

vi!1" Tips
Essential vi/vim Editor Skills

by

Jacek Artymiak

First Edition

Lublin 2008

!i"1# Tips, 1st ed. by Jacek Artymiak

Editor: Suzanne Trellis

Published by devGuide.net

www: http://www.devguide.net/books/vitips1

email: jacek@devguide.net

Copyright © 2008 Jacek Artymiak

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

First edition 2008

Printed in Poland and the United States of America.

08! 10 9 8 7 6 5 4 3 2 1

ISBN: 978"83"60869"00"0

The author and the publisher disclaim any and all liability for the
use of information and programs contained in this book.

All trademarks mentioned in this book are the sole property of
their owners.

Table of Contents

Introduction ## # # # # 1

Chapter 1: Essentials## # # # 3

! PANIC!!! ! ! ! ! 5

! Canceling Commands! ! ! ! 5

! Switching Between Command Mode and

! ! Insert Mode! ! ! ! 6

! Escaping from the ex Editor Mode! ! 6

! Unscrambling the Screen! ! ! ! 6

Chapter 2: Basic File Operations# # # 7

! Starting vi#1$! ! ! ! ! 9

! Starting vi#1$ and Opening a File for Editing! 10

! Starting vi#1$ and Opening Multiple Files for

! ! Editing! ! ! ! ! 11

! Switching Between Files! ! ! ! 13

! Opening a File after Starting vi#1$! ! ! 14

! Saving the Current File! ! ! ! 15

! Forcing vi#1$ to Save the Current File! ! 16

! Saving the Current File Under a Di%erent Name! 17

! Saving a Part of the Current File! ! ! 18

! Saving a Part of the Current File Under a

! ! Di%erent Name! ! ! ! 19

! Appending the Current File to Another! ! 20

! Appending a Part of the Current File to Another! 21

! Saving the Current file and Quitting vi#1$! ! 22

! Forcing vi#1$ to Save the Current File and Quit! 23

! Quitting vi#1$ without Saving the Current File! 24

! Forcing vi#1$ to Quit without Saving the

! ! Current File! ! ! ! 25

! Recovering the Current File! ! ! 26

Chapter 3: Cursor Movement## # # 27

! Moving the Cursor One Character/Line

! ! at a Time! ! ! ! 29

! Moving the Cursor x Characters or

! ! Lines at a Time! ! ! ! 30

! Moving the Cursor to Column x! ! ! 32

! Moving the Cursor to the Start or End of Line! 33

! Moving the Cursor Between Lines! ! 34

! Which Line Am I On?! ! ! ! 36

! Moving the Cursor Relative to the vi#1$ Screen! 38

! Moving the Cursor to Character x$! ! 40

! Moving the Cursor Between Words! ! 41

! Moving the Cursor Between Sentences! ! 44

! Moving the Cursor Between Paragraphs! ! 45

! Moving the Cursor Between Matching

! ! #$, &', (), or <>! ! ! ! 47

! Moving the Cursor Between Markers! ! 48

! Moving Around with Simple Search! ! 50

! Repositioning Text Relatively to the Screen! 51

Chapter 4: Editing# # # # # 53

! Entering Text! ! ! ! ! 55

! Inserting Lines! ! ! ! ! 57

! Inserting Files! ! ! ! ! 59

! Table of Contents "

! Inserting Output of a Command! ! ! 60

! Processing Text Using External Commands! 61

! Changing Text! ! ! ! ! 63

! Replacing Text! ! ! ! ! 67

! Replacing One or More Characters with

! ! Any Number of Characters! ! 69

! Replacing the Current Line! ! ! 70

! Deleting Text! ! ! ! ! 71

! Search and Replace! ! ! ! 77

! Cut, Copy, and Paste! ! ! ! 80

! Copying Text! ! ! ! ! 80

! Pasting Text! ! ! ! ! 84

! Joining Lines! ! ! ! ! 85

! Changing Case! ! ! ! ! 86

! Incrementing and Decrementing Numbers! 87

! Repeating Actions! ! ! ! 87

! Undo / Redo! ! ! ! ! 87

Chapter 5: Tricks# # # # # 89

! Running Commands! ! ! ! 91

! Sending vi#1$ to the Background! ! ! 92

! Shell Access! ! ! ! ! 92

Index ## # # # # # 95

! Table of Contents "

List of Tables

Table 1: UNIX filename wildcards.! ! ! 12

Table 2: Motion commands.! ! ! ! 66

Table 3: Regular expressions.! ! ! ! 76

Introduction

No Unix"class system administrator or user will get far without
learning the basics of vi#1$, the widespread visual text"mode editor.

Contrary to some misinformed opinions spread among users who
are new to Unix"class systems, vi#1$ is not di*cult to learn. Granted,
it is over thirty years old and not very friendly to beginners, but
once you grasp the basic concepts, you will never have to learn
another text editor again, because vi#1$ is available for all standard
operating systems, including Microsoft Windows, Mac OS X, Linux,
BSD, and many others.

My own experience teaching vi#1$ and Unix"class system and
network administration suggests that most of the problems
reported by new users stem from the fact that vi#1$ is completely
di%erent from any other text editor.

Vi#1$ is a modal editor, which means that you need to tell it to switch
between di%erent modes and commands, even when all you want to
do is change a few characters. This minor inconvenience is o%set by
the enormous flexibility of the editor and its seamless integration
with the rest of the Unix environment.

Another problem is the obscure terminology used to describe its
functionality. It makes learning vi#1$ unnecessarily di*cult for no
good reason.

Bearing those two issues in mind, I have written a book which does
not bombard you with the old terminology, but rather uses concepts
that are familiar to users who are used to working with Microsoft
Windows or Mac OS X and who do not know much about the ‘joys’
of working on dial"up text mode terminals.

I hope this fresh new look at vi#1$ will help you learn it and become
more productive.

Jacek Artymiak

Page 1

Chapter 1

Essentials

PANIC!

When things go wrong and you are stuck feeling that vi#1$ has
gotten out of control, it might be a good idea #or the only way
out…$ to abandon all changes you have made to the files and start
again. To do so, use the :q! ‘panic mode.’

How$To:

1. Press Esc once to switch to command mode.
2. Type :q!
3. Press Enter/Return.

Canceling Commands

When you want to abandon the command you were typing in
command mode, press Esc twice. See also the Undo/Redo section on
page 87.

! Chapter 1: Essentials "

Page 5

Switching Between Command
Mode and Insert Mode

Unlike the majority of text editors and word processors, vi#1$ has
two modes of operation: command and insert.

How you enter insert mode depends on the kind of action you want
to perform. #You can learn about the di%erent actions in Chapter 4,
Editing on page 53.$ The most important trick to master is switching
back to command mode. This is actually very simple+just press
Esc.

Escaping from the ex Editor
Mode

For those who like to do things the old, hard way, vi#1$ o%ers the
ex#1$ editor mode #a primitive text editor with no visual editing
functionality$. Most of us don’t need it, however, and when we end
up there, it’s mostly by accident.

If you notice that the text you were working with has suddenly
disappeared and all you can see is the : command prompt, type vi
and press Enter/Return. This will get you back to vi#1$.

If you want to switch to the ex#1$ editor mode, type Q in
command mode.

Unscrambling the Screen

Long lines and messages sent to you by other users or the system
itself may temporarily mess up the vi#1$ screen. You can always clean
it up with Ctrl+l #lowercase letter L$ or Ctrl+r #lowercase letter
R$.

! Chapter 1: Essentials "

Page 6

Chapter 2

Basic File
Operations

Starting vi!1"

You can start vi#1$ from the command line without telling it which
file it is supposed to open. You can provide that information later
#see page 10$.

After

Before

The ~ #tilde$ sign in the first column on every line on the
vi#1$ screen is an empty line marker. To tell if it is a part of
the file you opened or just an empty line marker, try to
move the cursor to the line with ~. If you cannot do it, it’s
just an empty line marker.

How$To:

1. Type vi
2. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 9

Starting vi!1" and Opening a File
for Editing

To edit an existing file or to create a new one, provide vi#1$ with the
path to the file.

