vi(1) Tips

Essential vi/vim Editor Skills

by
Jacek Artymiak

vi(x) Tips
Essential vi/vim Editor Skills
by

Jacek Artymiak

First Edition

Lublin 2008

~i(1) Tips, 15t ed. by Jacek Artymiak

Editor: Suzanne Trellis

Published by devGuide.net

www: http://’www.devguide.net/books/vitips1
email: jacek@devguide.net

Copyright © 2008 Jacek Artymiak

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

First edition 2008

Printed in Poland and the United States of America.
o8 10987654321

ISBN: 978-83-60869-00-0

The author and the publisher disclaim any and all liability for the
use of information and programs contained in this book.

All trademarks mentioned in this book are the sole property of
their owners.

Table of Contents

Introduction I
Chapter 1: Essentials 3
PANIC! 5
Canceling Commands 5

Switching Between Command Mode and

Insert Mode 6
Escaping from the ex Editor Mode 6
Unscrambling the Screen 6

Chapter 2: Basic File Operations ”
Starting vi(r) 9
Starting vi(x) and Opening a File for Editing 10
Starting vi(1) and Opening Multiple Files for

Editing 11
Switching Between Files 13
Opening a File after Starting vi(x) 14
Saving the Current File 15
Forcing vi(1) to Save the Current File 16

Saving the Current File Under a Different Name 17
Saving a Part of the Current File 18
Saving a Part of the Current File Under a

Different Name 19
Appending the Current File to Another 20
Appending a Part of the Current File to Another 21
Saving the Current file and Quitting vi(x) 22

Forcing vi(1) to Save the Current File and Quit 23

- Table of Contents =<

Quitting vi(x) without Saving the Current File

Forcing vi(1) to Quit without Saving the
Current File

Recovering the Current File

Chapter 3: Cursor Movement

Moving the Cursor One Character/Line

at a Time
Moving the Cursor x Characters or

Lines at a Time
Moving the Cursor to Column x
Moving the Cursor to the Start or End of Line
Moving the Cursor Between Lines
Which Line Am I On?
Moving the Cursor Relative to the vi(1) Screen
Moving the Cursor to Character x
Moving the Cursor Between Words
Moving the Cursor Between Sentences
Moving the Cursor Between Paragraphs
Moving the Cursor Between Matching

0, 8,11, or <>
Moving the Cursor Between Markers
Moving Around with Simple Search
Repositioning Text Relatively to the Screen

Chapter 4: Editing

Entering Text
Inserting Lines

Inserting Files

24

25
26

27

29

30
32
33
34
36
38
40
41
44
45

47
48
50
51

53
55

57
59

- Table of Contents =<

Inserting Output of a Command

Processing Text Using External Commands

Changing Text

Replacing Text

Replacing One or More Characters with
Any Number of Characters

Replacing the Current Line

Deleting Text

Search and Replace

Cut, Copy, and Paste

Copying Text

Pasting Text

Joining Lines

Changing Case

Incrementing and Decrementing Numbers

Repeating Actions

Undo / Redo

Chapter 5: Tricks

Running Commands
Sending vi(x) to the Background
Shell Access

60
61
63
67

69
70
71
77
8o
8o
84
85
86
87
87
87
89
91
92
92
95

List of Tables

Table 1: UNIX filename wildcards.
Table 2: Motion commands.

Table 3: Regular expressions.

12
66
76

Introduction

No Unix-class system administrator or user will get far without
learning the basics of vi(1), the widespread visual text-mode editor.

Contrary to some misinformed opinions spread among users who
are new to Unix-class systems, vi(1) is not difficult to learn. Granted,
it is over thirty years old and not very friendly to beginners, but
once you grasp the basic concepts, you will never have to learn
another text editor again, because vi(1) is available for all standard
operating systems, including Microsoft Windows, Mac OS X, Linux,
BSD, and many others.

My own experience teaching vi(1) and Unix-class system and
network administration suggests that most of the problems
reported by new users stem from the fact that vi(1) is completely
different from any other text editor.

Vi(v) is a modal editor, which means that you need to tell it to switch
between different modes and commands, even when all you want to
do is change a few characters. This minor inconvenience is offset by
the enormous flexibility of the editor and its seamless integration
with the rest of the Unix environment.

Another problem is the obscure terminology used to describe its
functionality. It makes learning vi(1) unnecessarily difficult for no
good reason.

Bearing those two issues in mind, I have written a book which does
not bombard you with the old terminology, but rather uses concepts
that are familiar to users who are used to working with Microsoft
‘Windows or Mac OS X and who do not know much about the joys’
of working on dial-up text mode terminals.

I hope this fresh new look at vi(1) will help you learn it and become
more productive.

Jacek Artymiak

Page 1

Chapter 1

Essentials

= Chapter 1: Essentials <

PANIC!

When things go wrong and you are stuck feeling that vi(1) has
gotten out of control, it might be a good idea (or the only way
out...) to abandon all changes you have made to the files and start
again. To do so, use the :q! ‘panic mode.’

casFIK KLFkfkasgf lya;ybciquwRUegqdhxci3vT LBRC;UEN VBQWILrpc ;obFde

gir'h am fp'p

% \glGwsc.c “w# $0penBSD: sysctl.conf,v 1.46 20085/01/65 18:38:37 mbalmer Exp $
#

This file contains a list of sysctl options the user wants set at

boot time. See sysctl(3) and sysctl(8) for more information on

the many available variables.

#; fu o;if 'wRenc g'dhl/sgoi:net.inet6.ip6.mforvarding=1 # 1=Permit forwarding (r
outing) of IPv6 multicast packets

#net.inet6.ip6.nultipath=1 # 1=Enable IPv6 multipath routing
#et.inet6.ip6.accept_rtadv=l # 1=Permit IPv6 autoconf {forwarding must be @)
#net.inet.tep.rfcl323=0 # B=Disable TCP RFC1323 extensions {for if tcp i
s slow)

#et.inet.tcp.rfc3396=0 # B=Disable RFC3398 for TCP window increasing
#net.inet.esp.enable=0 # B=Disable the ESP IPsec protocol
#net.inet.ah.enable=8 # B=Disable the AH IPsec protocol

#net . inet .esp.udpencap=0 # B=Disable ESP-in-UDP encapsulation
#net.inet.ipcomp.enable=1 # 1=Enable the IPCOMP protocol
#net.inet.etherip.allow=1 # 1=Enable the Ethernet-over-IP protocol
#net.inet.tcp.ecn=1 # 1=Enable the TCP ECN extension
#net.inet.carp.preempt=1 # 1=Enable carp(4) preemption
#net.inet.carp.log=1 # 1=Enable logging of carp(4) packets

#ddb .panic=0 # 8=Do not drop into ddb on a kernel panic

:qtf]

How-To:

1. Press Esc once to switch to command mode.
2. Type :q!
3. Press Enter/Return.

Canceling Commands

When you want to abandon the command you were typing in
command mode, press Esc twice. See also the Undo/Redo section on

page 87.

Page s

= Chapter 1: Essentials <

Switching Between Command
Mode and Insert Mode

Unlike the majority of text editors and word processors, vi(1) has
two modes of operation: command and insert.

How you enter insert mode depends on the kind of action you want
to perform. (You can learn about the different actions in Chapter 4,
Editing on page 53.) The most important trick to master is switching
back to command mode. This is actually very simple—just press
Esc.

Escaping from the ex Editor
Mode

For those who like to do things the old, hard way, vi(1) offers the
ex(1) editor mode (a primitive text editor with no visual editing
functionality). Most of us don’t need it, however, and when we end
up there, it’s mostly by accident.

If you notice that the text you were working with has suddenly
disappeared and all you can see is the : command prompt, type vi
and press Enter/Return. This will get you back to vi(1).

#5 If you want to switch to the ex(1) editor mode, type Q in
command mode.

Unscrambling the Screen

Long lines and messages sent to you by other users or the system
itself may temporarily mess up the vi(1) screen. You can always clean
it up with Ctrl+1 (lowercase letter L) or Ctrl+r (lowercase letter
R).

Page 6

Chapter 2

Basic File
Operations

@ Chapter 2: Basic File Operations <

Starting vi(x)

You can start vi(1) from the command line without telling it which
file it is supposed to open. You can provide that information later
(see page 10).

$ vil]

Before

After

T or v v orororororororrorororrrrorormm

#5 The ~ (tilde) sign in the first column on every line on the
vi(1) screen is an empty line marker. To tell if it is a part of
the file you opened or just an empty line marker, try to
move the cursor to the line with ™. If you cannot do it, it’s
just an empty line marker.

How-To:

1. Typevi
2. Press Enter/Return.

Page 9

@ Chapter 2: Basic File Operations <

Starting vi(1) and Opening a File
for Editing

To edit an existing file or to create a new one, provide vi(1) with the
path to the file.

$ vi ~/book.txtf]

Before |
After

Starting vi{1) and Opening a File for Editing

To edit an existing file or to create a new one, provide vi(l)
the file.

How-To:

1. Type vi ~/book.txt
2. Press Enter/Return.

Zhome/jacek/book .txt: unmodified: line 1

How-To:

1. Typevi “/book.txt
2. Press Enter/Return.

Page 10

@ Chapter 2: Basic File Operations <

Starting vi(1) and Opening
Multiple Files for Editing

To open more than one file for editing, either list them after the vi
command, e.g. vi chl.txt ch2.txt or use one or more of the
filename wildcard patterns shown in Tzble 1: UNIX filename wildcards
on the next page. For example, -/*.#xt. represents all text (zxt) files
located in your home directory:.

$ vi ~*.txtf]

Before
After

Starting vi{1) and Opening a File for Editing

To edit an existing file or to create a new one, provide vi(l)
the file.

How-To:

1. Type vi ~/book.txt
2. Press Enter/Return.

/home/jacek/book.txt: 3 files to edit: unmodified: line 1

How-To:

1. Typevi “/*.txt
2. Press Enter/Return.

Page 11

@ Chapter 2: Basic File Operations <

Table 1: UNIX filename wildcards.

syntax meaning examples
) ~ (your home directory)
home directory ~joe (joe's home directory)
/ directory separator /home/joe/book.ixt
*ixt (all filenames that end with
*ixt)
* any string chapter*.txt (all files whose names
begin with chapter and end
with .txt)
chapter0?.txt (all filenames that
begin with chapter0 and end
with .txt; the only difference
? any single character between them is a single
character, e.g. chapter01.ixt,
chapter09.txt, chapter0a.txt, or
chapter00.txt)
[abe] any single character | chapter0[123456789].txt (filenames
from the list chapter01.txt through chapter09.txt)
anv single character chapter0[!1234567].txt (filenames
[abc] ynot gn the list outside the chapter01.txt through
chapter07.txt range)
[a-2] any single character chapter0[0-9].txt (flenames
from range chapter00.txt through chapter09.txt)
anv sinale character chapter0[!0-9].txt (flenames
['a-Z] v sing outside the chapter00.txt through

outside range

chapter09.txt range)

43 You can use multiple wildcards in the same filename

1=

pattern, e.g. chapter??.*

Always test your patterns before giving them to vi(r). One
way to test is to replace vi with 1s, e.g. 1s ~/*.txt and
check which files get selected.

Page 12

@ Chapter 2: Basic File Operations <

Switching Between Files

Plain old vi(1) does not display all files listed on the command line
after the vi command. Instead, it will display the first file and wait
for you to do the edits. You can switch to the next file with the :n
command. To switch to the previous file, press Ctrl+” (Ctrl
+Shift+6).

$ vi a.txt b.txt c.txt]

Step 1

This is file A. st 3
" |his is file B. !E;;I: ‘4I
~ |7|ihis is file A. St 5
N
mfl |7~
_~ ~
b| -
-N
a.txt: 3 files to edit: unmodified: line 1
How-To:

Type: vi a.txt b.txt c.txt
Press Enter/Return.

Type :n

Press Enter/Return.

Press Ctrl+”

CUR IR

Page 13

@ Chapter 2: Basic File Operations <

Opening a File after Starting
vi(1)

You can open a file for editing from within vi(t) with the :e
command. The file will be placed in its own buffer, independent of
other files.

