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Preface 

One ofthe most important aspects in research fields where mathematics is "applied is the 
construction of a formal model of a real system. As for structural relations, graphs have 
turned out to provide the most appropriate tool for setting up the mathematical model. 
This is certainly one of the reasons for the rapid expansion in graph theory during the 
last decades. Furthermore, in recent years it also became clear that the two disciplines of 
graph theory and computer science have very much in common, and that each one has 
been capable of assisting significantly in the development of the other. On one hand, 
graph theorists have found that many of their problems can be solved by the use of com
puting techniques, and on the other hand, computer scientists have realized that many of 
their concepts, with which they have to deal, may be conveniently expressed in the lan
guage of graph theory, and that standard results in graph theory are often very relevant to 
the solution of problems concerning them. As a consequence, a tremendous number of 
publications has appeared, dealing with graphtheoretical problems from a computational 
point of view or treating computational problems using graph theoretical concepts. Due 
to these facts, graph theory and computer science have become so strongly connected 
that it seems no overstatement to say that in our days a good deal of modern graph 
theory is part of computer science or, on the other hand again, to say that computer 
science is at least partially based on graph theory. 

The purpose ofthis supplementary volume is to draw attention to problems and applica
tions which represent the strong connection between the two disciplines. It contains a 
collection of invited papers, each devoted to a particular class of graphtheoretical prob
lems and their solution by computational techniques. Although the papers are all 
written on an expert and not on a teaching level they are supposed to be suitable for a 
first contact with the contents. The collected papers cover a broad spectrum of graph
theoretical topics. Techniques for hard graph problems, problems on planar graphs, path 
problems, coloring problems, graphs and orders and several other topics are discussed, as 
well as computational aspects like data structures, the probabilistic behaviour of algo
rithms, the design and analysis of parallel algorithms and VLSI-structures. No claim for 
completeness is made, however, we believe that the collection is representative in the 
sense that all the main topics of "computational graph theory" are included. 

February 1990 The Editors 
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Efficient Computations in Tree-Like Graphs 

Andrzej Proskurowski*, Eugene, Oregon, and Madej M. Syslot, Berlin 

AlJstrac:t - Zusammerfassung 

Efficient Computations in Tree-Like Gupbs. Many discrete optimization problems are both very difficult 
and important in a range of applications in engineering, computer science and operations research. In 
recent years, a generally accepted measure of a problem's difficulty became a worst-case, asymptotic 
growth complexity characterization. Because of the anticipated at least exponential complexity of any 
solution algorithm for members in the class of .K9'-hard problems, restricted domains of problems' 
instances are being studied, with hopes that some such modified problems would admit efficient 
(polynomially bounded) solution algorithms. We survey investigations of the complexity behavior of 
.K9'-hard discrete optimization problems on graphs restricted to different genera1izations of trees 
(cycle-free, connected graphs.) The scope of this survey includes definitions and algorithmic charac
terization of families of graphs with tree-like structures that may guide the development of efficient 
solution algorithms for difficult optimization problems and the development of such solution algorithms. 

AMS Subject Classifications: 05C; 68B, C, E, F; 9OB, C. 

Key words: tree-like graphs, decomposable graphs, k-trees, tree-width 

Efftziente Algorithmen fiir Guphen mit Banm-iiImIicbeo Graphen. Viele diskrete Optimierungsprobleme 
sind einerseits schwer zu lasen, haben andererseits aber viele Anwendungen in den Ingenieurwissen
scharten, in der Informatik oder in Operations Research. Ein allgemein akzeptiertes MaB fUr die 
Schwierigkeit eines Problems ist die asymptotische worst-case Komplexitiit. Fiir NP-schwere Probleme 
ergibt sich danach fUr jeden Algorithmus eine exponentielle Laufzeit. Schrankt man sich jedoch auf 
Tell-klassen der zugrunde liegenden Strukturen ein, so lassen diese oft effiziente (polynomial beschrankte) 
Algorithmen zu. Wir geben einen Oberblick iiber die Komplexitiit NP-schwerer Probleme auf Graphen 
mit verallgemeinerter Baumstruktur (z.B. zykelfrei, zusammenhiingend). Es werden Definitionen und 
algorithmische Charakterisierungen von Familien solcher Graphen gegeben, die bei der Entwicklung 
von effizienten Uisungsalgorithmen hilfreich sein kannen. 

1. Motivation 

The framework in which we are interested in tree-like graphs consists of finding 
restricted classes of graphs for which many generally difficult decision and optimiza
tion problems are efficiently solvable (in the worst case). These graphs often exhibit 
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the Institute of Informatics, University of Warsaw and by a grant from the Alexander von Humboldt
Stiftung. 
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some decomposability properties. Our own research has concentrated recently 
on algorithmic aspects of graph representations of orders and on partial k
trees, also known as graphs with tree-width k. Those graphs are all partial sub
graphs of chordal graphs with the maximum clique size bounded by k. We will 
discuss alternative views of these and other families of graphs, classes of prob
lems efficiently solvable on these graphs, and the relevant algorithm design 
paradigms. 

Application domain problems often translate into optimization problems on the 
graphs representing the application; these combinatorial problems are often very 
difficult. A measure of complexity of a combinatorial problem is the worst-case, 
asymptotic behavior of the time to compute a solution as a function ofthe problem 
size. A class of problems notorious for their difficulty is that of .¥{J)-complete 
problems. 

Let us first state our vocabulary for discussing discrete optimization problems defined 
on combinatorial graphs. A (combinatorial) graph G = (V, E) consists of the set Vof 
vertices and the set E of edges, each edge incident with its two end-vertices (which 
are thus adjacent). A subgraph of a given graph G = (V, E) induced by a subset of 
vertices V' c: V consists of all edges from E that are not adjacent to any vertex from 
V - V'. A partial subgraph on the same set of vertices involves a subset of edges. A 
sequence of different vertices va' Vi' ... , Vn such that Vi-i and Vi (0 < i :::;; n) are 
adjacent is called a path oflength n; if Vo and Vn are identical (n ~ 2), we have a cycle. 
A graph with n vertices and edges between all pairs of distinct vertices is called 
complete and denoted by Kn. A graph in which there exists a path between any two 
of its vertices is said to be connected; a set S c: V such that the subgraph of a graph 
G = (V, E) induced by V - S is not connected is called a separator of G. A tree is a 
connected graph without any cycles (it is easy to see that any minimal separator in 
a tree consists of exactly one vertex). 

2. Definitions of Some Tree-Like Graphs 

We first present definitions of several classes of graphs by their generative descrip
tions. Often they also have analytical descriptions based on a process of decomposi
tion. Such a description gives a parse tree in which each node corresponds to a 
subgraph of the original graph. 

2.1. Generative Definitions of Classes of Graphs 

Many families of graphs admiting recursive descriptions that invoke some kind of 
decomposability can be described by their iterative construction, often expressible 
by a recursive (hierarchical) construction rules as well. The former consists of 
primitive graphs and composition rules, the latter takes often a formal linguistic 
form. 
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The grammatical approach to defining families of graphs is exemplified by context
free hyper edge replacement grammars [76], [41], [39], [40], [49], [50], [51]. A 
grammar consists of a finite set of non-terminal labels N with a distinguished start 
label SEN and a finite set of rules, each having the left-hand side, a hyperedge with 
a label a E N, and the right-hand side, a labeled hypergraph H. During an application 
of the rille, a hyperedge labeled a is replaced by the hypergraph H in such a way 
that some distinguished nodes of H ('terminals', 'sources') are identified with the 
corresponding nodes of the replaced hyperedge. The right-hand side of a terminal 
rule has only unlabeled two-edges, so that the language of such grammar contains 
only combinatorial graphs. Below, we list some other formalisms following this 
approach in defining tree-like classes of graphs. 

k-trees are defined recursively as either Kk+l' the completely connected graph on 
k + 1 vertices, or two k-trees 'glued' along Kk subgraphs. Iterative definition 
includes Kk+1 as the primitive graph and defines an n + 1-vertex k-tree (n > k) 
as an n-vertex k-tree T augmented by an extra vertex adjacent to all vertices of 
a Kk subgraph of T (see [11]). 

hook-up graphs generalize k-trees by allowing any base graph A and any subgraph 
B ofa Hook-up (A, B) graph to which a new vertex is made adjacent. (Thus, k-trees 
are Hook-up (Kk+1,Kd graphs, see [47].) 

k-terminal graphs are closed with' respect to a finite number of composition opera
tions, where two graphs G1 and G2 with terminal label sets {1. .. k} each are 
composed either by identifying terminals in G1 and G2 that induce isomorphic 
subgraphs, or by adding edges between terminals in G1 and terminals in G2 . The 
composition is completed by determination ofterminal vertices in the new graph. 
A k-terminal family contains also basis graphs with all vertices terminal [82], 
[83], [84]. 

k-terminal recursive family involves recursive operations on graphs with at most k 
terminal vertices labeled 1 ... 1 TI. An operation is determined by a connection 
matrix that indicates which of the input graphs' terminal vertices are identified 
to create a vertex of the resulting graph; some of these vertices are labeled 
terminals of the new graph. There is also a set of k-terminal base graphs with no 
non-terminal vertices, and a set (,{ operations [18]. 

Any graph family defined by a context-free hyperedge replacement grammar (or an 
equivalent formalism) has bounded tree-width. For any given k, there is a context
free hyperedge replacement grarr.mar generating all partial k-trees. Specifically, such 
a grammar would have N = {a}, the only label of a hyperedge with k vertices and 
the replacement rule set that consists of (terminal) rules substituting each of the 
2m edge combinations for the hyperedge and of the rule replacing such a hyper
edge with a hypergraph consisting of k + 1 hyperedges spanned on k + 1 vertices 
(including the k original vertices). Similarly, all graphs generated by any k-terminal 
recursive family of graphs have bounded tree-width. It is also possible to generate 
all partial k-trees using that formalism but we will not show it here for the large size 
of rules. Actually, the formalisms of hyperedge replacement and that of k-terminal 
recursive family are equivalent. 
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2.2. Decomposability 

2.2.1. Undirected Graphs 

k-trees are alternatively defined as connected graphs with no Kk+2 subgraphs and 
with all minimal separators inducing Kk [68]. This property ofthe existence of small 
(constantly bounded) separators is inherited by their subgraphs, partial k-trees. 
Namely, partial subgraphs of k-trees are exactly the k-decomposable graphs: a graph 
G is k-decomposable if and only if it either has at most k + 1 vertices, or has a 
separator S with at most k vertices (G - S has m ~ 2 connected components Cl , 

C2 , ••• , Cm) such that each graph Gi obtained from the component Ci (1 ::;; i ::;; m) 
extended by S with its vertices completely connected is k-decomposable (Arnborg 
and Proskurowski [5]). This motivates a closer look at partial k-trees, their recogni
tion and embedding algorithms, as well as efficient algorithms solving .!V&'-hard 
optimization problems restricted to partial k-trees (for fixed k). 

The tree-width of a graph G ([67]) is defined as one less than the maximum size of 
vertex sets Vi' V2 , •.• , Vm into which one can pack vertices of G (one vertex belonging 
possibly to more than one set) such that 

• Vi U ... U Vm = V(G), 
• edges are only between vertices in the same sets, 
• G is representable by a tree T which has 11; as nodes and, for 11;, J.j, Vi E V(T), if 

there is a path in T between 11; and Vi containing J.j then 11; (") Vi £; J.j. 

It is not too difficult to see that partial k-trees are exactly graphs with tree-width k 
(assuming that the definition calls for the minimum value of the parameter k): In 
one direction, given a partial k-tree, take an embedding k-tree and its (k + I)-cliques 
as 1I;'s. In the other direction, since 1I;'s intersect on at most k vertices, complete 
each 11; by adding edges between all pairs of its vertices, and then increase the cliques' 
sizes to k + 1 by adding edges between some vertices of neighboring cliques. 

Bya similar construction, one can see that graphs generated by the other formalisms 
mentioned above have bounded tree-width, as well. 

Hochberg and Reischuk, [43], define (k,,u)-decomposable graphs for which any 
decomposition into k-connected components yields ,u as the maximum size of a 
component. It is again easy to see that these graphs have constantly bounded 
tree-width. 

Lauteman [49,50] defines s-decomposition trees similarly to the parse trees of the 
above k-terminal graphs. He gives a finite set of rewrite rules, where left-hand-side 
graphs have distinguished terminal vertices to be identified with the corresponding 
terminal vertices of the right-hand-side graphs. The constant bound s is equal to 
the maximal size of the right-hand-side graphs of the rewrite rules. 

2.2.2. Directed decomposable graphs 

In the past decade, there has been very active research in the area of a general theory 
of set decomposition and in particular directed graph (digraph) decomposition. 
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Cunningham and Edmonds, [29], discuss general decomposition of sets, followed 
by [2S] who discusses digraph decomposition. A composition of two diagraphs Gl 

and G2 is defined as the digraph with the vertex set equal to union of their vertices 
(with the exception of a special vertex v repeated in both). The arcs of the resulting 
digraph reflect transitivity of arcs through v (i.e., (U1o U2) E E if and only if 
«u1o v) E El /\ (v, U2) E E2) v «U1o v) E E2 /\ (v, U2) EEl). Each strongly connected 
digraph has a unique minimal decomposition into components that can be 'prime' 
(non-decomposable), 'brittle' (every partition is a split), or 'semi-brittle' (circular 
splits). Furthermore, the decomposition of semibrittle digraphs can proceed into 
distars and 'circles of transitive tournaments'. 

A special case of the composition operation is the substitution, when G2 = vG; is a 
pointed graph, with vertex v adjacent to all the remaining vertices of G2. Graphs 
obtained by substitution can be described using the notion of autonomous sets: A 
subgraph G2 of G is autonomous if and only if for every vertex u in V( G) - V( G2 ) 

either "Iv E V(G2): (u, v) E E(G) or "Iv E V(G2): (u, v) ¢ E(G). This treatment allows to 
include in the consideration graphs with disconnected components. There is also a 
unique decomposition theorem for autonomous sets: Each graph has the composi
tion tree whose nodes are blocks of partitions into autonomous sets of the graph, 
each denoted by D (degenerate, disconnected, 'parallel'), C (complete, 'series'), or P 
(prime, decomposable arbitrarily into C and D components). Fast algorithms for 
finding decomposition of directed graphs into such subgraphs are presented in [19]. 

Decomposition often allows efficient solution algorithms for some discrete op
timization problems. However, the range of those problems is severely limited in 
the split case requiring strong connectivity. Decomposition by substitution allows 
using the divide and conquer algorithms parallelling a natural factorization of 
objective functions in many discrete optimization problems. An excellent survey is 
given in [62]. A subsequent work ([42]) treat problems on posets and uses decom
position with prime elements of bounded size. 

2.3. Other Combinatorial Structures with Parse Trees 

Chordal graphs can be defined by a similar recursive construction (or decomposi
tion) description as the graph families from section 2.1: Starting with a single vertex, 
any chordal graph (and only such graphs) can be constructed by adding a new vertex 
adjacent to all vertices of any complete subgraph of a chordal graph ([30, [36], 
[75]). Here, the generic definition of an infinite set of primitive graphs (Kk for any 
value of k) makes the major difference. Nevertheless, chordal graphs can be repre
sented by their parse trees (clique trees) with help of which some algorithmic 
problems can be solved efficiently. Chordal graphs constitute an example of graphs 
decomposable by clique separators, however of unbounded size ([37, SO]). 

Chordal graphs can be interpreted as intersection graphs of subtrees in trees, see 
for instance Golumbic [3S]. An important subfamily of chordal graphs consists of 
interval graphs, the intersection graphs of intervals of a line. On the other hand, a 
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class of intersection graphs not properly contined in chordal graphs is the class of 
circular-arc graphs, the intersection graphs of intervals of a circle. 

The existence of the unique parse tree (corresponding to the constructive definition 
of this class of graphs) contributes to the design of many efficient algorithms for 
complement reducible graphs. These are the graphs that can be reduced to single 
vertices by recursively complementing all connected subgraphs (Comeil et al. [23]). 

3. Complexity of Parsing of Tree-Like Grapbs 

The problem of recognition and embedding of a partial k-tree for a fixed value of 
k is polynomially solvable, see Amborg, Comeil and Proskurowski [2]. The al
gorithm recognizing a partial k-tree with n vertices has complexity lD(nk+2); any 
lower bounds result on the complexity of the problem might help to explain 
difficulties with finding a system of confluent rewrite rules recognizing partial k-trees 
for k > 3. A related-and very important from the applications point of view
problem is that of fmding the minimum value of k for which a given graph is 
k-decomposable (or, equivalently, is a partial k-tree). This problem is %&'-hard, as 
shown by Amborg et al. [2]. 

Any sequence of applications of rewrite rules that reduce a given partial 2-tree to 
the empty graph determines also an embedding of the graph in a full 2-tree. This is 
so, because the reduction 'reverses' a feasible generation process of the full 2-tree. 
An application of a reduction rule can be thought of as 'pruning' of a 2-leaf (vertex 
of degree 2) which is deleted, leaving as a trace an edge connecting its two neighbors. 
A similar pruning of 3-leaves (completion of a triangle spanned on neighbors of a 
vertex of degree 3, in a 'star-triangle substitution' process) in recognition of partial 
3-trees must be done with care, since not all vertices of degree 3 in a partial 3-tree 
can be 3-leaves of an embedding in a full 3-tree, and an indiscriminate pruning may 
lead to irreducible graphs (Amborg and Proskurowski [8]). 

The system of confluent rewrite rules reducing any partial 3-tree (and only a graph 
from this class) to the empty graph allows for a linear recognition of a partial3-tree 
and construction of its embedding in a full 3-tree (Matousek and Thomas [57]). 
One could describe those rules reduc;iJ:tg vertices of degree 3 as based on a combina
tion of , strength' of their Reighborhood (existing edges between their neighbors), and 
of 'relation' to other vertices of degree 3 (the nature of shared neighborhoods with 
those vertices). The rewrite rules are given in Amborg and Proskurowski [8]. Thus, 
one could suspect that for a safe reduction of vertex v of degree k in a partial k-tree 
G, there seems to be required certain trade-off between the amount of mutual 
connection among the k neighbors of v, the number of other vertices of degree k 
sharing their neighborhood with v, and the strength of this sharing. For some 
general rules see Amborg and Proskurowski [6]. 

Attempts to generalize this approach to higher values of k have not brought any 
success, so far. A reason might be that while the two abovementioned rules of thumb 
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are straightforward enough for k = 3 the sheer number of combinations to consider 
for k > 3 is difficult to handle. Another reason might be that such a complete system 
of confluent rewrite rules does not exist for higher values of k. 

4. Problems with Efficient Solution Algorithms on Tree-Like Graphs 

Discrete optimization problems that do not involve counting and that are defined 
on graphs, can be viewed simply as graph properties that a given graph has or does 
not have. Typical examples are 2-colorability ('Is a given graph 2-colorable?') and 
Hamiltonicity ('Does a given graph have a Hamilton cycle?'). These properties can 
be expressed as well-formed formulea in some formalism utilizing variable symbols, 
relational symbols (over some domains), logical connectives, and quantifiers. De
pending on the restrictions on the use of these symbols, one defines languages of 
varying descriptive power. For instance, one could restrict relations to a single 
domain or use many-sorted structures, allow only existential quantification, restrict 
the domains of quantifiers, and so on. It is important to find formalisms that balance 
their power of expression and the ease of analysis (the complexity of property 
recognition). 

In [24], Courcelle presents an excellent survey of the interaction between logic 
languages and graph properties, defining and analyzing the power of First Order 
Logic, Second Order Logic, Monadic Second Order Logic, and their extensions. 

First Order Logic: The domain: graph elements (vertices and edges). 
Basic relations: V(x), E(x), R(x,y,z) denoting vertex set, edge set, and edge with 
incident vertices, respectively. 
Quantification: over domain variables. 
Examples: A given graph labeling is a proper coloration. All vertices have degree 
bounded by a given integer. 

Second Order Logic: Variables: graph elements, relations over graph elements. 
Quantification: over binary relation variables (and, consequently, over relational 
variables of any arity). 
Example: Two given graphs are isomorphic. 

Monadic Second Order ~c: Restriction: relational variables denoting sets only 
(relations on one variable). 
Examples: A given graph is Hamiltonian. A given graph is m-colorable. 

Although First Order Logic is a rather weak formalism as far as the expressive 
power is concerned, it is in general undecidable whether a general graph has a 
property described in this language. Thus, an interesting avenue of investigations 
is to consider the status of problems defined in these formalisms but restricted to 
some narrower classes of graphs. For instance, when applied to context-free hyper
edge replacement graphs, even Monadic Second Order Logic (MSOL) is decidable. 
When the class of graphs is restricted to confluent Node Label Controled graphs, 
(NLC [70]), Monadic Second Order Logic with quantification only over vertex sets 
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(MSOL,,) is decidable. Thus, it makes sense to inquire about the computational 
complexity of such problems on those graphs. An important connection between 
investigations of decidability of logical theories and the tree-like graphs is estab
lished by the following statement: 'For a property described by a Monadic Second 
Order Logic expression, one can decide in polynomial time whether a given partial 
k-tree has this property.' ([27], [3].) Similarly, if the property is expressed in MSOL" 
and the graph belongs to the class of confluent NLC languages, then there exist 
efficient decision algorithms, as well. 

To be able to deal with discrete problems optimizing over some objective functions, 
the MSOL formalism has been extended by Courcelle [26] and by Amborg et al. 
[3] allowing counting set cardinalities, and evaluating sums of functions of sets, 
respectively. Thus, the properties in the above statement have to be extended to 
those described by CMSOL and EMSOL expression, respectively. 

The importance of the bounded tree-width is shown by the following theorem of 
Seese [73]: Any class of graphs that has a decidable MSOL property has bounded 
tree-width. 

Amborg et al. [3] present a detailed description of applications of MSOL to partial 
k-trees. The authors' main result is the efficient solvability of a number of problems 
%&'-hard for general graphs. They prove it constructively by reducing decidability 
of an EMSOL property for a partial k-tree G to the problem of deciding the 
corresponding, linearly definable property of a binary tree representing parsing of 
G (its 'tree decomposition'). For the latter problem, they construct a tree automaton 
that computes a solution in linear time. This tree automaton is found using results 
about Decision Problems in SOL, obtained in the 1960's (Doner [31], Thatcher and 
Wright [81]). Since the transformation itself (the derived property) is linear and the 
parse tree is assumed to be given with the input graph, a linear time solution 
algorithm for the original problem is obtained. 

An interesting exception to the spirit ofthe recent results on efficient algorithms for 
problems on partial k-trees is the polynomial-time algorithm for the graph iso
morphism problem (Bodlaender [16]), since that problem is not expressible by the 
proposed extensions to MSOL. 

We should mention other recent attempts to characterize problems solvable effi
ciently on partial k-trees, notably Bodlaender's [17] and ScheIDer's [71]. Each of 
those authors dermes languages for some 'locally verifiable' properties, extends them 
by conjuctions with some 'non-local' statements (designed mainly to deal with the 
notion of connectivity), and designs a paradigm for constructing a solution al
gorithm for a given property and a given bound k on the tree-width of the problem 
instance. 

ScheIDer [71] considers optimization problems that can be described by formulea 
involving predicates expressing properties of a bounded neighborhood of a vertex. 
These are existentially quantified over a fixed set of subgraphs and universally 
quantified over all vertices of a graph. (The author follows the approach introduced 
by Seese [73].) She extends the class of properties by allowing conjunction with 
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connectedness and acyclicity, and presents algorithm paradigms for deciding the 
above properties for a partial k-tree given together with an ordering of vertices 
corresponding to a perfect elimination of an embedding chordal graph. These 
algorithms use the given ordering of vertices and combine the properties of indi
vidual vertices (expressed by values ofthe objective function) into the global answer. 
Assuming an additive objective function, the corresponding optimization problem 
is solved following the general dynamic programming strategy. 

The time complexity of these algorithms, while linear in the size of the input graph, 
depends exponentially on the problem (the number of subgraphs defining the 
property) and on the parameter k defining the class of input graphs. 

Borie et al. [18] derme regular properties of graphs based on the existence of a 
homomorphism between members of a given k-terminal, recursive family of graphs 
and some rmite set. These properties are preserved under the homomorphism and 
the integrity of composition operators is maintained. (Their definition follows that 
of Bern et al. [12].) They prove constructively that the recognition, optimization, 
and enumeration of solutions for a given regular property are linearly solvable on 
recursively constructed graph families. 

Monien et al. [60] use the notion of tree-width to investigate completeness for the 
class of languages that are acceptable by non-deterministic auxiliary push-down 
automata in polynomial time and logarithmic space (equal to LOGCF L complexity 
class). They define the tree-width of a conjunctive form of a propositional formula 
as the tree-width of the corresponding hypergraph and show that many algorithms 
reducing 3-SA T with bounded tree-width preserve this bound for the instances of 
problems to which 3-SAT is reduced. This allows them to show these problems to 
be LOGCFL-complete when restricted to instances with tree-width bounded by 
logn. 

5. Algorithm Design Paradigm 

Already 19th century physicists knew that certain difficult problems, hopeless in 
general can be solved in some 'tree-like graphs': the series-parallel reduction com
puting the equivalent resistance of a ladder circuit, or the star-triangle replacement 
in other electrical networks. However, the theory of these operations had to wait 
until 1980's. Slisenko [76] observed that the Hamilton cycle problem can be 
efficiently (in time polynomial in the size of the graph) solved on graphs obtained 
by the context-free replacement of hyperedges by hypergraphs, with terminal re
placements of a hyperedges by edges between some of its vertices. Takamizawa et 
al. [79] developed a methodology for solving many such hard problems (.¥&'-hard) 
in linear time on series-parallel graphs. Intuitively, this 'good' algorithmic behavior 
of partial 2-trees can be explained by their bounded decomposability property that 
follows from a separation property of ('full') 2-trees: every minimal separator con
sists of both end-vertices of an edge. 

The approach taken by Arnborg and Proskurowski in [5] to attack hard discrete 
optimization problems restricted to partial k-trees given with their embedding 
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follows the general dynamic programming strategy. In a k-decomposable graph, 
the decomposability structure (an embedding in a full k-tree) is followed in solving 
pertinent subproblems. Solutions to these subproblems mutually interact only 
through the bounded interface of a minimal separator. Assuming that many in
stances of discrete optimization problems of interest are partial k-trees for relatively 
small values of k (say, about 10), the following algorithm paradigm for solving 
optimization problems on partial k-trees is of practical interest (Amborg and 
Proskurowski [5]): 

Depending on the problem being solved for partial k-tree G, each minimal separator 
S of a full k-tree embedding G is assigned a number of 'states' .. Each such state 
represents constraints on a subproblem of optimization on the graph Gi (cf the 
definition of decomposability), where feasible solutions agree on the subgraph 
induced in G by S. A solution to the problem corresponding to a state of S associates 
with the state the optimal value of the objective function. The algorithm requires 
successive 'pruning' of the k-Ieaves of the embedding k-tree (and of the resulting 
k-trees). In each pruning step, it solves the corresponding subproblems and updates 
the values of states of the corresponding minimal separator. When pruning a k-Ieaf 
v, this state update of the separator S (the remaining neighbors of v) involves com
bination of solutions to k subproblems (represented by the k separators of G 
consisting of v and k - 1 vertices of S). To find a solution to the overall problem, 
the eventual 'root optimization' is necessary, whereby the states of up to k + 1 
minimal separators constituting the definitional K"+1 root of the embedding full 
k-tree are combined to yield the solution. If the problem being solved admits 
constant time pruning steps and a constant time 'root optimization', the resulting 
algorithm is linear in the size of the input graph. (So do for instance, Independent Set, 
Vertex Cover, Chromatic Number, Graph Reliability, cf Amborg and Proskurowski 
[5].) This follows from the fact that the number of states is independent of the size 
of the graph (although it can grow quite rapidly with k), and the number of minimal 
separators to consider is only linear with the size of the graph. It is important to 
realize, that the low order polynomial time complexity of the algorithm is achieved 
when the input consists of a suitable embedding of the given graph in a full k-tree. 
Otherwise, the complexity of the exact optimization algorithm is likely to be 
dominated by the complexity of an embedding algorithm. 

A similar idea of combining states of components of a k-terminal graph according 
to its parse tree has been expressed by Wimer et al. [84] who list a score of families 
of k-terminal graphs and several dozens of problems to which their methodology 
applies. 

Although the approach of [5] was the first attempt to describe efficient algorithms 
on partial k-trees by a common paradigm, it did not address the question of 
mechanical derivation of an efficient algorithm solving a difficult problem on those 
graphs from the problem description. It took several more years for some of those 
problems to be identified. 

The important results of Amborg et al. [3] have been mentioned in the preceding 
section. The efficient algorithm solving a given EMSOL problem is constructed 
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as a tree automaton following the formal description of the corresponding 
property. 

Borie et al. [18] describe an algorithm design paradigm based on their definition 
of k-terminal, recursive family of graphs and of regular properties. Following the 
decomposition tree of the graph in the problem's instance and using the "states" 
indicated by the homomorphism classes (by definition, there is only a fmite number 
of those), the dynamic programming technique is used to compute a solution to the 
problem in linear time. 

6. Graph Minors and Existence of Polynomial Time Algorithms 

Major progress has been made possible by the results of Robertson and Seymour 
[67]. Their results on minor containment gave rise to a new non-constructive tools 
for establishing polynomial-time solvability [67] and a new interest in forbidden 
substructures characterization of classes of graphs [4], [33]. 

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by 
contracting edges (contracting an edge introduces a new vertex replacing the two 
end vertices of the contracted edge and inheriting their adjacencies). Robertson and 
Seymour proved that every class of graphs closed under minor-taking has a finite 
number of minimal forbidden minors (graphs not in the class with all minors belong
ing to the class). Because every such class of graphs has constantly bounded 
tree-width, the membership of a graph in the class can be decided in time growing 
at most with the cube of the graph size, but with astronomical multiplicative 
constants. Similarly, many problems are now known to be decidable in low-degree 
polynomial time, based on the knowledge of the finite set of forbidden minors for 
a given class of graphs. However, but for a very few exceptions, there is no indication 
of how those graphs can be efficiently found, and even if they are known, the 
complexity of solution algorithms exhibit multiplicative constants of astronomical 
magnitude. 

The cla3s of graphs with path-width 2 has been characterized in [33] by 110 minimal 
forbidden minors. The class of partial 3-trees has a small set of minimal forbidden 
minors characterizing it [4]. The completeness of this set was proved using the 
knowledge of a small complete set of confluent reduction rules for this class of 
graphs. For higher values of k, this approach will not yield results as long as such 
rules are not known. 

7. ParaDel computation 

Recent research on parallel algorithms shows that trees are amenable to the com
bination of the dynamic programming techniques (pruning of tree leaves) and the 
standard parallel techniques of contraction of long branches resulting in efficient 
parallel algorithms [58]. This discovery seems to generalize to graphs of tree-like 
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structure, prime example of which are the partial k-trees. Bodlaender [15] uses it 
arguing the existence of poly-log algorithms for partial k-trees. Very recently, first 
efficient parallel algorithms for chordal graphs have been designed (Chandra
sekhran and Iyengar [22], Naor et al. [63], Kleim [48]). Chandrasekhran and 
Hedetniemi [20] describe an efficient parallel algorithm for the partial k-tree 
embedding problem. 
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Ahstract - Zusammerfassung 

Grapb Problems Related to Gate Matrix Layout and PLA Folding. This paper gives a survey on graph 
problems occuring in linear VLSI layout architectures such as gate matrix layout, folding of pro
grammable logic arrays, and Weinberger arrays. These include a variety of mostly independently 
investigated graph problems such as augmentation of a given graph to an interval graph with small 
clique size, node search of graphs, matching problems with side constraints, and other. We discuss 
implications of graph theoretic results for the VLSI layout problems and survey new research directions. 
New results presented include NP-hardness of gate matrix layout on chordal graphs, efficient algorithms 
for trees, cographs, and certain chordal graphs, Lagrangean relaxation and approximation algorithms 
based on on-line interval graph augmentation. 

Key words: linear VLSI layout architectures, gate matrix layout, PLA folding, interval graph augmen
tation, graph search, path width, vertex separation, complexity, approximation algorithms, matching 
with side constraints. 

Grapbentheoretisehe Probleme beim Gate Matrix Layout unci PLA Folding. Der Artikel behandelt 
graphentheoretische Probeme, die bei linearen VLSI-Layout Architekturen wie Gate-Matrix-Layout, 
Programmierbaren Logischen Arrays und Weinberger Arrays auftreten. Zu diesen gehoren u.a. die 
Einbettung von Graphen in Intervallgraphen mit kleiner Cliquengro.Be, Suchspiele auf Graphen, und 
Zuordnungsprobleme mit Nebenbedingungen. Wlr diskutieren Folgerungen aus graphentheoretischen 
Ergebnissen fUr das VLSI Layout und geben eine Obersicht fiber neue Forschungsergebnisse. Hierzu 
gehoren u.a.: die NP-Vollstiindigkeit des Gate-Matrix-Layout auf chordalen Graphen, eftiziente 
Algorithmen fUr Biiume, Cographen sowie gewisse chordale Graphen, Langrange Relaxation und 
approximierende Algorithmen, die auf der On-line Konstruktion von Intervallgrapheinbettungen 
basieren. 

1. Introduction 

We study a class of graph-theoretic problems that arise in certain linear VLSI layout 
problems such as Weinberger arrays, gate matrix layout and PLA-folding. 

The term linear refers to the fact that the most important degrees of freedom in the 
underlying VLSI architecture consist of linear (i.e. one-dimensional) arrangements 
of the relevant physical objects, the gates. 

* Technical University of Berlin, Fachbereich Mathematik, StraBe des 17. Juni 136, 1000 Berlin 12 This 
work was supported by the Deutsche Forschungsgemeinschaft (DFG). 
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In the most general form, an instance of such a linear layout problem consists of a 
m x n 1-0 matrix M = (m(j) (the net-gate matrix), whose rows and columns represent 
the nets N1 , ••• , Nm and the gates G1> •.. , Gn of the circuit, respectively. 

The gates may be thought of as the basic electronic devices that are arranged linearly 
in a row, and the nets as realizing connections between them (details are given in 
Section 2). Net Ni must connect all gates Gj with mij = 1. Connections are realized 
rowwise by reserving for a given permutation of the gates (columns) for every net 
Ni the part of the row from the leftmost to the rightmost gate to which a connection 
must be established. 

This can be expressed more formally by considering for a permutation n of the gates 
the augmented net-gate matrix MK = (m(j) with 

{ 
1 if there are Gates G" G. with } 

mij := n(r) ~ j ~ n(s) and mil' = mis = 1 

o otherwise 

Nets of the augmented net-gate matrix may share the same row (called track) if they 
have no gate in common. An assignment of augmented nets to tracks preserving 
this property is called a feasible track assignment. 

The additional ones in M (with respect to the same column permutation of M) are 
called fill-ins. They are represented by a "*" to distinguish them from the given ones 
in M (see Figure 1.1 below). 

The result of a permutation of the gates (gate arrangement) and an associated 
feasible track assignment is called a layout. Its area is proportional to (# gates)· 
(#tracks) = n·(#tracks). 

So constructing an area-minimal layout (optimal layout) is equivalent to finding a 
gate arrangement and an associated feasible track assignment such that the number 
of tracks is minimum. 

In matrix terminology, this leads to the following matrix permutation problem 
(MPP): 

Given: A 0-1 matrix (net-gate matrix) M. 

Problem: Find a permutation of the columns and an assignment of the augmented 
rows (nets) to tracks such that the number of tracks is minimum. 

An example is given in Figure 1.1. We denote the minimum number of tracks by 
t(M) and call a layout with t(M) tracks an optimal layout. Due to the mentioned 
origin of this problem in VLSI-applications, there is an enormous body of papers 
on it. This article gives an overview on available results and new developments. 

Section 2 deals with the VLSI background and models the linear VLSI layout 
technologies "Weinberger arrays", "gate matrix layout" and "PLA folding" as 
instances of the general MPP. Some of these applications lead to restricted MPP's 
in the sense that either the permutation ofthe gates (e.g. fixed first and last gate) or 
the assignment of nets to tracks (e.g. at most two per track) are restricted. 
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net - gate matrix 
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augmented net - gate matrix 
for n = (1,2,4,3) 

associated feasible 
track assignment 

Figure 1.1. An example MPP 
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Section 3 gives several equivalent graph theoretic problems with different and partly 
independent background. Among them are: augmentation of a graph to an interval 
graph with small clique size, a node search problem, determining the path-width of 
a graph, matching problems with side constraints and others. 

Section 4 is devoted to the complexity of the problem, and to reductions between 
some of the specialized versions. The general problem is already NP-hard on 
chordal graphs, but solvable in polynomial time on trees and cographs and if the 
number of tracks is fixed. Sharper version of NP-completeness results are also 
obtained for certain variants of PLA folding. 

Finally, Section 5 deals with exact and approximation algorithms for solving 
MPP's. Due to the practical relevance of the problem, many heuristics have been 
proposed in the literature. Nevertheless, the problem of the existence of an approxi
mation algorithm with constant relative performance bound has remained open. 
We present a class of on-line algorithms based on incremental interval graph 
generation that may be promising in this respect. 

Our graph-theoretic notation is usually standard. For all notions and definitions 
not explicitly stated here, we refer to [G080] or [Ev79]. 
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2. The VLSI Background 

The matrix permutation problem is typical for a number of "regular" layout styles 
for the generation of random logic modules in VLSI. 

Such a random logic module may be seen as an irregular structure of basic compo
nents such as transistors, gates, flip-flops etc. It is given by some input description, 
e.g., by a transistor scheme, a logic scheme, or a set of Boolean functions. From this 
description, a concrete layout (a physical module) must be constructed according 
to some layout architecture style. A regular layout style is a style in which basic 
topological relationships between the physical components on the chip area are 
known in advance (e.g. restricted placement, predefmed locations for the arrange
ments of gates etc.). 

Typical such layout styles are Weinberger arrays, gate matrix layout and pro
grammable logic arrays discussed below, see also [GL88] and [BMHS84]. 

Weinberger Array. Weinberger arrays were introduced in [Wei67] as a layout 
architecture for Boolean functions that are given by a circuit consisting only of 
NOR-gates (see Figure 2.1). Each NOR-gate is converted into an nMOS gate (i.e. 
a gate in the nMOS VLSI technology, see e.g. [Me80] for details); and these gates 
are arranged in a linear array that constitute the columns of an associated MPP 
(see Figure 2.2). 

Each column of this MPP consists of two vertical wires. One wire is connected to 
the pull-up transistor and serves as the output port, while the other wire is connected 
with the ground power line. (Usually, two neighboring gates share a common 
ground wire.) The input signals to the gates are obtained from horizontal polysilicon 
intervals on a row. A transistor is formed by the intersection of an extension of such 
a polysilicon interval with a diffusion segment between the output the ground lines. 
For example, transistors a and b are formed by connecting row 1 and 2 to diffusion 
segments in gate A. The output of gate A is connected to the last row which serves 
as input to gate F, etc. 

1 
2 

1 
3 

2 
4 

5 

Figure 2.1. A circuit of NOR gates 
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Figure 2.2. A Weinberger array layout of the circuit of Figure 2.1 

Note that connections (i.e. polysilicon intervals) may be placed on the same line if 
they do not overlap. Since the number of gates is fixed, minimization of the layout 
area is equivalent to reducing the number of rows, i.e. by finding a suitable per
mutation of the gates (which defines the length of the polysilicon intervals) and 
an associated row assignment of the intervals such that the number of rows is 
minimum. 

So we obtain the following Weinberger MPP (WMPP): 

Given: -A collection Go, Gl , ... , Gn , Gn+1 of gates, where Gl , ... , Gn represent 
the NOR gates of the circuit, and where Go and Gn+l represent the 
input (on the left) and output signals (on the right) of the circuit, 
respectively. 

-A collection of nets Nl , .. _, Nm • Each net Ni consists of those gates 
Gj , to which it is output or input. 

-The net-gate matrix M. 

Problem: Find a permutation of Gl , ... , Gn (i.e. the positions of Go and Gn+l are 
fixed) and an associated feasible track assignment (layout) such that the 
number of tracks is minimum. 

Figure 2.3 shows the matrix M, a layout corresponding to Figure 2.2 and an optimal 
layout for the above example. 
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Figure 2.3. Net-gate matrix and two layouts for the WMPP of Figure 2.1 

Gate Matrix Layout. This architecture was introduced by [LLa80] as a regular 
layout style for large scale transistor circuits in the CMOS technology. In such a 
layout, a vertical polysilicon wire corresponding to an input, internal or output 
signal is placed in every column (columns A, B, C, D, E, F, G and Z in Figure 2.4). 
All transistors using the same signal are constructed along the same column (e.g. 
transistors 1 and 7 in column A of Figure 2.4). Connections among transistors are 
made by horizontal metal lines, while connections to VddjVss are in a second metal 
layer (and irrelevant to the underlying MPP). They are indicated by up and 
downward arrows in Figure 2.4. 

A net is a collection of metal lines and transistors to which it must be connected. 
Net Nl in row A of Figure 2.4 spans from column A to G and is connected to three 
transistors (1, 2, and 3) and one metal line (G). The (slightly simplified) assumption 
about the realization of nets is that the series-parallel transistor circuit of each net 
and its output signals can be realized in a row regardless the permutation of the 
metal lines and transistors. 

As with Weinberger arrays, minimizing the layout area leads to the following gate 
matrix permutation problem (GMPP). 
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--A collection Gl , G2 , ••• , G" of gates representing metal lines or tran
sistors of a gate matrix. 

--A collection Nl , ... , Nm of nets, where each N; is a subset of {Gl , ... , G,,}. 
--The net-gate matrix M. 
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Figure 2.S. Net-gate matrix and two layouts for the GAMP of Figure 2.4 

Problem: Find a permutation of G1 , ... , Gn and an associated feasible track assign-
ment (layout) such that the number is tracks is minimum. 

Figure 2.5 displays the net-gate matrix and two layouts for the above example. 

The GMMP is the combinatorial core ofthe problem to construct an area minimal 
gate matrix layout. Additional (and usually neglected) features are 1) that one may 
distinguish two collections of rows (p-devices and n-devices) that permit indepen
dent column permutations, and 2) that a net may require more than one row 
depending on the permutation of its gates. While this second feature can be modeled 
within the M P P formulation by appropriate net splitting, incorporation of the first 
feature may lead to better layouts [NFKY86]. For further technical information 
we refer to [SM83], [WHW85]. 

Programmable Logic Array. A programmable logic array (PLA) realizes a collec
tion of Boolean functions given in disjunctive form (two-level sum of product form) 
on a two-dimensional array (see Figure 2.6). 

This array consists of an AND-plane and an OR-plane. For every variable Xi of the 
Boolean functions, there is an input signal to the AND-plane (in fact, both inputs 
Xi and Xi are generated). Each row of the AND-plane produces a term that is an 
input to the OR-plane. The columns of the OR-plane correspond to the different 
Boolean functions and combine the appropriate product terms by an OR operation. 
By adding storage elements and simple feedback connections, a PLA can very easily 
be used to implement a sequential circuit. This application of PLA's is popular 
in the design of microcontrollers. For further technical information, we refer to 
[FM75]. 
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For reducing the area of a PLA, two techniques can be applied. Logic minimization 
for reducing the number of rows (= product terms) and PLA folding for reducing 
the number of columns. The first technique is the same as finding the minimum 
number of prime implicants for a set of Boolean functions (see e.g. [BMHS84J). It 
is usually applied before the folding. 

The folding allows two (sometimes also more) signals to share a row (in the 
AND-plane) or a column (in the OR-plane). This leads to the same class of MPP's 
in both the AND and the OR-plane. 

PLAMPP 

Given: -A collection of gates G1 , •.• , Gn that correspond to the signals in one 
plane of a PLA. 

-A collection of nets Nl , ... , Nm, where each net is a set of signals that 
have to be combined by AND (in the AND-plane) or OR (in the 
OR-plane). 

-The net-gate matrix M. 

Problem: Find a permutation of the gates Gl , ... , Gn and a feasible assignment of 
at most two nets to a track (P LA layout) such that the number of tracks 
is minimum. 

Figure 2.7 displays the net-gate matrix and several layouts for the example of Figure 
2.6. 

There are several more restrictive versions of the PLA folding problem. If gates 
occuring in the second net of a track may not occur in the first net of a track with 
two nets, one speaks of block folding. In that case, any folding defines a partition 
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Figure 2.7. The net-gate matrix and an optimal layout for the AND-plane of Figure 2.6 

G1 , G 2 of the gates such that if net N; is before N.i in the same track, then N; ~ G1 

and N.i ~ G 2 · 

If the nets are pre-assigned to the two sides of the layout, one speaks of constrained 
folding. In that case, a partition N 1 , N2 of the nets is given as input to the problem, 
and any restricted folding may only assign net N; before N.i on the same track if 
N; E Nl and N.i E N 2 · 

The combination of block folding and restricted folding is called constrained block 
folding. Figure 2.8 shows optimal layouts for these different folding problems for 
the example of Figure 2.7. 
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3. Graph-Theoretic Formulations and Related Problems 

We will now consider several graph theoretic problems that are equivalent to the 
VLSI layout problems discussed in the previous sections. These problems have their 
own graph theoretic background and have to a large extent been investigated 
inependently of each other. 

Interval graph augmentation. This formulation occurs already in the first papers on 
gate matrix layout [Win82], [Win83]. For Weinberger arrays, similar considera
tions are made in [OMKK79]. 

Let V be a finite set and (IV)VE v be a collection of (not necessarily distinct) intervals 
Iv of a linearly ordered universe (such as the real line or a permutation of the gates). 
Such a collection of intervals (IV)VEV defines a partial order P = (V, <) on V 
by putting 

(3.1) u < u <::- Iu is entirely to the left of Iv . 

It also defines an undirected graph G = (V, E) on V by putting 

(3.2) (u, v) E E <::- Iu and Iv intersect (i.e. Iu n Iv f= 0) 

A partial order P and a graph G obtained in that way are called an interval 
order and an interval graph, respectively, and an associated collection of intervals 
(IV)VEV is called an interval representation of P or G. An example is given in 
Figure 3.1. 

Interval orders and interval graphs model the sequential and intersection structure 
of a set of intervals of the real line. This is why they have many applications dealing 
with intersection and consecutiveness such as the gene structure in molecular 
biology, seriation in archeology, preference and indifference relations in measure
ment theory, and consecutive retrieval, VLSI channel routing, and gate matrix 
layout in computer science. For more information on these applications, see 
[G080], [G08S], [Mo8S], [Mo89]. 

Note that different interval representations with the same intersection behavior 
define the same interval graph but possibly different interval orders. We call all 
interval orders related in this way to a fixed interval graph G the interval orders 
associated with G. 

v = {1, ... ,6} 3 

P1 
4 

11 = [1,2[ '~S 12 = [OAr 
2 S 13 = [3A[ 

14 = [3A[ 
15 = [2,S[ 

4 6 16 = [4,6[ 2 6 

(iv)v E v P G 

Figure 3.1. A collecting of intervals with associated interval order P (as transitively reduced directed 
acyclic graph) and interval graph G 



Graph Problems Related to Gate Matrix Layout and PLA Folding 29 

Consider now an MPP with net-gate matrix M. This matrix M defines a graph 
G = «V(G), E(G» by taking the intersection graph ofthe rows, i.e., V(G) is the set of 
nets (rows), and two nets are connected by an edge if they share a gate (i.e. there is 
a column with l's in both rows). G is called the net adjacency graph [DKL87], or 
incompatibility graph [ALN88] since its edges (u, v) express that the nets u, v cannot 
be assigned the same track in a feasible layout. 

For any gate permutation 1t of M, the associated augmented matrix M" defines a 
collection of intervals (the augmented nets) of the linear order Gil' ... , Gin defined 
by 1t on the gates. This collection of intervals defines an interval graph H = 
(V(H),E(H» that contains G in the sense that V(G) = V(H) and E(G) ~E(H), i.e. by 
augmenting the edge set of G. (This follows directly from the fact that two nets that 
share a gate in M share also a gate in M".) A feasible track assignment for M" 
corresponds then obviously to a coloring of H, in which tracks correspond to color 
classes. 

This shows that every feasible layout for M induces a coloring of an interval graph 
augmentation of G, the incompatibility graph of M. The converse is also true as the 
following lemma shows. 

3.1 Lemma: Let G = (V(G), E(G» be the incompatibility graph of a net-gate matrix 
M. Let H = (V(H),E(H» be an interval graph augmentation of G and let P = 
(V(H), <) be any interval order associated with H. Then: 

a) P induces a partial order on the gates G1 , • •• , Gn of M by putting 

(3.3) Gr < G. if there are nets Ni =1= ~ incident to Gr and Gs, 

respectively (i.e. mir = mj. = 1), and Ni < ~ in P. 

b) Any linear extension Gil' ... , Gin of the gate order of a) induces a permutation 1t 

such that the augmented net-gate matrix M" is an interval representation of H 
andP. 

c) Any coloring of H induces a track assignment of M" by taking each color class as 
a track and ordering the nets of the color class according to P. 

The proof is straightforward and left to the reader. An example of these construc
tions is presented in Figure 3.2. An immediate consequence of these consideration is: 

3.2 Theorem: The minimum number of tracks of a feasible layout for a net-gate 
matrix M is equal to the smallest chromatic number of an interval graph augmentation 
H of the incompatibility graph G of M, i.e. 

(3.4) t(M) = min{x(H)IH is an interval graph with E(G) ~ E(H)} 

We briefly discuss the computational complexity of the constructions of Lemma 
3.1. An adjacency matrix of G can be constructed from M in O(n' m2 ) time by 
looking at each column separately and inserting the corresponding edge entries in 
the adjacency matrix. 

An interval representation of an interval graph H and an associated interval order 
P (in interval representation) can be constructed in 0(1 V(H)I + IE(H)I) time by 
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Figure 3.2. An illustration of Lemma 3.1 on the example of Figure 1.1 

PQ-tree techniques [BL 76, KM89]. The gate order induced by P can be obtained 
efficiently by scanning an interval representation of P from left to right and con
structing an ordered partition of the gates as follows: 

For the i-th right endpoint encountered in the scan, let the set G; consist of all gates 
that are incident to nets ending (as intervals) at the current endpoint and do not 
belong to any previously constructed Gj . The partition G 1, ... , Gk thus constructed 
defines the gate ordering: all gates from G; are incomparable among each other and 
precede all gates from Gi+l (i = 1, ... , k - 1). This follows from the fact that all gates 
not yet considered at the current endpoint must belong to nets that come later in 
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the interval represenfation and are thus successors in P of the currently ending nets. 
So linear extensions of the gate ordering are just permutations within the classes G; 
of the partition. It follows that the partition and a linear extension (gate permutation) 
can be constructed in O(n' m) time. 

An optimal coloring of an interval graph H can be obtained in 0(1 V(H)I) time from 
an interval representation by scanning the interval representation from left to right 
[GLL82]. When the left endpoint of an interval is encountered in the scan, the 
corresponding vertex of H is assigned the smallest color from the set {t, 2, ... , n} of 
colors that has not been assigned to intervals containing the current endpoint. 

Obviously, the number of colors thus required is equal to the maximum number of 
intervals that intersect in a common point, i.e. the maximum size w(H) of a clique 
of H. Since any coloring requires at least w(H) colors, if follows that the coloring 
is optimal and X(H) = w(H). 

These arguments show that the hard core of the MPP is the construction of the 
right gate permutation, or, in terms ofthe interval graph augmentation, to find the 
right augmentation of the incompatibility graph to an interval graph. The track 
assignment problem or interval graph coloring problem can then be solved opti
mally by a simple linear-time algorithm. 

Note that the interval graph coloring algorithm described here can of course 
also be directly carried out on augmented net-gate matrices (remember that they 
represent interval graphs). In this context, it is known as the left-edge algorithm 
(starting from the left edge of the rectangle described by the matrix) and it already 
occurs in channel routing applications of interval graphs [HS71]. It shows in 
particular that the minimum number of tracks for an augmented net-gate matrix 
M" is equal to the maximum column sum of M". 

Because of the easy solvability of a track assignment/interval graph coloring prob
lem, we can rephrase our original problems as follows: 

(MPP): 
Given a 0-1 matrix M, find a permutation 1t of the columns of M such that the 
maximum column sum of the augmented matrix M" is as small as possible. 

Interval graph augmentation (IGA): . 
Given a graph G, find an augmentation of G to an interval graph H whose clique 
size w(H) is as small as possible. 

The smallest clique size w(H) of an interval graph augmentation of G is also called 
the interval thickness of G. Because of its equivalence with MPP, we will denote it 
also by t( G), and call it the track number of G. 

So far, we have seen that every MPP can be transformed to an instance of IGA. 
The converse is, of course, also true, since very graph can be represented as the 
incompatibility graph of some MPP (e.g. by introducing a column for every edge 
of G with two I-entries for the vertices joined by this edge). 

This gives: 
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3.3 Theorem: MPP and IGA are polynomially equivalent. 

The interpretation of MPP as IGA makes available the large body of algorithmic 
techniques for interval graphs, see e.g. [GoSO], [MoSS], [MoS9]. Most of them are 
based on the following characterization of [FG65] of interval graphs. 

3.4 Theorem: A graph G is an interval graph iff its maximal cliques can be 
linearly ordered such that, for every vertex v, the maximal cliques containing v occur 
consecutively. 

Any such arrangement is called a consecutive clique arrangement. Such arrange
ments can be constructed and maintained by PQ-trees [BL 76] or their specialized 
versions for interval graphs, the MPQ-trees [KMS9]. These data structures will be 
useful for approximation algorithms discussed in Section 5. 

Loosely speaking, the general idea of the interval graph augmentation approach to 
the MPP can be expressed as making the cliques of G consecutive (in the sense of 
Theorem 3.4) by extending or joining them to cliques of an interval graph while 
keeping the size of the new cliques small. 

Path width. The path width of a graph was considered by Robertson and Seymour 
[RSS3] in the first part of their series of papers on graph minors. 

They define a path decomposition of a graph G as a sequence X I, ... , X, of subsets 
of V(G) such that 

(3.5) for every edge e of G, some Xi contains both ends of e 

and 

(3.6) for 1 ~ i ~ j ~ I ~ r, 

hold. The path width of G (denoted by pw(G)) is the minimum value of k ~ 0 such 
that G has a path decomposition Xl' ... ' X, with IX;! ~ k + 1 (i = 1, ... ,r). 

This notion is almost identical to interval graph augmentation. In fact, if G has a 
path decomposition Xl' ... , X, with IX;! ~ k + 1, then the graph H defmed by 
lett!ng X I, ... , X, be its maximal cliques is an interval graph because of (3.6) and 
Theorem 3.4, and fulfills E(G) £; E(H) because of (3.5), and w(H) = maxi IX;! ~ 
k + 1. Conversely, if H is an interval graph augmentation of G, then any consecutive 
clique arrangement CI , ... , C, of H defmes a path partition ofG because of Theorem 
3.4, and IC;! ~ k + 1 with k = w(G) - 1. This gives: 

3.5 Proposition: Determining the path width of a graph G is polynomially equivalent 
to !GA. In particular, pw(G) = t(G) - 1. 

This equivalence permits a direct translation of deep results from the Robertson
Seymour theory to gate matrix layout. The most important of these is related to 
the notion of the minor of a graph. 

H is a minor of G if H can be obtained from G by deleting some vertices and/or 
edges, and/or contracting some edges. It is easy to see that 
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(3.7) t(H) :s: t( G) if H is a minor of G. 

This implies directly that for any fixed k, the class of graphs G with t( G) :s: k is closed 
under taking minors (i.e., if G belongs to this class and H is a minor of G then H 
belongs also to this class). This is the starting point for the application of the 
following results of Robertson and Seymour. 

3.6 Theorem [RS87]: Let F be any set of graphs closed under minors. Then there are 
finitely many graphs H l' ... , Hr such that 

G E F-G does not contain Hi as a minor, i = 1, ... , r. 

This is a direct consequence of the proof of the Wagner Conjecture (no class of 
graphs has infinite antichains under the minor ordering) in [RS87] and the closed
ness property under taking minors. 

3.7 Theorem [RS86]: For any fixed graph H, it can be tested in polynomial time 
whether a graph G contains a minor isomorphic to H. 

The combination of these theorems yields the existence of a polynomial time 
algorithm for testing membership for any minor-closed family of graphs, thus in 
particular for the class of graphs with bounded path width. 

However, since no proof of Wagner's conjecture can be entirely constructive 
[FRS87], Theorem 3.6 is a pure existence result for the finite family of forbidden 
minors. Moreover, though the algorithms for minor recognition have low degree 
polynomials as worst case bounds, their constants of proportionality are enormous, 
rendering them impractical for practical problems (see e.g. [J087a]). The general 
bound is O(n3) for a graph with n vertices, and even O(n2) if the family F excludes 
a planar graph. This is the case for the path width (see [RS83] and Proposition 3.12 
below), and thus: 

3.8 Theorem: Within the class of graphs with bounded pathwidth k, k fixed, the interval 
graph augmentation problem can be solved in O(n2) time for a graph with n vertices. 

This result is interesting in view of the NP-hardness of the general problem when 
k is part of the input (see S'!ction 4). A polynomial dynamic optimization algorithm 
for fixed k of order O(n2k2+4k+8) has also been obtained in the context of graph 
searching [EST87] (see also below). It is, however, open how to design a practical 
O(n2) algorithm. 

The application ot the Robertson-Seymour theory to gate matrix layout is discussed 
(among other problems) in a series of papers [FL87] [FL88a] [FL88b]. For a 
survey about computational implications of the Robertson-Seymour theory, we 
refer to [J087a]. 

Node searching. This problem formulation refers to a searching game on graphs 
introduced in [KP86] as a variant of the more investigated edge searching [Pa76]. 

In node searching, the edges of a graph represent a system of pipes or tunnels that 
are considered contaminated by a gas. The object of node searching is to clear all 
edges by a search. A search is a sequence of moves where a player places a searcher 
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(also called guard) on a node of the graph that carries no searcher or deletes the 
searcher from a guarded node. 

An edge is cleared if both its endpoints simultaneously carry a searcher. A cleared 
edge may be recontaminated if, at a later stage of the search, there is a path from an 
uncleared edge to the cleared edge without any searchers on it. So in order to avoid 
recontamination of cleared edges, the guarded nodes must after each move form a 
separating set that separates the still unsearched part of the graph (the not yet visited 
vertices) from the already searched part (all vertices that carried a searcher in the 
past). 

A search is called optimal if the maximum number of searchers on the graph at any 
point is as small as possible. This number is called the node-search number of G, and 
denoted by ns( G). 

It was shown in [KP86] that there always is an optimal search without recontami
nation of cleared edges. This was used in [KP85] to show the following unexpected 
relationships to interval graph augmentation: 

3.9 Theorem: For any graph G, ns(G) = t(G). 

The proof of this theorem is based on the following ideas. If H is an interval graph 
augmentation of G, then any consecutive arrangement C1, ••• , Ck of the maximum 
cliques of H defines a search by letting the searchers move in this order through 
C1, ••• , Ck • If Ci is guarded, then searchers from C; - Ci+1 and possibly new search
ers may be moved to Ci+1 - C; until Ci+1 is guarded. It is easy to see that this 
defines a search without recontamination with w(H) searchers. 

In the converse direction, any recontamination-free search of G assigns to every 
node v of G the interval [i,j] whose endpoints are the first and last step in the search 
at which v is occupied by a searcher. (Note that this definition makes sense since 
the search is recontamination-free.) Since every edge is searched, the intervals 
assigned to its endpoints intersect. So the interval repre<!entation induces an interval 
graph H with E(G)!;; E(H). The maximum number k of searchers in this search 
is obviously just the maximum number of pairwise intersecting intervals, i.e. 
w(H). 

Node searching is also closely related to other linear graph layout problems and to 
pebbing games on graphs [KP86]. In particular, the interpretation as progressive 
pebbling game gives the following useful result [KP86] for investigating or generat
ing searches. 

Consider an acyclic orientation of the edges of G and a dynamic assignment of 
searchers to vertices that observes the rules 

(3.8) A vertex may accept a searcher only when all its immediate 
predecessors carry a searcher. 

(3.9) Every vertex is assigned a searcher exactly once. 

Then: 
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3.10 Proposition: Every assignment observing (3.8) and (3.9) defines a recontamination
free search of G, and every recontamination-free search of G can be obtained in that 
way. 

The first part follows easily by induction and the observation that the ''foremost'' 
searchers (those that have an unvisited immediate successor) form a separating set 
in G that separates the searched part from the unsearched part. The other direction 
is obtained by considering the orientation of G defined by u < v if u is visited by a 
searcher before v. An example is given in Figure 3.3. 

We call such a search a directed search. 

Another useful application is the combination of the search interpretation with a 
structural decomposition of graphs, the split decomposition [Cu82]. 

A split in an undirected graph G is a partition V(G) = VI U V2 of the vertex set of 
G such that I "II ;;:: 2 (i = 1,2) and 

(3.10) The edges of of G going from VI to V2 induce a com!)lete bipartite graph. 

3.11 Lemma: Let V(G) == VI U V2 be a split of G and let AI !;;; V; (i = 1,2) be the 
vertices of the associated complete bipartite graph. Then every recontamination-free 
search of G has a step at which all vertices from Al or all vertices from A2 simulta
neously carry a searcher. So in particular, ns(G) ;;:: min{IAII, IA2 1}. 

This can be seen as follows. If the statement is not true, then there is a first step of 
the search at which a searcher is deleted from the endpoint (u, say) of an already 
cleared edge (u, v) E Al X A2. Since neither Al nor A2 are completely visited at that 
step, there is an uncleared edge (x,y) E Al X A 2. But then (u,v) is recontaminated 
via the path (x, y), (y, u). 