Before

After

How$To:

1. Type vi ~/book.txt
2. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 10

Starting vi!1" and Opening
Multiple Files for Editing

To open more than one file for editing, either list them after the vi
command, e.g. vi ch1.txt ch2.txt or use one or more of the
filename wildcard patterns shown in Table 1: UNIX filename wildcards
on the next page. For example, ~/*.tx% represents all text #.tx%$ files
located in your home directory.

Before

After

How$To:

1. Type vi ~/*.txt
2. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 11

Table 1: UNIX filename wildcards.

chapter0[!0-9].txt (filenames

outside the chapter00.txt through

chapter09.txt range)

[!a-z]
any single character

outside range

chapter0[0-9].txt (filenames

chapter00.txt through chapter09.txt)
[a-z]

any single character

from range

chapter0[!1234567].txt (filenames

outside the chapter01.txt through

chapter07.txt range)

any single character

not on the list
[!abc]

chapter0[123456789].txt (filenames

chapter01.txt through chapter09.txt)

any single character

from the list
[abc]

any single character ?

chapter0?.txt (all filenames that

begin with chapter0 and end

with .txt; the only difference

between them is a single

character, e.g. chapter01.txt,

chapter09.txt, chapter0a.txt, or

chapter00.txt)

any string

*.txt (all filenames that end with

*.txt)

chapter*.txt (all files whose names

begin with chapter and end

with .txt)

*

directory separator /home/joe/book.txt/

~ (your home directory)

~joe (joe's home directory)
~ home directory

examplesmeaningsyntax

You can use multiple wildcards in the same filename
pattern, e.g. chapter??.*

Always test your patterns before giving them to vi#1$. One
way to test is to replace vi with ls, e.g. ls ~/*.txt and
check which files get selected.

! Chapter 2: Basic File Operations "

Page 12

Switching Between Files

Plain old vi#1$ does not display all files listed on the command line
after the vi command. Instead, it will display the first file and wait
for you to do the edits. You can switch to the next file with the :n
command. To switch to the previous file, press Ctrl+^ #Ctrl
+Shift+6$.

Step 1

Step 3

Step 4

Step 5

How$To:

1. Type: vi a.txt b.txt c.txt
2. Press Enter/Return.
3. Type :n
4. Press Enter/Return.
5. Press Ctrl+^

! Chapter 2: Basic File Operations "

Page 13

Opening a File after Starting
vi!1"

You can open a file for editing from within vi#1$ with the :e
command. The file will be placed in its own bu%er, independent of
other files.

There is no need to close other files that you may have
opened in vi#1$. You can switch between them using the
commands described on page 13.

A bu%er is just a place in memory reserved for a file.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. Type :e ~/chapter06.txt
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 14

Saving the Current File

To save the current file, use the :w command. It behaves in a
predictable way: when you save a file, the current version replaces
the former version.

After

Before

How$To:

1. Press Esc to switch to command mode.
2. Type :w
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 15

Forcing vi!1" to Save the Current
File

Sometimes vi#1$ will complain that it cannot save a file that is
marked as read"only. You can force vi#1$ to write to the file anyway if
you are logged in as the user root. To force a save, add the
exclamation mark #!$ after the :w command. If that doesn’t work,
save the file under a di%erent name and/or location #see page 17$.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. Type :w!
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 16

Saving the Current File Under a
Di%erent Name

When you need to save the current file under a di%erent name, use
the :w command followed by the access path/filename.

vi#1$ will not change the current file’s name or location.
When you use :w alone again, files will be saved under the
old name/location.

To edit the file you just saved under a di%erent name, open
it for editing with :e #see page 14$. The old file will still be
open in vi#1$, but the editor will switch to the new one; now
all changes saved with :w will be saved under the new name.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. Type :w ~/chapter07.txt
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 17

Saving a Part of the Current File

To save a part of the current file, use the range notation, :n,mw!
where n is the number of the first line, m is the number of the last
line, w stands for write, and the exclamation mark #!$ forces vi#1$ to
replace the current file with the specified block.

If you forget !, vi#1$ will complain and refuse to write the specified
block. Rightly so, because you are replacing the whole file with a
smaller chunk and vi#1$ wants to make sure you know what you are
doing.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. Type :4,8w!
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 18

Saving a Part of the Current File
Under a Di%erent Name

Suppose you need to extract parts of the current file and save them
to another file. You can do this with the help of the line range
notation, :n,mw where n is the first line, m is the last line, and w
stands for write. Follow this with the path and filename for your
new file.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. Type :4,8w ~/excerpt.txt
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 19

Appending the Current File to
Another

If you want to add text from one file to the end of another, use
the :w >> command. The current file will be appended to the end
of the file that you specify.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. Type :w >>~/review.txt
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 20

Appending a Part of the Current
File to Another

Suppose you need to extract parts of the current file and add them
to another. You can do this by appending blocks of lines from one
file to another with the help of the line range notation :n,mw >>
filename, where n is the first line, m is the last line, w stands for
write, and the redirection mark #>>$ send the selected range of lines
to filename.

Don’t forget to use the >> notation.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. Type :4,8w >>~/summary.txt
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 21

Saving the Current File and
Quitting vi!1"

When you are done editing, save the current file and quit vi#1$.
There are three ways to do this, all equally e%ective: :x, :wq,
and :ZZ.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. Type :x
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 22

Forcing vi!1" to Save the Current
File and Quit

vi#1$ will not let you write to a read"only file that you may be editing,
even when you are logged in as the user root. You can force it to
save the file anyway with the help of the exclamation mark #:x!$.

The alternative command :wq! has the same e%ect.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. Type :x!
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 23

Quitting vi!1" without Saving the
Current File

Use the :q command to quit vi#1$ without saving the current file. If
you haven’t made any changes to the file, vi#1$ will exit as soon as
you press Enter/Return. If you did edit it, you will have to either
save it #see pages 15, 17, 22$, or force vi#1$ to abandon all changes
since the last save #see page 25$.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. Type :q
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 24

Forcing vi!1" to Quit without
Saving the Current File

When you need to force vi#1$ to abandon all changes made to the
current file since the last time you saved it, use the :q! command.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. Type :q!
3. Press Enter/Return.

! Chapter 2: Basic File Operations "

Page 25

Recovering the Current File

If you decide that the changes you have made to the current file are
too extensive to revert manually, use the :e! command. It will
restore the last saved version of the current file.

You must switch vi#1$ to command mode to use these
commands.

! Chapter 2: Basic File Operations "

Page 26

Chapter 3

Cursor
Movement

Moving the Cursor One
Character/Line at a Time

There are two sets of keys used to move the cursor one character to
the left or right, or one line up or down:

Move the cursor one character to the left: h or !

Move the cursor one character to the right: l, space,
or "

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Move the cursor one line down: j or #

Move the cursor one line up: k or $

Switch to the command mode to use the h, l, j, k keys
when you want to move the cursor. The arrow keys can be
used in either command or insert mode.

! Chapter 3: Cursor Movement "

Page 29

When the source line is shorter than the destination line,
the cursor will be placed at the end of the target line.

When the cursor in located at the end of the source line,
the cursor will be placed at the end of the target line.

How$To:

1. Open exercise file: vi hjkl.txt
2. Press j nine times to move the cursor to 1.
3. Press l once to move the cursor to 2.
4. Press j once to move the cursor to 4.
5. Press h once to move the cursor to 3.
6. Press k once to move the cursor to 1.

Moving the Cursor x Characters
or Lines at a Time

When moving one character or line at a time is too cumbersome,
use the numeric prefix to move the cursor x characters or lines at a
time.

You need to switch vi#1$ to command mode and then type the
number of characters or lines you want the cursor to move, followed
by h, j, k, or l.

This technique cannot be used with the arrow keys:
!"#$

How$To:

1. Open exercise file: vi n-hjkl.txt
2. Type 10j to move the cursor to 1.
3. Type 11l to move the cursor to 2.
4. Type 5j to move the cursor to 4.
5. Type 11h to move the cursor to the first column.
6. Type 2k to move the cursor to 3.
7. Type 3k to move the cursor to 1.