45 There is no need to close other files that you may have
opened in vi(1). You can switch between them using the
commands described on page 13.

45 A buffer is just a place in memory reserved for a file.

firening a File after Starting vwi{l)

After

You can open a file for editing from within vi{1) with

will be placed in its own buffer, independent of other

There is no need to close other files that you may have opened in vi{l). You can
switch between them using the commands described on page [FIXME].

th to
How-To:
1. Press Esc to switch to command mode.

2. Type :e ~/chapter@é.txt
3. Press Enter/Return.

Starting vi(1) and Opening a File for Editing

To edit an existing file or to create @ new one, provide vi{l) with the path to
the file.

How-To:

/home/ jocek /chapter@6.txt: unmodified: line 1

Before

e ~/chapter®6.txtf]

How-To:

1. Press Esc to switch to command mode.
2. Type te ~/chapter06.txt
3. Press Enter/Return.

Page 14

@ Chapter 2: Basic File Operations <

Saving the Current File

To save the current file, use the :w command. It behaves in a

predictable way: when you save a file, the current version replaces

the former version.

Saving the Current File

After

To save the current file, use the :w command. It behaves

hen you save a file, the current version replaces the for
How-To:

1. Press Esc to switch to command mode.

2. Type :w

3. Press Enter/Return.

Opening a File after Starting vi(l)

You can open a file for editing from within vi(1) with the :e command. The file
will be placed in its own buffer, independent of other files.

There is no need to close other files that you may have opened in vi(l). You can
switch between them using the commands described on page [FIXME].

How-To:

/shome/ jacek /chapter@6.txt: 65 lines, 1392 characters.

ooy : W

file

U can

1 |

Before

How-To:

1. Press Esc to switch to command mode.
2. Type :w
3. Press Enter/Return.

Page 15

@ Chapter 2: Basic File Operations <

Forcing vi(1) to Save the Current

File

Sometimes vi(1) will complain that it cannot save a file that is

marked as read-only. You can force vi(1) to write to the file anyway if

you are logged in as the user root. To force a save, add the

exclamation mark (1) after the :w command. If that doesn’t work,

save the file under a different name and/or location (see page

17).

Forcing vi(1) to Save the Current File

Sometimes vi{1) will complain that it cannot save a file

only. You can force vi(l) to write to the file anyway if

e user root. To force a save, add the exclamation mark (!) after the :w command.
If that doesn?\x88%\x99t work, save the file under a different name and/or locat
ion (see page [FIXME]).

How-To:
1. Press Esc to switch to command mode.
2. Type :w!

3. Press Enter/Return.

Starting vi{1) and Opening a File for Editing

To edit an existing file or to create a new one, provide vi(l) with the path to
the file.

How-To:

/home/jacek/book .txt: 52 lines, 1147 characters.

read-
as th
Bimand .
locat

Ith to

wifl

Before

How-To:

1. Press Esc to switch to command mode.
2. Type :w!
3. Press Enter/Return.

Page 16

@ Chapter 2: Basic File Operations <

Saving the Current File Under a
Different Name

When you need to save the current file under a different name, use
the :w command followed by the access path/filename.

45 vi(D) will not change the current file’s name or location.
‘When you use :w alone again, files will be saved under the
old name/location.

45 To edit the file you just saved under a different name, open
it for editing with : e (see page 14). The old file will still be
open in vi(1), but the editor will switch to the new one; now
all changes saved with :w will be saved under the new name.

Saving the Current File Under a Different Name

After

- vi(1) will not change the current file?\x88%x99s name or location. When you us
e :w alone again, files will be saved under the old name/location.

When you need to save the current file under a different
d followed by the access path/filename.

comman

- To edit the file you just saved under a different name, open it for editing wi

th :e (see page [FIXME]). The old file will still be open in vi(1), but the edit
or will switch to the new one; now all changes saved with :w will be saved under
the new name.

ou us

ing wi
e edit
under

How-To:

1. Press Esc to switch to command mode.
2. Type w ~/book.txt

3. Press Enter/Return.

Forcing vi{1) to Save the Current File

/home/ jacek/chapter@?.txt: new file: 67 lines, 1859 characters.

Forcing vi(l) to Save the Current File

Before

W ~/chapter®7.txtf]

How-To:

1. Press Esc to switch to command mode.
2. Type :w “/chapter07.txt
3. Press Enter/Return.

Page 17

@ Chapter 2: Basic File Operations <

Saving a Part of the Current File

To save a part of the current file, use the range notation, :n,mw!
where n is the number of the first line, m is the number of the last
line, w stands for write, and the exclamation mark (!) forces vi(1) to

replace the current file with the specified block.

If you forget !, vi(1) will complain and refuse to write the specified
block. Rightly so, because you are replacing the whole file with a
smaller chunk and vi(1) wants to make sure you know what you are

doing.

Saving a Part of the Current File

: After

To save a part of the current file, use the line range

s the number of the first line, m is the number of the

rite, and the exclamation mark (!) forces vi(l) to replace the current file with
the specified block.

If you forget !, vi(1) will complain and refuse to write the specified block. Ri
ghtly so, because you are replacing the whole file with a smaller chunk and vi(l
) wants to moke sure you know what you are doing.

How-To:

1 Press Esc to switch to command mode.
2. Type :4,8w!

3. Press Enter/Return.

Saving the Current File Under a Different Name

When you need to save the current file under a different name, use the :w comman
d followed by the access path/filename.

/home/jacek/book .txt: 5 lines, 485 characters.

re n i
for w
e with

k. Ri
i vi(1

When you need to save the current file under a different

:4,8u1l

d followed by the access path/filename. Before

How-To:

1. Press Esc to switch to command mode.
2. Type :L4,8w!
3. Press Enter/Return.

Page 18

@ Chapter 2: Basic File Operations <

Saving a Part of the Current File
Under a Different Name

Suppose you need to extract parts of the current file and save them
to another file. You can do this with the help of the line range
notation, :n,mw where n is the first line, m is the last line, and w
stands for write. Follow this with the path and filename for your
new file.

Saving a Part of the Current File Under a Different Name

: After

Suppose you need to extract parts of the current file and

ile. You can do this with the help of the line range nota

he first line, m is the last line, and w stands for write. Follow this with the
path and filename for your new file.

her f
How-To: ist

the

1. Press Esc to switch to command mode.
2. Type :4,8w ~/excerpt.txt
3. Press Enter/Return.

Saving a Part of the Current File

To save a part of the current file, use the line range notation, n,mw! where n i
s the number of the first line, m is the number of the last line, w stands for w
rite, and the exclomation mark (!) forces vi(1) to replace the current file with
the specified block.

If you forget !, vi{1) will complain and refuse to write the specified block. Ri

/home/jacek /excerpt.txt: new file: 5§ lines, 291 characters. re noi

for w

rite, and the exclamation mark (!) forces vi(l) to replac

the specified block.
If you forget !, viﬁi) will complain and refuse to write e Ore

:4,8w ~/excerpt.txt

How-To:

1. Press Esc to switch to command mode.
2. Type :4,8w ~/excerpt.txt
3. Press Enter/Return.

Page 19

@ Chapter 2: Basic File Operations <

Appending the Current File to

Another

If you want to add text from one file to the end of another, use

the :w >>command. The current file will be appended to the end

of the file that you specify.

Appending the Current File to Another

After

If you want to add text from one file to the end of anoth

nd. The current file will be appended to the end of the f

/home/jacek/review.txt: appended: 182 lines, 3328 characters.

W ss~/review. txtf]

How-To:
1. Press Esc to switch to command mode. e
2. Type :w =»~/review.txt Eify.
3. Press Enter/Return.
Saving a Part of the Current File Under a Different Name
Suppose you need to extract parts of the current file and save them to another f
ile. You can do this with the help of the line range notation, n,mw where n is t
he first line, m is the last line, and w stands for write. Follow this with the
path and filename for your new file.
her f
How-To: is t
the

Before

How-To:

1. Press Esc to switch to command mode.
2. Type sw >>%/review.txt
3. Press Enter/Return.

Page 20

@ Chapter 2: Basic File Operations <

Appending a Part of the Current

File to Another

Suppose you need to extract parts of the current file and add them
to another. You can do this by appending blocks of lines from one

file to another with the help of the line range notation :n,mw

>>

filename, where n is the first line, m is the last line, w stands for
write, and the redirection mark (>>) send the selected range of lines

to filename.

#5 Don’t forget to use the >> notation.

Appending a Part of the Current File to Another

j After

Suppose you need to extract parts of the current file and

ou can do this by appending blocks of lines from one file

lp of the line range notation n,mw >= filename, where n is the first line, m is
the last line, w stands for write, and the redirection mork (=») send the select
ed range of lines to filename.

- Don't forget to use the == notation.
How-To:

1. Press Esc to switch to command mode.
2. Type :4,8w >>~/summary.txt

3. Press Enter/Return.

Appending the Current File to Another

If you want to add text from one file to the end of another, use the :w == comma
nd. The current file will be appended to the end of the file that you specify.

/home/ jacek /summary.txt: new file: 5 lines, 483 characters.

er. ¥
he he
mis
=elect

If you want to add text from one file to the end of anoth

14,8u sz~/sumnary .txt]]

nd. The current file will be appended to the end of the f Before

How-To:

1. Press Esc to switch to command mode.
2. Type :4,8w >>"/summary.txt
3. Press Enter/Return.

Page 21

@ Chapter 2: Basic File Operations <

Saving the Current File and
Quitting vi(x)
When you are done editing, save the current file and quit vi(y).

There are three ways to do this, all equally effective: :x, :wq,
and :ZZ.

$ vi ~/book.txt

o After

three

er. Y
he he
mis
elect

- Don't forget to use the »= notation. Before

£ |

How-To:

1. Press Esc to switch to command mode.
2. Type :x
3. Press Enter/Return.

Page 22

@ Chapter 2: Basic File Operations <

Forcing vi(1) to Save the Current
File and Quit

vi(x) will not let you write to a read-only file that you may be editing,
even when you are logged in as the user root. You can force it to
save the file anyway with the help of the exclamation mark (:x!).

%% The alternative command :wq! has the same effect.

$ vi ~/book.txt
. After
even v
onyway
three
How-To:
1. Press Esc to switch to command mode. Before
1 |

How-To:

1. Press Esc to switch to command mode.
2. Type :x!
3. Press Enter/Return.

Page 23

@ Chapter 2: Basic File Operations <

Quitting vi(1) without Saving the
Current File

Use the :q command to quit vi(x) without saving the current file. If
you haven’t made any changes to the file, vi(1) will exit as soon as
you press Enter/Return. If you did edit it, you will have to either
save it (see pages 15, 17, 22), or force vi(1) to abandon all changes
since the last save (see page 25).

$ vi ~/book.txt

o After

javen 't
Retur
[FIXM
ee pag

even v
nyway

with the help of the exclamation mark {:x!).

The alternative command :wq! has the same effect. Befo re

:qll

How-To:

1. Press Esc to switch to command mode.

2. Type :q
3. Press Enter/Return.

Page 24

@ Chapter 2: Basic File Operations <

Forcing vi(1) to Quit without
Saving the Current File

When you need to force vi(1) to abandon all changes made to the
current file since the last time you saved it, use the :q! command.

$ vi ~/book.txt

o After

le sin

aven 't
Retur
[FIxM
ee pag

Before

How-To:

:qtfl

How-To:

1. Press Esc to switch to command mode.
2. Type :q!
3. Press Enter/Return.

Page 25

@ Chapter 2: Basic File Operations <

Recovering the Current File

If you decide that the changes you have made to the current file are
too extensive to revert manually, use the :e! command. It will
restore the last saved version of the current file.

45 You must switch vi(1) to command mode to use these
commands.

Page 26

Chapter 3

Cursor
Movement

@ Chapter 3: Cursor Movement =<

Moving the Cursor One
Character/Line at a Time

There are two sets of keys used to move the cursor one character to
the left or right, or one line up or down:

=
1=

Move the cursor one character to the left: h or <

Move the cursor one character to the right: 1, space,
or —

Eoving the Cursor One Character/Line at a Time

12
34

- Press j nine times to move the cursor to 1.
- Press | once to move the cursor to 2.
- Press j once to move the cursor to 4.
- Press h once to move the cursor to 3.
- Press k once to move the cursor to 1.

