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CNRS, École Polytechnique, Palaiseau, France

Endre Süli
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Preface

Topological combinatorics is a very young and exciting field of research in
mathematics. It is mostly concerned with the application of the many powerful tools
of algebraic topology to combinatorial problems. One of its early landmarks was
Lovász’s proof of the Kneser conjecture published in 1978. The combination of the
two mathematical fields—topology and combinatorics—has led to many surprising
and elegant proofs and results.

In this textbook I present some of the most beautiful and accessible results from
topological combinatorics. It grew out of several courses that I have taught at Freie
Universität Berlin, and is based on my personal taste and what I believe is suitable
for the classroom. In particular, it aims for a clear and vivid presentation rather than
encyclopedic completeness.

The text is designed for an advanced undergraduate level. Primarily it serves as
a basis for a course, but is written in such a way that it just as well may be read by
students independently. The textbook is essentially self-contained. Only some basic
mathematical experience and knowledge—in particular some linear algebra—is
required. An extensive appendix allows the instructor to design courses for students
with very different prerequisites. Some of those designs will be sketched later on.

The textbook has four main chapters and several appendices. Each chapter ends
with an accompanying and complementing set of exercises. The main chapters are
mostly independent of each other and thus allow considerable flexibility for an
individual course design. The dependencies are roughly as follows.

A,B,DA.1,B,D,(E)

1.3

Chapter 1

1.3,1.6

Chapter 2 Chapter 3 Chapter 4

A.1,B,C.2,DA.1,B,D.2

vii



viii Preface

Suggested Course Outlines

For students with previous knowledge of graph theory and the basics of algebraic
topology including simplicial homology theory. Use Chaps. 1–4. Whenever concepts
and results on partially ordered sets and their topology from Appendix C or on
group actions from Appendix D are missing, they should be included. Oliver’s
Theorem 3.17, which is proven in Appendix E, can easily be used as a black box.
If the students are experienced with homology and if time permits, I recommend
studying Appendix E after Chap. 3.

For students with previous knowledge of the basics of algebraic topology including
simplicial homology theory only. Proceed as in the last case and provide the basics
of graph theory from Appendix A along the way.

For students with previous knowledge of graph theory only. I recommend that the
instructor introduces some basic topology with Sects. B.1 and B.3, and then presents
Chap. 1, skipping the homological proofs. Before Sect. 1.6 I recommend giving
a topology crash course with Sects. B.4–B.9. Proceed with Chaps. 2–4 and add
concepts and results from Appendices C and D as needed. Apply Theorem 3.17
as a black box and use Appendix E as a motivation to convince students to study
algebraic topology.

For motivated students with neither graph theory nor algebraic topology knowledge.
Proceed as in the last case and provide the basics from graph theory from
Appendix A along the way.
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Chapter 1
Fair-Division Problems

Almost every day, we encounter fair-division problems: in the guise of dividing a
piece of cake, slicing a ham sandwich, or by dividing our time with respect to the
needs and expectations of family, friends, work, etc.

The mathematics of such fair-division problems will serve us as a first represen-
tative example for the interplay between combinatorics and topology.

In this chapter we will consider two important concepts: envy-free fair division
and consensus division. These concepts lead to different topological tools that we
may apply. On the one hand, there is Brouwer’s fixed-point theorem, and on the
other hand, there is the theorem of Borsuk and Ulam. These topological results
surprisingly turn out to have combinatorial analogues: the lemmas of Sperner and
Tucker. Very similar in nature, they guarantee a simplex with a certain labeling in a
labeled simplicial complex.

The chapter is organized in such a way that we will discuss in turn a topological
result, its combinatorial analogue, and the corresponding fair-division problem.

1.1 Brouwer’s Fixed-Point Theorem and Sperner’s Lemma

Brouwer’s fixed-point theorem states that any continuous map from a ball of any
dimension to itself has a fixed point. In two dimensions this can be illustrated
as follows. Take two identical maps of Berlin or any other ball-shaped city. Now
crumple one of the maps as you like and throw it on the other, flat, map as shown in
Fig. 1.1. Then there exists a location in the city that on the crumpled map is exactly
above the same place on the flat map.

For the general formulation of Brouwer’s theorem, recall that the n-dimensional
Euclidean ball is given by all points of distance at most 1 from the origin in n-
dimensional Euclidean space, i.e.,

B
n D fx 2 R

n W kxk � 1g:

M. de Longueville, A Course in Topological Combinatorics, Universitext,
DOI 10.1007/978-1-4419-7910-0 1,
© Springer Science+Business Media New York 2013
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2 1 Fair-Division Problems

Fig. 1.1 A city map twice

Theorem 1.1 (Brouwer). Every continuous map f W B
n ! B

n from the n-
dimensional ball Bn to itself has a fixed point, i.e., there exists an x 2 B

n such
that f .x/ D x.

The first proof that we provide for this theorem relies on a beautiful combinatorial
lemma that we will discuss in the next section. There also exists a very short and
simple proof using homology theory that we present on page 6.

Sperner’s Lemma

Brouwer’s fixed-point theorem is intimately related to a combinatorial lemma
by Sperner that deals with labelings of triangulations of the simplex. Consider
the standard n-simplex given as the convex hull of the standard basis vectors
fe1; : : : ; enC1g � R

nC1, see Fig. 1.2:

�n D conv .fe1; : : : ; enC1g/

D
(

t1e1 C � � � C tnC1enC1 W ti � 0;

nC1X

iD1
ti D 1

)

D
(

.t1; : : : ; tnC1/ W ti � 0;

nC1X

iD1
ti D 1

)

:

By �n we denote the (geometric) simplicial complex given by �n and all its
faces, i.e.,�n D f� W � � �ng. Assume thatK is a subdivision of�n. We may think
ofK as being obtained from�n by adding extra vertices. For precise definitions and
more details on simplicial complexes we refer to Appendix B. For any n, denote the
set f1; : : : ; ng by Œn�. In the definition of a Sperner labeling we will use labels from
1 to nC 1, i.e., labels from the set ŒnC 1�.

Definition 1.2. A Sperner labeling is a labeling � W vert.K/ ! Œn C 1� of the
vertices ofK satisfying
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e2

e1

e3

Fig. 1.2 The standard 2-simplex �2 D conv.fe1; e2; e3g/

1 21

3

2

3

1
1

1

22

1
2

Fig. 1.3 A Sperner-labeled triangulation of a 2-simplex

�.v/ 2 fi 2 ŒnC 1� W vi 6D 0g

for all v 2 vert.K/.

More intuitively, a Sperner labeling is the following. Consider the minimal face
of �n that contains v. Say it is given by the convex hull of ei1 ; : : : ; eik . Then v is
allowed to get labels only from fi1; : : : ; ikg. In particular, the vertices ei obtain label
i , while a vertex along the edge spanned by ei and ej obtains the label i or j , and
so on. For an illustration see Fig. 1.3.

Call an n-simplex ofK fully labeled (with respect to �) if its nC1 vertices obtain
distinct labels, i.e., if all possible labels from the set ŒnC 1� appear.

Lemma 1.3 (Sperner [Spe28]). Let � W vert.K/ ! ŒnC 1� be a Sperner labeling
of a triangulationK of the n-dimensional simplex. Then there exists a fully labeled
n-simplex in K . More precisely, the number of fully labeled n-simplices is odd.
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21

3

2

3

1
1

22

1

2

1

1

o

Fig. 1.4 The graph associated to a Sperner labeling

We will now present two inductive proofs of this amazing lemma. The first is a
combinatorial construction that constructs one of the desired simplices, while the
other is algebraic and uses the concept of a chain complex of a simplicial complex.
The inductive proofs reveal a typical phenomenon: while we are mainly interested
in the existence of a fully labeled simplex, the induction works only for the stronger
statement that there is an odd number of fully labeled simplices.

A third proof, given on page 7 of this section, proves the Sperner lemma as an
application of Brouwer’s fixed-point theorem.

Proof (combinatorial). The lemma is clearly valid for n D 1. Now let n � 2 and
consider the .n�1/-dimensional face � of�n given by the convex hull of e1; : : : ; en.
Note thatK restricted to � is Sperner labeled with label set Œn�. We construct a graph
as follows. Let the vertex set be all n-simplices of K plus one extra vertex o. The
extra vertex o is connected by an edge to all n-simplices that have an .n�1/-simplex
as a face that is labeled with all labels of Œn� and lies within � . Two n-simplices are
connected by an edge if and only if they share an .n � 1/-dimensional face labeled
with all of Œn�. See Fig. 1.4 for an example of the resulting graph.

By the induction hypothesis, the vertex o has odd degree, since there is an odd
number of fully labeled simplices in the labeling restricted to � . All the other vertices
have degree zero, one, or two. To see this, consider the set of labels an n-simplex
obtains: either it does not contain Œn�, it is Œn C 1�, or it is Œn�. In the first case, the
simplex has degree zero; in the second, it has degree one; and in the last case, it has
degree two, since exactly two faces obtain all of Œn� as label set; compare Fig. 1.5.

Hence the vertices of degree one other than o (which may have degree one)
correspond to the fully labeled simplices. Now, the number of vertices of odd degree
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Fig. 1.5 An example of labeled n-simplices of degrees 0, 1, and 2 in the case n D 3

in a graph is even. (This is easy to prove; cf. Corollary A.2 in Appendix A.) Since
the degree of o is odd, there remains an odd number of fully labeled simplices. ut
Proof (algebraic). We proceed by induction. The case n D 1 is an easy exercise.
Now assume n � 2. The labeling � induces a simplicial map from K to �n defined
on the vertices by v 7! e�.v/. Consider the induced map �� on the Z2-simplicial
chain complex level

�� W C�.KIZ2/ ! C�.�nIZ2/:

Let o denote the element of Cn.KIZ2/ given by the sum of all n-simplices of
K . Clearly, the Sperner lemma holds if �n.o/ D �n, the generator (and only
nontrivial element) of Cn.�nIZ2/. Now consider the following diagram, which is
commutative by the fact that �� is a chain map:

Cn.KIZ2/ �n�����! Cn.�
nIZ2/

@n

?
?y

?
?y@n

Cn�1.KIZ2/ �n�1�����! Cn�1.�nIZ2/

Hence, it suffices to show that �n�1@n.o/ 6D 0. In order to compute �n�1@n.o/, let
�1; : : : ; �nC1 denote the .n � 1/-dimensional faces of �n. Define ci 2 Cn�1.KIZ2/
to be the sum of all .n � 1/-dimensional faces of K that lie in �i . Then @n.o/ DPnC1

iD1 ci , and by the induction hypothesis, �n�1.ci / D �i , and hence �n�1@n.o/ DPnC1
iD1 �i 6D 0. ut

Brouwer’s Theorem via Sperner’s Lemma

Finally, we can give an elementary proof of Brouwer’s fixed-point theorem relying
on Sperner’s lemma.

Proof (of Brouwer’s fixed-point theorem). Since B
n and the standard n-simplex are

homeomorphic, we may consider a continuous map f W j�nj ! j�nj, where �n is
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the (geometric) simplicial complex given by the standard n-simplex and all its faces.
Consider the kth barycentric subdivisions sdk �n, k � 1. If, for some k, one of the
vertices of sdk �n happens to be a fixed point, we are done. Otherwise, we construct
a sequence .�k/k�1 of simplices of decreasing size such that any accumulation point
of this sequence will be a fixed point of f . By an accumulation point we mean a
point x 2 j�nj such that each "-ball about x contains infinitely many of the �k ,
k � 1. In order to do this, we endow the kth barycentric subdivision sdk �n with
a Sperner labeling as follows. For v 2 vert.sdk �n/ let �.v/ be the smallest i such
that the i th coordinate of f .v/ � v is negative, i.e.,

�.v/ D minfi W f .v/i � vi < 0g:
Such an i exists, since the sum over all coordinates of f .v/ � v is zero and v is
not a fixed point. This labeling is indeed a Sperner labeling, since for vi D 0, we
certainly have f .v/i � vi � 0. Hence, by Sperner’s lemma, there exists a fully
labeled simplex �k .

Now let x be an accumulation point of the sequence .�k/ of simplices. For the
existence of such an x we refer to Corollary B.48 and Exercise 16 on page 195.
Hence, for each i and any " > 0, there exist a k � 1 and a vertex v 2 vert.�k/
such that jx � vj < " and f .v/i � vi < 0. By continuity, we obtain the inequality
f .x/i � xi � 0 for all i . But since the sum

PnC1
iD1 .f .x/i � xi / is zero, this is

possible only if f .x/ D x. ut

Brouwer’s Theorem via Homology Theory

As previously announced, we provide a proof of Brouwer’s theorem using only the
basics of homology theory typically taught in a first course on algebraic topology.
More details on the necessary background can be found in Appendix B.

Proof (using homology theory). Assume that f W B
n ! B

n is a continuous map
without a fixed point. For each x, consider the ray from f .x/ in the direction of x.
This ray hits the boundary sphere S

n�1 D fx 2 R
n W kxk D 1g of Bn in a point that

we call r.x/; see Fig. 1.6.
Then r W Bn ! S

n�1 is a continuous map that when restricted to the sphere, is the
identity map, i.e., r ı i D idSn�1 , where i W Sn�1 ,! B

n is the inclusion map. Such a
map is called a retraction map. We obtain the following induced maps in homology:

QHn�1.Sn�1IZ/ i
��! QHn�1.BnIZ/ r

��! QHn�1.Sn�1IZ/:

Now, r� ı i� D .r ı i/� D .idSn�1 /� D id QHn�1.Sn�1IZ/ is the identity map of
QHn�1.Sn�1IZ/, which is isomorphic to the integers Z. But since QHn�1.BnIZ/ is

trivial, we arrive at a contradiction. ut
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f(x)
r(x)

x

Fig. 1.6 The retraction map r

Sperner’s Lemma Derived from Brouwer’s Theorem

As remarked in the introduction to this chapter, Sperner’s lemma may be considered
a combinatorial analogue of Brouwer’s theorem. This is due to the fact that there is
also a way to deduce Sperner’s lemma from Brouwer’s fixed-point theorem. We end
this section by proving this.

Proof (of Sperner’s lemma with Brouwer’s fixed-point theorem). Let � W vert.K/ !
ŒnC 1� be a Sperner labeling of a triangulationK of�n. We construct a continuous
map f W j�nj ! j�nj as an affine linear extension of the simplicial map from K to
�n defined on the vertices of K by v 7! e�.v/C1.mod nC1/.

Observe that there exists a fully labeled simplex if and only if f is surjective.
To prove this, it suffices to show that some point in the interior of j�nj is in the
image of f . It is a good exercise to show that the map f is fixed-point-free on the
boundary of j�nj. The existence of a fixed point yields the desired conclusion. ut

1.2 Envy-Free Fair Division

Sometimes it is hard to divide a piece of cake among several people, especially if the
cake contains tasty ingredients such as nuts, raisins, and chocolate chips that may
be distributed unevenly and if we take into account that preferences among several
people are often quite different. This calls for a procedure to find a solution that is
satisfying for everyone.

In order to do this, we first have to specify more precisely what we mean by
“satisfying for everyone.” Ludwig Erhard, German chancellor in the 1960s, once
said, “Compromise is the art of dividing a cake such that everyone is of the opinion
he has received the largest piece.” This seemingly paradoxical statement is pretty
much what our definition of envy-free fair division is going to be!
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Fig. 1.7 A cake with different tasty ingredients

A Fair-Division Model

Let’s say we have n people among whom the cake is to be divided. Each person
might have his or her own idea about which content of the cake is valuable: for one
it’s the nuts, for another it’s the chocolate, and so on. Figure 1.7 shows a cake with
colored chocolate beans indicating the different preferences. We model the piece
of cake with an interval I D Œ0; 1� (which might be thought of as a projection of
the cake), and the predilections of the people by continuous probability measures
�1; : : : ; �n. Continuous means that the functions t 7! �i

�
Œ0; t/

�
are continuous

in t . The continuity condition implies that the measures evaluate to zero on single
points, i.e., �i .ftg/ D 0 for all t 2 I .

Let’s assume that the cake is divided into n pieces (each measurable with respect
to all �i ), i.e., I D A1 [ � � � [ An, where Ai \ Aj is a finite set of points for each
i 6D j , and person i is to receive the piece A	.i/ for some permutation 	 .

Definition 1.4. The division .A1; : : : ; AnI	/ of the cake is called fair if
�i.A	.i// � 1

n
for all i . It is called envy-free if �i.A	.i// � �i.A	.j // for all

i; j .

The last condition says that each person receives a piece that is (according to its
measure) at least as large as all the other pieces.
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The permutation 	 might seem unnecessary at this point, but for the purpose of
upcoming proofs we need to be able to assign the n pieces of a fixed division to the
n people.

Practical Cake-Cutting

There are several interesting approaches to obtaining solutions to fair cake-cutting.
The simplest is the following. Let t be the smallest value such that there exists an i
with �i .Œ0; t �/ D 1

n
. This means that for all other j , the rest of the cake, i.e., Œt; 1�,

has size at least n�1
n

. Therefore, person i is to receive the piece Œ0; t � and the others
proceed by induction on the rescaled piece. Note that this procedure produces n� 1
cuts of the cake, and hence n intervals, i.e., the fewest number possible.

This procedure is often referred to as the moving-knife algorithm, and it works
as follows. Some person slowly moves a knife along the cake. If the portion of the
cake that has been covered by the moving knife has reached size 1

n
for some person,

then this person yells “stop!” The cake is cut right there, and the person who yelled
receives the piece. If more than one person yelled, the piece is given to one of them.
From a practical viewpoint, this has the advantage that every person feels treated
fairly. But of course, in general, the divisions obtained in this way are not envy-free.
There are several algorithms one can use to obtain an envy-free division of the cake.
But these often require many cuts of the cake; cf. [RW98].

The Simplex as Solution Space

Here we want to concentrate on the existence and approximation of an envy-free
solution that can be obtained by n � 1 cuts.

A division of the unit interval into n successive intervals is determined by the
vector .t1; : : : ; tn/ of their lengths, and all possible such division vectors constitute
the standard .n � 1/-simplex if we allow intervals of length zero.

The first proof of the existence of an envy-free fair-division solution with n � 1

cuts by Woodall [Woo80] is a construction whose topological engine is Brouwer’s
fixed-point theorem. There is an easier construction that—not surprisingly—relies
on Sperner’s lemma. Moreover, this construction yields a method to find approxi-
mate solutions described by Su [Su99], which has a nice implementation called the
“Fair division calculator” and is available on the Internet.
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Fig. 1.8 First labeling of vert.sdk �n�1/

A Sperner Labeling Approach

In order to find an approximate solution, consider a barycentric subdivision
sdk �n�1 for some k. Our construction will consist of two consecutive labelings
of the vertices, the second of which is going to be a Sperner labeling. The first
labeling is rather simple. Label the vertices of sdk �n�1 with labels p1; : : : ; pn in
such a manner that the vertices of each .n� 1/-simplex obtain all labels p1; : : : ; pn,
as demonstrated in Fig. 1.8. Such a labeling is easy to derive and is the content of
Exercise 4.

To define the second labeling, consider a vertex v D .t1; : : : ; tn/ of sdk �n�1
with, say, label pi0 . It defines the division I D Œ0; t1�[ Œt1; t1C t2�[ � � � [ Œt1 C� � �C
tn�1; 1�. Denote the kth interval by Ik and let �.v/ D max f�i0.I1/; : : : ; �i0 .In/g be
the size of the largest piece according to person i0. Define the labeling by

�.v/ D min
˚
j W �.Ij / D �.v/

�
:

In other words, �.v/ describes the number of a piece that is largest for person i0.
Certainly

�.v/ 2 fj W tj 6D 0; j 2 Œn�g;

since the largest piece will not be an interval of length 0, and hence � is a bona fide
Sperner labeling. For an example see Fig. 1.9.

By Sperner’s lemma, we obtain a fully labeled .n� 1/-simplex �k , which means
that the n different people associated with the n vertices of �k all choose a different
interval. More precisely, �k defines a permutation 	k W Œn� ! Œn�, where 	k.i/ D j

if �.v/ D j for the vertex v of �k labeled with pi . Now let xk be the barycenter
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Fig. 1.9 An example of the labeling �

of the simplex �k and consider the sequence .xk/. By compactness, there exists a
convergent subsequence .xik /. Since there is only a finite number of permutations
of Œn�, we may even choose this subsequence with the additional property that the
sequence .	ik / of associated permutations is constant. Let x D .t1; : : : ; tn/ be the
limit of this subsequence and 	 the constant permutation. The associated division
.A1; : : : ; AnI	/ is the desired envy-free solution, as is easy to prove and is the
content of an exercise. Thus we obtain the following result.

Theorem 1.5. Let �1; : : : ; �n be n continuous probability measures on the unit
interval. Then there exists an envy-free division .A1; : : : ; AnI	/ such that all of the
Ai are intervals. ut
Note that, moreover, an approximate solution can be found in a finite number of
steps: in fact, for any given " > 0, there exist a k � 0, a simplex �k 2 sdk �n�1, and
a permutation 	 with the property that the division associated with the barycenter
of �k together with 	 is envy-free up to an error of ".

1.3 The Borsuk–Ulam Theorem and Tucker’s Lemma

The Borsuk–Ulam theorem is a classical theorem in algebraic topology, and next
to Brouwer’s theorem, is one of the main results typically proven in an algebraic
topology course to show the power of homological methods. For some historical
background on Stan Ulam and the history of the theorem, I recommend Gian-Carlo
Rota’s wonderful article [Rot87]. The Borsuk–Ulam theorem is often illustrated by
the claim that at any moment in time, there is a pair of antipodal points on the
surface of the earth with the same air pressure and temperature. We will present
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Fig. 1.10 A sphere made flat

four versions of the theorem, most of which will play some role in the sequel.
An illustration of the third version is given in Fig. 1.10.

Theorem 1.6 (Borsuk–Ulam). The following statements hold.

1. If f W Sn ! S
m is a continuous antipodal map, i.e., f .�x/ D �f .x/ for all

x 2 S
n, then n � m.

2. If f W Sn ! R
n is a continuous antipodal map, then there exists an x 2 S

n such
that f .x/ D 0.

3. If f W Sn ! R
n is a continuous map, then there exists x 2 S

n such that f .x/ D
f .�x/.

4. If Sn is covered by n C 1 subsets S1; : : : ; SnC1 such that each of S1; : : : ; Sn is
open or closed, then one of the sets contains an antipodal pair of points, i.e.,
there exist an i 2 ŒnC 1� and x 2 S

n such that x;�x 2 Si .
Since Brouwer’s fixed-point theorem is intimately related to Sperner’s lemma,

the same is true for the Borsuk–Ulam theorem and a lemma by Tucker. In the
sequel, we will present a proof of the Borsuk–Ulam theorem by means of Tucker’s
lemma. For a proof using standard methods from algebraic topology, I recommend
Bredon [Bre93]. But in order to get used to the different ways the Borsuk–Ulam
theorem was stated, we will show that each of the four versions easily implies the
others.

Proof (of the equivalences). (1 ) 2) Assume f W Sn ! R
n is an antipodal map

without zero. Then the map

x 7�! f .x/

kf .x/k
is (by compactness of Sn) a continuous antipodal map from S

n to S
n�1, contradict-

ing 1.
(2 ) 3) Let f W Sn ! R

n be a continuous map. Consider the continuous and
antipodal map g W Sn ! R

n defined by g.x/ D f .x/ � f .�x/. By statement 2., g
has a zero, x, which yields the desired property for f .
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0

Fig. 1.11 A cover of the .n� 1/-sphere with nC 1 closed sets

(3 ) 4) Let Sn be covered by n C 1 subsets S1; : : : ; SnC1, such that each of
S1; : : : ; Sn is open or closed. Assume that none of S1; : : : ; Sn contains an antipodal
pair of points. Then x 2 Si implies dist.�x; Si / > 0 for each i 2 Œn� and x 2 S

n.
We show this by considering separately the cases in which Si is closed or open.
If A D Si is closed and x 2 A, then �x 62 A, and therefore dist.�x;A/ > 0.
If U D Si is open and x 2 U , then dist.x;Sn n U / > 0, and since �U � S

n n U ,
we derive dist.�x;U / D dist.x;�U / � dist.x;Sn n U / > 0.

We will now find an antipodal pair of points in SnC1 as follows. Consider the
continuous map

f W Sn �! R
n;

x 7�!

0

B
@

dist.x; S1/
:::

dist.x; Sn/

1

C
A :

By assumption there exists an x 2 S
n with f .x/ D f .�x/. We are done if we can

show that x;�x 62 S1 [ � � � [ Sn. We check this by showing x;�x 62 Si for each
i 2 Œn�. If dist.x; Si / D dist.�x; Si / > 0, then clearly x;�x 62 Si . If dist.x; Si / D
dist.�x; Si / D 0, then x;�x 62 Si by the discussion above.

(4 ) 1) Assume that there is an antipodal map f W S
n ! S

n�1. Now the
important observation is that the .n � 1/-dimensional sphere can be covered with
nC 1 closed sets, none of which contains an antipodal pair. To see this, consider an
n-simplex in R

n with 0 in the interior. The radial projections X1; : : : ; XnC1 of the
nC1 facets of dimension n�1 to the sphere yield the desired cover, as demonstrated
in Fig. 1.11. Now let Si D f �1.Xi/. By continuity of f , the Si are closed, and by
the antipodality of f , they do not contain any antipodal pair of points. ut

For the last implication, note that the family, X1; : : : ; XnC1, of open sets Xi D
fx 2 S

n�1 � R
n W xi > 0g for i 2 Œn� and the closed set XnC1 D fx 2 S

n�1 � R
n W

8i 2 Œn� W xi � 0g would have worked as well.
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Fig. 1.12 The cross polytope Q3

Tucker’s Lemma

To formulate Tucker’s lemma we will be interested in subdivisions of the
n-dimensional sphere S

n that refine the “triangulation” of S
n by the coordinate

hyperplanes. More precisely, we will consider subdivisions K of the boundary
complex � n of the cross polytope, which we will introduce now.

The .nC1/-dimensional cross polytope is defined to be the convex hull
QnC1 D conv .f˙e1; : : : ;˙enC1g/. Its boundary is the polyhedron of a geometric
simplicial complex, whose simplices are given by the convex hulls of sets
f"i1ei1 ; : : : ; "ik eikg, not containing an antipodal pair ˙ej . We denote the (geometric)
simplicial complex given by this collection of geometric simplices by

� n D ˚
conv.f"i1ei1 ; : : : ; "ik eikg/ W 0 � k � nC 1;

1 � i1 < � � � < ik � nC 1; "ij 2 f˙1g�:

An alternative way to construct � n is to take the .nC 1/-fold join of two-point sets,
i.e., 0-spheres

� n D f˙e1g 	 f˙e2g 	 � � � 	 f˙enC1g;

where f˙eig serves as an abbreviation of the geometric complex f;;Ce1;�e1g.
An illustration is given in Fig. 1.12.

Tucker’s lemma is concerned with antipodally symmetric triangulationsK , i.e.,
triangulations with the property that � 2 K if and only if �� 2 K .

Lemma 1.7 (Tucker). Let K be an antipodally symmetric subdivision of � n,
and � W vert.K/ ! f˙1; : : : ;˙ng an antipodally symmetric labeling of K , i.e.,
�.�v/ D ��.v/ for all v. Then there exists a complementary edge, i.e., an edge
uv 2 K with �.u/C �.v/ D 0.
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Fig. 1.13 A front side of a labeled subdivision of � 2

Since the triangulation K and the labeling are antipodally symmetric, we can
sketch an example by just showing one side of the boundary of the cross polytope;
cf. Fig. 1.13.

Tucker’s lemma is an immediate corollary of the Borsuk–Ulam theorem.
The proof of this is the content of Exercise 8. Conversely, the Borsuk–Ulam
theorem may be derived from Tucker’s lemma, as we show next. Afterwards we
will be concerned with a combinatorial proof of Tucker’s lemma that also finds a
complementary edge, in a manner analogous to the combinatorial proof of Sperner’s
lemma. The first such proof, given by Freund and Todd [FT81], even proves that
there is always an odd number of complementary edges. We will present a more
recent proof by Prescott and Su, and moreover give an elegant direct proof for the
existence of a complementary edge.

Proof (of the Borsuk–Ulam theorem with the Tucker lemma). Since j� nj and S
n

are homeomorphic, we may assume for contradiction that there exists an antipodal
map f W j� nj ! R

n without a zero. Hence, there exists an " > 0 such that
kf k1 � ", i.e., for each x 2 S

n there exists a coordinate i with jfi .x/j � ".
By continuity of f , there exists a k such that for all edges uv of K D sdk � n,
we have kf .u/� f .v/k1 < ". We construct an antipodally symmetric labeling
� W vert.K/ ! f˙1; : : : ;˙ng as follows. Let

i.v/ D minfi W jfi .v/j � "g;

and define

�.v/ D
(

Ci.v/ if fi.v/.v/ � ",

�i.v/ if fi.v/.v/ � �".
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Now jfi .�v/j D j � fi .v/j D jfi .v/j implies i.�v/ D i.v/, and hence �.�v/ D
��.v/. By Tucker’s lemma, there exists an edge uv inK such that for some i 2 Œn�,
we have �.u/ D Ci and �.v/ D �i (after maybe switching u and v). Hence,
by definition of the labeling, fi .u/ � " and fi .v/ � �", contradicting kf .u/ �
f .v/k1 < ". ut

1.4 A Generalization of Tucker’s Lemma

As announced, we now turn our attention to combinatorics and consider a general-
ization of Tucker’s lemma by Ky Fan [Fan52]. The idea is to decouple the size of the
label set from the dimension n. We will be interested in certain alternatingly labeled
simplices. LetK be an antipodally symmetric subdivision of � n and � W vert.K/ !
f˙1; : : : ;˙mg an antipodally symmetric labeling of K . A d -simplex � is called
C-alternating, resp. �-alternating, if it has labels fCj0;�j1;Cj2; : : : ; .�1/djd g,
resp. f�j0;Cj1;�j2; : : : ; .�1/dC1jd g, where 1 � j0 < j1 < � � � < jd � m. For an
illustration we refer to Fig. 1.14.

Theorem 1.8 (Ky Fan, weak version). Let K be an antipodally symmetric
subdivision of � n and � W vert.K/ ! f˙1; : : : ;˙mg an antipodally symmetric
labeling of K without complementary edges. Then there exists an odd number of
C-alternating n-simplices.

Corollary 1.9 (Tucker’s lemma). The existence of an alternatingly labeled sim-
plex of dimension n implies m � n C 1, and hence any antipodally symmetric
labeling vert.K/ ! f˙1; : : : ;˙ng must contain a complementary edge. ut

The first proof of Ky Fan’s theorem that we present is due to Prescott and
Su [PS05] and requires a generalization of the concept of an alternating simplex.

A d -simplex � is called "-almost-alternating if it is not alternating but has a
.d � 1/-face, i.e., a facet, that is "-alternating for some " 2 f˙g. It is easy to see
that there is indeed no ambiguity in ", in other words, every "-almost-alternating
simplex without a complementary edge has exactly two facets that are "-alternating.
Figure 1.15 shows the different possibilities.

+8

+5

+-alternating −-alternating

−9

−6

−3+1

−2

+7

Fig. 1.14 A C- and a �-alternating 3-dimensional simplex
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Fig. 1.15 A 3-dimensional simplex with various labelings
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Fig. 1.16 Exploded view of the hemispherical subcomplexes for n D 2

Now consider the following family of hemispherical subcomplexes of � n,
illustrated in Fig. 1.16. The respective north and south hemispheres will obtain a
sign " 2 f˙g:

H"
0 Df"e1g;

H"
1 Df˙e1g 	 f"e2g;
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Fig. 1.17 Front and back sides of a labeling and the graph G for n D 2 and m D 4

H"
2 Df˙e1g 	 f˙e2g 	 f"e3g;
:::

H"
n Df˙e1g 	 � � � 	 f˙eng 	 f"enC1g:

Proof (of Ky Fan’s theorem constructively). Since K is a subdivision of � n, for
each simplex � of K there exist a unique minimal i and " 2 f˙g such that � 2 H"

i ,
the carrier hemisphere of � . We define a graph G as follows. The vertices of G are
those simplices � carried by H"

d satisfying one of the following:

• � has dimension d � 1 and is "-alternating,
• � has dimension d and is "-almost-alternating,
• � is d -dimensional and either C- or �-alternating.

Two vertices, � and � , constitute an edge if (up to switching roles of � and �):

• � is a facet of � , and
• If � is carried by H"

k , then � is "-alternating.

An example of such a graph G is shown in Fig. 1.17. The vertices of G
corresponding to C-(almost-) alternating simplices are indicated by a black box,
while the vertices corresponding to �-(almost-) alternating simplices are indicated
by a white box.

The graph has vertex degrees 1 and 2 only, as we will see now. An "-alternating
.d � 1/-simplex � carried by H"

d is a facet of exactly two d -simplices carried by
the same hemisphere. Each of these simplices is either "-alternating or "-almost-
alternating. And hence � has degree 2.
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Fig. 1.18 How to find a complementary edge

An "-almost-alternating d -simplex � carried byH"
d has exactly two "-alternating

.d � 1/-simplices in the boundary, and hence � has degree 2.
Finally, let’s consider a d -dimensional "0-alternating simplex � carried by H"

d .
Unless d D 0, � has exactly one facet that is "-alternating obtained by deleting
the vertex with the label of smallest or largest absolute value. And unless d D n,
exactly one of the .d C 1/-simplices containing � is contained in H"

dC1.
Note that the graph G is invariant under the antipodal action on K and hence

consists of antipodal pairs of paths and cycles. The endpoints of the paths, i.e.,
the only vertices of degree 1, are f˙e1g D H0̇ and the alternating simplices of
dimension n. It is an easy exercise to see that the two vertices f˙e1g will not be
connected by a path. Hence the total number of alternating n-simplices will be twice
an odd number, half of which are C-alternating. ut

Observe that the construction of the graph G also works in the presence
of complementary labeled edges. In this case, some of the "-almost-alternating
simplices will contain such edges. These almost-alternating simplices will have only
one "-alternating facet. And since there are insufficient labels to obtain an alternating
n-simplex, the constructed path from H0̇ will reach an almost-alternating simplex
containing a complementary edge. Hence we have found a method to easily detect a
complementary edge in the situation of Tucker’s lemma in which we have a labeling
vert.K/ ! f˙1; : : : ;˙ng. For an illustration see Fig. 1.18.

Note that this procedure does not find, nor match up, all simplices containing
a complementary edge. But in the solution of the consensus 1

2
-division problem

covered in the next section, it suffices to find one complementary edge.
We will now turn our attention to a stronger form of Ky Fan’s theorem that

resembles a Stokes formula in a combinatorial setting. Note that there are no
symmetry conditions on the subdivision or on the labeling.
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Theorem 1.10 (Ky Fan, strong version). Let K be a subdivision of the upper
hemisphere HC

n of � n and � W vert.K/ ! f˙1; : : : ;˙mg a labeling of K
without complementary edges. Then the number of C-alternating n-simplices plus
the number of �-alternating n-simplices is congruent modulo 2 to the number of
C-alternating .n � 1/-simplices in the boundary @HC

n D HC
n \H�

n .

The idea behind the following proof is due to Frédéric Meunier [Meu05].

Proof. Consider the chain complex .C�.KIZ2/; @/ of K with Z2-coefficients.
We define the following (mod 2)-counting function:

ˇ W Cn�1.KIZ2/ ! Z2;

X

�2T
� 7! jf� W � 2 T; � is C-alternatinggj mod 2:

Now let ˛ W Cn.KIZ2/ ! Z2 be defined by ˛ D ˇ ı @. Miraculously, ˛ turns out to
be the right counting function in dimension n, i.e.,

˛

 
X

�2S
�

!

D ˇ

 

@
X

�2S
�

!

g D jf� W � 2 S; � is C- or �-alternatinggj mod 2:

In order to check this, note that for an n-dimensional simplex � , ˛.�/ may be
nonzero only if � is an alternating or almost-alternating simplex. The verification
that ˛.�/ is zero modulo 2 in the case that � is almost-alternating requires the
nonexistence of complementary edges.

Now let c D P
�2K;dim.�/Dn � be the sum of all n-simplices in K . Then @C DP

�2K;dim.�/Dn�1;��@HC

n
� . Now the equality ˛.c/ D ˇ.@c/ yields the result. ut

The strong Ky Fan theorem implies the weak version as follows.

Proof (Strong implies weak Ky Fan). We proceed by induction on the dimension.
For n D 0, the statement is obvious. Now assume n > 0. Let ˛ṅ be the
number of ˙-alternating n-simplices of K lying in HC

n , and let ˇn�1 be the
number of C-alternating .n � 1/-simplices in K lying in @HC

n D HC
n \ H�

n for
i D 1; : : : ; n � 1. By the induction hypothesis, ˇn�1 
 1 mod 2. Note that by the
antipodal symmetry of the labeling, the number of C-alternating n-simplices in K
is equal to ˛C

n C˛�
n . The strong Ky Fan theorem says that ˛C

n C˛�
n 
 ˇn�1 mod 2,

and hence we are done. ut
Here we witness an amazing phenomenon that is surprisingly common in

mathematics: we have a much simpler proof for an even stronger result. In particular,
this frequently happens with statements that admit an inductive proof. In these
cases, it is sometimes important to have a statement strong enough to get the
induction to work. But note that our last proof no longer yields a procedure to find
a complementary edge.
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The strong Ky Fan theorem can easily be generalized to a wider class of spaces,
i.e., pseudomanifolds with boundary (see Exercise 13 on page 33). Moreover, the
proof of the strong Ky Fan theorem that we presented can be interpreted in a more
general framework that sheds light on a method for obtaining such formulas in
general.

1.5 Consensus 1
2
-Division

Assume that two daughters have inherited a piece of land and they are to divide
the land between them. In order to keep the family peace, it is necessary that all
family members have the impression that the share of the land each daughter obtains
is worth exactly half the total value. One of many similar real-world applications
mentioned in the literature is the Law of the Sea Treaty [SS03]. We will now
model the situation by assuming that the piece of land is an interval endowed with
probability measures for the individual preferences of the family members.

Let �1; : : : ; �n be n continuous probability measures on the unit interval I D
Œ0; 1�. We are searching for a subdivision I D AC1 [ A�1 such that �i .AC1/ D
�i.A�1/ D 1

2
for all i:Note that this implies�i.AC1\A�1/ D 0 for all i . Of course

A˙1 need only be two measurable sets, but we are interested in particularly nice
solutions, i.e., we want A˙1 to be a union of finitely many intervals each. Observe
that since the n measures might have disjoint support, in general we will need to
make at least n cuts in order to divide each measure in half, and hence divide I into
nC 1 intervals that are to be distributed into the two sets A˙1.

The Cross Polytope as Solution Space

Let’s consider the space Xn of all such divisions I D AC1 [ A�1 that arise by
cutting the interval n times and assigning each interval to exactly one of AC1 and
A�1:

Xn D
(
�
."0; t0/; : : : ; ."n; tn/

� W "i 2 f˙1g; ti � 0;

nX

iD0
ti D 1

)

:

Here ti yields the length of the .iC1/st interval and "i indicates whether
the interval is assigned to AC1 or A�1. For example, the vector x D
..�1; 1

3
/; .C1; 1

2
/; .�1; 1

6
// corresponds to the division of I into A�1.x/ D

Œ0; 1
3
� [ Œ 5

6
; 1� and AC1.x/ D Œ 1

3
; 5
6
�.

Let’s take a closer look at Xn. If .."0; t0/; : : : ; ."n; tn// 2 Xn has the property
that tj D 0 for some fixed j , then the sign "j is irrelevant, since the interval of
length tj D 0 has measure zero with respect to any of the �i . We hence introduce
the equivalence relation � on Xn given by
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�
."0; t0/; : : : ; .C1; tj /; : : : ; ."n; tn/

� � �
."0; t0/; : : : ; .�1; tj /; : : : ; ."n; tn/

�

if and only if tj D 0. The quotient space Xn=� of all possible solutions turns out
to be an object we know quite well: it is the (polyhedron of the) .n C 1/-fold join
of a two-point space with elements f˙1g, which we identify with the multiplicative
two-element group Z2. This space, Z�.nC1/

2 , is nothing but the boundary complex
of the .nC 1/-dimensional cross polytope. In particular, it is a bona fide n-sphere.
The group Z2 acts on Xn=� via multiplication in all factors of the join, i.e.,

" � �."0; t0/; : : : ; ."n; tn/
� D �

." � "0; t0/; : : : ; ." � "n; tn/
�
;

which corresponds to the antipodal action on � n. Note that the subdivision
corresponding to the antipode �x of x arises from the subdivision corresponding
to x by interchanging AC1 with A�1, i.e., A˙1.�x/ D A�1.x/.

The existence of a solution to the consensus 1
2
-division problem now immediately

follows from the Borsuk–Ulam theorem. The reader might want to think about it
before we present the solution.

Define the map f W Xn=� Š j� nj ! R
n by

x 7!

0

B
@

�1.AC1.x// � �1.A�1.x//
:::

�n.AC1.x// � �n.A�1.x//

1

C
A :

It is a continuous antipodal map, and hence has a zero that yields the desired
partition.

Theorem 1.11. Let �1; : : : ; �n be n continuous probability measures on the unit
interval. Then there exists a solution to the consensus 1

2
-division problem within the

space Xn=� Š jZ�.nC1/
2 j Š j� nj. In particular, it suffices to make n cuts. ut

Approximating a Solution

It is nice to know that a solution exists, but in practical applications how does one
find (or at least approximate) a solution?

For this purpose let us call a division I D AC1[A�1 an "-approximate solution if
�i.AC1/; �i .A�1/ 2 Œ 1

2
�"; 1

2
C"� for all i: In order to find such a solution, consider

an antipodally symmetric triangulation K subdividing � n that is fine enough, i.e.,
for any edge xy in K , the inequality

j�i.AC1.x// � �i.AC1.y//j � "

holds. This exists by continuity of the �i .
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We will now construct an antipodal labeling � W vert.K/ ! f˙1; : : : ;˙ng ofK .
In terms of the introductory example with the two daughters, this labeling will tell
us which family member considers the division most unfair and which of the two
pieces he or she considers to be the smaller one. So, for a vertex x ofK , let

�.x/ D min f�i.AC1.x//; �i .A�1.x// W i 2 Œn�g ;
i.x/ D min fi 2 Œn� W �i.AC1.x// D �.x/ or �i .A�1.x// D �.x/g :

If�.x/ D 1
2
, then x is an exact solution of the problem, and we are done. Otherwise,

we define the labeling � on x by

x 7!
(

Ci.x/; if �i.x/.AC1.x// D �.x/;

�i.x/; if �i.x/.A�1.x// D �.x/:

If none of the vertices ofK gave an exact solution, then � is an antipodal labeling on
K . By Tucker’s lemma, there exist an edge xy inK and i 2 Œn� such that �.x/ D Ci
and �.y/ D �i . In particular, �i .AC1.x// < 1

2
and �i.AC1.y// > 1

2
. Since the

difference of �i .AC1.x// and �i.AC1.y// is at most ", both of them will lie in
the interval Œ 1

2
� "; 1

2
C "�. But by definition of the labeling, x turns out to be an

"-approximate solution.
As we have seen in the previous section, a complementary edge can be found

by following a path in some graph. In particular, the "-approximation to consensus
1
2
-division can be found using this procedure.

1.6 The Borsuk–Ulam Property for General Groups

In Sect. 1.3 we discussed the Borsuk–Ulam theorem and Tucker’s lemma. One way
to state the Borsuk–Ulam theorem is to say that every antipodal map j.Z2/�.nC1/j Š
j� nj Š S

n ! R
n has a zero. Tucker’s lemma ensured the existence of a

complementary edge in certain labelings of antipodally symmetric triangulations
of .Z2/�.nC1/ Š � n.

Generalizing the Sphere

In this section we want to replace the group Z2 by an arbitrary finite group G and
investigate analogous properties. The most important role, though, will be played
by the cyclic groups Zp of prime order.

The spheres that appeared as boundaries of the cross polytope in the previous
section will now be replaced by more general spaces.
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In the sequel we will make use of groups, group actions on a space, equivariant
maps, connectivity of topological spaces, and shellability of simplicial complexes.
A brief introduction to these concepts can be found in the Appendices D and B.

Definition 1.12. Let G be a finite group considered as a zero-dimensional geomet-
ric simplicial complex and let N � 1 be an integer. Let ENG be the geometric
simplicial complex defined as the .N C 1/-fold join ENG D G 	 � � � 	G of G with
itself. Its polyhedron is given by

jENGj D
(

.g0t0; : : : ; gN tN / W gi 2 G; ti � 0;

NX

iD0
ti D 1

)

:

The polyhedron jENGj is a (compact) G-space via the diagonal action of G on all
factors, i.e., for g 2 G and .h0t0; : : : ; hN tN / 2 jENGj we define

g � .h0t0; : : : ; hN tN / D ..gh0/t0; : : : ; .ghN /tN /:

To gain some better understanding of the geometric complexENG, consider the
associated abstract simplicial complex. Its vertices may be identified with .NC1/-
dimensional vectors of the form .;; : : : ;;; g;;; : : : ;;/, where precisely one entry
is a group element g 2 G, and the faces may be identified with the set of vectors
.G P[f;g/NC1. In other words, a face of ENG is determined by N C 1 choices of
either the empty set or an element of G. The intersection of two faces given by
vectors F and F 0 is then given by the vector F \ F 0 defined coordinatewise as
follows:

.F \ F 0/i D
(
g; if Fi D F 0

i D g;

;; otherwise.

The vector representation of the faces can be illustrated by arranging a grid of
k D jGj rows andN C 1 columns and for each face connecting any two subsequent
grid elements that are not the empty set. Compare Fig. 1.19 demonstrating the case
k D 5 and N D 6. The indicated face corresponds to the vector .c;;; b;;; c; d; a/,
which in turn corresponds to all elements

f.ct0; 0; bt2; 0; ct4; dt5; at6/ W ti � 0; t0 C t2 C t4 C t5 C t6 D 1g

of the geometric join.
Note that we can also read this diagram from top to bottom, and so we can

identifyENG with the (polyhedron of a geometric realization of the) k-fold deleted
join .2f0;:::;N g/�k� of the N -simplex 2f0;:::;N g. This is discussed in more detail on
page 107 in Chap. 4.

A well-known example among these spaces is the boundary of the cross polytope,
i.e., for G D Z2, the complex ENG can be identified with the boundary complex
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6
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b

c

d

e

0 1 2 3 4 5

Fig. 1.19 A graphical representation of the faces of ENG

� N of the cross polytope. Indeed, an l-dimensional face of the cross polytope is
given by a collection f"i0ei0 ; : : : ; "il eil g with i0 < � � � < il and "ij 2 f˙1g.

The following properties of the space ENG will play an essential role in the
sequel.

Proposition 1.13. jENGj is a free G-space.

Proof. Assume that

g � .h0t0; : : : ; hN tN / D .h0t0; : : : ; hN tN /:

Since there exists at least one j such that tj 6D 0, we obtain ghj D hj , and hence g
must be the neutral element in G. ut
Theorem 1.14. ENG is a pure N -dimensional shellable simplicial complex, and
hence has the homotopy type of a wedge of N -dimensional spheres. In particular, it
is .N � 1/-connected.

Proof. Let G D fg1; : : : ; gkg be an arbitrary enumeration of the group elements.
The maximal faces of ENG correspond to the set of vectors GNC1. We order this
set of vectors with respect to increasing lexicographic order, i.e.,

.gi0 ; : : : ; giN / � �
gj0 ; : : : ; gjN

�

if and only if there exists an m 2 f0; : : : ; N g such that il D jl for l < m and
im < jm. For the case of E2Z2, the order in which the maximal faces appear is
illustrated in Fig. 1.20, where g1 D C1 and g2 D �1.

We will now see that the defined order is indeed a shelling order. Let F1; : : : ; Fn
be the ordered sequence of maximal faces of ENG and let 1 � j � n. As stated in
condition .	/ on page 178, we will show that

�Sj�1
lD1 Fl

� \ Fj is a pure .N � 1/-
dimensional complex. To see this, consider any intersection Fi \ Fj for i < j .
We have to present an i 0 < j such that Fi \Fj � Fi 0 \Fj and the last intersection
is .N � 1/-dimensional, i.e., Fi 0 and Fj considered as vectors differ in exactly one
coordinate. But this is easy. Let Fi D .gi0 ; : : : ; giN / and Fj D �

gj0 ; : : : ; gjN
�
.

By definition of the lexicographic order, there exists an m such that the first m � 1
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≺≺≺

≺≺≺
−1

+1

(∅,∅,+1)

(∅,+1,∅)
(+1,∅,∅)

Fig. 1.20 The lexicographic shelling order in the case of E2Z2

coordinates of Fi and Fj are identical. Since Fi � Fj , we know that im < jm.
Consider

F D �
gj0 ; : : : ; gjm�1 ; gim ; gjmC1

; : : : ; gjN
�
:

ThenF is smaller than Fj , and hence there is an i 0 < j such thatFi 0 D F: Certainly
Fi 0 has the desired properties. ut

A Generalization of the Borsuk–Ulam Theorem

We now approach the generalization of the Borsuk–Ulam theorem for the spaces
jENGj. For this we need a replacement for the space R

n with the antipodal action.
To this end, consider an N -dimensional real vector space E with a norm-preserving
G-action, i.e., kgxk D kxk for all g 2 G, x 2 E. Furthermore, assume that the
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action is such thatG does not fix any element except the origin, i.e., EG D fx 2 E W
gx D x for all g 2 Gg D f0g.

Definition 1.15 (Sarkaria [Sar00]). The group G has the Borsuk–Ulam property
if for any N � 1 and any N -dimensional space E with norm-preserving G-action
and E

G D f0g, every continuousG-equivariant map f W jENGj ! E has a zero.

Note that the Borsuk–Ulam theorem guarantees that every continuous antipodal
map f W jENZ2j ! R

N has a zero. We will now prove a far more general result for
cyclic groups of prime order.

Theorem 1.16 (Bárány, Shlosman, Szűcs [BSS81] and Dold [Dol83]). Let G D
Zp be the cyclic group of prime orderp � 2. ThenG has the Borsuk–Ulam property.

Proof. Assume that there exist anN -dimensional space E with norm-preservingG-
action such that EG D f0g and a continuous G-equivariant map f W jENGj ! E

without a zero.
The proof splits into considerations on the level of spaces and maps and purely

algebraic considerations. We start with the spaces.
The map f induces a continuous map Nf W jENGj ! S.E/ to the .N � 1/-

dimensional unit sphere S.E/ in E via Nf .x/ D f .x/

kf .x/k . Since

Nf .gx/ D f .gx/

kf .gx/k D gf .x/

kgf .x/k D gf .x/

kf .x/k D g Nf .x/;

the map Nf isG-equivariant. Note thatG acts freely on S.E/ because p is prime and
E
G D f0g. Therefore, by Proposition D.13 on page 216, there exists aG-equivariant

map g W S.E/ ! jENGj since jENGj is .N � 1/-connected. Hence we have a
composition

jENGj Nf�! S.E/
g�! jENGj

of G-equivariant maps. By the equivariant simplicial approximation theorem,
Theorem D.14, there exist a subdivisionK of ENG and a simplicial map  W K !
ENG approximating g ı Nf .

We will now turn to the algebra and consider simplicial chain complexes and
homology with coefficients in the field of rational numbers Q.

First of all, note that g ı Nf induces a map in homology

H�.ENGIQ/ H
�

. Nf /����! H�.S.E/IQ/ H
�

.g/����! H�.ENGIQ/:

Secondly,  induces a map, Ci. / W C�.KIQ/ ! C�.ENGIQ/, of simplicial
chain complexes. Note that there is a natural map, C�.ENGIQ/ ! C�.KIQ/, that
maps a generating i -simplex � of ENG to the properly oriented sum of i -simplices
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of K contained in � . In fact, the latter map induces the identity map in homology.
Denote the composition of these two maps by N W C�.KIQ/ ! C�.KIQ/.