Still another application is the following argument from [KP86], which, in the 
context of edge. searching, is due to [Pa76]. It also shows that the search number 
is unbounded on the class of trees. This gives also the missing argument for the 
O(n2) algorithm for bounded tree width (the class of graphs with bounded tree width 
excludes some trees and thus a planar graph). 
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3.12 Lemma: Let G contain a vertex v of degree 3 whose deletion separates G into 
three connected components G1 , G2 , G3 , each of which has node search number 
ns(G;) = t. Then ns(G) = t + 1. 

It is easy to see that t + 1 searchers suffice. (Put a searcher on v and search G1 , G2 , 

G3 with the remaining t searchers). To show that they are also necessary, assume 
that t searchers suffice for G. 

Since t searchers are already required for each of the subgraphs G1 , G2 , G3 , there 
is a moment at which one of them (G1 , say) has already been searched, all searchers 
are on the second one (G2 , say), and the last of them is still unvisited. But then 
recontamination takes place between G3 and G1 , a contradiction; 

As a consequence, one obtains [KP86]: 

3.13 Proposition: The search number of a complete ternary tree T is equal to its height 
plus one. 

It was already mentioned that node searching is a variant of the more investigated 
edge searching. In edge searching, an edge is cleared by letting a searcher go through 
it (instead of by occupying both endpoints as in node searching). It is therefore 
possible [KP86] to obtain (optimal) node searchers on G from (optimal) edge 
searches on a slight modification of G (replace each edge of G by three parallel 
edges). Exploitation of this transformation and known results for edge searching on 
trees [MHGJP88] and dynamic programming formulations [EST87] yield a linear 
time search algorithm for trees (see also Section 4) and a polynomial time algorithm 
of order O(n2k2+4k+8) for graphs with search number at most k, k fixed. 

Alternating paths. This final equivalence is considered in many papers on PLA 
folding. It views tracks in a layout of M as directed paths in the complement G of 
the incompatibility graph G of M. The directed edges of these paths may be 
considered as being added to G. This gives the following formulation. 

Let G be the incompatibility graph of a MPP, and consIder the edges of G as colored 
red. A path partition (or multiple folding) of G is a set of directed green edges F such 
that the following two conditions are satisfied. 

(3.11) The subgraph defined by the green edges is a collection of directed paths 
(i.e., indegree and outdegree of every vertex is at most 1). This constraint is 
called the degree constraint. 

(3.12) There exists no cycle of alternating directed green path segments and red 
edges (alternating cycle). This constraint is called the cycle constraint. 

The size of a path partition is the number of green paths. 

3.14 Theorem: Determining a minimum size path partition is polynomially equivalent 
to interval graph augmentation. 

This can be seen as follows. From a path partition with t paths, one can construct 
an interval representation of an interval augmentation H of G with w(H) = t by a 
left to right scan through the t paths. Initially, the intervals corresponding to the 
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minimal vertices in the t paths are "opened". When an interval is closed, the interval 
of the next vertex in the corresponding path is opened etc. Given a collection of t 
opened intervals, the next interval to close corresponds to a vertex u such that there 
are no red edges (u, w) to a vertex w that occurs after a currently open interval v on 
a green path containing v. Note that there is such a vertex u because of (3.12). 

Since exactly t intervals are open at any moment, w(H) = t. To see that H augments 
G, let (u, v) E E(G) and, w.l.o.g., let u be opened before v(as intervals). Then the choice 
defined above ensures that u is only closed after v is opened. Hence the correspond
ing intervals overlap. An example of this construction is given in Figure 3.4. 

The converse direction is obvious since every optimal coloring of an optimal interval 
graph augmentation H of G defines a path partition of size X(H) = w(H). This 
interpretation is particularly useful for the special cases of the MPP dealing with 
PLA folding. 

There are several other equivalent or related graph theoretic notions. We just 
mention vertex separation, min cut linear arrangement, bandwidth and several 
modifications of these problems. While vertex separation is equivalent to node 
search [KP86], the other notions define bounds on t( G) [KP86] [B088]. 

Restrictions of the MPP. The restrictions discussed in Section 2 have natural 
formulations within several of the different representations of this section. 
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For instance, the WMPP can be modeled by fixing two cliques of G as belonging 
to the first and last maximal clique of the interval augmentation to construct, or 
by requiring the searchers to start and finish their search on specified cliques of 
G. 

For PLA folding problems, at most two vertices may share a common track. This 
means in the path partition formulation that the directed green paths reduce to 
directed green edges. This gives the most common formulation of PLA-folding, 
which is due to [HNS82]. 

3.15 Proposition: Let G be the incompatibility graph of a P LA folding prob
lem. Then the minimum number of tracks for a PLA folding is equal to I V(G)I - s, 
where s is the maximum number of green directed arcs that can be added to G such 
that 

(3.13) The green arcs form a matching in the complement ofG (degree constraint), 

(3.14) There is no alternating cycle of directed green edges and undirected red 
edges ofG (cycle constraint). 

Such a set F of green arcs is called a folding set or simply folding. So Proposition 
3.15 states that the PLA-folding problem is equivalent to finding a folding set of 
maximum size. 

Another characterization can be obtained from the observation that, in an optimal 
layout of the associated augmented matrix M", the rows can be permuted in such 
a way that the rows with two nets appear on top and that the rightmost 1's of the 
first nets in these rows define a "decreasing staircase". 

This staircase pattern corresponds to the special subgraph Zm.m of G defined below. 

A Zm.m (also called a triangular clique in [HK87]) is a bipartite graph G = (U, V, E) 
with U = {al, ... ,am }, V = {b1 , ••• ,bm }, and E = {(ai' bj)1 1 ~ i ~j ~ m}. 

This gives [HK87]: 

3.16 Proposition: Finding a maximum folding set in G is equivalent to finding a 
maximum size Zm,m as (partial, not induced) subgraph ofG. 

Both conditions can easily be sharpened for block folding and constrained folding 
problems. Call a folding set F resulting in a block folding a block folding set. Then 
one obtains the following characterization of block folding, see e.g. [RL88]. 

3.17 Proposition: Let G be the incompatibility graph of a P LA folding problem. Then: 
(1) A set F of directed green arcs added to G is a block folding set iff F satisfies the 
degree constraint (3.13) and 

(3.15) There is no red edge (u, v) from the head of green edge to the tail of another 
green edge. 

(2) Finding a maximum block folding set in G is equivalent to finding a maximum size 
K m•m (the complete bipartite graph on 2m vertices) as (partial, not induced) subgraph 
ofG. 
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Remember that in constrained PLA folding, the nets are preassigned to the two 
sides of the layout. Thus only incompatibility relations between these two sides are 
of importance, i.e., the incompatibility graph G can be assumed to be bipartite. 
Therefore, constrained PLA-folding is sometimes also called bipartite folding 
[EL84], [HK87]. 

The above conditions then specialize further for block folding. 

3.18 Proposition: Finding a maximum block folding in a bipartite graph G is equiva
lent to finding a maximum size Km,m as induced subgraph of the (bipartite) complement 
ofG. 

4. Complexity Results 

It was already mentioned several times that the general MPP is NP-hard. In fact, 
this has been obtained independently in many of the equivalent formulations, e.g. 
for interval graph augmentation in [KF79], for nQde search in [KP86], for directed 
node search in [Le82], and for path width in [ACP87]. 

The NP-hardness of the PLA folding problems (including the general MPP, but 
excluding block folding) is shown in [L VVS82] by a series of reductions from matrix 
upper triangulation (given an n x n 0-1 matrix A, is there a permutation of the rows 
and another of the columns such that resulting matrix is upper triangular?). 

We will here sketch a different series of reductions that starts from constrained block 
folding and contains block folding and a sharper version for interval graph aug
mentation (i.e. the general MPP), which turns out to be NP-hard already on chordal 
graphs. Our starting point is (see e.g. [EL84]): 

4.1 Theorem: Constrained block folding is N P-hard. 

This follows in fact directly from Proposition 3.19 that gi-:es the equivalence to 
"balanced complete bipartite subgraph" which is stated to be NP-complete in 
[GJ79] (the proof has appeared in [Jo87b]). 

Preassignment of nets to sides can easily be enforced by adding two gates Go, Gn+1 

that are connected to the nets from the left and right side, respectively. Then any 
(block) folding of the augmented problem can only fold nets incident to Go with 
nets incident to Gn+1 , and the sides are (up to reversal of the layout) fixed by the 
position of Go and Gn+1 • In view of Theorem 4.1, this gives: 

4.2 Theorem: Block folding is N P-hard. 

This result has been sharpened in [MW89] by a different reduction from GRAPH 
BISECTION. Exploiting techniques from [BCLS87], [WW89] they obtain: 

4.3 Theorem: Block folding is N P-hard even for graphs with degree at most k for any 
fixed k;;::: 3. 

The reduction from block folding to IGA on chordal graphs is based on the 
following equivalent formulation of block folding. 
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Given: A graph G and an integer k. 

Question: Is there a partition of V(G) into three sets Vi> V2 , V3 such that 
(i) every path from VI to V3 goes through a vertex of V2 , 

(ii) min {lVII, 1V3 J} 2': k? 

The answer to such an instance is obviously yes iff there exists a block folding set 
of G with k green edges (viz. from vertices to VI to vertices of V3). Based on this 
formulation, the following result is obtained in [Gu89]. 

4.4 Theorem: Gate matrix layout and pathwidth are already NP-hard on the class of 
chordal graphs. 

Recall that a graph is chordal (or triangulated) if every elementary cycle VI' v2 , ••. , 

Vk' VI oflength k 2': 4 possesses a chord, i.e. an edge (Vi' v) with 1 ::;;; i < j + 1 ::;;; k + 1. 

Chordal graphs form a natural generalization of interval graphs, see e.g. [G080] 
for more information about chordal graphs. The chordal graphs needed in the proof 
are quite special. They consist of a set of maximal cliques that overlap in a central 
clique. 

In more detail, let G, k be an instance of the above formulation of block folding 
such that G is w.l.o.g. connected. From G we construct such a special chordal graph 
H as follows. H contains a maximal clique Co (called the central clique) with vertex 
set V(G). For each edge (u, v) E E(G), a maximal clique Cuv is added that consists of 
the vertices u, v E Co and I V(G)I additional vertices that are incident only to vertices 
in Cuv • Clearly, this graph is of the desired type. 

From H one can construct a net-gate matrix M with incompatibility graph H by 
introducing a gate for each of the maximal cliques of H. Consider an augmented 
matrix M" of M and let C+ and C- be the cliques (gates) before and after the central 
clique (gate) Co in M". Since every net corresponding to an original vertex of G that 
is incident to some gate from C+ or C- is also incident to Co, the order of the gates 
in C+ or C- does not influence the number of tracks. 

Let V+ and V- denote the nets of Co (vertices of G) incident to a gate from C+ 
and C- , respectively, and let VI := V+ - V-, V2 := V+ n V- and V3 := V- - V+. 
It can then be shown that VI' V2 , V3 form a partition of V(G) with the sbove 
disconnecting property, and that min {lVII, 1V31} 2': k is equivalent to t(M) ::;;; 2· 
IV(G) I - k. 

Conversely, every partition VI' V2 , V3 of G with the above properties can be 
transformed into an augmented matrix M" by first taking all gates (cliques) Cuv with 
u, v E VI U V2 (in any order), followed by Co and all cliques Cuv with u, v E V2 U V3. 
This proves the theorem. An example of this construction is given in Figure 4.1. 

Note that if all maximal cliques that intersect the central clique are mutually disjoint, 
then the problem can be solved in 0(1 V(GW) time by a dynamic programming 
algorithm [Gu89]. This confirms that the borderline between easy and hard pro
blems for subclasses of chordal graphs G depends essentially on the overlapping 
behavior of the maximal cliques of G (see also [ACP87]). 
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A reduction from gate matrix layout to constrained PLA-folding can be obtained 
by turning an arbitrary graph G into a bipartite graph H = (U, V, E) as follows: 

U:= V(G), V:= {v'lv E V(G)}(acopyofV(G»,and(u, v') E E(withu E U and v' E V) 
iff (u, v) E E(G) or u = v. 

Then any constrained folding set F for H corresponds uniquely to a collection 
of tracks for G by combining the edges of F to paths (tracks) (xt>x;), (X2,X;), 
(X3,X:a.), . •. , (kk' Xl)' Then t(G) = IV(G)I- IFI, i.e. maximizing IFI in H corresponds 
to minimizing t(G) in G, Hence: 

4.5. Theorem: Constrained PLA folding is NP-hard. 
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Finally, the reduction from constrained PLA folding to PLA folding is achieved in 
the same way as from constrained block folding to block folding. 

4.6. Theorem: P LA folding is N P-hard. 

There are several other NP-hardness results related to gate matrix layout and PLA 
folding. We mentioned already the directed search problem [Le82]. Another such 
problem is 

Orderability: 

Given: A graph G of red edges, a set F of green edges of G. 
Question: Is there an orientation of the edges of F such that F is a folding? 

Orderability is shown to be NP-complete in [HNS82]. It is solvable in polynomial 
time for constrained PLA folding [Ra88]. 

Other variants of the PLA-folding problem not discussed here are shown to be 
NP-hard in [ALN88]. 

We consider now some special classes of graphs on which the gate matrix layout 
problem can be solved in polynomial time. Most of the arguments leading to 
polynomial algorithms come from node searching (in particular Lemma 3.11 and 
Lemma 3.12) and demonstrate again the usefullness of this interpretation. 

We will start with the class of trees. As mentioned before, the polynomial algorithm 
for edge searching on trees [MHGJP88] can be transformed by the principles of 
[KP86] to a polynomial algorithm for node searching on trees. This requires O(n) 
time for determining ns(G), and O(nlogn) time for finding the associated search. We 
sketch here a different, equally fast algorithm with a much simpler correctness proof. 

The algorithm peels the tree, i.e. it starts with the leaves and works its way towards 
the "center" of the tree. So at a typical step of the algorithm, certain subtrees T1 , 

... , T,. of the tree T have already been investigated. Each of these trees T; has a vertex 
Vi connecting it to the still unsearched part of T. 

The peeling is done in phases t = 1,2, ... , ns(T). At the beginning of phase t, the 
vertices Vi are the leaves of the remaining tree, and every T; requires t searchers, 
while every T; - Vi can be searched with t - 1 searchers. We then peel the remaining 
tree starting from the Vi until we reach new vertices uj in which the search number 
must go up to t + I, (or T has been searched completely). The current phase is 
completed when all Vi have been processed and are connected to some uj in the 
already searched part of the tree. 

All vertices investigated in phase t (expect the uj which are the starting vertices for 
the next phase) receive the label label (v) = t, t = 1, ... , ns(T). These labels have the 
following important property: 

Let, for a vertex with label t, T" be the connected component in the subgraph of all 
vertices with label at most t that contains v. Then: 

(4.1) ns(T,,) = label(v}. 

An example of the peeling and the different phases is given in Figure 4.2. 
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The essential part of the algorithm consists in identifying the new vertices u) in 
which the search number must go up. There are several special cases for small t 
(e.g. the transition from vertex 80 to 91 in Figure 4.2), but the general procedure is as 
follows. 

We first explore from every Vi the path (in the remaining tree) connecting it to the 
still unexplored part of T until we reach a vertex V (where v = Vi is possible) with 2 
unexplored neighbors or another neighbor u with label(u) = label(vj). In Figure 4.2, 
such paths are e.g. 109, 110 or 111, 112. Mter this path exploration, they are three 
cases. 

We reach a vertex v with two unexplored neighbors. Due to the algorithm, these 
neighbors are conected to other subtrees with search number t, and so the search 
number must go up to t + 1 because of Lemma 3.12. Then v will be considered in 
a later phase. In Figure 4.2, v = 99 is such a vertex. 

Three or more paths meet in a vertex u. Then the search number goes up in u to 
t + 1 because of Lemma 3.12. In Figure 4.2, this is e.g. the case for u = 107 (from 
91,92,93) and u = 111 (from 100, 101, 102). 

Exactly two path next meet in a vertex u. Then the search can be carried over with 
t searchers from one path to the other with u in the "interior" of the corresponding 
layout (i.e. there is no search with t searchers that ends in u). It may, however, still 
be possible to search part of the tree starting in u with at most t - 1 searchers while 
a searcher guards the vertex u. To this end, we consider the unexplored neighbor 
of u as a leaf and start a search from it to the unexplored part until we reach the 
first vertex where t searchers are required. This vertex is then a leaf for the next 
phase. We call this situation a fork. 

In Figure 4.2, such forks are given by u = 106, u = 115, and u = 121. In u = 106, 
the search stops immediately because 117 has two unexplored neighbors. In u = 
115, we start a search along the path 116, 117, etc., where 116 is treated as a leaf. 
The new phase labels of this search are given in brackets. Note that the fork in 106 
influences this search since a guard must remain on 106, thus implying that only 
two searchers are available along the path 117, 118, etc. This is why the search stops 
in 120. The formal stopping argument is that the subtree induced by {116, 117, ... , 
120, 123} requires 4 searchers, which together with the fork at 115 and Lemma 3.12 
increases the search number to 5. 

The fork of 121 then meets the fork of 115 in 123 and brings the search number 
up to 5 because of Lemma 3.12 (every fork contributes two subgraphs of search 
numbert). 

These are the main ingredients of the algorithm. There are several additional 
remarks to be made. 

The argument for an increase of the search number is always Lemma 3.12. This is 
in fact due to the "converse" of Lemma 3.12 [Pa76] stating that, for any tree T, 
ns(T) ~ t + 1 iff there is a vertex v at which there are three or more subtrees with 
search number t or more. 
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The path exploration'in forks depends of course on the processing order of the 
vertices. For instance, exploring the fork in 121 first would explore the path until 
vertex 117. 

The phrase labels and the information about forks (i.e. which paths are joined) can 
be directly used to obtain an optimal search. This is demonstrated in Figure 4.3 for 
the example of Figure 4.2. 

Altogether, this gives: 

4.7 Theorem: The track number t(T) of a tree T and an optimal layout can be obtained 
in 0(1 V(T) I) time. 
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The techniques Qnderlying the tree search algorithm seem to be valid also for other 
"tree-structured" graphs such as (2-connected) outerpanar graphs, k-trees, and 
possibly partial k-trees. This is currently being investigated together with J. Gustedt 
and R. Miiller from the TV Berlin. 

Lemma 3.11 can be used to obtain a polynomial algorithm for cographs. Recall that 
a cograph (or complement reducible graph, see [CLSS1] for details) can be defined 
recursively by 

(4.2) The one-vertex graph is a cograph 

(4.3) IfGi = (Vi' Ed and G2 = (V2,E2) are cographs on disjoint sets Vi' V2, then 

Gi + G2 := (Vi U V2 ,Ei U E2 ) and 

Gi * G2 := (Vi U V2,Ei U E2 U (Vi X V2» 

are also cographs. 

Then Lemma 3.11 gives: 

(4.4) ns(Gi + G2) = max{ns(Gd, ns(G2)} 

(4.5) ns(Gi * G2) = min{lVtI + ns(G2),1V21 + ns(Gd} 

An associated interval representation of an optimal search can be dermed similarly 
as in the tree algorithm by defining offsets in each operation. So if a sequence of 
operations "*" and" +" producing the whole graph is given (a parse tree defining 
such a sequence for G can be obtained in 0(1 V(G)I + IE(G)I) time [CPSS5]) one 
obtains: 

4.8 Theorem: The track number of a cograph G (given in "decomposed" form or by 
its parse tree) and an optimal layout can be obtained in 0(1 V(G)I) time. 

The operation "*" can be seen as a special split in which (with the terminology of 
Lemma 3.11) A = Vi and B = V2.1t is still open whether there is a polynomial time 
search algorithm for the larger class of graphs that can be recursively decomposed 
by splits. They are known as distance-hereditary graphs [BMS6] or completely 
separable graphs [HMS7], and contain both the class of trees and the class of 
cographs. 

Finally, we mention the class of chordal graphs discussed in connection with 
Theorem 4.4. By using a dynamic programming approach similar to that for 
PARTITION in [GJ79], [GuS9] obtains: 

4.9 Theorem: If the maximal cliques Co, Ci , ... , Cm of G fulfill 

(4.6) 

then t(G) and an optimal layout can be obtained in 0(1 V(GW) time. 

Condition (4.6) means that the cliques C i , ... , Cn have a special overlap structure 
with the "central" clique Co. Similar arguments yield also a polynomial algorithm 
for split graphs [GoSO], i.e. those chordal graphs whose complement is also chordal. 



Graph Problems Related to Gate Matrix Layout and PLA Folding 47 

For PLA-folding problems, much less is known about polynomially solvable cases. 
An algorithm for constrained PLA-folding on trees has been obtained in [HKS7]. 
Results of [BoS7] on the balanced complete bipartite subgraph problem (in par
ticular the transformation applied there) show, when combined with Propositions 
3.16 and 3.1S, the polynomial solvability of constrained block folding and block 
folding on partial k-trees. It is easy to also obtain polynomial time dynamic 
programming algorithms for these cases. 

5. Algorithms 

Due to the VLSI-background, many algorithms have been proposed and studied 
in the literature. The majority of them can be classified as (sometimes a combination 
of) heuristics, branch-and-bound algorithms, or dynamic programming algorithms. 

Representatives for the different technologies discussed here are [YKK75], [AsS2] 
for Weinberger arrays, [LVVSS2], [LiS3], [WHWS5], [LeoS6], [NFKYS6], 
[DKLS7] for gate matrix layout, and [LLS4], [HDBS6], [HKS7], [KHS7], 
[ALNSS] for PLA folding (see [GLSS] for additional references). The problems 
studied in these papers are usually not larger than 50 x 60 (in terms of the net-gate 
matrix), with the exception of 100 x SO in [ALNSS]. 

Only little is known about the performance of heuristics for these problems. By 
using standard arguments from [GJ79], the existence of an approximation algo
rithm for gate matrix layout with a constant absolute performance guarantee is 
ruled out in [DKLS7]: 

5.1 Theorem: Unless P = N P, there is no approximation algorithm A for gate matrix 
layout with 

(5.1) A(n:::;; OPT<n + K, K E Nfixed 

for all instances I. 

It is well known [GJ79] that this also rules out the existence of a fully polynomial 
approximation scheme for gate matrix layout. 

The existence of approximation algorithms with a constant relative performance 
guarantee is open. There are, however, some indications that they might not exist. 

For PLA-folding problems, such an indication is given in [RLSS]. Call two prob
lems equivalent with respect to approximation if both or none are approximable with 
constant relative performance guarantee in polynomial time. Then [RL8S]: 

5.2 Theorem: PLA-folding, block folding, and constrained block folding are equiva
lent with respect to approximation, when viewed as maximization problems (maximize 
the size of a folding). 

The proof is based on transforming feasible solutions of one problem to feasible 
solutions of the other while preserving a constant relative performance guarantee. 
For instance, let algorithm A produce, for an instance I of PLA-floding, a solution 
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with A(I) folded pairs such that A(I) :5: K· OPT(I), where OPT(I) denotes the size 
of an optimal folding. Then we can transform this solution to a solution of block 
folding, with size A'(I) by taking, in a decreasing staircase arrangement ofthe layout 
(cf. the remarks preceeding Proposition 3.17), the first nets of rows 1,2, ... , lA(I)j2J 
and fold them with the last nets of rows lA(I)j2J + 1, ... , A(I). Clearly, this gives a 
block-folding with A'(I) = A(I)j2 folded nets, and so the maximum size OPT'(I) of 
a block folding fulfills OPT'(I) :5: OPT(I) :5: K· A (I) = 2K· A'(I). 

This equivalence result is combined in [RL88] with the following, unexpected result 
that provides the indication for non-approximatibility. 

5.3 Theorem: If there is an approximation algorithm A for block folding (in the 
maximization version) with relative performance guarantee K, KEN fixed, then 
there is also one with relative performance guarantee 1 + e for every fixed e > O. 

Note, however, that these results carry only through for the mximization version 
of the PLA-folding problems (maximize the size of a folding set). Both proofs fail 
for the-perhaps more natural-minimization of the number of tracks required in 
a layout. 

Current work at the TU Berlin applies Lagrangean relaxation and subgradient 
methods combined with branch-and-bound techniques to the constrained block 
folding problem [Mii89]. Starting point is the formulation as a matching problem 
on a bipartite graph with side constraints (Proposition 3.17). Relaxation of the side 
constraints (3.15) and an appropriate reformulation then leads to a special well
solved min-cost flow problem whose use in branch-and-bound schemes seems to 
be promising. 

For gate matrix layout, an indication for the non-existence of approximation 
algorithms with constant relative performance guarantee is obtained in [DKL87] 
by considering algorithms that are on-line with respect to the nets. This means that 
the nets are processed in an incremental fashion according to the following rules: 

(1) A partial layout for the nets processed so far has already been constructed and 
may not be changed when the next net is processed. 

(2) The next net Ni to be processed is chosen such that its addition to the partial 
layout causes the least increase in the number of tracks. 

By designing a class of examples, [DKL87] show that such on-line algorithms 
cannot guarantee a· constant relative performance error. 

This definition of on-line seems, however, to be very restrictive, since the algorithms 
even fail to construct an optimal layout for interval graphs. (In fact, the class of 
examples of [DKL87] consists entirely of interval graphs.) The reason for this 
behavior is the rigidity of the already constructed partial layout. 

We suggest here a less rigid approach that is still on-line and equally fast, but allows 
more flexibility in modifying the partial layout. The basic idea is to maintain not a 
partial layout, but the corresponding interval graph (see Section 3), and to represent 
it by its MPQ-tree. 
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The MPQ-tree (see [KM89] for details) is a data structure that represents an 
interval graph H and all associated interval orders (cf. Lemma 3.1) in 0(1 V(H)I) 
space. It permits also fast updating when a vertex is added to H. Such an update 
will always recognize when H + v is again an interval graph and modify the 
MPQ-tree accordingly. (So the examples from [DKL87] are solved optimally.) If 
H + v is not an interval graph, then there are several possibilities to augment H + v 
to an interval graph H* by considering different interval orders associated with H. 
So keeping the maximum clique size small then means to permute or invert the 
nodes of the MPQ-tree representing H in such a way that adding v increases co(H) 
as little as possible. This "local" optimization can be done in polynomial time. 

Altogether, this leads to a class of on-line algorithms based on incremental interval 
graph generation by means of MPQ-trees. Current work at the TV Berlin in this 
direction seems to be quite promising. 
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Probleme anf planaren Graphen. In dieser Arbeit wird iiber klassische und jiingste Ergebnisse bei der 
Entwicklung efficienter Algorithmen fiir die folgenden elf wohlbekannten Probleme an planaren Graphen 
berichtet: Planaritatstests, Einbettung und Zeichnen, Separation, Knotenfarbung, Kantenfarbung, 
Unabhangige Knotenmengen, Auflisten von Untergraphen, Harniltonsche Kreise, Netzwerkfiiisse, 
Steiner Baume und Walder. Ferner werden typische Methoden und Techniken zur Behandlung planarer 
Graphen diskutiert. Einige offene Fragen beziiglich planarer Graphen werden erwiihnt. 

1. Introduction 

Recent research efforts in computational graph theory have concentrated on design
ing efficient algorithms for solving combinatorial problems on graphs, and many 
efficient algorithms have been obtained for various problems, such as planarity 
testing, maximum matchings, and network flows. On the other hand many problems 
of practical importance have been shown NP-complete and appear to be intractable. 

Planar graphs are those that can be drawn in the plane in such a way that vertices 
are represented by points, edges by lines connecting their endpoints, and no two 
such lines intersect except at common endpoints. Since planar graphs often appear 
in practical areas such as traffic networks and electrical circuits, it would be useful 
to design efficient algorithms for planar graphs. However most of NP-complete 
problems for general graphs remain NP-complete even for planar graphs, but some 
become tractable in a sense that there are efficient exact or approximate algorithms 
at least for a large class of planar graphs. 
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This paper surveys classical and recent results in the development of efficient 
algorithms for planar graph problems. In this paper a graph G = (V, E) means an 
undirected simple graph with vertex set V and edge set E unless otherwise specified. 
We denote by n the number ofvertices in G and by m the number of edges. We deal 
only with sequential algorithms for the following eleven famous problems: planarity 
testing, embedding, drawing, planar separators, vertex-coloring, edge-coloring, in
dependent vertex set, listing subgraphs, Hamiltonian cycle, network flows, and 
Steiner trees and forests. Also typical methods and techniques useful for planar 
graph problems such as dualization, divide-and-conquer using planar separators, 
dynamic programming using planar embeddings, etc. are discussed. Furthermore, 
significant open questions on planar graphs are mentioned. We refer to [NCSS] for 
more details on the planar graph problems. 

2. Planarity Testing and Embedding 

There are many practical situations in which one wishes to determine whether a 
given graph is planar, and if so, to find a planar embedding (drawing) of the graph. 
For example, in the layout of printed or VLSI circuits, one is interested in knowing 
whether a graph G representing a circuit is planar and if so, also in finding a planar 
embedding of G. 

An input graph G in the planarity testing problem is represented by a set of n lists, 
called adjacency lists. The list Adj(v) for vertex v E V contains all the neighbours of 
v. For each v E Van actual drawing of a planar graph G determines, within a cyclic 
permutation, the order of v's neighbours embedded around v. Embedding a planar 
graph G means constructing adjacency lists of G such that, in each Adj(v), all the 
neighbours of v appear in clockwise order with respect to an actual drawing. Such 
a set of adjacency lists is called an embedding of G. 

Two planarity testing algorithms which run in linear time are well-known: one by 
Hopcroft and Tarjan [HT74], and the other by Booth and Lueker [BL76]. The 
former called the "path addition algorithm" starts by finding a simple cycle and 
adding to it one simple path at a time. Each such new path connects two old vertices 
via new edges and yertices. Whole pieces are sometimes flipped over. The algorithm 
is the first one that tests the planarity of a given graph in linear time. 

The latter called the "vertex addition algorithm" is conceptually simpler than the 
former. It was first presented by Lempel, Even and Cederbaum [LEC67], and 
improved later to a linear algorithm by Booth and Lueker [BL 76] employing an 
"st-numbering" algorithm and a data structure called a "PQ-tree". The algorithm 
adds one vertex at each step. Previously embedded edges incident with this vertex 
are connected to it, and new edges incident with it are embedded and their ends are 
left unconnected. Sometimes whole pieces have to be reversed (flipped) around or 
permuted so that some ends occupy consecutive positions. If the representation of 
the embedded subgraph is updated with each alteration of the embedding, then the 
final representation will be an actual embedding of a given whole graph. 
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The "st-numbering" plays a crucial role in the testing algorithm. A numbering of 
the vertices of G by 1, 2, ... , n is called an st-numbering if the two vertices 1 and n 
are necessarily adjacent and each other vertex j is adjacent to two vertices i and k 
such that i < j < k. Every 2-connected graph G has an st-numbering, and an 
algorithm given by Even and Tarjan [ET76] finds an st-numbering in linear time. 

A data structure called a PQ-tree is used in the vertex addition algorithm. A PQ-tree 
represents the permutations of a set S in which various subsets of S occur consecu
tively. Booth and Luekker gave a linear algorithm for manipulating PQ-trees 
[BL76]. 

Another linear-time planarity testing algorithm appeared in [DR82]. 

The aforementioned planarity testing algorithms can be modified to construct an 
embedding of a planar graph. Such a linear algorithm using PQ-trees appeared in 
[CNA85]. 

3. Drawing 

The problem of drawing a planar graph often arises in applications, including the 
Design Automation ofVLSI circuits. Wagner [Wag36] and Fary [Far48] indepen
dently showed that every planar graph can be drawn in the plane in such a way 
that the edges are straight line segments and the vertices are points. 

A convex drawing of a planar graph is a straight-line drawing in which all the face 
boundaries are convex polygons. Clearly the complete bipartite graph K 2 ,n-2' 

n Z 6, has no convex drawing. Thus not every planar graph has a convex drawing. 
Tutte [Tut60] proved that every 3-connected planar graph has a convex drawing, 
and established a necessary and sufficient condition for a planar graph to have a 
convex drawing. Furthermore he gave a "barycentric mapping" method for finding 
a convex drawing, which requires solving a system of O(n) linear equations [Tut63]. 
The system of equations can be solved in O(n3) time and O(n2) space using the 
ordinary Gaussian elimination method, orin O(n1.5) time and O(nlog n) space using 
the sparse Gaussian elimination method which relies on the planar separator 
algorithms [LRT79]. Thus the barycentric mapping leads to an O(n1.5) time convex 
drawing algorithm. 

Chiba, Yamanouchi and Nishizeki [CYN84] gave two linear algorithms for the 
convex drawing problem: drawing and testing algorithms. The former, based on a 
short proof of Tutte's result given by Thomassen [Th080], draws a given planar 
graph G convex if possible: it extends a given convex polygonal drawing of an outer 
facial cycle of G into a convex drawing of G. The latter algorithm tests the possibility: 
it determines whether a given planar graph has a convex drawing or not. Chiba et 
al. [CYN84] showed that the convexity testing of a graph G can be reduced to the 
planarity testing of a certain graph constructed from G. 

Every planar graph can be augmented to a maximal planar graph by adding new 
edges; the resulting graph necessarily has a convex drawing. Thus all the convex 
drawing algorithms above immediately yield straight-line drawing algorithms. 
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Some papers study the problem of producing aesthetically desirable drawings of 
planar graphs or trees [SRS3, CONS5]. Obviously there are no absolute criteria 
that accurately capture our intuitive notion of a nice drawing of planar graphs. The 
linear algorithm of Chiba, Onoguchi and Nishizeki [CONS5] obtains a pleasing 
drawing that satisfies the following property as far as possible: the complement of 
3-connected components, together with inner faces and the complement of the outer 
face, are convex polygons. 

All the drawing algorithms of planar graphs above have a drawback: vertices tend 
to bunch together and they require high precision real arithmetic relative to the size 
n of a graph. In fact it had been an open question whether or not every planar graph 
has a straight-line drawing on a grid of side length bounded by W' for some fixed k. 
Recently de Fraysseix, Pach and Pollack [DPPSS] solved this open problem 
affirmatively, and gave an O(n log n) algorithm which draws any given planar graph 
on the 2n-4 by n-2 grid. Chrobak [CPSS] improved the time complexity to O(n). 

Eades and Tamassia have extensively surveyed graph drawing algorithms [ETS7]. 

4. Planar Separator Algorithm 

The "divide-and-conquer" is one of the efficient approaches for solving computa
tional problems on graphs. In this method, the original graph is divided into two 
or more smaller graphs. The problems for subgraphs are solved by applying the 
same method recursively, and then the solutions for the subgraphs are combined 
to give the solution to the original problem. The planar separator theorem of Lipton 
and Tarjan provides a basis for this approach [LT79]. The theorem asserts that 
any planar graph of n vertices can be divided into components of roughly equal size 
by removing only O(Jn) vertices. They also gave a linear algorithm for finding such 
a separator. Miller [MilS6] generalized the planar separator theorem to that for a 
cycle separator. The latter separator can be used to f!mplify algorithms for some 
applications [JV82, RicS6]. 

Lipton and Tarjan obtained the following form of their separator theorem: every 

planar graph of n vertices contains a set C of 0 ( A) vertices whose removal leaves 

no connected component with more than en vertices, where e is any constant such 
that 0 < e < 1. Furthermore they showed that the set C can be found in O(n log n) 
time. Using this theorem, one can obtain approximation algorithms with time 
complexity O(nlogn) and worst-case ratio 1 - O(I/Jloglogn) for the maximum 
induced subgraph problem with respect to the following properties (among others): 
(1) independent, (2) bipartite, (3) forest, and (4) outerplanar [LTSO,CNS81b]. 

The planar separator theorem has many applications. The layout of graphs, such 
as trees, X -trees and k-dimensional meshes, for VLSI are discussed in [LeiSO]. 
Generalization of the "nested dissection" method for carrying out sparse Gaussian 
elimination on a system oflinear equations is discussed in [LRT79]. Applications 
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to the problems of nonserial dynamic programming, pebbling, lower bounds on 
Boolean circuit size and embedding of data structures can be found in [L TSO]. 

Using the planar separator theorem, Frederickson obtained algorithms which solve 
the single-source shortest path problem for planar graphs in O(nJlog n) time and 
the all pair shortest path problem in O(n2) time [FreS7]. 

5. Vertex-Coloring 

A (vertex-)coloring of a graph is an assignment of colors to the vertices so that 
adjacent vertices get distinct colors. A k-coloring of a graph uses at most k colors. 
The smallest integer k such that a graph G has a k-coloring is called the chromatic 
number of G and is denoted by x( G). 

The vertex-coloring problem, i.e., coloring a graph G with x( G) colors, has practical 
applications in production scheduling, construction of time tables, etc. Since the 
problem is NP-hard [GJ79], it is unlikely that it admits a polynomial algorithm. 
One might expect that there would be an efficient approximate algorithm which 
uses a number of colors, not necessarily X(G) but close to X(G). However a poly
nomial algorithm that guarantees to color a graph with at most axe G) + b colors, 
a < 2, will imply a polynomial algorithm to color every graph G with x( G) colors 
[GJ76]. In other words, getting close within a factor of two to the optimum is as 
hard as achieving it. 

The situation for planar graphs is much more favorable. The famous four-color 
theorem proved by Appel and Haken says that every planar graph is 4-colorable 
[AH77]. We now sketch the outline of the proof. A graph is k-chromatic if it is not 
(k - i)-colorable but k-colorable. A configuration is an induced subgraph of a 
planar graph. A configuration is reducible if no minimal 5-chromatic planar graph 
can contain it. A set of configurations is unavoidable if every planar graph contains 
at least one of them. In order to prove that every planar graph is 4-colorable, one 
has to find an unavoidable set of reducible configurations. Making use of the so-called 
discharging method and fast electronic computers, Appel and Haken eventually 
found an unavoidable set of over 1900 reducible configurations. 

The proof of the four-color theorem leads to an algorithm of 4-coloring a planar 
graph. The algorithm runs in O(n) recursive steps; at each step the algorithm detects 
in a graph one of over 1900 reducible configurations belonging to the unavoidable 
set, and recurses to a smaller graph. Since all the configurations contain at most 13 
vertices, one recursive step can be done in time proportional to n, but the coefficient 
is no less than 1900. Thus the 4-coloring algorithm runs in O(n2) time, although it 
does not seem practical. The problem of finding a linear-time 4-coloring algorithm 
remains open. 

In contrast, one can easily prove the five-color theorem that every planar graph has 
a 5-coloring, and there are linear algorithms which color every planar graph with 
at most five colors [MSTSO, CNSS1a, FreS4, WillS5]. Although most of the stan-
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dard texts on graph theory use the Kempe-chain argument in proving the theorem, 
the proof on which the linear algorithms are based uses an argument of "identifica
tion of vertices" [Wils85]. The proof is by induction on n and goes as follows. The 
Euler's formula implies that every planar graph has a vertex of degree at most five. 
Consider first the case when there is a vertex v of degree at most four. The deletion 
of v leaves a planar graph G - v having n - I vertices, which is 5-colorable by the 
inductive hypothesis. Then v can be colored with any color not used by the (at most 
four) neighbours, completing the proof of this case. In the remaining case there is 
a vertex v of degree five. Since the subgraph of G induced by the five neighbours of 
v is not K s, v has two nonadjacent neighbours x and y. Delete vertex v from G, 
identify vertices x and y, and let G' be the resulting graph. Since. G is planar, so is 
G'. Furthermore no loop is produced in G' since x and yare nonadjacent in G. Since 
G' has n - 2 vertices, the hypothesis implies that G' has a 5-coloring, which naturally 
induces a 5-coloring of G - v in which x and yare colored with the same color. 
Assigning to v any color other than the (at most four) colors of the neighbours, we 
get a 5-coloring of G, completing the proof. 

The proof have immediately yields a recursive algorithm which colors every planar 
graph G with at most five colors. Clearly the time required by vertex-identifications 
dominates the running time of the algorithm. One can easily identify two vertices 
in time proportional to the sum of their degrees. However the same vertex may 
appear in identifications O(n) times, so a direct implementation of the algorithm 
would require O(n2) time. There are essentially two types of linear algorithms. The 
first one given by Chiba, Nishizeki and Saito [CNS8Ia] runs in several stages, in 
each of which a set ofvertex-identifications are performed in linear time but at least 
some fixed percentage of the vertices are eliminated. The second one given by 
Matula, Shiloach and Tarjan [MST80] and later simplified by Frederickson 
[Fre84] is to recurse after each identification, choosing identification that requires 
constant time to perform. Both approaches involve a clever exploitation of proper
ties of planar graphs. 

We add one more remark on the vertex-coloring problem. The problem remains 
NP-complete even for planar graphs [GJS76]. However every planar graph is 
4-colorable, and it is easy to check whether a graph is 2-colorable, i.e., bipartite or 
not. Thus the problem of deciding whether a given planar graph is 3-chromatic or 
4-chromatic is indeed NP-complete. 

6. Edge-Coloring 

In this section we survey the edge-coloring problem for planar graphs. The problem 
is to color the edges of a given graph G using as few colors as possible, so that no 
two adjacent edges receive the same color. The minimum number of colors is called 
the chromatic index of G and denoted by X' (G). Holyer showed that the edge-coloring 
problem is NP-hard [HoI81], and therefore it seems unlikely that a polynomial 
algorithm exists for the problem. 
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Let A denote the maximum degree of a graph G, then trivially A ::; X'(G). On the 
other hand, by the Vizing's classical result, x'(G) ::; A + 1 for every simple graph G 
[FW77, Viz64]. Special cases which can be colored with A colors are bipartite 
graphs, cubic bridgeless planar graphs (whose edge-coloring in three colors is 
equivalent to the four-color problem), and planar graphs with A ~ 8 [CH82, FW77, 
GK82, Viz65]. 

The fastest known algorithm Jor edge-coloring a simple graph with A + 1 colors 
runs in O(Amlogn) or O(m nlogn) time [GNK84]. One of the algorithms in 
[GNK84] edge-colors with A colors a planar simple graph with A ~ 8 in O(n2) 
time. For planar simple graphs with A ~ 9 the time complexity can be improved to 
O(nlogn) [CNi89]. 

It is not known whether the edge-coloring problem remains NP-complete for planar 
graphs. 

Concerning multigraphs, Goldberg and Seymour have a conjecture that the bound 

x'(G) ::; max {r(G), A + 1} 

would hold for any multigraph G [G0173, Sey79b]. Here r(G) is a trivial lower 
bound on X' (G): 

[ m(H) ] 
r( G) = ~:~ L n(H)j2 J ' 

where H runs over all subgraphs of G having at least three vertices, m(H) is the 
number of edges in H, and n(H) the number of vertices in H. This is one of the most 
important open problems in the area of edge-coloring. The conjecture was verified 
for the case of outerplanar graphs [Mar86]. The best upper bound known for 
multigraphs [NK85] is: 

X'(G)::; max {r(G), Ll.lA + O.8J}. 

7. Independent Set 

A set of vertices in a graph is independent if no two vertices in the set are adjacent. 
The maximum independent set problem, in which one would like to find a maximum 
independent set in a given graph, is NP-hard, and remains so even for the class of 
planar graphs. There are however efficient approximation algorithms for planar 
graphs, which find large independent set. 

An approximation algorithm is often evaluated by the worst-case ratio: the smallest 
ratio of the size of an approximation solution to the size of an optimal solution, 
taken over all problem instances. If a polynomial time algorithm existed with any 
constant worst-case ratio> 0 for the maximum independent set problem on graphs, 
then one could design a polynomial time algorithm with any constant worst-case 
ratio < 1 [HU79]. This fact does not imply that there exists no polynomial time 
approximation algorithm with a constant worst-case ratio> 0 for the problem on 
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a special class of graphs, such as planar graphs. In fact, Lipton and Tarjan's 
O(n log n) time approximation algorithm [LTSO] mentioned in Section 4 has a 
worst-ratio 1 - O(lIJloglog n), asymptotically tending to 1 as n --+ 00. Such a ratio 
is called an "asymptotic worst-case ratio". On the other hand, some approximation 
algorithms have an "absolute worst-case ratio", which does not dependent on the 
size n of a graph. For example, the 4-coloring algorithm, derived from the proof of 
the four-color theorem, immediately yields an approximation algorithm for the 
problem with the worst-case ratio i: Simply output the largest class of vertices 
colored with the same color. On the hand the 5-coloring algorithm achieves the 
absolute worst-case ratio ~. Moreover the algorithm of Albertson or Chiba et al. 
guarantees the worst-case ratio ~ for the problem [Alb74, CNSS3]. It is still open 
to prove, without use of the four-color theorem, the fact that every planar graph 
contains an independent set of size ~ ±n[Alb76]. 

Chiba, Nishizeki and Saito [CNSS2] gave an O(n log n) time approximation algo
rithm with absolute worst-case ratio !. For a given planar graph of any number n 
of vertices, the algorithm finds, in O(n log n) time, an independent vertex set that is 
necessarily larger than half a maximum independent set. The idea of the algorithm 
is to reduce a given planar graph to a planar graph of minimum degree /j = 5 by 
modifying the graph around vertices of minimum degree. A planar graph of /j = 5 
cannot have a large independent set: the size is necessarily less than tn. It is easy 
to find in such a graph an independent vertex set that is necessarily larger than 
half a maximum independent set. For example one may use the 5-coloring algo
rithm. Recently Chrobak and Naor improved the time complexity of the approxi
mation algorithm to O(n) [CNaSS]. The algorithm of Lipton and Tarjan [L TSO] 
can also guarantee the absolute worst-case ratio!. but the number n of vertices 
must be huge, say 22400. 

Baker [BakS3] gave an elegant approximation algorithm which works for various 
computational problems on planar graphs, including the maximum independent 

set problem. The algorithm attains the worst-case ratb k ~ 1 and runs in O(Skkn) 

time for any positive integer k. Thus her algorithm realizes the worst-case ratio of 
both types; absolute and asymptotic. For example, letting k = lone can get a linear 
time algorithm having the absolute worst-case ratio !, while letting k = log log n 
one can get an o (n(log n)310g log n) time algorithm with the asymptotic worst-case 
ratio of (loglognV(l + log log n) tending to 1. Her algorithm uses the dynamic 
programming approach based on planar embedding. 

8. Listing Subgraphs 

Listing certain kind of subgraphs of a graph such as cliques, triangles, cycles et al. 
arises in many applications. Itai and Rodeh were the first to give a linear-time 
algorithm for listing all triangles in a planar graph [IR 7S]. They used depth-first 
search. 
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Chiba and Nishizeki [CN85b] found a simple strategy for edge-searching a graph, 
which is useful for various subgraph listing problems. The algorithm chooses a 
vertex v in a graph and scans the edges of the subgraph induced by the v's neighbours 
to find the pattern subgraphs containing v. The main feature of the strategy is to 
repeat the searching above for each vertex v in decreasing order of degree and to 
delete v after v is processed so that no duplication occurs. The procedure above 
requires O(a(G)m) time for a graph G, where a(G) is the arboricity of G, that is, the 
minimum number of edge-disjoint spanning forests into which G can be decom
posed. Using the strategy, they presented algorithms which list in O(a(G)m) time all 
the triangles C3 or all the quadrangles C4 in G. Since every planar graph satisfies 
a( G) :::;; 3, the algorithms run in linear time for such graphs. Based on this approach, 
they also gave an O(la(G)I-2m) time algorithm for listing all the cliques Kl in a graph 
G. The algorithm lists all K4 contained in a planar graph in linear time. Since a 
planar graph contains no K l , I ;:::: 5, the problem for finding all the cliques in a planar 
graph can be solved in linear time. Papadimitriou and Yannakakis [PY81] reported 
another linear algorithm for the problem, based on breadth-first search. Their 
algorithm however does not work correctly but can be corrected easily. Matula and 
Beck [MB83] obtained another linear algorithm for detecting a triangles in a planar 
graph, based on what they call "smallest-last ordering". 

Richards [Ric86] gave O(n log n) algorithms for detecting both a Cs or a C6 in a 
planar graph. The algorithm uses a divide-and-conquer approach which relies on 
the Lipton-Tarjan separator algorithm [L T79]. It is open whether there exists a 
linear algorithm for detecting Cs or C6 and whether there exists an O(n log n) 
algorithm for detecting a Cl , I;:::: 7. Another important open problem is whether 
there is a linear algorithm to detect a triangle in a graph. 

Syslo gave a cycle vector space algorithm for listing all cycles of a planar graph 
[Sys81]. 

9. Hamiltonian Cycle 

A Hamiltonian cycle of a graph G is a cycle which contains all the vertices of G. The 
Hamiltonian cycle problem asks whether a given graph contains a Hamiltonian 
cycle. It is NP-complete even for 3-connected cubic planar graphs [GJT76, Kar72], 
2-connected cubic bipartite planar graphs [ANS80], or maximal planar graphs 
[Chv85]. However the problem becomes polynomial-time solvable for 4-connected 
planar graphs: Tutte proved that such a graph contains a Hamiltonian cycle 
[Tut56, Tut77]. Based on Tutte's proof, Gouyou-Beauchamps obtained an O(n3) 
algorithm which finds a Hamiltonian cycle in such a graph [Gou82]. Asano, 
Kikuchi and Saito presented a linear algorithm for the problem on 4-connected 
maximal planar graphs [AKS84]. Chiba and Nishizeki [CN89] constructed a linear 
algorithm for 4-connected planar graphs, based on Thomassen's short proof of 
Tutte's theorem [Th083, CN85a]. 

A Hamiltonian walk in a connected graph is a shortest closed walk that passes 
through every vertex at least once, and the length is the total number of edges 
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traversed by the walk. A Hamiltonian cycle is obviously a Hamiltonian walk. A 
trivial lower bound and a trivial upper bound are known on the length, h(G), of a 
Hamiltonian walk of a connected graph G: n ::;; h( G) ::;; 2(n - 1). A nontrivial upper 
bound on the length of a Hamiltonian walk for maximal planar graphs was obtained 
[ANWSO]: 

h(G){::;; t(n - 3) ifn ~ 1.1; 
= n otherwIse. 

Since the proof in [ANWSO] is constructive, it immediately yields an O(n2) algo
rithm for finding a closed spanning walk of length::;; t(n - 3) in maximal planar 
graphs [NA WS3]. The algorithm uses a divide-and-conquer approach involving a 
partition of a graph at a separation triple, which forms a triangle in a maximal 
planar graph. One can improve the time complexity to O(n) by using two linear-time 
algorithms: the algorithm for finding a Hamiltonian cycle in 4-connected planar 
graphs, and the traingle listing algorithm [NCSS]. The upper bound on h(G) is 
conjectured to be improved to h(G) ::;; !(n - 2) if n ~ 11. 

10. Network Flows 

The network flow problem and its variants have been extensively studied. The 
original and most classical problem is that of finding a maximum flow of a single 
commodity in an arbitrary graph. The key theorem in flow theory is the Max Flow
Min Cut theorem ofFord and Fulkerson [FF56], which holds for single commodity 
and two commodity flows [Hu69]. There are efficient algorithms for finding 
a maximum single commodity flow; an O(mnlog(n2Im)) time algorithm is the 
best known one for sparse graphs [STS3]. Two commodity flows in undirected 
graphs can be found by solving two single-commodity flow problems, hence in 
O(mn log(n2Im)) time [Ita 78, Sak73, Sey79a]. 

The so-called uppermost path algorithm can find a maximum single commodity flow 
in a planar graph with source s and sink t both on the outer boundary B [FF56, 
IS79]. The algorithm starts with zero flow and pushes flow as much as possible 
through the "uppermost path" on B connecting sand t. Thereby, at least one edge 
becomes saturated. Such an edge is deleted, and the process is repeated using the 
uppermost path of the resulting graph. One can observe that the algorithm merely 
executes the shortest path computation on the dual of G [HasSI]. Thus the maxi
mum single-commodity flow can be found in O(T(n)) time, where T(n) denotes the 
time required for finding the single-source shortest paths in a planar undirected 
graph with nonnegative edge weights having n vertices. If the usual Dijkstra's 
algorithm [AHU74, Joh77] is used, then T(n) = O(n log n). If Frederickson's algo
rithm which relies on the planar separator theorem [Fre87] is used, then T(n) = 
O(nJlog n). The uppermost path algorithm does not work when sand t are not on 
the same face boundary, but an O(n log n) algorithm for such a planar undirected 
graph and an O(n1.S logn) algorithm for such a planar directed graph are known 
[Rei83, HJ85, JV82, Fre87]. 
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The situation is different with regard to flows of more than two commodities. In 
general the multicommodity integral flow problem is NP-complete. No simple 
polynominal-time algorithm is known even for the muiticommodity (real-valued) 
flow problem on graphs. Recently Tardos obtained a strongly polynomial-time 
algorithm to solve combinatorial linear programs including the multicommodity 
flow problem [Tar86]. However, it employs a polynomial-time linear programming 
algorithm, and hence neither has a polynomial-time bound of lower order nor is 
easy to implement. Therefore simple efficient algorithms are useful in practice even 
if they are valid only for planar graphs. 

It has been established that the Max Flow-Min Cut theorem of multicommodity 
type holds for the following five classes of planar undirected graphs [OS81, Oka83, 
Sey81, Sch88b]: 

Cl : all sources and sinks are located on a specified face boundary [OS81]; 
C12: all sources and sinks are located on two specified face boundaries with each 

source-sink pair on the same boundary [Oka83]; 
COl: some source-sink pairs are located on a specified face boundary, and all the 

other pairs share a common sink located on the boundary (their sources 
may be located anywhere) [Oka83]; 

Ca : All the sources can be joined with the corresponding sinks without violating 
planarity [Sey81]; and 

C12,: All the sources Sl, S2, ••• , Sk appears on the boundary of the outer face in 
clockwise order, and all the sinks t l , t2 , ••• , tk appear on some other face 
boundary in counterclockwise order [Sch88b]. 

Efficient algorithms for the first four classes were obtained [MNS85, MNS86, 
SNS88, Has84]. All the algorithms reduce the flow problem on a planar undirected 
graph to the shortest path or cycle problem on an undirected or directed graph 
obtained from the dual of the given undirected graph. Multicommodity flows for 
Cl , C12, COl can be found by solving O(n) times the single-source shortest path 
problem for a planar graph. Hence one can find flows in O(kn + nT(n)) time, where 
k is the number of source-sink pairs. On the other hand, multicommodity flows for 
Ca can be found by solving O(n) times a weighted matching problem on a certain 
graph. Using the planar separator algorithm, one can solve the matching problem 
in O(n1.Slog n) time. Thus the flows for Ca can be found in O(n2 ,s log n) time 
[MNS86]. Recently Barahona showed that flows for Ca can be found in O(n1.Slog n) 
time by solving once the Chinese postman problem in the dual planar graph 
[Bar87]. Using the same idea, he showed that the max cut problem can be solved 
in O(n1.Slog n) time for planar graphs. 

The Max Flow-Min Cut theorem was shown to hold for certain kinds of planar 
directed graphs [NI88]. 

The edge-disjoint path problem is to find edge-disjoint paths connecting specified 
pairs of vertices in a graph. The problem can be formulated as a multicommodity 
integral flow problem. Recently many results have been obtained for the edge
disjoint path problem on planar graphs or plane grids [Fra85, KM86, MNS85, 
MP86, SNS88]. 
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11. Steiner Tree and Forests 

The Steiner minimum tree problem on a weighted graph G = (V, E) with a set N of 
special vertices called terminals is to fmd a tree of minimum weight which intercon
nects the terminals of N (possibly using some vertices in V - N). The Steiner 
minimum tree problem is known to be strongly NP-hard for planar graphs [GJ79], 
and polynomially-solvable for planar graphs if the terminals lie on a fixed number 
of faces [EMV87]. See [Win87] for an extensive survey of works on this problem. 

The Steiner forest problem on an unweighted graph with sets (called nets) of termi
nals is to find a forest, that is, vertex-disjoint trees, each of which interconnects all 
the terminals of a net. The problem does not require to minimize the number of 
used edges, and hence is a generalization of the vertex-disjoint path problem. Since 
the vertex-disjoint path problem is NP-hard even for planar graphs [Lyn7S] or 
plane grids [KL82], so is the Steiner forest problem for planar graphs. Robertson 
and Seymour showed that the problem is solvable in polynomial time if all the 
terminals lie on only two faces of a planar graph [RS86]. Suzuki, Akama and 
Nishizeki improved the time complexity to O(n log n) [SAN88]. They also give an 
O(nlogn) algorithm for finding a maximum number of internally vertex-disjoint 
paths connecting two specified vertices in a planar graph [SAN88]. The internally 
disjoint path algorithm employs a divide-and-conquer approach without using the 
plannar separator algorithm, and plays a crucial role in their Steiner forest algo
rithm. Schrijver showed that the Steiner forest problem is solvable in polynomial 
time if all the terminals lie on a fixed number of faces in a planar graph [Sch88a]. 
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Basic: PanUel Algorithms in Grapb Theory. We discuss some of the more common machine models for 
paraDel computation and their variants, as well as some relevant basic results from parallel complexity 
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Fundamentale ParaDelalgorithmen in der Grapbentbeorie. Wir diskutieren einige der gebriiuchlicheren 
Maschinenmodelle und ihre Varianten fiir Parallelrechnung, sowie einige wichtige und grundlegende 
Resultate aus der parallelen Komplexitiitstheorie. Anschliel3end beschreiben wir eine Auswahl von 
elementaren und wichtigen "Tricks" und Methoden fUr efflZiente parallele Algorithmen. Znm SchluB 
geben wir einen Oberblick iiber paraIIele A1gorithmen fUr eine Reihe graphentheoretischer Probleme. 

1. Introduction 

Advances in VLSI technology have made it possible to build (and buy) computers 
with a large number of processors and blocks of memory. Using parallel computa
tion, one hopes to circumvent or avoid many of the problems caused by the so
called von-Neumann bottleneck of one serial CPU. First experiences with parallel 
machines and algorithms have also shown that in order to achieve efficient parallel 
computation and make optimal use of the available hardware, many careful deci
sions have to be made when designing the parallel architecture as well as the parallel 
algorithms supposed to run on it. 

While the apparent potential of parallel computation is certainly large and promis
ing, there are also obvious problems to utilize this potential. One reason for this 
frustration may lie in the fact that there is no "standard" parallel architecture for 
which to design efficient algorithms. This is in contrast to the sit.uation in the 
sequential world where there is a (more or less) unique model (called Random Access 
Machine by theoreticians) for which most algorithms are designed, at least as a first 
stage. 
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Another difficulty stems from the fact that many fundamental sequential program
ming techniques or algorithms, most of them considered by now probably as 
straightforward, are rather difficult if not impossible to parallelize. 

In this paper, we first discuss some of the more common models for parallel 
computation and their variants, in particular the Parallel Random Access machine 
model which though theoretical and somewhat idealistic, is a good model to express 
parallel algorithms in. It separates the issue of finding parallelism in problems or 
developing highly parallel algorithms from more implementation dependent prob
lems like inter-processor communication and network congestion. We also present 
some of the complexity theoretic background relevant to parallel computation. It 
provides some means to characterize those problems that are efficiently paralleliza
ble on the one hand, and problems that in all likelihood have no efficient parallel 
solutions on the other. 

Then we present a number of very basic and fundamental programming techniques 
and little routines that are tools for the development of many efficient parallel 
algorithms and applications. Where possible, we state such simple parallel proce
dures in a pseudoformal parallel programming language. Finally, we survey some 
classes of graph theoretic problems and parallel algorithms for them. We conclude 
by discussing some of the limits of our current knowledge on efficient parallel 
computation. 

2. Machine Models, Basic Complexity Results 

2.1. Models of Parallel Computation 

As we have already mentioned there is a large number of parallel machine models, 
varying considerably in power and programmability. In Table 1 we give a short list 
of such models. The list is not intended to be exhaustive, and it also gives pointers 
for more detailed descriptions of the models. 

We shall base most of our discussions onto a theoretical machine model for parallel 
computation called the Parallel Random Access Machine, or PRAM (s~, e.g., [31] 
[43]). In this model, there is an unbounded number of identical processors which 
are basically Random Access Machines (or RAM's), as defined in [4], and an 
unbounded number of global, shared memory cells. Each processor can execute its 
own program (though, in most cases, all processors will have the same program), 
and the processors work synchronously, controlled by a global clock. Each pro
cessor can access any memory cell in one step. 

Depending on whether simultaneous access to the same memory cell by more than 
one processor is permitted or not, several variants of the PRAM model have been 
defined. We do not consider conflicts between read and write operations since we 
always assume that the read operations are performed in the first half of a memory 
access cycle and the write operations in the second. The concurrent read exclusive 
write variant of the basic model (CREW-PRAM) allows that more than one pro
cessor read the same memory cell in one step, but it disallows concurrent writes to 
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Table 1. Models of Parallel Computation 

1. dataflow 
2. actors 
3. vector machines 
4. local area networks 
5. fixed (multistage) interconnection networks 
6. VLSI 
7. Parallel Random Access Machine 
S. Boolean circuits 
9. unbounded fan-in circuits 

10. alternating Turning machines 

[S] [2S] [45] 
[52] 
[SS] 
[77] 
[99] [104] 
[71] [76] 
[31] [43] 
[S7] [94] [lOS] 
[17] [101] 
[16] [93] [94] 
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the same memory cell. The exclusive read exclusive write variant (EREW -PRAM), 
on the other hand, forbids concurrent access completely. 