Step 1

E Step 2
. Step 3
? Step 4
2 Step 5
E Step 6

%5 Move the cursor one line down: j or |
#5 Move the cursor one line up: k or 1
#5 Switch to the command mode to use the h, 1, j, k keys

when you want to move the cursor. The arrow keys can be
used in either command or insert mode.

Page 29

@ Chapter 3: Cursor Movement =<

435 When the source line is shorter than the destination line,
the cursor will be placed at the end of the target line.

435 When the cursor in located at the end of the source line,
the cursor will be placed at the end of the target line.

How-To:

Open exercise file: vi hjkl.txt

Press j nine times to move the cursor to 1.
Press 1 once to move the cursor to 2.
Press j once to move the cursor to k.
Press h once to move the cursor to 3.
Press k once to move the cursor to 1.

IS4 I o A

Moving the Cursor x Characters
or Lines at a Time

‘When moving one character or line at a time is too cumbersome,
use the numeric prefix to move the cursor x characters or lines at a
time.

You need to switch vi(1) to command mode and then type the
number of characters or lines you want the cursor to move, followed
by h, j, k, or 1.

¢35 This technique cannot be used with the arrow keys:
=11

How-To:

Open exercise file: vi n-hjkl.txt

Type 10j to move the cursor to 1.

Type 111 to move the cursor to 2.

Type 53 to move the cursor to L.

Type 11h to move the cursor to the first column.
Type 2k to move the cursor to 3.

Type 3k to move the cursor to 1.

IR U o

Page 30

@ Chapter 3: Cursor Movement =<

floving the Cursor X Characters/Lines at a Time
- Type 18] to move the cursor to 1. Step
- Type 11l to move the cursor to 2.
- Type 5j to move the cursor to 4.
- Type 11h to move the cursor to the first column 2
- Type 2k to move the cursor to 3.
- Type 3k to move the cursor to 1.
1 2
5 L
4
i 2
3 Step 2 ||
4
1 2
: Step 3 ||
4
1 2
3 Step 4
i
1 2
: Step 5
[] 4
1 2
| Step 6
4
1 2
: Step 7
4

Page 31

@ Chapter 3: Cursor Movement =<

Moving the Cursor to Column x

To move the cursor to a specific column, type the number of the
column followed by | (vertical bar), e.g. to move to column 77, type

77
1=

You must switch vi(1) to command mode to use these
commands.

Moving the Cursor to Column x

fo move

the cursor to a specific column, type the number
atical oy’ ato wove o colugen 27 dune 271

Before |

by | (v
- You
How-To|
1. Pres
2. To j
3. To j

Forcing|

When yol
ce the

How-To|

1. Pres

Moving the Cursor to Column x

To move the cursor to a specific column, type the number of the column folloied
by | {vertical bar), e.g. to move to column 77, type 77|

- You must switch vi{1) to commond mode to use these commands.
How-To:

1. Press Esc to switch to command mode.

2. To jump to the beginning of the line, press @

3. To jump to the end of the line, press §

Forcing vi(1l) to Quit without Saving the Current File

When you need to force vi(l) to abandon all changes made to the current file sin
ce the last time you saved it, use the :q! command.

How-To:

1. Press Esc to switch to command mode. After

How-To:

1. Press Esc to switch to command mode.

2. To
3. To

jump to the beginning of the line, press 0
jump to the end of the line, press $

Page 32

@ Chapter 3: Cursor Movement =<

Moving the Cursor to the Start

Use 0

or End of Line

(zero) to move the cursor to the beginning of the line or $

(dollar sign) to jump to the beginning or end of the line with the
Ccursor.

Moving the Cursor to the Start or End of Line

Use @ {zero) to move the cursor Eo the beginning of the

to s

Step 1 |

to tha baoinming o and of the line itk e

Mov

ing the Cursor to the Start or End of Line

- ¥
ump

ren fse

8 (zero) to move the cursor to the beginning of the Step 2

S to the beoiseing o end of the line itk dhe oo

_ y{to

How{ = Y]
|

Pl
1. | YEN
2. 1= Y

How

Moving the Cursor to Column x

To move the cursor to a specific column, type the number of the column folloﬁed
by | (vertical bar), e.g. to move to column 77, type 77|

- You must switch vi(1) to command mode to use these commands.
How-To:
1. Press Esc to switch to command mode.

2. To jump to the beginning of the line, press @
3. To jump to the end of the line, press §

i Forcing vi(1l) to Quit without Saving the Current File

When you need to force vi{1) to abandon all changes made to the current file sin
ce the last time you saved it, use the :q! command.

How-To:

1. Press Esc to switch to command mode. Step 3

1=

You can precede $ with the number of lines you want to
jump forward, e.g. to jump to the end of the line five lines
down, type 68 (this is correct, as the current line counts as
D.

You must switch vi(1) to command mode to use these
commands.

Page 33

@ Chapter 3: Cursor Movement =<

How-To:

1. Press Esc to switch to command mode.
2. To jump to the beginning of the line, press 0
3. To jump to the end of the line, press $

Moving the Cursor Between

Lines

Moving the cursor between lines is accomplished with the G
command:

=

¥ ¥YY ¥ YUY

Move the cursor to line x: type the line number followed
by G, e.g. to move to line 12, type 12G

Alternatively, type :x, e.g. :12 moves the cursor to line 12.
Note that the : precedes the line number.

Move the cursor to the first line: type 1Gor [[
Move the cursor to the last line: type G or]]
Move the cursor to the next line: press +

Move the cursor x lines down: type x+, e.g. to move two
lines down, type 2+

Move the cursor to the previous line: press -

Move the cursor x lines up: type x-, e.g. to move two
lines up, type 2-

You must switch vi(1) to command mode to use the
commands described in this section.

Page 34

@ Chapter 3: Cursor Movement =<

fine 1: Start here
Line 2
Line 3 Step 1
Line 4
Line 5
Line 6
Line 7
Line 8: End here
Line 9
“|Line 1: Start here
“ILine 2
“ILine 3 Step 2
“ILine 4
“ILine 5
“ILire &
“ILine 7
“|Line 8: End here
~|line 9
.| 7|Line 1: Start here
.| 7|Line 2
{7|tine 3 step 3
- 7|Line 4
“ILine 5
L “|Bine &
“|Line 7
“|Line 8: End here
“lLine 9
| |Bine 1: Start here
~| |Line 2
1lime 3 Step 4
~| |Line 4
“ILire §
L “[Line &
“ILine 7
“ILine 8: End here
“ILine 9
“|Line 1: Start here
“|Line 2
“ILine 3 Step 5
J7[Line 4
“ILine 5
L {Lire &
“ILine 7
“|Line 8: End here
“ILine 9
A7 Line 1: Start here
A7 Line 2
A7 Line 3 Step 6
A7 Line 4
- Line 5
bl : Line 6
Line 7
~ fine 8: End here
- Line 9
" “ILine 1: Start here
- “ILine 2
" “ILine 3 Step 7
- “ILine 4
2l : Line 5§
b |LinE &
“ILine 7
“|Line 8: End herell
“ILire 9
-

Page 35

@ Chapter 3: Cursor Movement =<

How-To:

N AR PN M

Open exercise file: vi lines.txt

Type G to move the cursor to the last line.

Type - three times to move the cursor to line 6.

. Type 1G to move the cursor to the first line.

Type :7 to move the cursor to line 7.

Type + to move the cursor to line 8.

Type $ to move the cursor to the end of line 8.

Type 0 to move the cursor to the beginning of line 8.

Which Line Am I On?

If you ever need to know the current line number, try these
commands:

1=

1=
=
1=

Display the line number: type :#, :num, or: .=

Display the number of lines in the current file:
type :=

Display the line number and the total number of
lines: press Ctrl+g

Display the number of the next line that matches a
regular expression: type : /regex/=

The search will start on the line with the cursor and
continue towards the end of the current file.

For more information about regular expressions, see page
76.

You must switch vi(1) to command mode to use the
commands described in this section.

Page 36

@ Chapter 3: Cursor Movement =<

Line 1: Start here
Line 2
Before
Line 4
Line 5
Line 6
Line 7
Line §: End here
Line 9
- Line 1: Start here
- Line 2
After
~ fine 4
- Lire 5
- Line 6
~ Line 7
- Line 8: End here
- Line 9
sunf] | .
4 Line 4
How-To:

1. Open exercise file: vi line-number.txt
2. Type LG to move the cursor to line k.

3. Type :num

4. Press Enter/Return.

Page 37

@ Chapter 3: Cursor Movement =<

Moving the Cursor Relative to

the vi(z) Screen

Moving the cursor between lines in half- and full-screen chunks is
accomplished with the following commands:

=
=

v YY

YV Y VY

Move the cursor to the top of the screen: type H

Move the cursor down x lines relatively to the top of
the screen: type xH. For example, to place the cursor on
the third line of the screen type 3H.

Move the cursor to the middle of the screen: type M
Move the cursor to the bottom of the screen: type L

Move the cursor up x lines relatively to the bottom
of the screen: type xL. For example, to place the cursor on
the third line from the bottom of the screen type 3L.

Move the cursor one screen forward: press Ctrl+f
Move the cursor one screen backward: press Ctrl+b
Move the cursor half a screen down: press Ctrl+d
Move the cursor half a screen up: press Ctrl+u

You must switch vi(1) to command mode to use these
commands.

How-To:

N

Open exercise file: vi screen.txt

Type + to move the cursor from line 1 to line 2.

Type H to move the cursor to the top of the screen.

. Type 3H to move the cursor three lines down from the top of the

screen.

IS4

Type M to move the cursor to the middle of the screen (line 12).
Type L to move the cursor to the bottom of the screen (line 23).

Page 38

@ Chapter 3: Cursor Movement <

Hine 1
Line 2 step 1
Line 3
Line 4
Line 5 E::Z; Step 2 |
Line 61| jpe 3
Line 71 ine 4 T
Line 8 ine 5 : St 3
Line s |lime e 2 ep
Line 18 | i 5 :
Line 11 1) ine 5 P [rnet
t::g g Line 9 > |tine 2 Step 4
Line 18 Hine 3
Line 14 ||} Line? e s —
line 15 | are i fLine s |[ne 5 Lire ¢
Line 16 | jc 93 Line 9 Line & I_lne z ep
Line 17 | 500 14 Line 18 (50 o LIne 3
Line 18 | oy (0o 1 fiipe g [0 [Line 1
Lire 18 | 16 Line 12 [0 g L!ne 5 Line 2 Ste 6
Line 28 | i1e Line 13 |[ihe 25 [F0® 6 |(ine 3
Line 2t M%7 Jline 14 (0o 39 |Line 7 | 5000
Line 2z NP 28 Jlineas (0oL |Lines |50
Line 2 MM 12 Hline 16 |[ine 32 [Lineo |50
Line 22 |tine 17 |Fne gy [Line 18| fype
Line 22 |28 fiine 15 ::z g Line &
Line 23 |MM® 2% Hiine 16 [[ync 45 |Line 9
Line 28) ine 47 Line 14 Line 18
Line 21 jne g5 | e 2 Line 11
Line 22 ine g9 |1he 12 |Line 12
Line 23 Jiine 20 | e 1 |Line 13
Line 2L [[ine g |Line 14
Line 22 [[ine 1 |Line 15
Lire 23 | e 20 Lgne 16
Line 17
Line 21 |[ine 37
Line 22 |[i0® 30
Line 23 |[i0e 22
Line 21
Line 22
Line 1 fine 23
e Step 7
; I
M Line 22
5 |line 23 step 8
& tineas
Line 25
8 |Line 26 ::::: ; Ste 9
Line 27 Line 3
:::z: gg Line 4 [ine 13
Line 30 |55 [Line 14 Ste 1 0
Line 3t |8 Line 15
Line 32 |7 Line 16
Line 33 |18 ILine 17 [Line 1
Line 3¢ |-"® 2 |Line 15 |Line 2 step 1 1
Line 18 | ine 10 |Line 3
Line 35 |12 3] |Line 19| -i0e 3
Line 36 tine 12 |Lime 22 |Line 5
Line 37 1ine 13 | in 22 |Line 6
Line gg Line 14 | ine 25 |Line 7
'[::Z i |t 15 fline 24 |Line 8
Line 41 |F"® 18 Jiine 25 |[Line 9
Line 42 | 17 |Line 26 |Line 10
Line 43 |FMe 18 iine o7 |Bine 11
Line 19 | ine 55 |Line 12
ine 44 (1o 20 [Line 28 |1ine 2
Cine 21 |ine 5 [Line 14
Line 22 e 3y [Line 15
fine 23 [[ipe 32 |Line 16
Line 33 |Line 17
Line 3¢ |Line 18
fine 35 |Line 19
Line 28
Line 21
Line 22
Line 23

7. Type 3L to move the cursor three lines up from the bottom of
the screen (line 21).
8. Press Ctrl+f to move the cursor to the top of the next screen
(line 22).
9. Press Ctrl+b to move the cursor to the bottom of the previous
screen (line 23).