For any i , consider the square-matrix representation of N i W Ci.KIQ/ !
Ci.KIQ/ with respect to the standard basis given by the (oriented) i -dimensional
simplices of K . This matrix has only integral entries, since, so far, we could have
used integral coefficients.

Now, since G acts freely and N i is equivariant, each diagonal entry of the matrix
appears p-fold, and hence the trace, tr. N i/, is divisible by p. We now have the
following:

NX

iD0
.�1/i tr. N i/ D

NX

iD0
.�1/i tr.Hi . //

D
NX

iD0
.�1/i tr.Hi .g ı Nf //

D tr
�
H0.g ı Nf /�C .�1/N tr

�
HN.g ı Nf /�

D tr.H0.g ı Nf //
D 1:

The first equality is given by the Hopf trace formula, as discussed in Theorem B.72
on page 193, and the fact that  and N induce the same map in homology; the
second holds since  ' g ı Nf are homotopic maps; the third equation follows
from the fact that jENGj is a wedge of N -spheres; the fourth is due to the fact that
HN.g ı Nf / factors throughHN .S.E/IQ/ D 0; and finally, the last equality follows
from the fact that g ı Nf is a nontrivial map between two nonempty spaces. We have
reached a contradiction, since 1 is not divisible by p. ut

The following theorem is a generalization of Theorem 1.16 to the case of powers
of cyclic groups of prime order. The proof of this generalization requires some
methods that go beyond those of this book.

Theorem 1.17 (Özaydin [Öza87], Volovikov [Vol96], and Sarkaria [Sar00]).
Let p � 2 be a prime and r � 1. The group G D .Zp/

r has the Borsuk–Ulam
property. ut

1.7 Consensus 1
k

-Division

In analogy to Sect. 1.5, we are faced with the problem of dividing a piece of inherited
land among k siblings—instead of two—such that all n family members believe that
all siblings receive a piece of land of the same value. At this point we also want to
introduce another common interpretation of the situation due to Noga Alon [Alo87].



1.7 Consensus 1
k

-Division 29

Fig. 1.21 A necklace with beads of several types

Assume that k thieves have stolen necklace like the necklace in Fig. 1.21 with n
different types of precious stones such that the number of times each type occurs is
divisible by k. The thieves are about to divide the necklace among them such that:

• They do as few cuts as possible,
• Each gets the same number of beads of each type.

Assuming that the necklace has been nonviolently opened at the clasp, what is the
fewest number of cuts that always suffices?

If one generalizes and considers each type of bead to be continuously distributed
along the necklace, we arrive at the generalization of the problem in Sect. 1.5.

Let n � 1; k � 2; and �1; : : : ; �n be continuous probability measures on the unit
interval I D Œ0; 1�. In this more general situation, we are now looking for divisions
I D A1 [ � � � [ Ak such that �i.Aj / D 1

k
for all i D 1; : : : ; n and j D 1; : : : ; k.

Note again that these conditions imply �i.Aj \ Aj 0/ D 0 for all i and j 6D j 0.
In order to model the situation nicely, we need to determine how many cuts we

need at least. Just imagine a necklace with n � k beads arranged in such a way that
each type comes in a block of k. Then we will certainly need to make k � 1 cuts
within each block and hence need at least n.k � 1/ cuts in total. Clearly, in the
continuous situation we will not be able to deal with fewer cuts either. In Fig. 1.22,
a possible situation is shown for n D 3, k D 4. The measures �i are given by their
respective density functions 'i .

EN G as Solution Space

Experienced by now, we easily come up with a good space to model our situation.
The space needs to encode N D n.k � 1/ cuts, and for each of the N C 1 resulting
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Fig. 1.22 At least n.k � 1/ cuts are necessary

intervals, there has to be an assignment into which of the sets Ai , i D 1; : : : ; k, it
belongs:

XN;k D
(
�
.g0; t0/; : : : ; .gN ; tN /

� W gi 2 Œk�; ti � 0;

NX

iD0
ti D 1

)

:

As before, ti is encoding the length of the .i C 1/st interval, and gi defines that
this interval belongs to Agi . Moreover, we introduce the same equivalence relation:

�
.g0; t0/; : : : ; .gj ; tj /; : : : ; .gN ; tN /

� � �
.g0; t0/; : : : ; .g

0
j ; tj /; : : : ; .gN ; tN /

�

if and only if for all j , either gj D g0
j or tj D 0. By the definition of a join, we see

that XN;k=� can be identified with jENGj, where G is any group of order k.

Theorem 1.18 (Continuous necklace theorem [Alo87]). Let n � 1; k � 2 and
�1; : : : ; �n be continuous probability measures on the unit interval. Then there exist
n.k � 1/ cuts of the interval and an assignment of the resulting intervals to sets
A1; : : : ; Ak such that �i.Aj / D 1

k
for all i; j .

Since we know that the Borsuk–Ulam property holds for the cyclic groups G D
Zp of prime order, we will first reduce the necklace problem to the case k D p,
p � 2 prime.

Lemma 1.19 (Reduction to prime case). Let n � 1; k1; k2 � 2. Assume that the
necklace theorem is true for the parameters n and k1 and n and k2. Then it is also
true for the parameters n and k1k2.

Proof. Let �1; : : : ; �n be given, and set N1 D n.k1 � 1/, N2 D n.k2 � 1/, and
N D n.k1k2 � 1/. By assumption, there exist N1 cuts of the interval I and an
assignment of the resulting intervals to sets A1; : : : ; Ak1 such that �i.Aj / D 1

k1
for all i; j . Now, for some fixed j , consider the set Aj that is a union of intervals.
By restricting the �i to Aj , rescaling them by a factor k1, and gluing the intervals
together, we obtain a new instance of the problem. Hence, by assumption, for all
j D 1; : : : ; k1, there exist N2 cuts within Aj and an assignment of the resulting
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intervals to sets Aj1 ; : : : ; A
j

k2
such that �i.A

j

l / D 1
k1k2

for all i; j; l . Therefore, in
total we have

N1 C k1N2 D n.k1 � 1/C k1n.k2 � 1/ D N

cuts of the interval, and the sets Ajl , ,j D 1; : : : ; k1, l D 1; : : : ; k2 are the desired
sets. ut
Proof (of the necklace theorem). By the previous lemma we can assume k D p

to be a prime number p � 2. Let G D Zp be the cyclic group of order p and
N D n.p � 1/. The space jENGj encodes the possible solutions. Let E be the set
of all real n � p matrices with the property that the elements of each row sum to
zero. In particular, for any such matrix, a row can have all entries equal only if it is
a zero row. The group G acts on E by cyclically permuting columns. The action is
obviously norm-preserving, EG D f0g by the previous observation, and dimE D
n.p � 1/ D N . We define a map f W jENGj ! E as follows. Each x 2 jENGj
gives rise to a subdivision I D A1.x/[� � �[Ap.x/ continuously depending on x as
described at the beginning of this section. The group acts on jENGj in such a way
that the resulting sets, A1.x/; : : : ; Ap.x/, are permuted cyclically. Now define the
matrix f .x/ entrywise by

�
f .x/

�
i;j

D
�
�i.Aj .x// � 1

p

�
:

Then f is well defined and yields a continuous G-equivariant map. Hence, by
Theorem 1.16, f has a zero. But a zero of f corresponds exactly to a desired fair
necklace splitting. ut

Exercises

1. Show that in the algebraic proof of Sperner’s lemma on page 5, the induction
hypothesis indeed yields �n�1.ci / D �i , i D 1; : : : ; nC 1.

2. Show that in the derivation of Sperner’s lemma with Brouwer’s fixed-point
theorem on page 7, the map f W j�nj ! j�nj has no fixed points on the
boundary.

3. This exercise is about deriving the fundamental theorem of algebra directly
from Brouwer’s fixed-point theorem. The fundamental theorem of algebra
states that any nonconstant polynomial p D zn C an�1zn�1 C � � � C a1z C a0
with complex coefficients has a zero in the field of complex numbers.

In order to prove this, let R D 2C ja0j C � � � C jan�1j, and define

f W fz 2 C W jzj � Rg �! fz 2 C W jzj � Rg
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z D r ei ' 7�!

8
ˆ̂<

ˆ̂
:

z � p.z/
R
; if r D 0;

z � p.z/
R ei'r.n�1/ ; if 0 < r � 1;

z � p.z/
Rzn�1 ; if 1 � r:

Show that f is a well-defined continuous map and deduce the fundamental
theorem of algebra. This proof is due to B.H. Arnold [Arn49].

4. Show that it is always possible to label the vertices of sdk �n�1 with labels
p1; : : : ; pn such that each .n � 1/-simplex obtains all labels. In other words,
show that the 1-skeleton of sdk �n�1 has chromatic number n. This is needed
in the proof for the existence of envy-free fair division solutions on page 10.

5. Provide the details that show that the division .A1; : : : ; AnI	/ defined on
page 11 in the proof of Theorem 1.5 is indeed envy-free.

6. Solve the following rental harmony problem by Francis E. Su [Su99].
Suppose n students want to share an apartment with n rooms that they have

rented for some fixed price. Now they are to decide who gets which room
and for what part of the total rent. Moreover, assume that the following three
conditions are satisfied:

(a) (Good house) In any partition of the rent, each person finds some room
acceptable.

(b) (Miserly tenants) Each person always prefers a free room to a room for
which they have to pay.

(c) (Closed preference set) If a person is satisfied with a certain room for a
convergent sequence of prices, then he is also satisfied with this room at
the limit price.

Give a solution that maintains harmony among the students, i.e., a solution
in which no one would like to switch rooms.

7. In this exercise we want to derive the classical ham sandwich theorem from the
Borsuk–Ulam theorem. Consider a sandwich consisting of two slices of bread
and one slice of ham. Show that it can be cut with one straight cut in such
a way that each of the three pieces is divided in half. More generally, show
the following. Given n continuous probability measures in R

n, show that there
exists an affine hyperplane such that each measure takes the value 1

2
on each of

the two half-spaces defined by the hyperplane. In order to do so, find a natural
way to describe a pair of half spaces defined by an affine hyperplane in R

n with
the help of the n-sphere Sn � R

nC1.
8. Deduce Tucker’s lemma from the Borsuk–Ulam theorem as stated on page 15.
9. Show that Tucker’s lemma in fact holds for arbitrary antipodally symmetric

triangulations of the n-dimensional sphere, i.e., the simplicial complex K in
the formulation of the lemma does not have to be a subdivision of � n.

10. Show that in the definition of an "-almost-alternating simplex on page 16, the
sign " is well defined.
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Fig. 1.23 The first barycentric subdivision of � 2

11. Show that as required at the end of the proof of the Ky Fan theorem (weak
version) on page 19, the vertices f˙e1g are not connected by a path in G.

12. Freund und Todd gave a combinatorial proof of Tucker’s lemma [FT81]. In this
exercise we want to follow their ideas in order to obtain an appealing proof
of Tucker’s lemma in a very special situation. We will later use this to obtain
a combinatorial proof of Kneser’s conjecture. Let K D sd1 � n�1 be the first
barycentric subdivision of the boundary complex of the cross polytope and let
� W vert.K/ ! f˙1; : : : ;˙.n � 1/g be an antipodal labeling. We assume,
contrary to Tucker’s lemma, that there does not exist a complementary edge.
Identify the vertices f˙e1 : : : ; : : : ˙ eng of � n�1 with the set f˙1; : : : ;˙ng
via ˙ei $ ˙i . A vertex of K is then given by a nonempty subset v �
f˙1; : : : ;˙ng with v \ �v D ;. Moreover, a simplex of K is given by an
inclusion chain of such sets � D fv0 � � � � � vkg. For an illustration, see
Fig. 1.23.

We call a simplex � complete if �.�/ D f�.v0/; : : : ; �.vk/g 
 .vk n f˙ng/.
We define a graph G whose vertex set is the set of all complete simplices, and
for two complete simplices � � � D fv0 � � � � � vkg, � is adjacent to � if
and only if �.�/ 
 .vk n f˙ng/. In order to reach a contradiction, show the
following. The simplices �˙ D ff˙ngg are complete and of degree 1 in G, all
other vertices of G have degree 2, but �˙ are not the endpoints of a path in G.

Note that the last vertex vk in � D fv0 � � � � � vkg completely describes
which coordinate orthant contains � . This information was used by Freund
and Todd to obtain a proof of Tucker’s lemma in the general case by the
same construction of the graph. They essentially replaced vk n f˙ng by the
coordinates of the hyperorthants, disregarding the nth direction.
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Fig. 1.24 An invariant closed loop

13. Generalize the Ky Fan theorem (strong version) to n-pseudomanifolds. An n-
dimensional pseudomanifold K is a simplicial complex in which all maximal
simplices are of dimension n, and any .n�1/-dimensional simplex is contained
in at most two n-dimensional simplices. The boundary of K , denoted by @K , is
the complex given by the .n�1/-dimensional simplices ofK that are contained
in exactly one n-dimensional simplex, together with all of their faces.

14. Let K be an antipodally symmetric triangulation of the 2-dimensional sphere,
and let � W vert.K/ ! f˙1g be an equivariant labeling, i.e., �.�v/ D ��.v/.
The labeling � induces a continuous map N� W jKj ! Œ�1;C1� to the interval as
shown in Exercise 29 on page 197. Show that there exists a closed loop c in jKj
that is invariant under the antipodal action, i.e., c D �c, and that is mapped to
zero under N�. A very easy example is shown in Fig. 1.24.

15. This exercise is concerned with an alternative proof that jENGj is (up to
homotopy) a wedge of spheres. Consider three compact pairwise disjoint spaces
X; Y;Z, and x0 2 X , y0 2 Y: Show that there is a homotopy equivalence

.X _ Y / 	Z ' .X 	Z/ _ .Y 	 Z/;
or more precisely

..X [ Y /=x0 � y0/ 	 Z ' .X 	 Z [ Y 	Z/=.x0; 0/ � .y0; 0/:

In other words, the wedge and join operations of spaces respect a distributivity
law.

16. Use the previous exercise to prove that jENGj is a wedge of N -dimensional
spheres. Determine the number of spheres involved. Hint: Realize the zero
dimensional geometric complexG as a wedge of 0-spheres.
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17. Show that in the proof of Theorem 1.16, tr. N / is indeed divisible by p.
18. Modify the proof of Theorem 1.16 in order to prove the following. LetG D Zp ,

where p � 2 is prime, let E be an N -dimensional real vector space with a
linear G-action, and let EG D f0g. Then every continuous G-equivariant map
f W jENGj ! E has a zero.

19. Modify the proof of Theorem 1.16 in order to prove the following. Let G D
Zp , where p � 2 is prime, and n � 1. Then there is no G-equivariant map
f W jEnGj ! jEn�1Gj.

20. Show that any finite groupG contains Zp as a subgroup for some prime p � 2.
21. Let G be any finite group. Use the previous two exercises in order to prove that

there is no G-equivariant map f W jEnGj ! jEn�1Gj. Hint: Proposition D.13.
22. This exercise proves a theorem by Dold [Dol83]. Let X and Y be G-spaces

such that Y is a free G-space. Assume that there exists a G-equivariant map
f W X ! Y . Then connX � dimY � 1: Hint: Proposition D.13 and the
previous exercise.

23. Show that the divisions I D A1 [ � � � [ Ak considered on page 29 have the
property that �i.Aj \Aj 0/ D 0 for all i; j; j 0 with j 6D j 0. Hence the divisions
of the interval are partitions of the interval with respect to the measures.

24. Solve the discrete necklace problem, which is the following. Let n; k � 2, and
let m1; : : : ; mn � 2 be any set of numbers, each divisible by k. Consider an
open necklace consisting of m1 C � � � Cmn beads of n different types such that
among them, mi are of type i for each i: Then there exist n.k � 1/ cuts and a
division of the resulting pieces among k thieves such that each thief obtains mi

k

beads of type i:



Chapter 2
Graph-Coloring Problems

A very important graph parameter is the chromatic number. For a given graph, it is
the smallest number of colors for which a coloring of the vertices exists such that
adjacent vertices receive different colors. The search for a proof of the four color
theorem—stating that every planar map can be colored with four colors such that
adjacent countries receive different colors (Fig. 2.1)—has certainly been one of the
driving sources [Ore67, Saa72, Tho98] of graph theory for a long time. Presently,
graph coloring plays an important role in several real-world applications and still
engages exciting research.

Fig. 2.1 A proper four-coloring of a map

In this chapter we will present an important side story, the story of a conjecture
formulated by Martin Kneser in 1955 that remained unsolved until 1977 (published
in 1978 [Lov78]). The revolutionary method with which László Lovász settled the
notorious conjecture can be seen as the origin of the field with which this book
deals. Guided by some deep insight, Lovász associated a simplicial complex to a
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Fig. 2.2 The Petersen graph in the guise of the Kneser graph KG5;2

graph in such a way that the topology of the complex provides some information
about the chromatic number of the graph, thereby transforming a discrete problem
into a topological one. The main tool he employed was the Borsuk–Ulam theorem.
His proof, and the efforts to understand it, have triggered a considerable amount of
research. By now, Lovász’s original proof has gone through many transformations
and inspired alternative proofs even until very recently. We will touch upon most of
the ideas involved in the several proofs that emerged over the last decades.

2.1 The Kneser Conjecture

Kneser’s original conjecture was published in 1955 as an exercise in Jahresberichte
der DMV [Kne55], the yearly account of the German Mathematical Society.
Apparently, at this time Kneser has been thinking about quadratic forms. But
the connection to the conjecture seems to have been forgotten. Kneser stated his
conjecture originally as a problem about sets, but the translation into a graph-
theoretic problem is straightforward. Denote the set of k-subsets of Œn� by

�
Œn�
k

�
.

Definition 2.1. The Kneser graph KGn;k for n � 2, k � 1, has vertex set
�
Œn�

k

�
,

and any two vertices u; v 2 �
Œn�
k

�
are adjacent if and only if they are disjoint, i.e.,

u \ v D ;.

To get a feeling for these graphs, let’s consider first some cases with easy
parameters. For k D 1, we obtain the complete graph on n vertices, i.e., any
two vertices are adjacent. For n D 2k, each k-set is adjacent to and only to its
complement. In other words, we obtain a complete matching, i.e., a set of disjoint
edges covering all vertices. For 2k > n, we obtain a set of vertices without any
edges. For this reason, we will restrict ourselves to the cases 2k � n in the sequel.
The first interesting case appears already for n D 5 and k D 2. Figure 2.2 shows
the Kneser graphKG5;2 which is the famous Petersen graph [Wes05, Die06].
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As was already observed by Kneser, KGn;k admits a proper coloring with
n � 2k C 2 colors simply as follows:

c W
 
Œn�

k

!

�! Œn � 2k C 2�;

u 7�! minfminfx W x 2 ug; n� 2k C 2g:

We have to check that vertices receiving the same color are not adjacent. Consider
two vertices u; v 2 �Œn�

k

�
with c.u/ D c.v/ D c. If c < n � 2k C 2, then c 2 u \ v;

otherwise, u; v � fn � 2k C 2; : : : ; ng. But fn � 2k C 2; : : : ; ng contains 2k � 1

elements, and hence u and v cannot be disjoint. The coloring witnesses the upper
bound 
.KGn;k/ � n � 2k C 2 for the chromatic number of the Kneser graph.
Kneser conjectured that this bound was sharp, in other words, it is not smaller than
n � 2k C 2.

Theorem 2.2 (Lovász [Lov78]). The chromatic number of the Kneser graph
KGn;k is n � 2k C 2.

We will discuss Lovász’s proof in more detail in the next section. After Imre
Bárány had learned about Lovász’ proof in 1978, he came up with a fairly short
proof of Kneser’s conjecture. Both proofs have different strengths. While Lovász’s
proof involves a theorem of deep insight that yields a lower bound for the chromatic
number of any graph, and then specializes to the family of Kneser graphs, Bárány’s
proof is a fairly direct and elegant application of the Borsuk–Ulam theorem, but
does not shed as much light on general graph-coloring problems.

The first proof we will discuss is the most recent proof by Greene [Gre02]. It is
a tricky simplification of Bárány’s proof.

Proof (topological). Assume that for some n and k the chromatic number ofKGn;k
is less than n� 2kC 2, and let c W �Œn�

k

� ! f1; : : : ; n� 2kC 1g be a proper coloring.
Set d D n � 2k C 1 and choose a set X of n vectors on the d -dimensional sphere
S
d such that any d C 1 of them constitute a linearly independent set. Identify these
n vectors with the ground set Œn�. In other words, each vertex ofKGn;k corresponds
to a set of k vectors on the sphere. In order to apply the Borsuk–Ulam theorem, we
will construct d open sets U1; : : : ; Ud and one closed set A covering S

d . Let

Ui D ˚
x 2 S

d W there exists a k-set S � X; c.S/ D i; S � H.x/
�
;

whereH.x/ D fy 2 S
d W hx; yi > 0g is the open hemisphere with pole x.

Now let A D S
d n .U1 [ � � � [ Ud/ be the complement. We show that none of

the sets contains a pair of antipodal points, hence obtaining a contradiction to the
Borsuk–Ulam theorem, Theorem 1.6(4).

Consider x 2 Ui , i.e.,H.x/ contains a k-subset of X colored with color i . Since
H.x/ and H.�x/ are disjoint and c is a proper coloring, H.�x/ cannot contain a
k-subset of X colored with i as well, and hence �x 62 Ui .
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Now assume ˙x 2 A. By definition of A, neither H.x/ nor H.�x/ contains a
k-subset of X . Hence there must be at least n � 2.k � 1/ D n � 2k C 2 D d C 1

points of X lying on the equator fy 2 S
d W hx; yi D 0g, which is contained in a

subspace of dimension d . This contradicts the condition that any d C 1 vectors of
X are linearly independent. ut

The second proof we discuss is quite recent as well and due to Jiřı́
Matoušek [Mat04]. It is considered to be the first combinatorial proof of Kneser’s
conjecture. The topological chore is an application of Tucker’s lemma in the very
special case that the vertices of the first barycentric subdivision of @QnC1 are
labeled. Exercise 12 on page 33 is concerned with a simple combinatorial proof for
Tucker’s lemma in this case.

Proof (combinatorial). Assume that there is a proper coloring c W �Œn�
k

� ! f2k �
1; 2k; : : : ; n � 1g of KGn;k with n � 2k C 1 colors. This will eventually yield a
contradiction to Tucker’s lemma. For this we need a little notation. LetK D sd1 @Qn

be the first barycentric subdivision of the boundary of the cross polytope Qn. As
explained in Exercise 12 on page 33, we can identify vert.K/ with the set Qn of
nonempty subsets v � f˙1; : : : ;˙ng such that v \ �v D ;. For any S 2 Qn, let
SC D fi W i > 0; i 2 Sg, resp. S� D fi W i > 0;�i 2 Sg. Let � be an arbitrary
linear order of the subsets of Œn� such that whenever jAj > jBj, then A � B .
The existence of such an extension is the subject of Exercise 1 in the appendix on
page 206. Now for any A � Œn� with jAj � k, set Nc.A/ D c.A0/, where A0 � A is
the set of the k smallest numbers in A.

We now define a labeling � W Qn ! f˙1; : : : ;˙.n � 1/g by

�.S/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

jS j; if jS j < 2k � 1 and SC � S�,

�jS j; if jS j < 2k � 1 and S� � SC,

Nc.SC/; if jS j � 2k � 1 and SC � S�,

�Nc.S�/; if jS j � 2k � 1 and S� � SC.

This labeling is antipodal and does not yield complementary edges and therefore
yields the desired contradiction. The antipodality is obvious, and in order to see
that there are no complementary edges, assume to the contrary that there are
S; T 2 Qn forming an edge in K with �.S/ D ��.T / > 0. By definition of
barycentric subdivision, S is contained in T or vice versa. Since the other case
works analogously, we consider only the case S � T . Hence jS j < jT j, and by
definition of �, we must have Nc.SC/ D Nc.T�/. But SC \T� � TC \T� D ;, which
yields a contradiction to the fact that c was a proper coloring. ut



2.2 Lovász’s Complexes 41

2.2 Lovász’s Complexes

In this section we will associate several simplicial complexes to graphs. All of these
constructions are due to László Lovász [Lov78, BK07]. These complexes will be
used to give lower bounds on the chromatic number.

While the conditions on a proper coloring of a graph—no monochromatic edge—
is a local condition, the chromatic number captures a global phenomenon. A good
example is an odd cycle, which has chromatic number 3. It can be colored vertex
for vertex along the cycle with two colors until the last vertex, where the true value
of the chromatic number is revealed. In order to obtain bounds for the chromatic
number, it is therefore necessary to capture the global behavior of the graph in some
way. There are quite a few global invariants for topological spaces. In that respect,
it seems natural to try to assign a topological space to a graph in such a way that the
global topological properties of the space reflect some global property of the graph.

The Neighborhood Complex

We will now describe Lovász’s neighborhood complex, the first construction of a
simplicial complex that we associate with a graph.

Let G D .V;E/ be a finite simple graph. Let the neighborhood complex N .G/
be the simplicial complex with vertex set V and simplices given by subsets A � V

such that all vertices in A have a common neighbor. As a first example consider
Fig. 2.3.

Note that the neighborhood complex of a graph without edges is empty, and as
soon as the graph has an edge it is nonempty.

The neighborhood complex of an odd cycle is an odd cycle of the same length. In
fact, if the odd cycle has the vertex set f0; 1; : : : ; 2kg in such a way that two vertices

2
1

2

164

5

3

4 3

65

Fig. 2.3 A graph G along with its neighborhood complex
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Fig. 2.4 Neighborhood complex of an odd cycle, of an even cycle, and of a bipartite graph

are adjacent if and only if they differ by one modulo 2kC 1, then the neighborhood
complex is a 1-dimensional complex with edge set

˚f0; 2g; f2; 4g; : : : ; f2k � 2; 2kg; f2k; 1g; f1; 3g; : : : ; f2k � 1; 0g�:

In the same manner, the neighborhood complex of an even cycle (of length greater
than or equal to 6) consists of two cycles, each half the length of the original cycle.
And more generally, if G D .V P[V 0; E/ is a bipartite graph with independent sets
V and V 0, then each simplex of N .G/ is contained in either V or V 0, and hence
the complex is not connected. Figure 2.4 illustrates all of these cases, where in each
case the graph is sketched in black and the neighborhood complex in gray. In the
case of the third bipartite graph, the facets of the neighborhood complex consist of
a 3-dimensional simplex and two 2-dimensional simplices sharing an edge.

As a last class of examples, we consider the neighborhood complexes N .Kn/

of the complete graph Kn. Let us denote the vertex set of Kn by Œn�. Then each
nonempty proper subset A � Œn� has a common neighbor and therefore is a simplex
of N .Kn/. Thus, N .Kn/ is the boundary complex of the simplex on the vertex set
Œn� and hence a sphere of dimension n � 2.

We have already found some indication of the phenomenon that global properties
of the neighborhood complex capture information about the chromatic number. If
the neighborhood complex of a graph is nonempty, then the graph has at least one
edge and therefore has chromatic number at least two. If we encounter a nonempty
connected neighborhood complex of a graphG, then we already know that it cannot
be bipartite and hence has chromatic number at least three.

The emerging pattern is perpetuating, as the following theorem says. We will
provide an easy proof on page 50. Before we state Lovász’s theorem, we should
briefly remind ourselves of the topological notion of k-connectedness as defined on
page 170. For more on this, and the subsequently used concepts of order topology,
we refer to Appendices B and C.

Theorem 2.3 (Lovász [Lov78]). Let G D .V;E/ be a finite simple graph. If the
neighborhood complex N .G/ of G is k-connected, then the graph has chromatic
number at least k C 3. In other words,


.G/ � conn.jN .G/j/C 3:
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Observe the general applicability of the theorem. Whenever we are interested in
the chromatic number of a graph G, we may determine its neighborhood complex,
and every lower bound we obtain for the connectivity of N .G/ yields a lower bound
for the chromatic number of G. In particular, Lovász obtained the first proof of the
Kneser conjecture by showing that conn .jN .KGn;k/j/ D n � 2k � 1. We start by
giving a very beautiful and short proof of this fact.

Proposition 2.4. The neighborhood complex N .KGn;k/ of the Kneser graph is
homotopy equivalent to a wedge of spheres of dimension n � 2k. In particular,
conn .jN .KGn;k/j/ D n � 2k � 1.

Proof. We prove that the face poset F.N .KGn;k// of N .KGn;k/, i.e., the set of
nonempty faces of N .KGn;k/ partially ordered by inclusion, is homotopy equivalent
to the following part, Bn;k , of the Boolean lattice

Bn;k D fS � Œn� W k � jS j � n � kg

By Corollary C.10 on page 206, the poset Bn;k is lexicographically shellable. In
particular, it has the homotopy type of a wedge of spheres of dimension n � 2k.

Define the order-preserving maps

f W F.N .KGn;k// �! Bn;k;

F 7�!
[
F D fx 2 Œn� W exists v 2 F such that x 2 vg;

and

g W Bn;k �! F.N .KGn;k//;

A 7�!
 
A

k

!

D fS � A W jS j D kg:

Then obviously f ı g D idBn;k , and for each F 2 F.N .KGn;k//, we have
idF.N .KGn;k//.F / D F � .g ı f /.F /. By the order homotopy lemma, Lemma C.3,
the maps idF.N .KGn;k// and g ı f are homotopic, and hence f is a homotopy
equivalence. ut

The Neighbor Set Function �

Returning to the situation of a general graph G, we define � to be the neighbor set
function, i.e., for a subset A � V of vertices of G, define �.A/ to be the set of all
vertices in V that are adjacent to all vertices in A, i.e.,

�.A/ D fv 2 V W v is adjacent to a for all a 2 Ag:
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Fig. 2.5 Proof of statements 1 and 2 in Proposition 2.5

Note that for each A � V , the two sets A and �.A/ are the vertex sets of a complete
bipartite subgraph of G, i.e., each vertex of A is adjacent to each vertex of �.A/.

With this notation, the simplices of N .G/ are precisely given by subsets A � V

such that �.A/ 6D ;.

Proposition 2.5. Let G D .V;E/ be a finite simple graph. The neighbor set
function � W P.V / ! P.V / of the power set of V to itself satisfies the following:

1. If A � B � V , then �.B/ � �.A/.
2. A � �2.A/ for any A � V .
3. �.A/ D �3.A/ for any A � V .

Proof. For the first two assertions we confine ourselves to a “proof by picture”
[Pól56] as given in Fig. 2.5.

The third statement is an obvious application of the first two. ut
Note that the function g ı f in the proof of Proposition 2.4 is the function �2 for

the Kneser graph. In detail,

.g ı f /.F / D g
�[

F
�

D
 S

F

k

!

D
(

A � Œn� W jAj D k;A \ v D ; for all v 2
 
Œn� nSF

k

!)

D fA � Œn� W jAj D k;A \ v D ; for all v 2 �.F /g

D �2.F /:
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Fig. 2.6 A graph, its poset of closed sets, and the Lovász complex

The Lovász Complex

We will now concentrate on the image of the neighbor set function � in general
and use it to define a new simplicial complex that we will call the Lovász complex,
L.G/, of a graph G. It is very closely related to the neighborhood complex, N .G/.
In fact, L.G/ will be a strong deformation retract of N .G/ that has more structural
properties. The richer structure will allow more topological tools to be used, namely
the Borsuk–Ulam theorem.

A set A � V in the image of � has the property that �2.A/ D A. To see this,
suppose that A D �.B/. Then �2.A/ D �3.B/ D �.B/ D A, by property 3
in Proposition 2.5. We will call sets A with this property closed, since � has the
properties of a closure operator. Denote by C.G/ the set of all nonempty proper
subsets of V that are closed, i.e.,

C.G/ D ˚
A � V W A 6D ;; A 6D V; �2.A/ D A

�
:

For example, in the case of a Kneser graph KGn;k , a set F � �
Œn�
k

�
of vertices is

closed if and only if �2.F / D �S
F
k

� D F .
Let G D .V;E/ be a finite simple graph. Let the Lovász complex L.G/ be the

order complex of the partially ordered set .C.G/;�/, i.e., the order complex of all
nonempty proper closed subsets of V ordered by inclusion. In particular, note that
each element of C.G/ is a face of the neighborhood complex N .G/, and hence
L.G/ will be a subcomplex of the first barycentric subdivision of the neighborhood
complex. For the example graph in Fig. 2.3, the graph itself, the poset of closed sets,
and the Lovász complex as a subcomplex of sdN .G/ are shown in Fig. 2.6. Note
how the neighbor set function � acts on this complex.

In particularly nice situations, every face of N .G/ is closed. One such case is
that of the complete graphKn on the vertex set Œn�. In this case �.A/ D Œn� n A. As
we have seen already, N .Kn/ is the boundary complex of an .n � 1/-dimensional
simplex. Hence, L.G/ is the order complex of its face poset, and therefore the
barycentric subdivision of the simplex boundary. Figure 2.7 shows the neighborhood
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Fig. 2.7 The neighborhood and Lovász complexes of K4

and Lovász complexes for the complete graphK4. It also illustrates that the neighbor
set function � is topologically the antipodal map on L.Kn/, i.e., for example
�.f2g/ D f134g and �.f1; 2g/ D f3; 4g.

Proposition 2.6. There is a homeomorphism ' W jL.Kn/j ! S
n�2 that is Z2-

equivariant, i.e., '.�.x// D �'.x/.
Proof. We may geometrically realize L.Kn/ as the boundary of the standard .n�1/-
dimensional simplex whose points are given by convex combinations

Pn
iD1 ti ei ,

with ti � 0,
Pn

iD1 ti D 1, and ti D 0 for at least one i . A vertex A � Œn� of
L.Kn/ then corresponds to the point eA D 1

jAj
P

i2A ei . Note that by definition,
the induced action on these vertices is given by �.eA/ D e�.A/. Moreover, observe
that we may identify the sphere S

n�2, together with its antipodal action, with the
subspace S D S

n�1 \ fx W Pn
iD1 xi D 0g � R

n. We will construct an equivariant
homeomorphism ' W jL.Kn/j ! S in two steps. We will first define ' on the points
corresponding to vertices of L.Kn/, and then extend the map predetermined by the
Z2-equivariance.

Let’s denote the center of the .n � 1/-dimensional standard simplex by c D�
1
n
; : : : ; 1

n

�
. Then define ' for any A � Œn� by

eA 7�! eA � c
keA � ck :

We claim that ' is Z2-equivariant on the set of points eA, A � Œn�. In order to show
this, it suffices to show that c lies on the line segment between eA and �.eA/. But
clearly

c D jAj
n
eA C

�
1 � jAj

n

�
�.eA/;

since .1� jAj
n
/ D j�.A/j

n
. We may now extend the map to all of jL.Kn/j. An arbitrary

point of jL.Kn/j is given by
Pk

iD1 ti eAi for some chain A1 � � � � � Ak � Œn� and
ti � 0,

Pk
iD1 ti D 1. Extending ' by



2.2 Lovász’s Complexes 47

14

5 6

2

5

3

6

1

4 3

2

46

35

Fig. 2.8 The retraction given by �2 in the proof of Proposition 2.7

'

 
kX

iD1
ti eAi

!

D
Pk

iD1 ti'.eAi /
kPk

iD1 ti'.eAi /k

yields a continuous map, which is equivariant by definition. It is left to the reader to
show the bijectivity of the resulting map. ut
For an alternative proof of the previous proposition we refer to Exercise 8 on
page 142.

Proposition 2.7. The Lovász complex L.G/ is a strong deformation retract of
the neighborhood complex N .G/. In particular, the two complexes are homotopy
equivalent.

Proof. Consider the map �2 W F.N .G// ! F.N .G//. As remarked before, since
�3 D �, the image of this map is C.G/. Let i W C.G/ ! F.N .G// be the inclusion
map. Then �2 ı i D idC.G/, and .i ı �2/.A/ 
 A D idF.N .G//.A/ for all A 2
F.N .G//. Hence, by the order homotopy lemma, Lemma C.3, the order complex
�.C.G// is a strong deformation retract of �.F.N .G///, which in turn is the first
barycentric subdivision of N .G/. The retraction map �2 for our example graph is
illustrated in Fig. 2.8. ut

A Z2-Action on L.G/

We will now turn our attention to the richer structural properties of the Lovász
complex L.G/. This was first investigated by James Walker [Wal83].

By statement 3 of Proposition 2.5, the map � induces a bijective simplicial
map from L.G/ to itself. First of all, it is a self-inverse bijection of the vertices,
and furthermore it is order-reversing. Hence, � maps inclusion chains to inclusion
chains, i.e., simplices to simplices.
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Since �2 D id on L.G/ we may identify the pair fid; �g with the 2-element group
Z2. Note that � leaves no A � V fixed, and therefore � provides a free Z2-action on
the Lovász complex.

We know already that in the case of the Kneser graphs we have homotopy
equivalences jL.KGn;k/j ' jN .KGn;k/j ' j�.Bn;k/j. Now observe that Bn;k is
also equipped with a fixed-point-free, order-reversing involution � given by taking
complements, i.e., �.A/ D Œn� n A for A 2 Bn;k .

The content of the next proposition is that these two Z2-actions are compatible.
We will not need it in the sequel, but we discuss it in order to get more accustomed
to the Lovász complex and the neighbor set function �.

Proposition 2.8. There is a Z2-equivariant homeomorphism from L.KGn;k/ to the
order complex �.Bn;k/.

Proof. We are essentially proving a stronger form of Proposition 2.4 along the same
lines. Let f 0 W C.G/ ! Bn;k be defined by F 7! S

F and let g0 W Bn;k ! C.G/

be given by A 7! �
A
k

�
. Then f 0 ı g0 D idBn;k is clear, and .g0 ı f 0/.F / D �2.F / D

F D idC.G/.F / for all F 2 C.G/. Both maps, f 0 and g0, are order-preserving, and
hence the order complexes of both posets are homeomorphic.

Now compute

f 0.�.F // D f 0.�.
 S

F

k

!

// D f 0.
 
Œn� nSF

k

!

/ D Œn� n
[
F D �.f 0.F //;

which yields the Z2-equivariance. ut
Note that the map f in the proof of Proposition 2.4 actually factors through

C.G/, as f D f 0 ı �2.

Graph Homomorphisms and Induced Maps

We now turn our attention to the proof of Lovász’s theorem, Theorem 2.3. An
important property of the constructions of the neighborhood and Lovász complexes
is the property that every graph homomorphism yields a simplicial map of the
associated complexes.

Let G D .V;E/ and H D .V 0; E 0/ be two finite simple graphs with neighbor
set functions � and �0. Let f W G ! H be a graph homomorphism, i.e., a map
f W V ! V 0 with the property that for every edge uv 2 E , the image f .u/f .v/ is
an edge of H .

We will abuse notation and write f .A/ for the image of a subsetA � V under f .
As Fig. 2.9 demonstrates, the inclusion f .�.A// � �0.f .A// holds for all A � V .

This implies, in particular, that if �.A/ 6D ;, then �0.f .A// 
 f .�.A// 6D ;.
Hence, f induces a simplicial map N .f / W N .G/ ! N .H/ by A 7! f .A/.
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Fig. 2.9 The interplay between the neighbor set functions and graph homomorphisms

As Fig. 2.9 shows, in general the inclusion f .�.A// � �0.f .A// can be proper.
Hence, in order to obtain an induced map on the Lovász complex, we have to take
the closure of the image under f . The induced map L.f / W L.G/ ! L.H/ is
given on the vertices of L.G/ by A 7! .�0/2.f .A//. It yields a simplicial map by
the basic observation that .�0/2.f .A// � .�0/2.f .B// for any A � B � V . The
map L.f / respects the neighbor set functions, i.e., L.f / is equivariant with respect
to the Z2-actions that � and �0 induce. In order to see this we need the following
lemma.

Lemma 2.9. For any graph homomorphism f W G ! H , the following relation
holds for any closed set A 2 C.G/:

.�0/2.f .�.A// D �0.f .A//:

Proof. We know already that f .�.A// � �0.f .A// for all A. We therefore have

.�0/2.f .�.A/// � .�0/3.f .A// D �0.f .A//

and

�0.f .A// D �0.f .�2.A/// D �0.f .�.�.A//// � .�0/2.f .�.A///: ut
Now consider an inclusion chain fA0 � � � � � Akg of closed sets of G, i.e., a
k-simplex of the Lovász complex L.G/. Then

L.f /.�.fA0 � � � � � Akg// D L.f /.f�.Ak/ � � � � � �.A0/g/
D f.�0/2.f .�.Ak/// � � � � � .�0/2.f .�.A0///g
D f�0.f .Ak// � � � � � �0.f .A0//g
D �0.ff .A0/ � � � � � f .Ak/g/
D �0.L.f /.fA0 � � � � � Akg//:
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Fig. 2.10 A three-coloring of G and the induced map of the Lovász complexes

We summarize the previous insights.

Proposition 2.10. Any graph homomorphism f W G ! H induces a Z2-
equivariant simplicial map L.f / W L.G/ ! L.H/. ut

Before we apply this to prove Theorem 2.3, let’s consider an enlightening
example. The graph homomorphisms we are mostly interested in are induced by
a coloring of the graph. In fact, if c W V.G/ ! Œm� is a proper m-coloring of the
graph, then c induces a graph homomorphism G ! Km. And conversely, every
graph homomorphismG ! Km yields an m-coloring of the graph. In other words,
the chromatic number of a graph G equals


.G/ D minfm � 0 W there exists a graph homomorphismG ! Kmg:
As an example, we consider a three-coloring of our example graph. We color the
vertices with colors white, gray, and black. Figure 2.10 shows the coloring along
with the induced map L.G/ ! L.K3/.

Proof (of Theorem 2.3). Assume that G possesses a proper m-coloring, i.e., there
exists a graph homomorphism f W G ! Km. Since N .G/ is k-connected by
assumption, so is L.G/ by Proposition 2.7. Hence, there exists a Z2-equivariant map
 W SkC1 ! jL.G/j, where Z2 acts on S

kC1 via the antipodal map. Such a map can
easily be constructed inductively using a Z2-invariant triangulation of the sphere
such as, for example, that given by the boundary complex of the cross polytope.
The details are given in the proof of Proposition D.13 on page 216. Together with
Proposition 2.6, we obtain the following composition of Z2-equivariant maps:

S
kC1  �! jL.G/j jL.f /j����! jL.Km/j '�! S

m�2:

By the Borsuk–Ulam theorem we havem � 2 � k C 1, and hence m � k C 3. ut
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Finally, we obtain a proof of Kneser’s conjecture along the lines of Lovász’s original
proof.

Corollary 2.11. For the family of Kneser graphs KGn;k we obtain 
.KGn;k/ �
n � 2k C 2.

Proof. By Theorem 2.3 and Proposition 2.4 we obtain


.KGn;k/ � conn.jN .KGn;k/j/C 3 D n � 2k � 1C 3 D n � 2k C 2: ut

2.3 A Conjecture by Lovász

This section is devoted to a more recent development. It is about a general approach
to endowing the category of graphs with topological structure, and in fact can be
seen as a generalization of the concepts we discussed in the previous sections of
this chapter. The concept was introduced by László Lovász, and the story line
develops along a conjecture by him claiming a somewhat analogous statement to
Theorem 2.3. The conjecture was proved by Eric Babson and Dmitry Kozlov in
2005 [BK07, Koz07]. A shorter and very elegant proof was later found by Carsten
Schultz [Schu06]. We will present his argument and follow in many respects his
original article.

By the definition of the neighbor set function �, which assigns the common
neighbors to a set of vertices in a graph, pairs A; �.A/ are the shores of complete
bipartite subgraphs. What does it mean for two sets A;B � V to be the two shores
of a complete bipartite subgraph of G? A fancy way to say it is that every choice of
vertices u 2 A and v 2 B induces a graph homomorphism ' W K2 ! G defined by
'.0/ D u and '.1/ D v. Compare Fig. 2.11. In terms of the neighbor set function �,
this amounts to requiring thatA � �.B/. Note that this impliesB � �2.B/ � �.A/.

A B

0
v

u

1

Fig. 2.11 Graph homomorphisms K2 ! G and shores of bipartite subgraphs
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Hom Complexes

The interpretation above leads to the following generalization of graph homomor-
phisms. Let T D .V 0; E 0/ and G D .V;E/ be graphs. A multihomomorphism from
T to G is a map ' W V 0 ! P.V / n f;g associating a nonempty subset of V to every
vertex of T such that every function f W V 0 ! V , with f .v/ 2 '.v/ for all v 2 V ,
is a graph homomorphism from T to G.

Note that indeed, a multihomomorphism has the property that for any pair
u; v 2 V 0 of adjacent vertices, the sets '.u/ and '.v/ are the vertex sets of complete
bipartite subgraphs ofG. In particular, any multihomomorphism fromK2 to a graph
G is given by nonempty sets A;B � V that are vertex sets of a complete bipartite
subgraph of G.

Each multihomomorphism ' from T to G can be identified with a product of
geometric simplices contained in

Y

u2V.T /
�jV.G/j�1

as follows. We clearly may identify the subsets of V.G/ with the faces of�jV.G/j�1.
Then, for each u 2 V.T /, the subset '.u/ � V.G/ defines a face F '

u � �jV.G/j�1.
With the multihomomorphism ', we now associate the product

Y

u2V.T /
F '

u �
Y

u2V.T /
�jV.G/j�1:

We denote the set of multihomomorphisms from T to G by Hom.T;G/ and
denote its geometric realization by

j Hom.T;G/ j D
[

'WV.T /!P.V .G//nf;g

multihom.

0

@
Y

u2V.T /
F '

u

1

A �
Y

u2V.T /
�jV.G/j�1:

First Examples

As a first example, consider Hom.K2; C3/, where C3 D is a cycle of length 3. The
multihomomorphisms in this case are given by all ordered pairs .A;B/ describing
two shores of a complete bipartite subgraph. If we denote the vertices of C3 by
0; 1; 2, these pairs are

.0; 1/; .0; 2/; .1; 0/; .1; 2/; .2; 0/; .2; 1/;

.01; 2/; .02; 1/; .12; 0/; .0; 12/; .1; 02/; .2; 01/;
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(12, 0)
(2, 0)

(2, 01) (2, 01)

(12, 0)

(1, 02)

(01, 2)(0, 12)

(02, 1)
(2, 1)

(02, 1)

(0, 1) (0, 12) (0, 2)

(01, 2)

(1, 2)

(1, 0)(1, 0)

(1, 02)

Fig. 2.12 j Hom.K2; C3/ j by itself and as a subcomplex of �2 ��2

(01,2,01)

(1,02,1)

(12,0,12)

(2,01,2)

(02,1,02)

(0,12,0)

Fig. 2.13 The space j Hom.P2; C3/ j

where we have abused notation by writing .0; 1/ instead of .f0g; f1g/ and .01; 2/
instead of .f0; 1g; f2g/, etc. The geometric realization of Hom.K2; C3/ consists of
six edges forming a circle. Figure 2.12 shows j Hom.K2; C3/ j by itself and as a
subcomplex of the product

Y

u2V.K2/
�jV.C3/j�1 D �2 ��2:

As with the Lovász complex L.C2rC1/ of an odd cycle, j Hom.K2; C2rC1/ j is
always homeomorphic to a circle, i.e., a 1-dimensional sphere, and j Hom.K2; C2r / j
is homeomorphic to two disjoint circles.

The next example, Hom.P2; C3/, for P2 D a path of length 2, involves
higher-dimensional cells. Each multihomomorphism is now given by a triple
.A;B; C / such that each of the pairs .A;B/ and .B; C / are the shores of complete
bipartite subgraphs of C3. Typical examples of dimension one and two are .0; 12; 0/
and .12; 0; 12/. Figure 2.13 shows the space j Hom.P2; C3/ j with the 1- and 2-
dimensional cells labeled.
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Fig. 2.14 The poset .Hom.P2; C3/;�/ and the order complex �.Hom.P2; C3//

The Partially Ordered Set Structure

The set Hom.T;G/ of multihomomorphisms from T to G is partially ordered by
inclusion, i.e., ' �  holds for '; 2 Hom.T;G/ if and only if '.u/ �  .u/ for
all u 2 V.T /. The order corresponds to the partial inclusion order of cells

Y

u2V.T /
F '

u � j Hom.T;G/ j ; ' 2 Hom.T;G/:

We will always refer to this partial order when considering Hom.T;G/ as a partially
ordered set.

In particular, we can assign the order complex to this partial order and obtain
a simplicial complex�.Hom.T;G// whose geometric realization j�.Hom.T;G//j
is homeomorphic to j Hom.T;G/ j. This is the content of Exercise 11 on page 68.
Figure 2.14 shows the Hasse diagram of the poset .Hom.P2; C3/;�/ and the order
complex�.Hom.P2; C3//.

Just as we can compose graph homomorphisms, we can do so with graph
multihomomorphisms. We suggestively use the following notation:

Hom.T;G/ � Hom.G;H/ �! Hom.T;H/;

.';  / 7�! ' 	  ;
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where the latter is defined by

.' 	  /.u/ D fw 2 V.H/ W there exists v 2 '.u/ such that w 2  .v/g:

It is an easy exercise to see that ' 	  is a graph multihomomorphism from T

to H that respects the inclusion order, i.e., ' � ' 0 and  �  0 implies ' 	  �
' 0	 0. This implies that 	 induces a simplicial map on the order complex. Compare
Exercise 12.

Proposition 2.12. For any three graphs T;G;H there is a continuous map

	 W j Hom.T;G/ j � j Hom.G;H/ j �! j Hom.T;H/ j;

which, restricted to graph homomorphisms, is identical to ordinary composition.
Moreover, 	 satisfies the associativity law.

Proof. The result follows from Lemma C.2, i.e., the fact that there is a homeomor-
phism j�.P �Q/j Š j�.P /j � j�.Q/j. The details are left to Exercise 13. ut

Z2-Structure

As in the previous section, we need more structure (such as a free Z2-action) on the
spaces we are considering. Note that T D K2, as well as any cycle T D Cn, admits
a self-inverse automorphism flipping an edge, i.e., a graph isomorphism � W T ! T

with �2 D idT and such that there exists an edge uv 2 E.T / with �.u/ D v

(and hence �.v/ D u). Let K2 and the odd cycle C2rC1 have vertex sets f0; 1g and
f0; 1; : : : ; 2rg, respectively. Denote by ˛ W K2 ! K2 the automorphism given by
˛.i/ D 1� i , and by ˇ W C2rC1 ! C2rC1 the automorphism given by ˇ.i/ D 2r� i .
See Fig. 2.15.

Proposition 2.13. Any self-inverse graph automorphism � W T ! T flipping an
edge induces a free Z2-action on j Hom.T;G/ j for any graph G via

j Hom.T;G/ j �! j Hom.T;G/ j;
x 7�! � 	 x:

Proof. It is clear that the map is self-inverse, since � 	 .� 	 x/ D .� 	 �/ 	 x D x.
We need to check that it is fixed-point-free. Assume that the edge flipped by �
has vertices u and v. If x 2 Q

w2V.T / F
'
w � j Hom.T;G/ j, then clearly � 	 x 2

Q
w2V.T / F

��'
w . Now

F '
u \ F ��'

u D F '
u \ F '

v D ;;

and hence � 	 x 6D x. ut
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1

10

0

β

α

2r−1

r−1

2r

r+1

r

Fig. 2.15 The edge-flipping automorphisms ˛ of K2 and ˇ of C2rC1

Corollary 2.14. For any graph G, the map ˛ induces a free Z2-action on
j Hom.K2;G/ j and ˇ does so on j Hom.C2rC1; G/ j. ut

Lovász and Hom Complexes

As we already discussed, the partially ordered set Hom.K2;G/ may be identified
with the set of all pairs .A;B/, with A;B � V.G/ nonempty sets that are the
two shores of a complete bipartite graph ordered by componentwise inclusion. The
correspondence is given by '.0/ D A and '.1/ D B . Now .˛	'/.0/ D '.˛.0// D
'.1/ D B , and similarly, .˛ 	'/.1/ D A. Hence, on the set of pairs the Z2-action is
given by .A;B/ 7! .B;A/. In particular, if we consider a pair .A; �.A// for a closed
set A � V.G/, we obtain .A; �.A// 7! .�.A/; A/. Hence, in the first coordinate we
are left with the Z2-action of � on the set C.G/ of closed subsets.

