balls (and analogous ratios for black
balls as well). Thus, if the ratio is µ, then

µ =
n

N
=

wt

Wt
=

bt
Bt

. (5.1)

On average, if the same argument about uniformity is accepted at every t, the
ratios can be used in the recurrence relations, giving the expected value ∆̃t of

∆t as ∆̃t+1 = (1− 2µ)∆̃t = (1 − 2µ)t+1∆0. Thus,

∆̃t = (1 − 2µ)t∆0.

Interestingly, Equation (5.1) is analogous to the Stosszahlansatz condition
that Boltzmann used in his H-theorem for molecular disorder (see, for exam-
ple, [Lebowitz, 1994]). In modeling the aggregate behavior of a large num-
ber molecules in an ideal gas, in addition that the pre-collision velocities of
molecules are uncorrelated, Boltzmann introduced an assumption that post-
collision velocities are also uncorrelated. This additional assumption about
post-collision velocities made the calculations of the system dynamics possi-
ble. By a similar analogy, Equation (5.1) assumes that the post-rotation ratios
of white to black balls remains uncorrelated, although they are correlated due
to the specific configuration of markers and the initial conditions of the ring.

Reversibility-Related Paradoxes 57

5.4.3 Forward and Reverse Algorithms

The normal (forward) operation of the Kac-Ring model is shown in Algo-
rithm 5.2. The operation is described in the form of computer programs that
simulate the system, given any specific input value forN . The system is config-
ured and initialized with the Initialize routine. The Forward routine evolves
the system forward by T steps, after which the Reverse routine evolves the
system backward by T steps to bring the system back to its initial state. Per-
fect restoration via reversal is checked in the Verify routine that should be
invoked after reversal.

5.4.4 An Entropy Function

Consider the function

S(∆t) =
1

N
logCt, where Ct =

(
N

Bt

)
.

This function defines, on average per ball, the logarithm of the number of
distinct microscopic configurations of the Kac-ring of N balls that give the
same macroscopic configuration as specified by a given value for ∆t. The
number of micro states is nothing but all the possible arrangements of Bt

black balls and Wt = N − Bt white balls in the ring. This is equal to the
number of ways in which N balls can be partitioned into two sets: one set with
Bt balls and the other with Wt = N − Bt balls. This is equal to Ct =

(
N
Bt

)
.

To identify precisely which one of these Ct configurations was in fact the
predecessor of the current macro state, the number of bits needed is equal to
logCt = N · S(∆t).

Let δt =
∆t

N . Then, using the Stirling’s approximation log x! ∼= x log x,

S(∆t) = 1− 1

2
[(1 + δt) log2 (1 + δt) + (1− δt) log2 (1− δt)] .

This implies that S(∆t) increases from 0 to 1 as δt decreases (from an
initial value x ≤ 1) down to 0 because ∆t decreases (from an initial value
X ≤ N) down to 0. Because ∆t decreases with t, S(∆t) increases with t.
Thus, S(∆t) defines an entropy function for the system that increases as the
system evolves with increasing t.

5.4.5 System Reversibility versus Computational
Reversibility

The existence of the preceding increasing entropy function follows from the
Stosszahlansatz condition, which itself is considered a reasonable expectation
when N is very large. Historically, philosophical debates followed this line of
reasoning, but for present purposes, it suffices to note that the system exhibits

58 Introduction to Reversible Computing

Algorithm 5.2 Forward and reverse algorithms for the Kac-ring model

N=number of balls
B=number of black balls
W=number of white balls
n=number of markers

M []=array of N bits
M [i]=1 if a marker is in place i, 0 otherwise
A[]=array of N bits
A[i]=1 if ball i is white, 0 if black
Rb=next bit from random bit stream
R−1

b =reverses the bit stream, recovers recent Rb

T=number of time steps
x XOR y=exclusive-or of bits x and y

Initialize

B ← 0
n← 0
for i = 1 to N do
M [i]←Rb

if M [i] = 1 then n← n+ 1
end for
for i = 1 to N do
A[i]←Rb

if A[i] = 0 then B ← B + 1
end for
W ← N −B

Forward

for t = 1 to T do
for i = 1 to N do
j ← 1 + ((i + t− 1) mod N)
A[i]← A[i] XOR M [j]

end for
end for

Reverse

for t = T down to 1 do
for i = N down to 1 do
j ← 1 + ((i+ t− 1) mod N)
A[i]← A[i] XOR M [j]

end for
end for

Verify

for i = N down to 1 do
assert(A[i] = R−1

b)
end for

Reversibility-Related Paradoxes 59

a one-way evolution of the dynamics despite trivially reversible mechanics of
the underlying process.

Recapitulating all the important aspects of the model, we see that the
system is fully deterministic and reversible at every step of its evolution, and
yet it exhibits an analogy of the arrow of time by which an apparent one-
way evolution of a macroscopic quantity is evident as the system evolves. All
this is seen notwithstanding the fact that it is a closed system with no in-
fusion/emission of information into/from the system. This relation between
reversibility and entropy increase is well known in physics. However, the im-
portant aspect for reversible computing is that a computer-based simulation of
a physical phenomenon in which entropy increases does not necessarily make
the computation irreversible, nor does it necessarily result in a memory trace
for reversible execution.

5.5 Relation to Maxwell’s Demon

A hypothetical construction called the Maxwell’s Demon is a well-known
proposition that attempts to break the view that entropy must always (even-
tually) increase in a dynamical system. Besides its implications on our under-
standing of physics in general, it is an excellent illustration of the strange re-
lationship between irreversible (memoryful) computation and entropy in some
dynamical systems.

5.5.1 Development

The Maxwell’s Demon is a theoretical system that was essentially designed
as a counter-argument to the Second Law of Thermodynamics. The Second
Law, widely considered as an important observation about the entire universe,
effectively states that the thermodynamical entropy of any closed dynamical
system increases over time. The Maxwell’s Demon apparently violates the law;
the challenge is to pinpoint where and how the essential discrepancies arise,
and see if the paradoxical discrepancies can be effectively resolved. Maxwell’s
Demon comes in different flavors and variants. A system, for example, was
constructed such that, apparently, heat can be made to indefinitely flow from
cooler to warmer portions of a system without expending mechanical work or
energy, which is in direct violation of the Second Law. Interestingly, it tran-
spires that this paradoxical Demon bears a strong relation to both physical
reversibility as well as computational reversibility. Although the physical as-
pects of the Demon have been widely debated for more than a century, it was
only in the mid to late 1900s that a computational side of the Demon was
uncovered, bringing with it the relation to reversible computing.

In 1961, Rolf Landauer argued [Landauer, 1961] that the Demon’s opera-

60 Introduction to Reversible Computing

tion is not without irreversible energy cost, contrary to the original implicit
view that the Demon’s logical actions do not incur any thermodynamical in-
crease in entropy of the system. He argued that the Demon merely moves
its operating energy cost from the visible and obvious physical system to the
invisible and intangible cost of realizing reversible logical decisions. Later,
Jeffrey Bub [Bub, 2001] and Charles Bennett [Bennett, 2003] extended the
reasoning and provided clarification that the irrecoverable energy cost of the
logical operations by the Demon arises from the necessarily blind erasures of
bits of information by the Demon (i.e., fundamentally unavoidable discarding
of information stored as logical states). Under the reasonable assumption that
the Demon possesses limited memory (or, alternatively, can rely only on finite
physical resources for memory), the Demon is eventually forced to forget some
of its actions over a sufficiently long course of its operation, which necessarily
results in loss of information from the system. The loss of information mani-
fests itself as irreversible bit operations (or, equivalently, as bit erasures), and
hence necessarily generates heat.

5.5.2 Setup and Operation

To understand the arguments at a high level, consider the operation of the
simplified skeleton of the Maxwell’s Demon illustrated in Figure 5.4. The
system consists of a set of n particles S = {Pi|1 ≤ i ≤ n} contained in a box
that is divided by a wall into two chambers, called the left chamber, L, and
the right chamber, R. A door on the dividing wall is assumed to be operable
by the Demon with zero energy dissipation (e.g., with frictionless operation).
The act of opening or closing is assumed to be instantaneous. Based on widely
accepted feasibility regarding physical realizability, it is also assumed that the
cost of measurement of the system state by the Demon may be rendered
negligible via appropriate constructions of devices.

5.5.3 Operation as a Computer Program

The essential functionality of the Demon can be distilled into repeated execu-
tion of a simple act: whenever a particle Pi is about to hit the door from either
side, the Demon evaluates a certain condition C(S, Pi) about the system, and,
if the condition is satisfied, the door is opened for an infinitesimally small pe-
riod (to let the particle pass through to the other chamber) and thereafter
immediately closed.

The condition C(S, Pi) varies with each variant of this basic Demon tem-
plate.

� In a variant called the Pressure Maxwell’s Demon, the condition lets
through only the particles arriving from the left chamber and keeps the
door closed for all particles hitting from the right chamber.

� In another variant called the Thermal Maxwell’s Demon, the condition

Reversibility-Related Paradoxes 61

L R
❣Demon

t

t

t✲Pi

t

t t
t

t

t Demon Program
S = {Pi} is the set of all particles
for ever do
Find next particle Pi to hit door
if C(S, Pi) then
Open door
Let Pi pass through
Close door

end if
end for

FIGURE 5.4: Basic template of a Maxwell’s Demon

evaluates how the approaching particle’s velocity compares with the av-
erage velocity of all particles. It permits particles from the left chamber
moving with a velocity larger than the average velocity to go through;
similarly, particles from the right chamber with smaller than the average
velocity are permitted as well.

� In variants such as the Szilard Engine [Szilárd, 1929], the system may
contain as few as a single particle, and even the need for accurate mea-
surement of particle state is avoided—the Demon need only know infor-
mation such as from which chamber the next particle is about to hit the
door.

Despite such simplifications, the crux of the problem remains: the Demon
must accumulate an infinite amount of information over time, but it cannot
retain all of it indefinitely without irreversibly resetting memory states that
are realized physically. All the Demon variants are essentially capable of con-
verting the knowledge about the source chamber of the approaching particle
into work with zero increase in thermodynamical entropy of the system. Thus,
by endowing the Demon with such intelligence, perpetual motion appears to
become feasible. It is the limitation of this intelligence in terms of memory
that is resolved by examining the reversibility of the intelligent computation
by any Demon.

5.5.4 Paradox Resolution

When the operation of the Demon is viewed as an automaton, it can be
simplified as a computer program shown in Figure 5.4. In the paradox, the

62 Introduction to Reversible Computing

L R❞

r��
�✒

Pi

Forward

L R❞
r

�
�

�✠

PL
i

L R❞
r

��✠
❅❅❘

PR
i

Reverse possibility 1 Reverse possibility 2

FIGURE 5.5: Illustration of ambiguity for Maxwell’s Demon regarding
the source chamber of a particle.

Demon can extract work without increasing entropy if and only if the program
can be executed reversibly.

Note that, for any iteration, the Demon cannot predict whether the body
of the if statement would be executed or not executed. Alternatively viewed,
the Demon will not be able to run in reverse mode correctly without remem-
bering the past actions because, in general, it cannot disambiguate between
two states that result in the same next state. This is illustrated in Figure 5.5.
When attempting to reverse the trajectory of a particle Pi that is currently
in the right chamber, the Demon is presented with two possibilities for the
particle’s previous state: either the particle originated from the left chamber
and admitted by an open door, or the particle was already in the right cham-
ber and was simply reflected within the right chamber off the closed door.
Nothing within the system can offer the information to disambiguate, and the
current state is equally probable to occur from both the previous states. This
implies that, for every iteration, to be able to reverse the if statement, the
Demon has to remember as one bit of information (say, 1 to represent that
the if body is executed, 0 otherwise). Thus, for the program to be reversible,
the Demon needs to retain a trace of all the bits recording the sequence of
decisions it made. However, with limited memory, the Demon cannot store in-
finite numbers of bits, and will have to begin overwriting them at some point.
Such overwriting of bits irreversibly dissipates energy, that is, irretrievably
loses the ability to convert some portion of the energy into useful work. The

Reversibility-Related Paradoxes 63

loss of such an ability to convert energy to work is nothing but an increase in
entropy over time. The paradox is thus resolved by observing that information
loss appears in the form of irreversible bit erasure.

5.6 Relation to Other Paradoxes

The concept of reversibility arises in a few additional paradoxes, which are
briefly described next.

5.6.1 Loschmidt’s Paradox

The Loschmidt’s Paradox [Boltzmann, 1877, Steckline, 1983] directly brings
reversibility arguments to bear on the relationship between microscopic and
macroscopic aspects of physical systems. It highlights the apparent discon-
nect between reversible evolutions of microstates and irreversible evolutions
of macrostates assembled from the microstates.

The basic thesis in this paradox is that it is not possible to derive an ir-
reversible phenomenon at an aggregated (macro) level via a composition of
reversible phenomena at the finer (micro) level. If indeed an irreversible macro
evolution emerges out of a composition of reversible evolution of microstates
of a system, then either there is a flaw in the understanding of the system or
the composition itself may have introduced an element of irreversibility that
is not present in the microstates. In the most common example, this paradox
is illustrated in the context of the kinetic theory of gases: while the motion
of particles is reversible, their aggregate properties such as temperature ex-
hibit irreversibility. The Stosszahlansatz condition illustrated in the Kac-ring
model (Section 5.4) is an example of the place where composition introduces
an element of irreversibility into a phenomenon derived from an aggregation of
reversible processes. In the context of reversible computing, the Loschmidt’s
paradox would imply that a reversible simulation of any phenomenon would
accumulate memory in two conditions: either the micro processes underlying
the phenomenon are themselves (individually) irreversible, or the specific com-
position procedure of reversible micro processes itself introduces some type of
irreversibility.

5.6.2 Zermelo’s Paradox

Zermelo’s Paradox [Zermelo, 1896, Steckline, 1983] highlights the apparent
contradiction between two different inferences: (1) multiple reversible micro-
scopic processes combining into irreversible macroscopic dynamics that in-
creases entropy, (2) the impossibility of a reversible dynamics to increase

64 Introduction to Reversible Computing

entropy due to the fact that the initial state of every reversible process is
eventually revisited by the system. The former effect is the type of observa-
tion obtained from the one-way evolution of systems such as the Ehrenfest’s
Urn and Kac-Ring models described in the preceding sections. The latter can
be argued as follows. Because every microscopic process is assumed to be re-
versible, every microscopic state must have a unique predecessor and a unique
successor. The uniqueness ensures that no closed loop starting from the initial
state can avoid the initial state (because if it did, then there would at least one
intermediate state in the loop that has two different predecessors, which is a
contradiction of reversibility). Because the initial state will eventually have to
be revisited by the system, it implies that entropy cannot always increase, but
must begin to decrease at least once in its evolution from the initial state back
to the revisit of the initial state. Thus, there is an apparent contradiction.

The apparent contradiction can be resolved by (1) qualifying that the
system goes through two phases, first with increasing entropy followed by
decreasing entropy, (2) the evolution time of either phase is extremely long
compared to any time window of observation; and (3) the system is observable
only in the first phase, because of the impossibility of reaching the end of the
first phase due to its extremely long duration. Of course, this leaves open ques-
tions such as why it is (or, is not) possible to start the evolution at a point in
the decreasing entropy phase. While much literature exists on various ways to
resolve the paradox (with deep implications to our understanding of physics
and universe in general), the relevant observation for reversible computing is
that a memory-less, reversible simulation of a composition of reversible micro-
scopic models is indeed possible despite the presence of a varying information
quantity such as entropy.

5.6.3 Berry’s Paradox

Consider a conventional (irreversible, in general) program Pirr that needs to
be executed reversibly. A reversible forward execution Frev(Pirr) of the irre-
versible program inevitably results in the generation of a memory trace Msuf

that captures sufficient information to go back in the execution. Now, sup-
pose we would like to minimize the length of the memory trace, to reduce
the resources needed for the reversible execution. Essentially, we would like to
know what would be the necessary information Mnec needed to go back in the
execution. We know that the minimum necessary memory is bounded by the
sufficient memory trace: Mnec ≤ Msuf . We also know that the logged suffi-
cient trace does contain all the information needed for reversal, perhaps with
some redundant bits scattered inside the trace. Then, the question about the
minimality of trace size for reversal can also be asked equivalently as follows:
What is the shortest bit representation of Msuf? In particular, we can even
allow the shorter representation to assume a computational component in its
representation. In other words, the shortened representation could itself be a
program that could be executed to regenerate the set of original bits encoded

Reversibility-Related Paradoxes 65

in the Msuf bits of the memory trace (see also Section 5.7). The program
could, for example, encode the redundant bits into a fewer number of bits,
and also detect and exploit patterns in the essential bits, and potentially per-
form other optimizations of such kinds. Consider a conventional (irreversible,
in general) program Pirr that needs to be executed reversibly. A reversible
forward execution Frev(Pirr) of the irreversible program inevitably results in
the generation of a memory trace Msuf that captures sufficient information to
go back in the execution. Now suppose we would like to minimize the length of
the memory trace, to reduce the resources needed for the reversible execution.
Essentially, we would like to know what would be the necessary information
Mnec needed to go back in the execution. We know that the minimum neces-
sary memory is bounded by the sufficient memory trace: Mnec ≤ Msuf . We
also know that the logged sufficient trace does contain all the information
needed for reversal, perhaps with some redundant bits scattered inside the
trace. Then the question about the minimality of trace size for reversal can
also be asked equivalently as follows: What is the shortest bit representation of
Msuf? In particular, we can even allow the shorter representation to assume a
computational component in its representation. In other words, the shortened
representation could itself be a program that could be executed to regenerate
the set of original bits encoded in the Msuf bits of the memory trace (see also
Section 5.7). The program could, for example, encode the redundant bits into
a fewer number of bits, and also detect and exploit patterns in the essential
bits, and potentially perform other optimizations of such kinds.

Unfortunately, despite intuition about the potential for reductions in the
number of bits, it is not possible to determine the shortest number of bits
needed, as shown next by its relation to Berry’s Paradox [Whitehead and
Russell, 1925].

Berry’s Paradox is best illustrated with the following example. The state-
ment “the smallest number that cannot be defined in less than thirteen words”
is a contradiction in itself because that number can in fact be defined by the
preceding phase in quotes that is only twelve words long [Bennett, 1979]. An
expansion of this basic conceptual approach includes the possibility of using
any program to execute and output the desired bit representation (i.e., the set
of words used in the definition of the number could in fact be a program that,
when executed, gives the bit representation of the desired number). Berry’s
Paradox highlights an apparent contradiction of terms (or fundamental ambi-
guity and descriptive imprecision) in our attempt to determine the minimum
bit length to completely define any number. Thus, the determination of the
minimum length of a definition program becomes undecidable. The implica-
tion of Berry’s Paradox to reversible execution is that we should not expect to
answer the question of finding the minimal bit length encoding of (a program
that recreates) the memory trace generated by forward execution to enable
reversibility.

For example, suppose the forward execution of a program generates pseu-
dorandom numbers using a high-quality generator. If we do not take into

66 Introduction to Reversible Computing

account the fact that a pseudorandom number generator underlies the behav-
ior of the forward execution, the only recourse for reversibility is to record
the sequence of random numbers to a memory trace. Suppose the trace is L
bits long (which is the value of Msuf for this case). By definition of the ran-
domness of the logged numbers, the trace cannot be compressed to much less
than L bits, even with sophisticated compression techniques. However, sup-
pose the size of the inverse generation program of the pseudorandom number
generator is Q bits. Then, the trace can in fact be encoded by the following
combination: (1) the Q-bit program for inverse generation, (2) w bits for the
initial or final seed, and (3) logL bits to record the count of the number of
invocations to the generator during forward execution. Thus, Q + w + logL
bits are necessary and sufficient to reverse the execution (which is the value
of Mnec for this case). This is in contrast to the larger number of bits (L) that
would be logged to the memory trace without the knowledge of the pseudo-
random number generation. This example provides an idea of the difficulty in
determining the minimum number of bits that would be needed to augment
any (irreversible) program in order to render it reversible.

5.7 Algorithmic Entropy

Another concept closely related to reversible computing is algorithmic en-
tropy. Also known as algorithmic complexity, it is defined on a bit string as
the length of the smallest program that, when executed on a universal com-
puter, produces that bit string as output. Algorithmic entropy can be applied
to the reversal of irreversible programs as follows. An irreversible program can
be executed over a reversible deterministic machine by generating a history
trace. After the trace is generated, we can attempt to compress the trace so
that the number of trace bits is reduced. In general, we can consider replacing
the history trace by a more condensed program, which when executed repro-
duces the original history bits. If the length of this encoded program happens
to be independent of the forward execution length, we have a fixed energy
cost because the cost to convert the history bits to clean ones is constant.
Unfortunately, it turns out that the algorithmic entropy is not a computable
function, and hence we cannot expect to develop any schemes to reduce the
energy cost by relying on the ability to determine the algorithmic entropy of
history bits. The formal definition of algorithmic entropy is described and its
non-computable nature is proven next.

5.7.1 Definition

Let P be a program that, when executed on a universal computer U , results
in output x. Let the bit length of the program P (since it is itself a sequence

Reversibility-Related Paradoxes 67

of bits) be the integer |P |. This length is inclusive of input, if any, needed by
P to generate the output x. Let |x| be the bit length of the output x. Then,
P is an algorithmic encoding of x. If |P ∗| = min |P | for all such P , then P ∗

is a minimal bit size encoding of x, and |P ∗| is the algorithmic entropy of x.
This is also sometimes known as Kolmogorov Complexity [Kolmogorov, 1963,
Shiryayev, 1993] or Solomonoff Complexity [Solomonoff, 1964a,b].

Trivially, α1 + log2 x ≤ |P ∗| ≤ α2 + |x|, for some constants α1 and α2 that
do not depend on x. This is because, for the lower bound, the program must
embed within itself (in some encoding form) the number of bits in the output.
For the upper bound, one can simply print the string x as it is, using an output
statement of the universal computer. The constants α1 and α2 account for the
simple infrastructure needed to represent the output operation.

5.7.2 Non-Computability

Let C(x) be a function that computes the bit size of a minimal program P ∗

that can generate x as output on a universal computer. Then, the following
result can be obtained:

Theorem 1 C(x) is not a computable function.

Proof 1 If C(x) could be computed, let q be a program as shown in Algo-
rithm 5.3. The program q prints the first integer x∗ such that C(x∗) =

Algorithm 5.3 Program q to disprove the computability of algorithmic en-
tropy

1: for x′ = 0 to ∞ do
2: if C(x′) > |q| then
3: print x′

4: halt
5: end if
6: end for

|P ∗| > |q|. However, because q also prints x∗, q can be seen as another pro-
gram that generates x∗. Hence the same x∗ can be encoded by q itself with
fewer bits |q| than |P ∗|. This contradicts the minimality of P ∗ as claimed by
C(x∗). Thus, C(x) cannot be computable.

Corollary: One cannot write a program that can output the minimal pro-
gram (thereby achieving the algorithmic entropy) needed to encode a given
input bit pattern.

Note that the proof rests on the assumption that q is indeed an algorithm,
that is, a procedure that provably halts. This requires the following two con-
ditions to be met:

(a) For every x̃ > 0, there exists an x̂ > x̃ such that C(x̂) > C(x̃). This

68 Introduction to Reversible Computing

provides the guarantee that eventually an x′ is found such that C(x′) >
|q| as x′ is increased from 0.

This seems intuitively satisfied, because otherwise, infinitely many num-
bers can be defined by a finite number of symbols. Interestingly, algo-
rithmic entropy is also related to Berry’s Paradox that deals with the
minimum number of words to describe any given number. For example,
the statement “The first number that cannot be described in less than
thirteen words” can in fact be described by the preceding words in quotes
(also, see Section 5.6.3). Berry’s Paradox is essentially the same prob-
lem as the problem of determining the algorithmic entropy of a string.
There exists a solution to Berry’s Paradox [French, 1988] that gives a
construction of an enumeration procedure for a finite set of words to
define an infinite number of numbers; it uses the same expression (i.e., a
constant set of symbols) that semantically describes any number larger
than 1. This argument challenges the assumption that description sizes
for numbers must asymptotically increase.

(b) C(0) ≤ |q|. Because the definition of “zero” can be varied, we have to
choose a system in which the algorithmic entropy of zero is not larger
than |q|.
This condition seems trivial to satisfy because we can choose the lan-
guage in which we describe zero, and we also have the choice of language
for q. However, in light of the distinction between predetermined value
versus computable value for representing any number [French, 1988],
this may open a philosophical question, but we will not venture in that
direction here.

The type of diagonalization argument technique used in the preceding
proof underlies other related (equivalent) formulations such as with the “Busy
Beaver” Turing machines [Michel, 2004, Harland, 2007]. This is also in line
with the proof by McCarthy that inversion of programs is undecidable [Mc-
Carthy, 1956].

5.8 Further Reading

The independence of the concepts of thermodynamic reversibility and logical
reversibility continues to be debated (see, for example, [Maroney, 2004, 2005]).
Additional relations among thermodynamical concepts such as temperature
and entropy have been applied to computer codes by H. Baker [Baker, 1992,
1994], with interesting analogies from physical systems containing reversible
dynamics of billions of particles to computer systems containing reversible
dynamics of billions of behavioral objects in computer memory. The operation

Reversibility-Related Paradoxes 69

of garbage collection sub-systems is shown to exhibit entropy increase and
decrease with an increasing number of live objects that are allocated but
potentially forgotten by the application program.

For a good overview of the Ehrenfest’s Urn model, see Chapter 1.4 in the
book [Kelly, 1979]. Additional treatment on Boltzmann’s explanation to in-
crease of entropy can be found in numerous works in the literature. Computer-
based verification efforts [Orban and Bellemans, 1967, Levesque and Verlet,
1993] included simulations to verify the models and demonstrate that numer-
ical effects can be discounted as a hidden source of such an entropy increase.

There have been, and continue to be, active and passionate debates on
the reversible and irreversible aspects of the fundamental physical processes
in nature. Many consider the microscopic laws as reversible, while some refute
or qualify such a view. Despite being debated for centuries, the reversibility
of classical mechanics is revisited even today for clarifications on the nature
of reversibility of the simplest fundamental laws such as equations of motion
expressed as Hamiltonian systems (e.g, [Hutchison, 1993, Roberts, 2012]). Be-
sides such debates about microscopic laws themselves, there continue to be
disagreements about the explanation offered in the form of macroscopic irre-
versible dynamics arising from reversible microscopic processes. For example,
the arrow of time [Lebowitz, 1994] suggested by such an explanation is not
universally accepted as the explanation for the arrow of time perceived in
our daily life—objections are offered such as the gap left by the unanswered
question about why the universe should be assumed to have started in a low
entropy state in the first place.

The one-way evolution to an equilibrium state in systems such as the
Ehrenfest’s Urn model makes the notion of macroscopic irreversibility de-
pendent on the quality of randomness introduced into the system, and the
assumption that the outcome of the dice is independent of the state of the
system is critically implicit without adequate justification when applied to
reality. Perhaps the fairness or uniformity of randomness could be traced or
mapped to the most fundamental sources of such uniformity, namely, the un-
biased superposition of (pure) states at the quantum level; however, even that
source of fairness is essentially an axiom, without which the explanation for
one-way evolution (even if limited to the initial half of evolution before return
to initial state) would become moot.

A critical point of relevance of all the aforementioned material to appli-
cations of reversible computing is the understanding that the presence of an
arrow of time (or an increase of entropy) in a phenomenon does not imply that
a computer-based reversible simulation of that phenomenon would necessarily
accumulate memory during simulation.

Chapter 6

Theoretical Computing Models

6.1 Overview . 71
6.2 Turing Machine Model . 72
6.3 Sources of Irreversibility in the Turing Machine Model 73
6.4 Definition of a Reversible Model . 74

6.4.1 Rewriting Transition Rules: Quintuples to Quadruples . 75
6.4.2 Adding History and Output Tapes . 75
6.4.3 Canonical Turing Machine Model . 76

6.5 Mapping Conventional Model Programs to a Reversible Model 77
6.6 Universality of Computation and Its Reversal 79
6.7 Space and Time Complexity of Reversible Execution 80

6.7.1 Complexity of Simple Reversal with One Segment 80
6.7.2 Partitioning Execution into Two Segments 80
6.7.3 Partitioning Execution into g Segments 83
6.7.4 Optimizing g for Minimal Total Space 83
6.7.5 Generalizing the Time-Space Trade-Off 84

6.8 Pebble Games . 86
6.8.1 Rules and Objective . 86
6.8.2 Analogies with the Reversible Turing Model 87
6.8.3 Complexity Analysis . 88
6.8.4 Partial Reversibility . 88

6.9 Further Reading . 89

6.1 Overview

According to the widely accepted Church–Turing thesis, every computable
function (or algorithm) can be expressed as a Turing Machine program [Ben-
Amram, 2005]. Hence, to theoretically examine the reversibility of any compu-
tation in general, it is sufficient to focus on the reversibility of computations
realized by Turing Machine programs. If there were a way to execute any
Turing Machine program reversibly, then any computable function can be
executed reversibly. With these considerations, the classical Turing Machine
model is examined here and shown to be irreversible. Next, the construction
of a Reversible Turing Machine model is described such that the machine is
not only reversible by design, but also capable of reversibly simulating any or-

71

72 Introduction to Reversible Computing

dinary Turing Machine program, thus proving that any computable function
can be reversibly executed.

With regard to the relation between reversible circuits on the one hand
and reversible universal machines on the other, a fundamental difference makes
them “decisively different” [Li and Vitanyi, 1996]. While it is possible to de-
sign custom circuits on a problem-specific basis, universal machines must be
designed to accept any program as input and reversibly execute them. This
difference results in different design criteria and consequently different spatial
and temporal characteristics and constraints.

6.2 Turing Machine Model

While there are many variants of the basic Turing Machine model, all of them
can be mapped to a basic form, namely a canonical Turing Machine that
operates with one infinite tape and one head. All variants are computationally
equivalent in the sense that only a polynomial cost factor is incurred in space
and/or time when realizing the variant model on the canonical model. Thus, it
is sufficient to consider the reversibility of a 1-tape, 1-head canonical machine.

Without loss of generality, we will use the definition of a canonical Turing
Machine as a closed system defined in Table 6.1. This traditional model can
be used to represent and realize any computable function. While much theory
exists on Turing Machines in the context of forward execution, it is known
that this model is not reversible because the sequence of transitions performed
on this model cannot be retraced uniquely. Also, it has not been clear how
to define a reversible Turing Machine, and if it is indeed possible to achieve
reversible execution in general for any computable function. Following a series
of efforts by several researchers to resolve this problem, this matter was finally
settled in a seminal paper in 1973 by Charles H. Bennett, who showed that it
is possible to not only define a reversible execution model, but also simulate
the execution of any conventional (forward-only) Turing Machine program on
the new reversible model [Bennett, 1973].

The solution to the generalized reversibility problem involves three im-
portant aspects: (1) definition of new semantics of an appropriate reversible
machine, (2) an algorithm for mapping any conventional Turing Machine pro-
gram to the new reversible machine, and (3) analysis and minimization of
space and time costs of the reversible machine when simulating conventional
Turing Machine programs. The schemes for each of these aspects developed
in [Bennett, 1973] are described next.

Theoretical Computing Models 73

TABLE 6.1: Definition of a Canonical Irreversible Turing Machine

A canonical Turing MachineM is a quintuple 〈Q, q0, F, S, δ〉, where:
Q = Set of possible states {q0, . . . , qf−1} for the control unit
q0 = Initial state of the control unit
F ⊂ Q = Set of final states of the control unit that halt the machine
S = Set of tape symbols {s0, . . . , sz−1}, s0 = b being the blank

symbol with which all slots except for the input slots of
the tape are initially filled

δ = Transition function of the control unit

δ : Q× S → Q× S ×D,

where D = {L,R} denotes left or right movement of the
tape head, and the function is defined by a set of transition
rules {L0 . . . LN−1}, each of the form

Li : (q, s)→ 〈q′, s′,m〉,

denoting that when the control unit is in state q and the
current tape symbol is s, the symbol s is overwritten with
the symbol s′, the state is changed to q′ and the tape head
is moved either left (m = L) or right (m = R).

The machine has f states, z symbols, and N rules.

6.3 Sources of Irreversibility in the Turing Machine

Model

There are two fundamental sources of irreversibility in the conventional Turing
Machine model. In Bennett’s words, the machine will be reversible if and only
if the δ function has non-overlapping ranges. The overlap arises from two
aspects of the transition rules:

1. Write-and-move semantics: The semantics of the read-write-and-
move operation of each transition rule introduces ambiguity when re-
tracing the forward execution path. The Turing Machine head, upon
reading the tape symbol s at the slot of current head location T [i], can
overwrite the symbol with a new symbol s′ and then move the head to
the left slot T [i − 1] or to the right slot T [i + 1] from the current slot.
During reverse execution, it would be unclear whether a current slot T [j]
was reached from the forward execution by moving right from the left
slot T [j− 1] or by moving left from the right slot T [j+1]. In general, it

74 Introduction to Reversible Computing

would be impossible to disambiguate between the two possibilities, and
such ambiguities can occur at any point in execution.

2. Many-to-one transition state mapping: The state transition func-
tion may, in general, include two or more transition rules, say,

(qi, si)→ 〈qk, sk,mi〉

and
(qj , sj)→ 〈qk, sk,mj〉

that result in the same next state (qk, .). During backward execution, the
correct previous state (qi or qj) may not be recoverable from the current
state qk because of the ambiguity about the previous state from which
the current state was reached during forward execution. In other words,
if the forward state transition function is a many-to-one mapping, then
the machine is irreversible due to the transition function.

Note that the machine may be deterministic (i.e., the transition function
is not a one-to-many mapping), and yet it could be irreversible. Determinism
in the forward execution is different from reversibility. If the reverse state
transition function is deterministic (i.e., the function is a one-to-onemapping),
reversibility of the forward function is ensured. Also note that, in general, the
forward function need not be an onto function; that is, not every state is
reachable from the initial state(s). For example, the initial states need not
appear as the target states for any intermediate states.

6.4 Definition of a Reversible Model

The two sources of irreversibility were overcome by Bennett using the following
steps:

� A new spontaneous transition possibility is introduced by adding a spe-
cial solidus symbol (/), which acts as a wild card, matching any symbol
at the current tape head; alternatively, the action of solidus can be
viewed as not reading the tape or ignoring the current symbol.

� The form of transition rules is redefined to split the combined write and
move operations into two separate rules, one for writing and the other
for moving the head.

� The machine formalism is generalized to accommodate multiple tapes
instead of the single tape of the conventional model.

Theoretical Computing Models 75

� The transition rules are relaxed to accommodate multi-head opera-
tion, by changing the symbols and tape movement specifications into
k-element vectors (for k tapes) instead of scalars for 1-tape operation.

� The machine is augmented with two additional tapes: the original work-
ing tape, a new tape called the history tape, and another called the output
tape.

6.4.1 Rewriting Transition Rules: Quintuples to Quadruples

In order to remedy the first basic source of irreversibility in the conventional
Turing Machine model, Bennett defined a variant of the write-and-move se-
mantics by separating the write operation from the move operation. Every
write-and-move rule of the conventional Turing Machine is converted into two
separate rules: one rule that writes a symbol and transitions to a special in-
termediate state unique to that transition, and the second rule that moves
the tape head left or right while transitioning from the special intermediate
state to the target state of the original rule. Thus, a conventional quintuple
transition rule of the form

L : (q, s)→ 〈q′, s′,m〉

is split into two quadruples,

L : (q, s)→ (q′, s′)

and
L : (q′, /)→ (q′,m).

The use of the solidus (/) in place of a symbol indicates that the head of
the tape does not read any symbol, that is, the transition is spontaneous and
independent of the current symbol. A new state q′ unique to each original rule
is added to the set of states Q. The first part writes the symbol and the second
part spontaneously moves the head left or right. The number of rules is thus
increased by a factor of 2, as every conventional quintuple rule is translated
into two rules in the new quadruple form.

6.4.2 Adding History and Output Tapes

After the transition function of the conventional program is rewritten in the
new form, the irreversibility of the write-and-move semantics arising out of the
non-commutativity of the write and move operations is eliminated. However,
the second (which is the more challenging) source of the irreversibility problem
still remains to be resolved, namely the overlap of ranges. In general, there is no
easy way to avoid the overlap without introducing additional storage. The only
general-purpose solution for reversibility is to maintain a log of the sequence of

76 Introduction to Reversible Computing

transitions, which can be retraced for reversal of the forward sequence. Upon
completion of the forward execution, the log is consulted to bring the machine
back to the original starting state. However, simply reversing the execution
also destroys the computed output string as well. Hence, to make the program
reversible, two sub-problems need to be solved: how to keep a log of actions
and how to save a copy of the final output.

These are addressed by introducing two additional tapes to the machine,
with one head per tape. The original tape is called the working tape, and
the added tapes are called the history tape and the output tape, respectively.
The basic reversible computation approach proceeds as follows. The original
(irreversible) program is allowed to operate normally, reading from and writing
to the working tape. However, before every transition of the original program,
the identity of the transition rule that is being executed is recorded in a
sequence on the history tape. When the original program enters a halting state,
the new program copies the output string, currently found on the working
tape, onto the output tape. Then, a reverse mode is initiated whereby a set
of new rules that are disjoint from the original (forward execution) rules is
used to undo the action of every forward transition in reverse order. Because
the history tape holds a record of the identity of every forward transition
that was made, no ambiguity arises as to which transition is to be undone in
sequence. Moreover, as part of the reversal of each transition, the history tape
is also cleaned (reversibly) by resetting the most recently consulted transition
number to the blank symbol. When the end of the trace on the history tape
is reached, it is evident that the entire execution has been undone. At this
point, the working tape would have recreated the original input, the history
tape would have been reset to all blanks, and the output tape would contain
a copy of the output computed by the original machine.

To enable this 3-tape operation, the original 1-tape formalism is enhanced
to accommodate 3-tape transition rules. This is achieved by relaxing the tran-
sition rule to be triggered by a vector of k symbols (in this case, k = 3)
corresponding to one symbol per tape, instead of action on a single scalar
symbol of the 1-tape machine rule. Similarly, the action of each rule is relaxed
by specifying a vector of individual actions on each tape. Note that the trigger
for each tape may include a symbol of that tape’s alphabet or the solidus /
that acts as a wild card. Similarly, the action on each tape may be to either
move the head or overwrite the current symbol with a symbol of that tape’s
alphabet.

6.4.3 Canonical Turing Machine Model

In the development of the Reversible Turing Machine, the canonical form
of the irreversible Turing Machine is replaced by an equivalent form that is
easier to treat for reversibility. This form, called the standard form by Bennett
[Bennett, 1973], is the one that will be rendered reversible in the following
sections.

Theoretical Computing Models 77

TABLE 6.2: Definition of a Standard Irreversible Turing Machine

Given a canonical Turing Machine M = 〈Q, q0, F, S, δ〉 in the form
of Table 6.1, a Standard Turing Machine MS is obtained as follows:

δ is modified by adding one unique intermediate state per
rule and splitting every write-and-move rule into two rules,
one to write and another to move

Q is increased to include all the introduced unique interme-
diate states of the modified rules

The standard Turing Machine thus has twice as many transition
rules as its canonical version.

For convenience, the following additional assumptions are made in the
standard form of the irreversible Turing Machine as shown in Table 6.2:

� The input and output are assumed to be arranged such that there are no
blank symbols embedded within either the input or the output strings.

� The tape head is initially positioned immediately left of the first input
symbol on the tape.

6.5 Mapping Conventional Model Programs to a Re-

versible Model

The reversible execution is achieved in a three-stage algorithm. In the first
stage, the normal computation proceeds, but the identity of every transition is
logged to the history tape. In the second stage the output generated at the end
of the first stage is copied onto the output tape. Finally, in the third stage, the
entire computation is undone, using the working and history tapes. In order
to realize these three stages, the original program must be enhanced with
additional states, additional alphabets/symbols, and new transition rules. The
enhanced machine that realizes the three stages is shown in Table 6.3.

Given a Standard (irreversible) Turing Machine M , the transition rules for
the Standard Reversible Turing Machine MR are obtained as follows for the
three stages:

Stage 1 Each quadruple transition rule Li from state (q, s) to (q′, s′) is split
into two rules, Liw and Lih. The rule Liw performs the same action
on the working tape as Li does, but instead of transitioning to q′,
transitions to a unique intermediate state ri. The rule Lih picks up
from ri, records the integer symbol i (to log the identity of the transi-
tion rule) on the history tape and then transitions from qi to q′. The

78 Introduction to Reversible Computing

TABLE 6.3: Definition of a Standard Reversible Turing Machine

Given a standard Turing Machine M = 〈Q, q0, F, S, δ〉 in the
form of Table 6.2, a Standard Reversible Turing Machine MR =
〈QR, SR, δR〉 is a 3-tape closed system, where:

QR = Q ∪ {q0, . . . , qf−1} ∪ {r0, . . . , rN−1} ∪ {r0, . . . , rN−1} ∪
{a0, a1, a0, a1} are the states for the control unit, such that
q0 ∈ Q is the initial state, and q0 ∈ Q is the only final halt-
ing state of the control unit

SW
R = S is the alphabet for the first (working) tape

SH
R = {0, . . . , N − 1, b} is the alphabet for the second (history)

tape
SO
R = S is the alphabet for the third (output) tape

SR/ =

x

∣∣∣∣∣∣
x =

sw ∈ SW

R ∪ λ
sh ∈ SH

R ∪ λ
so ∈ SO

R ∪ λ

 is the set of vectors of tape sym-

bols or spontaneous actions that trigger a transition

SRD =

x

∣∣∣∣∣∣
x =

sw ∈ SW

R ∪D
sh ∈ SH

R ∪D
so ∈ SO

R ∪D

 is the set of vectors of actions

of a transition, either overwriting with symbols or moving
the head, specified on a per-tape basis

λ = {/} denotes a wild card match (or ignorance) of the current
symbol

D = = {L,R} denotes left or right movement of the tape head
SR = SR/ ∪SRD is the combined set of vectors defining the trig-

gers and actions of the machine
δR = Transition function of the control unit

δR : QR × SR/ → QR × SRD,

defined by the set of transition rules {L0 . . . LNR−1}, where
NR = 4N + 2z + 3. Each transition rule is of the form

Li : (q, s)→ (q′, s′),

indicating that the rule is triggered when the control unit
is in state q and the current tape symbol vector is s. For
each tape k, if s′[k] ∈ D, the tape head is moved; otherwise,
the symbol on tape k is overwritten with s′[k]. The state
is then changed to q′.

The machine has 2f+2N+4 states and 4N+2z+3 rules. Further,
it uses tape alphabets containing z, N + 1, and z letters, for the
working, history, and output tapes, respectively.

Theoretical Computing Models 79

semantics of the original machine are thus retained unchanged with
respect to the states as well as the values on the working tape, but
a side effect is introduced, namely a recording of the transition rule
number on the history tape. Because there are f original states and
N original rules, and one new state is introduced for each original
rule and two new rules for every single original rule, this stage defines
f +N states and uses 2N rules.

Stage 2 From the halt state qf−1, the output is copied from the working tape
to the output tape. This is done in three parts: (1) two rules are used
to merge the control from state qf of Stage 1 to state a0 of Stage 2,
(2) 2z rules are used to transfer the output symbols from the working
tape to the output tape, and (3) one rule is used to transfer control
from the final state a1 of Stage 2 to the initial state qf−1 of Stage 3.
Overall, Stage 2 defines 4 new states and uses 2z + 3 rules.

Stage 3 From qf−1, the original rules of Stage 1 are undone in reverse order
while cleaning up the history tape symbols by overwriting the transi-
tion number symbols with blanks, one at a time in the reverse order.
Similar to Stage 1, this stage defines f +N states and uses 2N rules.

The full specification of the standard Reversible Turing Machine is given
in Table 6.3.

6.6 Universality of Computation and Its Reversal

The elegance of the transformation algorithm is made evident from the fact
that the algorithm applies to any Turing Machine. In particular, this implies
that the transformation is equally applicable to any Universal Turing Ma-
chine (UTM) as well. A UTM is a Turing Machine that takes any arbitrary
Turing Machine program P specified as input to the UTM (along with the
input I needed for that input program P), and simulates the operation of P
over I, generating the output O. Because any UTM is itself a Turing Machine,
any UTM can also be rendered reversible by taking the program PUTM and
generating a reversible version of that UTM using the aforementioned conver-
sion algorithm. Thus, the existence of reversible Universal Turing Machines is
evident. Furthermore, any computable function can be executed reversibly by
any general-purpose reversible Universal Turing Machine.

80 Introduction to Reversible Computing

6.7 Space and Time Complexity of Reversible Execution

We will now examine the space and time complexities of the simple reversible
simulation and examine two additional schemes that improve the space and
time. It turns out that the simple version is in fact optimal with respect to
time but vastly suboptimal with respect to space. The two variants of this
scheme improve the space complexity dramatically at the cost of an increase
in computational time.

In what follows we will omit implementation-specific constant multipliers
and constant additives in complexity; for example, the time complexity of T
will be understood as Θ(T).

6.7.1 Complexity of Simple Reversal with One Segment

Although the preceding organization of the Reversible Turing Machine com-
putes the output reversibly and cleanly with only the output left at the end
of the computation, there is one major drawback, namely the length of the
history tape used at runtime. The size of temporary storage required by the
machine on the history tape is proportional to the total length of execution.
If T is the length of execution in terms of the number of transition rules exe-
cuted by the machine, then the required length of the history tape is equal to
T . Thus,

T ime(T) = T

and
Space(T) = T .

Because T can be as large as 2S because any non-looping computation on
space of size S can iterate through all possible states of S, the space complexity
with this scheme can be very large.

6.7.2 Partitioning Execution into Two Segments

Bennett proposed an approach by which the tape size can be reduced from T ,
but at some extra computation cost. In this approach to reducing the history
tape length, the total execution length (number of computational steps) is
logically partitioned into two halves called segments. Soon after the execution
of the first half segment is completed, the machine is stopped and its current
configuration C is saved on a vacant region of the output tape. In C, the
following information is saved:

1. A snapshot of the current string CW on the working tape and the tape
head position,

2. A snapshot of the current string CO on the output tape and the tape
head position, and

Theoretical Computing Models 81

3. A copy of the current control state q.

Thus, C contains all the information needed to re-initialize the machine and
restart it at a later time from the midpoint. The machine is now executed
in reverse, thereby cleaning out the working tape and the history tape. Note
that the length of the history tape used so far is only T

2 , and the amount of

computation is T
2 for forward execution of the first segment and T

2 for reverse
execution of the first segment. The machine is then restarted from the mid
point using the saved configuration C, and executed to the end. The output
of the computation is saved on the output tape, and the execution is reversed
to clean up the history tape. At this point, however, the machine is still left in
the configuration represented by C. For the overall execution to be reversible,
the machine should be restored to the initial state, in which the working tape
is left with only the original input, and the history tape is empty. However,
the working tape is left with the values from C, which need to be erased. Two
key observations are made here:

1. Blind erasure is an irreversible operation. In other words, uncondition-
ally overwriting all the non-blank symbols of the working tape with
blanks is irreversible, and hence the working tape cannot be cleaned of
C in this fashion.

2. Given another copy of C, the previous copy of C can be reversibly erased,
because the copy operation can be realized using the exclusive-or ⊕
bit operation semantics, which is reversible (in fact, a self-inverse). If b
represents the initial blanks on the tape, and b′ = C is the copy on the
tape, then the following holds:

b′ ← b⊕ x (Copies x into blank b) and

b← b′ ⊕ x (Erases x from b′).

If we are able to reversibly reconstruct a copy of C, then this new reconstructed
copy of C can be used to erase the old copy of C. Reversible reconstruction of
C can be achieved by re-executing the first half segment forward. Thus, the
first segment is re-executed, C is erased, and the first segment is undone by
executing in reverse. This entire operation is illustrated in Figure 6.1.

Using this segmentation approach, the required size of the history tape can
be reduced by half, at the cost of some extra computation. Let T ime(T) be
the time taken to execute the program using no segmentation, and Space(T)
be the memory consumed using no segmentation. Let T ime(T2) be the time

taken using the 2-segment approach, and Space(T2) be the space consumed
in the 2-segment approach. We know that T ime(T) = 2T because of one
full sweep of execution in the forward direction, followed by one full sweep
in the reverse direction, and Space(T) = α for some α independent of T .
Also, T ime(T2) = 1.5T ime(T), because, with 3 parts of forward execution

and 3 parts of reverse execution, each of length T
2 , the time for the 2-segment

82 Introduction to Reversible Computing

I

✻

✲
✛

✻

C−1

✻
C

✻
O

✛ 3. Reverse 1st half
✲1. Forward 1st half

✛ 6. Reverse 2nd half
✲4. Forward 2nd half

5. Save output

8. Erase state

2. Save state

9. Reverse 1st half again

7. Forward 1st half againS
ta
rt

E
n
d

1. Forward execution from initial state with input I to midpoint
2. Saving the half-way state C
3. Reverse execution from midpoint back to initial state
4. Forward execution from midpoint to final state with output O
5. Saving the final output O
6. Reverse execution from final state back to midpoint
7. Forward re-execution from initial state with input I to midpoint
8. Reversibly erasing C with C−1

9. Reverse execution from midpoint back to initial state

FIGURE 6.1: Reversible execution with half trace size.

execution is T ime(T2) = 6T
2 = 1.5T ime(T). At this point, the savings in

history tape size is only a constant factor from the original length. However,
we can apply the same approach on each of the half-segments themselves by
recursion. Thus, the total time T ime(T) can be expressed as the relation

T ime(T) = 6T ime(T2)

and
T ime(1) = 1,

giving
T ime(T) = 6log2 T = T log2 6 = T 1+log2 3 ≈ T 2.59.

Let S = Size(C), which is the total size of the machine state. The space
requirements can be expressed by the relation

Space(T) ≤ S + Space(T2)

and
Space(1) = 0,

Theoretical Computing Models 83

giving
Space(T) ≤ Slog2 T ≤ Slog2 2

S = S2,

because the computation time T on state C is bounded by the number of
possible state values of C, which is 2S . Note that the same memory space
used by the first segment will also be reusable by the second segment. Hence,
in the preceding equation for Space(T), the term Space(T2) is not multiplied
by 2.

Thus, any computation can be reversibly computed using the Reversible
Turing Machine in T 1+log2 3 time using space S2. This method is also some-
times called the log 3 method, due to the additional time factor of T log2 3

relative to the simple scheme that only takes linear time T . The reduction in
space requirement is significant because, without the segmentation approach,
although the time is T , the space required would be S + T which can be as
large as S + 2S .

6.7.3 Partitioning Execution into g Segments

The time and space complexity can be further improved by generalizing the
two-segment approach to operate with g ≥ 2 segments. This is illustrated in
Figure 6.2. The time complexity is given by the relation

T ime(T) = (4g − 2)T ime(Tg)

and
T ime(1) = 1,

giving
T ime(T) ≤ (4g)

logg T
= T logg 4g.