! Chapter 3: Cursor Movement "

Page 30

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

! Chapter 3: Cursor Movement "

Page 31

Moving the Cursor to Column x

To move the cursor to a specific column, type the number of the
column followed by | #vertical bar$, e.g. to move to column 77, type
77|

You must switch vi#1$ to command mode to use these
commands.

Before

After

How$To:

1. Press Esc to switch to command mode.
2. To jump to the beginning of the line, press 0
3. To jump to the end of the line, press $

! Chapter 3: Cursor Movement "

Page 32

Moving the Cursor to the Start
or End of Line

Use 0 #zero$ to move the cursor to the beginning of the line or $
#dollar sign$ to jump to the beginning or end of the line with the
cursor.

Step 1

Step 2

Step 3

You can precede $ with the number of lines you want to
jump forward, e.g. to jump to the end of the line five lines
down, type 6$ #this is correct, as the current line counts as
1$.

You must switch vi#1$ to command mode to use these
commands.

! Chapter 3: Cursor Movement "

Page 33

How$To:

1. Press Esc to switch to command mode.
2. To jump to the beginning of the line, press 0
3. To jump to the end of the line, press $

Moving the Cursor Between
Lines

Moving the cursor between lines is accomplished with the G
command:

Move the cursor to line x: type the line number followed
by G, e.g. to move to line 12, type 12G

Alternatively, type :x, e.g. :12 moves the cursor to line 12.
Note that the : precedes the line number.

Move the cursor to the first line: type 1G or [[

Move the cursor to the last line: type G or]]

Move the cursor to the next line: press +

Move the cursor x lines down: type x+, e.g. to move two
lines down, type 2+

Move the cursor to the previous line: press -

Move the cursor x lines up: type x-, e.g. to move two
lines up, type 2-

You must switch vi#1$ to command mode to use the
commands described in this section.

! Chapter 3: Cursor Movement "

Page 34

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

! Chapter 3: Cursor Movement "

Page 35

How$To:

1. Open exercise file: vi lines.txt
2. Type G to move the cursor to the last line.
3. Type - three times to move the cursor to line 6.
4. Type 1G to move the cursor to the first line.
5. Type :7 to move the cursor to line 7.
6. Type + to move the cursor to line 8.
7. Type $ to move the cursor to the end of line 8.
8. Type 0 to move the cursor to the beginning of line 8.

Which Line Am I On?

If you ever need to know the current line number, try these
commands:

Display the line number: type :#, :num, or:.=

Display the number of lines in the current file:
type :=

Display the line number and the total number of
lines: press Ctrl+g

Display the number of the next line that matches a
regular expression: type :/regex/=

The search will start on the line with the cursor and
continue towards the end of the current file.

For more information about regular expressions, see page
76.

You must switch vi#1$ to command mode to use the
commands described in this section.

! Chapter 3: Cursor Movement "

Page 36

Before

After

How$To:

1. Open exercise file: vi line-number.txt
2. Type 4G to move the cursor to line 4.
3. Type :num
4. Press Enter/Return.

! Chapter 3: Cursor Movement "

Page 37

Moving the Cursor Relative to
the vi!1" Screen

Moving the cursor between lines in half" and full"screen chunks is
accomplished with the following commands:

Move the cursor to the top of the screen: type H

Move the cursor down x lines relatively to the top of
the screen: type xH. For example, to place the cursor on
the third line of the screen type 3H.

Move the cursor to the middle of the screen: type M

Move the cursor to the bottom of the screen: type L

Move the cursor up x lines relatively to the bottom
of the screen: type xL. For example, to place the cursor on
the third line from the bottom of the screen type 3L.

Move the cursor one screen forward: press Ctrl+f

Move the cursor one screen backward: press Ctrl+b

Move the cursor half a screen down: press Ctrl+d

Move the cursor half a screen up: press Ctrl+u

You must switch vi#1$ to command mode to use these
commands.

How$To:

1. Open exercise file: vi screen.txt
2. Type + to move the cursor from line 1 to line 2.
3. Type H to move the cursor to the top of the screen.
4. Type 3H to move the cursor three lines down from the top of the

screen.
5. Type M to move the cursor to the middle of the screen #line 12$.
6. Type L to move the cursor to the bottom of the screen #line 23$.

! Chapter 3: Cursor Movement "

Page 38

Step 1

Step 2

Step 3

Step 5

Step 4

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

7. Type 3L to move the cursor three lines up from the bottom of
the screen #line 21$.

8. Press Ctrl+f to move the cursor to the top of the next screen
#line 22$.

9. Press Ctrl+b to move the cursor to the bottom of the previous
screen #line 23$.

! Chapter 3: Cursor Movement "

Page 39

10.Press Ctrl+d to move the cursor to the middle of the next
screen #line 35$.

11. Press Ctrl+u twice to move the cursor to the middle of the
previous screen #line 11$.

Moving the Cursor to
Character x

You can move the cursor between consecutive occurrences of
characters using specialized search commands that take a single
character as their argument:

Move the cursor to the next occurrence of character
x: type fx. For example, to jump to the next occurrence of
letter a, type fa

Move the cursor to the previous occurrence of
character x: type Fx. For example, to jump to the previous
occurrence of letter a, type Fa

Move the cursor to the character before the next
occurrence of character x: type tx. For example, to
jump to the character before the next occurrence of letter
a, type ta

Move the cursor to the character after the previous
occurrence of character x: type Tx. For example, to
jump to the character after the previous occurrence of letter
a, type Ta

You must switch vi#1$ to command mode to use these
commands.

How$To:

1. Open exercise file: vi charjump.txt
2. Type 5fa to move the cursor to the a character after 555.
3. Type Fa to move the cursor to the a character after 444.
4. Type ta to move the cursor to the last 5.
5. Type Ta to move the cursor to the first 5.

! Chapter 3: Cursor Movement "

Page 40

Step 1

Step 2

Step 4

Step 3

Step 5

Moving the Cursor Between
Words

Moving the cursor forward or backward by one or more words
forward or backward is sometimes more convenient that moving it
by one or more characters. There are six commands that accomplish
this task. We need so many, because vi#1$ defines two di%erent types
of words: strings of printable ASCII characters and strings
separated by whitespace.

Strings of characters begin with a letter #a-z, A-Z$, a
digit #0-9$, or one of the following characters: !@#$
%^&*()[]{}-=+:;’”\|`~,./<>?

! Chapter 3: Cursor Movement "

Page 41

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

! Chapter 3: Cursor Movement "

Page 42

Jump forward to the beginning of the next
word: w

Jump forward to the end of the current word: e

Jump backward to the beginning of the
previous word: b

Strings separated by whitespace #spaces, tabs$:

Jump forward to the beginning of the next
word: W

Jump forward to the end of the current word: E

Jump backward to the beginning of the
previous word: B

It is possible to precede each of those commands with a
number in order to move the cursor by more than one word.

You must switch vi#1$ to command mode to use these
commands.

How$To:

1. Open exercise file: vi words.txt
2. Type 12w to move the cursor to the beginning of the abc& string

on the first line.
3. Type 7b to move the cursor to the beginning of the #abc string

on the first line.
4. Type 3W to move the cursor to the beginning of the abcabcabc

string on the second line.
5. Type B to move the cursor to the beginning of the second line.
6. Type e to move the cursor to the end of the abc string at the

beginning of the second line.
7. Type E to move the cursor to the end of the ?abc string near the

end of the second line.

! Chapter 3: Cursor Movement "

Page 43

Moving the Cursor Between
Sentences

Moving the cursor between sentences is accomplished with the
following commands:

Move the cursor to the next sentence: type)

This does not work in all implementations of vi#1$, the
cursor may jump to the next line instead.

Move the cursor to the previous sentence: type (

When vi#1$ is asked to jump from one sentence to another,
it will look for full stop #.$ signs as markers.