Page 39

@ Chapter 3: Cursor Movement =<

10.Press Ctrl+d to move the cursor to the middle of the next
screen (line 35).

11. Press Ctrl+u twice to move the cursor to the middle of the
previous screen (line 11).

Moving the Cursor to
Character x

You can move the cursor between consecutive occurrences of
characters using specialized search commands that take a single
character as their argument:

=

1=

Move the cursor to the next occurrence of character
x: type £x. For example, to jump to the next occurrence of
letter a, type fa

Move the cursor to the previous occurrence of
character x: type Fx. For example, to jump to the previous
occurrence of letter a, type Fa

Move the cursor to the character before the next
occurrence of character x: type tx. For example, to
jump to the character before the next occurrence of letter

a, type ta

Move the cursor to the character after the previous
occurrence of character x: type Tx. For example, to
jump to the character after the previous occurrence of letter
a, type Ta

You must switch vi(1) to command mode to use these
commands.

How-To:

PR SEEC

Open exercise file: vi charjump.txt

Type 5fa to move the cursor to the a character after 555.
Type Fa to move the cursor to the a character after Lik.
Type ta to move the cursor to the last 5.

Type Ta to move the cursor to the first 5.

Page 40

@ Chapter 3: Cursor Movement =<

10222a33304440555a6660777a3850999q000 S t
ep1

1110222a33304440555@66607770835809990000 S t

ep2
1110222u333a444555506660?'?70888:49990608 S t
- ep3
11102220333a444055506660?7708880999080 S t

ep 4
111u222a333a444055506660777088809990088 s t

epb

it

RIS S S S S SN SN S NN SN SN SN NN S S NN SN S S

IR A A A A A A A A T 2 S S S S 2 A T

Moving the Cursor Between
Words

Moving the cursor forward or backward by one or more words
forward or backward is sometimes more convenient that moving it
by one or more characters. There are six commands that accomplish
this task. We need so many, because vi(1) defines two different types
of words: strings of printable ASCII characters and strings
separated by whitespace.

#5 Strings of characters begin with a letter (a-z, A-Z), a
digit (0-9), or one of the following characters: 1@#$
2°&* () [1 3 -=+s5'"\|"7,./<>?

Page 41

@ Chapter 3: Cursor Movement =<

fibc ! abc@abc#tabe$abeXabeabetabc¥abe {abe Jabe-abe_abe=abe+abe [abe Jabe{abc}abe jabe '
abchabe :abc"abe | abe *abe~abe ,abe .abc/abc<abe=abc?abe abe

abc ! abc@abe#abe$abeaborabetabo*abe {abe yabe-abe_abc=abe+abe [abe Jabc{abc}abe ;abe !
abchabe :abc"abe | abe “abc~abe ,abe .abc/abo<abezabc?abe abcabcabe abe

Step 1

i

~| abe! abe@abc#abe$abe¥abeA Bbctabe*abe {abc Yabc-abe_abc=abc+abe [abe Jabc{abc}abe jabe '
~| abchabe :abc"abe | abe “abc~abe ,abe .abc/abc<abe=abc?abe abe

~| abc ! abc@abc#abe$abekaberabetabo¥abe (abe yabe-abe_abe=abe+abe [abe Jabc{abc}abe jabe !
~| abchabe :abe"abe |abe *abe~abe ,abc .abe/abc<nbe=abe?abe abcabcabc abe

Step 2

abc! abc@abciabc$abc%abc’\abc$abc*ubc(abc Jabc-abc_abc=abc+abe [abe Jabe{abc}abe ;abc '
abchabe :abc"abe | abe *abe~abe ,abe .abc/abc<abezabc?abe abe

abc ! abc@abc#abe$abeXabetabetabokabe (abe yabe-abe_abe=abc+abce [abe Jabc{abc}abe jabe !
abchabe :abc"abe | abe *abc~abe ,abc .abc/abo<abe=abc?abe abcabcabc abc

Step 3

~| abc!abc@abc#abe$abekaberabetabo*abe (abe Jabe-abe_abc=abe+abe [abe Jabe{abc}abce jabe '
~| abchabe :abc"abe | abe *abe~abe ,abe .abc/abc<abe=abc?abe abe

~| abc!abc@abc#abe$abekaberabetabo*abe (abe yabe-abe_abe=abe+abe [abe Jabe{abc}abce jabe '
~| abetabe :abcabe | abe *abe~abe ,abe .abe/abc<abezabe?abe @bcabeabe abe

Step 4

~| abchabe :abc"abe | abe *abc~abe ,abe .abc/abc<abe=abc?abe abe

abc ! abc@abo#tabe$abeXaberabctabo*abe (abe Yabe-abe_abe=abe+abe [abe Jabc{abc}abe ;abe !

fibc ! abc@abe#abe$abekabetabeiabe*abe (abe Yabe-abe_abe=abc+abe [abe Jabe{abe}abe jabe '
abchabe :abc"abe | abe “abc~abe ,abe .abc/abc«abezabc?abe abcabcabe abe

- Step 5

~| abc ! abc@abe#abe$abeaberabetabo¥abe {abe yabe-abe_abe=abe+abce [abe Jabc{abc}abe jabe !
~| abchabe :abc"abe | abe “abc~abe ,abc .abc/abcabezabc?abe abe

~| abf! abc@abc#abe$abekaberabetabe*abe (abe Yabe-abe_abc=abc+abe [abe Jabc{abc}abe jabe '
~| abchabe :abc"abe | abe abe~abe ,abc .abc/abc<abe=abc?abe abcabcabc abc

| Step 6

~| abchabe :abc"abe | abe *abe~abe ,abe .abc/abc<abe=abc?abe abe

~| abc!abc@abo#abe$abeXabetabctabo*abe (abe Yabe-abe_abc=abe+abe [abe Jabc{abc}abe ;abe '

~ | abc!abc@abo#abe$abekabetabctabo*abe (abe Yabe-abe_abc=abe+abe [abe Jabc{abc}abe ;abe '

Page 42

@ Chapter 3: Cursor Movement =<

45 Jump forward to the beginning of the next
word: w

#5 Jump forward to the end of the current word: e

45 Jump backward to the beginning of the
previous word: b

45 Strings separated by whitespace (spaces, tabs):

45 Jump forward to the beginning of the next
word: W

#5 Jump forward to the end of the current word: E

45 Jump backward to the beginning of the
previous word: B

45 It is possible to precede each of those commands with a
number in order to move the cursor by more than one word.

45 You must switch vi(x) to command mode to use these
commands.

How-To:

1. Open exercise file: vi words.txt

2. Type 12w to move the cursor to the beginning of the abek string
on the first line.

3. Type '7b to move the cursor to the beginning of the #abc string
on the first line.

4. Type 3W to move the cursor to the beginning of the abcabcabe
string on the second line.

5. Type B to move the cursor to the beginning of the second line.

6. Type e to move the cursor to the end of the abe string at the
beginning of the second line.

7. Type E to move the cursor to the end of the ?abe string near the
end of the second line.

Page 43

@ Chapter 3: Cursor Movement =<

Moving the Cursor Between

Sentences

Moving the cursor between sentences is accomplished with the
following commands:

=

LR

¥

1=

Move the cursor to the next sentence: type)

This does not work in all implementations of vi(1), the
cursor may jump to the next line instead.

Move the cursor to the previous sentence: type (

When vi(1) is asked to jump from one sentence to another,
it will look for full stop () signs as markers.

It is possible to precede these two commands with a
number in order to move the cursor by more than one

sentence. For example, type 14(to move fourteen sentences
backward.

You must switch vi(x) to the command mode to use these
commands.

How-To:

1. Press Esc to switch to command mode.
2. To jump to the next sentence, press)
3. To jump to the previous sentence, press (

Page 44

@ Chapter 3: Cursor Movement =<

fhis is sentence number 1. This is sentence number 2. This is sentence number 3.
This is sentence number 4.
This is sentence number 5. This is sentence number 6. This is sentence number 7.
This is sentence number 5.

. Step 1

~|This is sentence number 1. This is sentence number 2. This is sentence number 3.
~|This is sentence number 4.
~|This is sentence number 5. This is sentence number 6. This is sentence number 7.
~|This is sentence number 8.

|- Step 2

_|~|This is sentence number 1. This is sentence number 2. This is sentence number 3.
~|This is sentence number 4.
~|This is sentence number 5. This is sentence number 6. This is sentence number 7.
~|This is sentence number §.

IHE Step 3

Moving the Cursor Between
Paragraphs
You can move the cursor between paragraphs with the following
commands:
#5 Move cursor to the next paragraph: type }

#5 Move cursor to the previous paragraph: type {

Page 45

@ Chapter 3: Cursor Movement =<

When vi(x) is told to jump from one paragraph to another, it will
look for an empty line as the separator.

It is possible to precede these two commands with a number in
order to move the cursor by more than one paragraph. For example,
type 15} to move fifteen paragraphs forward.

45 You must switch vi(x) to command mode to use these
commands.

Paragraph 1.
Paragraph 2. Step 1
Paragraph 2.
Paragraph 3. [Paragraph 1.
Paragraph 3.

Paragraph 2. step 2
Paragraph 4. |Paragraph 2.
Paragraph 4.
Paragraph 4. (Paragraph 3. |Paragraph 1.
Paragraph 4. |Paragraph 3.
~ | | Paragraph 2. Step 3
Paragraph 4. |Paragraph 2.
Paragraph 4. I

Paragraph 4. |Paragraph 3.
Paragraph 4. |Paragraph 3.

Paragraph 4.
Paragraph 4.
Paragraph 4.
Paragraph 4.

R

Ty vy

[A A

How-To:

1. Press Esc to switch to command mode.
2. To jump to the fourth paragraph, press } three times.
3. To jump to the previous paragraph, press {

Page 46

@ Chapter 3: Cursor Movement =<

Moving the Cursor Between
Matching O, {}, {1, or <>

It is easy to forget to close a block of text marked with (), {}, [],
or <>. To find a matching bracket, brace, or parentheses, position
the cursor over one such character and use the % command.

45 You must switch vi(x) to command mode to use these
commands.

Block 1 {
Block 2 [
Block 3 (
Block 4 <
Block 5 {
>

Step 1

) [Block 1 §

1 Block 2 [
b Block 3 (
Block 4 <

>

Block 5 {

Step 3

-

>

) [Block 1 {
] Block 2 [
Block 3 (
Block 4 <
Block 5

Step 6

]

R

-

vi-tips

-

vt v orrororrorrd

R

R

Y [Block 1 {

Block 2 [
Block 3 (
Block 4 <
Block 5 {
>

Step 8

Y [Block 1 {
] Block 2 [
Block 3 (
Block ¢4 <
Block 5 §
>
)
]

Step 10

=

R

Page 47

@ Chapter 3: Cursor Movement =<

How-To:

Open exercise file: vi brackets.txt

Press Esc to switch to command mode.

Type $ to move the cursor to the [at the end of Block 1 {line.
Type %

The cursor will not move, because the curly braces () are not
balanced.