While there are no (logical problems with simultaneous read access to the same 
memory cell by more than one processor, some precautions have to be taken for 
simultaneous write access. Depending on the method used to resolve such conflicts, 
we further distinguish the following variants of the concurrent read concurrent write 
PRAM (CREW-PRAM): 

1. in the COMMON CREW-PRAM, all processors writing concurrently to the 
same memory cell have to write the same value; 

2. in the ARBITRARY CRCW-PRAM, if several processors write concurrently to 
a memory cell, some arbitrary processor succeeds; 

3. in the PRIORITY CRCW-PRAM, if several processors write concurrently to a 
memory cell, the processor with the highest index succeeds. 

It should be clear that the sequence of machine models given by 

EREW-CREW-COMMON CRCW-ARBITRARY CRCW-PRIORITY CRCW 

forms a hierarchy of machine models of increasing power in the sense that any model 
in the list can be (trivially) emulated by any other model further down in the list, 
without incurring any time loss. 

It is also not too hard to see that a PRIORITY CRCW-PRAM using n processors 
can be simulated by an n processor EREW -PRAM in such a way that the simulation 
of every step of the CRCW-PRAM requires O(logn) steps of the EREW-PRAM. 
The simulation is based on the following idea: Instead of directly accessing their 
desired memory cells, the n processors instead write a description of their request as 
well as their own index to some appropriate array of length.n. This array can then 
be lexicographically sorted by an EREW-PRAM algorithm in O(logn) time [21] 
by memory address and processor index. A simple computation then determines 
the outcome of the memory access by every processor and writes it into the 
corresponding array element from which it can be read by the processor. For a more 
detailed description, we refer the reader to [29], [68], and [107]. 

The shared memory feature of the PRAM model is somewhat idealistic. A more 
realistic machine model consists of a network of (identical) processors with memory 
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modules attached to them. The processors are connected via point-to-point com
munication channels. Each processor can directly access only cells in its own 
memory module, and it has to send messages to other processors in order to access 
data in their modules. To respect technological constraints, the number of channels 
per processor is usually bounded or a very slowly growing function of the num
ber of processors. Examples for such networks of processors are the Hypercube 
[98] or Connection Machine [53], the Cube-Connected-Cycles network [89], 
or the Ultracomputer (RP3) [86] [97]. The latter is an example for a multistage 
interconnection network, where an array of processors is connected to an array 
of memory modules by a switching network consisting of several stages of small 
switches. 

2.2. Basic Complexity Theoretic Concepts 

There are at least two goals one wishes to achieve with parallel computation: 
speedup and efficiency. Speedup is the ratio between the sequential running time 
T.(n) and the parallel running time Tp(n), measured for problem instances of size n. 
Efficiency is the ratio between the work performed by the sequential algorithm 
(which is, of course, equal to its running time) and the work performed by the parallel 
algorithm, which is given by its number of processors times its running time. We 
are interested in problems for which we can find parallel algorithms with large 
speedup using a reasonable number of processors. 

One way of formalizing this approach is given by the complexity class %~ [87]. 
It is the class of all those problems that a PRAM with a polynomial number of 
processors can solve in polylogarithmic time. More formally, for every problem in 
%~, there are constants c and k and a PRAM algorithm that requires O(nC) 
processors and O(lot n) time on instances of size n. Note that since the most 
powerful PRAM model we have listed (the PRIORITY CRCW-PRAM) can be 
simulated by the least powerful model (the EREW-PRAM) with an O(logn) slow
down, the definition of %~ is independent of the specific PRAM model. It even 
turns out that some fixed interconnection networks (including all those mentioned 
above) can simulate %~ algorithm with only a polylogarithmic slowdown, thus 
making the definition of %~ even more robust. 

It has also become customary to call problems in %~ "efficiently parallelizable", 
in the same manner as problems in [JJ (polynomial time) are called "feasible." 
We should note, however, that parallel algorithms requiring a number of proces
sors which is a high degree polynomial, or running in time O(logk n), for some 
large constant k, are certainly impractical, even though formally they are in 
%~. 

This leads us to also put some emphasis on the efficiency of parallel algorithms, as 
defined above. We call a parallel algorithm optimal if it runs in polylogarithmic time 
and with efficiency .0(1), and we call it efficient if it runs in polylogarithmic time 
with efficiency .Q(log-k n), for some constant k. 
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2.3. &'-completeness 

While many problems are efficiently parallelizable and have optimal or efficient 
parallel solutions, other problems and algorithmic techniques seem harder or 
impossible to parallelize. The complexity theoretic concept of a problem being 
&'-complete may be useful in characterizing such cases. &' is the well-known class 
of problems solvable in polynomial time on a sequential machine, like a Turing 
machine or Random Access Machine. To study hardest problems in &', we look at 
those problems in &' to which all other problems in &' can be reduced in an efficient 
manor. Formally, we call some problem C E &' &'-complete if for every other prob
lem A E &', there is a function f computable by a Turing machine hi logarithmic 
space such that 

X E A ifff(x) E C. 

It is quite easy to see that .!Vii&' is a subset of &'. The reason is that a (sequential) 
Turing machine can simulate an .!Vii&' computation by first simulating the first step 
of the polynomially many processors, then the second step, and so on. The simula
tion overhead per step is at most a polynomial in the number of simulated proces
sors, as long as all operands used by the parallel algorithm remain reasonably small. 
This is certainly the case for .!Vii&' algorithms which can run only for a poly
logarithmic number of steps. 

A somewhat more difficult construction can be used to show that, by a different 
type of simulation, .!Vii&' algorithms can be simulated by space efficient Turning 
machines. More precisely, if the running time of the .!Vii&' algorithm is oOot n), then 
O(log2k n) space suffices. For details of this construction, we refer the interested 
reader to [31] and [14]. 

The space efficient simulation of parallel algorithms implies in particular that .!Vii&' 
is a subset of POLYLOGSPACE, where the latter is the class of all problems 
solvable by a Turing machine whose workspace is bounded by a polylogarithmic 
function of the input size. If we now assume that some &'-complete problem A is in 
.!Vii&' then &' is equal to.!V1i&' and, in addition, &' s;; POLYLOGSPACE. This would 
mean that every problem in &' could be solved using very little space (but not 
necessarily, of course, simultaneously polynomial time). Though there is no kn.own 
proof ruling out this situation, it is widely agreed to be highly unlikely. We therefore 
take the fact that a given problem has been shown &'-complete as strong evidence 
that it is not in .!Vii&', not efficiently parallelizable. A fortiori, it won't admit efficient 
or optimal parallel algorithms as we have defined them. 

Finally, we discuss the generic &'-complete problem. It is the so-called circuit value 
problem (CVP). Define a circuit to be a directed acyclic graph whose nodes have 
indegree at most two. The indegree zero nodes are the inputs to the circuit, they are 
labelled with values in {O, 1}, representing the input to the circuit. Indegree one 
nodes are labelled with NOT, they represent NOT-gates, and indegree two nodes 
are each labelled AND or OR, representing the corresponding Boolean gates. The 
nodes of the graph with outdegree zero are called outputs of the circuit. The circuit 
value problem requires to determine, given a circuit together with a designated 
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output node, ~hether the value of this designated output as "computed by the 
circuit" usng the obvious rules is 1. It has been shown [69] that CVP is &'-complete, 
as are some important special cases [42]. 

3. Some Fundamental Techniques 

In this section, we present some of the more fundamental programming techniques 
and procedures. They are used in many applications dealing with combinatorial or 
graph theoretic problems. Table 2 contains a (not necessarily complete) list of some 
of these techniques. 

In the following, we shall describe some of these fundamental techniques in more 
detail. 

3.1. Doubling 

The job at hand is to compute the sum (or some other associative function) of n 
numbers, ao through all-t. Suppose initially that n processors are available. Then 
we could first compute the sum of all even-odd pairs and store it at the even 
positions, then add up pairs of these sums, and so on. The scheme of this type of 
computation is depicted in Figure 1. Note that all operations on one level of the 

Table 2. Fundamental Parallel 
Algorithms 

1. doubling 
2. pointer jumping or path doubling 
3. parallel prefix 
4. list ranking 
5. Euler contour path 
6. numbering of trees 

Figure 1. Summation by Doubling 
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procedure census_fimction(n, s, res, 0); 
int n; gmemptr s, res; binop 0; 
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co n is the number of elements in the input array starting at position s in global memory; res is the index 
of the global memory cell receiving the result; 0 is an associative binary operator oc 
begin 

local type_oLS: save, int: mask, gmemptr myindex; 
if PROC_NUM < n then 

Ii; 

mask := 1; myindex := s + PROC_NUM; save := Mm• ill4ex, 

while mask < n do 
if (PROC_NUM AND (2 * mask - 1) = 0) and PROC_NUM + mask < n then 

Mmyindex := MmYi'lldex 0 Mmyindex+mask 
Ii; 
mask := 2 * mask 

od; 
if PROC_NUM = 0 then Mr •• := M. Ii; 
if myindex '# res then Mmyill4e;c := save Ii 

return 
end census-jUnction. 

Figure 2. PRAM Algorithm for Census Functions 

tree can be performed in parallel since they access disjoint sets of variables. What 
we double in every iteration is the number of inputs whose sum we have already 
collected in a single variable. 

Another name used with regard to this doubling technique is census functions. In 
Figure 2, we give a detailed PRAM program to compute a census function. The 
program works as follows. Every processor uses a local variable save which is needed 
in order to make the procedure free of side-effects. All processors participating in 
the computation have indices less than n. The variable mask serves to select those 
processors that perform nontrivial computations in any given step. The algorithm 
starts with mask set to 1. The processor with index PROC_NUM takes care of the 
variable with index s + PROC_NUM. We just call this index myindex, and the 
processor initially saves away whatever there is in cell myindex. The variable mask 
is used to do the doubling. The expression (PROC_NUM AND (2 * mask - 1) = 0) 
i~ just a way of saying: What do the last few bits of PROC_NUM look like? In the 
first step, only those processors are active whose PROC_NUM is even, i.e. the last 
bit oftheir PROC_NUM is zero. Every such processor combines its value with that 
of the next processor. We also assume that all processors for which the if-condition 
does not hold perform an appropriate number of no-op steps such as to stay 
synchronized with the active processors. Then we double mask. Thus, mask will be 
two in the next it~ration of the loop, and we will collect the pairs into sums over 4 
elements each. Then we'll double mask again, to collect pieces of 4 into pieces of 8, 
and so on. In the end, we just have to do some cleanup. The first processor takes 
care of storing the whole sum into the result position, and then all other processors 
restore the global memory cell that they initially saved away. 

The algorithm as just presented is not optimal, however, since it uses n processors. 
To obtain an optimal solution, we first group the items to be summed into con
tiguous groups oflength log n. We then assign one of nflog n processors to each of 
these groups. Each processor first sums up sequentially the elements in its own 
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group. On the resulting sums, we perform a census-function computation with 
n/log n processors as described above. The total time requirement is still o (log n), 
thus providing an optimal solution. 

3.2. Pointer Jumping and Path Doubling 

The next technique, pointer jumping or path doubling, is useful for finding paths 
from vertices to their respective roots in in-forests. An in-forest is a collection of 
in-trees which in turn are trees with all edges oriented towards the root. We assume 
that by some preceding computation the in-forest is stored in the global memory of 
the PRAM in such a way that for every node in the forest there is a pointer to its 
immediate ancestor in its tree. The pointer for the root just points to the root itself. 
We also assume that there is a unique processor associated with every node in the 
forest. The problem consists of finding, for every node in the in-forest, the root of 
the tree to which it belongs. 

To simplify the following description, we shall identify each processor with the node 
it is associated with. In the first step, every node fmds its grandparent by reading 
the location pointed to by its own parent pointer. It then replaces the parent pointer 
by a pointer to the grandparent. In the second step, every processor again reads the 
location given by its pointer, and substitutes the value found there. Thus, after two 

(a) (b) 

(c) (d) 

Figure 3. Example for Path Doubling 
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steps, every node knows its ancestor four generations away, after three steps its 
ancestor eight generations away, and so on. H there are n nodes in the forest, then 
log n steps suffice and every node will know the root of the tree to which it belongs. 
Figure 3 gives a simple example consisting of a single path with eight nodes. 

We note that in the path doubing algorithm no write conflicts will occur since only 
the processor associated with a node will update the pointer belonging to that node. 
However, in general, there will be read conflicts since several pointers can point to 
the same node, as becomes immediately clear if we consider in-trees which are not 
just paths as in the example. 

We should also like to emphasize that for the path doubling algorithm the pointers 
need not be stored in contiguous positions, and, of course, not in order as they are 
shown in Figure 3 for clarity only. 

3.3. Parallel Prefix 

Parallel prefix computation is a very essential technique, representing a generaliza
tion ofthe doubling technique considered earlier [70]. Again, we are given an array 
of quantities ao, a1 ... , an-1' and we are required to compute the partial sums 
~]=o ai' for j = 0, ... , n - 1. And again, the connective could be any binary associa
tive operator. Figure 4 shows an EREW program for the parallel prefIX problem. 

The inputs for the procedure are the length of the array and the starting location 
for the array of results. Also, 0 stands for the binary operator. We need a few local 
variables, save and save2, to save away values. The variable span serves the same 
purpose as mask in the previous program, i.e. it denotes the distance spanned in a 
given step. 

procedure paral/eLprej'vc(n, start, result, 0); 
int n; gmemptr start, result; binop 0; 
co n is the length of the input list, start indicates the place in memory where the input list begins and 
result where the list of results ao 0 ••• 0 ai is to be put; 0 is an associative binary operator DC 

begin 
local type_oLS: save, save2; int: span, gmemptr myindex; 
ifPROC_NUM < n then 

fi 

span:= 1; 
myindex := start + PROC_NUM; 
save := M .. ,irule" co save global cell M""lmIeJe since it may get changed during the computation oc; 
while span s; PROC_NUM do 

M .. 1ImIe" := M .. ,lmIeJe-._ 0 M .. ,lmIeJe; 
span := 2 * span 

od; 
save2 := M"'1ImI""'; 
M""lmIe" := save co restore the original input values oc; 
myindex := result + PROC_NUM; 
M""lIoIu := save2 

end paralleLprefix. 

Figure 4. Parallel Prefix Algorithm 
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Again, the algorithm as given is not optimal. A similar technique as above, grouping 
the input elements into segments of length log n, can also be used here to achieve 
an optimal implementation. We leave the rather straightforward details to the 
reader. 

3.4. List Ranking 

The list ranking problem is: given an array of n pointers which form a simply linked 
list, determine, for each element in the array, its distance from the end of the list. 

Typically, the list ranking problem oc«urs as a subproblem in other algorithms. We 
want to point out that generally, of course, the list is not stored in a monotone 
fashion in contiguous memory cells. Obviously, the problem becomes trivial in this 
case. We may, however, assume that all list pointers are stored in a contiguous array. 
Should this not be the case initially, we can use the parallel prefix routine to 
"compactify" the representation of the list in memory. We leave the details of this 
operation to the reader. 

As a possible application, think of the following (we shall see something similar 
when we discuss the contour path technique below): some parallel computation 
produces a simply linked list of numbers, and we wish to compute the sum of these 
numbers for all initial segments ofthe list. This looks like a parallel prefix problem. 
To apply our algorithm presented above, however, we first have to arrange the 
numbers in list order in a contiguous array in memory. It should be clear that this 
is a straightforward task once we have solved the list ranking problem since the 
rank of an element in the list can be used to easily determine its position in the 
array. 

We should like to mention that for sequential computation, list ranking is a rather 
trivial problem. We just go through the list, push every element onto a stack, and 
after arriving at the end the list, we pop the elements from the stack and just count. 

For parallel computation, there is also no problem if we are given n processors. We 
can simply apply the path doubling routine, keeping a count of th~ distance each 
pointer covers. 

Theorem 1 The list ranking problem can be solved in O(log n) time on an EREW
PRAM using n/log n processors. 

To actually prove this theorem would exceed the limits of this presentation. For 
two different solutions, both optimal, we refer the reader to [7] [23] [25]. Here, we 
give a brief sketch of one of the algorithms. 

Sketch of Optimal List Ranking Algorithm: 

1. break array into stacks of height rtog n 1; 
2. select top remaining element in each stack; 
3. determine chains formed by selected elements; 
4. splice out distinguished elements in singleton chains; 
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5. have processor at tail of non-singleton chain splice out all elements in chain, one 
per step; 

6. if there are elements left, go to step 2; otherwise stop. 

First, we break the array into roughly nj10g n segments. The list could be completely 
disintegrated at this point since the list pointers are completely independent of the 
segments. There are nj10g n stacks and the basic idea is to assign one processor to 
each stack. Each processor selects the top element of its stack. H the (generally two) 
neighbors of a selected element are not also selected, the processor removes the 
element from the list, leaving appropriate information with the neighbors. The bad 
case occurs if some of the selected top elements form a subchain of the list. Then 
the simple splicing technique does not work. Instead, each of the chains is handled 
by the processor at the tail of the chain. It will work on the chain sequentially, one 
element per step. The other processors will go on and select the next element in their 
stack. The problem with this method is that the first processor which gets a long 
chain is busy for a long time dealing with this chain. Since, in the worst case, the 
length of such a chain could be Q(nj1og n) we have to make sure that no long chains 
are created. The technique used for this purpose is called deterministic coin tossing, 
and is described in detail in [22] (see also [40]). It is of independent interest. 

3.5. Euler Contour Path 

The Euler contour path technique is useful for many computations on trees. We 
assume here that the (rooted) tree is given in form of a list of children for every node 
in the tree. The contour path technique replaces each arc of the tree by a pair of 
pointers. Intuitively, the first pointer will correspond to an arc pointing in the same 
direction as the tree edge, the second pointer to an arc in the opposite direction. 
The second pointer of each edge is made to point to the first pointer of the next 
edge in each adjacency list, except for the last edge in the list whose second pointer 
points to the second pointer of its parent edge. Also, the first pointer of each edge 
points to the first pointer of the first edge of the child's adjacency list, unless the 
child is a leaf in which case the first pointer of the edge is hooked to its second 
pointer. Pictorially, the path generated by the pointers follows the contour of the 
tree when drawn in the plane in the canonical way. It is called the Euler contour path. 

Since all computations necessary to construct the pointer structure for the contour 
path are local it is very straightforward to obtain an optimal EREW-PRAM 
algorithm for this problem. It runs in o (log n) time on nj10g n processors. 

3.6. Numbering of Trees 

There are several important numbering schemes for trees which are useful for 
many computational problems. Examples are the pre-order, in-order, and post-order 
numberings. While pre- and post-order numberings can be defined for any rooted 
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tree, the in-or~er numbering only applies to binary trees. As an example, we describe 
an optimal EREW-PRAM routine to obtain a post-order numbering. The other 
problems are quite similar and left as an exercise. 

In the post-order numbering of an n-node tree, the vertices of the tree receive unique 
labels from 0 to n - 1. The labels in the first subtree of a node are all smaller than 
the labels of the second subtree, these are all smaller than the labels in the third 
subtree, and so on, and finally the labels in the last subtree of the node are smaller 
than the label of the node itself. 

One optimal algorithm for post-order numbering trees works as follows. It first 
constructs the Euler contour path for the tree. Using list ranking, it "flattens" out 
the path into a linear array. It then associates 1 with edges on the contour path 
pointing towards the root (second pointers of the corresponding tree edge), and 0 
with the other edges. Then it performs a prefix computation on this array ofO's and 
1 'so The post-order number of a vertex x of the tree is then the prefix sum up to the 
last edge on the contour path entering x. 

The pre-order numbering can be computed similarly, interchanging O's and 1 'so 
Given these two numberings, it is possible, for instance, to compute the number of 
descendents for every node in the tree. 

Methods for other types of tree computations, like the height of the vertices, are 
discussed further below. 

3.7. Other Techniques 

There are quite a few more fundamental parallel programming techniques which 
we cannot present here in detail. One is the computation of lowest common ancestors 
in (rooted) trees, a routine used for many other applications. There is an optimal 
(njIogn processors and O(logn) time) EREW-PRAM algorithm that performs the 
following task: Given an n-vertex tree (in form of adjacency lists for every interior 
vertex), it performs some O(log n) time precomputation using njIog n processors 
such that after this precomputation every query of the form "what is the lowest 
common ancestor of vertices x and y?" can be answered by one processor in constant 
time. For a detailed description of this alogirthm see [96]. 

Another basic problem, of extreme significance in sequential as well as parallel 
computation, is sorting: Given n keys from some ordered universe, arrange them in 
an array in ascending order of their value. We shall be interested here only in 
comparison based algorithms, for which the only operations allowed on keys are 
pairwise comparisons. The sequential complexity of sorting is well-known to be 
8(nlogn) [64]. Sorting can also be performed optimally on an EREW-PRAM, due 
to an n processor O(logn) time algorithm given in [21]. 

Tree contraction is another very powerful programming technique, applicable to a 
large number of combinatorial problems on trees. We shall describe it in more detail 
in the next section. 
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4. Some Graph Theoretic Applications 

So far, we have seen basic programming techniques which are all optimal. In this 
section, we shall first study some more optimal techniques which are a bit more 
involved. We shall then present a selection of fundamental graph theoretic problems 
for which currently no optimal solutions are known. 

4.1. Tree Contraction 

The probably simplest example for tree contraction is the evaluation of a parse tree 
for some arithmetic expression. The leaves of such a tree correspond to variables 
(with values) or constants, the interior nodes to arithmetic operators like +, -, x, 
/. The structure of the tree is determined by the precedence of the operators and the 
parenthesis structure in the arithmetic expression. Also, each vertex in the tree can 
be associated with the subexpression given by its subtree, and with the value of this 
subexpression. 

As another application, we could reduce the problem of computing the size of the 
subtrees of a given tree to a tree evaluation problem. We associate the value 1 with 
each leaf and the operation "sum up the values of your children and add 1 to this 
sum" to each internal vertex. It should be clear that the values obtained for the 
vertices are just the size of their respective subtrees. 

A similar example is computing the height of the vertices in a tree, i.e. for each vertex 
the longest distance to a leaf. It corresponds to a tree evaluation problem with 0 
associated with the leaves and the operation "add 1 to the maximum value of your 
children" with the interior vertices. 

It should be obvious that such a tree can be evaluated in parallel proceeding level 
by level. We first evaluate all those internal vertices which have only leaves as 
children. We then remove the leaves and iterate. The number of iterations for this 
algorithm is given by the height of the tree. Unfortunately, there are trees with n 
vertices and height .Q(n). 

The first efficient parallel algorithm for tree contraction was presented in [80]. 
Later, quite a host of optimal EREW -PRAM algorithms for the problem were given, 
e.g. in [1] [24] [38] [35], and [65]. One of the simplest methods is that presented 
in [65]. 

We assume that we are given a binary tree such that every non-leaf has exactly two 
children. For the purpose of simplicity, we also assume that the algebraic domain 
under consideration are the rationals with +, -, x, and /. Intuitively, the algorithm 
proceeds as follows in stages: In every stage, it selects half of the leaves in such a 
way that the two children of a vertex are never selected at the same time. It then 
deletes the selected leaves, replaces the parent of each selected leave by the subtree 
rooted at the other child, and updates the operation to be performed at the root 
of this subtree appropriately. To keep track of the operations that have to be 
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performed at .every node, it turns out for our case that it suffices to associate a 
quadruple qx = (ax, bx, cx , dx) with every node x in the tree, with the following 
intuitive understanding, where we also use qx to denote the rational function 

axz+bx 
qx: Zf-+ d . 

CxZ + x 

1. Let a be the value associated with some leave x in the original tree. Then 
qx = (a, 0,0, 1). 

2. Every node x in a tree will have a value v(x). If x is a leaf then 

v(x) = qx(l); 

if x is an interior vertex with children y and z and operation 0 attached to it, then 
its value is 

v(x) = qx(v(y) 0 v(z». 

Let x be a parent in the tree whose left child y becomes selected, and whose right 
child is z. Then the subtree rooted at z replaces the subtree rooted at x, and we 
rename z to z'. We want to have v(z') = v(x). An easy computation shows that since 
y is a leaf with a known value, and since rational functions are closed under 
composition, there is a quadruple qz. = (az·, bz., Cz" dz.) computable with a constant 
number of arithmetic operations from qx, qy, and qz such that 

v(x) = qz.(v(r) Oz, v(s» 

where rand s are the two children of z (or z') and Oz, is its associated operation, if 
z is an interior vertex, and 

v(x) = qA1) 

if z (or z') is a leaf. 

Thus, whenever a leaf gets selected and removed by the algorithm, the quadruple 
of its sibling, which replaces its parent, can be updated in a constant number of 
arithmetic operations. It turns out that in order to avoid memory access conflicts, 
the subdivision of every stage in the following algorithm works (it guarantees that 
if x, y, and z are as above then no processor removing some selected leaf other than 
y will touch z). 

Sketch of Optimal Tree Contraction Algorithm: 

1. use Euler contour path technique to label the leaves from left to right by ° 
through n - 1; 

2. assign quadruples qx to all leaves x and quadruples (1, 0, 0,1) to all interior nodes; 
3. perform rIog n 1 stages consisting of 

(a) remove all even numbered leaves that are a left child, replace their parent by 
their sibling and update the quadruple of the sibling; 

(b) perform the same operations on all even numbered leaves that are a right 
child; 

(c) divide the label of every remaining leaf by 2, without remainder. 
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If there are n/log n processors, the first two steps require time O(log n). The time for 
stage i is 

max {o (n;~~ n). 0(1)} 

and the time for all rtog n 1 stages is therefore O(log n). 

When the algorithm terminates it has reduced the original tree to a singleton node 
whose associated quadruple gives the value belonging to the root of the original 
tree. The algorithm can also be modified to compute the value of all subtrees of the 
original tree, using the same number of processors and the same asymptotic running 
time. 

4.2. Connected Components, Spanning Trees 

A basic task for graph theoretic algorithms is often the computation of the con
nected components of a given graph. Sequentially, various graph traversal techniques 
like breadth first or depth first search can be used to obtain linear time algorithms. 
Since no .K~ algorithms are currently known for depth first search in general 
graphs, and since all current .K~ algorithms for breadth first search in general 
graphs employ transitive closure techniques requiring basically M(n) processors 
(where M(n) is the sequential time needed to multiply two n x n matrices), we have 
to use other techniques to obtain efficient parallel algorithms for the connected 
components problem, or the closely related problem of computing a spanning forest. 

One such approach is based on the following idea. Given an arbitrary graph G, we 
first put each vertex of G into a singleton set. The algorithm then proceeds in stages. 
In each stage, a set of edges is selected whose two endpoints are in different sets. 
For each edge, the two sets belonging to its endpoints are merged into one set. To 
facilitate the edge selection and merging routines, for each set il pointer structure is 
maintained. The pointer structure forms an in-tree, with the root representing the 
whole set. Each node can find the set it is currently in by following the path in the 
in-tree up to the root. It is advantageous for the algorithm if it can keep the trees 
shallow by occasionally redirecting pointers like in well-known sequential UNION
FIND structures (see, e.g., [102]). 

By a careful implementation of these ideas, an EREW-PRAM algorithm using 
n2/log n processors and 0(log2 n) time can be obtained [54] [85] [19] [66]. Ifwe use 
instead the more powerful ARBITRARY CRCW-PRAM model then a running 
time of O(log n) can be achieved using m + n processors, where n is the number of 
vertices and m the number of edges in the graph. By our simulation result for variants 
of the PRAM model, we thus obtain another EREW-PRAM algorithm running in 
o (log2 n) time, using m + n processors. Using a more sophisticated approach [23] 
[11] the ARBITRARY CRCW-PRAM algorithm can be improved to run on 
O«m + n)O!(m, n)/log n) processors where O!(m, n) is the inverse of Ackermann's func
tion, well-known from the sequential UNION-FIND problem [102]. 
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There is also an optimal ARBITRARY CRCW -PRAM algorithm for the connected 
components problem that runs in time O(log n). However, this algorithm is not 
deterministic, it is randomizing and uses internal coin-flipping [34]. 

All the algorithms for the connected components problem can be modified in a very 
straightforward manner to construct a spanning forest for the given graph, within 
the same processor and time bounds. 

There is also a nice extension of a connected components/spanning tree algorithm 
to find the biconnected components of a graph [103]. The complexity of this 
algorithm is dominated by the part that finds connected components. 

4.3. (Open) Ear Decomposition 

We have already remarked above that some efficient sequential graph traversal 
techniques don't seem to be efficiently parallelizable, like depth first search. Hence, 
other methods to decompose a given graph into simpler parts had to be developed. 
One such method is the ear decomposition technique proposed in [73]. 

Definition 4.1 An (open) ear decomposition of a graph G = (V, E) is a sequence Po, 
PI' ... , P, of simple, edge-disjoint paths, with Po a cycle and only the endpoints of 
p;, i > 0, on earlier paths. In an open ear decomposition, the endpoints of each Pi' 
i ~ 1, have to be distinct. 

It turns out that a graph has an ear decomposition iff it is 2-edge-connected, and it 
has an open ear decomposition iff it is biconnected. 

The notion of an ear decomposition can also be defined for digraphs. 

An (open) ear decomposition can be found by an efficient algorithm along the 
following lines [75] [78], where the input is an arbitrary (undirected) 2-edge
connected graph G = (V, E): 

Sketcb of Ear Decomposition A1goritbm 

1. find spanning tree for G; 
2. root the spanning tree, number it in preorder; 
3. label each non-tree edge with the (preorder number of the) least common ances

tor of its endpQints; 
4. assign consecutive numbers to the non-tree edges in non-decreasing order of their 

labels; 
5. number each tree edge with the minimal number of a non-tree edge whose 

fundamental cycle it is contained in. 

The running time of this algorithm is dominated by the requirements of the first 
step for finding a spanning tree. The remaining steps can be implemented using a 
number of the optimal fundamental techniques described in the previous section 
and earlier in this section. The algorithm, as given above, finds an ear decomposition 
but not necessarily an open ear decomposition even when it exists. The algorithm 
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can, however, be slightly modified by using a somewhat more elaborate numbering 
scheme for the non-tree edges to obtain open ear decompositions for biconnected 
graphs. For more details, see the references given above. 

Ear decomposition and open ear decomposition have found a number of applica
tions. As an example, it is quite easy to construct an st-numbering for a graph, given 
an open ear decomposition. Let G be a biconnected graph with n vertices, and let 
sand t be two vertices of G connected by an edge. In an st-numbering, the vertices 
of G have distinct labels, s being labelled 1, t being labelled n, such that every vertex 
other than sand t has both a neighbor with a larger and a neighbor with a smaller 
label. For the details of an efficient parallel st-numbering algorithm, see [75]. 

st-numberings have in turn been used in [63] as a subroutine in an efficient parallel 
algorithm for testing planarity and finding planar embeddings. 

Ear decomposition techniques also play an important part in some %C6 algorithms 
for testing k-vertex-connectivity of (undirected) graphs, for k = 3 [79] [91] [32] and 
k = 4 [57]. 

4.4. More Graph Problems and Algorithms 

In this subsection, we are going to mention briefly a number of other graph problems 
and subclasses of graphs for which %C6 or random %C6 (~%C6) algorithms have 
been developed. 

Euler tours for general graphs: We have discussed the Euler contour path technique 
for trees. There are also parallel algorithms for Euler tours in general undirected or 
directed graphs (of course, not all graphs have Euler tours). Two efficient parallel 
algorithms are given in [9] and [10]. 

Maximal independent sets: An independent (or stable) set in a graph is a subset of 
the vertices such that no two of them are connected by an edge of the graph. Such 
a set is maximal if no other independent set properly contains it. The first %C6 
algorithm for the maximal independent set problem was given in [61]. Other, 
more efficient algorithms appear in [74], [41], and [5]. The latter algorithm uses 
randomization. 

Matching problems: There are various types of matching problems: determining 
whether a graph has a perfect matching, constructing a maximum matching (i.e., a 
matching of maximal cardinality), and constructing a maximal matching (i.e., a 
matching that is not properly contained in any other matching). There is an efficient 
%C6 algorithm for the maximal matching problem [56] (also see [55] for a fast and 
simple randomizing algorithm for the same problem). For the general maximum 
matching problem, only ~%C6 algorithms are known [60] [82] [58] [33]. These 
algorithms strongly rely on methods for determining the rank of certain matrices 
related to the Tutte matrix, with polynomial entries. All currently known efficient 
methods for these rank tests use randomization. In certain cases, and for certain 
subproblems, however, the randomization can be avoided [44]. There are also 
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subclasses of ,graphs for which deterministic %~ algorithms for the maximum 
matching problem have been found, e.g. for regular bipartite graphs [72], for 
strongly chordal graphs [26], for dense graphs [27], for K 3• 3-free graphs [106] 
(more precisely, for computing the number of perfect matchings in such graphs), 
and for co-comparability graphs (complements of partial orders) [50]. Matching 
algorithms are also used as subroutines for some flow problems, as in [60] and [2]. 

Depth first search: Assume a (connected) graph is given by a standard adjacency 
list representation. Then the canonical sequential depth first search algorithm finds 
a uniquely determined DFS tree for the graph. To construct the same tree in parallel 
seems to be hard since it is &I-complete to determine whether a given edge is 
contained in this tree, or even in its first branch [92] [6]. There are, however, 9f%~ 
algorithms for constructing DFS trees in general undirected graphs [2] and directed 
graphs [3]. There are also %~ algorithms for the DFS problem for planar graphs 
[100] [40]. 

Graph coloring problems: Of course, optimal graph coloring in %&I-complete in 
general. However, planar graphs can always be colored using at most four colors, 
and for many special cases or relaxed problems (which do not necessarily require 
that the coloring be optimal) efficient parallel algorithms have been found. For a 
selection, see, e.g., [12] [15] [20] [36] 139] [40] [46] [47] [59] [83]. 

Chordal graphs: The recognition, representation, and many combinatorial prob
lems for chordal and strongly chordal graphs can be solved by %~ algorithms, as 
e.g. in [18] [26] [30] [62] [84]. 

(Co-)comparability graphs: The maximum matching problem can be solved for the 
complements of partial orders by an %~ algorithm derived from an %~ algorithm 
for the 2-processor scheduling problem [49] [50] [51], as can some combinatorial 
problems for such graphs which are %&I-complete for general graphs [51] [67]. 

Interval graphs, series-parallel graphs, reducible flow graphs, outerplanar graphs: A 
number of %~ and efficient parallel algorithms have been shown for graphs in these 
families. They include [13] [67] [81] [48][90] [37]. 

Finally, [95] and [105] contain some more %~ and efficient parallel algorithms 
for various graph problems. 

5. Conclusion 

In the preceding sections, we have seen a number of very efficient or even optimal 
algorithms for the PRAM model of parallel computation. To be able to use the 
potential of parallelism more and on a wider range, currently some of the most 
important shortcomings seem to be: 

• we need an efficient method replacing sequential graph traversal schemes like 
breadth first and depth first search; all current schemes are bound to require a 
large number of processors since they basically compute transitive closures; as we 
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have seen, there are even some attempts to parallelize depth first search, though 
there is also evidence that this might be impossible. 

• the only fast parallel algorithms for matching (and related problems like certain 
flow problems) which are currently known rely heavily on randomization; it is 
very desirable to find efficient deterministic parallel algorithms for these problems; 
it seems, however, that some new approach is necessary. 

• the machine model for parallel computation has to become more standardized; 
real parallel architectures have to be developed and real parallel programming 
systems for them that are highly independent to free the programmer from 
idiosyncrasies of the underlying architecture and let him concentrate on extract
ing and specifying the parallelism in an algorithm instead. 

• efficient and optimal algorithms need to be developed for more realistic parallel 
machine models, like certain fixed (multistage) interconnection networks or ar
chitectures like the binary hypercube. We are very confident that progress is 
happening here since a number of such machines is available in practice. 

Finally, we'd like to say that this paper is intended as a survey of very basic issues 
in parall~l computation for graph th~or~tic, combinatorial problem. By our own 
admission, it is incomplete. However, we hope that we could show what potential 
parallelism carries, and where some of the important current problems lie. 
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ApplicatiollS of ParaUeI Sehedu6ng Algorithms to Families of Perfect Graphs. We combine a parallel 
algorithm for the two processor scheduling problem, which runs in polylog time on a polynomial number 
of processors, with an algorithm to frod transitive orientations of graphs where they exist. Both 
algorithms together solve the maximum clique problem and the minimum coloring problem for com
parability graphs, and the maximum matching problem for co-comparability graphs. The transitive 
orientation algorithm can also be used to identify permutation graphs, another important subclass of 
perfect graphs. 

AMS Subject Classifications: 68C15, 68ElO, 68QI0. 

Key words: Two processor scheduling, maximum clique, maximum matching, transitive orientation 

Anwendungen parallelen Schedulingalgoritlunen in Famllien von perfekten GrapheD. Wir kombinieren 
einen parallelen Algorithmus fUr das Zwei-Prozessor-Scheduling-Problem, der in polylogarithmischer 
Zeit und mit einer polynomialen Anzahl von Prozessoren liiuft, mit einem AIgorithmus flir die transitive 
Orientierung von Graphen, faIls eine solche existiert. Durch diese Kombination kannen wir das Clique
Problem und das Fiirbungsproblem flir Vergleichbarkeitsgraphen und das Maximum-Matching
Problem flir ihre Komplemente lasen. Der AIgorithmus fUr die transitive Orientierung kann auch dazu 
benutzt werden, um Permutationsgraphen zu erkennen, eine weitere wichtige Unterklasse der perfekten 
Graphen. 

1. Introduction 

We present parallel algorithms for graph problems, in particular for several interest
ing subclasses of perfect graphs. Our main result is a deterministic ~ algorithm 
for solving the two processor unit execution time scheduling problem, answering 
an important open problem posed in [27]. We also present an ~ algorithm for 
transitively orienting comparability graphs. By combining these two results, we 
obtain an ~ algorithm for the maximum cardinality matching problem on co
comparability graphs (the complements of comparability graphs) and nearly co
comparability graphs. Known fast parallel algorithms for general graphs rely heavily 
on randomization [16]. Our transitive orientation algorithm also gives us ~ 
algorithms for several additional problems, such as identifying permutation graphs 

* This work was supported in part by a grant from the AT&T Foundation, and NSF grant DCR-
8351757. 
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and finding the. maximum weighted clique and optimal colorings in comparability 
graphs. Comparability, co-comparability, and permutation graphs are all impor
tant subclasses of perfect graphs. 

The most fundamental scheduling problems involve unit time execution tasks with 
precedence constraints restricting the order of execution [2]. When the number of 
processors varies, the scheduling problem is JVPJ-complete [26] [20]. At present 
there are no published polynomial time algorithms for a fixed number of processors 
greater than two. The first polynomial time algorithm for the two processor case 
was published in [6]. Faster algorithms for the same problem were obtained by 
Coffman and Graham [3], and later, Gabow [7, 8] found an asymptotically optimal 
algorithm. Recently, Vazirani and Vazirani have published a randomized parallel 
solution [27]. Like Fujii et al. [6] they use the connection between matching and 
two processor scheduling, so their algorithm relies on an ~JV1ti' matching subroutine 
such as [16] or [21]. 

In contrast, our scheduling algorithm [14] is deterministic and does not require the 
aid of a matching subroutine. Therefore we are able to exploit the relationship 
between matching and two processor scheduling in the other direction, obtaining a 
deterministic parallel maximum matching algorithm for co-comparability graphs. 

The only ingredient required to convert our scheduling algorithm into a matching 
result is an JV1ti' transitive orientation subroutine. This routine takes an undirected 
graph and directs the edges so that the resulting digraph is transitively closed. The 
graphs with transitive orientations are called comparability graphs. The comple
ments of comparability graphs are co-comparability graphs. Kozen, Vazirani and 
Vazirani, in independent work [18], coupled a different transitive orientation routine 
with our two processor scheduling algorithm to achieve an JV1ti' matching algorithm 
on co-comparability graphs. Our transitive orientation subroutine is also the key 
element in algorithms presented in this paper which test for permutation graphs 
and find maximum weighted cliques or optimal (minimal) colorings of comparability 
graphs. 

The remainder of the paper is organized as follows. Section 2 discusses some 
fundamental concepts of parallel computation and states our main results. In 
Section 3, we present our JV1ti' algorithm for the general two processor unit execution 
time scheduling problem. Section 4 contains the parallel algorithm for recognizing 
transitively orientable graphs, and constructing such orientations whenever they 
exist. Then, in Section 5, we show how to combine the results of the two previous 
sections to obtain our JV1ti' algorithm for the maximum cardinality matching prob
lem on co-comparability graphs. The final section mentions some conclusions and 
open problems. A preliminary version of our results appeared in [13]. 

2. Main Theorems and Applications 

In this section we give some definitions, state our main results, and prove several 
important consequences. 
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As our model ofparaflel computation, we use the Parallel Random Access Machine 
or PRAM as defined in [5]. A PRAM consists of an unbounded number of identical 
processors running synchronously, stepped by a global clock. Each processor can 
be thought of, for the purpose of this paper, as an ordinary RAM [1], with local 
memory. A PRAM also contains an unbounded number of global memory cells 
which every processor can access in one timestep. We allow that several processors 
read the same memory cell simultaneously. However, several processors must not 
write simultaneously to the same memory cell, i.e. we use the so-called concurrent
read-exclusive-write model. Every processor has stored, in one of its registers, its 
unique processor index. All processors execute the same program. Since the instruc
tions may depend on the processor index, the effect of an instruction will in general 
vary from processor to processor. 
When measuring the complexity of parallel algorithms (for the PRAM model), we 
are mainly interested in the amount of time an algorithm uses, and the number of 
processors it employs. Time will be the number of parallel steps taken by the PRAM, 
and the number of processors will be the highest index of a processor active during 
the computation. 

The class of parallel algorithms running in time which is bounded by a polynomial 
in the logarithm of the size of the input, and using a number of processors poly
nomial in the input size, has experienced considerable interest. One reason is that 
the algorithms in this class are considered very fast (the "speedup" over their 
sequential counterparts is exponential), and they use a "reasonable" amount of 
hardware, i.e. processors. Another reason is that this class is very robust under 
(reasonable) variations in the definitions ofthe underlying machine model. The class 
is commonly referred to as ..;vii&', owing to its original definition for the boolean 
circuit model of parallel computation in [23]. 

A perfect graph is an undirected graph where the chromatic number and maximum 
clique size of every vertex induced subgraph coincide. A precedence graph is an 
acyclic, transitively closed digraph, or equivalently, a partia~ order. We use (a, b) to 
denote an undirected edge, and (a, b> to denote a directed edge or arc from vertex 
a to vertex b. Thus if arcs (a, b> and (b, c> are in a precedence graph, then so is the 
arc (a, c >. A comparability graph is an undirected graph with the property that every 
edge c,an be assigned a direction such that the resulting graph is a precedence graph. 
The complement of a comparability graph is a co-comparability graph. Some graphs, 
such as a simple three-cycle, are both comparability and co-comparability graphs. 

The undirected graph G = (V, E) is a permutation graph if there exists a pair of 
permutations on the vertices such the edge (v, Vi) E E if and only if v precedes Vi (or 
Vi precedes v) in both permutations. Permutation graphs are equivalent to the 
comparability graphs of partial orders with dimension two. A graph is both a 
comparability graph and a co-comparability graph if and only if it is a permuta
tion graph [24]. Permutation graphs, comparability graphs and co-comparability 
graphs are all non-trivial subclasses of perfect graphs [10]. 

An instance of the two processor scheduling problem is given by a precedence graph 
G = (V, E\ Each vertex represents a task whose execution requires unit time on 
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either of two identical processors. If there is an arc from task t to task t', then task 
t must be completed before task t' can be started. A schedule is a mapping from 
tasks to integer time steps such that at most two tasks are mapped to any timestep 
and for all tasks t and t' if t must precede t' (t -< t') then t is mapped to an earlier 
timestep than t'. The length of a schedule is the number of timesteps used. An 
optimal schedule is one of shortest length. 

The maximum matching problem on co-comparability graphs and the two pro~ssor 
scheduling problem are closely related. If G is a co-comparability graph and G is a 
transitive orientation of G's complement, then the paig; oftasks mapped to the same 
timestep in an optimal two processor schedule of G correspond to a maximum 
cardinality matching in G. Furthermore, there is a sequential algorithm for convert
ing any maxi!¥um cardinality matching for G into an optimal two processor 
schedule for G [6]. In [27J it was conjectured that this process is inherently 
sequential, but with our two processor scheduling algorithm it can be solved quickly 
in parallel. 

Theorem 1 Two processor scheduling is in .Afli&: 

Proof: We outline an O(log2 n) time algorithm in Section 3. Further details can be 
found in [14]. 0 

Theorem 2 There is an .A«6' algorithm which detects whether an undirected graph is 
transitively orientable, and if so finds a transitive orientation. 

Proof: We present such an algorithm in Section 4. See also [18]. 0 

Corollary 2.1 There is an .A«6' algorithm which detects whether or not a graph is a 
permutation graph. 

Proof: Graph G is a permutation graph if and only if both G and G are compara
bility graphs [24]. Therefore, by running our transitive orientation algorithm on 
both G and G, we can determine whether G is a permutation graph. 0 

Corollary 2.2 There is an.A«6' algorithm which finds a maximum node-weighted clique 
in comparability graphs. 

Proof: Given a comparability graph G, we find a transitive orientation, G. Examine 
any k-path in G. A k-path is a directed path containing exactly k vertices. Because 
G is transitively closed, the nodes on the k-path form a k-clique in G. Similarly, every 
k-clique in q is a k-path in G. Thus the problem of finding a maximum node
weighted clique in G reduces to finding a maximum weight path in G. Since G is a 
DAG, standard parallel techniques (i.e., max-plus closure) can be used to find a 
heaviest path in G. 0 

Corollary 2.3 There is an .A«6' algorithm which finds a minimal node-coloring of 
comparability graphs. 

Proof: Given a comparability graph G, we find a transitive orientation, G. We say 
that a vertex v is on level i in G if the longest (directed) path from v to a sink contains 
exactly i vertices. Clearly any pair of nodes on the same level are not adjacent in G, 
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so they can be assigned the same color. Every node on level i > 1 is a predecessor 
of at least one node on level i - 1. Therefore, if G has k levels then G has a path of 
length k and G has a k-clique. Since no coloring can use fewer colors than the size 
of the largest clique, using a distinct color for every level yields an optimal coloring. 
o 
Theorem 3 Finding maximum matchings on co-comparability graphs is in .JiIrc. 

Proof: One such algorithm is given in section 5. 0 

This theorem is extended to nearly co-comparability graphs in section 5. 

Corollary 3.1 Maximum matchings on permutation graphs and partial orders of 
dimension 2 can be constructed in ~. 

Proof: As stated above, these graphs are co-comparability graphs. 0 

Corollary 3.2 Maximum matchings on interval graphs can be found in .JiIrc. 

Proof: Interval graphs are a (true) subclass of co-comparability graphs [9J. 0 

3. Two Processor Scheduling 

In this section, we consider the scheduling problem for task systems with arbitrary 
precedence constraints, unit execution time per task, and two identical processors. 
Our scheduling algorithm for this problem is built around a routine that, for any 
precedence graph, computes the length of the graph's optimal schedule(s). This 
length routine is applied repeatedly in order to actually find an optimal schedule 
for the input graph. 

Let G = (V, -<) be the precedence graph we are interested in. If t -< t' then t is a 
predecessor of t' and t' is a successor of t. For any pair of tasks, t, t' E V, define V;! 
to be the set of tasks which are both successors of t and predecessors of t', and let 
GJ, be the subgraph of G induced by V;!. The schedule distance between tasks t and 
t', SD(t, t'), is defined to be the length of any optimal schedule for GJ,. If t -f.. t' then 
SD(t, t') = O. 

Lemma 3.1 Let t, t' E V, and let S be a set of tasks such that for all i E S: 

i. t -< i -< t'; 
ii. SD(t, f) ~ k; and 

iii. SD(i, t') ~ l. 

Then SD(t, t') ~ k + 1+ rISI/2l-
Proof: Count the number of timesteps required to schedule those tasks between t 
and t'. There must be at least k timesteps before the first task in S is scheduled. It 
takes at least r1SI/21 timesteps to complete the tasks in S. After the last task in S 
has been completed, at least I additional timesteps are required. Therefore SD(t, t') ~ 

k + 1+ rISI/21 0 
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Figure 1. This is a precedence graph containing fifteen tasks (transitive arcs have been omitted). The 
special tasks ttop and tbot are added when computing the length of optimal schedules for G. The levels of 
the original graph are on the left and the jump sequence is on the right. 

The distance algorithm (see Figure 2) uses a doubling method similar to the standard 
transitive closure routine in order to compute the schedule distances between all 
pairs of tasks in a precedence graph G = (V, -<).It initially guesses that the schedul
ing distance between each pair of tasks is at least zero. By repeatedly applying 
Lemma 3.1 to each pair of tasks in parallel the algorithm refines its guesses. Below 
we prove that after log I VI iterations, the algorithm's guess for each pair of tasks 
has converged to the schedule distance. The distance algorithm has a straight
forward implementation on an n5 processor PRAM taking O(log2 n) time. 

Lemma 3.2 The schedule distance algorithm always computes the schedule distance 
between every pair of tasks. 

Proof: Lemma 3.1 guarantees that the distances computed by the algorithm are 
never greater than the schedule distances. 

In [3] it is shown how to construct sets of tasks Xo, Xl' ..• , Xk for any precedence 
graph such that: 

• those tasks in any Xi are predecessors of all tasks in Xi-I; and 
• the length of any optimal schedule for G is Ii rlxd/21 (See Figure 3). 

Our algorithm does not compute the X/s directly, we simply use their existence to 
prove that the distances the algorithm does compute converge to the schedule 
distance. 
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do(*, *):= 0; 
for i:= 1 to nognl do 

for all t, t' with t -< t' do in paraDel 
for all 0 s; k, I < n - 1 do in parallel 

St.t'.k., := {s : t -< s -< t', di- 1 (t, s) ~ k, di - 1 (s, t') ~ I}; 
dirt, t'):= maxs,., ....... 0 {d'-l (t, n, k + I + rlSt.t'.k.,1/2l}; 

SD(*, *):= d,.o •• ,(*, *) 

Figure 2. The Schedule Distance Algorithm. 

Xs X4 

Pl tlop 15 14 12 

P2 - 10 13 -

time 1 2 3 4 5 6 7 8 9 10 

Figure 3. This is an LMJ schedule for the graph in Figure 1; each Xi is boxed. 

Examine how the schedule distance algorithm determines the schedule distance 
between an arbitrary pair of tasks, t and t', Let Xl' X2' ... , Xh be a set of X/s for GJ" 
Xh+l = {t}, and XO = {t'}. After the first iteration of the outer loop, the distance 
computed between any task in Xi and one in Xi-2 is at least rIXi-ll/2l- After the 
second iteration, the distance computed between any task in Xi and any task in Xi-4 
is at least rlxi-ll/21 + rlxi-21/21 + rlXi-31/21- This is an easy consequence of Lemma 
3.1 with S = Xi-2, k = rlxi-lI/21, and I = rlXi-31/2l- In each iteration we double the 
number of x/s accounted for. After log h iterations, the computed distance between 
t and t' is at least the length of any optimal schedule for GJ" and thus at least SD(t, t'). 
Also note that the estimates computed by the schedule distance algorithm are never 
too big as can be seen from an easy induction on i, the index of the outer loop in 
the algorithm. 

Since G contains n tasks, each GJ, has at most n - 2 X/so Therefore, after rtog n 1 
iterations the algorithm has converged to the schedule distances for each pair of 
tasks. D 

The distance algorithm can be used to compute the length of optimal schedules for 
a graph. Augment the graph with two dummy tasks, ttop and toot> which are a 
predecessor and successor (respectively) of all other tasks in G. Now SD(ttop, toot) 
is the length of G's optimal schedules, and can be found using the schedule distance 
algorithm. 

The method for converting the schedule distance algorithm into one which finds an 
optimal schedule involves several constructions. For the sake of brevity this paper 
contains only an outline of our method. Interested readers may consult [14] for a 
more detailed presentation. 

The search for an optimal schedule can be restricted to the class of Lexico
graphically Maximal Jump (LMJ) schedules. Each task t in the precedence graph is 
assigned a level equal to the number of tasks in a longest path from t to a sink. A 
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level schedule gives preference to tasks on higher levels. More precisely, suppose 
levels L, ... , I + 1 have already been scheduled and there are k unscheduled tasks 
remaining on level I. If k is even a level schedule puts the k tasks in pairs, and there 
is no jump from level I. If k is odd, a level schedule pairs k - 1 of the tasks with each 
other and pairs the remaining task with a task from a lower levell' < I. In this case, 
level I jumps to level I'. We assume that there is a sufficiently large number of dummy 
tasks on level 0 which can be paired with any other task. The jump sequence of a 
level schedule is the sequence oflevels jumped to, listed in the order in which the 
jumps occur (see Figure 1). The Lexicographically Maximum Jump (LMJ) sequence 
is the jump sequence (resulting from some level schedule) that is lexicographi
cally greater than any other jump sequence resulting from a level schedule. An 
LMJ schedule is a level schedule whose jump sequence is the LMJ sequence. 
Note that our definition of LMJ is similar to the definition of highest level 
first in [7] and [27]. The following theorem establishes the importance of LMJ 
schedules. 

Theorem 4 [7] Every LMJ schedule is optimal. D 

Our two processor algorithm uses the schedule distance algorithm to find the LMJ 
sequence and which jump (if any) a pair of tasks can be used for. In general, there 
will be many possible pairs for each jump. A path doubling computation finds a 
consistent set of task pairs for the jumps. The remaining tasks are paired up within 
levels. Since there are never precedence constraints between any two tasks on the 
same level, this pairing can be done arbitrarily. An LMJ schedule is obtained by 
sorting the resulting set of task pairs (both for jumps and within levels). We refer 
the reader to [14] for a complete description ofthe technically more involved parts 
of this construction. 

4. Transitive Orientation 

The transitive orientation problem is nontrivial because some edges cannot be 
oriented independently. If the edges (a, b) and (b, c) are in the graph to be oriented, 
but the edge (a, c) is not, then the edges (a, b), (b, c) cannot be oriented independently. 
If we choose the arc <a, b) then we are forced to include the arc < c, b) in the 
transitive orientation (see Figure 4). The binary relation r reflects this simple kind 
of forcing [24]. Given G = (V, E), we say that <a,b)r<a,c) and <b,a)r<c,a) 
whenever (a, b) E E, (a, c) E E and (b, c) ¢ E. 

The reflexive, transitive closure r* of r is an equivalence relation on the possible 
orientations of edges in E. For obvious reasons, we call these equivalence classes 
implication classes. If A is a set of arcs (e.g. an implication class) then A denotes the 
set of undirected edges {(a, b): <a, b) E A v <b, a) E A}, and A-1 is the set of arcs 
{<b,a): <a,b) E A}. A set of arcs A is consistent if An A-1 = 0, and is inconsistent 
when An A-1 "# 0. 

Implication classes have been studied by M. C. Golumbic and many of the lemmas 
in this section have originally been shown in [10] or [11]. 
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dO! b 
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b h 9 

(a, b)r(c, b) e 

dO! 
a ----..---- c 

b h 9 
(b, a)r(b, c) (d, e)r(j, e)r ... r{e, d)r ... r(e, f) 

Figure 4. Graphs and Implication Qasses 

Lemma 4.1 If A oF ii are implication classes of G then either A = ii-1 or A (') B = 0. 
Proof: ~sume .Q1at J.a, b) E A (') B. Without loss of generality, let (a, b) E A. If 
(a, b) E B then B = A since implication classes are equivalence classes. Therefore 
(b,a) E B. and (b,a) ¢ A. By definition, if (a,b)r(a',b') then (b,a)r(b',a'). Thus 
some (c,d)r*(a,b) if and only if (d, c)r*(b, a), so A = ii-1• D 

Given an undirected graph G1 = (V, E) pick any implication class ii1, delete B1 from 
G1> forming G2 = (V, E - B1). Next form G3 by removing the underlying set B2 of 
some implication class ii2 of G2. Continue the process until removing B,. from Gt 

results in a graph with no edges. The sequence of implication classes removed, ii1 , 

ii2 , ••• ,.8;" is called a r-decomposition of G. The following theorem points out the 
usefulness of r-decompositions. 

Theorem 5 (TRO Theorem [10]) Let ii1, ii2, ... , .8;, be a r-decomposition of an 
undirected graph G. The following statements are equivalent: 

i. G is a comparability graph. 
ii. Every implication class of G is consistent. 
iii. Each Ii; in the r-decomposition is consistent. 

Furthermore, when these conditions hold, ii1 u ii2 U ••• u.8;, is a transitive orientation 
ofG. 

Proof: The proof of this theorem requires several technical lemmas, and thus is 
beyond the scope ofthis paper. The interested reader is referred to [10, 11]. D 

Let A be any implication class of the graph G. Then we call the underlying set 
of edges A its color class. The TRO theorem suggests a sequential algorithm for 
finding transitive orientations of comparability graphs. One can take any edge, 
orient it arbitrarily, find the associated implication class, add the implication 
class to the transitive orientation and remove its color class from the compara
bility graph. Repeating this procedure yields a r-decomposition of the comparabil
ity graph and therefore a transitive orientation. This is essentially the algorithm in 
[24]. 
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If we are dealing with a comparability graph it is sufficient to consider color classes 
instead of implication classes, since every color class A represents an implication 
class A and its inverse A-1• When talking about color classes we always assume 
that the corresponding implication classes are consistent. 

In order to parallelize the sequential algorithm above it is necessary to understand 
how color classes change during a r-decomposition. We will see below that the 
changes are very simple: color classes are either merged with other color classes or 
remain unchanged. 

Lemma 4.2 Let B be a color class of G = (V, E). Every implication class of G' = 
(V, E - B) is the union of color classes of G. 

Proof: The r relation for G', restricted to E - B, contains the corresponding 
restriction of the r relation for G. 0 

The three edges of a triangle in the undirected graph G form a tricolored triangle if 
they belong to three distinct color classes. We say that two color classes A and B 
are triangle related, written ALl B, if there is a tricolored triangle in G with one edge 
in A and another edge in B. 

Lemma 4.3 Let A and B be two distinct color classes in G = (V, E). A is not an 
implication class of G' = (V, E - B) iff A LJ B. 

Proof: The proof is a simple consequence of the definition of the r relation. It will 
be omitted here. 0 

An immediate implication of Lemma 4.3 is 

Lemma 4.4 Let the color classes B1 , •.• , Bk of G = (V, E) be an independent set under 
the Ll relation. Then in G' = (V, E - Bd, the collection {B2, ... , Bk} is an independent 
set under Ll. 

Corollary 4.4.1 If color classes B1, ... , Bk of G form an independent set under the Ll 

relation, then they are the first k color classes for some r-decomposition of G. 

Proof: Follows from the definition of independent set. D 

Lemma 4.5 Let B1, ... , Bk be a maximal independent set under the Ll relation for 
some graph G1 = (V, E). Every color class of Gk+1 = (V, E - B1 - B2 - ... - Bd is 
the union of at ~east two color classes of G1 • 

Corollary 4.5.1 The number of color classes for Gk+1 is at most half the number of 
color classes for G. 

Proof: Since the Bi form a maximal independent set under LJ every color class of G 
which is not one of the Bi must be adjacent to one of the Bi. Because of Lemma 4.3 
it will be merged with some other color class. 0 

The input to our algorithm is an undirected graph G = (V, E). The ouptut is either 
G, a transitive orientation of G, or an indication that G has no transitive orientation. 
With G1 initialized to be G, and G initially equal to (V, 0), if no inconsistent 
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implication class is found in the first iteration, the algorithm proceeds in iterations 
as long as the set of color classes is non-empty. 

Each iteration consists of the following four steps: 

1. Determine the color classes of G;. This can be done using standard parallel 
techniques such as solving 2-SAT formulae or finding connected components 
[25]. 

2. Determine the L1 relation on color classes. 
3. Use a maximal independent set subroutine [17, 19] to obtain a maximal inde-

pendent set M of color classes. 
4. In parallel, for each BJ in M, delete Bj from Gb and add ~ or ~-1 tei if. 
Step 3 is the most expensive of these steps, requiring 0(1og2 n) time and n4 pro
cessors. The log n iterations can therefore be done in 0(1og3 n) time on n4 processors. 

5. Maximum Matching 

The two processor scheduling and transitive orientation algorithms can be used to 
find maximum matchings on co-comparability graphs. To find a maximum match
ing on the co-comparability graph G = (V, E), first create the comparability graph 
G, the complement of G. Applying the transitive orientation routine converts G into 
a precedence graph. An optimal two processor schedule can be found for the 
precedence graph using our scheduling algorithm. We will see below that the pairs 
of tasks scheduled together form a maximum cardinality matching of G. 

Let S be any optimal two processor schedule for G. A task-pair of S is a pair oftasks 
mapped to the same timestep by S. Since there are no precedence relationships 
between tasks in a task-pair, the set of task-pairs of S forms a matching in G. Because 
S is an optimal schedule, no schedule has more task-pairs. 

A task is available at some time step in a schedule if it could be executed in the next 
step without violating the precedence constraints. 

Lemma 5.1 If a co-comparability graph G has a perfect matching then G has a 
schedule where every task is in a task-pair. 

Proof: We say a pair of tasks is mated if the pair is in the perfect matching. 
Construct a schedule (anq modify the "mated" relationship) iteratively as follows: 

If two mated tasks are both available, schedule one such mated pair. Otherwise 
find two mated pairs, (t, t') and (s, s'), such that t and s are available and there 
is no precedence relationship between t' and s'. Schedule t with s and mate t' 
with s'. 