It is possible to precede these two commands with a
number in order to move the cursor by more than one
sentence. For example, type 14# to move fourteen sentences
backward.

You must switch vi#1$ to the command mode to use these
commands.

How$To:

1. Press Esc to switch to command mode.
2. To jump to the next sentence, press)
3. To jump to the previous sentence, press (

! Chapter 3: Cursor Movement "

Page 44

Step 1

Step 2

Step 3

Moving the Cursor Between
Paragraphs

You can move the cursor between paragraphs with the following
commands:

Move cursor to the next paragraph: type }

Move cursor to the previous paragraph: type {

! Chapter 3: Cursor Movement "

Page 45

When vi#1$ is told to jump from one paragraph to another, it will
look for an empty line as the separator.

It is possible to precede these two commands with a number in
order to move the cursor by more than one paragraph. For example,
type 15} to move fifteen paragraphs forward.

You must switch vi#1$ to command mode to use these
commands.

Step 1

Step 2

Step 3

How$To:

1. Press Esc to switch to command mode.
2. To jump to the fourth paragraph, press } three times.
3. To jump to the previous paragraph, press {

! Chapter 3: Cursor Movement "

Page 46

Moving the Cursor Between
Matching !", &', (), or <>

It is easy to forget to close a block of text marked with (), {}, [],
or <>. To find a matching bracket, brace, or parentheses, position
the cursor over one such character and use the % command.

You must switch vi#1$ to command mode to use these
commands.

Step 1

Step 3

Step 6

Step 8

Step 10

! Chapter 3: Cursor Movement "

Page 47

How$To:

1. Open exercise file: vi brackets.txt
2. Press Esc to switch to command mode.
3. Type $ to move the cursor to the { at the end of Block 1 { line.
4. Type %
5. The cursor will not move, because the curly braces #{$ are not

balanced.
6. Move the cursor to the { at the end of Block 5 { line.
7. Type %
8. The cursor will jump to the curly brace #{$ on the last line.
9. Type % again.
10.The cursor will jump to the curly brace #{$ at the end of Block

5 { line.

Moving the Cursor Between
Markers

Markers allow us to move between arbitrarily chosen locations
inside the document. Just mark the places you want to move
between and jump about as necessary:

Add a marker: mx #x is the single character id for the new
marker$

Jump to marker x: `x #x is the single character id for the
marker$

Jump to the first non$blank character on the line
with marker x: ‘x #x is the single character id for the
marker$

You can use 52 characters for markers: a-z, A-Z.

You must switch vi#1$ to command mode to use these
commands.

! Chapter 3: Cursor Movement "

Page 48

Step 1

Step 2

Step 4

Step 5

Step 6

How$To:

1. Open exercise file: vi markers.txt
2. Move the cursor to the free space on Line 2.
3. Type ma to add marker a.
4. Type G to move the cursor to the last line.
5. Type ‘a to move the cursor to the start of Line 2.
6. Type `a to move the cursor to marker a.

! Chapter 3: Cursor Movement "

Page 49

Moving Around with Simple
Search

When moving the cursor using other means is not convenient,
there is always the ‘search for it’ option:

Search forward: type /string

Search backward: type ?string

Search for the next occurrence of string in the same
direction: type n

Search for the next occurrence of string in the
opposite direction: type N

Strings that you are looking for ought to be literal strings, not
regular expressions. If you want to use regular expressions in your
searches, visit page 76.

You must switch vi#1$ to command mode to use these
commands.

How$To:

1. Open exercise file: vi countries.txt
2. Type /UNITED
3. Hit Enter/Return
4. Press n twice.

! Chapter 3: Cursor Movement "

Page 50

Step 1

Step 2

Step 3

Repositioning Text Relatively to
the Screen

If you would like to adjust the display by moving the text relatively
to the screen, use the following commands:

Move the line with the cursor to the top of the
screen: type z and press Enter/Return.

Move the line with the cursor to the middle of the
screen: type z.

Move the line with the cursor to the bottom of the
screen: type z-

You must switch vi#1$ to command mode to use these
commands.

! Chapter 3: Cursor Movement "

Page 51

Chapter 4

Editing

Entering Text

Typing text into the current bu%er is done using insert mode. To
switch to insert mode, press i and type away. Whatever you type
will appear before the cursor. If you want to add text after the
cursor, press a.

Both i and a have their uppercase equivalents: I tells vi#1$ to add
what you type to the beginning of the line and A does the same at
the end of the line.

Each of the a, A, i, I commands automatically switches vi#1$
to insert mode.

If you precede any of the commands with a number,
whatever you type will be inserted that many times into the
text you are editing.

How$To:

1. Start vi#1$: vi
2. Type i
3. Type is
4. Press Esc
5. Type a
6. Press Space
7. Type line
8. Press Esc
9. Type I
10.Type This
11. Press Space.
12. Press Esc
13. Type $
14. Press a
15. Press Space
16. Type 1.
17. The end result should be This is line 1.

! Chapter 4: Editing "

Page 55

Step 1

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

Step 14

Step 15

Step 16

! Chapter 4: Editing "

Page 56

Inserting Lines

Adding an empty line can be done in the following way: press Esc,
press 0, press i, press Enter/Return. That’s a lot of typing. You can
do it in a much easier way:

Insert a new line below the cursor: press o #lowercase
letter O$

Insert a new line above the cursor: press O #uppercase
letter O$

Step 1

Step 2

Step 4

Step 5

! Chapter 4: Editing "

Page 57

Both commands switch vi#1$ to insert mode.

It is possible to insert more than one empty line by
preceding either o or O with a number.

You must switch vi#1$ to command mode to use these
commands.

How$To:

1. Open exercise file: vi lines.txt
2. Press O #uppercase letter O$
3. Press Esc
4. Press j
5. Press o #lowercase letter O$

! Chapter 4: Editing "

Page 58

Inserting Files

To insert one file into another, use :r followed by the access path
and filename of the file you want to insert. It will be added to the
current file after the line with the cursor.

Step 1

Step 2

Step 4

Step 6

How$To:

1. Open exercise file: vi insert-files.txt
2. Type j four times to place the cursor on the line above where

you want to insert an existing file.
3. Press Esc to switch to command mode.
4. Type :r ~/section-2.txt
5. Press Enter/Return.
6. The file will be inserted below the line with the cursor.

! Chapter 4: Editing "

Page 59

Inserting Output of a Command

To insert output generated by a script or command, use the :.r!
command command, which will insert the output of an external
command below the current line. If you drop the r, the output from
the external command will replace the current line.

Step 2

Step 3

Step 4

Replace line !: type : followed by the number of the line
you want to replace #numbering starts with 1$, followed
by !, and the name of the command, whose output you
want to capture. For example, to replace line 7 with the
output from uptime#1$, type :7!uptime

Replace the current line: type :.!uptime

Replace the last line: type :$!uptime

Replace the line with marker a: type :’a!uptime #for
more information about markers, see page 48$

! Chapter 4: Editing "

Page 60

Replace a block of lines: type : followed by the number
of the first and the last line you want to process, separated
with a comma, followed by ! and the name of the command
used to process the text. For example, to replace lines 34
through 45 using output generated by uptime#1$, type :
34,45!uptime

Replace all lines: type :%!uptime

How$To:

1. Press Esc to switch to command mode.
2. Place the cursor on the line above where you want to insert

output from a command, e.g. uptime#1$.
3. Type :.!uptime
4. Press Enter/Return.

Processing Text Using External
Commands

You can send part or all of the current file for processing by an
external command and capture the results with the :!command
command.

Process line !: type : followed by the number of the line
you want to process #numbering starts with 1$, followed
by !, and the name of the command. For example, to
process line 7 using fmt#1$ to wrap lines on the 65th column,
type :7!fmt 65

Process the current line: type :.!fmt 65

Process the last line: type :$!fmt 65

Process the line with marker a: type :’a!fmt 65 #for
more information about markers, see page 48$

Process a block of lines: type : followed by the numbers
of the first and the last line you want to process, separated
with a comma, followed by ! and the name of the command

! Chapter 4: Editing "

Page 61

used to process text. For example, to process lines 34
through 45 using fmt#1$ to wrap lines on the 65th column,
type :34,45!fmt 65

Process all lines: type :%!fmt 65

Step 1

Step 2

Step 3

How$To:

1. Open exercise file: vi ext-process.txt
2. Type :.!fmt 65
3. Press Enter/Return

! Chapter 4: Editing "

Page 62

Changing Text

The way vi#1$ implements text editing functionality may catch you
by surprise with its clear distinction between text entry and editing.