6. Move the cursor to the {at the end of Block 5 {line.

7. Type %

8. The cursor will jump to the curly brace () on the last line.

9. Type 7 again.

10.The cursor will jump to the curly brace () at the end of Block
5 {line.

EUR IR

Moving the Cursor Between
Markers

Markers allow us to move between arbitrarily chosen locations
inside the document. Just mark the places you want to move
between and jump about as necessary:

#5 Add a marker: mx (x is the single character id for the new
marker)

#5 Jump to marker x: " x (x is the single character id for the
marker)

45 Jump to the first non-blank character on the line
with marker x: ' x (x is the single character id for the
marker)

You can use 52 characters for markers: a-z, A-Z.

You must switch vi(1) to command mode to use these
commands.

vy

Page 48

@ Chapter 3: Cursor Movement =<

Step 1

T LT T T v ororrorororororo

Step 2

Step 4

T LT v v orororororororvoat

: Step 5
. E Ling 8 ——-mommmmoee -
-I: E{EZ % S E— Step 6
—- I E1:2 S
How-To:

NN A RS

Open exercise file: vi markers.txt

Move the cursor to the free space onLine 2.

Type ma to add marker a.

Type G to move the cursor to the last line.
Type 'a to move the cursor to the start of Line 2.

Type *a to move the cursor to marker a.

Page 49

@ Chapter 3: Cursor Movement =<

Moving Around with Simple
Search

When moving the cursor using other means is not convenient,
there is always the ‘search for it’ option:

#5 Search forward: type /string
#5 Searchbackward: type ?string

45 Search for the next occurrence of string in the same
direction: type n

%5 Search for the next occurrence of string in the
opposite direction: type N

Strings that you are looking for ought to be literal strings, not
regular expressions. If you want to use regular expressions in your
searches, visit page 76.

45 You must switch vi(x) to command mode to use these
commands.

How-To:

Open exercise file: vi countries.txt
. Type /UNITED

Hit Enter/Return
. Press n twice.

[

WY

Page 50

@ Chapter 3: Cursor Movement =<

UNITED ARAB EMIRATES
UNITED KINGDOM

BFGHANISTAN
ALBANIA
ALGERTA ep
AMERTCAN SAMDA
ANDORRA
ANGOLA | SPAIN
ANGUILLA | SRT LANKA
ANTARCTICA | SUDAN ep
ANTIGUA AN SURTNAME
ARGENTINA | SVALBARD AND JAN MAYEN
ARMENIA | SUAZILAND
ARUBA SWEDEN
AUSTRALIA | SWITZERLAND
AUSTRIA | SYRIAN ARAB REPUBLIC
AZERBATIAN | TATWAN
BAHAMAS | TAJIKISTAN
BAHRAIN | TANZANIA, ONITED REPUBLIC OF
BANGLADESH | THAILAND
BARBADDS | TOGD SURINATE
BELARUS | TOKELAU | 5yl BARD AND JAN MAYEN St
BELGIUM | TONGA SWAZILAND ep
BELIZE | TRINIDAD 4 syepen
BENIN TUNISIA | SyITZERLAND
TURKEY | SYRIAN ARAB REPUBLIC
TURKMENIST T4 TaN
TURKS AND | TAJIKISTAN
TUYALU | TANZANTA, UNITED REPUBLIC OF
UGANDA | THATLAND
TOGO
TOKELAU
TONGA
TRINIDAD AND TOBAGO
TUNISTA
TURKEY
TURKHMENISTAN
TURKS AND CAICOS ISLANDS
TUVALY
UGANDA
UKRAINE

Repositioning Text Relatively to

If you would like to adjust the display by moving the text relatively

the Screen

to the screen, use the following commands:

1=

v v ¥

Move the line with the cursor to the top of the

screen: type z and press Enter/Return.

Move the line with the cursor to the middle of the

screen: type z.

Move the line with the cursor to the bottom of the

screen: type z-

You must switch vi(1) to command mode to use these

commands.

Page 51

Chapter 4

Editing

o Chapter 4: Editing <

Entering Text

Typing text into the current buffer is done using insert mode. To
switch to insert mode, press i and type away. Whatever you type
will appear before the cursor. If you want to add text after the
Ccursor, press a.

Both i and a have their uppercase equivalents: I tells vi(1) to add
what you type to the beginning of the line and A does the same at
the end of the line.

#5 Each of the a, A, i, T commands automatically switches vi(1)
to insert mode.

45 Ifyou precede any of the commands with a number,
whatever you type will be inserted that many times into the
text you are editing.

How-To:

Start vi(n): vi
. Type i
Type is
. Press Esc
Type a
. Press Space
. Type line
. Press Esc
9. TypeI
10. Type This
11. Press Space.
12. Press Esc
13. Type $
14.Press a
15. Press Space
16. Type 1.
17. The end result should be This is line 1.

N

S RNV

Page 55

o Chapter 4: Editing <

Step 1
Step 3
Step 4
Step 5

Step 6

Step 7
Step 8
Step 9
Step 10

Step 11

Step 12
Step 13
Step 14
Step 15

Step 16

Page 56

o Chapter 4: Editing <

Inserting Lines

Adding an empty line can be done in the following way: press Esc,
press O, press i, press Enter/Return. That’s a lot of typing. You can
do it in a much easier way:

1=

=

Insert a new line below the cursor: press o (lowercase
letter O)

Insert a new line above the cursor: press O (uppercase
letter O)

Line 1:
Line 2
Line 3
Line 4
Line 5
Line &

Start here

Step 1

Li

LinLine 1: Start here
LinLine 2 ep
~ |Line 3

Line 4
Line &

Lin

T v oo orororot

LI ST S T 2R 2 T A A

LI S S S A R 2 T A A

Lif Bine 1:
LinLine 2
LinLine 3
~ |Line 4

Line &
Lir

Lif Iiine 1: Start here Step 5

LifLine

EINNE N S S S S A A A

Start here Ste p 4

Line
Line
Line
Line
Line
Line
Line

: End here

0w A WN

Page 57

- Chapter 4: Editing <

Both commands switch vi(1) to insert mode.

45 It is possible to insert more than one empty line by
preceding either o or O with a number.

45 You must switch vi(x) to command mode to use these
commands.

How-To:

Open exercise file: vi lines.txt
Press O (uppercase letter O)

Press Esc

Press j

Press o (lowercase letter O)

EUR IR

Page 58

- Chapter 4: Editing <

Inserting Files

To insert one file into another, use :r followed by the access path
and filename of the file you want to insert. It will be added to the
current file after the line with the cursor.

Bection 1

This is section 1

Section 3

This is section 3

Step 1

Section 1

This is section 1

B

Section 3

2

This is section 3

Step 2

Section 1

B

This is section 1

]

Section 3

2

This is section 3

I

R

ir ~/vi-tips-81/section-2.txtf]

Step 4

Section 1

Step 6

This is section 1

Bection 2

This is section 2
Section 3

This is section 3

How-To:

Open exercise file
Type j four times

g

/home/jacek/vi-tips-81/section-2.txt: 4 lines, 35 characters.

:vi insert-files.txt

to place the cursor on the line above where

you want to insert an existing file.

AV AW

Press Esc to switch to command mode.
. Type :r "/section-2.txt
Press Enter/Return.
. The file will be inserted below the line with the cursor.

Page 59

- Chapter 4: Editing <

Inserting Output of a Command

To insert output generated by a script or command, use the : .r!
command command, which will insert the output of an external
command below the current line. If you drop the r, the output from
the external command will replace the current line.

Inserting Output

This system's uptime is

Step 2

from a Command

To
whi
ou

This system's uptime is

Inserting Output from a Command

To insert out|
which will i
(ou drop the

R Replace Lirf
{numbering st|

ime{1), type
- Replace the
- Replace the
- Replace the
about markers|
- Replace a Y
ast line you
of the commg
gh 45 using o
s luptinef]

N Inserting Output from a Command Step 4

put you want e

This system's uptime is

2:01PM up 27 days, 1@8:11, 2 users, load averages: 0.89, 0.89, 0.08

To insert output generated by a script or command, use the :.r!command command,
which will insert the output of an external command below the current line. If y
ou drop the r, the output from the external command will replace the current lin

- Replace line n: type : followed by the number of the line you want to replace

(numbering starts with 1), followed by !, and the name of the command, whose out
put you want to capture. For example, to replace line 7 with the output from upt
ime(1), type :7luptime

- Replace the current line: type :.luptime

- Replace the last line: type :$luptime

- Replace the line with marker a: type :?\x88\x9%aluptime (for more information

about markers, see page [FIXME])

- Replace a block of lines: type : followed by the number of the first and the |
ast line you want to process, separated with a comma, followed by ! and the name
of the command used to process the text. For example, to replace lines 34 throu
gh 45 using output generated by uptime(1), type :34,45!uptime

#5 Replace line n.: type : followed by the number of the line

you

want to replace (numbering starts with 1), followed

by !, and the name of the command, whose output you
want to capture. For example, to replace line 7 with the
output from uptime(1), type :7!uptime

v Yy

Replace the current line: type : . !uptime
Replace the last line: type : $!uptime

Replace the line with marker a: type : 'a!uptime (for

more information about markers, see page 48)

Page 60

o Chapter 4: Editing <

1=

=

Replace a block of lines: type : followed by the number
of the first and the last line you want to process, separated
with a comma, followed by ! and the name of the command
used to process the text. For example, to replace lines 34
through 45 using output generated by uptime(1), type :

34, 45uptime

Replace all lines: type :%!uptime

How-To:

1. Press Esc to switch to command mode.
2. Place the cursor on the line above where you want to insert
output from a command, e.g. uptime(1).

»

Type :.'uptime

4. Press Enter/Return.

Processing Text Using External

Commands

You can send part or all of the current file for processing by an
external command and capture the results with the : ! command
command.

=

v vV Y

Process line n: type : followed by the number of the line
you want to process (numbering starts with 1), followed

by !, and the name of the command. For example, to
process line 7 using fmt(1) to wrap lines on the 65th column,

type :7'fmt 65
Process the current line: type : . !fmt 65
Process the last line: type : $!fmt 65

Process the line with marker a: type : 'a!fmt 65 (for
more information about markers, see page 48)

Process a block of lines: type : followed by the numbers
of the first and the last line you want to process, separated
with a comma, followed by ! and the name of the command

Page 61

- Chapter 4: Editing <

used to process text. For example, to process lines 34
through 45 using fmt(x) to wrap lines on the 65th column,

type :34,451fmt 65

#5 Process all lines: type :%!fmt 65

12345 67590 12345 67590 12345 67898 12345 67590 12345 67590 12345 67398 12345 67
590 12345 67590 12345 67590 12345 67590 12345 67590 12345 67590

Step 1

890 12345 67890 12345 67590 12345 67590 12345 67890 12345 67890

: Step

12345 67898 12345 67898 12345 67898 12345 67890 12345 67890 12345 67898 12345 67

2

12345 67390

T Y v vy ororororororororora

[A A A A A A T 2 2 T A A A A

. fmt 65[)

T oY v orororvrorororororoae

12345 67390 12345 67398 12345 67398 12345 67390 12345 67398 12345
67890 12345 67890 12345 67898 12345 67890 12345 67890 12345 67890

Step 3

How-To:

1. Open exercise file: vi ext-process.txt
2. Type : . 'fmt 65
3. Press Enter/Return

Page 62

o Chapter 4: Editing <

Changing Text

The way vi(1) implements text editing functionality may catch you
by surprise with its clear distinction between text entry and editing.

When you enter text, you work in insert mode, which offers very
limited editing functionality. You can use the arrow keys to move
back and forth, and Backspace or Del to make small changes to
any text you typed since the last switch to insert mode, but that’s
about all you can do.

To make any serious changes you need to switch to command mode
andusec, C,cc, r,orR.

The ¢ command has to be followed by one of the motion
commands listed in Tuble 2: Motion commands on page 66. These
commands are used to tell vi(t) how much of the existing text ought
to be replaced with what you are going to type. For example, to
change two words from the cursor onwards, type c2w. The
automatically inserted $ character marks the end of the region of
text about to be affected by your typing.