Note that there are never precedence constraints between a pair of mated tasks. 
This method clearly takes two tasks each timestep and does not violate the prece
dence constraints. What we want to show is that it always constructs an optimal 
schedule for G. For this it suffices to prove that every time step contains two tasks. 
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Assume to the ,contrary that at some point the above routine does not find a pair 
of tasks to schedule. Let U be the set of available tasks and U' be the set of tasks 
which are mated to tasks in U. Since the method fails, U n U' = 0 and, by assump
tion, there is a precedence relationship between every pair of tasks in U' (i.e. U' is 
totally ordered). Let t' be the task in U' which precedes all other tasks in U'. Since 
t' ¢: U, there must be some t E U such that t -< t'. However, by the transitivity of 
precedence, t also precedes its mate-contradiction. 0 

Lem.!!Ia 5.2 Let G = (V; -<) be a precedence graph and S a two processor schedule 
for G' = (V - {t}, -<). A single timestep containing t can be inserted into S yielding 
a schedule for G. 

Proof: Let t' be the last predecessor of tin S. Insert task t immediately after the 
timestep containing t'. Obviously there are no precedence conflicts between t and 
its predecessors. Since S is a valid schedule, there are no precedence conflicts 
between tasks in V - {t}. Therefore any precedence conflict would be of the form 
t -< f. By transitivity t' also precedes t, so t comes strictly after t' in S. Since t is 
inserted in the step immediately after t', task t appears before t in the modified 
schedule. 0 

Let M be the tasks in a maxim~m matching on G. The above Lemmas suggest a 
way to obtain a schedule, S, for G = (V, -<) where the paired tasks of S are precise~ 
the tasks in M. Start by finding an optimal schedule, S' for the subgraph of G 
induced by M and add the tasks in V - M one at a time. One ~ implementation 
of this algorithm involves bucket sorting the tasks in V - M based on which 
task-pair of S' they follow. By topologically sorting the tasks within each bucket we 
can quickly determine where each task should be inserted. 

Theorem 6 The task-pairs of any optimal schedule for G form a maximum cardinality 
matching on G. 

Proof: Let M be the tasks in some maximl!91 cardinality matching of G. Let S be 
an optimal schedule for the subgraph of G induced by M. By Lemma 5.1, the 
tasle-pairs of S form a maximum cardinality matching on G. By Lemma 5.2 we can 
insert the other tasks of G one at a time with.out disturbing the task-pairs. Therefore, 
the task-pairs of the resulting schedule for G form a maximum matching on G. Since 
every optimal schedule has the same number of task-pairs and the task-PAirs of 
every schedule form a matching, the task-pairs of any optimal schedule for G form 
a maximum matching on G. D 

If G is not transitively orientable it may still be possible to find a maximum matching 
in G = (V, E). Assume we are given a set U, consisting of O(log n) edges, such that 
G u U is transitively orientable. The following method finds a maximum matching 
in G. 

For each S' £; U such that S' is a matching find (in parallel) a maximum matching 
in G' = (V - {v: (v, v') E S'}, E - U). Since G' is a vertex induced subgraph of the 
graph G" = (V, E - U), G' is transitively orientable since Gil is. A maximum cardinal-
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ity matching for G occurs whenever the cardinality of the maximum matching for 
G' plus 18'1 is maximal. 

A graph G is a k-nearly comparability graph when: 

-G has at most k log n inconsistent implication classes and 
-each inconsistent implication class of G is split into consistent implication classes 

by the addition of at most kedges. 

A k-nearly co-comparability graph is the complement of a k-nearly comparability 
graph. 

Theorem 7 Let G be a k-nearly co-comparability graph, for some constant k. Then 
there is an .;v~ algorithm to find a maximum cardinality matching for G. 

Proof: In parallel examine each set, T, of at most k edges not in G. Determine 
which inconsistent implication classes are split when T is added to G. For each 
inconsistent implication class A, pick any set of at most k edges which splits X into 
consistent implication classes. At most k2 10g n edges are picked, so the method 
described above can now be used to find a maximum cardinality matching for 
G. 0 

6. Conclusion 

Although the algebraic approach was used to obtain the first parallel matching 
algorithms [16,21], these are randomized algorithms. It is interesting to note that 
we can obtain deterministic matching algorithms for some wide classes of graphs 
using a purely combinatorial approach. We may speculate whether the combina
torial approach will yield deterministic algorithms for matching on other classes of 
graphs as well. 

With regard to the two processor scheduling algorithm it was surprising to us how 
much more difficult computing the actual schedule was than simply computing its 
length (the details are given in [14]). In higher complexity classes such as f!lJ and 
';vf!lJ it is often easy to go from the decision problem to computing an actual 
solution, because of self-reducibility. However this does not necessarily seem to be 
the case for parallel complexity classes. To support this observation we note that 
the random .;V~ algorithm for finding the cardinality of a maximum matching is 
much simpler than the random .;V~ algorithm for determining an actual maximum 
cardinality matching [15]. 
There are several open problems related to parallel scheduling algorithms. We are 
attempting to extend our two processor result to the case when the tasks have 
nonuniform start times and/or deadlines. When the precedence constraints are 
restricted to in-trees or out-trees there are parallel algorithms for generating sched
ules on an arbitrary number of processors [4,12]. It is an open problem whether 
interval-ordered tasks [22] can be scheduled quickly in parallel. 

One variant of the two processor problem that we know to be ';v&J-complete (by 
reduction from the clique problem) allows incompatibility edges as well as prece-
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dence constraints. When there is an incompatibility constraint between two tasks 
they can be executed in either order, but not concurrently. Incompatibility con
straints arise naturally when two or more tasks need the same resource, such as 
special purpose hardware or a database file. An interesting question is to find 
restricted versions with feasible (parallel) solutions. 
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Abstract - ZusammerfaSSUDg 

Onlers and Graphs. This paper surveys the relationship between graphtheoretic and ordertheoretic 
questions. In the first part, we discuss recent results which answer ordertheoretic questions in a more 
general graphtheoretic framework. In the second part we address ordertheoretic approaches to graph
theoretic problems. 

AMS Subject Classifkations: 05C20, 05C25, 06AIO. 
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antimatroids. 

Orclnungen unci GrapheD. Die Arbeit gibt einen Oberblick iiber die Beziehungen zwischen ordnungs- und 
graphentheoretischen Fragestellungen. 1m ersten Tei1 werden neuere Resultate vorgestellt, die ordnungs
theoretische Fragestellungen in einema1lgemeinerengraphentheoretischenRa1tmenbeantworten.1m 
zweiten Teil werden umgekehrt Probleme auf Graphen diskutiert, die mit ordnungstheoretischen An
satzen erfolgreich gelost werden konnen. 

Introduction 

Orders and graphs may be viewed as two faces of the same coin. While undirected 
graphs may be analyzed within the context of directed gra('hs (replace each edge 
by a pair of oppositely directed arcs), also (partially) ordered sets fit into this 
framework in the sense that they correspond to transitively oriented graphs. On the 
other hand, we may associate with each directed graph D an ordered set P(D) in a 
standard way: we replace each vertex by two vertices v, v' and impose an order on 
the augmented set of vertices by letting v < w' if (v, w) is an arc in D. Thus, D may 
be studied in terms of P(D). 

Often, however, ordertheoretic aspects of graphtheoretic problems come up in a 
more direct way. Similarly, many ordertheoretic problems allow a more general 
approach within an appropriate graphtheoretic formulation. 

This survey addresses such relationships between graphtheoretic and ordertheoretic 
problems. It is not intended as an exhaustive and comprehensive treatment of the 
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subject. Gene~ally, our approach is more ordertheoretic. It concentrates on recent 
developments and reflects to large extent also the research interests of the authors. 

The survey consists of two sections. The first section emphasizes graph theoretic 
techniques for ordertheoretic problems while in the second section ordertheoretic 
techniques are in the foreground. 

1. Graphtheoretic Approaches to Ordertheoretic Problems 

Throughout this paper we are concerned with structures defined on finite ground 
sets. Recall that the pair P = (E, ~) is a (partially) ordered set if for all x, y, Z E E 

(1.1) x ~ x 
(1.2) x ~ y, y ~ x implies x = y 
(1.3) x ~ y, y ~ Z implies x ~ z. 

Note that P = (E, ~ ) can also be interpreted as a directed graph D = D(P) defmed 
on the set E of vertices and with edges of the form (x, y) whenever x ~ y. The 
comparability graph G = G(P) is the undirected version of D(P), i.e. has vertex set 
E and edges {x,y} whenever x ~ y. (We remark that sometimes D(P) and G(P) are 
defined without loops, i.e., relative to the strict order relation.) 

We say that y covers x if x < y and there is no Z E E with x < Z < y. Hence the 
complete information about P is contained in the Hasse diagram H = H(P), namely 
the subgraph of D(P) retaining just the covering edges. (Usually H(P) is drawn as 
an undirected graph with the understanding that the orientation is from "bottom" 
to "top".) Comparability graphs of ordered sets are, in particular, perfect. Let us 
quickly review some basic properties of perfect graphs. 

In an arbitrary graph G on the vertex set V we consider two types of subsets of 
vertices. C s; V is a clique if there is an edge between every pair of vertices in C. 
S s; V is a stable set if no pair is linked by an edge. The clique covering number 
K(G) is the smallest number of cliques needed to cover V. The stability number oc(G) 
is the size of the largest stable set of G. G is called perfect if for each vertex induced 
subgraph G' of G, the following equality is true 

oc(G') = K(G'). 

Lovasz [1972] proved the weak perfect graph conjecture: G is perfect if and only if 
its complement G is perfect. There is also a strong perfect graph conjecture, which 
has been found to be true for many classes of graphs (for example planar graphs 
(Tucker [1973]) or claw-free graphs (Parthasarathy and Ravindra [1976]» but 
generally is open: the graph G is perfect if and only if neither G nor G contain an 
induced odd cycle of size at least five. 

Computing oc( G) and K( G) is generally NP-complete (cf. Garey and Johnson [1979]). 
In the case of perfect graphs, however, polynomial algorithms are available via the 
ellipsoid method (see Grotschel, Lovasz, Schrijver [1988]). Let us take a look at 
comparability graphs. A clique in a comparability graph G(P) corresponds to a 
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chain in P, i.e. a set of pairwise comparable elements, while a stable set of G(P) is 
an antichain in P. Dilworth [1950] proved for ordered sets P: 

a(G(P)) = lC(G(P)). 

Since vertex induced subgraphs of comparability graphs are comparability graphs, 
Dilworth's theorem implies that comparability graphs are perfect. Hence the result 
of Lovasz [1972] yields a special case of Greene's theorem [1976]: the size of the 
longest chain of an order P equals the smallest number of antichains needed to 
cover P. 

Fulkerson [1956] reduced Dilworth's theorem to Konig's matching theorem: the 
maximal number of pairwise disjoint edges in a bipartite graph G equals the 
minimum number of vertices needed to cover all edges of G. (Here an edge cover 
means a set of vertices which contains from each edge at least one endpoint). This 
reduction allows to determine a maximal antichain efficiently using matching 
algorithms (see Lovasz and Plummer [1986]) or network flow techniques (cf. Lawler 
[1976]). 

Greene and Kleitman have achieved a substantial generalization of Dilworth's 
result. A k-antichain in an ordered set P is a subset A such that I A (\ q :::;; k for 
every chain C. (Thus, the 1-antichains are exactly the antichains in Dilworth's 
theorem.) The k-weight of a chain C is 

w(C) = min{k, ICI}. 

Greene and Kleitman proved that the maximum size of a k-antichain equals the 
minimum k-weight of a chain covering. 

Also in the situation considered by Greene and Kleitman it is possible to efficiently 
determine the numerical quantities involved by formulating the problem as a 
weighted matching problem (Hoffman [1982]) or min-cost flow problem (Frank 
[1980]). Standard duality results for network flows then yield the equality statement 
in the Greene-Kleitman theorem. 

Frank's [1980] graph theoretic setting yields a constructive approach for the general 
form of Greene's [1976] theorem. One is interested in the size of a largest subset of P 
containing no antichain of size k + 1 (or equivalently, by Dilworth's theorem, being 
coverable by at most k chains). Weighting antichains A with w(A) = min{k,IAI}, 
Greene's theorem says that the largest size achievable equals the minimum k-weight 
of an antichain cover of P. 

An interesting point, however, should be raised. Although the constructive 
approaches to the theorems of Greene and Greene-Kleitman are graph theoretic 
and involve only comparability graphs, the analogous statements are false for 
general perfect graphs. 

Greene's theorem has a direct application for a machine scheduling problem within 
the context of so-called loss systems. n jobs arrive at known points in time t1 , ••• , 

tn. k identical machines are available, each requiring processing time Pi for job i. 
Assuming that ajob i is lost if it is not processed at time t;, the problem consists in 
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processing as. many jobs as possible. Note that the set of jobs carries an interval 
order P in a natural way: 

i < j iff ti + Pi < tj for all i, j. 

Clearly, the problem now is equivalent to finding a largest subset of P that can be 
covered by at most k chains of P. 

Nawijn [1989] extends this model to the case where job i may have different 
processing times on different machines. This yields the following ordertheoretic 
problem: given orders PI' ... , P" on the same ground set, find subsets CI , ... , C" 
such that Ci is a chain in Pi and I CI U ••. U C"I is as large as po~sible. 

Assuming that the orders PI' ... , PI< are compatible in the sense that x < y in Pi and 
y < x in ~ cannot occur simultaneously, Nawijn's solution associates with the 
problem an acyclic directed graph in which an optimal solution corresponds to a 
longest path. Since this graph has n" vertices the problem can be solved in poly
nomial time for fixed k. 

A different type of k-machine scheduling problem is notorious (see, e.g., Poguntke 
[1986]). n jobs with unit processing times are ordered by precedence constraints P 
and have to be processed on at most k machines so that job i cannot be processed 
while one of its predecessors is still unfinished. The aim is a feasible schedule with 
the last job finishing as early as possible. 

While an efficient solution is not known for k = 3, the first polynomial algorithm 
for k = 2 by Fujii et al. [1969] was based on graphtheoretic concepts. Noting that 
each feasible schedule corresponds to a matching in the complement G(P) of the 
comparability graph G(P), they show that, in fact, every maximal matching can be 
arranged into an optimal schedule. 

Observe that two non-isomorphic ordered sets may have the same comparability 
graph. We call a function f defined on ordered sets a comparability invariant if 

f(P) = f(Q) whenever G(P) = G(Q). 

Obviously, the width and the size of a longest chain only depend on the compar
ability graph. The aforementioned result by Fujii et al. in particular shows that the 
optimal value for the 2-machine scheduling is also a comparability invariant. 

A further, nontrivial example of a 'comparability invariant was independently 
described by Gysin [1976] and Trotter et al. [1976]: The intersection of two ordered 
sets P and Q defined on the same ground set is the ordered set P n Q with Vi < Vj 
in P n Q if and only if Vi < Vj both in P and in Q. A linear extension of P is a linear 
order VI' ... , Vn ofthe vertices such that Vi < Vj in P implies i <j. The (linear) order 
dimension dimP of P now is the minimum number of linear extensions whose 
intersection is P. Equivalently, dimP may be thought of as the smallest number k 
such that P can be embedded in IRk with the componentwise ordering. 

Computing the dimension of an ordered set is NP:-hard in general. More precisely, 
testing whether dimP = k is NP-complete for any fixed k ~ 3. The case k :S 2 is 



Orders and Graphs 113 

well-solved: The 2-dimensional orders (a.k.a permutation orden) are the orders 
P for which both the comparability graph G(P) and its complement G(P) are 
transitively orientable. So checking if dimP = 2 can easily be done by applying a 
transitive orientation routine. For more details on the order dimension we refer the 
interested reader to the survey article by Kelly and Trotter [1982]. 

Faigle and Schrader [1986] derive a proof that the order dimension is a compar
ability invariant by constructing a canonical bijection between the sets of linear 
extensions of two orders with the same comparability graph. In addition, this 
bijection preserves the setups of a linear extension, i.e. pairs (Vi> Vi+i) in the linear 
order L = Vi' •• Vn such that Vi $, Vi+1 in P. This approach unifies and ext~nds earlier 
results that the number of linear extensions and the setup number (the minimum 
number of setups in a linear extension) are comparability invariants (see also Habib 
[1984] and Faigle and Schrader [1985] for more comparability invariants). 

The notion of order dimension can be extended in several ways. Instead of viewing 
P as the intersection of linear orders, we may allow more general classes of 
orders to form the intersection. One such class, which has been investigated in the 
literature, is the class of interval orders. Recall that P is an interval order if the 
elements of P can be represented by closed intervals Ii' ... , In on the real line with 
the ordering 

Ii < Ik if Ii is completely to the left of Ik . 

(Equivalently, P is an interval order if and only if its cocomparability graph G(P) 
is chordal, see Section 2). The interval dimension idimP of P is the minimum number 
of interval orders whose intersection is P. 

The interval dimension also turns out to be a comparability invariant (Habib et al. 
[1988]). As is the case for linear orders, testing whether idimP ~ 3 is NP-complete 
(Yannakakis [1982]). Orders with interval dimension at most two can be recognized 
in polynomial time (cf. Habib and Mohring [1988]). The recognition algorithm is 
based on the following equivalent characterization of ordered sets P with idimP ~ 2. 
Given two parallel lines and a set Ti , ... , T" of trapezoids with vertices on the two 
lines. In the trapezoid graph we associate with every vertex Vi a trapezoid 'Ii 
and introduce an edge between Vi and Vi if 'Ii n 1j =F 0. An order P has inter
val dimension at most two if and only if its cocomparability graph is a trapezoid 
graph. 

The concept of order dimension and interval dimension has a natural extension to 
directed graphs. Since interval orders are complements of chordal graphs, they are 
characterized by the fact that the successor sets (and similarly the predecessor sets) 
of the elements are linearly ordered by inclusion. A directed graph with this property 
is called a Ferren digraph. 

Observe that the complete symmetric directed graph with one arc left out is a Ferrers 
digraph. Hence we may obtain any directed graph as a suitable intersection of 
Ferrers digraphs. We can therefore speak of the Ferren dimension fdimD of a 
directed graph D as the minimum number of Ferrers digraphs whose intersection 
is D. 
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The Ferrers dimension has an interesting relation to the order dimension. Cogis 
[1982] proved that if D = D(P) is the directed comparability graph of an ordered 
set P, then the Ferrers digraphs whose intersection is D may be taken to be reflexive, 
antisymmetric, transitive and complete. So fdimD(P) = dimP. In particular, testing 
if fdim ::;;; 3 is NP-complete, the case k = 2 being well-characterized and poly
nomially solvable. For a rather comprehensive survey on order invariants, see West 
[1985]. 

Recently, antimatroids have received a lot of attention in connection with the 
investigation of greedy-type algorithms (see, e.g., Korte, Lovasz and Schrader [1989].) 
An antimatroid is a collection d of subsets of the set E such that 

(1.4) E E d 
(1.5) A u BEd for all A, BEd 
(1.6) A\x E d for all A Ed and some x E A. 

(Equivalently, antimatroids may be defined as the collection of complements of 
closed sets relative to a closure operator enjoying a matroid-like antiexchange 
property, see also below). 

Special examples of antimatroids arise as poset antimatroids from ordered sets by 
taking their systems of order ideals. (Recall that an order ideal of P is a subset I £ E 
so that x E I implies Y E I for all y ::;;; x in P.) 

Poset antimatroids are in many respects the simplest antimatroids. Yet they may 
serve as a canonical representation of all antimatroids in the following way. A path 
with endpoint x is a set A E d such that x E A is the only element with A \x E d. 
(For example, the paths in poset antimatroids correspond to principal ideals). 

We construct a (labeled) poset by ordering the paths by inclusion and labeling the 
elements of this path poset with their endpoints. It turns out that any antimatroid 
can be considered to be the poset antimatroid of its path poset (for more details, 
see, e.g., Korte et al. [1989]). 

Antimatroids allow a meaningful extension of Dilworth's theorem. For our pur
poses it is now useful to think of an antimatroid as a collection !?J' of permutations 
of some ground set for which the following is true. If we define the language 2(!?J') 
as the set of all initial segments of members of ~ then 2(&') has the augmentation 
property for all a, p E 2(!?J'): 

If not all letters of p occur in a, then there is a letter x in P such that ax E 2(&'). 

The collection of all linear extensions of an order, for instance, is an antimatroid; 
but also the collection of all simplicial decomposition sequences of a chordal graph 
(see Section 2) has this property (cf., e.g., Korte et al. [1989]). It should not be difficult 
to see that sets underlying 2(!?J') indeed satisfy the condition (1.4)-(1.6) and that 
conversely the elements of any antimatroid can be ordered as described above. 

Given a permutation L = VI .•• Vn E ~ we can consider the poset antimatroid d L 

on the linear order VI < V2 < ... < Vn • Then, clearly, 

d = U {dL : L E !?J'}. 
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Let the convex dimenSion cdimd of d be the minimum number of permutations 
L E ~ whose union U d L is d. Edelman and Saks [1988] show that cdimd has a 
direct combbatorial interpretation in the spirit of a chain covering. The convex 
dimension of an antimatroid is equal to the width of its path poset. 

Given weights c(e) on the elements of the ground set E the intersection problem for 
matroids is to find a subset of E of largest weight which is independent in both 
of two given matroids. This problem, which generalizes the bipartite matching 
problem, is well-solved (cf., e.g. Lawler [1976]). The corresponding problem for 
antimatroids is NP-hard in general. 

It is, however, easy to see that the problem of finding a maximum weighted subset 
which is an ideal relative to two given orders P and Q on E, is polynomially solvable. 

Associating with each i E E a variable Xi consider the linear programm 

max L CiXi 
ieE 

(LP) s.t. xl - Xi ~ 0 if i < j in P or i < j in Q 

O~xi~1 

Observe that the feasible 0 - 1 solutions of (LP) correspond exactly to the ideals 
common to P and Q. Because linear programming is polynomial it therefore suffices 
to show that (LP) has an integral optimum solution. The constraint matrix of (LP) 
is the transpose of the vertex-edge incidence matrix of the directed graph D(P u Q). 
As it is well-known that incidence matrices of directed graphs are totally uni
modular, also the constraint matrix of (LP) is totally unimodular, which yields the 
desired result. 

The previous proof is one of the few results in order theory which are based on a 
polyhedral approach. Linear programming and polyhedral combinatorics seem to 
have been neglected in this field for a long time. Before closing this section we 
mention two more recent results making use of polyhedral arguments, both model
ling machine scheduling problems. 

Consider two ordered sets PI = (EI' ~d, P2 = (E2' ~2) and a cost function cij for 
assigning element i E EI to elementj E E2. The order preserving matching problem 
consists in finding a strict order preserving injection of minimum weight, i.e. a 
mapping h: El -+ E2 such that 

i <1 j in El implies h(i) <2 h(j) in E2 

and LieEl Ci.h(i) is minimal. 

This problem, which models the optimal assignment of jobs to machines, is NP
complete in general, while special cases are polynomially solvable (see Chang and 
Edmonds [1985]). For the case where PI is linear and P2 is arbitrary, Margot et al. 
[1988] present a dynamic programming algorithm and a polyhedral characteri
zation of the set of strict order preserving injections. 

For an antichain A let 
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leA) = {x: x ~ y for some YEA} 

be the ideal generated by A and I'(A) = I(A)\A be the corresponding open ideal. 
Margot et al. show that if Pi is a linear order, the incidence vectors Xu of strict order 
preserving injections are the extreme points of the following polytope: 

L xu= 1 
jeE2 

L Xu - L X;-l,j ~ 0 i EEl' A antichain in E2 
jeI(A) jeI'(A) 

xu;;::: O. 

For the second result we associate with every linear extension n of P an incidence 
vector x(n) = (n(I), ... , n(n)) E IRft. The permutahedron Perm(P) is the convex hull of 
all incidence vectors of linear extensions, i.e. 

Perm(p) = conv{x(n): n a linear extension of Pl. 

The linear programming problem 

max {cx: x E Perm(p)} 

is equivalent to the following I-machine scheduling problem: given processing times 
c;, the completion time of job i is c; plus the sum of all processing times of jobs 
processed before i. The mean finish time problem is to find a schedule of the jobs so 
that the average completion time is minimal. This scheduling problem is treated in 
Sidney [1975], where a polynomial algorithm for series-parallel orders but no 
polyhedral description is given. 

Rado [1952] considered the case where P is an antichain and gave a linear descrip
tion of Perm(p) via the following inequalities 

x(S);;::: (iSI; 1) for all S s; E 

x(P) = n(n + 1)/2. 

In fact, this linear description is irredundant since all of the inequalities are facets 
(cf, e.g. Gaiha and Gupta [1977]). 

In v. Arnim et al. [1989] this result is extended to the case where P is a series-parallel 
order. Recall that an ordered set is series-parallel if it does not contain the following 
order as induced suborder 

N 
Figure 1 

We call a pair (A, B) of subsets series-reducible if a < b for all a E A and b E B. If P 
is series-parallel then the permutahedron Perro(p) is given by 



Orders and Graphs 117 

x(I) ~ ell; 1) for all ideals I s;; E 

IAlx(B) - IBlx(A) ~ ~ IAIIBI(IAI + IBI) for all series-reducible pairs (A, B) 

x(P) = n(n + 1)/2. 

Not all of these inequalities induce facets. However, the facets among them are 
well-characterized and violated inequalities can be detected efficiently by a poly
nomial separation algorithm. 

Closing this section, let us mention a combinatorial object which so far has received 
surprisingly little attention in general. It is well-known, for example, that the set 
of permutations can be generated via adjacent transpositions starting from one 
specified permutation (see, e.g., Chap. I of Even [1973]). In other words, the 
graph having as vertices all permutations and the neighboring relation defined via 
adjacent transpositions admits a hamiltonian path and, in particular, is connected. 
Note that this graph can be viewed as the skeleton of the unrestricted perm uta
hedron (cf. Rado [1952], see also above). 

As before, let us think of the maximal feasible sets of an antimatroid as a collection 
& of permutations. The basis graph BI(&) of the antimatroid & has & as its set of 
vertices with the neighboring relation as in the general permutation graph defined 
above. We will simply write BI(P) if & consists of the linear extensions of the 
order P. 

It is not hard to prove by induction that BI(&) always is connected. Even for 
orders P, however, BI(P) need not be hamiltonian. An interesting unsolved case, for 
example, is given by the question whether BI(P) has a hamiltonian path whenever 
P is an interval order (cf. Ruskey [1988]). . 

Note that also the setup number problem can be formulated for basis graphs. 
Indeed, the setup number of the order P is exactly the minimal vertex degree of the 
graph BI(P). This formulation suggests that it might be meaningful to explore the 
setup number for other classes of antimatroids as well. 

2. Ordertheoretic Techniques 

Many combinatorial optimization problems require to determine an "independent" 
set which is maximal relative to some weight function. Here the notion of 
"independence" implies that subsets of independent sets are also independent. 
Algorithms to solve such problems often impose a linear order on the elements of 
the ground set in question and then scan through the set in that order before 
building up the desired object. 

A well-known example is Kruskal's algorithm to find a maximal edge-weighted 
spanning tree in a graph. The linear order on the edge set here lists the edges 
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according to decreasing weights. Scanning through the edge set, one then builds up 
a tree "greedily" (see Welsh [1976] for matroid-theoretic ramifications). 

The maximum stable set problem in a vertex-weighted graph G asks for a maximum 
weight set of vertices that are pairwise non-incident. The problem is known to the 
NP-complete in general (see Garey and Johnson [1979]). Frank [1976] gives an 
efficient algorithm provided that the vertices of G can be linearly ordered v I, V2' ••• , 

Vn such that Vi+l is simplicial in the induced graph Gi = G\ {VI" •• , v;} (i = 1, ... , n), 
i.e. such that the neighbors of Vi+l form a clique in Gi • The graphs which admit such 
an ordering are exactly the chordal graphs (a.k.a triangulated) graphs, where, by 
definition, each circuit of size at least 4 has a chord (see Golumbic [1980]). 

Hoffman et al. [1985] consider a class of linear programs with (0,1)-constraint 
matrices that can be solved by a certain greedy algorithm. The crucial point of their 
algorithm consists in the observation that each constraint matrix in the class gives 
rise to a strongly chordal graph G, whose vertices can be ordered Vl , ••• , Vn such that 
Vj+l is simple in the induced graph Gj = G\ {V1"'" v;} (see Anstee and Farber 
[1984]). To explain this terminology, we denote by N(v) the (open) set of neighbors 
of the vertex v in a graph G and let N[v] = N(v)u {v} be the closed neighborhood 
set. The vertex v is then said to be simple in G if the collection {N[u]: u E N(v)} is 
linearly ordered by set-inclusion. (Note that, in particular, each simple vertex is 
simplicial). 

Let us turn to a standard heuristic algorithm for the graph coloring problem, where 
the vertices of a graph G are to be colored with as few colors as possible such that 
adjacent vertices carry different colors. The heuristic scans the vertices Vl' V2 , ••. , 

Vn in some linear order and assigns colors by a "first fit" method: give the vertex Vj 

the smallest positive integer assigned to no neighbor Vi (i < j) of Vj' Chvatal [1984] 
calls a graph G perfectly orderable if G admits an ordering which makes the heuristic 
produce an optimal coloring when applied to G or any induced subgraph F of G. 
Chvatal shows that a perfectly orderable graph is, in particular, strongly perfect 
(and hence perfect), i.e. each induced subgraph F has a stable set that meets 
all maximal cliques of F. Moreover, he characterizes perfect orderings as those 
orderings which admit no induced chordless path P4 on four vertices abed with 
a < bande > d. . 

Taking the simplicial ordering, one sees that chordal graphs are perfectly orderable. 
Another class of examples is formed by comparability graphs. To see this, we orient 
a comparability graph according to a partial order P and choose a linear extension 
of P. (For more examples, see Chvatal [1989] and the references cited there). It is, 
however, interesting for our purposes that also graphs with Dilworth number at 
most three are perfectly orderable (Chviltal et a1. [1987]). 

The Dilworth number of a graph G was introduced by Foldes and Hammer [1978], 
who define the vicinal preorder on the vertices of G as follows: 

x ~ y if and only if N(x) s;; N[y]. 

The vicinal preorder is reflexive and transitive (though not necessarily anti-
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symmetric). The Dilworth number of G now is the minimal number of chains with 
respect to this preorder needed to cover all vertices of G. 

The graphs with Dilworth number 1 are exactly the threshold graphs (Chvlital and 
Hammer [1977]). Recall that such graphs are characterized by the possibility to 
assign real numbers ai' a2' ... ' an to the vertices so that a number S exists with the 
property 

i and j are adjacent if and only if aj + aj ~ S. 

Graphs with Dilworth number 2 correspond to so-called threshold signed graphs. 
They can be thought of as being constructed from pairs of disjoint threshold graphs 
by inserting new edges according to Galois connections relative to the respective 
vicinal preorders (Benzaken et aL [1985]). 

Since the concept of a Galois connection, which goes back to Ore [1944], is also of 
importance in other contexts, we give a formal definition: 

A Galois connection between two (partially) ordered sets P and Q is a pair (a, -r) of 
maps a: P -+ Q and -r: Q -+ P such that 

(2.1) a(p) ~ a(p') for all p ~ p' in P 
(2.2) -r(q) ~ -r(q') for all q ~ q' in Q 
(2.3) p ~ -r(a(p» for all PEP 
(2.4) q ~ a(-r(q» for all q E Q. 

To illustrate this concept, consider a bipartite graph G with a partition S u T of its 
vertex set such that each edge has one endpoint in S and the other endpoint in T. 
We choose P and Q to be the collections of all subsets of Sand T respectively, 
ordered by inclusion. For each A s;; Sand B s;; T, we define a Galois connection via 

a(A) = n N(s) 
seA 

-r(B) = n N(t) 
teB 

(with the understanding that the intersection of the empty set equals the ground set). 

Wille [1985J suggests the following interpretation in the language of data analysis. 
S is a set of "objects" and T a set of "properties". An edge between t and s in G 
signifies that s has property t. In this sense, the bipartite graph G can be viewed as 
a context. A concept in this context is determined as a collection of all those objects 
that have a set B s;; T of properties in common. In other words, concepts correspond 
to sets of objects of the form -r(B). (Since the role of objects and properties is 
completely symmetric, one may equivalently view concepts as sets of properties of 
the form a(A». Hence the concept lattice 

2(G;S) = {-r(B): B s;; T} 

(or equivalently 2(G; T» contains the complete information about the concepts 
that can be distinguished within the data structure G (see also Section 9 in Bock 
[1988].) 
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Orders that are induced via set inclusion are also central in the study of monotone 
graph properties. We consider the class r of all simple graphs on the vertices 
1, 2, ... , n. For x, y E r, we write x :::;; y if the edge set of x is contained in the edge 
set of y. A monotone property of r is a subset F £; r such that for all x, y E r, 

x E F and x :::;; y implies y E F. 

(Usually, monotone graph properties are additionally assumed to be isomorphism
invariant). One fundamental fact is that any two monotone properties F1 and F2 
are positively correlated, i.e. 

(This means that F1 , say, is at least as likely to hold if F2 is known to hold than it 
is if nothing is known about F2)' 

The proof of this fact is an application of the so-called FKG-inequality for distri
butive lattices. To formulate it, we consider a finite family f!} of sets which is closed 
under union and intersection. We assume to be given two monotone functions J, 
g: f!} --+ III and a nonnegative function J.l: f!} --+ 1Il+ satisfying 

J.l(x n Y)J.l(x U y) ~ J.l(x)J.l(y) for all x, y E f!} . 

The FKG-inequality then concludes 

L f(x)g(x)J.l(x)· L J.l(x) ~ L f(x)J.l(x)· L g(x)J.l(x). 
xe!» xe!» xe!» xe!» 

In our application above we take f!} = r, J.l == 1 and let f and g be the indicator 
functions of F1 and F2 • We just remark that the FKG-inequality in tum is a 
consequence ofthe even deeper Ahlswede-Daykin inequality for nonnegative func
tions on distributive lattices. We will omit the details and refer instead to the 
comprehensive introduction into the subject by Graham [1982]. 

One of the most outstanding problems about r is the question whether there exists 
a monotone isomorphism-invariant graph property F ::/= rwhich is non-evasive. The 
question refers to the following setting. We want to determine whether the graph 
x E r, which is unknown to us at the outset, belongs to F. We may query an oracle 
to find out if a given edge belongs to x. The minimal number c(F) needed to settle 
the problem is the complexity of F. F is evasive if 

c(F) = (~), 
i.e. if we have to ask all possible edges. Rivest and Vuillemin [1976] proved the 
Anderaa-Rosenberg conjecture: If F is a non-trivial isomorphism-invariant mono
tone graph property in r, then 

n2 

c(F) > 16' 

Currently still open is the Karp conjecture: Each non-trivial isomorphism-invariant 
monotone graph property is evasive. 
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Many interesting partial results towards the Karp conjecture have been obtained 
so far. A very readable account therof can be found in Aigner [1988]. 

An analogue of the recognition complexity of graph properties for ordered struc
tures is investigated in Faigle and Turan [1988]. Here an ordered set property is 
taken to be a class F of orders which is isomorphism-invariant. The oracle model 
gives as answers to queries the comparability status of two elements x and y 
presented ("x < y" or "x > y" or "xlly"). There is an obviously evasive ordered set 
property, namely, the property of being an antichain. Equally, the property of 
having exactly one comparable pair is evasive. Are there more evasive properties? 

In view of the Karp conjecture for graphs, it is curious that evasive. ordered set 
properties seem to be hard to find. In contrast, there are many "easy" ordered set 
properties (for example: having a unique maximal element or being a linear order). 

Clearly related to the recognition problem for linear orders is the sorting problem, 
which in its classical formulation consists in identifying an a priori unknown linear 
order on the ground set by repeatedly asking the comparability status of pairs of 
elements. It is not the place here to discuss the various sorting techniques, which 
can be found in the standard literature (e.g. Knuth [1973], see also Bollobas and 
Hell [1985] for a more graphtheoretically oriented survey). 

Let us look at a natural generalization of the sorting problem, which is due to 
Schonhage [1976]. Suppose we only want to identify the 3rd-Iargest element of 
the unknown linear order. Then it clearly suffices to stop asking comparability 
questions when the answers sofar have produced a partially ordered set P of Figure 
2 into which the order can be embedded in an order-preserving manner. 

n-3 

Figure 2 

Generally, the order production problem is based on a linear order, which is only 
known to a "comparison oracle", and on a partial order P on the same ground set, 
which is known to us. We are to identify a partial order Q into which P can be 
embedded with as few calls to the oracle as possible. 

Equivalently, we want to fmd a permutation q of the ground set such that x < y in 
P implies q(x) < q(y) in the underlying order. From this, Schonhage [1976] deduced 
by an information-theoretic argument the lower bound 

c(P) ~ log2 (e~~») 
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for the numbc;r of oracle calls, where e(P) is the number of linear extensions of P. 
Saks [1985] conjectured that this lower bound can be achieved asymptotically in 
the sense that 

c(P) = 0 (IOg2 (e~~) + n) ). 
In a remarkable paper, Yao [1988] recently proved the conjecture to be correct. 

Another generalization of the sorting problem goes back to Fredman [1976]: 
Suppose that some of the relations of the unknown linear order have been deter
mined and give rise to the partial order P. How many comparisons are still needed 
for completely identifying the underlying linear order? Or, equivalently: How many 
comparisons are needed in order to determine a fixed (but a priori unknown) linear 
extension of a given partial order P? 

The complexity c(P) in this case can be bounded from below by the information
theoretic bound 

c(P) ~ log2 e(P). 

A standard application of the binary search principle would establish c(P) = 
0(10g2 e(P» if there existed a universal constant 0 < fJ < t with the property: 
Each ordered set P which is not a linear order contains two elements x and y 
such that the fraction P(x < y) of linear extensions where x precedes y satisfies 
fJ < P(x < y) < 1 - fJ. 

Denote by fJ(P) the best such fJ relative to the fixed order P. Kahn and Saks [1984] 
have shown 

3 
fJ(P) ~ 11 for all non-linear orders P, 

which yields c(P) ~ 2.210g2 e(P). The 3-element order P3 with exactly one nontrivial 
comparability has fJ(P3 ) = l Nevertheless, a challer..ging conjecture of Kahn and 
Saks claims 

lim [)(P) = -21 , 
w(P)-+oo 

where w(P) is the width of P. 
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Abstract - Zusammerfassung 

Dynamic Partial Orders and Generalized Heaps. Classical and recent results are surveyed in the develop
ment of efficient representations of dynamic partial orders by heaps and their generalizations. 
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Dynamiscbe Partialordnungen und verallgemeinerte Heaps. Die M6glichkeiten und Probleme der 
Reprasentation von dynamischen Partialordnungen durch Heaps und ihrer Verallgemeinerungen 
werden diskutiert; klassische und neueste Resultate werden iiberblicksmaBig vorgestellt. 

1. Introduction 

1.1. Basic notations 

Let V be a finite set of objects, drawn from a possibly infi'1ite set U (universe), on 
which a partial order" --<" is given. 

A partial order is a binary relation PO c U x U on U (resp. V)-an element 
(VI' V2) E PO is denoted by VI --< V2-, which is 

V --< V for all V E U (resp. V), reflexive: 
antisymmetric: 
and transitive: 

(VI --< V2 and V2 --< vd => (VI = v2 ) 

(VI --< V2 and V2 --< v3 ) => (VI --< v3 )-

An element 12. E V is minimal in V iff 

an element v E V is maximal in V iff 

v --< V => V = v. 
A chain is a nonempty sequence of pairwise different elements of V 

(k ~ 1), 
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which are totally ordered: 

(j = 1, ... ,k - 1). 

k is the length l(w) of the chain w; a chain of length 1 is called a trivial chain. Any 
partial order PO can be represented by a directed acyclic graph (DAG) G = (V, E) 
with E:= {(v, v/)/v =F v' and v -< v'}; its (unique) transitively irreducible kernel 
(transitive reduction) is called the Hasse diagram of PO. 

But notice: 

The number of arcs of the Hasse diagram may have at most l ~ J arcs, where n 

denotes the cardinality of V; this O(n2 )-upper bound is sharp (f.e. in the complete 
bipartite graph Kn/2•n/2 ) ([18], [19]). 

1.2. Basic problems 

As V ("the actual set") may change in time we are concerned with the following 
problems: 

(1) represent V with respect to some given objectives (f.e. support special questions 
on V efficiently: report all maximal elements, give the Dilworth number of PO, 
etc.) 

(2) maintain the representation when V changes in time, especially 
(a) if a "new element" v E U - V has to be inserted 
(b) if an element v E V has to be deleted 
(b/) if a minimal (maximal) element has to be deleted 
(b") if a minimal (maximal) element has to be deleted and a new element to be 

inserted 
(3) divide V:= Vi U V2 , that means split the representation of V into two represen

tations of Vi and V2 respectively (Vi (') V2 = .0) 
(4) merge V:= Vi U V2 , that means given representations of Vi resp. V2 construct a 

representation of Vi U V2 (especially if Vi (') V2 = 0). 

Some more'special operations are given in forthcoQ1ing chapters. 

2. Heaps 

2.1. The classical min-Heap 

Originally the concept of a heap (Williams [27]) was as follows: A real-valued array 
A[l. .. n] is a heap iff 
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A[li/2J] ~ A[i] for i = 2, ... , n. 

These n - 1 conditions pose a special partial order on the components of array A 
illustrated in figure 1 (for simplicity let ai denote A[i]): 

Figure 1 

A heap was designed as a data structure for the following situation: let k: U -+ IR be 
a real-valued function (not necessarily an injective one); k(v) is called the key of 
object v. 

A heap A[l. .. n] represents a set of objects V endogenously, if A has pairwise 
different components and V is the set of keys itself; it represents a set of objects V 
exogenously, if there is a further array P[I ... n], where P[i] points to the object 
associated with key A [i]. 

For simplicity let us restrict ourselves to the endogenous case. 

It is worthwhile to mention that the original concept of an endogenous heap 
is a pointerless implementation (implicit data structure) of the binary tree given in 
figure 1. 

To be more independent from implementation techniques let us define a heap in a 
more general way. 

Definition: A (min-)Heap is an ordered· binary tree H with the following properties: 

(1) H is heap-ordered, i.e. a key in any node is not less than the key of its father (if 
there is a father) 

(2) H has a heap-shape, i.e. is a left complete binary tree (that means: all levels except 
the last one are complete; the leaves in the last level are as far to the left as 
possible; see figure 2). 

* ordered means: every son is uniquely characterized as a left son resp. right son 
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Heap-shape of H: 

Heap-shape ot H: 
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level 0 

level 1 

level 2 

-r-II-r-----~- - ----
last level 

Figure 2 

Remarks: 

1.) The root contains the minimal element. 
2.) The height of His h(H) = L log2 n J. 
3.) A breadth-first-search of H (starting at the root and respecting the order of the 

sons: left son before right son) results in a heap as defined originally. The rank 
of an element in this order is called its position. 

(min-)Heaps support the following basic operations, measured in the number of 
comparisons as well as data movements: 

Operation 

FindMin 
Insert 
DeleteMin 
Create 
Sort 

Description 

find element with minimum key 
insert a new element and restore the heap-property 
remove element with minimum key and restore the heap-property 
construct a heap with n elements 
sort all keys (in decreasing order) 

Complexity 

0(1) 
O(logn) 
O(logn) 
O(n) 
O(n log n) 

To give a rough idea how these operations can work, let us first look at Insert: 

1.) place the new element (the (n + 1)th) "just behind" the last one (the n-th element), 
where the shortest binary coding of the number n + 1 (dikdik_, ... di, dio) immedi
ately gives us the path from the root to the correct position: read 0 as "go left" 
and 1 as "go right" and start at the root with dik_" continue with dik_2 etc. 

2.) if father (new) ~ new then STOP else 

bubble up (new) {exchange father (new) and new recursively as long as the 
if-condition is not satisfied} 

Notice: The place-routine is independent of the value of the new element. In a 
pointerless implementation using consecutive addresses (1,2, ... , n, n + 1, ... ) the 
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father of i is given by li/2j, which can be realized by shifting one bit in the binary 
coding of i; to find the k-th ancestor one has to shift just k bits! This allows to reduce 
the number of comparisions even to O(log{logn» by binary search on the path of 
ancestors of the (n + l)-th position (Gonnet, Munro [10J). Although the number 
of data movements again may be of order O(log n) this idea leads to an o (log {log n»
time INSERT -algorithms on an O(log njIog log n)-processor parallel CREW -RAM. 

To delete the minimal element and to restore the remaining n - 1 elements in a heap, 
put the old n-th element in position 1 (root) and 

trickle_down (v) {exchange the actual element v and the smaller of its 
sons as long as this son is smaller than the 
actual father recursively}, starting with the root v. 

To create a heap with n elements, at first place the elements arbitrarily in positions 
1, ... , n; then (iteratively) trickle_down (In/2j), trickle_down (In/2j - 1), ... , 
trickle_down (I). 

To sort all elements first create a heap, then (iteratively) exchange the first (minimal) 
element and the element on position k and trickle_down (I) in the remaining set of 
the k - 1 first positions (k = n, n - 1, ... ,2) ("Heapsort", Williams [27J; Floyd [6J; 
for an improved version using the remark above see Carlsson [3J). 

2.2. Variants of Heaps 

The restriction to ordered binary trees is not essential. We can take ordered d-ary 
trees as well (d ~ 2). 

A d-heap is an ordered d-ary tree, which is left complete and heap-ordered. Analogous 
to the case d = 2, the d-heap operations have running time 0(1) for FindMin, 
o (lOgd n) for Insert and O{d logd n) for DeleteMin, since a left complete d-ary tree has 
height at most llogd n j + 1. 

The parameter d can be chosen adequately with respect to the relative frequencies 
of the operations DeleteMin and Insert in a given application (for example to speed 
up shortest-path-algorithms): as the proportion of deletions decreases, one can 
increase d, saving time on insertions (see Tarjan [24J). 

Again we do not need any pointer: if we search the tree in breadth-first-search
manner (and left to right), the resulting positions are as follows: 

father (i) = r{i - l)/dl and 

sons (i) = [d' i - d + 2, min {d' i + 1, n}]. 

The concept of (min-) Heap can easily turned to max-Heaps. 

A max-Heap is an ordered binary tree, which has the heap-shape and is max-heap
ordered, i.e. a key in any node is not greater than the key of its father. max-Heaps 
obviously can be reduced to min-Heaps: any max-Heap is a min-Heap with respect 
to the inverse order of keys and vice versa. 



130 Hartmut Noltemeier 

Thus max-Heaps support FindMax, Insert, DeleteMax, Create and SORT, in a 
similar way with analogous complexities. 

Sometimes it is desirable, to support 

FindMin, DeleteMin, Insert and Create as well as 
FindMax, DeleteMax simultaneously. 

Any data structure, which supports these operations, is called a double-ended 
priority queue (DEPQ). 

A simple collection of a min-Heap and a max-Heap (for the same set V) doesn't give 
a reasonable solution: besides the doubling of space requirement it implies some 
bad worst-case-time complexities: a DeleteMin need O(n) time in a max-Heap, a 
Deletemax similarly O(n) time in min-Heaps. 

Some more sophisticated solutions were given in [1], where the elements are divided 
into even levels (which form a min-Heap) and odd levels (which form two max
Heaps) in the following way: 

a min-max-Heap is an ordered binary tree, which has the Heap-shape and addi
tionaly is minmax-ordered, i.e. all elements on even levels are less than or equal to 
all of their descendants, while elements on odd levels are greater than or equal to 
their descendants (if any). 

This concept even can be enlarged to minmaxMedian-Heaps, which support 

FindMin, FindMax, FindMedian 
DeleteMin, DeleteMax, DeleteMedian 
Insert 
Create 

using only n storage cells for data ([1]). 

in 0(1) time 
in O(log n) time 
in O(log n) time 
in O(n) time 

The most interesting and elegant approach to get an efficient implementation of a 
DEPQ is the 

INTERVAL-HEAP, due to J. v. Leeuwen and D. Wood [13]. 

Let U = IR (real numbers) with the total order "~" on it, 

0:= {[a,b]/a,b E U and a ~ b} the set of closed intervals on IR and 
[a,b] -< [c,d] iff [a,b] c [c,d] 
the partial order on 0 induced by inclusion. 

Definition: An I nterval-Heap I H is an ordered binary tree, which obeys the follow
ing properties: 

1) IH has the heap-sheap, i.e. is left complete 
2) for each node v E V (except the last node I) I(v) is an interval from 0, assigned to 

v; to the last node I there is assigned either an interval or a single value a E IR 
(which of course can be interpreted as [a, a]). 

3) IH is max-heap-ordered, i.e. 
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I(v) -< I (father (v» 

Figure 3 gives an example of an interval-heap. 

[3,12] 

[3,9J 

[6,7] [4,5] [6,9] [5,6] 7 

Figure 3. Interval-Heap 

[5,1~ 

As an immediate consequence of 3) we have the following: 
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[5,7] 

let IH be an interval-heap and P(IH) =: P the multiset of endpoints of intervals 
represented by IH, and let [a,b] be the interval assigned to the root, then a = 

min{p/p E P} and b = max {p/p E P}. 

The question arises: given a finite set P c ~; is there an interval-heap IH such that 
P(IH) = P and-if any-how much effort is needed to construct IH? 

Lemma: Interval-heaps allow Insert (in P) in O(logl VI) time. 

The idea, to solve this problem, is very similar to the Insert in ordinary max-heaps. 
Roughly we look for the last node 1: 

(X) if 1(1) = a is a single value, then do 1(1):= [a,new_p] if a is less than the new 
point new_p (and [new-p, a] in the other case); 

Bubble up (1) {the actual interval I(v) = [a, x] which was enlarged just 
before, is compared with 
I (father (v» = [b, c] : if c < x then do begin 
I(v) := [a, c]; I (father (v» := [b,x] end 
and continue with father (v) until the tree is max-heap
ordered (all other, but similar cases are omitted)}; 

/3) if 1(/) = [a, b], store new_p in the next (new last) position /' and compare new_p 
with I (father (1') = [a, b]: 

ifnew_p E [a,b] then STOP 
else begin 1(/') := Median {a, b, new_p}; 

I (father (1'):= [min{a,b, new_p}, max {a, b, new-p}J; 
Bubble up (father (I'» 
end. 

A more detailed analysis yields the following ([13]) 
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Theorem: For 'any finite set V c ~ (with n elements) an interval-heap IH with 
P(IH) = V can be constructed in O(n) time using only n storage cells for data, which 
allows the following operations 

FindMin 
FindMax 
DeleteMix 
DeleteMax 

in 0(1) time 
in 0(1) time 
in O(logn) time 
in O(log n) time. 

Interval heap find applications in the field of intersection and vision problems in 
computational geometry very well ([13]). 

An interesting question remains: can this technique be adapted to other sets of 
"complex objects", where the partial order is induced in a simple way from a total 
order on the "basic constituents''? 

In chapter 4 we will give a partial answer to this question. 

3. Heap-ordered trees 

The "heap-shaped" -condition of heaps is very disadvantageous to support further 
basic operations (f.e. Divide and Merge). 

To represent arbitrary partial orders we have to omit this condition too. Thus we 
introduce the following concept. 

Definition: A heap-ordered tree T is an ordered finite rooted tree (not necessarily a 
binary tree) containing a set of items, one item in each node, with the items arranged 
in heap order: 

if v is any node, then the key of the item in v is no less than the key of the item in 
its father, provided v has a father. 

Consequently the root of T contains an item with minimal key. Now to merge two 
item-disjoint heap-ordered trees T1 (with root r1 ) and T2 (with root r2 ) into one 
heap-ordered tree T, we compare the roots: 

if the item in r1 has a smaller key, we make r2 a new child ofr1> otherwise we make 
r1 a child or r2 (see figure 4): 

Merge .. 
key (r,)<key (rz) 

Figure 4. Merging two item-disjoint heap-ordered trees 

Thus this basic operation takes 0(1) time ifwe use an appropriate tree representation. 
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There are two commonly used representations of heap-ordered trees: 

A) "Child sibling" representation or "binary tree" representation: each node has a 
left pointer to its first child and a right pointer to its next sibling (or null). 

The effect of the representation is to convert a heap-ordered tree T into a 
half-ordered binary tree T' with empty right subtree, where by half-ordered we 
mean that the key of any node is at least as small as the key of any node in its 
left subtree (see figure 5). 

In order to support further operations it sometimes appears to be useful, to store 
with each node a third pointer to its father in the binary tree T'. 

T' 

9 

Figure 5 

3 

" " '8 

Remark: It is easy to realize that merging two item-disjoint heap-ordered trees using 
this representation can be implemented in 0(1) time. 

Insert (x) by making x into a one-node tree and merge it with the actual tree yields 
an 0(1)-Insert-algorithm too. The same holds for FindMin and for an important 
operation, which frequently appears in solving shortest path problems, assignment 
problems and minimum spanning tree problems: 

DecreaseKey (Lt, v, h): decrease the key of the item, associated to node v by 
subtracting the non-negative real number Lt. 

This operation can be reduced to "merge" in the following sense: 

Subtract Lt from the key in v. If v is not the root of the tree, cut the arc joining v to 
its father and merge the two trees as usually (figure 4). 

The "child sibling" representation obviously guarantees 0(1)-worst-case running 
time for DecreaseKey too. 

It turns out that the crucial operation is 1 DeleteMin I, where we have to merge 
possibly a large number of subtrees (see figure 6). 
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Delete Min .. 

Figure 6 

collect in one tree 

rAn arbitrary Delete (v), where we know the position of v, reduces to DeleteMin by 
cutting the arc joining v and its father, performing a DeleteMin on the subtree with 
root v and merging the resulting tree with the other tree formed by the cut. j 

Fredman, Sedgewick, Sleator, Tarjan [9] proposed a pairing procedure: order the 
children of each node in the order they were attached by merge operations, with 
the first (youngest) child being the one most recently attached. Then merge the first 
and second, the third and fourth, and so on. Afterwards merge each remaining tree 
to the last one, working from the next-to-Iast back to the first. The resulting tree is 
called a pairing heap. The authors can show the following (see also [25]) 

Theorem: On pairing heaps the operation FindMin has 0(1) amortized time, the 
DeleteMin runs in O(logn) amortized time. 

But the authors conjecture O(1)-amortized time bounds for the operations Insert, 
Merge, DecreaseKey too. Jones [12] has given some experimental results which 
may indicate that pairing heaps are competitive in practice with all known 
alternatives. 

The best known alternative is the Fibonacci-Heap (F-heap), which is a finite col
lection of item-disjoint heap-ordered trees (Fredman, Tarjan [7]). The standard 
representation of Fibonacci-Heaps is as follows. 

B) "F-Heap" representation: 
Each node contains a pointer to its father (or null, if it is a root), and a pointer 
to one of its children (if any). The children of each node are doubly linked in a 
circular list. Each node also contains its degree and a bit for marking purposes. 
The roots of all trees, which constitutes the F-Heap, are doubly linked in a 
circular list, access to the heap is done by a pointer pointing to a root with 
minimal key ("minimal node" of F-Heap). 

To carry out Insert (new), one creates a new F-Heap consisting of one node and 
merges two F-Heaps. 

The merge in general can be performed by combining the root lists into a single list 
and pointing to the minimal of the two minimal elements. 

These operations can be implemented in 0(1) time. 

The 1 DeleteMin I, can be done as follows: 
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remove the minimum node v from F-Heap H, then concatenate the list of children 
of v with the list of roots of H other than v, and repeat the following Linking Step: 
find any two trees, whose root have the same degree, and merge them as usually 
(figure 4). 

The new tree root has degree one greater than the degrees of the old tree roots. 
Once there are no two trees with root of the same degree, we form a list of the 
remaining roots. 

The authors could prove the following ([7J) 

Theorem: If we start with an empty F-Heap and perform an arbitrary sequence of 
F-Heap operations FindMin, DecreaseKey, Insert, Merge and DeleteMin or Delete 
(v), then the total sequence takes at most O(m + nlogn) time, where n denotes the 
number of DeleteM in and Delete-operations and m denotes the number of all remaining 
operations. 

Using F-Heaps the authors could improve running times for several network 
optimization problem like shortest path problems, assignment problems and mini
mum spanning tree problems, where the set of "candidates" (like in Dijkstra's 
shortest path algorithm) can be best represented by data structures which support 
the F-Heap operations efficiently [7J. 

The F -Heap is a "lazy merging" version of the wellknown structure, the binomial 
tree (binomial queue) ([26], [23J). 

A binomial tree is defined inductively as follows: 

a binomial tree of rank 0 consists of a single node; a binomial tree of rank k > 0 is 
formed by merging two binomial trees of rank k - 1 (see figure 7). 

Figure 7. Binomial tree 

If additionally Bk is heap-ordered, we call Bk a binomial heap. 

A forest of binomial heaps is called a binomial queue. 

A binomial tree Bk of rank k contains exactly 2k nodes and its root has exactly degree 
k. Thus every node in an n-item binomial tree has degree at most log n.1f n is binary 
coded as (dkdk - 1 ••• d1 do), the set of n items can be represented by the collection of 
binomial trees Bi (where di #- 0). There are obviously strong connections to dynamic 
decomposition techniques related to number systems ([2J, [21J). 



136 Hartmut Noltemeier 

Based on these techniques the following recent results can be summarized. 

Theorem: There is an implicit implementation of a binomial queue (IBQ), which 
allows Insert in constant time and DeleteMin in O(logn) worst-case running time 
(Carlsson, Munro, Poblete [4], using the redundant binary number system). 

Another recent result is due to Driscoll, Gabow, Shrairman and Tarjan [5]. The 
authors use relaxed heaps, a type of binomial queue that allows heap order to be 
violated on "small" parts. 

Theorem: The relaxed heap achieves worst-case-time bounds 0(1) for DecreaseKey 
and O(log n) for DeleteM in. 

Especially relaxed heaps give a processor-efficient parallel implementation of 
Dijkstra's shortest path algorithm and hence of a lot of other algorithms in network 
optimization (see for more details [5]). 

4. Priority search trees-the concept of symbiosis 

The last question of chapter 2 can be partially answered by another approach, the 
symbiosis of two dissimilar data structures. We will demonstrate the idea by the 
well known priority search tree (McCreight [14]). 

Let E be the set of points P = (x, y) in the (real) plane, where -< denotes the 
lexicographic partial order induced by 

P l = (x1>yd -< P 2 = (X2,Y2) iff (Xl < X2) or (Xl = X 2 and (Yl ~ Yl». 
Let V be a finite subset of E, 

V = {P; = (x;.y,)/i = 1, ... ,n} and Vx := {x;/(x"y,) E V}. 

For simplicity let us assume furthermore 

1) Xi E Ux (a finite universe of x-coordinates) 
2) Xi :F Xj for i :F j 

Definition: A priority search tree (PST) is a binary tree representing a finite set of 
points V of the plane with the following properties: 

AI) PST is a leaf-oriented search tree for the x-coordinates, especially 
a) for each x-coordinate of V exists a leaf with "splitvalue" x and 
b) every non-leaf v lias a splitvalue s(v) E Ux which is the maximum of split

values of all nodes in the left subtree of v. 
A2) Each node v can store besides the splitvalue s(v) a point P(v) E V (eventually 

unused) 
Bl) Every point Pi = (Xi' Yi) E V is located on the x-search path from the root to 

the leaf with splitvalue Xi. 

B2) If node v stores a point P E V then its father does it too (v :F root (PST) 
of course). 

B3) PST is (min-)heap-ordered with respect to y-coordinates. 
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Example: V = {(4, 1);(9,4), (15,18), (20,3), (19, 9), (12, 4), (1, 2), (5, 6)}, 

Ux = {1,4,5,9,12,15,19,20}. 

Legend; node v ~SPlitvalue s(v) 

(eventually) point Pj = (Xj,Yj ) 

Figure 8. Priority search tree 
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If we assume for simplicity that a left complete skeleton tree with exactly all 
splitvalues from Ux was preprocessed (the "upper part" of all nodes), 

Insert a new point P = (x, y) is easy and runs as follows: 
if v is the "current node" (at first the root) with splitvalue v.s and (eventually) 
a point v.point, then do 

if v.point is undefmed, then store P in v 
else if v.point.y ~ y then {follow P.x} 

begin if v.s ~ x then Insert P in leftson (v) 
else Insert P in rightson (v) 

end 
else {heap-order has to be guaranteed} 

store P in v and continue insertion with the old point v.point. 

Moreover priority search trees can be balanced by rotations, where indeed each 
rotation may cause O(h) time (h: height of the relevant PS-subtree). 

Thus taking any class of balanced trees, which only needs a constant number of 
rotations for any balancing step 

- f.e. take "half balanced trees" (Olivie [20J), "red-black trees" (Guibas, Sedgewick 
[l1J) or more general (a,b)-trees with b ~ 2a + 2, which additionally allow 
(parallel) top-down-balancing (Mehlhorn [15J)-
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we get the following results (McCreight [14]). 

Theorem: Let V be a dynamic set of points of the (real) plane, v" a subset of a finite 
universe Ux and let n denote the cardinality of the actual set V. The following 
operations 

(1) Insert (Delete) a point into (from) V 
(2) given Xo E Ux, Xl E Ux and YI E ~,find among all points P = (x, y) of V such that 

Xo ~ x ~ Xl and y ~ YI 

a point whose x is minimal (or maximal) 
(3) given Xo E Ux, Xl E Uxfind among all points P = (x,y) of V such that Xo ~ x ~ Xl 

a point whose y is minimal 
(4) given Xo E Ux, Xl E Ux and YI E ~,enumerate all points P = (x,y) of V such that 

Xo ~ X ~ Xl and y ~ Y1 

can be implemented by a balanced priority search tree efficiently, using O(n) space 
and 

O(log n) worst-case time for operations (1), (2), (3), 

and at most O(k + log n) time for operation (4), where k denotes the number of points 
to be reported. 