Also, the space requirements can be expressed by the relation

Space(T) ≤ (g − 1) · S + Space(Tg)

and
Space(1) = 0,

giving
Space(T) ≤ (g − 1) · S · logg T .

6.7.4 Optimizing g for Minimal Total Space

With g segments, the total space used is the reduced history tape size T
g

used per segment (which is reusable across segments) added to the output
tape space to store g−1 snapshots of C generated at the end of each segment.

Thus, the total space Z, given by Z =
T

g
+(g−1)S, is minimized with respect

84 Introduction to Reversible Computing

I

✻ ✻

✲
✛

✲
✛

✻

C−1 C−1 C−1

✻ ✻ ✻

✻

C C C

✻
O

✛
✲

✛
✲ ✲

✛

1
2

3

3g − 5
3g − 7 3g − 4 3g − 1

3g − 3

3g + 5 3g + 2

3g + 1

3g + 3

6g − 5

6g − 3

6g − 4

3g − 2

3g
· · ·

· · ·

S
ta
rt

E
n
d

C represents the state of the machine at the end of each segment
C−1 represents the erasure of C corresponding to that segment

FIGURE 6.2: Reversible execution with g-fold smaller trace size.

to g by setting the first derivative of Z to zero (the second derivative being

positive), giving g∗ =
√

T
S as the optimal value of g for minimal total memory.

At this minimal value, the information needed for reversal gets divided into
two equal halves of size

√
TS each. One half is stored on the history tape and

the other half appears in the form of snapshots written to the output tape.
This is in line with the intuitive expectation that the optimal memory use
reflects symmetry between time and space and also between history tape and
output tape. Thus, at the optimal value of g = g∗, the total optimal space,
Z∗, is given by

Space(T) = Z∗ = 2
√
TS.

Recall that the simple unsegmented scheme incurs a space cost that is linear
with respect to total execution time T . Relative to that, the optimized cost
using the segmented scheme reduces the space cost by a factor α = T

Z∗
=

1
2

√
T
S .

6.7.5 Generalizing the Time-Space Trade-Off

For execution length T and tape snapshot size S:

� The simple scheme takes T ime(T) = T and Space(T) = T ,

� The 2-segment scheme takes T ime(T) = T 1+log2 3 and Space(T) =
S log2 T ≤ S2, and

� The g-segment scheme takes T ime(T) = T logg (4g−2) and Space(T) =
(g − 1)S logg T .

Theoretical Computing Models 85

Examining these relations, it is clear that one gains either in time or space,
but the schemes do not provide an effective continuum of solutions in the
spectrum of time-space trade-off.

Incidentally, the time-space trade-off is similar to the same trade-off that
arises in automatically converting linear recursive programs into iterative pro-
grams without recursion. It turns out that the problem of evaluating the
time-space trade-off for recursive programs was analyzed by Chandra [1972],
preceding the technique of Bennett [1973], and before the trade-off algorithm
of Bennett [1988]. The latter provides a lever by which the reversible time
can be reduced to come arbitrarily close to the irreversible time, but at an
extremely large cost in space.

The inordinate space cost was uncovered by Levine and Sherman [1990] in
some corrections to the time and space complexities of Bennett [1988]. The
actual space complexity of Bennett’s algorithm is given as

Space(T) = S + S log
T

S
.

This shows that the space is in fact larger than that of the simplistic analysis
by S log T

S , which disappears if T ≈ S (i.e., if computation is linear in space),
but can be large when T = 2S. The bounds on the time and space were
tightened even further as

T ime(T) =
T 1+ǫ

Sǫ
, and

Space(T) = ǫ21/ǫ(S + S log
T

S
), where

g = kn, ǫ = logk (2k − 1), n ≥ 1, and k ≥ 1.

In particular, the value of k can be increased as a control parameter of the
execution to deliver different time and space trade-offs (using the Bennett
[1988] scheme). Relative to the simplistic analysis, the space using this more
detailed analysis is larger by a factor equal to ǫ21/ǫ. This factor represents a
dramatic increase in space needs as ǫ → 0, if ǫ is desired to be reduced to
make the reversible time approach the original irreversible time. Thus, the
trade-off appears as one between the exponent value in reversible time and
the factor value in reversible space. This limits the asymptotic complexity of
the scheme, but implications to actual implementations are unclear until the
schemes are attempted in actual reversible computer designs.

To arrive at an even more completely generalized set of strategies that
deliver varied time and space complexities for reversible computation, an in-
genious abstraction called the Pebble Game has been developed, as described
next, solutions to whom directly correspond to space-time strategies for Re-
versible Turing Machines.

86 Introduction to Reversible Computing

6.8 Pebble Games

The Pebble Game, originally mentioned by Charles Bennett [Bennett, 1988]
and later explored in greater detail by others, consists of the following ele-
ments, as shown in Figure 6.3.

� An array of places (also called nodes) on a linear board are contiguously
numbered 0 . . .G. Each place can accommodate one pebble.

� Initially, a pebble is already placed in the place numbered 0 (leftmost
node in the array).

� A free pool of N pebbles is available aside from the board.

FIGURE 6.3: Pebble game board structure.

6.8.1 Rules and Objective

The single-player game is played as follows, with two rules and one objective.
Different optimization goals may be defined with varying optimality criteria,
resulting in different optimal strategies to meet the objectives.

� Rule 1 A pebble from the free pool can be placed in an empty place
i+ 1 if there is already a pebble in place i (see Figure 6.4).

� Rule 2 A pebble from place i + 1 can be removed from the board
and returned to the free pebble pool only if place i has a pebble (see
Figure 6.5).

� Game Ending Starting with an empty board except for the initial
pebble at place 0, and conforming to the two preceding rules, place a
pebble at the last place, G.

� Optimization Find the minimum number of pebbles in the initial free
pool necessary to place a pebble in place G. Or, find the minimum
number of placement and removal steps needed to place a pebble in
place G. In general, find the relation between the number of steps and
the number of free pool pebbles needed to satisfy the objective.

Theoretical Computing Models 87

FIGURE 6.4: Pebble board Rule 1: Adding a pebble to the board.

6.8.2 Analogies with the Reversible Turing Model

In relation to simulation of irreversible computations on reversible machines,
the operations in the pebble game have the following analogies:

� The pebble at place 0 at the beginning corresponds to the original input
to the machine.

� The objective of placing the pebble in the last place G corresponds to
the arrival of output from the machine.

� Placement of a free pebble on an empty place by Rule 1 is analogous to
saving a copy of the current state of the machine.

� Returning a pebble from the board to the free pool by Rule 2 is analogous
to reversibly erasing a saved state of the machine.

� The maximum number of pebbles present on the board at any time
during the game is the same as the space complexity of the reversible
simulation.

� Every strategy that meets the objective of the game provides a corre-
sponding solution to the problem of reversible simulation of irreversible
machines. In particular, extremes such as optimization for the minimum
number of free pebbles needed at the beginning, or the minimum num-
ber of steps to reach the end, map to minimum space and minimum
time, respectively, for the machine simulation.

88 Introduction to Reversible Computing

FIGURE 6.5: Pebble board Rule 2: Removing a pebble from the board.

� At the end of the game, if there are any pebbles left on the board other
than in places 0 and G, they correspond to the willingness of the user of
the computation to accept the leftover pebbles as part of useful output.
If not, the objective can be redefined to require the end state to contain
pebbles only in the end places 0 and G.

6.8.3 Complexity Analysis

To apply the pebble game to reversible execution, we use G = T , where
T is the irreversible execution time and G is the number of places on the
board. When N = 0+O(1) pebbles are used, the game gives the exponential
time method; and when N = logT +O(1) pebbles are used, the two-segment
method is obtained [Buhrman et al., 2001]. In general, with N+O(1) pebbles,
the game gives the complexities as

T ime(T) = 3N · S · 2O(T/2N)

and
Space(T) = O(NS).

6.8.4 Partial Reversibility

Additionally, if the removal of any pebble from the board is in violation of Rule
2, such removal is analogous to irreversible erasure of a saved state in the sim-

Theoretical Computing Models 89

ulation. Such an invalid move of the pebble (or irreversible erasure of a saved
state) provides for a relaxation of the original problem of pure reversibility
by introducing some irreversible operation. While purely reversible execution
offers the schemes and trade-offs as presented previously, slight relaxations in
the problem can potentially provide more flexibility, and consequently more
efficiency, with respect to space and time. One such relaxation is the allowance
for some irreversibility [Li and Vitanyi, 1996, Li et al., 1998], which can occur
if one allowed for some irreversible erasures during the execution of the ma-
chines. In the context of pebble games, the equivalent of an irreversible erasure
occurs whenever a pebble at place i+1 is removed in the absence of a pebble
at place i. This relaxation results in interesting trade-off between space, time
and the number of irreversible operations [Li and Vitanyi, 1996]. Possibilities
of limited irreversibility relaxations have been identified in special computing
technologies such as quantum computing in which any measurement becomes
an irreversible erasure. Strategies for cleverly deciding on the number and pre-
cise moments of making such irreversible operations are possible to develop
using the relaxed version of the pebble game.

6.9 Further Reading

The technique of computing an irreversible machine as part of an enclosing
reversible machine was presented in Lecerf [1963], not with considerations of
thermodynamics, but for analyzing decidability properties of reversible trans-
formations. Moreover, Bennett’s technique of copying the computed answer
before initiating the reversal was not part of this earlier work by Lecerf.

Time and memory trade-offs for energy savings are further analyzed by Li
and Vitanyi [1996] and Li, Tromp, and Vitanyi [1998]. Additional refinements
in time and space bounds are presented by Buhrman, Tromp, and Vitanyi
[2001].

Another Reversible Turing Machine is defined in [Axelsen and Glück, 2011]
from first principles, without being constrained to simulate the functioning of
the older (forward-only) Turing Machine model. A reversible abstract machine
is proposed in [Lienhardt et al., 2012] for rendering concurrent programs re-
versible.

The reversible machine algorithms discussed here assumed that the total
length T of execution is known in advance. While such an assumption is
reasonable for computations in which the total runtime is known (as is the
case with sorting algorithms, for example), it needs to be refined for cases
in which the runtime is not known a priori. An amended meta-algorithm
for unknown computing time that works on top of known-T algorithms was
presented by Li, Tromp, and Vitanyi [1998].

Chapter 7

Relaxing Forward–Only Execution

into Reversible Execution

7.1 Overview of Paradigms . 91
7.2 Compute–Copy–Uncompute Paradigm . 92

7.2.1 Equivalence Conditions . 92
7.3 Forward–Reverse–Commit Paradigm . 92

7.3.1 Equivalence Conditions . 93
7.3.2 Sequence Conditions . 94
7.3.3 Sequence Examples . 95

7.4 Undo–Redo–Do Paradigm . 95
7.5 Begin–Rollback–Commit Paradigm . 97

7.1 Overview of Paradigms

The traditional notion of forward–only execution seems to be comprehensi-
ble and acceptable quite naturally. However, when the notion of reversibility
is introduced, it is not entirely intuitive as to how the forward–only notion
may be relaxed to accommodate reversibility. Although many find the notion
of computation easy to understand as a function y = P (x) that is applied
on input bits x to obtain output bits y, a simple natural notion of how this
view can be altered for reversible execution is not clear, in general. Neverthe-
less, based on research into using reversible computation in various contexts
over the past few decades, multiple relaxations have taken shape. Among the
relaxations, originally motivated by finding energy-optimal execution for re-
versible computing, the paradigm of Compute–Copy–Uncompute came into
vogue (described later in this chapter). The application of reversible execu-
tion to synchronization problems arising from on-chip speculative execution
and inter-processor virtual time synchronization resulted in the development
of another paradigm, namely, Forward–Reverse–Commit. The use of a notion
of reversibility in popular user-oriented applications gave rise to yet another
paradigm, namely Undo–Redo–Do. These three paradigms are described next.
Additional paradigms are possible, which may be discovered and developed in
the future.e

91

92 Introduction to Reversible Computing

7.2 Compute–Copy–Uncompute Paradigm

In the most well-known use of reversible computing, energy loss is reduced by
avoiding blind erasure of bits. This is conceptually achieved using the famous
theoretical algorithm by Charles H. Bennett [Bennett, 1973] (and its later
variants) whose essential operation is: compute, copy the output, and then
uncompute (sometimes called the “Bennett trick” in the literature). This is
the default approach that is commonly associated with classical approach to
reversible computing. Given a program P , a traditional computing system
executes P in forward-only mode, F (P), and generates the desired output. A
reversible computing system, utilizing a modified forward function F (P) and
its inverse R(F (P)), first executes F (P), performs a copy operation Y (F (P))
to save the desired output, and then invokes the inverse R(F (P)) to clean up
the effects of F (P). This is illustrated in Table 7.1, and a schematic view of
the control flow across all components of this paradigm is shown in Figure 7.2.

TABLE 7.1: Relaxation of Forward–Only Execution into the Compute–
Copy–Uncompute Paradigm

Forward–only Compute–Copy–Uncompute Execution

F (P) CCU(P) ≡ F (P) Y (F (P)) R(F (P))

Notation
P = Program code fragment

F (P) = Traditional forward-only execution of P
F (P) = Reversible forward execution of P

Y (F (P)) = Saving a copy of output from F (P)
R(F (P)) = Reverse execution of P after F (P)
X Y = X followed by Y

7.2.1 Equivalence Conditions

Clearly, the forward–only execution and the Compute–Copy–Uncompute ex-
ecution are considered equivalent if the output from F (P) is contained in the
copy of the output made by Y (F (P)).

7.3 Forward–Reverse–Commit Paradigm

The Forward–Reverse–Commit paradigm is very useful in situations where
a program fragment can be executed “ahead of time,” but is reversed if the

Relaxing Forward–Only Execution into Reversible Execution 93

✲ ✲F

F−1

f

f−1

x f(x)

✲

✛

✛✛
x

l d

f(x)

t
CCU(f)

x = Input bits
f(x) = Output bits

l = Clean bits
d = Dirty bits
F = f expanded for inversion

F−1 = Inverse of F
f−1 = Inverse part of f in F−1

• = Copy operation

FIGURE 7.1: Functional view of execution in the Compute–Copy–
Uncompute paradigm.

execution is found to be incorrect, and is re-executed. This type of “opti-
mistic” execution finds use in systems such as parallel discrete event simula-
tion [Carothers et al., 1999] and on-chip speculative execution [Dubois et al.,
2012]. The execution of a program fragment is attempted optimistically even
before all its pre-conditions about data dependencies are fully met. When
any updates to its data dependencies are detected, the previous optimistic
execution is reversed, and the program fragment is re-executed. This process
is repeated, analogous to a fixed-point computation, until a guarantee is ob-
tained that the dependencies will not change any further. At that time, the
output effects of the code fragment are “committed” as final. Thus, the exe-
cution proceeds as a sequence of forward and reverse executions, ultimately
ending in a forward execution that is finally committed.

When the execution is seen as a string of tokens, each token being a for-
ward, reverse, or commit operation, the grammar satisfied by the execution
string is shown in Table 7.2. Thus, for example, an execution trace in which
the program fragment P is executed and reversed two times before finally
being committed, the execution trace would be equal to F (P) R(P)
F (P) R(P) F (P) C(F (P)). All the possible combinations of the
control flow are shown in the functional view of the execution in Figure 7.2.

7.3.1 Equivalence Conditions

Given that the program fragment P is executed using the Forward–Reverse–
Commit paradigm, the results obtained from a traditional forward-only ex-
ecution F equal the results from the reversible execution if the three new
procedures, F , R and C, are such that Output(F (P)) = Output(FRC(P)).

94 Introduction to Reversible Computing

TABLE 7.2: Relaxation of Forward–Only Execution into the Forward–
Reverse–Commit Paradigm

Forward–only Forward–Reverse–Commit Execution

F (P) FRC(P) ≡ [F (P) R(P)]∗ F (P) C(F (P))

Notation
P = Program code fragment

F (P) = Traditional forward-only execution of P
F (P) = Reversible forward execution of P
R(P) = Reverse execution of P after F (P)

C(F (P)) = Committing to irreversibility of F (P)
X Y = X followed by Y

X∗ = Zero or more executions of X

✲ ✲✲F (P)

R(P)

C(P)❝
✻

✛✛ ❝�

ES

FRC(P) P = Program unit
F (P) = Forward execution of P
R(P) = Reversal of F (P)
C(P) = Committing F (P)

S = Program start
E = Normal exit
� = No-op exit
◦ = Choice in execution path

FIGURE 7.2: Functional view of execution in the Forward–Reverse–
Commit paradigm.

Note that F (P) and F (P) can be, in general, different from each other.
They are equivalent only to the extent that the final outcome from the re-
versible execution satisfies the outcomes from the forward–only execution. In
other words, F (P) can be different from F (P), as long as the equivalence con-
dition is satisfied by the chosen version of F (P). Note also that, in general,
the pair 〈F (P), R(P)〉 is not necessarily unique for a given F (P)—multiple
different pairs might exist that satisfy the equivalence condition.

The development of F , R, and C for a given P is illustrated in Sec-
tion 13.3 with the problem of reversible dynamic memory allocation. A
Forward-Reverse-Commit solution is developed and its correctness is proved
by verifying the equivalence conditions.

7.3.2 Sequence Conditions

When P = P1 P2 is a sequence of two code fragments, P1 and P2, then,
this paradigm allows all interleavings of the operations contained within the

Relaxing Forward–Only Execution into Reversible Execution 95

individual expansions of FRC(P1) and FRC(P2), as long as the interleavings
satisfy the following conditions:

1. The commit operation on P1 must be performed before the commit
operation on P2. In other words, in the execution string, C(P1) must
occur before C(P2). This ensures that the commit order duplicates the
final sequence of effects of the forward-only execution of the P1 P2

sequence.

2. The interleavings contain an odd number of occurrences of forward exe-
cution of P1 before every forward execution of P2. In other words, in the
execution string, every occurrence of F (P2) must be preceded by an odd
number of F (P1). This allows for any number of forward and reverse
executions of P1 to be performed, yet ensures that a forward execution
of P2 is not performed without having performed an un-reversed forward
execution of P1 prior to any forward execution of P2. Note that it does
not preclude any forward execution of P2 from being later reversed.

7.3.3 Sequence Examples

Using the abbreviation Fi = F (Pi), Ri = R(Pi), Ci = C(Pi), and XY = X
Y , the following are examples of valid and invalid sequences:

• F1R1F1R1F1F2R2C1F2C2 is valid, equivalent to F1C1F2C2.

• F1R1F1R1F1F2C1R2 is valid, equivalent to F1C1.

• F1R1F2C2, is invalid because F2 must be preceded by at least one F1

that has not been reversed.

7.4 Undo–Redo–Do Paradigm

Consider interactive systems, such as graphical user interface-based appli-
cations, in which operations are performed in an error-prone, tentative, or
exploratory manner, and need to be undone on demand. For example, a word
processing program or graphical drawing application is expected to provide
support for undoing certain actions initiated by the user. The reason for un-
doing could be because the action was from an unintentional error (e.g., typo-
graphical), or the action resulted in an unacceptable result (e.g., wrong color
selection), or that action was taken to explore alternatives that will either
be retained or rejected during use. In all such situations, the notion of re-
versible computing appears in the form of the ability to reverse the effects of

96 Introduction to Reversible Computing

TABLE 7.3: Relaxation of Forward-Only Execution into the Undo–Redo–Do
paradigm

Forward-Only Undo-Redo-Do Execution

F (P) URD(P) ≡ D(P) [U(D(P)) R(D(P))]∗

Notation
P = Program code fragment

F (P) = Traditional forward-only execution of P
D(P) = Reversible forward execution (Do) of P

U(D(P)) = Reverse execution (Undo) of P after D(P)
R(D(P)) = Coast forwarding (Redo) of D(P)
X Y = X followed by Y

X∗ = Zero or more executions of X

program fragments. Reversible computing is realized in such cases using the
Undo-Redo-Do paradigm.

In this paradigm, as a sequence of actions (Do operations) is performed,
the actions are tracked and recorded so that, at any point in time, the se-
quence of actions can be retraced backward, undoing their effects in reverse
order. Moreover, after some actions have been undone, the act of undoing can
itself be undone, which is also called a Redo operation. Thus, a sequence of
Undo operations can be followed by a sequence of Redo operations, which
re-incorporate the original actions after they have been undone. Normal op-
eration can resume by performing any new action (Do operation), which gets
appended to the list of actions. If there are any undone actions that are not
redone at the time a new action is added, the undone actions are purged and
forgotten. This essentially discards the old chain of progress by pruning the
Undo tree at the current branch point and starts a new branch with the new
action.

When the overall execution is viewed as a string of tokens formed by U(P)
for Undo, R(U(P)) for Redo, and D(P) for Do operations, the grammar of
accepted execution is shown in Table 7.3. The flow of execution for the various
stages of operation is shown in Figure 7.3.

Redo is also sometimes known as coast-forwarding because the system can
advance the program state automatically to the desired position into the fu-
ture, coasting along with little intervention or additional information needed
from the user. The technique of coast-forwarding can sometimes be applied
in the Forward-Reverse-Commit paradigm as well, when re-executing a pre-
viously reversed forward execution.

Relaxing Forward–Only Execution into Reversible Execution 97

✲ ✲

✲

✛
✛

✲

✲

✛ ❞

❞

❞

D(P)

U(P)

R(P)�

E

S

URD(P)

P = Program unit
D(P) = Do operation on P
U(P) = Undo of D(P)
R(P) = Redo of undone D(P)

S = Program start
E = Normal exit
� = No-op exit
◦ = Choice in execution path

FIGURE 7.3: Functional view of execution in the Undo–Redo–Do
paradigm.

7.5 Begin–Rollback–Commit Paradigm

This paradigm is often used in applications such as database transaction pro-
cessing, and it is supported in some programming languages. Transaction pro-
cessing in databases relies heavily on this concept to achieve atomicity and
other important properties in executing a set of logically grouped operations.
Programming languages such as FORTRESS [Allen et al., 2007, 2008] define
similar rollback semantics using language constructs (e.g., abortable atomic-
ity and nested transactions). The basic idea is for a flow of execution to be
able to identify some important markers before it begins to make a group
of operations that should be executed atomically, and ensure that either the
entire group of operations completes successfully or the entire group becomes
void (i.e., becomes as good as a no-op). The program itself can decide when
any step has not succeeded, in which case it can initiate a rollback to the last
marker or the runtime system also can initiate the rollback on the program’s
behalf if a runtime error is detected. The key is that the logical group of op-
erations must be reversibly computed, so that their effects can be reversed as
necessary at runtime.

Logically, every transaction starts the Begin stage, and rollbacks are ini-
tiated in the Rollback step, or all actions from the most recent Begin stage to
the current point are committed in the Commit step. The functional view of
this paradigm is shown in Figure 7.4.

The Begin stage signifies a marked point in the sequence of steps to which
execution can be later rolled back. For example, in database transactions,
this could either be the start of a new transaction, or it could be a marker

98 Introduction to Reversible Computing

BRC(Ti)

Si �i

Ei

❞✛
❄

❄

B(Ti)

✗
✖

✔
✕

❄

✻❞

✲

Ti

BRC(Ti+1) ✲
Zero or more �i+1

R(Ti)

✗
✖

✔
✕

C(Ti)

✗
✖

✔
✕

❄

Ti = A transaction at level i
Ti+1 = Any subtransactions, labeled as at next level i+ 1

BRC(Ti) = BRC paradigm-based execution of Ti

BRC(Ti+1) = Recursive BRC transaction execution at level i + 1
B(Ti) = Begin atomic execution of Ti

R(Ti) = Rollback with no-op exit of Ti

C(Ti) = Commit normal exit of Ti and all {Ti+1}
Si = Start Ti

Ei = Normally exit Ti and all {Ti+1}
�i = No-op exit of Ti

Ei+1 = Normal exit from a Ti+1 (not shown)
�i+1 = No-op exit from a Ti+1

◦ = Choice in execution path

FIGURE 7.4: Functional view of execution in the Begin–Rollback–
Commit paradigm.

within the transaction. In general, it is theoretically possible to rollback to
any specific point in the past. However, typically, syntactic constructs (e.g.,
a BEGIN TRANSACTION or SAVEPOINT statement in the Structured Query Lan-
guage (SQL) for databases) is used to make the marked point explicit. A
Rollback stage can later be initiated at any time, to abandon all side effects of
the steps from the previous Begin stage until the current point of execution,

Relaxing Forward–Only Execution into Reversible Execution 99

erasing any and all modifications initiated as part of the current transaction.
Again, syntactic constructs or other interfaces can be used to initiate the
rollback (e.g., a ROLLBACK TRANSACTION statement in SQL). The Commit op-
eration serves as the only indicator that the steps in the transactions because
the previous Begin stage will not be subject to rollback, and hence any and
all side effects, such as reads and writes to the data, must be pushed to the
actual locations where data is stored. Any later transactions will be able to
access the modified data in a consistent and correct manner.

The power of this execution model is enhanced even further by allowing
for nested transactions [Resende and Abbadi, 1994]: any of the steps in a
transaction may begin another subtransaction that also supports all the same
semantics as the parent transaction, and propagate errors, if any, to its parent.
If a parent transaction Ti at level i starts a subtransaction Ti+1 at level i+1,
any reversal initiated on Ti+1 gets propagated up the chain to Ti, which is also
consequently rolled back. The transaction chain starts at T1 and finishes with
a normal exit Ei if Ti and the set of all its subtransactions {Ti+1} terminate
normally. Ti ends with a no-op exit �i if itself or any of its subtransactions
initiates a rollback.

Part III

Software

101

Chapter 8

Reversible Programming Languages

8.1 Role of Reversible Languages . 103
8.2 Language-Level Reversibility Issues . 105

8.2.1 Sequence and Recursive Reversal . 105
8.2.2 Destructive Updates . 106
8.2.3 Arithmetic . 106
8.2.4 Conditionals . 107
8.2.5 Loops . 109
8.2.6 Additional Control Flow Issues . 110

8.3 Procedural Languages . 111
8.3.1 SRL and ESRL Reversible Languages 112
8.3.2 EPA Reversible Language . 113
8.3.3 Janus Reversible Language . 114

8.3.3.1 Data Structures and Reversible Arithmetic 114
8.3.3.2 Reversible Conditional Statement 116
8.3.3.3 Reversible Looping Statement 116
8.3.3.4 Reversible Subroutine Invocation 118
8.3.3.5 Reversible Input and Output 120
8.3.3.6 Global Reversal . 120
8.3.3.7 Limitations of Features . 122
8.3.3.8 Example Programs . 122

8.3.4 R Reversible Language . 123
8.3.4.1 Control Flow Constructs 123
8.3.4.2 Data and Elementary Operations 123

8.4 Functional and Logic Languages . 125
8.5 Further Reading . 126

8.1 Role of Reversible Languages

Traditional programming languages contain a mix of reversible and irreversible
constructs. Thus, in general, programs written in traditional languages can be
reversible or irreversible, depending on the constructs they use. If a program
uses even a single irreversible construct, the program as a whole can become
irreversible. Irreversible programs can indeed be reversibly executed using
simulation techniques to map irreversible execution to reversible platforms,

103

104 Introduction to Reversible Computing

but at the cost of added runtime and memory overheads. In other words, the
runtime and memory costs of reversible execution are (polynomially) larger
than those of irreversible execution. It is conceivable to develop a preprocessor
to detect when a program is free of irreversible statements and compile such a
program differently to avoid the simulation overheads in enabling reversibility.
On the other hand, new reversible programming languages that provide only
reversible constructs avoid all runtime overheads for reversibility.

IP = Irreversible programs written using irreversible languages
can be reversibly executed via simulation of irreversible
programs over reversible platforms, but with runtime over-
head incurred for the simulation.

IRP = Reversible programs written using a subset of irreversible
languages, reversibly executable by special detection and
compilation for reversible platforms; the same programs
can also be expressed using reversible languages and can
be reversibly executed directly; both approaches can avoid
incurring runtime overheads.

RP = Reversible programs that can be expressed only with re-
versible languages to avoid all runtime overheads for re-
versible execution.

FIGURE 8.1: Classes of irreversible and reversible language programs.

With these considerations, we have three classes of programs, as shown
in Figure 8.1: (1) IP are programs written in irreversible languages using
one more irreversible constructs, and hence necessarily incur simulation costs
to enable reversibility; (2) IRP are programs written either in irreversible

Reversible Programming Languages 105

languages but using only the restricted subset of reversible constructs, or pro-
grams that are written using reversible languages; and (3) RP are programs
written in reversible languages that cannot be expressed with irreversible lan-
guages. Examples in the RP class are those using reversible floating point
arithmetic operations or reversible memory operations such as swaps that are
not available in conventional languages. Reversible programming languages
are hence useful to not only provide reversible execution with assured effi-
ciency (e.g., memory usage not increasing with execution length), but also to
allow the programmer to more naturally express algorithms that are reversible
by design.

Most conventional programming languages such as Fortran, C, and C++

can be used to write irreversible programs that can be augmented with run-
time instrumentation via compiler techniques to enable simulation of their
execution for reversibility. It also is possible to identify a reversible subset
of each irreversible language to define a sub-language that is reversible, al-
though the expressive power of the subset may significantly limit the types of
programs that can be written.

Several reversible languages have also been defined over the past few
decades, with varying levels of expressive power, variety of constructs, and
ease of programming. These include Janus, R, EPA,SRL, ESRL, PSIL-
ISP, INTERLISP, Inv, and pGCL.

8.2 Language-Level Reversibility Issues

For a programming language to provide reversibility of execution, conventional
notions in control flow and primitive operations must be redefined due to their
irreversible nature of operation. The irreversible notions arise in the form of
destructive updates to variables, conditional branching statements that lose
information, loops with variable number of iterations, and lossy arithmetic op-
erations. In reversible programming languages, new constructs are defined to
eliminate reversibility problems that arise due to each of these issues, which are
fundamental in nature although they might manifest themselves in different
forms due to syntactical differences among different languages. The overall
effectiveness of the reversal directly depends on how each of these issues is
treated to minimize the overheads introduced for reversibility.

8.2.1 Sequence and Recursive Reversal

A program is a sequence of statements < S1, . . . , Sn > expressing the for-
ward control flow of execution. The reversal of the sequence is the in-
verted forward sequence containing the inverses of each individual statement:
< S−1

n , . . . , S−1
1 >. Each statement Si may be any of the other types of

106 Introduction to Reversible Computing

statements, such as destructive updates, conditional statements, looping state-
ments, and so on, whose reversal is described in the next subsections.

8.2.2 Destructive Updates

A destructive update of a variable is any statement of the form

x← E(x′,V),

where x is the variable (named memory location) being overwritten, x′ is
the pre-assignment value of x, e is an expression over x′ and other variables
V , and the expression E is such that no E−1 can be found that recovers
the pre-assignment value of x as x′ = E−1(x,V). The simplest example of a
destructive update is an assignment of the form x ← y, where y is another
variable whose current value is not functionally related to the pre-assignment
value of x. A further generalization of destructive updates can be obtained by
expanding the assignment to a set of variables: X ← E(X ′,V), where X is a
composite of one or more variables being updated by a group of executable
statements represented by E , X ′ is the pre-assignment value of X , and E−1 is
a set of executable statements that can reverse the effects of E to restore X
to X ′. All the assignments to X for which no E−1 can be found constitute an
aggregate destructive update.

In contrast, constructive updates provide an invertible, functional relation
between the pre-assignment value and the variables used to compute the new
value. The simplest example is the swap operation of the form x↔ y, which
can be easily inverted by the same operation y ↔ x that swaps back the values
of x and y. Destructive updates are opposite of constructive updates.

Reversible languages must prohibit any expression e that is not possible to
symbolically invert, and restrict updates to invertible operators. For example,
only invertible operations such as swap, increment, and decrement may be
defined by the language, and the language syntax may be defined to make it
impossible to express any destructive update. Any additional programming
complexity may be obtained from compositions of such specifically designed
invertible arithmetic operators.

8.2.3 Arithmetic

In conventional computers, arithmetic is in general irreversible. To ensure re-
versibility, arithmetic-based modifications must be restricted to be construc-
tive in nature, such as simple accumulations or decrements (+= and -=). More
general solutions include relaxations and redefinitions of multiplication and di-
vision operations to eliminate all possibilities of overflow and underflow that
lose information. For example, the semantics of multiplication may be rede-
fined to employ three operands instead of two operands, to address all sources
of irreversibility. Modulo arithmetic is another important component of re-
versible arithmetic.

Reversible Programming Languages 107

8.2.4 Conditionals

Branches of control flow due to conditionals have the potential to introduce
irreversibility because they can create ambiguity on the backward path at the
point at which forward branches converge. Conditional statements introduce
a split of control flow into two or more branches, which are then merged into
a single flow later in the execution. When executing in reverse, information is
needed at the merge point as to which of the branches must be traversed in
reverse. The ambiguity cannot be resolved simply by reevaluating the forward
condition. This is because, if any of the variables appearing in the condition
expression is modified inside the branches of the conditional statement, then
the condition expression is not guaranteed to give the same value as its value
from forward execution, and hence becomes irreversible. Even in the simplest
case of reversing a conditional statement with only two branches (true and
false branches), in general, it is impossible to recollect which of the bodies,
the true branch or the false branch, was executed in the forward path.

For example, a conditional statement such as

if x < 0 then
x← −x

else
x← 2 ∗ x

end if

cannot restore the correct pre-modification value of x because x is being mod-
ified inside the body of the if statement. If x is a positive even number after
the branch is executed, then the statement cannot be uniquely reversed, be-
cause all negative even numbers and all positive (even or odd) numbers are
mapped to positive numbers by the branch statement. There is sufficient in-
formation to reverse correctly if x happens to be an odd number (which would
guarantee that the true branch was taken in the forward mode, as the false
branch always converts the number to become even). However, the ambigu-
ity remains for even numbers, and hence the statement in general cannot be
reversed correctly.

In general, consider the conditional statements in the following form:

if e then
S1

else
S2

end if

Let the set of variables being used in the condition expression e be R(e).
Let the set of variables being overwritten in the statements S1 in the true
branch be W (S1) and, similarly, that of the false branch be W (S2). Then
the reversibility of the conditional statement can be violated if C1 = R(e) ∩
W (S1) 6= ∅ or C2 = R(e) ∩W (S2) 6= ∅.

108 Introduction to Reversible Computing

Indeed, if C1 = ∅ and C2 = ∅, then the branching decision can be
recovered correctly by simply reevaluating the same forward expression e, and
the branch statement can be correctly inverted as follows:

if e then
S−1
1

else
S−1
2

end if

The reverse statements S−1
1 and S−1

2 are determined by recursively applying
the reversal approach on the corresponding statements S1 and S2, as indicated
in Section 8.2.1.

In reversible programming languages, there are essentially three ways to
address the problem of reversibility of conditional statements:

� Restriction of Semantics Because the irreversibility disappears if
C1 = ∅ and C2 = ∅, one way to ensure reversibility is to prohibit
the program from having a non-empty set for either C1 or C2. It is left
to the programmer to rewrite the program in such a way that this con-
dition is ensured at runtime; violation of the reversibility requirement
would lead to undefined results.

� Post-condition Post-conditions are a common technique by which the
difficulty of reversing conditionals is addressed. In this approach, in addi-
tion to the usual branching condition, which we will call the pre-branch
expression or epre, a new condition, called the post-branch expression or
epost, is introduced to the syntax of the branch statement. The semantics
require that, in forward execution, the epost expression at the end of the
branch statement must evaluate to the same truth value to which epre
evaluated before the branch was taken. This ensures that the reverse
mode can rely on epost to determine which branch should be reversed.

Forward

if epre then
S1

else
S2

end epost if

Reverse

if epost then
S−1
1

else
S−1
2

end epre if

Languages such as Janus require a post-condition for a simple if state-
ment. Generalization to multi-way conditional statements, such as the
switch statement, was defined in [Glück and Kawabe, 2003], where a
unique post-condition eposti is required to be defined for every branch
i, with no mutual intersection after the end of the multi-way statement
(i.e., eposti ∩ epostj = ∅, ∀i, j).

Reversible Programming Languages 109

� Pragma Specifications This approach is a trade-off between the previ-
ous two solutions. The programmer is required to specify to the compiler
one of three options: (1) there is no reversibility hazard, that is, C1 and
C2 are both assured to be null sets; or (2) a post-branch expression is
specified that can recover the pre-branch expression’s truth value; or
(3) the compiler must generate a temporary bit variable that records
the forward pre-branch truth value, which should be used in the reverse
execution.

The default could be the last option, so if the programmer does not
specify the first or second, the compiler automatically inserts the bit
needed to remember the branching decision. The language can permit
the specification of the programmer’s option via a pragma interface.
For example, #pragma POST CONDITION "INVARIANT" just before the
if statement applies the first option to that statement, while #pragma

POST CONDITION expression specifies the second option.

8.2.5 Loops

Looping with a variable number of iterations is a fundamental and powerful
programming construct through which much of the complexity arises in most
software (in fact, it is so powerful that the halting problem would disappear if
variable iteration is prohibited in procedural languages). In general, the power
comes at the cost of reversibility in conventional programming languages. The
crux of the problem is that, without taking careful measures, the exact count
of the number of iterations taken in the forward mode cannot be recovered
when executed in reverse. Here, we illustrate reversibility issues in the context
of iterative loops of the following form (other types of loops can be treated in
an analogous manner):

while e do
S

In reversible programming languages, there are essentially two ways to
address the problem of reversibility of looping statements:

1. Post-condition In this approach, instead of a single looping condition,
the looping template is relaxed to include two conditions: the pre-loop
expression or epre, and a post-loop expression or epost. The semantics
require that, in forward execution, the epre pre-loop expression must
be true before the loop but false after the loop starts. Similarly, the
epost post-loop expression is false until the loop ends. This ensures that
the reverse mode can rely on epre to determine when the loop must be

110 Introduction to Reversible Computing

terminated in reverse.

Forward

assert epre
while not epost do

S
assert not epre

Reverse

assert epost
while not epre do

S−1

assert not epost

2. Counter-Based Reversal In this approach, a new temporary variable
is introduced by the compiler to remember the number of times the loop
body was executed in the forward mode.

Forward

c← 0
while e do

S
c← c+ 1

Reverse

while c > 0 do
S−1

c← c− 1

3. Pragma Specifications A language interface can be used by the pro-
grammer to specify a symbolic stopping condition expression that the
reverse mode execution can use to terminate the loop during execution.
The compiler inserts this expression into the reverse loop. Alternatively,
the name of a variable that maintains the loop count in the program
can be specified, so that no new variable needs to be introduced by the
compiler. If the programmer does not specify either option, the compiler
automatically inserts the counter variable needed to remember the loop
count. The language can enable the specification of the programmer’s
options via a pragma interface. For example, #pragma LOOP CONDITION

expression just before the while statement applies the first option to
that statement, while #pragma LOOP COUNTER variable specifies the
second option, and #pragma LOOP COUNTER "AUTOMATIC" specifies the
third option.

4. Restriction of Semantics In this approach (which may be considered
draconian), no support for variable iteration is provided. Loops with a
fixed number of iterations are allowed. Although highly restrictive in
nature, this approach does still allow many algorithms to be effectively
expressed in terms of loops with fixed iteration counts. Algorithms such
as sorting and Fourier transforms can indeed be expressed under such
restriction of semantics, with the added assurance of reversibility. Some
reversible languages have been defined in the literature with such a con-
straint and used for the purposes of theoretical analyses.

8.2.6 Additional Control Flow Issues

Additional issues need to be similarly addressed, and reversibility of advanced
control flow constructs remains an open research as of this writing.

Reversible Programming Languages 111

� Jump instructions such as goto statements can be made reversible by
different solutions. One way is the introduction of a reverse-peer instruc-
tion such as comefrom. Another method is to prevent statements from
being targets of more than one jump instruction. Yet another method
is to have the compiler generate certain disambiguating variables that
keep track of the origin of the jump when the jump is potentially made
from multiple origin points.

� Reversal of procedure calls is achieved by one of two ways, depending on
the specific language support used. In languages in which every state-
ment is reversible, there is only one instance of the procedure that can
be executed in forward or reverse mode. Moreover, in some languages,
a procedure can in fact be called or “uncalled” in forward mode itself.
The corresponding calls become reversed so that the procedure becomes
uncalled or called, respectively, in reverse mode. In languages that gen-
erate two separate instances of the procedure, one for forward execution
and the other for reverse execution, the invocation of a (forward in-
stance) procedure call in forward mode gets reversed by invocation to
the reverse instance of the procedure.

� Recursion is naturally handled by the same techniques as for a subrou-
tine call.

� Exception handling, such as the try-catch statement in C++, is possi-
ble to address via normalization to basic control flow such as branching
and jump instructions, but a more elegant, high-level reversal remains
to be found.

� Multi-threaded execution similarly remains to be addressed, the thorny
issue being the compromise among multiple conflicting issues such as
efficiency, determinism, and fairness, all of which come into play when
reversibility is considered.

8.3 Procedural Languages

Procedural languages make the largest class of programming languages by
a very wide margin. However, almost all existing procedural languages have
been designed for forward-only execution. Conventional forward-only proce-
dural programming enjoyed many decades of research and development in
forward execution languages. In comparison, there has been relatively little
development with respect to reversible execution languages. Perhaps largely
due to the lack of sufficient motivation for reversibility, programming language
designers have seldom incorporated any consideration for reversibility. Many

112 Introduction to Reversible Computing

other considerations, such as runtime performance, code reuse, reduction of
unintentional errors, and the like, have dominated programming language de-
velopment. However, the concept of reversibility of execution introduces an
entirely new dimension in language design, orthogonal to almost all tradi-
tional considerations in programming languages.

Imagine the set of issues and challenges that arise in defining a program-
ming language with reversible execution as the primary consideration. To
begin with, the simplest yet thorny issue is the definition of data types of
variables and reversible operations on those data types. The data types and
operations must provide sufficient expressive power, yet avoid loss of informa-
tion in all cases, by design. Power of expression and programmability need to
be maintained while accommodating reversibility. Similarly, all control flow
constructs must be reversible by design, yet support complex logic. Because
modularity features such as subroutines are needed for software engineering
purposes, they too need be enhanced with appropriate concepts of reversibil-
ity.

Here, a few recently proposed reversible procedural languages are described
that are intended to provide reversibility by design. Additionally, the issue
of retroactively introducing reversibility concepts into existing (forward-only)
procedural languages is also considered in the context of the popular C lan-
guage.

8.3.1 SRL and ESRL Reversible Languages

Let us first focus on languages with some of the simplest instruction types
and consider their reversibility properties. The set of functions computable by
Turing Machines is the same as that defined by partial recursive functions. A
subset of partial recursive functions is the set of primitive recursive functions,
which are defined on natural numbers with a bounded number of computa-
tions/iterations. Consider a language to express primitive recursive functions,
defined on non-negative integers, in which the only instructions allowed are
of three types: increment (INC var), decrement (DEC var), and fixed itera-
tion (FOR var P, where P is any subprogram written in the language). The
operations are defined on a fixed set of variables (e.g., multiplication of two
numbers a and b can be achieved via an increment operation inside two nested
FOR loops on a and b). This language is, for the most part, easy to reverse,
because increment and decrement are mutual inverses, and fixed iteration is
reversed by invoking the inverse of its body. However, because the variables
are only allowed to take on non-negative values (the decrement operator is
defined to enforce this), information loss arises whenever a decrement oper-
ation occurs on any variable that is currently at zero. Thus, even the set of
primitive recursive functions is irreversible.

The limitation of primitive recursive functions with respect to reversibility
can be solved by relaxing the variables to assume arbitrary integer values
(not just non-negative values). In other words, instead of the set of natural

Reversible Programming Languages 113

numbers N as the domain, the set of integers Z can be used as the domain.
Reversibility is then restored in this new set of functions, defined in [Matos,
2003] as the Simple Reversible Language (SRL) language.

However the new set of functions defined by SRL on integers has the
limitation that certain operations cannot be achieved without sideeffects. For
example, changing the sign of the value in a variable cannot be achieved
without lasting modifications to at least one other variable. Similarly, values
in two variables cannot be swapped without modifications to at least one
other variable. However, these limitations are overcome by the addition of one
additional instruction type, namely, the negation operator: NEG var changes
the sign of the variable var. This extension of SRL is defined in [Matos, 2003]
as the Extended Simple Reversible Language (ESRL). Languages such as
SRL and ESRL are useful for theoretical purposes, to help understand the
basic abilities and inabilities of even the simplest procedural languages when
considered in the context of reversibility.

8.3.2 EPA Reversible Language

The Event-Predicate-Action (EPA) language is an early reversible language
designed to enable automatic and efficient reversible execution of event-
oriented software [Briggs, 1987]. Within a runtime infrastructure that accepts
events from the user environment, evaluates a set of predicates to determine
which predicates become satisfied by the newly arriving events, and fires off
actions that are activated by the predicates that guard those actions. The ac-
tions are entirely composed of reversible statements to enable any action to be
undone for different reasons such as invalidation of an event, or an adjustment
of the data associated with an event, or a correction of the order of events.
Thus, the crux of reversibility lies in the ability to reverse the statements of
the software language used to program the actions. A code generator accepts
EPA programs and emits forward and reverse versions of every action, both
operating on a shared set of variables that maintain a consistent state of the
application.

EPA defines two types of assignments to variables, one constructive in na-
ture and the other destructive in nature. The difference between the two is to
permit reduction of the memory needed for reversal: constructive updates can
be reversed by computing their corresponding inverses, while only destructive
updates need memory to save the pre-assignment values being overwritten.
As constructive updates, only the increment operation is permitted on integer
data types. Destructive updates include initialization as well as overwriting.
Destructive updates save pre-assignment values. Care is taken to avoid saving
and restoring initialization values because the reversal of initial assignments
is immaterial to the correctness of action reversal. Conditional statements are
reversed by saving a single bit to record the branching decision. Loops are
reversed using a post-condition approach. Overall, a large reduction in the
amount of memory was achieved for reversal of a real-life program, namely an

114 Introduction to Reversible Computing

application for cricket scoreboard maintenance. The reduction was achieved
to the large fraction of constructive updates and due to careful minimization
of the number of occasions at which values are saved to memory. Gains in soft-
ware development, debugging, and testing efforts were observed. The use of a
reversible language and the employment of a compiler to provide automated
reversible computation helped achieve a reduction in development time, as-
surance of correctness, minimization of memory usage, portability to different
computing platforms, and increased maintainability of the software.

8.3.3 Janus Reversible Language

Among the earliest procedural languages for general-purpose reversible pro-
gramming, the Janus language [Lutz and Derby, 1986] is perhaps the most
comprehensive and elegant creation. It is a very compact and beautifully de-
fined language, with a very simple syntax. The semantics are restricted by
design to ensure reversibility at all levels. The language was cleverly designed
to avoid irreversible features, yet provide sufficient power to develop complex
algorithms. While the authors of the language originally intended the language
to be a preliminary exercise in reversible language design, the language was
later shown to be expressive enough to describe a Reversible Turing Machine
using the language constructs alone, in only a few dozen lines of Janus code
[Yokoyama, 2010]). The entire grammar of the language is shown in descrip-
tive form in Table 8.1. A brief form of the Janus syntax is provided in the
original article [Lutz and Derby, 1986] that first introduced the language. An
even more succinct form of the same was published in [Yokoyama and Glück,
2007].

A Janus program consists of a list of variable name declarations and a list
of procedure (subroutine) definitions that use the variables in the procedure
bodies. The procedure bodies contain executable statements, each of which is
reversible by design. Executable statements can be sequences of statements,
swap statements, (constructive) assignment statements, conditionals, loops,
procedure calls, and input/output operations. Control flow is carefully de-
fined to always preserve reversibility. The most basic control flow statement
is the swap (or exchange) binary operator (:) on two variables, which simply
swaps the values in the operands. Clearly, it is a self-inverse operator. Except
for the swap operator, all the remaining control flow constructs have unique
characteristics, making these constructs qualitatively quite distinct from those
in conventional forward-only languages. These are described in detail next.

8.3.3.1 Data Structures and Reversible Arithmetic

The data types are limited to integers, and the data structures are limited
to scalars and arrays. Array subscripts can be integer expressions. Integers are
permitted to assume only non-negative values up to a specific number of bits
(e.g., 32-bit), and all arithmetic is performed modulo the maximum value. All

Reversible Programming Languages 115

TABLE 8.1: Grammar of the Janus Time-Reversible Language

Element Syntax Notes

program := declare procedures
Variable declarations and
procedures

declare := name | name declare List of variable names

procedures :=
procedure procedures |
procedure

One or more procedure defi-
nitions

procedure := PROCEDURE name stmt A procedure definition

stmt :=
stmt stmt | swap | as-
sign | if | loop | call |
input | output | SKIP

Sequence, swapping, as-
signment, conditional, loop,
procedure call/uncall, in-
put, output, or no-effect
statement

if :=

IF
pre

condition THEN
if

stmt
ELSE

else
stmt

ENDIF
post

condition

Truth value of
pre

condition
evaluated before execution of
if

stmt or
else
stmt should be equal

to truth value of
post

condition
evaluated after execution

loop :=

FROM
from

condition

DO
do

stmt LOOP
loop
stmt

UNTIL
until

condition

Assert that
from

condition is true,

execute
do

stmt, and then, re-

peatedly execute
loop
stmt until

until

condition becomes true

call :=
CALL name | UNCALL
name

Call or uncall procedure
name

swap := 1
var :

2
var Swap values of

1
var and

2
var

assign :=
var += expression |
var -= expression |
var ^= expression

Evaluate expression and add
to, subtract from, or bit-wise
exclusive-or with var

expression :=
⊙ expression | expres-
sion ⊗ expression | var
| integer

Unary (⊙) and binary (⊗)
operations, variables, and
constants

var :=
name[expression] |
name

Array or scalar variable

input := READ name
Swap the value of name with
a user-given value from the
environment

output := WRITE name
Swap the value of name with
a user-given location in the
environment

116 Introduction to Reversible Computing

variables are guaranteed to be initialized to zero before program execution.
Non-zero values can be inserted initially into the program via input operation
to assign values from the system to specific variables of the program.

Only reversible arithmetic is defined on integers, as constructive assign-
ment operations of the form lvalue operator rvalue. The only operators sup-
ported are add to (+=), subtract from (-=), and exclusive bit-wise or with (^=)
any integer expression. In a constructive assignment, the integer variable being
modified is the left-hand-side reference (an lvalue), and the integer expression
being used as an operand is the right-hand-side value (an rvalue). It is con-
structive in the sense that modifications never lose information, making it
possible to locally reverse the assignment by reevaluating the rvalue and use
it in restoration of the lvalue to its old value. Clearly, += and -= are mutual
inverses, while ^= is a self-inverse.

8.3.3.2 Reversible Conditional Statement

Conditional (or branching) statements in conventional forward-only lan-
guage constructs possess an asymmetry between pre-condition and post-
condition actions. There is a natural notion of a condition or guard defining
the state prior to entry of the statement, but there is no corresponding notion
for the exit of the statement. Janus resolves this asymmetry for conditional
statements by adding a new concept of post-condition and appropriate seman-
tics that retain conventional forward-only expressive power while making it
naturally symmetric and reversible.