There is no need to type exactly the same number of characters to
replace the previous text, vi(1) will replace the marked string with as
many characters, words, or lines as you choose to type and make the
necessary adjustments to the rest of the text. Should the screen
become garbled in the process, Ctrl+1 (lowercase letter L) will
clean it up.

The other two ¢ commands are handy shortcuts. To change text up
to the end of line, use C. If ¢ or C are not convenient enough, you
can change the whole line with cc.

Whenever you change something using the commands discussed in
this section, the old text gets placed into the default text storage
register. To avoid overwriting it with the next change or cut you
make, you can tell vi(1) to place the old text in one of its many
named registers. To do so, precede the commands with "x, where x
is the one-character register name. For example, if you want to
replace two words with something else and keep the originals in
register t, type: "tc2w

Page 63

o Chapter 4: Editing <

fhis Is Line 1.

This is line 3. Step 1

This s Line 1.

This is line 3. Step 3
This § Line 1.

This is line 3. Step 4

This if Line 1.

 |This is tine 3. Step 5

This fls Line 1.

This is line 3. Step 6
This is fine 1.

This is line 3. Step 7

This is Bine 1%

This is line 3. step 8

This is line 1.]]

This is Line 3. step 9

LI S B3

This is line 1§
This is line 3. Step 1 0

This is line 1.

i is tine 38 Step 11

This is line 1. Step 1 2
e Step 13

Tyt

Page 64

o Chapter 4: Editing <

You can learn more about registers on page 63.

45 You must switch vi(1) to command mode to use these
commands.

How-To:

Open exercise file: vi change.txt
Press Esc to switch to command mode.
Type 51

. Typecl

Type 1

Press Esc

Typew

Type C

Type line 1.

o.Press Esc

11. Type j

12. Type cc

13. Type This is line 2.

O O OOV KA W N

-

Page 65

o Chapter 4: Editing <

Table 2: Motion commands.

Motion Command Motion Command
left h right |
up k down i
next word w previous word b
next word W previous word B
(blank delimited) (blank delimited)
end of word
end of word © (blank delimited) E
beginning of line 0 end of line $
first line 1G last line G
linen nG linen :n
next sentence) previous (
sentence
previous
next paragraph } paragraph {
next character x x previous Fx
character x
forward to backwards to
before character tx before character Tx
X X
top of screen H middle of screen M
bottom of screen L

Page 66

o Chapter 4: Editing <

Replacing Text

When you are changing text with the ‘" commands, the only part of
the text that gets deleted and overwritten is the part that you
described using the motion commands listed in Table 2: Motion.
commands on page 66. That’s a lot of typing that not everyone wants
to do. Sometimes it is more convenient to switch to ‘overtype’
mode and replace characters as you type along.

There are two text editing commands, r and R, which come in
handy when you want to replace one (r) or more (R) characters.
Unlike ¢ or C, which replace the specified amount of text with any
number of characters, r replaces the character under the cursor and
then automatically switches back to command mode, while R
overwrites all characters under cursor until you press Esc.

How-To:

Open exercise file: vi replace.txt
Type w

Type c¢3w

Type ABCDEFG

Press Esc

Type

Type 0 (zero).

Type w

9. Type R

10. Type ABCDEFG

11. Compare lines 1 and 2

O AV A W DM

Page 67

o Chapter 4: Editing <

fine 1: abcdefg hijklmnop
Line 2: abcdefg hijklmnop

Step 1

Line §: abcdefg hijk lmnop
Line 2: abcdefg hijklmnop

Step 2

Line §: abcdef$ hijklmnop
Line 2: abcdefg hijklmnop

Step 3

Line ABCDEFGEf$ hijk lmnop
Line 2: abcdefg hijklmnop

Step 4

Line ABCDEFE hijk lmnop
Line 2: abcdefg hijklmnop

Step 5

Line ABCDEFG hijklmnop
Line 2: abcflefg hijklmnop

Step 6

Line ABCDEFG hijk lmnop
fline 2: abcdefg hijklnnop

Step 7

Line ABCDEFG hijklmnop
Line B: abcdefg hijklmnop

Step 8

Line ABCDEFG hijk lmnop
Line ABCDEFGEfg hijk Lmnop

Step 10

Page 68

= Chapter 4: Editing <

Replacing One or More
Characters with Any Number of
Characters

The s command lets you replace any single character with any
number of characters. This command tells vi(1) to delete the
character under the cursor and continues in insert mode until you
press Esc.

If you precede s with a number, vi(1) will replace that many
characters with whatever you type. For example, to replace 34
characters, type 3ks

Line 1: abcdefg hijklnnop

Line 2: abedefg hijklmnop Step 1
Line §: abcdefg hijklnnop

Line 2: abcdefg hijk lmnop Step 2
Line §: abcdefg hijk lnnop

Line 2: abcdefg hijk lmnop Step 3

Line ABCDEFGE abcdefg hijk Lmnop

Line 2: abcdefg hijk lmnop Step 4

T

When you change something using the s command, the old text
gets placed into the default text storage register. To avoid
overwriting it with the next change or cut you make, you can tell
vi(1) to place the old text in one of its named registers. To do so,
precede the s command with "x, where x is a one-character register
name. For example, if you want to replace 34 characters with
something else and keep the originals in register t, type: "t3ls

You can learn more about registers on page 63.

Page 69

o Chapter 4: Editing <

#5 You must switch vi(1) to command mode to use this
command.

How-To:

1. Open exercise file: vi s-replace.txt
2. Typew

3. Types
4. Type ABCDEFG

Replacing the Current Line

If you would like to replace the current line with a new one in a
single action, use the S command. The line will be deleted and vi(1)
will continue in insert mode until you press Esc.

You can precede S with the number of line you want to replace. For
example, to replace 72 lines, type 723

This is line 1.

This is line 4.
This is line 3. ep

This is line 1.

L e to i Step 3

This is line 1.

This is line 2.J]
This is line 3. ep

‘Whenever you change something using S, the old text gets placed
into the default text storage register. To avoid overwriting it with
the next change or cut you make, you can tell vi(x) to place the old
text in one of its many named registers. To do so, precede the S
command with "x, where x is the one-character register name. For
example, if you want to replace two words with something else and
keep the originals in register t, type: "t7283

Page 70

o Chapter 4: Editing <

You can learn more about registers on page 63.

45 You must switch vi(1) to command mode to use this
command.
How-To:

N

Place the cursor on the line you want to replace.
Press Esc once to switch to the command mode.
Type S

. Type anything you like to replace the old line.

Deleting Text

There is a multitude of commands designed to help you delete
characters, words, lines, and whole blocks of text.

Deleting Characters:

1=
1=

v ¥ Yy

Delete a character under the cursor: type x

Delete n, characters, starting with the one under the
cursor: type the number of characters to be deleted and
then type x

Delete a character to the left of the cursor: press X

Delete 7, characters to the left: type the number of
characters to be deleted and then press X

Delete all characters, from the one under the cursor
to the end of the line: press D. An alternative to D is d$

Delete all characters, from the beginning of the line
to the cursor: type d0O

Page 71

- Chapter 4: Editing <

Step 1

NN N[@ e

[N FRERE SN

W wn|s e
Wlaraa|omowm
2lomnm|eoees
[] PNy PRI
oflgmua|eeoe
o mmon|ewow

Step 2

hswunvkrlggoa|rree
[SENEN)

Step 3

Nhowoww
chaa-

[SESEN)

Step 4

w

N wwwCpes s

Wlppstphoom
L]

N e - -1

=
=1
T
w
Dovsonelgsssl P

coooooo|P P

BB R e e
NN NN S
Wwwwwen
ENFNN Y-

Step 5

23456789

,_

:
Ploocoo
Nlwwwm
@l s s
+lmwma
Voo
*laww
~ o o

9
9
8

Step 6

9

iline2:83456789
Liline3: 0023456789
Line 4: 91234567809

Step 7

Liiine1: 0 23456789

789
Lined4: 01 23456789

Step 8

LWhne1:0 23466769
Liline2: 83456789
Llline3: 0123456789
Line 1234567889

Step 9

MWlihe1: 8 23456789

Liine2:03456789

Yiines: 123456789

“lLine t23456789
Line5: 8123456789
Line 6: 8123456789
Line7: 8123456789

Step 10

Line1: 8 23456789
Line2: 83456789
Line 3: 81 23456789
Line 1234567889

Step 11

LWine1:6 234656789
Liine2: 83456789
Llline3: 0123456789
Line 123456789

Step 12

Line1: 8 23456789
JLine 2: 83456789
Line 3: 81 23456789
Line 1234567889

Step 13

LWhne1:0 234656789
Liiine2: 83456789
Liines:m23456789
Line 123456789

Step 14

LWine1: 08 23456789
Liline2: 83456789
Liline3: 0123456789
“lLine 123456789
Line5: 8123456789
Line
fr:e123456789

Step 15

Page 72

o Chapter 4: Editing <

How-To:

Open exercise file: vi d-char.txt
Type 101
Type x

- Type j
Type 5x
Type j
Type X
Type

9. Type bX
10. Type j
11. Type D
12. Type j
13. Type d$
14. Type j
15. Type dO

N AR PN M

Deleting Words:
#5 Delete aword: type dw

#5 Delete n, words: type d followed by the number of words
to be deleted followed by w

#5 Delete the word to the left of the cursor: type db
Deleting Text Using Motion Commands:

45 Use motion commands to delete bigger chunks of text in a
more convenient way. For example, to delete three
characters to the left, type d3h; to remove four paragraphs,
type dh} ; etc. To see more examples of motion commands,
consult Tzble 2 on page 63.

Deleting Lines:
#5 Delete the current line: type dd or : .d

$5 Delete n.lines: type the number of lines to be deleted and
then type dd

Page 73

o Chapter 4: Editing <

Deleting Lines Using Ranges:

=

¥ Y Y¥Y

1=

Delete line 7.: type : followed by the number of the line
you want to delete (numbering starts with 1), followed by d.
For example, to delete line 7, type :7d

Delete the current line: type :.d
Delete the last line: type : $d

Delete the line with marker a: type : 'ad (for more
information about markers, see page 48)

Delete a block of lines: type : followed by the number of
the first and the last line you want to delete, separated with
a comma, followed by d. For example, to delete lines 35
through 67, type :35,67d

Delete all lines: type :7%d

Deleting Lines Using Regular Expressions:

1=

1=

Delete all lines matching a literal string: type :g/
regex/d, For example, to delete all lines that contain the
word London, type :g/London/d

Delete all lines matching a string with one variable
character: use . (dot). For example, to delete all lines that
contain words London, london, rondon, type :g/.ondon/
d

Delete all lines matching any number of repetitions
of the previous pattern: use *. For example, to delete all
lines that contain the words London, 1ondon, rondon,

LLondon, zzzzzzondon, ondon, etc., type :g/.*ondon/d

Delete all lines matching any character from a set:
use [...].For example, to delete all lines that contain the
lowercase letters a, b, or ¢ — e.g. Warsaw, Bombay, Chicago,
but not London or Los Angeles —type :g/[abec]/d

Delete all lines matching any character outside a set:
use [~...]. For example, to delete all lines that do not
contain the lowercase letters a, b, or ¢, e.g. London, or Los

Page 74

o Chapter 4: Editing <

=

1=

Angeles, but not Warsaw, Bombay, Chicago — type :g/
[~abe]/d

Delete all lines that start with the given string: use
“~string. For example, to delete all lines that start with the
word London, type :g/"London/d

Delete all lines that end with the given string: use
string$. For example, to delete all lines that end with the
word London, type :g/London$/d

Delete all lines that contain words that start with the
given string: use \<string. For example, to delete all
lines that contain words that start with London (e.g.
London, Londoner, Londonderry), type :g/\<London/d

Delete all lines that contain words that end with the
given string: use string\>. For example, to delete all
lines that contain words that end with ing (e.g. running,

singing, nothing), type :g/ing\>/d

Delete all lines matching any character from a range:
use [...-...]. For example, to delete all lines that contain
the word London, but not LONDON, type :g/[a-z]/d

Delete all lines matching any character outside a
range: use [~...-...]. For example, to delete all lines
that contain the words London and LONDON, but not
london, type :g/["a-z]/d

Delete all lines that contain \r (DOS carriage
return): use \r, e.g. type :g/\r/d

Delete all lines that contain \\ (backslash): use \\, e.g.
type :g/\\/d

Using Registers:

Deleted chunks of text end up in the default text storage register.
To avoid overwriting it with the next change or cut you make, you
can tell vi(1) to place the old text in one of its named registers. To do
so, precede the whole d , D, %, or X command with "x, where xis a
one-character register name. For example, if you want to delete the
following two words and keep the originals in register t, type:

"td2w

Page 75

o Chapter 4: Editing <

Table 3: Regular expressions.