After these considerations we might expect a close relationship between the
Lovász complex L.G/ D �C.G/ and Hom.K2;G/.

The poset Hom.K2;G/ has been introduced before. Its order complex is a
version of the box complex and was thoroughly investigated by Matoušek and
Ziegler [MZ04]. One of their results is the following.

Proposition 2.15. There exist simplicial Z2-maps

f W sdL.G/ ! �Hom.K2;G/

and g W sd.�Hom.K2;G// ! sdL.G/.

Proof. A vertex of sdL.G/ is given by an inclusion chain fA0 � A1 � � � � � Akg
of nonempty closed sets of vertices of the graph G. The Z2-action on these chains
is induced by the Z2-action on L.G/, and is given by
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�.fA0 � A1 � � � � � Akg/ D f�.Ak/ � � � � � �.A1/ � �.A0/g:

Define f W sdL.G/ ! �Hom.K2;G/ on the vertices by

f .fA0 � A1 � � � � � Akg/ D .A0; �.Ak//:

Then f is well defined, since A0 � �.�.Ak// D Ak and �.Ak/ � �.A0/. It is
Z2-equivariant, since

f .�.fA0 � A1 � � � � � Akg// D �
�.Ak/; �.�.A0//

� D .�.Ak/; A0/:

In order to verify that f is simplicial, we consider two chains

fA0 � A1 � � � � � Akg � fA0
0 � A0

1 � � � � � A0
lg:

In this case, A0
0 � A0 � Ak � A0

l must hold, and therefore A0
0 � A0 and �.A0

l / �
�.Ak/.

Let us now construct the map g W sd.�Hom.K2;G// ! sdL.G/. A vertex c
of sd.�Hom.K2;G// is given by an inclusion chain of pairs c D f.A0; B0/ �
.A1; B1/ � � � � � .Ak; Bk/g with the property Ai � �.Bi / and Bi � �.Ai /, for
i D 0; : : : ; k. Consider the chain of inclusions

�2.A0/ � �2.A1/ � � � � � �2.Ak/ � �3.Bk/ D �.Bk/ � �.Bk�1/ � � � � � �.B0/

of nonempty closed sets. Define g.c/ to be the inclusion chain that one obtains by
eliminating repeated sets in this chain. This map is easily seen to be simplicial and
Z2-equivariant. ut

In fact, it is not hard to show that jL.G/j and j Hom.K2;G/ j are Z2-homotopy
equivalent. We will discuss this at the end of the section.

By applying Proposition 2.6 we obtain the following corollary.

Corollary 2.16. There are Z2-equivariant maps S
n�2 ! j Hom.K2;Kn/ j !

S
n�2. ut

Along the lines of the proof of Lovász’s theorem, Theorem 2.3, we obtain a new
version of Lovász’s theorem.

Corollary 2.17. For any graph G, there is the following bound on the chromatic
number:


.G/ � conn j Hom.K2;G/ j C 3:

Proof. Assume that j Hom.K2;G/ j is k-connected and that there exists an m-
coloring of G, i.e., a graph homomorphism f W G ! Km. Then there exists the
following sequence of Z2-maps:
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S
kC1 �! j Hom.K2;G/ j �! j Hom.K2;Km/ j �! S

m�2:

By the Borsuk–Ulam theorem we obtainm � 2 � k C 1. ut
We now turn our attention to the Z2-homotopy equivalence of jL.G/j and
j Hom.K2;G/ j. The following proof is due to Schultz [Schu10].

In the first step we will replace L.G/ by a Z2-homeomorphic copy. To this end,
recall the construction of the interval order of a partially ordered set as introduced
on page 203. We will apply it to the partially ordered set .C.G/;�/. In this case,

Int.C.G// D f.A;B/ W A;B 2 C.G/;A � Bg

ordered by .A;B/ � .A0; B 0/ if and only if A � A0 and B 0 � B .
By Proposition C.5, the geometric realizations of L.G/ D �.C.G// and

� Int.C.G// are homeomorphic. It is an easy exercise to see that under this
homeomorphism the Z2-action on Int.C.G// defined by .A;B/ 7! .�.B/; �.A//

corresponds to the Z2-action on L.G/.
Hence, it suffices to prove the following proposition.

Proposition 2.18. The partial orders Int.C.G// and Hom.K2;G/ are Z2-
homotopy equivalent.

Proof. Define the maps

f W Hom.K2;G/ �! Int.C.G//;

.A;B/ 7�! .�2.A/; �.B//;

and

g W Int.C.G// �! Hom.K2;G/;

.A;B/ 7�! .A; �.B//:

These maps are easily seen to be order-preserving and Z2-equivariant. Now

.f ı g/.A;B/ D f .A; �.B// D .�2.A/; �2.B// D .A;B/

and

.g ı f /.A;B/ D g.�2.A/; �.B// D .�2.A/; �2.B// 
 .A;B/:

In other words, f ıg D idInt.C.G// and g ıf � idHom.K2;G/ with respect to the order
on Hom.K2;G/. By the order homotopy lemma, Lemma C.3 and the following
Remark C.4, the composition g ı f is Z2-homotopic to the identity. ut
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Note that in fact, the previous proof yields that the map g is injective and that the
geometric realization of its image is a strong deformation retract of j Hom.K2;G/ j.

Lovász’s Conjecture

Contemplating Corollary 2.17, it seems natural to replace K2 by some other graph
in order to obtain new, and maybe stronger, lower bounds for the chromatic number.
The existence of a graph homomorphism from K2 to G witnesses a lower bound of
two for the chromatic number, and the existence of a homomorphism of an odd cycle
C2rC1 toG a lower bound of three. This raises the question whether Hom.C2rC1; G/
can also be used to obtain a general lower bound for the chromatic number. Lovász
conjectured that


.G/ � conn j Hom.C2rC1; G/ j C 4:

We will show something slightly stronger. In order to do so we will need a
measure for the topological complexity of a space with Z2-action resembling that of
connectivity, but taking the Z2-action into account.

Definition 2.19. LetX be a topological space with a Z2-action. The Z2-index of X
is defined to be

ind.X/ D minfk � 0 W there exists a continuous Z2-map X ! S
kg;

i.e., the smallest dimension k such that X can be mapped equivariantly to the
k-dimensional sphere endowed with the antipodal action.

Our main example of a space with Z2-action is the sphere S
n with the antipodal

action. It has ind.Sn/ D n by the Borsuk–Ulam theorem, Theorem 1.6.

Definition 2.20. Let X be a topological space with a Z2-action. The Z2-coindex of
X is defined to be

co-ind.X/ D maxfk � 0 W there exists a continuous Z2-map S
k ! Xg;

i.e., the largest dimension k such that the k-dimensional sphere endowed with the
antipodal action can be mapped equivariantly to X .

Again for our main example we have, by the Borsuk–Ulam theorem, Theorem 1.6,
that co-ind.Sn/ D n.

Lemma 2.21. Let X be a topological space with a free Z2-action. Then the
following inequalities hold:

ind.X/ � co-ind.X/ � conn.X/C 1:
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Proof. Let k D co-ind.X/ and l D ind.X/. Then there exists the following
composition of Z2-equivariant maps:

S
k �! X �! Sl :

And hence, by the Borsuk–Ulam theorem, ind.X/ D l � k D co-ind.X/.
Now let k D conn.X/. Then, by Proposition D.13, there exists a Z2-equivariant

map S
kC1 ! X , and hence co-ind.X/ � k C 1 D conn.X/C 1. ut

We will now prove a stronger version of Lovász’s theorem, Theorem 2.3, from
page 42.

Proposition 2.22. For any finite simple graph G, the following lower bound holds
for the chromatic number:


.G/ � ind.j Hom.K2;G/ j/C 2:

Proof. Let m D 
.G/ be the chromatic number of G. Hence, there exists a graph
homomorphism ' W G ! Km. This yields a map

Hom.K2;G/ �! Hom.K2;Km/;

 7�!  	 ';

which is Z2-equivariant. Applying Corollary 2.16, we obtain a Z2-equivariant map
j Hom.K2;G/ j ! S

m�2, and hence

ind.j Hom.K2;G/ j/C 2 � m D 
.G/: ut

Hom.K2; C2rC1/

We now turn our attention toward a proof of Lovász’s conjecture concerning
the relation between 
.G/ and Hom.C2rC1; G/. Since we understand the relation
between 
.G/ and Hom.K2;G/, and we have the map

j Hom.K2; C2rC1/ j � j Hom.C2rC1; G/ j �! j Hom.K2;G/ j;

we will first investigate j Hom.K2; C2rC1/ j. Figure 2.16 depicts the order complex
�.Hom.K2; C2rC1//. The gray bullets ( and ) correspond to graph multiho-
momorphisms K2 ! C2rC1 that actually are graph homomorphisms such as
'.0/ D fig and '.1/ D fi C 1g. For each edge e of C2rC1, there are exactly
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ρ → ρ ∗ β

r

r+1

0 2r

ψ

r−1

α ∗ ϕ ϕ

Fig. 2.16 The complex �.Hom.K2; C2rC1// for r D 2

two homomorphisms mapping K2 to e. The bullets with a black rim ( and )
correspond to graph multihomomorphisms ' W K2 ! C2rC1 such as '.0/ D fig
and '.1/ D fi � 1; i C 1g.

We want to consider two particular elements '; 2 Hom.K2; C2rC1/. They are
defined by

'.i/ D
(

f0g; if i D 0;

f2rg; if i D 1;
 .i/ D

(
frg; if i D 0;

fr � 1; r C 1g; if i D 1;

and they are shown in Fig. 2.16 as dark gray bullets. These elements induce
continuous maps f; g W j Hom.C2rC1; G/ j ! j Hom.K2;G/ j via f .x/ D ' 	 x
and g.x/ D  	 x. Let’s see how these maps behave with respect to the free Z2-
actions given by ˇ and ˛, as in Corollary 2.14:

f .ˇ 	 x/ D ' 	 .ˇ 	 x/ D .' 	 ˇ/ 	 x D .˛ 	 '/ 	 x D ˛ 	 .' 	 x/ D ˛ 	 f .x/
g.ˇ 	 x/ D  	 .ˇ 	 x/ D . 	 ˇ/ 	 x D  	 x D g.x/:

Here we used the fact that ' 	 ˇ D ˛ 	 ' and  	 ˇ D ˇ, as is easily checked.
In fact, the map 
 7! 
 	 ˇ corresponds to reflection along the dotted gray line in
Fig. 2.16. To summarize, f is equivariant with respect to the Z2-actions, whereas
g is constant on each orbit, i.e., constant on each pair x; ˇ 	 x. Moreover, f and
g are homotopic, since ' and  are connected by a path, i.e., a continuous map
h W Œ0; 1� ! j Hom.K2; C2rC1/ j with h.0/ D ' and h.1/ D  ; see Fig. 2.16. The
homotopy from f to g is now given by

H W j Hom.C2rC1; G/ j � Œ0; 1� �! j Hom.K2;G/ j;
.x; t/ 7�! h.t/ 	 x:
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Let us call Z2-equivariant maps odd and maps that are constant on each orbit even.

Lemma 2.23. Let X; Y be free Z2-spaces with Y 6D ;, and f; g W X ! Y

homotopic continuous maps, such that f is odd and g even. Then

ind.Y / � co-ind.X/C 1:

Before we prove the lemma, we will use it to prove Lovász’s conjecture. We
obtain the following inequality immediately.

Corollary 2.24. The previously considered maps f and g imply

ind.j Hom.K2;G/ j/ � co-ind.j Hom.C2rC1; G/ j/C 1: ut
The stronger form of Lovász’s 1978 theorem, Theorem 2.3, as shown in Proposition
2.22, yields


.G/ � ind.j Hom.K2;G/ j/C 2 � co-ind j Hom.C2rC1; G/ j C 3

� conn j Hom.C2rC1; G/ j C 4;

and we have therefore obtained a proof of Lovász’s conjecture that we will state as
a theorem in slightly stronger form than conjectured.

Theorem 2.25 (Babson, Kozlov [BK07]). For any graph G, the inequality

.G/ � co-ind j Hom.C2rC1; G/ j C 3 holds. ut

The proof of Lemma 2.23 relies on several concepts from the previous chapter.
In particular, the strong Ky Fan theorem plays an essential role.

Proof (of Lemma 2.23). Assume to the contrary that ind.Y / � co-ind.X/ and let
k D co-ind.X/. Then there exist the compositions of continuous maps

Nf ; Ng W Sk �! X
f;g��! Y �! S

k;

so that by the Z2-equivariance of the first and last maps, the map Nf is odd, and Ng is
even. Since f and g are homotopic, so are Nf and Ng. Let H W Sk � Œ0; 1� ! S

k be
the homotopy from Nf to Ng.

We need a simplicial version of H with the property that on the boundary
the two simplicial maps maintain their parity. This can be done easily. We start
with a simplicial version of S

k by considering the boundary @QkC1 D j� kj
of the .k C 1/-dimensional cross polytope. Denote by F the face poset of the
corresponding geometric complex � k , and let S D �.F � I/, where I is the poset
.f0; 1g; </. See Fig. 2.17 for an illustration.

Then jS j Š S
k � Œ0; 1�, and hence we can assume that H is a map from jS j to

j� kj. Now let r be large enough that there exists a simplicial approximation H W
sdr S ! � k , where H restricted to the two boundary components is odd and even,
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Fig. 2.17 The complex S D �.F � I/ for k D 1

respectively. This can be done easily by making choices consistent with the Z2-
action on the boundary components, since Nf and Ng were odd and even, respectively.
Compare the construction of simplicial approximation on page 217 and Exercise 16
on page 68.

By identifying ˙ei with ˙i , the map H can be considered a labeling function
vert.sdr S/ ! f˙1; : : : ;˙.k C 1/g. Since there are no edges conv.fCei ;�ei g/ in
� k , this labeling does not admit complementary edges. Moreover, note that there
are no .k C 1/-dimensional alternating simplices in sdr S , since there are too few
labels. And therefore, by the theorem of Ky Fan for pseudomanifolds as discussed
in Exercise 13 on page 33, the number of C-alternating k-dimensional simplices on
the boundary is even.

On the boundary component, where the labeling is odd, the number of C-
alternating k-simplices is odd by the weak version of Ky Fan’s theorem, Theo-
rem 1.8. But on the other component, which has an even labeling, obviously the
number of C-alternating k-simplices is even. Since the sum of an odd and an even
number cannot be even, we have reached a contradiction! ut

Theorem 2.25 can be phrased in a slightly stronger way using the concept of
cohomological index, as shown by Schultz [Schu06]. This concept might prove
useful because it can actually be computed, in contrast to the difficult determination
of indices, coindices, and connectivity.

2.4 Classes with Good Topological Lower Bounds
for the Chromatic Number

The family of Kneser graphs is one example of a graph class for which the
bound on the chromatic number obtained from the index of the associated spaces
j Hom.K2;G/ j is sharp. It is certainly interesting to see a general scheme to create
families of graphs in which this phenomenon occurs. One such scheme is the
generalized Mycielski construction.
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·0 1 r· ·

Fig. 2.18 The graph P 0
r : a path with a loop at 0

v∗

Fig. 2.19 The construction of the Mycielski graph M2C5

The Generalized Mycielski Construction

Let G be a finite simple graph and r � 2 a natural number. We are going to define
the generalized Mycielski graphMrG ofG with parameter r . To do so, consider the
graph P0

r , a path of length r with vertex set f0; 1; : : : ; rg with an additional loop at
0. See Fig. 2.18.

Consider the graphG�P0
r , which amounts to a copy ofG attached to the product

of G with a path Pr of length r , i.e.,

G � P0
r D G � f0g [G � Pr :

The set V.G/ � frg is an independent set in this graph. We will identify all of these
vertices in order to obtainMrG, i.e.,

MrG D G � P0
r = .V .G/ � frg/:

Let us denote the single vertex that is obtained by the identification of V.G/ � frg
by v�. Figure 2.19 shows the two steps of the construction for the 5-cycle G D C5
and r D 2, which in this case results in the Grötzsch graph.

This construction increases the chromatic number by at most one, i.e.,


.G/C 1 � 
.MrG/:
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Assume that c W V.G/ ! Œk� is a proper coloring of G. Then Nc W V.MrG/ D
.V .G/�f0; 1; : : : ; r�1g/[fv�g ! ŒkC1� defined by Nc.v; t/ D c.v/ and Nc.v�/ D
k C 1 is a proper coloring of MrG, as is easily checked. Now the following lemma
shows that the topological lower bound on the chromatic number also increases by
exactly one.

Lemma 2.26. Given any finite simple graph G, we have

co-ind.j Hom.K2;MrG/ j/ � co-ind.j Hom.K2;G/ j/C 1:

Proof. Let k D co-ind.j Hom.K2;G/ j/, and let f W S
k ! j Hom.K2;G/ j be

a Z2-equivariant map. We have to construct a Z2-equivariant map g W S
kC1 !

j Hom.K2;MrG/ j. In order to do so, we will work with the following homeomor-
phic model of SkC1. We know from Appendix B that

S
kC1 Š S

k 	 S
0;

which is easily seen to be homeomorphic to

S
k � Œ�1;C1�= �;

where � is defined by .x; t/ � .x0; t 0/ if either .x; t/ D .x0; t 0/ or t D t 0 2 f˙1g. In
other words, we obtain S

kC1 by taking the cylinder Sk � Œ�1;C1� and collapsing its
ends, Sk � f�1g and S

k � fC1g, each to a point. Obviously, the antipodal action on
this model of the sphere is induced by the map �.x; t/ D .�x;�t/ on the cylinder.
It therefore suffices to construct a Z2-equivariant map

S
k � Œ�1;C1� ! j Hom.K2;MrG/ j

that is constant on each end S
k � f�1g and S

k � fC1g.
Now consider the sequence of poset maps

Hom.K2;G/ � Hom.K2; P
0
r /

��! Hom.K2;G � P0
r /

	�! Hom.K2;MrG/;

where 	 is induced from the projection

G � P0
r ! MrG:

Note that this map is, by construction, equivariant with respect to the Z2-action
given by ˛. Since we already have the map f W S

k ! j Hom.K2;G/ j, we are
now going to investigate Hom.K2; P

0
r /. It turns out that j Hom.K2; P

0
r / j is an

interval with the multihomomorphism i 7! f0g in its center. Figure 2.20 shows
the partially ordered set Hom.K2; P

0
3 / and (in this 1-dimensional case also) the

simplicial complex�.Hom.K2; P
0
r //.
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(2, 3)(2, 1)(0, 1)(0, 0)(1, 0)(1, 2)(3, 2)

(13, 2) (1, 02) (01, 0) (0, 01) (02, 1) (2, 13)

Fig. 2.20 Hom.K2; P
0
3 /

(0, 0)(r,r−1) (r−2, r−1) (r−1, r−2) (r−1, r)

φ+φ−

Fig. 2.21 The extension Q of Hom.K2; P
0
r /

Note that the Z2-action ˛ on j Hom.K2; P
0
r / j is given by switching both ends of

the interval. We now extend the poset Hom.K2; P
0
r / to a poset Q by adding two

new elements �C and �� and extend the above poset map 	 ı � to a map

Hom.K2;G/ �Q '�! Hom.K2;MrG/:

The extended order is defined by the cover relations �C > .r � 1; r/ and �� >

.r; r � 1/. In general, we obtain a picture as shown in Fig. 2.21.
We extend the action of ˛ toQ by defining ˛ 	�˙ D ��, and hence there exists

an equivariant homeomorphism g W Œ�1;C1� ! jQj with respect to the Z2-action
t 7! �t on the interval.

Now the extension of the poset map	ı� is defined by '..A;B/; �C/ D .V .G/�
fr � 1g; fv�g/ and '..A;B/; ��/ D '.˛ 	 ..B;A/; �C// D ˛ 	 '..B;A/; �C/ D
.fv�g; V .G/ � fr � 1g/. This obviously yields an equivariant poset map that is
constant when restricted to either Hom.K2;G/ � f�Cg or Hom.K2;G/ � f��g.
Altogether, we obtain the following equivariant continuous map

S
k � Œ�1; 1� f �g���! j Hom.K2;G/ j � jQj j'j��! j Hom.K2;MrG/ j;

which is constant on each end S
k � f�1g and S

k � fC1g as desired. ut
This lemma, together with Proposition 2.22, Lemma 2.21, and the previous

observation, yields the following inequalities:


.G/C 1 � 
.MrG/ � co-ind.j Hom.K2;MrG/ j/C 2

� co-ind.j Hom.K2;G/ j/C 3:

In the case that the topological lower bound on the chromatic number of G is tight,
i.e., 
.G/ D co-ind.j Hom.K2;G/ j/C 2, we obtain
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.G/C 1 � 
.MrG/ � co-ind.j Hom.K2;MrG/ j/C 2 � 
.G/C 1:

In other words, the chromatic number increases by exactly one and the topological
lower bound remains tight. By iterating this procedure we obtain the following.

Proposition 2.27. Let G be a graph with 
.G/ D co-ind.j Hom.K2;G/ j/ C
2 and r1; : : : ; rs � 2. Then, for the iterated Mycielski construction H D
Mr1.Mr2.� � �Mrs.G/ � � � //, we obtain


.H/ D co-ind.j Hom.K2;H/ j/C 2 D 
.G/C s: ut
The immediate examples of graphs with tight topological lower bound are cycles

and the family of Kneser graphs. Indeed, we have for even cycles


.C2r / D 2 D co-ind.j Hom.K2; C2r / j/C 2;

for odd cycles


.C2rC1/ D 3 D co-ind.j Hom.K2; C2rC1/ j/C 2;

and for the Kneser graphs


.KGn;k/ D n � 2k C 2 D co-ind.j Hom.K2;KGn;k/ j/C 2:

Exercises

1. Show that for any n > d � 1, there exists a set X of n vectors on the d -
dimensional sphere S

d � R
dC1 such that any subset S � X with jS j D d C 1

elements is linearly independent.
2. Show that the sets Ui defined in the proof of the Kneser conjecture by Greene

on page 39 are open.
3. Prove the following lemma, known as Gale’s lemma [Gal56]. For every d � 0

and k � 1, there exists a subset X � S
d of 2k C d points such that every open

hemisphere contains at least k points of X , i.e., for all x 2 S
d , the intersection

X \ fy 2 S
d W hx; yi > 0g contains at least k elements. Hint: Consider the set

of points f.�1/i .1; i; i 2; : : : ; id / W i D 1; : : : ; 2k C d g.
4. Give a proof of Lovász’s theorem along the lines of Greene’s proof using

only open sets. You will probably find a proof that was originally given by
Bárány [Bár78]. Hint: Use Gale’s lemma from the previous exercise.

5. Consider the following induced subgraph SGn;k of the Kneser graph KGn;k
defined by Schrijver [Sch78]. The vertices are given by all k-subsets S of Œn�
such that S does not contain a pair of consecutive numbers modulo n, i.e., none
of the pairs f1; 2g; f2; 3g; : : : ; fn � 1; ng; fn; 1g is contained is S . We call these
sets stable. Since SGn;k is an induced subgraph of KGn;k , any two stable sets
are adjacent if and only if they are disjoint. Prove that 
.SGn;k/ D 
.KGn;k/ D
n� 2k C 2. Hint: Use the ideas of the previous two exercises and the following
interesting observation on polynomials.
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Observation: Let p.x/ be a polynomial of degree at most d , with real coeffi-
cients. Then there exists a stable k-subset S of Œ2kCd� such that .�1/ip.i/ > 0
whenever i 2 S .

6. Show that the graphs SGn;k defined in the previous exercise are vertex critical
with respect to the chromatic number, i.e., after removing an arbitrary vertex,
the chromatic number drops by at least one. Remark: This is a hard exercise.
At some point you might want to get some inspiration from Schrijver’s
article [Sch78].

7. Describe the neighborhood and Lovász complexes of SG2nC1;n and, further-
more, the action of � on the Lovász complex.

8. Let G be a finite simple graph and assume that ind.L.G// � l CmC 2. Show
thatG has a complete bipartiteKl;m as a subgraph. This result is due to Csorba,
Lange, Schurr, and Wassmer [CLSW04].

9. Show that there exists a homeomorphism from S
n�2 to the subspace S D S

n�1\
fx W Pn

iD1 xi D 0g � R
n that is equivariant with respect to the antipodal actions

as needed in the proof of Proposition 2.6 on page 46.
10. Show that the map ' defined in the proof of Proposition 2.6 on page 46 is

bijective.
11. Show that there is a natural homeomorphism between j Hom.T;G/ j and

j�.Hom.T;G//j.
12. Show that the definition of composition 	 of graph multihomomorphisms as

given on page 55 is well defined, associative, and respects the inclusion order.
13. Fill in the details of the proof of Proposition 2.12.
14. Show that the Z2-action on Int.C.G// as defined on page 58 corresponds to the

Z2-action on L.G/ under the homeomorphism of the geometric realizations.
15. Show that in fact, j Hom.K2;Kn/ j is Z2-equivariant homeomorphic to the

sphere Sn�2 endowed with the antipodal action.
16. Show that, as needed in the proof of Lemma 2.23, there exists a simplicial

approximation H of H such that H is odd on one of the boundary k-spheres
and even on the other.

17. Let G be a finite graph with 
.G/ D ind.j Hom.K2;G/ j/ C 2 and let c W
V.G/ ! C be a proper coloring with jC j D 
.G/. Show that for every partition
C D A P[B of the color set with A;B 6D ;, there exists a complete bipartite
subgraph KjAj;jBj of G such that one of the shores is colored with all of A, and
the other with all of B . This result is due to Simonyi and Tardos [ST07].

18. Show by elementary means that the Mycielski graph M2G has chromatic
number 
.M2G/ D 
.G/C 1.



Chapter 3
Evasiveness of Graph Properties

In many real-world situations we are forced to draw conclusions based only on
partial information. For example, when we buy a used car it is infeasible to check
every single part of the car. Yet an experienced person is able to almost guarantee
the reliability of a car after only a certain relatively small number of checks.

In this chapter we investigate graph properties and whether it is possible to decide
whether a given graph has a certain property based only on partial information about
the graph. The exposition is to some extent based on [Aig88], [Bol04], [Schy06],
and [KSS84].

Fig. 3.1 A part of the Scorpius star constellation [Bro03]

3.1 Graph Properties and Their Complexity

In this chapter we consider graphs on a fixed set of n vertices, say V D f1; : : : ; ng.
A simple graph G D .V;E/ is then determined by its edge set E � �

V
2

�
, which

allows us to identify G with E .

M. de Longueville, A Course in Topological Combinatorics, Universitext,
DOI 10.1007/978-1-4419-7910-0 3,
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2
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333

333

1 2 1 2 1

Fig. 3.2 The graphs on the vertex set V D f1; 2; 3g with at most two edges

Graph Properties

We are interested in graph properties such as planarity, connectedness, and acyclic-
ity. Graph properties are by definition required to be isomorphism invariant. In other
words, if P is a property of graphs on the vertex set V , then a graph G D .V;E/

has property P if and only if any isomorphic copy G0 D .V;E 0/ has property P .
Since we consider graphs on a fixed vertex set V , each graph G D .V;E/ that

we consider is determined by its edge set E . Hence, a property P of graphs on the
vertex set V can be identified with the family of edge sets of graphs satisfying the
property.

Definition 3.1. Let V be a fixed set of n � 1 vertices. A graph property P is a
family of subsets of

�
V

2

�
such that for any two isomorphic graphs .V;E/ Š .V;E 0/,

either E;E 0 2 P or E;E 0 62 P .

As a first example, assume n D 3 and consider the property P3;2 of having at
most two edges. Then

P3;2 D f;; f12g; f13g; f23g; f12; 13g; f12; 23g; f13; 23gg ;
where we used the standard abbreviation uv for the edge fu; vg; cf. Fig. 3.2.

Hide and Seek

We consider a game for two players, let’s call them Bob and Alice. They fix a vertex
set V and a graph property P of graphs with vertex set V . The idea of the game is
roughly that Bob imagines a graph and Alice wants to find out whether Bob’s graph
has property P .

From the viewpoint of Alice, Bob may have a fixed graph in mind. But Bob can
change which graph he is imagining after each of Alice’s questions, as long as it is
consistent with the information he has already given.



3.1 Graph Properties and Their Complexity 71

A game takes place as follows. Alice asks questions of the type, “Is e an edge of
the graph?” for potential edges e 2 �

V
2

�
, and Bob answers in each case with yes or

no, thereby revealing information about the graph’s edges and nonedges. So in each
stage of the game Alice has partial information about Bob’s graph: according to his
answers, she knows about some edges that are in the graph and some that are not.
Let’s call these sets of edges Y and N . She wants to decide as quickly as possible
whether Bob’s graph has property P . But what does that mean? Let’s call any graph
G D .V;E/ on the vertex set V a completion of the partial graph defined by .Y;N /
if Y � E and E \N D ;. So the graph that Bob has in mind is such a completion.
Alice wants to decide as quickly as possible whether every such completion of the
partial graph defined by .Y;N / has property P or whether every completion of the
partial graph does not have property P . Bob, on the other hand, wants Alice to ask
as many questions as possible.

For the graph property P3;2 given above, Alice might ask as follows: “Is 12 an
edge of the graph?” If Bob’s answer is no, any completion of the graph has at most
two edges, and Alice can answer, “The graph has property P3;2!” If the answer is
yes, she must keep asking. Possibly, “Is 13 an edge of the graph?” If the answer is
no, Alice is done; if it is yes, she indeed has to ask the third question, “Is 23 an edge
of the graph?” We see that if Bob always answers the first two questions with yes,
then Alice cannot do better than to ask all

�
3
2

� D 3 potential questions.
As noted above, Bob does not necessarily have to have a fixed graph in mind.

He may decide after each of Alice’s question which answer suits his goal best.
But from Alice’s viewpoint, Bob may already have a certain fixed graph in mind.
We can therefore also say that Alice wants to decide with certainty, and as quickly
as possible, whether this hypothetical graph has property P . At a particular stage of
the game, this hypothetical graph may be just any completion of the partial graph
that Alice has knowledge about so far.

Strategies

A strategy � of the seeker Alice is an algorithm that, depending on Bob’s answers at
each stage of the game, either assigns an edge that Alice uses for her next question
or if possible gives one of the following answers: “The graph has property P!” or
“The graph does not have property P!”

Alice’s strategy discussed in our previous example is shown schematically in
Fig. 3.3. For obvious reasons, such an algorithm is called a decision-tree algorithm.

A strategy  of the hider Bob is given by a map that assigns to each triple
.Y;N; e/ one of the answers yes or no, where Y;N � �

V
2

�
are disjoint edge sets

and e 2 �
V
2

� n .Y [ N/ is an edge in the complement. The sets Y and N represent
the sets of edges that Bob previously has answered with yes, respectively no, and e
is the edge about which Alice is currently asking. The pairs .Y;N / are called the
stages of the game, and their evolution completely describes the course of the game.



72 3 Evasiveness of Graph Properties

“Doesn’t have property P!”

no

yes no

noyes

23

13
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“Has property P!”

“Has property P!”

“Has property P!”

yes

Fig. 3.3 The strategy of the seeker
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Fig. 3.4 All possible strategies of the seeker and one particular strategy of the hider

For the example P3;2, a strategy for Bob is given by the map

.Y;N; e/ 7�!
(

yes, if jY [ fegj D jY j C 1 � 2;

no, otherwise.

A strategy of Bob determines a path from the top of the tree to a leaf in each
decision-tree corresponding to a strategy of Alice. Figure 3.4 shows all possible
strategies of Alice and the paths determined—drawn in bold—by Bob’s strategy
that we just defined. We observe that with this particular strategy of Bob’s, Alice is
always forced to ask the maximal number

�
3
2

�
of questions.
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Complexity

Alice wants to play with a fixed strategy that is optimal for her, i.e., a strategy that
minimizes the maximal length of a game with respect to all of Bob’s strategies.
The complexity of a graph property is a measure for precisely this length.

Definition 3.2. The complexity c.P/ of a graph property P is the minimal number
k for which there exists a seeker’s strategy such that regardless of the hider’s
strategy, the seeker needs to ask at most k questions.

For our simple example above, the complexity is c.P/ D �
3
2

� D 3, as discussed.
In order to phrase this definition in a formula, let c.P ; �;  / be the number of
questions that Alice has to ask when she is playing with strategy � and Bob is
playing with  . Then by definition,

c.P/ D min
�

max
 

c.P ; �;  /;

where � and  run through all possible strategies of the seeker and hider. Since
a simple graph on n vertices has at most

�
n
2

�
edges, we clearly have c.P/ � �

n
2

�
.

We call a strategy �0 for Alice optimal if it attains the minimum, i.e.,

c.P/ D max
 

c.P ; �0;  /:

With this new language in hand, we want to discuss the idea of a hypothetical
graph in Bob’s mind mentioned earlier. If G D .V;E/ is an arbitrary graph, thenG
defines a particular strategy  G for Bob. Namely,

.Y;N; e/ 7�!
(

yes, if e 2 E;
no, if e 62 E:

In other words, Bob has chosen the graphG and answers according to its edges and
nonedges.

Lemma 3.3. For any graph property P of graphs on the vertex set V ,

c.P/ D min
�

max
 

c.P ; �;  / D min
�

max
G

c.P ; �;  G/;

where the right-side maximum is taken over all possible graphsG with vertex set V .

Proof. Let � and  be arbitrary strategies for Alice and Bob. It suffices to show that
there exists a graphG such that c.P ; �;  / D c.P ; �;  G/. But this is easy. If Alice
and Bob play according to the strategies � and  , and if Y is the set of edges that
Bob has answered during the game with yes, then let G be the graph G D .V; Y /.

ut
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In other words, for Alice to choose an optimal strategy it does not matter whether
Bob is playing with a fixed graph in mind or is constructing the graph during the
game.

Evasiveness

Let’s consider some extreme cases for the values of c.P/. If the graph property
is empty, P D ;, in other words no graph has property P , then the seeker Alice
can answer right away: “The graph does not have property P!” Similarly, if all
graphs satisfy property P , i.e., P is the set of all subsets of

�
V
2

�
, Alice can answer

immediately. We call these two properties the trivial graph properties, and in these
cases the complexity is zero: the seeker Alice does not need to ask a single question.
Note that there are no other cases of graph properties with complexity zero.

The other extreme is more interesting, namely the case in which the complexity
is
�
n
2

�
, i.e., the maximal number. An easy class of examples with this complexity is

given by a generalization of our introductory example. For fixed n � 2 and 0 � k <�
n
2

�
, let V D f1; : : : ; ng and consider the graph property

Pn;k D
(

E �
 
V

2

!

W jEj � k

)

;

i.e., all graphs on the vertex set V with at most k edges. For this property a possible
strategy for the hider Bob might be to answer the first k questions with yes, and
all others with no. In other words, regardless of Alice’s strategy, she knows already
after the first k questions about the existence of k edges in the graph. But then she
has to keep asking about all other edges to make sure that there are not more than
k edges in the graph. Hence the complexity is c.Pn;k/ D �

n
2

�
, the maximal possible

number.
We call all properties P with maximal complexity c.P/ D �

n
2

�
evasive, as they

“tend to avoid self-revelation” [JA01].
Most nontrivial graph properties turn out to be evasive. We will see quite a few

examples later in this chapter.

The Greedy Strategy

One particular strategy for the hider Bob suggests itself, the following greedy
strategy. Bob answers yes whenever the graph constructed so far is contained in
a graph with property P , and no otherwise. More precisely, consider a particular
step in the game when the seeker asks, “Is e an edge of the graph?” and by the
previous answers knows the existence of a set Y of edges and a set N of nonedges
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already. The greedy strategy yields the answer yes whenever there exists an edge set
E 2 P disjoint from N such that Y [ feg � E , and no otherwise.

In our previous example for the property having at most k edges, the strategy we
described is the greedy strategy.

Lemma 3.4. Assume that Bob is playing the greedy strategy and that the game is
in stage .Y;N /, i.e., Alice has knowledge about the existence of a set Y of edges
and a set N of nonedges. Then any F with Y � F 2 P is disjoint from N .

Proof. Assume that there exists an F 2 P such that F \ N 6D ;. Let e 2 F \ N

be the edge that came first in the order of Alice’s questions. Then clearly because of
the existence of F 2 P , Bob would have had to answer yes to Alice’s question, “Is
e an edge of the graph?” A contradiction. ut

The following lemma tells us when the greedy strategy witnesses evasiveness of
the graph property.

Lemma 3.5. Let P 6D ; be a graph property, � any strategy for the seeker Alice,
and  the greedy strategy for the hider Bob. Then

c.P ; �;  / D
 
n

2

!

if for each E 2 P and e 2 E with E n feg 2 P , there exist an f 2 �
V

2

� n E and
F 2 P such that .E n feg/[ ff g � F .

Proof. Assume to the contrary that Alice has not yet asked
�
n
2

�
questions and can

already decide in stage .Y;N /, “The graph has property P!” Then Y [ N 6D �
V
2

�

and each E with Y � E � �
V
2

� n N satisfies E 2 P . Set E D �
V
2

� nN and choose
an arbitrary

e 2 E n Y D
  
V

2

!

nN
!

n Y D
 
V

2

!

n .Y [N/ 6D ;:

Then E n feg 2 P , and by assumption there exist f 2 �V
2

� n E D N and an F 2 P
such that .E n feg/ [ ff g � F . In particular, f 2 F \ N , in contradiction to the
previous lemma. ut

This simple criterion proves that quite a few graph properties are evasive.

Theorem 3.6. Let n � 3 and 0 � k <
�
n
2

�
. The following properties P of graphs

on n vertices are evasive:

1. The graph has at most k edges.
2. The graph has exactly k edges.
3. The graph is acyclic, i.e., it does not contain cycles.
4. The graph is a spanning tree.
5. The graph is connected.
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Fig. 3.5 The edge e D uv and its neighboring triangles
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Fig. 3.6 The graph G when wx is present

Proof. In all of these cases, the condition of Lemma 3.5 is easily checked. ut
As an interesting application of Lemma 3.5, we show that planarity is an evasive
property.

Theorem 3.7. For n � 5, the property of being planar is evasive.

Proof. Let E be the edge set of a planar graph and e D uv 2 E . Since E n feg is
always a planar graph, we have to show that there is an edge f 2 �V

2

� nE such that
.E nfeg/[ff g is planar. We may assume thatE is the edge set of a maximal planar
graph, since the statement is obvious otherwise. Consider a planar drawing of the
graphG D .V;E/. All faces of this drawing are triangles, and the edge e is an edge
of two neighboring triangular faces, say uvw and uvx. If wx 62 E , then f D wx
satisfies our needs, since after removal of e, we can draw the diagonal connecting w
and x. Compare Fig. 3.5. The gray regions in the figure depict the unknown rest of
the graph.

But if wx is an edge inG, then let wxy and wxz be the two triangles neighboring
wx, as illustrated in Fig. 3.6.

There are two cases to consider. The first case is that the pair of vertices fu; vg and
fy; zg are identical. Then the graph is the complete graph K4 as shown in Fig. 3.7,
which contradicts our assumption n � 5.

In the other case, the two pairs fu; vg and fy; zg are not identical. Let us assume
that u 62 fy; zg, since the situation in which v 62 fy; zg works analogously. Then yz
cannot be an edge of G because in the drawing it would have to intersect one of the
edges wx, uw, ux. This follows from the Jordan curve theorem, Theorem A.9. See
Fig. 3.8.
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Fig. 3.7 The two cases in which fu; vg and fy; zg are identical
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Fig. 3.9 Redrawing the edge wx and introducing yz in the drawing of G n fuvg

Hence, in G n fuvg we may redraw the edge wx in the quadrilateral that appears
after removal of uv, and draw the edge yz afterward. The whole procedure is shown
in Fig. 3.9. In other words, f D yz satisfies the required needs. ut

Nonevasive Graph Properties

There are only a few graph properties known to be not evasive. For an easy start, we
will describe a nonevasive graph property of graphs on a set V of six vertices. Let B6
be the graph property given by all possible edge sets E of graphs G D .V;E/ that
are isomorphic to one of the three graphs shown in Fig. 3.10. It is an easy exercise
to see that property B6 is nonevasive.
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Fig. 3.10 The three isomorphism classes of a nonevasive graph property

tail

body

Fig. 3.11 A scorpion graph

We will now describe a whole family of nonevasive graph properties due to
Best, van Emde Boas, and Lenstra [BEBL74]. Let n � 5 be fixed. A graph on n
vertices is called a scorpion graph if it contains two nonadjacent vertices of degree
1 and degree n� 2, called tail and body, whose uniquely defined common neighbor
(playing the role of Antares; cf. Fig. 3.1) has degree 2. There are no restrictions on
the adjacencies among the remaining n � 3 vertices, see Fig. 3.11.

Note that the body is the unique vertex of degree n � 2, and hence body and tail
are uniquely defined in any scorpion graph. Moreover, it is worth noting that there is
a certain symmetry between body and tail: the body is adjacent to all but one vertex,
while the tail is adjacent to exactly one vertex.

The remarkable fact about the property of being a scorpion graph is that it is
recognizable in a linear number of steps with respect to the number of vertices. In
particular, the property of being a scorpion graph is nonevasive for large enough n.

Theorem 3.8 (Best, van Emde Boas, and Lenstra [BEBL74]). Let P be the
property of being a scorpion graph on n � 5 vertices. Then the complexity of P
is bounded by c.P/ � 6n� 13.

Proof. We play the role of the seeker Alice and describe an algorithm that
determines in the required number of steps whether the hypothetical graph of the
hider Bob is a scorpion graph.

The idea is to determine a unique single candidate for a body or a tail vertex.
During the course of the game the vertices will be categorized into body and tail
candidates. We will refer to the edges to which Bob answers with yes as accepted
edges and to the edges with answer no as rejected edges. Note that a body candidate
is a vertex that has at most one rejected incident edge, and a tail candidate is a vertex
with at most one accepted incident edge. The algorithm has three phases. The first
phase serves to partition the vertex set into body and tail candidates. The second
phase reduces at least one of these sets to at most one candidate. With a unique
body or tail candidate the third, and final, phase decides whether the hypothetical
graph is a scorpion graph. After the description of the three phases, we count the
questions that are needed.
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Fig. 3.12 The knowledge of the seeker after the first n questions

Phase I: Each vertex of V D f1; : : : ; ng can uniquely be classified

• As body candidate if it has at most one rejected and at least two accepted incident
edges, and

• As tail candidate if it has at most one accepted and at least two rejected incident
edges.

In order to classify the vertices, we have to check at most three incident edges
per vertex. We start with the edge set of the cycle 1; 2; : : : ; n; 1, i.e., the edges
12; 23; 34; : : : ; .n � 1/n; n1. After these n questions, we know about two incident
edges of each vertex, and the result might look like Fig. 3.12. Accepted edges are
shown in bold; rejected edges are dotted.

The vertices with two accepted incident edges (such as vertex 3 in the figure)
already qualify as body candidates, while the vertices with two rejected incident
edges (such as vertex 1 in the figure) qualify as tail candidates. The remaining
vertices (e.g., vertex 2 in the figure) are still indifferent; they may qualify as body
or tail vertices. We denote the set of indifferent vertices by I . If I is empty, then
either all edges have been rejected, or all edges have been accepted. In the former
case, none of the vertices can be a body, while the latter case implies that none of
the vertices can be a tail. Either way, we can already answer, “The graph is not a
scorpion graph!” Otherwise, this set I has even cardinality greater than or equal to
2. The case jI j D 2, i.e., I consists of two adjacent vertices only, is an easy exercise
that we leave to the reader. In all other cases, jI j � 4, and we may divide I into
pairs of vertices that are not adjacent on the cycle. We are now asking for exactly
those edges that are given by these pairs. The result might look like Fig. 3.13. Now
each vertex is either a body or a tail candidate, which we depict in the figure by a
black, resp. white, bullet.

Phase II: We want to single out a unique candidate for either the body or the tail.
In order to do so, we will start by assigning a weight of 1 or 2 to each vertex.
We will then successively ask for edges and, after each step, adjust weights in such
a way that exactly one weight reduces by one and all others remain fixed. If a vertex
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Fig. 3.13 The knowledge of the seeker after nC jI j
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Fig. 3.14 The initial weights after Phase I

obtains weight 0 in this way, it is no longer considered a candidate, and we will no
longer ask for edges incident to this vertex.

The weights are defined differently for body and tail candidates as follows:

• A body candidate obtains weight 2 minus the number of rejected incident edges,
while

• a tail candidate obtains weight 2 minus the number of accepted incident edges.

Figure 3.14 shows the initial weights after Phase I.
Initially, the total weight, i.e., the sum of all weights, is obviously equal to 2n �

jI j. We now successively ask for edges with one vertex in the set of body candidates,
and one vertex in the set of tail candidates. Say v is a body candidate and w is a tail
candidate. We ask, “Is vw an edge of the graph?” If the answer is yes, then the
number of accepted edges incident to w increases by 1, and hence the weight of w
decreases by 1. Similarly, if the answer is no, the number of rejected edges incident
to v increases, and hence the weight of v decreases by 1. If either of the two weights
drops to zero, the vertex of weight zero is no longer considered a candidate, since
it has at least two accepted and two rejected incident edges. A few iterations of this
procedure are shown in Fig. 3.15.
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Fig. 3.15 A few iterations of Phase II

Since the total weight decreases by one in each iteration, after at most 2n�jI j�2
steps one of the three following situations occurs:

1. The set of body or tail candidates becomes empty.
2. The sets of body and tail candidates are both nonempty and one of them contains

exactly one element.
3. There are sets of b � 1 body candidates and t � 1 tail candidates remaining,

where minfb; tg � 2, and all edges between these sets have already been
asked for.

In situation (a), we can obviously answer, “The graph is not a scorpion graph!” In
situation (b), we proceed to Phase III. Now assume we are in situation (c). First
of all, note that the total weight is at least three. Therefore at most 2n � jI j � 3

questions have been asked so far in Phase II. Now let e be the number of accepted
edges between the body and tail candidates. Since each body candidate must be
adjacent to all but at most one tail candidate, we have b.t � 1/ � e. Similarly, since
each tail candidate has at most one neighbor among the body candidates, we have
e � t: Hence .b�1/.t �1/ � 1, and since minfb; tg � 2, we must have b D t D 2.
Let’s say the body candidate vertices are fa; bg and the tail candidate vertices are
fc; d g. Then 2 D b.t � 1/ � e � t D 2, and hence there are exactly two edges
between the body and tail candidates. Without loss of generality, the edges are ac
and bd . Then there are only two possibilities for a scorpion graph: either a is the
body and d the tail, or b is the body and c the tail. Compare Fig. 3.16. Let x be any
vertex other than a, b, c, and d . Now we ask for the edge ax. If ax is an edge of
the graph, then only a remains as body candidate. Conversely, if ax is not an edge,
then only b remains as body candidate. We then proceed to Phase III.

Phase III: We are left with a unique body or tail candidate u. Assume u is a body
candidate. We ask for the adjacency relations of u that are not yet known. There are
at most n � 3 of them. In case the degree of u is n � 2, we now know the unique
tail candidate. Checking its adjacency relations and the adjacency relations of the
unique common neighbor requires at most another n�3Cn�3 questions. The case
that u is a tail candidate is similar.
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dc

a

b

tail tail

body

body

Fig. 3.16 The case b D t D 2

Step count: The three phases require at most n C jI j
2

, 2n � jI j � 2, and 3n � 9

questions. Since jI j � 4, we obtain in total at most

nC jI j
2

C 2n� jI j � 2C 3n� 9 D 6n� jI j
2

� 11 � 6n� 13: ut

3.2 Evasiveness of Monotone Graph Properties

In the previous section we have seen quite a variety of evasive graph properties and
a few nonevasive graph properties. A noticeable difference is that all nonevasive
graph properties share one common feature: they are not monotone, i.e., they are
not closed under removing (or alternatively adding) edges.

Monotone Graph Properties

Definition 3.9. A graph property P is called monotone if it is closed under
removing edges, i.e., wheneverE 0 � E 2 P , then E 0 2 P .

Obvious examples of monotone properties are the properties having at most k edges,
being planar, being acyclic, etc.

Note that if a graph property P is closed under adding edges, then the comple-
mentary property

P D
( 
V

2

!

n E W E 2 P
)

is monotone. The fact that c.P/ D c.P/, as shown in Exercise 7, now justifies that
we concentrate only on properties closed under removing edges.
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All known monotone graph properties besides the trivial ones—as defined on
page 74—are evasive. This led Richard Karp in the early 1970s to the following
conjecture.

Conjecture 3.10 (R. Karp). Every nontrivial monotone graph property is evasive.

The main result of this section will show that the conjecture is true whenever
P is a monotone property of graphs on n vertices and n is a power of a prime
number. This was shown by topological methods in a striking paper [KSS84] by
Jeff Kahn, Michael Saks, and Dean Sturtevant in 1984. In the same publication,
they also proved the conjecture in the case n D 6, the smallest non-prime-power
case. All other cases are still open even though a great deal of research has been
carried out since then.

The proof of the prime-power case involves several steps. The first important step
will be to link the property of evasiveness to a topological property. Subsequently,
we will apply a somewhat deeper topological result along with a little bit of algebra.
The topological background will be explained in more detail in Appendix E.

Simplicial Complexes

The monotonicity condition yields a direct link to topology: every monotone graph
property defines an (abstract) simplicial complex.

In fact, consider a graph property P of graphs with vertex set V . Then P is an
abstract simplicial complex on the vertex set X D �

V
2

�
, i.e., a simplicial complex on

the edge set of the complete graph on V . Each E 2 P constitutes a face E � X of
the simplicial complex.

As a first example, we return to the property having at most two edges for
3-vertex graphs

P D f;; f12g; f13g; f23g; f12; 13g; f12; 23g; f13; 23gg ;

with our usual abbreviation uv for the edge fu; vg.
The graph property P corresponds to the boundary of a 2-simplex with vertex

set X D f12; 13; 23g as shown in Fig. 3.17. The graph on V with no edges
corresponds to the empty face, the graphs with precisely one edge correspond to
the 0-dimensional faces of the complex, and the graphs with precisely two edges
correspond to the 1-dimensional faces. Compare also Fig. 3.2 on page 70, where all
graphs with property P are shown.

In general, the property having at most k edges in an n-vertex graph corresponds
to the .k � 1/-skeleton of an

��
n

2

� � 1�-simplex.
The topological spaces associated with these examples are not completely trivial:

they have “holes.” It will turn out that any graph property is evasive as soon as the
associated space is topologically nontrivial in a very strong sense. Before we make
this precise by introducing the concept of collapsibility, we will first generalize our
notion of evasiveness to general set systems and thereby to simplicial complexes.
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{12, 13}

{12, 23} {13, 23}

1312

23

Fig. 3.17 The simplicial complex corresponding to the property having at most two edges in a
3-vertex graph

Evasiveness of Set Systems

We have seen that the graphs satisfying a given property correspond to the faces of
the associated simplicial complex. We will now generalize the game between the
hider and the seeker to arbitrary set systems.

The hider and seeker agree on a vertex set X and a set system S � P.X/. Now
the game is to decide whether a hypothetical subset � � X—unknown to the seeker
Alice—of the vertex set is an element of the set system S .

Alice follows a decision-tree algorithm with questions of the type “ Is x 2 �?”
for vertices x 2 X , and the hider Bob answers yes or no. Alice’s goal is to ask as
few questions as possible, whereas the aim of Bob is to force Alice to ask as many
questions as possible. The game is over as soon as Alice can decide whether � 2 S .