The syntax and semantics of a Janus conditional statement are shown
in Algorithm 8.1. In the algorithm, e1 and e2 are logical expressions. The
distinction from a conventional forward-only construct is evident in the form
of the expression e2 at the end of the statement. The reversible execution
semantics specify that the truth value of the pre-condition e1 evaluated (in
forward execution) before the conditional branch is taken must be equal to the
truth value of the post-condition e2 evaluated after the branch is executed.
The semantics of this behavior are part of the language specification; the
semantics are either assumed to be obeyed by the program or are enforced by
the language runtime system. In other words, either execution proceeds with
the assumption that the program somehow ensures that e1 and e2 correctly
evaluate to the same truth value pre- and post-execution, respectively, or the
runtime system raises a runtime exception if/when the requirement is violated
by the program.

To help readers who are conversant with the traditionalC language, the se-
mantics of the reversible conditional statement are expressed in an equivalent
C code fragment in Algorithm 8.1. In the C code, the assert(condition)

call raises a runtime error if condition evaluates to false.

Reversible Programming Languages 117

Algorithm 8.1 Reversible execution semantics of conditionals in Janus

Forward Reverse
J
a
n
u
s IF e1

THEN S1

ELSE S2

FI e2

IF e2
THEN S−1

1

ELSE S−1
2

FI e1

⇓ ⇓

C

int v = e1;
if(v) S1

else S2

assert(v == e2);

int v = e2;
if(v) S−1

1

else S−1
2

assert(v == e1);

8.3.3.3 Reversible Looping Statement

Similar to conditional statements, conventional looping statements (with
variable number of iterations) are asymmetric in the sense that only an exit
condition is explicitly defined, but there is no explicitly defined entry con-
dition. Janus resolves this asymmetry for looping statements by adding a
concept of entry condition and appropriate semantics that retain conven-
tional forward-only expressive power while establishing a new symmetry for
reversibility.

The definition of a reversible version of an iterative loop is nontrivial. The
challenge is that the looping statement may execute for a variable number of
iterations, determined at runtime by a user-defined loop exit condition. One
of the most elegant parts of Janus is its definition of a new looping construct
that enforces reversibility by design. The syntax and semantics of a Janus
looping statement are shown in Algorithm 8.2. The operation of this looping
construct is unconventional and complex. To help understand its operation,
the equivalent expressions of its forward and reverse behavior are shown in C
language in Algorithm 8.2. Also listed is an example to illustrate the sequence
of evaluations of conditions and statements in forward and reverse execution
of the loop. Note the symmetry of the conditions e1 and e2 with respect to
forward and reverse modes.

A key enabler of reversibility for the Janus loop construct is the relation
between the conditions e1 and e2. In the forward mode, e1 must be true for
entry into the loop but it must be false at the end of every iteration. The
behavior is defined this way to ensure that the reverse mode can rely on e1

118 Introduction to Reversible Computing

as the stopping condition of the reversed loop, just as the forward mode relies
on e2 as the stopping condition of the forward loop.

It might appear as though this type of construct may be difficult to use
in a program, but the authors of Janus have demonstrated its natural use
in a few nontrivial problems such as the square root computation and sorting
procedures.

Algorithm 8.2 Reversible execution semantics of looping in Janus

Forward Reverse

J
a
n
u
s

FROM e1
DO S1

LOOP S2

UNTIL e2

FROM e2
DO S−1

1

LOOP S−1
2

UNTIL e1

⇓ ⇓

C

assert(e1);
for(;;)

{
S1

if(e2) break;
S2

assert(!e1);
}

assert(e2);
for(;;)

{
S−1
1

if(e1) break;
S−1
2

assert(!e2);
}

1
it
er
a
ti
o
n
ex
a
m
p
le

FS e1 S1 !e2 S2 !e1 S1 e2 FE ⇋ RS e2 S
−1
1 !e1 S

−1
2 !e2 S

−1
1 e1 RE

FS=Forward start FE=Forward end
RS=Reverse start RE=Reverse end

8.3.3.4 Reversible Subroutine Invocation

Subroutines in all conventional languages are defined with a fundamen-
tal assumption of forward-only execution. When a subroutine is invoked, the
caller always implicitly assumes that the control flow is transferred to the

Reversible Programming Languages 119

top of the subroutine and flows down to the end of the subroutine. Due to
unidirectionality of execution, there is no scope for any other notion. To this
conventional notion of calling a subroutine, Janus introduces the complemen-
tary concept of uncalling the same subroutine. In fact, this concept of calling
or uncalling a callee subroutine is orthogonal to the direction of execution of
the caller itself. In other words, the caller may be in forward or reverse mode
of execution when calling or uncalling a subroutine. This is further elaborated
shortly.

Subroutines are supported in Janus as procedures that can be called from
other procedures. Procedures are allowed to be directly or indirectly recur-
sive. Forward references to procedures are allowed before they are defined.
The crucial difference between conventional subroutines and Janus subrou-
tines is in the introduction of the additional concept of uncall ing, which is
the reverse counterpart to the conventional forward invocation. In all conven-
tional programming when a subroutine is called, control begins at the top of
the subroutine and flows down to its end. In Janus, this conventional calling
is available as usual, using the primitive CALL procedurename. In addition,
the same procedure can also be uncalled using the primitive UNCALL proce-
durename. When the procedure is uncalled, control begins at the end of the
subroutine and flows backward toward the beginning; moreover, in this uncall
mode, the inverses of the statements are executed.

Consider a procedure P1 (caller) invoking another procedure P2 (callee).
Depending on whether the caller is executing in forward or reverse mode and
whether the callee is being called or uncalled, four different cases arise, as listed
in Table 8.2. Note that this implies that a procedure can be uncalled from a
procedure even in normal (forward) mode, and can be called in reverse mode.
For example, if CALL name is used as forward execution, then UNCALL name
becomes the reverse, but it is also possible to use UNCALL name in forward
execution, in which case CALL name becomes the reverse.

TABLE 8.2: Reversible Calling Semantics of Subroutines in Janus

Callee Mode
Caller mode Forward Reverse

Forward CALL UNCALL

Forward UNCALL CALL

Reverse CALL UNCALL

Reverse UNCALL CALL

Although one may wonder why one would consider uncalling a procedure
in a conventional program, there are indeed a few natural uses. Because there
is no such concept in traditional programming, there is insufficient awareness
of the possibilities; however, with more software development using reversible
languages, the concept of uncalling can become more natural over time. The

120 Introduction to Reversible Computing

authors of Janus demonstrated the usage of uncalling in a square root com-
putation and in a factorization program [Lutz and Derby, 1986].

8.3.3.5 Reversible Input and Output

Introduction of values into the program from the user/system (e.g., for
initialization) is supported via a reversible input statement. Similarly, pre-
sentation of computed values from the program to the user/system (e.g., for
printing answers) is supported via a reversible output statement.

In conventional forward-only execution, input and output operations are
irreversible in nature. For example, a user may type some numbers at the
computer terminal as input to the program, which is received into a memory
variable via an input statement in the program. Reversal of such an input
action is irreversible in two ways: (1) in forward mode, the value of the vari-
able into which the input value is received would lose its old value, thereby
potentially destroying some information; (2) in reverse mode, it is not clear
how to define the return of the input value back to the user. Analogous issues
arise with output from the program.

The reversibility issues from conventional input and output semantics are
solved by Janus through clever alternative specifications of behavior that
make the operations reversible by definition. In the new definition of input, a
READ var statement means that the current value of the variable var in the
program is exchanged with an unspecified variable in the program environ-
ment. If this READ statement is executed in reverse, the system is expected to
supply the saved value back to the program while the program promises to re-
turn the input value back to the environment. Essentially, the input operation
becomes an exchange or swap operation on an unspecified location of the sys-
tem, delegating to the system the responsibility of restoration of the old value
of the variable. An output statement WRITE var has analogous semantics: the
program exchanges the value of the program variable var with an unspecified
variable in the system. It can be seen that the reverse semantics of input are
the same as the forward semantics of output, and vice versa. Thus, the reverse
of READ var is WRITE var, and vice versa.

8.3.3.6 Global Reversal

In Janus, globally reversible execution is obtained by composition of local
reversibility. Because every individual statement is guaranteed to always have
an inverse, and that inverse is locally defined (solely dependent on that state-
ment alone), reversibility at any level (e.g., procedure-level) is simply obtained
by reversing below that level. The rules of reversal are shown in Table 8.3,
which, when applied recursively, can be used to obtain a reversible execution
for any statement.

Table 8.3 shows a summary of the instructions and their inverses. Note
that there is no specific distinction as forward and reverse for the instruction

Reversible Programming Languages 121

TABLE 8.3: Reversal of the Janus Language Instructions

Instruction Inverse

stmt1 stmt2 [stmt2]
−1

[stmt1]
−1

IF
pre

condition THEN
if

stmt
ELSE

else
stmt

ENDIF
post

condition

IF
post

condition THEN[
if

stmt

]−1

ELSE[
else
stmt

]−1

ENDIF
pre

condition

FROM
from

condition

DO
do

stmt LOOP
loop
stmt

UNTIL
until

condition

FROM
until

condition

DO

[
do

stmt

]−1

LOOP

[
loop
stmt

]−1

UNTIL
from

condition

CALL name UNCALL name

UNCALL name CALL name
1

var :
2

var
1

var :
2

var

name += expression name -= expression

name -= expression name += expression

name ^= expression name ^= expression

READ name WRITE name

WRITE name READ name

122 Introduction to Reversible Computing

and its inverse. Either can be used as forward, and the other can then be
invoked as its reverse.

8.3.3.7 Limitations of Features

Relative to modern software engineering features well developed in tradi-
tional forward-only languages, the following are some of the limitations of the
Janus language:

� All variables are global in scope. No specific concept of local variables is
available, although a distinction of local versus global variables is widely
used in all modern languages. In general, no concept of scope or visibility
is defined.

� All variables are of integer type. No other data type (such as floating
point or character string) is supported. While this simplifies the lan-
guage with respect to completeness and reversibility, additional types
are needed for more practical purposes in many applications.

� All variables are initialized to zero by the system.While modern forward-
only languages support initialization constructs that permit different
variables to begin with different intial values, the same in Janus must
be explicitly added as an additional executable statement.

� There is no concept of procedures accepting formal arguments, and no
notion of passing actual arguments from the caller to callee. All data
exchange with procedures is via global variables alone.

� There is no concept of procedures returning values (i.e., procedures are
subroutines but not functions). All side effects of procedures are achieved
via modifications to global variables.

Nevertheless, these are not serious limitations, and can be remedied for soft-
ware engineering purposes without affecting reversibility.

8.3.3.8 Example Programs

The original language definition of the Janus provides illustrations of how
the language primitives can be used: a reversible factorization program, a
reversible fibonnaci sequence generator, a reversible sorting program based on
bubble sort, and a program to reversibly compute the square root of a number.
Some interesting idioms that have more general applicability are

� A method for reversibly doubling, by building only over the constructive
operators += and -=,

� A method in which, in a forward execution of a procedure, uses the
reverse execution of another procedure.

Reversible Programming Languages 123

8.3.4 R Reversible Language

The R, proposed as part of Michael Frank’s doctoral dissertation [Frank,
1999], was originally intended as a reversible programming language for the
Pendulum chip architecture [Vieri, 1995, 1999]. The Pendulum hardware sup-
ported the reversible Pendulum Instruction Set Architecture (PISA) aimed at
asymptotically zero-energy computing [Younis and Knight, 1994, Vieri et al.,
1998]. The R provided the high-level language interface to develop programs
with PISA as the target for execution, and relied on the reversibility of PISA
primitives for its own reversibility. The R incorporates several reversible con-
structs that are analgoous to those of the Janus language, although both
languages were independently developed and they differ in some aspects.

8.3.4.1 Control Flow Constructs

An R program consists of a main routine and zero or more subroutines
that can accept formal arguments. Control flow is obtained via compositions
of subroutine invocations, conditional statements, looping statements, and
elemental statements.

� Subroutines may be invoked in forward mode using the syntax

(call name [args])

or in reverse mode using the syntax

(rcall name [args]).

� Conditional statements with the syntax

(if condition statement)

require the condition value to be identical before and after the body of
the condition is executed.

� Iteration is supported with the syntax

(for var = start to end statements)

such that modifications to start and end are disallowed in the state-
ments of the loop body, but modifications to var are permitted inside
the statements of the loop body to change the number of iterations.

8.3.4.2 Data and Elementary Operations

All variables are of type integer, but can be scalars or arrays. Nested scop-
ing of variables is provided via distinction between global and local variables.

124 Introduction to Reversible Computing

� Global scalar variables are declared as

(defword name value)

while global arrays are declared as

(defarray name value [· · · value])

to declare and initialize an array with the given number of values.

References to array elements are made as array index .

� Local scoping is obtained with the syntax

(let (var <- value) statements)

such that the variable var is valid for use within the given statements,
with the requirement that var holds the same value at the end of the
statements (e.g., if it was initialized to zero, it ends up with the value
zero at the end of the scope).

� Variables may be modified via the constructive operators: increment ++,
rotate in place left <=< and right >=>, add +=, subtract -=, and exclusive
OR ^=.

� The swap operation
(var1 <-> var2)

exchanges the contents of two variables.

� Expressions are composed using conventional recursive uses of terms and
factors over unary and binary operators such as +, -, &, <<, and >>.

� There is no specific input mechanism provided as part of the original
language. Output is obtained via printword and println statements.

� Reversible arithmetic is provided in terms of the increment and decre-
ment operators mentioned before, in addition to a special multiplication
operator of the form

(integer */ fraction),

where integer i is a 32-bit integer, fraction f is 32-bit value inter-
preted as a fixed-point representation f ∈ [−1, 1], and the result is i×f ,
which is the same as the most significant 32-bits of the 64-bit integer
obtained by the product of integer i and fraction f when f is viewed as
an integer.

The semantics of this operator can be illustrated with a simple example
using 4-bit numbers (instead of 32-bit numbers). Let a 4-bit integer
variable I contain the value of 12, and another 4-bit integer F contain

Reversible Programming Languages 125

the value 8. Then, the value of F viewed as the fraction is 8
24 = 0.5. The

special multiplication operator is evaluated as

I */ F = 12*0.5 = 6.

This is the same as the value of the leading 4 bits of the 8-bit integer
obtained from the integer product I*F=96=16*6.

8.4 Functional and Logic Languages

Two principal characteristics of (pure) functional languages are the ability
to pass functions as arguments to other functions, and the side effect-free
operation of all functions. It is the latter that has interesting application to
reversible execution. Essentially, in pure functional programming, the con-
cept of assignment to variables does not exist. No variable can lose its value
as there is no concept of overwriting the value of a variable. Consequently,
the irreversibility-related problem of destructive assignment does not arise.
Instead of overwriting variables, every computation generates a new set of
variables, effectively creating a history of execution in memory. This aspect
can be capitalized to realize reversible execution. To reverse any specific part
of a computation, the results of that computation can be simply discarded
because the previous values remain intact (because computation is side effect-
free) and, unlike procedural languages, no additional step for restoration of
values is needed. Logic programming also shares these features in the sense
that the programming model does not have a concept of assignment to vari-
ables per se. These aspects have been exploited and reversibilty explored in
different languages [Glück and Kawabe, 2003, 2004, Kawabe and Glück, 2005,
Yokoyama et al., 2012].

However, in practice, for efficiency or practical purposes, in many func-
tional languages, the side effect-free mode of execution is relaxed to minimize
the memory used by the program. Memory for some variables is reused dy-
namically wherever the runtime system determines it to be possible without
affecting the forward execution correctness. Values are destroyed via memory
reclamation during execution whenever the runtime system perfoms garbage
collection or prunes the history to free up some memory. Such optimizations
violate the purity of side effect-free operation, which in turn interferes with
the reversibility of execution because of the potential for loss of information.

Several functional languages have been proposed for reversible execution.
The INTERLISP Language and environment [Teitelman, 1975, 1984] was
an early LISP system that provided support for an extensive and power-
ful UNDO operation. The Ψ-LISP Language (or with the palindromic name
PSILISP) incorporated reversible execution despite reuse of memory from

126 Introduction to Reversible Computing

garbage collection [Baker, 1992]. Baker also provided an interesting analogy
between thermodynamic concepts such as temperature and software concepts
such as number of live objects in a dynamic memory setting [Baker, 1992,
1994]. New constructs for reversible arithmetic are defined by expanding the
semantics of the operators, such as reversible multiplication and division. The
pGCL language [Zuliani, 2001] is a probabilistic guarded-command language
that is amenable to automatic generation of reversible execution. The Fun,
Inv and LRInv Languages are other examples of reversible functional or im-
perative languages [Mu et al., 2004, Glück and Kawabe, 2003, Mu et al., 2004,
Kawabe and Glück, 2005].

8.5 Further Reading

For traditional (irreversible) languages, such as C, the compiler itself can be
written in the same language. With the introduction of the new dimension
called reversibility, an interesting exercise in completeness of reversible com-
putation would be to write a compiler or interpreter of a reversible language
as a program in the same language. In fact, this feat has been demonstrated
for the Janus language: a self-interpreter called SINT for Janus programs
is developed in Janus itself [Yokoyama and Glück, 2007].

Targets for reversible language programs could be traditional (irreversible)
or reversible computing devices. Translation of programs in languages such as
Janus can be easily performed for traditional device targets, because the for-
ward and reverse semantics for every statement type can be easily mapped
to a traditional language (but, obviously, not the other way around). How-
ever, for reversible devices, all statements can also be translated except for
the evaluation of right hand side expressions in an assignment statement. Any
complex expression will require a sequence of arithmetic and logical instruc-
tions in order to arrive at the final value of the expression before that value
is used in the reversible assignment. This sequence of instructions need to be
reversibly performed, which will require additional translation complexity. A
solution is to utilize algorithms such as the one Charles Bennett proposed for
simulating irreversible computation over a Reversible Turing Machine, as de-
scribed previously in Section 6.5. Additional details on this topic are discussed
in [Frank, 1999, Yokoyama and Glück, 2007].

Chapter 9

Adding Reversibility to Irreversible

Programs

9.1 Overview . 127
9.2 Checkpointing . 129

9.2.1 Full Checkpointing . 129
9.2.1.1 Operation . 130
9.2.1.2 Implementation . 130

9.2.2 Periodic Checkpointing . 130
9.2.2.1 Operation . 130
9.2.2.2 Implementation . 131

9.2.3 Incremental Checkpointing . 131
9.2.3.1 Operation . 131
9.2.3.2 Implementation . 132

9.2.4 Differential Checkpointing . 133
9.2.4.1 Operation . 134
9.2.4.2 Implementation . 134

9.2.5 Example Application . 135
9.3 Reverse Computation . 136

9.3.1 Automated: Compiler-Based . 136
9.3.1.1 Source-to-Source Translator 137
9.3.1.2 Augmented Compiler . 138
9.3.1.3 Memory and Time Costs 140

9.3.2 Automated: Interpreter-Based . 140
9.3.2.1 Memory and Time Costs 143

9.3.3 Automated: Library-Based . 143
9.3.4 Programmer-Assisted: Source Code-Based 143
9.3.5 Programmer-Assisted: Model-Based . 144

9.4 Unified Composite . 144
9.5 Further Reading . 146

9.1 Overview

Because most programs are irreversible, reversibility must be added before
they can be used in a reversible computing context. Broadly speaking, there

127

128 Introduction to Reversible Computing

are two major approaches to adding reversibility to irreversible programs:
checkpointing and reverse computation. Checkpointing takes snapshots of the
memory while reverse computation takes snapshots of the control flow of the
program. More generally, checkpointing can in fact be subsumed by reverse
computation when the unit of control flow is relaxed to vary in the spec-
trum of reversible units from simple arithmetic operations all the way to large
subroutines. When an entire code fragment, such as a subroutine, is viewed
as a single operation, the entire state potentially modified by the fragment
is saved as control flow information, which essentially corresponds to check-
pointing of the same data. However, it is useful to keep the distinction between
checkpointing and reverse computation because of the optimizations that are
possible to be performed more easily for checkpointing schemes when the unit
of computation is known/assumed to be sufficiently large. In a unified, com-
posite approach, there is little in the way of theoretical feasibility to have
a single tool chain that subsumes all the different approaches. The range of
alternatives is shown in Figure 9.1, each of which is described next.

FIGURE 9.1: Alternatives to convert irreversible programs into re-
versible ones.

Adding Reversibility to Irreversible Programs 129

9.2 Checkpointing

Reversibility can be added to any irreversible program by taking snapshots of
the program state prior to every modification to the state. All types of modifi-
cations can be divided into units called actions. For example, with fine-grained
units, each subroutine call or each executable statement can be considered an
action. Coarser-grained units may involve entire subroutines. Checkpointing
is the process of taking snapshots prior to actions so that the system can
be restored to its state prior to any specific action. Different checkpointing
schemes are available that give different snapshot frequencies and varying
snapshot sizes.

Here, four major checkpointing schemes are presented. The first is Full
Checkpointing, which is the simplest of the schemes. The second is Periodic
Checkpointing, which is a relaxation of Full Checkpointing to provide a lever for
controlling the frequency of checkpointing to reduce the overall checkpointing
overhead. The third is Incremental Checkpointing, which works well when the
state to be checkpointed is large but modifications are sparse and scattered.
The fourth is Differential Checkpointing, which also works well for sparse and
scattered modifications to a large state but trades off additional storage in
return for increased speed of reversal relative to Incremental Checkpointing.

Each of the four schemes can be viewed as a basic checkpointing building
block, and more complex composite schemes can be employed as a combination
of the basic building blocks. For example, it is possible to combine incremen-
tal checkpointing with periodic checkpointing using incremental checkpoints
between consecutive pairs of periodic checkpoints. Similarly, full checkpoints
can be used to reset the differential checkpoints whenever the size of the dif-
ferential checkpoint increases significantly.

9.2.1 Full Checkpointing

In this style of checkpointing, the entire state of the system is saved after every
action. This is most applicable when one or more of the following conditions
apply: (1) it is difficult to identify or delineate which portions of the state have
been modified by the action (2) the total size of the system state is so small
that the memory cost and/or runtime cost of making a copy of the state are
insignificant compared to the temporary storage and/or the computation time
taken by the action, or (3) the storage is easier to organize and manipulate in
terms of fixed and unchanging size of the state. Full checkpointing, in most
cases, represents a brute-force approach to reversibility and seldom the most
efficient, although there are some cases where there is no better recourse. The
logical view of full snapshots at every action, however, serves in general as a
useful basis for terminology and a baseline for runtime efficiency.

130 Introduction to Reversible Computing

a0 a1 a2 a3 anan-1ai

... ...

S

FIGURE 9.2: Full checkpointing for snapshots-based reversal.

9.2.1.1 Operation

The schematic of full checkpointing is shown in Figure 9.2. The state of
the original irreversible system is the set of variables S = {sj |0 ≤ j < N}.
The sequence of actions A = (a0, . . . , an) performs a sequence of modifications
to subsets of variables in S. To add reversibility to the actions, a copy of the
entire state is made before every action. Thus, a full copy Li of S is made
before action ai; the copy holds the value of all the state variables before
the action is performed. Later, if and when ai needs to be reversed (or, all
aj , i ≤ j, need to be reversed), it is sufficient to copy Li onto S to restore the
state to the correct value it had before ai was previously executed.

9.2.1.2 Implementation

Full checkpointing is one of the easier schemes to implement. The copies are
maintained in a stack of fixed-size buffers, as reversal is always in last-in-first-
out order. Just before any action ai is executed, a buffer Li is allocated and the
state S is copied into it. A deep copy operation is necessary because actions are
assumed to operate on any part of the memory, including by following pointers
to jump across memory locations. Because a deep copy is in general difficult
to implement (and sometimes expensive in terms of runtime cost, to account
for cycles created via pointers), it is beneficial to organize the state S as a
contiguous sequence of bytes that are copied using byte-copying primitives.

9.2.2 Periodic Checkpointing

Periodic checkpointing is essentially the same as full checkpointing, with one
major difference, namely that a full checkpoint of the state S is saved to a
copy Pi for every p actions, instead of for every single action.

9.2.2.1 Operation

The schematic of periodic checkpointing is shown in Figure 9.3. Full check-
pointing can be viewed as a special case of periodic checkpointing, with p = 1.
Restoration to a point prior to any specific action amp is a simple matter

Adding Reversibility to Irreversible Programs 131

a0 ... ap anpa2p

... ...

S

...

... aip...

...

FIGURE 9.3: Periodic checkpointing for snapshots-based reversal.

of restoring the checkpoint Pm to S. To reverse to any intermediate action

ai that does not have a corresponding checkpoint (i.e., i 6= p
⌊

i
p

⌋
), the state

must be recreated by first restoring to the latest checkpoint that precedes
the intermediate checkpoint. This re-creation is achieved by re-executing the
actions from the preceding checkpoint to the point of reversal. All actions

apk, apk+1, . . . are reset, where k =
⌊

i
p

⌋
. The checkpoint Pk is then copied

into S, followed by re-execution of actions apk, . . . , ai−1.

9.2.2.2 Implementation

The implementation of periodic checkpointing is similar to that for full
checkpointing, with some additional bookkeeping to record which actions have
a checkpoint and which do not. Reversal is similarly modified to search back-
ward for the most recently available checkpoint while traversing the list of
actions in the reverse direction.

9.2.3 Incremental Checkpointing

In some programs, actions do not update the entire state, but instead modify
a few scattered items of the state. In such cases, it is sufficient to make a
copy of only those variables that are about to be modified, rather than save
the entire state of the program. Thus, the state is incrementally saved over
execution.

9.2.3.1 Operation

The schematic of incremental checkpointing is shown in Figure 9.4. Each
action ai results in a pre-modification copy δi of set of the modified variables
relative to the most recent modification to the state. In comparison to full
checkpointing, the snapshot of the system before action ai is obtained by
accumulating the set of incremental changes from the beginning to that action.
Thus, Li = S⊕ δ0⊕ δ1⊕ . . .⊕ δi, where the operation S⊕ δ indicates applying
a change set δ to S.

132 Introduction to Reversible Computing

a0 a1 a2 a3 anan-1ai

... ...

S

+ + + + + + +

FIGURE 9.4: Incremental checkpointing for snapshots-based reversal

9.2.3.2 Implementation

Among the checkpointing schemes, incremental checkpointing is in gen-
eral the most efficient scheme, but is also one of the more challenging ones to
implement. The basic problem that poses the primary challenge is the iden-
tification of the specific portions of the state that is changed by the actions
before those portions are modified. In small programs, it is possible to identify
every update to every variable and mark them to signal a modification so that
the values can be saved before they are overwritten. However, in programs of
nontrivial size, several complications arise. Without compiler help, it is very
difficult to trap all modifications to every variable. Also, pointers to variables
obfuscate variable identities, making it difficult to detect the first modification
to any variable.

A compiler-based approach can be used to instrument the generated code
to make a copy of every variable upon first modification to their value as
part of an action, although even with a compiler, it is relatively difficult to
find the first modification to array elements without some additional memory
overhead for keeping modification flags (bits) for each element.

Without compiler support, there are a few ways to trap modifications to
the variables. One approach is to rely on the programmer to manually indicate
within the program the points of first modification to variables within any
action. This is achieved by the programmer inserting an invocation to an
incremental checkpointing routine prior to modification in the source code.
Another approach is to use operator overloading in object-oriented languages
such as C++. Inside the overloaded methods, the first modification is logged
to incremental storage stack and then the operation is applied to the variable.
For example, a declaration such as int x; for an integer variable named x is
replaced by Integer x; where the type Integer is a wrapper object around
the primitive integer type with overloaded operators for assignment such as
=, +=, -=, and so on.

The operator overloading approach facilitates some amount of automation;
however, the programmer is still required to alter the declaration of the object
types to the new wrapper types (e.g., int to Integer). Another approach to
incremental checkpointing is the binary editing approach in which the object

Adding Reversibility to Irreversible Programs 133

code in the binary executable is processed to automatically identify and in-
sert instrument modifications to variables. The binary editing approach is an
automated solution that can add incremental checkpointing capability after
compilation, but it is also the least portable and least amenable to optimiza-
tion due to lack of source code-level information.

In the underlying runtime support, incremental checkpointing is realized
as a trace of change sets {δ0, . . . , δi, . . .} logged in a stack (last-in-first-out)
data structure. Each change set is an encoding of the place in memory that is
being modified, and the value that is being overwritten. For example, for every
variable x that is about to be modified in forward mode, the pair δ = (&x, x̂) is
logged to the incremental checkpointing stack, where &x denotes the pointer
to the variable x, and x̂ denotes the value of x. In reverse mode, the trace is
traversed backward, and each change set δi = (&xi, x̂i) is reversed by copying
x̂i to the location to which &x points.

When the size of each variable being saved is small, the overhead for incre-
mental checkpointing can be large. For example, to incrementally checkpoint
a modification to a 4-byte integer variable, assuming 64-bit pointers, 12 bytes
are logged to the checkpoint storage, which constitutes a 200% overhead rela-
tive to the size of the variable itself. Thus, incremental checkpointing is more
effective than full or periodic checkpointing only if the number of variables
actually modified is much less than the total number of variables potentially
modifiable in an action.

Another drawback of incremental checkpointing is that the state restora-
tion cost for reversal is proportional to the execution length because the incre-
mental trace must be sequentially traversed backward to the reversal point.
Also, due to the sequential nature of traversal along the trace, the same vari-
able may be restored multiple times (because the same variable may appear
multiple times in the log), although it is sufficient to restore only the earliest
copy. Because the earliest copy cannot be determined without traversing the
trace, it is in general not possible to avoid multiple restorations. The sequen-
tial cost can be significant if the log is long as a result of a large number of
variables being modified in the forward mode.

9.2.4 Differential Checkpointing

In programs that modify small, scattered portions of their state repeatedly
over major lengths of execution, full and periodic checkpointing schemes are
suboptimal due to the sparse nature of modifications, and incremental check-
pointing is suboptimal due to large amount of duplication of snapshots for
the same set of variables. In such cases, it is more efficient with respect to
runtime and memory cost to save change sets relative to the original (initial)
state instead of relative to previous action. This is achieved via differential
checkpointing, which generates a log of change sets that are relatively larger
in individual size but whose composite size is smaller than the aggregate size

134 Introduction to Reversible Computing

of their equivalent incremental change set log; also differential checkpointing
can restore the state to any action faster than via incremental checkpointing.

9.2.4.1 Operation

a0 a1 a2 a3 anan-1ai

... ...

S

+

+

+
+

+

FIGURE 9.5: Differential checkpointing for snapshots-based reversal.

The schematic of differential checkpointing is shown in Figure 9.5. Each
action ai results in a pre-modification copy ∆i of set of the modified variables
relative to the initial value of the state. This is different from incremental
checkpointing in that the snapshot of the system before action ai is obtained
by taking the difference from the initial state, as opposed to the value after
the most recent action. Thus, Li = S ⊕∆i, where ∆i is the set of differences
between S and the value after action ai is applied, and the operation S ⊕∆
indicates applying a change set ∆ to S.

9.2.4.2 Implementation

Differential checkpointing can be implemented using two basic approaches.
In both cases, a copy of the initial state S0 is kept in addition to the evolving
state S.

The first is the dirty bit approach in which every variable sj is associated
with a dirty bit dj and a shadow value ŝj . The dirty bits of all variables are
in unset status before any action. During any action ai, whenever a state
variable sj is modified, its dirty bit dj is set and a pre-modification copy is
saved into its shadow value ŝj . At the end of every action ai, all state variables
whose dirty bits are set constitute the differentially checkpointed set ∆i for
that action; a copy of shadow values for all those dirtied variables is logged
to the differential checkpoint log at the end of each action. Dirty bits are not
reset at the end of actions—this is what enables the differential nature of the
checkpoint with respect to the initial state. When this dirty bit scheme is used

Adding Reversibility to Irreversible Programs 135

in combination with other schemes such as full or periodic checkpointing, all
dirty bits must be reset to the unset status any time a full checkpoint is taken.
This resetting of dirty bits effectively resets the differential checkpoint to null
and prevents the differential checkpoint size from growing too large.

The second approach is the computed differences approach in which at the
end of every action ai, the difference ∆i between the current state S and
the initial state S0 is computed (∆i = S − S0) and saved to the differential
checkpoint log.

In both cases, reversal to any action ai is achieved by first overwriting the
current state S with the initial state S0 and then incorporating the change
set ∆i onto S.

The dirty bit approach is useful when system support is available to de-
tect changes to memory units. For example, several operating systems pro-
vide detection of modifications at the level of virtual memory pages, and
user-specified handling of automatically generated notifications (such as via
a signal). Changes to files in a file system are also available for detection via
file status flags, in the form of an operating system-maintained archive bit.
Advanced features such as copy-on-write semantics are also available in some
operating systems that support shared and cloned pages across processes,
which can be exploited for incremental or differential checkpointing schemes.

9.2.5 Example Application

The different checkpointing schemes can be seen in the following example.
Consider a program in which the motion and collisions among N hard spheres
in d dimensions are simulated reversibly [Perumalla and Protopopescu, 2013].
Each particle ci is represented by its d-dimensional position vector xi and d-
dimensional velocity vector vi. Thus, the system state consists of S = (X,V),
where X = {xi|0 ≤ i < N} and V = {vi|0 ≤ i < N}. The simulation
proceeds as a sequence of collisions; the modification of the system state at
each collision is realized as an action that changes the values of some or all
of the variables in the system state S. Thus, the system evolves as a sequence
of actions (a0, . . . , ai, . . . , an), and the checkpointing schemes ensure that the
system is capable of being restored to its state before any action ai, 0 ≤ i < n.

With full checkpointing, because each collision creates an action that up-
dates the state, the entire state (X,V) of all particles is saved upon every
collision. If the simulation updates the positions of all particles, then the full
copy of the state is indeed needed for reversal.

With periodic checkpointing, the positions and velocities are saved after
every p collisions, where p is determined by system characteristics such as the
ratio of computational speed to memory access times.

With incremental checkpointing, the positions and velocities of only the
particles affected during a collision are saved prior to the collision. This works
well when the number of collisions is large and almost all the particles are

136 Introduction to Reversible Computing

involved in some collision at some point in simulation, and the average number
of collisions for any given particle is small.

In differential checkpointing, the positions and velocities of all the particles
that have undergone collision since the initial state are saved after every col-
lision. This works well when a relatively small set of particles undergo many
collisions, and not every particle is involved in collisions.

9.3 Reverse Computation

In contrast to taking snapshots of the state, reversibility can be added to irre-
versible programs by computing in reverse. Reverse computation can be added
to a program either via automated means, semi-automated means, or manual
introduction by the programmer. Automated approaches include compiler-
based reversal and interpretation-based reversal, and semi-automated ap-
proaches include library-based reversal. In manual approaches, the program-
mer can perform a source-code transformation to mimic how a compiler-based
approach would operate, except that the programmer can use knowledge about
data structures and algorithms used in the program that the compiler can-
not glean by automated means. Manual approaches to reversal also involve
using domain-specific knowledge for reversal that are not possible to auto-
matically generate because the forward code and reverse code are not related
by source code correspondence but are related by domain-specific insights and
semantics.

9.3.1 Automated: Compiler-Based

The first idea is to use a compiler to parse the input (irreversible) program and
somehow transform it into a reversible one. However, although conceptually
straightforward, writing a working, general-purpose compiler to automatically
add efficient reversibility to complex programs is an extremely challenging
task. While a first-cut reversal is relatively easy for simple programming lan-
guages, complications quickly arise when more control flow constructs and
complex data types are considered for automated reversibility. Thus, for ad-
vanced high-level programming languages, a compiler-based reversal is highly
challenging.

Consider a simple irreversible code fragment given in Algorithm 9.1. The
compiler-based approach generates two versions from the code, one for forward
execution and the other for reverse execution, as given in Algorithm 9.2. Note
that control flow information is tracked via two new variables introduced by
the compiler: the variable c remembers the count of the number of iterations of
the while loop, while b remembers one bit of information about which branch
of the if statement was taken in the forward mode. Although the reversible

Adding Reversibility to Irreversible Programs 137

Algorithm 9.1 A simple irreversible program code fragment for adding
reversibility

subroutine f()
I1, R1,W1

while (Rwhile)
I2, R2,W2

I3, R3,W3

end while
if (Rif)

I4, R4,W4

else
I5, R5,W5

end if
I6, R6,W6

end subroutine

Ii = ith non-control flow instruction
I−1
i = Inverse instruction of Ii
Ri = Set of variables read by Ii
Wi = Set of variables overwritten by Ii
Rwhile = Variables used in loop condition
Rif = Variables used in branch condition

forward and reverse codes can be optimized to minimize or eliminate the space
used to remember the control flow information, this example is kept simple to
illustrate the high-level idea of compiler-based reversal. Note also that some
instructions may need additional memory space to store some information
that may be needed for their reversal; such needed additional variables are
omitted for simplicity in the example.

Compiler-based approaches can be divided at a high level into two cate-
gories. One is the source-to-source compilation approach, and the other is the
augmented compiler approach.

9.3.1.1 Source-to-Source Translator

In the source-to-source approach, the irreversible code is fed to a source-
to-source translator that creates a new, reversible version of the code while
retaining its forward semantics unchanged. Any given block of source code is
statically transformed via compilation into a forward computation block and
a corresponding reverse computation block. The forward computation block
preserves the semantics of the input source code in addition to making it
reversible. The reverse block then corresponds to its inverse. Both the forward
and reverse blocks are then compiled just as normal code. This approach is
illustrated in figure Figure 9.6 for a code fragment.

The translator operates entirely at the source code level and hence only
contains transformations to the abstract syntax tree (AST). The transfor-
mations include insertion of new source code for instrumentation of control
flow, and generation of new reverse peers of the input (forward) components
(e.g., reverse versions of forward subroutines). Optimizations to minimize or
eliminate instrumentation in the forward mode are also performed by the
translator. This approach is illustrated in Figure 9.7. The translator gener-

138 Introduction to Reversible Computing

Algorithm 9.2 Example of reversal using the compiler-based approach

Forward Reverse

subroutine f()
I1, R1,W1

c← 0
while (Rwhile)

c← c+ 1

I2, R2,W2

I3, R3,W3

end while
if (Rif)

b← 1
I4, R4,W4

else

b← 0
I5, R5,W5

end if
I6, R6,W6

end subroutine

subroutine f−1()
I−1
6 , R6,W6

if (b = 1)
I−1
4 , R4,W4

else
I−1
5 , R5,W5

end if
while (c > 0)

c← c− 1
I−1
3 , R3,W3

I−1
2 , R2,W2

end while
I−1
1 , R1,W1

end subroutine

ates the forward and reverse versions of the code, which are fed to a traditional
forward-mode compiler to generate the final executable that is reversible. The
traditional compiler views the reverse code as a forward version and compiles
normally as such, oblivious to the fact that the reverse code is designed to
undo a prior invocation of the corresponding forward code. Typically, only
the parts of the program that need reversal are fed to the translator, while
the rest of the application is compiled normally (without passing through the
translator) and linked to the final reversible executable.

A major advantage of the source-to-source compilation approach to re-
versibility is that it provides excellent portability while requiring no changes
to existing software infrastructure such as native compilers, linkers, and load-
ers. Moreover, all the decades of advanced compilation technology can be
brought to bear on the reverse code as well, without any additional effort,
thus easily optimizing the reverse mode code for system-level effects such as
better cache performance. A difficulty with this approach is that an entirely
new translator needs to be written for every programming language that needs
to be reversed, which would involve duplication of major portions of existing
compiler infrastructures and frameworks.

9.3.1.2 Augmented Compiler

In the augmented compiler approach, the traditional forward-mode com-
piler is augmented with reversible execution capabilities as part of its core

Adding Reversibility to Irreversible Programs 139

if(qlen < B) {

delays[qlen]++;

qlen++;

} else {

lost++;

}

if(qlen < B) {

b = 1;

delays[qlen]++;

qlen++;

} else {

b = 0;

lost++;

}

if(b == 1) {

--qlen;

--delays[qlen];

} else {

--lost;

}

Original Forward Reverse

FIGURE 9.6: Example of the compiled approach to adding reversibility.

Irreversible

Code

Source-to-
source

Translator

Forward

Code

Reverse

Code

Normal

Compiler
Reversible

Executable

FIGURE 9.7: Compiler-based reversal using the source-to-source
method.

functionality. Generation of reversible code, as opposed to the traditional
forward-only code, would be a compiler-provided feature invoked via, say,
command-line options of the compiler. This is analogous to functionalities
such as generation of thread-safe code or position-independent code commonly
provided as compiler options to specify the type of code emitted as output by
the compiler.

The methodology of the augmented compiler approach is shown in Fig-
ure 9.8. The irreversible program is provided as usual to the compiler. The
compiler internally generates forward code augmented for reversal, and also
synthesizes reverse code that relies on the runtime information generated from
the augmentation of the forward code. Object codes for both forward and re-
verse codes are generated, which are used to form the reversible executable.

The augmented compiler approach provides the advantage of transparent
support for reversibility. However, it is the least portable approach because

140 Introduction to Reversible Computing

Reversal-augmented Compiler

FIGURE 9.8: Compiler-based reversal using the augmented compiler
method.

it requires modification of the internals of every compiler, which may be im-
practical in the short term.

9.3.1.3 Memory and Time Costs

With the compiler-based approach, memory is used in the instrumentation
of control flow, and runtime is increased due to the instrumentation code.
Forward code size is only increased by a constant factor because each original
instruction (in the forward-only code) is instrumented using an addition of
a constant number of instructions (typically, a single additional instruction).
Thus, the code size complexity remains O(1) with respect to execution length
because the code remains constant, independent of the run length. However,
additional variables introduced for instrumentation of control flow require ad-
ditional memory for storage, which increases the overall data size. For example,
a counter variable introduced to remember the number of iterations executed
by a variable-iteration loop requires O(logL) bits, where L is the execution
length in terms of the number of instructions. A branch instruction within a
loop can introduce the need to store up to L different outcomes of the branch
instruction, in which case the data size becomes O(L) bits. The overall run-
time of forward execution remains O(L) because the number of instructions in
the augmented forward mode is proportional to the original execution length.

9.3.2 Automated: Interpreter-Based

In the interpreted method for reversal, the forward computation code is aug-
mented with special instrumentation code. During the actual forward execu-

Adding Reversibility to Irreversible Programs 141

tion, the specially added code generates a sequential log of all the individual
operations that are executed. For reversal, the generated log is then inter-
preted in the reverse order and appropriate inverse operations are invoked.
This approach is illustrated in Figure 9.9 for a code fragment. Typically, the
operation indicators along with actual operand values are saved during for-
ward computation, which are later interpreted during reverse execution, and
their corresponding inverse operations are applied to the operands.

if(qlen < B) {

delays[qlen]++;

qlen++;

} else {

lost++;

}

if(qlen < B) {

LOG(INCR,

&delays[qlen]);

delays[qlen]++;

LOG(INCR,&qlen);

qlen++;

} else {

LOG(INCR,&lost);

lost++;

}

for all log entries

in reverse order:

switch(operation)

{

case INCR:

{

(*p)--;

}

...

}
Original Forward Reverse

FIGURE 9.9: Example of the interpreted approach to adding reversibil-
ity.

Interpreter-based reversal is one of the easier approaches to implement-
ing reversible execution. The program itself requires no modification, and all
the reversibility support can be added entirely within the interpreter engine.
When irreversible programs written in an (irreversible) interpreted language
are executed by the interpreter engine, reversibility for the program can be
enabled by modifying the interpreter engine to generate three distinct tapes
at runtime, as shown in Figure 9.10. The first is the output tape that generates
the normal output of the original forward-only execution of the program. This
output is augmented with reversibility such that output can be consumed as
input when the interpreter is executed in reverse mode. In addition to the nor-
mal output logged on the output tape, two new tapes are generated. The first
is the instruction tape to which the interpreter writes the sequence of primi-
tive instructions. These are instructions that do not contain any conditional
or looping constructs, so that the sequence is entirely linear in nature. The
second is the data tape that contains all the data (operands of instructions)
that are required for the reversal of the linear sequence of instructions logged
on the instruction tape. A flag is provided in the interpreter that the program
user can use to switch the mode of execution from forward to reverse or vice
versa, dynamically at runtime.

For the simple irreversible code given in Algorithm 9.1, the interpreter-

142 Introduction to Reversible Computing

Irreversible

Program

FIGURE 9.10: Interpreter-based reversal.

based approach executes the instruction tape in forward and backward modes
as given in Algorithm 9.3. Note that no control flow information is present
in the instruction tape, such as branch or jump statements; instead, only a
sequence of instructions that directly update the variables are executed and
logged. For example, there are C copies of the body of the while loop logged
to the instruction trace, assuming C iterations of the loop. Note also that the
read sets and write sets may vary across each instance of the loop body (e.g.,
due to array indices varying across loop iterations).

Algorithm 9.3 Example of reversal using the interpreter-based approach

Forward Reverse

I1, R1,W1

I2, R21 ,W21

I3, R31 ,W31

I2, R22 ,W22

I3, R32 ,W32

··
·

I2, R2C ,W2C

I3, R3C ,W3C

W
h
il
e

I4, R4,W4

or
I5, R5,W5

 If

I6, R6,W6

I−1
6 , R6,W6

I−1
5 , R5,W5

or
I−1
4 , R4,W4

 If

I−1
3 , R3C ,W3C

I−1
2 , R2C ,W2C

··
·

I−1
3 , R32 ,W32

I−1
2 , R22 ,W22

I−1
3 , R31 ,W31

I−1
2 , R21 ,W21

W
h
il
e

I−1
1 , R1,W1

In a variant of this interpreter-based approach (e.g., [Biswas and Mall,
1999]), instead of storing the forward instructions, the inverses are written on
the instruction tape. This moves some of the cost of reversal to the forward
path, but removes that cost from the reverse path.

The ease of implementation of the interpreter-based approach is due to
the fact that the interpreter engine contains all the information needed to
transparently record all the information necessary at runtime. Reversal is also
greatly facilitated by the fact that the logged instructions are already flattened
into a serial trace of operations, with no branching or looping. While this is an

Adding Reversibility to Irreversible Programs 143

advantage, it is also a shortcoming of the approach because it loses higher-level
semantics (e.g, loop structure) that could be useful for effecting optimizations.

9.3.2.1 Memory and Time Costs

Consider an execution of L instructions of the irreversible program. The
original code size is unchanged with interpreter-based reversal, and remains
O(1), being independent of the execution length. However, a memory cost of
O(L) is incurred for the instruction tape, as every operation is logged to the
instruction tape. A similar worst-case memory cost of O(L) is incurred to log
the operands to the data tape.

9.3.3 Automated: Library-Based

The library could be built from code that is generated via compiler-based or
interpreter-based reversal, or even from manually generated reversible code.
Invocations to reversible libraries can be automatically generated by the com-
piler or can be manually introduced by the programmer. One of the best
examples of this type of reversibility support is a library for reversible ran-
dom number generation (see Chapter 12). With the library-based approach,
the programmer is shielded, for the most part, from the intricacies of reversal.
For a call to a subroutine f() in a library, for example, the user would only
need to invoke its inverse f−1() supplied with the same library. Such reversible
libraries may be supplied by the operating system or by software vendors, sim-
ilar to the conventional set of libraries shipped with most computing systems.
This approach provides the least effort path for the programmer community,
but transfers most of the burden of development effort and adoption to the
system vendors.

9.3.4 Programmer-Assisted: Source Code-Based

In complex programs, it is often the case that the programmer has much
more knowledge about data dependencies and evolution behavior than can
be gleaned by the compiler. In one of the common situations, the compiler
can find it hard to discern if an assignment or a group of apparent modi-
fications to a variable are in fact irreversible. Yet, a reversal for the same
could be discerned by the programmer. For example, a swap operation as a
sequence of three assignments t=a; a=b; b=t can be mistaken by a näıve
compiler as three destructive updates that need memory equal to the size of
three variables; however, the same operation is perfectly reversible with no
additional memory (by applying the same code again on a and b). Overall,
the programmer can undertake the task of developing the reversal, but with
some compiler assistance restricted only for the tedious, mechanical tasks.
The source-to-source compiler approach may be used for the most part, but
key programmer-provided information may be given to the compiler to more

144 Introduction to Reversible Computing

efficiently reverse certain portions of the code. For example, the compiler may
generate reverse code by mechanical processes; however, the programmer an-
notates the original code with directives to the compiler via pragmas, say, to
indicate that a branching condition is unchanged within either body of the
branch statement, or that a loop’s iteration count is unchanged within the
loop body.

9.3.5 Programmer-Assisted: Model-Based

In the most sophisticated use of reverse computation, the reverse code may in
fact be generated not from source code-based approach to reversal, but may
originate from a theoretical reverse model corresponding to the forward model.
For example, in a scientific simulation of particles undergoing elastic collisions,
the collision operator that transforms the velocities of colliding particles may
be mathematically complex. However, an exact inverse operator may be avail-
able as a separate model that can be coded and incorporated into the program
for reversal. Moreover, such an inverse operator cannot be obtained automat-
ically by any compiler-based technique because the reversal requires a great
amount of domain-specific expertise. Another example is the reversal of linear
algebra operations that are very hard to automate but easier to develop using
theoretically well-known identities and relations in linear algebra. It is in fact
these types of codes for which reversible languages are required (Chapter 8)
so that the modeler can express the inverse codes using reversible constructs
to retain the reversibility properties about which the modeler is aware.

9.4 Unified Composite

At a high-level, checkpointing might appear to be a distinct method different
from reverse computing. Checkpointing schemes achieve reversal by tracking
the changes to the data while reverse computation schemes achieve reversal by
tracking the changes to the control flow. Nevertheless, checkpointing is theo-
retically a proper subset of reverse computation because every checkpointing
operation can be viewed as a reverse computation item in which the unit of
checkpoint is a destructive update to a correspondingly sized unit of memory.

Consider a series of updates to a set of data variables D = {d1, . . . , dn}
performed as part of a sequence of actions A(D) = (a1, . . . , am). Checkpoint-
ing performed on D can be achieved via reverse computation by viewing A as
a single destructive update to a single datum D, and this aggregate action A is
included as one of the operations to be reversed in the overall reverse compu-
tation framework. Thus, it is conceivable to treat checkpointing as a natural
outcome of a broader, optimized reverse computation framework in which in-

Adding Reversibility to Irreversible Programs 145

formation logged to the history trace is automatically minimized by choosing
the smaller of the modified data size and the control flow information.

In the preceding example, suppose that the bit size of the data being
modified is MD = |D| and the number of bits needed to reverse the actions is
MA = |A|. IfMD < MA, it implies that the actions perform several irreversible
operations on the data, and the reversal of each of those actions consumes more
bits of memory than the size of the modified data itself. In this case, the entire
set of actions A can be abstracted as a single destructive update to a single
datum D, and checkpointing can be used to save the data. This becomes a
single operation in the reverse computation view, which consumes only MD

bits for reversal. On the other hand, if MA < MD, then, memory-wise it is
more economical to save the MA bits of control flow information that can be
used to uncompute for reversal.