Pattern Expression Example
I . .) /London/ matches
iteral string literal string
only London
/.ondon/ matches
. London, london,
any single character rondon. etc. but not
ondon
/.*ondon/ matches
any number of " London, london,
repetitions LLondon, zzzzzzondon,
and even ondon
/[abc]/ matches
any character from [Warsaw, Bombay,
the set Chicago, but not
London or Los Angeles
/[*abe]/ matches
any character] London, Los Angeles,
outside the set but not Warsaw,
Bombay, or Chicago
/[“London)/ matches
beginning of line A every line that starts
with London
/[London$])/ matches
end of line $ every line that ends
with London
/\<London/ matches
beginning of word \< every line with words
that begin with London
/London\>/ matches
end of word \> every line with words
that end with London
/[a-z)/ matches
any character from [omn] London. but not
ange | [,
LONDON
. /[*a-z)/ matches
any character outside [LmEdon ;nd LONDON
range but not london
tab, carriage return, \t\r\n /\r/ matches DOS-

newline

style carriage returns

LIANAS L2+

()

ADNTWAWAAS L AN? W\
(Y

AV matches \

Page 76

o Chapter 4: Editing <

Search and Replace

Finer or global changes to text are best done with the help of
regular expressions. The command used to search and replace
strings is

:s/regex/replacement/flags

The regex pattern is one of those listed in Tzble 3: Regular expressions
on page 76. The replacement string is the literal string you want to
put in place of the regular expression you are searching for.

You can control the behavior of :s with two flags: g (replace all
occurrences of regex on the same line without asking to confirm)
and ¢ (ask for permission for every match). You can use either or
both flags in the same command.

If you ever need to repeat the last :s command, type &

45 You must switch vi(x) to command mode to use these
commands.

Restricting Replacements Using Ranges:

#5 Restrict replacements to line n: type : followed by the
number of the line you want to run :s on, followed by s/
regex/replacement/flags. For example, to limit
replacements to line 7, type: :7s/london/London/g

#5 Restrict replacements to the current line: type :.
followed by s/regex/replacement/flags. For example,
type: :.s/london/London/g

#5 Restrict replacements to the last line: type : $ followed
by s/regex/replacement/flags. For example, type:
:$s/london/London/g

435 Restrict replacements to the line with marker a:
type : 'a followed by s/regex/replacement/flags: For
example, type: : 'as/london/London/g

Page 77

- Chapter 4: Editing <

#5 Restrict replacements to a block of lines: type :
followed by the numbers of the first and the last line of the
block you want to replace strings on, separated with a
comma followed by s/regex/replacement/flags. For
example, to replace strings on lines 35 through 67, type:
:35,67s/london/London/g

#5 Run search and replace on all lines, type : % followed by
s/regex/replacement/flags, e.g. :%s/london/
London/g

Replacing Text Using Regular Expressions:

45 Replace all literal string matches, type
:s/regex/string/g. For example, to replace all
occurrences of London with Manchester, type :s/
London/Manchester/g

#5 Remove all pattern matches, type :s/regex//g. For
example, to remove all occurrences of London, type :s/
London//g

(This trick works with all regex patterns.)

#5 Replace all . (dot) pattern matches: for example, to
replace all occurrences of the words London, london,
rondon, etc. with LONDON, type :s/.ondon/LONDON/g

#5 Replace all matches of any number of repetitions of
the previous pattern: use *. For example, to replace all
occurrences of the words London, london, rondon,
LLondon, zzzzzzondon, ondon, etc. with LONDON, type
:s/.*ondon/LONDON/g

45 Replace all matches of any character from a set: use
[...].For example, to replace letters a, b, and ¢ with -,
e.g. to change the words Warsaw, Bombay, Chicago, to W-
rs-w, Bom--y, Chi--go, type :s/[abc]/-/g

45 Replace all matches of any character outside a set:
use [~...]. For example, to replace all letters other than a,
b, ¢ with -, e.g. to change words Warsaw, Bombay,

Page 78

= Chapter 4: Editing <

¥

Y

Y

Chicago, to -a--a-, ---ba-, ---ca--, type

:s/["abecl/-/¢g

Replace all matches of the string at the beginning of
aline: use “string. For example, to replace london with
London on every line that starts with london, type
:s/"1london/London/g

Replace all matches of the string at the end of a line:
use string$. For example, to replace london with London
on every line that ends with london, type :s/london$/
London/g

Replace all matches of words that start with the
given string: use \<string. For example, to replace all
occurrences of London with Manchester at the start of
similar words (e.g. London, Londoner, Londonderry),
type :s/\<London/Manchester/g

Replace all matches of words that end with the given
string: use string\>. For example, to replace all
occurrences of ing with ING at the end of similar words
(e.g. running, singing, nothing), type :s/ing\>/ING/g

Replace all matches of any character from a range:
use [...-...]. For example, to replace all occurrences of
London with L----- , type :s/[a-z]/-/8

Replace all matches of any character outside a range,
use [*...-...].For example, to replace all occurrences of
London with -ondon, type :s/["a-z]/-/g

Remove all occurrences of \r (DOS carriage return),

type :s/\r*//g

Replace all occurrences of \\ (backslash) with the
word backslash, type: :s/\\/backslash/g

Replace all lines matching a regular expression from
the set that matches another regular expression,
type :g/regexl/s/regex2/string/g. For example, to
replace all occurrences of York with Orleans on every line

Page 79

o Chapter 4: Editing <

that matches New York, type :g/New York/s/York/
Orleans/g

Cut, Copy, and Paste

Just like anything else in vi(1), the cut, copy and paste commands
are implemented in a way that may surprise you. First of all, there is
no single cut/copy clipboard. Second, there is no clipboard at all!
What you get instead is over sixty registers. Whatever their names,
they work like sixty-plus clipboards, holding any text that you
change, delete, or yank (aka. copy).

vi(1) does not offer multi-level registers, but with sixty of them,
that’s not too much of a problem.

The following list is a short summary of pointers to the pages that
contain more information:

45 To cut text, use the delete commands (see page 71) or
change commands (see page 63).

45~ To copy text, use the yank commands (see page 80).

45 To paste text, use the put commands (see page 84).
Copying Text
Copying text in vi(1) is called yanking. Whatever the terminology the

principle of operation is the same.

There is a multitude of commands designed to help you delete
characters, words, lines, and whole blocks of text. You will find
them listed below.

Copying Characters:

#5 Copy a character under the cursor: type yl and then
press either Esc or Enter/Return

Page 8o

= Chapter 4: Editing <

Y

¥

1=

Copy n characters, starting with the one under the
cursor: type y followed by the number of characters to be
copied followed by 1. Then press either Esc or Enter/
Return

Copy a character to the left of the cursor: type y1h
and press either Esc or Enter/Return

Copy n characters to the left: type y followed by the
number of characters to be copied followed by h. Then
press either Esc or Enter/Return

Copy all characters, from the one under the cursor
to the end of the line: type y$ and then press either Esc
or Enter/Return

Copy all characters, from the beginning of the line to
the character before the cursor: type y0 and then press
either Esc or Enter/Return

Copying Words:

1=

=
1=
1=

Copy aword: type yw and then press either Esc or Enter/
Return

Copy n, words: type y followed by number of words to be
copied, type w. Then press either Esc or Enter/Return

Copy the word to the left of the cursor: type yb and
then press either Esc or Enter/Return

Copy 17 words to the left of the cursor: type y followed
by the number of words to be copied followed by b. Then
press either Esc or Enter/Return

Copying Text Using Motion Commands:

1=

Use motion commands to copy bigger chunks of text in a
more convenient way. For example, to copy three characters
to the left, type y3h; to copy four paragraphs, type yli} ; etc.

To see more examples of motion commands, consult Tzble 2
on page 66.

Page 81

o Chapter 4: Editing <

Copying Lines:
#5 Copy the currentline: type yy, :.y,or Y
45 Copy n lines: type the number of lines to be copied
followed by yy or Y
Copying Lines Using Ranges:
#5 Copy line n: type : followed by the number of the line

v VY Y

1=

you want to copy (numbering starts with 1), followed by y.
For example, to copy line 7, type : 7y

Copy the current line: type : .y
Copy the last line: type : $y

Copy the line with marker a: type : 'ay (for more
information about markers, see page 48)

Copy ablock of lines: type : followed by the numbers of
the first and last line you want to yank, separated with a
comma, followed by y. For example, to copy lines 35
through 67, type :35,67y

Copy all lines: type : %y

Copying Lines Using Regular Expressions:

=

1=

Copy all lines matching a literal string: type :g/
regex/y. For example, to copy all lines that contain the
word London, type :g/London/y

Copy all lines matching a string with one variable
character: use . (dot). For example, to copy all lines that
contain the words London, london, rondon,

type :g/.ondon/y

Copy all lines matching any number of repetitions of
the previous pattern: use *. For example to copy all lines
that contain the words London, london, rondon,

LLondon, zzzzzzondon, ondon, etc., type :g/.*ondon/y

Page 82

o Chapter 4: Editing <

Y

Y

Copy all lines matching any character from a set: use
[...].For example, to copy all lines that contain the words
Warsaw, Bombay, Chicago, but not London or Los

Angeles, type :g/ [abc]/y

Copy all lines matching any character outside a set:
use [*...]. For example, to copy all lines that contain the
words London, or Los Angeles, but not Warsaw, Bombay,

Chicago, type :g/[~abc]/y

Copy all lines that start with the given string: use
“~string. For example, to copy all lines that start with the
word London, type :g/"London/y

Copy all lines that end with the given string: use
string$. For example, to copy all lines that end with the
word London, type :g/London$/y

Copy all lines that contain words that start with the
given string: use \<string. For example, to copy all lines
that contain words that start with London (e.g. London,
Londoner, Londonderry), type :g/\<London/y

Copy all lines that contain words that end with the
given string: use string\>. For example, to copy all lines
that contain words that end with ing (e.g. running,
singing, nothing), type :g/ing\>/y

Copy all lines matching any character from a range:
use [...-...]. For example, to copy all lines that contain
words London, but not LONDON, type :g/ [a-z]/y

Copy all lines matching any character outside a
range: use [~...-...]. For example, to copy all lines that
contain the words London, and LONDON but not 1ondon,

type :g/["a-z]/y

Copy all lines that contain \r (IDOS carriage return):
use \r, e.g. type :g/\r/y

Copy all lines that contain \\ (backslash): use \\, e.g.
type :&/\\/y

Page 83

o Chapter 4: Editing <

Using Registers:

Copied blocks of text end up in the default text storage register. To
avoid overwriting them with the next change or cut you make, you
can tell vi(1) to place the old text in one of its named registers. To do
so, precede the whole y or Y command with "x, where x is a one-
character register name. For example, if you want to copy the
following two words and keep the originals in register t, type:
"ty2w

Pasting Text

Cut, deleted, changed, or copied text will be stored in the default
register, unless you instruct vi(1) otherwise. Pasting stored text is
called putting, but the principles of operation are the same.