As before, the complexity, c.S;X/, is defined as the minimal number k such that
there exists a strategy for Alice that allows her always to finish the game by asking
at most k questions.

Definition 3.11. Let X be a set of m vertices and S a set system S � P.X/. The
pair .S;X/ is called evasive if the complexity c.S;X/ is equal to m, i.e., for every
strategy of the seeker Alice, there exists a subset � � X such that she needs to ask
m questions in order to decide whether � 2 S .

We will be mostly interested in the case that the set system is a simplicial complex
K � P.X/.

There are two interesting observations to discuss. First of all, not all elements
from X have to appear as vertices of K . This will be of some importance in the
sequel.

Secondly, this type of game is more general than the game for graphs: the size
of the vertex set of the simplicial complex can be arbitrary, while the number of
edges of the complete graphs are always binomial coefficients. Moreover, a graph
property is by definition invariant under graph isomorphism—which yields a certain
symmetry of the associated simplicial complex that we will discuss later—whereas
there is no such condition on the simplicial complexes we are now considering.
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Fig. 3.18 Examples of elementary collapses

Furthermore, note that if P is a monotone graph property of graphs on the vertex
set V , and X D �

V
2

�
, then P is an evasive graph property if and only if .P ; X/ is

evasive.

Collapsibility

Collapsibility is a property of simplicial complexes. Loosely speaking, a simplicial
complex is collapsible if it can be deformed to a single vertex by a sequence
of “scrunching steps.” The scrunching steps are given by so-called elementary
collapses. In order to define these, we first need to introduce the concept of a free
face.

Definition 3.12. A nonempty face � in a simplicial complex is a free face if

• It is not inclusion maximal in K , and
• It is contained in exactly one inclusion-maximal face of K .

An elementary collapse of K is a simplicial complex K 0 obtained from K by the
removal of a free face � 2 K along with all faces that contain � , i.e.,K 0 D K n f� W
� 2 K; � � �g. Whenever a complex K 0 is obtained from K by an elementary
collapse, we denote this by K&K 0.

Figure 3.18 gives a few examples of elementary collapses. It is an easy exercise to
show that an elementary collapse induces a homotopy equivalence of the polyhedra
associated with K and K 0. Similar to the concept of contractability, we introduce
the concept of collapsibility.

Definition 3.13. A simplicial complex K is collapsible if there exists a sequence
of elementary collapses K D K0&K1&K2& � � � &Kr D f;; fzgg onto a single
vertex.
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Fig. 3.19 A collapsible simplicial complex

Fig. 3.20 A noncollapsible simplicial complex

x x x

Fig. 3.21 A complex and the link and deletion of the vertex x

Figure 3.19 shows a collapsible simplicial complex along with the sequence of
elementary collapses, while Fig. 3.20 illustrates a simplicial complex that is not
collapsible: it allows one elementary collapse, but afterward does not possess any
more free faces.

Since elementary collapses induce homotopy equivalences, any collapsible
complex is also contractible. (For simplicity, we will call a simplicial complex
contractible if its polyhedron is contractible.) But note that the concepts of con-
tractability and collapsibility are not identical. There exist contractible complexes
that are not collapsible. A prominent example for such a complex is the dunce
hat [Zee63] and Bing’s house with two rooms [Bin64].
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Link, Deletion, and Collapsibility

In order to show the main result of this section—as stated in the section title—
we need the concept of two particular complexes that occur in our setting. Let
K � P.X/ be a simplicial complex and x 2 X . The simplicial complexes link
and deletion of x are defined to be

lk.x;K;X/ D f� � X n fxg W � [ fxg 2 Kg;

del.x;K;X/ D f� � X n fxg W � 2 Kg:

If no confusion aboutK and X can occur, we will abbreviate the two complexes by
lk.x/ and del.x/. Note that if x 2 X n vert.K/, then lk.x/ D ; and del.x/ D K .
Also note that if x is an isolated vertex of K , i.e., when fxg is a maximal face of
K , then lk.x/ D f;g. A more illuminating example, where x 2 vert.K/, is given in
Fig. 3.21.

Lemma 3.14. Let K � P.X/ be a simplicial complex and x 2 X . If lk.x/ and
del.x/ are collapsible, then so is K .

Proof. Note that the collapsibility of lk.x/ implies in particular that lk.x/ is
nonempty and hence x 2 vert.K/. It clearly suffices to show that K can be
collapsed down to del.x/. Since this is fairly straightforward, the reader is encour-
aged to provide the details accompanying the picture proof [Pól56] as shown in
Figs. 3.22–3.24. ut

Nonevasive Complexes Are Collapsible

The following theorem establishes the essential link between evasiveness and
topology.

Theorem 3.15. Let X 6D ; and K � P.X/ be a nonempty simplicial complex. If
.K;X/ is nonevasive, then K is collapsible.

Proof. First of all, note that K 6D f;g, since .f;g; X/ is easily seen to be evasive
for X 6D ;. And hence K has at least one vertex. We now proceed by induction
on n D jX j. The case n D 1 is clear. For the induction step n � 2 consider
the decision-tree of an algorithm that proves nonevasiveness of .K;X/ and assume
“x 2 �?” is the first question according to the algorithm.

Denote by �L, respectively �R, the strategies belonging to the left branch L
succeeding the yes answer to the first question, respectively the right branch R
succeeding the no answer, as shown in Fig. 3.25.

Consider lk.x/ D lk.x;K;X/ and del.x/ D del.x;K;X/. We claim that
.lk.x/; X n fxg/ and .del.x/; X n fxg/ are nonevasive. In order to see this, observe
that for any subset � � X n fxg, we have � 2 lk.x/ if and only if � [ fxg 2 K , and
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lk(x)x

Fig. 3.22 The complex K , a vertex x, and lk.x/

Fig. 3.23 The collapsing sequence of lk.x/

x x

x

x

Fig. 3.24 Collapsing K onto del.X/

� 2 del.x/ if and only if � 2 K . Hence �L is a strategy proving nonevasiveness of
.lk.x/; X n fxg/, and �R is a strategy proving nonevasiveness of .del.x/; X n fxg/.

We want to apply the induction hypothesis. We have to be a little careful about
the possibility that lk.x/ or del.x/ may be empty.

If lk.x/ D ;, then clearlyK D del.x/, which is nonempty by assumption. Since
.del.x/; X n fxg/ is nonevasive, we obtain by the induction hypothesis that K is
collapsible. If del.x/ D ;, then by the fact that K has at least one vertex, we must
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R

yes

“x ∈ s?”

L

no

Fig. 3.25 The two branches L and R succeeding the first question of the seeker

have K D f;; fxgg, which is collapsible by definition. If neither lk.x/ nor del.x/ is
empty, then by the induction hypothesis, both complexes are collapsible, and we are
done by an application of Lemma 3.14. ut

3.3 Karp’s Conjecture in the Prime-Power Case

In this section we will finally prove Karp’s conjecture, Conjecture 3.10, in the prime-
power case, i.e., we are going to prove that every nontrivial monotone property of
graphs with a prime-power number of vertices is evasive.

We give a brief outline of the proof that also serves as a guide through the section.
Let P be a property of graphs on the vertex set V and let jV j be a prime-power.
Consider the simplicial complex K � P.X/ associated with P , where X D �

V
2

�
.

We will prove the contrapositive of Karp’s conjecture: If K 6D ; and P is not
evasive, then K D P.X/, i.e., P must be the trivial property containing all graphs.
Thinking of K as a simplicial complex, K D P.X/ means that it is the complex
given by the simplex X and all its faces.

The nonevasiveness ofK yields, by Theorem 3.15, thatK is collapsible. Now the
symmetry of K inherited by the fact that P is invariant under graph isomorphisms
comes into play. We will consider a symmetry subgroup that acts transitively on the
vertices of K , i.e., for each pair of vertices of K there is a symmetry interchanging
the two vertices.

In the subsequent step, we will employ a strong topological result that states that
a contractible simplicial complex with a symmetry group satisfying some group-
theoretic condition must contain a simplex that remains fixed under the whole
symmetry group. In turn, the transitivity of the group action implies the desired
equalityK D P.X/.
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Fig. 3.26 The graphs G D .V; E/ and .V; 	 	E/

Group Actions on Graph Properties

Let P be a property of graphs on the vertex set V , i.e., P � P.X/, where X D �
V
2

�

is the set of all edges.
The symmetric group, Sym.V /, acts on the set V via 	 �u D 	.u/, and this action

induces an action on the set X of edges via 	 � uv D 	.u/	.v/.
Moreover, if E � X is the edge set of a graph, then 	 �E is defined to be the set

of edges

	 �E D f	 � uv W uv 2 Eg � X

defining a new graph .V; 	 � E/. Hence we have an induced action of Sym.V / on
the set of graphs on the vertex set V . Figure 3.26 shows an example of a graph
G D .V;E/ on the vertex set V D fa; b; c; d; eg and its image .V; 	 �E/ under the
induced action of the element

	 D
�
a b c d e

b d a c e

�
2 Sym.V /:

The invariance of P under graph isomorphism translates into the condition that
for any 	 2 Sym.V /,

E 2 P if and only if 	 �E 2 P :

In other words, any graph property is invariant under the action of the group
Sym.V /.

It is easy to see that this group action is transitive on the set X , i.e., if uv; xy 2�
V
2

� D X is an arbitrary pair of edges, then there exists a 	 2 Sym.V / such that
	 � uv D xy.

Lemma 3.16. Let K � P.X/ be a simplicial complex. Assume that the group G
acts transitively on X such that K is invariant under the induced action. If the set
of fixed points jKjG of the induced action on the polyhedron jKj is nonempty, then
K D P.X/.
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Proof. Let x 2 jKjG be a fixed point and � 2 K the simplex that is minimal under
inclusion with the property that x 2 j� j. We claim that � D X , which proves the
lemma. Since � cannot be a vertex by the transitivity of the group action, x is, in
fact, contained in the interior of j� j. If � 6D X , then choose elements a 2 � and
b 2 X n � , and let g 2 G be such that g � a D b. Then clearly g � � 6D � , and hence
in particular, int.g � j� j/ \ int.j� j/ D int.jg � � j/ \ int.j� j/ D ;. This contradicts
the fact that j� j contains the fixed point x. ut

The following theorem from Smith theory—the homological theory of orbits and
fixed points of group actions on simplicial complexes—is an immediate corollary
of Theorem E.16 on page 228.

Theorem 3.17. Let K � P.X/ be a simplicial complex. Assume that the finite
groupG acts onX such thatK is invariant under the induced action. Furthermore,
assume that

• jKj is contractible,
• There exists a normal subgroupH E G, such thatH is a p-group, i.e., the order

of H is a power of a prime p, and
• The quotientG=H is cyclic.

Then the set of fixed points jKjG is nonempty. ut

A Group Action in the Prime-Power Case

Assume now that the number of elements of the vertex set V is a prime-power. Let’s
say jV j D pr for some prime p. Without loss of generality, we may assume that
V D F is the ground set of the finite Galois field F with pr elements [Hun74].
Consider the following subgroupG of Sym.V /:

G D ffa;b W a; b 2 F; a 6D 0g ;

where fa;b W V ! V is the affine linear function defined by fa;b.x/ D ax C b.
Then G acts transitively on

�
V
2

�
due to the fact that det

�
u 1
v 1

� D u � v is nonzero for
u 6D v. Now consider the subgroup

H D ff0;b W b 2 F g

of G. Clearly H is a p-group, since its cardinality jH j D jF j D pr is a power
of a prime. Moreover, the quotient G=H is isomorphic to the multiplicative group
.F n f0g; �/ of the field F . It is a basic exercise in algebra to see that this group is
always cyclic for finite fields F .
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A Proof of Karp’s Conjecture in the Prime-Power Case

Now we have only to put the pieces together in order to obtain a proof of Karp’s
conjecture in the prime-power case.

Theorem 3.18 (Khan, Saks, Sturtevant [KSS84]). Assume that P is a nontrivial
monotone graph property of graphs on the vertex set V and that jV j D pr is a
power of a prime. Then P is evasive.

Proof. Assume that P 6D ; is a monotone nonevasive property of graphs on the
vertex set V . We have to show that P D P.X/ is the remaining trivial property. Let
X D �

V
2

�
and let G be defined as above, acting transitively on X . By Theorem 3.15,

P is collapsible. Since collapsible complexes are contractible, the desired result
follows from Theorem 3.17 and Lemma 3.16. ut

3.4 The Rivest–Vuillemin Theorem on Set Systems

We end this chapter with a theorem by Rivest and Vuillemin [RV76] that is very
similar to Theorem 3.18 and proves evasiveness for general set systems on a
ground set of prime-power cardinality with a transitive group action. In contrast
to Theorem 3.18, it has an elementary proof based purely on a counting argument.

Let X be a set and S � P.X/ a family of subsets. The starting point is a very
interesting observation, the proof of which we leave as an exercise.

Lemma 3.19. If the number of sets in S of even cardinality is different from the
number of sets of odd cardinality, then .S;X/ is evasive. ut

Now assume that a group G � Sym.X/ acts transitively on X and leaves S
invariant, i.e., 	 � S D f	.�/ W � 2 Sg D S for every 	 2 G. Let � 2 S be an
element of S and G � � D f�1; : : : ; �kg � S the orbit of � . For x 2 X , let h.x/ be
defined to be the number of sets in the orbit that contain x, i.e.,

h.x/ D jfi 2 Œk� W x 2 �i gj:
By the transitivity of the group action, we easily see that h.x/ is independent of
the choice of x 2 X . So let us denote this number simply by h. Then, by double
counting, we obtain the identity kj� j D hjX j.
Theorem 3.20. Let X be a set of prime-power cardinality pr and S � P.X/ a
family of subsets such that ; 2 S and X 62 S . If, moreover, there exists a transitive
group action on X leaving S invariant, then .S;X/ is evasive.

Proof. Let � 2 S , � 6D ;, and let G � � D f�1; : : : ; �kg � S be the corresponding
orbit. Then, by the preceding considerations, kj� j D hpr . Since j� j < pr , we
conclude that p divides the size k of the orbit. Hence p divides the size of each
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orbit in S except the size of the orbit f;g. Since S is partitioned by the orbits, the
number of sets in S of even cardinality turns out to be different from the number of
sets of odd cardinality. ut

Note that this beautiful theorem has no effect on Karp’s conjecture since the
number of edges of a complete graphKn is a prime-power only in the case n D 3.

Exercises

1. Let .aij / be a matrix with real entries. Show that

max
i

min
j
aij � min

j
max
i
aij

with equality if and only if there exist i0 and j0 such that the entry ai0j0 is
minimal in row i0 and maximal in column j0.

2. Give an example of a graph property P satisfying

min
�

max
G
c.P ; �;  G/ 6D max

G
min
�
c.P ; �;  G/:

3. Let I D Œ0; 1� be the unit interval. Prove or disprove: if f W I � I �! R is a
continuous map, then

max
x2I min

y2I f .x; y/ D min
y2I max

x2I f .x; y/:

4. Prove the converse of Lemma 3.5. More precisely, show that if  is the greedy
strategy for the hider and if

min
�
c.P ; �;  / D

 
n

2

!

;

then for each E 2 P and e 2 E with E n feg 2 P , there exist an f 2 �V
2

� n E
and F 2 P such that .E n feg/[ ff g � F .

5. Give a proof of Theorem 3.6 on page 75.
6. Provide the missing details for the case jI j D 2 in Phase I of the algorithm in

the proof of Theorem 3.8, thereby completing the proof.
7. Prove that c.P/ D c.P/ for any graph property P , where P is as defined on

page 82.
8. Show that the graph property B6 defined on page 77 is not evasive.
9. Property B6 can easily be generalized to a property of graphs on a fixed number
n � 6 of vertices. Let Bn be the property given by all graphs on n vertices
isomorphic to any of the three shown in Fig. 3.27. Compared to Fig. 3.10, the
center edge has been replaced by a path of length n� 5.
Show that the graph property Bn is not evasive.
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Fig. 3.27 The three isomorphism types of graphs in Bn

Fig. 3.28 Graphs describing a nonevasive graph property

10. Let P be the graph property given by all possible graphs that are isomorphic
to one of the three graphs shown in Fig. 3.28. Show that P does not satisfy the
condition of Lemma 3.5.

11. Show that the graph property P defined in the previous exercise is not
evasive [MW76].

12. Show that if K 0 is obtained from K by an elementary collapse, i.e., K&K 0,
then the polyhedron jK 0j is a strong deformation retract of jKj. In particular,
the polyhedra jKj and jK 0j are homotopy equivalent.

13. Provide the details of the proof of Lemma 3.14 on page 87.
14. Show that the group G D ffa;b W a; b 2 F; a 6D 0g � Sym.F / as defined on

page 91 acts transitively on
�
F
2

�
for any finite field F .

15. Let G be defined as in the previous exercise and H D ff0;b W b 2 F g � G.
Show that the quotient G=H is isomorphic to the multiplicative group .F n
f0g; �/.

16. Let .G; �; e/ be a finite multiplicative group and m the largest order among its
elements. Show that gm D e for any g 2 G.

17. Let F be a finite field. Use the previous exercise to show that the multiplicative
group .F n f0g; �/ is cyclic. Hint: Consider the polynomial xm � 1 2 F Œx�.

18. This exercise is concerned with a result by Kahn, Saks, and Sturtevant [KSS84]
showing asymptotic quadratic complexity for nontrivial monotone graph prop-
erties. Let

c.n/ D minfc.P/ W P monotone, nontrivial property of n-vertex graphsg:

Prove that c.n/ � n2

4
� '.n/, where ' W N ! N is a function with

limn!1 '.n/

n2
D 0.

Besides Theorem 3.18, you may use the following results.

(a) A lemma by Kleitman and Kwiatkowski [KK80] stating that
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c.n/ � minfc.n � 1/; q.n � q/g;

where q is the prime-power nearest to n
2
.

(b) A result from number theory that states that there is a function  W N ! N

with limn!1  .n/

n
D 0 and the property that for each n there exists a prime

number between n �  .n/ and nC  .n/.

19. Provide a proof of Lemma 3.19 on page 92.
20. Show that h.x/, as defined on page 92, is independent of the choice of x 2 X .



Chapter 4
Embedding and Mapping Problems

Embedding problems in discrete geometry lead to very challenging and interesting
questions. A very basic question is whether a given graph G is planar, i.e.,
can be drawn in the plane such that edges do not cross. Kuratowski’s theorem,
Theorem A.18, answers this question in terms of forbidden subgraphs. In this
chapter we want to pursue an alternative characterization with methods from
algebraic topology that reduce to simple linear algebra computations.

More generally, we may ask whether a given simplicial complex admits a
geometric realization in some fixed dimension n. As shown in Proposition B.41
on page 177, any d -dimensional simplicial complex admits a geometric realization
in R

2dC1. Is the dimension 2d C 1 optimal in general? We will introduce a general
criterion in order to investigate these questions.

Beyond questions of embeddability and nonembeddability, we will be concerned
with whether, for a given graph or complex, all maps into some Euclidean space
have some predetermined intersection property and whether maps with such a
property exist.

4.1 The Radon Theorems

We start with a classical theorem from convex geometry: the affine Radon theorem.

Theorem 4.1. Any set S � R
d of d C 2 points admits a partition S D U P[V

into two sets such that their convex hulls intersect nontrivially, i.e., conv.U / \
conv.V / 6D ;.

Figure 4.1 shows the essentially different configurations of points, and the
resulting partitions, in the case d D 2.

The affine Radon theorem is, in fact, a very special nonembeddability result.
This becomes clear in the following equivalent version about affine linear maps of
the standard simplex into Euclidean space.

M. de Longueville, A Course in Topological Combinatorics, Universitext,
DOI 10.1007/978-1-4419-7910-0 4,
© Springer Science+Business Media New York 2013
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Fig. 4.1 Three configurations of four points in R2 and intersecting convex hulls

Theorem 4.2. For any affine linear map f W �dC1 �! R
d , there exist two disjoint

faces �1; �2 � �dC1 such that f .�1/\ f .�2/ 6D ;.

Observe that since �1 and �2 must be nonempty, this theorem may also be stated
for affine linear maps @�dC1 ! R

d from the boundary of the simplex to Euclidean
space. In this form, it may remind the reader of a version of the Borsuk–Ulam
theorem. This connection is investigated in [Bár79]. In particular, one is tempted
to wonder whether affine linearity is necessary or whether the condition on the map
can be weakened. This leads us to the continuous Radon theorem.

Theorem 4.3. For any continuous map f W �dC1 �! R
d , there exist two disjoint

faces �1; �2 � �dC1 such that f .�1/\ f .�2/ 6D ;.

Indeed, this theorem can be proven by applying the Borsuk–Ulam theorem, e.g.,
by supplying a continuous map g W S

d ! �dC1 such that for every x 2 S
d , the

minimal faces of �dC1 containing g.x/ and g.�x/ are disjoint.
We will use the continuous Radon theorem as a motivating example for

developing a method to obtain nonembeddability results. The continuous—and
hence also the affine linear—Radon theorem will then be proven as a corollary to
Proposition 4.10 on page 101.

4.2 Deleted Joins and the Z2-Index

Deleted Join of Spaces

In order to attempt a methodical approach, we want to start with a fairly general
embedding problem. Let X and Y be topological spaces. In our situation, X will
be the polyhedron of a simplicial complex—as defined on page 175—and Y D R

d .
We want to show that there is no embedding fromX into Y , i.e., there does not exist
a map f W X ! Y that is a homeomorphism onto its image. In order to prove this,
it suffices to show that there is no continuous injective map f W X ! Y . Assuming
that a continuous injective map f exists, it induces a map of the twofold joins

f �2 W X 	X �! Y 	 Y;
.tx1; .1 � t/x2/ 7�! .tf .x1/; .1 � t/f .x2//:
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Injectivity of f translates into the condition that

f �2
�
1

2
x1;

1

2
x2

�
62
	�

1

2
y;
1

2
y

�
W y 2 Y




for every x1 6D x2. In other words, we obtain a restricted map

f �2
� W X 	X n

	�
1

2
x;
1

2
x

�
W x 2 X



�! Y 	 Y n

	�
1

2
y;
1

2
y

�
W y 2 Y



:

We call the space X 	 X n ˚� 1
2
x; 1

2
x
� W x 2 X� the (twofold) deleted join of X ,

which we denote by X 	� X . Observe that Z2 acts freely on the deleted join via
interchanging the two coordinates

.tx1; .1 � t/x2/ 7! ..1 � t/x2; tx1/;

and clearly the map f �2
� is equivariant with respect to this action.

Hence, in order to obtain nonembeddability of X into Y , it suffices to show that
there is no Z2-equivariant map X 	� X ! Y 	� Y .

Z2-Index

An appropriate tool in order to decide the nonexistence of Z2-equivariant maps is
the Z2-index. Recall Definition 2.19 from page 59. If X is a topological space with
a Z2-action, then the Z2-index of X is defined to be

ind.X/ D min
˚
k � 0 W there exists a Z2-map X ! S

k
�
:

An immediate observation is that if f W X ! Y is an equivariant map
of Z2-spaces and g W Y ! S

k witnesses ind.Y / D k, then the composition
g ı f W X ! S

k is Z2-equivariant and yields ind.X/ � k D ind.Y /. In other
words, we have observed the following fact, which provides us with a tool that fits
our needs.

Lemma 4.4. If ind.X/ > ind.Y /, then there is no Z2-equivariant map X ! Y .

Since we are addressing the question of embeddings into R
d , we should

determine the index of the deleted join R
d 	� R

d . For our purposes it suffices to
bound the index from above.

Proposition 4.5. The Z2-index of Rd	�Rd satisfies the bound ind.Rd	�Rd / � d .

Proof. For x D .x1; : : : ; xd / 2 R
d , let Nx D .1; x1; x2; : : : ; xd / 2 R

dC1. Then the
map
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{2} + ∅

{1, 2} + ∅

{1} + ∅

{2} + {1}

{1} + {2}

∅ + {1}

∅ + {2}

∅ + {1, 2}

Fig. 4.2 Deleted join of a 1-simplex

R
d 	� R

d �! S
d ;

.tx; .1 � t/y/ 7�! t Nx � .1 � t/ Ny
kt Nx � .1 � t/ Nyk ;

is a continuous Z2-equivariant map. ut
In fact, with a little more effort it can be shown that ind.Rd 	� R

d / D d .

Deleted Join of Simplicial Complexes

In the sequel we will need a combinatorial analogue of the deleted join operation
for simplicial complexes.

Definition 4.6. The (twofold) deleted join K�2
� D K 	� K of a simplicial complex

K is defined as the complex

K�2
� D f�1 C �2 W �1; �2 2 K; �1 \ �2 D ;g � K 	K:

Let’s develop some intuition for the deleted join. First of all, note that Z2 acts
freely on the deleted join via �1 C �2 7! �2 C �1. The deleted join of a simplex is
easily determined, and its geometric realization turns out to be a sphere. An example
is given in Fig. 4.2.

Lemma 4.7. Let K be the abstract simplicial complex representing an n-simplex
and its faces, i.e., K D 2ŒnC1� D f� W � � Œn C 1�g. Then the deleted
join K 	� K is Z2-equivariant isomorphic to the boundary complex K.� n/ of
the .n C 1/-dimensional cross polytope (as defined on page 14). In particular,
ind.jK 	� Kj/ D n.

Proof. The following map clearly yields an isomorphism of complexes:
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K 	� K �! K.� n/;

�1 C �2 7�! fei W i 2 �1g [ f�ei W i 2 �2g: ut
The previous lemma can also be obtained via the following observation. The details
are left to the exercises.

Lemma 4.8. If K and L are simplicial complexes, then there is an isomorphism
.K 	 L/�2� Š K�2

� 	 L�2
� .

Proof. The isomorphism is given by

.K 	 L/�2� 7�! K�2
� 	 L�2

� ;

.�1 C �1/C .�2 C �2/ 7�! .�1 C �2/C .�1 C �2/: ut

Maps and Deleted Joins

Now let us return to the continuous Radon theorem, now phrased in a slightly more
general setting. Let d � 1, and let K be an (abstract) simplicial complex for which
we want to show that for any continuous map f W jKj ! R

d , there exist disjoint
faces �1; �2 2 K such that f .j�1j/\ f .j�2j/ 6D ;.

Note 4.9. Any continuous map f W jKj ! R
d induces the following composition

of continuous Z2-equivariant maps:

jK 	� Kj ,! jK 	Kj Š��! jKj 	 jKj f �2

��! R
d 	 R

d :

If we now assume to the contrary that f W jKj ! R
d is a map with f .x1/ 6D f .x2/

whenever x1 2 j�1j, x2 2 j�2j and �1\�2 D ;, then f induces a Z2-equivariant map

jK 	� Kj �! R
d 	� R

d :

Hence we obtain the inequality ind.jK 	� Kj/ � ind.Rd 	� R
d / � d and obtain

the following result.

Proposition 4.10. Let K be a simplicial complex. If ind.jK 	� Kj/ > d , then for
every continuous map f W jKj ! R

d , there exist disjoint faces �1; �2 2 K such that
f .j�1j/\ f .j�2j/ 6D ;. ut
Corollary 4.11 (Continuous Radon theorem). For any continuous map
f W�dC1 �! R

d , there exist two disjoint faces �1; �2 � �dC1 such that
f .�1/ \ f .�2/ 6D ;.

Proof. LetK D f� W � � ŒdC2�g be the abstract simplicial complex with geometric
realization �dC1. Then Lemma 4.7 implies ind.jK 	� Kj/ D d C 1 > d . ut
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4.3 Bier Spheres

We want to apply Proposition 4.10 in a more sophisticated situation. In order to do
so, we will investigate a certain family of spheres.

With any proper simplicial subcomplexK of the abstract .n�1/-simplex 2Œn�, one
can associate a certain triangulated .n � 2/-dimensional sphere, Biern.K/, known
as the Bier sphere [Bie92].

In this section we will explain the construction of the Bier spheres and will prove
that these complexes are indeed spheres. It is based on the article [Lon04].

The Combinatorial Alexander Dual and Barycentric Subdivision

Let K � 2Œn� be a proper subcomplex of the simplex. The combinatorial Alexander
dualK? of K is given by the complements of the nonfaces of K:

K? D f� � Œn� W � 62 Kg;

where � denotes the complement Œn� n � . One way to characterize the Alexander
dual is by the property that its facets are given by the complements of the minimal
nonfaces of K .

Recall that for a simplicial complex L, the simplices of its first barycentric
subdivision, sd.L/, are given by (possibly empty) inclusion chains of nonempty
simplices of L. The following immediate lemma characterizes the Alexander dual
via its first barycentric subdivision.

Lemma 4.12. For any proper subcomplexK � 2Œn�, we have

ft0 � � � � � tlg 2 sd.K?/ � sd.2Œn� n fŒn�g/

if and only if ftl � � � � � t0g is disjoint from sd.K/ � sd
�
2Œn� n fŒn�g�. ut

An illustration of the lemma is given in Fig. 4.3. In this case, the minimal
nonfaces of K are given by the simplices f1; 4g and f2; 3; 4g. Now consider, for
example, the simplex ft0 � t1g D ff3g � f2; 3gg 2 sd.K?/. Then ft1 � t0g D
ff1; 4g � f1; 2; 4gg is disjoint from sd.K/.

Shore Subdivisions

We are interested in a certain type of subdivision of subcomplexes of a join,K 	L,
of complexes. The following observation is immediate.
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Fig. 4.3 A complex K , its Alexander dual K?, and the interplay of their barycentric subdivisions

Lemma 4.13. Let K � 2Œn� and L � 2Œm� be two abstract simplicial complexes,
and let J be a subcomplex of the join K 	 L. Then J and the complex

fs 	 t W s 2 sd.2�/; t 2 sd.2�/; � 	 � 2 J g � sd.K/ 	 sd.L/

possess identical geometric realizations. ut
In the literature, the complex fs 	 t W s 2 sd.2�/; t 2 sd.2�/; � 	 � 2 J g is also
referred to as the shore subdivision of J with respect toK 	L. Note that in general,
it is distinct from sd.J /.

The Bier Sphere

For any proper subcomplex K � 2Œn�, the Bier sphere, Biern.K/, is defined as the
deleted join of K with its combinatorial Alexander dual, i.e.,

Biern.K/ D K 	� K? D f� 	 � W � 2 K; � 2 K?; � \ � D ;g
D f� 	 � W � 2 K; � 62 K; � � �g:

Lemma 4.12 and Fig. 4.3 suggest the following.

Proposition 4.14. For any proper subcomplex K � 2Œn�, the geometric realization
of the Bier sphere, j Biern.K/j, is an .n � 2/-sphere. More precisely, the shore
subdivision of Biern.K/ with respect to K 	 K? is isomorphic to sd.2Œn� n fŒn�g/,
i.e., the barycentric subdivision of the boundary of the .n�1/-dimensional simplex.
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Proof. The shore subdivision of Biern.K/ is given by

fs 	 t W s 2 sd.2�/; t 2 sd.2� /; � 	 � 2 K 	� K?g
D f.s1 � � � � � sk/ 	 .t1 � � � � � tl / W ;6Dsi��;;6Dtj��; �2K; � 62K; ���g:

It maps isomorphically to sd.2Œn� n fŒn�g/ via

.s1 � � � � � sk/ 	 .t1 � � � � � tl / 7! .s1 � � � � � sk � tl � � � � � t1/:

This map is well defined and injective, since sk � � � � � tl � Œn�. To see
surjectivity, let u1 � � � � � um 2 sd.2Œn� n fŒn�g/. Let u0D;, umC1DŒn�, and k�0 be
maximal with the property that uk 2 K . Then define � to be uk and � to be ukC1. Set
s1Du1; : : : ; skDuk and t1Dum; : : : ; tm�kDukC1. Then trivially the following hold:

• s1 � � � � � sk � � ,
• t1 � � � � � tm�k � � ,
• � 2 K; � 62 K; � � � , and
• .s1 � � � � � sk/ 	 .t1 � � � � � tm�k/ 7! u1 � � � � � um.

An application of Lemma 4.13 finishes the proof. ut

4.4 The van Kampen–Flores Theorem

Now we return to the question of realizability of simplicial complexes. Propo-
sition B.41 shows that any d -dimensional simplicial complex can geometrically
be realized in R

2dC1. The following van Kampen–Flores theorem shows that in
general, this is optimal.

Theorem 4.15. Let K be the d -dimensional skeleton of the abstract .2d C 2/-
dimensional simplex, i.e.,

K D f� W � � Œ2d C 3�; j� j � d C 1g :

Then there is no embedding from jKj into R
2d . In fact, for any continuous map

f W jKj ! R
2d , there exist two disjoint simplices ofK whose images intersect.

Note that the special case d D 1 says that the 1-dimensional skeleton of the 4-
dimensional simplex is not embeddable in R

2, i.e., the complete graph K5 on five
vertices is not planar.

Proof. We want to combine the concept of Bier spheres with Proposition 4.10. First
we compute the combinatorial Alexander dual of K and obtain a surprising result:
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Fig. 4.4 A six-vertex triangulation of the projective plane

K? D f� � Œ2d C 3� W Œ2d C 3� n � 62 Kg
D f� � Œ2d C 3� W jŒ2d C 3� n � j � d C 2g
D f� � Œ2d C 3� W j� j � d C 1g D K:

Hence for the twofold deleted join, we obtain

K 	� K D K 	� K? D Bier2dC3.K/;

which is a .2d C 1/-dimensional sphere with Z2-index 2d C 1. ut

A Six-Vertex Triangulation of the Projective Plane

There is another interesting example of a simplicial complex K with the property
that it coincides with its Alexander dual K?. Consider the abstract simplicial
complexK on the vertex set Œ6� as given in Fig. 4.4.

The polyhedron of its geometric realization is a projective plane. Its facets are
given by the triples

124; 126; 134; 135; 156; 235; 236; 245; 346; 456:

Note thatK has 15 D �
6
2

�
edges, i.e., the complete graph on six vertices is embedded

in jKj. Hence the minimal nonfaces are 2-dimensional. It is now easy to check that
� 2 K if and only if Œ6� n � 62 K for any � 2 �Œ6�

3

�
. And hence K coincides with its

Alexander dual K?.
We obtain that K 	� K D K 	� K? D Bier6.K/ is a 4-dimensional sphere, and

hence by Proposition 4.10, the polyhedron jKj may not be embedded into R
3.
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Proposition 4.16. There is no embedding of the projective plane into 3-dimensional
Euclidean space. ut

4.5 The Tverberg Problem

The previously considered Radon and Van Kampen–Flores theorems are essentially
nonembeddability results. But because of the way they are phrased, they are actually
stronger, since they predict disjoint simplices whose images intersect. In this section
we want to discuss a very strong generalization of the Radon theorem.

As in the evolution of the Radon theorems, the Tverberg conjecture has its origin
in an affine version that reduces to the affine Radon theorem in the case q D 2.

Theorem 4.17 (Affine Tverberg). Let d � 1 and q � 2 and set N D .d C 1/

.q�1/. For any set S � R
d ofNC1 points, there exists a partitionS D S1 P[ � � � P[Sq

such that the convex hulls of the Si intersect nontrivially, i.e., conv.S1/ \ � � � \
conv.Sq/ 6D ;. ut
The statement of the theorem was conjectured by Bryan J. Birch [Bir59] in 1959
and was established by Helge Tverberg [Tve66] in 1966. A very beautiful proof
employing elementary algebraic methods was given by Karanbir S. Sarkaria [Sar92]
in 1992.

To get a feeling for this result, we turn our attention to an open conjecture by
Gerard Sierksma. He conjectured that the number of different Tverberg partitions
S D S1 P[ � � � P[Sq is at least ..q � 1/Š/d . This number is attained for the following
Sierksma configuration of N C 1 D .q � 1/.d C 1/C 1 points. Consider the d C 1

vertices of a simplex in R
d . For each vertex of the simplex, place q � 1 points in an

epsilon neighborhood of the vertex. The final point is placed at the barycenter of the
simplex. A Tverberg partition is then obtained as follows. Totally order each set of
points in the epsilon neighborhoods, and for each 1 � i � q � 1, let Si consist of
the d C1 points that occur in position i of these orderings. Define Sq to be the point
at the barycenter. For an illustration we refer to Fig. 4.5. It is not hard to show that
all Tverberg partitions are obtained in this way and that there are exactly ..q�1/Š/d
of them.

As with the affine Radon theorem, the affine Tverberg theorem may be rephrased
as a statement about affine linear maps f W �N ! R

d . Such a reformulation asks
for the following natural generalization.

Conjecture 4.18 (Continuous Tverberg). Let d � 1 and q � 2 and set N D .d C
1/.q � 1/. For any continuous map f W �N ! R

d , there exist pairwise disjoint
faces �1; : : : ; �q � �N such that their images under f intersect nontrivially, i.e.,
f .�1/ \ � � � \ f .�q/ 6D ;.

This conjecture was proved in the case that q is a prime number by Imre Bárány,
Senya B. Schlosman, and András Szücs in 1981 [BSS81]. The next step, the case
that q is a prime power, was taken by Murad Özaydin in 1987, Alexey Yu. Volovikov
in 1996, and Karanbir S. Sarkaria in 2000.
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Fig. 4.5 The Sierksma configuration for d D 2 and q D 4

The general conjecture is still open. Here we are going to prove the prime-power
case by applying Theorem 1.17.

Theorem 4.19 ([Öza87, Vol96, Sar00]). Let d � 1 and let q D pr be a prime
power, and set N D .d C 1/.q � 1/. For any continuous map f W �N ! R

d ,
there exist pairwise disjoint faces �1; : : : ; �q � �N such that their images under f
intersect nontrivially, i.e., f .�1/ \ � � � \ f .�q/ 6D ;.

Before we start with the proof of this theorem, we need to introduce the concept
of q-fold deleted joins in order to have a useful concept to deal with the sets
�1; : : : ; �q � �N of pairwise disjoint faces.

q-Fold Deleted Joins

Let K be an abstract simplicial complex. Generalizing the construction of the
twofold deleted joinK�2

� , we may define for any natural number q the q-fold deleted
join K�q

� to be the following subcomplex of the q-fold join:

K
�q
� D f�1 C � � � C �q W �1; : : : ; �q 2 K;8i; j 2 Œq� W �i \ �j D ;g:

We are mostly interested in the case that K D 2ŒNC1� D f� W � � ŒN C 1�g is an
N -simplex. To this end, let �q be the simplicial complex with q vertices and no
higher-dimensional simplices, i.e.,

�q D f;; fs1g; : : : ; fsqgg:

Lemma 4.20. Let q � 1;N � 0. Then there is an isomorphism of simplicial
complexes .2ŒNC1�/�q� Š .�q/

�.NC1/.
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sq

5

·
·

s1

s2

31 2 · N + 14

Fig. 4.6 An illustration of .2ŒNC1�/
�q
� Š .�q/

�.NC1/

Proof. The isomorphism is given by the map

.2ŒNC1�/�q� �! .�q/
�.NC1/;

�1 C � � � C �q 7�! �1 C � � � C �NC1;

where for all i D 1; : : : ; N C 1,

�i D
(

fsj g; if i 2 �j ;
;; otherwise.

This is illustrated in Fig. 4.6, where the simplices �j and �i are easily read from
rows and columns, respectively. In the figure we have �1 D f3g, �2 D f1; 4; 5g,
�q D fN C 1g, and all other �j are empty. This yields �1 D fs2g, �3 D fs1g,
�4 D �5 D fs2g, �NC1 D fsqg, and all other �i are empty. ut
Now consider a group G with q elements. Let us identify the group elements with
the vertices of �q , i.e., G D fs1; : : : ; sqg. Then G acts not only on �q , but on
.�q/

�.NC1/ componentwise, as well as on .2ŒNC1�/�q� if we label the q copies of
2ŒNC1� in the join by s1; : : : ; sq . In Fig. 4.6, this corresponds to permuting the rows
as induced by the group action of G on itself.

Corollary 4.21. If G is a group with q elements considered as a 0-dimensional
simplicial complex, then ENG, i.e., the .N C 1/-fold geometric join of G, is
equivariantly simplicially homeomorphic to j.2ŒNC1�/�q� j. ut

Now note that j.2ŒNC1�/�q� j is a subcomplex of j.2ŒNC1�/�qj, which in turn is
simplicially homeomorphic to the geometric join .�N /�q . Hence we have the
following sequence of G-equivariant maps:

� W j.2ŒNC1�/�q� j ,! j.2ŒNC1�/�qj Š�! .�N /�q:

In order to simplify notation, we will identify the elements x 2 j.2ŒNC1�/�q� j with
their images �.x/, i.e., with a vector �.x/ D .t1x1; : : : ; tqxq/, where

Pq
iD1 ti D 1,

and there exist pairwise disjoint �1; : : : ; �q � �N such that x1 2 �1; : : : ; xq 2 �q .
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The Continuous Tverberg Theorem in the Prime-Power Case

We will now give a proof of Theorem 4.19.

Proof. The plan is to construct aG-equivariant mapENG ! E, whereG D .Zp/
r ,

E is anN -dimensional real vector space with norm-preservingG-action, and E
G D

fx 2 E W gx D x for all g 2 Gg D f0g, such that any zero of this map yields a
desired set of q faces �1; : : : ; �q � �N , and then to apply Theorem 1.17.

Consider the d -dimensional affine subspace Ad of vectors in R
dC1 with coordi-

nate sum equal to 1, i.e., Ad D f.x1; : : : ; xdC1/t 2 R
dC1 W PdC1

iD1 xi D 1g. Without
loss of generality we may assume that f W �N ! A

d . Consider the following map
Nf induced by f :

Nf W j.2ŒNC1�/�q� j �! R
.dC1/�q;

.t1x1; : : : ; tqxq/ 7�! �
t1f .x1/j � � � jtqf .xq/

�
;

which is equivariant with respect to the action of the symmetric group Sym.q/ on
the coordinates of the join, respectively on the columns of the matrices in R

.dC1/�q .
If we identify G D .Zp/

r with a subgroup of Sym.q/ via an arbitrary bijection
G ! Œq�, then clearly Nf is also G-equivariant.

We now want to understand the behavior of Nf with respect to the sets of desired
faces. Assume that there exist pairwise disjoint simplices �1; : : : ; �q � �N and x1 2
�1; : : : ; xq 2 �q such that f .x1/ D � � � D f .xq/ is a point in the intersection f .�1/\
� � � \ f .�q/. Then Nf . 1

q
x1; : : : ;

1
q
xq/ D

�
1
q
f .x1/j � � � j 1

q
f .xq/

�
yields a matrix with

constant rows. We claim that the converse is also true. Assume that t1f .x1/ D � � � D
tqf .xq/, where

Pq
iD1 ti D 1 and x1 2 �1; : : : ; xq 2 �q for some pairwise disjoint

�1; : : : ; �q � �N . Since f .xi / 2 A
d , the sum over all d C 1 coordinates of ti f .xi /

yields ti , and hence t1 D � � � D tq . Therefore f .x1/ D � � � D f .xq/.
Since we are not interested in the actual values of the constant rows, we may

consider a suitable projection. Let E be the subspace in R
.dC1/�q of all matrices

whose row sums are equal to zero, i.e.,

E D
8
<

:
.aij / 2 R

.dC1/�q W
qX

jD1
aij D 0 for all i D 1; : : : ; d C 1

9
=

;
:

In other words, E is the orthogonal complement of all matrices with constant rows.
As before, Sym.q/, and hence G, acts on E (in a norm-preserving manner) by
permuting columns. Let 	 W R.dC1/�q ! E denote the orthogonal projection. This
projection is equivariant with respect to the action of Sym.q/ and hence also with
respect to G. Moreover, dimE D .d C 1/q � .d C 1/ D .d C 1/.q � 1/ D N , and
it is easy to see that EG D f0g is the zero matrix, since G acts transitively on the
columns.
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By our previous observations, the G-equivariant map

	 ı Nf W j.2ŒNC1�/�q� j �! E

has the property that its zeros correspond to the desired sets of faces �1; : : : ; �q �
�N . In order to see this, note that 	 maps matrices with constant rows to the
zero matrix. Now, since j.2ŒNC1�/�q� j is equivariantly simplicially homeomorphic
to ENG, 	 ı Nf has a zero by Theorem 1.17. ut

4.6 An Obstruction to Graph Planarity

In this section we want to find a criterion to decide, by some easy linear algebra
computation, whether a given graph is planar. Our approach will be the following.
Given a graph G, define an element o.G/ in some (cohomology) group with the
property thatG is planar if and only if o.G/ is trivial, i.e., the neutral element of the
group.

In some sense, we are trying to decide this by analyzing all possible drawings
of the graph G at once. This analysis is based on the pairwise crossing of edges.
It will turn out that the information about the parity of the number of crossings of
independent edges suffices to perform this analysis.

The basic concepts of obstruction theory that we are introducing in this section
are valid in much broader generality, cf. [vK32], and this section may be seen as
a gentle introduction to these concepts. This section is mostly inspired by the two
articles [Tut70] and [Sar91].

The Deleted Product of a Graph

We are going to employ the concept of an abstract deleted product of a graph G,
which can be defined more generally for simplicial complexes. Let G D .V;E/

be a graph, where we assume as usual that E � �
V
2

�
and V \ E D ;. Define the

(abstract) deleted product of G by

G� D
(

.�; �/ W �; � 2
 
V

1

!

P[E; � \ � D ;
)

;

i.e., pairs of distinct vertices, pairs consisting of a vertex and a nonincident edge, and
pairs of independent edges. In the sequel we will abbreviate the singletons fvg 2 �V

1

�

simply by v and the edges fu; vg 2 E by uv.
If we think of G as being a simplicial complex, then we have a dimension

function
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(14, 2)
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(4, 1) (3, 1)

(14, 23)

(1, 23)

(2, 34)

Fig. 4.7 The deleted product of C4

dim � D
(
0; if � 2 �V

1

�
;

1; if � 2 E;

which we extend toG� by dim.�; �/ D dim �Cdim � . If we think of the pair .�; �/
as the geometric product of � and � , then we obtain either a vertex, an edge, or a
square. For an illustration of a deleted product, have a look at Fig. 4.7.

Symmetric Cohomology

There is a free Z2-action on the deleted product G� defined by .�; �/ 7! .�; �/.
In order to define the symmetric (respectively, equivariant) cohomology of G�,
consider the chain groups Ci.G�/ defined as the Z2-vector spaces generated by the
elements (cells) ofG� of dimension i . There are boundary operators @ W Ci.G�/ !
Ci�1.G�/ defined by @.uv; x/ D .u; x/ C .v; x/, @.u; xy/ D .u; x/ C .u; y/, and
@.uv; xy/ D .u; xy/C .v; xy/C .uv; x/C .uv; y/.

The symmetric cochains C i
Z2
.G�/ are defined as the sets of linear maps that are

invariant with respect to the Z2-action

C i
Z2
.G�/ D f' W Ci.G�/ ! Z2 W '.�; �/ D '.�; �/ for all .�; �/ 2 G� of dim ig:

In other words, if we consider the trivial Z2-action on the coefficient group Z2, the
symmetric cochains are given by equivariant maps.

Coboundary operators ı W C i
Z2
.G�/ ! C iC1

Z2
.G�/ are defined, as usual, by

ı.'/ D ' ı @. An element in the image of ı will be called a coboundary. The
obstruction class, o.G/, we are going to construct will be an element of the second
symmetric cohomology
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H2
Z2
.G�/ D C2

Z2
.G�/=ıC 1

Z2
.G�/:

Bases for the Cochain Spaces

For later purposes let us briefly fix some notation for some standard bases of
the symmetric cochain spaces C1

Z2
.G�/ and C2

Z2
.G�/. First of all, consider the

characteristic cochains Œuv; x� 2 C1
Z2
.G�/ and Œuv; xy� 2 C2

Z2
.G�/ defined by

Œuv; x�.�; �/ D
(
1; if � D uv and � D x; or � D x and � D uv;

0; otherwise,

and

Œuv; xy�.�; �/ D
(
1; if � D uv and � D xy; or � D xy and � D uv;

0; otherwise.

Since any cochain is constant on Z2-orbits, it may clearly be written as a sum of
characteristic cochains. A basis for C1

Z2
.G�/ is given by all characteristic cochains

Œuv; x�, where uv is an edge of G nonincident to x. A collection of characteristic
cochains is a basis for C2

Z2
.G�/ if it contains, for each unordered pair fuv; xyg of

independent edges, precisely one of the elements Œuv; xy�, Œxy; uv�. For example, if
there is a linear order < on the set of vertices, then

fŒuv; xy� W uv; xy independent edges of G; u < v; x < y; u < xg

constitutes a basis.

The Obstruction Class

Let f D .x; ˛/ be a drawing of the graphG as defined in the appendix on page 154.
Then f defines a symmetric cochain 'f W C2.G�/ ! Z2 by setting

'f .�; �/ D j im˛� \ im˛� j mod 2;

for generators .�; �/ 2 C2.G
�/, i.e., the parity of the number of crossings of the

edges � and � in the drawing f .
As an example, consider the drawing, f , of the complete graph, K5, on five

vertices V D Œ5�, as shown in Fig. 4.8. In this case, 'f D Œ13; 24� C Œ14; 25� C
Œ14; 35�.
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24

5 1

3

Fig. 4.8 A drawing f of the complete graph K5

x

αuv
αuv

Fig. 4.9 Modification of f via epsilon tubing

We now show that 'f defines a class in the second symmetric cohomology that
depends only on G. In order to show this, it is crucial to understand the image
ıC 1

Z2
.G�/ � C2

Z2
.G�/. Therefore we are going to compute the coboundaries of the

basis elements Œuv; x� 2 C1
Z2

:

ıŒuv; x�.�; �/ D Œuv; x�.@.�; �//

D
(
1; if � D uv and x 2 �; or x 2 � and � D uv;

0; otherwise.

In other words, ıŒuv; x� evaluates to 1 precisely on the pairs .�; �/ where � and �
are both edges, and one is equal to uv, while the other is incident to x.

The addition of such a coboundary, ıŒuv; x�, to a cochain, 'f , can be interpreted
geometrically. In fact, there exists a drawing g with the property that 'g D 'f C
ıŒuv; x�. The drawing g is easily achieved from f by performing an epsilon tubing
on the edge uv as shown in Fig. 4.9. In other words, the drawing of the edge uv will
be changed in such a way that it makes a detour along a small epsilon tube to the
vertex x in order to circumscribe a small neighborhood of the vertex x. The course
of the tube is such that it will produce only an even number of intersections with
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v1 v1

v3

v3

v4

v4

v2

v2

v5
v5

Fig. 4.10 A drawing f and a straight line drawing g of the same graph

other edges along the tube. The circumscription of the vertex x will add 1 to the
number of intersections of the new drawing of uv with edges incident to x. Modulo
2, this yields precisely the desired change.

Since the cochains Œuv; x� generate C1
Z2
.G�/, we obtain the following proposi-

tion, which says that every element of the class Œ'f � 2 H2
Z2
.G�/ corresponds to a

drawing of the graphG.

Proposition 4.22. For every drawing f of G and every  2 C1
Z2
.G�/, there exists

a drawing g of G such that 'g D 'f C ı . ut
It remains to prove the following statement.

Proposition 4.23. If f and g are drawings of G, then 'f and 'g differ by a
coboundary, i.e., they define the same cohomology class.

Proof. Assume that the vertices ofG are ordered, V D fv1; : : : ; vng. By transitivity,
it suffices to prove the statement under the additional assumption that the drawing
g is a (standard) straight line drawing. One way to achieve such a drawing is to
evenly distribute the n vertices in counterclockwise order on the unit circle and
draw straight edges between adjacent vertices; see, e.g., Fig. 4.10. Triple crossings
may be avoided by slightly perturbing the vertices along the circle.