The last statement can be best illustrated by the following figure: 

solution space for a 
3-sided range query (4) 

Figure 9 

Remark: The efficient implementation of operations (1), (2), (3), (4) by balanced 
priority search trees yields important results in a wide range of applications, f.e. 
detecting all overlapping rectangles in a large set of axis-parallel rectangles etc. 

5. Conclusion 

Dynamic partial orders frequently can be represented efficiently by heaps or their 
generalizations, supporting a lot of important operations. These also includes some 
decomposition techniques, we did not mention here in detail. 

Some effort was done with respect to lower bounds, too. 
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We finally refer to results of Fredman [8], Gonnet, Munro [10] and Noltemeier 
[17]: in the article mentioned last, lower complexity bounds for Find-operations as 
well as Delete-Find-operations in generalized heaps are given based on the well 
known theorem of Dilworth. 
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Abstract - Zuammenfassung 

Communication Complexity. In this introductory survey, the general communication complexity prob
lem is discussed from an ordertheoretic point of view. In particular, results about special classes 
of ordered sets are reported. Furthermore, open problems and related ordertheoretic questions are 
mentioned. 
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Daskommunikationskomplexititsproblem. In dieser einruhrenden Obersicht wird das Kommunikations
komplexitiitsproblem von einem ordnungstheoretischen Standpunkt aus diskutiert. Insbesondere werden 
Resultate iiber spezielle Klassen geordneter Mengen vorgestellt. Au6erdem wird auf otTene Probleme 
und verwandte ordnungstheoretische Fragen eingegangen. 

1. Introduction 

A basic technique for proving lower bounds on the complexity of VLSI layouts 
relates the size of a cut through a prospective chip with the information flow across 
it (Thompson [1979], see also Lipton and Sedgewick [1981]). Roughly, the argu
ment goes as follows. Suppose a chip of area A is to compute the value ofthe Boolean 
function f(z 1" •• , Zk) in T time units. Also suppose we can separate the input 
variables into two ,groups x = (z 1" •• , zm) and y = (zm+1, ... , Zk) via a cut through 
the chip that cuts through fl horizontal wires (Fig. 1). 

During the computation of f(x,y) then a total of not more than T· fl bits are 
exchanged between part I and part II of the processor. Hence, if the computation 
off requires the exchange of a least J bits of information, we obtain the lower bound 

J2 ~ AT2 

on the layout complexity of the proposed chip. The communication complexity tries 
to obtain a bound on this number J. 

A mathematical model for the communication complexity is due to Yao [1979]. 
There are two finite sets El and E2 associated with two players (or "processors") I 
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and II respectively and a function 

f:E 1 x E2 -+{0,1}. 

We assume that f is completely known to both players. Now I chooses an "input" 
x E El and II an "input" y E E2. In a cooperative effort, I and II try to answer the 
query 

? f(x,y) = 1 ? 

by exchanging as few bits of information as possible. The communication between 
I and II goes in "rounds" and is governed by a "protocol" (for a formal defInition, 
see Section 2): one player sends some bits of information to the other player. Based 
on the information available to him so far, the other player responds by sending 
some bits of information back etc .. The game continues until at least one player 
has sufficient information to answer the query. 

Thus, for example, the communication exchange can be done using at most 
flog I E21l bits via the trivial protocol: II sends the "name" of his element y E E2 to 
I. Since I has complete knowledge of J, he can then determine f(x, y). 

There are different interpretations of the Boolean function f possible. We may think 
of f as the indicator function of some binary relation between El and E2 • Equiva
lently, we may associate with f its incidence matrix M = M(f) with (0, I)-entries so 
that El and E2 represent the rows and columns respectively of M. In this sense, 
each (0, I)-matrix can be viewed as arising from some communication problem and 
hence is a communication matrix. 

Another aspect of the communication problem takes the columns of the (0, 1 )-matrix 
M as incidence vectors of subsets of rows. Thus one could formulate the game 
relative to a fInite set E and a family IF of subsets of E : player I chooses an element 
x E E and player II a subset Y E IF. The relevant query is 

?XE Y? 
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Finally, players I and II may select elements x, YEP, where P is a (partially) ordered 
set completely known to both players, and ask the query 

? x <y? 

(Note that we consider here the strict order relation of P as the "interesting" binary 
relation because the trivial protocol turns out to be already optimal for the query 
? x :s; y? (see Section 3». This seemingly special case contains the original model: 
we may order E1 u E2 via the only non-trivial relations for e1 E Elo e2 E E2, 

e1 < e2 if f(e1,e2) = 1. 

Relative to this order, we then have 

f(x,y) = 1 if and only if x < y. 

In this introductory survey on the communication complexity problem, we take the 
ordertheoretic point of view (for a comprehensive general survey see Lovasz [1988]). 
In Section 2, we defme the deterministic and the nondeterministic complexity of the 
communication problem for Boolean functions (or, equivalently, for binary rela
tions). Lower and upper bounds are presented in Sections 3 and 4. We then look 
at the comunication problem for special classes of ordered sets and fmally discuss 
further ordertheoretic ramifications and open problems. 

2. Communication Complexity 

We will now describe the model for communication complexity as formulated by 
Lovasz and Saks [1988]. 

Givenf: E1 x E2 -+ {O, 1}, weconsiderthebinaryrelationQ = f-1(1). The decision 
problem to solve is whether a given input (x, y) satisfies f(x, y) = 1, i.e., (x, y) E Q. 

A deterministic communication protocol for recognizing Q is a decision tree T 
whose nodes are of two types. An internal node of type i (! = 1,2) is labeled by a 
function from EI to the set of children of that node. A leaf of type i is labeled by a 
function from EI to the set {YES, NO}. Each input (x, y) E E1 X E2 specifies a unique 
path from the root to a leaf of T in such a way that Q consists exactly of those inputs 
(x, y) y;.elding the outcome YES. 

T is a one-way protocol if T has depth 1. The cost of an internal node in T equals 
the logarithm (here always assumed relative to base 2) of the number of its children, 
i.e., the number of bits needed to specify a child. The cost c(P) of a path P from the 
root to a leaf in T is the sum of the costs of its internal nodes. Thus the complexity 
c(T) of the protocol T can be defined as 

c(T) = max {c(P) : P path in T}. 

The deterministic (communication) complexity cc(Q) of the binary relation Q is 
given by 

cc(Q) = min {c(T) : T protocol for Q}. 

We say that Q is one-way optimal if there exists an optimal one-way protocol for Q. 
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Let the (m x ,,)-matrix M be the (0, I)-incidence matrix of Q, and denote by m* and 
n* the number of pairwise different rows and columns respectively. The clearly 

cc(Q)::;;; min{nogm*l, nogn*l}. 

In fact, Q is one-way optimal if and only if cc(Q) = min {nog m*l, nog n*l }. Another 
general upper bound follows from the rank of the matrix M: 

cc(Q)::;;; rkM. 

To see this, assume that the first r rows M, of M form a row basis. Then Mr (and 
hence M!) has at most 2'-different columns. Thus n* ::;;; 2'. 

A proof scheme for the relation Q £:; El X E2 consists of a set # of proofs together 
with two verification relations V1 £:; E1 X & and V2 £:; E2 X & such that (x,y) E Q 
if and only if there exists a proof p E & with the property (x, p) E V1 and (y, p) E V2 • 

The nondeterministic (communication) complexity cc*(Q) is the number 

cc*(Q) = minUlogl&1l : & proof scheme for Q}. 

Say that R £:; Q is a I-rectangle ofQ if there are subsets Fl £:; El and F2 £:; E2 such 
that R = F1 X F2. With this terminology, Lipton and Sedgewick [1981] have 
observed that a proof scheme of Q may equivalently be defined as a set of 1-
rectangles whose union equals Q. Indeed, for each proof p of the proof scheme &, 
the set 

R(p) = {(x,y) E Q: (x,p) E V1 and (y,p) E V2 } 

is a I-rectangle in Q. 

An important parameter, therefore, is the minimal number "1 = "1(Q) of 1-
rectangles needed to cover the relation Q. Introducing "1 = "1 (Q) as the minimal 
number of disjoint I-rectangles needed to cover Q, we have 

"1 ::;;; "1 . 
Our original problem, of course, could also have been phrased relative to the query 

? f(x,y) = O? 

i.e., relative to the complementary relation rz = (El x E2)\Q. This leads to the 
analogous parameters "0 = "1 (QC) and "0 = "1 (QC) associated with O-rectangles of 
Q. 
The equality cc(Q) = cc(QC) certainly holds. On the other hand, cc*(Q) and cc*(QC) 
may differ greatly. Consider, for examle, the strict order relation P with the following 
Hasse diagram: 

Yl Yz Yn 

I I···· I 
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Here we have "1 (P) = n while the O's of the associated incidence matrix can be 
covered with O(log n) O-rectangles. 

As outlined in the Introduction, we may associate with any (0, I)-matrix M an 
ordered set, which we denote by P(M), via a natural construction. P(M) is bipartite 
in the sense that its Hasse diagram is a bipartite graph. If M is the (strict) incidence 
matrix of the order P, we write PP = P(M) for this bipartite reduction of P. 

It is clear that the communication problem is the same for the order P and its 
bipartite reduction P P. In particular, we have "1 (P) = "1 (P P) etc. 

Let us interprete a O-rectangle of M in the order P(M). We have a subset X s; E1 
and a subset Y s; E2 such that there are no order relations between X and Y. We 
consider 

fIl(X) = {e E E1 U E2 : e ~ x for some x E X} 

id( Y) = {e E E 1 U E 2 : e :::;; y for some y E Y}. 

Then fIl(X) n id(Y) = tfo. Moreover id(Y) is an ideal in P, i.e., closed with respect to 
smaller elements, while fIl(X) is a filter, i.e., the settheoretic complement of some 
ideal. In other words, the O-rectangles in M correspond to the pairs of disjoint ideals 
and filters in P(M). 

3. Lower Bounds 

To prove lower bounds for the communication complexity, we consider the binary 
relation under investigation to be given via its (0, I)-incidence matrix. 

Let g(M) be some nonnegative integervalued function which is defined for (0,1)
matrices M and satisfies for all disjoint row (or column) partitions (Mo, M 1 ) of M 
the inequality 

g(Mo) + g(M1) ~ g(M). 

Theorem 1: pog g(M)l :::;; cc(M). D 

We sketch the proof of Theorem 1: Let T be an optimal protocol which starts with 
player II, say, who has selected a column of M. Mo is the submatrix of M consisting 
of those columns whose choice would lead to a message starting with "0". M1 is 
defined analogously. By.hypothesis, we may assume g(Mo) ~ g(M)/2 or g(Md ~ 
g(M)/2. Observe now that cc(M) - 1 is an upper bound for both cc(Mo) and cc(M 1)' 
Hence, by induction on the size of M, we have 

log(g(M)/2) :::;; cc(M) - 1. 

which yields the bound. 

Examples for functions satisfying our hypothesis are the parameters "1(M), K1(M), 
"o(M), and Ko(M). They are strong enough to demonstrate that for "almost all" 
communication problems the trivial protocol is optimal. In fact, Yao [1979] proved 
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Theorem 2: Let M be a random (n x n)-matrix with (0, I)-entries. Then 

cc(M) ~ logn - 2 

with probability at least 1 - 2-n2/2. D 

An interesting choice is g(M) = rk(M) (Mehlhorn and Schmidt [1982]). Interest in 
this rank lower bound arises from the curious fact that many researchers feel this 
bound to be possibly far from optimal. Yet, no class of examples is known for which 
lower bounds of higher order than O(log(rk M)) could be proved. 

The rank lower bound quickly exhibits communication problems for ordered sets 
relative to the"::;;" -relation to be trivial: the corresponding incidence matrix is easily 
seen to be of full rank, which implies that the trivial protocol is optimal. 

A further example is the positive rank g(M) = rk+(M) (Yannakakis [1988]). 
Formally, rk+(M) is the minimal number p such that there are nonnegative matrices 
A (with p columns) and B (with p rows) with the property M = AB. From a 
geometrical point of view is rk+(M) the smallest number of nonegative vectors 
needed to generate a cone that contains all column vectors of M. 

Obviously rk(M)::;; re(M) holds. But it is already not known whether re(M) = 
O(rk M) is true. It is easy to see that 

rk(M) ::;; K1 (M) 

and one can also verify 

The last inequality is a consequence of the observation that 

M=Z1+ Z2+···+ Zp, 

where Zi = ajbr with aj = i-th column of A and br = i-th row of B. The desired 
cover of 1-rectangles is obtained from the supports cfthe matrices Zi. 

Let us briefly discuss two lower bounds which are implied by the rank lower bound. 
We consider the communication problem for the order P (as always,relative to the 
strict order relation). A linear extension of P is an arrangement L = X1X2··· Xn of 
the ground set underlying P such that Xi < Xj in P implies i < j in L. The lineality 
of L is the number 

i.e., the number of adjacent comparabilities in L. The lineality of P is 

t(P) = max {t(L) : L linear extension of P}. 

Gierz and Poguntke [1983] have observed that 

t(P) ::;; rk(P) ::;; n - w(P) , 

where w(P) is the width of P, namely the maximal number of pairwise incomparable 
elements of P. Since n - w(P) actually yields an upper bound on the communication 
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complexity of P (see Section 4), we note 

pogt(P)l ~ pogrk(P)l ~ cc(P) ~ rlog(n - w(P)l + l. 
It is furthermore straightforward to see that 

t(P) ~ K1(P), 
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One only has to write down the incidence matrix of P according to an optimal linear 
extension. Then exactly t(P) l's will appear on the side-diagonal. We illustrate the 
use of these inequalities for the Boolean algebra P = Bn with 2n elements. Fiiredi 
and Reuter [1989] have shown that 

t(Bn) = 2n - 1 • 

Hence we obtain 
n - 1 ~ cc*(Bn) ~ cc(Bn) ~ n. 

Comparing the bounds obtained from P with those obtained from its bipartite 
reduction, we have rk(P) = rk(PP), while t(P) < t(PP) may be possible. Such an 
improvement, however, can never yield more than 1 bit as Reuter [1988] has 
observed: 

tt(PP) ~ t(P) ~ t(PP). 

4. Upper Bounds 

A general technique for proving upper bounds on the communication complexity 
was exhibited by Lovasz and Saks (see Lovasz [1988]). We describe it in its 
ordertheoretic setting. 

Let h(P) be a nonnegative integer-valued function which is defined for all bipartite 
orders P and satisfies the two properties: 

(i) h(P) = 0 if and only if P is an antichain 
(ii) h(A) + h(P\A) ~ h(P) for all ideals A s; P. 

Denoting by P = P(M) the bipartite order associated with the communication 
matrix M, we obtain 

Theorem 4: cc(P) ~ pog h(P)l (1 + pogKo(P)l). D 

We sketch the proof of Theorem 4 by describing an appropriate protocol recur
sively. Its validity can be established by induction on h(P). 

The first thing to observe is that for each ideal A s; P, we have h(A) ~ h(P)/2 or 
h(P\A) ~ h(P)/2. We now choose KO O-rectangles that cover all O's of M and let 
A 1 , ... , A k , Ak +1' ... , AKQ be the associated ideals in P(M)(see Section 2). We may 
assume that 

h(Ai) ~ h(P)/2 if i ~ k 

h(P\Ai) ~ h(P)/2 if i> k. 
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Player II now tries to find an ideal Ai (i :::;; k) containing his chosen element Y E E. 
If he is successful, he sends "0" and the index i with a total of at most 1 + rtog Ko 1 
bits. Otherwise he sends "I". 

Player I in turn tries to find a filter P\Aj (j> k) containing his chosen element 
x E E. If he is successful, he sends "0" and the indexj of that filter P\Aj • 

If neither player is successful x < y must hold (because we started out with a O-cover) 
and the game ends. Otherwise the game continues with either Ai or P\ Aj and h-value 
at most h(P)/2. 

Applying Theorem 4 with the lineality h(P) = t(P), one gets the original result of 
Lovasz and Saks: 

cc(M):::;; rtogt(P(M»l(1 + rtogKo(M)l)· 

In view of the discussion in Section 3, this upper bound has a number of 
consequences: 

(a) cc(M):::;; rtogrk(M)l(1 + rtogKo(M)l) 

(b) cc(M):::;; rtogK1(M)1(1 + rtogKo(M)l) 

(c) cc(M):::;; rtOgK1(M)l rtogK1(M)1) 

(d) cc(M):::;; rtogrk(M)l rtogrk+(M)l) 

(b) is the well-known upper bound of Aho et al. [1983]. (c) and (d) are due to 
Yannakakis [1988]. It is a challenging open problem to decide, for example, whether 
rk+(M) can be replaced by rk(M) in (d). 

Also note that for general ordered sets P, the Lovasz-Saks bound implies 

cc(P) :::;; (1 + rtog t(P)l)(1 + rtog Ko(P)l). 

As already mentioned in the previous section, for general ordered sets P on n 
elements the bound 

cc(P) :::;; 1 + rtog(n - w(P))l 

is valid. This can be established with a two-way protocol as follows. To set up the 
game, both players agree on a fixed antichain W s;;; P of size I WI = w(P). After the 
choice of their elements x, YEP, the first player sends a "0" to the second player if 
his element x lies in W. Otherwise he sends "I" and the name of his element. Ifplayer 
II receives "0" and his element Y also lies in W, x < y cannot hold. If y does not lie 
in W, player II sends the name of y to the other player with at most rtog(n - w(P» 1 
bits. 

An application of the width upper bound allows to determine the communication 
complexity of cycle-free orders up to one bit. Recall that an order P is cycle-free if 
the comparability graph G(P) of P is chordal, i.e., contains no vertex-induced circuits 
of length 4 or more. Duffus et al. [1982] have shown that the equality 

t(P) = n - w(P) 
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is valid for cycle-free orders P. Hence such an order P satisfies 

Dog(n - w(P))l:::;; cc*(P) :::;; cc(P):::;; 1 + Dog(n - w(P))l 

5. Some Classes of Orders 

We will now briefly discuss results and problems concerning special classes of 
orders. The details can be found in Faigle and Turan [1989]. 

Let us begin with a general result and consider a class f!J of orders which is closed 
under taking suborders. 

Theorem 5: If there exists at least one bipartite order Q such that Q ¢ &, then for all 
P E &, 

cc(P) = O(log(rkP)). 0 

The idea of the proof consists in showing that each order P in the class f!J gives rise 
to an incidence matrix M that has not more than (rk P)C different columns, where 
.c = c(Q) is a constant depending on Q. Theorem 5 will then be implied by the trivial 
protocol. The existence of such a constant c(Q), however, can be argued with the 
help of "Sauer's Lemma" (see Lovasz [1979, Problem 13.10cJ): 

Lemma: Let R be some finite set and f/l a family of distinct subsets of R such that 

If/ll > C~I) + C~I) + ... + C~I) . 
Then, there exists a subset R' £; R with IR'I = k + 1 such that {F (") R': F E f/l} 
comprises all subsets of R'. 0 

The Lemma is applied as follows. If the incidence matrix M had "too many" distinct 
columns, M would contain the characteristic vectors of some power set large enough 
to exhibit Q as an induced suborder of P. 

Unfortunately, the requirement that the order Q in Theorem 5 be bipartite turns 
out to be essential in the proof. Whether an analogous statement is true for, 
say, Q equal to a 3-element chain, is not known (note that an affirmative answer 
would imply the communication complexity for arbitrary (0, I)-matrices M to be 
O(log(rk M)) since then f!J could be taken to be the class of all bipartite orders). 

As examples for Theorem 5, we could choose f!J as the class of orders P not 
containing 

Q- I><I 
as a suborder. In particular, f!J could be the class of all cycle-free orders. By taking 
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Q - I I 
we, furthermore, could select £? as the class of interval orders (see Fishburn [1970J). 

We should make clear, however, that a direct analysis often yields a sharper bound 
on the communication complexity. For cycle-free orders, we have seen this in the 
previous section. For so-called generalized interval orders P, 

cc*(P) = cc(P) = rlog(rk P)l 

can be proved (cf. Faigle et al. [1988]). 

What about classes of orders that cannot be characterized by forbidden induced 
suborders? Recall that an order is said to be N -free if its Hasse diagram (!) does not 
contain 

N 
as an induced subconfiguration. For each N-free order P, one can show 

Dog(rkP)l = cc*(P) = cc(P). 

Our proofs for the rank bound yielding the exact communication complexity relies 
on the notion of rank optimality. Thereby an order P is said to be rank-optimal if 

t(P) = rk(P). 

N-free orders are rank-optimal. While non-bipartite generalized interval orders 
need not be rank optimal, their bipartite reductions always are. We do not know 
whether the rank bound is sharp for all rank-optimal orders. An unsolved test case 
is presented by cycle-free orders, which are known to be rank optimal. The best we 
can prove is that here the rank bound is "nearly optimal". 

Similarly, no counterexample to the conjecture that 

Kl (P) ~ rk(P) 

be true for all rank-optimal orders is known to us. Again, already the case of 
cycle-free orders is unsolved. 

We finally mention a generalization of the notion of N-freeness. Say that an order 
is M-free if its Hasse diagram does not admit 

M 
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as an induced subconfiguration. (Note that the class of M -free orders is not closed 
under ordertheoretic duality). In general, an M -free order need not be rank-optimal. 
Yet, one can prove that for each M-free order P, 

cc(P) ~ 1 + nog(rkP)l, 

where the upper bound can be achieved with a one-way protocol. The nondeter
ministic complexity cc*(P) for M-free orders is unclear. 

6. Remarks 

In our ordertheoretic formulation of the communication problem, we have con
sidered the query 

(i) "Is x (strictly) smaller than yr' 

We could similarly have investigated the query 

(ii) "is x a lower neighbor of y?" 

Within the framework of communication complexity, which of the two queries is 
easier to decide? Are they equally difficult? (An affirmative answer to the last 
question can be given for, e.g., N-free orders or interval orders). 

Observe that the rank lower bounds for (i) and for (ii) may be different as shown by 
the order with the following Hasse diagram (Lovasz and Zadori [1988]): 

xx 
Here (i) leads to rank = 5, while (ii) yields only rank = 4. 

In view of the observed strength of the rank lower bound for the communication 
complexity problem, it appears necessary to develop a better combinatorial under
standing of the rank parameter for binary relations. Determining the rank of types 
of binary relations is geneX:ally a non-trivial problem. It might therefore be interest
ing to sketch a powerful technique due to Lovasz and Saks [1988] for computing 
the rank of certain communication matrices. 

The following communication problem is considered. Player I chooses an element 
x and player II chooses an element y in a lattice L (i.e., an ordered set L with maximal 
element 1 and minimal element 0 and the property that any two elements a, bEL 
have a unique maximum a v bEL and a unique minimum a /\ bEL). The query 
to be decided is now 

(iii) "Is x /\ y = O?" 



152 Ulrich Faigle and Gyorgy Turan 

(Note that (iii) is different from (i)!). This problem is termed the meet problem. Let 
C be the communication matrix for the meet problem relative to L. In order to 
determine rk(C), one considers the matrix Z = «X)I) associated with L: 

, = {1 if x::;; y 
"l' 0 otherwise 

The combinatorial identity of Wilf allows to express C = ZTD Z, where D is the 
diagonal matrix defmed via the Moebius function: 

(D)xx = J.L(O,x). 

(Recall that the Moebius function J.L(x, y) of L, by definition, is given via the entries 
of the inverse matrix Z-l (see Rota [1964]). Hence 

Theorem 6: rkC = I{x E L: J.L(O,x):;6 O}l. D 

Theorem 6 has far-reaching consequences. In HajnaI et aI. [1988], for example, it 
is used to show that the communication complexity is Q(nlogn) for the following 
problem: player I and II want to decide if a graph G on n vertices is connected. G 
is unknown to I and II. But for one half of all possible edges player I knows which 
one's belong to G. Player II similarly supervises the other half of he possible edges. 
(For more examples, see Lovasz [1988]). 
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equations, partial differentiation, or the determination of the regular expression describing the language 
accepted by a finite automaton. 
We describe the relation among these problems and their common algebraic foundation. 
We survey algorithms for solving them: vertex elimination algorithms such as Gauf3..Jordan elimination; 
and iterative algorithms such as the "classical" Jacobi and Gauf3..Seidel iteration. 
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G.1.3. [Numerical analysis]: Numerical linear algebra-linear systems (direct and iterative methods), 
matrix inversion; G.2.2. [Discrete mathematics]: Graph theory-network problems, path and circuit 
problems; 1.1.2. [Algebraic manipulatiou]: Algorithms-algebraic algorithms 
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Wegeprobleme in Grapheu. Es gibt eine Vielfalt von Problemen, die sich aJs "algebraische" Wege
Probleme interpretieren lassen. Dazu gehOren natiirlich Wege-Probleme auf Graphen wie das gewahn
liche kiirzeste-Wege-Problem oder das Bestimmen bester Wege unter allgemeineren Optimalitats
kriterien, aber auch Probleme, deren Definition nur indirekt mit Wegen zu tun hat, wie das Bestimmen 
aller Briicken und Artikulationsknoten eines Graphen. Sogar einige Probleme, die anscheinend iiber
haupt nichts mit Graphen zu tun haben, lassen sich als algebraische Wege-Probleme behandeln: 
Man kann z. B. lineare Gleichungssysteme lasen, auf schnellem Weg alle partiellen Ableitungen eines 
Ausdrucks berechnen, oder einen reguliiren Ausdruck fiir die formale Sprache bestimmen, die ein 
endlicher Automat akzeptiert. 
In dieser Oberblicksarbeit wird einerseits dargestellt, wie man alle diese Problem unter einen Hut bringt, 
indem man eine gemeinsame algebraische Formulierung fUr sie findet; andererseits werden verschiedene 
Lasungsalgorithmen besprochen: Knoteneliminations-Algorithmen (z. B. GauB-Jordan-Elimination) 
und iterative Algorithmen (wie die klassischen Iterationsverfahren von Jacobi und Gauf3..Seidel). 
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1. Introduction 

Path problems can be seen as a unified framework for a lot of problems from 
different fields. Solution procedures for these problems were initially discovered 
independently of each other. When the connection between these solution methods 
became apparent, various attempts have been made to lay a common theoretical 
basis for, them. Also, new applications of the method were explored. 

It would be difficult to give a complete account of the area of path problems. A 
complete bibliography including all applications would fill many pages. There have 
been several good accounts in textbooks and treatises, like Gondran and Minoux 
[6J, chapter 3; Zimmermann [17J, chapter 8; Carre [4J, chapters 3 and 4. 

The purpose of this exposition is to give an introduction to this area and an overview 
of some of the more interesting applications and interpretations of path problems, 
and to give a relatively small glimpse of the theory which has been established in 
this field. We shall do this in a very elementary way. 

We shall not deal with specialized algorithms for the shortest path problem in 
particular. Also, algorithms which use special properties of the underlying graphs 
will only be mentioned. 

The reader who wants to know more about path problems in general or about 
specific applications should consult the above-mentioned references. References to 
the literature about various applications are almost completely omitted from this 
survey unless they appeared recently. 

2. Two example problems 

2.1. Example 1,' The shortest path problem 

2.1.1. Description of the problem-a numerical example 

Consider the directed graph shown in figure 1. It has n = 4 vertices and ten arcs, 
which are labeled with weights. A path in a graph is a sequence of I + 1 vertices 
(Vo, Vi"'" VI) such that (Vi' vi+d is an arc of the graph, for i = 0, 1, ... , I - 1. It is 
called a path from Vo to VI' For example, p = (1,3,4,4,4,1,3,2) is a path from 1 to 
2. Note that we allow repetition of vertices and of arcs in a path. With every path, 
we may associate its weight, which is the sum of the weights of its arcs. The weight 
of the example path p is thus 7 + 3 + 2 + 2 + (- 5) + 7 + (-1) = 15. Note that we 
must distinguish between an empty path without arcs, like the path q = (1) from 1 
to 1, and the path r = (1,1), which contains one arc (a loop). The weight ofthe empty 
path is assumed to be zero. 

The weights can be interpreted as lengths of the arcs, and then the weight of the 
path is simply its total length. Or the weights could be the time taken to traverse 
an ar..:; or the money that one has to pay (or that one gains) for traversing an arc. 
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Figure 1. A network 

The last interpretation is one for which arcs of negative weight -as in the example
make sense. 

The (all-pairs) shortest path problem is the following: 

For each pair (i,j) of vertices, compute the weight Xii of the shortest path (i.e., the 
path of smallest weight) from i to j. 

2.1.2. A system of equations 

With the graph G, we may associate its weighted adjacency matrix 

A= (:1 
-5 

4 7 

3 2 
-1 00 

00 6 

:) 3 . 

2 

The element aij is the weight of the arc (i, j), if this arc exists. Artificial weights of 00 

have been inserted in the places where no arc exists. These artificial arcs will do no 
harm, because a path using such an arc has weight 00; thus it will certainly not affect 
the shortest path. 

Now we are going to set up a system of equations which the desired quantities xij 

will fulfill. Consider a shortest path p from i to j. If i =I j, this path must contain at 
least one arc, i.e., it is of the form (i = Vo, Vl' ..• , VI = j), with 1 ~ 1. If it is a shortest 
path, then the subpath p' = (Vl' V2 , ••• , VI = j), must be a shortest path from V l to j. 
Thus Xu = aik + X ki ' for some k = V l . On the other hand, the expression a ik + Xkj' 

for any k, is the length of some path from i to j, namely the path starting with the 
arc (i, k) and continuing along the shortest path from k to j. Thus, we have 

Xii = min (a ik + x ki), 
lSkSn 

for i =I j. (1) 

For i = j, the above considerations apply with one change: The empty path from i 
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to i without arcs is an additional candidate for the shortest path, and thus we have 
to extend the above equation: 

In the above example, 

xii = min { min (ajk + Xkj),o} . 
l:S;k:S;n 

x=(~ ~~~) 
-2 -1 0 3 
-5 -1 1 0 

(I') 

is the unique solution of this system, and it represents the lengths of the shortest 
paths. 

2.2. Example 2: The language accepted by a finite automaton 

A finite automaton is a machine which reads words (sequences of symbols over some 
alphabet 1:') and either accepts them or rejects them. It can be specified by its 
transition diagram, which is a rmite directed graph (see figure 2). The vertices of the 
graph are the states of the automaton. One of the vertices (vertex 1 in our case) is 
designated as the start state, and a subset of the vertices is designated as the final 
states. The arcs are labeled by subsets of letters from 1:'. (1:' = {f, g, h} in our 
example.) The automaton starts in the designated start state and reads the symbols 
of an input word one by one. A label z on an arc (i, j) means the following: If the 
automaton is in state i and the next symbol which it reads is z, it may go to state j. 
When the automaton is in state i and there is no arc labeled z which leaves i, the 
automaton cannot continue and stops. When there is at most one choice of an 
arc for each state and each input letter, the automaton is called a deterministic 
automaton; otherwise it is a non-deterministic automaton, but this difference does 
not concern us here. 

1,h 

h 

Figure 2. The transition diagram of a finite automaton. The initial state is state 1. The final states are 
marked by double circles. 
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We say that th~ automaton accepts a word, if there is a sequence of state transitions 
leading from the start state to a final state while reading this word. To put it 
differently, let p = (vo, Vl , . •• , VI) be a path from the start state Vo to some fmal state 
VI' If Zi is a label of the edge (Vi-to Vi), for 1:s; i:S; I, then the word ZlZ2"'Zn 

is accepted by the automaton. For example, the automaton shown in figure 2 
accepts the word fgghhfhffJ because it leads from state 1 to state 3 via the path 
(1,3,4,3,2,2,2,2,2, 1,3). Thus, the automaton defines a subset of words (a formal 
language) which it accepts. 

Thus our problem is now the following: 

For each final state j, determine the set xl) of words which lead from the initial 
state 1 to state j. 

In order to solve this problem, we must introduce a few notations. We are working 
with words (finite sequences) over some alphabet E, including the empty word e, 
which contains no symbols. We write the concatenation of two words a and b as 
a' b or simply as abo If A and B are sets of words, then A· B denotes the set 
{abla E A,b E B}. 

As above, we can set up a matrix (au), where au denotes the set of labels of the arc 
(i, j). Let Xu denote the set of all words by which the automaton can be lead from 
state i to state j. We shall solve the more general problem of computing XI} for all 
pairs of states i and j. 

As in the case of the shortest path problem, we shall set up a system of equations. 
Consider the set xI}' When the automaton is started in state i, the first state transition 
must lead to some state k. In order to go to k the automaton must read a symbol 
from aik' Then it must eventually go to j. The possible words which lead from k to 
j are collected in the set Xjk' Thus, the words which lead from i to j via k as the first 
vertex are exactly the set aik • Xkj' This is also true if there is no arc from ito k, because 
then aik = 0. Now we just have to take the union over all possible states k, and we 
get an equation for Xij' Again, if i = j, we have to consider the additional possibility 
that the automaton reads nothing and stays in state i, and thus we have to adjoin 
the empty word. 

n 

xi} = U (alk' Xkj) , for i :1= j, and 
k=l 

(2) 
n 

Xjj = U (ajk ' Xkj) U {e} 
. k=l 

2.3. Summary 

In this section, we have described two examples of path problems. In both cases, 
we have stated the problem, and we have derived a set of equations which the 
solutions have to fulfill. It is, however, not the case that every solution of the 
equations is a solution of the respective problem that we started with. We will 
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say more about the relation between the solution of equations and the original 
formulation of path problems in sections 4.2 and 7. 

In the next section we will exhibit the common algebraic structure of our two sample 
problems. 

3. An algebraic framework 

3.1. Semirings-the algebraic path problem 

The two systems of equations (1)-(1') and (2) have a similar structure: 

n 

Xi} = EB (ail ® Xli)' for i 1= j, and 
k=l 

(3) 

In the case of the shortest path problem, EB denotes max, ® denotes +, and CD 
denotes 0, and in the second example problem, EB denotes u, ® denotes product 
(concatenation), and CD means {e}. "~=1" is a notation for the EB-sum of a sequence 
of elements, analogous to L~=l. 

The algebraic structure which is behind these two operations is a semiring (S, EB, ®), 
i.e., a set S with two binary operations EB and ®, which fulfills the following axioms: 

(Ad (S, EB) is a commutative semigroup with neutral element @: 

aEB b = bEBa, 

(a EB b) EB c = a EB (b EB c), 

aEB@=a. 

(A2 ) (S, ®) is a semigroup with neutral element CD, and @ as an absorbing 
element: 

(a ® b) ® c = a ® (b ® c) 

a®CD = CD®a = a, 

a®@=@®a=@. 

(A3) ® is distributive over EB: 

(a EB b) ® c = (a ® c) EB (b ® c), 

a ® (b EB c) = (a ® b) EB (a ® c). 

We shall now discuss why these axioms are natural assumptions for any path 
problem. EB must be commutative and associative, because the sum ~=1 in 
equation (3) must be independent of the order of the operands. ® is the operation 
by which the weight of a path is computed from the weights of its arcs, and we 
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require the op6ration to be associative. 

w«vo, Vi> ••• , v,» = aVovl ® aVIv, ® ... ® aVz_lvz· 

CD is the weight of the empty path. What we want to compute is, in terms of the 
semiring, the $-sum of the weights of all paths from ito j: 

Xu = E9 w(p) 
pisapath 
fromitoj 

(4) 

In this formulation, the problem is called the algebraic path problem. However, this 
formulation contains an infinite sum. This raises questions of "convergence", which 
fall outside the realm of classical algebra. Thus, we shall mainly stick to the 
formulation as a system of equations (3). Later, in section 4.3, we shall also work 
with the interpretation of Xu as a sum of paths. 

We have implicitly used (left) distributivity in the derivation of the equations (1), 
(2), and (3), when we have expressed the sum of the paths from i to j whose first arc 
is (i, k) as aile ® Xlj. 

The axioms regarding @ are not essential, since a semiring without @ can always 
be extended by adding a new zero element according to the axioms, like the element 
00 in the shortest path problem. Thus, we shall not insist that there is always a zero 
element. (The axioms regarding the existence of CD could also be omitted w. 1. o. g., 
but it requires a trickier construction to show this.) We shall denote the product of 
an element with itself by the power notation 

all = a ® a ® ... ® a (k times) 

with the usual convention aO = CD. Also, for better readability, we shall often omit 
the multiplication sign ®, from now on. 

3.2. Types of semirings, ordered semirings 

The examples of semirings which we will encounter belong mostly to three main 
groups: 

1. (S, ®, S;) is a linearly or partially ordered semigroup (with neutral element CD), 
and $ is the supremum or infunum operation (the maximum or minimum 
operation; in case of a linearly ordered semigroup). 

An ordered semigroup is a semigroup with an order relation which is monotone 
with respect to the semigroup multiplication: 

a S; b and a' S; b' ::;. a ® a' S; b ® b' . 

When $ is dermed in this way, it is clearly an associative and commutative 
operation. The above monotonicity property translates into distributivity. If 
necessary, we must add a smallest (or largest, resp.) element @. 

In the example of shortest paths, the order S; was just the usual order for real 
numbers, and $ was the minimum operation; in the second example, the order 
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relation is set inclusion, and EB is the supremum (least upper bound) with respect 
to this order. 

Another possibility to characterize this class of semirings is that the idempotent 
law holds for EB: 

aEB a = a. 

For this class of idempotent semirings, the relation defined by 

a~b<¢>a(jJb=b (5) 

is a partial order. Thus, we can either start with an ordered semigroup and define 
EB as the supremum operation (if the supremum exists always), or we can start 
with an idempotent semiring and define the partial order by (5). In both cases 
we get the same kind of algebraic structure. 

2. (S, EB, ®) is a ring, or a subset of a ring. Examples are the field of real numbers 
(IR, +, .) with ordinary addition and multiplication, or any subsemiring of the 
reals, like the natural numbers. For these cases, equation (3) has a closer connec
tion to conventional linear algebra. 

3. The elements of S are sets of paths, of path weights, or the like. An example which 
we have already encountered is the set of words which leads a finite automaton 
from one state to another. Here, what we deal with are not sets of paths, but sets 
oflabel sequences that correspond to paths. Usually, EB is the union operation, 
and thus these semirings fall also under the first category, since they are ordered 
by the set inclusion relation. 

A semiring (S, EB, ®) with a partial order relation ~ which is monotone with respect 
to both operations is called an ordered semiring (S, EB, ®, ~): 

(a ~ b and a' ~ b') => a EB a' ~ b EB b' and a ® a' ~ b ® b' . 

All semirings of the first type are ordered semirings, but there are also several 
examples from the second class, like the non-negative real., (IR+, +, ., ~) with the 
usual order. 

We say that (S, (jJ, ®, ~) is ordered by the difference relation, or naturally ordered, 
if 

for all a, b E S: (a ~ b<¢>there is a Z E S such that a EB Z = b). (6) 

When EB is the min or inf operation of an ordered semigroup, the relation ~ must 
simply be reversed in order that this definition makes sense. With this proviso, all 
natural examples of ordered semirings that arise in applications are ordered by the 
difference relation. 

3.3. Matrices 

The (n x n)-matrices over a semiring S form another semiring if matrix addition 
and matrix multiplication are defined just as usual in linear algebra: If A = (aij) and 
B = (bij) then A EB B = C and A ® B = D, where 
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and 

(snxn, $, ®) is a semiring. The zero matrix is the matrix whose entries are all @, 
and the unity element is the unit matrix I with (D's on the main diagonal and @'s 
otherwise. 

Thus, we may rewrite equation (3) in matrix form as follows: 

X=I$AX. (7) 

A symmetric variation of this equation can also be derived by splitting the possible 
paths from i to j according to their last arc: 

x = I$XA. (7') 

4. Direct solution procedures (elimination algorithms) 

We are looking for a solution to the matrix equation (7). If we hope to find a solution 
for (n x n)-matrices we must surely be able to solve the case of (1 x I)-matrices, i.e., 
of scalars. Thus, we look at the following equation, the so-called iteration equation: 

x=(D$ax. (8) 

Let us consider what this equation amounts to in the two examples that we have 
dealt with in the beginning. 

x = min{O,a + x} 

For a> 0, there is a unique solution x = O. For a = 0 the solution ofthis equation 
is not unique: any x :::;; 0 is a solution. For a < 0, there is no solution. 

Correspondingly, the system of equations (1)-(1') need not have a unique solution, 
or it can have no solution at all. For example, if we add an arc (2,4) oflength 1, 
then the column vector (X13,X23,X33,X43) of the updated matrix X of shortest 
distances can be changed to (-100, -104, -105, -105), and we still get a solution. 
It can be shown that this ambiguity of the solution occurs exactly if the graph 
contains a cycle of weight O. In our case, this is the cycle (1,2,4, 1). 

If we reduce the length of the new arc (2,4) to 0, then no solution fulfills (1)-(1')' 
The reason is that the graph contains a cycle of negative weight, and hence the 
shortest paths are undefined. We can remedy this situation by adding a new element 
-00 to the semiring. This element solves (8) for a < O. The result xij = -00 means 
then that there are arbitrarily short paths from i to j. 

In the semiring of formal languages, we get 

x = {s} ua·x. 
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This equation always has a solution, namely the set 

a* = {e} u a u a2 u a3 u ... , 

which consists of all words which are concatenations Wl W2 ••• WI of an arbitrary 
number of words Wi E a. 

In general, we denote the solution (or some solution) of (8) by a*, and correspond
ingly, we denote the solution of the matrix equation (7) by A*. Semirings in which 
a* always exists are called closed semirings. 

If we repeatedly substitute the expression for x in (8) into the rigl)t-hand side, 
starting with (8), we get 

x=CD@ax 

= CD @ a(CD @ ax) = ... = CD @ a $ a2 $ a3 $ a4 @ ... 

If this sequence remains stable after a finite number of iterations, then the sum is a 
solution of (8). 

By multiplying (8) from the right side with any element b E S, we obtain that if x = a* 
solves (8) then y = a*b is a solution of the more general equation 

y = b$ ay. (9) 

4.1. An elimination procedure-Gau'p-Jordan elimination 

In this section we shall derive a solution of (3) or (7) by purely algebraic means, 
namely by successive elimination of variables, very much like in solving ordinary 
systems of linear equations. Since the intuition for what is actually going on during 
the solution process may get lost when we write the procedure in full generality, we 
will first illustrate the method with a specific example. Later, in section 4.3, we will 
see that the coefficients that arise in the elimination process can be interpreted in a 
different way, namely as sums of certain subsets of path weights. 

When we look at equation (3), we can see that the column indexj of the unknowns 
Xij is the same for all variables which occur in one equation. This means that the 
system (3) consists really of four decoupled systems of equations, one for each 
column of X. A column of j represents the sums of paths from all vertices to the 
vertex j. Similarly, an equation system for a row of X, i.e., for the paths starting 
from a fixed vertex i (the single-source path problem), can be obtained from (7'). 

Let us take a closer look at one specific system, say, for the third column of a 
(4 x 4)-matrix: 

X l 3 = all x 13 @a12x 23 $ al3x 33 @ al4x 43 

X23 = a2l x l3 @a22 x 23 $ a23 x 33 $ a24x43 

X33 = a3l Xl3 $ a32x 23 $ a33 x 33 @ a34x43 $ CD 
X43 = a4l x 13 $ a42x 23 $ a43 x 33 $ a44x 43 

(10.0) 
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The quantities 'aij are the given data, and the Xi3 are the unknowns. This is very 
much like an ordinary system of equations, except that the unknowns appear on 
both sides: They appear explicitly on the left side, and implicitly on the right side. 
The iteration equation (9) is the paradigm for handling this situation in the case of 
one variable: Note that the first equation has the structure 

X13 = aXl3 $ b, 

with a = au and b = a12x23 $ a13x33 $ a14x43' If we assume that a* exists, then 
we know that X l 3 = a*b is a solution of the above equation, and thus we get an 
explicit expression for Xl3: 

Xl3 = a! 1 (a12 X23 $ al3 x 33 $ al4X43) 

= a!l a12 X23 $ a!lal3 X33 $ a!lal 4 x 43 

Substituting this into the other equations and collecting terms, we get a new system: 

Xl3 = aWx 23 $ aWx33 $ a\llx43 

X23 = aWx 23 $ aWx 33 €a a~llx43 

X33 = aWx 23 $ aWx 33 €a a~llx43 €a <D 
X43 = aWx 23 $ a!ljx 33 €a a~1J.x43' 

where the new coefficients a1J) are defined as follows: 

aW = a!lalj , forj> 1, 

a1J) = alj €a ail a! I alj' for i =F 1 ,j > 1. 

(10.1) 

Let us summarize what we have done in order to eliminate X13: First we have used 
the equation where X l3 occurs on both sides for obtaining an explicit expression of 
Xl3 in terms of the other variables. This was done by solving the iteration equation. 
Then we have used this explicit expression for substituting X13 in all other places 
where it occurred. 

The four equations of the last system fall in two groups: The first equation is the 
explicit expression for X13 ; the remaining three equations form an implicit system 
for the other three variables X23' X33 ' and X43' which has the same structure as the 
original system, but one variable less. 

Thus we can repeat the elimination process in essentially the same way as we have 
begun it: We eliminate X23 from the second equation, assuming that (aW)* exists, 
and substitute this into the other three equations. We get a new system (10.2), which 
looks like (10.1) except that X23 does not appear on the right-hand side and the 
superscripts are (2) instead of (1). The elimination of X33 is a bit different, because of 
the <D on the right-hand side. We get 

X33 = (aW)*(a~2lx43 $ <D) 
- (a(2»*a(2)x ~ (a(2»* - 33 34 43 Q7 33 • 

When we substitute this into the other equations, we get a constant term in all 
equations: 
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X13 = aW 61 a\31x43 

X23 = a~31 61 a~31x43 

X33 = aW 61 a~31x43 

X43 = a~l 61 a~lx43 

The new coefficients are determined by the following recursions: 

a!fl = (aW)* , 

aW = aW(a~l)* , 

aW = (aW)*aW, 

a~J> = alP 61 aW(aW)*aW ' 

for i f= 3, 

forj> 3, 

for i f= 3, j > 3. 

167 

(10.3) 

For reasons which will become clear later, we regard the constant terms as the third 
column of the coefficient matrix. In the remaining elimination steps (there is only 
one more to follow), this column will remain, whereas the remaining columns will 
be successively eliminated. 

So we finally eliminate X 4 3 from the last equation, and we are left with the explicit 
solution 

with 

X13 = a\41 

X23 = a~~ 

X33 = a~41 

X43 = a~~ 

a~4J = (a~l)* , 

a\!> = all>(a~l)* , 

(10.4) 

for i f= 4. 

The purpose of this calculation has been to make it clear that the solution of the 
matrix iteration X = AX 611 (equation (7)) can be reduced to n solutions of the 
scalar iteration x = ax 61 <D for the pivot elements a = all' a~ld. aW, a~l. The 
remaining steps in the derivation were merely substitutions of variables and appli
cations of the semiring axioms (distributivity, etc.) which pose no problems. 

Let us summarize in a general way the equations that we have obtained. In the 
above example, the column index of the solution was I = 3. The index k denotes the 
step number. We denote the elements of the original coefficient matrix by a\J> = aij. 

n 

Xii = E9 aIJ>xj/, 
j=k+l 

n 

Xu = E9 al,>xj, 61 <D, 
j=k+l 

n 
_ ill (k> I'l"\ (k> Xi/- W aij Xj/~ail , 

j=k+l 

for 0 ~ k < I, i f= I, 

for 0 ~ k < I, (11) 

for I ~ k ~ n, 
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The formulas for the coefficients a\~) were as follows: 

ak~ = (akt- l »* , 

a\~) = a\~-l)(akt-l»* , 
ak~ = (a~t-l»*a~~-l), 
al~) = alrl) ED al~-l)(a~t-l»*a~~-l) , 

for i =f. k, 

for j =f. k, 

for i =f. k,j =f. k. 

(12) 

When we compute only a column Xii of the solution, for fixed 1, as in our example, 
we actually carry out the recursions for ak~ and a\~) only for k = 1, and the recursions 
for ak~ and al~) only for j > k and for j = 1 < k. Observe, however, that the above 
recursions are the same for all columns I, as far as they overlap for different columns. 
Thus, when we want to determine the whole matrix X we get just the above 
recursions, and the final result is 

(13) 

We get this by setting k = n in (11), whereas for k = 0 we get the original system (3) 
or (10.0). The nice thing about all these equations is that they can all be interpreted 
as equations between sets of paths. We will do this in section 4.3. 

We can cast our recursion into an algorithm, in which we can omit the superscripts 
(k) from the variables. We start with the given array aij and modify this array step 
by step until the final solution alj) is obtained. This algorithm corresponds just to 
the GauS-Jordan elimination algorithm of ordinary linear algebra, and hence it 
carries this name. 

GauS-Jordan elimination algorithm for 
the solution of the equation X = AX + I 
for k from 1 to n do begin 

(* Transformation of the matrix A(k-l) into A(k): *) 
akk := (akk)*; 
for all i from 1 to n with i =f. k do 
for all i from 1 to n with i =f. k do 

for all j from 1 to n with j =f. k do 
for all j from 1 to n with j =f. k do 

end; 

aij := aij ED aik ® akj ; 

akj := akk ® akj ; 

We get a variation of this algorithm if we do not substitute the explicit value for a 
variable in the equations preceding the current one, only in the following ones. The 
resulting system for our example would look as follows: 

X13 = aWx 23 EB aWx33 EB aW x43 

X 23 = a~21x33 EB a~lx43 

a~31x43 EB a~31 

a~41 
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The system can now be solved in one backsubstitution pass, starting with the last 
equation. This method corresponds to GauBian elimination in ordinary linear 
algebra. 

4.2. Theorems about the solution of the elimination algorithm 

We can summarize the results of the preceding section as follows: 

Theorem 1. If, for all pivot elements a = a}.'k-l) of the algorithm, a* is a solution of 
x = CD $ ax, then A(n) is a solution of X = I $ AX. • 

Note, however, that the converse of this statement is not true: The GauS-Jordan 
elimination algorithm may fail although a solution exists. This situation is known 
from ordinary matrix inversion. There, one cannot always take the next diagonal 
element as pivot. 

We may ask under what conditions the solution of the matrix equation is unique. 
The following theorem, which follows readily from the elimination algorithm, gives 
an answer: 

Theorem 2. If, for each pivot element a = a~1-1) in the algorithm, a*b is the 
unique solution of x = b $ ax, for all b E S, then A(n) is the unique solution of X = 
I$AX. 

Proof We have to review how the algorithm obtains the solution (10.4) from the 
original system (10.0). It does so by a sequence of transformations. In going from 
(lO.k - 1) to (lO.k), we solve one iteration equation Xk3 = a~1-1)xk3 $ b. Under the 
assumption ofthe theorem, the resulting equation Xk3 = (a~1-1»*b is an implication 
of the iteration equation. The remaining equations of (lO.k) are derived by sub
stitution and rearrangement of terms and are therefore also implied by the given 
equations. 

Thus, the final equations (lO.n) are implied by the original system, and therefore 
they represent the unique solution. • 

Note that we must require uniqueness of the solution of x = b $ ax for all b, since 
whenever we solve an equation of this form during the elimination process, a is a 
number that we have computed, whereas b is an expression which still involves 
other unknowns. 

For the case of shortest paths, this means that the solution is unique as long as no 
a~1-1) is O. On the other hand, we have seen that, when the graph contains cycles of 
zero length, a solution need not be unique. In those cases, it is nevertheless desirable 
to get a specific solution. In the case of the shortest path problem, the greatest 
solution is the desired solution, since it can be shown that it actually represents the 
lengths of shortest paths. Thus, we may ask ourselves whether an analog of the 
above theorem holds for this case, i.e., whether we actually get the greatest (or 
smallest) solution of X = I $ AX, if we make sure that a*b is always the greatest 
(or smallest) solution of x = b $ ax. 
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The following theorem shows that a somewhat weaker statement is true. We 
formulate it in terms of the smallest solution. One gets an analogous theorem for 
largest solutions by substituting "smallest" by "largest" and "2'::" by "=:;". 

Theorem 3. Assume that we have an ordered semiring. If, for each pivot element 
a = a~~-l) in the algorithm, y = a*b is the smallest solution of y 2':: b Ea ay, for all 
be S, then A(n) is the smallest solution of X = I Ea AX. 

Proof We write 2':: instead of = in all given equations (10.0) and in all equations 
(10.k) that are derived during the elimination process. Then, as in the proof of 
theorem 2, each derived inequality is an implication of the preceding inequalities: 
For the solution of the iteration equation, this follows from the assumptions of the 
theorem; for the substitution of the lower bound for this variable in the other 
inequalities, this follows from the monotonicity of the Ea and ® operations. Since 
the final inequalities read X 2':: A(n), we have the desired result. • 

Hthe semiring is ordered by the difference relation (see (6» we get a result completely 
analogous to theorem 2, where the" 2'::" in the preceding theorem is replaced by 
"=". In fact, the following theorem strengthens theorem 2: 

Theorem 4. Assume that we have a semiring which is ordered by the difference relation. 
If, for each pivot element a = a~-1) in the algorithm, x = a*b is the smallest solution 
of x = b Ea ax, for all b E S, then A(n) is the smallest solution of X = I Ea AX. 

Proof Let a be one of the pivot elements of the algorithm. In order to reduce this 
theorem to the preceding one, we only have to show that a*b is the smallest solution 
of y 2':: b Ea ay, for any b. 

Let y be a solution of the inequality y 2':: b Ea ay. Since the semiring is ordered by 
the difference relation, we may write 

y = (b Ea z) Ea ay, 

for some z (see (6». By the assumption of the theorem, a*(b Ea z) is the smallest 
solution of this equation, and hence 

y 2':: a*(b Ea z) 2':: a*b Ea a*z 2':: a*b. 

The last inequality follows again from the definition of the difference relation. • 

Theorems 3 and 4 answer a question posed by Lehmann [9]. The requirement of 
theorem 4 that the semiring be ordered by the difference relation cannot be omitted 
completely, as can be shown by a suitable counter-example. 

4.3. An interpretation with sets of paths 

In this section, we shall give a different interpretation to the equations derived in 
section 4.1: We shall interpret the coefficients as sums of path weights. These sums 
are in general infinite. However, in order to avoid the technicalities which are 
involved in dealing with infinite sums, we shall take a naive approach and assume 



Path Problems in Graphs 171 

that all infmite sums exist. In any case, the following considerations can at least be 
taken as heuristic support for the equations ofsection 4.1. 

The quantity Xii represents the sum of the weights of all paths from i to I. We can 
partition the set of all paths into disjoint subclasses according to some criterion, 
e.g., according to the first vertex j on the path whose number is greater than i. The 
paths in one subclass can be split into two subpaths in a unique way, e.g., at this 
vertexj. By considering all possibilities how this can be done, we get an expression 
for Xii in terms of certain sums of subpaths. 

To be more specific, we define a family of sets of paths as follows: We assume that 
the vertices are numbered from 1 to n. For 1 ::;;; i,j::;;; nand 0::;;; k::;;; n, Pi~kl denotes 
the set of paths from i to j whose intermediate vertices belong to the set {1, 2, ... ,k}. 
The intermediate vertices of a path (i = VO, V l , ••• , VI = j) are all vertices except the 
first and the last one. In the case of the empty path (i) we count i as an intermediate 
vertex; thus, (i) is contained in PiVl but not in p;~i-1l. 

We shall give the following interpretation of the coefficients a~l that arise in the 
elimination algorithm: 

a\Jl = E9. w(p). 
peP1~) 

For k = 0, we get the initial values a\Jl = au' which is correct because PbOl contains 
only the arc (i, j), if it is part ofthe graph. Starting from k = 0, the truth of the above 
expression for a\Jl can be verified by induction, using the recursions (12). We start 
with the simplest formula in (12), a~~ = (a~-ll)*. A path in plJl must start at k and 
end at k. In the meantime, it can pass arbitrarily many times through k. When we 
cut the path into pieces at these intermediate vertices k, we get 1 ~ 0 partial paths 
which are members of l1~-ll. The expression (a~t-ll)1 is the sum of all paths which 
contain exactly 1 + 1 occurrences of k (including the first and the last occurrence). 
Thus, the expression 

(a~-l)* = CD €a a~-l) €a (a~-ll)2 €a ... €a (a~~-:»I €a ... 

accounts for every path in P~~) in a unique way. On the other hand, it is easy to see 
that every path weight contributing to the expression on the right-hand side 
corresponds to the weight of some path in 11:). 
Now, let us consider the second equation: a~l = a\~-ll(a~t-l»*, for i =F k. A path in 
Pi~l can be split. in a unique way into the initial part from i to the first occurrence 
of k (k must occur since it is the last vertex) and the remaining part. The first part 
is in Pi~-l), and the remaining part is accounted for by (a~t-l»*. The third equation 
follows by a symmetric argument (splitting at the last occurrence of k instead of the 
first occurrence). 

The last case a\J) = altll €a al:-l)(a~-l»*a~~-ll, for i,j =F k, is also straightforward. 
The difference to the previous case is, that a path in Pbk) need not go through k at 
all. This is taken into account by the term altl). 

Using the previous arguments as inductive steps from k to k + 1, we finally arrive 
at alj) = Xii' because Pbn) is the set of all paths from i to j (cf. (13». 
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Next, we shall consider the equations (11) containing the "unknowns" Xii and the 
"coefficients" a!f). In this context, the difference between coefficients and unknowns 
is immaterial, since we interpret both as sums of path weights. 

Let us interpretthe first equation in (11): Xii = ffij=k+l a~)xj" for 0 ::;; k < I and i =F I. 
The left side represents all paths from from i to I, for some i =F t. Such a path must 
contain at least one intermediate vertex whose number is greater than k, because 
the last vertex I is greater than k. Let j be the first intermediate vertex along the path 
which is greater than k, and split the path into two parts at this vertex. The first 
part of the path from i to k contains no intermediate vertex greater than k, which 
is reflected in the superscript of the expression a~). The second part of the path can 
be an arbitrary path from k to I. Thus the product a~)xj/ is the sum of the weights 
of all paths from i to I whose first intermediate vertex which is greater than k is j. 
The vertex j can be any vertex between k + 1 and n, and thus every path from i to 
I is represented in a unique way on the right-hand side. 

The second equation in (11) differs from the first one only by the additional <D on 
the right-hand side, which accounts for the empty path in PAn). The third equation: 
Xii = ffij=k+1 a!J)xj/ $ a!~), for k :2: I, differs from the first one in the additional term 
a!~). This term accounts for the fact that a path from i to I need not certain an 
intermediate vertexj whose number is greater than k: The paths which contain no 
intermediate vertex greater than k are exactly the paths whose weights sum to a!¥). 

4.4. Block decomposition methods 

As in the case of real matrices, we can decompose a matrix into blocks and carry 
out the computations blockwise, as with scalar matrices. For example, when we 
decompose into 4 blocks, the equation X = AX $ I becomes 

(~~: ~~:) = (~~: ~~:) ® (~~: ~~:) $ C~l I~J 
We assume that all diagonal blocks Xii and Ali are square. 1u and 122 are unit 
matrices of the appropriate size. 

We can apply the elimination algorithm for this block equation without change. 
The main difference is that the iteration equation X = AX $ B which is used to 
eliminate a variable Xi} from the right-hand side is now itself a matrix equation' 
instead of a scalar equation, and the problem of determining A * is of the same type 
as the original problem, but of smaller size, however. This opens the possibility for 
recursive divide-and-conquer solution strategies. 

Let us look at the above decomposition into 2 x 2 blocks and apply the GauB
Jordan algorithm for n = 2. 

1. AW:= (Au)*; 5. X22 = AW:= (AW)*; 

2. AW:= A21 AW; 

3. AW:= A22 $ AWA12 ; 

4. AW:= AWA12 ; 

6 X - A(2) .- A(lIX . 
. 12 - 12·- 12 22, 

7. Xu = AW := AW $ X 12AW; 

8. X 21 = AW:= X 22 AW; 

(14) 
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We will consider two opposite possibilities for the partitioning strategy: decom
position into equal-size blocks of size approximately (nI2) x (nI2), and partitioning 
into one block of size (n - 1) x (n - 1) and a scalar. 

For the first choice, the above program shows that a *-operation for (n x n)
matrices can be reduced to six multiplications, two additions and two *-operations 
on matrices of size (nI2) x (nI2). By using the reduction recursively, one can derive 
the result that an O(nC)-time matrix multiplication algorithm for the semiring, with 
any fixed exponent c ~ 2 leads to an algorithm for computing the *-operation with 
the same asymptotic time complexity (cf. Abo, Hopcroft, and Ullman [2], section 
5.9). 

The other possibility, where All consists ofthe first n - 1 rows and columns of A 
and A22 is just the element an", corresponds to the escalator method for inverting 
a matrix, which adds one column and one row at a time until the whole matrix is 
inverted. A21 is the last row and A12 is the last column of the matrix. (All)* is the 
matrix (a~rl»l!>i,j!>n-l whose elements correspond to subsets of paths in the graph 
with vertex n deleted. If we continue the above decomposition recursively, we get 
the following algorithm for computing A*. Since the recursive step, the evaluation 
of At I' comes right at the beginning of the algorithm, it is easy to write the algorithm 
without recursion. For easier reference, we have numbered the steps as in the 
algorithm above. 