When you enter text, you work in insert mode, which o%ers very
limited editing functionality. You can use the arrow keys to move
back and forth, and Backspace or Del to make small changes to
any text you typed since the last switch to insert mode, but that’s
about all you can do.

To make any serious changes you need to switch to command mode
and use c, C, cc , r, or R.

The c command has to be followed by one of the motion
commands listed in Table 2: Motion commands on page 66. These
commands are used to tell vi#1$ how much of the existing text ought
to be replaced with what you are going to type. For example, to
change two words from the cursor onwards, type c2w. The
automatically inserted $ character marks the end of the region of
text about to be a%ected by your typing.

There is no need to type exactly the same number of characters to
replace the previous text, vi#1$ will replace the marked string with as
many characters, words, or lines as you choose to type and make the
necessary adjustments to the rest of the text. Should the screen
become garbled in the process, Ctrl+l #lowercase letter L$ will
clean it up.

The other two c commands are handy shortcuts. To change text up
to the end of line, use C. If c or C are not convenient enough, you
can change the whole line with cc.

Whenever you change something using the commands discussed in
this section, the old text gets placed into the default text storage
register. To avoid overwriting it with the next change or cut you
make, you can tell vi#1$ to place the old text in one of its many
named registers. To do so, precede the commands with “x, where x
is the one"character register name. For example, if you want to
replace two words with something else and keep the originals in
register t, type: “tc2w

! Chapter 4: Editing "

Page 63

Step 1

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

! Chapter 4: Editing "

Page 64

You can learn more about registers on page 63.

You must switch vi#1$ to command mode to use these
commands.

How$To:

1. Open exercise file: vi change.txt
2. Press Esc to switch to command mode.
3. Type 5l
4. Type cl
5. Type i
6. Press Esc
7. Type w
8. Type C
9. Type line 1.
10.Press Esc
11. Type j
12. Type cc
13. Type This is line 2.

! Chapter 4: Editing "

Page 65

Table 2: Motion commands.

bottom of screen L

H middle of screentop of screen M

Txtx
backwards to

before character

x

forward to

before character

x

fx
previous

character x
Fxnext character x

} {
previous

paragraph
next paragraph

previous

sentence
()next sentence

line n line n :nnG

first line last line G1G

end of line0 $beginning of line

end of word

(blank delimited)
Eeend of word

B
previous word

(blank delimited)

next word

(blank delimited)
W

w bnext word previous word

downk jup

lhleft right

CommandMotionCommandMotion

! Chapter 4: Editing "

Page 66

Replacing Text

When you are changing text with the ‘c’ commands, the only part of
the text that gets deleted and overwritten is the part that you
described using the motion commands listed in Table 2: Motio&
commands on page 66. That’s a lot of typing that not everyone wants
to do. Sometimes it is more convenient to switch to ‘overtype’
mode and replace characters as you type along.

There are two text editing commands, r and R, which come in
handy when you want to replace one #r$ or more #R$ characters.
Unlike c or C, which replace the specified amount of text with any
number of characters, r replaces the character under the cursor and
then automatically switches back to command mode, while R
overwrites all characters under cursor until you press Esc.

How$To:

1. Open exercise file: vi replace.txt
2. Type w
3. Type c3w
4. Type ABCDEFG
5. Press Esc
6. Type j
7. Type 0 #zero$.
8. Type w
9. Type R
10.Type ABCDEFG
11. Compare lines 1 and 2

! Chapter 4: Editing "

Page 67

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 10

! Chapter 4: Editing "

Page 68

Replacing One or More
Characters with Any Number of

Characters

The s command lets you replace any single character with any
number of characters. This command tells vi#1$ to delete the
character under the cursor and continues in insert mode until you
press Esc.

If you precede s with a number, vi#1$ will replace that many
characters with whatever you type. For example, to replace 34
characters, type 34s

Step 1

Step 2

Step 3

Step 4

When you change something using the s command, the old text
gets placed into the default text storage register. To avoid
overwriting it with the next change or cut you make, you can tell
vi#1$ to place the old text in one of its named registers. To do so,
precede the s command with “x, where x is a one"character register
name. For example, if you want to replace 34 characters with
something else and keep the originals in register t, type: “t34s

You can learn more about registers on page 63.

! Chapter 4: Editing "

Page 69

You must switch vi#1$ to command mode to use this
command.

How$To:

1. Open exercise file: vi s-replace.txt
2. Type w
3. Type s
4. Type ABCDEFG

Replacing the Current Line

If you would like to replace the current line with a new one in a
single action, use the S command. The line will be deleted and vi#1$
will continue in insert mode until you press Esc.

You can precede S with the number of line you want to replace. For
example, to replace 72 lines, type 72S

Step 1

Step 3

Step 4

Whenever you change something using S, the old text gets placed
into the default text storage register. To avoid overwriting it with
the next change or cut you make, you can tell vi#1$ to place the old
text in one of its many named registers. To do so, precede the S
command with “x, where x is the one"character register name. For
example, if you want to replace two words with something else and
keep the originals in register t, type: “t72S

! Chapter 4: Editing "

Page 70

You can learn more about registers on page 63.

You must switch vi#1$ to command mode to use this
command.

How$To:

1. Place the cursor on the line you want to replace.
2. Press Esc once to switch to the command mode.
3. Type S
4. Type anything you like to replace the old line.

Deleting Text

There is a multitude of commands designed to help you delete
characters, words, lines, and whole blocks of text.

Deleting Characters:

Delete a character under the cursor: type x

Delete ! characters, starting with the one under the
cursor: type the number of characters to be deleted and
then type x

Delete a character to the left of the cursor: press X

Delete ! characters to the left: type the number of
characters to be deleted and then press X

Delete all characters, from the one under the cursor
to the end of the line: press D. An alternative to D is d$

Delete all characters, from the beginning of the line
to the cursor: type d0

! Chapter 4: Editing "

Page 71

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

Step 14

Step 15

! Chapter 4: Editing "

Page 72

How$To:

1. Open exercise file: vi d-char.txt
2. Type 10l
3. Type x
4. Type j
5. Type 5x
6. Type j
7. Type X
8. Type j
9. Type 4X
10.Type j
11. Type D
12. Type j
13. Type d$
14. Type j
15. Type d0

Deleting Words:

Delete a word: type dw

Delete ! words: type d followed by the number of words
to be deleted followed by w

Delete the word to the left of the cursor: type db

Deleting Text Using Motion Commands:

Use motion commands to delete bigger chunks of text in a
more convenient way. For example, to delete three
characters to the left, type d3h; to remove four paragraphs,
type d4}; etc. To see more examples of motion commands,
consult Table 2 on page 63.