The drawing f may now be modified easily in such a way that the vertices are
already in the same position as in the drawing g, and the pairwise intersection
of edges does not change at all. For an illustration of such a modification, see
Fig. 4.11. Hence, we may assume from now on that f places the vertices in the
same position as g.

We now pull the edges in the drawing of f straight one by one and consider the
possible changes of the associated cochain. The existence of such a straightening
of the edges may be achieved as an application of the Jordan–Schönflies theorem,
Theorem A.10. We may assume that each such process results in a drawing of the
graphG. Any possible triple intersection or tangential intersection of edges may be
removed by a slight perturbation of the edges that haven’t been straightened yet.
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v1

v2

v3

v4
v5

Fig. 4.11 Modification of f to have vertices in the same position as g
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Fig. 4.12 Example edge uv to be straightened, initial position

One representative straightening process is sketched in a process of six steps
in Figs. 4.12–4.18. We first consider this particular example and then discuss the
general argument. Let’s call the initial drawing f0 and the subsequent drawings
f1; : : : ; f6. In order to analyze the evolution of the associated cochains,'f0 ; : : : ; 'f6 ,
it clearly suffices to consider the changing intersections of the edge uv with
independent edges. In each figure, the right side depicts the intersections of uv with
independent edges. In other words, intersections with the edge e3 are not taken into
account, since they play no role for the associated cochain.

In step one, from the initial position to position I, a tangential crossing is passed,
and this produces a new double intersection with the edge e4. We clearly have
'f1 D 'f0 . In the step from I to II, the crossing of e4 and e5 is passed. The order
of intersections of uv with e4 and e5 is changed, but 'f2 D 'f1 . The step from II
to III works analogously to the previous step, and we have 'f3 D 'f2 . In the step
from III to IV, another tangential crossing is passed and a double intersection of uv
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Fig. 4.13 Straightening, position I
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e4

e4
e4

Fig. 4.14 Straightening, position II

with e4 disappears, and again we have 'f4 D 'f3 . In the step from IV to V, a vertex
is passed, the number of intersections with each of the edges e4; e5; e6 decreases
by one, and the number of intersections with each of the edges e1; e2 (and also e3)
increases by one. In other words, the number of intersections of uv with each edge
incident to x changes by one. Hence 'f5 D 'f4 C ıŒuv; x�. In the last step, nothing
happens at all, and hence 'f6 D 'f5 . In total, we have 'f6 D 'f0 C ıŒuv; x�.

We now turn to the general argument. In the evolution of intersections of uv
with independent edges, the intersection points move along uv. The following
phenomena may occur:

1. A tangential crossing is passed: a pair of intersections of uv with some edge e
converges and disappears or vice versa.

2. A crossing of e and e0 is passed: a pair of intersections of uv with distinct edges
e and e0 converges and reappears in opposite order.
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Fig. 4.15 Straightening, position III
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Fig. 4.16 Straightening, position IV

3. A vertex x is passed: a (possibly empty) set of intersections converges, disap-
pears, and a new (possibly empty) set of intersections is born.

In the first two cases, the associated cochain does not change. In the third case, the
cochain changes precisely by ıŒuv; x�. ut
Summarizing the previous two propositions, we obtain that any two drawings define
the same symmetric cohomology class, and every element of this class is the cochain
associated to some drawing.

Definition 4.24. Let the obstruction class, o.G/2H2
Z2
.G�/, be defined by o.G/ D

Œ'f �, where f is an arbitrary drawing of G.

Now, if G is a planar graph, then clearly the obstruction class, o.G/, is the zero
class, since it contains the cochain associated to a planar drawing. Hence we have a
sufficient criterion for nonplanarity of graphs.
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Fig. 4.17 Straightening, position V
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Fig. 4.18 Straightening, position VI

Let us consider the complete graph on five vertices, K5, as an example. There
exists a drawing of K5 with precisely one pair of edges crossing once and no other
pair of edges crossing; see Fig. 4.19. If we denote the associated cochain by ',
then ' D Œ13; 24�. Now let fi; j; k; l;mg D Œ5�. Then in this particular example,
ıŒij; k� D Œij; kl�C Œij; km�, i.e., a sum of two basis elements. In other words, every
element of the class o.K5/ D Œ'� can be written only as a sum of an odd number of
basis elements. In particular, the class is nonzero, which proves thatK5 is not planar.
A similar argument shows that the complete bipartite graphK3;3 is not planar.

Remark 4.25. The obstruction classes o.K5/ and o.K3;3/ are nonzero.

The justification for the name obstruction class is given by the following
theorem.



4.6 An Obstruction to Graph Planarity 119
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5 1
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Fig. 4.19 A drawing of the complete graph K5

Theorem 4.26. The obstruction class o.G/ is zero if and only if the graph G is
planar.

In order to prove this theorem we need two lemmas.

Lemma 4.27. Let H be a subgraph of the graph G. If o.H/ 6D 0, then o.G/ 6D 0.

Proof. We prove the contrapositive. If o.G/ D 0, then G has a drawing f such
that 'f D 0. If we denote the restriction of the drawing f to H by g, then clearly
'g D 0. And hence o.H/ D Œ'g� D 0. ut
Recall that a subdivision of a graph is obtained by replacing the edges by paths of
length greater than or equal to 1; cf. page 157.

Lemma 4.28. LetH be a subdivision of the graphK . If o.K/ 6D 0, then o.H/ 6D 0.

Proof. As in the proof of the previous lemma, if o.H/ D 0, then H has a drawing
f such that 'f D 0. Use the drawing f in the obvious way to obtain a drawing g
of K . Now consider two independent edges e; e0 of K . Assume that e is subdivided
into a path having edges e1; : : : ; ek and e0 is subdivided into a path having edges
e0
1; : : : ; e

0
l . Then

'g.e; e
0/ D

kX

iD1

lX

jD1
'f .ei ; e

0
j / D 0:

Hence o.K/ D Œ'g� D 0. ut
Proof (of Theorem 4.26). It remains to show that if G is nonplanar, then o.G/
is nonzero. But if G is a nonplanar graph, then by Kuratowski’s theorem, The-
orem A.18, it contains a subgraph H that is a subdivision of either K5 or K3;3.
Since both obstruction classes o.K5/ and o.K3;3/ are nonzero, we obtain by the two
previous lemmas that o.G/ is nonzero. ut
An immediate corollary of Theorem 4.26 is the following well-known Hanani–Tutte
theorem.
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Theorem 4.29 (Hanani–Tutte). If a graph G has a drawing in which any two
independent edges intersect an even number of times, then the graph is planar. ut
We could also have used the Hanani–Tutte theorem in order to prove Theorem 4.26.
This is interesting, since there are proofs of the Hanani–Tutte theorem that do not
make use of Kuratowski’s theorem, e.g., [PSŠ07]. In fact, Kuratowski’s theorem
may, in turn, be obtained from Theorem 4.26, as described in [Sar91].

A Graph Planarity Algorithm

Theorem 4.26 yields an algorithm to determine whether a given graph G is planar.
Essentially, the computation boils down to performing some linear algebra over Z2.

Let a graph G D .V;E/ be given. For convenience we assume that V D Œn�. Fix
bases for C1

Z2
.G�/ and C2

Z2
.G�/ as described before:

B1 D fŒab; c� W ab 2 E; a < b and c 6D a; c 6D bg;
B2 D fŒij; kl� W ij; kl 2 E; i < j; k < l; i < kg:

Compute the matrix representation, D D .dŒij;kl�;Œab;c�/, of the coboundary ı with
respect to these bases, i.e.,

dŒij;kl�;Œab;c� D
(
1; if ij D ab and k D c; or if kl D ab and i D c;

0; otherwise:

The cochain ' associated with a standard straight line drawing is easily computed
to be

' D
X

ij;kl2E
1
i<k<j<l
n

Œij; kl�:

Denote by v the vector in Z
jB2j
2 representing ' with respect to the basis B2, i.e.,

vŒij;kl� D
(
1; if i < k < j < l;

0; otherwise.

Now, G is planar if and only if v 2 im.D W ZjB1j
2 ! Z

jB2j
2 /, which boils down to an

easy linear algebra computation.
Before we do an example, it should be mentioned that this algorithm is not very

efficient in terms of complexity. There exists an efficient algorithm by John Hopcroft
and Robert Tarjan [HT74] that is linear in the number of vertices of the graph. This
algorithm was punch-card implemented back in 1974.
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Fig. 4.20 Straight-line drawing of K5 n feg
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Fig. 4.21 How to obtain a planar drawing from the linear algebra

An Example

Consider the graphG D K5 n feg, i.e., the complete graph on five vertices minus an
edge. We use the labeling given in the straight-line drawing shown in Fig. 4.20.

The associated cochain ' is

' D Œ13; 24�C Œ13; 25�C Œ14; 25�C Œ14; 35�C Œ24; 35�:

We do not carry out the matrix algebra, but ' clearly is in the image of ı, since for
example,

ı.Œ13; 2�C Œ14; 5�C Œ35; 2�/ D Œ13; 24�C Œ13; 25�C Œ14; 25�C Œ14; 35�C Œ24; 35�:

The element Œ13; 2�CŒ14; 5�CŒ35; 2� is, in fact, telling us how to modify the straight-
line drawing in order to obtain a planar drawing of G: pull the edge 13 over the
vertex 2, pull 14 over 5, and pull 35 over 2. This is illustrated in Fig. 4.21.
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4.7 Conway’s Thrackles

We are now going to leave the realm of embeddability questions and turn our
attention to other properties of mappings.

This section is about a class of graphs invented by John Conway called thrackles.
Our presentation is based mostly on the original articles [Woo71, GR92, LPS97,
CN00] and the diploma thesis [Bre06].

Let S be a closed surface. A thrackle drawing of a graph G in the surface S is
a drawing of G in S in which any two adjacent edges do not have any transversal
crossings, and any two independent edges have precisely one transversal crossing.
A graph G is called thrackleable (respectively, planar thrackleable) if there exists
a thrackle drawing of G in the 2-sphere (respectively, the plane). We will refer to
such drawings as thrackle drawings and occasionally to thrackleable graphs simply
as thrackles.

The three simplest examples are the cycles of lengths 3, 5, and 6 as shown in
Fig. 4.22.

Supposedly John Conway explained his knowledge about the word thrackle as
follows [Arc95]:

When I was a teenager, on holiday with my parents in Scotland, we once stopped to ask
directions of a man who was fishing by the side of a lake. He happened to mention that
his line was thrackled. I’d previously called this kind of drawing a tangle, but since I’d just
found a knot-theoretical use for that term, I changed this to thrackle. Several people have
told me that they’ve searched in vain for this word in dialect dictionaries, but since I quizzed
the fisherman about it, I’m sure I didn’t mishear it; he really did use it.

The observant reader has noticed that the cycle of length 4 was missing from
the list. And in fact, C4 is not thrackleable, which easily follows from the Jordan
curve theorem. We will show this by means of the concept of thrackle drawings on
surfaces on page 125.

Lemma 4.30. If the cycle Ck is thrackleable for some k � 3, then CkC2 is also
thrackleable.

Proof. This is easily done. In a thrackle drawing of Ck, replace an edge e of the
circle by a path of length 3 as shown in Fig. 4.23. In order to do so, find in the

Fig. 4.22 Thrackle drawings of C3, C5, and C6
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Fig. 4.23 Replacing a single edge by a path of three edges

Fig. 4.24 Two cross graphs associated with C6

original drawing two circles around each vertex of e. If x is a vertex of e, the circle
around x has to be so small that it intersects each edge incident to x precisely once.
The drawing of the three new edges inside the circles is as depicted in the picture.
Outside of the circles the three edges of the path are in a small epsilon neighborhood
of the drawing of the original edge, so that the transversal crossings of each new
edge are the same as of the original edge. ut
Corollary 4.31. For k 6D 4, all cycles, Ck , are thrackleable. ut

Another obvious observation is that any subgraph of a thrackleable graph is
thrackleable. This will be of some importance in the sequel. In particular, questions
about thrackleable graphs maybe reduced to connected graphs.

Lemma 4.32. If G is thrackleable, then so is every subgraphH of G. ut
On the other hand, it is immediate that thrackleability is not closed under the

graph minor relation (cf. page 157), since clearly C4 is a topological minor of any
larger cycle.

Cross Graphs

Every thrackle drawing determines a planar embedding of an associated cross graph,
i.e., the graph that we obtain when placing a vertex at each transversal crossing of
edges. This graph may vary depending on the thrackle drawing. Examples of two
cross graphs associated with the cycle C6 are shown in Fig. 4.24.



124 4 Embedding and Mapping Problems

4

3

5

1

2

15

3

2 44

1

2

3

4

e1

e1

e5

e4

e4

e3

e3

e2

e2

{e2, e4}

{e2, e4}

{e1, e4}
{e1, e3}

{e1, e3}

{e1, e3}
{e2, e4}

{e2, e4}
{e2, e4}

{e2, e5} {e2, e5}

{e1, e4}

{e1, e4}

{e3, e5}

{e3, e5}

{e3, e5}
{e2, e5}

{e2, e4}
{e1, e3}

{e1, e3}
{e1, e3}

1

2

4

3

13

2

4

15

3

2

Fig. 4.25 Construction of cross graphs asscociated with C4 and C5

We may use this idea to construct thrackle drawings of graphs. To this end, we
introduce the general (abstract) concept of a cross graph associated with a graph.
A (thrackle) cross graph Gc associated with a graph G D .V;E/ is a graph that is
obtained via the following procedure.

For e 2 E , let ie be the number of edges in G that are independent of e. Replace
each edge e by a path, Pe , of length ie C 1, and arbitrarily label the ie interior (new)
vertices with distinct unordered pairs fe; e0g, where e0 is independent of e.

Observe that for each pair fe; e0g, there are precisely two vertices with that label,
one on Pe and one on Pe0 . The cross graph is now obtained by identifying each pair
of such vertices.

Two examples of this construction are shown in Fig. 4.25.

Thrackle Surfaces

In order to produce a drawing of a cross graph Gc , we want to apply the rotation
system embeddings explained in Appendix A on page 157. Therefore we have to fix
a rotation system.

Choose arbitrary rotations for the original vertices of G. For each new vertex
labeled fe; e0g, choose a rotation in such a way that the incident edges alternate
between edges of Pe and Pe0 . We will refer to this condition on the rotation system
as the transversality condition. Figure 4.26 illustrates two rotations for the vertex
labeled fe; e0g; one satisfies the transversality condition, while the other does not.
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Fig. 4.26 An alternating and a nonalternating rotation

Then each choice of a cross graph Gc together with a rotation system subject to
the transversality condition yields an embedding of Gc in some orientable surface
Mg that can be lifted to a thrackle drawing of G. This is done by replacing each
path Pe with the edge e drawn the same way. Then any two independent edges e
and e0 will cross transversally precisely once due to the construction of the cross
graph and the transversality condition on the rotation of the vertex labeled fe; e0g in
Gc . Edges e; e0 that share a vertex v will not cross, since the paths Pe and Pe0 share
only v as well.

Deciding Thrackleability Combinatorially

Recall that the genus g of a surface can be obtained by purely combinatorial
information and is determined by the relation

n �mC r D n �mC f D 2 � 2g;

where n is the number of vertices, m the number of edges of the graph Gc , and r is
the number of orbits of the rotation system, which coincides with the number f of
faces of the drawing.

We may apply this relation to decide combinatorially whether a given graph
possesses a planar thrackle drawing. For example, in the case of the cycle C4, there
is only one cross graph—shown in Fig. 4.25—and only the alternating rotations
at the new vertices have to be fixed, since the original graph vertices have degree
2. It is an easy exercise to see that any choice of a rotation system leads to
precisely two orbits of edge walks, one of length 12 and one of length 4. Therefore
n�mC r D 6� 8C 2 D 0 D 2� 2g leads to g D 1, and hence C4 has no thrackle
drawing on the sphere or in the plane. Figure 4.27 shows a thrackle drawing of C4
on the torus obtained via a rotation system embedding.

In general, one has to determine the minimum genus, gmin, among all possible
cross graphsGc and rotation systems 	 subject to the transversality condition

gmin D min
1

2

�
2 � n.Gc/Cm.Gc/ � r.Gc; 	/

�
;
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Fig. 4.27 A thrackle drawing of C4 on the torus

where n.Gc/ D jV.Gc/j, m.Gc/ D jE.Gc/j and r.Gc; 	/ is the number of orbits
of the rotation system 	 .

In summary, we obtain the following statement.

Proposition 4.33. A graph G is thrackleable if and only if gmin D 0. ut

Conway’s Thrackle Conjecture

Thrackles have drawn some attention because of a notoriously open conjecture by
John Conway about the maximal number of edges a thrackleable graph can have.

Conjecture 4.34 (Conway 1960s). If G is a thrackleable graph with n vertices and
m edges, thenm � n.

While the conjecture has not been proven, a variety of beautiful results and
insights have been obtained over the decades. On the one hand, we will present
a powerful reduction of the problem by Douglas Woodall [Woo71], and on the other
we will sketch the ingenious proof of the upper boundm � 3

2
.n�1/ by Grant Cairns

and Yury Nikolayevsky [CN00] extending previous work by László Lovász, János
Pach, and Mario Szegedy [LPS97].

The Eight Graph Version

The fact that thrackleability is closed under the subgraph relation suggests that
a forbidden minor approach—as in Kuratowski’s theorem characterizing graph
planarity—is feasible in order to prove Conway’s conjecture. In spirit, this is what
we are going to do. We will show that any thrackle drawing of a graph with more
edges than vertices yields a drawing of a certain prototype of a graph with precisely
one more edge than vertices.

For i; j � 3, let 8i;j be the graph that consists of two cycles, of lengths i and j
respectively, that share precisely one vertex; see Fig. 4.28.
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x CjCi

Fig. 4.28 An eight graph 8i;j for i D 13 and j D 8

xx

(a) (b)

Fig. 4.29 A neighborhood of x in a thrackle drawing of 8i;j

Theorem 4.35 (Woodall [Woo71]). The thrackle conjecture is true, provided that
for k � 2, none of the graphs 82k;2k is thrackleable.

In fact, it follows easily from the proof of Lemma 4.30 that it suffices to require
that 82k;2k be not thrackleable for infinitely many k � 2.

Before we prove Theorem 4.35, we consider how, in a possible thrackle drawing
of 8i;j , the edges of the two cycles meet at the common vertex x. Figure 4.29 illus-
trates the general picture of an epsilon neighborhood of x (up to homeomorphism);
the cycles either (a) cross transversally or (b) touch.

Lemma 4.36. In a thrackle drawing of 8i;j , the cycles Ci and Cj cross transver-
sally at the common vertex x if both i and j are odd, and they touch otherwise.

Proof. Any two circles drawn in the plane such that there are only transversal double
intersections cross each other an even number of times. An illustration of this fact
is shown in Fig. 4.30, while a proof is left as an exercise.

We now compute the intersections of the drawings of Ci and Cj in a thrackle
drawing. Let’s first consider the edges of Ci that are not incident to x. Each of these
crosses each edge of Cj precisely once. The two edges of Ci incident to x cross all
the edges of Cj not incident to x. Hence we obtain

.i � 2/j C 2.j � 2/ D ij � 4 
 ij mod 2:

The only possible crossing left to consider occurs at the vertex x. Clearly if i or j
is even, then no transversal crossing at x is allowed, but if both i and j are odd, the
two cycles have to cross transversally at x. ut
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Fig. 4.30 Two circles drawn in the plane

A slight generalization of the argument in the previous proof yields the following
fact.

Note 4.37. The number of transversal intersections at vertices of any two cycles is
congruent modulo 2 to the product of the lengths of the cycles.

This note implies the following interesting corollary, which has important conse-
quences toward transforming a thrackleable graph into a bipartite graph.

Corollary 4.38. LetG be a thrackleable graph. Then any two odd cycles ofG share
a vertex. ut
Proof (of Theorem 4.35). We are going to show that if there exists a thrackle
drawing of a graph G with m edges, n vertices, and m > n, then there exists a
thrackle drawing of an eight graph, 82k;2k , for some k � 2. Assume that G is such
a thrackleable graph with m > n. Then G also has a connected component with
more edges than vertices that is itself thrackleable. Hence we may assume that G
is connected. Let T be a spanning subgraph of G. Since T has n � 1 edges, there
exist at least two more edges e and e0 in G. Since the endpoints of each of these
two edges determine unique paths in T , the two edges determine unique cycles in
G. For an illustration of the three situations that may occur, we refer to Fig. 4.31.

In case (a), the two cycles have precisely one vertex in common; in case (b), the
two cycles do not share a vertex, but are connected by a path; and in case (c), the
two cycles share a path. We now restrict ourselves to the corresponding subgraphs:
in case (a), an eight graph 8i;j ; in case (b), a dumbbell graph; and in case (c),
a �-graph. We will show that the thrackle drawings in cases (b) and (c) also yield a
thrackle drawing of an eight graph, thus leaving us with case (a).

Consider the essential part of the graphs in cases (b) and (c) as illustrated by the
dashed box in Fig. 4.32.
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Fig. 4.31 Two cycles determined by the two edges e and e0, and their possible interactions

Fig. 4.32 The essential part of a dumbbell graph and of a �-graph

We will show how to obtain a planar thrackle drawing of an eight graph from the
thrackle drawing of the dumbbell, respectively the �-graph, by dividing the path
in the essential part into two paths and splitting it at one end. Figure 4.33 shows
this procedure for paths of length one, two, and three. The last two cases represent
the general case for paths of even and odd length. As before, the pictures are to be
understood as follows. No other edges cross the circles, and outside of the circles,
the doubled paths continue along the original path in an epsilon neighborhood,
so that other edges cross the new doubled edges just as they crossed the original
single edges. In order to obtain a clear representation of the situation, we simplify
the drawings both here and in the sequel. For example, we do not show the pairwise
crossing of the first and the third edges in the path of length three.

Hence we have a thrackle drawing of an eight graph, 8i;j , for some i; j � 3. It is
left to show that we can obtain a drawing of an eight graph, 82k;2k , for some k � 2.
In order to achieve this, we will produce a thrackle drawing of an eight graph, 8i 0;j 0 ,
with i 0 and j 0 even. Then, using the trick from Lemma 4.30 (see Fig. 4.23 on page
123), the length of the shorter of the two cycles may be increased until it matches
that of the longer cycle.
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Fig. 4.33 Splitting the path in the essential part

Therefore, if i and j are even, then we are done. Otherwise, either i or j is odd,
or both. We will consider separately the cases in which precisely one of them is odd
and in which both are odd.

In the first case, we may assume that i is even and j is odd. We will construct a
thrackle drawing of 8i;2j . Lemma 4.36 tells us that the drawings of the two cycles
Ci and Cj touch at the common vertex x. We will double the cycle Cj in a two-
step procedure depicted in Fig. 4.34. First the path of even length j � 1 along Cj is
doubled using the doubling of edges as before, and then the crossing at the vertex x
is modified as shown in the second step.

In the second case, i and j are odd. We will construct a thrackle drawing of
8iCj;j which reduces the problem to the previous case. If both i and j are odd,
the drawings of the cycles Ci and Cj cross transversally at the common vertex x
according to Lemma 4.36. Now we double a path of odd length j � 2 along Cj
and then modify the crossing at x in order to obtain a thrackle drawing of 8iCj;j , as
illustrated in Fig. 4.35. ut

Generalized Thrackles

The eight graph version of the thrackle conjecture is a very strong reformulation
that suggests new approaches to tackle the conjecture. One immediate thought is to
apply the tools of the preceding section using the concept of the obstruction class.

Recall that the obstruction class of a graph G can be represented by the
symmetric cochain 'f asscociated with any drawing f of G, i.e., o.G/ D Œ'f �.
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Fig. 4.34 Doubling of the odd cycle Cj in two steps

Ci x

Cj

Fig. 4.35 Adding the doubled cycle Cj in two steps to Ci

Now let us denote by 'k the symmetric cochain 'k W C2.8�
2k;2k/ ! Z2 with the

property that '.e; e0/ D 1 for each pair of independent edges e; e0. By definition,
a thrackle drawing of an eight graph, 82k;2k , would have 'k as associated cochain.
Since the eight graphs are planar, we have o.8i;j / D 0 for all eight graphs 8i;j . If
we could show that 'k 62 o.8�

2k;2k/, in other words 'k 62 im.ı W C1
Z2
.8�
2k;2k/ !

C2
Z2
.8�
2k;2k//, then there is no thrackle drawing of 82k;2k . Unfortunately, it turns out



132 4 Embedding and Mapping Problems

4

31

2

Fig. 4.36 A generalized thrackle drawing of C4

that 'k 2 o.82k;2k/ for all k � 2 due to the fact that 82k;2k admits a generalized
thrackle drawing, a concept that we will explain now.

Let S be a closed surface. A generalized thrackle drawing of a graph G in
the surface S is a drawing of G in S in which any two adjacent edges have an
even number of transversal crossings, and any two independent edges have an
odd number of transversal crossings. A graph G is called (planar) generalized
thrackleable if there exists a generalized thrackle drawing of G in the sphere,
respectively the plane. We will refer to such drawings as generalized thrackle
drawings and occasionally refer to generalized thrackleable graphs as generalized
thrackles.

In other words, generalized thrackleability is the mod-2 version of thrackleability
with respect to the number of pairwise intersections of edges. Clearly, every
thrackleable graph is generalized thrackleable. On the other hand, there are graphs
that are generalized thrackles that do not admit a thrackle drawing. Figure 4.36
shows a generalized thrackle drawing of the cycle C4 that is not thrackleable. For
clarity, the edges 12 and 34 are drawn in gray, and the edges 23 and 14 in black.

A consequential result on generalized thrackles is the following characterization
in the case of bipartite graphs.

Theorem 4.39. A bipartite graph G is generalized thrackleable if and only if it is
planar.

Proof (Sketch). Let G D .V1 P[V2;E/ such that V1 and V2 are independent sets of
vertices witnessing the bipartiteness ofG. We first assume thatG is planar. Consider
a fixed planar embedding of G and choose a point x in the complement of the
drawing. For each vertex y 2 V1 choose an x; y-curve that is disjoint from all
other vertices and has only transversal crossings with the edges of G. This has to
be done in such a way that any two of these curves share only the point x. Consider
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Fig. 4.37 Construction of a disk in a planar drawing of G
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Fig. 4.38 The epsilon disk up to homeomorphism

an epsilon neighborhood of the union of these arcs. We refer to Fig. 4.37 for an
illustration.

The left disk of Fig. 4.38 illustrates, up to homeomorphism, the epsilon neighbor-
hood divided into an inner 1

2
-epsilon part and an outer annulus. Note that for each

edge e 2 E , the annulus contains an odd number qe of line segments belonging to
e. In the figure, q56 D 3 and qe D 1 for all edges e 6D 56.

In a first step, the drawing of G will be modified within this disk by flipping the
inner disk and adjusting the drawing in the annulus accordingly, as illustrated in the
right disk of Figure 4.38.

This has the effect that for any two edges e; e0 2 E , the number of their
intersections in the drawing is qeqe0 
 1 mod 2. Moreover, the rotation at each
vertex v 2 V1 is reversed.

In the second step, we will modify the graph so that adjacent edges intersect an
even number of times. To this end, consider small epsilon disks about each vertex
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Fig. 4.39 Removing self-intersections

of the graph and perform the above procedure that flips the inner 1
2
-epsilon disk for

each of these. This amounts to reversing the rotation at each vertex.
In the third and last step, the edges have to be made free of self-intersections by

the simple local move illustrated in Fig. 4.39.
The resulting drawing is a generalized thrackle drawing of G. For example, the

generalized thrackle drawing of the cycle C4 in Fig. 4.36 was obtained via this
procedure.

For the converse direction consider a generalized thrackle drawing of G in the
plane. We intend to modify the drawing so that we are able to apply the Hanani–
Tutte theorem. But this is easy. As above, we construct a vertex x, the corresponding
x; y-curves, and the neighboring disk and perform steps one, two, and three. The
result is a drawing of G in which any two edges intersect an even number of times.
Hence, by the Hanani–Tutte theorem, Theorem 4.29, on page 120, the graph G is
planar. ut
There are some noteworthy details of the proof that we will need later on.

Note 4.40. If G D .V1 P[V2;E/ is a bipartite graph with a thrackle drawing in the
plane, then the drawing can be modified such that

• Every pair of edges has an even number of transversal crossings, and
• The rotation at each vertex v 2 V1 is not changed, and the rotation at each vertex
v 2 V2 is reversed.

An immediate consequence of Theorem 4.39, which we will strongly enhance later
on, is the following.

Corollary 4.41. IfG is a thrackleable graph with n � 5 vertices andm edges, then
m � 3n� 6.

Proof. By Proposition A.4, there exists a bipartite subgraph G0 of G obtained by
removing at most half of its edges. Let us denote the number of edges of G0 by m0.
This bipartite subgraph is thrackleable and therefore does not contain any cycles of
length less then 6. If it does not contain any cycles, we know that

m

2
� m0 � n � 1
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and hence m � 2.n� 1/ � 3n� 6. If it contains cycles, then

m

2
� m0 � 3

2
n � 3;

by Theorem A.13, and thereforem � 3n� 6. ut

Conway Doubling of an Odd Cycle

Theorem 4.39 is a statement about bipartite graphs. In order to accomplish an upper
bound on the number of edges in a thrackleable graph in Corollary 4.41, we used a
cheap trick to obtain a bipartite subgraph. This trick didn’t take into account that we
are in the special situation of a thrackleable graph. The fact that any two odd cycles
in a thrackleable graph share a vertex (see Corollary 4.38) can be exploited in a very
powerful way.

We will describe a procedure by Conway that doubles an odd cycle in a thrackle
drawing of a graph, resulting in a bipartite graph. So letG be a graph with a thrackle
drawing and C an odd cycle in G.

For each vertex v of C , consider an appropriate epsilon neighborhood as
illustrated in the left drawing of Fig. 4.40. For some chosen orientation of the cycle,
the edges incident to vertices of the cycle that are not cycle edges leave the cycle
either to the right or to the left. In each epsilon neighborhood, double the vertex v
into a left and a right copy vl and vr . Connect those neighbors of v that leave v to
the left with vl and those neighbors that leave v to the right with vr as shown in
the right drawing of Fig. 4.41, where the vertices vl are depicted in black and the
vertices vr are depicted in white.

Furthermore, for any two neighboring vertices v and v0 on C , the new vertices,
vl and v0

r , are going to be connected (as will vr and v0
l ) by curves in an epsilon

neighborhood of the original drawing of the edge vv0 as shown in Fig. 4.40. We
obtain a thrackle drawing of a new graph NG in which the cycle C was transformed
into a cycle NC of twice the length. An example of the doubling of a 3-cycle is shown
in Fig. 4.41.

Notice that there exists a surjective graph homomorphism NG ! G that maps
each pair of vertices vl and vr to the corresponding vertex v and is the identity
outside of the cycle.

Note 4.42. If we orient the new cycle according to the orientation of C , then all
edges incident to a vertex vl leave it to the left, and all edges incident to a vertex vr
leave it to the right.

Moreover, some magic has occurred, and all odd cycles have vanished.

Lemma 4.43. Conway doubling of an odd cycle in a thrackle drawing of a graph
produces a bipartite graph.
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Fig. 4.40 Conway doubling of an edge in a cycle
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Fig. 4.41 Conway doubling of a 3-cycle

In order to prove this lemma we need to refine Note 4.37 regarding the
intersection of cycles in a thrackle drawing. There we observed that the number
of transversal intersections at vertices of any two cycles is congruent modulo 2 to
the product of the lengths of the cycles.

To refine the note we need a measure for the number of transversal intersections
stemming from common vertices and common edges of the cycles. We will define
the measure in the generality that is needed later on, i.e., we will consider a
closed walk and a cycle. Consider a planar drawing of a graph, G, that may
have transversal crossings of edges. Let C1 be a closed walk, i.e., a sequence
v0; e1; v1; e2; : : : ; vk�1; ek; vk D v0 such that ej D vj�1vj , and let C2 be a cycle in
G. For convenience we will consider the indices of the vertices in the walk modulo
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Fig. 4.42 Definition of �.j /

k. Provide C2 with an orientation. For each vertex vj , j D 0; : : : ; k � 1, of C1,
define �.j / depending on the orientation of the walk at vj relative to the orientation
of the cycle C2, as shown in Fig. 4.42. The edges of the walk C1 are depicted in
black, while the edges of the cycle C2 are shown in gray. In the first two cases, the
path vj�1; vj ; vjC1 crosses the cycle C2 transversally; in the other cases, the path
vj�1; vj ; vjC1 and the cycle C2 share one edge. In all other cases let �.j / D 0.

Define �.C1; C2/ D Pk�1
jD0 �.j / mod 2. This is easily seen to be independent

of the orientation of the walk and the cycle.
The idea now is thatC1 andC2 may be considered continuous drawings of circles

in the plane. A slight deformation of each leads to a smooth drawing of two circles
with only transversal double crossings. These two curves have an even number of
common crossings. Figure 4.43 illustrates this for a drawing of a walk, C1, and a
cycle, C2, in the plane. The figure also shows the nonzero values of � at the vertices
along C1.

Observe that the transversal crossings of these two smooth curves are of two
different types. The first type is due to the interaction of C1 and C2 in the
graph and the rotations of common vertices in the drawing, while the second
type is due to transversal crossings of edges in the original drawing of the graph
G. By construction, �.C1; C2/ accounts for the number modulo 2 of transversal
intersections of C1 and C2 of the first type. But since the overall number of
transversal crossings of the two curves is even, we conclude that �.C1; C2/ is
congruent modulo 2 to the number of transversal double crossings of edges of the
walk C1 with edges of C2 in the original drawing of G.

In the very simple example of the figure, there is one transversal double crossing
of edges, and hence �.C1; C2/ 
 1 mod 2.

Lemma 4.44. In a graph G with a thrackle drawing, let C1 be a closed walk,
v0; e1; v1; e2; : : : ; vk�1; ek; vk D v0, and C2 a cycle. Let l1 D k be the length of
C1, let l2 be the length of C2, and denote by l.C1 \ C2/ the number of edges in the
walk that are also edges of C2, i.e., l.C1 \ C2/ D jfj W ej 2 E.C2/gj. Then the
congruence

�.C1; C2/ 
 l.C1 \ C2/C l1l2 mod 2

holds.
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Fig. 4.43 Considering smooth approximating curves with transversal double crossings only

Proof (Sketch). By our previous observations, �.C1; C2/ is congruent modulo 2 to
the number of transversal intersections of edges of the walk C1 with edges of C2. To
determine this number, we will classify the edges of the walk C1 with respect to C2
and consider the corresponding quantities of these.

• Let k1 D l.C1 \ C2/ be the number of edges of the walk C1 that are also edges
of C2.

• Let k2 be the number of edges ek D vk�1vk of C1 that are not edges of C2, but
where both vk�1 and vk are vertices of C2.

• Let k3 be the number of edges ek D vk�1vk of C1 that are not edges of C2, but
where precisely one of the vertices vk�1 or vk is a vertex of C2.

• Let k4 be the number of edges of C1 that are neither edges of C2 nor incident to
a vertex of C2.

Since we are considering a thrackle drawing of G, the number of transversal
intersections of edges of the walk C1 with edges of C2 is

k1.l2�3/C k2.l2�4/C k3.l2�2/C k4l2 
 k1 C .k1Ck2Ck3Ck4/l2 mod 2


 l.C1 \ C2/C l1l2 mod 2: ut
Equipped with Lemma 4.44, we can now prove that Conway doubling produces a
bipartite graph as stated in Lemma 4.43.

Proof (of Lemma 4.43). Suppose that D was the odd cycle on which we performed
the Conway doubling in the graph G in order to obtain the graph NG. Denote the
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doubled cycle in NG by ND and let f W NG ! G be the surjective graph homomorphism
that sends ND toD. Now consider any cycle NC in NG. The image of NC under f defines
a walk C in G. First of all, outside of the cyclesD, respectively ND, the walk C and
the cycle NC agree. Hence, for their respective lengths, we obtain

l.C /� l.C \D/ 
 l. NC/ � l. NC \ ND/ mod 2:

Furthermore by the previous lemma, we have

�G.C;D/ 
 l.C \D/C l.C /l.D/ 
 l.C \D/C l.C / mod 2;

� NG. NC ; ND/ 
 l. NC \ ND/C l. NC/l. ND/ 
 l. NC \ ND/ mod 2:

Now it is easy to see that �G.C;D/ D � NG. NC ; ND/, and hence

l. NC/C l. NC \ ND/ 
 l. NC \ ND/ mod 2;

with the consequence that l. NC/ 
 0 mod 2. ut
Lemma 4.43, together with Theorem 4.39, yields a stronger upper bound on the

number of edges in a graph that allows a thrackle drawing than the bound obtained
in Corollary 4.41. This is the content of Exercise 17. To obtain the best known
bound, we continue our investigation of the properties of Conway’s cycle-doubling
construction.

The Hanani–Tutte Theorem Revisited

The Hanani–Tutte theorem states that a graph that can be drawn in the plane such
that any two independent edges have an even number of transversal crossings is
planar. In the proof of Theorem 4.39, we observed that a bipartite graph admitting
a thrackle drawing also admits a drawing in which any pair of edges has an even
number of transversal crossings. The Hanani–Tutte theorem becomes quite easy to
prove under this stronger condition, i.e., that any pair of edges has an even number of
transversal crossings. This weak version of the Hanani–Tutte theorem is the content
of Theorem A.21. Moreover, the planar drawing can ingeniously be obtained from
the original drawing via the following procedure.

First of all, we need the concept of attaching a handle to an oriented surface. Let
S be a 2-dimensional oriented surface. Consider two disks embedded in the surface.
A handle is added along these disks as follows. Cut out the disks, and orient the new
boundary circles of the surface according to the orientation of the surface. Now take
a cylinder surface, S1� Œ0; 1�, orient the two boundary circles in an opposite manner,
and identify the two boundary circles on the surface with the two boundary circles of
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Fig. 4.44 Attaching a handle to a surface

Fig. 4.45 Removing a crossing by attaching a handle

the cylinder in an orientation-preserving way. The result is a new orientable surface
with an attached handle. For an illustration, see Fig. 4.44.

Now consider a planar drawing of a graph G such that every pair of edges has
an even number of transversal crosssings. Eliminate all the crossings by attaching
a handle in an epsilon neighborhood of each crossing point, as shown in Fig. 4.45.
Note that this does not change the orientations at vertices.

Consider an epsilon neighborhood of the resulting graph embedding on this
surface. The boundary components of this epsilon neighborhood are circles. Attach
to each boundary component a 2-dimensional disk along the boundary. By Theo-
rem A.21, the graph admits a planar drawing in which the rotations at the vertices are
unchanged. Thus, by Theorem A.20, the resulting surface is the 2-sphere. In other
words, we have just constructed a planar embedding of the graph G. Figure 4.46
illustrates this procedure in a very simple situation.

Conway Doubling and Planarity

Before we can put the pieces together, we need to make one last observation. Let
G D .V;E/ be a graph with n vertices andm edges together with a thrackle drawing
in the plane. If G is not bipartite, there exists a cycle C in G of length p for some
odd p � 3. The Conway doubling of this cycle produces a bipartite graph NG D
.V1 P[V2;E 0/with nCp vertices andmCp edges together with a thrackle drawing in
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Fig. 4.46 How to obtain a planar embedding

the plane. The graph NG is planar by Theorem 4.39. In the proof of Theorem 4.39, the
drawing of NG is modified in such a way that any two edges have an even number of
transversal crossings. The previous section showed how to obtain a planar drawing
of such a graph drawing. The following lemma is essential.

Lemma 4.45. The doubled cycle bounds a face in the planar embedding of NG.

Proof. Along the doubled cycle, the left vertices, denoted by vl , and the right
vertices, denoted by vr , alternate. Therefore, we may assume that all of the left
vertices are contained in the independent set V1, and all of the right vertices are
contained in V2. As noted in Note 4.42, the edges leave the vertices in an alternating
fashion to the left and to the right along the cycle. As observed in Note 4.40, the
modification of the drawing in the proof of Theorem 4.39 leads to a drawing in
which each pair of edges crosses an even number of times and reverses the rotations
at all vertices of V2. In other words, if we follow the doubled cycle in the modified
drawing of NG, then all edges incident to vertices of the cycle leave the cycle to the
left. Hence, in the planar rotation system drawing of this graph, the doubled cycle
bounds a face. ut
Now we are ready to prove the best known upper bound.

Theorem 4.46. If G is a graph with n vertices and m edges that admits a thrackle
drawing, then m � 3

2
.n � 1/.

Proof. We start with the hard case in which G is not bipartite. As in the previous
lemma, in the planar embedding of the graph NG, the doubled cycle bounds a face
F . Denote the length of F by l1 D 2p and the lengths of the remaining faces by
l2; : : : ; lf . Since NG is a bipartite graph with a thrackle drawing, it does not contain
odd cycles or 4-cycles. Hence the shortest cycles are of length 6, i.e., l2; : : : ; lf � 6.
Hence we obtain the following estimate:

2p C 6.f � 1/ �
fX

jD1
lj D 2.mC p/:
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And hence

f � 1

3
mC 1:

Plugging this into Euler’s formula (Theorem A.12) yields the desired bound

2 D .nC p/� .mC p/C f � n �mC 1

3
mC 1:

On the other hand, when G is bipartite, we immediately obtain the estimate

6f � 2m;

which, together with Euler’s formula, leads to the desired upper bound. ut

Exercises

1. Show that the two formulations of the affine Radon theorem, as stated in
Theorems 4.1 and 4.2, are equivalent.

2. Provide a proof of the affine Radon theorem (Theorems 4.1 and 4.2) using the
fact that any d C 2 points in R

d are affinely dependent, i.e., they are not affinely
independent as defined on page 174.

3. Show that the map in the proof of Proposition 4.5 is continuous.
4. Provide a proof of Lemma 4.7 on page 100 by applying Lemma 4.8.
5. Provide a proof of Lemma 4.12 on page 102.
6. Provide a proof of Lemma 4.13 on page 103.
7. Consider the Sierksma configuration and the corresponding Tverberg partitions

as described on page 106. Show that all Tverberg partitions are obtained in this
way and that there are exactly ..q � 1/Š/d of them.

8. Investigate the Bier sphere Biern.K/ for the complex K D 2Œn�1� � 2Œn�.
Note that K? D K , and consider the Z2-action on Biern.K/ D K 	� K
given by � 	 � 7! � 	 � . Observe that under the isomorphism defined in
the proof of Proposition 4.14, the induced action on the shore subdivision of
Biern.K/ corresponds to the standard Z2-action on the barycentric subdivision
of the simplex boundary sd.2Œn� n fŒn�g/ induced by taking complements. Show
that this observation together with Lemma 4.7 yields an alternative proof of
Proposition 2.6.

9. (Rectangle peg Problem [Pak08]) Consider a Jordan curve C , i.e., the image
of an embedding f W S

1 ! R
2 of a circle into the plane. Show that there

exist four points on the curve C that span a rectangle. Hints: (a) A rectangle
is given by four distinct points a; b; c; d 2 C such that ka � bk D kc � dk
and aCb

2
D cCd

2
, i.e., the diagonals have the same length and intersect at their

midpoints. (b) Consider the configuration space L D ffx; yg W x; y 2 S
1g of
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Fig. 4.47 A rectangle on a Jordan curve

two points on the circle, which may coincide, and construct a continuous map
g W L ! R

3 with the property that if it is not injective, then a rectangle on C
is found. (c) Consider Exercise 18 on page 196 and recall the definition of the
projective plane P . (d) Extend g to a continuous map Ng W P ! R

3 and recall
Proposition 4.16 from page 105 (Fig. 4.47).

10. Show that the Jordan–Schönflies theorem, Theorem A.10, implies that edges
can be straightened as proposed on page 114.

11. Explain why—as in the example on page 121—linear algebra gives a recipe for
untangling the straight-line drawing of a graph, provided the graph is planar.

12. Give a direct argument that the cycle C4 of length 4 is not thrackleable.
13. For the unique cross graph ofC4, determine all possible rotation systems subject

to the transversality condition and compute the respective orbits of edge walks.
14. Consider a circle drawn smoothly in the plane such that it has only transversal

double self-intersections. Show that the connected components of the comple-
ment, i.e., the regions of the plane defined by the drawing, may be two-colored
in such a way that any two regions sharing a common boundary arc obtain
different colors.

15. Give a proof of the fact that any two circles drawn smoothly in the plane with
only transversal double crossings cross each other an even number of times, as
illustrated in Fig. 4.30.

16. Show that, as needed in the proof of Lemma 4.43, the identity �G.C;D/ D
� NG. NC; ND/ holds.

17. Derive an upper bound for the number of edges of a graph with a thrackle
drawing in the plane directly from Lemma 4.43 and Euler’s formula.

18. Show that in the proof of Theorem 4.19 as stated on page 109, the fixed-point
space EG D f0g is indeed trivial.



Chapter 5
Appendix A: Basic Concepts from Graph
Theory

Graphs serve as a major tool for modeling a wide variety of problems. For any
rail system, the plan of stations and possible connections between them constitutes
a graph, as do the following: the set of countries on a map, together with the
information as to which pairs of those have a common border; the sites of antennas
in a wireless communication network, together with the information as to which
pairs of those must not use the same frequency in order not to interfere with each
other. These, and many other examples, constitute graphs that arise in optimization
problems, as well as in other real-world applications. Graphs also play an important
role in computer science, pure mathematics, and theoretical physics.

As a general reference I recommend [Die06, Wes05].

A.1 Graphs

A (finite, simple) graph G is a pair .V;E/, where V is a finite nonempty set, and
E � �

V
2

�
is a set of 2-element subsets of V . We assume throughout that V is such

that V \�V
2

� D ;, so in particular, V \E D ;. The elements of V are called vertices,
and the elements of E are called edges of G. If a graph G is given, we refer to its
vertex set by V.G/ and to its edge set by E.G/.

As a first example, let

V D Œ5�; E D ff1; 2g; f1; 5g; f2; 3g; f2; 4g; f2; 5g; f3; 5gg:

Then G D .V;E/ can be illustrated as in Fig. A.1. For each vertex of G, a node
is drawn, and any two nodes are connected by a line if the corresponding vertices
constitute an edge of G.

As long as no confusion can occur, we will usually abbreviate the set
fu; vg 2 E by uv. In the previous example we would therefore write E D
f12; 15; 23; 24; 25; 35g.

M. de Longueville, A Course in Topological Combinatorics, Universitext,
DOI 10.1007/978-1-4419-7910-0 5,
© Springer Science+Business Media New York 2013

145



146 A Basic Concepts from Graph Theory

41

5

2

3

Fig. A.1 A graph on five vertices

If e D uv 2 E , then we say that u and v are adjacent, and that u (resp. v)
is incident to e. Two distinct edges are adjacent if they have a vertex in common.
A set of vertices or edges is called independent if no two of its elements are adjacent.

We denote by G n u the graph with u removed, i.e., the graph with vertex set
V n fug and edge set E n fe 2 E W u 2 eg. More generally, for a subset T � V , we
consider the graph G n T D .V n T; �V nT

2

� \E/. Analogously, we denote by G n e
the graph with e removed, i.e., the vertex set remains V and the edge set is E n feg.

The number of edges incident to a vertex u is called the degree of u, which we
denote by dG.u/. If no confusion may arise, we also just write d.u/.

Lemma A.1. Let G be a finite simple graph. Then
P

u2V.G/ d.u/ D 2jE.G/j.
Informally, this is clear, since every edge has two incident vertices.

Proof (Inductive). We proceed by induction on m D jE.G/j. The case m D 0 is
clear. If m > 0, then let e D vw 2 E be an arbitrary edge. Then, by the induction
hypothesis,

2m � 2 D 2.m� 1/ D 2jE.G n e/j D
X

u2V
dGne.u/:

This, in turn, is equal to

X

u2V nfv;wg
dG.u/C .dG.v/� 1/C .dG.w/ � 1/ D

X

u2V
dG.u/� 2;

from which the result follows. ut
Proof (Double counting). Let V.G/ D fv1; : : : ; vng, E.G/ D fe1; : : : ; emg, and let
I be the n �m incidence matrix of G with entries defined by

Ikl D
(
1; if vk 2 el ;
0; otherwise.

Clearly the number of ones in row k is equal to the number d.vk/ of incident edges,
and the number of ones in any column is 2, since every edge has two incident
vertices. Now we can count the entries in two different ways, row by row or column
by column, to obtain
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Fig. A.2 Examples of Kn, Km;n, Pn, and Cn for n D 5 and m D 2

X

u2V
dG.u/ D

nX

kD1
dG.vk/ D

nX

kD1

mX

lD1
Ikl

D
mX

lD1

nX

kD1
Ikl D

mX

lD1
2 D 2m;

which yields the result. ut
Corollary A.2. The number of vertices of odd degree in a finite simple graph is
even. ut

Important Graph Classes

Before we proceed, we present some important classes of graphs. The complete
graph,Kn, is a graph on n vertices in which all pairs of vertices are adjacent. If we
define the vertex set of Kn to be V.Kn/ D Œn�, then the edge set is E.Kn/ D �

Œn�
2

�
.

For m; n � 1, we let Km;n be the complete bipartite graph given by the vertex set
V D f0g � Œm�[ f1g � Œn� and edge set E D fuv W u 2 f0g � Œm�; v 2 f1g � Œn�g. In
other words, while there are no edges among the vertices of the set A D f0g � Œm�,
nor among the vertices in B D f1g � Œn�, all possible edges uv with u 2 A and
v 2 B appear. We refer to A and B as the shores of the bipartite graph. The path
Pn of length n is defined by the vertex set V D f0; 1; : : : ; ng and edge set E D
ffi � 1; ig W i 2 Œn�g. Finally, the cycle Cn of length n is given by vertex set V D Œn�

and edge set E D ffi; i C 1g W i 2 Œn � 1�g [ ff1; ngg. For examples, see Fig. A.2.
If G D .V;E/ is a graph, then we define its complement to be NG D .V;

�
V
2

�nE/,
i.e., the graph on the same vertex set but with complementary edge set. In particular,
NKn is the graph on vertex set Œn� and no edges. Sometimes we will refer to an edge

of NG as a nonedge of G.
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3

e3
e1

e2

e4

e5
21

Fig. A.3 An example of a multigraph

Loops

A graph G with loops is a pair G D .V;E/ with vertex set V and edge set E that
consists of 2- and 1-element subsets of V . A 1-subset fvg in E is a loop at v. We
interpret it as an edge with both ends attached to v. In particular, if there exists a
loop at v, then v is adjacent to itself. Note that a finite simple graph is a graph with
loops that does not have loops.

Most of the subsequent concepts work for graphs with loops, though in most
cases, we will be thinking of simple graphs.

Multiple Edges

At times it is necessary to consider an even more general graph concept.
A multigraph is given by a pair G D .V;E/ of (finite) disjoint sets of vertices
and edges together with a function E ! �

V
1

� [ �
V
2

�
that associates the end vertices

to each edge. It is clear that every graph (with loops) is a multigraph: the associated
function is given by the identity map.

In general, the preimage of an element of
�
V
1

� [ �
V
2

�
may now contain multiple

edges. An easy example is given by V D Œ3� and E D fe1; : : : ; e5g, where the end
vertices of the edges are given by

e1 7�! f1; 2g; e2 7�! f2; 3g;
e3 7�! f1g; e4 7�! f1; 2g;
e5 7�! f1g:

The corresponding graph is illustrated in Fig. A.3.
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Fig. A.4 A subgraph and an induced subgraph

Homomorphisms

A graph homomorphism from G to H is a map ' W V.G/ ! V.H/ that preserves
adjacency, i.e., if uv 2 E.G/, then '.u/'.v/ 2 E.H/. If ' is a bijection of the
vertices such that uv 2 E.G/ if and only if '.u/'.v/ 2 E.H/, then we call it a
graph isomorphism. Graph isomorphism yields an equivalence relation on the class
of graphs.