Escalator method for the solution of the equation X = AX ~ I 

for k from 1 to n do begin 
(* Transformation ofthe matrix (bij) = (a~tl»l!>i,j!>"-l *) 
(* into the matrix (aIJ)h !>i,j!>'" *) 
1. (* AW is already given. *) 
2. for j from 1 to k - 1 do b,.j := ~.:-l a"ibij; 
3. bkk := a"" ~ &'.:-l b,.zaz,,; 
4. for i from 1 to k - 1 do bik := ~:l bljaj,,; 
5. b",,:= (b,.,,)*; 
6. for i from 1 to k - 1 do bik := bl"b,.,,; 
7. for i from 1 to k - 1 do 

for j from 1 to k - 1 do 
8. for j from 1 to k - 1 do 

end; 

bi} := bi} ~ bik ® b,.j; 
b,.j := b,."b,.j; 

Note we have used a different array (bi}) for the result variables, because otherwise 
the k-th row and column would be overwritten while they are being used in steps 
2 and 4. Thus the final result is contained in (blj), whereas the original data (aij) 
remain unchanged. 

In the case of the shortest path problem, this algorithm is known as the algorithm 
of Dantzig. There, steps 6 and 8 can be omitted because b"k is always zero, and step 
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5 reduces to a sign test. Moreover, since the semiring is idempotent, we do not have 
to differentiate between the matrices (aij) and (bij), because it does not matter if 
elements of A are overwritten. 

The recursions of this algorithm can also be interpreted as equations between sets 
of paths, like in section 4.3. In order to see this, we have to add the correct 
superscripts. Expressions without superscripts, like aki denote the initial values of 
these variables: aki = a~Y). Since we have the explicit superscripts, we write a again 
instead of b: 

2 a(k.-1) = ~-1 a .a(~-1) for]' < k' Since a path in p'(~-1) must contain at least one • k} 'CDi=1 k. Ii" k} 

arc, we can partition this set of paths according to the first vertex i which comes 
after the start vertex k. 

4. al:-1) = ~:t a~-1)ajk' for i < k: This is symmetric to 2. 
3 (k-1) .m ffi/c-1 (k-1) Thi' . it h' h . akk = akk Q7 'CD1=1 akl alk: s IS Slm ar to t e preVIous case, except t at we 

have to take the single arc (k, k) into account. 

The remaining recursions: 

5. a~~ = (a~-1)*; 
6. a~) = a~-1)a~~, for i < k; 
7. alJ) = alt1) €a al:) ® a~~-1), for i,j < k; and 
8 a(k) = a(k)a(k.-1) for]' < k' 'k} kkk} , , 

are the same as in GauS-Jordan elimination. 

There is also a three-phase algorithm which is analogous to LV-decomposition of 
ordinary linear algebra (cf. Rote [13]). The top-down pass computes the matrix 
L €a V, where L is a strictly lower triangular matrix defined by lil = alP, for i > j, 
and lij = @for i ~j, and V is an upper triangular matrix with UI} = alr1), for i ~j, 
and uij = @for i > j. then L* and V* are computed, with (L*)lj = alr1), for i > j, 
and (V*)i) = alP, for i ~j. Finally, V* is multiplied with L*, yielding the result 
matrix X = A*. The matrices in this algorithm fulfill the following relations: 

A €a LV = L €a V (LV-decomposition) 

V*L* = A* 

All of these equations can be interpreted as path equations as in section 4.3. 

4.5. A graphical interpretation of vertex elimination 

We can view the elimination of a variable from the right-hand side of the equations 
as the elimination of the corresponding vertex from the graph. This is shown in 
figure 3. When a vertex k is removed, we must somehow make up for the paths that 
have gone lost by this removal. Thus, for each pair consisting of an ingoing arc (i, k) 
and an outgoing arc (k, j), we add a new short-cut arc (i, j). The weight of this 
additional arc, which is meant to replace the piece incident to vertex k in every path 
passing through k, reflects the paths that were lost: alka:kak}' If the arc (i, j) is already 
present in the graph, we simply add this expression to its old weight. 
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~1 

Figure 3. Elimination of the vertex k. 

On certain types of sparse graphs (Le., graphs with few arcs), GauBian elimination 
can be carried out more efficiently by using a special ordering in which the variables 
are eliminated. For example, using a technique called generalized nested dissection 
due to Lipton and Tarjan [11], single-source path problems on planar graphs can 
be solved in O(n3/2) steps (see also Lipton, Rose, and Tarjan [10]). Flow graphs 
from computer programs (cf. section 6.5) usually have a special structure: They are 
reducible. There are specialized algorithms for solving path problems on these 
graphs (cf. Tarjan [16]). 

5. Iterative solution procedures 

5.1. Matrix powers 

Iterative algorithms are based on the connection between matrix powers and paths 
of a certain length. In particular, if (AI)ij denotes the (i, j) entry of the l-th power 
of the matrix A, then 

and thus we get 

(AI)ij = EB w(p), 
pisapath 
fromitoj 
of length I 

(1 E9 A EB A2 E9'" EB AI)ij = EB w(p). 
pisapath 
fromitoj 

of length at most I 

For many path problems, paths which are longer than some threshold play no role. 
For example, in case of the shortest path problem, no path of length n or longer 
can be a shortest path, and thus it suffices to compute 1 E9 A E9 A2 E9'" E9 An-i. 
When the semiring is idempotent, such a sum can be evaluated by successively 
squaring the matrix (I E9 A). By the idempotence law, we get 

(I EBA)I = 1 E9 A E9 A2 E9 ... E9 AI. 

Thus, if we square the matrix (I E9 A) rIog2(n - 1)1 times we get a matrix power 
(/ E9 A)I with 1 ;;::: n - 1, and thus this is the matrix of shortest distances. 
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5.2. Jacobi iteration and Gauj-Seidel iteration 

When we want to compute only one row or one column of the matrix X, (i.e., we 
want to solve the single-source path problem), we can simply look at this row of 
the system (7') or at this column of the system (7). For columnj the corresponding 
system reads: 

(15) 

ej denotes the j-th column of I, i.e., the j-th unit vector. One can view this equa
tion, which defmes the vector x in terms of an expression involving x, as a 
recursion which defines a sequence x[O], X[l], X[2], ••• of successive approximations 
of x: 

x[O]:= e. 
J 

XII] := ej E9 AX[/-l] , for I ~ 1. 
(16) 

Any fixed point of this iteration is a solution of (15). By induction one can show 
that 

i.e., XII] is the j-th column of the matrix on the right-hand side. In the case of the 
shortest path problem, this means that the elements xii] are the lengths of shortest 
paths among the paths which contain at most I arcs. By the results of the previous 
subsection we conclude that, in case of the shortest path problem, x[n-l] is the j-th 
column of the shortest path matrix X. 

We can simply iterate the recursion (16) until it converges, i.e., until two successive 
vectors are equal. If the iteration does not converge after n steps, we know that there 
is a negative cycle. If the iteration converges and the semiring is ordered by the 
difference relation, the resulting solution is the smaHest solution (the least fixed 
point) of the iteration (cf. theorem 4). 

This algorithm corresponds to the Jacobi iteration of numerical linear algebra. 
GauS-Seidel iteration is a variation of this method. There, when the elements of the 
vector X[/] are computed one after the other, they are not computed from the old 
values of x[I-l], as in (16), but the new elements of xII] replace the corresponding 
entries as soon as they are computed. It can be shown that, in the case of idempotent 
semirings, this modification preserves correctness of the algorithm, and, more
over, the GauS-Seidel algorithm never needs more iterations than the Jacobi 
algorithm. 

In contrast to elimination algorithms, these iterative algorithms do not require both 
(left and right) distributive laws. For example, for the column iteration (16) described 
above, only the left distributive law a(b E9 c) = ab E9 ac is required. An example of 
a semiring where only one of the distributive laws holds occurs in the computation 
ofleast-cost paths in networks with losses and gains (cf. Gondran and Minoux [6], 
section 3.7). 
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5.3. Acyclic graphs 

When the graph G = ('v, A) on which we want to solve our path problem is acyclic, 
one can order the vertices in such a way that an arc (i,j) can only exist if i < j. In 
this case, the matrix entries, aij are zero for i ~ j and the matrix A is (strictly) upper 
triangular. Then one can solve the system (3) in one pass by computing the solution 
Xij in the order of decreasing row indices i. Thus, one column of X can be computed 
in 0(1 VI + lAD time. Similarly, one can compute one row of X in linear time by 
considering the system (7'). 

5.4. The Dijkstra algorithm 

In some cases, specialized algorithms can solve path problems more efficiently. The 
single-source shortest path problem in graphs with non-negative arc lengths can be 
solved efficiently by the algorithm of Dijkstra. This algorithm can be generalized 
to semirings which come from a linearly ordered semigroup in which <D is the largest 
element (see the examples in section 6.4.1). The algorithm works by a clever choice 
of the vertex to be eliminated next. This is somehow analogous to elimination 
algorithms in linear algebra which use pivoting. 

6. Further applications 

In this last section, we shall present a selection of examples from different areas 
which can be interpreted and solved as path problems. 

In the first three parts of this section, we shall consider problems which involve the 
field (IR, +, . ) or a subset of it. Then we shall deal with optimization problems; and 
we shall return to the discussion of finite automata from section 2.2. Finally, we 
shall present some examples of "non-standard" semirings, which occur in data flow 
analysis of programs and in two graph-theoretic problems. 

6.1. 1 nversion of matrices 

When the semiring is a field, equation (7) can be rewritten as (1 - A)X = 1, or 
X = (1 - A)-l if the matrix 1 - A is invertible. Then the elimination algorithm 
corresponds exactly to the GauS-Jordan algorithm of linear algebra (without pivo
ting). The only difference is that we get the inverse of 1 - A and not the inverse of 
A. This is reflected in the pivoting operation, where we set a~'2 := (a~t-l»)* = 1/(1 -
a~t-l») and not a~'2 := 1/a~t-l). 

This problem has originally nothing to do with path problems. We can just pose 
the equation (7) without reference to a particular graph or to sums of path weights. 
Nevertheless, the matrix A* = (1 - Ar1 has some significance for path problems, 
as is exemplified in the following two subsections. 
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6.2. Partial dijferentiation 

Many numerical problems, like finding the minimum of a function lover some 
domain, can be solved more efficiently if the algorithm has access to the derivative 
of f When the function I can be written as a simple expression of one variable, 
computing the derivative is no problem, but when I(Zl""'Z,,) is a function of 
several variables, which is computed by a complicated program involving loops and 
conditional branches, the computation of all partial derivatives OI/OZl' OI/OZ2, .•. , 
ol/oz", seems to be a difficult task. Therefore, one used to resort to methods which 
do not require the derivatives, or they differentiated numerically, which presents 
new problems of numerical stability. 

In this section, we show how the problem of computing the partial derivatives can 
be solved efficiently as a path problem in a graph, by applying the chain rule. 

The graph on which we will work is the computational graph of the function f I is 
given by a program like the following two-line pr~am, which computes the real 
root y = I(Zl,Z2,Z3) of the equation ziY = Z2Z3...!Y + z~: 

y:= z2*Z3 + SQRT«zhz3),,2 + 4*Z1"2*Zr2); 

Y := (y/(2 * z 1 "2»"2; 

We can resolve this into a sequence of elementary operations, as follows: 

1. a:=z2*z3; 5. e:= c*d; 9. y:= a + i; 
2. b:=a"2; 6. g:= 4*t; 10. j:= 2*c; 

3. c:= zl"2; 7. h:= b + g; 11. k:= y/j; 

4. d:=zr2; 8. i := SQRT(h); 12. y:= k"2; 

Imagine now that this sequence of elementary steps is executed. In the beginning, 
the graph consists only of k isolated vertices which correspond to the input variables. 
Each time a variable is assigned a new value, we add a new vertex to the graph, and 
arcs from this vertex to the one or two operands of this elementary computation 
(cf. figure 4). When one of the operands is a constant, we first gen~rate a vertex 
corresponding to this constant. When a variable is assigned several values in 
succession, we generate different vertices for each assignment (y and y in the 
example). 

In our case, the computational graph has a static structure, since it corresponds to 
a straight-line prograni. However, we can also handle programs with loops and 
conditional branches, since the computational graph is generated dynamically. 

Now let us look at some vertex w with two outgoing arcs leading to vertices u and 
v. Then we can determine OW/OZi by the chain rule: 

ow ow ou ow OV 
-=-'-+-'-
OZj OU OZj ov OZj 

W is determined from u and v by some elementary operation, and hence ow/ou and 
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c 

Figure 4. A computational graph 

iJw/iJu can be calculated directly from u, v, and w in a few elementary basic steps, 
taking constant time. For example, if w = u/v, then iJw/iJ:: = l/v and iJw/iJv = 
-u/v2 = -w/v. When we associate the value iJw/iJu with the arc (w, u) and the value 
iJw/iJv with the arc (w, v), we can write the above equation as follows: 

(17) 

Here, awu and awv are numbers that can be calculated directly, and XWZ1 are the 
unknowns representing iJw/iJzi • In figure 4, the arc weights are shown as small 
numbers. 

We can see that the problem of computing the unknowns is just an instance of the 
path problem equation (3). In section 2, we have derived (3) starting from a path 
problem (4). Now arguing in the reverse direction, we obtain: 

Theorem 5. iJf/iJzi is the sum of the weights of all paths from f to Zi in the computa
tional graph, where the weight of a path is the product of its arc weights. 

Since the computational graph is acyclic, we can compute iJu/iJv, for some fixed 
vertex u and all other vertices v, or for some fixed vertex v and all other vertices u, 
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in time proportional to the number of arcs of the graph. Since each vertex has at 
most two outgoing arcs, this is proportional to the number of vertices of the graph, 
i.e., the number of steps of the algorithm for computing f Thus, in time which is 
proportional to the time which the original program takes, we can 

• compute of/oz;, for all input variables Zi, or 
• compute ov/oz;, for all intermediate variables and output variables v, and for 

some fixed Zi' 

The second problem is solved by a bottom-up pass with a straightforward applica
tion of the chain rule (17). This case is interesting if we have a set of functions 
fl(Zl"",Zk),f2(Zl"",Zk), .•. ,f,(Zl" ",Zk)' with 1 output variables of the program. 

The first problem is solved by a top-down pass through the tree, starting from f A 
drawback of this method is that the computational tree must be stored, and hence 
storage requirement is also proportional to the time complexity of the original 
program for computing f alone. 

Computation ofthe Jacobi matrix (oii/oz) may take much longer than the original 
program for computing only the 1 values ii, since kl values have to be computed. It 
corresponds roughly to solving the all-pairs path problem. 

We can also iterate the procedure for computing derivatives and compute second
order derivatives. Again, note that the time for the computation of the whole 
Hessian matrix (o2f/oZiOZj) is also longer than the computation of f, by more than 
a constant factor, since the Hessian has k2 entries. However, one can compute the 
product of the Hessian matrix or the Jacobi matrix with a particular vector in time 
proportional to the original number of steps of the program. 

Note that, in the algorithm, we also determine partial derivatives of f with respect 
to all intermediate variables. These values can be used to estimate the total rounding 
error which has been accumulated during the computation of f. For more informa
tion, the reader is referred to the survey ofIri and Kubota [8], or to lri [7], Sawyer 
[14], or Baur and Strassen [3]. 

6.3. Markov chains-the number of paths 

When the matrix A is the (ordinary) adjacency matrix of a graph, i.e., aij is 1 if the 
arc (i,j) exists and 0 otherwise, then the weight of every path is 1, if we use the ring 
of integers (1:, + , '). Thus, xij represents the number of different paths from i to j. 
Of course this makes sense only when the graph is acyclic, because otherwise there 
will be infinitely many paths. On the other hand, from the considerations in section 
5.1, we know that the power A' contains the number of paths of length I between 
every pair of vertices. 

A slight generalization of this is used in the theory of Markov chains. In a Markov 
chain, there is a finite set {1,2, ... ,n} of states of a system, and the system changes 
between states in a random way in discrete time intervals. The probability that the 
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system is in state j at some step t depends only on the state of the machine at step 
t - 1, and it is independent of t and of previous state transitions. Let au be the 
probability that the system is in statej at step t if it was in state i at step t - 1. Then 
the probability that a system passes through a sequence of states (Vo, VI"'" VI) is 
the product avov, avl •vz ••• avl _Iv,' Thus the (i,j) entry of the matrix Al is the probability 
that the system is in state j at step t if it was in state i at step t - I. 

6.4. Optimal paths 

6.4.1. Best paths 

We have considered the shortest path problem as the first instance of a path 
problem. There are several other problems, where the set S of path weights is linearly 
ordered, and the weight of a best path is desired, i.e., Ee is the operation min or max. 
Besides the shortest path problem, we have the following examples: 

• Maximum capacity paths. The solution uses the semiring (~+ U { 00 }, max, min). 
• Most reliable paths in networks with possible arc failures, where it is assumed 

that arc failures of different arcs are independent. Here we use the semiring 
([0,1], max, '). The entry a ij of the initial data matrix represents the probability 
that the arc (i,j) is all right. We are looking for the path with the smallest failure 
probability. 

For the case of maximum-capacity paths, the all-pairs problem can be solved 
more efficiently by constructing the maximum spanning tree. 

The simplest kind of path problem arises when we only ask for the existence 
of a path. Here we take the simplest non-trivial semiring, the Boolean semiring 
with two elements ({O, 1}, max, min). aij is 1 if and only if the arc (i,j) exists, and xij 
is 1 if j is reachable from i in the graph, i.e., the matrix X represents the transitive 
closure. 

In all cases mentioned above and in the following subsections, the algorithms can 
be modified such that they will not only compute the weight of an optimal path, 
but produce the optimal path itself. To achieve this, the algorithms must store how 
the optimal path weight and each intermediate result was obtained. In some cases, 
this can only be done at the expense of an increased storage requirement. We will 
not discuss this in detail. 

6.4.2. Multicriteria problems-lexicographic optimal paths 

In many applications, paths are not selected according to one criterion, but accord
ing to several criteria. In the simplest case, we have a definite order of importance 
between different criteria. This leads to lexicographic optimization problems. 

Imagine that a traveler plans a car trip from one city to another. For each street 
connecting two points i and j he knows the time tij to travel from i to j and the 
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amount of sprit Slj that his car needs for this distance. He wants to use as little fuel 
as possible, but if there are several paths which are equal in this respect, he wants 
to take the one which takes the shortest time. 

Thus, he has a lexicographic preference relation :S on the set of vectors (s, t): 

(Sl> td:s (S2, t2)<=>S1 < S2 or (S1 = S2 and tl :s; t2). 

This is a linear order of the vectors (s, t) E R!. In the semiring, the operation $ 
is the lexicographic minimum, whereas ® is the ordinary elementwise vector 
addition: 

{
(S1' tl)' if S1 < S2 

(Sl> td $ (S2, t2) = (S2, t2), if S2 < S1 

(S1,min{t1,t2}), ifs l =S2· 

(s1,td®(S2,t2) = (S1 + S2,t1 + t2) 

One can even use a different ®-operation for the components. For example, imagine 
that the trip goes through the desert. If several journeys have the same time and the 
same fuel consumption; the traveler wants to select the safest trip among them, i.e., 
he wants his minimum safety reserve, below which his tank will never be emptied, 
to be as high as possible. This means that the sprit requirement between any two 
successive visits to filling stations on his journey should be as low as possible. Thus, 
we have a different semiring, where ® is defined as 

(S1,t1,sD®(S2,t2,S2) = (S1 + s2,t1 + t2,max{s~,s2}). 

As before, $ is the lexicographic minimum operation (of three components, this 
time). 

Note however, that if the primary goal of our traveler is safety, whereas total fuel 
consumption and time have second and third priority, the corresponding operation 
®, in which the third component would come in the first place, would not yield a 
semiring, because it violates the associative law. (The structure (R!, ®, :S) would 
not be an ordered semigroup.) 

If there is no clear preference between the objectives (offuel over time, or vice versa), 
we can still eliminate from consideration a path which is worse than some other 
path in both respects. What remains is the set of e.fJkient or Pareto-optimal 
or minimal paths; i.e., we are looking for all path weights (s, t), for which there 
is no other path with weight (s', t') such that s' :s; s and t' < t, or s' < sand 
t' :s; t. 

This problem can also be formulated as a path problem, with sets of pairs (s, t) as 
elements of the semiring. The ® operation for sets is the elementwise ®-product 
of the elements, and E9 is set union. However, after every operation, we can reduce 
the resulting sets by throwing away pairs (s, t) which are not efficient. Since these 
sets of efficient values can become very large, this approach is limited to small 
problems. 
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6.4.3. k-best paths 

Another extension of the ordinary best path problem is the determination of the k 
best different paths between every pair of vertices. We can solve this by a semiring 
which operates on vectors of k elements. For simplicity we will assume that we want 
to compute the k shortest paths in the ordinary sense, i.e., we are working with the 
semiring (~oo, min, + ). However, the underlying semiring for the corresponding best 
path problem can be any semiring in which EB is the min or the max operation (cf. 
the examples in the previous subsections). We are going to create a semiring 
(sk, EB, ®), whose elements are k-tuples of S. The vector (a1 ,a2, ... ,ak) is meant to 
represent the lengths of the best, the second-best, ... , the k-best path -in a certain 
set of paths. The operations for the semiring are defined as follows: 

• (al' a2,··., ak) EB (bl , b2, ... , bk) is the sequence of the k smallest values in the 
combination (union) of the two given sequences. 

• (al,a2, ... ,ak)®(bl ,b2, ... ,b,.) is the sequence of the k smallest values in the 
(multi-)set of k2 elements {ai + bjli = 1, . .. ,k;j = 1, ... ,k}. 

Note that a sequence (a l , a2, ... , ak) can contain repeated elements, which corre
spond to different paths with the same length. Moreover, addition in this semiring 
is not idempotent. However, the order ofthe elements in the sequence is immaterial, 
and thus we might just as well assume that they are sorted. Thus, by the way we 
treat the sequences in sk, they are in fact multisets. 

• CD = (0, 00, ... , 00) and @ = (00, ... ,00). The initial entries of the matrix are 
(aij, 00, ... , 00), where aij is the weight of the arc (i,j). (Initially, the path (i,j) is the 
only path from i to j that we know of. The second-, third-best, etc., paths do not 
exist.) 

• We have to define the *-operation, i.e., the solution of 

x = (0,00, ... ,00) Et> a ® x. (18) 

Let us assume that a = (a l , a2, ... ,ak) with al :$; a2 :$; ..• :$; ak. When we write x 
as CD EB a EB a2 Et> ... , we see the following: 

- If a l < 0, there is no solution, except perhaps (- 00, - 00, ... , - 00). 
- If al = 0, we get x = (0,0, ... ,0) as the largest solution. However, any constant 

vector x = (c, c, ... ,c) with c :$; ° is also a solution of (18). (These are not the only 
solutions.) 

- If a l > 0, there is a unique solution, which can be determined by looking at 
equation (18): x = (X l ,X2' •.• ,xk ) consists of the k smallest values in the (multi-) 
set 

{O}u{ai+xjli= 1, ... ,k;j= 1, ... ,k}. (19) 

We see that the smallest element in this set is Xl = 0, since the elements of the 
right-hand set of the union are all positive. Let us assume that we have deter
mined the I smallest elements of the set (19). X Z+l , the (I + I)-smallest element 
of this set is the I-smallest element of the right-hand set. However, in order to 
determine the I-smallest element of a ® x, we need only know the I smallest 
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elements o~ x, which we know already. Thus, we can successively determine 
Xl' X2' ••• , Xk· 

Let us discuss the complexity of these operations. $ can clearly be carried out in 
O(k) time. The operation ® can also be carried out in (theoretical) O(k) time, using 
a sophisticated algorithm of Frederickson and Johnson [5]. The determination of 
a* as described above, which occurs only n times during the elimination algo
rithm, can be carried out in O(k log k) steps, using priority queues. 

Note that we do not get the k best elementary paths by this approach; i.e., the paths 
that we get can contain repeated vertices and arcs. The problem of finding the 
k best elementary paths is considerably more difficult, but II1so for this prob
lem, algorithms which use the algebraic framework of path problems have been 
proposed. 

The k-best path problem is an example of a path problem where non-elementary 
paths can have an influence on the solution. However, in case there are no negative 
cycles, the longest path that has to be taken into account has kn - 1 arcs. (For a 
longer path, one can construct at least k different shorter paths by successively 
eliminating elementary cycles from the path.) 

Thus, the iterative algorithms of section 5 should converge after at most kn - 1 
iterations, unless there are negative cycles. 

6.5. Regular expressions 

For our second example from the beginning, the determination of the language 
accepted by a finite automaton (cf. section 2.2), the elimination algorithm seems to 
be useless, since the *-operation will probably very soon lead to infinite sets. 
However, the algorithms provides us with a way to describe the language. In 
order to explain this, we need one more definition: A regular language is a set of 
words which is built starting from finite sets of words using only the operations 
. (concatenation), u, and *. For example, e(fh*(fu {g, h}*»* u {e,ggg} is a regular 
language. (Here, single words denote singleton sets.) Now the GauS-Jordan elimina
tion algorithm successively constructs a regular expression for each pair of states i 
and j, which describes the language xij leading from i to j: It starts from the finite 
sets aii' and as it proceeds, it uses only the operations·, u, and *. 

Since the language accepted by the automaton is just the union of several Xii' we 
have proved the following theorem: 

Theorem 6. The language accepted by a finite automaton is regular. • 
This is one half of Kleene's theorem about the equivalence of finite automata and 
regular expressions. The other direction, the construction of a finite automaton 
which accepts a given regular language, is even easier. Our proof by GauS-Jordan 
elimination is in fact the standard proof of this result. 
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6.6. Flow analysis of computer programs 

When a compiler wants to optimize the code for a computer program, for example 
by detecting common subexpressions or by moving invariant expressions out of 
loops, it needs to know whether the value of an expression remains unchanged 
between two uses of this expression. If this is the case, the expression need not be 
evaluated the se~nd time. 

In order to investigate this problem, for one particular expression f(z 1, ••• ,Zk) which 
occurs in the program, we represent the program by its flow graph. The vertices 
correspond to basic blocks of the program, i.e., blocks of consecutive state
ments with one entry point at the beginning and one exit point at the end. The arcs 
indicate possible transfers of control between basic blocks. (This is similar to a 
flowchart.) 

The execution of a basic block may have one of the following effects on the value 
off: 

• It may generate J, i.e., the value of f is computed in the block and is available on 
exit from this block. 

• It may kill J, for example by assigning a new value to one of the input variables 
Zh ... , Zk of f. 

• It may leave f unchanged. 

We give an arc (i,j) the label G, K, or U, depending on whether the value of f is 
generated, killed, or left unchanged between the entry to block i and the entry to 
block j, (i.e., during the execution of block i). In addition, we need an element @ 
for the arcs which are not present. 

Now we can use the following semiring on the set {@,G, U,K}. 

$ @ G U K ® @ G U K a a* 

@ @ G U K @ @ @ @ @ @ U 
G G G U K G @ G G K G U 
U U U U K U @ G U K U U 
K K K K K K @ G K K K K 

U is the (D-element of this semiring. All semiring axioms hold. Note that in this 
semiring the operation ® is not commutative. The operation ED is just the min 
operation for the order K < U < G < @. This is typical of data flow problems, 
because when we unite two sets of possible paths from i to j, we can only keep the 
weaker information of the information that the two sets give about f. 
To solve our original problem, let 1 be the start vertex of the program. We can 
eliminate an evaluation of the expression f in block j if and only if x 1j is G. 

Further examples of data flow problems and references can be found in Tarjan 
[15]. 
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0.7. Some graph-theoretic problems 

The following examples are mentioned mainly as curiosities, in order to illustrate 
the broad range of applicability of the path problem formulation. For each of the 
problems, there are in fact linear-time algorithms to solve them directly. 

The transitive closure of a graph, which also falls into this category, has already 
been mentioned briefly in section 6.4.1. 

Path problem formulations have also been proposed for problems of enumerating 
elementary paths or cutsets of a graph. Such problems are exponential by their 
output size alone. There the solution procedures by elimination algorithms can be 
applied only to graphs of moderate size. 

6.7.1. Testing whether a graph is bipartite 

An undirected graph is bipartite ifit contains no odd cycle (i.e., no cycle containing 
an odd number of edges). Since a cycle is just a special case of a path from a vertex 
to itself, we can formulate this as a path problem. Let the weight of a path be E or ° according to whether its length is even or odd, and let the weight of a set of paths 
be 0, E, 0, or EO, according to whether the set is empty, contains only even paths, 
only odd paths, or paths of both types. Then we get the following semiring on the 
four-element set S = {0,E,0,EO}: 

ED 0 E 0 EO ® 0 E 0 EO a a* 

0 0 E 0 EO 0 0 0 0 0 0 E 
E E E EO EO E 0 E 0 EO E E 
0 0 EO 0 EO 0 0 0 E EO 0 EO 

EO EO EO EO EO EO 0 EO EO EO EO EO 

We initialize the data matrix by setting aij = ° if the edge {i,j} exists and aij = ° 
otherwise. Then, if any Xii = ° or EO when the algorithm stops, the graph is not 
bipartite; otherwise it is. (Of course, as soon as the element EO appears somewhere 
in the matrix, we know already that the graph is not bipartite.) 

We can also apply this algorithm to directed graphs and test for the existence of 
paths of given parity. Using a generalization of this idea, one can find shortest 
even paths or shortest odd paths, if one does not insist that the paths should be 
elementary. One could even find a shortest path whose number of arcs is, for 
example, congruent to 4 modulo 7, if one wishes to do so. 

6.7.2. Finding the bridges and the cut vertices of a graph 

A bridge in an undirected graph G = (V, E) is an edge whose removal causes some 
connected component of G to break into two components. Similarly, a cut vertex 
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or articulation point is a vertex whose removal causes some connected component 
of G to become disconnected. 

For finding bridges, we use the semiring (2E u {@},n,u), which operates on the 
set of subsets of edges augmented by a zero element. n and u are the ordinary set 
intersection and set union operations, except that their interaction with @ is 
specified by the semiring axioms. As unity element we have <D = ~, and thus the 
*-operation presents no problem: x = <D EEl ax = ~ n (a u x) always has the same 
unique solution x = ~, even when a = @. 

As the weight of an arc (i,j) we take simply the singleton set {e}, if. e E E is the 
(undirected) edge corresponding to the (directed) arc (i,j), and we take @ifno such 
edge exists. The weight of a path is then just the set of its edges. Using the 
formulation (4) of the algebraic path problem, we get: 

xij = n w(p). 
pisapath 
fromitoj 

In other words, xij is the set of edges which belong to every path from i to j. Such 
edges are clearly bridges, since their removal causes i to become disconnected from 
j. Conversely, every bridge must appear in some set xij' 

Note that the semiring axioms would allow us to take the set E as the zero element 
instead of @. But then we could not distinguish the case where all edges are bridges 
(xij = E) from the case when i andj are not connected (Xii = @). 

The determination of cut vertices proceeds in essentially the same way. We use the 
semiring(2V u {@},n, u), and the weight of (i,j) is {i}, if {i,j} E E, and@otherwise. 
All elements of the set Xii' except for i, are cut vertices. 

7. Conclusion-comparison of different approaches 

The general path problem can be approached in several different ways. They are 
characterized by different formulations and by different assumptions about the 
underlying algebraic structure. 

We have taken a purely algebraic approach: Solve the system of equations (3). 

The usual approach is more direct. It involves the formulation of the problem as 
an infinite sum (4) of path weights and building up this sum by computing sums alJ> 
oflarger and larger path s.ets, using the equations (12). We have seen this approach 
in section 4.3. With suitable axiomatic assumptions for infinite sums this derivation 
of the solution can be made precise. In some semirings infinite sums do not always 
exist, although they can be defined for some sequences. These semirings include the 
important case of the real numbers (~, +, . ) with their rich structure of convergence. 
Such semirings can also be dealt with quite satisfactorily. This approach has for 
example been taken in Rote [13]. 

A variation of this method specifies the solution in the free semiring generated 
by the arc set. This is the semiring of multisets of paths with set union and 
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concatenation·as addition and multiplication operations. The solution for a specific 
semiring is then obtained by applying a homomorphism from the free semiring to 
the specific semiring. An approach like this is taken by Tarjan [15]. 

Lehmann [9] has taken the 2 x 2 block decomposition algorithm (14) as the 
recursive definition of A * for matrices in terms of the operation a* for scalars. 
He shows that the result is independent of how the matrix is decomposed into 
blocks. A similar approach is taken by Abdali and Saunders [1] who introduce the 
concept of eliminants to define A *. Their definition corresponds to a particular way 
of computing A * in terms of the a* operation, very similar to our elimination 
algorithm. 

A comparison of different approaches can be found in Mahr [12J. 

For some applications, like shortest paths, the formulation (4) involving sums 
of path weights is more natural, whereas the algebraic formulation (3) is more 
convenient for other applications such as the inversion of matrices. However, the 
relationship between the two formulations is not so close: The system (3) may have 
a solution although the infinite sum (4) makes no sense (consider the case of matrix 
inversion), or it may have several solutions (cf. the discussion of the shortest path 
example at the beginning of section 4). However, the desired solution of (3) can often 
be characterized as the smallest (or largest) solution. Theorems 3 and 4 of section 
4.2 show that this desired solution can be obtained by defining a* appropriately. 

We hope that the broad range of applications from which we could draw our 
examples has convinced the reader of the importance and the general usefulness of 
path problems. 
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Abstract - Zusammerfassung 

Heuristics for Graph Coloring. Some sequential coloring techniques are reviewed. A few general prin
ciples for designing heuristics are outlined and recent coloring techniques baaed on tabu search are 
discussed. 
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Heuristiken fUr Graphenfarbungen. In dieser Arbeit wird eine Obersicht iiber einige sequentielle Flir
bungstechniken gegeben. Ferner werden einige allgemeine Prinzipien zur Erstellung von Heuristiken 
aufgefiihrt und eine jiingst entwickelte Flirbungstechnik auf der Basis von Tabu-Suchlisten diskutiert. 

1. Introduction 

As it happened for almost all graph-theoretical problems, interest in coloring was 
initially motivated by a kind of puzzle: is it possible to color the regions of a 
geographical map with at most four colors? This is by fa: not the most exciting 
application of graph coloring models. To-day many other situations are known 
where it is needed to color the nodes (or the edges) of a graph with a number of 
colors which is as small as possible. 

We shall just mention a few: course scheduling [28,31] school timetabling [24, 29], 
cluster analysis [13], group technology in production [4], tests of electronic circuits 
[9], VLSI (minimization ofthe number oflayers in channels), transportation (opti
mization of a fleet of aircrafts), etc. 

Besides these practical aspects, node coloring problems are also known to be 
NP-complete [10]; therefore many attempts have been made to attack these prob
lems; as a by-product of this intensive research many heuristic procedures have 
been proposed for getting reasonable good colorings in general graphs. 

In this paper we shall present a collection of heuristic methods (or shortly heuristics); 
we will try to give a sketch of classification as well as general observations about 
heuristics. The purpose of this review is not to compare heuristics from a computa
tional point of view but to examine the basic ideas of the various techniques. Some 
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experiences with the famous tabu search technique will be reported and extensions 
of colorings will be presented. All graph-theoretical concepts not defined here can 
be found in Berge [1]. 

2. Formulation and some basic ideas 

A graph G = (V, E) consists of a finite set V of nodes and a family E of edges 
(unordered pairs [x,y] of distinct nodes). A k-coloring is a partition of the set V into 
k independent sets Sl, S2' ... , Sk' Here a set S of nodes is independent if no two nodes 
in S are linked by an edge. The smallest k for which there exists a k-coloring of G 
is the chromatic number of G; it is denoted by X(G). 

As mentioned above finding whether an arbitrary graph has a k-coloring for a 
given k is generally an NP-complete problem. Moreover the determination of a 
(2 - e)x(G)-coloring of an arbitrary graph for any e > 0 is NP-complete [10]. On 
the other hand there is a simple method which gives in almost all cases a (2 + e) X( G)
coloring [12]. 

If w( G) is the maximum size of a clique (a set of nodes which are all linked pairwise) 
in G, then clearly X(G) ;::: w(G). But w(G) can be a poor lower bound as can be seen 
from various classical constructions; in fact one can construct graphs G containing 
no triangles (hence w(G) :s; 2) and having an arbitrarily large value of X(G). Other 
lower bounds can be found in Berge [1]. 

In order to derive upper bounds on the chromatic number, we simply have to find 
feasible colorings; this is precisely what heuristics will do. 

For some heuristics, an analytical formula can be derived for obtaining an explicit 
form of the corresponding upper bound; for some others the derivation of such a 
formula is not as easy. We shall see methods of both types. 

An idea which has been fruitful for developing heuristics in various contexts is the 
study of special cases which are solvable. More precisely when a problem type P 
for which no exact procedure is known has to be solved, we may consider a simpler 
problem type P (generally a special case of P); depending on the choice of a suitable 
P an exact procedure A(P) can be found. Then an adaptation A of A(P) may be 
developed for handling the general problem P. A will then be a heuristic method 
for P; we expect that its "quality" will be good if the special case P is sufficiently 
close to the initial problem P. 

In our case, we may consider as a simplified problem P the coloring of the nodes 
of a special graph (for instance a bipartite graph or a special class of perfect graphs). 

Then an exact coloring algorithm can be "generalized" in some sense in order to 
be able to deal with the case of arbitrary graphs. Several examples of this situation 
will be presented below. 

Notice that on the other hand when a heuristic procedure is known, it may be useful 
to determine the simplified problem type P for which the procedure is an exact one. 
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For us, this amounts' to finding the largest possible class of graphs G for which the 
procedure gives a coloring in a minimum number of colors (i.e. in X(G) colors). 
The identification of such a class may give an idea of how far we are from the 
general case and also make explicit the situations where the heuristic will be 
efficient. 

Along this line, perfect graphs will be appearing several times; these are defined as 
the graphs G for which the equality X(G') = w(G') is satisfied in any induced 
subgraph G' of G. 

A special type of coloring will be considered later; it is in some sense a concept 
corresponding to a schedule at the earliest dates. A k-coloring (S1,' .. , Sk) is canonical 
if for every color h ::;; k any node x in Sh belongs to some clique K with K n Si *- 0 
(i = 1, ... , h). In other words we are using for each node a color (i.e. a positive integer) 
which is as small as possible: if x has received color h (x E Sh), it is because it belongs 
to some clique K which contains for each color i ::;; h a node of color i. 

Not all graphs have a canonical coloring; in fact we have the following: 

Property 1.1 [26] A graph G and all its subgraphs have a canonical coloring if and 
only if G is perfect. 

For an arbitrary graph we say that a k-coloring is pseudo canonical if for any color 
h ::;; k the following holds: let X h E Sh, then the subgraph induced by S1 U ... U Sh-1 U 

{x} has chromatic number h (see [27]). 

For perfect graphs, the notions of pseudocanonical and canonical colorings coincide. 

Finally let us define strongly canonical k-colorings as k-colorings such that for any 
clique K the following holds: if h is the smallest color occurring in K, there exists a 
clique K' => K such that K' n Si *- 0 for i = 1, ... , h. 

Notice that if K is restricted to be a single node, then we simply get canonical 
colorings. Not all perfect graphs have strongly canonical co!vrings. For instance C6 

(the complement of the cycle C6 on 6 nodes) has no strongly canonical k-coloring; 
it can be shown that the existence of strongly canonical k-colorings characterizes 
the subclass of perfect graphs called strongly perfect graphs [26]. They are defined 
as graphs for which in any subgraph there exists an independent set which meets 
all (inclusionwise) maximal cliques. 

3. Exact procedures 

Although our purpose here is to deal mainly with heuristic procedures, we shall just 
mention a few exact methods for obtaining the chromatic number and an optimal 
coloring of a graph. 

All these procedures work by implicit enumeration of all colorings of a given graph. 
An efficient enumeration scheme has been described by J. Randall Brown [3] who 
has been among the first ones to use the term "chromatic scheduling". 
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These enumeration procedures use systematically lower bounds of the chromatic 
number of specific subgraphs of the graph G to be colored. Such bounds can be 
obtained by finding a clique in G; such a clique is easily determined by some heuristic 
coloring algorithm (see [2]). 

In order to increase the efficiency of the enumeration, several tricks have been 
proposed: for instance when a color i is introduced in the coloring process, all nodes 
x with degree smaller than i can be repeatedly removed from the graph. 

Furthermore some "look-ahead" features are also worth being implemented; as an 
example when a node x requires a new color, one chooses the color which is already 
forbidden for the largest possible number of nodes which are uncolored yet [2]. 

A generalized implicit enumeration algorithm based on the version of J. Randall 
Brown [3] has been devised by Kubale et al [20]; it was used for implementations 
of several exact algorithms. Computational experiments for random graphs having 
up to 60 nodes and edge density up to 0.9 are reported in [20]. 

These experiments include the method of BreIaz [3], its corrected version given in 
[25] and the procedure of Korman [19]. 

In the next sections we shall examine some types of heuristic methods adapted to 
graph coloring. 

4. Sequential colorings 

We shall first consider a general type of coloring procedure which can be specialized 
in many ways. It proceeds as follows 

a) determine an order 0: V1 < V2 < ... Vn ofthe nodes of G 
b) color node V 1 with color 1; generally if v1, .•. , Vi - 1 have been colored, give node 

Vi the smallest color which has not been used on any node Vj (j < i) linked to Vi. 

This general procedure is called a sequential coloring procedure based on order 0 
(or shortly SC( 0». Needless to say that the coloring obtained with an SC will depend 
on the order chosen in a). The use of such a procedure is justified by the following: 

Proposition 4.1: For any graph G, there exists an order 0 of the nodes for which 
SC(O) produces a coloring in X(G) colors. 

This can be seen easily by taking any coloring S1' ... Sk of G in X(G) = k colors and 
ordering the nodes in such a way that whenever i < j the nodes in Si come in the 
order before the nodes in Sj. 

More generally we shall say that a (heuristic) procedure H(p) characterized by a 
family p of parameters is acceptable for solving a problem P if the set of solutions 
S(H) obtained by varying the parameters in all possible ways contains some optimal 
solution of P. 

In the case of SC(O) we have p = 0; for solving the coloring problem P, the method 
SC(O) is acceptable from Proposition 4.1. 
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We may now ask what are the graphs G for which with any order 0 the procedure 
SC(O) will give a coloring in X(G) colors. We notice that no nice characterization 
can be found since for any graph G with n nodes we can hang a clique Kn at some 
node of G and for the resulting graph (i any order 0 will produce with SC(O) a 
coloring with X«(i) = n colors. 

Howeever, if we require the above property to hold for G and for all its induced 
subgraphs we have the following (a P4 is a chordless path on four nodes): 

Proposition 4.2: The following statements are equivalent for an arbitrary graph G: 

a) for all induced subgraphs G' of G (including G itself) SC(O) based on any order 
o gives a coloring in X(G') colors 

b) G has no induced P4 

Proof A) Qearly if G' is a P4 with edges [a, b], [b, c], [c, d], with 0 = a < d < b < c 
we get a coloring with 3 > 2 = X( G') colors. 

B) Conversely assume that G has no induced P4 , we use induction on k = X(G) to 
show that a) holds. In fact, we show that SC(O) gives a strongly canonical coloring; 
this is clearly true for k $; 2. So assume that we have a graph G with X(G) = k ~ 3. 
Consider an order 0 and a coloring S1' S2' ..• , Sh given by SC(O) with h ~ k. If the 
coloring obtained is not strongly canonical, there exists some node Xr E Sr (r $; h) 
for which there is no clique K 3 xr such that K n Sj =1= 0 (i = 1, ... r). Let i(r) be the 
smallest color for which there is a clique K 3 Xr with K n Sj =1= 0 (i = i(r), i(r) + 1, 
... ,r). We may choose the node Xr by taking the smallest r for which i(r) > 1. Let 
x" Xr-1, ..• , xI(r) be the nodes forming K; by the minimality ofr and by the induction 
hypothesis, Xr-l> Xr-2' ... , xi(r) belong to some clique K' with K' n Si(r)-1 =1= 0. Let 
xi(r)-1 = K' n Si(r)-1. Clearly xi(r)-1 is not linked to Xr (by the minimality of i(r». 
Since we used an SC(O) procedure Xr must have a neighbor X;(r)-1 in SI(r)-1. Then 
there is at least one node Xi (i(r) $; i $; r - 1) in K to which X;(r)-1 is not linked (by 
the minimality of i(r». So xi(r)-1' Xi> X" X;(r)-1 induce a P4 ; this is a contradiction. 
So the coloring obtained by SC(O) is strongly canonical (and hence it uses h = X(G) 
colors). 0 

A graph is complete k-partite if there exists a partition A 1 , ••• , At of the node set 
such that X E Ai, Y E AJ are linked if and only if i =1= j. 

As a consequence of Proposition 4.2 we have: 

Corollary 4.2: For a complete k-partite G SC(O) gives a coloring in X(G) colors with 
any order O. 

Remark 4.3 The proof of proposition 4.2 gives in fact a stronger result of Chv:hal 
[5] on perfectly orderable graphs; an order 0: V1 < V2 < ... Vn of the nodes of G is 
perfect if for all induced subgraphs G' the procedure SC(O') based on the order 0' 
induced by 0 on G' gives a coloring in X(G') colors. Chvatal has shown that an 
order of the nodes of G is perfect if and only if there is no induced P4 with edges 
[a,b], [b,c], [c,d] with a < b, d < c [5]. Since in the proof of proposition 4.2 we 
have xi(r)-1 < Xi and X;(r)-1 < X" we have in fact shown that SC( 0) based on a perfect 
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order gives a st,rongly canonical coloring. Graphs with a perfect order will be called 
perfectly orderable; they form a subclass of strongly perfect graphs. Some classes of 
perfectly orderable graphs are characterized in [6]. D 

For any order 0: Vl < V2 < ... < Vn ofthe nodes of G we can get an upper bound 
on the number of colors used by SC(O). Let dG(v) be the degree of node v in G. If 
G, is the subgraph of G induced by nodes VI> V2, ... , v" one gets with SC( 0) a coloring 
in at most 

B(O) = 1 + maxl~i~n (min{i - 1,dG,(Vi)}) 

= 1 + maxl~i~n dG,(Vi) 

From this we deduce an upper bound for X(G): 

WP(O) = 1 + maxl~i~n (min{i - 1,dG(Vi)}) 

(4.1) 

(4.2) 

It is easy to see that WP(O) is minimized when an order Owp: Vl < ... < Vn such that 
dG(vd ~ ... ~ dG(vn) is chosen (see Welsh and Powell [28]). 

By analogy in order to minimize B(O) in (4.1) one should try to find an order 
Vl < ... < Vn such that 

(4.3) 

Here however the values dG,(Vi) are not known beforehand and in fact there may 
exist no order V1 < ... < Vn satisfying (4.3). 

An order OSL (smallest last) can be constructed as follows (see Matula [22]). 

1) Let Vn be a node with minimum degree in G = Gn 

2) for i = n - 1, n - 2, ... , llet Vi be a node with minimum degree in Gi (the graph 
generated by all yet unnumbered nodes when Vn, Vn-1, ... , Vi+1 have been chosen). 

So from (4.1) we have 

(4.4) 

Let us now define the following function which is independent of the order 0 in G. 

(4.5) 

where the maximum is taken over all induced subgraphs H of G; clearly A(G) ~ 
B(Osd since in (4.4) only subgraphs G1 , G2 , ••• , Gn are considered. 

On the other hand, let F be a subgraph of G for which the maximum is obtained 
in (4.5) and let i be the last node of F in the order 0SL; then 

dG,(v i ) ~ dF(Vi) ~ minveF dF(v) so B(Osd ~ A(G) 

Hence we have B(OSL) = A(G) and SC(OSL) gives a coloring in at most A(G) colors. 

Matula and Beck have shown that SC(Osd can be implemented in O(m + n) time 
(where m is the number of edges) [23] (see also [27a]). 

It was observed that SC(Osd gives a coloring in at most 2 colors if G is a forest, at 
most 5 colors if G is planar and at most 3 colors if G is outerplanar (i.e. G can be 
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embedded in the plane in such a way that all nodes are on the outer face) [23]. This 
means that the algorithm SC( Osd is an exact procedue for forests; it gives a coloring 
in at most X(G) + 1 colors for planar graphs. This brings us back to the discussion 
in section 2: SC(OSL) is exact for the special case P = "coloring of forest" of the 
general problem P = "coloring of an arbitrary graph". 

In the next section we shall review some heuristics which are exact for a more general 
problem than the above P. 

5. Some sequential coloring techniques 

In order to develop heuristic procedures which are hopefully efficient for general 
graphs, we may try to extend some SC methods which are exact for a simplified 
problem type P. It is reasonable to concentrate on the bipartite graph coloring 
problem P since for such graphs finding the chromatic number is easy. 

A simple labeling technique for checking whether a graph is bipartite will give us 
directly a bicoloring: 

1) label an arbitrary node x with +; x is then labelled, all remaining nodes are 
unlabeled 

2) apply as long as possible the folowing rule: if a node is labelled with + (resp. -) 
then label its neighbors with - (resp. +). 

If all nodes receive a unique label, the graph is bipartite; otherwise it contains 
an odd cycle. 

The nodes will be labelled one after the other and if the graph is bipartite, there will 
be some order 0 in which the nodes are labelled. The procedure can be extended 
to an SC( 0) procedure for an arbitrary graph as follows: at each step i of the coloring 
procedure we define for each node x the degree of saturatinn dsi(x) as the number 
of different colors already used for the neighbors of node x when nodes VI' V2' ••• , 

Vi-l have been colored. Initially (i.e. when no node is colored yet we take dso(x) = 0). 

Consider now an order 0: VI < V2 < ... < Vn and apply the SC(O) procedure. We 
will get a coloring of G with at most 

DS(O) = 1 + maxl:>;i:>;n dSi(Vi) (5.1) 

colors. Clearly DS(O):::; B(O). Furthermore DS(O) depends on the order O. For 
getting a value of DS(O) which is small, a reasonable procedure consists in choosing 
at each step i of the SC(O) procedure a node Vi such that 

dsi(vi) = maxxuncolored dsi(x) 

This is precisely the DSA TUR algorithm described in Brelaz [2]. It differs from the 
previous SC(O) techniques by the fact that the order is constructed dynamically 
during the coloring process. 

Proposition 5.1 [2] The SC(O) procedure DSATUR is exact for bipartite graphs. 
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Proof If G is a. nontrivial connected bipartite graph, DSA TUR will first give color 
1 to an arbitrary node VI. Then as long as there are uncolored nodes a node Vj with 
dsj(vj) = 1 can be given color 1 or 2. We have for each i dsj(vj) :s; 1, otherwise G 
would contain an odd cycle. So we obtain a bicoloring of G. 0 

Remark 5.2 Brelaz [2] suggests to start from a node VI of maximum degree when 
using DSATUR for an arbitrary graph. Comparisons of DSATUR with other SC(O) 
procedures are reported in [2,20,25]. Refinements such as recursive DSATUR 
procedures are discussed in [18]. 0 

The above described method DSATUR is a special case of a more general SC(O) 
procedure. Essentially what happens in a connected graph G when DSA TUR is 
used is the following: for each i, the subgraph Gj induced by nodes VI' V2' ... , Vj is 
connected. We shall say that for an arbitrary graph G the order 0: VI < V2 < ... < 
Vn is connected if for each i, the set of colored nodes {v 1> ••• ,Vj} induces a connected 
subgraph (possibly empty) in each connected component of G. 

We may now ask what are the graphs G such that for any connected order 0 
and for any induced subgraph G', the SC(O) procedure gives a coloring in X(G') 
colors. 

For instance we notice that for any odd cycle C2k+l the procedure will give a 
3-coloring, i.e. a X(C2k+l)-coloring. The procedure will also give an optimum color
ing for any induced subgraph of C2k+l. Hence there are nonperfect graphs which 
belong to this class. On the other hand the graphs of Fig. 1 (Tent and Fish) are 
perfect, but with the given connected orders 0 the SC(O) procedure does not give 
an optimum coloring. 

Before considering graphs where any connected order will give a X(G)-coloring, we 
make a simple observation which will give the following consequence of Proposition 
4.1. 

Proposition 5.3 For any bipartite graph G there is a connected order 0 such that the 
SC(O) procedure gives a coloring in X(G) colors. 

G. Tinhofer has constructed a graph with 18 nodes for which any SC(O) based on 
a connected order does not give an optimum coloring. 

This shows in fact that if 0 is restricted to be a connected order of G, the heuristic 
SC(O) procedure is generally not acceptable for the graph coloring problem. 

1 

2~' 
5 4 

Tent Fish 

Figure 1 
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It follows however from Proposition 4.2 that if G has no induced P4 then any SC( 0) 
based on a connected order 0 will produce an optimum coloring. 

Characterizing graphs for which any connected order gives a X(G)-coloring seems 
more difficult. We can however characterize a subclass of these. For this purpose 
we need a few definitions. 

A graph G will be called (strongly) SCORE-perfect if the SC(O) based on a Con
nected ORdEr gives for any i a (strongly) canonical coloring of Gi • 

We recall the definition of a special class of perfect graphs; the parity graphs are 
graphs where every odd cycle oflength at least five has at least two cro!?sing chords. 
We can then state 

Proposition 5.4 [17]: For a graph G the following statements are equivalent: 

a) G is SCORE-perfect 
b) G is strongly SCORE-perfect 
c) G is a parity graph without any induced Fish 

This result is an extension of proposition 5.1 since bipartite graphs satisfy c). We 
shall not give here the proof of proposition 5.3, it can be found in [17]. 

Remark 5.5 One should observe that for the various heuristic procedures described 
here, bounds on the number of colors used have been derived. These represent the 
worst cases that can happen. There are relations between these bounds; but if a 
bound of a method M is better than a bound of method N, it does not mean that 
M will in general use less colors than N. 0 

A variation ofthe SC(Owp) technique is described by Leighton [21]. Given a graph 
G = (V, E) let VI be a node with maximum degree and assign color 1 to VI' The order 
VI < ... < Vn is constructed dynamically (as in the DSATUR algorithm). 

Assume i nodes (Le. VI"" ,Vi) have been given color 1. Let No (resp Nd be the set 
of uncolored nodes not adjacent to any (resp. adjacent to at least one) colored node. 
In other words No contains nodes which are possible candidates for color 1 and NI 
nodes which cannot get color 1. Let d(v, Nd be the number of edges between node 
V in No and nodes in NI. 

Node Vi+1 is chosen in No in such a way that 

d(vi+l>NI ) = max"eNo d(v,NI ) 

Ties are broken by choosing a node with minimum degree in the subgraph generated 
by No. 

This is repeated until No = 0. Then the process is iterated with color 2 on the graph 
generated by the uncolored nodes and so on. 

The above procedure is called RLF (Recursive Largest First); it can be implemented 
in 0(n3) time for general graphs. Experiments are described in [21] and in [27a]. 

The RLF procedure is a sequential coloring algorithm based on a dynamic order; 
it does not use a connected order. It is nevertheless exact for bipartite graphs. The 



200 D.de Werra 

reasons for th~ is that RLF tries to choose for Vl+l (next node to get color 1) a node 
which has many neighbors in common with nodes having already received color 1. 
This idea will be exploited in the algorithm to be described next. 

6. Additional methods 

There are many different algorithms which can be devised as extensions of exact 
procedures for bipartite graphs. Some may not be in a straightforward way based 
on the idea of sequential colorings. We first review the technique of Dutton and 
Brigham [7] which runs as follows: 

As long as there are nonadjacent nodes in G, repeat the following steps: 

a) compute for each pair of nonadjacent nodes Vi> Vj the number cij of common 
neighbors 

b) determine the pair V" V. for which Cr. is maximum 
c) merge Vr and V. 

SO the procedure finds at each step a pair of nodes Vr , V. which will have the same 
color in the coloring which is constructed. The algorithm stops when the graph is 
reduced to a clique Kp- Then a p-coloring is obtained for the initial graph by 
assigning each node Vi of G the color of the node of Kp which represents it. 

The above procedure is exact for bipartite graphs as can be seen easily: two 
nonadjacent nodes x, y which are in different sets of a connected bipartite graph 
G = (X, Y, E) have no common neighbor; hence these will not be chosen for merging. 
So after each merging operation the graph will still be bipartite and it will be reduced 
to K2 at the end. 

A variation of the merging algorithm has been suggested by Hertz [16]; it consists 
in using the same node Vr as long as possible (i.e. until it is linked to all remaining 
nodes) in the merging operation. The COSINE algorithm obtained in this way has 
the following property: 

Proposition 6.1 [16]: The COSINE algorithm gives a X(G)-coloring for any Meyniel 
graph G. 

We recall the defintion of Meyniel graphs: these are characterized by the existence 
of at least two chords in each odd cycle (of length at least five). 

Remark 6.1: Hertz shows that a slightly more general class of graphs can be colored 
in X( G) colors by COSINE. These are the graphs containing one node adjacent to 
all edges which are the unique chord of some odd cycle of length at least five 
[16]. 0 

A coloring procedure based on the similarity of neighborhoods of nodes was 
suggested by Wood [31]. It runs as follows: a pair of nodes i, j with maximum 
similarity cij is given color 1. Then the pairs are considered in order of nonincreasing 
similarities. (Observe that the pairs are generally not disjoint). For pair Vi> Vj we 
have the three cases (assume k colors have been used). 
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Table 1. The BIPCOL technique 

Input: a graph G Output: a coloring of G 

Initialization: k = 1; C = 0(C = set of colored nodes) 

While there are some uncolored nodes in G, do 
begin 
construct a bipartite induced graph fj in G-C; 
color the nodes of Ii with colors k and k + 1 
(or k only if fj has no edges); 
C = C u {nodes of fj}; 
replace k by k + 2 

end 

a) if both Vi and Vj are colored, go to the next pair 
b) if Vi has color 9 :.,;; k and Vj is uncolored then 

1) if dG(vj ) < k, then Vj can be colored without problem; ignore it. 
2) if Vj can be colored with g, give Vj color g. 

c) if neither Vi nor Vj is colored then 
1. if dG(vi ) < k, dG(vj ) < k, ignore them 
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2. find the smallest color 9 such that both Vj and Vj can get color 9 (introduce a 
new color if needed) 

This procedure has been applied to construct examination schedules (with about 
500 exams) [31]. 

Let us now briefly sketch another procedure which is by nature an exact method 
for bipartite graphs. It runs in the following way (see Table 1): in the set of uncolored 
nodes we construct a bipartite graph by applying the simple labeling technique given 
in section 5. We repeat the labeling procedure until no more (uncolored) node can 
be labelled. We have then a bipartite induced graph B; we color it with colors 1 and 
2 and we repeat the whole process in the graph generated by the uncolored nodes; 
the bipartite graph obtained is colored with colors 3 and 4. This is repeated until 
all nodes are colored. 

This method (which we may call BIPCOL is a sequential coloring procedure; the 
order 0 is determined dynamically. 

We shall now describe another technique which is again an exact procedure for 
bipartite graphs; it is closely related to the previous procedure where a bipartite 
graph B is constructed at each step (see Table 2). The procedure is called CANABIS 
(Coloring Algorithm for Networks Acting on Bipartite Induced Subgraphs). The 
difference with BIPCOL lies in the fact that we choose in each connected component 
B of the bipartite subgraph B one of the two node sets and we color its nodes with 
color k; the other node set of B is uncolored. meA, B) is the number of edges between 
node sets A and B. 

In each connected component B = (V, W, EB ) of B with node sets V, Wand edge set 
EB we color with color k the set among V, W which has the largest cardinality. The 
other set is then considered as uncolored. These simple procedures are faster then 
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Table 2. The CANABIS Technique 

Input: a graph G Output: a coloring of G 

Initialization: k = 1; C = 0(C = set of colored nodes) 

while there are some uncolored nodes in G, do 
begin 
construct a bipartite induced graph 1J in G-C; 
for each connected component B = (V, W,EB) of 1J 
do if meW, C) > m(V, C) then C := C u W 

color the nodes in W with color k 

elseC: Cu V 
color the nodes in V with color k; 

replace k by k + 1 

end 

Table 3 

DSATUR BIPCOL 

18.9 19.6 

31.9 30.25 

CANABIS 

20.0 

33.25 

Average number of colors 
(100 samples with 100 nodes) 

edge 
density 
0,5 

nodes in (1 x 1)-
square; linked 
if distance S; 0.5 

DSA TUR and the colorings produced are almost as good. Table 3 shows a few 
computational results on random graphs with 100 nodes (euclidean graphs are 
obtained by generating random nodes in a square of size 1 and linking two nodes 
by an edge if their distance is at most 0.5; the normal random graphs are obtained 
by introducing each possible edge with probability 0.5). 

7. Tabu Search 

In an entirely different direction we may view the coloring problem as an instance 
of minimization of a certain function. 

Let us first describe briefly the general form of the optimization techniques that we 
will use later. Suppose we have a (finite) set X of feasible solutions; we are given a 
function f: X -+ Z+ and we have to find some solution s in X for which f(s) is 
minimum. 

Now X generally has some structure; we shall assume that for each feasible solution 
s a neighborhood N(s) can be defmed. This amounts to representing the elements 
s of X as the nodes of a graph and if s' E N(s) we introduce an arc (s, s'). Notice that 
we may have s' E N(s), but s ~ N(s'). 
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Many minimization procedures work as follows: they start from an initial solution 
s; then as long as a better solution s' (i.e, a solution with /(s') < /(s» can be found 
in N(s), one moves to s', i.e, s is replaced by s' and one repeats the step. In general 
such a technique will reach a local minimum of / and will be trapped there. 

In order to avoid such troubles, some refinements have been proposed; among other 
techniques the famous simulated annealing technique has been constructed by 
exploiting analogy with some physical systems. When a solutions s' in N(s} is found, 
the move to s' is accepted if /(s') < /(s) and if /(s') > /(s) the move is accepted with 
a probability p(A, t} = exp( - Aft} where A = /(s') - /(s) and t is a parameter corre
sponding to temperature; t is decreased as the iterations are performed. This 
amounts to reducing the probability of accepting a solution s' which is worse 
than s. 