Deleting Lines:

Delete the current line: type dd or :.d

Delete ! lines: type the number of lines to be deleted and
then type dd

! Chapter 4: Editing "

Page 73

Deleting Lines Using Ranges:

Delete line !: type : followed by the number of the line
you want to delete #numbering starts with 1$, followed by d.
For example, to delete line 7, type :7d

Delete the current line: type :.d

Delete the last line: type :$d

Delete the line with marker a: type :’ad #for more
information about markers, see page 48$

Delete a block of lines: type : followed by the number of
the first and the last line you want to delete, separated with
a comma, followed by d. For example, to delete lines 35
through 67, type :35,67d

Delete all lines: type :%d

Deleting Lines Using Regular Expressions:

Delete all lines matching a literal string: type :g/
regex/d, For example, to delete all lines that contain the
word London, type :g/London/d

Delete all lines matching a string with one variable
character: use . #dot$. For example, to delete all lines that
contain words London, london, rondon, type :g/.ondon/
d

Delete all lines matching any number of repetitions
of the previous pattern: use *. For example, to delete all
lines that contain the words London, london, rondon,
LLondon, zzzzzzondon, ondon, etc., type :g/.*ondon/d

Delete all lines matching any character from a set:
use [...]. For example, to delete all lines that contain the
lowercase letters a, b, or c , e.g. Warsaw, Bombay, Chicago,
but not London or Los Angeles , type :g/[abc]/d

Delete all lines matching any character outside a set:
use [^...]. For example, to delete all lines that do not
contain the lowercase letters a, b, or c, e.g. London, or Los

! Chapter 4: Editing "

Page 74

Angeles, but not Warsaw, Bombay, Chicago , type :g/
[^abc]/d

Delete all lines that start with the given string: use
^string. For example, to delete all lines that start with the
word London, type :g/^London/d

Delete all lines that end with the given string: use
string$. For example, to delete all lines that end with the
word London, type :g/London$/d

Delete all lines that contain words that start with the
given string: use \<string. For example, to delete all
lines that contain words that start with London #e.g.
London, Londoner, Londonderry$, type :g/\<London/d

Delete all lines that contain words that end with the
given string: use string\>. For example, to delete all
lines that contain words that end with ing #e.g. running,
singing, nothing$, type :g/ing\>/d

Delete all lines matching any character from a range:
use [...-...]. For example, to delete all lines that contain
the word London, but not LONDON, type :g/[a-z]/d

Delete all lines matching any character outside a
range: use [^...-...]. For example, to delete all lines
that contain the words London and LONDON, but not
london, type :g/[^a-z]/d

Delete all lines that contain \r !DOS carriage
return": use \r, e.g. type :g/\r/d

Delete all lines that contain \\ !backslash": use \\, e.g.
type :g/\\/d

Using Registers:

Deleted chunks of text end up in the default text storage register.
To avoid overwriting it with the next change or cut you make, you
can tell vi#1$ to place the old text in one of its named registers. To do
so, precede the whole d , D, x, or X command with “x, where x is a
one"character register name. For example, if you want to delete the
following two words and keep the originals in register t, type:
“td2w

! Chapter 4: Editing "

Page 75

Table 3: Regular expressions.

[,], \, ^, $, ., |, ?, *, +,
(,)

/\\/ matches \\[\] \\ \^ \$ \. \| \? * \+

\(\)

tab, carriage return,
newline

\t \r \n
/\r/ matches DOS-

style carriage returns

[^...-...]
any character outside

range

/[^a-z]/ matches
London and LONDON,

but not london

[...-...]
any character from

range

/[a-z]/ matches
London, but not

LONDON

/London\>/ matches
every line with words
that end with London

\>end of word

/\<London/ matches
every line with words

that begin with London

\<beginning of word

end of line $

/[London$]/ matches
every line that ends

with London

beginning of line ^

/[^London]/ matches
every line that starts

with London

[^...]

/[^abc]/ matches
London, Los Angeles,

but not Warsaw,
Bombay, or Chicago

 any character
outside the set

 any character from
the set

/[abc]/ matches
Warsaw, Bombay,
Chicago, but not

London or Los Angeles

[...]

*
 any number of

repetitions

/.*ondon/ matches
London, london,

LLondon, zzzzzzondon,
and even ondon

/.ondon/ matches
London, london,

rondon, etc., but not
ondon

any single character .

/London/ matches
only London

literal string literal string

ExampleExpressionPattern

! Chapter 4: Editing "

Page 76

Search and Replace

Finer or global changes to text are best done with the help of
regular expressions. The command used to search and replace
strings is

! :s/regex/replacement/flags

The regex pattern is one of those listed in Table 3: Regular expressions
on page 76. The replacement string is the literal string you want to
put in place of the regular expression you are searching for.

You can control the behavior of :s with two flags: g #replace all
occurrences of regex on the same line without asking to confirm$
and c #ask for permission for every match$. You can use either or
both flags in the same command.

If you ever need to repeat the last :s command, type &

You must switch vi#1$ to command mode to use these
commands.

Restricting Replacements Using Ranges:

Restrict replacements to line !: type : followed by the
number of the line you want to run :s on, followed by s/
regex/replacement/flags. For example, to limit
replacements to line 7, type: :7s/london/London/g

Restrict replacements to the current line: type :.
followed by s/regex/replacement/flags. For example,
type: :.s/london/London/g

Restrict replacements to the last line: type :$ followed
by s/regex/replacement/flags. For example, type:
:$s/london/London/g

Restrict replacements to the line with marker a:
type :’a followed by s/regex/replacement/flags: For
example, type: :’as/london/London/g

! Chapter 4: Editing "

Page 77

Restrict replacements to a block of lines: type :
followed by the numbers of the first and the last line of the
block you want to replace strings on, separated with a
comma followed by s/regex/replacement/flags. For
example, to replace strings on lines 35 through 67, type:
:35,67s/london/London/g

Run search and replace on all lines, type :% followed by
s/regex/replacement/flags, e.g. :%s/london/
London/g

Replacing Text Using Regular Expressions:

Replace all literal string matches, type
:s/regex/string/g. For example, to replace all
occurrences of London with Manchester, type :s/
London/Manchester/g

Remove all pattern matches, type :s/regex//g. For
example, to remove all occurrences of London, type :s/
London//g

(This trick works with all regex patterns.$

Replace all . !dot" pattern matches: for example, to
replace all occurrences of the words London, london,
rondon, etc. with LONDON, type :s/.ondon/LONDON/g

Replace all matches of any number of repetitions of
the previous pattern: use *. For example, to replace all
occurrences of the words London, london, rondon,
LLondon, zzzzzzondon, ondon, etc. with LONDON, type
:s/.*ondon/LONDON/g

Replace all matches of any character from a set: use
[...]. For example, to replace letters a, b, and c with -,
e.g. to change the words Warsaw, Bombay, Chicago, to W-
rs-w, Bom--y, Chi--go, type :s/[abc]/-/g

Replace all matches of any character outside a set:
use [^...]. For example, to replace all letters other than a,
b, c with -, e.g. to change words Warsaw, Bombay,

! Chapter 4: Editing "

Page 78

Chicago, to -a--a-, ---ba-, ---ca--, type
:s/[^abc]/-/g

Replace all matches of the string at the beginning of
a line: use ^string. For example, to replace london with
London on every line that starts with london, type
:s/^london/London/g

Replace all matches of the string at the end of a line:
use string$. For example, to replace london with London
on every line that ends with london, type :s/london$/
London/g

Replace all matches of words that start with the
given string: use \<string. For example, to replace all
occurrences of London with Manchester at the start of
similar words #e.g. London, Londoner, Londonderry$,
type :s/\<London/Manchester/g

Replace all matches of words that end with the given
string: use string\>. For example, to replace all
occurrences of ing with ING at the end of similar words
#e.g. running, singing, nothing$, type :s/ing\>/ING/g

Replace all matches of any character from a range:
use [...-...]. For example, to replace all occurrences of
London with L-----, type :s/[a-z]/-/g

Replace all matches of any character outside a range,
use [^...-...]. For example, to replace all occurrences of
London with -ondon, type :s/[^a-z]/-/g

Remove all occurrences of \r !DOS carriage return",
type :s/\r*//g

Replace all occurrences of \\ !backslash" with the
word backslash, type: :s/\\/backslash/g

Replace all lines matching a regular expression from
the set that matches another regular expression,
type :g/regex1/s/regex2/string/g. For example, to
replace all occurrences of York with Orleans on every line

! Chapter 4: Editing "

Page 79

that matches New York, type :g/New York/s/York/
Orleans/g

Cut, Copy, and Paste

Just like anything else in vi#1$, the cut, copy and paste commands
are implemented in a way that may surprise you. First of all, there is
no single cut/copy clipboard. Second, there is no clipboard at all!
What you get instead is over sixty registers. Whatever their names,
they work like sixty"plus clipboards, holding any text that you
change, delete, or yank #aka. copy$.

vi#1$ does not o%er multi"level registers, but with sixty of them,
that’s not too much of a problem.