Often we will not distinguish between graphs within the same equivalence class.
For example, we will call any graph G complete if it is isomorphic to the complete
graph Kn, where n D jV.G/j. We refer to complete bipartite graphs, paths, cycles,
etc., in an analogous manner.

Subgraphs

If G D .V;E/ is a finite simple graph and if for some V 0 � V and E 0 � E , the
pair G D .V 0; E 0/ is a graph, i.e., E 0 � �

V 0

2

� \ E , then we call G a subgraph of G.
If S � V is any subset of the vertices, then we may consider the subgraph of G
with vertex set S and all possible edges ofG among the vertices of S , i.e., the graph
GŒS� D .S; fuv 2 E W u; v 2 Sg/. We call GŒS� an induced subgraph of G. See
Fig. A.4 for an illustration.

Note that for T � V , the graphG nT is the induced subgraphGŒV nT �, whereas
G n e is never an induced subgraph for any e 2 E .

More generally, for any two graphs G and H , we say that G is an (induced)
subgraph of H if there exist an (induced) subgraph H 0 of H and a graph
isomorphism between G and H 0.

Of particular interest are induced subgraphs without edges. They correspond to
independent sets of vertices, i.e., S � V is an independent set of vertices inG if the
induced subgraph GŒS� does not have any edges.

Similarly, we are interested in induced subgraphs that are complete graphs. A set
S � V is called a clique if the induced subgraphGŒS� is complete.

A cycle in a graph is a subgraph isomorphic to a cycle.
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Bipartite Graphs

A graph G D .V;E/ is called bipartite if it is isomorphic to a subgraph of a
complete bipartite graph. In other words, the vertices of G may be partitioned into
two independent sets V1 and V2 with V D V1 P[V2.

A cycle of even length is bipartite, since we may distribute the vertices
alternatingly into two sets V1 and V2. On the other hand, the vertices of an odd
cycle cannot be partitioned into two independent sets. Therefore a bipartite graph
must not contain a cycle of odd length. The converse is also true and yields a nice
characterization of bipartite graphs.

Lemma A.3. A graph G is bipartite if and only if it does not contain cycles of odd
length. ut

Whenever we write G D .V1 P[V2;E/ for a bipartite graph we implicitly assume
V1 and V2 to be independent sets witnessing the bipartiteness. We will refer to V1
and V2 as the shores of the graph.

Clearly, every graph can be made bipartite by removing edges, and there is an
easy probabilistic argument that no more than half of them need to be removed.

Proposition A.4. IfG D .V;E/ is a graph with m edges, then there exists a subset
E 0 � E of at most m

2
edges such that the graph .V;E nE 0/ is bipartite.

The following proof will employ the probabilistic method, a very powerful
concept in graph theory. We will formulate the proof in a rather sloppy but
demonstrative language. A good reference is [AS92].

Proof (Sketch). For each vertex v, toss a fair coin in order to assign it to a set A
or a set B , each with probability 1

2
. What is the expected number of edges between

A and B? For each edge uv 2 E , each of the following four cases appears with
probability 1

4
:

• u 2 A and v 2 A,
• u 2 B and v 2 B ,
• u 2 A and v 2 B ,
• u 2 B and v 2 A.

Hence, the number of expected edges betweenA andB ism.1
4
C 1

4
/ D m

2
. Therefore

there exists a partition V D A P[B such that there are at least m
2

edges between A
and B . It follows that at most m

2
edges have to be removed in order to make the sets

A and B independent. ut

Basic Constructions

Let G D .V0; E0/ and H D .V1; E1/ be two graphs. The �-product, G �H , of G
and H is defined to have vertex set V0 � V1 and edge set ff.u; u0/; .v; v0/g W uv 2
E0; u0v0 2 E1g. Figure A.5 shows the �-product of two paths.
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Fig. A.5 The �-product of P3 and P5

The union of G and H , G [ H , is the graph with vertex set V0 [ V1, and edge
set E0 [ E1. If V0 \ V1 6D ;, it is often desirable to take the union in such a way
that the two individual graphs do not interfere with each other. This is solved by the
following type of union.

The disjoint union of G and H , G qH , is the graph with vertex set V0 � f0g [
V1 � f1g, and edge set ff.u; i /; .v; i/g W i D 0; 1; uv 2 Ei g. The construction makes
the vertex sets disjoint by fiat. If V0\V1 D ;, thenGqH is isomorphic to G[H .

Now let G D .V;E/ and let S � V be an independent set of vertices of G.
Denote by G=S the graph in which all vertices of S are identified to one, i.e.,

V.G=S/ D V n S P[ fsg

for some s 62 V n S and

E.G=S/ D E \
 
V n S
2

!

[ fus W there exists v 2 S such that uv 2 Eg:

Connectedness

Every graph G D .V;E/ can be decomposed into its connected components in the
following way.

A path from vertex u to v in a graph G is a sequence P of distinct vertices
v0 D u; v1; : : : ; vk D v such that for all i , viviC1 2 E.G/, i.e., we can walk from u
to v along edges in the graph. The length of P is defined to be k, i.e., the number of
edges along the path. This gives the equivalence relation

u � v ” there exists a path from u to v. (A.1)

Let V D V1 P[ � � � P[Vr be the partition of V into equivalence classes. Then the con-
nected components of G are defined to be the induced subgraphsGŒV1�; : : : ; GŒVr �.
A graph is connected if it has only one connected component.
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Trees

A connected graph without cycles is called a tree. A vertex of degree one in a tree is
called a leaf. A spanning subgraph of a graphG D .V;E/ is a subgraph with vertex
set V . A spanning tree is a spanning subgraph that is a tree.

Theorem A.5. If G D .V;E/ is a graph on n vertices, then the following
statements are equivalent:

1. G is connected and has no cycles,
2. G is connected and has n � 1 edges,
3. G has n � 1 edges and no cycles,
4. For any two vertices u; v 2 V there exists exactly one path from u to v.

ut
Corollary A.6. Every connected graph G contains a spanning tree. ut

A forest is a graph that has no cycles. Hence, by definition, each connected
component of a forest is a tree.

Walks

A slight generalization of a path in a graph is the concept of a walk. A walk from
a vertex u to a vertex v in a graph G D .V;E/ is an alternating sequence v0 D
u; e1; v1; e2; : : : ; vk�1; ek; vk D v of vertices and edges such that ei D vi�1vi for
all 1 � i � k. In other words, a walk may use vertices and edges several times,
whereas a path is allowed to visit a vertex of G at most once. The length of a walk
is defined to be the number of its edges counted with multiplicities, i.e., the length
of v0; e1; v1; e2; : : : ; vk�1; ek; vk is k. A walk is closed if it ends where it starts, i.e.,
if v0 D vk .

A.2 Graph Invariants

There exist several important graph parameters that are invariant under graph
isomorphisms. We will present several of them.

A k-coloring of a graphG is a map c W V.G/ ! C of the vertices to some set of
cardinality jC j D k. Such a k-coloring is called proper if adjacent vertices receive
different colors, i.e., c.u/ 6D c.v/ for all uv 2 E.G/. The chromatic number, 
.G/,
of a graph is the smallest number k that allows a proper k-coloring of the graph.

A cycle of even length has chromatic number 2, and a cycle of odd length has
chromatic number 3. A complete graph,Kn, has chromatic number n, since any two
vertices are adjacent. A bipartite graph has chromatic number 2, one color for each
shore.
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Two important parameters of G are the minimal degree, ı.G/, and the maximal
degree,�.G/, defined to be the minimal, respectively maximal, vertex degree in G.

Cycles have ı.G/ D �.G/ D 2, while complete graphs have ı.Kn/ D �.Kn/ D
n � 1. A complete bipartite graph Km;n with m � n has ı.Km;n/ D m and
�.Km;n/ D n. A graph G satisfying ı.G/ D �.G/ D k is called k-regular.

It is immediate that for any graph G D .V;E/, we obtain an upper bound of

.G/ � �.G/C 1 for the chromatic number. Just order the vertices arbitrarily, say
V D fv1; : : : ; vng. Then the greedy coloring, c, of G is constructed inductively by
first coloring v1, then v2, then v3, and so on, i.e.,

c W V �! Œ�.G/C 1�;

vk 7�! min .Œ�.G/C 1� n fc.vi / W 1 � i < k; vkvi 2 Eg/ :

This procedure can be refined by noticing that to color vk in the greedy coloring,
we need a reservoir of only dGŒv1;:::;vk�1�.vk/ C 1 colors. In order to minimize this
number, choose vn of minimal degree in G, then choose inductively vk of minimal
degree in GŒfvn; : : : ; vkC1g�. This yields the bound


.G/ � maxfı.H/ W H an induced subgraph of Gg C 1; (A.2)

which is the content of Exercise 17. It is in this context that the following classical
theorem, which states that the only cases for which 
.G/ D �.G/ C 1 are the
complete graphs and the odd cycles, belongs.

Theorem A.7 (Brooks 1941). Let G be a connected finite simple graph. If G is
neither a complete graph nor a cycle of odd length, then 
.G/ � �.G/. ut

The independence number of G, ˛.G/, is the size of the largest independent set
in G, i.e., ˛.G/ D maxfjS j W S � V; S independent in Gg. Since every proper
coloring c W V ! C D fc1; : : : ; cr g gives rise to a partition of the vertex set into
independent sets V D c�1.c1/ P[ � � � [ c�1.cr /, we obtain the following bound for a
coloring with r D 
.G/ colors:

jV j D
rX

iD1
jc�1.ci /j � r˛.G/ D 
.G/˛.G/;

and hence a lower bound on the chromatic number

jV.G/j
˛.G/

� 
.G/:

The clique number of G, !.G/, is the size of a largest clique in G, i.e., !.G/ D
maxfjS j W S � V; S is a clique in Gg. Clearly, if G has a clique of size k, then

.G/ � k, and therefore we obtain another lower bound:

!.G/ � 
.G/:
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A.3 Graph Drawings and Planarity

If we consider the drawings of the example graphs, we realize that there is no way
to draw the complete graphK5 in the plane without having at least one intersection
of edges. Compare Figs. A.2 and A.6. But many graphs allow such a drawing, and
those give rise to a particularly interesting class of graphs.

We have to make the notion of a graph drawing precise. Let S be a closed surface
(as defined on page 172) or the Euclidean plane R

2. A (simple) curve in S is the
image of a smooth map ˛ W Œ0; 1� ! S from the unit interval to the surface that is
injective in the interior, i.e., ˛.s/ 6D ˛.t/ for all s; t 2 .0; 1/, s 6D t . The points ˛.0/
and ˛.1/ are called the endpoints of the curve. For x; y 2 S , a curve defined by
˛ is called an x; y-curve if its endpoints consist of x and y. A drawing of a graph
G D .V;E/ in S is given by an assignment v 7! xv 2 S of a point for each vertex
v 2 V and an assignment e 7! im ˛e � S of a curve for each edge e 2 E , subject
to the following conditions:

• The images of the vertices are distinct, i.e., xu 6D xv for u 6D v;
• For each e D uv 2 E the associated curve ˛e is an xu; xv-curve;
• For any two edges e 6D f , the set of crossings, i.e., the set fx 2 S W

there exist r; s 2 .0; 1/ such that ˛e.r/ D ˛f .s/ D xg, is finite;
• There are no triple crossings of edges, i.e., for any three distinct edges e; f; and
g the set fx 2 S W there exist r; s; t 2 .0; 1/ such that ˛e.r/ D ˛f .s/ D ˛g.t/ D
xg is empty; and

• Crossings are always transversal and never tangential, i.e., the tangent vectors of
two crossing edges in the crossing point always span the tangent plane.

A drawing will be referred to by the pair .x; ˛/. Note that in the case that the
surface S is the 2-dimensional sphere S

2, we may use stereographic projection to
replace S with the plane R

2 and vice versa.

Definition A.8. A graph G is planar if it has a drawing in the sphere (respectively
the plane) without crossings. Such a drawing is called a planar drawing or
embedding. A plane graph is a graph together with a planar drawing.

Fig. A.6 Crossing of a pair of edges in a drawing of K5
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In the context of planar drawings, it is “very easy to allow some unproved
intuition to creep into the proofs” [Bre93]. The essential theorem to justify most
intuition in this context is the Jordan curve theorem [Tho92]. A Jordan curve is
defined to be a closed curve, c D im˛, in the plane, i.e., a (simple) curve with
˛.0/ D ˛.1/.

Theorem A.9 (Jordan curve theorem). A Jordan curve partitions the plane into
two path-connected components (see page 170) each having c as boundary. ut
This theorem has a higher-dimensional analogue for embeddings of an .n � 1/-
dimensional sphere into an n-sphere. But the 2-dimensional case is somewhat
special, because the following stronger statement also holds.

Theorem A.10 (Jordan–Schönflies). Any homeomorphism of two closed curves
in the plane can be extended to a homeomorphism of the whole plane. In particular,
the closure of the bounded connected component in the complement of a closed
curve in the plane is homeomorphic to the 2-dimensional ball B2. ut

Euler’s Formula

Euler’s famous formula establishes a relation between the number of vertices, edges,
and faces of a plane graph.

Definition A.11. A face of a planar drawing is a path-connected component of the
complement of the drawing, i.e., a path-connected component of

R
2 n

[

e2E
im ˛e:

Theorem A.12 (Euler 1758). Let G be a plane graph with n vertices, m edges,
and f faces. Then n �mC f D 2. ut

Consider a connected plane graph G. If we follow the boundary of a face of G,
we obtain a closed walk in the graph. Up to the orientation, the walk is uniquely
determined by the face. The length, l.F /, of a face F is defined to be the length of
one of the closed walks associated with the face.

If G is an arbitrary plane graph, then each face F may have several boundary
components each of which determines a walk. The length l.F / is then defined to be
the sum of the lengths of all walks in the boundary of F .

Figure A.7 illustrates a face of length 10 and a face of length 8. Clearly, the sum
over all lengths of faces yields twice the number of edges in the graph.

Theorem A.13. Let G be a simple planar graph with n vertices and m edges.
Assume that G contains cycles, the shortest of which have length at least k. Then
m � b k

k�2 .n � 2/c.
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Fig. A.7 Faces of length 10 and 8

Proof. For the sum of the lengths of faces, we obtain kf � P
F l.F / D 2m, and

hence by Euler’s formula, the desired inequality

2 D n�mC f � n �mC 2m

k
D n � m.k � 2/

k
:

ut
Corollary A.14. Every planar graph has a vertex of degree at most 5. ut
Among planar graphs, the maximal planar graphs constitute an important class. In
particular, they are useful in many proofs.

Definition A.15. A planar graph GD .V;E/ is called maximal planar if it is
inclusion-maximal under all planar graphs with vertex set V , i.e., whenever G0 D
.V;E 0/ is a planar graph with E � E 0, then E D E 0.

Theorem A.16. For a planar graph G on n vertices, the following are equiva-
lent:

1. G has 3n � 6 edges;
2. In every planar drawing in which every edge is represented by a straight line,

every face is bounded by a triangle;
3. G is maximal planar. ut
In a maximal planar graph with at least four vertices, the minimal degree is at least
three. As in Corollary A.14, it is easy to see that there exist at least four vertices of
degree at most 5. Using this fact, it is not hard to show inductively that every planar
graph admits a straight-line embedding.

Theorem A.17 (Fáry 1948). Every planar graph admits a drawing in which every
edge is represented by a straight line. ut
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e

v

πv(e)

Fig. A.8 Rotation of a vertex

Kuratowski’s Theorem

Any graph G0 obtained from a graph G by replacing the edges of G by paths of
length greater than or equal to 1 is called a subdivision of G. A graph H is a
(topological) minor of G provided that G contains a subgraph that is isomorphic
to a subdivision of H . The following is a famous characterization of planar graphs
by means of forbidden topological minors.

Theorem A.18 (Kuratowski 1930). A graphG is planar if and only if neither the
complete graph K5 nor the complete bipartite graph K3;3 is a topological minor
of G. ut

A.4 Rotation Systems and Surface Embeddings

We will now discuss how to obtain graph embeddings in orientable surfaces.
A nice overview is given in Carsten Thomassen’s handbook article [Tho94]. We
recommend that the reader be familiar with the concept of orientable surfaces and
2-cell embeddings as explained in Sect. B.2 on page 172.

If a graph G D .V;E/ is 2-cell embedded in an orientable surface S , then the
combinatorial essence of the drawing is captured by the walks surrounding the faces.
These walks can be described in an alternative way.

Choose an orientation of the surface. For each vertex v 2 E , the drawing induces
a cyclic permutation	v of the edges incident with v, where	v.e/ is defined to be the
edge succeeding e in the clockwise orientation around v, as illustrated in Fig. A.8.
The permutation 	v is called the (induced) rotation of v. The walks surrounding
faces can be easily reobtained by the vertex rotations starting with a directed edge
and turning clockwise at each vertex v according to the rotation 	v . See Fig. A.9.

Now we want to turn the game around and see how generally to obtain graph
embeddings on surfaces.

Definition A.19. Let G D .V;E/ be a connected graph. A rotation system forG is
a family f	v W v 2 V g of cyclic permutations 	v of the edges incident to v, called
rotations.
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e
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πv(e)

Fig. A.9 Obtaining face walks from vertex rotations
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Fig. A.10 Example graph for illustrating orbits of a rotation system

Each directed edge e1 D .v0; v1/ gives rise to a sequence v0; e1; v1; e2; v2; : : :
with the property that ekC1 D 	vk .ek/ D vkvkC1. Since the set of directed edges of
G is finite, some directed edge will be transversed twice in the same direction. In
fact, it is not hard to see that the first directed edge appearing for the second time
will be .v0; v1/. Hence, we obtain a closed walk v0; e1; v1; : : : ; vk�1; ek; vk D v0
such that 	vk .ek/ D e1 and all directed edges .vi ; viC1/ are distinct. The sequence
of directed edges of a walk obtained in such a way (up to cyclic reordering) is called
an orbit of the rotation system. Clearly every directed edge appears in precisely one
orbit. Hence, for every undirected edge, the two directed edges associated with it
appear either in the same orbit or in two distinct orbits.

As an example, we consider the graph shown in Fig. A.10. All vertices have
degree 2 except for the vertex x. So the only choice that has to be made for a rotation
is at this vertex. Consider the two rotations 	1x D .abde/ and 	2x D .adbe/. Up to
symmetries of the graph, these are the only two rotations.

The set of closed walks for a rotation system containing 	1x consists of

x; a; y; c; z; b; x; d; u; f; v; e; xI
x; b; z; c; y; a; xI
x; e; v; f; u; d; xI
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Fig. A.11 The polygons associated with the example rotation systems containing 	1x ,
respectively 	2x

e

v u
c

e

b
x

d

u

f

a
v

y

x

y
a

b

f

d

z

z

Fig. A.12 G embedded in orientable surfaces arising from rotation systems

and for a rotation system containing 	2x , consists of the single walk

x; a; y; c; z; b; x; e; v; f; u; d; x; b; z; c; y; a; x; d; u; f; v; e; x:

For any rotation system of a graph G, we may construct a surface as follows.
For each orbit of length k, consider a regular k-gon and identify the directed edges
along the polygon with the sequence of directed edges of the orbit. Thereby label
the edges of the polygon with the respective edges and the vertices of the polygon
with the respective end vertices of the directed edges. The resulting polygons for
our two example rotation systems are shown in Fig. A.11.

We now identify each pair of polygon edges with the same label, directed so
that the vertex labels coincide as well. This construction results in an orientable
surface in which G is embedded. For our two example rotation systems, this yields
an embedding ofG on the sphere, respectively on the torus, as depicted in Fig. A.12.

Theorem A.20. Let f	v W v 2 V g be a rotation system for the connected graph
G D .V;E/ with n vertices and m edges, and let r be the number of orbits. Then



160 A Basic Concepts from Graph Theory

Fig. A.13 Contracting an edge

there exists a 2-cell embedding of G in a pretzel surface of genus g with f faces
subject to the relation

n �mC f D n �mC r D 2 � 2g: ut

A Weak Hanani–Tutte Theorem

It is not hard to extend the notion of rotation systems to multigraphs, i.e., to graphs
with loops and multiple edges.

Theorem A.21. Any multigraph drawn in the plane such that any pair of edges
crosses an even number of times can be embedded in the plane without changing
the rotation system about the vertices induced by the drawing.

Proof (Sketch [PSŠ07]). We proceed by induction on the number of vertices. If there
is only one vertex with m loop edges, then consider the rotation about this vertex.
The parity condition implies that in the rotation, two edges cannot alternate, i.e., two
edges e and f cannot appear as .��e ��f �� e ��f ��/. This in turn implies the existence of
an edge e that appears as .� � � ee � � � / in the rotation. This edge can now be redrawn
such that it does not cross any other edges and such that the rotation is not changed.
A second induction on the number of edges finishes this case. Now assume that the
graph has at least two vertices. Consider a pair of adjacent vertices connected by
some edge e. While contracting e, redraw the graph as shown in Fig. A.13.

After this step, some self-intersections of edges might have to be removed as
shown in Fig. 4.39 on page 134. By the induction hypothesis, the remaining graph
can be embedded in the plane with the same rotation system. Therefore the missing
edge can be reintroduced as illustrated in Fig. A.14. ut
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Fig. A.14 Reintroducing the edge

Exercises

1. Show that any two graphs with n � 2 vertices and
�
n
2

��1 edges are isomorphic.
2. Show that every graphG with n � 2 vertices andm >

�
n�1
2

�
edges is connected.

3. Let u and v be adjacent vertices in a simple graph with n vertices. Show that
the edge uv belongs to at least d.u/C d.v/ � n triangles in G.

4. Show that among any six people there will always be at least three that pairwise
know each other or that pairwise do not know each other.

5. An automorphism of a graphG is a graph isomorphism fromG to itself. Count
the number of automorphisms of Pn, Cn, andKn.

6. Give a proof of Lemma A.3.
7. Show that the relation (A.1) on page 151 is an equivalence relation.
8. Give a proof of Theorem A.5.
9. Give a proof of Corollary A.6.

10. Let G be a connected simple graph that has neither P4 nor C3 as an induced
subgraph. Prove that G is a complete bipartite graph.

11. Let T be a tree with n � 2 vertices. Show that there exist at least two leaves,
i.e., two vertices of degree 1.

12. Let G be a forest with n vertices and c connected components. Show that the
number of edges is equal to n � c.

13. In a graph G, assume that there exists a walk from u to v. Show that there also
exists a path from u to v.

14. Let W be a closed walk of length at least one that does not contain a cycle.
Show that there exists an edge in the walk that immediately repeats along the
walk.

15. LetG be a graph withm edges. Show that the chromatic number 
.G/ satisfies

the inequality 
.G/ � 1
2

C
q
2mC 1

4
.

16. Show that for every graph G, there exists an order of the vertices such that the
greedy coloring with respect to this order yields a coloring with 
.G/ colors.

17. Provide the missing details of the proof of the inequality (A.2) on page 153.
18. Let G be a graph in which any two odd cycles share a common vertex. Prove

that 
.G/ � 5.
19. Let G be a graph on n vertices and denote by NG its complement. Show that


.G/C 
. NG/ � nC 1.
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20. Show that every graph G has a subgraph H with minimal degree ı.H/ �

.G/ � 1.

21. Give a proof of Corollary A.14.
22. Use Corollary A.14 to show that every planar graph admits a proper 6-coloring.
23. Provide a proof of Fáry’s theorem, Theorem A.17.
24. Let f	v W v 2 V g be a rotation system for G D .V;E/, and .v0; v1/ a directed

edge. Show that .v0; v1/ is the first directed edge that appears twice in the
sequence v0; e1; v1; e2; v2; : : : with the property that ekC1 D 	vk .ek/ D vkvkC1.

25. Extend the notion of rotation systems to multigraphs.



Chapter 6
Appendix B: Crash Course in Topology

Topology is the mathematical theory of space. It is divided into two main branches:
set-theoretic topology and algebraic topology. Set-theoretic topology provides the
language of topological spaces and continuous maps, the core concepts such as
homotopy and compactness, and properties of some basic constructions. Algebraic
topology is essentially a theory about algebraic invariants of topological spaces. It
provides the tools to distinguish between spaces with respect to some equivalence
relation, primarily homotopy equivalence.

In this overview, the two branches are linked via simplicial complexes and their
polyhedra, since these define quite a large class of spaces that allow a convenient
way to define one particular class of algebraic invariants, the simplicial homology
groups.

For further studies, I recommend the textbooks by Klaus Jänich [Jän84], Glen E.
Bredon [Bre93], James Munkres [Mun84] and J. Peter May [May99].

B.1 Some Set-Theoretic Topology

Topological Spaces

Definition B.1. A topological space is a pair .X;O/, where X 6D ; is a set, and
O � P.X/ is a family of subsets of X , the family of open sets. The set O is called
a topology on X and has to satisfy

1. ;; X 2 O;
2. Any finite intersection U1 \ � � � \ Uk of open sets U1; : : : ; Uk is open;
3. Any arbitrary union

S
U of open sets U � O is open.

The immediate and extreme examples are the indiscrete topology f;; Xg, and the
discrete topology P.X/ of all subsets of X . The indiscrete topology is the coarsest,

M. de Longueville, A Course in Topological Combinatorics, Universitext,
DOI 10.1007/978-1-4419-7910-0 6,
© Springer Science+Business Media New York 2013
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and the discrete topology is the finest, among all topologies. If O1 and O2 are two
topologies onX , then O1 is called finer than O2 if it contains “more” open sets, i.e.,
O1 
 O2. In this case we say that O2 is coarser than O1.

All topological spaces that are relevant in this book satisfy the following
separation axiom.

Definition B.2. A topological space .X;O/ is Hausdorff if for any two points
x; y 2 X with x 6D y, there exist open sets U; V 2 O separating x and y, i.e.,
x 2 U , y 2 V and U \ V D ;.

The most important examples for our purposes are the cases in which X is a
subset of Euclidean space R

n and the topology is induced by the Euclidean metric.
We will explain this in more detail now.

Definition B.3. A metric on a space X is a map d W X � X �! R satisfying the
following conditions:

1. (Positive definite) d.x; y/ � 0 for all x; y 2 X , and d.x; y/ D 0 if and only if
x D y.

2. (Symmetric) d.x; y/ D d.y; x/ for all x; y 2 X .
3. (Triangle inequality) d.x; z/ � d.x; y/C d.y; z/ for all x; y; z 2 X .

If d is a metric onX and x 2 X , then denote byB".x/ D fy 2 X W d.x; y/ < "g
the "-ball about x. The metric d induces a topology O on X : define a set U � X

to be open if for each of its elements x 2 U it contains an "-ball about x for some
" > 0.

Proposition B.4. If d is a metric on X , and O is defined by

O D fU � X W for each x 2 U there is an " > 0 such that B".x/ � U g;

then O is a topology on X . ut
We call such topologies metric topologies and the respective spaces metric
topological spaces. Note that in a metric topological space, the balls B".x/ are
open sets, since for each y 2 B".x/, the inclusion B"�d.x;y/.y/ � B".x/ holds by
the triangle inequality.

Proposition B.5. If d is a metric on X , then the induced topology is Hausdorff.

Proof. Let x; y 2 X , x 6D y. Then define " D 1
2
d.x; y/. The open balls U D B".x/

and V D B".y/ separate x and y as needed. ut
We now introduce the most important terminology for topological spaces.

Definition B.6. Let .X;O/ be a topological space and A � X a subset of X .

• A is closed if its complementXnA is open.
• If x 2 X , then A is called a neighborhood of x if there exists an open set U 2 O

such that x 2 U � A.
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• x 2 A is an interior point of A if A is a neighborhood of x. The set of all interior
points of A is denoted by int.A/.

• A point x 2 X is in the boundary of A if it is neither an interior point of A nor
an interior point of XnA. Equivalently, each neighborhood of x intersects A and
XnA nontrivially. The set of all boundary points of A is denoted by @A.

• The closure of A is defined as cl.A/ D A [ @A. It is the smallest closed set
containing A.

• x 2 X is an accumulation point of A if x 2 cl.Anfxg/.
Some of our most frequent examples of topological spaces are the n-dimensional

ball,

B
n D fx 2 R

n W kxk � 1g;

and the .n�1/-dimensional sphere,

S
n�1 D fx 2 R

n W kxk D 1g;

with the topology induced by the Euclidean metric.

Continuous Maps and Homeomorphisms

Definition B.7. Let .X;OX/ and .Y;OY / be topological spaces. A map f W X!Y

is continuous if for any open V 2 OY , the preimage f �1.V / is open, i.e.,
f �1.V /2OX .

Clearly the identity idX of a topological space and compositions of continuous
maps are continuous.

Note that we will suppress the topology O if no confusion may arise. Hence we
will sometimes speak of spaces X , Y , etc., with the understanding that they are
topological spaces .X;OX/, .Y;OY /, etc.

Definition B.8. A map f W X ! Y of topological spaces is a homeomorphism
if it is continuous, bijective, and the inverse map f �1 W Y ! X is continuous as
well. Two spaces X and Y are homeomorphic, denoted by X Š Y , if there exists a
homeomorphism f W X ! Y . A map f W X ! Y is called an embedding if f is a
homeomorphism of X onto its image f .X/.

Note that there exist examples of bijective continuous maps f W X ! Y such
that the inverse map is not continuous. We leave the construction of an example to
the exercises.

Proposition B.9. Let .X;OX/ and .Y;OY / be spaces with the topologies OX and
OY induced by the metrics dX and dY . Then a map f W X ! Y is continuous if
and only if for each x 2 X and " > 0, there exists a ı > 0 such that f .Bı.x// �
B".f .x//. ut
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Subspaces, Sums, and Products

Proposition B.10. If .X;O/ is a topological space and Y � X a subset, then

OjY D fU \ Y W U 2 Og

defines a topology on Y , the subspace topology. The space .Y;OjY / is called a
subspace of .X;O/. ut
Definition B.11. A pair of topological spaces is a pair .X;A/, where X is a
topological space and A is a subspace. A map f W .X;A/ �! .X 0; A0/ of pairs
is given by a continuous map f W X �! X 0 such that f .A/ � A0.

If X and Y are two sets, then their disjoint union, or sum, is defined by X C Y D
X � f0g [ Y � f1g. If X and Y are disjoint, X C Y may be identified with X [ Y .
More generally, if fX˛ W ˛ 2 Ag is an indexed family of sets, then their sum is
defined by

`
˛2A X˛ D S fX˛ � f˛g W ˛ 2 Ag. The composition of inclusion maps

X˛ ,! X˛ � f˛g ,! `
˛2A X˛ is denoted by i˛ .

Definition B.12. If .X;OX/ and .Y;OY / are topological spaces, then their (topo-
logical) sum is defined to be set X C Y endowed with the topology

fU C V W U 2 OX ; V 2 OY g:

More generally, if f.X˛;O˛/ W ˛ 2 Ag is an indexed family of topological spaces,
then define the (topological) sum of the family to be the setX D `

˛2A X˛ endowed
with the topology

OX D
(

U W U �
a

˛2A
X˛; i

�1
˛ .U / 2 O˛

)

:

Now, if f.X˛;O˛/ W ˛ 2 Ag is an indexed family of sets, then consider their
product X D Q

˛2A X˛. If all the X˛ are nonempty, then so is X . Note that this
statement is not clear a priori but is the content of the axiom of choice. For each
˛ there is a projection map 	˛ W X �! X˛. Finite intersections

Tk
iD1 	�1

˛i
.U˛i /,

where ˛i 2 A and U˛i 2 O˛i , will be called basic.

Definition B.13. Let f.X˛;O˛/ W ˛ 2 Ag be an indexed family of topological
spaces. The (topological) product of the family is given by the set X D Q

˛2A X˛
endowed with the topology

OX D
8
<

:
U � X W U D

[

ˇ2B
Aˇ an arbitrary union of basic sets

9
=

;
:
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(z, 0)

(z, 0)
(z, 1)

(z, 1)

Fig. B.1 The torus and the Klein bottle as quotients of the cylinder

Note that in the case of finitely many spaces fX1; : : : ; Xng it is common to use
the notation

X1 C � � � CXn D
na

iD1
Xi and X1 � � � � �Xn D

nY

iD1
Xi :

Quotients

We want to introduce the concept of a quotient topology. Let .X;OX/ be a
topological space and q W X ! Y a surjective map. Among all topologies on Y ,
the finest topology such that q is a continuous map is called the quotient topology
with respect to q. When q is considered as a map of topological spaces, it is called
a quotient map. The topology is given by

OY D fU � Y W q�1.U / is openg
and has the universal property that a map g W .Y;OY / ! .Z;OZ/ of topological
spaces is continuous if and only if the composition g ı q W .X;OX/ ! .Z;OZ/ is
continuous.

A typical example occurs as follows. Consider an equivalence relation � on a
topological space X . Then there exists a natural (set) quotient map q W X ! X=�
mapping each point to its equivalence class with respect to �. The set of equivalence
classes X=� will now be endowed with the quotient topology with respect to q.

Two concrete examples of such quotients are the torus and the Klein bottle. Both
spaces may be constructed as quotients of the cylinderS D S

1�Œ0; 1�with respect to
an equivalence relation. For the torus, let �T be the equivalence relation generated
by .z; 0/ �T .z; 1/. For the Klein bottle, consider the circle to be a subset of the
complex plane, i.e., S1 � C, and consider the equivalence relation generated by
.z; 0/ �K .Nz; 1/. An illustration of the equivalence relations is given in Fig. B.1.



168 B Crash Course in Topology

Glued Spaces, Wedges, and Joins

Let X , Y be topological spaces, A � X a subspace, and f W A �! Y a continuous
map. Then we may glue X to Y along f as follows. The map f defines an
equivalence relation � on Y CX generated by f .x/ � x for all x 2 A. Denote the
quotient by Y [f X D .Y CX/=� and endow Y [f X with the topology induced
by the (set) quotient map q W Y CX �! Y [f X .

A particular case is the wedge of pointed spaces. A pointed space is given by a
topological space X together with a base point x 2 X , denoted by the pair .X; x/.
The wedge of the pointed spaces .X1; x1/; : : : ; .Xn; xn/ is given by gluing together
all the base points iteratively. More precisely, let fi W fxig �! XiC1 be defined
by f .xi / D xiC1. Then the wedge of the Xi along the base points xi is iteratively
defined by

kC1_

iD1
Xi D XkC1 [fi

 
k_

iD1
Xi

!

:

The wedge of two pointed spaces .X; x/ and .Y; y/ is also denoted by X _ Y .
Now consider two subspaces X � R

m and Y � R
n. Their join X 	 Y is defined

to be the subspace

X 	 Y D
n�
.1� t/

�
1; x

�
; t
�
1; y

�� 2 R
mC1 � R

nC1 W t 2 Œ0; 1�; x 2 X; y 2 Y
o
;

i.e., the join is essentially the space given by X and Y and all connecting lines
between them. Note that for t D 1, the element

�
.1 � t/

�
1; x

�
; t
�
1; y

��
is

independent of the choice of x; and for t D 0, it is independent of the choice
of y. For this reason we suggestively abbreviate the elements of X 	 Y by pairs
.t0x; t1y/, where t0; t1 � 0, t0 C t1 D 1, and x 2 X , y 2 Y . In this notation, we
have .t0x; t1y/ D .t 00x0; t 01y0/ if and only if the following hold:

• t0 D t 00, t1 D t 01, and
• If t0 6D 0, then x D x0, and
• If t1 6D 0, then y D y0.

A special case, which also serves as a good example, is X D S
0 D f˙1g � R

and Y � R
n is arbitrary. In this case the join may be realized in dimension n C 1,

i.e., the map

X 	 Y �! R
nC1;

�
.1 � t/�1; x�; t�1; y�

�
7�! �

.1 � t/x; ty�;

is a homeomorphism onto its image, which is easy to check. It turns out that under
this map the join S

0 	 S
0 is the boundary of the square conv.˙e1;˙e2/, S0 	 S

0 	 S
0
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is the boundary of the octahedron conv.˙e1;˙e2;˙e3/, and so forth. In particular,
the .nC 1/-fold join S

0 	 � � � 	 S
0 is the boundary of the .nC 1/-dimensional cross

polytopeQnC1 D conv.˙e1; : : : ;˙enC1/, and is homeomorphic to the n-sphere Sn.
A join can also be defined for a pair of arbitrary topological spaces. Let X and Y

be topological spaces. Let � be the equivalence relation onX � Œ0; 1��Y generated
by .x; 0; y/ � .x; 0; y0/ and .x; 1; y/ � .x0; 1; y/ for x; x0 2 X and y; y0 2 Y .
Then the join,X	Y , is defined to be the quotientX�Œ0; 1��Y=� equipped with the
quotient topology with respect to the (set) quotient map q W X � Œ0; 1��Y ! X 	Y .

Again we think of X 	 Y as being the space of all connecting lines between a
point in X and a point in Y . It is shown in Exercise 10 that the general concept of a
join and the concept for Euclidean space agree for compact subspaces of Euclidean
space.

As in the case for Euclidean space, we will denote an element of an n-fold
join X1 	 � � � 	 Xn by the formal vector .t1x1; : : : ; tnxn/, where .t1x1; : : : ; tnxn/ D
.t 01x0

1; : : : ; t
0
nx

0
n/ if and only if for all i D 1; : : : ; n we have ti D t 0i and xi D x0

i

whenever ti 6D 0.

Compactness

A covering of a topological space .X;O/ is a collection U of subsets of X whose
union is X . A covering is open if all sets of the covering are open, i.e., U � O.
A subset U 0 � U of a covering is a subcover if it is a covering of X itself.

Definition B.14. A topological space X is compact if every open covering of X
possesses a finite subcover.

The following propositions are easy to derive and are treated in the exercises.

Proposition B.15. If X is compact and A is a closed subset of X , then A, when
viewed as a subspace, is compact. ut
Proposition B.16. If X is a Hausdorff topological space, then any compact
subspace A of X is closed in X . ut
Proposition B.17. Let X and Y be topological spaces. ThenX and Y are compact
if and only if the product X � Y is compact. ut

The Tychonoff theorem is a generalization of the previous proposition for
arbitrary products of compact spaces.

Proposition B.18. If X is compact and f W X �! Y is continuous, then the image
f .X/ is compact. ut
Theorem B.19. IfX is compact, Y is Hausdorff, and f W X �! Y is a continuous
and bijective map, then f is a homeomorphism. ut
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Theorem B.20. If X is a metric space, then the following are equivalent:

1. X is compact;
2. Each sequence .xn/ in X has an accumulation point; and
3. Each sequence .xn/ in X has a convergent subsequence. ut

Connectivity

Definition B.21. A topological space X is connected if it cannot be decomposed
into two disjoint open sets.

Equivalently, a space X is connected if the only subsets that are simultaneously
open and closed are the empty set ; and the whole space X .

Proposition B.22. The unit interval I D Œ0; 1� is connected. ut
Definition B.23. A topological space X is path-connected if for any two points
x; y 2 X , there exists a continuous map p W Œ0; 1� �! X with p.0/ D x and
p.1/ D y. The map p is called a path from x to y.

Proposition B.24. A path-connected space X is connected. ut
Proposition B.25. If X is (path-)connected, Y is a topological space, and f W
X ! Y is a continuous map, then the image f .X/ is (path-)connected. ut
Let X be a topological space. Define a relation � on X by

x � y ” there exists a path from x to y.

The relation � is an equivalence relation on X , and the equivalence classes of �
are the path-connected components of X .

Proposition B.26. Topological spaces X and Y are path-connected if and only if
the product X � Y is path-connected. ut

Higher Connectivity

A topological space X is k-connected if for any �1 � l � k, any continuous map
f W Sl ! X can be extended to the ball BlC1, i.e., there is a map F W BlC1 ! X

such that F jSl D f . An illustration is given in Fig. B.2. For example, a space is
�1-connected if it is nonempty; a space is 0-connected if it is nonempty and path-
connected; and it is 1-connected (also called simply connected) if it is nonempty,
path-connected, and every loop can be contracted to a point. If it exists, the largest
k such that X is k-connected is called the connectivity of X , denoted by conn.X/.
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F

f

X

Sl

Bl+1

Fig. B.2 Extending a map from the sphere to the ball

An important example is the following theorem. Its proof is the content of
Exercises 21–24.

Theorem B.27. The n-dimensional sphere Sn is .n � 1/-connected. ut

Homotopy

Let f; g W X �! Y be continuous maps of topological spaces, and denote by I
the unit interval Œ0; 1�. Then f and g are homotopic, denoted by f ' g, if there
exists a homotopy between f and g, i.e., a continuous map h W X � I �! Y with
h.x; 0/ D f .x/ and h.x; 1/ D g.x/ for all x 2 X .

Proposition B.28. Homotopy of maps defines an equivalence relation on the space
of all continuous maps from X to Y . ut

A continuous map f W X �! Y of topological spaces is a homotopy equivalence
if there exists a homotopy inverse g W Y �! X , i.e., g ı f ' idX and f ı g '
idY . Two spaces X and Y are called homotopy equivalent, denoted by X ' Y , if
there exists a homotopy equivalence from X to Y . The class of spaces homotopy
equivalent to a space X is called the homotopy type of X .

A topological space X is contractible if it is homotopy equivalent to a one-point
space P . If f W X �! P denotes the unique map to a point and g W P �! X is the
homotopy inverse, then the homotopy h from idX to g ı f is called a contraction
of X .

A subspace A � X is called a strong deformation retract if there exists a
continuous retraction map r W X �! A such that if i W A ,! X is the inclusion
map, we have r ı i D idA and i ı r ' idX .

An easy application of Brouwer’s fixed-point theorem, Theorem 1.1, yields the
following theorem.

Theorem B.29. The n-dimensional sphere Sn is not a strong deformation retract of
the .nC 1/-dimensional ball BnC1. ut
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Corollary B.30. The n-dimensional sphere Sn is not n-connected. ut
Continuous maps f; g W .X;A/ �! .Y; B/ of pairs of topological spaces are

called homotopic, denoted by f ' g, if f; g W X �! Y are homotopic, and
f jA; gjA W A �! B are homotopic. Homotopy equivalence of pairs of spaces is
defined accordingly.

B.2 Surfaces

A (closed) surface S is a compact path-connected Hausdorff space that is locally
homeomorphic to R

2, i.e., every x 2 S possesses an open neighborhood that is
homeomorphic to R

2; cf. [Tho94, Mas91]. Typical examples are the 2-dimensional
sphere, the torus, and the Klein bottle.

In general, any surface may be obtained as a quotient of one or more polygonal
disks whose pairs of directed edges are identified. Some examples are shown in
Fig. B.3. Note that the vertices and edges of the polygons yield a graph embedded on
the resulting surface. Moreover, the complement of the embedded graph is a disjoint
union of open disks. Any embedding of a graph on a surface with the property
that the connected components of the complement are open disks is called a 2-cell
embedding. In this case the connected components of the complement are called the
faces of the embedding.

A surface that allows a coherent notion of clockwise orientation about every point
of the surface is called orientable. One way to make this precise for surfaces is to
demand that no Möbius strip can be embedded into S . The Möbius strip is obtained

a

bc

a

b b

a

a

b b

a

c c

a

bc
S1 S2

P1 P2

a2
a1

a1

b1

b1

a2

b2

b2

K

T

Fig. B.3 The sphere, the torus, the Klein bottle, and a pretzel surface obtained from polygonal
disks
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Fig. B.4 A Möbius strip.

ag

ag

bg

bg
a1

a1

b1

b1

b2

b2

a2

a2

Fig. B.5 A construction recipe for an orientable surface of genus g

as the quotient space Œ0; 1� � Œ0; 1�=�, where � is generated by .0; t/ � .1; 1 � t/.
Figure B.4 shows a (stretched) Möbius strip together with an illustration that no
coherent orientation is possible. A particular choice of a clockwise orientation for
an orientable surface is called an orientation.

The most evident examples of nonorientable surfaces are the projective plane and
the Klein bottle. The projective plane may be obtained by gluing a disk to a Möbius
strip along their 1-dimensional sphere boundaries. The Klein bottle may be obtained
from a polygonal disk as shown in Fig. B.3.

The orientable surfaces are given by the family of pretzel surfaces [Mas77,
See06], starting with the 2-dimensional sphere and the torus. In general, a pretzel
surface is obtained via successively attaching handles to the sphere as described on
page 139. The number of handles is called the genus of the surface. The pretzel
surface of genus g can also be obtained as a quotient of a 4g-gon, where the edges
are identified as shown in Fig. B.5.

Euler Characteristic of Orientable Surfaces

We define the Euler characteristic of an orientable surface S of genus g to be

.S/ D 2 � 2g.
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Theorem B.31 (Euler–Poincaré). If a graph G with n vertices and m edges is
2-cell embeddeded with f faces in an orientable surface S of genus g, then the
relation


.S/ D 2 � 2g D n �mC f

holds. ut

B.3 Simplicial Complexes

Geometric Simplicial Complexes

The affine span of a set x0; : : : ; xn 2 R
m is defined as the smallest affine subspace

of Rm containing x0; : : : ; xn:

aff.x0; : : : ; xn/ D
(

nX

iD0
�ixi W

nX

iD0
�i D 1

)

:

The points x0; : : : ; xn are affinely independent if the affine span, aff.x0; : : : ; xn/,
is n-dimensional. Equivalently, if v D Pn

iD0 �ixi 2 aff.x0; : : : ; xn/, then the
coefficients �0; : : : ; �n are uniquely determined.

An important example is the set of standard basis vectors e1; : : : ; enC1 2 R
nC1.

They span the hyperplane in R
nC1 of all points with coordinate sum equal to one.

If x0; : : : ; xn 2 R
m are affinely independent, then the (affine) simplex � spanned

by x0; : : : ; xn is defined to be the their convex hull

� D conv.x0; : : : ; xn/ D
(

nX

iD0
�ixi W �i � 0;

nX

iD0
�i D 1

)

:

The �i are called barycentric coordinates of � . We call fx0; : : : ; xng the vertex set
of � , denoted by vert.�/. For any k with �1 � k � n, and any .kC1/-element
subset fxi0 ; : : : ; xik g � fx0; : : : ; xng, the simplex � D conv.xi0 ; : : : ; xik / is called a
k-dimensional face of � . We denote this by � � � and dim.�/ D k. Note that the
case k D �1 yields that the empty set is a face of � of dimension �1. The faces of
� of codimension one, i.e., the faces of dimension n�1, will be referred to as facets
of � . The geometric boundary, @� , of � is defined to be the union of all its proper
faces, in other words, @� D S

�<� � .
The prototype of an n-dimensional simplex is given by the standard n-simplex

�n defined by the standard basis vectors e1; : : : ; enC1 2 R
nC1:

�n D conv.e1; : : : ; enC1/ � R
nC1:
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Definition B.32. A (finite geometric) simplicial complex � is a finite family of
(affine) simplices in some R

m such that

1. � 2 � and � � � implies � 2 �;
2. If �; � 2 �, then � \ � is a face of � and a face of � .

The simplices � 2 � are also referred to as faces of �, and the inclusion maximal
faces of � are referred to as facets of �. The vertex set of � is defined as the union
of the vertices of the faces, vert.�/ D S

�2� vert.�/. The dimension of� is defined
to be the maximum dimension of a face, dim.�/ D max�2� dim.�/. A simplicial
complex is called pure of dimension n if all its facets have dimension n.

Our first important example of a simplicial complex is given by a simplex
together with all its faces. In particular, the standard n-simplex gives rise to the
simplicial complex�n D f� W � � �ng.

Even though this seems clear, there is actually a minor lemma to prove.

Lemma B.33. If fx0; : : : ; xng � R
m is affinely independent,A D fi0; : : : ; ikg; B D

fj0; : : : ; jlg � f0; : : : ; ng subsets with intersection C D A\B D fi0; : : : ; img, then

conv.xi0 ; : : : ; xik /\ conv.xj0 ; : : : ; xjl / D conv.xi0 ; : : : ; xim/:

Proof. Clearly, the right-hand-side simplex is contained in the left-hand-side inter-
section. Now let

v D
X

i2A
�ixi D

X

i2B
�ixi 2 conv.xi0 ; : : : ; xik / \ conv.xj0 ; : : : ; xjl /:

Then

0 D
X

i2A
�ixi �

X

i2B
�ixi D

X

i2AnC
�ixi �

X

i2BnC
�ixi C

X

i2C
.�i � �i/xi :

As shown in one of the exercises, the affine independence of fx0; : : : ; xng implies
that all coefficients on the right-hand side have to be zero. In particular, �i D 0 for
all i 2 AnC . And hence

v D
X

i2C
�ixi 2 conv.xi0 ; : : : ; xim /: ut

Another very important example is the boundary complex, � n, of the cross
polytopeQnC1:

� n D ˚
conv."i0ei0 ; "i1ei1 ; : : : ; "ik eik / W 1 � i0 < � � � < ik � nC 1; "ij 2 f˙1g� :

The space given by the union of all simplices of a simplicial complex� is called
the polyhedron of �, denoted by j�j D S

�2� � . Sometimes we refer to j�j when
talking about topological properties of�.
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A topological space X is a polyhedron if there exist a simplicial complex� and
a homeomorphism h W j�j ! X . The homeomorphism h together with � is called
a triangulation of X .

Definition B.34. Let � and �0 be simplicial complexes. A simplicial map from �

to �0 is a continuous map f W j�j �! j�0j such that for all � 2 �:

1. f .�/ 2 �0;
2. The restriction f j� W � �! f .�/ is an affine linear map.

Note that the second condition implies that a simplicial map is already determined
by its restriction to the vertex set f jvert.�/.

Definition B.35. A subcomplex of a simplicial complex � is a simplicial complex
� that is contained in �. A pair of simplicial complexes is a pair .�; � /, where �
is a simplicial complex and � is a subcomplex. A map f W .�; � / �! .�0; � 0/ of
pairs is given by a simplicial map f W � �! �0 such that f .� / � � 0.

Definition B.36. If � and �0 are simplicial complexes, then �0 is called a
subdivision of � if vert.�/ � vert.�0/ and j�j D j�0j.

Abstract Simplicial Complexes

If we restrict our attention to the inclusion relations of the vertex sets of simplices in
a simplicial complex, then we obtain the concept of an abstract simplicial complex.

Definition B.37. Let V be a finite set andK � P.V / a family of subsets of V . Then
K is called an (abstract) simplicial complex if it is closed under taking subsets, i.e.,

� 2 K; � � � implies � 2 K:

The elements � of a simplicial complex K are called simplices, while the elements
of the simplices are referred to as vertices. The vertex set of K is the union of all
simplices vert.K/ D S

�2K � � V . A subset � � � is called a face of � , denoted
by � � � . The dimension of a simplex is defined to be its cardinality minus one,
i.e., dim.�/ D j� j � 1. A face � � � with dim.�/ D dim.�/ � 1 is called a facet
of � . In contrast, the facets of a simplicial complex K are given by the inclusion
maximal simplices. The complexK is called pure of dimension n if all its facets are
of dimension n. The dimension of K is the maximum dimension of a simplex in K ,
dim.K/ D max�2K dim.�/.

Any geometric simplicial complex � gives rise to an associated abstract
simplicial complex K.�/ D fvert.�/ W � 2 Kg.

Definition B.38. A simplicial map of (abstract) simplicial complexes K and L is
defined to be a map f W vert.K/ �! vert.L/ preserving simplices, i.e., f .�/ 2 L

for each simplex � 2 K .
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Geometric Realizations

We usually think of an abstract simplicial complex in terms of a geometric
realization.

Definition B.39. A geometric simplicial complex � is a geometric realization of
an abstract simplicial complexK if there exists a bijection ' W vert.K/ �! vert.�/
such that for any set v0; : : : ; vn 2 vert.K/ of vertices of K ,

fv0; : : : ; vng 2 K ” conv.'.v0/; : : : ; '.vn// 2 �:
In other words,� is a geometric realization ofK if and only if its associated abstract
simplicial complexK.�/ is simplicially isomorphic to K .