For example, consider adding reversibility to a sequence of N invocations
made to a pseudorandom number generator. There is a trade-off pointN > N∗

after which checkpointing is more economical than reverse computation. When
N ≤ N∗, it may be more effective to use reverse computation to compute back-
ward to restore the random number seed. However, as N increases beyond N∗,
the runtime cost becomes larger than the gain from avoiding the memory copy-
ing operation. In that case, checkpointing works better. The determination of
N∗ varies with the actual computation and memory cost ratios. In general, for
different codes and hardware systems, it is possible to give different weights
to memory and computation and choose the best mix and trade-off among
various schemes to arrive at a composite scheme for reversal.

Similarly, the various techniques within reverse computation, such as
compiler-based, interpreter-based, and manual methods, can all be combined
into a unified composite that subsumes the individual solutions applied to
different portions of a larger codebase. For example, a reverse compiler can
make use of optimized reversible libraries, and programs can provide user-
defined mappings of forward-reverse pairs of functions with user-supplied code.
The compiler and/or user can utilize a compilation-based approach or an
interpreter-based approach to implement any given reversible function. For
example, an interpreter-based approach may be used for a function within a
reversible library linked to a code compiled using a reversible compiler-based
framework. User-specified model-based reverse codes can also be similarly in-
corporated into such a framework. A grand, unified composite approach is thus
conceivable in the long term to subsume all the methods to add reversibility
to irreversible programs.

146 Introduction to Reversible Computing

9.5 Further Reading

Many of the issues and considerations described in this chapter can be ap-
preciated in the context of computing applications, such as automatic differ-
entiation (or algorithmic differentiation) [Griewank and Walther, 2008] and
parallel discrete event simulation [Fujimoto, 2000], in which the variety of
needs in reversibility of computation gives rise to a corresponding variety in
choosing the most appropriate reversal implementation.

The Reverse Mode of adjoint computation in Automatic Differentiation,
for example, can be implemented in any of the aforementioned ways of rever-
sal, each giving a different mix of computational and memory usage behavior.
When checkpointing is used, the same variable may be stored repeatedly if
the variable appears on the right-hand side of more than one variable, due
to which incremental checkpointing becomes inefficient. A differential check-
pointing scheme is employed in such cases, using a status flag per variable to
indicate if the variable is “to-be-recorded.” Reverse computation (also referred
to as inverse computation in Automatic Differentiation literature) is employed
to rematerialize a lost value based on inversion of a symbolic expression over
a variable whose value is available.

Almost all the reversal techniques described in this chapter have been at-
tempted in implementing parallel discrete event simulation systems [Lin and
Preiss, 1991, Fujimoto et al., 1992, Fujimoto, 2000]. In the so-called optimistic
style of parallel discrete event simulation (e.g., the Time Warp algorithm [Jef-
ferson, 1985]), event computations require reversibility because they are sub-
ject to rollback. This reversibility of event computation can be obtained using
any of the techniques described in this chapter. The problem of high overhead
due to full checkpointing formed a stumbling block in early discrete event
simulation engines [Jefferson et al., 1987, Hontalas et al., 1989]. Incremen-
tal state saving and differential checkpointing lessened part of the overhead
when applied to complex simulation models [Perumalla et al., 1998]. The over-
heads were later significantly relieved using reverse computation techniques
[Carothers et al., 1999, Perumalla, 2007].

Chapter 10

Reverse C Compiler

10.1 Reversibility of C Language Programs . 148
10.2 Source-to-Source Method for Reversible C . 150

10.2.1 Notation . 151
10.2.2 Definition of Correctness of Reversible Execution 151
10.2.3 Runtime Tape Interface . 152
10.2.4 Compilation Phases . 152

10.3 Normalization . 153
10.3.1 Declarations . 153
10.3.2 Side-Effect Expressions . 153
10.3.3 Function Calls . 154
10.3.4 Arithmetic Expressions . 154
10.3.5 for Statements . 154
10.3.6 do-while Statements . 155
10.3.7 while Statements . 156
10.3.8 return Statements . 157
10.3.9 continue Statements . 158
10.3.10 break Statements . 158
10.3.11 switch Statements . 158
10.3.12 Post-Normalization State . 159

10.4 Transformation . 160
10.4.1 Expression Statements . 160
10.4.2 Function Calls . 161
10.4.3 Jump Statements . 161
10.4.4 Compound Statements . 163
10.4.5 Jumps across Nested Blocks . 163
10.4.6 if Statements . 164
10.4.7 switch Statements . 165
10.4.8 while Statements . 166
10.4.9 Libraries and I/O . 167
10.4.10 Pragmas . 168

10.5 Optimization . 168
10.5.1 Value Recovery or Reconstruction . 168
10.5.2 Irreversible and Environment Slices . 168
10.5.3 Eliminating Reversal of Initialization 170
10.5.4 Invariant Expressions . 171
10.5.5 Common Sub-Expression Elimination 172

147

148 Introduction to Reversible Computing

10.5.6 Switch Statement Trade-Offs . 172
10.5.7 Tape Compression . 172

10.6 Tape Size Upper Bounds . 173
10.7 Tape Size Determination . 175

10.1 Reversibility of C Language Programs

The C language is one of the most successful and popular languages, enjoying
the base of an extremely large, worldwide programmer community. However,
it is an irreversible language, containing many irreversible constructs at the
outset. Adding reversibility in a transparent or semi-transparent fashion to
the execution of C programs can provide the immense benefit of bringing
reversible computing to a large base of the existing programming commu-
nity, and can also help stir additional research in incrementally enhancing the
efficiency and applicability of reversible C programs.

Programs written in popular general-purpose languages tend to be irre-
versible in nature. Due to the very nature of the language constructs, some
information is destroyed as the program executes, making the program im-
possible to execute in reverse. However, any program can be made reversible
by carefully augmenting it in such a way that the information being destroyed
by the program is actually saved on the side using additional nonintrusive in-
structions. The augmented program thus not only retains the semantics of the
original program, but also becomes reversible. Such an augmenting approach
is described here, which can be used to transform any given (irreversible)
program into a semantically equivalent reversible program. The automatic
generation of the reverse program is also described. Such automated means
for reversibility, as presented here, is useful in application codes too complex
for manual transcription and optimization by human inspection. Although the
techniques are described for the C language, the approach is equally applica-
ble to other procedural languages. The methodology described here has the
following primary objectives:

• ForC programs that do not contain any irreversible constructs, the com-
pilation should produce a reversible execution whose memory needs do
not grow with execution length. This can be achieved in an incremental
manner by starting with a small-sized reversible subset of the language,
and slowly expanding the set to include more reversible constructs. For
example, an initial subset can contain the well-known operators such
as increment and decrement operators, fixed-iteration loops, conditional
statements in which the predicate expression is not modified in the con-
ditional statement bodies, and so on. More sophisticated situations can
be added to the memory-less reversibility, such as tracking the global
data flow to overcome apparently destructive updates that in reality

Reverse C Compiler 149

only shift the information around among variables (simplest examples
of this being swap or circular rotation operations).

• For C programs that contain irreversible constructs, the compilation
framework should provide optimization methods to minimize the over-
all cost for a reversible execution of the program. Automated optimiza-
tion may target absolute minimization of memory or an optimal mix of
memory and computation, achieving the best trade-off between memory
save-restore operations and (re-)computation on a hardware platform-
specific basis.

The C language is difficult to reverse as it is an advanced and complex lan-
guage that incorporates decades of experience in efficient forward-only com-
puting. Few efforts have been successful in developing a correct reversible
execution of C programs in full generality. Plans for a reversible C execution
were mentioned in past literature [Leeman, 1986] but no follow-up work on
actual implementations could be found. The author of this book developed an
initial version of a source-to-source compiler for a subset of the C language
that successfully reversed certain classes of code fragments and applied the
reversible code to efficient rollback in optimistic parallel discrete event simula-
tion [Perumalla, 1999]. In another independent effort, the reversal of the C++

language was attempted but was not successful in producing correct results
from reversible execution of large codes [Vulov et al., 2011]. In general, al-
though there have been many attempts at automated program inversion, each
with its own set of strengths and weaknesses, all reflect the principle of “no free
lunch,” either trading off generality [Glück and Kawabe, 2003, Kawabe and
Glück, 2005] or efficiency [Dijkstra, 1979] or complexity or correctness [Epp-
stein, 1985, Srivastava et al., 2011a,b]. If a comprehensive solution is desired,
automated reversal of any general-purpose high-level programming language
remains as open research area as of this writing.

Admittedly, the challenge in achieving reversible execution arises from the
necessity of revisiting every single language construct to examine how it affects
reversibility, in isolation as well as in numerous potential combinations with
other constructs. Thus, the key consideration to enabling reversibility would
be correctness first, before efficiency, because there are many nuances in a
programming language that, if not properly treated, can make the overall
execution incorrect.

In the context of the C language, the classes of concepts to consider in
combinations include the range of control flow constructs (the , (comma) op-
erator, if, while, do-while, for, and switch); the pre-fix and post-fix opera-
tors inside expressions; and the variety of jump instructions (goto, continue,
break, and return). In arriving at a general-purpose, automated, and correct
solution, it is impossible to discount any construct, and it is also not practical
to rely on the programmer to provide the compiler-specific information, such
as high-level algorithmic templates, for large and complex codes.

Interestingly, the parts of the language that deal with data types and their

150 Introduction to Reversible Computing

references are not affected in reversibility considerations, and they can be used
unmodified. Thus, the aggregate data definitions using struct and union and
naming via typedef can be retained unmodified from the original (irreversible)
code, without any special transformations performed in the reversible code.

10.2 Source-to-Source Method for Reversible C

The compilation procedure follows the source-to-source methodology de-
scribed in Section 9.3.1.1. The architecture of the reverse compilation is shown
in Figure 10.1. In general, the application may be composed of portions that
need to be reversible and the remainder of the application that uses the re-
versible portions. The portion of the application that needs to be made re-
versible is fed to the reverse compiler. For each original function given as
input, the reverse compiler produces the code for the augmented forward ver-
sion of the original function, along with its corresponding reverse function.
The forward and reverse functions that are generated are combined with the
application’s customized runtime tape interface along with rest of the appli-
cation that makes use of the forward and reverse functions. A conventional
compiler is then invoked on all the pieces together to compile, link, and obtain
the application executable.

F1(){...}

F2(){...}

...

Reverse C
Compiler

F1r(){...}

F2r(){...}

...

Normal C

Compiler
Reversible

Executable

Functions to be

made reversible

Reverse functions

Source-to-Source
Native Forward-only

Compiler and Linker

SAVE(){...}

RESTORE(){...}

...

Tape Driver

main()
{
 ...
 F1f()...F1r()...
 ...
}

Rest of the Application

a.out

FIGURE 10.1: Reverse C Compilation Architecture.

Reverse C Compiler 151

10.2.1 Notation

In the code fragments to follow, the following notation is used.
For every function definition F() present in the source file input to the

compiler, the compiler generates two versions of the function: Ff() and Fr().
The former is the original forward function suitably augmented for reversal,
and the latter is the reverse version of the former. Also, the compiler assumes
that this naming convention is obeyed by functions invoked from, but not de-
fined in, the input files; the reverse code is generated based on this convention.

The term s represents any simple or compound statement, while rs denotes
its reverse. In the transformed or generated code, extra braces are sometimes
introduced to place certain statements, s or rs, within a new scope to (1)
easily conform to the C rule that requires declarations to precede executable
statements, and (2) prevent name conflicts among user-program variables and
compiler-generated temporary variables.

In C, expressions can contain side-effect operations, such as ++ and --,
embedded within them. Moreover, they have pre- or post-effect semantics,
depending on context. For the purposes of source-to-source compilation, the
side effects should be separated so that their relative orders are correctly
reflected in the reversal. For any expression test, the prefix side-effect state-
ments will be represented as test-pre, and the postfix side-effect statements
as test-post, while the expression proper will be represented as test-expr.

10.2.2 Definition of Correctness of Reversible Execution

Reversibility of execution is achieved in the following sense of correct opera-
tion. For every function definition F(){ ... } given in the source files input
to the compiler, the compiler generates Ff(){ ... } and Fr(){ ... } such
that { Ff(); Fr(); } is equivalent to a no-op. In other words, for every orig-
inal function F(), the compiler generates forward function Ff() and reverse
function Fr() such that the reverse function can be used to cancel all mod-
ifications performed by the forward function on the program’s variables in
memory.

In fact, a stricter sense of correctness is possible. The forward and reverse
functions need not be invoked back-to-back for mutual cancellation, but may
be intercepted by any additional intervening statements s, provided that s is
reversed using rs. Thus, more generally, {Ff(); s; rs; Fr();} is a no-op.

The source-to-source method here assumes that if a reverse function is
invoked, its forward function must have been invoked prior to the reverse.
Commutativity is not guaranteed for the forward and reverse. In other words,
{ Fr(); Ff(); } is not necessarily a no-op; in fact, in most cases, the results
may be undefined because Ff() is necessarily one-to-one but not necessarily
onto (i.e., injective but not necessarily bijective).

In regard to the execution model, a single thread of control flow is assumed
in the program, with the traditional subroutine view: a stack of function calls

152 Introduction to Reversible Computing

formed by functions invoking other functions where the caller is suspended
until the callee returns. Reversible execution of co-routines or multi-threading
is not handled.

10.2.3 Runtime Tape Interface

A bit/byte tape data structure that follows last-in-first-out (LIFO) discipline
is assumed to be part of the reversible runtime framework. A default imple-
mentation of this interface is provided by the compiler, but it can be cus-
tomized or entirely replaced on an application-specific basis.

At least two tapes are assumed: one to record a trace of bits, and the other
to record a trace of bytes. An implementation may choose to combine the two,
but it may be more performance effective to keep the distinction between the
bit tape and the byte tape. Both tapes must support two basic operations:
SAVE and RESTORE.

A SAVE(x) operation results in appending the value of the lvalue x to the
end of the tape, and RESTORE(x) retrieves the current value from the end of
the tape and stores it into the lvalue x. The number of bits stored or retrieved
is equal to 8*sizeof(x). A SAVE BITS(x,n) operation results in saving only
the lowest n bits of the integral lvalue x. Similarly, RESTORE BITS(x,n) results
in restoring only n bits into the integral lvalue x.

The bit tape is primarily used for conditional statements (to store the
truth value) and for destructive assignments to bit variables, while the byte
tape is used for other statements.

10.2.4 Compilation Phases

The compilation is divided into three phases, as illustrated in Figure 10.2.
The phases delineate three distinct functionalities of the compiler. The nor-
malization phase is needed to reduce the internal complexity of the compiler
by mapping multiple, logically equivalent constructs into one canonical con-
struct. The transformation phase is the process of actual generation of the
forward and reverse code. The optimization phase encompasses the set of op-
timizations incrementally added to the compiler to increase the efficiency of
reversal. Each of these phases is described in the following sections.

Normalize Transform Optimize

FIGURE 10.2: Reverse compilation phases.

Reverse C Compiler 153

10.3 Normalization

This phase, called the normalization process, is performed as the first step
in the compilation process. To deal with the large set of language constructs,
it is easier to first translate the program into a semantically equivalent pro-
gram that uses a reduced set of language constructs. For example, all jump
instructions (case, break, return) are translated to equivalent forms of the
goto statement. Also, all iteration statements can be translated into equiva-
lent forms of the while statement. Such a translation not only makes it easier
to deal with a reduced set of instructions for the purposes of generating re-
verse code, but also makes optimizations on the smaller set easily applicable
to all statements.

10.3.1 Declarations

Type declarations as well as global and static variable declarations are retained
unchanged, as they are initialized at the beginning of program execution.
Local variable declarations are also retained unchanged, except for moving
their initializer expressions into explicit assignment statements, as illustrated
in the following:

Original Normalized
Example Example

{

double x = 10, y = log(x);

...

}

{

double x, y;

{

x = 10;

y = log(x);

}

...

}

Initializer expressions in variable declarations are moved out of the dec-
larations into actual assignment statements in the front of the code in which
the variables are defined. Separation of initialization expressions from declara-
tions makes it possible to retain the declaration statement proper unchanged
in both forward and reverse code, and perform transformations and optimiza-
tions on initialization expressions automatically, as is done to the rest of the
assignment expressions in the code outside declarations.

10.3.2 Side-Effect Expressions

Side-effect expressions are those that modify the variables while the expres-
sion is evaluated. The simplest example is the ++ operator that increments
a variable as a side effect of accessing the variable’s value. For example, the

154 Introduction to Reversible Computing

code int x=10, y=x++; results in y equal to 10, but x equal to 11 because
x is incremented as a side effect of the expression x++. Operations with po-
tential side effects include increment and decrement (pre-fix and post-fix),
and comma operators. Calls to non-void functions inside expressions are also
treated as side-effect expressions, unless the function call is the only term in
the expression. All expressions that have side-effect operators are converted
to equivalent set of expressions which do not have side-effects. In the preced-
ing example, the side effect-free conversion is given by int x=10, y=x; x++;

Expressions such as conditions, function call arguments, array indices, pointer
arithmetic, etc., must be converted to be free of side effects. The elimination
of side effects in expressions may add new temporary variables to hold inter-
mediate values to make the expressions side effect-free. After the conversion,
every side-effect operator appears as the only operator in a separate state-
ment. This conversion makes it possible to decompose every expression into a
deterministic sequence of updates to the variables.

10.3.3 Function Calls

All function calls are normalized such that a call to a void function appears
as a statement by itself, and a non-void function call appears as a single
right-hand-side term of an assignment statement:

lvalue = function(· · ·);

10.3.4 Arithmetic Expressions

To prevent loss of numerical precision during computation, all arithmetic ex-
pressions are normalized such that each value or variable is promoted to a
data type of the next higher precision. This, of course, assumes that a spe-
cial data type is available to the compiler that is of higher precision than the
highest precision type used in the input functions. Otherwise, software em-
ulation of higher precision is necessary, which can add a significant runtime
overhead. Programs such as scientific codes predominantly containing floating
point arithmetic require special treatment beyond this simple reversal ap-
proach. Advanced techniques will need to be employed, making the reversal
less transparent (see Chapter 14).

10.3.5 for Statements

The for statement is normalized into its basic while form, as follows. Because
the test predicate may contain pre-fix and post-fix operations embedded in the
expression, these must be moved out of the expression. They are copied into
the appropriate places to ensure that the semantics of the loop are maintained.
All continue statements inside s are converted into goto continue_label.
Similarly, break statements inside s are converted into goto break_label.
Because s can be a non-compound statement, it is necessary to house it in a

Reverse C Compiler 155

compound statement along with incr expression. A missing test expression
is substituted with 1.

Original Normalized

for(init; test; incr)

s

{

init;

test-pre

while(test-expr)

{

test-post

s

continue_label:

incr;

test-pre

}

test-post

break_label:

}

Original Normalized
Example Example

for(p=q; *(++q)!=*(p++); n++)

*p=*q;

{

p=q;

++q;

while(*q!=*p)

{

p++;

*p=*q;

continue_label:

n++;

++q;

}

p++;

break_label:

}

10.3.6 do-while Statements

Each do-while loop is normalized in a manner similar to that for the for
statement, as illustrated in the following.

156 Introduction to Reversible Computing

Original Normalized

do

s

while(test);

{

s

test-pre

while(test-expr)

{

test-post

s

continue_label:

test-pre

}

test-post

break_label:

}

The treatment of continue and break statements inside s is the same as
in the normalization of the for statement.

Original Normalized
Example Example

do

{

*p=*q;

} while(*(p++) == *(++q));

{

*p=*q;

++q;

while(*p==*q)

{

p++;

*p=*q;

continue_label:

++q;

}

p++;

break_label:

}

10.3.7 while Statements

Each while loop is normalized in a manner similar to that for the for state-
ment, as illustrated in the following:

Reverse C Compiler 157

Original Normalized

while(test)

s

{

test-pre

while(test-expr)

{

test-post

s

continue_label:

test-pre

}

test-post

break_label:

}

The treatment of continue and break statements inside s is the same as
in the normalization of the for statement.

Original Normalized
Example Example

while(*(p++) == *(++q))

*p=*q;

{

++q;

while(*p==*q)

{

p++;

*p=*q;

continue_label:

++q;

}

p++;

break_label:

}

10.3.8 return Statements

Multiple return statements are converted into a single return statement
using the following normalization, which uses a temporary local variable for
holding the returned value:

Original Normalized

T foo(...)

{

...

return x;

...

return y;

...

}

T foo(...)

{

T t;

...

{t = x; goto label;}

...

{t = y; goto label;}

...

label:

return t;

}

158 Introduction to Reversible Computing

In the case of a void function, the temporary variable can be dropped.
After the normalization, at most one return statement will remain in any
function. This ensures a single exit point for each function, implying a sin-
gle entry point for its reverse. In the transformation and reversal phases, no
further treatment is needed for the return statement. Hence it is retained
unchanged in the transformed code, and eliminated in the reverse code. Note
that the label name must be generated to be unique in the function scope.

10.3.9 continue Statements

The following normalization is performed on a continue statement by trans-
lating it into its equivalent goto statement.

Original Normalized

{

...

continue;

...

}

{

...

goto continue_label;

...

continue_label:

}

In the case of while, for and do-while statements, the position of
continue_label is already correctly placed during the normalization phase
to preserve the semantics of the continue statement.

10.3.10 break Statements

The following normalization is performed on break statements that are
present inside the bodies of for, do-while, and while statements. Each break
statement is normalized into an equivalent goto statement:

Original Normalized

{

...

break;

...

}

...

s

{

...

goto break_label;

...

}

break_label:

...

Note that this normalization is not applied to the break statements that
belong to a switch statement. The break statements inside a switch statement
are handled differently, as described in Section 10.3.11 and Section 10.4.7.

10.3.11 switch Statements

The switch statement can be treated in two different ways for the purposes
of reversibility. In the first approach, it can be normalized into an equivalent
set of if and goto statements, as illustrated in the following:

Reverse C Compiler 159

Original Normalized

switch(expr)

{

case c1:

s1

break;

case c2:

s2

/*fall-thru*/

case c3:

s3

break;

default:

s4

break;

}

{

int c = expr;

if(c == c1) goto label1;

if(c == c2) goto label2;

if(c == c3) goto label3;

goto labeld;

label1:

s1

goto end;

label2:

s2

/*fall-thru*/

label3:

s3

goto end;

labeld:

s4

goto end;

end:

}

This normalization is a straightforward application of the semantics of
a switch statement, that states that every case value acts as a label that
becomes a target of a computed goto statement. Note that saving and restoring
operations for the value of c will be introduced in the transformation phase
of compound statements, as described in Section 10.4.4.

In the alternative approach, a switch statement can be transformed into
an equivalent, but reversible, switch statement, as discussed later.

10.3.12 Post-Normalization State

At the end of the normalization, the following hold true:

� At most one assignment operator remains in any given expression state-
ment. Moreover, both the left-hand-side and right-hand-side of every
assignment operator are free of side effects.

� All for and do-while statements are eliminated by translating them
into equivalent while statements.

� The condition expressions of if, switch, and while statements are free
of side effects.

� The only type of jump statement remaining is the goto statement (with
the exception of a single return statement at the end of the function
body).

� There is at most one return statement in any function, which will be

160 Introduction to Reversible Computing

at the end of the function body. Moreover, in the case of non-void
functions, the return expression consists of exactly one variable.

� The relationship between unusual jumps across block scopes and the
local variables in those blocks can be ignored in the transformation,
because they are taken care of in the normalization. Thus, only normal
entry into (and exit out of) block scopes need be considered.

10.4 Transformation

In the transformation phase, the input code is made reversible, and its reverse
is also generated. The rules used in the transformation phase are discussed
next. These rules are applied starting with each function definition in the
input, and every statement in the function is recursively transformed.

10.4.1 Expression Statements

In C, the constructive operators include the following:

Constructive Inverse Description Special Cases
Operator Operator

++ (prefix) -- (postfix) Increment Overflow bit
++ (postfix) -- (prefix) Increment Overflow bit
-- (prefix) ++ (postfix) Decrement Underflow bit
-- (postfix) ++ (prefix) Decrement Underflow bit
+= -= Add to Overflow bit
-= += Remove from Underflow bit
*= /= Multiply by Zero operand
/= *= Divide by Zero operand and

non-zero remainder
~= ~= Bitwise not None
^= ^= Bitwise exclusive or None

For all the constructive operators, no data needs to be saved to the tape
by default (except for integer division, which requires the remainder to be
saved). However, to take into account special situations such as overflow or
underflow conditions zero operands, one bit must be logged on the tape for
each constructive operator flagged with special cases. When the bit is zero,
it indicates that no reversibility hazard is present, and hence nothing further
is logged on the tape. If the bit is one, it indicates additional data must be
obtained from the tape to properly reverse. In the case of overflow or underflow
for increment or decrement operators, no additional data is needed, as the bit
itself indicates sufficient information to recover from the operation properly.

Reverse C Compiler 161

All other operators are destructive assignments, which require the saving
of the value of the operand before it is destroyed due to the operation. These
operators include =, %=, and so on. Because all such operators are normalized
into the form lvalue op rvalue, they are transformed to save the lvalue before
the assignment:

Normalized Transformed Reversed

lvalue op rvalue; {

SAVE(lvalue);

lvalue op rvalue;

}

{

RESTORE(lvalue);

}

10.4.2 Function Calls

Because all function calls are normalized such that they are one of the forms
function(· · ·) or lvalue= function(· · ·), they are reversed by replacing the
function name with the name of its reverse function.

To support function calls that are in fact evaluated on function pointer
expressions, a hash table of function pointers is maintained at runtime by the
compiler, and is used to map a function pointer to its reverse function pointer.
Thus, if the function call is not via a simple function name, but is in fact via
an expression that evaluates to a pointer to a function, then the hash table of
function pointers is consulted to call the correct reverse function.

Normalized Transformed Reversed

(func-ptr-expr)(); (func-ptr-expr)(); (lookup(func-ptr-expr))();

10.4.3 Jump Statements

For each label that is the target of one or more goto statements in the input,
the following transformation is applied.

162 Introduction to Reversible Computing

Normalized Transformed Reversed

{

...

s1

goto label;

...

s2

goto label;

...

s3

...

label:

s4

...

}

{

char c;

...

s1

{c=1; SAVE(c);}

goto label;

...

s2

{c=2; SAVE(c);}

goto label;

...

s3

...

{c=0; SAVE(c);}

label:

s4

...

}

{

char c;

...

rs4

RESTORE(c);

switch(c)

{

case 0: break;

case 1: goto rlabel1;

case 2: goto rlabel2;

}

...

rs3

...

rlabel2:

rs2

...

rlabel1:

rs1

...

}

This transformation works using a variable c to remember which of the
goto statements was actually executed to reach the labeled statement in the
forward execution. During reverse execution, this information is used to jump
back to the point that immediately precedes the previously executed goto

statement. To perform the reverse jump, the goto statements of the forward
code are replaced by labels, which are reached using a computed goto in the
reverse code.

This transformation works correctly even in the presence of multiple in-
terdependent jump statements. It also correctly handles multiple visits to the
same target label during the same function call. The SAVE() calls inserted be-
fore the goto statements are necessary to handle multiple visits to the same
jump statement.

Note that the variable name c and the names of the labels in the re-
verse code—rlabeli—must be generated so that they are unique in the given
function body scope. An easy way to do this is to use the label of the goto

statement given in the original input. Also, note that the variables are de-
clared to be of type char, assuming the number of goto statements for any
label fits one byte (this is usually true for human-generated code). Otherwise,
a larger integral type, such as short int, can be used.

Because the variable c is saved before the jump instruction, it need not
be saved again when the variable goes out of scope, as is normally done for a
compound statement as discussed next.

Reverse C Compiler 163

10.4.4 Compound Statements

Every compound statement (also called the block scope) is transformed ac-
cording to the following illustration:

Normalized Transformed Reversed

{

int x, y;

s1

s2

s3

}

{

int x, y;

s1

s2

s3

SAVE(x);

SAVE(y);

}

{

int x, y;

RESTORE(y);

RESTORE(x);

rs3

rs2

rs1

}

By this transformation, the order of executable statements in the block is
preserved in the forward code, but reversed in the reverse code. Because local
variables lose their values when they go out of scope, they must be saved at
the end of the block in the forward code, and restored at the beginning of the
block in the reverse code. Hence, state saving calls are automatically added
at the end of every compound statement body, so that the values of the local
variables are saved for restoration during reverse execution. Abnormal exits
from the block scope are treated specially (see Section 10.4.5).

Formal parameters to functions are logically similar to local variables of
the function body. They are saved by treating them exactly like the local
variables of the function body.

10.4.5 Jumps across Nested Blocks

In the case of unusual entry and exit via jump statements such as goto, the
values of all the local variables that are about to go out of scope must be
saved before the jump takes place. For this, the appropriate SAVE() calls are
inserted before each goto, as illustrated in the following.

For example, a goto statement that takes the control out of a block scope
must first save all the local variables in the block scope before transferring
the control. Moreover, because it is possible that a single goto statement in
a deeply nested block can cut across several block scopes, the local variables
of all those blocks must also be saved before the jump is effected.

This is exactly analogous to the manner in which C++ generates calls to
destructors on all local variables at all levels of block scope that are about to
go out of scope as a result of any single goto statement [Ellis and Stroustrup,
1990].

164 Introduction to Reversible Computing

Original Normalized

{/*C1*/

int x;

...

{/*C2*/

int y;

...

{/*C3*/

int z;

...

goto label;

...

}

}

...

label:

...

}

{/*C1*/

int x;

...

{/*C2*/

int y;

...

{/*C3*/

int z;

...

{SAVE(z); SAVE(y);}

goto label;

...

}

}

...

label:

...

}

In the preceding illustration, the goto statement would result in the vari-
ables y and z going out of scope. Hence, their values are saved before the jump
is executed. Note that the variable x is not saved because it remains in scope
even after the jump, and hence will be saved by instructions generated by the
normal transformation phase (see Section 10.4.4).

10.4.6 if Statements

Each if statement is made reversible by introducing a variable to remember
the result of the if condition. The value of this variable is saved after the
if statement is executed during the forward execution. The saved value is
restored during reverse execution, and it is used to recollect which of the true
or false branches was executed in the forward execution. The corresponding
branch is then executed in reverse. The transformation is as follows:

Normalized Transformed Reversed

if(test)

s1

else

s2

{

char c = !!test;

if(c)

s1

else

s2

SAVE(c);

}

{

char c;

RESTORE(c);

if(c)

rs1

else

rs2

}

In practice, the SAVE(c) and RESTORE(c) are replaced by SAVE BITS(c,1)

and RESTORE BITS(c,1), as the actual value of c is only contained in the low-
est bit. Note that the save and restore operations on c are actually generated
as part of the transformation phase on compound statements, as described in
Section 10.4.4. Note also that it is necessary to coerce the truth value of the

Reverse C Compiler 165

condition to 0 or 1 to make it fit in one bit. The coercion is necessary because
C permits any non-zero value to qualify as a true value, which obviously does
not fit in one bit. Double negation (using the ! operator twice) is one way to
perform the coercion, as illustrated in the transformed code.

The result of the if condition must be saved on the tape after its true or
false branch is executed. This is because the number of bits required of either
branch is generally unknown in advance, and hence makes it difficult during
reverse execution to find out which branch to reverse. Saving the condition
value after the branches are executed makes the condition value become the
last item on the tape at the time of reversing the if statement, which can be
readily popped from the tape.

An optimization can be performed by eliminating the added variable in
case the if condition is invariant in both true and false branches of the if
statement. This is because the same expression can be reevaluated (without
loss of information) during reverse execution to recollect which branch was
executed, as illustrated in the following:

Normalized Transformed Reversed

if(condition)

s1

else

s2

{

if(condition)

s1

else

s2

}

{

if(condition)

rs1

else

rs2

}

Even though only a single bit is reduced by such optimization per if

statement execution, such optimization can result in a significant reduction
in overall memory utilization when the statement is repeatedly executed, say,
inside a loop.

10.4.7 switch Statements

One way to treat a switch statement is to normalize it into if and goto
statements, as described in Section 10.3.11. An alternative technique is to
transform it into another switch statement, which uses two integer variables,
c and d, as illustrated in the following:

166 Introduction to Reversible Computing

Original Transformed Reversed

switch(expr)

{

case v1:

s1

break;

case v2:

s2

/*fall-thru*/

case v3:

s3

break;

default:

s4

break;

}

{

char c = 0, d = 0;

switch(expr)

{

case v1: c=1; d++;

s1

break;

case v2: c=2; d++;

s2

/*fall-thru*/

case v3: c=3; d++;

s3

break;

default: c=0; d++;

s4

break;

}

SAVE(c);

SAVE(d);

}

{

char c, d;

RESTORE(d);

RESTORE(c);

switch(c)

{

case 0:

rs4

if(--d <= 0) break;

case 3:

rs3

if(--d <= 0) break;

case 2:

rs2

if(--d <= 0) break;

case 1:

rs1

}

}

The variable c serves to normalize the case values to fall in the range
0..n− 1. Because the case expression is permitted to be of any integral type,
the normalization serves to reduce the memory requirements to remember the
switch value (assuming the expression is not invariant in the switch body).
The variable d serves to record the number of case labels that are traversed
during the forward execution. This is necessary becauseC permits fall-through
execution in the absence of break statements between case labels, and because
break statements could potentially be present inside conditional statements.

Note that the save and restore operations on c and d are actually generated
as part of the transformation phase on compound statements, as described in
Section 10.4.4.

The flag and fall-through counter variables used in the transformation
must be saved on the tape after the entire body of the switch statement is
executed. This enables the counter values to be recovered easily from the end
of the tape before the reversal of the switch statement begins.

10.4.8 while Statements

Each while statement is made reversible using a counter variable to remember
the actual number of iterations that were executed. This local variable is saved
after the execution, and restored before reversal, as illustrated in the following:

Reverse C Compiler 167

Normalized Transformed Reversed

while(condition)

s

{

int c = 0;

while(condition)

{

c++;

s

}

SAVE(c);

}

{

int c;

RESTORE(c);

while(c > 0)

{

rs

--c;

}

}

It is important to increment the counter c before executing s, as it is
possible for s to contain jump instructions that take control out of the while
body. Note that this transformation makes the while statement reversible
even in the presence of any jump instructions (break, continue, goto and
return). This is as a result of combining the normalization of break, continue
and return statements (see Section 10.3.10, Section 10.3.9, and Section 10.3.8,
respectively) with the transformation of goto statements (see Section 10.4.5
and Section 10.4.4).

Note that the save and restore operations on c are actually generated as
part of the transformation phase on compound statements, as described in
Section 10.4.4.

Similar to if statements, the counter variables for the loop statements
must be saved on the tape after the loop has ended. This ensures that the
iteration count is readily available as the last item on the tape at the time of
reversing the loop statement.

10.4.9 Libraries and I/O

The C standard library is an integral runtime component of the language.
Due to the large number of routines in the standard library interface, the
reversibility of the functions in standard libraries is not addressed here. How-
ever, it is possible to reverse the standard libraries by applying the compilation
methodology to the source code of the library function implementation, and
by following our naming scheme to map each standard library function to its
reverse peer.

Reversal of input and output is possible by redefining the semantics of
the file operations. In particular, swap semantics are needed to properly and
comprehensively address the reversibility of input and output. This is a major
undertaking because it touches on the I/O subsystem interfaces beyond the
basic language semantics, and thus would require a more elaborate infrastruc-
ture. Moreover, transparent backward compatibility to traditional semantics
of forward-only computing can be extremely difficult to achieve. While the
high-level idea of reversible I/O is known, effective and efficient implementa-
tion in a complex environment such as C standard I/O library is the subject
of ongoing for future research.

168 Introduction to Reversible Computing

10.4.10 Pragmas

To reduce the effort needed in the development of the first version of the
compiler prototypes, some programmer involvement may be warranted. The
programmer may use a set of pragmas to annotate portions of the code to
aid reversibility. This helps relieve the burden of tedious (but mechanical)
compiler code development, at least until production versions of the source-
to-source compiler are developed that automatically glean such reversibility
information from the input code. Pragmas can either be guarantees of certain
conditions or hints to the compiler for optimization. For guarantees, pragmas
equivalent to syntactic reversibility of Janus could be employed. For example,
the post-branch condition analogous to that of a Janus conditional statement
(see Section 8.3.3.2) could be attached via a pragma string at the end of the
conditional statement in C.

The list of example pragmas is shown in Table 10.1. Some of these prag-
mas can be eliminated (or automatically inserted by a smart preprocessor)
using sophisticated compiler techniques. The pragmas are only necessary to
reduce the amount of effort in compiler implementation; a production version
of the compiler can eliminate the need for such pragmas. For example, the
INVARIANTCONDITION pragma for an if statement can be eliminated in a so-
phisticated compiler implementation that can perform advanced dependency
analysis between the if condition and the if branches.

10.5 Optimization

Several optimizations are possible after the input code is subjected to the
normalization and transformation phases of compilation. The higher the so-
phistication of the compiler with respect to the optimizations, the better the
efficiency of the forward and reverse code. Some optimizations are described
next.

10.5.1 Value Recovery or Reconstruction

Although a local view of the code may indicate that a value is being destroyed,
it is possible that a copy of the same value is either available in an unmod-
ified form at another location, or the value can be reconstructed by some
recomputation.

10.5.2 Irreversible and Environment Slices

In general, certain operations performed in the input code must be ignored
for reversal purposes. There are two reasons for this:

Reverse C Compiler 169

TABLE 10.1: List of Example Pragma Specifications

Pragma Description Example

MAP REVERSE=f,r Specifies r as the re-
verse function of f .
If r is specified as
void, all calls to f in
the forward code will
be removed in the re-
verse code.

#pragma MAP_REVERSE=SAVE,RESTORE

#pragma MAP_REVERSE=printf,void

INVARIANT

CONDITION

Specifies that the con-
dition of the imme-
diately following if

statement is invariant
in both its true and
false branches. This
eliminates the need to
save the truth value
to the tape.

#pragma INVARIANT_CONDITION

if(...)

{

...

}

RECOVERABLE=

var-list

Specifies that the
given local variables
are recoverable, and
hence do not need
to be saved before
going out of scope.
This pragma must
appear immediately
before the compound
statement begins.

#pragma RECOVERABLE=w,z

{

int w, x, y, z;

...

}

BEGIN GLOBAL Marks pragmas ap-
pearing between
BEGIN GLOBAL and
END GLOBAL to be
globally applied.

#pragma BEGIN_GLOBAL

#pragma MAP_REVERSE=printf,void

#pragma MAP_REVERSE=max,max

#pragma END_GLOBAL

STATELESS SLICE Marks the immedi-
ately following com-
pound statement to
consist exclusively of
stateless code. This
implies saving to tape
can be turned off
for destructive assign-
ments, and local vari-
ables need not be
saved before they go
out of scope. How-
ever, the reversal of
statements and rever-
sal of function calls
are performed.

#pragma STATELESS_SLICE

{

...

}

170 Introduction to Reversible Computing

1. Irreversible operations: In any program, certain operations can be as-
sumed to be irreversible for practical purposes. For example, output
statements may not be reversed. A message-send over the network can-
not always be physically withdrawn.

2. Environment: In certain applications, some operations are indeed re-
versible but the application has other (probably more efficient) means
of reversing those operations. For example, in optimistic parallel sim-
ulation, the retraction of a events scheduled by a rolled back event is
performed by the parallel simulation kernel. Such operations must be
ignored during reverse compilation.

Without loss of generality, both of the preceding types of operations can be
deemed to be irreversible for the purposes of reverse compilation.

The slices of the program that only lead to such irreversible operations can
be sliced away during reversal. In other words, for those portions of the forward
computation that solely lead to irreversible computation: (1) no attempt is
made to make them reversible during forward computation, and (2) such code
is ignored during reverse computation. Applying this optimization can result
in reduced overheads for reversibility.

Example: Consider the following code fragment in which the value of a
variable y is computed and printed:

Original
Unoptimized Optimized

Transform Reverse Transform Reverse

{

int x;

s1

{

int y;

s2

y = f(x);

print(y);

s3

}

s4

}

{

int x;

s1

{

int y;

s2

y = f(x);

print(y);

s3

SAVE(y);

}

s4

SAVE(x);

}

{

int x;

RESTORE(x);

rs4

{

int y;

RESTORE(y);

rs3

rs2

}

rs1

}

{

int x;

s1

{

int y;

s2

y = f(x);

print(y);

s3

}

s4

SAVE(x);

}

{

int x;

RESTORE(x);

rs4

{

rs3

rs2

}

rs1

}

The value of y is computed as a function of x, and printed as output. The
slice of the program that only leads to the irreversible printing consists of the
variable y and the statements y=f(x); and print(y);. All the components
of this slice can be safely eliminated in the reverse code.

10.5.3 Eliminating Reversal of Initialization

Even though initializations are destructive assignments, they never need to be
undone, and hence do not need to be checkpointed. This is because initially

Reverse C Compiler 171

the variables contain don’t care values, whose exact values are immaterial
for the correctness of the program. For reversal, the same variables can hold
any values, which are not necessarily the same don’t care values that were
held before initialization, as any value trivially qualifies as a don’t care value.
For example, consider the following code fragment, and its unoptimized and
optimized reverse codes:

Original
Unoptimized Optimized

Transform Reverse Transform Reverse

{

int x;

x = 0;

s

}

{

int x;

SAVE(x);

x = 0;

s

SAVE(x);

}

{

int x;

RESTORE(x);

rs

RESTORE(x);

}

{

int x;

x = 0;

s

SAVE(x);

}

{

int x;

RESTORE(x);

rs

}

The unoptimized version saves the pre-initialization value of x before ini-
tializing it to zero, and restores x to the saved value during reverse execution
toward the last statement. Because there is no other statement in the reverse
code that depends on the pre-initialization value of x, such restoration is use-
less. Hence, both the saving and restoration code for pre-initialization values
are eliminated in the optimized version.

This optimization can result in significant memory savings, as local vari-
ables are very commonly declared and initialized inside functions.

Note that this optimization is not restricted to local (stack) variables,
but is also applicable to variables allocated on the heap. The same applies
to memory buffers whenever they are re-initialized for irreversible reuse. In
fact, a simple generalization of this optimization is: For memory items that
contain don’t care values, (destructive) assignment of values to them need not
be reversed.

10.5.4 Invariant Expressions

Determining whether an expression is invariant in a block of code is useful
in performing certain optimizations to reduce overheads. For example, no
condition variable needs to be added for an if statement if it is true that the
expression is invariant in both branches of the if statement (i.e., the condition
expression is guaranteed to evaluate to exactly the same value both in forward
and in reverse). This fact can be determined by checking the bodies of the
true and false branches of the if statement to see if any of the variables used
in the condition are indeed modifiable in the branches. If none of the variables
contained in the condition are affected in the bodies, then the result of the
condition need not be saved, but instead the exact same condition expression
can be reevaluated to determine the condition value in both forward and
reverse codes. In case the condition expression is not invariant in the body
of the if statement, the result of the condition needs to be saved during

172 Introduction to Reversible Computing

the forward execution. However, for this purpose, only one bit is needed to
remember the truth value of the condition. Transformations for both cases
(variant and invariant) are described in Section 10.4.6.

Similarly, for a switch statement, an additional variable is introduced
to remember the value of the switch expression, lest it is changed in the
body of the switch. This additional variable can be eliminated if the switch
expression can be determined to always be invariant in the switch body.

10.5.5 Common Sub-Expression Elimination

Although the reverse compiler increases the number of sub-expressions and
variables in order to render all expressions side effect-free, the potential in-
crease in sub-expressions is mitigated by the fact that common sub-expression
elimination will later be performed by the usual C compiler when the gener-
ated code is compiled, and no saving is performed for initialization of the new
variables.

10.5.6 Switch Statement Trade-Offs

A switch statement can be either normalized into if and goto statements, or
can be transformed into another switch statement. The choice between the
two can be made at compile time, depending on which of the two results in a
smaller memory requirement for saving.

10.5.7 Tape Compression

Run-length encoding and decoding can be performed on the tape. This can
result in significant memory savings, for example, in case of loops involving
conditional statements. Consider the following code pattern that commonly
occurs in programs:

done = 0;

while(!done)

{

if(expr)

{

done = 1;

}

else

{

...

}

}

In the preceding code fragment, the loop is executed until a condition expr

becomes true. If the condition expression is modified in the if branches, then
its truth value (1 bit) must be saved for each iteration (see Section 10.5.4).

Reverse C Compiler 173

Suppose the loop is executed n times. It is clear that all the first n − 1 bits
will hold a 0 value, and only the last bit will contain a value 1. If run length
encoding is used on the tape, then the first n − 1 bits can be reduced to
O(log2 n) bits.

10.6 Tape Size Upper Bounds

A simple set of translation rules that can be used by the compiler is shown in
Table 10.2. The most common types of statements used in high-level languages
are listed, along with their corresponding instrumented and reverse code out-
puts. Against each of the statements, the state size that is achievable for that
statement type is listed. Because not all operations of the input model are
perfectly reversible, it is necessary to add control state information to be able
to reverse them. However, the better the understanding of the semantics of
the code, the better the ability to reduce the state size. Hence, the reduction
in state size can vary, depending on the sophistication of the compiler. The
translation rules of Table 10.2 thus place an upper bound on the state size,
which could potentially be improved via optimization.

The instrumented forward computation code, as well as reverse code, are
generated by recursively applying the rules of Table 10.2 to the input model.
The significant parts of these rules are their state bit size requirements and
the reuse of the state bits for mutually exclusive code segments. Each of the
rules is described in detail next.

� T0: The if statement can be reversed by taking note of which branch
is executed in the forward computation. This is done using a single bit
variable b, which is set to 1 or 0 depending on whether the predicate
evaluated to true or false in the forward computation. The reverse code
can then use the value of b to decide whether to reverse the if part or
the else part when trying to reverse the if statement.

Because the bodies of the if part and the else part are executed mu-
tually exclusively, the state bits used for one part can also be used for
the other part. Hence, the state bit size required for the if statement
is one plus the larger of the state bit sizes, x1, of the if part and x2 of
the else part, that is, 1 +max(x1, x2).

� T1: Similar to the simple if statement (T0), an n-way if statement can
be handled using a variable b of size log2(n) bits. Thus, the state size of
the entire if statement is log2(n) for b, plus the largest of the state bit
sizes, x1 . . . xn, of the component bodies, that is, log2(n)+max(x1 . . . xn)
(as the component bodies are mutually exclusive).

� T2: Consider an n iteration loop, such as a for statement, whose body

174 Introduction to Reversible Computing

requires x state bits for reversibility. Then n instances of the x bits can
be used to keep track of the n instances of invocations of the body, giving
a total of n ∗ x bit requirement for the loop statement. The inverse of
the body is invoked n times in order to reverse the loop statement.

� T3: A loop with variable number of iterations, such as a while state-
ment, can be treated the same as a fixed iteration loop, but the actual
number of iterations executed can be noted at runtime in a variable b.
The state bits for the body can be allocated based on an upper limit
n on the number of iterations. Thus, the total state size added for this
statement is log2(n) + n ∗ x.

� T4: For a function call, no instrumentation is added. For reversing it,
its inverse is invoked. The inverse is easily generated using the rules for
T7 described later. The state bit size, x, is the same as for T7.

In the simple case in which the function call graph is a tree, the state
bit sizes can be completely determined statically. In the case of models
in which the function call graph is a directed acyclic graph (DAG), the
(maximum) state bit size requirements can still be statically determined.
However, in the more general case of an arbitrary function call graph
(implying the presence of direct and/or indirect recursion), it is difficult
to statically determine the maximum state bit sizes.

� T5: Constructive assignments, such as ++, --, += and so on, do not need
any instrumentation in normal cases. The reverse code uses the inverse
operator, such as --, ++, -=, respectively. Most of these constructive
statements do not require any state for reversibility, but some need one
bit to note overflow or underflow conditions.

� T6: Each destructive assignment, such as =, %=, and so on, can be in-
strumented to save a copy of its left-hand side into a variable b before
the assignment takes place. The size of b is 8k bits for assignment to a
k-byte left-hand side variable (lvalue).

� T7: In a sequence of statements, each statement is instrumented de-
pending on its type, using the previous rules. For the reverse code, the
sequence is reversed, and each statement is replaced by its inverse, again
using the corresponding generation rules from the preceding list. The
state bit size for the entire sequence is the sum of the bit sizes of each
statement in the sequence.

� T8: Determining the state size requirements in the presence of arbitrary
jump instructions is difficult, because in general it could be unbounded.
In simple cases such as one in which the no goto label in the model
is reached more than once during an event computation, the following
analysis can be used. Because at most one index per goto label is stored,
the bit size requirement of this scheme is log2(n + 1), where n is the

Reverse C Compiler 175

number of goto statements that are the sources of that single target
label. Note that even if a label is the target of only one jump instruction,
at least one bit is required to distinguish between reaching the label
normally (falling-through) and reaching the label as a result of the jump
instruction.

� T9: Any legal nesting of the previous types of statements can be treated
by recursively applying the corresponding generation rules. The state bit
size is also obtained by the corresponding state-bit composition rule.

10.7 Tape Size Determination

Table 10.2 shows the generation rules and upper bounds on state size re-
quirements for supporting reverse computation. s, or s1..sn are any of the
statements of types T0..T7. rs is the reverse code of the statement s. b is the
corresponding saved bits “belonging” to the given statement. The operator =@
is the inverse operator of a constructive operator @=, (e.g., -= for +=).

To determine the amount of state needed to reverse a given computation,
the following procedure is used. Because the input code is a sequence of state-
ments, start with T7 (or, alternatively, T4), and recursively apply the rules
of Table 10.2. This is done while reusing the bits on code segments that are
mutually exclusive (as indicated by the MAX() operation in the table).

It can be observed from the table that the statements with potentially
higher state bit sizes are destructive assignments, nestings of conditional
statements within loops, nested loops inside loops, and destructive operations
among interdependent jump instructions.