The following list is a short summary of pointers to the pages that
contain more information:

To cut text, use the delete commands #see page 71$ or
change commands #see page 63$.

To copy text, use the yank commands #see page 80$.

To paste text, use the put commands #see page 84$.

Copying Text

Copying text in vi#1$ is called yanking. Whatever the terminology the
principle of operation is the same.

There is a multitude of commands designed to help you delete
characters, words, lines, and whole blocks of text. You will find
them listed below.

Copying Characters:

Copy a character under the cursor: type yl and then
press either Esc or Enter/Return

! Chapter 4: Editing "

Page 80

Copy ! characters, starting with the one under the
cursor: type y followed by the number of characters to be
copied followed by l. Then press either Esc or Enter/
Return

Copy a character to the left of the cursor: type y1h
and press either Esc or Enter/Return

Copy ! characters to the left: type y followed by the
number of characters to be copied followed by h. Then
press either Esc or Enter/Return

Copy all characters, from the one under the cursor
to the end of the line: type y$ and then press either Esc
or Enter/Return

Copy all characters, from the beginning of the line to
the character before the cursor: type y0 and then press
either Esc or Enter/Return

Copying Words:

Copy a word: type yw and then press either Esc or Enter/
Return

Copy ! words: type y followed by number of words to be
copied, type w. Then press either Esc or Enter/Return

Copy the word to the left of the cursor: type yb and
then press either Esc or Enter/Return

Copy ! words to the left of the cursor: type y followed
by the number of words to be copied followed by b. Then
press either Esc or Enter/Return

Copying Text Using Motion Commands:

Use motion commands to copy bigger chunks of text in a
more convenient way. For example, to copy three characters
to the left, type y3h; to copy four paragraphs, type y4}; etc.

To see more examples of motion commands, consult Table 2
on page 66.

! Chapter 4: Editing "

Page 81

Copying Lines:

Copy the current line: type yy, :.y, or Y

Copy ! lines: type the number of lines to be copied
followed by yy or Y

Copying Lines Using Ranges:

Copy line !: type : followed by the number of the line
you want to copy #numbering starts with 1$, followed by y.
For example, to copy line 7, type :7y

Copy the current line: type :.y

Copy the last line: type :$y

Copy the line with marker a: type :’ay #for more
information about markers, see page 48$

Copy a block of lines: type : followed by the numbers of
the first and last line you want to yank, separated with a
comma, followed by y. For example, to copy lines 35
through 67, type :35,67y

Copy all lines: type :%y

Copying Lines Using Regular Expressions:

Copy all lines matching a literal string: type :g/
regex/y. For example, to copy all lines that contain the
word London, type :g/London/y

Copy all lines matching a string with one variable
character: use . #dot$. For example, to copy all lines that
contain the words London, london, rondon,
type :g/.ondon/y

Copy all lines matching any number of repetitions of
the previous pattern: use *. For example to copy all lines
that contain the words London, london, rondon,
LLondon, zzzzzzondon, ondon, etc., type :g/.*ondon/y

! Chapter 4: Editing "

Page 82

Copy all lines matching any character from a set: use
[...]. For example, to copy all lines that contain the words
Warsaw, Bombay, Chicago, but not London or Los
Angeles, type :g/[abc]/y

Copy all lines matching any character outside a set:
use [^...]. For example, to copy all lines that contain the
words London, or Los Angeles, but not Warsaw, Bombay,
Chicago, type :g/[^abc]/y

Copy all lines that start with the given string: use
^string. For example, to copy all lines that start with the
word London, type :g/^London/y

Copy all lines that end with the given string: use
string$. For example, to copy all lines that end with the
word London, type :g/London$/y

Copy all lines that contain words that start with the
given string: use \<string. For example, to copy all lines
that contain words that start with London #e.g. London,
Londoner, Londonderry$, type :g/\<London/y

Copy all lines that contain words that end with the
given string: use string\>. For example, to copy all lines
that contain words that end with ing #e.g. running,
singing, nothing$, type :g/ing\>/y

Copy all lines matching any character from a range:
use [...-...]. For example, to copy all lines that contain
words London, but not LONDON, type :g/[a-z]/y

Copy all lines matching any character outside a
range: use [^...-...]. For example, to copy all lines that
contain the words London, and LONDON but not london,
type :g/[^a-z]/y

Copy all lines that contain \r !DOS carriage return":
use \r, e.g. type :g/\r/y

Copy all lines that contain \\ !backslash": use \\, e.g.
type :g/\\/y

! Chapter 4: Editing "

Page 83

Using Registers:

Copied blocks of text end up in the default text storage register. To
avoid overwriting them with the next change or cut you make, you
can tell vi#1$ to place the old text in one of its named registers. To do
so, precede the whole y or Y command with “x, where x is a one"
character register name. For example, if you want to copy the
following two words and keep the originals in register t, type:
“ty2w

Pasting Text

Cut, deleted, changed, or copied text will be stored in the default
register, unless you instruct vi#1$ otherwise. Pasting stored text is
called putting, but the principles of operation are the same.

To paste text, use the p and P commands:

Paste text after the cursor or after line: type p

Paste text before cursor or before the line: type P

You must switch vi#1$ to command mode to use this
command.

Using Registers:

When you copy or delete chunks of text, they end up in the default
text storage register. You can change that behavior by putting them
in named registers using the “x notation, where x is a one"character
register name. For example, if you want to delete the two words
following the cursor and keep the originals in register t, type:
“td2w

Pasting text stored in a named register is done with either “xp or
“xP. If we were to continue the example, whatever was stored in
register t could be pasted with “tp or “tP

! Chapter 4: Editing "

Page 84

Joining Lines

To join two or more line together, use the J command:

Join two lines: type J

Join more than two lines: type the number of lines you
wish to join and then type J.

You must switch vi#1$ to command mode to use these
commands.

Step 1

Step 2

Step 3

How$To:

1. Open exercise file: vi join.txt
2. Type j to move to the second line.
3. Type 4J

! Chapter 4: Editing "

Page 85

Changing Case

To change lowercase #a-z$ to uppercase #A-Z$ or vice versa, use the
~ #tilde$ command.

You can precede ~ with a number. For example, typing 4~
tells vi#1$ to change the case of four characters.

Use motion commands to change the case of bigger chunks
of text in a more convenient way. For example, to swap the
case of the next three characters to the left, type ~3h; to
swap the case in four paragraphs, type ~4}; etc.

To see more examples of motion commands,
consult Table 2 on page 66.

You must switch vi#1$ to command mode to use this
command.

Step 1

Step 2

! Chapter 4: Editing "

Page 86

How$To:

1. Open exercise file: vi tilde.txt
2. Type 20~ and you should see all letters change case.

Incrementing and Decrementing
Numbers

There is a quick way to increment or decrement numbers in vi#1$:
Position the cursor on the first digit of the numeric value you want
to change:

Increment a number: press Ctrl+a

Decrement a number: press Ctrl+x

You must switch vi#1$ to command mode to use this
command.

Repeating Actions

To repeat the last action, type . #dot$. To repeat the last action any
number of times, type the number of repetitions followed by .
#dot$.

You must switch vi#1$ to command mode to use this
command.

Undo / Redo

To undo the last action, switch to the command mode and type u.
There is no multi"step undo/redo history in vi#1$, but you can revert
all changes made on the current line with U. There’s a gotcha, you
can only use U, if the cursor is still on the line for which you want to
undo changes. To redo #revert the e%ects of undo$, type u or U again.

You must switch vi#1$ to command mode to use this
command.

! Chapter 4: Editing "

Page 87

Chapter 5

Tricks

Running Commands

You can execute an external command or script from vi#1$ without
a%ecting the text you are editing. The output of the command will
temporarily overwrite the contents of the vi#1$ screen, but it will not
a%ect the text itself. To execute a command, use :!command

You must switch vi#1$ to command mode to use this
command.