Note that if � and � are geometric realizations of K and L, respectively,
then there is a one-to-one correspondence between simplicial maps K ! L and
simplicial maps� ! � .

We will now show that every abstract simplicial complex has a geometric
realization.

Lemma B.40. Any m C 1 distinct points �.t0/; : : : ; �.tm/ on the moment curve
defined by

� W R �! R
m;

t 7�! .t; t2; : : : ; tm/;

are affinely independent.

Proof. As shown in the exercises, it suffices to show that the m C 1 vectors
.1; t0; : : : ; t

m
0 /; : : : ; .1; tm; : : : ; t

m
m / 2 R

mC1 are linearly independent. But this is
indeed the case , since the Vandermonde determinant

det

0

BB
B
@

1 t0 t
2
0 � � � tm0

1 t1 t
2
0 � � � tm1
:::

1 tm t
2
m � � � tmm

1

CC
C
A

D
Y

0
i<j
m
.tj � ti / 6D 0

is nonzero. ut
Proposition B.41. Any abstract simplicial complex K of dimension d admits a
geometric realization in R

2dC1.

Proof. Let vert.K/ D fv1; : : : ; vrg be the vertex set of K and � W R ! R
2dC1 the

moment curve in R
2dC1. Define the geometric simplicial complex � with vertices

f�.1/; : : : ; �.r/g by

� D fconv.�.i0/; : : : ; �.ik// W fvi0 ; : : : ; vik g 2 Kg :
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We have to show that � satisfies the requirements of a simplicial complex. Clearly
it is closed under taking faces. Now the union fvi0; : : : ; vik g [ fvj0; : : : ; vjl g of the
vertex sets of two simplices in K has cardinality at most 2d C 2. By the previous
lemma, the corresponding set f�.i0/; : : : ; �.ik/g [ f�.j0/; : : : ; �.jl /g is affinely
independent, and hence, by Lemma B.40, the two simplices conv.�.i0/; : : : ; �.ik//
and conv.�.j0/; : : : ; �.jl // intersect in the expected common face.

Finally, the map ' W vert.K/ �! vert.�/ defined by vi 7�! �.i/ defines a
bijection of the vertex sets that induces the necessary correspondence of simplices.

ut
The following proposition justifies concentrating on abstract simplicial com-

plexes for all combinatorial purposes. In particular, it implies that a geometric
realization of an abstract simplicial complex is unique up to simplicial homeomor-
phisms.

Proposition B.42. Any two geometric simplicial complexes are simplicially home-
omorphic if and only if the associated abstract simplicial complexes are simplicially
isomorphic. ut

For convenience, we will frequently make use of the notation jKj for some
geometric realization of the abstract simplicial complexK and j� j for the geometric
simplex corresponding to � 2 K . Moreover, the simplicial map of geometric
complexes induced by a simplicial map f W K ! L will be denoted by jf j W
jKj ! jLj. This slight abuse of notation is justified by the previous proposition.

B.4 Shellability of Simplicial Complexes

A convenient way to prove that the polyhedron of a d -dimensional simplicial
complex is .d � 1/-connected is to show that it is shellable [Bjö94]. There are
many different concepts of shellability. Here we introduce a form of shellability that
will be referred to as topological shelling.

Definition B.43. Suppose that � is a simplicial complex. A total ordering
�1; �2; : : : ; �k of its (inclusion) maximal faces is a topological shelling of � if

dim.�1/ � dim.�2/ � � � � � dim.�k/

and for each j > 1, either .a/ or .b/ is satisfied, where

1. .
S
i<j �i /\ �j is a contractible subset of @�j ;

2. .
S
i<j �i /\ �j D @�j .

More often than not, conditions (a) and (b) are combined into a single stronger
condition, namely into

(*) .
S
i<j �i / \ �j is a pure .dim.�j /� 1/-dimensional complex.
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The homotopy type of a simplicial complex possessing a topological shelling is
now easy to determine.

Proposition B.44. Suppose that� is a simplicial complex that admits a topological
shelling �1; �2; : : : ; �k , k � 1. Let ni D dim.�i /. Then j�j is homotopic to the
wedge of spheres,

W
j2J S

nj , where J D fj W .Si<j �i / \ �j D @�j g:
Proof (Sketch). We proceed by induction on the number k of maximal simplices of
�. The case k D 1 is clear. For the induction step with k � 2, let P and P<k be the
polyhedra P D j�j D S

i6k �i and P<k D S
i<k �i , respectively.

By the induction hypothesis, P<k is homotopic to a wedge of spheresW
j2J;j<k S

nj .
Now if, as in condition (a), P<k \ �k is a contractible subset of @�k , then P<k

and P have the same homotopy type and k 62 J .
If, as in condition (b), P<k \ �k D @�k , then note that

n1 � n2 � � � � � nk�1 � nk D dim.�k/ > dim.@�k/

implies that any image of @�k is contractible in P<k ' W
j2J;j<k S

nj , and hence
P ' W

j2J S
nj . ut

Recall that a simplicial complex is called pure n-dimensional if all maximal faces
are of the same dimension n.

Corollary B.45. A pure n-dimensional simplicial complex � admitting a topolog-
ical shelling is .n � 1/-connected. ut

B.5 Some Operations on Simplicial Complexes

Barycentric Subdivision

One of the most important operations that can be performed on a simplicial complex
is that of barycentric subdivision, i.e., a simultaneous “refinement” of all simplices.

The operation is easily described for an abstract simplicial complexK . The (first)
barycentric subdivision of K is defined to be the complex

sdK D ff�0; : : : ; �kg W �0; : : : ; �k 2 K n f;g; �0 � �1 � � � � � �kg:

In other words, the simplices of K become the vertices of sdK—we think of the
barycenters of the simplices in K—and any inclusion chain of simplices in K
defines a simplex of sdK . Note that the empty inclusion chain in the case k D �1
yields the empty simplex in sdK . The construction is easily understood by looking
at Fig. B.6. The first example shows the barycentric subdivision of the complex K
given by a 1-dimensional simplex. In this case we have
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Fig. B.6 Examples of the barycentric subdivision of a 1- and a 2-dimensional simplex

K D f;; f1g; f2g; f1; 2gg;
sdK D ˚;; ff1gg; ff2gg; ff1; 2gg; ff1g; f1; 2gg; ff2g; f1; 2gg�:

This procedure can certainly be iterated, and we will denote the kth barycentric
subdivision of K by sdk K .

Now we will briefly discuss the geometric situation. If � D conv.x0; : : : ; xn/ �
R
m is a geometric simplex, then its barycenter b.�/ is defined by

b.�/ D 1

nC 1

nX

iD0
xi :

Now, if � is a geometric simplicial complex, then its barycentric subdivision is
given by the complex

sd� D fconv.b.�0/; : : : ; b.�k// W �0; : : : ; �k 2 � n f;g; �0 � � � � � �kg:

Clearly, if K is the associated abstract simplicial complex of �, then the associated
abstract simplicial complex of sd� is simplicially isomorphic to sdK .

Proposition B.46. If � is a geometric simplicial complex, then the simplicial
complex sd� is a subdivision of � according to Definition B.36. ut
Proposition B.47. Let �0 � �1 � � � � � �n be an inclusion chain of geometric
simplices, where dim.�i / D i , for i D 0; : : : ; n. Then we have

diam.conv.b.�0/; : : : ; b.�n/// � n

nC 1
diam.�n/: ut
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Corollary B.48. If � is a geometric simplicial complex of dimension n, then

max
�2sd�

diam.�/ � n

nC 1
max
�2� diam.�/: ut

Joins

Definition B.49. Let K and L be abstract simplicial complexes. Define their join,
K 	 L, by

K 	 L D f� C � W � 2 K; � 2 Lg;
where the join of simplices � C � , also denoted by � 	 � , denotes the set sum as
defined on page 166. If � is a simplex, then the join � 	K of � withK is defined by

� 	K D f� C 
 W � � �; 
 2 Kg:

Note that the associated abstract simplicial complex of the boundary complex
� n of the cross polytope may be identified with the .nC 1/-fold iterated join of the
complex given by two isolated vertices.

A join can just as well be defined for geometric simplicial complexes � and �
such that it is compatible with the associated abstract structure, i.e., K.� 	 � / Š
K.�/ 	K.� /.

B.6 The Language of Category Theory

Category theory provides the proper language to introduce and efficiently handle
algebraic invariants of topological spaces.

Categories

A category C consists of

• A collection of objects;
• For each pair A;B of objects, a set of morphisms, C.A;B/, between them;
• For each object A, an identity morphism idA 2 C.A;A/;
• A composition law

ı W C.B; C / � C.A;B/ �! C.A; C /

for each triple A;B;C of objects.
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The composition law is required to be associative, i.e.,

h ı .g ı f / D .h ı g/ ı f;

and the identity has to satisfy the expected equalities,

id ıf D f and f ı id D f;

whenever these compositions are defined. A category is small if its collection of
objects is a set. Typically, a morphism f 2 C.A;B/ is denoted by f W A �! B .

Some examples of categories are the following: the category S with sets as
objects and set maps as morphisms; the category T OP of topological spaces and
continuous maps; the category G of groups and homomorphisms; the category A
of abelian groups and homomorphisms; and the category V of F -vector spaces and
F -linear maps for some fixed field F . In all these cases, the composition law is
given by the usual composition of maps, and the identity morphisms are given by
the actual set identity maps.

Functors

A covariant functor F W C �! D of categories is an assignment of objects and
morphisms from C to D. More precisely, each object A of C is assigned an object
F.A/ of D, and each morphism f W A �! B of C is assigned to a morphism
F.f / W F.A/ �! F.B/ of D such that

F.idA/ D idF.A/ and F.g ı f / D F.g/ ı F.f /:

A simple example is the forgetful functor F W T OP �! S from the category of
topological spaces to the category of sets, which assigns to each topological space
.X;O/ the underlying set X , and to each continuous map f W .X;OX/ �! .Y;OY /

the set map f W X �! Y .
There is also the notion of a contravariant functor F W C �! D, which

behaves similarly to a covariant functor, but turns arrows around, i.e., it is given
by assigning an object F.A/ from D to each object A 2 C, and by an assigment
F.f / W F.B/ �! F.A/ to each morphism f 2 C.A;B/ such that

F.idA/ D idF.A/ and F.g ı f / D F.f / ı F.g/:

An interesting example, well known from linear algebra, is the functor � W V �!
V assigning to each F -vector space V its dual space V � D f' W V �! F W ' linearg
and to each linear map f W V �! W its dual map f � W W � �! V � defined by
' 7! ' ı f .
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Natural Transformations

A natural transformation ˛ between (covariant) functors F;G W C �! D consists
of morphisms, ˛A W F.A/ �! G.A/, for each object A of C such that for each
morphism f W A �! B in C, the following diagram commutes:

F.A/
F.f /�����! F.B/

˛A

?
?y

?
?y˛B

G.A/
G.f /�����! G.B/

For an example we return to the dualization functor � W V �! V from linear
algebra. Recall that a finite-dimensional vector space V is isomorphic to its dual
V �. But such an isomorphism depends on a choice of a basis: it is not natural. In
contrast, there is a natural way to define an isomorphism between V and its second
dual V �� by defining v 7! i.v/, where iv.'/ D '.v/. In fact, i defines a natural
transformation between the two covariant functors id and ��.

Two categories C and D are defined to be equivalent if there are functors F W
C �! D and G W D �! C and natural transformations ˛ W G ı F �! idC and
ˇ W F ıG �! idD to the respective identity functors of C and D.

B.7 Some Homological Algebra

This section provides some algebraic concepts that are needed for the introduction
of algebraic invariants for topological spaces.

Chain Complexes

Definition B.50. A graded (abelian) group is a collection of abelian groups Ci ,
i 2 Z.

Definition B.51. A chain complex is a graded group fCi W i 2 Zg together with a
sequence of homomorphisms @i W Ci �! Ci�1 such that @i�1 ı @i W Ci �! Ci�2 is
the zero homomorphism. Each @i is called a boundary operator.

Abusing notation, we will abbreviate @i by @ and write @2 for @i�1 ı @i , and so on.
For a chain complex, we will abbreviate the pair C� D .fCi W i 2 Zg; @/.
Definition B.52. Let C� and D� be chain complexes. A chain map f from C� to
D� is a collection ffi W i 2 Zg of homomorphisms fi W Ci �! Di such that
@ ı fi D fi�1 ı @, i.e., the diagram
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Ci
@�����! Ci�1

fi

?
?y

?
?yfi�1

Di

@�����! Di�1

commutes for each i .

Definition B.53. If C� is a chain complex, then we define its homology to be the
graded group fHi W i 2 Zg given by the quotients

Hi.C�/ D ker .@i W Ci ! Ci�1/
im .@iC1 W CiC1 ! Ci/

:

The elements ofZi D ker .@i W Ci ! Ci�1/ are called the cycles, while the elements
of Bi D im .@iC1 W CiC1 ! Ci/ are called the boundaries in Ci . Each element
Œz� D z C Bi of the homology groupHp.C�/ is represented by a cycle z 2 Zi .
Proposition B.54. A chain map f W C� �! D� induces a map, f�, in homology,
i.e., homomorphisms f� W Hp.C�/ �! Hp.D�/ for each p that are defined by
f�.Œz�/ D Œf .z/�. Clearly, if id W C� �! C� is the identity chain map, then id� D
idH

�

.C
�

/, and if g W D� �! E� is another chain map, then .g ı f /� D g� ı f�. ut
In other words, we have just seen that homology is a functor from the category
of chain complexes with chain maps to the category of graded groups with grade-
preserving homomorphisms.

Exact Sequences

Definition B.55. A sequence

A
i�! B

j�! C

of homomorphisms is exact if im i D ker j .

With this terminology one could say that homology is a measure of exactness. In
particular,Hp.C�/ D 0 if and only if the sequence

CpC1
@�! Cp

@�! Cp�1

is exact.
A sequence

A0
i0�! A1

i1�! A2
i2�! � � � in��! AnC1
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is called exact if each subsequence

Ak�1
ik�1���! Ak

ik��! AkC1

is exact, k D 1; : : : ; n.
A short exact sequence is an exact sequence of the type

0 �! A
i�! B

j�! C �! 0:

Theorem B.56. If A�
i�! B�

j�! C� is a sequence of chain maps such that

0 �! Ak
i�! Bk

j�! Ck �! 0

is a short exact sequence for each k, then there exist connecting homomorphisms
@p W Hp.C�/ �! Hp�1.A�/ inducing a long exact sequence in homology:

� � � j��!HpC1.C�/
@pC1���! Hp.A�/

i
��! Hp.B�/

j
��! Hp.C�/

@p�! Hp�1.A�/
i
��! � � � :

Proof. We will only provide the construction of the connecting homomorphisms.
The proof of the exactness of the long sequence is the content of an exercise.

Let Œz� 2 Hp.C�/, z 2 ker.@p W Cp ! Cp�1/. Since jp is surjective, there exists
an element b 2 Bp with jp.b/ D z. The fact that jp�1@p.b/ D @pjp.b/ D @p.z/ D
0 shows that @p.b/ 2 ker jp�1 D im ip�1. Hence, by injectivity of ip�1, there exists
a unique element a 2 Ap�1 such that ip�1.a/ D @p.b/. The reader is urged to take
a pencil and to make notes in the following diagram:

BpC1
jpC1

��

@pC1

��

CpC1

@pC1

��

�� 0

0 �� Ap
ip

��

@p

��

Bp

jp
��

@p

��

Cp ��

@p

��

0

0 �� Ap�1
ip�1

��

@p�1

��

Bp�1
jp�1

��

@p�1

��

Cp�1 �� 0

0 �� Ap�2
ip�2

�� Bp�2

Now define @p W Hp.C�/ �! Hp�1.A�/ by @p.Œz�/ D Œa�. We have to show that
this is well defined, i.e., that a is a cycle in Ap�1, and that the definition of Œa� is
independent of
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• The choice b of a preimage of z under jp , and
• The choice of a representative within the class Œz�.

The computation ip�2@p�1.a/ D @p�1ip�1.a/ D @p�1@p.b/ D 0 and the injectivity
of ip�2 show that a is a cycle.

Now assume that b; b0 2 Bp are such that jp.b/ D jp.b
0/ D z. Then b0 � b 2

ker jp D im ip , and hence there exists an element Na such that ip. Na/ D b0 � b.
Now ip�1@p. Na/ D @pip. Na/ D @p.b

0 � b/ D @p.b
0/ � @p.b/. Hence i�1p�1.@p.b0//�

i�1p�1.@p.b// D @p. Na/ is a boundary in Ap�1.
Finally, let Œz� D Œz0� and assume jp.b/ D z. Since z0 � z is a boundary in Cp ,

there exists a c 2 CpC1 such that @pC1.c/ D z0 � z. By surjectivity of jpC1, there
exists an element Nb 2 BpC1 with jpC1. Nb/ D c. Set b0 D b C @pC1. Nb/ 2 Bp . Then

jp.b
0/ D jp.b/C jp@pC1. Nb/ D z C @pC1jpC1. Nb/ D z C z0 � z D z0;

making b0 a bona fide choice as a preimage of z0. But then @p.b0/ D @p.b/, since
@2 D 0. Hence, @p.b0/ and @p.b/ also have the same preimage under the map ip�1.

ut

B.8 Axioms for Homology

Homology theory is a quite general concept that features the essential idea of
algebraic topology: assigning algebraic invariants to topological spaces. It appears
in many guises in various contexts in mathematics. Here we will state the axioms
for homology, and in the next section we will discuss the particular example of
simplicial homology.

Let A be the category of abelian groups and let X be a category of pairs of
topological spaces, e.g., pairs of polyhedra together with continuous maps.

Definition B.57. A homology theory on X is given by

• A family fHp W p 2 Zg of functors from X to A assigning to each integer p
and each pair .X;A/ of topological spaces (of X ) an abelian group Hp.X;A/,
and to each f W .X;A/ �! .Y; B/ a group homomorphism f� D Hp.f / W
Hp.X;A/ �! Hp.Y;B/;

• A family f@p W p 2 Zg of natural transformations @p W Hp.X;A/ �! Hp�1.A/,
where Hp�1.A/ abbreviatesHp�1.A;;/,

such that the following axioms are satisfied:

(Dimension) If P is the one-point space, P D f	g, then Hq.P / D 0 for all q 6D 0.
(Homotopy) If f ' g W .X;A/ �! .Y; B/ are homotopic, then

f� D g� W Hp.X;A/ �! Hp.Y;B/:



B.8 Axioms for Homology 187

(Exactness) If for a pair .X;A/, the obvious inclusions are denoted by i W .A;;/ ,!
.X;;/ and j W .X;;/ ,! .X;A/, then the following long sequence is exact:

� � � j��!HpC1.X;A/
@pC1���! Hp.A/

i
��! Hp.X/

j
��! Hp.X;A/

@p�! Hp�1.A/
i
��! � � � :

(Excision) If .X;A/ is a pair, and U � X is an open set such that cl.U / � int.A/,
then the inclusion k W .X n U;A n U / ,! .X;A/ induces an isomorphism

k� W Hp.X n U;A n U / Š��! Hp.X;A/:

(Additivity) If .X;A/ D .
`
˛ X˛;

`
˛ A˛/ is a direct sum of pairs .X˛; A˛/, and

i˛ W .X˛; A˛/ ,! .X;A/ are the inclusions, then the sum of homomorphisms

˚˛.i˛/� W
M

˛

Hp.X˛;A˛/
Š��! Hp.X;A/

is an isomorphism.

Definition B.58. For any homology theory, the groupH0.P / D G, where P is the
one-point space, is called the coefficient group of the theory.

Many properties can be derived from the axioms just by algebraic reasoning.

Proposition B.59. If f W .X;A/ �! .Y; B/ is a homotopy equivalence of pairs,
then it induces an isomorphism

f� W Hp.X;A/
Š��! Hp.Y;B/:

Proof. Let g W .Y; B/ �! .X;A/ be a homotopy inverse to f . By definition, g ı
f ' id.X;A/ and f ı g ' id.Y;B/, and hence g� ı f� D .g ı f /� D .id.X;A//� D
idHp.X;A/ by the functorial properties of the homology functor and the homotopy
axiom. Analogously, f� ı g� D idHp.Y;B/. ut
Corollary B.60. If X is a contractible space, then the homology of X coincides
with the homology of the one-point space P . ut
This class of spaces leads us to an important notion.

Definition B.61. If the coefficient group of the homology theory is G, i.e.,
H0.P / D G, then a space X is called G-acyclic if H�.X/ D H�.P /.

Reduced Homology

For most computations it is convenient to consider reduced homology, which is
easily obtained from any homology theory.
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Let X be a nonempty space and � W X �! P the unique map to the one-point
space P . The homomorphism �� W H0.X/ �! H0.P / D G induced by � is called
the augmentation map. Since for any i W P ,! X , the composition � ı i is the
identity map idP , we have �� ı i� D idH0.P /, and therefore �� is surjective. By
definition, the sequence

0 �! ker.��/ �! H0.X/
�
���! H0.P / �! 0

is short exact, and there is an isomorphism H0.X/ Š ker.��/ ˚ G (which is not
natural in X , though).

Now set eH0.X/ D ker.��/ and eHp.X/ D Hp.X/ for p 6D 0. Furthermore,
for A 6D ;, we set eHp.X;A/ D Hp.X;A/. Note that with this new terminology,
eH�.P / D 0. In particular, a space X is G-acyclic if eH�.X/ D 0.

Proposition B.62. If .X;A/ is such that A 6D ;, then the following long sequence
is exact:

� � � j��!eHpC1.X;A/
@pC1���!eHp.A/

i
��!eHp.X/

j
��! eHp.X;A/

@p�! eHp�1.A/
i
��! � � � : ut

It is not very hard to compute the homology groups of spheres in general.

Theorem B.63. Let G be the coefficient group of the homology theory. Then the
homology of the n-dimensional sphere Sn is given by

eHp.S
n/ D

(
G; if p D n,

0; if p 6D n. ut

B.9 Simplicial Homology

We will define a homology theory for the category of pairs of polyhedra together
with continuous maps. In order to do so, we will first concentrate on pairs of
simplicial complexes and simplicial maps.

The Oriented Simplicial Chain Complex

Let K be an (abstract) simplicial complex. Consider an ordering vert.K/ D
fv0; v1; : : :g of the vertices ofK . For n � 0, define the nth oriented simplicial chain
group (with integer coefficients), Cn.K/, to be the free abelian group generated by
the set of oriented n-simplices

˚hvi0 ; : : : ; vini W fvi0 ; : : : ; ving 2 K; dim.fvi0 ; : : : ; ving/ D n
�
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modulo the relations

hvi0; : : : ; vini D sign.	/hvi	.0/ ; : : : ; vi	.n/i;

where 	 W f0; : : : ; ng �! f0; : : : ; ng is an arbitrary permutation. For n < 0, set
Cn.K/ D 0. We think of an element of Cn.K/ as a set of oriented n-simplices ofK
each labeled with an integer.

For later use we note that in the baby example given by the one-point simplicial
complex P D f;; fpgg, the chain groups compute to

Cn.P / D
(
Z � hpi; if n D 0,

0; if n 6D 0:

We will now make the graded abelian group fCi.K/ W i 2 Zg into a chain
complex by defining boundary operators @ W Cn.K/ �! Cn�1.K/ by

@.hvi0 ; : : : ; vini/ D
nX

kD0
.�1/khvi0 ; : : : ; Ovik ; : : : ; vini;

where Ovik denotes the omission of the vertex vik , i.e.,

hvi0 ; : : : ; Ovik ; : : : ; vini D hvi0 ; : : : ; vik�1
; vikC1

; : : : ; vini:

Proposition B.64. @ W Cn.K/ �! Cn�1.K/ is a well-defined homomorphism with
@2 D 0. ut

The pair C�.K/ D .fCn.K/ W n 2 Zg; @/ is the oriented simplicial chain complex
of K .

The Oriented Simplicial Chain Complex with Field Coefficients

We just defined the oriented simplicial chain complex with integer coefficients. One
can define any abelian group G to be the coefficient group of our chain complex
by considering the chain groups Cn.K/ ˝ G together with the boundary operator
@˝ id. For the purpose of this book, however, we will need only the additional case
of field coefficients, which is slightly easier to describe.

Let F be a field. For n � 0, we define the nth oriented simplicial chain group
Cn.KIF / with coefficients in the field F to be the F -vector space generated by the
set of oriented n-simplices

˚hvi0 ; : : : ; vini W fvi0 ; : : : ; ving 2 K; dim.fvi0 ; : : : ; ving/ D n
�
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modulo the subspace generated by the relations

hvi0; : : : ; vini D sign.	/hvi	.0/ ; : : : ; vi	.n/i;

where 	 W f0; : : : ; ng �! f0; : : : ; ng is an arbitrary permutation. For n < 0, set
Cn.KIF / D 0. The boundary maps are defined just as in the integer coefficients
case. We denote the resulting chain complex by C�.KIF / D .fCn.KIF / W n 2
Zg; @/ and the resulting homology groups fHn.C�.KIF // W n 2 Zg by H�.KIF /.

The Oriented Simplicial Chain Complex for Pairs

Consider a pair .K;L/ of simplicial complexes. Clearly the groupCn.L/ constitutes
a subgroup of Cn.K/, and hence we may define the oriented simplicial chain groups
of the pair .K;L/ by

Cn.K;L/ D Cn.K/=Cn.L/:

The boundary operator of Cn.K/ defines a boundary operator @ W Cn.K;L/ �!
Cn�1.K;L/, and we obtain the oriented simplicial chain complex C�.K;L/ D
.fCn.K;L/ W n 2 Zg; @/.

Let i W C�.L/ ,! C�.K/ be the chain map defined by the inclusions Cn.L/ ,!
Cn.K/, and let 	 W C�.K/ �! C�.K;L/ be the quotient chain map. Then the
following short sequence is exact:

0 �! C�.L/
i�! C�.K/

	�! C�.K;L/ �! 0:

Therefore, by Theorem B.56, there exists a family f@p W p 2 Zg of connecting
homomorphisms inducing the long exact homology sequence

� � � 	��!HpC1.K;L/
@pC1���! Hp.L/

i
��! Hp.K/

	
��! Hp.K;L/

@p�! Hp�1.L/
i
��! � � � ;

where we used the abbreviations Hp.K/ D Hp.C�.K// and Hp.K;L/ D
Hp.C�.K;L// and so on.

We have now encountered a first link between simplicial complexes and asso-
ciated homology groups. This link satisfies the following property with respect to
barycentric subdivision.

Theorem B.65. Let .K;L/ be a pair of simplicial complexes. Then there exists
a (natural) chain map C�.K;L/ �! C�.sdK; sdL/ that induces isomorphisms

Hp.K;L/
Š��! Hp.sdK; sdL/ in all dimensions. ut

Unfortunately, the proof of this theorem would lead us too far beyond the scope of
the book.
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As we saw before, we may use the same definitions for field coefficients and
obtain the chain complex C�.K;LIF /, the homology groups Hp.K;LIF /, the
corresponding long exact sequence, and so on.

From Simplicial to Chain Maps

LetK andL be simplicial complexes and f W K �! L a simplicial map. We define
the induced chain map f� W C�.K/ �! C�.L/ by

f� W Cn.K/ �! Cn.L/;

hvi0 ; : : : ; vini 7�!
(

hf .vi0/; : : : ; f .vin/i; if dim.ff .vi0/; : : : ; f .vin/g/ D n,

0; otherwise.

It is an easy exercise to check that this is indeed a chain map and, as such, induces
a map f� in homology f� W Hn.K/ �! Hn.L/. Now it is not hard to show that the
connecting homomorphisms behave naturally with respect to such induced maps.

Proposition B.66. If f W .K;L/ �! .K 0; L0/ is a simplicial map, then the
following diagram commutes:

Hp.K;L/
@p�����! Hp�1.L/

f
�

?
?y

?
?yf�

Hp.K
0; L0/

@p�����! Hp�1.L0/
ut

Reduced Simplicial Homology

In the case of simplicial homology, we may define an augmentation map on
the chain complex level inducing the augmentation map in homology. If K is a
simplicial complex, then define � W C0.K/ �! Z by �.

Pm
kD1 nkvik / D Pm

kD1 nk .
Then we can define the reduced homology groups eH� as the homology groups of
the chain complex

� � � @�! Cn.K/
@�! � � � @�! C1

@�! C0.K/
��! Z �! 0:

Note that indeed, the augmentation map on the chain complex level is essentially
induced by the simplicial mapK �! P to the one-point complex P D f;; fpgg.
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From Continuous to Simplicial Maps

In order to define a homology theory, we need to be able to deal with continuous
maps of polyhedra. Let � and � be geometric simplicial complexes.

Definition B.67. For x 2 j�j, define the carrier, carr.x/, to be the inclusionwise
smallest simplex of � containing x.

Definition B.68. If f W j�j �! j� j is a continuous map, then a simplicial map
g W � �! � is called a simplicial approximation to f if g.x/ 2 vert.carr.f .x///
for each x 2 j�j.
Proposition B.69. If g is a simplicial approximation to f , then f ' g.

Proof. The condition g.x/ 2 vert.carr.f .x/// for each x 2 j�j yields that the line
segment ftg.x/ C .1 � t/f .x/ W t 2 Œ0; 1�g lies completely within the simplex
carr.f .x//. Therefore the map

h W j�j � Œ0; 1� �! j� j;
.x; t/ 7�! tg.x/C .1 � t/f .x/;

defines a homotopy from f to g. ut
The following simplicial approximation theorem makes simplicial homology theory
work.

Theorem B.70. Let f W j�j �! j� j be a continuous map. Then for some k � 0,
there exists a simplicial approximation g W sdk � �! � to f . ut

Simplicial Homology Theory

Consider the category of pairs of topological spaces that are polyhedra of some
simplicial complex—in short polyhedral spaces—together with continuous maps.

For such a pair .X;A/ D .j�j; j� j/, let K D K.�/ and L D K.� / be the
associated abstract complexes, and define the homology functor by Hp.X;A/ D
Hp.K;L/.

Any continuous map f W .X;A/ �! .X 0; A0/ induces a map in homology by the
simplicial approximation theorem (Theorem B.70) and Theorem B.65.

Let the family of natural transformations f@p W p 2 Zg be defined as on page 190.
The previous definitions constitute the simplicial homology theory. A proof of all

the axioms is beyond the scope of this book.
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Euler Characteristic

If � is a simplicial complex of dimension n, then define its Euler characteristic by


.�/ D
nX

iD0
.�1/i dim.Hi .K.�/IF //;

whereF is an arbitrary field. This definition is consistent with the definition we gave
on page 173 in the case that� is the triangulation of an orientable surface, since the
simplicial homology for an orientable surface S of genus g easily computes to

Hp.S IF / D

8
ˆ̂
<

ˆ̂
:

F; if p D 0 or p D 2;

F 2g; if p D 1;

0; otherwise.

The following remarkable Euler–Poincaré theorem holds.

Theorem B.71. Let � be a simplicial complex of dimension n and let fi be the
number of simplices of dimension i , i D 0; : : : ; n. Then


.�/ D
nX

iD0
.�1/ifi D

nX

iD0
.�1/i dimCi.K/: ut

The Lefshetz–Hopf Fixed-Point Theorem

Let K be a simplicial complex, f W K �! K a simplicial map, and F a field. Then
f induces F -linear maps f� W C�.KIF / �! C�.KIF / and f� W H�.KIF / �!
H�.KIF /.

We want to relate the traces of the respective maps. If g W V �! V is an F -linear
map of F -vector spaces, then denote its trace by tr.g/; it is the sum of the diagonal
entries of a matrix representation of g with respect to the same base of V .

The following Hopf trace formula achieves a relation between the traces of f�
and f�. We will use the following abbreviations:

tri .f�/ D tr.f� W Ci.KIF / ! Ci.KIF //;
tri .f�/ D tr.f� W Hi.KIF / ! Hi.KIF //:

Theorem B.72. Let K be a simplicial complex of dimension n, f W K �! K a
simplicial map, and F a field. Then
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nX

iD0
.�1/i tri .f�/ D

nX

iD0
.�1/i tri .f�/: ut

Now, if� is a geometric simplicial complex of dimension n and f W j�j �! j�j
a continuous map, then f also induces a map f� W H�.j�jIF / �! H�.j�jIF /. In
this case, the number L.f / D Pn

iD0.�1/i tri .f�/ is called the Lefshetz number of
f . It is not hard to prove the following Lefshetz–Hopf fixed-point theorem.

Theorem B.73. Let � be a geometric simplicial complex of dimension n, f W
j�j �! j�j a continuous map, and F a field. If the Lefshetz number is nonzero,
then f has a fixed point. ut

Exercises

1. Show that .X;O/ is a topological space if and only if the following three
conditions are satisfied:

(a) ;; X 2 O.
(b) any finite union A1 [ � � � [Ak of closed sets A1; : : : ; Ak is closed.
(c) any arbitrary intersection

T
A of closed sets A is closed.

2. Give a proof of Proposition B.4.
3. Let .X;O/ be a topological space and A � X . Show that int.A/ is an open set

contained in A and that it is inclusion maximal with this property.
4. Let .X;O/ be a topological space and A � X . Show that cl.A/ is a closed set

containing A and that it is inclusion minimal with this property.
5. Prove or disprove the following statements about a topological space .X;O/:

(a) Each subset A � X is either open or closed.
(b) Any subset U � X is open if and only if U D int.U /.
(c) Any subset A � X is closed if and only if A D cl.A/.
(d) If U � X is open, then U \ @U D ;.
(e) If A � X is closed and B � A, then cl.B/ � A.
(f) If U � X is open and B � U , then cl.B/ � U .
(g) The boundary @A of any subset A � X is closed.
(h) cl.A/ is the intersection of all closed sets containing A.
(i) int.A/ is the union of all open sets contained in A.

6. Give an example of a bijective continuous map such that the inverse map is not
continuous.

7. Let .X;O/ be a topological space and Y � X .

(a) Prove that the subspace topology OjY indeed defines a topology on Y .
(b) Show that the subspace topology is the coarsest topology on Y such that

the inclusion map i W Y ,! X is continuous.
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8. Let f.X˛;O˛/ W ˛ 2 Ag be an indexed family of topological spaces and X D`
˛2A X˛ the set sum. Show that the family OX , as defined in Definition B.12,

indeed defines a topology on X . Furthermore, show that OX is the uniquely
defined topology on X such that the following universal property holds: If Y
is a topological space, then a map g W X �! Y is continuous if and only if all
compositions g ı i˛ W X˛ �! Y are continuous:

X˛
i˛

��

gıi˛ ���
��

��
��

�
X

g

��
Y

We say that OX is the final topology of X with respect to the maps .i˛/˛2A.
9. Let f.X˛;O˛/ W ˛ 2 Ag be an indexed family of topological spaces and X DQ

˛2A X˛ the product. Show that the family OX , as defined in Definition B.13,
indeed defines a topology on X . Furthermore, show that OX is the uniquely
defined topology on X such that the following universal property holds: If Y
is a topological space, then a map g W Y �! X is continuous if and only if all
compositions 	˛ ı g W Y �! X˛ are continuous:

Y

g

��

	˛ıg

���
��

��
��

�

X
	˛

�� X˛

We say that OX is the initial topology of X with respect to the maps .	˛/˛2A.
10. Show that the definition of a join for subspaces of Euclidean space on page 168

and the subsequent definition for general topological spaces yield homeomor-
phic spaces in the case that X � R

m and Y � R
n are compact spaces.

11. A collection of sets has the finite intersection property if every intersection of
a finite subcollection is nonempty. Show that a topological space X is compact
if and only if for each collection A of closed subsets satisfying the finite
intersection property, the intersection

T
A is nonempty.

12. Provide a proof of Proposition B.15 on page 169.
13. Provide a proof of Proposition B.16 on page 169.
14. Provide a proof of Proposition B.17 on page 169.
15. Show that the unit interval I D Œ0; 1� is compact.
16. Let X � R

n be a compact subspace, .Ak/k�1 a sequence of closed subsets
Ak � X such that limk!1 diam.Ak/ D 0. Show that there exists a point
x 2 X such that each neighborhood of x contains infinitely many of the sets
Ak , k � 1.
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17. LetX be a compact metric space and U an open cover ofX . Prove the existence
of a Lebesgue number, i.e., the existence of a number � > 0 such that for each
x 2 X , there exists a U 2 U containing the �-ball about x.

18. Consider the configuration spaceL D ffx; yg W x; y 2 S
1g of two points on the

circle, which are allowed to coincide. Its topology is defined to be the quotient
topology with respect to the quotient map

	 W S1 � S
1 ! L;

.x; y/ 7! fx; yg:

Show that L is homeomorphic to the Möbius strip.
19. Show how a projective plane may be obtained from a polygon by a pairwise

identification of directed edges.
20. Show that a Klein bottle may be obtained by gluing two Möbius strips along

their common 1-dimensional sphere boundary.
21. Consider the quotient space

B D .Sl � Œ0; 1� [ B
lC1/= �;

where � is the equivalence relation generated by .x; 1/ � x. Prove that there is
a homeomorphism ' W B ! B

lC1 such that '.x; 0/ D x.
22. Let f W Sl ! X be a continuous map. Assume that f is homotopic to a map

g W Sl ! X which extends to a map G W BlC1 ! X . Prove that f extends to a
map F W BlC1 ! X .

23. Let g W Sl ! S
n be a continuous map that is not surjective, n � 0, l � �1.

Prove that g can be extended to a map G W BlC1 ! S
n.

24. Prove Theorem B.27, in other words, prove that for any �1 � l � n � 1,
any continuous f W Sl ! S

n can be extended to the ball BlC1. Hint: Use the
previous exercises and Theorem B.70.

25. Apply Brouwer’s fixed-point theorem, Theorem 1.1, in order to prove
Theorem B.29 on page 171.

26. Prove that x0; : : : ; xn 2 R
m are affinely independent if and only if for any

v D Pn
iD0 �ixi 2 aff.x0; : : : ; xn/, the coefficients �0; : : : ; �n are uniquely

determined.
27. Prove that x0; : : : ; xn 2 R

m are affinely independent if and only if the following
implication holds for any set �0; : : : ; �n 2 R:

(
nX

iD0
�ixi D 0 and

nX

iD0
�i D 0

)

H) �0D � � � D�nD0:

28. Let i W Rm ,! R
mC1 be defined by i.t1; : : : ; tm/ D .1; t1; : : : ; tm/. Show that

x0; : : : ; xn 2 R
m are affinely independent if and only if i.x0/; : : : ; i.xn/ 2

R
mC1 are linearly independent.
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29. Let � be a geometric simplicial complex and f W vert.�/ ! R
d any map.

Show that f induces a unique map Nf W jKj ! R
d that is affine linear on each

simplex � 2 �.
30. If you have not yet done so in your life, compute the Vandermonde determinant

det

0

B
B
B
@

1 t0 t
2
0 � � � tm0

1 t1 t
2
0 � � � tm1
:::

1 tm t
2
m � � � tmm

1

C
C
C
A
:

31. Give an alternative proof of Lemma B.40 along the following lines. To show
that the vectors x0 D .1; t0; : : : ; t

m
0 /; : : : ; xm D .1; tm; : : : ; t

m
m / are linearly

independent, assume that for some j , the vector xj is contained in the linear
span A D hfxi W i 6D j gi. Let y 2 R

mC1 be a nontrivial vector orthogonal to
A. Now consider the polynomial map t 7! hy; .1; t; : : : ; tm/t i.

32. Give a proof of Proposition B.42 on page 178.
33. Give a proof of Proposition B.46 on page 180.
34. Let � and � be geometric simplicial complexes in R

m and R
n, respectively.

Give a definition of their join, i.e., define a geometric simplicial complex � 	�
such that K.� 	�/ D K.� / 	K.�/.

35. Prove the exactness of the long homology sequence in Theorem B.56 on
page 185.

36. Give a proof of Theorem B.63 on page 188.
37. Give a proof of Proposition B.64 on page 189, i.e., show that @ respects the

relations on the oriented simplices and satisfies @2 D 0.
38. Let .K;L;M/ be a triple of simplicial complexes, i.e., .K;L/ and .L;M/ are

pairs of simplicial complexes. Show that there is a short exact sequence

0 �! C�.L;M/
i�! C�.K;M/

	�! C�.K;L/ �! 0

inducing the long exact sequence of a triple

� � � @pC1���!Hp.L;M/
i
��! Hp.K;M/

	
��! Hp.K;L/

@p�! Hp�1.L;M/
i
��! � � � :



Chapter 7
Appendix C: Partially Ordered Sets, Order
Complexes, and Their Topology

Partially ordered sets and the interplay with their associated simplicial complexes,
as well as the topology of these complexes, all play a substantial role in topological
combinatorics. We will briefly introduce a few of the concepts.

C.1 Partially Ordered Sets

A partially ordered set, commonly abbreviated as a poset, is given by a pair .P;�/,
where P is a set and � is a binary relation on P satisfying, for any x; y; z 2 P , the
properties of being

• (Reflexive) x � x,
• (Transitive) x � y and y � z imply x � z, and
• (Antisymmetric) x � y and y � x imply x D y.

We will exclusively be concerned with the case in which P is finite, i.e., with finite
posets. If no confusion may occur about the relation �, we might refer to P itself
as a poset.

The most prominent example is given by the Boolean poset, Bn, consisting of all
subsets of Œn� D f1; : : : ; ng ordered by inclusion �.

A finite poset is often represented by its Hasse diagram. Figure C.1 shows the
Hasse diagram of B3, which should suffice as an illustration of the concept.

Another important example is the face poset, F.K/, of an abstract simplicial
complex,K , which is defined by the set of all nonempty faces of K , i.e.,

F.K/ D f� 2 K W � 6D ;g;

ordered by inclusion.
If .P;�/ is a poset and Q � P is a subset, then the restriction of the relation �

to Q yields the subposet .Q;�jQ/.

M. de Longueville, A Course in Topological Combinatorics, Universitext,
DOI 10.1007/978-1-4419-7910-0 7,
© Springer Science+Business Media New York 2013
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∅

{1, 2 , 3}

{1, 2}

{1} {2} {3}

{1, 3} {2, 3}

Fig. C.1 Hasse diagram of B3

A poset .P;�/ is called linearly ordered if any two elements are comparable,
i.e., for any x; y 2 P , we have either x � y or y � x. In a linearly ordered
poset, the elements of P may be labeled in a linear fashion, i.e., we may write
P D fp1; : : : ; png such that p1 � p2 � � � � � pn.

A chain in a poset P is a subset C � P such that as a subposet, C is linearly
ordered. A chain is called maximal if it is inclusion maximal, i.e., it cannot be
refined by adding elements. An example of a maximal chain in B3 is given by
f;; f2g; f2; 3g; f1; 2; 3gg. It is highlighted in Fig. C.1 by the bold edges.

The length of a chain C is defined to be jC j �1, i.e., the number of elements �1.
A poset P is pure if all maximal chains have the same length. It is bounded if

it has a least element O0 and a greatest element O1, i.e., O0 � x � O1 for all x 2 P .
Any finite poset P can be made into a bounded one by adding a least and a greatest
element. We will denote this by OP D P [ fO0; O1g. A finite, pure, and bounded poset
P admits a rank function, 
 W P ! N, that assigns to each element x the common
length of all maximal chains from O0 to x.

If x � y in a poset P , then denote by Œx; y� D fz W x � z � yg the interval of
elements lying between x and y.

Poset Maps

Let .P;�P / and .Q;�Q/ be two posets. A map f W P ! Q is called order-
preserving (resp. -reversing) if for any x �P y in P , we have f .x/ �Q f .y/ (resp.
f .y/ �Q f .x/). Any such map will be referred to as a poset map. Note that poset
maps, in particular, map chains to chains.

A poset isomorphism is a bijective poset map whose inverse is also a poset map.
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Product Orders

Let .P;�P / and .Q;�Q/ be two posets. The product P � Q becomes a poset via
.p0; q0/ � .p1; q1/ if and only if p0 �P p1 and q0 �Q q1.

Consider the following example. Let I D f0; 1g be the poset defined by 0 < 1.
Let P D I � � � � � I be the n-fold product of I . We claim that P is isomorphic to
the Boolean poset Bn. In fact, the map

f W P �! Bn;

.t1; : : : ; tn/ 7�! fi 2 Œn� W ti D 1g;

yields a poset isomorphism. The bijectivity is clear. The fact that f and its inverse
are order-preserving is due to the following computation:

p D .t1; : : : ; tn/ � .t 01; : : : ; t 0n/ D p0 ” �8i W ti D 1 H) t 0i D 1
�

” �8i W i 2 f .p/ H) i 2 f .p0/
�

” f .p/ � f .p0/:

Lexicographic Order

If P1; : : : ; Pn are linear orders, then the lexicographic order � is a linear order on
the product P D P1 � � � � � Pn (considered as a product of sets). It is defined
as follows. Let .p1; : : : ; pn/; .q1; : : : ; qn/ 2 P . Then .p1; : : : ; pn/ � .q1; : : : ; qn/ if
either .p1; : : : ; pn/ D .q1; : : : ; qn/ or there exists a k 2 f1; : : : ; ng such that pi D qi
for 1 � i < k and pk < qk with respect to the order of Pk .

C.2 Order Complexes

To any partially ordered set .P;�/ we associate its order complex, �.P /, which is
an abstract simplicial complex whose simplices are given by chains in P , i.e.,

�.P / D ffs0; : : : ; skg � P W s0 � � � � � skg :

The facets of �.P / are given by the maximal chains of P . Hence if P is a pure
poset, all facets of �.P / will have the same dimension. An example of a poset—
given by its Hasse diagram—and its order complex is shown in Fig. C.2.

By definition of the barycentric subdivision of an abstract simplicial complex
(given on page 179), we obtain the important proposition.
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Fig. C.2 An example of a poset P and its order complex �.P /

Proposition C.1. The barycentric subdivision of an abstract simplicial complexK
is identical to the order complex of the face poset of K , i.e., sdK D �.F.K//. ut

Product Triangulation

Assume that �.P / and �.Q/ are geometrically realized by maps x W P ! R
n and

y W Q ! R
m. We are interested in the product of polyhedra j�.P /j � j�.Q/j. This

product is naturally triangulated by the geometric realization of�.P �Q/ given by
the map x � y W P �Q ! R

n � R
m. In particular, we obtain the following result.

Lemma C.2. If P and Q are finite posets, then there is a natural homeomorphism
j�.P �Q/j Š j�.P /j � j�.Q/j. ut

Simplicial Maps of Order Complexes and Homotopy

Since a poset map f W P ! Q maps chains to chains, it induces a simplicial map
f W �.P / ! �.Q/ of the corresponding order complexes.

The concept of order complexes allows us to speak in topological terms about
partially ordered sets. In particular, we will call two poset maps f; g W P ! Q

homotopic, denoted by f ' g, if the induced maps on the geometric realizations
jf j; jgj W j�.P /j ! j�.Q/j are homotopic. Correspondingly, we say that two
posets, P and Q, are homotopy equivalent, denoted by P ' Q, if there exist poset
maps f W P ! Q and g W Q ! P such that the compositions g ı f and f ı g are
homotopic to the respective identity maps.

The following order homotopy lemma has quite strong applications.

Lemma C.3. Let f; g W P ! Q be two poset maps of finite posets such that f � g,
i.e., f .x/ � g.x/ for all x 2 P . Then f ' g.

Proof. Let the poset I D f0; 1g be defined by 0 < 1 and consider the product P �I
endowed with the product order. Now define the map h W P � I ! Q by h.x; 0/ D
f .x/ and h.x; 1/ D g.x/, which is clearly order-preserving. Then h induces a map



C.3 Shellability of Partial Orders 203
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221100
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222
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Fig. C.3 A poset P , its interval order Int.P /, and the complexes �.P / and �.Int.P //

jhj W j�.P �I /j ! j�.Q/j. By the previous lemma, j�.P �I /j Š j�.P /j� Œ0; 1�,
so we obtain a map H W j�.P /j � Œ0; 1� ! j�.Q/j. It is now easy to check that
H.x; 0/ D jf j.x/ and H.x; 1/ D jgj.x/. ut
Remark C.4. Note that if f and g are equivariant with respect to some action of a
groupG on P and Q, then so is the homotopyH .

Interval Order

If .P;�/ is a poset, we may consider the set of all pairs .x; y/ with x � y

corresponding to intervals of P . An interval defined by .x; y/ contains an interval
defined by .x0; y0/ if and only if x � x0 and y0 � y. We use this interpretation to
define the poset Int.P / D f.x; y/ W x � yg ordered by

.x; y/ � .x0; y0/ ” x � x0 and y0 � y;

and call it the interval order of P . An illustration is given in Fig. C.3 with the
abbreviations xy for .x; y/.

Apparently, the two posets are very closely related. James Walker [Wal83] has
proved the following result.

Proposition C.5. The geometric realizations j�.P /j and j�.Int.P //j are naturally
homeomorphic. ut

C.3 Shellability of Partial Orders

A finite poset P is called (pure) shellable if it is pure and its maximal chains can
be ordered m1; : : : ; mt in such a way that if 1 � i < j � t , then there exist
1 � k < j and x 2 mj such that mi \ mj � mk \ mj D mj n fxg. In other
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words, the intersection of a chain mj with any preceding chain mi is contained in
an intersectionmk \mj of maximal size for some other chain mk precedingmj .

The concept was introduced by Björner [Bjö80] and investigated extensively by
Björner and Wachs [BW83]. Its importance becomes clear by its connection to the
topological concept of shellability, which we discussed on page 178.

Proposition C.6. If P is shellable, then the associated order complex �.P / is
shellable.

Proof. The proof is an easy exercise. ut
Since our definition of shellability requires the poset P to be pure, we obtain the
following immediate corollary.

Corollary C.7. If P is shellable, then j�.P /j is, up to homotopy, either con-
tractible or a wedge of spheres of dimension dim.�/. ut

Quite some theory has been developed about special types of shellability. Here
we want to exemplify the concept of a lexicographic shelling for the Boolean poset.

Proposition C.8. The Boolean poset Bn is shellable.

Proof. First of all, we will be concerned with associating label vectors to maximal
chains c in any interval Œa; b� in Bn. If c is given by the chain a D x0 � x1 � � � � �
xk D b, then any two successive elements in this sequence differ by an element of
Œn�, say xjC1 n xj D fijC1g. The label vector we associate with c is now defined to
be the vector �.c/ D .i1; : : : ; ik/. Hence the label vectors for the maximal chainsm
of Bn are given by vectors �.m/ 2 Œn�n. For example, the maximal chain shown in
bold in Fig. C.1 obtains the label vector .2; 3; 1/.

We now order the maximal chains m1; : : : ; mt according to the lexicographic
order of their label vectors, i.e., �.m1/ � �.m2/ � � � � � �.mt/. Note that if Œa; b�
is an interval in Bn with b n a D fi1; : : : ; ikg with i1 < i2 < � � � < ik , then there is
a unique maximal chain c in Œa; b� with increasing label vector .i1; : : : ; ik/, and this
label vector is the lexicographically smallest among all label vectors of maximal
chains in Œa; b�.

Now let 1 � i < j � t , and consider the chains mi and mj given by ; D y0 �
y1 � � � � � yn D Œn� and ; D x0 � x1 � � � � � xn D Œn�, respectively. Let r
be maximal with the property that xi D yi for all 0 � i � r , and let s > r be
minimal with xs D ys . In other words, the chainsmi andmj agree all the way up to
xr D yr and afterward meet for the first time at xs D ys . The situation is sketched
in Fig. C.4.