176 Introduction to Reversible Computing

T
A
B
L
E

1
0
.2
:
S
u
m
m
a
ry

o
f
S
ta
te

B
it

S
iz
es

fo
r
V
a
ri
o
u
s
S
ta
te
m
en
t
T
y
p
es

T
y
p
e

D
e
s
c
r
ip

t
io

n
A
p
p
li
c
a
t
io

n
C
o
d
e

B
it

R
e
q
u
ir
e
m

e
n
t
s

O
r
ig

in
a
l

I
n
s
t
r
u
m

e
n
t
e
d

R
e
v
e
r
s
e

S
e
lf

C
h
il
d

T
o
t
a
l

T
0

si
m
p
le

ch
o
ic
e

if
()

s
1
;

e
ls
e
s
2
;

if
()

{
s
1
;
b
=
1
;}

e
ls
e
{
s
2
;
b
=
0
;}

if
(b

=
=
1
)
{
r
s
1
;}

e
ls
e
{
r
s
2
;}

1
x
1
,
x
2

1
+

m
a
x
(x

1
,
x
2
)

T
1

c
o
m
p
o
u
n
d
ch

o
ic
e

if
()

s
1
;

e
ls
if
()

s
2
;

e
ls
if
()

s
3
;

e
ls
e
()

s
n
;

if
()

{
s
1
;
b
=
1
;}

e
ls
if
()

{
s
2
;
b
=
2
;}

e
ls
if
()

{
s
3
;
b
=
3
;}

e
ls
e
{
s
n
;
b
=
n
;}

if
(b

=
=
1
)
{
r
s
1
;}

e
ls
if
(b

=
=
2
)
{
r
s
2
;}

e
ls
if
(b

=
=
3
)
{
r
s
3
;}

e
ls
e
{
r
s
n
;}

lo
g
2
(n

)
x
1
,
x
2
,

..
.,
x
n

lo
g
2
(n

)+
m

a
x
(x

1
,
..
.

x
n
)

T
2

fi
x
e
d
it
e
ra

ti
o
n
s
(n

)
fo
r(
n
)
s;

fo
r(
n
)
s
;

fo
r(
n
)
r
s
;

0
x

n
x

T
3

v
a
ri
a
b
le

it
e
ra

ti
o
n
s

(m
a
x
im

u
m

n
)

w
h
il
e
()

s
;

b=
0
;

w
h
il
e
()

{
s
;
b+
+
;}

fo
r(
b)

r
s
;

lo
g
2
(n

)
x

lo
g
2
(n

)
+

n
x

T
4

fu
n
c
ti
o
n
c
a
ll

f
()
;

f
f(
);

f
r(
);

0
x

x

T
5

c
o
n
st
ru

c
ti
v
e

a
ss
ig
n
-

m
e
n
t

v
@
=
w
;

v
@
=
w
;

v
=
@
w
;

1
0

1

T
6

k
-b
y
te

d
e
st
ru

c
ti
v
e

a
ss
ig
n
m
e
n
t

v
=
w
;

{
b
=

v
;
v
=

w
;
}

v
=

b;
8
k

0
8
k

T
7

se
q
u
e
n
c
e

s
1
;

s
2
;

s
n
;

s
1
;

s
2
;

s
n
;

r
s
n
;

r
s
2
;

r
s
1
;

0
x
1
+

..
.
+

x
n

x
1
+

..
.
+

x
n

T
8

ju
m
p

(l
a
b
e
l

lb
l

a
s

ta
rg

e
t
o
f
n

g
o
to

’s
)

g
o
to

lb
l;

s
1
;

g
o
to

lb
l;

s
n
;

lb
l:

s;

b=
1
;
g
o
to

lb
l;

s
1
;

b=
n
;
g
o
to

lb
l;

s
n
;

b=
0
;
lb
l:

s
;

r
s
;

sw
it
ch

(b
)

{ c
a
se

1
:
g
o
to

la
be

l 1
;

c
a
se

n
:
g
o
to

la
be

l n
;

} r
s
n
;
la
be

l n
:

r
s
1
;
la
be

l 1
:

lo
g
2
(n

+
1
)

0
lo
g
2
(n

+
1
)

T
9

N
e
st
in
g
s
o
f
T
0
-T

8
A
p
p
ly

th
e
a
b
o
v
e
re
c
u
rs
iv
e
ly

A
p
p
ly

th
e
a
b
o
v
e
re
c
u
rs
iv
e
ly

Chapter 11

Reversal of Linear Codes

11.1 Automated Generation . 177
11.2 Example: Fibonacci Sequence . 178
11.3 General Linear Codes . 179
11.4 Linear Code Reversal Algorithm . 179

11.4.1 Preprocessing . 180
11.4.2 Matrix Representation . 180
11.4.3 Eliminating Singularity . 182

11.5 Fast Backward . 184
11.6 Other Common Linear Codes . 185

11.1 Automated Generation

The method of determining reverse code based on local information, such
as inverting each statement individually, is effective in many situations, but
it is not the most efficient (memory-wise or computationally). In contrast,
other non-local approaches are needed to arrive at a good reversal, ideally,
eliminating the need for history. Examples include backtracking in the def-
use graph of the variables and/or performing inter-statement code analysis.
How much higher one might have to rise in increasing the scope or reach of
code depends on the particular code to be reversed. In this vein, reversibility
depends on the beholder’s eye, especially on the granularity of computation
at which the reversal is attempted. While individual instructions might not
be retraced backward perfectly, some program fragments might be perfectly
invertible when considered in aggregate. In other words, while a local view
might be irreversible, a more global view might readily make it reversible with
reduced or no memory. However, the generation of the aggregate reverses may
be highly challenging.

An excellent illustration of this local versus non-local reversal approach is
with a class of functions called linear codes, which are sequences of assignments
of arbitrary linear expressions to variables. It turns out that even the simplified
problem of reversing an assignment-sequence (linear control flow) requires a
non-trivial algorithm. However, it is indeed possible to reverse linear codes
despite the presence of destructive assignments and apparent singularities in
the input code.

177

178 Introduction to Reversible Computing

11.2 Example: Fibonacci Sequence

Consider the functions in Algorithm 11.1 used to generate Fibonacci sequences
of the formXn = Xn−1+Xn−2, where, say,X0 = 1 andX1 = 2. The algorithm
defines a function init() that initializes the sequence, with a= X0 and b=
X1. A function fib() advances the sequence one step forward. The sequence
can be generated by invoking fib() multiple times. After k invocations of
fib(), the variable a contains Xk+1 and b contains Xk+2. The challenge
we consider here is the automatic generation of the inverse revfib() that
uncomputes fib(). In other words, any k invocations of fib() followed by
the same number of invocations of revfib() restores a and b to the same
values as they had before the first invocation of fib(). This would provide
the capability to move forward as well as backward in the sequence. In general,
we would like an automated method, preferably one that can be incorporated
into a compiler, to automatically generate inverse functions for such forward
functions.

Algorithm 11.1 Functions for reversible Fibonacci sequence generation

int a, b;

void init()

{
a=X0;

b=X1;

}

void fib()

{
int c=a;

a=b;

b=b+c;

}

void revfib()

{

?

}
Initialization Forward Reverse

When we attempt to generate the reverse code line-by-line, we quickly en-
counter two instances of the destructive assignment problem: the assignments
c=a and a=b, each of which needs history to save the old values to reverse. In
general, a major difficulty arises from destructive assignments because they
are not invertible when considered in isolation. A destructive assignment is
one in which a variable is overwritten with a new value that has no correlation
with the variable’s old value when that assignment statement is examined in
isolation from its preceding code.

However, the Fibonacci sequence is indeed mathematically reversible.
Hence, it should be possible to generate a reverse function without requiring
history despite the presence of destructive assignments. Here, we will illustrate
how a method based on a expanded global view can relieve the limitation of
a local view.

Reversal of Linear Codes 179

11.3 General Linear Codes

Consider the class of codes called linear codes, of which the Fibonacci se-
quence generator example is but a special case. This class encompasses sev-
eral other common operations such as swap, circular/destructive shift, and
circular/lossy rotation. Linear codes are a generalization of basic operators
that are reversible, and include many additional operators. The swap opera-
tion, which is a self-reverse, is in fact a special case with n = 2 of a circular
rotation of n variables. The circular rotation itself is a linear code that can
be represented by an invertible matrix of constants operating on the vector of
variables [Perumalla, 2003].

Let L(. . .) denote any linear expression of variables and constants. For
any variable v, let v′ denote the value of that variable just prior to the first
modification in forward execution.

A linear code is a sequence S = (s1, . . . , sm) of assignments si : vi ←
Li(1, v1, . . . , vn, v

′
1, . . . , v

′
n) of linear expressions Li on any variables. The linear

expression can span both old values as well as new values of the variables to
allow for multiple updates to the same variable, and it can also use constants
in the expression. Variables can be assigned multiple times or not at all. Local
variables can also be used. However, jump instructions, branch statements,
loops, or recursion are not allowed. The function must consist of only a single
sequence of assignment statements.

11.4 Linear Code Reversal Algorithm

We will now present an algorithm for reversal, that takes any linear code
and generates its reverse code. The main idea behind the algorithm is the
observation that the linear sequence of assignments can be represented as a
matrix product operation. Indeed, let the old values of the variables be repre-
sented as a column vector V ′ and the operations of the linear code assignments
be represented as a matrix of constants W . Then the matrix product WV ′

gives a new column vector corresponding to the new values of the variables
V ← WV ′. This indicates that we only need to multiply both sides by the
inverse of W . The resulting equation V ′ ← W−1V recovers the old values in
terms of the current values. Thus, all we would need to do for reversal is to
apply the inverse of W . The meat of the algorithm is then concerned with
addressing singularities when W as obtained from the user-written code hap-
pens to be non-invertible. The steps to deal with all the cases are listed in
Algorithm 11.2.

For an input linear code, the algorithm generates equivalent forward and

180 Introduction to Reversible Computing

reverse codes such that the reverse function exactly restores the values of
variables changed by the forward function. This is achieved with memory space
whose size is independent of the number of invocations (either consecutive or
intermixed) of the forward and reverse functions.

Algorithm 11.2 Linear code reversal algorithm

1. Preprocess forward code

2. Obtain matrix representation

3. Iteratively eliminate matrix singularity:

(a) Perform row elimination

(b) Perform column elimination

4. Invert matrix

5. Generate optimized reverse code

11.4.1 Preprocessing

The first step is to convert the arbitrary user-specified sequence of assignments
into a different, equivalent version in which there is at most one assignment
per variable. This is also called Static Single Assignment (SSA) in the compiler
literature. The preprocessing is shown in Algorithm 11.3.

11.4.2 Matrix Representation

After preprocessing, let Li = wi0 +
∑n

j wijv
′
j , 1 ≤ i ≤ n. Then, S can be

written as V ←WV ′ corresponding to

1
v1
...
vn

←

1 0 · · · 0
w10 w11 · · · w1n

...
... · · ·

...
wn0 wn1 · · · wnn

1
v′1
...
v′n

.

If W is non-singular, then it is easy to recover V ′ by multiplying both sides
of the equation by the inverse of W : V ′ ←W−1V .

For the Fibonacci sequence generator fib() of Algorithm 11.1, the series
of transformations performed by the algorithm is shown in Figure 11.1. The
resulting forward and reverse functions are listed in Algorithm 11.4.

Reversal of Linear Codes 181

Algorithm 11.3 Preprocessing in linear code reversal algorithm

� Input User-specified sequence of m0 assignment statements

S0 ≡ (s01, . . . , s
0
m0)

on n0 variables, where

s0i ≡ vi ← L0
i (1, v1, . . . , vn0 , v′1, . . . , v

′
n0).

Note that any vi could appear as the left-hand side (LHS) of zero or
more assignment statements, and hence the m0 can be larger or smaller
than n0.

� Goal Convert the input function to an equivalent function, with possibly
fewer or more assignment statements, such that

1. Each variable appears as the LHS of exactly one assignment.

2. All right-hand side (RHS) expressions are rewritten equivalently in
terms of values held by each variable immediately prior to the first
assignment statement in the function.

� Algorithm

1. Temporarily treat local variables as global.

2. For every variable vi, add the assignment vi ← v′i to the top of the
function, that is, S0 ← (vi ← v′i, S

0).

3. For every assignment s0i , replace it with

vi ← L0
i (1, E(v1), . . . , E(vn0)),

where E(v) is the RHS expression of the most recent assignment
to v. In other words, in every linear expression L, expand every
reference to v by its equivalent expression that is only based on old
values v′ and not on any new values.

4. At this point, no global variable will have dependency on any local
variable. For every local variable vl, delete all assignments to vl.

5. From S0, for every assignment vi ← . . ., delete all except the last
assignment to vi.

� Output A revised sequence of assignments S = (s1, . . . , sm), where
si : vi ← Li(1, v1, . . . , vi−1) of linear expressions Li only on variables
already assigned values, and no vi appears more than once on the LHS
of any assignment.

182 Introduction to Reversible Computing

Forward
int c=a

a=b

b=b+c

1⇒
c=a

a=b

b=b+c

2⇒

a=a’

b=b’

c=c’

c=a

a=b

b=b+c

3⇒

a=a’

b=b’

c=c’

c=a’

a=b’

b=b’+a’
4 ⇓

a=a’

b=b’

a=b’

b=b’+a’

5⇒ a=b’

b=b’+a’

6⇒

1
a
b

 =

1 0 0
0 0 1
0 1 1

1
a′

b′

7 ⇓

1
a′

b′

 =

1 0 0
0 −1 1
0 1 0

1
a
b

 8⇒ a’=-a+b

b’=a

9⇒
Reverse
int c=a

a=-a+b

b=c

FIGURE 11.1: Sequence of transformations for Fibonacci sequence re-
versal.

Algorithm 11.4 Automatically generated reversal for Fibonacci sequence

void fib()

{
int c=a;

a=b;

b=b+c;

}

void revfib()

{
int c=a;

a=-a+b;

b=c;

}
Forward Reverse

11.4.3 Eliminating Singularity

When the matrix W is invertible, as in the Fibonacci example, it is straight-
forward to recover the old values V ′ of the variables V . But what if W turns
out to be singular, with no inverse? This case is addressed next.

When W is singular, at least one of the rows can be expressed as a linear
combination of the other rows, or at least one of the columns can be expressed
as a linear combination of the other columns. Consider the simple linear code
in Algorithm 11.5 on two variables a and b.

Clearly, the matrix is non-invertible. However, this does not imply that
the code cannot be reversed. In fact, one of the possible reverse codes is

a’=a/3; b’=2a’; .
In general, the solution to the singularity problem is to eliminate all lin-

Reversal of Linear Codes 183

Algorithm 11.5 Example code containing singularity preventing reversal

Forward: a=a+b;

b=2a;

Preprocessed: a=a’+b’;

b=2a’+2b’;

Matrix:

1 0 0
0 1 1
0 2 2

1
a′

b′

 =

1
a
b

ear combination relationships among the variables or sub-expressions. In the
preceding example, the RHS expressions of both the variables a and b are
simply linearly related to each other, which makes the resultant matrix non-
invertible. Removal of the linear dependencies can be accomplished via either
row elimination or column elimination. Between the two choices, row elimi-
nation may be preferable because it does not add any new variables, thereby
minimizing memory usage.

Let W be represented as a column matrix of rows Ri, 0 ≤ i ≤ n, as

W =

R0

...
Rn

.

When W is singular, one of the variables, say v, can be expressed as a linear
combination of the other variables. Using this fact, we can eliminate v from
the RHS of all other variables. This reduces the matrix size from n × n to
(n−1)×(n−1). This process can be repeated until the matrix is not singular.
In the preceding singularity example, the second row can be expressed as two
times the first row:

a=a’+b’;

b=2a;
⇒ b’=2a’; ⇒ a=a’+2a’; ⇒ a=3a’; ⇒ a’=a/3;

b’=2a’;
.

An analogous process can be performed to eliminate columns instead of rows.
While row elimination corresponds to the capture of the redundant variable,
column elimination essentially corresponds to the capture of the redundant
common sub-expression that occurs on the RHS expressions of all the vari-
ables. Using the column elimination approach, we can observe that the sub-
expression a’+b’ occurs on the RHS of both variables. This can be corrected
by introducing a new variable, c=a+b, and transforming the forward code as

a=a’+b’;

b=2(a’+b’);
⇒

a=a’+b’;

b=2(a’+b’);

c=a+b;

⇒
a=c’;

b=2c’;

c=3c’;

⇒
a’=c’’;

b=2c’’;

c’=c/3;

c’’=c’/3;

⇒
c’=c/3;

a’=c/9;

b’=2c/9;

184 Introduction to Reversible Computing

Note the use of c’’ in the derivation. Although we can compute c’, we still
need to recover the user’s original values of a’ and b’. Because c’=a’+b’

gives only one equation with two unknowns, we cannot recover a’ and b’

from c’ alone. Computing c’’ and reevaluating a’ and b’ from c’’ solves
the problem.

Thus, there are two equivalent reversals possible for the same forward code.
Guards are needed to deal with boundary conditions for the initial values.

These guard conditions protect the reverse execution from going backward
past the valid forward-reverse code relationship. This can require protecting
from 0 to n initial conditions, where n is the number of variables in the forward
code.

11.5 Fast Backward

A natural extension of the matrix approach is in reversing by more than one
step backward at a time. While normal reverse execution mode is treated for
a single step backward, it is possible to efficiently jump s steps backwards at
once. Because the update proceeds as V ← WV ′, the state after s steps is
given by V ← W sV ′

s , where V and V ′
s are values of the variables s updates

apart. The fast reversal backward by s steps is achieved as V ′
s ← (W s)−1V .

For example, the Fibonacci sequence can be jumped two steps at a time
with s = 2 using the following derivation:

1
a
b

 =

1 0 0
0 0 1
0 1 1

1
a′

b′

⇒

1
a
b

 =

1 0 0
0 0 1
0 1 1

1 0 0
0 0 1
0 1 1

1

a′
′

b′
′

⇒

1
a
b

 =

1 0 0
0 1 1
0 1 2

1

a′
′

b′
′

⇒

1 0 0
0 2 −1
0 −1 1

1
a
b

 =

1

a′
′

b′
′

⇒ a’’=2a-b; b’’=-a+b;

.

The reverse code to jump backward two steps at a time is given in Algo-
rithm 11.6.

The computation of the inverse matrix (W s)−1 can be time-consuming
when the number of variables is large. However, the number of variables is not
large for programs whose source codes are human generated. Moreover, the

Reversal of Linear Codes 185

determination of the inverse matrix is a one-time cost, incurred at compilation
time, not runtime.

Algorithm 11.6 Single- and double-stepping reverse functions for Fibonacci
sequence

void fib()

{
int c=a;

a=b;

b=b+c;

}

void revfib()

{
int c=a;

a=-a+b;

b=c;

}

void revfib2()

{
int c=a;

a=2a-b;

b=-c+b;

}
1-step Forward 1-step Reverse 2-step Reverse

11.6 Other Common Linear Codes

� Swap: The swap operation x↔ y is a simple, small case of linear codes.
When written in matrix form, it gives a matrix that is a self-inverse.

Forward
int t=x;

x=y;

y=t;

⇒
t=x’;

x=y’;

y=x’;
⇒ x=y’;

y=x’;
⇒

1
x
y

 =

1 0 0
0 0 1
0 1 0

1
x′

y′

⇒

1 0 0
0 0 1
0 1 0

1
x
y

 =

1
x′

y′

⇒ x’=y;

y’=x;
⇒

Reverse
int t=x;

x=y;

y=t;

� Circular Rotate: A circular rotation of an array of variables is a linear
code. Each element is shifted as xi ← x′

(i+b mod n), 0 ≤ i < n, where n

is the number of elements, b = 1 for left shift, b = −1 for right shift, x′
i is

the pre-shift value and xi is the post-shift value. This is a generalization
of the swap operation (n = 2 gives the swap). For example, a left shift
would result in

1
x0

x1

...
xn−2

xn−1

=

1 0 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 1 0 0 · · · 0 0

1
x′
0

x′
1
...

x′
n−2

x′
n−1

,

186 Introduction to Reversible Computing

which is easily inverted as

1
x′
0

x′
1
...

x′
n−2

x′
n−1

=

1 0 0 0 · · · 0 0
0 0 0 0 · · · 0 1
0 1 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0
0 0 0 0 · · · 1 0

1
x0

x1

...
xn−2

xn−1

.

Chapter 12

Reversible Random Number

Generation

12.1 Random Stream Traversal: Forward versus Reverse 187
12.2 Memory-Based Method to Make a Generator Reversible 189
12.3 Pseudorandom Numbers . 192

12.3.1 Forward Generation . 192
12.3.2 Reversible Generation . 193

12.4 Reversible Generation from the Uniform Distribution 194
12.4.1 Open versus Closed Ranges . 194
12.4.2 Linear Congruential Generators . 195
12.4.3 Counting-Based Generators . 196

12.5 Reversible Generation from Invertible Cumulative Distributions 197
12.6 Reversible Generation from Probability Density Functions 197

12.6.1 Reversibility Problem . 198
12.6.2 Upper-Bounded Rejection-Based Sampling 199

12.6.2.1 Forward Generation . 199
12.6.2.2 Reverse Generation . 200
12.6.2.3 Reversing the First Deviate 202

12.6.3 Upper- and Lower-Bounded Rejection-Based Sampling 202
12.6.3.1 Forward Generation . 203
12.6.3.2 Reverse Generation . 203

12.7 Further Reading . 204

12.1 Random Stream Traversal: Forward versus Reverse

Probability distributions are routinely employed in computer codes such as
simulations of physical system models. Random number streams are used to
generate samples that conform to certain probability distributions. In com-
putationally intensive simulations, very large numbers of random samples are
drawn (millions to billions in number).

The generation of, or traversal along, pseudorandom number streams or
sequences has been very well studied over many years. Traditionally, aspects
of considerable interest in random number generation have been (1) maximiz-
ing or increasing the lengths of random number streams for a given precision

187

188 Introduction to Reversible Computing

of each number, (2) increasing the computational speed of generation, (3)
approximation techniques for complex distributions, and (4) reducing correla-
tions across multiple parallel streams. However, the aspect of reversibility of
generation is a less-studied consideration. While it intersects orthogonally to
most of these factors, it has not yet received as much attention. Thus, the ma-
jority of literature in random number generation is predominantly concerned
with the forward mode of traversal along a random number stream, but much
less so with the reverse mode.

In the context of reversible computing, if a forward computation invokes a
random number generator (RNG), and that computation is later reversed, it is
necessary to reverse the random number generation as well. Otherwise, results
from subsequent forward execution become non-deterministic and unrepeat-
able; they also deviate from a corresponding irreversible execution, making it
harder to validate and accept the final answers from the computation.

In order to be able to correctly roll back the random number generation,
traditionally, the seed value is checkpointed after every generated random
number sample. This does solve the correctness problem but introduces a
large amount of inefficiency because of the memory copying time and the
consumption of a large amount of memory. The alternative is the reverse
computation approach in which the inverse code from the forward code of
the RNG can be developed and invoked to go backward in the stream. The
challenge, then, is to determine the inverse code of the forward RNG code.

To avoid checkpointing, if the reverse compilation approach is attempted,
the following problem is quickly encountered. RNGs rely on lossy/destructive
assignments such as modulo operations. This implies that a straightforward
application of automation techniques can degenerate to (incremental) check-
pointing, and they are not any more effective than checkpointing approaches.
To get around this problem, manually developed reversible RNGs are needed
that do not require any checkpointing to backstep along the random stream.
On an abstract level, such RNGs can indeed be expected to exist because,
after all, random number streams are statically laid out cyclic sequences of
numbers, and it should be possible to traverse forward and backward along
the cycles with the same ease. Fortunately, many RNGs do possess forward
and reverse generation functions (e.g., [L’Ecuyer and Andres, 1997]) that can
be easily applied for reverse computation.

The need for avoiding checkpointing and focusing on reverse computation
approaches to reversible random number generation is more pronounced when
one considers some of the recent high-quality RNGs. Due to new statistical
requirements arising out of their large size and inherent complexity, recent
simulation applications require RNGs with stronger statistical properties and
longer periods, which together imply an increase in the seed size of the RNG.
For example, the “Mersenne Twister” (MT19937) RNG has an extremely
long period of 219937 − 1, and is of high statistical quality [Matsumoto and
Nishimura, 1998]. However, it requires 624 words of space for seeds. Whenever
random number generation is performed in the forward execution, the seeds

Reversible Random Number Generation 189

must be saved. For a traditional forward computation using this generator,
2496 bytes of state would need to be saved per forward invocation just to
support the undo operation for the RNG. One might think that incremental
checkpointing could be employed here, but the way this RNG is structured,
portions of bits from each word are subject to change every time a random
number is generated, thus making it difficult to optimize using incremental
checkpointing techniques. Assuming the reverse recurrence can be found for
MT19937, which its creators believe is possible, no checkpointing is required
for the seeds, which reduces the memory requirements of such applications
considerably. Because of the reduction in checkpointing overheads, system
performance will improve as well.

Here we will examine some efficient reversible methods that permit both
the traditional forward traversal as well as backward traversal. Reversible ran-
dom number generators are presented for four common classes of probability
distributions, as summarized in Table 12.1.

12.2 Memory-Based Method to Make a Generator Re-

versible

For simple distributions, the random number generation procedure is often
specified by a closed-form formula (e.g., for the exponential distribution). More
complex distributions are either computationally complex or may not be ex-
pressible as closed-form expressions. While the simpler ones may be reversed
more easily than the others, there is one general method that is applicable to
any generator.

Reversal of any random number generator can be accomplished by simply
storing the generated bits in computer memory (persistent or volatile storage,
depending on desired type of usage), and replaying them for reversal. Thus,
the simplest reversal is obtained by logging all forward sequences of random
numbers, and reading them from the log in last-in-first-out (LIFO) order dur-
ing reversal. This is the most memory intensive, but the most general, method
because it is not restricted to computationally generated random numbers. For
example, random numbers sourced from atmospheric radiation can be easily
reversed using this memory log-based approach. Thus, in the case of hard-
to-reverse physically based random number generators or other hard-to-invert
pseudorandom generators, reversibility can be accomplished simply by record-
ing the conventional forward sequence in memory. The memory can be filled
in advance of use, or can be generated on-the-fly during use. Either way, the
amount of memory available to store the generated numbers determines the
length of the random sequence that can be reversed (i.e., traversed in either
direction). Given a memory size limit of Mz bits and a precision of b bits per

190 Introduction to Reversible Computing

TABLE 12.1: Summary of Reversible Random Number Generators

Forward Reverse Memory Description
-Limited

RT () RT
−1() Yes Memory-based generator that can

wrap any underlying forward genera-
tor R∗() and make it reversible, within
memory limits

RU () RU
−1() No Generator for the uniform distribution

RC() RC
−1() No Generator for distribution with cu-

mulative distribution function (CDF)
c(x) =

∫ x

0
p(x)dx whose inverse

c−1(·) is analytically known, where
c−1(c(x)) = x

RJ () RJ
−1() No Acceptance/Rejection-based generator

for any distribution with known proba-
bility density function (PDF) p(·) and
“cover” function u(x) such that p(x) ≤
u(x) for all x, and the cover function
has an invertible CDF so that it can
be randomly sampled using a suitable
generator of type RC()

RK() RK
−1() No Upper- and Lower-bound-based Ac-

ceptance/Rejection generator for any
distribution with known PDF p(·)
and a series of K upper-bound func-
tions uk(·) and lower-bound functions
lk(·) such that, for 0 ≤ k < K,
p(x) ≤ uk+1(x) ≤ uk(x) and lk(x) ≤
lk+1(x) ≤ p(x), and u0(x) can be sam-
pled using a suitable generator of type
RC()

Reversible Random Number Generation 191

number, the length of the sequence that can be reversed at any given moment
is M = Mz/b.

Algorithm 12.1 shows a scheme to traverse forward and backward along
any random number sequence. The conventional forward random sequence is
generated by calls to a function R∗(). The inverse of R∗() is assumed to be
either unknown, or physically infeasible to obtain, or expensive to compute.
The algorithm uses a circular buffer B of size M to keep a reversal window
of M numbers, counting backward from the latest call to R∗(). The circular
buffer is realized as an array indexed from 0 to M − 1, with indices h, c and
t used to remember the head, current, and tail positions, respectively, in the
reversal window. The user of the random number stream must invoke RT ()
instead of R∗() to generate the next random number in the forward sequence.
To step backward in the sequence, the user invokes RT

−1(). Any order of the
forward and backward calls can be made, as long as at most M consecutive
calls are made to RT

−1() after the most recent call to R∗(). After n ≥ 0 calls
to R∗(), the reversal window is of length min(n,M).

Algorithm 12.1 Reversing any forward random generator R∗() using a finite
M -sized circular buffer

B[]=Array indexed 0 to M − 1, used as circular buffer of M b-bit integers
M=Buffer size (M ≥ 1)
h=Leading position in (index into) circular buffer, initially 0
c=Current position in (index into) circular buffer, initially 0
t=Lagging position in (index into) circular buffer, initially M − 1

RT ():

if h = c then
B[h]←R∗()
h← (h+ 1) mod M
if h = t then
t← (t+ 1) mod M

end if
end if
u← B[c]
c← (c+ 1) mod M
return u

RT
−1():

c← (c− 1) mod M
u← B[c]
return u

(a) Forward (b) Reverse

This scheme can be used for any generator (either a pseudorandom number
generator or a physically based generator), at the expense of storage space.
Also, the reversal window is necessarily limited by the amount of memory
devoted to this generator. Note that the size (b bits) for each element in the
buffer corresponds to the size of the variate and not the size of the underlying

192 Introduction to Reversible Computing

generator state. For example, in the case of pseudorandom number generators,
the bit size bs of the underlying seed can be much larger than b bits required
to represent one double precision number. In such cases, the size of the trace
obtained by saving the double precision number is much smaller than a trace
in which the sequence of seeds is saved. For very high-quality random numbers,
bs can be as large as 1024 bits or even larger, whereas typically b ≤ 64. In
certain generators that generate bits rather than numbers, b = 1, M may have
to be set to a large value because such generators typically generate several
millions of random bits per second.

12.3 Pseudorandom Numbers

In the absence of a universally accepted definition of randomness, any reference
to randomness should, in a strict sense, be interpreted as pseudorandomness.
Nevertheless, the term “pseudorandom numbers” is commonly used to specif-
ically refer to deterministic cycles of integers generated from within a closed
computing system. They are designed for ease of use, and for repeatable repro-
duction of sequences. In practice, the bit precision b of the generated integers
is sufficiently large (b ≥ 32), and the cycle lengths P are also large (e.g.,
P ≥ 2128). Because the generators are essentially cycles, it is conceptually
possible to traverse the cycles forward as well as backward, although often
generators are only written for forward traversal of the cycles.

12.3.1 Forward Generation

The operation of the generators is envisioned as follows. The user invokesR∗()
to generate the next number in the random number sequence. The internal
state, such as the memory used by the variables, of the generator is encap-
sulated as s. For example, the set of seeds and any other working variables
together constitute the state of the generator. Without loss of generality, the
memory size for s can be considered to remain constant throughout the ran-
dom number sequence. A function g(s) maps the state to a number r in a
range desired by the user for random numbers. Note that the bit width of r
is bounded by (and often much less than) the bit width of s. The state s is
then overwritten by the value returned by a function f(s) that generates the
random sequence of evolution.

The literature is rich with a wide range of pseudorandom number genera-
tors, each defining a pair of f(·) and g(·) functions (see, for example, [Gentle,
2003]). In most generators, f(·) is a computationally complex sequence of
arithmetic operations, while g(·) is a relatively simpler function. However,
other generators also exist in which the opposite is true, in which f(·) can be

Reversible Random Number Generation 193

as simple as an increment operation, while g(·) assumes the entire functional-
ity of randomization.

12.3.2 Reversible Generation

For reversal of the random number sequence, the user invokes a new function
R∗−1() that is defined to take one step backward in the sequence and recover
the previous number. In general, n ≥ k consecutive invocations of R∗(), for
any k ≥ 0, followed by n − k consecutive invocations of R∗−1(), has the
aggregate effect on the stream that is the same as the effect of k consecutive
invocations of R∗() alone.

Let s← f−1(s) be the inverse operation of the update s← f(s) to recover
the previous state of the seed s. If f−1(·) is known, then it is easy to invert
the generator in R∗() and arrive at a procedure for R∗−1(). However, often it
is challenging to find f−1(·) for any given f(·). In general, there is no known
method to create a reversible version of a conventional forward pseudorandom
number generator.

The property of pseudorandom number codes that makes it challenging to
discover their inverses automatically is that the generators contain destructive
assignments, thereby apparently making them irreversible. Yet, it is concep-
tually reasonable to expect that they ought to be perfectly reversible with
zero memory trace because the cycles ought to be amenable to traversal in
the opposite direction to that of the forward generation. One straightforward
way to achieve reversal is by relying on the knowledge of the period of the
sequence (i.e., after how many invocations a seed value repeats itself in the
sequence). Then, the reverse can be produced by fast-forwarding and looping
back in sequence, rather than by true reversal of execution path. For example,
if the period (length of the cycle) is P , then executing s← f(s) exactly P − 1
times ensures that s moves one step backward. Under modulo arithmetic, it
is possible to realize the repeated application of the arithmetical operations
efficiently.

Another way to define reversible random number generators is by restrict-
ing the operations of f(·) to only perfectly reversible versions (e.g., using
only constructive operations such as accumulation and lossless bit shift oper-
ators). However, we are not aware of generators that are defined using only
constructive operations. Cellular automata-based generators [Gentle, 2003]
appear possible to adopt for this purpose, based on the constructive aspect
of updates based on neighbor values, but reversibility aspects of boundary
conditions need to be accounted for in complete reversibility.

194 Introduction to Reversible Computing

12.4 Reversible Generation from the Uniform Distribu-

tion

One of the most primitive random streams is one that produces variates uni-
formly distributed in the interval [0, 1]. A large number of other complex
distributions can be built over random samples from this uniform distribu-
tion. For this reason, the uniform random number generator is an essential
building block for most other schemes. Thus, in order to make other complex
distributions reversible, it is first necessary to develop reversible generators
for the uniform distribution. A uniform distribution is given by a probability
distribution function p(·) in the interval [a, b) satisfying the following equation
for its cumulative distribution function (CDF) cp(·):

cp(x) =

∫ x

a

p(x)dx =

{ (
x−a
b−a

)
if a ≤ x < b

1 if x ≥ b
.

The template for forward and reverse execution of a uniform pseudorandom
number generator is shown in Algorithm 12.2. The function S() computes
the next seed values from the current seed values, while S−1() computes the
previous seed values from the current seed values. The function U() maps the
seed values to the range [0, 1). Note that the same function U() is used in both
forward and reverse algorithms.

Algorithm 12.2 Uniform random number generator

RU ():

u← U(s)
s← S(s)
return u

RU
−1():

s← S−1(s)
u← U(s)
return u

(a) Forward (b) Reverse

12.4.1 Open versus Closed Ranges

To facilitate reversibility, the uniform random number must be defined to be
sampled from [0, 1), That is, all real numbers between 0 (inclusive) and 1
(exclusive). If it is instead generated in [0, 1], that is, with both 0 and 1 being
inclusive, it usually interferes with one-to-one properties required for reversal.

For example, consider an operation of the form

θ ← (θ + r · 2π) mod 2π

Reversible Random Number Generation 195

in which an angle θ ∈ [0, 2π) is rotated by a random offset r · 2π, modulo 2π,
where r is a variate from the uniform distribution in the interval between 0
and 1. This operation can be reversed as

θ ← (θ − r · 2π) mod 2π.

However, if r ∈ [0, 1] (that is, inclusive on both ends), then both r = 0 and r =
1 result in the same value for θ, violating the one-to-one mapping requirement
for reversal, and resulting in loss of information and ambiguity for reversal.
In effect, the range [0, 1] maps 0 and 1 to the same value, which eventually
creates ambiguity. Thus, it is best to restrict the uniform distribution to the
interval [0, 1) rather than to the (0, 1) that is exclusive on both ends or [0, 1]
that is inclusive on both ends. The use of (0, 1) can also be envisioned without
interfering with reversibility, but the exclusion of 0 is not usually desired.

12.4.2 Linear Congruential Generators

A popular class of pseudorandom number generators is the Linear Congruen-
tial Generator (LCG). In an LCG, f(·) is a function of the form

xi+1 = (axi + c) mod m,

where a and m are integers, 0 < a < m and 0 ≤ c < m, and c and m are
mutually prime. The term a is a primitive root of m, that is, for every integer
0 < d < m, there exists an integer k such that ak mod m = d.

An LCG can be reversed using the inverse of a (modulo m) given by b as

b = am−2 mod m,

giving
xi = (bxi+1 − c) mod m.

In all the preceding equations, the modulus operation is defined on any integer
m > 0 and (positive or negative) integer x as

x mod m =

x if 0 ≤ x < m,
(x−m) mod m if m ≤ x, and
(x+m) mod m if x < 0.

The forward and reverse functions, S and S−1, respectively, for linear con-
gruential generators for the uniform distribution are given in Algorithm 12.3.

For example, consider m = 7 whose primitive root is a = 3. The inverse
of a is b = 37−2 mod 7 = 5. Let c = 2. For these LCG parameters, the
sequence in Table 12.2 is obtained using the forward and reverse procedures
of Algorithm 12.3.

196 Introduction to Reversible Computing

Algorithm 12.3 Reversible linear congruential generator

x {Seed}
m {Modulus}
a {Multiplier}
c {Increment}
b← am−2 mod m

S():

x← (ax+c) mod m

S−1():

x← (b(x− c)) mod m

Variables Forward Reverse

TABLE 12.2: Example LCG Sequence for m = 7, a = 3, and c = 2

Forward Reverse
i xi xi+1 ← (axi + c) mod m xi ← (b(xi+1 − c)) mod m

0 x0 ↓ 5 ↑ 5
1 x1 ↓ 3 ↑ 3
2 x2 ↓ 4 ↑ 4
3 x3 ↓ 0 ↑ 0
4 x4 ↓ 2 ↑ 2
5 x5 ↓ 1 ↑ 1
6 x6 ↓ 5 ↑ 5

12.4.3 Counting-Based Generators

A special class of random number generators exists in which f(·) is a compu-
tationally trivial function, making it easy to arrive at their inverses. In such
cases, it is straightforward to define the forward-reverse pairs of functions to
move forward and backward in the random number stream. For example, with
the counter-based generators [Salmon et al., 2011], this is achieved by simply
incrementing or decrementing the seed value, respectively, to move forward
and backward, respectively, in the stream. In addition to sequential traversal
of the random sequence, it is also possible with such counter-based methods
to directly jump to any arbitrary place in the sequence. Thus, reversal of such
sequences becomes a trivial operation, namely using a single counter variable
to remember the current location, and incrementing or decrementing it as
needed to move forward or backward in the sequence. This simple reversal
algorithm for counting-based generators is illustrated in Algorithm 12.4.

Algorithm 12.4 Update function S() for counting-based generators

Forward Reverse

S(s): S−1(s):

s← s+ 1 s← s− 1

Reversible Random Number Generation 197

12.5 Reversible Generation from Invertible Cumulative

Distributions

In the case of simple probability distributions such as the exponential or Pareto
distributions, closed-form inversions of their CDF are known. Such distribu-
tions can be easily traversed in forward and reverse directions by a simple
procedure that is built using reversible uniform random generators. Reversing
the sampling operation on an exponential distribution thus becomes as simple
as invoking the reversal of the underlying uniform random number generator,
once per reversal step. The restoration of the uniform random number seed is
necessary and sufficient for reversing the sampling of the distribution.

The typical method based on invertible CDF works as follows. Given the
CDF cp(·) of a PDF p(·), the distribution can be sampled as xr = c−1

p (r),
where r is uniformly distributed in [0, 1]. Because this gives a direct map-
ping from the uniform distribution to the desired distribution, the reversible
generation of xr is a simple mapping from the reversible generation of r. For
example, if the PDF is the exponential distribution

p(x) =

{
λe−λx if x ≥ 0,

0 otherwise,

then the CDF is given by

cp(x) =

{
1− e−λx if x ≥ 0,

0 otherwise,

and the inverse CDF is given by

c−1
p (r) = xr =

{
− log (1−r)

λ = − log r
λ if r ∈ [0, 1],

0 otherwise.

The forward and reverse algorithms of random number generation for any
distribution with an inverse CDF c−1

p (r) are shown in Algorithm 12.5.

12.6 Reversible Generation from Probability Density

Functions

There are many instances in which, for a given PDF, the integral for its CDF
cannot be analytically determined. In other cases, the CDF is computationally
expensive to evaluate for every sample. In such cases, algorithmically complex
sampling procedures are used, involving control flow such as conditional state-
ments and iteration. The reversal challenge for such distributions is rooted in

198 Introduction to Reversible Computing

Algorithm 12.5 Random number generator for distributions with invertible
cumulative distribution functions

RC():

r ←RU ()
xr ← c−1

p (r)
return xr

RC
−1():

r ←RU
−1()

xr ← c−1
p (r)

return xr

(a) Forward (b) Reverse

the fact that the control flow breaks the one-to-one correspondence between
the underlying uniform random number seed stream and the probability dis-
tribution sample stream.

12.6.1 Reversibility Problem

Here we consider a class of approaches called acceptance-rejection methods of-
ten used to generate samples from any complex distribution that is specified
only by its PDF. In the context of reversibility, the most important aspect of
these methods is that they take multiple samples from the uniform distribu-
tion for generating each single sample of the complex distrbution. A variable
number of calls to the uniform random number generator are made in a loop
to examine a sequence of candidates before selecting one that satisfies the
distribution of interest.

For reversal to properly step back to a previous sample, it is necessary to
execute the iteration in reverse order as many times as was performed in the
forward execution. For example, if the forward execution took in iterations of
the loop to generate the nth sample, the loop must be reversed the same in
number of times in the reverse execution. Within each iteration, among other
things, one sample (or, in general, a fixed number of samples) of the uniform
distribution is taken. This results in a logical mapping from the one sample
of the complex distribution to one or more samples of the uniform distribu-
tion. This dynamically changing nature of mapping from the nth sample of
the complex distribution to the number of samples in of the uniform distri-
bution introduces a challenge for reversible execution. The variable mapping
is illustrated in Figure 12.1, in which each vertical line represents a sample
taken from the distribution by the generator.

If the general automation methods described in Chapter 9 are applied
to the code of the forward generator for the complex distribution, the auto-
mated method will log the number of iterations in to the runtime trace for
every sample numbered n. However, such a logging scheme consumes mem-
ory proportional to N log2 M for ensuring reversibility from 0 to N samples,
where M is the maximum number of iterations per sample. This memory is

Reversible Random Number Generation 199

RU

Forward computation

Reverse computation

RJ

RU=Uniform distribution generator
RJ=Complex distribution generator

i1

}

12

i2

}

in

}
n...

...

FIGURE 12.1: Variable number of uniform distribution samples used
for sampling a complex distribution.

required to remember the loop count 1 ≤ in ≤ M for each sample numbered
n, 0 ≤ n ≤ N . To avoid the memory overhead, a different approach is needed
that does not rely on remembering the loop counts, but can navigate back
precisely to a sample in the past without using memory. Such memory-less
reversible generation is described next for two common methods in the class
of acceptance-rejection approaches.

The first method, namely Upper-Bounded Rejection-Based Sampling, relies
on the availability of a special upper-bound function that covers the desired
PDF everywhere. The second method, namely Upper- and Lower-Bounded
Rejection-Based Sampling, relies on a series of upper- and lower-bound func-
tions that cover the desired PDF from the top and bottom, respectively.

12.6.2 Upper-Bounded Rejection-Based Sampling

Consider a PDF p(·) for which its CDF cannot be found, or cannot be inverted,
or cannot be computed inexpensively. In all these cases, it is possible to employ
an acceptance-rejection approach to generate variates that satisfy p(x). How-
ever, along with p(·), an upper-bound function u(·) is needed. This function
is also called a cover function or envelope. The desired function p(·) must be
covered by some scaling of the upper-bound function, that is, p(x) ≤ α · u(x)
for all x, for some constant α. Also, for u(·), its CDF, cu(·), should be known
and be invertible, that is, a computable function c−1

u (·) must be known. Note
that the inversion of the CDF is used even in the traditional forward-only
method to define the forward procedure itself.

200 Introduction to Reversible Computing

12.6.2.1 Forward Generation

Generation of a random value conforming to p(·), illustrated in Figure 12.2,
proceeds as follows. First, using a uniformly distributed random variable r1 ∈
[0, 1), the inverse CDF c−1

u (·) of u(·) is used with Algorithm 12.5 to generate
a random variate xr conforming to u(·). Using xr , a scaled probability value
yu = α · u(xr) is determined; similarly, the probability value belonging to
the desired distribution is computed as yp = p(xr). A uniformly distributed
value yr ∈ [0, yu) is determined using a uniformly distributed random number
r2 ∈ [0, 1) as yr = r2 ·yu. If yr ≤ yp, then the generated value xr is accepted as
a random sample conforming to p(x). Otherwise, the candidate xr is rejected,
and the process is repeated to find another candidate. Thus, if yr ∈ [0, yp], then
xr is accepted, else (i.e., yr ∈ (yp, yu]) xr is rejected. Using this procedure, on
average, the accepted values of xr follow the desired distribution p(·).

x

P
ro
b
a
b
il
it
y(
X
=
x)

xr

FIGURE 12.2: Upper-bounded rejection-based sampling.

12.6.2.2 Reverse Generation

The forward and reverse algorithms are shown in Algorithm 12.6. In the
algorithms, the function c−1

u (·) is the inverse CDF of u(·) that operates on the
uniformly distributed random number r1 to return the random sample xr.

Two key observations about the forward algorithm are: (1) each iteration of
the loop moves forward along the uniform random number stream by exactly
two steps corresponding to the two invocations of RU (), and (2) the iteration
is exited whenever the pair of random numbers (r1, r2) is such that yr ≤ yp.

Reversible Random Number Generation 201

Algorithm 12.6 Reversible upper-bounded rejection-based sampling

RJ ():

N ← N + 1
for ever do
r1 ←RU ()
r2 ←RU ()
xr ← c−1

u (r1)
yu ← α · u(xr)
yr ← r2 · yu
yp ← p(xr)
if yr ≤ yp then
exit loop

end if
end for
return xr

RJ
−1():

r2 ←RU
−1(){Recover recent r2}

x← c−1
u (r2)

RU
−1(){Go back past recent r1}

for ever do
r2 ←RU

−1()
r1 ←RU

−1()
xr ← c−1

u (r1)
yu ← α · u(xr)
yr ← r2 · yu
yp ← p(xr)
if yr ≤ yp then
RU (){Correct back to r1}
RU (){Correct back to r2}
exit loop

end if
end for
N ← N − 1
return x

(a) Forward (b) Reverse

202 Introduction to Reversible Computing

The reversal of the forward algorithm can be built on these two observations
as follows.

When the reverse algorithm RJ
−1() is invoked after an execution of the

forward algorithm RJ (), it is clear that the most recent pair of uniform ran-
dom numbers from RU () corresponds to the most recently accepted candidate
xr by RJ (). Thus, in the reverse, this value of xr is first recovered and remem-
bered in the variable x. Next, the uniform random number stream needs to be
rewound to the correct place at which the previous RJ () invocation started.
This position in the stream is detected simply by searching backward in the
stream for the pair of r2 and r1 for which the loop exit condition is satisfied.
This point corresponds to the accepted value prior to the one that is being
reversed. The random number pair is then moved forward once to leave it in
the same place as the one at which the previous invocation of RJ () started.

The total number of samples generated is tracked in the variable N , which
is incremented for every forward invocation and decremented for every rever-
sal.

12.6.2.3 Reversing the First Deviate

The reversal works perfectly until N = 1. Reversing the last step from
N = 1 to N = 0 requires a slightly modified treatment because of the specific
value of the initial seed of the random stream. The number of iterations of
the for ever loop in the forward execution can be remembered in a single
variable when N = 0. The random number stream can be rewound that many
times (two steps back per iteration) to restore the stream to exactly the same
initial value as when the stream was started. This being a minor adjustment,
it is omitted for simplicity in Algorithm 12.6.

12.6.3 Upper- and Lower-Bounded Rejection-Based
Sampling

A more complex variant of the rejection-based sampling is designed to reduce
the computation effort for distributions whose PDF is computationally expen-
sive. The structure of this variant, which we here refer to as the upper- and
lower-bounded rejection-based sampling method, is illustrated in Figure 12.3.
As with the upper-bounded rejection-based sampling method described in
the preceding section, this sampling method also does not require the eval-
uation of the exact, closed-form inverse of the CDF of the PDF p(·) from
which random samples are desired. Instead, it employs a sequence of progres-
sively tighter upper uk(·) and lower lk(·) bound functions, k > 0, k → ∞.
All the upper-bound functions must be such that they completely envelop
p(·) from above, and the lower-bound functions must envelop from below:
lk(x) ≤ p(x) ≤ uk(x) for all x and k ≥ 1. Moreover, the bounds must get pro-
gressively tighter: lk(x) ≤ lk+1(x) and uk+1(x) ≤ uk(x) for all x and k ≥ 1,
and |uk+j(x) − lk+j(x)| < |uk(x) − lk(x)| for some j > 0. The upper-bound

Reversible Random Number Generation 203

function for k = 0 is a special case in that p(x) ≤ α · u0(x) for some constant
α. It also must have an additional property that it should be amenable to
sampling using its inverse CDF using Algorithm 12.5.

The upper- and lower-bound functions are typically designed to be com-
putationally easy to evaluate, relative to the computation needed to evaluate
p(·). This helps reduce the amount of computation performed for all accepted
values in the rejection method. The series of the bound functions can be sep-
arately defined for each k, or could be parameterized by k. For example, uk(·)
could use k as a parameter in its evaluation, as in

uk(x) = U(k, x) = ke−
k2

x ,

to systematically tighten the upper bound within an interval of interest for x.
In the limit, the functions squeeze the desired function p(·) sufficiently tightly
to approximate it to any desired accuracy. In the worst case, for a large value
of k, p(·) itself could be used as uk(·) and lk(·).

12.6.3.1 Forward Generation

The pseudocode for the forward generation algorithm is listed in Algo-
rithm 12.7. The generation relies on the inverse CDF c−1

u0
(r) to generate a

sample xr for u0(x) using a uniformly distributed random number r1 ∈ [0, 1)
that is obtained by a call to RU (). This gives the candidate xr and its cor-
responding probability value yu0 = α · u0(xr). Similar to the upper-bounded
method, the probability value yr for the candidate xr is obtained by gen-
erating yet another uniformly distributed random number r2 and selecting
yr ∈ [0, yu0). The acceptability of xr is tested by iteratively comparing yr
against uk(x) and lk(x) for increasing values of k. Whenever yr exceeds uk(x),
the candidate is rejected and the process proceeds to find the next candidate.
Whenever yr falls at or below lk(x), the candidate is accepted.

12.6.3.2 Reverse Generation

The challenge in reversing this method is the variable number of iterations
within two nested loops that are needed for generating each sample. To go
back in the stream, the number of iterations must be exactly recollected and
retraced. Although it would appear as though the iteration counts must be
remembered in a trace, that is in fact not needed.

The reverse algorithm without need for memory works as follows. Con-
sider the invocation of RK

−1() after a call to RK(). Because the successful
candidate of RK() consumed the two most recent samples r1 and r2 from
the uniform distribution via calls to RU (), they can be recovered by calls to
RU

−1() (first recovering r2 and then r1). The most recent successful candi-
date xr is then reconstructed using the recovered r2 and r1. At this point, the
uniform random number stream cannot be left in its current state because the
most recent candidate may have rejected some other candidates prior to arriv-
ing at the recent candidate. Thus, the stream has to continue to be traversed

204 Introduction to Reversible Computing

x

P
ro
b
a
b
il
it
y(
X
=
x)

xr

FIGURE 12.3: Upper- and lower-bounded rejection-based sampling.

backward. However, what would be the number of candidates to reject, and
what would be the correct stopping point? The answer lies in the observation
that the backward sequence of rejected candidates must necessarily end when
a successful candidate is found. That successful candidate would correspond
to the call to RK() that is prior to the most recent RK() that is being re-
versed. Thus, the stopping condition in backward traversal past all rejected
candidates is the detection of an acceptable candidate. When this condition is
met, the uniform random number stream is adjusted by moving it forward two
steps, which corresponds to the detected successful candidate of the stopping
condition. The complete pseudocodes for the forward and reverse generation
algorithms are shown in Algorithm 12.7.