Step 1

Step 2

How$To:

1. Press Esc to switch to the command mode.
2. Type :!date
3. Press Enter/Return to display the current date and time.

! Chapter 5: Tricks "

Page 91

Sending vi!1" to the Background

Another way to get out of vi#1$ to do some work on the command
line is to use process suspension. To send vi#1$ to the background,
press Ctrl+z, to bring it back, type fg on the command line.

Shell Access

If you need to do some work on the system command line but do
not want to leave vi#1$ use the :sh command.

To go back to vi#1$, type exit and press Enter/Return.

You must switch vi#1$ to command mode to use this
command.

How$To:

1. Press Esc to switch to command mode.
2. Type :sh
3. Press Enter/Return.
4. Type ls /bin
5. Press Enter/Return.
6. Type exit
7. Press Enter/Return.

! Chapter 5: Tricks "

Page 92

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

! Chapter 5: Tricks "

Page 93

Index

A

arrow keys, 29'30, 63

ASCII, 41

B

background processes, 92

bu%ers, 14, 55
current, 55
switching between, 14

C

canceling vi#1$ commands, 5

changes, abandon all, 5

changing #swapping$, case, 86'87

changing, 41, 48, 63, 67, 69'70, 75,
77'78, 84, 87
characters, 41, 48
lines, 63
words, 63

clipboard, 80

command line, 9, 13, 92

command mode, 5'6, 14'26, 29'30,
32'34, 36, 38, 40, 43'44, 46'48, 50'51,
58'59, 61, 63, 65, 67 70'71, 77, 84'87,
91'92

command prompt, 6

commands, external, 60'61, 91
output of,

inserting, 60'61
reading, 91

running, 91

copying, 80'84
characters, 80'81

lines, 82'83
words, 81

cursor, 9, 27, 29'30, 32'34, 36'41, 43'51,
57, 55, 59, 61, 63, 67, 69, 71, 73, 80'81,
84, 87

cursor movement, 9, 27, 29'30,
32'34, 36'41, 43'51, 57, 55, 59, 61, 63,
67, 69, 71, 73, 80'81, 84, 87
between

braces, 47'48
brackets, 47'48
markers, 48
paragraphs, 45
parentheses, 47'48
sentences, 44
words, 41

& characters
left, 30
right, 30
& lines down, 30, 34

from the top of the screen, 38
& lines up, 30, 34

from the bottom of the screen,
38

one character,
left, 29
right, 29

one line,
down, 29
up, 29

one screen
backward, 38
forward, 38

relative to the screen, 38
to

character x,
after previous, 40
before next, 40
next, 40
previous, 40

column &, 32
line,

end of, 33'34

! Index "

Page 97

first, 34
last, 34
next, 34
previous, 34
start of the line, 33'34

paragraph,
next, 45'46
previous, 45'46

screen,
bottom of, 38, 51
middle of, 38, 51
top of, 38, 51

sentence,
next, 44
previous, 44

word,
end of, 43
next, 43
previous, 43

screen, half a
down, 38, 40
up, 38, 40

search match,
next, 50
previous, 50

cutting text, see deleting

D

deleting, 67, 69'71, 73'75, 80, 84
characters, 71
lines, 70'71, 73'75
words, 71, 73

display, adjusting, 51

E

editing, text, 10'11, 13'14, 17, 22'24,
53, 55, 63, 67, 91

entering, text, 55, 63

ex mode, 6

F

file operations, 6

filename, 11'12 , 17, 59
changing, 17
wildcard, 11'12

testing, 11

file, 10'11, 13'24, 26, 59
access path, 10, 19, 59
appending to, 20

a part of, to another, 21
current, 20'22, 24'26, 59

forcing to save and quit, 23
editing, 10'11
forced saving the current, 16
inserting, 59
location, 17
opening, 10, 14

opening multiple, 11
read"only, 23
recovery, 26
saving, 22

a part of, 18
under a di%erent name, 19

current, 15
quitting, 22
under a di%erent name, 17

switching between, 13

I

insert mode, 6, 29, 55, 58, 63, 69'70

inserting, 55, 57
empty lines, 57

above the current line, 57
below the current line, 57

text, 55

J

joining, lines, 85

! Index "

Page 98

L

lines, 6, 21, 61
blocks of, 21, 61
long, 6

line, 9, 30, 36, 70
current, 60
empty, 9
number, 36, 70
source, 30
target, 30

lowercase, 86

M

markers, 9, 48, 60'61,63, 77, 82
~, 9
end of region, 63

motion commands, 63, 66'67, 73, 81,
86
character x,

backward to before, 66
forward to before, 66
next, 66
previous, 66

down, 66
left, 66
line,

beginning of, 66
end of, 66
first, 66
last, 66
&th, 66

paragraph,
next, 66
previous, 66

right, 66
screen,

bottom of, 66
middle of, 66
top of, 66

sentence,
next, 66
previous, 66

up, 66
word,

end of, 66
next, 66
previous, 66

N

numbers, 87
decrementing, 87
incrementing, 87

O

out of control, 5

overtype mode, 67

P

panic, 5

pasting, 80, 84
text,

after
current line, 84
cursor, 84

before
current line, 84
cursor, 84

process suspension, 92

processing text with external
commands, 61'62

putting, see pasting

R

ranges, 18'19, 21, 61, 74, 77, 82
lines in,

first, 18'19
last, 18'19

redo, 87

! Index "

Page 99

register, 65, 69'71, 75, 80, 84
default, 63, 69'70, 75, 84

regular expressions, 36, 50, 74'79,
82'83

^, 76
^string, 75'76, 79, 83
?, 76
., 74, 76, 78, 82
#, 76
$, 76
(^..."...), 75, 76, 79, 83
(^...), 74'76, 78'79, 83
(, 76
(..."...), 75'76, 79, 83
(...), 74, 76, 78, 83
), 76
*, 74, 76, 78, 82
\, 76
\\, 75, 79, 83
\<string, 75'76, 79, 83
\n, 76
\r, 75'76, 79, 83
\t, 76
+, 76
|, 76
-, 76
any character from the given set,

74, 78, 83
any character from the set, 76
any character outside range, 76
any character outside the given

set, 74'75, 78'79, 83
any character outside the set, 76
any characters from range, 76
any number of repetitions of the

previous pattern, 74, 78, 82
any number of repetitions, 76
any single character #.$, 74, 76, 78,

82
backslash #\$, 75, 79, 83
beginning of line #^$, 75'76, 79, 83
beginning of word, 75'76, 79, 83
carriage return #\r$, 76

characters in range, 75, 79, 83
characters outside range, 75, 79, 83
DOS carriage return, 75, 79, 83
end of line #-$, 75'76, 79, 83
end of word, 75'76, 79, 83
newline #\n$, 76
literal string, 74, 76, 82
string\>, 75'76, 79, 83
string-, 75'76, 79, 83
tab #\t$, 76

repeating actions, 77, 87

replacing, 60'61, 63, 67, 69'71, 77'80
characters, 69
lines,

a block of, 61
all, 61
current, 60, 70
last, 60
&th, 60
old, 71
with marker, 60

text, 67
old with new, 63
on all lines, 78
on line &, 77
on the current line, 77
on the last line, 77
on the line with marker, 77
using regular expressions, 78
on lines matching regular
expressions, 79'80
within a block of lines, 78

words, 63

root, 16, 23

Q

quitting, see !i, quitting

S

screen, 6, 38, 51, 63, 91
unscrambling, 6

! Index "

Page 100

scripts, 91

searching, 50, 77
backward, 50
forward, 50

shell access, 92

strings of characters, see characters,
strings of

strings, 50, 63, 77
literal, 50, 77
with markers, 63

T

text editor, 6

tricks, 89

U

undo, 87
history, 87

uppercase, 86

V

vi, 9'11, 22, 24'25, 92
forcing to quit without saving, 25
quitting without saving, 24
quitting, 22, 92
starting, 9'11

W

way out, 5

whitespace, 43

wrapping lines, 62

Y

yank, see yanking
yanking, 80

! Index "

Page 101