Since �.mi/ � �.mj /, the unique chain c in the interval Œxr ; xs� with increasing
label vector will certainly be different from xr � xrC1 � � � � � xs . Hence in the
corresponding label vector, �.xr � xrC1 � � � � � xs/, there must exist a descent,
i.e., there exist r < t < s such that ˛ D �.xt�1 � xt / > �.xt � xtC1/ D ˇ.
In other words, xt D xt�1 [ f˛g, xtC1 D xt [ fˇg, and ˛ > ˇ; see Fig. C.5. If
we set x D xt�1 [ fˇg, then clearly xt�1 � x � xtC1, and the maximal chain
x0 � � � � � xt�1 � x � xtC1 � � � � � xn precedes mj with respect to the
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xn=yn

xs=ys

xr=yr

xs−1
ys−1

xr+1

x1=y1

x0=y0

yr+1

Fig. C.4 The definition of r and s

xt−1

xt

xt+1

x

a b

b a

Fig. C.5 The descent at xt and the element x

lexicographic order of its label vector. Hence this chain corresponds to a chain mk

for some k < j . Moreover,mi \mj D mi \mk � mk \mj D mj n fxg. ut
Now let P be a shellable poset. If P is bounded, let 
 be the rank function of

P ; otherwise, let 
 be the rank function of OP and assume that 
.O1/ D r C 1. For
S � Œr�, let PS D fx 2 P W 
.x/ 2 Sg be the rank selected subposet of P defined
by S .

Theorem C.9. If P is shellable, then PS is shellable for any S � Œr�.

Proof. Letm1; : : : ; mt be a shelling order of P . For each maximal chain c of PS , let
�.c/ D minfi W c � mig be the minimal index i such that c � mi . Clearly � is an
injective map on the set of all maximal chains of PS . Hence we may define a linear
order G on the set of maximal chains of PS by c G d if �.c/ < �.d/. Now assume
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cGd . We have to find a maximal chain eGd ofPS such that c\d � e\d D d nfxg
for some x 2 d . But since m1; : : : ; mt is a shelling order, there exists a k < �.d/

such that

m�.c/ \m�.d/ � mk \m�.d/ D m�.d/ n fxg (	)

for some x 2 m�.d/. The chain e D mk \ PS is clearly maximal in PS , and since
�.e/ � k < �.d/, we have e G d . Assuming that x 62 d , we obtain

d � m�.d/ n fxg D mk \m�.d/ � mk;

contradicting the fact that �.d/ is minimal among all i with d � mi . Hence x 2 d ,
and by intersecting the relation .	/ with PS , we obtain c \ d � e \ d D d n fxg as
desired. ut
Corollary C.10. The rank selected subposet

Bn;k D fS � Œn� W k � jS j � n � kg

of the Boolean poset Bn is shellable. ut

Exercises

1. Let .P;�/ be a partially ordered set. Show that there exists a linear order � on
P such that the identity map from P to itself is an order-preserving map from
.P;�/ to .P;�/. The order .P;�/ is called a linear extension of .P;�/.

2. Let .P;�/ be a finite partially ordered set. Show that there exist finitely many
linear extensions .P;�1/; : : : ; .P;�n/ of .P;�/ such that x � y if and only if
for all i D 1; : : : ; n, the relation x �i y holds.

3. Let .P;�/ be a finite partially ordered set. A subset A � P is called an antichain
if its elements are pairwise incomparable. Let h denote the largest cardinality of
a chain in P . Prove that it is always possible to partition P into h antichains.

4. Provide the details for the proof of Lemma C.2.
5. Provide a proof of Proposition C.6.
6. The labeling in the proof of Proposition C.8 may be thought of as induced by

a labeling of the edges of the Hasse diagram of the Boolean poset. We may use
this idea to obtain a general concept of an EL-labeling, i.e., an edge lexicographic
labeling of a poset.

Let � W E.P / ! Z be a labeling of the edges E.P / of the Hasse diagram ofP .
If c is a maximal chain, a D x0 < x1 < � � � < xk D b, in some interval Œa; b� of
P , then we may associate the label vector �.c/ D .�.x0; x1/; : : : ; �.xk�1; xk//
with c. Such a chain c is called increasing if �.x0; x1/ < � � � < �.xk�1; xk/.
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An edge labeling � is defined to be an EL-labeling if for every interval Œa; b�
in P ,

(a) There is a unique increasing maximal chain c in Œa; b�, and
(b) �.c/ � �.c0/ in the lexicographic order for all other maximal chains c0 in

Œa; b�.

Prove along the lines of the proof of Proposition C.8 that any poset P that
admits an EL-labeling is shellable.



Chapter 8
Appendix D: Groups and Group Actions

Historically, the study of symmetries of geometric bodies led to the concept of a
group. If one considers a point x of a geometric body, then a symmetry g of the
body will map x to some point that we denote by g ı x. We say that the group acts
on the set of points of the body. In this chapter we briefly recall the fundamental
concepts of groups and their actions on spaces.

D.1 Groups

A group is given by a triple .G; �; e/, where G is a nonempty set, � is a binary
operation � W G � G ! G, also called multiplication, and e 2 G is the neutral
element subject to the following axioms:

• (Associativity) .a � b/ � c D a � .b � c/ holds for all a; b; c 2 G.
• (Neutral element) g � e D e � g D g for all g 2 G.
• (Inverses) For every g 2 G there exists an inverse element, denoted by g�1, such

that g � g�1 D g�1 � g D e.

In practice, the multiplication symbol is often suppressed, and we write ab instead
of a � b. If no confusion will occur, we refer to the group just by G. A group G is
called abelian (or commutative) if ab D ba for all a; b 2 G. The binary operation
on an abelian group is usually called addition and denoted by C.

Some prominent examples of (abelian) groups are the integers .Z;C; 0/, the
integers modulo some fixed integer .Zm;C; 0/, powers ..Zm/r ;C; 0/ thereof with
componentwise addition, and the nonzero reals .Rnf0g; �; 1/. An important example
of a nonabelian group is given by the symmetric group .Sym.X/; ı; idX/, i.e., the
bijections of a (finite) set X together with composition.

M. de Longueville, A Course in Topological Combinatorics, Universitext,
DOI 10.1007/978-1-4419-7910-0 8,
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Subgroups and Homomorphisms

If .G; �; e/ is a group, then H is a subgroup of G, denoted by H � G, if H � G

and .H; �jH�H ; e/ is a group. A subgroup is called normal, denoted by H E G, if
aHa�1 � H for all a 2 G.

An important (abelian) subgroup of any group G is its center C.G/ D fa 2 G W
ax D xa for all x 2 Gg.

A map f W G ! H of groups is a homomorphism if f .ab/ D f .a/f .b/ for
all a; b 2 G. The kernel of a homomorphism f is defined to be the preimage of
the neutral element ker.f / D f �1.e/. The kernel of a homomorphism is a normal
subgroup, and conversely, each normal subgroup can be realized as the kernel of a
homomorphism via the following concept.

If H E G is a normal subgroup, then the quotient group G=H is defined to be
the set of cosets fgH W g 2 Gg with the multiplication aH �bH D abH and neutral
element eH D H . There is a natural quotient homomorphism 	 W G ! G=H

defined by g 7! gH whose kernel is ker.	/ D H .
The order of a groupG is defined to be the number jGj of its elements. The order

of an element a 2 G is defined to be the order of the subgroup generated by a, i.e.,
in the case of a finite order, the smallest k � 1 such that ak D e. The index ŒG W H�
of a subgroup H � G is defined to be the number of cosets fgH W g 2 Gg. The
following result is attributed to Joseph Louis Lagrange.

Proposition D.1. If H � G is a subgroup, then jGj D ŒG W H�jH j. In particular,
if G is of finite order, then jH j is a divisor of jGj. ut

A group G is called cyclic if there exists an element a generating the whole
group, i.e., G D fan W n 2 Zg.

If p is a prime number, then a finite group G is called a p-group if the order of
the group is a power of p. In other words, G is a p-group if jGj D pk for some
k � 1.

D.2 Group Actions

We will now introduce the general idea of a group acting on a set. It may be
helpful, though, to think of a geometric body and its symmetries as explained in
the beginning of the chapter.

Definition D.2. Let .G; �; e/ be a group and X a set. An action of G on X is given
by a map

ı W G �X �! X;

.g; x/ 7�! g ı x;
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subject to the following two conditions:

e ı x D x;

g ı .h ı x/ D .g � h/ ı x;

where x 2 X , e is the neutral element of G, and g; h 2 G.

If we consider an action of a groupG on a set X , we also say thatG acts on X . The
identity

.g�1/ ı .g ı x/ D .g�1 � g/ ı x D e ı x D x

shows that any element g 2 G induces a bijection g ı � W X ! X . In fact, a group
action induces—and may be defined by—a group homomorphism

G �! Sym.X/;

g 7�! g ı �;

from G to the symmetric group of X as discussed in the exercises. Therefore, we
think of the elements of G as symmetries of the set X .

If no confusion may arise, we will drop the symbol ı and write gx instead of
g ı x.

Let us consider a few examples. Let G be any group. Then, taking X D G, the
groupG acts on itself by gıh D gh. For any groupG and any setX there is always
the trivial action defined by g ı x D x for all g 2 G and x 2 X . A more concrete
example is the following. Let G D Z2 D fe; �g be the 2-element group and X D Z

the integers. Then a group action of G on X is defined by � ım D �m.

Equivariant Maps

If G acts on sets X and Y , then a map f W X ! Y is called G-equivariant, or
equivariant with respect to G, if f .gx/ D gf .x/ for all g 2 G and x 2 X .

An instructive example that occurs in similar guise in this book is the following.
Let f W A ! B by any map of sets A and B . Let X D A � � � � � A and Y D
B � � � � �B be the k-fold Cartesian products for some k � 1. The symmetric group
G D Sym.k/ acts on X and Y by permuting the coordinates, i.e., 	.x1; : : : ; xk/ D
.x	.1/; : : : ; x	.k//. Then the map F D f k W X ! Y defined by F.x1; : : : ; xk/ D
.f .x1/; : : : ; f .xk// is clearly G-equivariant.
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Orbits and Fixed Points

Definition D.3. If G acts on the set X , then for x 2 X , the set G ı x D fg ı x W
g 2 Gg is called the orbit of x. The set of orbits is denoted byX=G. A group action
is called transitive if there exists only one orbit, i.e., G ı x D X for one (and hence
for all) x 2 X .

Clearly the orbits yield a partition of X . In our previous examples, the action of
a group on itself is transitive and hence has only the orbit X D G, the trivial action
has all singletons fxg, for x 2 X , as orbits; and the orbits of the third example are
the sets f0g and fm;�mg for m 2 Z.

Definition D.4. If G acts on the set X , then the fixed-point set of the group action
is defined to be

XG D fx 2 X W 8g 2 G W g ı x D xg;

i.e., the set of all points that are simultaneously fixed by all group elements. The
group action is called fixed-point-free if XG D ;.

The action of a group on itself is fixed-point-free, the trivial action has XG D X

by definition, and in the third example only the element 0 is fixed by all group
elements; hence XG D f0g in this case.

Induced Actions

If G acts on X via ı andH � G is a subgroup, then clearly H acts on X via

H �X �! X;

.h; x/ 7�! h ı x:

If, moreover,H E G is a normal subgroup, then the quotientG=H acts on XH via

G=H �XH �! XH;

.gH; x/ 7�! g ı x:

Lemma D.5. If H E G is a normal subgroup, then XG D .XH/G=H . ut
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Stabilizer Subgroup

Definition D.6. If G acts on X and x 2 X , then the stabilizer (or isotropy)
subgroupGx of x is defined by

Gx D fg 2 G W g ı x D xg:

A group action is called free if Gx D feg is trivial for every x 2 X . In other words,
for every g 2 G and x 2 X , g ı x D x implies that g D e is the neutral element.

Lemma D.7. If a finite group G acts on X and x 2 X , then jG ı xj D jGj=jGxj.
Proof. Consider the map

' W G �! G ı x;
g 7�! g ı x:

Then '.g/ D '.h/ if and only if .g�1h/ ı x D x if and only if h 2 gGx . Hence
'�1.'.g// D gGx . Now clearly ' is surjective and jgGx j D jGx j. ut

In particular, this implies that if G acts freely, then the size of each orbit is the
order of the groupG.

The Class Equation and p-Groups

Let G be a finite group. Define the conjugacy action of G on X D G via g ı x D
gxg�1. The orbits G ı x D fgxg�1 W g 2 Gg are called the conjugacy classes
of G. In this case the stabilizer subgroup Gx D fg 2 G W gxg�1 D xg is called
the centralizer of x. Note that x 2 G is an element of the center C.G/ if and only
if its centralizer Gx is equal to G. Phrased differently, x 2 C.G/ if and only if
ŒG W Gx� D 1.

Now let G ı x1; : : : ; G ı xn be the distinct orbits of the G-action. Then clearly

jGj D
nX

iD1
jG ı xi j D

nX

iD1
jGj=jGxi j D

nX

iD1
ŒG W Gxi �:

Without loss of generality we may order the xi such that x1; : : : ; xm 2 G n C.G/
and xmC1; : : : ; xn 2 C.G/. We obtain the class equation

jGj D jC.G/j C
mX

iD1
ŒG W Gxi �;
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where ŒG W Gxi � > 1 for all i D 1; : : : ; m. We will apply the class equation in order
to obtain a result on p-groups.

Proposition D.8. If G is a p-group of order pk for some k � 1, then there exists a
sequence of normal subgroups

feg D G0 � G1 � � � � � Gk D G

such thatGiC1=Gi is cyclic of order p.

Proof. In the class equation, jGj and each index ŒG W Gxi �, i D 1; : : : ; m, are
divisible by p. Hence jC.G/j must be divisible by p as well. In particular, C.G/ 6D
feg is nontrivial. We now proceed by induction on k. The case k D 1 is clear. For the
induction step, assume that k > 1. Then there exists an element a 2 C.G/ of order
p. Such an element is easily found: since C.G/ is nontrivial, let b 2 C.G/ n feg be
an arbitrary element. Its order will be some power of p, say pl . Then set a D bp

l�1
.

Let G1 be the subgroup generated by a, i.e., G D fe; a; a2; : : : ; ap�1g. Clearly
G1 � C.G/, and henceG1 is normal inG. SetH D G=G1. ThenH has order pk�1
by Proposition D.1, and by the induction hypothesis, it has a sequence of normal
subgroups

feg D H1 � H2 � � � � � Hk D H

such thatHiC1=Hi is cyclic of order p. For i D 2; : : : ; k set Gi D 	�1.Hi /, where
	 W G ! G=G1 denotes the natural quotient map. ut

D.3 Topological G -Spaces

IfX is a topological space, then X is called a G-space if G acts continuously onX ,
i.e., for each g 2 G, the map g ı � is continuous. If, moreover, the action is free, X
is called a free G-space.

The most prominent example of a freeG-space in this book is the n-dimensional
sphere with the antipodal action, i.e., G D Z2 D fe; �g, X D S

n with � ı x D �x.
If X is a G-space, then consider the natural quotient map to the orbit space:

	 W X �! X=G;

x 7�! Gx:

It induces the quotient topology on X=G, i.e., U � X=G is defined to be open if
	�1.U / � X is open.

An illustrative example is the following. Let G D Zn and let X D S
1 be the

1-dimensional sphere. Then X becomes a G-space via Œk� ei' D ei.'Ck 2	n /. Then
each orbit looks like Zn ı ei' D fei' ; ei.'C 2	

n /; ei.'C2 2	n /; : : : ; ei.'C.n�1/ 2	n /g, and the
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orbit space is homeomorphic to a 1-dimensional sphere itself via

X=G �! S
1;

Zn ı ei' 7�! ein' :

Equivariant Maps and Homotopies

A G-equivariant map f W X ! Y of topologicalG-spaces will always be assumed
continuous.

If f; g W X ! Y are G-equivariant maps, then a G-equivariant homotopy from
f to g is a homotopyH W X � Œ0; 1� ! Y from f to g with the additional property
that for each t 2 Œ0; 1�, the map H.�; t/ is G-equivariant.

D.4 Simplicial Group Actions

LetG be a finite group andK a simplicial complex. A group actionG� vert.K/ !
vert.K/ ofG onK is simplicial if for each g 2 G the map g ı� is a simplicial map,
in other words, if the action induces an action ofG onK itself. A simplicial complex
K with a simplicialG-action is called aG-complex. Moreover, if the induced action
of G onK is free, then K is called a free G-complex.

A simplicial group action of G on K induces a continuous group action on the
geometric realization jKj, thus turning jKj into a G-space. For simplicity we may
assume that vert.K/ D Œn� and vertex i 2 Œn� is realized by vi 2 R

d . Then the
induced action is given by

G � jKj �! jKj;
�
g;
X

j2J
tj vj

� 7�!
X

j2J
tj vgıj :

Definition D.9. A G-action on a simplicial complex K is called regular if the
following property is satisfied for each subgroupH of G:

.	/ For each g0; : : : ; gn 2 H and fv0; : : : ; vng 2 K such that fg0v0; : : : ; gnvng2K ,
there exists an element g 2 H such that gvi D givi for all i D 0; : : : ; n.

A simplicial complex with a regular G-action is called a regular G-complex. Let L
be a subcomplex ofK . IfG acts regularly onK and leavesL invariant, i.e., g� 2 L
for all g 2 G and � 2 L, then we call the pair .K;L/ a regular G-pair.

Lemma D.10. If K is a G-complex, then the induced action on its second
barycentric subdivision sd2 K is regular.
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Proof. The proof is the content of Exercises 12–15. ut

Quotient and Fixed-Point Spaces of Regular Actions

Now letK be a regularG-complex. We define the quotientK=G to be the simplicial
complex on the vertex set fv� W v 2 vert.K/g, where the vertices v� are defined to
be the orbits v� D Gv D fgv W g 2 Gg of the vertices of K . The simplices of
K=G are given by all sets fv�

0 ; : : : ; v
�
n g, where fv0; : : : ; vng 2 K . Note that due

to the regularity of the G-action, two simplices fv�
0 ; : : : ; v

�
n g and fw�

0 ; : : : ;w
�
ng are

identical if and only if there exists a g 2 G such that wi D gvi for all i D 0; : : : ; n.
Hence the simplices of K=G are in one-to-one correspondence with the orbits of
simplices of the action of G on K .

Lemma D.11. If K is a regular G-complex, then there are homeomorphisms
jKj=G Š jK=Gj and jKGj Š jKjG. ut

Note that KG may be considered a subcomplex of K=G via

vert.KG/ �! vert.K=G/;

v 7�! v� D fvg:

Z2-Actions on Spheres

Lemma D.12. Let a Z2-action on the n-sphere be given by a continuous map � W
S
n ! S

n. If the action is free, i.e., � is fixed-point-free, then there exists a continuous
f W Sn ! S

n such that f .�.x// D �f .x/.
Proof. The map f defined by

f W Sn �! S
n;

x 7�! x � �.x/

kx � �.x/k
clearly satisfies all requirements. ut

G -Equivariant Maps and Simplicial Approximation

Proposition D.13. Let G be a finite group, and let X and Y be G-spaces. Assume
that the action on X is free and that X possesses a G-invariant triangulation. If
dim.X/ � n and Y is at least .n � 1/-connected, then there exists a G-equivariant
map f W X ! Y .
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Proof. Without loss of generality we may assume that X D jKj is the polyhedron
of a free G-complex K . Denote the k-dimensional skeleton by K.k/ D f� W
� 2 K; dim.�/ � kg. We construct the map f inductively on the k-skeletons.
Let f .�1/ D ; be the empty map. Assume that a G-equivariant map f .k�1/ W
jK.k�1/j ! Y has already been defined for n � k � 0. Let G�1; : : : ; G�l be
the distinctG-orbits of the k-dimensional simplices ofK . Then for each j , the map
f .k�1/ is already defined on the sphere j@�j j. Since k�1 � n�1 � conn.Y /, there
exists an extension f .k/jj�j j W j�j j ! Y . Now define f .k/jGj�j j by theG-action, i.e.,
f .k/.gx/ D gf .k/.x/ for all g 2 G and x 2 j�j j. Then we have found an extension
f .k/ W jK.k/j ! Y . ut
Theorem D.14. Let K be a G-complex, L a regular G-complex, and f W jKj !
jLj a G-equivariant map. Then there exist an r � 0 and a G-equivariant simplicial
approximation g W sdr K ! L such that jgj W jKj ! jLj is G-equivariantly
homotopic to f . ut

The regularity condition on L can slightly be weakened. We refer to
[Bre72, p. 68].

Exercises

1. Show that if p is prime, then the nonzero elements of Zp form a group under
multiplication.

2. Show that if G is a finite group of even order, then it contains an element of
order 2.

3. LetG be an abelian group of ordermnwith greatest common divisor .m; n/D1.
Assume that there exist elements a and b of orderm and n, respectively. Show
that G is cyclic.

4. Let G be a cyclic group of order n, and k a divisor of n. Show that G has
precisely one subgroup of order k.

5. Let G and H be finite cyclic groups. Show that the product G � H with
componentwise multiplication is cyclic if and only if the greatest common
divisor of their orders is .jGj; jH j/ D 1.

6. (Euler–Fermat) Let a be an integer and p a prime not dividing a. Show that
ap�1 
 1 mod p.

7. Let H < G be a subgroup and a 2 G. Show that aHa�1 is a subgroup of G
that is isomorphic to H .

8. LetH E G be a normal subgroup. Show that the multiplication in the quotient
group G=H as defined on page 210 is well defined and satisfies the group
axioms.

9. Let f W G ! H be a group homomorphism. Show that the preimage f �1.N /
of a normal subgroupN E H is normal in G.
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10. Let f W G ! H be a homomorphism of groups. Assume that H is abelian and
that N < G is a subgroup containing kerf . Show that N is normal in G.

11. Show that a group action may be identified with a group homomorphismG !
Sym.X/ from G to the symmetric group of X .

12. Show that the following two properties of a G-action on a simplicial complex
K are equivalent.

(A) For each g 2 G and � 2 K , g leaves � \ g� pointwise fixed.
(A0) If v and gv belong to the same simplex, then gv D v.

13. Show that if K is a G-complex, then the induced action on K 0 D sdK satisfies
property (A) as defined in the previous exercise.

14. Show that ifK is aG-complex satisfying property (A) as defined in Exercise 12,
then the induced action on K 0 D sdK satisfies the following property (B):

(B) For each g0; : : : ; gn 2 G and fv0; : : : ; vng 2 K such that fg0v0; : : : ; gnvng2
K , there exists a g 2 G such that gvi D givi for all i D 0; : : : ; n.

15. Prove Lemma D.10 employing the previous exercises.
16. Provide a proof of Lemma D.11.
17. Show that the map f in Lemma D.12 must be surjective. Give an example of

an action � such that f is not injective.



Chapter 9
Appendix E: Some Results and Applications
from Smith Theory

In this appendix we introduce Smith theory. It deals with group actions on simplicial
complexes, their fixed points and orbit spaces, as well as what can be said about
these in terms of homology theory.

The chapter is based on Glen E. Bredon’s excellent book [Bre72] except for the
final result, which is based on Robert Oliver’s article [Oli75].

E.1 The Transfer Homomorphism

Let G be a finite group and K a regular G-complex. The oriented simplicial chain
complex C�.K/ inherits a G-action via ghv0; : : : ; vni D hgv0; : : : ; gvni. Similarly,
if .K;L/ is a regular G-pair, then C�.K;L/ inherits a G-action. The group ring
ZG consisting of formal sums

P
g2G ngg, where ng 2 Z, acts on C�.K/, resp.

C�.K;L/, by .
P

g2G ngg/c D P
g2G ng.gc/. The element � D P

g2G g 2 ZG

is called the norm. The norm � yields a chain map � W C�.K/ ! C�.K/, and
hence the image �C�.K/ is a subchain complex of C�.K/. There is an analogous
construction for � W C�.K;L/ ! C�.K;L/.

Now the canonical simplicial quotient map

K �! K=G;

fv0; : : : ; vng �! fv�
0 ; : : : ; v

�
n g;

induces a homomorphism 	 W C�.K;L/ ! C�.K=G;L=G/.

Lemma E.1. The kernels of the homomorphisms � and 	 coincide, i.e., ker � D
ker	 .

Proof. Let s1; : : : ; sm be the orbit of a simplex s and let s� denote the simplex of
K=G that is the image of s under the canonical simplicial quotient map. Clearly
it suffices to consider a chain of type c D Pm

iD1 ni si . If Gs denotes the stabilizer
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of s, i.e.,

Gs D fg 2 G W gs D sg;
then m D jGj=jGsj by Lemma D.7. Now

	.c/ D
mX

iD1
ni	.si / D

mX

iD1
ni s

�;

and hence 	.c/ D 0 if and only if
Pm

iD1 ni D 0. We now turn our attention to �.c/.
Since g�.c/ D �.c/ for any g 2 G, and since G acts transitively on the set of si ,
we obtain that �.c/ D r

Pm
iD1 si for some integer r . Since the sums of coefficients

on both sides of this equation have to be identical, we obtain

jGj
mX

iD1
ni D rm D r jGj=jGsj:

Therefore r D jGs jPm
iD1 ni , and hence �.c/ D 0 if and only if r D 0 if and only ifPm

iD1 ni D 0. ut
Hence we obtain the following sequence:

C�.K=G;L=G/ Š C�.K;L/= ker	 D C�.K;L/= ker� Š �C�.K;L/;

which yields a homomorphism

� W C�.K=G;L=G/ �! C�.K;L/;

	.c/ 7�! �.c/:

The induced homomorphism in homology

�� W H�.K=G;L=G/ �! H�.K;L/

is called the transfer. Now, the canonical quotient map yields a homomorphism in
the other direction,

	� W H�.K;L/ �! H�.K=G;L=G/:

For the compositions we clearly obtain

	��� D jGj W H�.K=G;L=G/ �! H�.K=G;L=G/;

��	� D �� D
X

g2G
g� W H�.K;L/ �! H�.K;L/:
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Now for the image of �, it is obvious that im� � C�.K;L/G , and hence im�� �
H�.K;L/G . Let us consider the composition ��	� restricted to H�.K;L/G :

H�.K;L/G
	

���! H�.K=G;L=G/
�

���! H�.K;L/G:

If c 2 C�.K;L/G is a cycle, then

��	�.Œc�/ D
X

g2G
g�Œc� D Œ

X

g2G
gc� D jGjŒc�:

In summary we obtain the following beautiful result.

Theorem E.2. If F is a field of characteristic 0 or characteristic relatively prime
to jGj, then

	� W H�.K;LIF /G �! H�.K=G;L=GIF /

and

�� W H�.K=G;L=GIF / �! H�.K;LIF /G

are isomorphisms. ut

E.2 Transformations of Prime Order

We are now interested in the special situation in which the groupG has prime order
p and homology is computed with coefficients in the field Zp of prime order p.
Note that this is in stark contrast to the conditions in Theorem E.2. Let us consider
the group G multiplicatively generated by the element g, i.e., G D hgi. We will be
interested in the elements � D 1 � g and the norm � D 1 C g C g2 C � � � C gp�1
of the group ring ZpG. The significance of � should be clear, since c 2 C�.K;L/
is an element of C�.K;L/G if and only if �c D 0. Note that �� D 0 D �� and that
� D �p�1, since

.�1/i
 
p � 1
i

!


 1 .mod p/:

More generally, for 1 � i � p � 1 we want to consider 
 D �i and put N
 D �p�i .
Then � D N� , � D N� , and 
 N
 D 0.

Proposition E.3. For each 
 D �i , 1 � i � p�1, the sequence of chain complexes

0 ! N
C�.K;LIZp/˚ C�.KG;LG IZp/ i�! C�.K;LIZp/ 
�! 
C�.K;LIZp/ ! 0
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is exact, where i denotes the sum of the inclusions and 
 W C�.K;LIZp/ !

C�.K;LIZp/ is given by multiplication by 
.

Proof. Consider the sequence in a fixed dimension n. It is easy to see that the
sequence can be decomposed into two sequences

0 ! Cn.K
G;LG IZp/ i�! Cn.K

G;LG IZp/ 
�! 0 ! 0

and

0 ! N
Cn.K;LIZp/ i�! C

�! 
Cn.K;LIZp/ ! 0;

where C � Cn.K;LIZp/ is the subgroup generated by all n-simplices s 2 K nKG ,
s 62 L. For the exactness of the first sequence it suffices to note that for an n-simplex
s 2 KG we have �.s/ D 0 and hence 
.s/ D 0.

Regarding the second sequence, it suffices to consider chains c consisting of
formal sums of simplices that are contained in the orbit of a single simplex s. Since
s 62 KG , c may be written as c D Pp�1

iD0 nigi s, where ni 2 Zp. We can identify any
such c with

Pp�1
iD0 nigi 2 ZpG, and hence the sequence that we are dealing with

boils down to

0 �! N
� i�! �

�! 
� �! 0;

where we denote the group ring Zp G by �. Since 
 ı i D 0 it suffices to show that
dim ker 
 D dim im i as Zp-vector spaces. Now dim im i D dim N
�, dim ker 
 D
dim� � dim im 
 D dim� � dim 
�, and hence we need to show that dim 
� C
dim N
� D dim� D p. We are going to show that dim �k� D dim�� k D p � k

for any 1 � k � p � 1.
The kernel of � W � ! � consists of formal sums with constant coefficients, i.e.,

multiples of � D 1C� � �Cgp�1, and hence is 1-dimensional. But this kernel, Zp � , is
also contained in the image of any �j , 1 � j � p�1, since � D �p�1 D �j �p�1�j .
Hence we are done by induction. ut
Definition E.4. Define the graded group H
� .K;LIZp/ D H�.
C�.K;LIZp// to
be the Smith special homology group.

With this definition the long exact sequence that we obtain from Proposition E.3
yields the following result.

Proposition E.5. For 
 D �i there is a long exact sequence in homology

@�! H
N

k .K;LIZp/˚Hk.K

G;LG IZp/ i
��! Hk.K;LIZp/ 


��! H



k .K;LIZp/ @�!

that we will refer to as the Smith sequence. ut
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Note that an argument similar to the proof of Proposition E.3 yields the short
exactness of the following sequence:

0 ! �C�.K;LIZp/ i�! �jC�.K;LIZp/ ���! �jC1C�.K;LIZp/ ! 0;

where 1 � j � p � 1 and i denotes inclusion. Hence we obtain a long exact
sequence.

Proposition E.6. For 1 � j � p � 1 there is a long exact sequence

@�! H�
k .K;LIZp/ i

���! H�j

k .K;LIZp/ �
���! H�jC1

k .K;LIZp/ @�! : ut
As in the previous section, we want to understand the kernel of the homomor-

phism � W C�.K;LIZp/ ! C�.K;LIZp/. It should not differ too much from the
case with integer coefficients except that �.s/ D ps D 0 whenever s 2 KG . More
formally, the kernel of � coincides with the kernel of the composition

C�.K;LIZp/ j��! C�.K;KG [LIZp/ 	��! C�.K=G;KG [L=GIZp/:
We leave the proof, which is very similar to the case of integer coefficients, to the
exercises. We therefore obtain an isomorphism

�C�.K;LIZp/ Š C�.K=G;KG [L=GIZp/

inducing an isomorphism in homology.

Proposition E.7. There is an isomorphism

H�� .K;LIZp/ Š H�.K=G;KG [ L=GIZp/: ut

E.3 A Dimension Estimate and the Euler Characteristic

Now we want to apply our previous results to obtain relations among the dimensions
of the homology groups and the Euler characteristics of the considered spaces and
chain complexes, respectively. As before, we will be concerned with group actions
of prime order p and homology with coefficients in Zp.

Theorem E.8. Let G be a cyclic group of prime order p, K a regular G-complex,
and L � K an invariant subcomplex. Then for any n � 0 and any 
 D �i , 1 � i �
p � 1, the following inequality holds:

dimH

n .K;LIZp/C

X

k�n
dimHk.K

G;LG IZp/ �
X

k�n
dimHk.K;LIZp/:
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Proof. This follows almost immediately from the Smith sequence. Note that in this
sequence we may interchange 
 and N
. We will make use of both sequences that are
obtained in this way. Let us first consider the sequence

H
N

kC1.K;LIZp/

@�! H



k .K;LIZp/˚Hk.K
G;LG IZp/

i
���! Hk.K;LIZp/:

First of all,

dimH


k .K;LIZp/C dimHk.K
G;LG IZp/ D dim im i� C dim ker i�:

Clearly dim im i� � dimHk.K;LIZp/, and moreover, ker i� D im @, and hence

dim ker i� D dim im @ � dimH N

kC1.K;LIZp/. Substituting, we obtain the general

inequality

dimH


k .K;LIZp/C dimHk.K
G;LG IZp/

� dimHk.K;LIZp/C dimH N

kC1.K;LIZp/:

Let us introduce the abbreviations

ak D dimHk.K
G;LG IZp/; bk D dimHk.K;LIZp/;

ck D dimH


k .K;LIZp/; Nck D dimH N

k .K;LIZp/:

With this notation we obtain the two inequalities by interchanging 
 and N
:

ck � NckC1 C ak � bk and Nck � ckC1 C ak � bk:

Consider the first inequality for k D n; n C 2; n C 4; : : : and the second for k D
n C 1; n C 3; n C 5; : : : . The sum of all these gives the desired inequality cn CP

k�n ak � P
k�n bk . ut

Euler Characteristic

Theorem E.9. Let G be a cyclic group of prime order p, K a regular G-complex,
and L � K an invariant subcomplex. Then the following equality holds:


.K;L/C .p � 1/
.KG;LG/ D p
.K=G;L=G/:

This in particular implies the congruence


.K;L/ 
 
.KG;LG/ .mod p/:
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Fig. E.1 An illustration of Theorem E.9

An illustration of Theorem E.9 is given by Fig. E.1. In this case, Z3 acts regularly
on the simplicial complexK by rotation about the center vertex by 120ı. The Euler
characteristics of the respective complexes are 
.K/ D 10�12 D �2, 
.KG/ D 1,
and 
.K=G/ D 4 � 4 D 0. And indeed,


.K/C .3 � 1/
.KG/ D 0 D 3
.K=G/:

The following simple proof works for finite simplicial complexes. With some
more effort it can be shown that the theorem holds more generally in the case that
.K;L/ and H�.K;L/ are finite-dimensional; cf. [Bre72].

Proof. Recall that the Euler characteristic may be computed on the chain complex
level, i.e.,


.K;L/ D
X

k�0
.�1/k dimCk.K;L/:

We claim that the equation already holds in each dimension k. Consider an orbitG�
of an n-simplex � 2 K , � 62 L. It contributes 1 to the dimension ofCk.K=G;L=G/,
and therefore .�1/kp to p
.K=G;L=G/.

Now either the orbit consists of p simplices, in which case � 62 KG , or it consists
just of � , in which case � 2 KG . In the first case, the orbit of sigma contributes
p to dimCk.K;L/ and 0 to dimCk.KG;LG/, and in the second case, it contributes 1
to dimCk.K;L/ and 1 to dimCk.KG;LG/. Hence the contribution to the left side
of the equation 
.K;L/C .p� 1/
.KG;LG/ is either .�1/kpC .p� 1/.�1/k0 D
.�1/kp or .�1/k � 1C .p � 1/.�1/k � 1 D .�1/kp. ut
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E.4 Homology Spheres and Disks

Definition E.10. For n � �1, a simplicial complexK is called a mod-p-homology
n-sphere if it has the same mod-p homology as the n-sphere, i.e., H�.KIZp/ Š
H�.SnIZp/.

Theorem E.11. If G is a p-group and K is a regular G-complex that is a mod-p-
homology n-sphere, then the fixed-point complexKG is a mod-p-homology r-sphere
for some �1 � r � n. If p is odd, then n � r is even.

Note that the case in which the fixed-point complex is empty is covered, since the
�1-sphere is the empty space.

Proof. Since the statement is trivial otherwise, we may assume that n � 0. We start
with the special case in which G is a cyclic group of order p. The general case will
then follow by induction. By Theorem E.8 we obtain

1X

kD0
dimHk.K

GIZp/ �
1X

kD0
dimHk.KIZp/ D 2:

According to Theorem E.9, 
.KG/ 
 
.K/ .mod p/. Hence it is impossible thatP1
kD0 dimHk.K

GIZp/ D 1, since then 
.KG/ D ˙1, whereas 
.K/ is either 0
or 2. Therefore

P1
kD0 dimHk.K

GIZp/ is either 0 or 2, proving that KG is indeed
a mod-p-homology r-sphere for some r � �1. The fact that r � n is easy and
relegated to the exercises. Clearly, if p is odd, the congruence 
.KG/ 
 
.K/

.mod p/ implies that n� r is even.
Now let’s assume that G is a group of order pk . We proceed by induction on

k. Since G is a p-group, there exists a normal p-subgroup G0 E G of order pk�1
such that G=G0 is a cyclic group of order p, by Proposition D.8. By the induction
hypothesis, KG0

is a mod-p-homology r-sphere for some �1 � r � n, and if p is
odd, then n � r is even. Now consider the action of G=G0 on KG0

. As we showed
before,KG D .KG0

/G=G
0

is a mod-p-homology r 0-sphere for some �1 � r 0 � r �
n. Moreover, if p is odd, then r�r 0 is even, and hence also n�r 0 D .n�r/C.r�r 0/
is even. ut
Definition E.12. A pair .K;L/ of simplicial complexes is called a mod-p-
homology n-ball if Hk.K;LIZp/ D 0 for k 6D n, andHn.K;LIZp/ Š Zp.

In other words, .K;L/ is a mod-p-homology n-ball if it has the same mod-p
homology as the pair .Bn;Sn/.

Theorem E.13. If G is a p-group and .K;L/ is a regular G-pair that is a mod-p-
homology n-ball, then .KG;LG/ is a mod-p-homology r-ball for some 0 � r � n.
If p is odd, then n � r is even.

Proof. The proof proceeds along the lines of the proof of Theorem E.11, and the
details are left to the exercises. ut
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For the following corollary, recall that a complex K is called mod-p acyclic if all
reduced homology groups with Zp-coefficients vanish.

Corollary E.14. If G is a p-group and K is a regular mod-p-acyclic G-complex,
then the fixed-point complexKG is mod-p acyclic as well.

Proof. Set L D ; and n D 0. ut

E.5 Cyclic Actions and a Result by Oliver

Lemma E.15. Let G be a cyclic group of order n and K a regular G-complex. If
K is Q-acyclic, then 
.KG/ D 1.

Proof. We proceed by induction on n. Assume that n D mpk for some prime factor
p j n, k � 1 and p − m, and that the lemma has been proven for cyclic groups
of order m. Let G be multiplicatively generated by the element g. We consider the
subgroups H D hgpk i of order m, H 0 D hgmi of order pk , and H 00 D hgmpi of
order pk�1. Now set L D KH=H 00. Then the cyclic group H 0=H 00 of order p acts
onL via Œh�H 00x D H 00.hx/, which is well defined since any two representatives of
an element ofH 0=H 00 differ only by an element of H 00. The fixed-point complex of
this action turns out to be

LH
0=H 00 D .KH=H 00/H 0=H 00 D KG;

and the quotient L=.H 0=H 00/ D .KH=H 00/=.H 0=H 00/ can be identified with
KH=H 0 via

.H 0=H 00/H 00v 7�! H 0v:

The Euler characteristic formula from Theorem E.9 yields


.L/C .p � 1/
.LH 0=H 00

/ D p
.L=.H 0=H 00//:

In other words,


.KG/ D 1

p � 1
�
p
.KH=H 0/� 
.KH=H 00/

�
:

Note that since p − m, we have KH=H 0 D .K=H 0/H and KH=H 00 D .K=H 00/H .
In order to use the induction hypothesis for the action of H , we have to check
that K=H 0 and K=H 00 are Q-acyclic. But this follows directly from the transfer
isomorphism

�� W H�.K=� IQ/ Š��! H�.KIQ/�
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for � D H 0, respectively � D H 00. So by the induction hypothesis,

..K=H 0/H / D 1 and 
..K=H 00/H / D 1. It follows that


.KG/ D 1

p � 1.p � 1/ D 1: ut

We are finally able to prove the main result.

Theorem E.16. Let G be a finite group with a normal subgroup H C G of order
pk for some prime p and k � 1, so that G=H is a cyclic group. If K is a mod-p-
acyclic complex with regularG-action, then for the fixed-point complex, 
.KG/D1.

Proof. By Corollary E.14, KH is mod-p acyclic. By the universal coefficient
theorem (see [Bre93]),

0 ! Hk.K
H IZ/˝ F ! Hk.K

H IF / ! Hk�1.KH IZ/ 	 F ! 0

for F D Zp, we obtain that the homologyH�.KH IZ/ has no free summands except
in dimension 0. Then, for F D Q, we obtain that KH is also Q-acyclic. Hence, by
Lemma E.15, we obtain that 
.KG/ D 
..KH/G=H / D 1. ut

Exercises

1. Show that for 0 � i � p � 1,

.�1/i
 
p � 1
i

!


 1 .mod p/:

2. Show that the kernel of the homomorphism � W C�.K;LIZp/ ! C�.K;LIZp/
coincides with the kernel of the composition

C�.K;LIZp/ j��! C�.K;KG [LIZp/ 	��! C�.K=G;KG [ L=GIZp/:

3. In the proof of Theorem E.11, provide the details for the fact that r � n.
4. Provide a proof of Theorem E.13.
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Symbols
2-cell embedding, 172

A
abelian group, 209
accumulation point, 165
action of a group, 210
acyclic, 187
adjacent, 146
affine Radon theorem, 97, 142
affine simplex, 174
affine span, 174
affinely independent, 174
Alexander dual, 102
almost-alternating simplex, 16
alternating simplex, 16
antichain, 206
antipodally symmetric triangulation, 14
associated abstract complex, 176
attaching a handle to a surface, 139
axiom of choice, 166

B
ball
n-dimensional, 2, 165

barycenter, 180
barycentric coordinates, 174
barycentric subdivision, 179
Berlin, 37
Bier sphere, 103
bipartite graph, 150
Boolean poset, 199
Borsuk–Ulam property, 27
Borsuk–Ulam theorem, 12
boundary, 165, 184

boundary operator, 111, 183
bounded poset, 200
Brook’s theorem, 153
Brouwer’s theorem, 2

C
carrier, 192
category, 181
center of a group, 210
centralizer, 213
chain, 200
chain complex, 189
chain complex, 183
chain group, 111, 188
chain map, 183
chromatic number, 152
class equation, 213
clique, 149
clique number, 153
closed set, 164
closure, 165
Cn, 147
coarser topology, 164
coboundary, 111
coboundary operator, 111
cochain

symmetric, 111
coefficient group, 187
collapsible simplicial complex, 85
combinatorial Alexander dual,

102
compact space, 169
complement of a graph, 147
complementary edge, 14
complete bipartite graph, 147
complete graph, 147, 149
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complexity
of a graph property, 73
of a set system, 84

conjecture
continuous Tverberg, 106
Karp, 83
Kneser, 39
Lovász, 59
thrackle, 126

conjugacy action, 213
conjugacy class, 213
connected component of a graph, 151
connected graph, 151
connected topological space, 170
connectivity of a space, 170
consensus 1

2
-division theorem, 22

continuous map, 165
continuous necklace theorem, 30
continuous probability measure, 8
continuous Radon theorem, 98, 101
continuous Tverberg conjecture, 106
contractible space, 171
contraction, 171
covering, 169
cross polytope, 14
cross graph, 124
cross polytope, 169
cycle, 147, 149, 184
cyclic group, 210

D
decision-tree algorithm, 71
degree of a vertex, 146
deleted join, 99, 100
q-fold, 107
twofold, 99

deleted product, 110
deletion of a vertex, 87
dimension

of a geometric complex, 175
of a geometric simplex, 175
of an abstract simplex, 176
of an abstract complex, 176

discrete topology, 163
discrete necklace problem, 35
Dold’s theorem, 35
drawing of a graph, 154

E
eight graph, 126
elementary collapse, 85
embedding, 165

ENG, 24
envy-free fair division, 8
equivariant simplicial approximation theorem,

217
Euler characteristic, 193

of an orientable surface, 173
Euler formula, 155
Euler–Poincaré theorem, 174, 193
evasive

graph property, 74
set system, 84

even map, 62
exact sequence, 184

F
face

of a geometric complex, 175
of a plane graph, 155
of an abstract simplex, 176
of an affine simplex, 174

face of a 2-cell embedding, 172
face poset, 199
facet

of an abstract complex, 176
of a geometric complex, 175
of an abstract simplex, 176
of an affine simplex, 174

fair division, 8
envy-free, 8

Fáry’s theorem, 156
finer topology, 164
finite simple graph, 145
fixed-point set, 212
forest, 152
four color theorem, 37
free

G-space, 214
group action, 213

free face, 85
free G-complex, 215
functor, 182
fundamental theorem of algebra,

31

G
G-action

regular, 215
G-acyclic, 187
G-complex, 215

regular, 215
G-space, 214

free, 214
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Gale’s lemma, 67
generalized thrackle, 132
generalized thrackle drawing, 132
generalized thrackleable graph, 132
genus of an orientable surface, 173
geometric boundary, 174
geometric realization, 177

of a Hom-complex, 52
gluing of spaces, 168
graded group, 183
graph, 145

automorphism, 161
bipartite, 150
chromatic number, 152
clique number, 153
complement, 147
complete, 147, 149
complete bipartite, 147
connected, 151
connected component, 151
drawing, 154
eight, 126
finite simple, 145
forest, 152
homomorphism, 149
independence number, 153
isomorphism, 149
Kneser, 38
leaf, 152
maximal planar, 156
minor, 157
Mycielski, 64
path, 151
planar, 154
probabilistic method, 150
product, 150
property, 70
regular, 153
scorpion, 78
subdivision, 157
topological minor, 157
tree, 152
union, 151
walk, 152
with loops, 148

graph property
complexity, 73
evasive, 74
monotone, 82
trivial, 74

greedy strategy, 74
group, 209

cyclic, 210
symmetric, 209

group action, 210
transitive, 90, 212
trivial, 211

group homomorphism, 210
group order, 210

H
ham sandwich theorem, 32
Hanani–Tutte theorem, 120
Hasse diagram, 199
Hausdorff space, 164
higher connectivity, 170
homeomorphic spaces, 165
homeomorphism, 165
homology, 184
homology ball, 226
homology sphere, 226
homology theory, 186
homomorphism, 210
homotopic

maps, 171
poset maps, 202

homotopy, 171
equivalence, 171, 202
type, 171

Hopf trace formula, 193

I
incident, 146
independence number, 153
independent, 146, 149
index of a subgroup, 210
induced subgraph, 149
interior, 165
interval, 200

J
join

deleted, 99, 100
of simplices, 181
of simplicial complexes, 181
of topological spaces, 169

join of topological spaces, 169
Jordan curve theorem, 155
Jordan–Schönflies theorem, 155

K
k-connected topological space, 170
Karp’s conjecture, 83
kernel, 210
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Klein bottle, 167, 173
Km;n, 147
Kn, 147
Kneser conjecture, 39
Kneser graph, 38
Kuratowski’s theorem, 157
Ky Fan theorem, 16, 20

L
leaf of a tree, 152
Lebesgue number, 196
Lefshetz–Hopf fixed-point theorem, 194
lemma

Gale, 67
Sperner, 3
Tucker, 14

lexicographic order, 201
lexicographic shelling order, 204
linear poset, 200
linear extension, 206
linear order, 200
link of a vertex, 87
locally homeomorphic, 172
long exact sequence of a triple, 197
long exact sequence, 185
loop in a graph, 148
Lovász complex, 45
Lovász’s conjecture, 59
Lovász’s theorem, 39

M
Möbius strip, 172
maximal chain, 200
maximal planar graph, 156
metric, 164
metric space, 164
minor of a graph, 157
mod-p-homology

ball, 226
sphere, 226

moment curve, 177
monotone graph property, 82
morphism, 181
multigraph, 148
multihomomorphism, 52
Mycielski graph, 64

N
.n�1/-dimensional sphere, 6
natural, 183
n-dimensional ball, 2

necklace theorem, 30
neighborhood, 164
neighborhood complex, 41
norm, 219
normal subgroup, 210

O
object, 181
obstruction class, 117
odd map, 62
open set, 163
orbit, 212

space, 214
order

of a group, 210
of an element, 210

order complex, 201
orientable surface, 172
orientation, 173

P
p-group, 210
pair of simplicial complexes, 176
pair of topological spaces, 166
partially ordered set, 199
path, 147, 151
path in a topological space, 170
path-connected component, 170
path-connected space, 170
peg problem, 142
planar graph, 154
plane

projective, 173
Pn, 147
polyhedron, 175
polytope

cross, 14
poset, 199
poset map, 200
pretzel surface, 173
prime-power Tverberg theorem, 107
probabilistic method, 150
probability measure

continuous, 8
problem

discrete necklace, 35
product

deleted, 110
of graphs, 150
of posets, 201
of topological spaces, 166

projective plane, 173
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pure complex, 175, 176
pure poset, 200

Q
q-fold deleted join, 107
quotient

complex, 216
map, 167
topology, 167

quotient group, 210

R
Radon theorem

affine, 97
continuous, 98, 101

rank function, 200
rectangle peg problem, 142
reduced homology, 187
regular G-action, 215
regular G-complex, 215
regular graph, 153
rental harmony problem, 32
retract, 171
rotation, 157

system, 157

S
scorpion graph, 78
Scorpius, 69
seeker strategy, 71
set sum, 166
shellable poset, 203
shelling

poset, 203
topological, 178

shore of a bipartite graph, 150
short exact sequence, 185
Sierksma configuration, 106
simple graph, 145
simplex, 176

affine, 174
simplicial approximation, 192
simplicial approximation theorem, 192
simplicial complex

collapsible, 85
dimension, 175
finite geometric, 175
vertex set, 175, 176

simplicial group action, 215
simplicial homology, 188
simplicial map, 176

simply connected, 170
Smith sequence, 222
Smith special homology group, 222
spanning tree, 152
spanning subgraph, 152
Sperner

labeling, 2
lemma, 3

sphere
.n�1/-dimensional, 6, 165
Bier, 103

stabilizer subgroup, 213
stage of a game, 71
standard n-simplex, 174
standard drawing, 114
strong deformation retract, 171
subcomplex, 176
subcover, 169
subdivision of a graph, 157
subdivision of a simplicial complex, 176
subgraph, 149

induced, 149
subgroup, 210
subposet, 199
subspace, 166

topology, 166
sum of topological spaces, 166
sum of sets, 166
surface, 172

attaching a handle, 139
symmetric cochain, 111
symmetric group, 209

T
theorem

affine Radon, 97, 142
Borsuk–Ulam, 12
Brouwer, 2
consensus 1

2
-division, 22

continuous necklace, 30
continuous Radon, 98, 101
Dold, 35
envy-free division, 11
equivariant simplicial approximation, 217
Euler–Poincaré, 174, 193
four color, 37
fundamental algebra, 31
ham sandwich, 32
Hanani–Tutte, 120
Lefshetz–Hopf fixed-point, 194
Lovász, 39
necklace, 30
simplicial approximation, 192
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theorem (cont.)
strong Ky Fan, 20
Tverberg, 107
Tychonoff, 169
van Kampen–Flores, 104
weak Ky Fan, 16
Woodall, 127

thrackle, 122
drawing, 122
generalized, 132

thrackle conjecture, 126
thrackleable graph, 122
topological shelling, 178
topological minor of a graph, 157
topological space, 163

Hausdorff, 164
topological sum, 166
topology, 163

coarsest, 164
discrete, 163
finest, 164

torus, 167
transfer homomorphism, 220
transitive group action, 90, 212
transversality condition, 124
tree, 152

leaf, 152
triangulation, 176
trivial graph property, 74
trivial group action, 211
Tucker lemma, 14

Tverberg
conjecture, 106
theorem, 107

twofold deleted join, 99
Tychonoff theorem, 169

U
union of graphs, 151
universal coefficient theorem, 228

V
van Kampen–Flores theorem, 104
Vandermonde determinant, 177, 197
vertex

of an abstract simplex, 176
of an affine simplex, 174

vertex set of a simplicial complex,
175, 176

W
walk, 152
wedge of spaces, 168
Woodall’s theorem, 127

Z
Z2-coindex, 59
Z2-index, 59, 99
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