To paste text, use the p and P commands:
#5 Paste text after the cursor or after line: type p
#5 Paste text before cursor or before the line: type P

45 You must switch vi(1) to command mode to use this
command.

Using Registers:

When you copy or delete chunks of text, they end up in the default
text storage register. You can change that behavior by putting them
in named registers using the "x notation, where x is a one-character
register name. For example, if you want to delete the two words
following the cursor and keep the originals in register t, type:
"td2w

Pasting text stored in a named register is done with either "xp or
"xP. If we were to continue the example, whatever was stored in
register t could be pasted with "tp or "tP

Page 84

o Chapter 4: Editing <

Joining Lines

To join two or more line together, use the J command:
#5 Join two lines: type J

45 Join more than two lines: type the number of lines you
wish to join and then type J.

$5 You must switch vi(1) to command mode to use these

commands.
fine 1: ——
Line 2: ——-
Line 3: —— step 1
Line 4: ——
Line 5: —— N
Line 6: — l[:]::z ; -
- Line 3: —— ep
- Line 4: ——
: Ljne 51 ——- Line 1: ——
~ Line 62 ===} ine 2: ——— Line 3: - Line 4: ——-JLine 5: ——
~ v Line 6: —— ep
How-To:

1. Open exercise file: vi join.txt
2. Type j to move to the second line.
3. Type bJ

Page 85

o Chapter 4: Editing <

Changing Case

To change lowercase (a-2) to uppercase (A-Z) or vice versa, use the
~ (tilde) command.

#5 You can precede ~ with a number. For example, typing 4~
tells vi(1) to change the case of four characters.

#5 Use motion commands to change the case of bigger chunks
of text in a more convenient way. For example, to swap the
case of the next three characters to the left, type “3h; to
swap the case in four paragraphs, type “L}; etc.

To see more examples of motion commands,
consult Tuble 2 on page 66.

#5 You must switch vi(1) to command mode to use this
command.

@BcDeFgHi JkLmNoPqRsT

Step 1

AbCAEFGhI K IMnOpQrsE

Step 2

T YT v orr v rrrrorororororovororor

T Yoo or v v rrrrororororororovovon

Page 86

o Chapter 4: Editing <

How-To:

1. Open exercise file: vi tilde.txt
2. Type 20 and you should see all letters change case.

Incrementing and Decrementing
Numbers
There is a quick way to increment or decrement numbers in vi(D):

Position the cursor on the first digit of the numeric value you want
to change:

Increment a number: press Ctrl+a
#5 Decrement a number: press Ctrl+x

45 You must switch vi(1) to command mode to use this
command.

Repeating Actions

To repeat the last action, type . (dot). To repeat the last action any
number of times, type the number of repetitions followed by .

(dov).

45 You must switch vi(1) to command mode to use this
command.

Undo / Redo

To undo the last action, switch to the command mode and type u.
There is no multi-step undo/redo history in vi(1), but you can revert
all changes made on the current line with U. There’s a gotcha, you
can only use U, if the cursor is still on the line for which you want to
undo changes. To redo (revert the effects of undo), type u or U again.

#5 You must switch vi(1) to command mode to use this
command.

Page 87

Chapter 5

Tricks

@ Chapter 5: Tricks =

Running Commands

You can execute an external command or script from vi(1) without
affecting the text you are editing. The output of the command will
temporarily overwrite the contents of the vi(1) screen, but it will not
affect the text itself. To execute a command, use : ! command

45 You must switch vi(1) to command mode to use this
command.

$ vi

Wed Sep 3 19:53:31 CEST 20088
Press any key to continue [: to enter more ex commands]: fJ

Step 2
Step 1

T YT Y ororrrrrrororororororovorou

:1datef]

How-To:

1. Press Esc to switch to the command mode.
2. Type :!date
3. Press Enter/Return to display the current date and time.

Page 91

@ Chapter 5: Tricks =

Sending vi(1) to the Background

Another way to get out of vi(1) to do some work on the command
line is to use process suspension. To send vi(1) to the background,
press Ctrl+z, to bring it back, type £g on the command line.

Shell Access

If you need to do some work on the system command line but do
not want to leave vi(1) use the :sh command.

To go back to vi(1), type exit and press Enter/Return.

45 You must switch vi(1) to command mode to use this
command.

How-To:

Press Esc to switch to command mode.
Type :sh

Press Enter/Return.

Type 1s /bin

Press Enter/Return.

Type exit

Press Enter/Return.

R U o

Page 92

@ Chapter 5: Tricks =

Step 1

Step 2
we:lSep 3 19:53:31 CEST 2008 Step 3

Press any key to continue [: to enter more ex commands]:

$

$vi

Wed Sep 3 19:53:31 CEST 2608 step 4

Press any key to continue [: to enter more ex commands]:
$ 1s /binfl

$wi

Wed Sep 3 19:53:31 CEST 20688 Step 5

Press any key to continue [: to enter more ex commands]:

$ ls /bin
[cpio ed ls pwd sh tar
cat csh eject md5S rcp shal test
chgrp date expr nkdir rksh sleep
chio dd hostname mt rm stty
chmod df kill my rmail sum
cksum domainname ksh pax rmd168 sync
cp echo ln ps rmdir systrace
] (s
$vi
Wed Sep 3 19:53:31 CEST 2008 Step 6
Press any key to continue [: to enter more ex commands]:
$ ls /bin
= |t cpio ed Is pud sh tar
cat csh eject mdS rcp shal test
chgrp date expr mkdir rksh sleep
chio dd hostname mt rm sty
chmod df kill my rmail sum
L] cksum domainname ksh pax rmdl6a sync
cp echo ln ps rmdir systrace
$ exit]]

Step 7

Page 93

Index

e Index =

A
arrow keys, 2930, 63

ASCII, 41

B

background processes, 92

buffers, 14, 55
current, §§
switching between, 14

C

canceling vi(t) commands, §
changes, abandon all, §
changing (swapping), case, 86-87

changing, 41, 48, 63, 67, 69-70, 75,
7778, 84, 87
characters, 41, 48
lines, 63
words, 63

clipboard, 8o
command line, 9, 13, 92

command mode, §-6, 14-26, 2930,
32734, 36, 38, 40, 43744, 4648, 50751,
5859, 61, 63, 65, 67 7071, 77, 84787,
9192

command prompt, 6

commands, external, 60-61, 91
output of,
inserting, 60-61
reading, 91
running, 91

copying, §0-84
characters, 8§0-81

lines, 82-83
words, 81

cursor, 9, 27, 29730, 3234, 3641, 43751,
57,55, 59, 61, 63, 67, 69, 71, 73, 80-81,
84,87

cursor movement, 9, 27, 29730,
32734, 3641, 43751, 57, 55, 59, 61, 63,
67,69, 71,73, 80-81, 84, 87
between

braces, 4748
brackets, 4748
markers, 48
paragraphs, 45
parentheses, 4748
sentences, 44
words, 41
n. characters
left, 30
right, 30
n lines down, 30, 34
from the top of the screen, 38
n lines up, 30, 34
from the bottom of the screen,
38
one character,
left, 29
right, 29
one line,
down, 29
up, 29
one screen
backward, 38
forward, 38
relative to the screen, 38
to
character x,
after previous, 40
before next, 40
next, 40
previous, 40
column 7, 32
line,
end of, 3334

Page 97

e Index =

first, 34
last, 34
next, 34
previous, 34
start of the line, 33-34
paragraph,
next, 4546
previous, 4546
screen,
bottom of, 36, 51
middle of, 38, 51
top of; 38, 51
sentence,
next, 44
previous, 44
word,
end of, 43
next, 43
previous, 43
screen, half a
down, 38, 40
up, 38, 40
search match,
next, 50
previous, 50

cutting text, see deleting

D

deleting, 67, 69-71, 73775, 80, 84
characters, 71
lines, 7071, 7375

words, 71, 73
display, adjusting, sz

E

editing, text, 10-I1, I3-14, I}, 22724,

53,55, 63, 67,91

entering, text, 55, 63

ex mode, 6

F

file operations, 6

filename, 11712, 17, 59
changing, 17
wildcard, r1-12

testing, 11

file, ro-11, 13-24, 26, 59
access path, 10, 19, 59
appending to, 20
a part of, to another, 21
current, 2022, 24726, §9
forcing to save and quit, 23
editing, ro-1r
forced saving the current, 16
inserting, 59
location, 17
opening, 10, 14
opening multiple, 11
read-only, 23
recovery, 26
saving, 22
a part of, 18
under a different name, 19
current, I§
quitting, 22
under a different name, 17
switching between, 13

I
insert mode, 6, 29, 53, §8, 63, 69-70

inserting, 55, 57
empty lines, 57
above the current line, 57

below the current line, 57
text, 5§

J

joining, lines, 85

Page 98

e Index =

L

lines, 6, 21, 61
blocks of, 21, 61
long, 6

line, 9, 30, 36, 70

up, 66

word,
end of, 66
next, 66
previous, 66

current, 60 N

empty, 9 numbers, §7
number, 36, 70 decrementing, 87
source, 30 incrementing, §7
target, 30

o

lowercase, 86 out of control, §

M overtype mode, 67
markers, 9, 48, 60-61,63, 77, 82
=9 P

end of region, 63 panic, 5

motion commands, 63, 66-67, 73, 81, pasting, 80, 84

86 text,

character x, after
backward to before, 66 current line, 84
forward to before, 66 cursor, 84 ,
next,_ 66 before
previous, 66 current line, 84

?C;WI;% 66 cursor, 84

eft,

lirg:e,ginning of 66 process suspension, 92
end of, 66 processing text with external
lﬁrst, 6666 commands, 61-62
ast,

, a”::;a?) i putting, see pasting
next, 66
previous, 66 R

right, 66

scrcen, ranges, 18-19, 21, 61, 74, 77, 82
bottom of, 66 lines in,
middle of, 66 first, 1819
top of, 66 last, 18-19

sentence,
next, 66 redo, 87

previous, 66

Page 99

e Index =

register, 65, 69771, 75, 80, 84
default, 63, 6970, 75, 84

regular expressions, 36, 50, 74779,
82-83

~ 26
“string, 7576, 79, 83
2,76

., 74,76, 78, 82

(76

), 76

[*...1, 74776, 78-79, 83
[,76

[..}, 74, 76, 78, 83

L 76

*, 74,76, 78, 82

\, 76

\\, 75,79, 83

\<string, 75-76, 79, 83

\n, 76

\r, 7576, 79, 83

\t, 76

+, 76

l, 76

$,76

any character from the given set,
74,78, 83

any character from the set, 76

any character outside range, 76

any character outside the given
set, 7475, 7879, 83

any character outside the set, 76

any characters from range, 76

any number of repetitions of the
previous pattern, 74, 78, 82

any number of repetitions, 76

any single character (), 74, 76, 78,
82

backslash (V), 75, 79, 83

beginning of line (), 7576, 79, 83

beginning of word, 75-76, 79, §3

carriage return (\n), 76

characters in range, 75, 79, 83
characters outside range, 75, 79, §3
DOS carriage return, 75, 79, 83
end of line (%), 7576, 79, 83

end of word, 75776, 79, 83

newline (\n), 76

literal string, 74, 76, 82

string\>, 7576, 79, 83

string$, 7576, 79, 83

tab (\v), 76

repeating actions, 77, 87

replacing, 60-61, 63, 67, 69-71, 77-80
characters, 69
lines,
a block of, 61
all, 61
current, 60, 70
last, Go
nth, 60
old, 71
with marker, 6o
text, 67
old with new, 63
on all lines, 78
on line n, 77
on the current line, 77
on the last line, 77
on the line with marker, 77
using regular expressions, 78
on lines matching regular
expressions, 79-80
within a block of lines, 78
words, 63

root, 16, 23

Q

quitting, see V7, quitting

S

screen, 6, 38, §1, 63, 91
unscrambling, 6

Page 100

e Index =

scripts, 91 Y

yank, see yanking

searching, 5o, 77 yanking, 80

backward, 50
forward, 5o

shell access, 92

strings of characters, see characters,
strings of

strings, 50, 63, 77
literal, 5o, 77
with markers, 63

T

text editor, 6
tricks, 89

U

undo, 87
history, 87

uppercase, §6

A%

Vi, 9711, 22, 24725, 92
forcing to quit without saving, 25
quitting without saving, 24
quitting, 22, 92
starting, 9-I1

\\%

way out, §
whitespace, 43

wrapping lines, 62

Page 101