The general procedure is described in Table 4. References on the technique can be 
found in [4] where an application to graph coloring is described. Although this 
technique has appeared as extremely appealing for getting almost optimal solutions 
in various types of large size combinatorial optimization problems, it is no longer 
used as much as earlier; the main reason is that there is a procedure which keeps 
some of the basic ideas of simulated annealing but which is much more simple and, 
as numerous experiences have shown, much more efficient. 

It is the Tabu Search procedure; the basic ideas of the technique are developed in 
Glover [11]. 

Tahle 4. The Simulated Annealing procedure 

Set t to a suitably high value; 
choose a feasible solution 8 in X; 
compute /(8); 
change := true; 
while change do 
begin 

change := false 
repeat rep times 
begin 
choose an s'sN(s); 
.1 = /(s') - /(s); 
p(.1) = exp( - .1/t); 
generate random variable x (uniform on [0,1]); 
if x < p(.1) then go to accept 

else go to exit; 

accept: s:= s'; 
/(s) = /(s) + .1; 
if .1 '# 0 then change:= true; 

exit: 

end; 

t := t*a (0 < a < 1) 

end 
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Before going into the details of the procedure, let us mention briefly how coloring 
problems were'transformed into a minimization of a function /: X ~ Z in order to 
apply simulated annealing. 

Suppose we are interested in finding a k-coloring of a graph G for a given k. So for 
this purpose a feasible solution s is simply a partition s = (Sl' S2,"" Sd of the node 
set of G into k subsets. Such a partition will be a coloring if each Si is an independent 
set of nodes, i.e. if each set E(S;) of edges of G with both endpoints in Si is empty. It 
is therefore natural to consider as a function / to be minimized the function given 
by /(s) = L~=lIE(Si)l. This is precisely what was used in [4J for simulated annealing 
and in [15J for tabu search. We shall have a k-coloring if and only if /(s) = O. Now 
the neighborhood N(s) of a solution s = (Sl' S2,' .. Sk) contains every solution s' 
obtained from s by moving some node x in some Si (where x is adjacent to at least 
one other node in S;) to some other subset Sj of the partition. 

For tabu search (TS) we used the same formulation as above. The TS procedure 
starts again from an initial solution. Whenever we are at some solution s, we 
generate a sample of rep (rep is a parameter) solutions Si in N(s). We move to the 
bestsi , say s' (even if/(s') > /(s)). As in simulated annealing we will so have a chance 
to escape from local minima. But such a procedure may now cycle. Therefore in 
order to prevent the process from cycling, we give a value k and we do not allow 
the algorithm to go back to a solution which has been visited in the last k steps. 
This could be done by introducing a so-called tabu list T of size I TI = k which would 
contain the last k solutions visited. But since keeping track of these solutions would 
be extremely space consuming, it is simpler to store a move [s' ~ sJ from a solution 
s' to a solution s. More precisely when we move from s to s' E N(s), we just take a 
node x in G with color i and we give color j to x; so what we will do with the list 
T is simply to forbid node x to get back to color i during the next k iterations. The 
list T will then contain k forbidden "moves"; each one consists of a node x and a 
forbidden color i. 

Usually the length k of T is kept constant. So, whenever it is needed, the oldest 
element of T is dropped. 

By introducing a tabu list, we reduce the risk of cycling (in fact we eliminate the 
possibility of going through cycles of length at most k). 

The existence oftabu moves may sometimes be an obstacle in the search for a global 
minimum. 

A move [s' -- sJ may be a tabu move and so be forbidden. However applying this 
move to the current solution s" may not bring us back to a solution visited in the 
last k iterations (simply because between the step where we visited s and moved to 
s' and the present step many other moves were made; this caused many local changes 
in the current solution). 

So we may wish to allow a tabu move to be made in some circumstances; recognizing 
whether it would bring us back to an already visited solution is difficult. But we can 
simply say that we accept a tabu move if the value /(s) of the resulting solution s is 
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Table 5. The tabu search procedure 

Choose a feasible solution s in X; 
compute f(8); 
take an arbitrary tabu list T; 
nbiter:= 0; 

while f(s) > 0 and nbiter < nbmax do begin 

generate rep solutions Sl E N(s) 
withEs -+ sa ¢ Tor f(sl) :s; A(f(s»; 

(as soon as an Sl with f(sl) < f(s) 
is found, stop the generation) 

Let s' be the best Sl generated 
update tabu list T, update A(f(s» 

(remove oldest tabu move and 
introduce move s' -+ s) 

S:= 8'; 
nbiter := nbiter + 1 

endwhile 
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small enough. More precisely, if we suppose that f takes integral values, we may 
define an aspiration A(z) for each integral z; initially we set A(z) = z - 1 for all z. 
Then a tabu move leading from s to s' will be accepted if f(s') < A(f(s)); after this 
acceptance we update the aspiration function by setting A(f(s)) = f(s') - 1. So the 
next time we will be at some solution giving a value z = f(s), a tabu move will be 
accepted only if it gives a larger improvement than the last time we left s by accepting 
a tabu move. The idea behind this computation is again to avoid cycling. 

The whole process is then repeated (see Table 5) until we get f(s) = 0 (i.e, we have 
a k-coloring or no improvement of the best value of f has occurred during a given 
number of steps or simply until a fixed number of iterations have been performed). 

The TS method was applied to coloring of random graphs !1aving up to 1000 nodes; 
computational results are reported in [15]. It is worth mentioning that with some 
refinements, TS was the only procedure which could give k-colorings for large 
graphs with a value of k very close to the estimated chromatic number (values of 
these estimations are given in [18J. 

Experiments have also shown that TS gives colorings which are as good as the ones 
produced by any known heuristic procedure in the same computational time. 

No general convergence properties are known at the moment; further research 
should be carried out for understanding better the apparent efficiency of TS. This 
is the more needed because for many of the difficult combinatorial optimization 
problems, TS seems to beat simulated annealing by far ... 

Remark 7.1 Among the many heuristics which have been described here, only a few 
are not exact procedures for bipartite graphs. It is not known whether TS will always 
give a X(G)-coloring of a bipartite G. It is easy to find examples where f = IE(Sl)1 + 
IE(S2)1 has some local minima for the neighborhood structure described above. The 
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Figure 2 

graph in fig. 2 is bipartite and the partition S = (Sl, S2) shown gives a value f(s) = 2; 
it is a local minimum. 0 

The efficiency of TS for graph coloring was increased by combining it with some 
other techniques (see [15]); improvements will depend on the efficiency of proce
dures for constructing large independent sets. TS has been adapted to this case and 
computational results are reported in [8]. 

8. More on sequential colorings 

For application purposes many other types of colorings have been considered by 
various authors (see [14] for some examples). Among these variations we mention 
the interval colorings. We shall just show how the SC(O) techniques can be adapted 
to deal with this extension. 

Let G = (X, E, c) be a finite graph in which each node i is associated with a positive 
integer Ci' An interval k-coloring is an assignment of a set S(i) of Ci consecutive colors 
(chosen in {I, 2, ... , k}) to each node i such that S(i) n S(j) = 0 for any two adjacent 
nodes i, j [30]. 

Such colorings may be needed in scheduling a collection of jobs i with processing 
times Ci in such a way that incompatible jobs (i.e. jobs represented by nodes which 
are all linked together) are not processed simultaneously and that no preemption 
occurs. 

If we take an order 0: 1 < 2 < ... < n, then by applying an obvious adaptation of 
SC(O) we get a k-coloring with k ::;; IB(O) where 

IB(O) = ~~:n (min ttl Ck , Ci + (Ci - l)dG,(i) + I (cj:j E NG,(i))}) 
Here NG,(i) is the set of neighbors of node i in Gi • If Xint(G) is the smallest k for which 
G = (X, E, c) has an interval k-coloring, then IB(O) is an upper bound on Xint(G). 

By analogy with the SC(OSL) procedure, we may construct an order OSL by starting 
from the end as follows: 
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assume we have already numbered nodes Vn, Vn- 1 , ••• , Vi+1 then we call Gi the 
graph generated by the remaining nodes. We take for Vi a node P for which 

L/(GioP) = (dGi(p) + 1)(cp - 1) + L (cj:j E NGi(p)) 

is minimum. Then one gets another upper bound for Xint(G) [30]: 

IM(OSL) = 1 + max min [(dG(i) + 1)(Ci - 1) + L Cj ] 
G'£G ieG' jeNG,(i) 

As in the case of classical k-colorings (where Ci = 1 for each node i), IB(Osd is 
independent of the order OSLo 

It is worth mentioning that in the general case of interval colorings the bounds 
IB(O) and IM(OSL) are unrelated; examples can be constructed where one of those 
is better than the other. 

A lower bound for Xint(G) can be obtained by considering the cliques K in G and 
computing 

Wint(G) = min (L Ci ) 
K ieK 

It would be interesting to characterize graphs G for which Xint(G) = wint(G) for any 
choice of values Ci ~ O. 

Observe that if Ci E {O, 1} for each i, the above graphs are precisely the perfect graphs. 

References 

[1 J c. Berge, Graphes, Gauthier-Villars, Paris, 1983. 
[2] D. Brelaz, New Methods to Color the Vertices of a Graph, Communications of the Association 

for Computing Machinery 22 (1979) 251-256. 
[3] 1. Randall Brown, Chromatic scheduling and the chromatic number problem, Management 

Science 19 (1972) 456-463. 
[4] M. Chams, A. Hertz, D. de Werra, Some experiments with simnlated annealing for coloring 

graphs, European J. of Operational Research 32 (1987) 260-266. 
[5J V. Chvatal, Perfectly ordered graphs in: Topics on Perfect Graphs (c. Berge, V. Chvatal, eds) 

Annals of Discrete Mathematics 21 (1984) 253-277. 
[6] V. Chvatal, C. T. Hoang, N. V. R. Mahadev, D. de Werra, Four classes of perfectly orderable 

graphs, J. of Graph Theory 11 (1987) 481-495. 
[7] R. D. Dutton, R. C. Brigham, A new graph coloring algorithm, Computer J. 24 (1981) 85-86. 
[8J C. Friden, A. Hertz, D. de Werra, Stabulus: a technique for finding stable sets in large graphs with 

tabu search, Computing 42 (1989) 35-44. 
[9] M. R. Garey, D. S. Johnson, H. G. So, An Application of Graph Coloring to Printed Circuit 

Testing, IEEE Transactions on circuits and systems 23 (1976) 591-598. 
[10] M. R. Garey, D. S. Johnson, Computers and Intractability: a Guide to the Theory of NP

Completeness, W. H. Freemann, San Francisco, 1978. 
[11] F. Glover, Tabu Search, CAAI Report 88-3, University of Colorado, Boulder 1988. 
[12] G. R. Grimmett, C.J.H. Mc Diarmid, On Coloring Random Graphs, Mathematical Proceedings 

of the Cambridge Philosophical Society 77 (1975) 313-324. 
[13J P. Hansen, M. Delattre, Complete-Link Cluster Analysis by Graph Coloring, 1. of the American 

Statistical Association 73 (1978) 397-403. 
[14J A. Hertz, D. de Werra, eds., Graph Coloring and Variations, Annals of Discrete Mathematics 39 

(North Holland, Amsterdam, 1989). 
[15J A. Hertz, D. de Werra, Using Tabu Search Techniques for Graph Coloring, Computing 39 (1987) 

345-351. 



208 D.de Werra 

[16] A. Hertz, A fast algorithm for coloring Meyniel graphs, to appear in J. of Combinatorial Theory 
[17] A. Hertz, D: de Werra, Connected sequential colorings, in [14], pp. 51-59. 
[18] A. Johri, D. W. Matula, Probabilistic bounds and heuristic algorithms for coloring large random 

graphs, Southern Methodist University, Dallas, Texas, 1975. 
[19] S. Korman, The Graph-Coloring Problem, in: N. Christofides et ai, ed. Combinatorial Optimiza

tion, (J. Wiley, New-York, 1979) pp. 211-235. 
[20] M. Kubale, B. Jackowski, A Generalized Implicit Enumeration Algorithm for Graph Coloring, 

Communications of the Association for Computing Machinery 28 (1985) 412-418. 
[21] F. T. Leighton, A graph Coloring Algorithm for Large Scheduling Problems, J. of research of the 

National Bureau of Standards 84 (1979) 489-503. 
[22] D. W. Matula, G. Marble, J. D. Isaacson, Graph Coloring algorithms, in: R. C. Read, ed. Graph 

Theory and Computing (Academic Press, New-York, 1972) pp. 108-122. 
[23] D. W. Matula, L. L. Beck, Smallest-Last Ordering and Oustering and Graph Coloring Algo

rithms, J. of the Association for Computing Machinery 30 (1983) 417-427. 
[24] N. Mehta, The application of a graph coloring method to an examination scheduling problem, 

Interfaces 11 (1981) 57-64. 
[25] J. Peemoller, A correction to Brelaz's modification of Brown's coloring algorithm, Communica

tions of the Association for Computing Machinery 26 (1983) 595-597. 
[26] M. Preissmann, D. de Werra, A note on strong perfectness of graphs, Mathematical Programming 

31 (1985) 321-326. 
[27] B. Roy, Nombre chromatique et plus longs chemins d'un graphe. Revue fran~se d'informatique 

et de Recherche O¢fationnelle 5 (1967) 129-132. 
[27a] M. M. Syslo, N. Deo, 1. S. Kowalik, Discrete Optimization Algorithms with Pascal Programs 

(Prentice-Hall, Englewood OitTs, N. J. 1983). 
[28] D. J. A. Welsh, M. B. Powell, An upper bound on the chromatic number of a graph and its 

application to timetabling problems, Computer 1.10 (1967) 85-87. 
[29] D. de Werra, An introduction to timetabling, European Journal of Operational Research 19 (1985) 

151-162. 
[30] D. de Werra, A. Hertz, Consecutive colorings of graphs, Zeitschrift f1ir Operations Research 32 

(1988) 1-8. 
[31] D. C. Wood, A technique for coloring a graph applicable to large scale timetabling problems, 

Computer J. 12 (1969) 317-319. 
A. Gyarfas, J. Lehel, Outline and FF colorings of graphs, J. of Graph Theory 12 (1988) 217-227. 

D.deWerra 
Ecole Polytechnique Federale de Lausanne 
oepartement de Mathematiques 
Chaire de Recherche Operationnelle 
CH-1015 Lausanne 



Computing, Supp. 7, 209-233 (1990) 
Computing 
© by Springer·Verlag 1990 

Probabilistic Analysis of Graph Algorithms 

A. M. Frieze, Pittsburgh, Pa. 

Abstract - Zusammenfassung 

Probabilistic Analysis of Graph Algorithms. We review some of the known results on the average case 
performance of graph algorithms. The analysis assumes that the problem instances are randomly selected 
from some reasonable distribution of problems. We consider two types of problem. The first sort is 
polynomially solvable in the worst case but there are algorithms with better average case performance. 
In particular we consider the all-pairs shortest path problem, the minimum spanning tree problem, the 
assignment problem and the cardinality matching problem in sparse graphs. Our second category of 
problems consists of problems which seem hard in the worst-case but still have algorithms with good 
average case performance. In particular we consider three NP-Complete problems; the Hamilton 
cycle problem, the graph bisection problem and graph colouring. In addition we consider the graph 
isomorphism problem whose exact complexity is still undetermined. 

AMS Subject Classifications: 68Q2S, OSC80. 

Key words: Graph Algorithms, Probabilistic Analysis. 

Probabilistische Analyse von Graphenalgorithmen. Die Arbeit bietet einen Uberblick iiber Ergebnisse 
zur durchschnittlichen Leistungsflihigkeit von Graphenalogrithmen, wobei stets vorausgesetzt wird, daB 
die Problembeispiele zufli1lig gemiiJ3 einer 'vemiinftigen' Wahrscheinlichkeitsverteilung gewahlt werden. 
Wir betrachten zwei Problemtypen. Der erste Typ ist polynomiallosbar im schlechtesten Fall, jedoch 
existieren nicht-polynomiale Losungsalgorithmen mit besserer durchschnittlicher Leistungs-flihigkeit. 
Insbesondere betrachten wir das Problem der kiirzesten Wege zwischen allen Knotenpaaren, das 
Problem der Minimalbiiume, das Zuordnungsproblem und das ungewichtete Matchingproblem in diinn 
belegten Graphen. Der zweite Problemtyp besteht aus Problemen, die i1ll schlechtesten Fall auBerst 
schwer zu losen erscheinen, wofiir es aber weiterhin LOsungsalgorithmen mit guter durch-schnittlicher 
.Leistungsfahigkeit gibt. Insbesondere betrachten wir drei NP-vollstandige Probleme: das Problem der 
Hamiltonkreise, das Bisektionsproblem fUr Graphen und das Farbungsproblem. Dariiber hinaus wird 
das Graphenisomorphie-problem behandelt, dessen exakte Komplexitat noch unbestimmt ist. 

1. Introduction 

Graph theory is an important source of computational problems and as such has 
played a significant part in the development of a theory of algorithms and their 
analysis. We find here as elsewhere that the analysis of the execution times of 
algorithms has concentrated in the main on that of their worst-case. There is 
nevertheless a sizeable literature on the average case performance of algorithms. 

The analysis assumes that the problem instances are randomly selected from some 
reasonable distribution of problems and an attempt is made to estimate the expected 
running time of algorithms for these problems. The analytical difficulties are com
pounded by the fact that algorithms condition their data quickly. Consequently, 
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the statistical independence which is required by most common forms of probabi
listic analysis is hard to come by. Probabilistic algorithm analysis has therefore 
necessitated the development of its own, often indirect, techniques. 

In this paper we will try to review some cases where probabilistic analysis has 
something positive to say about the performance of algorithms. We will look in 
some detail at eight problems. The first four: the all pairs shortest path problem, 
the assignment problem, the matching problem in general graphs and the minimum 
spanning tree problem are all solvable in polynomial time in the worst-case. Never
theless we will find that algorithms can be constructed whose average performance 
on natural distributions is significantly better than the worst-case of any known 
algorithm. The next three: the Hamilton cycle problem, the graph colouring prob
lem and the graph bisection problem are all known to be NP-hard. We will, in 
spite of this, be able to describe polynomial time algorithms which have a high 
probability of finding solutions to these problems. Our final example will be that 
of graph isomorphism whose exact complexity is at present unknown. Here we will 
fmd that a simple algorithm works with high probability. Thus, in these examples 
and many others, the average case is a long way from the worst-case. 

In the next section we introduce some notation and state some basic results needed 
from probability theory. The next eight sections cover the problems we have 
mentioned above. Following this we will mention some results with a different 
flavour. 

2. Notation and Basic Probabilistic Inequalities 

We first define what we mean by a random graph. Let v,. = {1, 2, ... , n} and suppose 

1 ::s;; m = m(n)::s;; N = (~). The random graph Gn•m has vertex set v,. and its edge 

set En,m is a randomly chosen subset of m edges. Thus if G is a graph with vertex 

(N)-l set v,. and m edges then Pr(Gn,m = G) = m 

There is a closely related model Gn,p where 0 ::s;; p = p(n) ::s;; 1. This has vertex set v,. 
and edge set En,p where each of the N possible edges is independently included 
with probability p. Hence if G is a graph with vertex set v,. and m edges then 
Pr(Gn,p = G) = pm(1 - pt-m. Observe that if p = ! then Pr(Gn•1/2 = G) = 2-N and 
so each graph with vertex set v,. is equally likely. 

These models have been studied extensively since the pioneering work or Erdos 
and Renyi [ER1] - [ER4]. The book of Bollobits [B01] gives a systematic and 
extensive account of this subject. A gentler introduction is provided by Palmer [P]. 

When m ~ Np (i.e. !~~ I ;;p - 11 = 0) the graphs Gn,m and Gn,p have similar 

properties. Indeed for any graph property d we have 
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N 

Pr(Gn,p E d) = L Pr(Gn,p E dllEn,pl = m)Pr(IEn,pl = m) 
m=O 

N 

= L Pr(Gn,m E d)Pr(IEn,pl = m), (Ll) 
m=O 

since Gn,p, given IEn,pl = m, is precisely Gn,m. Now IEn,pl is distributed as the 
binomial random variable B(N,p). So for example, ifm = rNpl 

Pr(Gn,p E d) ~ Pr(Gn,m E d) (:)pm(l -pt-m 

~ Pr(Gn,m E d)(2np(1 - p)N)-1/2 (1.2) 

on using Stirling's inequalities for factorials. (1.2) can often be used to show that 
Pr(Gn,m E d) is small when Pr(Gn,p E d) is small. 

We are mainly concerned with asymptotic results in this paper and in all cases we 
will be concerned with what happens as n --+ 00. So let Iffn be some event (dependent 
on n). We say that Iffn occurs with high probability (whp) if 

lim Pr(lffn) = 1. 

Finally we will note the following bounds on the tails of the binomial 

Pr(IB(n, p) - npl ~ enp) ::; 2e-·~p/3. (1.3) 

(See e.g. [B01]). 

Thus if np --+ 00 and we take e = (npr1/4 then we see that B(n, p) ~ np whp. By using 
this in (Ll) we can see that Gn,p and Gn,rNPl are "similar". We will refer to (1.3) as the 
Chernoff bound. 

3. Shortest Path Problem 

In this section we consider the problem of finding a shortest path between all pairs 
of nodes in a digraph D = (V, A) with non-negative arc lengths t(u) for u E A. For 
notational convenience we assume that D is the complete digraph on v". The 
arc lengths are random and satisfy an "endpoint independence" condition. More 
precisely the lengths of arcs with different start vertices are independent and if for 
a given v E v" we have t(vwd ::; t(VW2 ::; ... ::; t(vwn- 1 ) (ties broken randomly) then 
w1 , W2' ... , Wn- 1 is a random permutation of v" - {v}. 

We present here an algorithm of Moffat and Takaoka [MT1] which solves the 
problem in O(n2log n) time. This is to be contrasted with O(n3 ) for the best worst-case 
performance. (See for example Lawler [La] or Papadimitrion and Steiglitz [PS]). 
The algorithm in [MTl] proceeds as follows: 

A: sort the arcs incident with each v E v" into increasing order to create list L(v). 
B: for each S E v" find a shortest path from s to every other vertex. 
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Since A requires 0(n210gn) time we need only prove an O(n logn) expected time 
bound for each single source problem in B. The algorithm used is based on one 
originally attributable to Dantzig [D] and improved and analysed in the average
case by Spira ESp]. We first describe this version and then given the contribution 
of Moffat and Tokakoa. 

The algorithm works with a set S. Initially S = {s}, finally S = v" and at any stage 
v E S means that a shortest path oflength D(v) has been found from s to v. If v ¢ S 
then D(v) is an estimate of the shortest path length. 

Suppose now that for v E S, W ¢ S we let .,1,(vw) = D(v) + t(vw) and D(w) = 
min{.,1,(vw): v E S}. It is easy to show that if D(x) = min{D(w): w ¢ S} then D(x) is 
the length of a shortest path from s to x. 

In the algorithm that follows we keep a priority queue AQ of items (xy, .,1,(xy», one 
for each XES, ordered by increasing value of .,1,. 

Algorithm SHORTPATH(s) 

begin 
Initialise AQ with (st, .,1,(st» where st is the first arc on L(s); D(s) := 0; 
S:= {s}; 

Ll: while S # v" do 
begin 

L2: remove the first item (xy, .,1,(xy» of AQ; add the item (xy', .,1,(xy'» 
to AQ where xy' succeeds xy on L(x); 

L3: if y ¢ S then do 
begin 

S:= S u {y}; D(y):= D(x) + t(xy) 
L4: add (yz,.,1,( yz» to AQ where yz is the first arc on L(y) with head not in 

S 
end 

end 
end 

The above algorithm spends too much time at L3 with YES. Building on an idea 
of Fredman (Fd) (rediscovered independently later by Frieze and Grimmett [FG]) 

Moffat and Takaoka [MTl] "clean up" AQ at line Ll when lSI reaches n - ;k for 

k = 1,2, ... , L = LlgIgnJ. We shall use 19 to denote log2 and reserve log for loge. 

Procedure CLEANUP 

begin 
E:= r/J; 
for each xy E AQ do 
begin 
if y ¢ S then E:= E u {xy} 
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Cl: else E:= E u {xy'} where xy' is the first arc after xy on L(x) 
with head not in S. 

end 
C2: rebuild AQ out of the arcs in E. 
end 

Analysis 
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n n 
Let Stage k run from lSI = n - 2k-1 to lSI = n - 2k for 1 ::;; k ::;; L = 1l0glognJ and 

let Stage L + 1 denote the final part of the algorithm. 

l::;;k::;;L 

Let T" denote v" - S at the start of Stage k. The probability that y ¢ S at L2 of 

SHORTPATH is always at least ~ since YET", I v" - SI ~ ~ I T"I throughout Stage 

k and Y is equally likely to be any member of T". 

Since ; vertices are added to S in Stage k we expect to execute L3 and hence L2 

at most 2:-1 times. Since L2 requires O(logn) time we have 

E(time spent at L2 in Stage k) = 0 (2k~110gn) 1 ::;; k ::;; L. (3.1) 

To choose z in L4 we expect to examine at most 2k entries in the list of arcs leaving 

y. This is beacuse I v" - SI ~ ; throughout Stage k and the next vertex of y's list is 

equally likely to be any vertex not encountered so far on this list. Hence 

E(time spent at L4 in Stage k) = 0 (; 2k) 1 ::;; k::;; L (3.2) 

Now consider CLEANUP. At line Cl we expect to examine at most 2k arcs before 
Y' is found (same argument as for L4) and so 

E(time spent at Cl in Stage k) = O(n2k) 1 ::;; k ::;; L (3.3) 

It takes O(n) time to rebuild AQ at C2 and so from (3.1), (3.2), (3.3) we obtain 

E(time spent in first L stages) 

= oCt 2':-110gn + Jl n + ktl n2k + ktl n) 

= O(nlogn). 

Let us now consider Stage L + 1. 

First consider L2. Vertex Y E TL+1 and is equally likely to be any member of TL+1 
that has not yet been examined on x's list. Suppose lSI = n - S at some point. Then 
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we expect to repeat L2 at most I TL +1 1 ~ -In times before finding Y ¢ S. Hence 
s s gn 

E(time spent at L2 in Stage L + 1) 

= 0 (_n_ nr ! 10gn) 
logn 0=1 s 

= O(nlogn) 

(the finallogn factor is the time to delete the first element of AQ). Now consider L4 

and suppose again that lSI = n - s. This time we expect to examine at most ~ edges 
before finding z. Hence s 

E(time spent at L4 in Stage L + 1) 

= o(n n~n!) 
.=1 S 

= O(nlogn) 

We have thus shown that algorithm SHORTPATH runs in O(n210gn) expected time. 
In [MT2] Moffat and Takaoka gave another O(n210gn) expected time algorithm 
for the same problem. It is not known whether o(n210gn) expected time is achievable 
for this problem. 

4. Assignment Problem 

In this section we discuss the result of Karp [Ka1] that the m x n assignment 
problem (m ::;; n) can be solved in O(mn logn) expected time. The analysis can be 
applied when the matrix of costs II c(i,j) II is such that (i) the costs in different rows 
are independent and (ii) for each i, if c(i,jd::;; C(i,j2)::;; ... ::;; c(i,jn) thenjl,j2, ... , 
jn is a random permutation of {1,2, ... ,n}. (This is the endpoint independence 
condition of § 3). The proposed algorithm starts with an empty matching and then 
uses shortest augmenting paths to increase it to size m. The idea of Edmonds and 
Karp [EK] and Tomizawa [To] is used to ensure that the shortest path problems 
that need to be solved have non-negative arc lengths. 

Let G be the bipartite graph with vertex set V = Xu Ywhere X = {Xt>X2, ••• ,xm}, 

Y = {Yl'Y2' ... ,Yn} and the cost ofedgexiyjis c(i,j). We are looking for a minimum 
cost matching that covers X. If M is any matching of G let D(M) be the digraph 
with vertex set V and arcs 

xiYj whenever edge xiYj ¢ M forward arc 

YjXi whenever edge XtYj E M backward arc. 

Let A = A(M) (resp. B = B(M» denote the vertices of X (resp. Y) not covered by M. 

The following algorithm can be implemented to solve the assignment problem in 
O(m2 n) worst-case time (for a proof see [EK] or [To]). 



Algorithm ASSIGN 

begin 
M:=r/J 
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for v E V do IX(V) = 0 {IX is the potential function used to keep arc 
lengths ~ O} 
while IMI < m do 
begin 

A. Find a shortest path P from A to B in D(M) where the arc-lengths are 
given by 

t(XiYj) = c(i,j) + IX(Xi) - lX(Yj) XiYj f: M 

l(Yjxi) = -c(i,j) + lX(Yj) - IX(Xi ) XtYj E M 

{update M} 
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Use the alternating path P to alternately add and delete edges to and from 
M in the normal way. 
for v E V do IX(V) := IX(V) + y(v) 
where y(v) is the minimum of t(P) and the length of a shortest 1 
path from s to v 

end 
end 

To ftnd the shortest paths in A we use a modiftcation of algorithm SHORTPATH 
of§ 3 

Changes to SHORTPATH 

We create adjacency lists L(Xi), Xi E X, sorted by increasing c(i, .). (For Y E Yeither 
L(y) = r/J(y E B) or L(y) consists of the unique vertex of X matched with y by M). 
We only have time to do the sorting once for each X E X but on the other hand, at 
Statement A we need them sorted according to 1 and not c. Karp's solution to this 
problem is rather nice. Deftne 

t*(xtYj) = c(i,j) + IX(Xi) - IX* xiYj f: M 

where IX* = max{lX(v): v E V}. 

Observe that 

(4.1) 

and 

YjE B(M). (4.2) 

When an item (uv,D(u) + l(uv» is added to AQ in L2 or L4 we also add a special 
item (uv,D(u) + t*(uv» unless v E B(M) or uv is a backward arc of D(M). Also, if 
the item removed from AQ is special, then it is ignored and the next item of AQ is 
removed. The point is that we are not necessarily examining the arcs leaving a vertex 
x E X in increasing lorder. We want to be sure that the "real" items get to the front 
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of AQ in the order they would in the unmodified SHORTPATH algorithm. Thus 
we want to be sure that when an item (xy, D(x) + 1(xy» gets to the front it has a 
lower value than all competing arcs. But this follows from the fact that if this item 
precedes (uv,D(u) + t*(uv» then 

D(x) + t(xy) ::s; D(u) + t*(uv) ::s; D(u) + t(uw) 

for all w rJ S. 

We can also make the simplification that yz in L4 is now to be the first item on 
L(y). Finally, we will of course start each execution of SHORT PATH with S = A 
and AQ made from the first items of L(a), a E A and terminate when S n B =F rP. 

Analysis 

We say that xy is a virgin edge if it has not been selected in L2 in any execution of 
SHORTPATH. The key observation is that if the selection xy in L2 is a virgin edge 
then 

(4.3) 

This is because the virgin edges with start node x come to the head of AQ in their 
(original random) order on L(x) and none of the non-virgin edges with start node 
x have an end node in B. For when y E B an augmentation is triggered which means 
that y gets covered by the new M. 

Let Stage k denote the k'th execution of SHORT PATH and Uk denote the number 
of virgin edge selections at L2 in Stage k. Then by (4.3) we have 

n 
E(Uk) ::s; k 1 n- + 

If an edge ceases to be virgin in Stage k then it can be selected at most 2(m - k + 1) 
times altogether. Hence the expected number of executions of L2 overall is bounded 
above by 

m m-k+l 
2n2: k 1::S;2mn 

k=l n - + 
(since m::s; n) 

Each such selection requires O(logn) time. The cost of L2 selections and initial 
sorting dominates the execution time and Karp's result follows. 

5. Matchings in Sparse Random Graphs 

Karp and Sipser [KSp] analysed a simple heuristic algorithm for finding a large 
c 

matching in Gn,p, p = n for a constant c > O. The algorithm runs in O(n) time 

and produces a near optimal matching whp. This is to be compared with the 
asymptotically most efficient O(n1.S) algorithm of Micali and Vazirani [MV] which 
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is much more compleX. The analysis is difficult and we will only be able to outline 
what is going on. (Even so, our treatment is technically at variance in some places 
with what is said in [KSp]). 

First the algorithm: here 15(G) is the minimum degree of graph G. 

Algorithm MATCH 

(i) Remove isolated vertices-if G is now empty, stop. 
(ii) if 15(G) = 1 choose a random degree 1 vertex v and let vw be its incident edge. 

Otherwise (15(G) ~ 2) let vw be a random edge of G. 
(iii) add edge vw to the output matching M and then remove vertices, v; w from G. 

Goto (i). 

Phase 1 of the algorithm lasts until the first time that 15 ~ 2 in Step (ii) and Phase 
2 constitutes the remainder of the algorithm. 

Let a vertex be lost by the algorithm if it is deleted in Step (i) and so is not covered 
by M. Let Li(n, c) denote the number of vertices lost in Phase i, i = 1, 2. Let R(n, c) 
denote the number of vertices remaining after Phase 1. 

Karp and Sipser prove the following: 

Theorem 5.1 
For every e > 0 

I. (ILl(n,C) I) (a) ,,~~ Pr --n- - a(c) > e = 0 

for some a(c) > O. 

(b) lim Pr(L2 (n, c) ~ en) = 0 

(c) pr(IR(:,c) - p(c) I > e) = 0 

for some p(c) ~ O. 

Also p(c) = 0 iff c :::;; e = 2.71828 ... 
D 

Now any maximum matching must leave at least Ll (n, c) vertices isolated and so 
(b) above shows that M is usually of almost optimum size. The final property that 
p(c) = 0 iff c :::;; e (the e-phenemenom) is remarkable. 

Analysis 

Let ~(nl' n2 , m) denote the set of graphs (i) with vertex set V£; v", (ii) with n l vertices 
of degree 1, (iii) n2 vertices of degree ~ 2 and (iv) m edges. Suppose that after first 
removing the isolated vertices of G = G",p we have a graph in ~(nl' n2 , m). It is easy 
to see that each graph in ~(nl' n2 ,m) is equally likely. (Each such graph arises from 
a unique G",p with m edges). More importantly, if we stop the algorithm at the end 
of any Step (i) and observe the values of nl, n2 , m then the graph we have is still 
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equally likely to be any of ~(nl' n2, m). This is proved inductively by showing that 
each G E ~(nl' n2, m) can arise from the same number of graphs in ~(n~, n;, m') via 
a single execution of Steps (i)-(iii). 

Knowing this, we examine the Markov chain with state space {(n l ,n2 ,m): nl + 

n2 :::; n,nl + 2n2 :::; m:::; G).n l ,n2 ~ o} with transition probabilities defined by 

the algorithm. Using this we can, for example, examine the length of Phase 1 by 
seeing how long it is before nl becomes zero. 

Consider Phase 1. Let nl (t), n2(t), met) denote the values of nl , n2, m at the start of 
the tth iteration of the algorithm. If in Step (ii) w has degree k and ki neighbours of 
degree i, i = 1,2 then we have 

nl(t) - nl(t + 1) = kl - k2 + bk,l 

n2(t) - n2(t + 1) = k2 + 1 - bk ,1 

met) - met + 1) = k + 1 

[Kronecker delta] 

(5.1) 

Now consider a period of time t E [tn,(r + br)n]. If br is small one imagines that 
whp the values (n1 (t), n2(t), met»~ will be close to some values nY1 (r), nY2(r), nY3(r) 
where Y1, Y2, Y3 are functions of r only. It would also be reasonable to assume that 
whp. 

(t+<lt)n 

~ L (k i - k2 + bk.1) ~ nbrE(k l - k2 + bk,d· 
t=tn 

In summary we expect that whp the Markov chain (n 1 , n2 , m) closely follows a path 
n(YI(r),Y2(r),Y3(r» for 0:::; r :::; T = inf(r: YI(r) = 0), where y(r) satisfies 

i=1,2,3, (5.2) 

and the Ui are the expected values of the RHS of (5.1) at t = m. Furthermore 

yeO) = (ee- C, 1 - e-c, - ee-c, e12) (5.3) 

since the degree of a given vertex in Gn•c/n is asymptotically Poisson with mean e. 

The formal justification for (5.2) can be obtained by applying a theorem of Kurtz 
[Kz]. 

The next question is how to compute the U i • Consider a graph G chosen randomly 
from ~(nl' n2 , m). Suppose we know that whp G has approximately Vi vertices of 
degree i, for i = 1, 2, ... (thus VI = n1 and LVi = 2m). The study of random graphs 
with a fixed degree sequence is most easily handled by the configuration model of 
Bollobas (see [Bol]: if vertex i is of degree di then it gives rise to a set Wi of 
cardinality di . W = U Wi. A configuration F is a random partition of W into 
2-element sets. From F we obtain a multi graph Jl(F) by mapping {ex, {3} E F to uv 
where ex E w,., (3 E w,.. Conditional on Jl(F) being simple each such graph with 
the given degree sequence is equally likely. Also if I Wi/(n i + n2 ) = 0(1) then the 



Probabilistic Analysis of Graph Algorithms 219 

probability of being simple is bounded away from zero by a constant and so we can 
study random F in place of random G E ~(nl' n2,m). 

Returning to the evaluation of U 1 , U2' U3 in (5.2), we take any i such that d; = 1 and 
pair the unique x E W; with a random element in W - W;. This yields 

By similar reasoning we obtain 

vt 
Pr(k = t ~ 2) = 2~ . (5.4) 

E(kllk) = 1 + (k - 1)2v1 => E(k 1 ) = 1 + ~(E(k) - 1) (5.5) 
m m 

E(k2Ik) = (k - 1) 22v2 => E(k2) = V2 (E(k) - 1) (5.6) 
m m 

II 00 vt2 
E(k) = _1"'1 + L _t_. (5.7) 

2m t=22m 

Thus we can compute U 1 , U2' u3 once we have a handle on VI' v2 , .•. . Now it is well 
known that in a random graph with n vertices and average degree d constant that 
the degree of vertex 1, say, is asymptotically Poisson with mean d. We should not 
be surprised that if we condition on minimum degree at least do:::;; d then the degree 
of vertex 1 is asymptotically truncated Poisson with parameter 0, i.e. 

e-Ow/( 00 Ok) Pr(the degree of vertex 1 is t ~ do) ~ no.do(t) = -,- e-o ~ -k' . (5.8) 
t. k-do • 

o must be chosen so that the average degree is still d (to get the number of edges 
correct) i.e. 

00 

JiO.do = L tnO.do(t) = d. (5.9) 
t=do 

(The proof of (5.8), (5.9) is rather long). 

Now in our case we can show that, ignoring vertices of degree 1, the degree sequence 
of what remains is precisely that of a graph with 2m-nl edges, n2 vertices and 
minimum degree at least 2. So we now have enough to compute the U; for (2). 
Unfortunately, these equations have not been solved explicitly, but at least Part (a) 
of Theorem 5.1 follows. 

The analysis of Phase 2 is more complicated. There we define clean states to be those 
with Yl = 0 and consider transitions from clean state to clean state so that each 
such transition corresponds to a sequence of iterations of MATCH in which all but 
the first iteration deletes vertices of degree 1. It is possible to establish differential 
equations as in (2), (3) which describe the process with high probability. We will not 
try to establish them here but instead aim to give the barest justification of part (b) 
of the Theorem. 

This will be quite easy if we accept that whp a random graph in ~(O, n2 , m), m :::;; cn 
satisfies 
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no two (small) .cycles of length ::;; jlogn are within distance jlogn of each other. 
(5.l0a) 

The number of vertices within distance jlogn of a small cycle is o(n). (5.l0b) 

It then follows that whp the number oflost vertices in a transition from a clean state 

I . 0 (# matching edges found) h' . . f h' to a c ean state IS ~ . We leave t e JuStIficatIOn 0 t IS 
v'logn 

last remark to the reader and note that it implies part (b) of the theorem. We will 
not attempt to justify the e-phenomenon. 

6. Minimum Spanning Forests 

In this section we consider the problem of finding a minimum weight spanning forest 
of a graph. Our model of randomness is Gn,m with edge weights which when ordered 
define a random permutation of the edge-set. Remember that it is the edge weight 
order that defines the minimum weight forest. 

Karp and Tarjan [KT] gave an O(m + n) expected time algorithm for this problem 
based on an algorithm of Cheriton and Tarjan [CT]. This should be compared with 
the best deterministic algorithm which runs in O(mw(m, n)) time ([FT] and [GGS]). 
Here w is a very slowly growing function of m and n which nevertheless tends to 
infinity with n. McDiarmid [M2] gave an alternative treatment of a key lemma. 
The algorithm of [KT] is in two stages: 

Stage 1 

Step la: construct a queue Q of n trees each consisting of a single vertex. 

Step I b: if the queue has at most In trees go to Stage 2, otherwise delete the first 
tree T from Q. 

Step lc: 4. let vw be the unexamined (by Step lc) edge of least weight with one 
endpoint, v say, in T. (If there are no such edges, go to Step lb). If WET 

then delete vw and restart Step lc. Otherwise add vw to the minimum 
forest Fo and go to Step ld. 

Step ld: Let tree T' be t4e tree containing w. If T' is small (::;;In vertices) then 
delete it from Q. Merge T, T' into a single tree T". If T" is small then add 
it to the rear of Q and go to Step lb. 

At the end of Stage I there are at most 2Jn subtrees. In O(m + n) time we can 
contract each such tree to a single vertex and reduce the problem to that of finding 
a minimum forest on ::;;2Jn vertices. This requires O«Jnf) = O(n) time. The 
validity of the algorithm follows, for example, from Lemma 5.2 of Aho, Hopcroft 
and Ullman [AHU]. The most interesting question from the view of probabilistic 
analysis is answered by 
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Lemma 6.1 

Pr(w E T in Step lc) ::; ~ . 

Proof 
Suppose Q contains trees T1 , T2, ... , Ik. A vertex vET; is virgin if it has never belong 
to a tree T in Step lc.1t is simple to show by induction that each tree T; in Q contains 
exactly one virgin vertex Vi. Now if v, wET =1= T; and vw < VV i then interchanging 
their order in the permutation of edges will not affect the course of the algorithm 
to this point. On the other hand k > In ;:::.: I TI and the result follows with a little 
work. 0 

The remainder ofthe analysis is mainly nonprobabilistic. The sets of vertices of the 
trees of Q are treated as the sets in the UNION-FIND problem in [AHU]. Each 
set is represented by a tree so that given edge xy say, where x E T, YET' it takes 
O(height(T'» to find out that YET' and 0(1) time to merge T, T' if T =1= T'. When 
merging, if height (T) ;:::.: height (T') we make the root of T' a child of the root of T 
and vice-versa. The sets of unexamined edges incident with trees in Q are represented 
as priority queues. Karp and Tarjan used binomial queues (Vuillemin [V]), but the 
analysis will be easier, if we use bottom up skew heaps from Sleator andTarjan 
EST]. Then if there are k unexamined edges indident with T then it takes O(log k) 
(amortized) time to remove the one of minimum weight and 0(1) time to merge two 
queues. 

The final concept is that of level. Initially imagine a marker placed at the back of 
Q. All trees (single vertices) are level zero. The marker continually moves to the front 
and then is placed at the back. If the marker has reached the front t times then we 
say the trees behind it in Q are at level t + 1 and those in front are at level t. The 
following are easy to justify inductively: 

(a) A tree of level t contains at least 2t vertices. 

(b) Trees of same level are disjoint ( -+ at most ; trees of level t). 
(c) height (T) ::; level (T) for T E Q. 

Let us now bound the (expected amortized) running time of Phase 1 

(i) Total time of find the tree containing w in Step lc and merge trees in Step Id. 

O(~o ;t(t + 1)) = O(n) 

(ii) Total time to find vw in Step lc 

O(~o leVe~)=t 10ge(T») 
(where e(T) = I {unexamined edges incident with Twhen it reaches front of Q} I) 

= O(~o ;tIOg(m~t)) by concavity of log 

= O(m). 
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(iii) Total time'to merge priority queues in Step Id 
= O(n). 

One can show that it takes O(m) time to initialize the data structures and that 
amortized time (with a suitable potential function) is within O(m) of actual time. This 
completes the analysis of the algorithm. 

7. Hamilton Cycles 

Komlos and Szemeredi [KSz] prove the following 

Theorem 7.1 
111 

Let m = 2nlogn + 2nloglogn + 2cnn. Then 

lim Pr(Gn.m is Hamiltonian) = 
n-+oo 

lim Pr(8(Gn.m) ~ 2) = {:-e-c 
n-+oo 

1 

C-+-oo 

o 
The aim of this section is to prove the result of Bollobas, Fenner and Frieze [BFF] 
that there exists an O(n3+0(1» time algorithm HAM satisfying 

lim Pr(HAM finds a Hamilton cycle in Gn•m) 
n-+oo 

= lim Pr(Gn.m is Hamiltonian). (7.1) 
n-+oo 

The most interesting case is where Cn -+ c. For this we can reformulate (7.1) as 

lim Pr(HAM finds a Hamilton cycle 18(Gn•m) ~ 2) = 1. (7.2) 
n-+oo 

The following idea has been used extensively: given a path P = (VI' V2 , ... , v k ) plus 
an edge e = VkVi where 1 ~ i ~ k - 2, we can create another path of length k - 1 
by deleting edge ViVi+1 and adding e. Thus let 

ROTATE(P,e) = (VI,V2, ... ,Vi,Vk>Vk-I, ... ,vi+d. 

HAM proceeds in a sequence of stages. At the beginning of the k'th stage we have 
a path Pk of length k, with endpoints Wo and WI' Stage k ends when we have 
constructed a path of length k + 1 or created a Hamilton cycle. We try to extend 
Pk from either Wo or WI' If we fail, but WOWI E E(Gn,m) then, assuming Gn,m is 
connected, as it is whp, we can find a longer path than Pk • Failing this, we can 
create a set of paths of length k by constructing all possible paths of the form 
ROT ATE(Pk , e). These paths at rotation depth 1 from Pk are then tested for extension 
or closure. If none of these yield a path of length k + 1 or form a Hamilton cycle 
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then we create all possible paths at rotation depth 2 and so on. The algorithm only 
gives up trying to find a path of length k + 1 or close a Hamilton path (and fails) 
when it has created all paths at rotation depth 2T where T = pogn/(loglogn
loglogn)l. 

Now it can be shown that wbp the number of distinct pairs of endpoints of the paths 
created grows by a factor of at least logn/l000 as we create each set of paths at a 
given rotation depth. Thus if HAM fails at any stage there will be a set of IXn2(1X > 0 
constant) pairs of vertices Z (the distinct pairs of endpoints of the paths created) 
which depends on the execution of the algorithm, such that if (v, w) E Z then 
vw ¢ E(Gn•m). 

The final part of the proof is rather unintuitive. It is based on a counting argument 
of Fenner and Frieze [FF]. In order to get the main idea across we will omit to 
mention certain technical conditions which hold wbp and are required for the proof. 

Suppose now that HAM fails on Gn•m during Stage k. Now Pk is derived from Po 
( = vertex 1) by a sequence of at most 2nT rotations and extensions. Let W = W( Gn•m) 

denote the set of at most 2nT + n edges which are involved in these operations. 

Now consider the deletion of OJ = pog n 1 random edges X from Gn•m and the 
following events which are all made conditional on J(Gn•m) ;;:: 2. 

80 = {HAM fails to find a Hamilton cycle} 

8 1 = {HAM fails on Gn•m - X in the same stage as on Gn•m }. 

Observe first that 

(7.3) 

Since if X avoids W(Gn•m} then 81 will occur. But on the other hand, for any fixed 
graph H with In - OJ edges 

Pr(8dGn•m - X = H) ~ (1 - IX)'" (7.4) 

This is because given H, X is a random OJ-subset of E(H) and in order that 81 occur, 
X must avoid Z(H} which will be of size IXn2• (7.3) and (7.4) together show Pr(80 } = 
0(1} which yields (7.2). 

Modifications of these ideas have been used to find Hamilton cycles in sparse 
random graphs [Fl], random directed graphs [F2] and to solve travelling salesman 
problems [F3]. 

8. Grapb Colouring 

In this section we discuss an algorithm which tries to 3-colour graphs. If a graph is 
chosen uniformly at random from the set of 3-colourable graphs with vertex set v" 
then it succeeds wbp. Our discussion is based on work of Dyer and Frieze [DF] 
and Turner [Tu]. 
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Before getting into this discussion it is as well to briefly state what is known about 
colouring random graphs in general, say for GR,.s where each graph with vertex set 
v,. is equally likely. Now it has been shown by Bollobas [B02] that 

n 
X(Gn 5) ~ -21-- whp ,. og2n 

(See also Luczak [L] for the sparse graph case). In spite of a great deal of effort the 
best polynomial time algorithms tend to use roughly twice as many colours as are 
really needed (see e.g. Grimmett and McDiarmid [GM], Bollobas and Erdos [BE], 
Shamir and Upfal [SU]). 

Having explained this sorry situation we can turn to 3-colourable graphs. (Actually, 
the proposed methods extend to k-colourable graphs, k fixed-see [DF] or [Tu] 
for details). It is not obvious how to deal with the probability space ~(n: X = 3) = 
the set of 3-colourable graphs with vertex set v,.. We must deal with it indirectly. 

First consider a simple way of constructing a random 3-colourable graph. Suppose 

B1 , B2, B3 is a random partition of v,. into sets of size ~i. For each e E (Bl x B2) U 

(Bl x B3) U (B2 x B3) independently put in the coresponding edge with probability 

p ~ ~. ( We need to allow p close to ~ as well as = ~). Call the resulting random 

graph G1 . Clearly GI is 3-colourable. Can we 3-colour G1 whp without knowing BI , 

B2, B3? The answer is yes. In the following algorithm Xl' X 2, X3 will (hopefully) 
denote a 3-colouring of GI . We use the notation ds(v) to denote the number of 
neighbours of a vertex v in a set S. 

Algorithm COLOUR 

begin 

end 

for i := 1 to 2 do 
b~n 

X i := tfo; Y;:= v,. - U Xi 
j<i 

repeat 
choose v E Y; such that dy,(v) is minimal; 
X i := Xi U {v}; Y;:= Y; - {v} - r(v) 

until Y; = tfo 
end 

2 

if X3 = v,. - U Xi is independent then Xl' X 2 , X3 is a 3-colouring 
}=1 

else COLOUR has failed. 

(Replace 2 by k - 1 and 3 by k to get an algorithm for colouring k-colourable 
graphs.) 

LemmaS.1 
Pr(COLOUR fails) = 0(1). 
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Proof 
It is only necessary to show that the first repetition of the for-loop in COLOUR 
terminates with X I = BI or Bz or B3 • If this is the case then we are effectively 
re-applying the algorithm having replaced 3 by 2. 

Without loss of generality assume that the first v E YI is in BI . Suppose inductively 
that r ~ 1 vertices have been selected in Xl and suppose Xl ~ BI . Note that 
YI = v,. - r(X I ) - Xl· If r s; 3 then we can show using the Chernoff bound that 

for any r-subset X of BI , IBj - r(X)1 ~ _n_,j = 2,3, whp and if v E Bi then it has 
3 x 2' 

n n 
degree ~ 3 x 2'+1 in Bj - r(X), j i= 1, Similarly v E Bi , i i= 1 has degree ~6 in BI · 

Hence under these assumptions 

and so the next choice is also in BI. For r > 3 we use the fact that whp I(Bz U B3 ) (\ 

YII ;:5 1~ while v rt BI retains ~~ neighbours in BI· D 

Now we have not yet proved that COLOUR works with high probability on graphs 
chosen uniformly at random from ~(n: X = 3) and we do not have the space here 
to give all the details of how to "translate" the result of Lemma 8.1 to obtain this 
result. On the other hand it is easy to show that whp GI is uniquely 3-colourable, a 
fact which is of interest in its own right and vital to the "translation". 

Lemma 8.2 
Pr(GI is not uniquely 3-colourable) = 0(1). 

Proof(Outline) 
Consider a vertex v E BI . Whp it has ~ ~ neighbours Ni ~ Bi, i = 1, 2. Whp NI u Nz 

induces a connected, and hence uniquely 2-colourable, bipartite graph. But then 
whp each WE BI - {v} is adjacent to a vertex in both Nl and Nz and so BI is 
determined as one colour class. Finally, whp Bz U B3 induces a connected bipartite 
graph which then determines Bz, B3 uniquely. D 

We can now discuss the "translation" of Lemma 8.1 Let Gz be the random graph 
z 

in which we randomly choose m ~ ~ edges from (BI x Bz) U (BI x B3) U (B2 x B3 ) 

3m 1 
where BI , Bz, B3 are as for GI · If we let p = -;:;z ~ 2: then we have 

Pr(COLOUR fails on Gd 

~ Pr(COLOUR fails on GIIIE(GI)I = m)Pr(jE(G1)1 = m) 

= Pr(COLOUR fails on Gz)Pr(IE(GI)1 = m). 
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Now ifthe calcl1lations are made explicit in Lemma S.1 then we can prove that, say, 

Pr(COLOUR fails on Gd ~ e-";;' 

and it is easy to see that 
Pr(IE(Gdl = m) = Q(l/n) (8.1) 

1 n2 
for p, m close enough to 2' "6 respectively. Hence, with these caveats, one sees 
immediately that 

Pr(COLOUR fails on G2 ) = 0(1). 

Similarly 
Pr(G2 is not uniquely 3-colourable) = 0(1). (8.2) 

Now some rather tedious calculations show that almost all graphs in ~(n: X = 3) 
2 

have ~ ~ edges and have 3 colour classes of size ~j only, (the approximations here 

are good enough for (S.2) to hold). Thus we really only have to show that Lemma 
S.l can be translated to G3 chosen uniformly from ~' = the set of 3-colourable 

2 

graphs with m ~ ~ edges and a set of colour classes of size n1 , n2' n3 ~ j. 
Now while G3 is chosen uniformly from ~', G2 is chosen from ~' with probability 
proportional to the number, v(G2 ) of different (unordered) 3-colourings G2 (with 
colour-classes ofthe appropriate size). 

Now for any d s;;; ~' 

V(G) Idl I~'I 
Pr(G2 E d) = Gf", v(~') ;;:: I~'I' v(~')' . v(~') = G~~ v(G) 

;;:: (1 - 0(1»Pr(G3 E d) 

since the result of Lemma 8.2 can be expressed as 

v(G) 
L (rA') = 0(1). 

v(G)2:2 v ";7 

Thus 
Pr(G3 E d) ~ (1 + 0(1»Pr(G2 Ed). 

We obtain the result we want by taking d = {G E ~': COLOUR fails on G}. 

The failure probability of COLOUR is not quite small enough so that one has a 
polynomial expected time algorithm if one handles exceptional cases by enumera
tion. In [DF] we construct another algorithm COLOUR1 to handle the excep
tional cases of COLOUR. It has polynomial running time and failure prob
ability O(e-!.I(1l10gn». Thus if both COLOUR and COLOUR1 fail we can then 
resort to enumeration of all possible 3-colourings and we will have a polynomial 
expected time algorithm for colouring 3-colourable graphs. 
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9. Graph Isomorphism 

In this section we give the earliest and simplest result concerning the graph isomor
phism problem for random graphs. It is due to Babai, Erdos and Selkow [BES]. 
Suppose we are given graphs Gj = (v,., E j ), i = 1,2, where G1 is the random graph 
Gn •• 5 and G2 is any graph. Can we quickly tell whether or not G1 ~ G2 i.e. whether 
there exists a bijection f: v,. -+ v,. such that vw E El ifff(v)f(w) E E2 • The answer in 
[BES] is that whp we can check this in O(n2) time. 

The method is based on the fact that whp G1 has the properties (9.1) and (9.2) below. 
Let the vertices of G1 be relabelled so that d(i) ~ d(i + 1), i = 1,2, .. '., n - 1. Let 
r = r310g2 nl. Then whp 

d(i) > d(i + 1) for 1 ~ i < r. (9.1) 

Next, for j > r let Xj = {i: 1 ~ i < rand ij EEl}' then whp 

for j, k > r. 

Thus we can relabel the vertices r + 1, " ., n so that 

X j is lexicographically larger than Xl+l , i = r + 1, ... , n - 1. 

Given (9.1) and (9.2) it is easy to check if G1 and G2 are isomorphic. 

(9.2) 

(9.3) 

1. Compute the degree sequence of G2 • If the largest r degrees do not coincide with 
those of G1 then G1 and G2 are not isomorphic. 
If they are then by (9.1) we can identify f(I), ... ,f(r) in any possible isomorphism. 
By relabelling vertices of G2 we can assume f(i) = i for 1 ~ i ~ r. 

2. For each vertex v > rof G2 compute y" = {i: 1 ~ i ~ rand iv E E(G2 )}. Sortthese 
n-r sets into lexicographic order. If these exists i > r such that Yi oF X j then by 
(9.2) and (9.3) G1 and G2 are not isomorphic. Otherwise the only possible 
isomorphism is now f(i) = i. 

3. Finally, check if f(i) = i is an isomorphism i.e. check if now G1 = G2 • 

The proof of (9.1) requires a lot of calculation. Babai, Erdos and Selkow proved 
considerably more than this. They showed that 

d(i) - d(i + 1) ~ n·03 for 1 ~ i < n·15 . (9.4) 

For an even stronger result see Theorem 111.15 of Bollobas [Bol]. Given (9.4) it is 
quite easy to prove (9.2). If (9.4) holds and X j = Xj for some i,j > r then i and j have 
the same set of neighbours among the r largest vertices in Hi} = G1 - {i,j}. Denote 
the this event by Si]' Now since the graph Hi} is independent of i,j the probability 

of Sjj is G), . Hence 

n-l n (1)' 
Pr(3i,j > r: Xj = Xj) ~ j~ j~ Pr(Sjj) + Pr«9.4) fails) ~ n2 • '2 + 0(1) = 0(1). 

The result of [BES] has been strengthened by Karp [Ka2], Lipton [Li] and Babai 
and Kucera [BK]. In particular Babai and Kucera handle exceptional graphs in 
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such a way that graph isomorphism can be tested in linear expected time on Gn •. s. 
For regular graphs, the above algorithm(s) would be particularly ineffective. How
ever, Kucera [Ku] has recently devised an algorithm for regular graphs which runs 
in linear expected time, i.e. O(nd), assuming the degree d does not grow with n. 

10. Graph Bisection 

Here we are given a graph G = (V, E) with n vertices, n even, and the problem is to 
find the partition of V into two equal sized subsets Sl, S2 so that the number of 
Sl: S2 edges is minimised. The minimum such number of edges is called the bisection 
width of G. The problem is useful in VLSI design problems (see Bhatt and Leighton 
[BL]), but is NP-hard (Garey, Johnson and Stockmeyer [GJS]). 

If we take the graph Gn•m as a model of random input then we find that all relevant 

cuts have ~I edges whp provided m is sufficiently large e.g. m = Q(n logn). Finding 

the bisection width in these circumstances is still open. 

Positive results can be obtained if we consider sampling uniformly from t§(n, m, b), 
the set of graphs with vertex set v,., m edges and bisection width b. Basically, the 

idea is to have b significantly smaller than I and then whp there will be a unique 

cut of size b which will be easy to find. Bui, Chaudhuri, Leighton and Sipser [BCLS] 
considered this approach for regular graphs, Dyer and Frieze [DF] considered 
t§(n,m,b) with m = Q(n2) and Boppana [Bp] considered the case m = Q(nlogn). 
We will outline Boppana's approach here. 

First of all we remark that it is not easy to work directly with t§(n, m, b). Instead one 
chooses a random partition of v,. into Sl' S2 of equal size, and then add edges 
between Sl and S2 with probability q = 4b/n2 and within each Si with probability 

p = 4(m - b) I (~). Results are proved for this "independent" model and then 

translated to t§(n, m, b)-see § 8 on colouring. 

For S £; v,. we define x = x(S) E IRn by Xi = 1, i E Sand = -1 otherwise. Given 
d E IRn we let B = B(d) = A + D where A is the adjacency matrix of G and D = 
diag(d). Also let sum (B) = 21EI + L~=l di = the sum of the entries of B. Next let 

1 - x·x· 1 n 1 
f(G,D,x) = L 2 I J - -4 L di(xf - 1) = -4 (surn(B) - xTBx). 

(i.JJeE i=l 

The significance of this function is that 

f(G,d,x(S)) = I(S: v,. - S)I for (10.1) 

. 1 
Observe that Ii x(S) II = In (EuclIdean norm) and eT x(S) = 0 when lSI = In. (e T = 

(1,1, ... ,1)). So from (10.1) it is natural to consider 
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g(G,d) = min f(G,d,x) = min -41 (sum(B) - xTBx) 
eTx=O Ilxll=j;; 

IIxll=j;; 

where B = B(d) = (1 -~eeT) B. (Observe that the matrix 1 -~eeT projects [Rn 

onto {x E [Rn: eTx = OJ. 

Bopanna's idea is that one can find d for which the x minimising f( G, d, x) is xeS) 
for a minimum bisection S. 

Note that 

1 
g(G,d) = 4 (sum (B) - nA(E) (10.2) 

where A(E) is the largest eigenvalue of B. 

Now g(G,d) being the infimum of a collection oflinear functions is concave in d 
and so 

h(G) = max g(G,d) 
dE~n 

can be computed in polynomial time. (Grotschel, Lovasz and Schrijver (GLS». 

Since g(G, d) s f(G,d,x(S» for S s; v.. we see that 

h( G) s bisection width of G. 