12.7 Further Reading

In general, it is very difficult, perhaps impossible, to define randomness be-
cause a deeper insight quickly touches philosophical perspectives [Bennett,
1979]. Practically speaking, there is a conventional understanding of what

Reversible Random Number Generation 205

Algorithm 12.7 Reversible upper- and lower-bounded rejection-based sam-
pling

RK():

N ← N + 1
for ever do
r1 ←RU ()
r2 ←RU ()
xr ← c−1

u0
(r1)

yu0 ← α · u0(xr)
yr ← r2 · yu0

k ← 1
for ever do
yuk
← uk(xr)

if yr > yuk
then

exit inner loop {Reject}
end if
ylk ← lk(xr)
if yr ≤ ylk then
exit outer loop {Accept}

end if
k ← k + 1 {Loop}

end for
end for
return xr

RK
−1():

r2 ←RU
−1(){Recover recent r2}

x← c−1
u (r2)

RU
−1(){Go back past recent r1}

for ever do
r2 ←RU

−1()
r1 ←RU

−1()
xr ← c−1

u (r1)
yu0 ← α · u0(xr)
yr ← r2 · yu0

k ← 1
for ever do
yuk
← uk(xr)

if yr > yuk
then

exit inner loop {Rejected}
end if
ylk ← lk(xr)
if yr ≤ ylk then
RU () {Correct back to r1}
RU () {Correct back to r2}
exit outer loop {Accepted}

end if
k ← k + 1 {Looped}

end for
end for
N ← N − 1
return x

(a) Forward (b) Reverse

would qualify a stream of numbers to be acceptable as a stream of random
numbers for computational purposes. The most widely used acceptance meth-
ods are essentially constructed from a set of tests originating from expecta-
tions of coverage in various phenomena. Widely known sets of tests such as
the “Diehard Battery of Tests” [Marsaglia, 1995] and “Crush” [L’Ecuyer and
Simard, 2007] subject the candidate streams to a series of tests of “random-
ness” and provide numerical scores as bases to indicate their quality.

A truly random sequence, by definition, can never be traversed backward
without recording all the bits that are part of the sequence. This is so because,
otherwise, it implies that some compression of the sequence is possible, which

206 Introduction to Reversible Computing

in turn implies that some non-random portion exists within the stream, and
a compression algorithm can rely on that non-random (or predictable) por-
tion for encoding. The presence of such information violates the assumption
of randomness. In other words, because no (symbolic) procedure must exist
for true randomness, the sequence of numbers themselves becomes the one
and only description possible for the sequence. Hence, in order to be able to
reversibly traverse any sequence of perfectly random numbers, the forward
sequence must necessarily be stored in a trace upon forward generation.

However, theoretically speaking, no “truly random” sequence can be iden-
tified or generated from within a closed system. In practice, one could possibly
rely on highly complex physical phenomena such as the time-varying intensi-
ties of radioactivity from decaying particles, or from intergalactic radiation,
and map the sequence of physical observables to numbers, to use the result-
ing number sequence as a random number stream. Commercial generators
are capable of mapping a wide range of physical phenomena such as quan-
tum mechanical effects to streams of bits that can pass all existing tests of
randomness.

Chapter 13

Reversible Memory Allocation and

Deallocation

13.1 The Problem: Reversible Dynamic Memory . 207
13.2 A Simple Solution with Poor Memory Utilization 208
13.3 A Memory-Efficient Solution . 209

13.3.1 Verification of Correctness of Allocation 210
13.3.2 Verification of Correctness of Deallocation 211

13.1 The Problem: Reversible Dynamic Memory

Most modern programs are designed using dynamic memory management ser-
vices, such as allocation and deallocation of varying sizes of memory at run-
time. In traditional forward-only execution of programs, this typically trans-
lates to two basic primitives: a primitive for allocation that searches for and
returns the pointer to a free region in memory that can fit the requested mem-
ory size, and another primitive for deallocation of previously allocated memory
regions for returning into the free pool of memory for later reuse. When these
two primitives are to be utilized inside a reversible program, however, new is-
sues arise that are simply absent in a forward-only mode. An allocation must
be undone by freeing the allocated memory if the allocation operation itself
is reversed. Similarly, a deallocation operation must not immediately release
the memory because the deallocation itself may be reversed. Otherwise, the
memory incorrectly released may be reused by another allocation, which will
result in an undesirable situation in which two logically distinct objects oc-
cupy the same memory space. Moreover, the dynamic memory management
interface should be extended so that it is dynamically provided information
about guarantees that a particular allocation is not tentative, and about situ-
ations when a deallocation is in fact correct (i.e., the deallocation will not be
reversed).

The unique considerations in adding reversibility to dynamic memory man-
agement are satisfied using the Forward-Reverse-Commit (FRC) paradigm
of reversible execution. The basic idea is that the forward operations will
include the usual forward-only actions, augmented with sufficient informa-
tion to deal with the special cases introduced due to reversibility. The re-

207

208 Introduction to Reversible Computing

verse operations will make the necessary changes to undo the side effects,
while the commit stage is used to finalize the allocation or deallocation.
To use this paradigm, the operations in the product {allocate, deallocate}×
{forward, reverse, commit} must be defined. In this space, two solutions are
possible: one is a quick and dirty solution that provides a degenerate solution
that is very easily implemented, while another is a more sophisticated solu-
tion that implements reversibility semantics both correctly and efficiently, but
which is more complex to implement.

In what follows, a void operation, also called a no-op, is denoted by �.

13.2 A Simple Solution with Poor Memory Utilization

One of the easiest solutions is to perform allocation as usual, but always forego
deallocation. Memory allocation of traditional forward-only execution can be
retained unmodified in the reversible execution setting, and the deallocation
operation is made a void operation. No memory is ever freed.

This scheme would in fact work adequately in the sense that it retains all
memory semantics as forward-only execution (memory allocated dynamically
from the free pool, and memory is never accidentally shared by two or more
distinct objects), and thus will result in correct reversal of any forward execu-
tion. However, the biggest drawback is its poor memory utilization—a leakage
of memory occurs when memory that is allocated in a forward execution is
later reversed. When a number of iterations of forward- and reverse execution
paths are traversed, they leave behind memory that is marked occupied but
not used. Although the application assumes that a memory block is freed, that
block is never returned to the pool, and is hence irretrievably lost. Available
free memory becomes depleted over the length of execution.

TABLE 13.1: Simple Procedures for Dynamic Memory Management

Operation Traditional Reversible FRC(P)
P Forward-only F (P) Forward

F (P)
Reverse
R(F (P))

Commit
C(F (P))

Allocation m=malloc() m=malloc() � �

Deallocation free(m) � � �

Thus, the simple solution of making deallocation a no-op gives correct
execution but with poor memory utilization. In situations demanding a quick
implementation of reversibility support for dynamic memory, this solution
can be adopted as a first cut of a working version. Later, however, when
the problem of poor utilization needs to be remedied, a more comprehensive,
memory-efficient solution can be adopted, as described next.

Reversible Memory Allocation and Deallocation 209

13.3 A Memory-Efficient Solution

The key to a reversible and efficient solution to dynamic memory management
is the introduction of a memory operation stack, which we will abbreviate
as mstack. This is a stack of pointers to allocated memory regions that the
memory manager needs to remember from the forward execution stages to
recollect and use in the reverse execution or commit stages. Because reversals
follow last-in-first-out order, the stack data structure correctly recovers the
most recently used pointer simply by popping the top of the stack. With
the help of the mstack, it then becomes a matter of defining the memory
operations along with stack operations for each of the six elements in FRC-
based dynamic memory allocation. The templates of their basic operation are
listed in Table 13.2, with details such as memory sizes omitted. The code
m=malloc() represents a call to a conventional (forward-only) allocator that
returns a pointer m to a free memory region that fits the requested memory
size, and free(m) represents a call to a conventional (forward-only) allocator
that marks the region pointed to by m as free for reuse in a later allocation.
The operation push(m) pushes the value of the pointer m to mstack while
pop() returns the pointer that is currently on the top of the stack.

� Forward-Allocation In the forward stage, memory is allocated us-
ing any conventional (forward-only) allocator, which we represent by
malloc() that returns a pointer m to a free region in memory that fits
the requested memory size. Before this pointer is returned to the re-
questor, it is remembered by pushing it onto the mstack using push(m).

� Reverse-Allocation When a previous allocation is reversed, we can be
sure that the pointer to the previously allocated region would be found
on the top of the stack. This pointer m is retrieved using m=pop() and it
is freed using the conventional (forward-only) allocator represented by
free(m). This effectively nullifies the previous allocation, with respect
to both the memory subsystem as well as the mstack.

� Commit-Allocation This indicates that the previous memory alloca-
tion can be safely assumed to be lasting, and hence the pointer can be
forgotten with respect to reversibility. In other words, the previous al-
location can be viewed as equivalent to the forward-only counterpart.
Hence, it is sufficient to simply remove the pointer from the mstack,
which is accomplished via pop(). Because the requestor possesses a copy
of the pointer to the allocated memory block, the pop operation can ig-
nore and discard the popped top pointer.

� Forward-Deallocation In the forward stage of deallocation, the mem-
ory being deallocated cannot be marked as free right away because the
deallocation can later be reversed. However, if it is not reversed and in

210 Introduction to Reversible Computing

fact it is later committed, we will need to recollect that this block was
marked for deallocation and its deallocation must be effected, so that it
can be reused in a later allocation. Thus, to enable use in either later
reversal or commitment, the pointer is remembered by pushing it on to
the mstack. No additional processing is done on the pointer.

� Reverse-Deallocation This marks that a previous deallocation is be-
ing undone. Because we had only stored the pointer on the stack, it is
necessary and sufficient to simply pop that pointer off the stack – the
deallocation will be completely reversed by this act. Thus, pop() is used
to remove the pointer currently on the top of the stack and that pointer
is forgotten.

� Commit-Deallocation Because this is an indication that the dealloca-
tion will be permanent, it needs to be effected immediately. The pointer
in question is retrieved by popping the top of the stack, and the pointer
is passed to the conventional (forward-only) allocator to mark it for
reuse. This completes the full cycle of reversible memory allocation and
deallocation that is subject to reversal at either stage.

TABLE 13.2: Reversible Procedures for Dynamic Memory Management

Operation Traditional Reversible
P Forward-only F (P) Forward

F (P)
Reverse
R(F (P))

Commit
C(F (P))

Allocation m=malloc() m=malloc()

push(m)

m=pop()

free(m)

pop()

Deallocation free(m) push(m) pop() m=pop()

free(m)

13.3.1 Verification of Correctness of Allocation

We can verify that the semantics of the original forward-only exe-
cution F (Allocation) is indeed maintained in the reversible execution
FRC(Allocation). Because the operation m=malloc() is nullified by free(m),

we can remove both of them, giving a no-op: m=malloc(); free(m) =�.

Similarly, Because a push(m) is nullified by a pop(), push(m); pop() =�.

Applying the nullification equations to the terms in the reversible equation

Reversible Memory Allocation and Deallocation 211

FRC(P) for P = Allocation, we obtain the following.

F (P) = [F (P) R(F (P))]∗ F (P) C(F (P))

m=malloc() =
[

m=malloc()
push(m)

m=pop()
free(m)

]∗

︸ ︷︷ ︸

m=malloc()
push(m)
m=pop()
free(m)

∗

︸ ︷︷ ︸[
m=malloc()
free(m)

]∗

︸ ︷︷ ︸
[�]∗

m=malloc()
push(m) pop()

︸ ︷︷ ︸
m=malloc()
push(m)
pop()

︸ ︷︷ ︸
↓
↓

m=malloc()

︸ ︷︷ ︸
m=malloc()

Thus, the net effect of reversible allocation is the same as that of traditional
(forward-only) allocation operation.

13.3.2 Verification of Correctness of Deallocation

Similarly, applying the nullification equations to the terms in the reversible
equation FRC(P) for P = Deallocation, we obtain the following.

F (P) = [F (P) R(F (P))]∗ F (P) C(F (P))

free(m) =
[

push(m) pop()

]∗

︸ ︷︷ ︸[
push(m)
pop()

]∗

︸ ︷︷ ︸
[�]∗

 push(m)
m=pop()
free(m)

︸ ︷︷ ︸
push(m)
m=pop()
free(m)

︸ ︷︷ ︸
free(m)

︸ ︷︷ ︸
free(m)

Thus, the net effect of reversible deallocation is the same as that of tradi-
tional (forward-only) deallocation operation.

Chapter 14

Reversible Numerical Computation

14.1 Software and Hardware Views . 213
14.2 Sources of Irreversibility in Software . 214
14.3 Considerations in Adding Reversibility . 215
14.4 Defining Reversibility of Numerical Computation 216

14.4.1 Software-Level Operator Reversal . 216
14.4.2 Operators with Constants . 217
14.4.3 Operation Sequence Reversal . 217
14.4.4 Hardware Circuit-Level Reversal . 217

14.5 Reversal of Basic Arithmetic Operations in Software 218
14.5.1 Illustration of Basic Approach . 218
14.5.2 Integer Operands . 219
14.5.3 Floating Point Operands . 225

14.6 Alternative Integer Framework for Reversibility 227
14.6.1 Internal Representation . 227
14.6.2 Encoding Certain Error Conditions . 228
14.6.3 Notation . 229
14.6.4 Signed Values and Modulo Adjustment 229
14.6.5 Backward Compatibility . 229
14.6.6 Computing Q̂ and R for Base v . 231
14.6.7 Bit Representation Examples . 231
14.6.8 Reversible Set of Arithmetic Operations 231
14.6.9 Combined Operation: A Simple Illustration 235
14.6.10 Reversal of Multiple Arithmetic Operations 237

14.7 Reversal of Basic Arithmetic in Hardware . 237
14.8 Further Reading . 239

14.1 Software and Hardware Views

The issue of reversibility of numerical computation can be approached from
two perspectives: the software point of view and the hardware point of view.
Reversibility in software is concerned with the ability to execute a sequence
of arithmetic operations in both directions of the sequence: using normal op-
erators in the forward direction, and using inverse operators in the reverse
direction to recover operands that are lost or overwritten in the forward di-

213

214 Introduction to Reversible Computing

rection. Reversibility in the software view is concerned about whether and how
the loss of some operand values can be reversed by uncomputing the operator
using the results of the operator and the rest of the operands that are not
lost. Reversibility of arithmetic in the hardware is concerned with the extent
to which the arithmetic logic circuitry can be made reversible, typically by
employing reversible gates. The hardware view is also concerned with whether
and how a numerical algorithm could be expressed using only reversible in-
structions at the machine code level.

In this chapter, some of the important issues and considerations are iden-
tified in adding reversibility to numerical computation in both hardware and
software points of view. A few solution approaches are examined, and some
of the outstanding challenges are outlined.

14.2 Sources of Irreversibility in Software

What contributes to irreversibility in a sequence of arithmetic computations?
The following are some of the factors:

S1 Fundamental Loss A fundamental loss of information may occur due
to the nature of the operator itself, which necessarily introduces am-
biguity. For example, the sign of a number is lost if only its modulus
or square is remembered. Similar loss occurs with operations such as
trigonometric functions; for example, the period information of an angle
is lost if only its sine value is remembered. In special cases of operand
values, information may be destroyed by the computation of the oper-
ator itself, making reversal impossible unless the destroyed information
is saved by copying to another variable. The most notable example of
such loss is multiplication by zero.

S2 Memory Overwriting Information may be lost when variables con-
taining the operand values are overwritten with other values. The mem-
ory location of one or more operands may be overwritten by the opera-
tor’s result or by other operations executed later in the program.

S3 One-to-Many Mapping A one-to-many mapping may arise in the im-
plementation of operations, which makes the operations irreversible. For
example, round-off in floating point computation necessarily introduces
ambiguity with respect to one or more bits in the operand(s).

S4 Order of Operations For a sequence of operations, if the order of
operations performed in the forward direction is altered (even for a sin-
gle item) in the reverse direction, the computation can potentially lead
to different results. This is due to lack of commutativity and associa-
tivity guarantees of many computational operations, notable of which

Reversible Numerical Computation 215

are the non-associative and non-commutative aspects of floating point
arithmetic.

S5 Sticky Errors In a sequence of operations, if an error condition occurs
at one point, the error can become sticky from that point forward, even
if the operations that follow are otherwise reversible. This makes the
results undefined and consequently irreversible. Examples of common
sticky error conditions are an attempt to divide by zero or to compute
the square root of a negative number. Special numerical codes such as
NaN (not-a-number) that arise in such sticky conditions can render an
entire series of operations irreversible.

S6 Hardware Non-Determinism Non-deterministic effects from compu-
tational hardware in the computation of some functions (such as nu-
merical approximations to transcendental functions) may seep into the
values of results. The main problem with such non-deterministic noise
is that the random values of certain bits will be different in forward
and reverse modes, which results in differences between operands used
in forward mode and the operand values recovered in reverse mode.

14.3 Considerations in Adding Reversibility

Some of the considerations in adding reversibility to computer arithmetic op-
erations are listed in Table 14.1. A major consideration regards the type of
numbers to be supported—integer data types, fixed precision (also known as
fixed point) data types, or floating point data types. The way reversibility
is added is significantly dependent on the choice of data types. In general,
operators with only integers or fixed point operands suffer from fewer sources
of irreversibility, whereas floating point requires more research and develop-
ment, especially when backward compatibility is desired. Operations can be
defined to follow modular arithmetic rules, or may assume variable precision.
Implementations may be realized in software or manifested in specially opti-
mized hardware. Reversible arithmetic solutions may be sought in a classical
computing setting or be investigated in the context of quantum computing
with reversible gates from the outset. Hardware instruction sets and software
interfaces may be sought either for entirely new versions that are reversible
by design or for accommodating and extending currently used interfaces. In
the short term, one is faced with the question of how to reuse the immense
amount of existing forward-only technology for arithmetic. In a medium-term
outlook, it is useful to understand how to mix conventional, optimized forward-
only arithmetic with newer, reversible arithmetic. In the longer term, the ideal

216 Introduction to Reversible Computing

would be to move to a fundamentally reversible arithmetic interface and im-
plementation on all computing platforms.

TABLE 14.1: Considerations in Adding Reversibility to Computer Arith-
metic Operations

Consideration Notes

Integer vs Floating-point
Numbers

Whether numerical computation is limited to
integers or if real numbers are also supported

Normal vs Modular
Arithmetic

Whether or not all computations are re-
stricted to modular arithmetic

Hardware vs Software
Implementation

Layer at which the implementation of re-
versible arithmetic is realized

Classical vs Quantum
Computing

Computing paradigm on which reversible
arithmetic is applied

Backward-Compatible vs
New Interface

Whether numerical computation interfaces
are permitted to be developed anew, and/or
if backward compatibility is to be supported
for existing forward-only interfaces

14.4 Defining Reversibility of Numerical Computation

While one can easily arrive at an intuitive notion of reversal of numerical
computation based on basic mathematics, a generally open view of reversal
of any mathematical operation goes beyond computational aspects. Instead,
to restrict the discussion to computational issues that arise in conventional
uses of computer software and hardware, it is useful to have a set of working
definitions that delimits the scope of reversibility. In this context, reversibility
can be examined of (1) numerical computations as individual operators and
their sequences defined at the software level, and (2) operations realized at
the hardware circuit level.

14.4.1 Software-Level Operator Reversal

At the software-level, consider the following setting for the execution of an
arithmetic operation

⊙ : (o1, . . . , on)→ O

defined by an operator ⊙ with numerical operands o1, . . . , on giving the result
O. All values are assumed to be of finite precision, but the precision can be
different for different operands. The result O is often a single value ô but

Reversible Numerical Computation 217

could potentially be a composite value O = (ô1, . . . , ôm). After the operator
is applied and the result is recorded, one or more operands may be “lost” or
“forgotten” or overwritten by the program. The mutual order of operands is
also similarly susceptible to loss.

In this setting of potential loss of operands or their relative order, we
define reversibility of the operator in software as the capability to fully and
correctly recover all the original operand values and the relative order of the
operands after the operator has been applied. To facilitate such recovery, the
original operator ⊙ may be modified into a new operator ⊙+1 to allow for
such recovery of operands while retaining the original semantics of computing
O from the operands just as in the original. The recovery procedure ⊙−1 is
called the inverse operator of ⊙+1. Thus, ⊙ is the original operator, ⊙+1 is
the modified forward operator, and ⊙−1 is the inverse of ⊙+1.

14.4.2 Operators with Constants

If any of the operands is a constant, it can be simply treated as a special case
in which the specific operand(s) cannot be forgotten, lost, or overwritten. For
example, in an operation of the form

+ : (A, c)→ A+ c, or, more commonly written as A← A+ c

on a variable A with a constant c, A is overwritten, but the operand c cannot
be lost because c is a constant. Reversibility is relatively straightforward in
such cases. A commonly used special case of constants as operands is the
increment operator on a variable. In this case, c = 1, giving A←A+1, or simply
A++, whose inverse is A←A-1, or simply --A.

14.4.3 Operation Sequence Reversal

In a sequence of operations, even if a single operation is irreversible, the re-
versibility of the sequence is affected in the reverse mode, starting from that
irreversible operation to the beginning of sequence. In other words, in the se-
quence of operations ⊙1, . . . ,⊙k, where ⊙i : (oi1 , . . . , oini

) → (ôi1 , . . . , ôimi
),

if even one operation ⊙i does not restore its operands to their correct previ-
ous values, the reversal of all operators ⊙j, 1 ≤ j < i will be affected. Thus,
the issue of reversibility is of an “all-or-nothing” nature: either every type of
arithmetic operation is ensured to be reversible or no guarantee of arithmetic
reversibility is provided by the computing system.

14.4.4 Hardware Circuit-Level Reversal

Reversibility at the level of hardware circuits can be defined as the ability to
implement one or more basic mathematical operations as a reversible circuit
that not only computes the desired output bits from the input bits but can

218 Introduction to Reversible Computing

also recover the input bits from the output bits. The same can also be viewed
as the problem of defining a reversible truth table inside which the mapping
of the desired operation is embedded. For example, a reversible adder is a
circuit that provides the sum of two input bit vectors but preserves sufficient
information in the output such that the original operands can be recovered
when driven backward. Such a reversible circuit may be built using a set
of reversible gates. Moreover, the issue of reversibility may be considered in
the context of classical computing as well as quantum computing hardware
systems. Circuits may be defined on the basis of each individual operator
separately, or may be defined as a holistic Arithmetic Logic Unit (ALU) for
an aggregate set of operators.

14.5 Reversal of Basic Arithmetic Operations in Soft-

ware

The easiest reversal method, which can always be used as a fall-back approach,
is to save a copy of the operand(s) being overwritten or forgotten. All addi-
tional improvement of reversal is an attempt to avoid such saving of one or
more variables, or to reduce the overall number of bits to be saved, in exchange
for recovery of values via computation. The fundamental premise underlying
the improvement is that computation-based recovery is preferable to saving
copies of values due to memory considerations. However, logging some values
to a history trace may be unavoidable in general, and the use of a history trace
can reduce the computation speed relative to forward-only computing. The
amount of data to be saved to reverse an operation varies with the data type
of the operands. In general, operations with integer operands are relatively
easier to optimize than those with floating point operands.

14.5.1 Illustration of Basic Approach

Consider an instruction of the form

C ← A*B

in which the product of two operands, variables A and B, is stored in a variable
C, after which one of the operands, A or B, is forgotten. Another variant of the
same instruction is of the form

(A,D) ← A*B

in which a variable A is overwritten with a part of the product of itself and
another variable B. In the preceding instructions, if A, B, and D are w bits
wide, then C must be at least 2w bits wide.

Reversible Numerical Computation 219

To make any such operation reversible, it is replaced with a different type
of instruction that, by design, does not incur loss of information. For example,
the operation C←A*B is replaced with an instruction of the form

(C,A,T) ← A*B

in which the product of two numbers A and B is computed and the result is
stored in the variable C whose bit width is equal to sum of bit widths of A

and B, and the value of A or B (whichever is non-zero) is remembered in A.
T is a bit variable that remembers if A was equal to zero. This organization
allows the value of B to be forgotten after the operation, yet can be perfectly
recovered using C, A, and T. Let the size of A and B be w bits each; the size of
C is 2w bits. Compared to the memory consumed by an implementation that
saves all operands that are 2w bits (w bits each for A and B), the reversible
version (C,A,T)←A*B consumes only w + 1 bits (1 bit for T and w bits for
A). Note that w + 1 is the minimum number of bits needed to reverse the
product operation. The only rare exception is the case in which the program
somehow can guarantee that A and B are always prime numbers, in which case
the minimum memory size for reversal is only one bit (to only remember the
assignation, namely whether the smaller of the two prime numbers was A or B).
Analogous constructs and semantics can also be defined for other operations
such as division.

Alternatively, the operations can be redefined to be reversible without
history. To aid in such redefinition, the internal representation of the operands
and results of operations must be set up to store information in a lossless
fashion.

We will now examine the reversal of conventional arithmetic operations,
focusing on those with integer operands, and discuss the issue of reversing
operations on floating point operands. Following that, we will study a new,
alternative framework for reversible integer operations that first defines a new
bit format for internal representation of integers, and then defines reversible
integer arithmetic operations that do not result in any history generation.

14.5.2 Integer Operands

A list of conventional software-level operators is shown in Table 14.2, which
are designed for use in typical forward-only codes. In many cases, the operator
may be defined (separately) into different versions for integer and real-valued
variables. In this section, we will consider reversal of these operations with
integer operands only.

For the reversal algorithms, we assume the maintenance of a history tape
operated in a last-in-first-out (stack) order, simiilar to that described in Sec-
tion 10.2.3. The routine named save(v) stores a copy of the variable v on the
tape, while the routine named restore(v) overwrites the variable v with the
value popped from the end of the tape. The variable being saved could be of
any size, as small as a single bit or several bytes long.

220 Introduction to Reversible Computing

TABLE 14.2: Computer Arithmetic Operations Considered for Reversibility

Operation ⊙ Syntax
Post-Operational
Effects

Add + C← A + B A or B forgotten

Accumulate += A← A + B A overwritten

Subtract - C← A - B A or B forgotten

Diminish -= A← A - B A overwritten

Complement -=- B← A - B B overwritten

Multiply * C← A * B A or B forgotten

Semi-scale *= (A,D)← A * B A overwritten

Scale *=* (A,B)← A * B A and B overwritten

Divide / C← A / B A or B forgotten

Shrink /= A← A / B A overwritten

Factor /=/ B← A / B B overwritten

Remainder % C← A % B A or B forgotten

Modulo %= A← A % B A overwritten

Base %=% B← A % B B overwritten

Separate @ (C,D)← A @ B A or B forgotten

Semi-partition @= (A,D)← A @ B A overwritten

Partition @=@ (A,B)← A @ B A and B overwritten

+ C←A+B The Add operation assigns the sum of A and B to C. If A is for-
gotten after this operation, it is easily recovered as A←C-B (Subtract).
Recovery of B from A is also symmetric.

+= A←A+B The Accumulate operation increases the value of A by B. It
is easy to recover the previous value of A via A←A-B (Diminish).

- C←A-B The Subtract operation assigns the difference of A and B to
C. If A is forgotten after this operation, it is easily recovered as A←C+B

(Add). Similarly, B can be recovered as B←A-C.

-= A←A-B The Diminish operation diminishes the value of A by B. It is
easy to recover the previous value of A via A←A+B (Accumulate).

-=- B←A-B The Complement operation replaces B by its complement
with respect to A. It is easy to recover the previous value of B via B←A-B

(self-inverse).

* C←A*B The Multiply operation assigns the product of A and B to
C. The bit-width of C must be twice that of A and B. Let us assume
that B is forgotten after this operation. Then, B can be recovered as
B←C/A. However, when A*B equals zero, additional information is needed

Reversible Numerical Computation 221

to properly reverse the operation to recover B because B could have been
non-zero, which cannot be recovered from C alone.

Thus, in general, if A and B are each w bits wide, and C is 2w bits wide, a
total of 3w+1 bits are needed to reverse the operation: the 2w bits of C,
the w bits of a non-zero operand (either A or B, whichever is non-zero),
and 1 bit to remember which of the two operands A or B was zero in case
only one of them is zero. There is also one special case in which 2w bits
are sufficient—this is when A and B are prime numbers, allowing C to
be uniquely partitioned as a product of two primes, but this is difficult
to utilize in memory-saving schemes. Thus, there are four cases to be
considered:

1. A=0, B 6=0, or

2. A 6=0, B=0, or

3. A=0, B=0, or

4. A is prime, B is prime.

One bit can distinguish between the first two cases. The third case is
easily detected when C=0 and the remembered value (A or B) itself is
also zero. The fourth case is a rare case, in which no operand needs to
be saved, but still one bit is needed to store the order of the operands
(was the smaller prime A or B?). Hence, a minimum of 2w + 1 bits and
a maximum of 3w + 1 bits are needed to reverse this multiplication
operation. In fact, the minimum can be reduced to just 1 bit, which
remembers whether A and B were both equal to zero; however, this adds
one bit to the maximum, increasing it to 3w + 2. Because the situation
of both A and B being equal to zero is rare, we will ignore this potential
reduction of the minimum number of bits, and assume that one value
(either A or B) is always remembered.

Let T be the 1-bit variable that is pushed onto the history stack for each
execution of the multiplication operation. The multiplication operation
is made reversible as shown in Algorithm 14.1, assuming C, A, and T are
available after the forward multiplication, but B needs to be recovered.
Because A and B are symmetric, the same procedures can be used by
swapping the identities of A and B.

*= (A,D)←A*B The Semi-scale operation assigns the product of A and B

to the aggregate variable formed by juxtaposing A with another variable
D. Note that the old value of A is lost as it is overwritten by the high
bits of the A*B product. The bit widths of A, B, and D are the same, say,
w bits each. Thus, the aggregate (A,D) denotes the 2w bit-wide double
precision product. In order to be able to reverse this operation, we must
either assume that B is not forgotten after this operation, or, if that
cannot be ensured, that B is saved on the history stack and restored just
before reversal. Similar to the Multiply operation, special handling

222 Introduction to Reversible Computing

Algorithm 14.1 Reversal of the Multiply operation

Forward-only
Reversible

Modified Forward Reverse

C←A*B T←0
if A=0 then
T←1
A↔B {Swap}

end if
C←A*B

save(T)

restore(T)

B←0

if A 6=0 then
B←C/A

if T=1 then
B↔A {Swap}

end if
end if

History size: 1 bit

is needed to take care of the case when A*B equals zero; additional
information is needed to properly reverse the operation to recover A

because A could have been non-zero, which cannot be recovered from
A,D alone if B is zero.

Thus, in general, a total of 3w+1 bits are needed to reverse the operation:
the 2w bits of (A,D), the w bits of a non-zero operand (either A or B,
whichever was non-zero), and a 1-bit variable T to remember which of
the two operands A or B was zero in case only one of them was zero.

Algorithm 14.2 Reversal of the Semi-Scale operation

Forward-only
Reversible

Modified Forward Reverse

(A,D)←A*B T←0
if B=0 then
T←1
B↔A {Swap}

end if
(A,D)←A*B

save(T)

restore(T)

A←0

if B 6=0 then
A←(A,D)/B

if T=1 then
A↔B {Swap}

end if
end if

History size: 1 bit

Analogous to those of Multiply, the forward and reverse operators
are as shown in Algorithm 14.2. The algorithm assumes that (A,D),
B, and T are available after the forward multiplication, and A needs to

Reversible Numerical Computation 223

be recovered. The operation A←(A,D)/B denotes the integer division in
which the aggregate integer (A,D) is the dividend and B is the divisor.

If B is forgotten instead of A, the same procedures can be used by swap-
ping the identities of A and B, as A and B are symmetric.

= (A,B)←A*B The Scale operation stores the product of A and B in
the aggregate variable formed by juxtaposing A with B. Thus, the old
value of A is overwritten by the high bits, and B is overwritten by the
low bits of the A*B product. This operation can be undone in a manner
similar to Multiply and Semi-scale if the pre-assignment value of A
or B (whichever is non-zero) is saved to the history stack in the forward
direction and restored from the tape in the reverse direction. A 1-bit
value T is used to remember if A and B were swapped before saving to
history.

/ C←A/B The Divide operation replaces C with the quotient of A/B.
Reversal of this operation implies the recovery of the operand that is
forgotten after the operation: recovery of A if A is forgotten, and recov-
ery of B if B is forgotten. Two cases hinder the reversal of this operation:
when the dividend is zero and when the divisor is zero. When the div-
idend is zero, information about the divisor will not be preserved in
the quotient; and when the divisor is zero, the dividend is similarly lost.
These cases are solved by writing a few bits of information to the history
tape.

The forward and reverse procedures are shown in Algorithm 14.3. When
the divisor B is forgotten, it is sufficient to write 2 bits of information
to the tape to deal with all cases. A bit TB is used to remember if B is
zero, and another bit TB is used to remember if A is zero. In the special
case when A=0 and B 6=0 (indicated by the condition TA=1 and TB=0),
the value of B is saved in A.

/= A←A/B The Shrink operation overwrites A with the quotient of A/B.
This operation is difficult to reverse without saving w bits in the worst
case, irrespective of any scheme used. Thus, if B is forgotten after the
operation, it must be saved to the history in the forward execution. Even
if B is not lost after the operation, the remainder value A%B needs to be
remembered to properly recover the pre-operation value of A. Because
the bit width of the remainder can be as large as the value of A itself, it
is easier to simply save the pre-operation value of A itself to the history.
Thus, the solution is to save the value that is being forgotten; this takes
w bits of history.

/=/ B←A/B The Factor operation overwrites B with the quotient of A/B.
This operation is reversed differently based on whether A is forgotten
or not after the operation. If A is forgotten, the information in B is
inadequate to recover A, and hence A needs to be saved to the history.

224 Introduction to Reversible Computing

Algorithm 14.3 Reversal of the Divide operation when A or B is forgotten

Forward-only

C←A/B

Reversible

A is forgotten after Forward
and restored in Reverse

Forward Reverse

if B=0 then
T←1
C←A

else
T←0
C←A/B

D←A%B

save(D)

end if
save(T)

restore(T)

if T=1 then
A←C

else
restore(D)

A←C*B+D

end if

History size: Minimum 1 bit
and maximum w + 1 bits

Reversible

B is forgotten after Forward
and restored in Reverse

Forward Reverse

if B=0 then
TB←1
C←Undef

else
TB←0
C←A/B

TA←0
if A=0
then
TA←1
A←B

end if
end if
save(TB)

save(TA)

restore(TA)

restore(TB)

B←0

if TB=0 then
if TA=1
then
B←A

else
B←A/C

end if
end if

History size: 2 bits

Reversible Numerical Computation 225

However, if A is not forgotten, B can be recovered by simply invoking
the same operation (self-inverse), as B←A/B. The only special case to be
addressed is when A=0, in which case B must be logged to the history.

% C←A%B The Remainder operation assigns to C the remainder from
the division of A by B. This operation can be reversed using an approach
similar to that for Divide.

%= A←A%B The Modulo operation overwrites A with the remainder from
the division of A by B. This operation can be reversed using an approach
similar to that for Shrink.

%=% B←A%B The Base operation overwrites B with the remainder from the
division of A by B. It can be reversed using an approach similar to that
for Factor.

@ (C,D)←A@B The Separate operation computes A/B and assigns the
quotient to C and remainder to D. Few programming environments pro-
vide such an operation, but it is more readily amenable to reversal. After
the operation, if A is forgotten, it is easily reconstructed as C*B+D. If B
is forgotten, it can be reconstructed as A/C. The special case of A=0 can
be handled by overwriting A with B (i.e., remembering B in A), and the
special case of B=0 can be handled by copying A into D.

@= (A,D)←A@B The operation of Semi-partition is similar to that of the
Separate operation.

@=@ (A,B)←A@B The operation of Partition is similar to that of the Sep-
arate operation, except that A and B are overwritten with the quotient
and remainder of A/B.

14.5.3 Floating Point Operands

Floating point arithmetic in general is irreversible when considered at the level
of each individual operator or as a sequence of operations. For example, all
basic IEEE floating point operations of addition, subtraction, multiplication,
division, remainder, and square root [Goldberg, 1991] exhibit irreversibility
under various conditions. There is little reversibility at the hardware level
either. The sources of irreversibility in floating point come in all forms.

In a fundamental viewpoint, floating point conventions such as the IEEE
754 standard and the IEEE 854 standards are essentially a set of compro-
mises with which we have evolved to perform computations in conventional
computing. Hardware technologies impose the realities of limited precision,
and computing needs impose the realities of speed expectations and memory
limits. Taking them into account, a set of trade-offs have evolved over time to
reconcile fundamental mismatches such as infinite-to-finite precision for the

226 Introduction to Reversible Computing

real number line and the resultant travesties such as anti-commutative and
anti-associative properties. There is an important aspect to note about such
an evolution in numerical computation: it may not be justifiable to attach an
undue amount of sanctity to the state of affairs in floating point computation
as we have it now. If the consideration of reversibility is added to the set of
criteria to redefine floating point computation, the overall solution may look
different from its current form, but it would not affect the essential nature of
floating point arithmetic, namely that it is nothing but a compromise in map-
ping the infinite precision of real numbers to the limited precision of floating
point representations.

It is possible to implement in software all floating point arithmetic oper-
ations in a reversible way using integer arithmetic that can be implemented
reversibly using modulo arithmetic. The challenges in this approach, however,
are twofold: (1) it entails a large amount of implementation effort, due to the
need to re-implement most common operations albeit reversibly (the literature
is vast with respect to optimized implementations that are irreversible); and
(2) it suffers from a slow-down due to implementation in software, as opposed
to the extremely highly optimized realizations of conventional arithmetic in
hardware (floating point units). Added to this is the need to restructure the
software to conform to new interfaces and software reorganizations needed
to conform to the new reversible implementation semantics. The area of re-
versible arithmetic is wide open for new results and advances. One method
is to define new floating point algorithms with reversibility semantics (analo-
gous to the IEEE floating point representation and operation standards), and
begin the process of developing optimized algorithms to implement the seman-
tics using newly defined and developed hardware support. Another method,
perhaps pursuable concurrently with the previously mentioned method, is to
find ways to utilize a subset of currently hardware-optimized operations as
building blocks for reversible versions of higher-level operations.

Techniques such as program synthesis [Jha, 2011] may be applied to
automatically convert floating point-based codes to equivalent fixed point-
based codes that are guaranteed to compute the same answers. Also, certain
application-specific customized solutions of reversible floating point arithmetic
[Levesque and Verlet, 1993, Bowers et al., 2006] have been proposed and ap-
plied. For example, all operations that are subject to reversal are first con-
verted from floating point to fixed point format, reversible fixed point arith-
metic is performed, and finally the results are placed back in floating point
format; the order of operations is also ensured to be deterministically repro-
ducible in the reverse mode [Bowers et al., 2006].

Reversible Numerical Computation 227

14.6 Alternative Integer Framework for Reversibility

With the conventional forward-only operations and the associated internal
representation of operands, some operations are easy to reverse but others
do not seem natural. The reversal of operations based on addition and sub-
traction are relatively straightforward, but the reversal of others based on
multiplication and division are somewhat awkward and inelegant, giving rise
to a range of operators that differ slightly from each other. The definition of
an alternative view of the internal representation of integers is intended to
generalize and streamline the reversibility of the basic arithmetic operations.

The bit representation A of a w-bit positive integer A = Value(A) is
typically a simple sequence of bits

A = aw−1 aw−2 . . . a1 a0

with value

A = aw−12
w−1 + aw−22

w−2 + . . .+ a12
1 + a02

0.

While such a representation does not pose any problems for the reversal of
addition and subtraction operations, it is not readily amenable to reversal of
operations that compute division and remainder. In particular, conventional
arithmetic becomes irreversible due to loss of information in (1) conventional
division or remainder operations, and (2) scaling a variable by a factor equal
to zero. We will now look at a generalization (or relaxation) of the conven-
tional representation to overcome the inherent irreversibility of conventional
arithmetic, and is better suited for reversible arithmetic operations, including
division.

14.6.1 Internal Representation

The alternative internal representation of an integer variable is shown in Fig-
ure 14.1. For every w-bit integer A conventionally represented in a w-bit
variable A, a new “control” field L that is l bits wide is added to the internal
representation, where l = ⌈log2 (w + 1)⌉. This increases the total bit length of
the bit representation of A from w bits to w + l. The control field is used to
store a “quotient offset” value q that divides the w bits of A into two parts.
The first part is an encoded quotient number Q̂ stored in the lower q bits
A[0, q − 1]. The second part is a remainder R stored in the upper r = w − q
bits A[q, w − 1].

For example, a 32-bit integer is represented using 32+ ⌈log2 33⌉ = 38 bits,
and a 64-bit integer is represented using 64 + ⌈log2 65⌉ = 71 bits.

The major difference between conventional representation using w bits and
this new alternative representation using w + l bits is the presence of a new,

228 Introduction to Reversible Computing

· · ·
A[w − 1] A[q]A[q − 1] A[0]

· · ·
L[l − 1] L[0]

· · ·

✻

✲✛

l bits
✲✛

q bits
✲✛

r bits

✲✛

w bits

︷ ︸︸ ︷A ︷ ︸︸ ︷L

︸ ︷︷ ︸
R

︸ ︷︷ ︸
Q̂

︸ ︷︷ ︸
q

0 ≤ r ≤ ⌈log2 (S − 1)⌉, 0 ≤ q ≤ w, l = ⌈log2 (w + 1)⌉

FIGURE 14.1: Alternative internal representation of an integer
amenable to reversible arithmetic.

implicitly underlying “divisor” S. For a specific integer S, 1 ≤ S ≤ 2w, the
following relations hold among the various values in the new representation:

0 ≤ R < S, R =

{
0 if q = w

A[q, w − 1] otherwise (0 ≤ q < w),

0 ≤ Q <

⌊
2w − 1

S

⌋
, Q̂ =

{
0 if q = 0

A[0, q − 1] otherwise (0 < q ≤ w),

Q = 2q − 1 + Q̂,

Q(A) = Q, R(A) = R, and A = Value(A) = A
S
= QS +R .

The special value of q = w corresponds to the case when all bits of A are
used to represent Q, which implies R = 0. Similarly, the special value of q = 0
corresponds to the case when all bits of A are used to represent R, which
implies Q = 0.

14.6.2 Encoding Certain Error Conditions

In a separate, extended format, the bit width of L can be increased to l =
⌈log2 (w + 2)⌉ such that the value of q can be increased by one unit. In other
words, by expanding the representation of q to take on values in the range
[0, w+1], the value of q = w+1 can be used to signal special conditions such
as an error from division by zero. Some data can be associated with the special
condition by storing the data within the value bits of A. This extension is not
further discussed here.

Reversible Numerical Computation 229

14.6.3 Notation

To interpret the value V denoted by a bit representation V stored in a variable
V, a base must be specified. Hence, to obtain the value stored in variable V,

it is always qualified with a base v, as V
v
= Q × v + R, where Q and R

are the quotient and remainder when V is divided by v, encoded in the bit
representation V .

The notation Q(V) represents the value of the quotient part Q stored
in the variable V , and R(V) denotes the remainder part R of V . They are
independent of the base, so no base needs to be specified for V to obtain Q(V)
and R(V).

Also, we will use the notation V
v:w

to denote the conversion of the value
of V from a base v to a new base w. In other words, the bit representation of

V is first viewed as representing the value V = V
v
= Qv +R. This value V

is then converted to suit another base w such that V = V
w
= Q′w + R′ for

some new values Q′ and R′.

14.6.4 Signed Values and Modulo Adjustment

The representation format, the set of operations, and the result types are all
defined only in terms of unsigned integers. Signed integers are handled by the
application, independently from the reversible arithmetic here, by maintaining
a sign bit to the representation and manipulating the sign bit separately as
desired by the application.

Also, all arithmetic is with variable precision except in the case of the
largest possible base value 2w.

Modulo arithmetic is used if and only if the base S is equal toW = 2w. The
following modulo operation is applied in computing the addition operation
A← A+B when 2w ≤ A+B < 2w+1 (i.e., when the sum overflows w bits):

W + x
W
≡ x

W
, 0 ≤ x < W .

Similarly, in computing the subtraction operation A ← A − B, the following
modulo operation is applied when −2w < A−B < 0 (i.e., when the difference
is negative):

0− x
W
≡ W − x

W
, 0 < x ≤W .

14.6.5 Backward Compatibility

The new representation can be viewed simply as a relaxation of the conven-
tional representation, and hence is fully backward compatible with variables
that have no specific qualification of a base. The relaxation is obtained as
follows. Any integer A of the conventional representation can be viewed in

the new representation as A = A
2w

= Q× S +R, where Q = 0, R = A and
S = 2w. In other words, the original value is equal to the remainder in the

230 Introduction to Reversible Computing

new representation, with quotient 0, and the divisor being sufficiently large to
make even the largest possible value of A represented with w bits to be less
than the divisor. Thus, by default, the new representation can be used with
q = 0 and S = 2w for every conventional w-bit number.

The implementation of the new integer framework can be realized either
natively in hardware or indirectly as an interface that sits over conventional
arithmetic. The bit lengths required to support the alternative integer format
are shown in Table 14.3 and Table 14.4 for different usable bit precisions.
In the table, it is assumed that a hardware implementation supports con-
ventional arithmetic for integers whose bit widths are powers of two (2k for
integer k ≥ 2). With the native implementation approach, for example, a
32-bit integer interface may be implemented using 38-bit internal represen-
tations in hardware. Alternatively, the new framework can be realized as a
software-level interface supporting 27-bit integers implemented over a conven-
tional 32-bit hardware implementation.

TABLE 14.3: Internal Bit Widths for the Alternative Integer Representation
Format Customized to Provide 2k Bits of Usable Integer Precision

k
Usable Internal

Precision Bit Width

2 4 4 + ⌈log2 (4 + 1)⌉ = 7
3 8 8 + ⌈log2 (8 + 1)⌉ = 12
4 16 16 + ⌈log2 (16 + 1)⌉ = 21
5 32 32 + ⌈log2 (32 + 1)⌉ = 38
6 64 64 + ⌈log2 (64 + 1)⌉ = 71
7 128 128 + ⌈log2 (128 + 1)⌉ = 136

TABLE 14.4: Usable Integer Precision in the Implementation of the Alter-
native Integer Representation Format Using 2k Bits

k
Internal Usable

Bit Width Precision

2 4 = 2 + ⌈log2 (2 + 1)⌉ 2
3 8 = 5 + ⌈log2 (5 + 1)⌉ 5
4 16 = 12 + ⌈log2 (12 + 1)⌉ 12
5 32 = 27 + ⌈log2 (27 + 1)⌉ 27
6 64 = 58 + ⌈log2 (58 + 1)⌉ 58
7 128 = 121 + ⌈log2 (121 + 1)⌉ 121

Reversible Numerical Computation 231

14.6.6 Computing Q̂ and R for Base v

For any number V to be represented as V
v
and stored in variable V, first the

values of Q and R are computed such that V = Qv + R. Then, the value Q̂
to be stored in the quotient of V is computed such that Q = 2q − 1 + Q̂ for
the largest possible q, 0 ≤ q ≤ w. The values R, Q̂ and q thus computed are

stored in V as R Q̂ q .

14.6.7 Bit Representation Examples

� Suppose the 8-bit variable V holds the bit pattern 01011 010 0011 .

In this representation, w = 8, W = 256, l = 4, q = 3, Q̂ = 2, Q = 9, and

R = 11. Hence, for a base value 15, V
15

gives V = 9 × 15 + 11 = 146.

Similarly, V
12

gives V = 9 × 12 + 11 = 119, and V
20

gives V =
9× 20 + 11 = 191.

� Suppose the value V = 102 is stored in an 8-bit variable V. Because

the default base for 8 bits is 256, the number is equal to V
256

=

102
256

, and the bit representation is 01100110 0000 with w = 8,

W = 256, l = 4, q = 0, Q̂ = 0, Q = 0, and R = 102. This value can be

converted to another base, say, 10, as V
256:10

with bit representation

00010 011 0011 in which q = 3, Q̂ = 3, Q = 10, and R = 2. This

in turn can be converted to another base, say, 2, as V
10:2

with bit

representation 000 10100 0101 in which q = 5, Q̂ = 20, Q = 51, and
R = 0.

14.6.8 Reversible Set of Arithmetic Operations

Table 14.5 shows the set of operations in the new integer framework, with the
definitions of their forward and reverse computations. With these operations,
every expression or sub-expression E appearing on the right-hand side (RHS)

of an assignment V ← RHS must be qualified with a base value e, as E
e
.

After the assignment, the variable on the left-hand side of the assignment will
hold a value whose base is equal to the base of the final RHS value. Note
also that for every expression E, the base e must always be non-zero. This
ensures that multiplication by zero and division by zero are both disallowed
in forward mode.

In Table 14.5, A′ represents the post-operational value of A in the forward
mode. In other words, both A and A′ refer to the same variable A, where A
refers to the value of A before a forward operation, and A′ refers to the value of
A after the forward operation on A has been applied. Similarly, C′ represents
the post-operational value of C in the forward mode.

232 Introduction to Reversible Computing

TABLE 14.5: A New Set of Alternative Arithmetic Operations Reversible
without Generating History

Typical Alternative

Forward Forward Reverse

A′ ← A+B A′ ← A
a:W

+ B
b:W

W :a
A← A′

a:W
− B

b:W
W :a

A′ ← A−B A′ ← A
a:W
− B

b:W
W :a

A← A′
a:W

+ B
b:W

W :a

A′ ← A×B A′ ← A
a:W
× B

b:W
W : B

b

A← A′
1:a

A′ ← A/B
A′ ←
(A mod B)

A′ ← A
a: B

b

C′ ← C
c:W

+ Q(A)
W

W :c

C′ ← C
c:W

+ R(A)
W

W :c

A← A′

B
b
:a

C ← C′
c:W
− Q(A)

W
W :c

C ← C′
c:W
− R(A)

W
W :c

� Accumulate This is intended as a replacement for the conventional
operation A′ ← A+B in which the value of a variable A is increased by
the current amount in B.

In the forward addition operation

A′ ← A
a:W

+ B
b:W

W :a
,

the variable A holding A is overwritten with A+B. The bit widths of A
and B are assumed to be the same, equal to w, and hence W = 2w. The
bases a and b of A and B, respectively, are unchanged by the operation.
This operation is reversed by recovering the pre-assignment value A from
the post-assignment value A′ via

A← A′
a:W
− B

b:W
W :a

.

Example: Suppose the 8-bit variable A stored in base 25 has value

A = 120 = 4 × 25 + 20 = A
25
, and B stored in base 10 has value

B = 95 = 9× 10 + 5 = B
10
. Then,

A← A+B

is written as

A← A
25:256

+ B
10:256

256:25
,

Reversible Numerical Computation 233

which overwrites A with

A+ B
256

25
= 0× 256 + 215

256:25
= 8× 25 + 15

25

with bit representation 01111 001 0011 .

� Diminish This is analogous to the Accumulate operation. In the for-
ward addition operation

A′ ← A
a:W
− B

b:W
W :a

,

the variable A holding A is overwritten with A−B. The bases a and b of
A and B, respectively, are unchanged by the operation. This operation
is reversed by recovering the pre-assignment value A from the post-
assignment value A′ via

A← A′
a:W

+ B
b:W

W :a
.

� Scale This is intended as a replacement for the conventional operation
A′ ← A×B in which the value of a variable A is scaled by B.

In the forward multiplication operation

A′ ← A
a:W
× B

b:W
W : B

b

,

the variable A holding A is overwritten with the product A × B. The
bit width 2w of A must be twice the bit width w of B, thus making
W = 22w. The pre-operational value A of A must not be greater than
the maximum value (2w−1) that can be assumed by B. Also, B must be
non-zero. This operation is reversed by recovering the pre-assignment
value A from the post-assignment value A′ via

A← A′
1:a

.

The idea behind the reversal is that the product A × B is held in A as

the quotient of the value when divided by the base B
b
. This quotient is

the same as the pre-assignment value of A. This value can be recovered
by moving the quotient to the remainder, which can be accomplished
by viewing the product as representing a value with base unity. Thus,

A′
1
moves the value from the quotient place to the remainder modulo

W .

Example: Suppose an 8-bit variable A stored in base 6 has value A =

15 = 2 × 6 + 3 = A
6
, where wA = 2w = 8, W = 28 = 256. Also, the

234 Introduction to Reversible Computing

4-bit variable B stored in base 5 has value B = 13 = 2 × 5 + 3 = B
5
,

where wB = w = 4. Then,

A← A×B

is written as

A← A
6:256

× B
5:256

256:13
,

which overwrites A with

A× B
W

B
= 15× 13

256:13
= 15× 13 + 0

13

with bit representation 0000 0000 0100 .

� Shrink and Modulo This is intended as a replacement for the set of
conventional operations such as A′ ← A/B and A′ ← A mod B that
compute the quotient and remainders from the division of A by B. The
new operation is a substitution for all those operations, but, unlike the
old operations, remains reversible without the need for history.

In the forward division operation

A′ ← A
a:W

W : B
b

,

which is simplified as

A′ ← A
a: B

b

,

the internal representation of A is changed such that the current value A
of A is divided by B, and the resulting quotient Q and remainder R are
stored in an encoded form in A, where A = Q×B+R. The bit widths of
A and B are assumed to be the same, equal to w, making W = 2w. This
operation is reversed by recovering the pre-assignment value A from the
post-assignment value A′ via

A← A′

B
b
:W

W :a

,

which is simplified as

A← A′

B
b
:a
.

After the division operation has been applied on A, it is possible to
extract the quotient or the remainder values to store in another variable.
The values are obtained using the operator Q(A) to access the quotient
value andR(A) to access the remainder value. To reversibly record them

Reversible Numerical Computation 235

in another variable C, the quotient or remainder is added to the value
of C represented in base c.

Example: Suppose the 8-bit variable A stored in base 15 has value

A = 100 = 6 × 15 + 10 = A
15
, and B stored in base 3 has value

B = 14 = 4× 3 + 2 = B
3
. Then,

A← A/B or A← A%B

is written as
A← A

15: B
3

=⇒ A← A
15:14

,

which overwrites A with

A
15:14

= 6× 15 + 10
15:14

= 7× 14 + 2
14

with bit representation 00010 000 0011 .

The operation is reversed via

A← A
B

3
:15

=⇒ A← A
14:15

,

which overwrites A with

A
14:15

= 7× 14 + 2
14:15

= 6× 15 + 10
15

with bit representation 001010 11 0010 , which was the original for-
mat before the forward operation.

14.6.9 Combined Operation: A Simple Illustration

Consider a sequence of integer arithmetic operations in conventional program-
ming that takes a temperature value C in Celsius as input and computes its
equivalent value F in Fahrenheit as output. A forward-only computation pseu-
docode and its sample execution are shown in Algorithm 14.4. This code is
not reversible because there is a loss of information (truncation of fraction)
at line 4 due to integer division. While a Celsius value of 11 is converted to
the Fahrenheit value 51, it fails to recover the Celsius value of 11 from the
Fahrenheit value of 51 when executed in reverse without using a history log
(from F = 51, it gives C = 10 instead of C = 11). Note that such a loss is
unavoidable in traditional arithmetic even when floating point representation
is used.

The same computation of the conversion can be performed in reversible
fashion using the reversible integer operations previously described. The for-
ward and reverse programs of the reversible version of the same code are shown
in Algorithm 14.5.

236 Introduction to Reversible Computing

Algorithm 14.4 Irreversible integer arithmetic for Celsius–Fahrenheit con-
version

Forward-only Program Execution Example

1: read C
2: t← C
3: t← t× 9
4: t← t/5
5: t← t+ 32
6: F ← t
7: print F

1: C ← 11
2: t← 11
3: t← 11× 9
4: t← 99/5
5: t← 19 + 32
6: F ← 51
7: print 51

Algorithm 14.5 Reversible integer arithmetic for Celsius–Fahrenheit conver-
sion

Forward Program Execution Example

1: read C
W

2: t← C
W

3: t← t
W
× 9

W
W :9

4: t← t
9
/ 5

W
5

5: t← t
5
+ 32

5
5

6: F ← t
5

7: print F
5

1: C ← 11
W

2: t← 11
W

3: t← 11× 9 + 0
9

4: t← 19× 5 + 4
5

5: t← 51× 5 + 4
5

6: F ← 51× 5 + 4
5

7: print F = Q : 51, R : 4

Reverse Program Execution Example

1: read F
5

2: t← F
5

3: t← t
5
− 32

5
5

4: t← t
5:9

9

5: t← t
1:W

6: C ← t
W

7: print C
W

1: F ← 51× 5 + 4
5

2: t← 51× 5 + 4
5

3: t← 19× 5 + 4
5

4: t← 11× 9 + 0
9

5: t← 0×W + 11
W

6: C ← 11
W

7: print C = Q : 11, R : 0

Reversible Numerical Computation 237

14.6.10 Reversal of Multiple Arithmetic Operations

Every individual operation in Table 14.5 is designed to be reversible. There
is no information loss per se for any given operation as only one variable is
modified in every operation, and the modification is constructive in nature
(i.e., can be inverted). However, the overall reversibility of a set of operations
must be carefully handled when the operations act on common variables as
part of a complex control flow. An important source of irreversibility may
arise in the case when two variables x and y are used in the program in two
potentially conflicting ways: once as x

y
and later as y

x
. This source of

irreversibility can be avoided by using a programming convention that avoids
reusing bases as normal numbers. Other similar conventions and guidelines
will need to be evolved after additional experience is gained in programming
with reversible arithmetic.

14.7 Reversal of Basic Arithmetic in Hardware

Reversible implementations of numerical computation in hardware is typically
designed in a computing package called the Arithmetic Logic Unit (ALU),
which is conceptually an addition to the central processing unit (CPU) of a
computer. An ALU provides an interface to compute one or more functions on
input bits. A sequence of operand bit vectors can be provided as input, and a
corresponding sequence of operator bit vectors can be provided as control to
choose the specific function to be applied on an input bit vector. The functions
can be either logical operations (e.g., A ∧ B) or arithmetic operations (e.g.,
A+B).

The challenge in the design of a reversible ALU lies in the difficulty of
optimizing the circuit to minimize the resources and computation time in
supporting the set of all functions specified by the ALU control interface.

For example, a 2-input, n-bit, 4-function ALU takes two operands A and
B, each n bits long, and implements four functions that can be selected using
2 control bits. In addition to the primary inputs, the circuit may, in general,
require additional “clean” bits, which are essentially inputs with known val-
ues. The primary output consists of 2n bits comprising the result plus n bits
holding a copy of one of the input operands. The output may additionally
consist of “garbage” bits required by the circuitry. A “garbage-less” circuit
may be defined as one that requires exactly the same number of bits 2n in the
output as in the input, without any clean input bits and garbage output bits.
The control bits that specify the choice of the function are passed through
unchanged from the input to the output.

The metrics of interest in the design of reversible ALU are the logical width
(which indicates whether any clean bits are required), the logical depth (which

238 Introduction to Reversible Computing

determines the latency of computation), and the number of gates (which de-
termines the area, size, and resources needed to drive the circuit). The lower
the value for each of the metrics, the better the design. The challenge, there-
fore, is to achieve reversibility while keeping the values for the metrics as low
as possible.

There are essentially two different approaches to realizing reversibility of
arithmetic operations in hardware: the compute-copy-uncompute approach
and the reversible gates approach.

� The first approach uses the compute-copy-uncompute methodology in
which results are first computed using a “normal” circuit dedicated to
the forward computation of the arithmetic function. The results are
copied to the output. Following that, a separate “inverse” circuit is used
to “uncompute” the temporary bits created by the forward circuit and
recover resources such as energy used in the forward execution. The
circuits can be based on normal (irreversible) gates. An instance of this
approach is the numerical and logical computing unit of the Pendulum
computer [Vieri, 1995, Vieri et al., 1998, Vieri, 1999, Frank, 1999].

� The second approach more directly achieves reversibility by relying en-
tirely on reversible gates. The desired function is realized as a circuit
built from reversible gates, whose composition, by definition, ensures
reversible computation between the circuit’s aggregate input and out-
put bits. An example of this approach is the ALU designed in [Thomsen
et al., 2010].

A reversible ALU can be implemented in hardware using dedicated cir-
cuitry using classical gates, or using a Field Programmable Gate Array
(FPGA), or using reversible gates including quantum gates. A few designs
of the hardware implementation have appeared in the literature. In one of the
designs of a reversible ALU using reversible logic gates [Guan et al., 2011],
two n-bit input operands are accepted on which any one among 32 defined
functions can be reversibly computed. The functions are split into two bins
of 16 logical and 16 arithmetic functions on the input vectors. A total of 13n
reversible gates are used in the circuit, and 12n+ 1 garbage output bits are
produced. Also, sub-circuits such as ripple-carry adder designs are available
that can be used as blocks within reversible ALUs [Desoete and Vos, 2002,
Van Rentergem and De Vos, 2005, Thomsen and Axelsen, 2008]. In another
ALU design, a garbage-less circuit is developed, albeit for fewer functions (five
arithmetic-logical operations) using reversible gates [Thomsen et al., 2010].

Reversible Numerical Computation 239

14.8 Further Reading

Within the past century, humans have forged ahead quite far in the forward-
only direction of computer-based arithmetic [Brent and Zimmermann, 2010].
For example, double-precision (64-bit) floating point operations are performed
at unprecedented speeds of many billions of operations per processor per sec-
ond. Yet, it is fair to say that there is a relatively limited understanding
regarding reversibility of computer-based arithmetic.

Just as new electric vehicle technology requires a large amount of new re-
search to reach the maturity of fast and economical gasoline vehicle technology,
so too reversible numerical computation can be expected to take much addi-
tional research and development to become comparable or competitive with
forward-only numerical computation that has already enjoyed many decades
of concerted effort. It is clear that floating point computation in its current
state of practice cannot be made reversible without significantly affecting the
speed of computations. However, there is little by way of fundamental, the-
oretical impediments that prevents some new form of reversible arithmetic
from reaching the same levels of performance as conventional floating point
computation technologies. It is difficult to predict the amount of time it would
take for reversible numerical computation to mature, but it is certain that it
will supplement, if not supplant, forward-only numerical computation at some
point in the future.

Reversible arithmetic and numerical algorithms have received attention,
and some methods exist for realizing them at the hardware level using re-
versible circuits. Reversibility of integer multiplication has been addressed
using reversible circuits [Kowada et al., 2006]. Reversible computation with
space and time equal to irreversible computation has been proposed for modu-
lar exponentiation [Shor, 1997] and applied to a quantum factoring algorithm.
The reversibility of modular integer arithmetic is realized in a modular arith-
metic logic unit [Sakiyama et al., 2006].

The reversibility of numerical computation has received attention in the
design of reversible languages:

� The PSILISP language supported a concatenation of two words of in-
tegers and the replacement of the two-word integer with integer quo-
tient and integer remainder; this was part of a mechanism to pro-
vide a reversible division operation without history [Baker, 1992]. A
multiplication is realized via the mpy(x,y,z) operation overwrites x:y
as x : y ← yz + x , where 0 ≤ x < z. Here, x:y represents that the

value spans across the two variables. A division is performed using
div(x,y,z), which views x:y as a single value and splits that aggre-

gate value into a quotient and remainder as x← x : y mod z and

y ← (x : y − (x : y mod z))/z , where 0 ≤ x < z. These semantics en-

240 Introduction to Reversible Computing

sure that the multiplication and division operators are in fact inverses
of each other. Note that their counterparts in traditional forward-only
languages are not invertible.

� In the R language, an interesting operator called the fractional product
is defined in [Frank, 1999] with syntax of the form integer */ fraction
to help deal with numerical issues such as overflow conditions resulting
from the product of two integers.

� Suppose that reversible programming languages prohibited multiplica-
tion by zero. This is the counterpart of prohibition of division by zero in
conventional forward-only programming languages. Clearly, such prohi-
bition, although helpful in making multiplication reversible, may seem
draconian because the programming community has grown used to the
validity of multiplication by zero. Nevertheless, it may be time to pon-
der why a luxury of multiplication by zero is so essential, and why (or
at what cost to comfort and convenience) it can be avoided in common
programming.

With regard to numerical error conditions, there is already a window of
one-step backward execution possible now, due to the overflow and underflow
information generated by the hardware. A generalization to 1 ≤ n ≤ nmax

steps is needed for reversibility, so that the information about the most recent
n error conditions is automatically maintained by the system, providing re-
versibility despite up to n abnormal conditions. Note that the moving window
of overflow or underflow is needed to keep a success bit for every successful
arithmetic operation and an error bit for every abnormal arithmetic operation
encountered by the ALU at runtime.

There is clearly much more to be accomplished in the area of reversible
numerical computation. In addition to the reversal of individual operations,
it is necessary to investigate reversal properties of aggregates of operations,
such as linear algebra operations, and understand the minimum history size
requirements needed to reverse an aggregate operation such as matrix-matrix
multiplication. International standards need to eventually evolve in order to
make an impact on the software community. New programming language
interfaces need to be explicitly defined that prohibit irreversible numerical
operations from the outset. Algorithmic optimization of implementations is
needed for specialized reversible frameworks, to eventually perform on par
with the performance of conventional forward-only arithmetic that has been
achieved from the immense amount of optimization work of the past decades.
An important element of such optimization is the elimination of all irreversible
non-determinism, such as the random noise introduced by intrinsic functions,
numerical libraries, or the hardware. The notion of perfect reversibility may be
relaxed with appropriate limits on errors, perhaps giving rise to new concepts
such as approximate reversibility.

Chapter 15

Reversing a Sorting Procedure

An example of using a non-local view to achieve memory-efficient reversibility
is the determination of a reversal method for sorting procedures. Consider any
sorting procedure that takes N elements as input and sorts them in place. In
any sorting procedure that moves the elements in the array to be sorted, the
procedure uses assignment operations on the variables holding the elements.
Each such assignment appears as an apparently destructive assignment when
the assignment is viewed in isolation. In general, the number of destructive
assignments can be as large as O(N2), depending on the sorting procedure.
Such degeneration to destructive assignments results in a corresponding in-
crease in the memory needed to store the history for reversal. Thus, a localized
view of the individual instructions executed by a sorting procedure results in
memory inefficiency of reversal. However, when the entire sorting procedure is
examined with a non-local view, it is possible to reduce the amount of memory
to N log2 N bits. This minimal amount of memory needed to reverse a sorting
procedure can be determined in three ways, each corresponding to a distinct
reversal method.

1. Saving the Input: A copy of the input permutation PI can be saved
by keeping track of the identity of every element whenever the element
is moved from one location to another in the array of numbers. This
requires instrumenting the sorting procedure such that whenever an el-
ement is moved during the procedure, the identity i ∈ [1 . . .N] of the
element is moved along with the element. The reversal is accomplished
by simply rearranging the output elements with the inverse P−1

I of the
saved permutation PI . The memory needed is equal to the memory
for storing a permutation of N numbers, which is equal to the mem-
ory needed to store the numbers 1 . . .N . Because each number requires
log2 N bits, the total memory needed is N log2 N bits.

2. Permutation Ordinal Number: The identity of the permutation PI

corresponding to I can be stored after sorting. The memory size needed
to store PI is equal to the number of bits needed to encode the integer
that represents the ordinal number D(PI) of the input permutation in
the list of all possible permutations P1, . . . , PN ! generated by an enumer-
ation procedure. This is equal to the number of bits needed to encode

241

242 Introduction to Reversible Computing

any number D ∈ [1 . . .N !], which is equal to log2 N !. Using the approx-
imation N ! ≈ NN , we get the number of bits as log2 N

N = N log2 N .

3. Saving the Control Flow Decisions: If the procedure is a
comparison-sort (i.e., sorting is based on comparing the values of pairs
of numbers), then it is known that the lower bound on the number of
comparisons C is equal to N log2 N . Any comparison sort will involve
C conditional operations, one per comparison. To be able to reverse
the sort procedure, it is sufficient to store the truth value of the condi-
tion as computed in the forward execution. Because there are at least
C comparisons, the number of bits of information needed to remember
the control flow for reversal is C = N log2 N bits, which is the minimal
number of bits needed.

Other sorting procedures that do not change the input but generate a
separate copy of the input in sorted order, that is, those that do not sort in
place, do not need any extra space other than the copy itself.

Chapter 16

Implementing Undo–Redo–Do

16.1 Application Model . 243
16.2 Data Structures . 244
16.3 Algorithms . 245
16.4 Deletions and Memory Reclamation . 246
16.5 Alternative Implementations . 247

16.5.1 Undo and Redo Stacks . 247
16.5.2 State Recreation via Reverse Computation 247

16.1 Application Model

Consider the application program, in general, as containing a set of objects
{Oi}, potentially hierarchically organized as a directed-acyclic-graph. The pro-
gram behavior contains a set of actions {Aj} that operate on the objects. For
example, in a word processing program, the objects could be graphical ele-
ments such as drawn shapes or text objects that together comprise the docu-
ment, or the set of lines in a text editor [Leeman, 1986]. Modifications to the
document are performed by action performed on an object (or a set of ob-
jects). On any object(s) O being acted upon, an action A could result in the
modification of some of the objects’ attributes O.D[A] that are specifically
affected by the action A. For example, attributes such as color or size could
be changed by a graphical or programmed menu action A, in which case the
affected data O.D[A] would be the variables that store the color or size of
the drawn object. In applications with no object delineation, a single global
object can be trivially defined as one that encapsulates all the variables of the
program.

This paradigm is typically instantiated at multiple levels within the same
application. For example, in a Web browser, an undo list is maintained for
the address entry field and another undo list is maintained for any text field
displayed within an online form in a Web page being displayed within the
browser. Moreover, the forward and backward movement across Web pages
within the browser itself can be viewed as an undo-redo style of operation,
and can even be implemented as such. The forward button maps to the Redo
operation, and the backward button maps to the Undo operation, while the

243

244 Introduction to Reversible Computing

Web address bar serves the Do operation. The object being modified by each
is the current window’s contents.

16.2 Data Structures

✄✄ � �
U =

. A Action

. O Reference to affected object or set of objects

. O.D[A] Data of O affected by A

. Dold Copy of O.D[A] before A is applied

. Dnew Copy of O.D[A] after A is applied

✄✄ � �
U ✲

✄✄ � �
U ✲

✄✄ � �
U ✲

✄✄ � �
U ✲

✄✄ � �
U ✲

✄✄ � �
U

✻

Current

s
✻

Head

✻

Tail

✛

Undo
✲

Redo
✲

Do

FIGURE 16.1: Data structures to support Undo–Redo–Do mode of ex-
ecution.

The Undo–Redo–Do paradigm can be implemented using an undo data
structure (Figure 16.1) with the Undo, Redo, and Do algorithms (Algo-
rithm 16.1). The undo data structure is a doubly linked list of nodes that
can be traversed in forward and backward directions. Each node in the list
contains the information of an atomic action that can be done, undone or
redone. The information in each list node includes (1) a reference to the set
of objects, O, to which the action applies; (2) an action code, A, to indicate
the type of action performed on O; and (3) the before and after copies of the
specific portion of the objects’ data that is modified by the action, named
Dold and Dnew, respectively.

The undo list is logically divided into three segments, defined using three
pointer variables: head, current, and tail. All nodes spanning from head to
current represent actions that have already been previously done, and are
ready to be undone if necessary. This segment of the list from head to current
represents the Undo regime, which can be traversed backward to undo current
state to a state in the past. Nodes from current to tail represent actions that
have been done as well as undone. This segment of the list from current to tail

Implementing Undo–Redo–Do 245

represents the Redo regime, which can be traversed forward to reincorporate
past actions that have been undone. New actions will be inserted starting at
current. Before adding any new actions, all existing nodes in the redo segment
are purged, because they have been marked as undone earlier and will be no
longer relevant after a new path of actions is initiated starting from current. In
other words, all existing actions that have been done and undone are deleted,
thus making current become the new tail, and only then is a new action
added. In a normal course of action, current would already be equal to tail,
which results in all new actions become appended to the undo list, without
any intermediate purging phase.

16.3 Algorithms

The Undo, Redo, and Do algorithms work in tandem as follows. For Undo,
assuming that current has not reached head, the current node’s action is
undone by copying back the old data that was saved immediately prior to the
action (described as part of the Do algorithm shortly). This copy operation
restores the relevant portion of the object data, thus restoring the object to its
overall state when the action is undone. For example, for a color change action,
the graphical object’s color would be restored to its prior color. Importantly,
the undone node is not immediately deleted by the Undo algorithm, but it is
retained in the undo list; only the current pointer is moved to the previous
node in the list, denoting the new position for the next undo operation. This
allows the possibility to redo the undone action at a later time without any
additional external input.

The Redo algorithm works by “coasting forward” through the list from
current to the next node. If current has not reached tail, it implies that
the current node has been added by Do sometime earlier, but also undone
sometime after that by an Undo operation. Such a node can be redone by
simply copying back the post-action data into the object’s relevant state. If
current has reached tail, then a Redo at this point is interpreted as a request to
apply the last node’s action on a newly (currently) selected objects as targets.
For example, if a color change action was applied to an object, and then a new
object selected, a redo at this point would be treated as a request to apply
the previous color change action to the newly selected object as well. Thus,
when the Redo algorithm is invoked when current equals tail, it retrieves the
most recent node’s action and applies that action to the currently selected
object(s). This, of course, is possible to be performed only if there is at least
one node in the list (which is indicated by current being not equal to head).

The Do algorithm starts by purging all nodes, if any, from current to
tail, because, once a new action is added at the current node, the previous
nodes from current to tail can no longer be used for coast-forwarding in Redo.

246 Introduction to Reversible Computing

After purge, current necessarily equals tail. A new node is then created and
populated with the object and action information. The action is then applied,
taking care to record the before and after snapshots of the relevant object
data that is affected by the action. The new node is then added to the list.

Algorithm 16.1 Algorithms to support Undo–Redo–Do mode of execution

Undo Redo

if current 6= head then
U ← current
U.O.D[U.A] ⇐ U.Dold
−−current

end if

if current 6= tail then
U ← current
U.O.D[U.A] ⇐ U.Dnew
current++

else if current 6= head then
U ← current − 1
O ← selected object(s)
Do(O,U.A)

end if
Do(O,A)

if current 6= tail then
Purge list: current to tail

end if
U ← create a new undo node
U.A ← A
U.O ← O
U.Dold ⇐ O.D[A]
Apply A on O
U.Dnew ⇐ O.D[A]
Add U to list
current ← tail

Notation
x← y: Reference (shallow) copy
x⇐ y: Value (deep) copy
p − 1: Previous node of p in list
p++: Moves p to next in list
−−p: Moves p to previous in list

16.4 Deletions and Memory Reclamation

Because actions can be continually added to the list for all modifications to
the objects, the list can grow indefinitely. The size of the undo list is only
constrained by the amount of available memory. To reclaim memory from the
undo list, nodes may be safely removed starting from head and up to current.
Clearly, actions in the removed nodes will no longer be available for undoing
later. Another option is to define a maximum list size and automatically purge
the head node whenever a new action is added to the tail.

Deletion of objects is realized as an action on the container object of the

Implementing Undo–Redo–Do 247

objects being deleted, so that the container can retain the deleted object data
in the Dold field of the corresponding node in the undo list.

16.5 Alternative Implementations

While the basic approach is the same in any implementation, different data
structures can be used to store and retrieve the action list, and the method
for recovering old values can be changed. For example, in place of the doubly
linked list of actions, a pair of stacks can be used. Instead of saving object
states to memory, state recreation may utilize reverse computation or re-
computation.

16.5.1 Undo and Redo Stacks

Instead of a single undo list, the Undo–Redo–Do paradigm can be imple-
mented using two stacks: (1) undo stack, and (2) redo stack. Essentially, when
the undo list is split at the current pointer, the part from head to current can
be implemented as a stack because operations on those nodes are performed
in stack order (last in first out). Similarly, the part from current+1 to tail
becomes another stack, with the tail being at the base of the stack. Whenever
a new action is performed, the Redo stack is flushed.

16.5.2 State Recreation via Reverse Computation

The reason that a copy of the old object data O.D[A] is saved before applying
the action is that the data must be restored if the action is undone. However,
memory and runtime overheads from the copying operation can be avoided
if it is possible to recreate the overwritten state when the action is undone.
This would require a procedure R to be defined that would be invoked to
restore state at runtime whenever the action is done. If F is the original action
procedure whose inverse is R, then, the signatures of the procedures are to
be defined as F (O,Ai, Ai−1) and R(O,Ai, Ai−1), where Ai is the action being
undone and Ai−1 is its preceding action. The reverse procedure performs the
inverse operation, A−1

i , of Ai to restore the object. For example, in a graphical
drawing application, if Ai is a “move” operation that translates the position
of a graphical object by one grid point to the left, the inverse recreates the old
state trivially by moving the object by one grid point to the right. This method
of computing the inverse is, however, not useful if the action takes a long
computation time (such as intensive image transformations, whose inverses
also would incur inordinate computation expense).

Part IV

Hardware

249

Chapter 17

Reversible Logic Gates

17.1 Basic Concepts . 251
17.1.1 Inadequacy of 2-Bit Gates . 252
17.1.2 w-Bit Gate Candidates, w ≥ 3 . 252

17.2 3-Bit Reversible Gates . 253
17.3 Fredkin Gate . 254

17.3.1 Reversibility . 254
17.3.2 Universality . 255

17.4 Toffoli Gate . 256
17.4.1 Reversibility . 256
17.4.2 Universality . 257
17.4.3 Increasing the Width to w Bits . 257

17.5 Conservative Logic . 259
17.6 Synthesis of Reversible Circuits . 260

17.1 Basic Concepts

Historically, logic gates have been used as building blocks for theoretical de-
velopment of deterministic computation, and the assembled logic is realized
in practice over physical processes such as composition of variable voltage
levels in electronic circuit elements. However, much of the logic gate theory
and design has focused on forward computation only, without explicit consid-
eration of reversible execution. Here, we consider the reversibility aspect of
traditional 2-bit gates and describe the concepts behind the development of
reversible gates (which happen to require gates with at least 3 bit-wide inputs
and outputs), and describe popular 3-bit reversible logic gates.

To be reversible, logic gates must have equal number of inputs and
outputs—otherwise, some information in the input can be lost in the out-
put and vice versa. In other words, for reversibility, the gates should possess
bijection properties such that every input bit vector is uniquely mapped to
an output bit vector and vice versa. This implies that reversible logic gates
are confined to w×w permutation gates, where w ≥ 1 is the number of input
or output bits. For a given value of w, there are 2w! (2w factorial) distinct
permutation gates that can be defined.

In addition to reversibility, reversible logic gates must provide universality

251

252 Introduction to Reversible Computing

properties, so that they can be used to synthesize any desired logic. Hence,
only a subset of the permutation gates are useful as reversible logic gates
in practice because some of them do not possess universality properties. For
universality (being able to compute any given logic function), the triad of and,
or, and not bit operations on 2-bit inputs forms the well-known necessary and
sufficient operations to realize arbitrary computation. Equivalently, either a
nand or nor operation also suffices, as any one of nand or nor can be used to
realize the and, or, and not operations.

17.1.1 Inadequacy of 2-Bit Gates

Consider gates with w = 2, that is, the classical 2-bit gates. There are
22! = 4! = 24 distinct gates that can be defined for 2-input, 2-output op-
erations. Among these 24 gates, none of them qualify as reversible gates
to implement and and or operations because all the gates that satisfy the
functionality of and and or violate the bijection requirement between input
and output bit vectors. This is easy to see by observing the requirements
of and and or operations. The and operation requires mapping of the form
{({(0, 0), (0, 1), (1, 0)} → (0, ·)), ({(1, 1)} → (1, ·))}, where · denotes any bit
value. Because this necessarily maps three input states to at most two out-
put states, no permutation of a 2-input, 2-output gate can be reversible while
computing the and operation. Similarly, the or operation requires mapping
of the form {({(0, 0)} → (0, ·)), ({(0, 1), (1, 0), (1, 1)} → (1, ·))}. Because this
too necessarily maps three input states to at most two output states, no per-
mutation of a 2-input, 2-output gate can be reversible while computing the
or operation.

Thus, it is not possible to create reversible circuitry based solely on 2× 2
gates. Hence, gates with w ≥ 3 are needed to employ reversible logic gates.
For w = 3, there are 23! = 8! = 40, 320 different permutation gates that satisfy
the reversibility requirement.

17.1.2 w-Bit Gate Candidates, w ≥ 3

Let us denote a permutation gate of w-wide input/output bit vectors by wGP ,
where, P is the permutation of input vectors. Let wG

−1
P−1 be its inverse per-

mutation gate where P−1(P (x)) = x. A subset of all possible wGP that are
their own self-inverses can be used as self-sufficient gates. In other words, if
P (P (x)) = x for all input bit vectors x, then wGP = wG

−1
P−1 . Thus, two types

of gates are possible:

Type 1 Gate pair (G,G−1) such that wGP = wG
−1
P−1 , where P−1(P (x)) = x.

P can be any permutation of the w-bit vector [0, . . . , w − 1].

Type 2 Gate G such that wGP = wG
−1
P , where P (P (x)) = x, and, therefore,

G = G−1. Clearly, this is a subset of Type 1.

Reversible Logic Gates 253

TABLE 17.1: Number of Candidate Permutations for w-Bit Reversible Gates

Type Number of Candidates

Type 1 (arbitrary permutations) 2w!

Type 2 (self-inverse permutations) R2w , where
RN = RN−1 + (N − 1)RN−2

In Type 1, there are 2w! possible permutations of the 2w possible bit vec-
tors, and hence that many distinct gates that can be considered as candidates
for reversible logic. However, only the gates that satisfy the universality re-
quirement are actually eligible.

In Type 2, P is any permutation that is decomposable into 1-cycles and
2-cycles only, which makes the permutation a self-inverse. In other words, if
x[i] denotes the ith element of a bit vector x, then P only contains map-
pings in which x[i] = P (x)[i] (which is a 1-cycle), or x[i] 6= P (x)[i] and
x[i] = P (P (x))[i] (which represents a 2-cycle). Thus, Type 2 gates are those
permutations in which either an element of the input is passed through un-
changed or pairs of elements are swapped, or any combination of such pass-
through and swap operations.

The number of possible permutations, RN with N = 2w, in Type 2 can
be obtained from the recursion RN = RN−1 + (N − 1)RN−2. This recursive
equation is obtained using induction as follows: Given RN−1 for a Type 2
permutation of N − 1 elements, a new element is now added. In permutations
of N elements, the new element could either belong to a 1-cycle (i.e., map to
itself) or belong to a 2-cycle (i.e., be mapped mutually to another element).
In the former (1-cycle) case, the number of possible candidates for N elements
remains the same as for N − 1, as the new element does not interact with any
of the existing N − 1 elements. In the latter (2-cycle) case, the new element
can be paired with any of the previous N−1 elements in N−1 ways, and leave
N − 2 elements to be permuted independently of the pair. Thus, the 2-cycle
case gives (N − 1) × RN−2 possibilities. The two cases (1-cycle and 2-cycle
choices) are disjoint, and hence the total number of candidates is the sum of
candidates in each case, which is RN−1+(N − 1)×RN−2. The recursion ends
with R0 = R1 = 1.

17.2 3-Bit Reversible Gates

For any given w, we can obtain the number of distinct gates of Type 2 as RN

where N = 2w. For w = 3, we get N = 8, and, R8 = N4 − 6N3 − 19N2 +
136N − 132 = 764. Thus, there are only 764 candidates for 3-bit reversible
logic gates that are self-inverses. Among these gates, two of the most well-

254 Introduction to Reversible Computing

known Type 2 reversible gates that satisfy universality are the 3-bit versions
of the Fredkin Gate and the Toffoli Gate.

17.3 Fredkin Gate

The Fredkin gate is a universal, reversible 3-bit gate that operates as a condi-
tional router [Fredkin and Toffoli, 1982]. One of its inputs, viewed as a “control
bit,” determines whether the other two bits are passed through unchanged or
swapped with each other. As shown in the input-output relation in Table 17.2,
the input control bit always equals its corresponding output bit. The other
two input bits are swapped at output if the control bit equals zero. The Fred-
kin gate is also known as a “controlled swap” (CSWAP) gate. The truth table
of this gate is shown in Table 17.3.

TABLE 17.2: Input–Output Relations in a 3-Bit Fredkin Gate

Input Output Description

x0 y0 = x2x0 + x2x1 If x2 is set, then y0 = x0 else y0 = x1

x1 y1 = x2x0 + x2x1 If x2 is set, then y1 = x1 else y1 = x0

x2 y2 = x2 Pass through unconditionally

TABLE 17.3: Truth Table for a 3-Bit Fredkin Gate

Input Bits Output Bits Permutation
x0 x1 x2 y0 y1 y2

0 0 1 0 0 1 1-cycle
0 1 1 0 1 1 1-cycle

1 0 1 1 0 1 1-cycle

1 1 1 1 1 1 1-cycle

0 0 0 0 0 0 1-cycle
0 1 0 1 0 0

2-cycle m
1 0 0 0 1 0

1 1 0 1 1 0 1-cycle

17.3.1 Reversibility

Reversibility of the Fredkin gate is easily verified. Visual inspection of the
truth table verifies one-to-one and onto mapping between input and output bit
vectors. When viewed as a permutation of input bit vectors, the permutation

Reversible Logic Gates 255

realized by the Fredkin gate contains six 1-cycles (elements unchanged in their
position in the permutation) and a single 2-cycle (elements swapping places).
This is indicated against each input vector in the truth table in Table 17.3.

17.3.2 Universality

Universality of the Fredkin gate is verified by construction to demonstrate
how the gate can be used to realize the and, or, and not operations:

� The and operation can be realized by setting the x1 input to 0, and
using x0 and x2 as the input bits on which the and must be computed.
This gives the desired and operation in the first output as y0 = x0⊗x2,
where ⊗ represents the and bit operator. This operation is shown in
Figure 17.1.

� The or operation can be realized by setting the x0 input to 1, and using
x1 and x2 as the input bits on which the or must be computed. This
gives the desired or operation in the first output as y0 = x1⊕ x2, where
⊕ represents the or bit operator. This operation is shown in Figure 17.2.

� The not operation can be realized by setting the x0 input to 0 and the
x1 input to 1, and using x2 as the input bit whose complement must
be computed. This gives the desired not operation in the first output
as y0 = x2, where x represents the bit complement operator on x. This
operation is shown in Figure 17.3.

For the Fredkin gate, the construction for the not operation can also be
used to realize a fan-out operation: while the output bit y0 gives the comple-
ment of x2, the rest of the output bits y1 and y2 provide two copies of x2,
thus giving a fan-out of degree 2 for the input x2.

x0 x1 x2 y0 y1 y2
0 0 1 0 0 1
1 0 1 1 0 1
0 0 0 0 0 0
1 0 0 0 1 0

Fredkin
Gate✲

✲

✲

✲

✲

✲x0

x1 = 0

x2

y0 = x0 ⊗ x2

y1 = x0 ⊗ x2

y2 = x2

FIGURE 17.1: Realizing 2-bit and operation ⊗ with the Fredkin gate.

256 Introduction to Reversible Computing

x0 x1 x2 y0 y1 y2
1 0 1 1 0 1
1 1 1 1 1 1
1 0 0 0 1 0
1 1 0 1 1 0

Fredkin
Gate✲

✲

✲

✲

✲

✲x0 = 1

x1

x2

y0 = x1 ⊕ x2

y1 = x1 ⊕ x2

y2 = x2

FIGURE 17.2: Realizing 2-bit or operation ⊕ with the Fredkin gate.

x0 x1 x2 y0 y1 y2
0 1 1 0 1 1
0 1 0 1 0 0

Fredkin
Gate✲

✲

✲

✲

✲

✲x0 = 0

x1 = 1

x2

y0 = x2

y1 = x2

y2 = x2

FIGURE 17.3: Realizing 1-bit not and fan-out with the Fredkin gate.

17.4 Toffoli Gate

Another well-known reversible logic gate is the Toffoli gate [Fredkin and Tof-
foli, 1982], also known as a “controlled controlled not” (CCNOT) gate. It can
be expressed as a gate with w input bits, where w ≥ 2. When w = 2, this gate
is also sometimes referred to as the Feynman gate.

In a 3-bit Toffoli gate, all inputs are passed through unchanged except
that, when the first two input bits are both 1, the third input bit is flipped
on output.

17.4.1 Reversibility

Reversibility of the Toffoli gate is easily verified. Visual inspection of the truth
table verifies the one-to-one and onto mapping between input and output bit
vectors. When viewed as a permutation of input bit vectors, the permutation
realized by the Toffoli gate contains six 1-cycles (elements unchanged in their
position in the permutation), and a single 2-cycle (elements swapping places).
This is indicated against each input vector in the truth table in Table 17.4.

Reversible Logic Gates 257

TABLE 17.4: Truth Table for a 3-Bit Toffoli Gate

Input bits Output bits Permutation
x0 x1 x2 y0 y1 y2

0 0 0 0 0 0 1-cycle

0 0 1 0 0 1 1-cycle

0 1 0 0 1 0 1-cycle
0 1 1 0 1 1 1-cycle

1 0 0 1 0 0 1-cycle

1 0 1 1 0 1 1-cycle

1 1 0 1 1 1
2-cycle m

1 1 1 1 1 0

17.4.2 Universality

Universality of the Toffoli gate is verified by construction of a 2-bit nand gate
from a 3-bit Toffoli gate. Because nand gates (or nor gates) are universal
gates, a Toffoli gate is also universal. Figure 17.4 shows the realization of a
2-bit nand operation from a 3-bit Toffoli gate. By fixing x2 at 1, the output
bit y2 is observed to give the result of nand on inputs x0 and x1.

x0 x1 x2 y0 y1 y2
0 0 1 0 0 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

Toffoli
Gate✲

✲

✲

✲

✲

✲x0

x1

x2 = 1

y0 = x0

y1 = x1

y2 = x0 ⊗ x1

= x0⊗x1

FIGURE 17.4: Realizing 2-bit nand operation ⊗ with the Toffoli gate.

17.4.3 Increasing the Width to w Bits

An expanded form of the Toffoli gate can be defined for any w ≥ 2 bits, and
it remains reversible for all w. However, it is not a universal gate when w = 2,
but is universal for w ≥ 3. The truth table for the w-bit form of the gate is
shown in Table 17.5.

In the most general form, the w-bit Toffoli gate in fact accommodates an
arbitrary Boolean function f of w − 1 bits for defining the remaining bit.
The only requirement on f is that it is not always zero for all inputs. In
the preceding introduction to the Toffoli gate, the bit-wise and function was
assumed for f . A good overview and analysis is provided in [Rentergem et al.,

258 Introduction to Reversible Computing

T
A
B
L
E

1
7
.5
:
T
ru
th

T
a
b
le

fo
r
a
w
-B

it
T
o
ff
o
li
G
a
te

In
p
u
t
B
it
s

O
u
tp
u
t
B
it
s

P
er
m
u
ta
ti
o
n

x
0

..
.

x
w
−
2

x
w
−
1

P
ro
p
er
ty

y 0
..
.

y w
−
2

y w
−
1

P
ro
p
er
ty

1
..
.

1
0

x
i
=

1
fo
r
a
ll

1
..
.

1
1

y i
=

1
fo
r
a
ll

2
-c
y
cl
e
m

1
..
.

1
1

0
≤

i
≤

w
−
2

1
..
.

1
0

0
≤

i
≤

w
−
2

x
0

..
.

x
w
−
2

x
w
−
1

x
i
6=

1
fo
r
so
m
e

x
0

..
.

x
w
−
2

x
w
−
1

y i
=

x
i
fo
r
a
ll

1
-c
y
cl
e

0
≤

i
≤

w
−
2

0
≤

i
≤

w
−
1

Reversible Logic Gates 259

2007]: with the generalized definitions, there are w(22
w−1 − 1) distinct Toffoli

gates and 1
2w(w − 1)(22

w−2 − 1) distinct Fredkin gates.

17.5 Conservative Logic

In [Fredkin and Toffoli, 1982], the notion of conservative logic is presented as
a way to ensure reversibility that can be implemented over reversible physical
processes. In conservative logic, computation is viewed as simply redirection
of signals rather than their manipulation. For a conservative gate, for every
input bit vector, the number of 1’s in the input must remain the same in the
output vector. In that vein, no new bit values are created, and no bit value
is destroyed. Any logic circuit whose truth table satisfies the bit-conservation
can be seen as a router of bits from the input to the output.

The concept of conservative logic is separate from the concept of reversibil-
ity. There exist gates and their circuits that are reversible but not conservative.
For example, circuits made from Toffoli gates are reversible but not necessarily
bit conserving. In contrast, circuits made entirely of Fredkin gates are both bit
conserving as well as reversible. A “billiard ball model” of computation [Fred-
kin and Toffoli, 1982] has been proposed as an example for physical realiza-
tion of a reversible and conservative computation. The concept of conservative
logic is motivated by the premise that it is easier to realize conservative logic
over physical processes because the mapping from routing-based logic often
maps naturally to the conservative processes prevalent in physical systems.
Using an ideal system of billiard balls, a mechanical realization of a logical
computation can be constructed. If the presence of a billiard ball represents
the bit value 1, and absence represents 0, specific collision sequences may be
carefully constructed using reflectors and precise angles of motion such that
the desired overall logical computation is obtained as a sequence of collisions,
with the number of balls being conserved in the system. In fact, several ad-
ditional models, such as cellular automata and molecular chains, are studied
under the generalization called collision-based computing. Conservative logic is
discussed extensively in a book exclusively dedicated to collision-based com-
puting [Adamatzky, 2002], with many interesting models, including one in
which the evolution of the Game of Life simulation can be used as a substrate
to realize Turing Machine model execution.

260 Introduction to Reversible Computing

17.6 Synthesis of Reversible Circuits

The synthesis operation can be stated as follows: Given a truth table Torig(w)
of w input and output bits (possibly irreversible), find a composite circuit of
reversible gates, each gate with width wg ≤ 2w, such that the synthesized
circuit’s truth table Tsyn(w′), w′ ≥ w, contains Torig for some subset of in-
put and output bits. Clearly, multiple synthesized circuits can be obtained
for any given truth table, and hence the solution is not unique. Hence, some
design criterion must be introduced to select an appropriate circuit from all
the possibilities. The synthesis problem thus becomes that of finding a method
that optimizes some type of cost measure associated with the synthesis, such
as the number of gates or switching elements introduced into the circuit by
the synthesis procedure. For example, the number of transistors required by
silicon technologies varies for different gates. A good overview of the syn-
thesis procedure with Toffoli or Fredkin gates is given in [Rentergem et al.,
2007], which defines three types of cost measures (gate cost, switch cost, and
quantum cost) and presents six different synthesis procedures that result in
different values for each cost measure. Additional resources for developments
in synthesis of reversible logic include [Al-Rabadi, 2004, Wille et al., 2008,
Stankovi and Stojkovi, 2009, Drechsler and Wille, 2011].

A software kit for the design of reversible logic circuits is presented in
[Soeken et al., 2012], and the state-of-the-art is described in [Drechsler and
Wille, 2012]. Additional coverage on a broader classification of the types of
reversible gates and their counts are provided in [Vos, 2010].

Physical circuit technology to support reversible computation is undergo-
ing rapid progress, providing evidence that very low power chips based on
adiabatic computing are forthcoming [Ren and Semenov, 2011].

Chapter 18

Reversible Instruction Set

Architectures

18.1 Instruction Set Issues . 261
18.1.1 Instruction Set for Memory Operations 262
18.1.2 Instruction Set for Simple Arithmetic 262
18.1.3 Instruction Set for Jumps . 263
18.1.4 Implementation Considerations for Jumps 264

18.2 Reversible PDP-10-Like Instruction Set Architecture 264
18.2.1 Memory Operations . 264
18.2.2 Arithmetic . 265
18.2.3 Branches . 266

18.3 Pendulum Instruction Set Architecture . 266
18.3.1 Memory Operations . 268
18.3.2 Arithmetic . 268
18.3.3 Branches . 268
18.3.4 Hardware Stacks . 268
18.3.5 Input/Output . 269

18.4 Hardware Interface to Reversible Memory . 269
18.5 Further Reading . 271

18.1 Instruction Set Issues

At the lowest level of execution, the set of instructions provided by the com-
puter architecture plays an important role in reversibility. Most conventional
instruction sets are designed for forward-only execution. As a result, program
execution cannot be reversed at the hardware level even if the program itself
happens to be reversible at the software level. To enable reversibility natively,
the instruction set itself must provide reversible primitives by design, to which
compilers or program writers can target their code generation to develop re-
versible executables.

The core of an instruction set into which reversibility semantics must be
infused is comprised of those instructions that provide arithmetic operations
and the collection of jump instructions. Because most of the constructs in the
higher-level programming languages are implemented in terms of arithmetic

261

262 Introduction to Reversible Computing

and jump instructions of the instruction set, reversible versions of the instruc-
tion set enable one to map reversible higher-level control flow to the reversible
lower-level instructions, thereby preserving reversibility.

18.1.1 Instruction Set for Memory Operations

In conventional instruction sets, any variable can be overwritten with the value
of any other variable or by a constant. However, because such blind over-
writing can destroy information, the instruction set must provide either fully
reversible updates or a clear distinction between reversible and irreversible up-
dates. Instructions to exchange the values of two memory or register variables
are self-inverses. Instructions that assign (i.e., copy) a value from a memory or
register to another memory or register variable need special semantics. For ex-
ample, such assignment (or copy) can be allowed if and only if the destination
location contains zeros. A reverse instruction can easily restore the destination
to zero, as no information has been lost. Similarly, newer instructions such as
a move instruction (which zeros a location after copying the value to another
location) can also provide reversible semantics by requiring the destination to
be zero. Irreversible memory operations can also be supported by the hard-
ware but their separation from the reversible versions help distinguish and
isolate their effects (such as energy costs of the circuitry).

18.1.2 Instruction Set for Simple Arithmetic

In addition to the arithmetic used within the program itself, reversibility of
arithmetic is also needed within the computer’s hardware implementation for
memory address computations such as offsets into arrays and other pointer
arithmetic. However, the arithmetic within the user program requires more
elaborate infrastructure to support a wider range of mathematical operations,
including floating point arithmetic that is implemented separately in special
hardware units (such as floating point units). Memory address computations
defined within the instruction set require a simpler set of reversible arithmetic
instructions such as addition and subtraction. Due to these considerations, the
initial versions of reversible instruction sets in the literature have provided ba-
sic operators such as reversible addition and subtraction. Addition, for exam-
ple, is defined as an accumulation operation with two operands (A← A+B)
or overwriting operation with three operands (C ← A+B). The accumulation
instruction is undone by the inverse instruction (A← A−B), while the over-
writing operation is undone by lossless erasure (C ← C XOR (A + B), where
XOR is an exclusive-OR bit operation). Analogous reversible set of instructions
are provided for bit-level operations of AND, OR, NOT, and EXCLUSIVE
OR, such that irreversible binary operations require three operands while
reversible unary or binary operations are defined with two operands. Some
instruction sets make a distinction between arithmetic and logic operations;
however, for simplicity, we view them as belonging to the same class or opera-

Reversible Instruction Set Architectures 263

tions. While this is acceptable for integer arithmetic, the distinction becomes
more pronounced when floating point arithmetic is considered.

18.1.3 Instruction Set for Jumps

Jump instructions in the hardware instruction set are the backbone for imple-
menting the majority of complex control flow variants at the higher levels of
programming. A conventional jump instruction, however, is irreversible in gen-
eral because there is insufficient information at the jump’s destination point.
In reverse mode, when execution reaches an instruction labeled with a jump
destination label, the control would not know whether to continue linearly
back or jump back to the source of the jump instruction.

To make jumps reversible, the jump instruction is relaxed to a jump to
instruction coupled with a new jump from instruction, and the semantics of
the jump instruction are revised so that the destination of jump to is always
a jump from instruction.

Irreversible Reversible

JL: · · ·
❄

❄

··
·

jump, e, JL

✛

··
·

··
·

❄

TL:

FL:

❄
✻

❄

✻

··
·

jumpfrom, e2, FL

jumpto, e1, TL ✛

✛

··
·

··
·

❄
✻

FIGURE 18.1: The irreversible and reversible constructs for jump in-
structions.

The conventional irreversible jump instruction and the modified reversible
version are shown in Figure 18.1. The syntax jump, e, label indicates that
the jump to the instruction labeled label is taken if and only if the condition
e is satisfied. Typically, e refers to a single register or memory variable and
checks if the variable holds a value that is greater than, equal to, or less than
a constant or another register or memory location. The reversible version has
similar syntax for the jump-to and jump-from instructions. Note that there
are two, potentially different, expressions, e1 and e2, that operate in tandem
for reversal. Just as the jump from FL to TL is taken in the forward mode
if the condition e1 is satisfied, the jump from TL to FL will be taken in the
reverse mode if the condition e2 is satisfied. In the forward mode, the jumpfrom
instruction is a no-op; similarly, in the reverse mode, the jumpto instruction

264 Introduction to Reversible Computing

is a no-op. The programmer and/or the compiler are responsible to ensure
that e1 and e2 are correctly paired so that this semantic of reversible jump
instructions is maintained.

18.1.4 Implementation Considerations for Jumps

The hardware circuit implementation takes care of updating the program
counter to reflect the new instruction addresses due to the jumps. These up-
dates to the program counter are themselves made reversible using reversible
arithmetic instructions. In the case of multiple jumps to the same destina-
tion label, disambiguation can be made by making use of a new variable with
⌈log JL⌉ bits, where JL is the number of different jumpto instructions with the
same destination label L. A dedicated variable for this purpose is assigned for
each jump label.

Noting the symmetry of the jumpto and jumpfrom instructions, an imple-
mentation may merge both commands into one command, say, called branch,
provided that there is a way to consult the current direction of control flow
separately, say, via a special register bit that holds 0 for forward direction
and 1 for reverse direction. Thus, a single branch instruction is sufficient to
implement reversible branching if (1) the current direction of flow is available
separately, and (2) the destination of every branch instruction is guaranteed
to be another branch instruction.

18.2 Reversible PDP-10-Like Instruction Set Architec-

ture

A popular instruction set known as the PDP-10 instruction set was originally
designed for the conventional (forward-only) computer offered by the Digi-
tal Equipment Corporation (DEC), called the Programmed Data Processor
(PDP) Model 10. In an early effort in the definition of a new Reversible In-
struction Set Architecture (RISA) [Hall, 1994], an “isentropic instruction set”
was modeled after the popular forward-only PDP-10 instruction set. The RISA
included reversible memory operations, reversible arithmetic operations, and
reversible control flow instructions, defined as follows.

18.2.1 Memory Operations

The instruction set includes memory manipulation primitives to operate on
main memory locations and on registers. The operations allow swapping, copy-
ing, and movement of values between registers and/or memory locations. Op-

Reversible Instruction Set Architectures 265

erations for irreversible erasure of values are also provided. The memory opera-
tions are the EXCH, COPY, MOVE, and ERASE instructions, as listed in Table 18.1.

TABLE 18.1: Memory Operations in PDP-10-Like Reversible Instruction
Set Architecture

Instruction Description

EXCH A, B Exchanges the values in A and B .

COPY A, B Copies the value of B into A . The destination is re-
quired to be zero before the operation.

MOVE A, B Moves the value of B into A . The destination is re-
quired to be zero before the operation, and the source
is zeroed after the operation.

ERASE A This is an irreversible operation that zeros the contents
of the given location.

A and B are either registers or memory addresses potentially offset by a
register

18.2.2 Arithmetic

Reversible operations for simple arithmetic include the ADD, ADDM, and similar
instructions, as listed in Table 18.2. Reversible operations such as subtraction
SUB and bit-wise XOR can be used in two or three operand modes. Irreversible
operations such as bitwise AND and OR can only be used in their three operand
form (because the two operand form results in an irreversible update to one
of the operands). The operations for ADD are illustrated in Table 18.2; other
operations such as AND, OR, NOT, etc. are defined analogously.

TABLE 18.2: Simple Arithmetic Operations in PDP-10-Like Reversible In-
struction Set Architecture

Instruction Description

ADD A, B B is added into A .

ADD A, B, C C , assumed to be currently zero, is overwritten by A+B .

UNADD A, B B is subtracted from A .

UNADD A, B, C C , assumed to currently equal A+B , is zeroed by sub-
tracting A+B .

A is a register, and B and C are registers or memory addresses offset by a
register. B can also be a constant.

266 Introduction to Reversible Computing

18.2.3 Branches

Reversible jump operations include a family of jump instructions. The jump-to
instruction has the following (simplified) syntax:

Jp reg, opnd, addr

where, p is one of GT, GE, EQ, LE, LT, or NE, and reg is a reference register,
opnd is a register or constant, and finally, addr is the address label of the
jump target. For example, the instruction

JLT I, 10, lbl

indicates that a jump to the statement labeled lbl must be made if the
location I contains a value less than 10.

The jump-from peer of the jump-to instruction is called the come from
instruction, obtained by replacing J with CF in the preceding syntax. Thus,
the instruction

CFLT I, 0, lbl

indicates that, if the location I contains a value less than 10, a jump from the
statement labeled lbl has been made to this instruction.

The jump instructions can be used to implement a reversible conditional
statement as shown in Algorithm 18.1, and to implement a reversible loop
statement as shown in Algorithm 18.2. In the reversible conditional statement,
it is assumed that the variable var is not modified within the true or false
branches. It is indeed possible to generate such a code if the source code
originates from a reversible programming language. On the other hand, if the
code originates from an irreversible language, a new (temporary) variable var
will need to be introduced to hold the truth value beyond the conditional
statement in the forward mode.

18.3 Pendulum Instruction Set Architecture

Another instruction set for reversible hardware is the Pendulum Instruction
Set Architecture (PISA) [Vieri, 1995, Vieri et al., 1998, Vieri, 1999, Frank,
1999] originally designed for the Pendulum Chip aimed at very low-power
computing. The basic approach for incorporating reversibility mechanisms is
somewhat similar to that of the instruction set in the preceding section. How-
ever, it includes a more elaborate framework for additional classes of instruc-
tions such as reversible manipulations of bit vectors including bit rotations,
expanded reversible arithmetic including multiplication and division defined
for different bit precision widths, and reversible input and output semantics.
Also included is a set of hardware-supported stacks to reverse otherwise irre-
versible instructions.

Reversible Instruction Set Architectures 267

Algorithm 18.1 Realization of a reversible conditional statement using
reversible jump instructions

Conditional Code Instructions

if(var)

true branch code

else

false branch code

startlbl: JEQ var, 0, elselbl

··
·

true branch instructions

··
·

ifendlbl: J endlbl

elselbl: CF startlbl
··
·

false branch instructions

··
·

endlbl: CFNE var, 0, ifendlbl

Algorithm 18.2Realization of a reversible looping statement using reversible
jump instructions

Loop Code Instructions

for(var=0; var <num ; var ++)

loop body code

startlbl: CFGT var, 0, endlbl

··
·

loop body instructions

··
·

endlbl: JLT var, num, startlbl

268 Introduction to Reversible Computing

18.3.1 Memory Operations

An important design principle of this architecture is to provide all memory
operations as exchange operations only. Also, common operations such as
copying a value is achieved by ensuring that the destination holds a cleared
state with zero and adding the copied value to the cleared state. Note that,
for a memory location, a cleared state implies holding a zero value, but not
vice versa.

18.3.2 Arithmetic

There is a large family of simple arithmetic and bit operations, such as AND
(bitwise and), OR (bitwise or), XOR (bitwise exclusive or), NEG (two’s comple-
ment negation), RL (rotate bits left), RR (rotate bits right), and so on. The
reversible versions of unary and binary operators appear in one or two operand
forms, with the one operand form specifying a single location to act as source
and destination (e.g., NEG), while the two operand form uses both operands
as sources and overwrites one of the operands as the destination (e.g., XOR).
All the irreversible operations are offered in three operand form (e.g., AND).

18.3.3 Branches

A range of branching instruction codes is provided, including BEQ (branch if
two specified registers hold equal values), BGEZ (branch if a specified register’s
value is greater than or equal to zero, BGTZ (branch if a specified register holds
a value greater than zero), BLEZ (branch if a specified register’s value is less
than or equal to zero), BLTZ (branch if a specified register holds a value less
than zero), BNE (branch if two specified registers’ values are not equal), BRA
(unconditional branch), and SWAPBR (swap the contents of a specified register
with the contents of the branch register).

The reversibility of branching is supported differently from the PDP-10-like
instructions of the preceding section. Here, a new computing model is assumed
in which a special direction bit is supported by the architecture that controls
the direction of control flow from any given state of the processor. The jump-
from semantics are achieved by requiring that the destination of any branch
is another branch instruction, coupled with the facility of reversing the flow
of processor control via a special instruction called RBRA (toggle the processor
direction bit).

18.3.4 Hardware Stacks

Two special stacks are defined in the original Pendulum architecture: a control
stack and a data stack. The control stack, referred to as Program Counter

Garbage Stack or PCGS, is intended to facilitate reversibility of jumps by
pushing return addresses before making jumps, in a manner analogous to im-

Reversible Instruction Set Architectures 269

plementations of subroutine calls. This stack is especially useful in irreversible
codes that cannot necessarily guarantee that the destination instruction is an-
other branch instruction. The term “garbage” in the name of the stack relates
to the view that the bits written to this stack are not necessarily reversibly
erased, potentially contributing to higher energy use in their implementation
due to blind bit erasure. Similarly, the data stack, referred to as Datapath

Garbage Stack or GS, holds values of variables that are irreversibly overwrit-
ten.

18.3.5 Input/Output

Input to and output from the system are reversibly provided via a special input
register with which other registers can interact via reversible bit operations.
Specifically, reversible input is achieved via the READ instruction that specifies
a register to be exclusively or’ed (XOR) with with the input register. The SHOW
instruction copies a given register to the output register. The EMIT instruction
moves a specified register to the output register.

Special START and FINISH instructions provide program initiation and ter-
mination facilities.

18.4 Hardware Interface to Reversible Memory

As an addition, or as an alternative, to processor-based reversible comput-
ing, reversibility may be supported by a suitably defined memory interface
that can provide forward and backward execution semantics. The difference
is that reversal is realized in terms of previous values of memory locations
rather than previous instructions and their inverses operating on the memory
locations. Hardware support for memory-based reversibility essentially comes
in the form of a flexible versioning interface defined on memory units such as
virtual memory pages.

One of the memory-based reversibility interfaces is the Rollback Chip, or
RBC for short, that is envisioned as an auxiliary hardware unit that works
in conjunction with traditional central processing unit and memory hardware
[Fujimoto et al., 1992].

Imagine a versioning interface to a segment in main memory in which
each page (or line) of memory may be individually and programmatically
versioned at runtime. Memory is normally used by the program (without the
concept of versioning, by default) for normal computation, but, to support
reversibility in selected parts of the program, certain portions of memory may
be programmatically declared to the RBC as requiring version tracking at
runtime.

In addition to an initialization step, five types of operations are defined on

270 Introduction to Reversible Computing

TABLE 18.3: Reversible Memory Interface of a Rollback Chip

Instruction Description

READ A Most recent (non-rolled-back) version of the memory
location A is placed in A

WRITE A The current value in the memory location A is
recorded as the most recent version of A. If a value

already exists for the current version in

the history of A , that value is overwritten

with this newly specified value

MARK The version number of the reversible memory is incre-
mented by one. For every location A in the memory,
if one or more WRITE A operation(s) occurred between
this MARK operation and the most recent MARK (or since
initialization, if this is the first MARK), the latest of such
written values persists as the value corresponding to
this new version

ROLLBACK k The value in every memory location A is rolled back k

versions behind its current version

ADVANCE k The k oldest versions of every memory location A are
declared as discardable

the versioned memory, acting at the level of each memory location: (1) READ,
(2) WRITE, (3) MARK, (4) ROLLBACK, and (5) ADVANCE. These operations are
listed in Table 18.3.

The READ operation is used to get a read-only copy of the most recent,
non-rolled-back version of a specified memory location. The WRITE operation
is to push a new value to a specified memory location, which makes it the
most recent version of that location. The MARK operation is used to specify
the end of a version and start a new version. All writes from the previous
mark (or initialization) to this mark are effectively coalesced, and the most
recently written value becomes the lasting write between the two consecutive
marks. Initialization of the versioned memory serves as a default, first mark on
every versioned memory location. The ROLLBACK operation is used to restore
any specified location to a version in its past, referred by its version number.
The ADVANCE operation is a guarantee given to the versioned memory that no
ROLLBACK operation will be invoked in the future to any version earlier than a
specified version number. This helps the versioned memory hardware recover
and reuse storage in which copies of earlier versions have been saved.

Note that the operations are provided as an interface only, making many
optimizations possible in the implementation underneath the interface. For
example, the ROLLBACK operation does not need to immediately perform any
expensive memory copying, but instead perform just enough bookkeeping so
as to retain the semantics for the next READ and WRITE operations. An im-

Reversible Instruction Set Architectures 271

plementation can also postpone internal updates and be able to merge the
effects of multiple consecutive ROLLBACK operations. Effectively, the ROLLBACK
instruction need only guarantee that the next READ operation on a memory
location return the value corresponding to the correct version, which can be
satisfied in a more lazy scheme that performs incremental updates to the
internal directory system of the versioned memory.

18.5 Further Reading

This chapter focused on the fundamental ideas behind reversible instruction
architectures. Additional detail can be found in the literature on the actual
instruction sets with the precise bit layout of the machine opcodes and their
operands, the circuits with clocking schemes and organization for energy reuse,
and so on [Ressler, 1981, Hall, 1994, Younis and Knight, 1994]. For the PDP-
10-like instruction set, see [Hall, 1994]; and for the Pendulum set, see [Vieri,
1995, Vieri et al., 1998, Frank, 1999, Vieri, 1999].

The issues in reversibly realizing the crucial “instruction fetch and decode”
operation of a reversible processor, and specifically, how reversibility can be
ensured by moving rather than copying opcodes from memory, are discussed
in [Vieri et al., 1998].

Most authors bring attention to the distinction between a cleared state of
a register (or memory location) and a zero state of that location. A cleared
state is the state with a known value of zero. Although a value of zero may in
fact be contained in a location at some point in time, it does not count as a
cleared state because the circuit cannot be aware of its zeroed state and hence
cannot exploit it to reuse energy for low-power operation [Vieri, 1995].

In the memory-based reversibility approach, additional hardware support
for reversibility of execution traces is designed for debugging and other appli-
cations using an approach called the history cache [Sosic, 1994].

Overall, reversible computer architecture is in a relatively initial stage
compared to the highly advanced state of conventional forward-only computer
architectures. Many of modern techniques such as pipelining, etc., have not
yet been incorporated in the context of reversible instruction sets, and much
remains as open research.

Part V

Summary

273

Chapter 19

Future Directions

19.1 Phased Transition from Irreversible to Reversible 275
19.2 Need for Additional Progress . 276
19.3 Outlook . 278

19.1 Phased Transition from Irreversible to Reversible

It is rather amazing that reversible computing naturally touches a rich va-
riety of disparate areas, including thermodynamics, quantum physics, arrow
of time, number theory, computability, randomness, abstract computing ma-
chines, nanoelectronics, languages, and compilers. Additional progress in re-
versible computing requires advances in both theory and practice, relying on
many interdependent aspects that span all these areas.

Irreversible

Program

Irreversible

Machine ⇒
Irreversible

Machine

Reversible

Program

⇒
Reversible

Machine

Reversible

Program

⇒

Irreversible

Program

Reversible

Machine

(a) Existing (b) Short-term (c) Medium-term (d) Long-term

FIGURE 19.1: Transitioning from irreversible to reversible computing.

As reversible computing evolves in theory and software and hardware tech-
nologies, the transition from conventional computing may proceed in a series of
steps, as illustrated in Figure 19.1. The existing state shown in Figure 19.1(a)
corresponds to the most prevalent technologies of today, in which irreversible
programs are executed on irreversible machines. A sudden transition from
this current state to the ideal of a purely reversible computing world would
require too gigantic a leap to be practically feasible. Instead, in the short term,
a more effective intermediate step would be to achieve execution of new re-
versible programs over existing irreversible machines, shown in Figure 19.1(b).
This includes the definition of novel and more powerful reversible languages
for wider use, and an effective execution mechanism of the reversible programs

275

276 Introduction to Reversible Computing

over traditional computing interfaces. Upon achieving such a capability, the
focus may be shifted to replacing the irreversible machine with a reversible
one, as shown in Figure 19.1(c). This includes possibilities such as the maturity
of adiabatic circuit design and synthesis, and advanced CMOS technologies
with circuits that are capable of transitions with predominantly recoverable
energy. This stage of transition may also rely on quantum computing tech-
nologies that may provide machines of larger scale with many qubits, suitable
for practical applications. The final achievement, shown in Figure 19.1(d),
would be to be able to take any irreversible program and efficiently emulate it
over a reversible machine. Clearly, this subsumes the capability of executing
all the previous modes because reversible programs are a subset of irreversible
programs. This is the idealistic final goal, in line with the vision of early works
on adiabatic computing systems or reversible circuits.

19.2 Need for Additional Progress

Reversible computing represents, on many planes, a disruptive change. It
brings changes in terms of theoretical ramifications of reversibility of compu-
tation in general. Computing characteristics such as performance per watt can
become dramatically different due to the unique benefits offered by reversible
hardware technologies. It is also disruptive due to the conflict it creates be-
tween the unique benefits that cannot be forsaken and the difficulty inherent
in any paradigm shift. The difficulty arises due to the strikingly different, un-
familiar semantics imposed by reversible software systems. Consequently, just
as it is true with any disruptive change, it faces severe hurdles for adoption.

Among the primary hurdles is the attitude of disbelief, perhaps due to
its “spookiness.” The research community has yet to overcome a disbelief
that reversible computing is feasible, beneficial, and eventually inevitable as
a natural evolution in computing. The second, and less subjective, hurdle is
the comparison with the status quo, namely the immensely successful nature
of irreversible computing versus the nascent state of reversible computing.
Forward-only computing has advanced extremely far in terms of algorithms,
data structures, computational complexity analyses, software infrastructures,
software engineering methodologies, and so on, all built with irreversible com-
puting as the underlying model. The forward-only notion has been ingrained in
all programming minds. Also, the implementation technologies have advanced
very far, making many applications easy, fast, and efficient. The barrier to re-
versible computing is the high bar set by the status quo with respect to ease
of use, speed of computation, and intuition. Reversible computing must offer
a clear and compelling case to warrant the large amount of initial pain in
adoption. There are a few drivers at the moment that provide a compelling
case to make the payoff work the effort.

Future Directions 277

� High Performance Computing (HPC) is an application area where re-
versible computing finds multiple uses:

– Energy Efficiency: As parallel computers are populated with in-
creasing numbers of processors, a critical limitation in scaling arises
in the form of energy supply and dissipation levels. In some of the
biggest supercomputing installations, input electric power has al-
ready reached nearly the highest levels (in the range of megawatts)
that can be supplied to a single installation. Because the input
power cannot be increased and dissipated heat cannot be decreased
much more than current levels, future performance gains will ulti-
mately rely on increasing the performance per watt using low-power
computing technologies. In the direction of reduction of power us-
age, thermodynamic considerations eventually lead to the heat dis-
sipation bounds imposed by logical reversibility. At this juncture,
reductions in energy consumption can only be achieved by moving
to reversible circuits.

– Scalable Fault Tolerance: Due to a decrease of mean time between
failure (MTBF) of system components with an increase in system
size, hard and soft faults become much more frequent in large par-
allel computers. Reversible computing provides the least-cost solu-
tion for fault-tolerant execution realized via the ability to rollback
processors as needed.

– Scalable Debugging: In future HPC applications with very large
concurrency levels (e.g., billions of threads of control flow or in-
dependent instruction streams), reversible computing is the least
resource-hungry method of enabling debugging support for mas-
sively parallel runs.

� Quantum Computing is the impending computing paradigm of the fu-
ture. Due to the fundamentally reversible nature of quantum comput-
ing operations, reversible computing must be accepted regardless of the
challenges in programmability. In fact, research in reversible software for
classical computing is being viewed by some as “practice” for impending
adiabatic circuits and quantum computing hardware [Bennett, 2005].

In the near term, some challenges remain to be overcome. Robust, general-
purpose reverse compilers need to be developed and refined to a state at which
they are competitive with conventional compilers. All compilers, tools, and
techniques need to be evaluated on real, large codes, and overall gains need
to be evaluated. All new reversal schemes must be improved and refined so
that they are in fact competitive with conventional (irreversible, sequential)
execution.

In general, new standards need to be developed for reversible computer
arithmetic, and new interfaces must be designed for reversible mathematical
subroutines. Efficient algorithms are needed to achieve numerical reversibility,

278 Introduction to Reversible Computing

implementable at the hardware level for the fastest execution. In the process
of enabling reversibility, a majority of conventional algorithms and data struc-
tures need to be revisited from their fundamentals. Their runtime complexity
analyses must be redone, taking into account the high runtime cost of memory
accesses and the ability to use reverse computation to recreate past state.

Additionally, some important, nontechnical challenges need to be ad-
dressed at some point before reversible computing can enter mainstream com-
puting. Can we train a new breed of programmers who can become adept
at writing programs using only reversible constructs? What would it take to
teach computer science students to think in terms of reversible algorithms
and reversible programming? How easy or difficult would it be to undertake
software engineering on a new fundamental basis of reversible programming?

19.3 Outlook

Although there are several existing uses of reversible computing, it is pos-
sible that there are other, perhaps even more strongly tied, applications of
reversible computing that will be discovered in the not-so-distant future. One
observation that is certain is that backward execution is an undeniably nat-
ural peer to the conventional forward execution, and hence will eventually
find its natural role in computing. How soon and at what pace it will unravel
and fully blossom remains to be witnessed by this generation with intellectual
curiosity, anticipation, hope, and excitement.

The strangeness of reversible computing is mainly due to
our lack of experience with it.—Henry Baker, 1992

References

Andrew Adamatzky. Collision-based Computing. Springer, 2002. ISBN 978-
1-85233-540-3.

Tankut Akgul and Vincent J. Mooney III. Assembly instruction level reverse
execution for debugging. ACM Trans. Softw. Eng. Methodol., 13(2):149–
198, April 2004. ISSN 1049-331X.

Ian F. Akyildiz, Liang Chen, Samir Ranjan Das, Richard Fujimoto, and
Richard F. Serfozo. Performance analysis of ”time warp” with limited mem-
ory. In SIGMETRICS, pages 213–224, 1992.

A.N. Al-Rabadi. Reversible Logic Synthesis: From Fundamentals to Quantum
Computing. Springer Series in Advanced Microelectronics. Prelim.Entry.
13, 13. Springer-Verlag, 2004. ISBN 9783540009351.

Eric Allen, David Chase, Christine Flood, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, and Guy L. Steele Jr. Project fortress: A multicore
language for multicore processors. Linux Magazine, September 2007.

Eric Allen, David Chase, Hallett, Victor Luchangco, Jan-Willem Maessen,
Sukyoung Ryu, Guy L. Steele, and Tobin-Hochstadt. The fortress language
specification, version 1.0. Oracle, Inc., 2008, 2008.

James E. Archer, Jr., Richard Conway, and Fred B. Schneider. User recovery
and reversal in interactive systems. ACM Trans. Program. Lang. Syst., 6
(1):1–19, 1984. ISSN 0164-0925.

Holger Axelsen and Robert Glück. A simple and efficient universal reversible
Turing machine. In Adrian-Horia Dediu, Shunsuke Inenaga, and Carlos
Martn-Vide, editors, Language and Automata Theory and Applications, vol-
ume 6638 of Lecture Notes in Computer Science, pages 117–128. Springer
Berlin/Heidelberg, 2011. ISBN 978-3-642-21253-6.

Johann Sebastian Bach. The Art of the Fugue & A Musical Offering. Dover
Publications, 1747. ISBN 978-0486270067.

Mouad Bahi and Christine Eisenbeis. Register Reverse Rematerialization.
Rapport de recherche (Research Report) inria-00607323, ALCHEMY - IN-
RIA Saclay - Ile de France, July 2011.

279

280 References

Mouad Bahi and Christine Eisenbeis. Impact of reverse computing on in-
formation locality in register allocation for high performance computing.
International Journal of Parallel Programming, pages 1–28, 2012. ISSN
0885-7458.

Henry G. Baker. Nreversal of fortune - the thermodynamics of garbage col-
lection. In Proceedings of the International Workshop on Memory Manage-
ment, IWMM ’92, pages 507–524, London, UK, UK, 1992. Springer-Verlag.
ISBN 3-540-55940-X.

Henry G. Baker. Thermodynamics and garbage collection. SIGPLAN Not.,
29(4):58–63, April 1994. ISSN 0362-1340.

Amir M. Ben-Amram. The Church-Turing thesis and its look-alikes. SIGACT
News, 36(3):113–114, 2005.

C. H. Bennett. Logical reversibility of computation. IBM J. Res. Dev., 17(6):
525–532, November 1973. ISSN 0018-8646.

Charles Bennett. Thermodynamics of computation. International Journal of
Physics, 21:905–940, 1982.

Charles Bennett. Is information physical, or is physics informational? In
International Workshop on Reversible Computing (Special Session at ACM
Computing Frontiers), 2005.

Charles H. Bennett. On Random and Hard-to-describe Numbers. IBM RC.
IBM Thomas J.Watson Research Center, 1979.

Charles H. Bennett. Notes on the history of reversible computation. IBM
Journal of Research and Development, 32(1):16–23, Jan. 1988. ISSN 0018-
8646.

Charles H. Bennett. Notes on Landauer’s principle, reversible computation,
and Maxwell’s demon. Studies In History and Philosophy of Science Part
B: Studies In History and Philosophy of Modern Physics, 34(3):501–510,
2003. ISSN 1355-2198.

Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazi-
rani. Strengths and Weaknesses of Quantum Computing. SIAM Journal
on Computing, 26:1510–1523, 1997.

Phillip A. Berstein and Eric Newcomer. Principles of Transaction Processing.
Morgan Kaufmann; 2 edition, 2009. ISBN 978-1558606234.

Antoine Bérut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul
Dillenschneider, and Eric Lutz. Experimental verification of Landauer’s
principle linking information and thermodynamics. Nature, 483:187–189,
2012.

References 281

P.G. Bishop. Using reversible computing to achieve fail-safety. In Proceedings
of the Eighth International Symposium On Software Reliability Engineering,
pages 182 –191, 2-5 1997.

Bitan Biswas and Rajiv Mall. Reverse execution of programs. ACM SIGPLAN
Notices, 34(4):61–69, April 1999.

Ludwig Boltzmann. On the relation of a general mechanical theorem to the
second law of thermodynamics. Sitzungsberichte Akad. Wiss., Vienna, 75:
67–73, 1877.

Bob Boothe. Efficient algorithms for bidirectional debugging. SIGPLAN Not.,
35(5):299–310, 2000.

Kevin J. Bowers, Edmond Chow, Huafeng Xu, Ron O. Dror, Michael P. East-
wood, Brent A. Gregersen, John L. Klepeis, Istvan Kolossvary, Mark A.
Moraes, Federico D. Sacerdoti, John K. Salmon, Yibing Shan, and David E.
Shaw. Scalable algorithms for molecular dynamics simulations on commod-
ity clusters. In Proceedings of the 2006 ACM/IEEE conference on Super-
computing, SC ’06, New York, NY, USA, 2006. ACM. ISBN 0-7695-2700-0.

Richard P. Brent and Paul Zimmermann. Modern Computer Arithmetic. Cam-
bridge University Press, 2010. ISBN 978-0521194693.

J. S. Briggs. Generating reversible programs. Software Practice Experience,
17(7):439–454, July 1987. ISSN 0038-0644.

Leon Brillouin. Science and Information Theory. Academic Press, 2nd Edi-
tion, 1956. ISBN 978-0121349509.

Jeffrey Bub. Maxwell’s demon and the thermodynamics of computation. Stud-
ies In History and Philosophy of Science Part B: Studies In History and
Philosophy of Modern Physics, 32(4):569 – 579, 2001. ISSN 1355-2198.

Harry Buhrman, John Tromp, and Paul Vitanyi. Time and space bounds for
reversible simulation. Journal of Physics A: Mathematical and General, 34:
6821–6830, 2001.

Christopher Carothers, Kalyan S. Perumalla, and Richard M. Fujimoto. Ef-
ficient optimistic parallel simulations using reverse computation. ACM
Transactions on Modeling and Computer Simulation, 9(3):224–253, 1999.

A. K. Chandra. Efficient compilation of linear recursive programs. Technical
Report Stanford Artificial Intelligence Project Memo AIM-167, STAN-CS-
72-282, Computer Science Department, Stanford University, April 1972.

Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version
Control With Subversion - The Official Guide And Reference Manual. Cre-
ateSpace Independent Publishing Platform, 2009. ISBN 978-1441437761.

282 References

C. J. Date. An Introduction to Database Systems. Addison-Wesley; 8th edi-
tion, 2003. ISBN 978-0321197849.

Bart Desoete and Alexis De Vos. A reversible carry-look-ahead adder using
control gates. Integration, 33(1-2):89–104, 2002.

Edsger W. Dijkstra. Program inversion. In Program Construction, Interna-
tional Summer Schoo, pages 54–57, London, UK, UK, 1979. Springer-Verlag.
ISBN 3-540-09251-X.

R. Drechsler and R. Wille. From truth tables to programming languages:
Progress in the design of reversible circuits. In 41st IEEE International
Symposium on Multiple-Valued Logic (ISMVL), pages 78 –85, 2011.

Rolf Drechsler and Robert Wille. Reversible circuits: Recent accomplishments
and future challenges for an emerging technology. In Hafizur Rahaman,
Sanatan Chattopadhyay, and Santanu Chattopadhyay, editors, Progress in
VLSI Design and Test, volume 7373 of Lecture Notes in Computer Science,
pages 383–392. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-31493-3.

Michel Dubois, Murali Annavaram, and Per Stenstrom. Parallel Computer
Organization and Design. Cambridge University Press, 2012. ISBN 978-
0521886758.

Margaret A. Ellis and Bjarne Stroustrup. The annotated C++ reference man-
ual. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1990. ISBN 0-201-51459-1.

David Eppstein. A heuristic approach to program inversion. In Proceedings
of the 9th international joint conference on Artificial intelligence - Volume
1, IJCAI’85, pages 219–221, San Francisco, CA, USA, 1985. Morgan Kauf-
mann Publishers Inc. ISBN 0-934613-02-8, 978-0-934-61302-6.

J. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEE Transactions on Computers, C-30(7):478–490, 1981.

Joseph A Fisher. Very long instruction word architectures and the ELI-512,
volume 11. ACM, 1983.

Michael Frank. Introduction to reversible computing: Motivation, progress,
and challenges. In International Workshop on Reversible Computing (Spe-
cial Session at ACM Computing Frontiers), 2005.

Michael P. Frank. Reversibility for Efficient Computing. PhD thesis, Mas-
sachusetts Institute of Technology, 1999.

Edward Fredkin and Tommaso Toffoli. Conservative logic. International Jour-
nal of Theoretical Physics, 21:219–253, 1982. ISSN 0020-7748.

References 283

James D. French. The false assumption underlying Berry’s paradox. The
Journal of Symbolic Logic, 53(4):1220–1223, 1988.

Richard M. Fujimoto. Parallel and Distributed Simulation Systems. Wiley-
Interscience, 2000. ISBN 978-0471183839.

Richard M. Fujimoto, Jya-Jang Tsai, and Ganesh C. Gopalakrishnan. Design
and evaluation of the rollback chip: Special purpose hardware for time warp.
IEEE Trans. Comput., 41(1):68–82, January 1992. ISSN 0018-9340.

James E. Gentle. Random Number Generation and Monte Carlo Methods
(Statistics and Computing). Springer, 2003. ISBN 978-0387001784.

Robert Glück and Masahiko Kawabe. A program inverter for a functional
language with equality and constructors. In Atsushi Ohori, editor, Pro-
gramming Languages and Systems, volume 2895 of Lecture Notes in Com-
puter Science, pages 246–264. Springer Berlin / Heidelberg, 2003. ISBN
978-3-540-20536-4.

Robert Glück and Masahiko Kawabe. Derivation of deterministic inverse pro-
grams based on lr parsing. In Yukiyoshi Kameyama and Peter Stuckey, ed-
itors, Functional and Logic Programming, volume 2998 of Lecture Notes in
Computer Science, pages 187–191. Springer Berlin/Heidelberg, 2004. ISBN
978-3-540-21402-1.

David Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

Herman H. Goldstine. The Computer from Pascal to von Neumann. Princeton
University Press, 1980. ISBN 978-0691023670.

Georg A. Gottwald and Marcel Oliver. Boltzmann’s dilemma: An introduction
to statistical mechanics via the Kac ring. SIAM Review, 51(3):613–635,
2009.

Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta. Introduc-
tion to Parallel Computing. Addison-Wesley, 2003. ISBN 978-0201648652.

Andreas Griewank and Andrea Walther. Evaluating Derivatives : Principles
and Techniques of Algorithmic Differentiation (Second Edition). Society for
Industrial and Applied Mathematics, 2008. ISBN 0898716594.

Zhijin Guan, Wenjuan Li, Weiping Ding, Yueqin Hang, and Lihui Ni. An
arithmetic logic unit design based on reversible logic gates. In Communica-
tions, Computers and Signal Processing (PacRim), 2011 IEEE Pacific Rim
Conference on, pages 925 –931, 2011.

Storrs Hall. A reversible instruction set architecture and algorithms. In
Physics and Computation, pages 128–134, 1994.

284 References

James Harland. Analysis of busy beaver machines via induction proofs. In
Proceedings of the Thirteenth Australasian Symposium on Theory of Com-
puting - Volume 65, CATS ’07, pages 71–78. Australian Computer Society,
Inc., 2007. ISBN 1-920-68246-5.

Berthold Hoffmann. Term rewriting with sharing and memoization. In Pro-
ceedings of the Third International Conference on Algebraic and Logic Pro-
gramming, pages 128–142, London, UK, 1992. Springer-Verlag. ISBN 3-540-
55873-X.

J.K. Hollingsworth. Critical path profiling of message passing and shared-
memory programs. IEEE Transactions on Parallel and Distributed Systems,
9(10):1029–1040, 1998.

P. Hontalas, B. Beckman, M. DiLorento, L. Blume, P. Reiher, K. Sturdevant,
L. V. Warren, J. Wedel, F. Wieland, and D. R. Jefferson. Performance
of the colliding pucks simulation on the time warp operating system. In
Distributed Simulation, 1989.

Reimann Hugo. Text-book of simple and double counterpoint including imita-
tion or canon. Nabu Press, 1904). ISBN 978-1172452330.

Keith Hutchison. Is classical mechanics really time-reversible and determin-
istic? The British Journal for the Philosophy of Science, 44(2):307–323,
1993.

D. Jefferson and P. Reiher. Supercritical speedup [discrete event simulation].
In Simulation Symposium, 1991., Proceedings of the 24th Annual, pages
159–168, 1991.

David R. Jefferson. Virtual time. ACM Transactions on Programming Lan-
guages and Systems, 7(3):404–425, 1985.

David R. Jefferson, B. Beckman, F. Wieland, L. Blume, M. DiLorento, P. Hon-
talas, P. Reiher, K. Sturdevant, J. Tupman, J. Wedel, and H. Younger. The
time warp operating systems. In Symposium on Operating Systems Princi-
ples, volume 21, pages 77–93, 1987.

Susmit Kumar Jha. Towards Automated System Synthesis Using SCIDUC-
TION. PhD thesis, EECS Department, University of California, Berkeley,
Nov. 2011.

Mark Kac. Some remarks on the use of probability in classical statistical
mechanics. Académie Royale de Belgique, Bulletin de la Classe de Sciences,
5(42):356–361, 1956.

Masahiko Kawabe and Robert Glück. The program inverter lrinv and its
structure. In Manuel Hermenegildo and Daniel Cabeza, editors, Practical

References 285

Aspects of Declarative Languages, volume 3350 of Lecture Notes in Com-
puter Science, pages 219–234. Springer Berlin/Heidelberg, 2005. ISBN 978-
3-540-24362-5.

F. P. Kelly. Reversibility and Stochastic Networks. New: Cambridge University
Press 2011; Original: Wiley, Chichester, 1979.

Youngbae Kim, J. S. Plank, and J. J. Dongarra. Fault tolerant matrix oper-
ations using checksum and reverse computation. In Proceedings of the 6th
Symposium on the Frontiers of Massively Parallel Computation, FRON-
TIERS ’96, pages 70–, Washington, DC, USA, 1996. IEEE Computer Soci-
ety. ISBN 0-8186-7551-9.

Julian Knight, Steve Bull, and Gary Palmer. Cricket For Dummies. For
Dummies, 2007. ISBN 978-0470034545.

Andrei N Kolmogorov. On tables of random numbers. Sankhyā: The Indian
Journal of Statistics, Series A, 25(4):369–376, 1963.

Luis Antonio Brasil Kowada, Renato Portugal, and Celina Miraglia Herrera
de Figueiredo. Reversible karatsuba’s algorithm. 12(5):499–511, Jun 2006.

Rolf Landauer. Irreversibility and heat generation in the computing process.
IBM Journal of Research and Development, 5(3):183–191, 1961.

J. L. Lebowitz. Time’s arrow and Boltzmann’s entropy. In Physical Origins
of Time Asymmetry, pages 131–146. Cambridge University Press, 1994.

Y. Lecerf. Machines de Turing reversibles. insolubilite recursive en n ∈ N
de l’equation u = θn, ou θ est un “isomorphisme de codes”. In Comptes
Rendus Hebdomadaires des Séances de L’Académie des Sciences, volume
257, pages 2597–2600. 1963.

Pierre L’Ecuyer and Terry H. Andres. A random number generator based on
the combination of four lcgs. In Mathematics and Computers in Simulation,
pages 99–107, 1997.

Pierre L’Ecuyer and Richard Simard. Testu01: A c library for empirical testing
of random number generators. ACM Trans. Math. Softw., 33(4), August
2007. ISSN 0098-3500.

Jooyong Lee. Dynamic reverse code generation for backward execution. Elec-
tronic Notes Theoretical Computer Science, 174(4):37–54, May 2007. ISSN
1571-0661.

George B. Leeman, Jr. A formal approach to undo operations in programming
languages. ACM Trans. Program. Lang. Syst., 8(1):50–87, January 1986.
ISSN 0164-0925.

286 References

D. Levesque and L. Verlet. Molecular dynamics and time reversibility. Journal
of Statistical Physics, 72:519–537, 1993. ISSN 0022-4715.

R. Levine and A. Sherman. A note on bennetts time-space tradeoff for re-
versible computation. SIAM Journal on Computing, 19(4):673–677, 1990.

Ming Li and Paul Vitanyi. Reversible simulation of irreversible computation.
In IEEE Conference on Computational Complexity (CCC), 1996.

Ming Li, John Tromp, and Paul Vitanyi. Reversible simulation of irreversible
computation. Physica D, 120(1):168–176, 1998.

Michael Lienhardt, Ivan Lanese, Claudio Mezzina, and Jean-Bernard Stefani.
A reversible abstract machine and its space overhead. In Holger Giese
and Grigore Rosu, editors, Formal Techniques for Distributed Systems, vol-
ume 7273 of Lecture Notes in Computer Science, pages 1–17. Springer
Berlin/Heidelberg, 2012. ISBN 978-3-642-30792-8.

Y.-B. Lin and B. R. Preiss. Optimal memory management for time warp par-
allel simulation. ACM Transactions on Modeling and Computer Simulation,
1(4), 1991.

Jon Loeliger and Matthew McCullough. Version Control with Git: Powerful
Tools and Techniques for Collaborative Software Development. O’Reilly
Media, 2012. ISBN 978-1449316389.

Chris Lutz and Howard Derby. Janus: A time-reversible language. Letter
written in 1986 by authors, then at California Institute of Technology, to
R. Landauer of IBM Inc.; work claimed to be dated in 1982, 1986.

D. Manivannan and Mukesh Singhal. A low-overhead recovery technique us-
ing quasi-synchronous checkpointing. In Proc. IEEE Int. Conference on
Distributed Computing Systems, pages 100–107, 1996.

O. J. E. Maroney. The (absence of a) relationship between thermodynamic
and logical reversibility. ArXiv Physics e-prints, 2004.

O. J. E. Maroney. The (absence of a) relationship between thermodynamic
and logical reversibility. Studies in History and Philosophy of Science Part
B: Studies in History and Philosophy of Modern Physics, 36(2):355 – 374,
2005.

O. J. E. Maroney. Generalizing Landauer’s Principle. Phys. Rev. E, 79(3):
031105, Mar 2009.

George Marsaglia. Diehard battery of tests of randomness,
stat.fsu.edu/pub/diehard, 1995.

Armando B. Matos. Linear programs in a simple reversible language. Theor.
Comput. Sci., 290(3):2063–2074, January 2003. ISSN 0304-3975.

References 287

Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Trans. Model. Comput. Simul., 8(1):3–30, 1998. ISSN 1049-3301.

John McCarthy. The inversion of functions defined by Turing machines. Au-
tomata Studies, pages 177–181, 1956.

Pascal Michel. Small Turing machines and generalized busy beaver competi-
tion. Theoretical Computer Science, 326(1-3):45–56, 2004.

Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An injective language for
reversible computation. In Dexter Kozen, editor, Mathematics of Program
Construction, volume 3125 of Lecture Notes in Computer Science, pages
289–313. Springer Berlin/Heidelberg, 2004. ISBN 978-3-540-22380-1.

John Von Neumann. Theory of Self-Reproducing Automata. University of
Illinois Press, Champaign, IL, USA, 1966.

J. Orban and A. Bellemans. Velocity-inversion and irreversibility in a dilute
gas of hard disks. Physics Letters A, 24(11):620 – 621, 1967. ISSN 0375-
9601.

Bryan O’Sullivan. Mercurial: The Definitive Guide. O’Reilly Media, 2009.
ISBN 978-0596800673.

Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa. DNA Computing:
New Computing Paradigms. Springer, 2006. ISBN 978-3540641964.

Kalyan Perumalla, Matthew Andrews, and Sandeep Bhatt. TED models for
ATM internetworks. SIGMETRICS Perform. Eval. Rev., 25(4):12–21, 1998.

Kalyan S. Perumalla. Techniques for efficient parallel simulation and their
application to large-scale telecommunication network models. PhD thesis,
Georgia Institute of Technology, 1999.

Kalyan S. Perumalla. Generating perfect reversals of simple linear codes.
Technical Report GT-CC-03-04, College of Computing, Georgia Institute
of Technology, 2003.

Kalyan S. Perumalla. Scaling time warp-based discrete event execution to 104

processors on the blue gene supercomputer. In International Conference on
Computing Frontiers, pages 69–76, Ischia, Italy, 2007.

Kalyan S. Perumalla and Alfred J. Park. Reverse computation for rollback-
based fault tolerance in large parallel systems. Cluster Computing, 16(2),
2013.

Kalyan S. Perumalla and Valdimir A. Protopopescu. Reversible simulations
of elastic collisions. ACM Transactions on Modeling and Computer Simu-
lation, 23(2), 2013.

288 References

Clifford A. Pickover. The Mobius Strip: Dr. August Mobius’s Marvelous Band
in Mathematics, Games, Literature, Art, Technology, and Cosmology. Basic
Books, 2007. ISBN 978-1560259527.

Michel Raynal. Concurrent Programming: Algorithms, Principles, and Foun-
dations. Springer, 2012. ISBN 978-3642320262.

Jie Ren and V.K. Semenov. Progress with physically and logically reversible
superconducting digital circuits. IEEE Transactions on Applied Supercon-
ductivity, 21(3):780 –786, June 2011. ISSN 1051-8223.

Yvan Rentergem, Alexis Vos, and Koen Keyser. Six synthesis methods for
reversible logic. Open Systems & Information Dynamics, 14:91–116, 2007.
ISSN 1230-1612.

R.F. Resende and A. El Abbadi. On the serializability theorem for nested
transactions. Information Processing Letters, 50(4):177 – 183, 1994. ISSN
0020-0190.

Andrew Lewis Ressler. The design of a conservative logic computer and a
graphical editor simulator. Master’s thesis, Massachusetts Institute of Tech-
nology, 1981.

Eleanor G. Rieffel and Wolfgang H. Polak. Quantum Computing: A Gentle
Introduction. The MIT Press, 2011. ISBN 978-0262015066.

Brian W. Roberts. When we do (and do not) have a classical arrow of time.
Philosophy of Science, 2012.

K. Sakiyama, B. Preneel, and I. Verbauwhede. A fast dual-field modular
arithmetic logic unit and its hardware implementation. In Circuits and
Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Sympo-
sium, pages 787–790, 2006.

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Par-
allel random numbers: as easy as 1, 2, 3. In Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 16:1–16:12, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0771-0.

A.N. Shiryayev. On tables of random numbers. In A.N. Shiryayev, editor,
Selected Works of A. N. Kolmogorov, volume 27 of Mathematics and Its
Applications, pages 176–183. Springer Netherlands, 1993. ISBN 978-90-
481-8456-9.

Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. on Computing, pages
1484–1509, 1997.

References 289

Mathias Soeken, Stefan Frehse, Robert Wille, and Rolf Drechsler. Revkit: An
open source toolkit for the design of reversible circuits. In Alexis De Vos
and Robert Wille, editors, Reversible Computation, volume 7165 of Lec-
ture Notes in Computer Science, pages 64–76. Springer Berlin / Heidelberg,
2012. ISBN 978-3-642-29516-4.

Ray J. Solomonoff. A formal theory of inductive inference. Part i. Information
and Control, 7(1):1–22, 1964a.

Ray J. Solomonoff. A formal theory of inductive inference. Part ii. Information
and Control, 7(2):224–254, 1964b.

Ravishankar Somasundaram. Git: Version control for everyone. Packt Pub-
lishing, 2013. ISBN 978-1849517522.

Rok Sosic. History cache: Hardware support for reverse execution. Computer
Architecture News, 22(5):11–18, December 1994.

Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Jeffrey S. Foster.
Path-based inductive synthesis for program inversion. SIGPLAN Notices,
46(6):492–503, 2011a.

Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Jeffrey S. Foster.
Path-based inductive synthesis for program inversion. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, pages 492–503, New York, NY, USA, 2011b.
ACM. ISBN 978-1-4503-0663-8.

Milena Stankovi and Suzana Stojkovi. Reversible synthesis through shared
functional decision diagrams. In Roberto Moreno-Daz, Franz Pichler, and
Alexis Quesada-Arencibia, editors, Computer Aided Systems Theory - EU-
ROCAST 2009, volume 5717 of Lecture Notes in Computer Science, pages
510–517. Springer Berlin/Heidelberg, 2009. ISBN 978-3-642-04771-8.

Vincent S. Steckline. Zermelo, Boltzmann, and the recurrence paradox. Amer-
ican Journal of Physics, 51(10):894–897, 1983.

Doron Swade. The Difference Engine: Charles Babbage and the Quest to Build
the First Computer. Viking Adult, 2001. ISBN 978-0670910205.

Leó Szilárd. On entropy reduction in a thermodynamic system by inference
by intelligent subjects. Zeitschrift für Physik, 53:840–856, 1929. (original
title “Über die Entropieverminderung in einem thermodynamischen System
bei Eingriffen intelligenter Wesen”).

W. Teitelman. INTERLISP Reference Manual. Xerox PARC, Palo Alto,
California, 1975.

W. Teitelman. Automated programming: The programmer’s assistant. Inte-
grated Programming Environments, 1984.

290 References

Dave Thomas and Andy Hunt. Pragmatic Version Control Using CVS. The
Pragmatic Programmers, 2003. ISBN 978-0974514000.

Michael Thomsen and Holger Axelsen. Parallel optimization of a reversible
(quantum) ripple-carry adder. In Cristian Calude, Jos Costa, Rudolf Fre-
und, Marion Oswald, and Grzegorz Rozenberg, editors, Unconventional
Computing, volume 5204 of Lecture Notes in Computer Science, pages 228–
241. Springer Berlin/Heidelberg, 2008. ISBN 978-3-540-85193-6.

Michael Kirkedal Thomsen, Robert Glück, and Holger Bock Axelsen. Re-
versible arithmetic logic unit for quantum arithmetic. Journal of Physics
A: Mathematical and Theoretical, 43(38):382002, 2010.

TOP500.org. Top500 supercomputer sites. http://www.top500.org, 2013.
Accessed: 2013-05-01.

Yvan Van Rentergem and Alexis De Vos. Optimal design of a reversible
full adder. International Journal of Unconventional Computing, 1:339–355,
2005.

Carlin Vieri, M. Josephine Ammer, Michael Frank, Norman Margolus, and
Tom Knight. A fully reversible asymptotically zero energy microprocessor,
1998.

Carlin James Vieri. Pendulum: A reversible computer architecture. Master’s
thesis, Massachusetts Institute of Technology, 1995.

Carlin James Vieri. Reversible computer engineering and architecture. PhD
thesis, Massachusetts Institute of Technology, 1999.

Alexis De Vos. Reversible Computing. Wiley-VCH, 2010. ISBN 978-
3527409921.

G. Vulov, Cong Hou, R. Vuduc, R. Fujimoto, D. Quinlan, and D. Jefferson.
The backstroke framework for source level reverse computation applied to
parallel discrete event simulation. In Simulation Conference (WSC), Pro-
ceedings of the 2011 Winter, pages 2960 –2974, 2011.

A. N. Whitehead and B. Russell. Principia Mathematica, Vol. 1. Cambridge
University Press, London, 1925.

R. Wille, H.M. Le, G.W. Dueck, and D. Grosse. Quantified synthesis of re-
versible logic. In Design, Automation and Test in Europe, 2008. DATE ’08,
pages 1015 –1020, 2008.

C.-Q. Yang and B.P. Miller. Critical path analysis for the execution of parallel
and distributed programs. In Distributed Computing Systems, 1988., 8th
International Conference on, pages 366–373, 1988.

References 291

Tetsuo Yokoyama. Reversible computation and reversible programming lan-
guages. Electron. Notes Theor. Comput. Sci., 253(6):71–81, March 2010.
ISSN 1571-0661.

Tetsuo Yokoyama and Robert Glück. A reversible programming language and
its invertible self-interpreter. In Proceedings of the 2007 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manipula-
tion, PEPM ’07, pages 144–153, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-620-2.

Tetsuo Yokoyama, Holger Axelsen, and Robert Glück. Towards a reversible
functional language. In Alexis De Vos and Robert Wille, editors, Reversible
Computation, volume 7165 of Lecture Notes in Computer Science, pages
14–29. Springer Berlin/Heidelberg, 2012. ISBN 978-3-642-29516-4.

Saed G. Younis and Tom F. Knight. Asymptotically zero energy computing
using split-level charge recovery logic. In Proceedings of the International
Workshop on Low Power Design, pages 177–182, 1994.

Ernst Zermelo. On a theorem of dynamics and the mechanical theory of heat.
Annalen der Physik, 57:485–494, 1896.

P. Zuliani. Logical reversibility. IBM Journal of Research and Development,
45(6):807 –818, nov. 2001. ISSN 0018-8646.

	Cover
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Preface
	About the Author
	Acknowledgments
	Book Organization
	Part I: Introduction
	Chapter 1: Scope
	Chapter 2: Application Areas
	Chapter 3: Reversible Computing Spectrum
	Part II: Theory
	Chapter 4: Systems and Principles
	Chapter 5: Reversibility-Related Paradoxes
	Chapter 6: Theoretical Computing Models
	Chapter 7: Relaxing Forward–Only Execution into Reversible Execution
	Part III: Software
	Chapter 8: Reversible Programming Languages
	Chapter 9: Adding Reversibility to Irreversible Programs
	Chapter 10: Reverse C Compiler
	Chapter 11: Reversal of Linear Codes
	Chapter 12: Reversible Random Number Generation
	Chapter 13: Reversible Memory Allocation and Deallocation
	Chapter 14: Reversible Numerical Computation
	Chapter 15: Reversing a Sorting Procedure
	Chapter 16: Implementing Undo–Redo–Do
	Part IV: Hardware
	Chapter 17: Reversible Logic Gates
	Chapter 18: Reversible Instruction Set Architectures
	Part V: Summary
	Chapter 19: Future Directions
	References
	Back Cover