The nice probabilistic result of Boppana is that if G is sampled uniformly from 
rg(n, m, b) and 

1 
Os b s 2m - 5Jmnlogn (10.3) 

then whp the bisection width of G is b = h(G) = g(G,d*) and the eigenvector 
corresponding to A(B(d*» yields the minimum bisection. The proof of this result 
is as follows. First of all it is straightforward to show given (10.3), that in the 
independent model there is whp a unique minimum bisection of size b. Next let Sl, 
S2 be a minimum bisection. For i E Sl let d[ = dei, S2) - dei, Sd and for i E S2 let 
d[ = d(i,Sl) - d(i,S2) where d(v,S) = I{w E S: vw E E}I. Now sum (B(d*» = 4band 
so by (10.2) g(G, d*) = b iff A(B(d*» = O. Observe also that B(d*)x(Sd = 0 and so 
Boppana's result is reduced to showing that whp B(d*) has a unique eigenvalue of 
zero and every other eigenvalue is negative. 

1 ~ 
Now we have E(B) = M - 2(P - q)n1 where M = E(A). Also MX(Sl) = 0, 

x(SlfM = 0 and so if e(B - M)~ s 0 always then ~TB~ sO always, which is 
what we need. This follows a fortiori if B - M has non-positive eigenvalues or 

1 
~~;alues or equivalently if B - E(B) has eigenvalues bounded above by 2 (p - q)n. 
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l(B - E(B» ~ l(A - E(A» + l(D - E(D». 

The eigenvalues of D - E(D) are precisely its diagonal entries and using Chernofi's 
bound we fmd that l(D - E(D» ~ SJpnlogn. 

Extimating l(A - E(A» is more difficult, but the eigenvalues of random matrices 
have been intensively studied. By modifying a result due to Furedi and Koml6s 
[FuK] Boppana shows that l(A - E(A» ~ 3..jJmwbp and so l(B - E(B» ~ 
6J pn logn wbp. The reader can now check that if (10.3) holds then 6J pn logn < 

~(P - q)n as required. 

The probability that Boppana's algorithm fails to work is not sufficiently small that 
exceptional cases can be dealt with more crudely and still yield a polynomial 
expected time algorithm which handles all graphs. For m = Q(n2) however, there 
is a polynomial expected time algorithm, [DFJ. 

11. Otber Aspects 

We have concentrated here on positive results that arise in probabististic analysis. 
This field also has its share of negative results. We mention three: Chvatal [C] 
showed that a certain class of approaches to finding the largest independent set in 
a graph took exponential time wbp; McDiarmid [M1] proved a similar result for 
graph colouring as did Ahn, Cooper, Cornuejols and Frieze [ACCF] for finding a 
small dominating set. 

There is an increasing interest in finding fast parallel algorithms. There are a few 
results here of interest to us: Frieze and Rudolph [FR] gave an O(loglogn) expected 
time parallel algorithm for the shortest path problem of § 3; Frieze [F4] gave an 
0«loglogn)2) expected time parallel algorithm for the Hamilton cycle problem in 
Gn,p, p constant; Frieze and Kucera [FrK] give a polylog expected time algorithm 
for colouring graphs; Coppersmith, Raghavan and Tompa [CRT] give polylog 
expected time algorithms for graph colouring, finding maximal independent sets 
and finding Hamilton cycles: Calkin and Frieze [CF] deals with maximal indepen
dent sets. 

Finally we mention an area of particular interest to probabilists. Given a weighted 
optimisation problem, determine the properties of the (random) optimal value. We 
first mention two similar results: consider the n x n assignment problem in which 
the costs c(i,j) are independent uniform [0, 1] random variables. Let w" denote the 
minimal value of an assignment. Walkup [W] showed that, rather surprisingly, 
E(w,,) < 3 for all n. Karp [K] improved this to E(w,,) < 2 (see also Dyer, Frieze 
and McDiarmid [DFM]). A lower bound of 1 + e-1 was proved by Lazarus [LzJ. 

Consider next the minimum spanning tree problem where the edge weights are also 
independent uniform [0,1] random variables. Let Ln denote the minimum length 
of a spanning tree. We showed [FS] that 
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00 

lim E(Ln) = '(3) = L k-3 , 
.. -+00 k=l 

(see also Steele [Stl] and Frieze and McDiarmid [FM]). 

Probabilists have found Euclidean problems even more interesting. For example, 
suppose Xl' X 2, ••• , Xn are independently chosen uniformly at random in the unit 
square [0,1]2. In a very important paper Beardwood, Halton and Hammersley 
[BHH] showed that if T,. is the minimum length of a travelling salesman tour 
through these points then there exists a constant P > 0 such that 

pr(lim 7: = p) = 1. 
,,-+oov n 

Steele [St2] has generalised this result considerably and the paper by Karp [Ka4] 
was very influential in generating interest in the probabilistic analysis of algorithms. 

For a bibliography on topics related to this paper see Karp, Lenstra, McDiarmid 
and Rinnooy Kan [KLMR]. 
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Abstract - Zusammenfassung 

Generating Graphs Uniformly at Random. This paper deals with the problem of sampling from a uniform 
distribution on various classes of graphs of given size. We consider algorithms and restarting procedures 
for uniform generation of several kinds oftrees, arbitrary unlabel1ed graphs and various kinds oflabel1ed 
graphs. Most of the material discussed in this paper has been developed during the last decade by several 
authors. In section 4.3 some recent results on the generation of outerplanar graphs and maximal planar 
graphs are presented. 
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Erzeugung von gleichverteilten ZufaUsgraphen. Diese Arbeit gibt einen Oberblick iiber bekannte Ver
fahren zur Erzeugung von Zufal1sgraphen gemiiJ3 einer Gleichverteilung iiber einer gegebenen Klasse 
von Graphen mit fester Knotenzahl. Wir betrachten Algorithmen und 'Restarting Procedures' fiir die 
Erzeugung verschiedener Arten von Biiumen, fiir al1gemeine unlabel1ed Graphen und fiir diverse Arten 
von labelled Graphen. Der GroJ3teil des behandelten Materials wurde von verschiedenen Autoren im 
letzten lahrzehnt entwickelt. In Abschnitt 4.3 wird iiber jungste Ergebnisse bei der Erzeugung von 
outerplanaren und von maximal planaren Graphen berichtet. 

1. Introduction 

One of the most important aspects in research fields where mathematics is applied 
(physics, chemistry, computer science, operations research, social science, biology, 
and so on) is to construct a model of a concrete situation in order to understand 
it better and, possibly, to influence it. As for structural relations, in numerous 
situations, graphs have turned out to provide the most appropriate tool for setting 
up the mathematical model. This is certainly one reason why graph theory has 
expanded so rapidly during the last decades. 

Having a mathematical model for a real world structure at hand it seems natural 
(and has been successfully performed) to look for variations of the model (by 
changing structural parameters) which possibly are abstract pictures of other still 
unknown real world structures. In this way it is sometimes possible to discover new 
structures by inspecting what models are available for them. A different aspect is 
the optimality of some structure with respect to various criteria. Again, often 
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optimality caq be studied best by inspecting all suitable models bearing the same 
typical features. 

For the just mentioned reasons, in graph theory and its applications, there have 
been early attempts for listing and cataloguing graphs of a given size and type. 
Catalogues of graphs can be of great use for a variety of purposes. They provide 
stores of graphs which can be sampled whenever there is a need for a graph theorist 
to play with a set of graphs, or they can be exhaustively studied to settle some 
question by turning up a counterexample or to come up with plausible conjectures. 
Results on cataloguing graphs can be found for example in [5], [12], [17], [24] and 
[25]. 

However, when the size of the graphs which are to be considered is large then 
exhaustive listing is impossible. In such situations, to study typical graphical con
figurations or to evaluate the performence of an algorithm on such configurations, 
it is desirable to be able to generate these configurations uniformly at random (u.a.r. 
for short). For labelled graphs on n vertices, for instance, this is very simple to do, 
just choose the edges independently with probability 1/2 for each. However, the 
situation changes drastically when unlabelled graphs are wanted or when a certain 
graph property has to be forced (such as regularity, hamiltonicity, chordality, etc.). 
In such cases the problem of random generation quickly becomes non-trivial. 

Generating problems are strongly connected to counting problems. This will become 
clear in the following sections. Counting problems have a long and distinguished 
history. A standard text for graph counting problems is [10]. The study of counting 
problems as a class from a computational point of view, however, was initiated by 
Valiant in the late 1970's [32,33]. A parallel approach to generation problems was 
proposed more recently in [13]. As one of the results algorithms for generating 
graphs of certain types approximately u.a.r. have been established [27, 28]. 

This paper presents a short review on the problem of generating graphs u.a.r. Most 
of the material has been developed during the last decade and can be found in the 
original papers only, with the exception of sections 2.1 and 2.2 which are included 
for completeness and the content of which can also be found in [22]. 

In what follows we use the standard notations found in [3] or [9]. Throughout 
the paper, unless otherwise stated, any graph G = (V, E) under consideration is 
understood to be undirected, loopless and without parallel edges. V is the vertex 
set, E the edge set. The vertex number n = I VI is also called the size of G, m = lEI 
is the edge number. 

We distinguish between labelled and unlabelled graphs. For simplicity, a labelled 
graph of size n is one whose vertex set is V = {1,2, ... ,n}, and two labelled graphs 
G = (V, E) and G' = (V, E') are considered the same iff E = E'. G and G' are called 
isomorphic iff there is a permutation p: V -+ V such that (i,j) E Eiff(p(i),p(j» E E', 
for all i,j E V. An unlabelled graph G is an isomorphism class oflabelled graphs and 
may be represented by any element of this class. 
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2. Trees 

A tree is a connected graph without cycles. Because of their importance as combina
torial models in chemistry, social science, computer science, operations research and 
many other areas of applied mathematics and because of their relative structural 
simplicity trees are one of the most extensively studied classes of graphs. Therefore, 
generating trees is an important computational problem. 

Trees have many equivalent characterizations. One of them involves the notion of 
an endpoint. An endpoint of a graph G is a vertex of degree 1. It is well known that 
every tree with more than one vertices has at least two endpoints. A 'recursive' 
characterization of trees is: A graph G of size n > 1 having the endpoint v is a tree 
iff after removing v and the unique edge incident with v the remaining graph is a 
tree of size n - 1. 

A rooted tree is a tree in which one vertex, the root, has been distinguished from 
the others. Two rooted trees are considered isomorphic iff there is a 1 - 1 adjacency 
preserving correspondence between them which maps the root of one onto the root 
of the other. A tree for which no root is distinguished is sometimes called a free tree. 
These definitions are used for both labelled and unlabelled trees. 

In this section we deal with the generation of labelled trees, rooted unlabelled trees 
and free trees. 

2.1. Labelled trees 

There are exactly nn-2 labelled trees with n vertices. This result, due to Cayley, is 
one of the most celebrated counting results in graph theory. There are several proofs 
for it, one is due to Priifer [23] who used a particular code for representing labelled 
trees, the so-called Prilfer-code. 

The Priifer-code of the smallest non-trivial tree, an edge connecting two vertices 1 
and 2, is the empty string. For n ~ 3, the Priifer-code is a string of n - 2 integers 
from v. It is found by the following algorithm. 

Algorithm PRCODE(T) 

(0) Define L to be the empty list; 
(1) Find the endpoint v of T with the smallest label and its unique neighbour u; 
(2) Put u at the end of the List L, remove v and the edge < u, v) from T; If T has still 

more than 2 vertices then goto (1); 
(3) Output the list L; 

As an example take the labelled tree in Fig. 1. Its Priifer-code is (1, 1,3,2). Priifer's 
construction goes both ways. Using the recursive characterization of trees men
tioned above it is immediately seen how the procedure PRCODE can be inversed 
to find the labelled tree from its code string. Thus the set of labelled trees on 
V = {I, 2, ... , n} is in 1 - 1 correspondence with the set of n - 2-tuples of natural 
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4 

Figure 1 

numbers not exceeding n. This is one way to prove Cayley's counting result. From 
this discussion we see that the following algorithm will generate labelled trees of 
size n u.a.r. 

Algorithm LABTREE(n) 

(1) For 1 :::;;; i :::;;; n - 2 do 
select a number ai from V u.a.r.; 

(2) Construct the tree corresponding with the Priifer-code (a 1, ... , an- 2) and output 
it; 

Both steps 1 and 2 of this algorithm can be implemented to run in time O(n). Hence, 
Algorithm LABTREE is optimal with respect to time-complexity. The Priifer-code 
may be used also to generate labelled trees with prescribed degree vector (d(i)li E V) 
or labelled trees with prescribed number of endpoints u.a.r. For more details see 
[22]. 

2.2. Rooted Unlabelled Trees 

The situation for rooted unlabelled trees (ru-trees for short) is substantially more 
complicated than for (free) labelled trees. The basic observation here is that any 
ru-tree of size n may be constructed in the following way: Take j copies of an ru-tree 
Til of size d(jd < n) and an ru-tree T' of size n - jd and join the root ofT' to the 
roots of each of the copies of Til (see Fig. 2). This operation is indicated by 
T:= T' + j X Til. 

One consequence of this o.bservation is the following recurrence formula for tno the 
number of ru-trees of size n, namely 

where dim means that d is a divisor of m, or equivalently 

L d· tn-jd· td = 1 
d,j~ 1 (n - l)tn 

(2.2.1) 

(2.2.2) 
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T' T" T" T" 
\ 1\ II I \ I, I \ I 
\ I \ I \ I 
\ I \ J \ I 
\1 \1 II 
\1 \I \I 

Fignre 2 

In [22J the following recursive algorithm for generating ru-trees u.a.r. is presented. 
The algorithm is based on formula (2.2.2) where the left side is interpreted as a sum 
of probabilities. The unique rooted unlabelled trees on 1 or 2 vertices are denoted 
by Tl or T2 , respectively. 

Algoritbm RUTREE(n) 

(1) Cboose a pair (j,d),j ~ 1, d ~ 1, with probability 

P b(· d) = d· t n- jd • td . 
ro j, (n - l)tn ' 

(2) If n - dj > 2 tben T' := RUTREE (n - dj) else T' := T,,-jd; 
If d > 2 tben T":= RUTREE(d) else T":= 1d; 

(3) Output T:= T' + j x Til; 

Algorithm RUTREE requires preprocessing for calculating the numbers tj , 1 ::;; j ::;; 
n. On the base of (2.2.1) this can be done in time O(n2). 

2.3. Free Unlabelled Trees 

In this section a tree is a free unlabelled tree. The presentation of the generating 
process is based on [36]. 

Let W1' ..• , Wk be the neighbours of a vertex v in a tree T. For each Wj there is a 
uniquely defined subtree 1j of T induced by the set of vertices which can be reached 
from v via the edge <v, Wj). The maximum size of a 1j is called the weight of v. A 
vertex v in T with minimum weight is called a centroid of T. It is well known that 
the number of centroids of a tree T may be 1 or 2. If T has two centroids then they 
are linked by an edge. Removing this edge leaves two ru-trees of equal size, the roots 
being the corresponding centroids. 

The latter remark shows how one can reduce the problem of generating bicentroidal 
trees to the problem of generating ru-trees u.a.r. As before, let tn be the number of 
ru-trees of size n. The following algorithm produces bicentroidal trees u.a.r. Clearly, 
the algorithm works for even n > 0 only. 
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Algorithm BIGENTREE(n) 

With probability (tn/2 + Ifl do step (1) else do step (2) 
(1) T':= RUTREE(n/2); T:= T' + 1 X T'; 
(2) T':= RUTREE(n/2); T":= RUTREE(n/2); T:= T' + 1 X Til; 
(3) Output T; 

A vertex v is the unique centroid of a tree Tiff its weight is at most (n - 1)/2, or 
with other words, iff none of the subtrees 1) corresponding to the neighbours Wj has 
size larger than (n - 1)/2. Thus there is a bijection between the set oftrees with one 
centroid and the set of ru-trees for which all subtrees defined by the neighbours of 
the root are of size (n - 1)/2 at most. 

A collection of disjoint ru-trees is called an ru-forest. Let a(m, q) denote the number 
of ru-forests of size m whose trees are of size at most q. These numbers can be 
calculated using the formula 

d . 
a(m,q) = L L -·td·a(m-Jd,q) 

i:i!1 1 !>d!>q m 

(m ~ l,a(O,q) = l,a(k,q) = 0 for k < 0). (2.3.1) 

According to this recurrence equation an ru-forest of the type considered can be 
selected u.a.r. using the following algorithm. 

Algorithm RUFOREST(m, q) 

If m = 0 then exit with the empty forest else do 
(1) Choose a pair of integers (j,d) with probability 

P b( ' d) - d· a(m - jd, q) . lid 
ro J, - () td , ~ j, ~ ~ q; 

m'a m,q 
(2) F:= RUFOREST(m - jd,q); T:= RUTREE(d); 
(3) Exit withj copies of T adjoint to F; 

Choosing a tree u.a.r. is now done by the following algorithm which combines the 
above two procedures into a single one. 

Algorithm TREE(n) 

(1) If n is odd then do_p:= 0 elso do p := C +2tn/2). t;;l; 

(2) With probability p do T:= BICENTREE(n) and output T 
else do 

F:= RUFOREST( n - 1, n; 2} T:= (a new vertex v,jointtoall roots ofF); 

Output T; 

The algorithms RUTREE and RUFOREST are based on the recurrence relations 
(2.2.1) and (2.3.1), respectively, which in a sense solve the associate counting prob
lems. It was pointed out in [22] that any similar recurrency relation for the 
numbers of combinatorial configurations of a given type and size possibly leads to 
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an efficient uniform generation algorithm. We will outline the idea behind in some 
detail in section 4.3. 

3. Unlabelled Graphs 

3.1. The Method of Dixon and Wilf 

In their pioneering paper [6] Dixon and Wilf presented a method for generating 
unlabelled graphs of SIZe n u.a.r. The method is applicable also to subclasses of 
graphs of a given type provided the corresponding counting problem can be solved. 
It is based on basic group-theoretical concepts, we outline it briefly in this section. 

Let (/J be a finite group acting on a finite non-empty set r. The equivalence classes 
of r according to the relation oc ~ P(oc, P E F) iff oc = ({Jp for some ({J E (/J are usually 
called orbits of runder (/J. For each ({J E (/J define Fix«({J) = {oc E rl({Joc = oc} (the set 
of elements fixed by the action of ({J). Two group elements ({J and ({J' are called 
conjugate iff ({J' = t/I({Jt/I-l for some t/I E (/J. 

The starting point in [6] is an algorithm which, given rand (/J, generates an orbit 
o of runder (/J u.a.r. The algorithm is based on the observation that if the elements 
in the sets Fix«({J), ({J E (/J are listed then the combined list contains exactly I(/JI 
representatives of each orbit o. Furthermore, if ({J and ({J' are conjugate then for any 
orbit 0 we have lFix«({J) (') 01 = lFix«({J') (') 01, and therefore, it is sufficient to list the 
elements in the sets Fix«({Ji), 1 :s.; i :s.; r, where the ({J/s are arbitrary elements in C;, 
and C1 , .•. , Cr are the conjugacy classes of (/J. Put Ci = ICil and let t be the number 
of orbits. Then, using the well-known 'Frobenius-Burnside lemma' which states that 
t ·1 (/J I = L<p e tP I Fix( ({J) I, one easily proves that the following algorithm selects an 
orbit 0 of r under (/J u.a.r. 

Algorithm RANDORB(r, (/J) 

(1) Choose a number i from the set {1, 2, ... , r} with probability 
Prob(i) = ciIFix«({Ji)l/tl(/Jl, 1 :s.; i:s.; r; 

(2) If i was chosen in step (1) then choose u.a.r. an element Y E Fix«({Ji); 
(3) Return the orbit 0 which contains y; 

Now, specialize this algorithm to generate unlabelled graphs. Let n, the number of 
vertices, be fixed and let r be the set of all labelled graphs on n vertices. According 
to our convention, this is "the set of all graphs with vertex set V = {1, 2, .. " ,n}. Let 
S be the full symmetric group acting on V. For each permutation n E S there is a 
corresponding bijective mapping ({J(n): r -+ r defined by 

({J(n)(G) = (V, nE), 

nE = {(ni,nj)l(i,j) E E}, where G = (V, E) E r. 
Let (/J be the group of all these mappings. (/J acts on r, and the set of orbits of r 
under (/J is, by definition, the set of unlabelled graphs of size n. Therefore, we may 
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use Algorithm. RANDORB to generate unlabelled graphs of given size. To do so 
one first has to solve some counting problems. 

Let P be the set of all unordered pairs (i,j), 1 ::s;; i,j ::s;; n. For each n E S there is a 
permutation n* of P defined by n*(i,j) = (ni, nj). Write q> for the corresponding 
group element q>(n) E,p. Fix(IP) consists of all those graphs for which n is an 
automorphism, i.e. maps their edge sets onto themselves. Thus G = (V, E) E Fix(q» 
iff for each cycle q of n* either all pairs in q are edges of G or none of them are. This 
implies \Fix(IP)1 = 20("), where c(n) is the number of cycles of n*. 

Let us use the notation k = (k1 , ••• , kn) to denote the partition of n with kj parts of 
size i, 1 ::s;; i ::s;; n. Write [k] to denote the corresponding conjugacy class of S 
consisting of all permutations that have exaktly k i cycles of length i, 1 ::s;; i ::s;; n. The 
number of elements in [k] is known to be n!jd(k) where 

d(k) = n (ik·ki!)· 
1$i$n 

Furthermore, in [26] it has been proved that for n E [k] 

c(n) = -21 • { L kikJ• ucd(i,j) - L k2i+1}. 
1$~J$n 1$/$n 

Now we are prepared to adapt Algorithm RANDORB for generating unlabelled 
graphs of size n. The number of orbits in our particular case is Un' the number of 
unlabelled graphs of size n. We get the following algorithm. 

Algorithm RANDGRAPH(n) (Dixon and Wilt) 

(1) Choose a partition k = (k1 , ••• , kn) of n with probability 
Prob(k) = 2o(n) I(Un . d(k» where n is any permutation in [k]; 

(2) Let IP = q>(n) and choose u.a.r. a graph G = (V, E) E Fix(IP); 
(3) Output the unlabelled graph G* underlying G; 

The method outlined here is not restricted to our particular specification of r as 
the set of all unlabelled graphs on n vertices. We could deal also with smaller sets 
of unlabelled graphs, for instance with connected graphs, with graphs of a prescribed 
edge number, with regular graphs of some degree r, and so on. However, the 
corresponding counting problem (we need to know the numbers IFix(IP)1 and the 
number of orbits t) often becomes an invincible obstacle in such cases, which means 
that the resulting algorithm allows no implementation that runs in polynomial 
average time. 

The crucial point for an implementation of Algorithm RANDGRAPH is step (1). 
In general, suppose you have to generate the elements of a finite set K according 
to a given probability distribution Prob(k), kE K. For this aim we may use the 
following well-known standard procedure which is based on a linear ordering of K, 
i.e. on an arrangement (k 1, k 2, ••• , k1K1 ) of the elements of K. 

Algorithm RANDELEM(K) 

(1) Choose a random number x E (0, 1) and initialize i := 1 and S1 := Prob(k1); 
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(2) While x > Si do i := i + 1 and Si := Si-1 + Prob(ki); 

(3) Output ki; 
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Let I be the random variable whose values are the actual values of i when the 
algorithm terminates, j.e. I is the number oftimes minus 1 RANDELEM performs 
step (2). We have 

Exp(I) = L i· ProbW)· 
1SiSIKI 

Obviously, this term depends on the ordering of K and reaches its minimum for an 
ordering (kl, P, ... , k1K1 ) satisfying Prob(k1 ) ~ Prob(k2 ) ~ ••• ~ Prob(kIK1 ). In our 
case K is the set of all partitions k = (k h ••• , kn) of n, and IKI = p(n), the number 
ofthese partitions. Write In instead of I to indicate the dependence on n. Dixon and 
Wilf propose to use an ordering (k1, •. . , kP(n» of K satisfying k~ ~ k~+1 for all i = 1, 
2, ... , p(n) - 1. They show that under this condition Exp(In) ~ 3. Furthermore 
limn .... '" Exp(In) = 1. This latter result is substantially based on the well-known fact 
that for 'almost all' graphs G the automorphism group Aut(G) is trivial. 

Now for implementing step (1) of RAND GRAPH there is still the question how to 
calculate gn' the number of unlabelled graphs of size n. While the numbers p(n) are 
rapidely computable due to a simple recurrence relation, it is not known if there is 
a polynomial-time algorithm for the calculation of gn. The best method known so 
far requires time propertional to eJn. 
Step (2) ofthe algorithm does not present difficulties. Once given (k1, ••. , kn ) we may 
find a permutation n E [k] by writing down the symbols 1,2, ... , n and then inserting 
brackets so as to obtain successively k1 cycles oflength 1, k2 cycles oflength 2, and 
so on. For example, the representative ofthe conjugacy class [3,0,1,1,0,0,0,0,0,0] 
is (1) (2) (3) (4,5,6) (7,8,9,10). Next we have to find the cycles of n* and to assign 
edges or non-edges to them with equal probability 1/2. This procedure will finally 
determine the output graph G*. 

~ummarizing we may state the following theorem. 

Theorem. Assume that the universal number gn has been precomputed. Then there is 
an implementation of Algorithm RANDGRAPH which runs in expected time O(ri2). 

The method of Dixon and Wilf is in fact very fast. One may use this result for 
cataloguing graphs by generating them u.a.r. In case one aims a complete catalogue 
listing and checking for isomorphism is unavoidable, however, with small vertex 
numbers this does not present difficulties. In [17] Kerber et al. report on a successful 
effort for cataloguing all g10 = 12005169 unlabelled graphs of size 10 by generating 
them u.a.r. They used the method of Dixon and Wilf applied successively to sets of 
graphs of size 10 having prescribed edge number. The corresponding counting 
problem is solved by Polya's method. This approach, which is in contrast with the 
recursive methods used by Cameron et al. in [5] who have produced the same list 
of graphs earlier, however, does not seem to be efficient enough for listing graphs 
of larger size. 
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3.2. Restarting Procedures-Wormald's Method 

All known algorithmic methods for selecting u.a.r. an element from a set S use the 
numerical value of the cardinality lSI of S-at least implicitely (for example via a 
valid recurrence formula). It is often the case, however, that sufficient knowledge 
about lSI is not available or is such that evaluation of lSI can not be done efficiently 
(as in the case ofthe parameter gn in section 3.1). This is certainly true if 'algorithmic' 
is understood in the very classical sense. The situation changes when we use a 
so-called restarting procedure, i.e. a procedure which accepts a result and outputs 
it only with some specified probability and which in the case of non-acceptance 
restarts the whole probabilistic process again. Let us consider such restarting 
procedures in more detail. 

Let S be the set under consideration from which we want to select elements u.a.r. 
Assume that 

aeA 

is a partition of S into non-empty and mutually disjoint sets Sa where A is some set 
of indices. Let P(a), a E A, be a probability function on A, and for a E A let Pis) be 
a probability function on Sa. Let aa be an arbitrary number satisfying 

aa :::;; P(a)' Min {Pa(s)ls E Sa}. 

The following procedure is a restarting procedure selecting elements from S. 

Algorithm RRANDELEM(S) 

(1) Choose an element a in A with probability P(a); 
(2) If a was chosen in step (1) then choose s E Sa with probability Pa(s); 
(3) Accept s with probability Pacc(s) = aaIP(a)· Pa(s) else goto (1); 

Obviously, this is not an algorithm in the classical sense since there may be 
indefinitely many steps before normal termination occurs. Let E. be the event 
'RRANDELEM(S) selects s' and let T be the random variable which counts the 
number of starts before termination. We have for s E Sa 

Prob(E.) = aa' (L aa 'ISal)-l 
aeA 

Hence, RRANDELEM(S) selects elements in S u.a.r. iff aa is independent of a, say 
aa = a for all a E A. In this case 

Exp(T) = (a 'ISI}-l . 

According to this and a :::;; Min {P(a)' Pis) I a E A, s E Sa} the best result is obtained 
when P(a) = ISal/lSI and Pis) = I/ISal, s E Sa, a E A, such that a = ISrl. In this case 
the procedure restarts with probability O. We may consider Algorithm RAND
GRAPH in section 3.1 as such a degenerate case of RRANDELEM where 

S = U {tp x Fix(tp)}, lSI = n!'gn, A = CPo (3.2.1) 
<pel[> 
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However, if we want to avoid evaluation of lSI this case is not obtainable. What we 
can do instead is to evaluate the numbers IS"I approximately as well as it is possible 
(with low effort). To be concrete, assume that we have found approximations 
u" ~ IS"I, oc E A. Put U = LU" and define 

P(oc) = u"lu. Pis) = IS"I-1, oc EA. 

Using these probability functions Algorithm RRANDELEM reduces the problem 
of generating u.a.r. an element from a 'large' set S to a series of generating tasks 
involving the 'small' sets SIX' This is advantageous at least in all those situations 
where the calculation of the numbers IS"I is easy while the calculation of lSI is 
difficult (for instance, because it is difficult to enumerate all sets SIX)' Furthermore, 
since step (2) is again u.a.r. generation step we may use RRANDELEM recursively 
(after having specified a suitable partionning rule). Finally, we may use any (proba
bilistic) algorithm which produces elements s of S not necessarily u.a.r. but with 
Prob(s) that is computable at least a posteriori to build up a restarting procedure 
for u.a.r. generation, provided we can evaluate a ~ Mins Prob(s). 

Based on the ideas outlined here Wormald has found generation procedures for 
several classes of unlabelled graphs [35]. In the case of arbitrary unlabelled graphs 
of size n he proposes a restarting procedure defined in the following way. 

Let S and A be as in (3.2.1). To implement step (1) of RRANDELEM(S) Wormald 
uses a partition 

oftPwhere 

tPi = {id} (id . .. the identity permutation) 

tPi = the set of all permutations q>(n) where n has exactly n - i fixed points 

(cycles oflength 1) 

Furthermore he introduces upper bounds 

Pi = 2N = ItPd, 

Pi = 2N - H(n,i)[n]i ~ ItPil, 

P=LPi 
2 ~ i ~ n, 

where N = (;). [n]i = n'(n - 1)· ... '(n - i + 1) and H(n,i) = i' (~_ i ~ 2), and 

replaces step (1) ofRRANDELEM by 

(1a) Choose a number i from {1, 2, ... ,n} with probability PiP-i ; 
(lb) Choose q> E tPi with probability ItPil-i ; 

In step (2) a graph G in Fix(q» is generated u.a.r. as in RANDGRAPH (section 3.1). 
The parameter oc used in determining the probability for acceptance Pace has the 
value P-i, hence 

Exp(T) = Plgn' 
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It can be sho~n that this value is bounded by a constant. The following theorem 
summarizes the results. 

Theorem. Wormald's restarting procedure generates unlabelled graphs of size n u.a.r., 
each graph being produced in expected time O(n2). No preprocessing for finding the 
number gIl is necessary. 

4. Labelled Graphs 

In this section we deal with labelled graphs G = (V, E) exclusively. In the first 
subsection we report on a general framework for the generation of a large variety 
of graphs of different types u.a.r. The next subsection is devoted to graphs with 
prescribed degree vector, and in the last part of this section we review some recent 
results concerning the generation of some types of planar graphs. 

4.1. A Framework For Generating Labelled Graphs 

Let r,. be the set of all labelled graphs of size n. Sampling from r,. u.a.r. can be done 
by constructing a list E of edges (i,j), 1 ::;; i <j::;; n, where the edges (i,j) are 
drawn independently, each with probability 1/2. The resulting graph G = (V, E) has 

probability 2-N, where N = (;). 

Compared with the situation with unlabelled graphs (section 3.1), generating labell
ed graphs u.a.r. from r,. is a trivial problem. However, difficulties soon appear when 
r,. is replaced by a subset of graphs having some specified additional properties. To 
handle these cases successfully we introduce a particularly convenient representa
tion for labelled graphs. 

A widely used tool for representing graphs are adjacency lists. For i E V let Ni be 
the list of vertices adjacent to i. The combined list (Nl , ... , N,,), however, is a 
redundant representation of G, since any <i,j) E E is noted twice, due to i E ~ and 
j E Ni. To avoid this redundancy we can use a list of irredundant adjacency lists 
(A l , ... , A,,-l) defined in the following way. 

AJ C V - {xl, ... ,Xj}, 1 ::;;j::;; n - 1, (4.1.1) 

xl=l, xj=Min{iliE~_d (4.1.2) 

U Ai - {Xl,· .. ,Xj} if this set is non-empty 
B. = 1 :S.i:S.j 

J V - {Xl'''' ,Xj} otherwise 

l::;;j::;;n-l, Bo=V 

Now, again, (A l , ... , A,,-l) represents a graph G = (V,E) uniquely. A sublist (A l ,. .. , 
Ai), i < n - 1, may be considered as the subgraph containing Xl"'" Xi' the edges 
<xk,j),j E Ak, 1 ::;; k ::;; i, and the isolated vertices 
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5 

Figure 3 

j E V - U A" - {Xl"",Xi}' 
lSkSi 

When using irredundant adjacency lists we shortly speak of the graph (or subgraph) 
(Al,···,A;). 

The representation of graphs by irredundant adjacency lists has been introduced 
in [30] in order to facilitate the solution of counting problems and to avoid 
stochastic dependencies. 

For an example see the graph in Fig. 3 which is represented by «2, 3, 4,5), (4, 5), -, - ) 
where' -' means the empty list. 

We will introduce now an algorithm scheme, called PROTOGRAPH, which by 
specialization yields several efficient generation algorithms for labelled graphs of 
various kinds. Assume that we want to determine the sequence Xl' ... , X,,-l and the 
adjacency lists A l , ... , A,,-l according to (4.1.1) and (4.1.2) for a random graph G. 
Assume '1'" is a subclass of r,. and, given (Al , ... , ..4;), I/I(Al ; ... ,..4;) is the number of 
graphs (A l , .. . , A,,-l) E '1'" with AJ = ~ for 1 ::s;; j ::s;; i. Define 

~ = U A" - {Xl, ... ,Xj}, lJ = V - U A" - {xl, ... ,xJ, 
lSkSJ lS"SJ 

uJ=I~I, 

Vo = {I}, 

1 ::S;;j::S;; n - 1. 

Vo = {2,3, ... ,n}, Uo = 1, 

The algorithm scheme is as follows. 

Algorithm PROTOGRAPH 

(1) Vo:= {1}; Vo:={2,3, ... ,n};j:= 1; 

Vo = n - 1. 

(2) If ~-l = 0 then xJ:= Min{ili E lJ-d else xJ:= Min{ili E ~-d; 
(3) Select Y c ~-l U lJ-l - {xJ with probability 

Prob(y) =I/I(Al, ... ,Aj-l,Y), (.11 ( ) I'l'.l ~ 1) 
'f' A1> ... ,AJ- l = " lor j = , 

I/I(Al, .. ·,Aj-d 

(4) Aj:= Y; 

(4.1.3) 
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(5) ~:= ~-l y Aj - {Xj}; J):= J)-l - Aj - {Xj};j:= j + 1; 
H j < n then goto (2); 

(6) Output (Al, ... ,An- l ); 

It is evident that this algorithm scheme after specification of a subroutine for 
calculating ",(A l , ... , Ai)' 1 5, j 5, n - 1, yields an algorithm for generating the 
elements of 'Pn u.a.r. By the way, ",(Al, ... ,Aj ) counts the number of ways one 
can extend the subgraph (Ai>"" Ai) to a graph in 'Pn. Again, the problem of 
constructing an efficient algorithm for generating u.a.r. graphs of a given type has 
been reduced to efficiently solving a corresponding counting problem. In general, 
it will not be known how to compute ",(A I' ... , Ai} efficiently. However, there is 
some reasonable chance to find an efficient counting method ir",(Ai>" ., Ai) does 
not depend on the 'structure' of (Ai>' .. , AJ) but depends only on the parameters Uj 

and vi defined in (4.1.3) and/or some additional easily handled parameters. We give 
a list of examples where algorithm PROTOGRAPH can be adapted successfully. 

Example 1. 'Pn = F,,(the trivial case mentioned at the begin of this subsection). 

Obviously, ",(At, ... , Ai} = 2NUJ where N(j) = (n ~ j). 
Example 2. 'Pn = F".m, the set of all labelled graphs of size n with m edges. Here we 
find 

. (n- j ) where N(j} = 2 ' mo = m and mJ = m - Li;S;i IAA· 

Example 3. 'Pn = Cn, the set of all connected labelled graphs of size n. It is well
known that Cn = ICnl satisfies the recurrency equation 

1 (n) (n-k) 
Cn = 2N - -' L k· ·2 2 • Ck 

n l;S;k;S;n-1 k 
(4.1.4) 

(see [10]). Furthermore, one can easily show that ",(A1, ... ,Aj ) depends on uj and 
Vj only. Write c(Uj, VJ) = ",(AI,'" , Aj ). These numbers satisfy the following general
ization of (4.1.4) (u = Uj,V = Vj for abreviation): 

c(u,v) = 2("1V
) - L (V). 2U>c(u, V - t). (4.1.5) 

I ;S;t;S;v t 

However, even (4.1.5) is still too monstruous for practical purposes. We better 
establish a table ofthe numbers c(u, v), 1 5, U 5, it, 1 5, v 5, v (once forever) for some 

("+V) 
it, v and use 2 2 as an approximation for c(u, v) in the range outside [1, it] x [1, v]. 
(In practice it = v = 12 suffices). With these ideas behind it is possible to implement 
an appropriate version of PROTOGRAPH which generates connected labelled 
graphs u.a.r. within any a > 0, which means that a graph G E Cn is produced with 
probability Prob( G) satisfying 

(1 - a)c;l 5, Prob(G) 5, (1 + a)c;l. 
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This result is of some theoretical interest. In practice, at least for vertex numbers 
n ;e:: 12, it is even better and easier to use a restarting procedure (see section 3.2) 
which generates u.a.r. graphs in r" and accepts them if they are connected. Such a 
restarting procedure has been mentioned first in [30]. 

Example 4. 'Pn = Cn.m, the set of connected graphs of size n with m edges. Here 
l/I(A 1" •. , Aj) depends on uj, Vj and mj only, where mj is defined in Example 2. An 
appropriate treatment is found by a combination of Example 2 and Example 3. 

Example 5. 'Pn = T,., the set of free labelled trees of size n. This is a special case of 
Example 4 with m = n - 1 and Vj = mj,j ;e:: 1. With Uj = U, Vj = v and again putting 
l/I(A 1 , ••• , Aj) = c(u, v) we get . 

c(u, v) = L (v) (t + l)t-1c(u - 1, v - t) 
o::;;t::;;v t 

with solution c(u, v) = u(u + v)V-l, U ;e:: 0, v ;e:: O. 

Example 6. 'Pn = r",even, the set of labeled graphs with all degrees d(i), i E V, even. 
Here l/I(A 1 , ••• , A) depends on uj and Vj only, and with the same notation as above 
we have 

(u+v-1) 
c(u, v) = 2 2 • 

Example 7. 'Pn = r",eul, the set of Eulerian graphs of size n (connected graphs with 
all vertex degrees even). As above l/I(A 1, ... , Aj) depends only on uj and Vj' Use again 
c(u, v) = l/I(A 1 , ... , Aj) to get 

(u+v-1) (v) (t-2) c(u, v) = 2 '2 - L 2 2 c(u, V - t), 
1 ::;;t::;; v t 

a formula which may be used in an analoguous way to Example 3. 

Example 8. 'Pn = r",bp, the set of bipartite graphs. Let lj, Zj be a bipartition of 
(A 1 , ••• ,Aj ).l/I(A 1 , ••• ,Aj ) depends on 0( = I £!in ljl, P = l~nZjl and}' = Iljl. We 
find 

Example 9. 'Pn = r",d, the set of graphs with degree vector d = (d1, ... ,dn). Here 
l/I(A 1 , • •• ,Aj) depends highly on the structure of (A 1, ... , Aj ). [30] contains a discus
sion of this case. 

Example 10. Digraphs 
In the case of digraphs we have to replace the lists Aj in the representation of a 
graph by a pair of lists (Aj, AJ) containing predecessors and successors of Xj' 

respectively, being defined analoguously to (4.1.1) and (4.1.2). In [30] algorithms of 
type PROTO GRAPH are given for arbitrary digraphs, weakly connected digraphs, 
strongly connected digraphs, tournaments, and other types of digraphs. 

All details concerning the particular graph classes addressed in Examples 1-10 are 
found in [29, 30]. 
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4.2. Graphs With Prescribed Degree Vectors 

The problem of generating random graphs with given degree vectors was already 
addressed in [30] (see Example 9 in section 4.1) where it was shown how to generate 
such graphs and how to compute a posteriori the probability that the particular 
output graph was produced. Although the probabilities associated with the different 
graphs may vary considerably this method can be used for constructing a restarting 
procedure (see section 3.2) which finally generates graphs of the prescribed type 
u.a.r. The expected time needed for generating a single graph depends on the 
minimum probability which may occur, therefore, since the algorithm presented in 
[30] is not very complicated, there is some chance for getting a -complete analysis 
of the expected time consumed by the restarting procedure. However, as yet this 
subject has not been investigated sufficiently. 

The special case in which the graphs to be generated are regular is of particular 
interest. Wormald [34] gives an efficient algorithm for generating labelled cubic 
graphs of size n. However, his method is based on a specific recurrence equation 
(see the remark at the end of section 2.3) for the associated counting problem, and 
it is not to see how to generalize it successfully to higher degrees. A simple method 
proposed by Wormald [34], which is based on an idea of Bollobas and Thomasson 
[4], generates regular graphs of arbitrary degree r u.a.r., but the algorithm fails 
to produce an output with some probability which remains bounded only for 
r = O((log n)1/2). 

More recently, the problem of this subsection has received a considerably amount 
of attention, caused partially by some very attractive results of Jerrum and Sinclair 
[15], [16], [27], [28], and others. By an indirect method based on approximate 
counting Jerrum and Sinclair [16] give an almost uniform generation algorithm 
which runs in polynomial time for regular graphs up to degree ~ n12. The method 
is based on a Markov chain simulation technique which has turned out to be a 
powerful tool for the random generation of various combinatorial configurations 
[14,15,16]. To sketch the idea, let F(d) denote the set of all labelled graphs with 
degree vector d = (d1, ••• , dn ). With F(d) a Markov chain MC(d) is associated whose 
states include the elements of F(d) together with some auxiliary structures, and 
whose transitions correspond to simple random perturbations such as edge addi
tions or deletions. This process turns out to converge asymptotically to a stationary 
distribution which is uniform over the states. Moreover, under some restrictions on 
the values of d, the convergence is fast in the sense that the distribution gets very 
close to uniform after a polynomial number of steps. This property of Markov 
chains is called rapidly mixing [1,7.14]. Thus one can generate elements of F(d) 
almost u.a.r. by simulating the evolution of MC(d) for some small number of steps 
and outputting the final state. 

Finally, two very recent papers [8,20] deal with regular graphs of degree o(n1!5) 
and o(nl/3), respectively, using more direct methods. 
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4.3. Two Classes of Planar Graphs 

4.3.1. Preliminaries 

The counting problem for general planar graphs is still unresolved. However, there 
are several subclasses of planar graphs whose cardinalities depending on the size n 
are known or are efficiently computable (see [18]). In this section we present two 
recent results in this direction concerning 2-connected outerplanar graphs and 
maximal planar graphs and describe the corresponding generation algorithms. 

As already mentioned at the end of section 2.3 the existence of a recurrence relation 
for the numbers of certain combinatorial configurations of variable size may lead 
to a generation algorithm for these configurations in a straightforward way. This 
was already pointed out in [22]. Here, we will pick up this idea and outline it briefly, 
giving a slightly modified presentation. 

As before, let 'P be a certain class of labelled graphs defined by some graph
property, 'P(n) the set of all such graphs of size n, and "'n = I 'P(n)l, n E 1\1. Let 
1 = Min{nl 'P(n) # o}. Assume that for n E 1\1 the set 'P(n) is a union 

'P(n) = U Mk 
l!5:k!5:k(n) 

where each Mk c: 'P(n) is an image 

Mk = (}k('P(j(k, 1» x 'P(j(k,2» x ... x 'P(j(k, i(n») , 1::; j(k, i) < n, 1::; i ::; i(n) 

under some injective mapping (}k from some product of sets 'P(j(k, i» of graphs 
of smaller size into 'P(n). This means that each element G E Mk can be constructed 
in a unique way using elements G1 E 'P(j(k, i» and applying some well-defined 
construction rule to them. It is not necessary that the sets Mk are disjoint. If not, 
however, assume in addition that there exist non-negative numbers Pn,l' Pn,2' ... , 
Pn,k(n) such that 

and 

I 'P(n) I = L Pn,k 'IMkl = L Pn,k' n I 'P(j(k, i»1 
l!5:k!5:k(n) l!5:k!5:k(n) l!5:I!5:I(n) 

L Pn,k = 1. 
l!5:k!5:k(n) 

In the case where the Pn,k'S are known we get the recurrence equations 

n> 1. (4.3.1) 

which like (2.2.1) after dividing both sides by "'n may be interpreted as a sum of 
probabilities 

~ "'i(k, l) ••••• "'i(k,l(n)) - 1 
L. Pn,k ./, - . 

1 !5:k!5:k(n) 'I'n 
(4.3.2) 

Obviously, the formulas (2.2.1) and (2.3.1) are special cases of (4.3.1). 
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Assume that RAND'PL is an algorithm which generates elements of 'l'(l) u.a.r. The 
following algorithm which is based on (4.3.2) and the 'start'-procedure RAND'PL 
generates elements from an arbitrary 'l'(n) u.a.r. 

Algorithm RAND'l'(n) 

(1) Choose k from the set {1,2, ... ,k(n)} with probability 

Prob(k) = Pn,kl/lj(k, 1) .~~., I/IJ(k, i(n» ; 

(2) For 1 ::;;; i ::;;; i(n) do 
if j(k, i) > I then Gi := RAND'l'(j(k, i» else Gi := RAND'l'L; 

(3) Output G := (M G1,· •• , Gi(n»; 

This algorithm requires preprocessing for calculating the sequence 1/11'" ., I/In. With 
these numbers given, the time-complexity of RAND 'l'is O( n2 ), provided step (3) can 
be done in time O(n2). 

4.3.2. Two-connected Outerplanar Graphs and Maximal Planar Graphs 

A planar graph is called outerplanar if it can be embedded in the plane so that all 
vertices lie on the same face. A 2-connected outerplanar graph possesses a unique 
Hamiltonian cycle C, and we may assume that this cycle is the boundary of the 
exterior face. All the remaining edges of such a graph are chords of C. Hence, two 
2-connected outerplanar graphs are distinguished firstly by the arrangement of the 
vertices on the cycle C and, secondly, by the number and arrangement of their 
chords. Let op(n) be the number of Oabelled) 2-connected graphs on n vertices. 

Obviously, op(3) = 1. Furthermore, op(n) = (n ~ 1)1 . ch(n) where ch(n) is the num

ber of different ways one can draw pairwise non-crossing chords in the cycle 
(1,2, ... , n). In [11] the following recurrence relation for the sequence ch(n) has been 
derived 

ch(n) = 3'ch(n -1) + 2· L ch(j -1)·ch(n - j + 2). 
4~j~n-1 

This implies 

op(n) = 3(n - 1)'op(n - 1) 

C-1) +4 L . 2 ·op(j-1)'op(n-j+2), 
4~j~n-1 -

n~4, (4.3.3) 

which, clearly, is a special case of (4.3.1). 

A maximal planar graph is one to which no edge can be added without loosing 
planarity, or equivalently, for which every face is a triangle. The counting problem 
for such graphs has been solved in [31]. 



Generating Graphs Uniformly at Random 253 

(I) (b) 

2 

Figure 4 

Let mp(n) be the number of maximal planar graphs of size n. Based on the results 
in [31J in [I1J a recurrence relation for the sequence mp(n) is established. Any 
maximal planar graph G can be constructed by first choosing the exterior triangle 
and the triangulating then 'inner part' of this triangle by inserting n - 3 additional 

vertices and 3n - 6 additional edges. H we choose the exterior triangle in the (;) 

possible ways, since any triangle of G can be made the exterior one, by this method 
method we get any particular graph in exactly 2n - 4 different ways. Therefore, we 
have 

mp(n) = 2n ~ 4 (;).ins(n,n - 3) (4.3.4) 

where for arbitrary k and j ins(k, j) denotes the number of different ways one can 
triangulate the closed polygon (1, 2, ... ,k - j) by inserting the vertices k - j + 1, ... , 
k and 2k - 6 appropriate edges. There are two possible types of triangulations 
distinguished by the shape of the neighbourhood of the vertex 1 (see Fig. 4). 

Fig. 4a shows the first type where no edge (I, i), 3 :s;; i :s;; k - j - 1, exists. Fig. 4b 
shows the second type where such an edge is drawn. Let ins'(k,j) and ins"(k,j) 
denote the numbers of triangulations of these two types, respectively. The following 
equations are valid: 

ins(k,j) = ins'(k,j) + ins"(k,j) 

ins'(k,j) = L (j). t!· ins(k - l,j - t) 
OS;t~j t 

(4.3.5) 

ins"(k,j) = L L (j).inS'(S + t,t)·ins(k - S - t + 2,j - t) 
3~.~k-j-l O~t~j t 

with obvious initial conditions. This together with (4.3.4) yields a recurrence relation 
for mp(n) which is of the form (4.3.1). 

Implementations of RAND IJ1 for generating u.a.r. outerplanar graphs and maximal 
planar graphs, respectively, which are based on the results presented in this section 
can be found in [11]. 
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Embedding one Interconnection Network in Another 

B. Monien, Paderbom, and H. Sudborough, Dallas, Tex. 

Abstract - Zusammenfassung 

Embedding one Interconnection Network in Another. We review results on embedding network and 
program structures into popular parallel computer architectures. Such embeddings can be viewed 
as high level descriptions of efficient methods to simulate an algorithm designed for one type of parallel 
machine on a different network structure and/or techniques to distribute data/program variables to 
achieve optimum use of all available prooessors. 

AMS Subject Classifications: 68QI0, 94-02, 94C15. 

Key words: Embedding, simulation, interconnection network 

Vergleich von Rechuerverbindungsnetzen. Wir rezensieren Ergebnisse liber die Einbettung von Netz
werken und Programmstrukturen in popuHire Rechnerarchitekturen. Solche Einbettungen konnen als 
hochsprachliche Beschreibungen effizienter Methoden angesehen werden mit deren Hilfe Algorithmen, 
die fUr eine parallele Maschine entwickelt wurden, auf einer anderen Netzwerkstruktur simuliert 
werden k6nnen. Auf der anderen Seite werden auf diese Weise Techniken zur Verteilung von Daten 
bzw. Programmvariablen beschrieben, die eine optimale Ausnutzung aller verfugbaren Prozessoren 
sicherstellen. 

I. Common Network and Algorithm Structures 

Various parallel computer architectures have gained favor and are in use today. 
Other structures included here are often used as program/data structures. The 
techniques we survey compare networks by considering the ability of one to simulate 
other network structures. Such simulations are studied by embeddings. A good 
simulation is said to exist when adjacent processors in the guest network are mapped 
to reasonably close processors in the host network, when the messages between 
processors in the guest can be routed in the host without incurring significantly 
larger delay, when the host network is not too much larger than the guest network, 
and, in the case of mapping guest networks into smaller hosts, when the processors 
of the host have been assigned a reasonably similar number of processes from 
the guest. The quality of a network as an interconnection structure is often dis
cussed by other measurements. Typical measurements include a network's diameter, 
namely the maximum distance between any pair of nodes, and its maximum node 
degree, i.e. the maximum number of edges incident to a node. These properties are 
important, as (a) a network's diameter measures how much distance exists be-
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tween processors and hence gives a lower bound on communication time and (b) a 
network's maximum node degree describes the largest number of connections made 
to an individual processor. 

Binary Hypercubes The binary hypercube of dimension n, denoted by Q(n), is the 
graph whose nodes are aU binary strings of length n and whose edges connect those 
binary strings which differ in exactly one position. 

Clearly, a binary hypercube Q(n) has 2" nodes and, as each node is connected to n 
edges, a total ofn2,,-1 edges. It is also easily seen that the diameter of the hypercube 
Q(n) is n, which is the logarithm of the number of its nodes. An illustration of Q(4) 
is shown in FigUre 1. 

Binary Trees The complete binary tree of height n, denoted by B(n), is the graph 
whose nodes are all binary strings oflength at most n and whose edges connect each 
string x of length i (0 S; i S; n) with the strings xa, a in {O, I}, of length i + 1. The 
node e, where e is the empty string, is the root of B(n) and a node x is at level i, 
i ~ 0, in B(n) if x is a string of length i. A binary tree is a connected subgraph of 
B(n), for some n ~ O. A variation of a complete binary tree allows for double roots, 
denoted by DRB(n), i.e. its nodes are aU binary strings oflength at most n plus one 
new node e' (called the alternate root), where e represents the empty string, obtained 
from B(n) by simply inserting e' into the edge connecting e with the node 1. (The 
new node e' thus has two neighbors: the root e and the node 1.) See Figure 2 for an 
illustration of DRB(2). 

Figure 1 

e.~ 

/\ 
00 01 10 11 

Figure 2 
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Clearly, B(n) has 2,,+1. - 1 nodes and 2"+1 - 2 edges. It is also easily seen that the 
diameter of B(n) is 2n, which is O(log N), where N is the number of its nodes, and 
the maximum node degr~e is 3. 

Meshes The d-dimensional mesh of dimensions at> a2, .•. , ad' denoted by 
[al x a2 x ... x ad], is the graph whose nodes are all d-tuples of positive integers 
(Zl,Z2, ... ,Zd), where 1 ::;;;zl::;;;aj, for all i (O::;;;i::;;;d), and whose edges connect 
d-tuples which differ in exactly one coordinate by one. 

Clearly, [al x a2 x ... x ad] has al x a2 x ... x ad nodes. Its diameter is 
(a1 - 1) + (a2 - 1) + ... + (ad - 1) and maximum node degree is 2d, if each al is at 
least three. 

Pyramids The pyramid of height n, denoted by P(n), is the graph whose nodes are 
all triples of nonnegative integers (i,x,y), where 0 S; i S; nand 1 S; x, y ::;;; 21, and 
whose edges connect (i,x,y) with the vertices in Hi + 1,u,v)lu in {2x,2x - 1} and 
v in {2y,2y + 1}} as well as with all vertices (i, u, v) such that (x, y) and (u, v) are 
adjacent nodes in the mesh [2i x 2i], for all i (0 S; i < n) and all x, y (1 ::;;; x, y S; 21). 

P(n) has 1 + 4 + 42 + ... + 4" nodes. Its diameter is 2n - 1 and it has maximum 
node degree 9. An illustration of P(2) is shown in Figure 3. 

X-trees The X-tree of height n, denoted by X(n), is the graph whose nodes are all 
binary strings of length at most n and whose edges connect each string x of length 
i (0 S; i < n) with the strings xa, a in {O, 1}, of length i + 1 and, when binary(x) < 
2i - 1, connects x with successor(x), where binary(x) is the integer x represents in 
binary notation and successor(x) denotes the unique binary string of length i such 
that binary(successor(x» = binary(x) + 1. (For completeness let binary(e) = 0, 
where e is the empty string.) 

Figure 3 
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Figure 4 

(OO.e) 

(11.e) 

Figure 5 

X(n) has 2n+l - 1 nodes and 2n+2 - n - 4 edges. Its diameter is 2n - 1 and it has 
maximum node degree 5. An illustration of X(2) is shown in Figure 4. 

M esh-of-Trees The mesh-of-trees of dimension n, denoted by MT(n), is the graph 
whose nodes are all pairs (x, y), where x and yare binary strings of length at most 
n, with at least one of x, y of length exactly n, and whose edges connect, when x is 
oflength less than n, (x, y) with (xa, y), and, when y is oflength less than n, (x, y) with 
(x,ya), where a is in {0,1}. 

MT(n) has 2n+l(2n+l - 2n- 1 - 1) nodes and 2n+2(2n - 1) edges. Its diameter is 4n 
and it has maximum node degree 3. An illustration of MT(2) is shown in Figure 5. 

Butterflies The butterfly network of dimension n, denoted by BF(n), is the graph 
whose nodes are all pairs (i, x), where i is a nonnegative integer (0 ::;; i < n) and x is 
a binary string oflength n and whose edges connect (i, x) with both (i + 1 (mod n), x) 
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and with (i + 1(modn),xli + 1), where xli + 1 denotes the binary string which is 
identical to x except in the «i + 1) modn)-th bit. 

BF(n) has n2R nodes and n2R+1 edges, for all n > 2. Its diameter is n + floor(n/2) 
and it has maximum node degree 4. An illustration of BF(3) is shown in Figure 6. 

Cube connected cycles The cube connected cycle network of dimension n, denoted 
by CCC(n), is the graph whose nodes are all pairs (i, x), where i is a nonnegative 
integer (0 ::s; i < n) and x is a binary string oflength n and whose edges connect (t, x) 
with both (i + 1(modn),x) and with (i,xli), where xli denotes the binary string 
which is identical to x except in the i-th bit. 

CCC(n) has n2R nodes and 3n2R - 1 edges, for all n > 2. Its diameter is 2n + floor(n/2) 
and it has maximum node degree 3. An illustration of CCC(3) is shown in Fig
ure 7. 

Shu.fJle-Exchange Networks The shuffie-exchange network of dimension n, de
noted by SE(n), is the graph whose nodes are all binary strings oflength n and whose 
edges connect each string xa, where x is a binary string of length n - 1 and a is in 
{O, 1}, with the string xb, where b =1= a is a symbol in {O, I}, and with the string ax. 
(An edge connecting xa with xb, a =1= b, is called an exchange edge and an edge 
connecting ax with xa is called a shu.fJle edge.) 
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SE(n) has 2n nodes and 2n+1 edges. (Actually, the latter is a count of the directed 
edges, namely two from each node. The number of undirected edges will be smaller, 
as some of the connections are identical). Its diameter is 2n - 1 and it has maximum 
node degree 3. An illustration of SE(3) is shown in Figure 8. 

DeBrujn Networks The DeBrujn network of dimension n, denoted by DB(n), is the 
graph whose nodes are all binary strings of length n and whose edges connect each 
string xa, where x is a binary string oflength n - 1 and a is in {O, 1}, with the string 
bx, where b # a is a symbol in {O, 1}, and with the string ax. (An edge connecting 
xa with bx, a # b, is called a shujjlexchange edge and an edge connecting xa with 
ax is called a shujjle edge.) 

DB(n) has 2n nodes and 2(2n - 1) edges. Its diameter is n and it has maximum node 
degree 4. An illustration of DB(3) is shown in Figure 9. 

II. Measuring the Quality of Embeddings 

Let G and H be finite undirected graphs. An embedding of G into H is a mapping f 
from the nodes of G to the nodes of H. G is called the guest graph and H is called 
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the host graph of the embedding f Most of the results we describe here are for 
one-to-one mappings, where each processor in the host network is assigned at most 
one process (represented by an assigned guest node). However, we shall also con
sider many-to-one embeddings, where each processor in the host can have many 
assigned processes. This has been done before in several places, for instance [FF], 
[BovL], [EMS], [GuH], [GuH2], [DSl], [DS2]. When considering many-to-one 
embeddings load factor is an important issue. That is, the load factor of an em
bedding f is the maximum, over all host graph nodes x, of the number of guest 
nodes assigned to x. Clearly it is advantageous to minimize the load factor in a 
simulation of one network by another, as the distinct processes assigned to the same 
processor will be run sequentially. Thus, the amount oftime needed to simulate one 
step of the guest network is proportional to the maximum number of processes 
assigned to the same host processor. The dilation of an embedding f is the maxi
mum distance in the host between the images of adjacent guest nodes, i.e. 
max{distanceH(f(x),f(y»I(x,y) is an edge in G}, where distanceH(a,b) denotes the 
length of the shortest path in H between the nodes a and b. Clearly one wishes to 
minimize dilation in a simulation of one network by another, as the amount of time 
to communicate between formerly adjacent processors is proportional to the dis
tance between the host nodes to which they have been assigned. The expansion of 
the embedding f is the ratio of the number of nodes in the host graph to the number 
of nodes in the guest graph, i.e. I nodes (H) III nodes(G)I· When hosts are chosen from 
a collection C and no graph K in C satisfies I nodes(G) I ~ I nodes(K) I < Inodes(H)I, 
then H is called an optimal host in C for G. If there is a unique optimal host graph 
H in C for G, then H is called the optimum host in C for G. We also want to minimize 
expansion, as we want to use the smallest possible host network. (In fact, we may 
only have a fixed size host network and, consequently, we may have to consider 
many-to-one embeddings for large source structures.) We shall sometimes augment 
an embedding of G in H by a routing of G's edges, i.e. a mapping r of G's edges to 
paths in H. The edge congestion of such a routing r of G's edges, is the maximum, 
over all edges e in H, of the number of edges in G mapped to a path in H which 
includes e. That is, it is the maximum over all edges e in H of the number of edges 
of G routed through e. Clearly we also would like to minimize edge congestion, as 
it measures the amount of possible contention in the host for the same network link. 
If too many messages need to be passed through the same link, then some will need 
to be stored temporarily at the bottleneck and sent later. This will also add extra 
time to the communication between processors. 

III. Embedding into Binary Hypercubes 

As a binary hypercube has a regular structure and its diameter and number of 
connections at each node is logarithmic in its size, it is a popular architecture in the 
design of parallel computer networks. Several papers discuss the ability of binary 
hypercubes to simulate other network and algorithm structures. The following is a 
survey of some of this work: 
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A. Binary Trees 

The complete binary tree B(n), which has 2"+1 - 1 nodes, can be embedded into the 
hypercube Q(n + 1), which has 2"+1 nodes, with dilation 2. In fact, B(n) can be 
embedded into Q(n) in such a way that exactly one of its edges connects nodes 
assigned to positions at distance 2 in the hypercube and all others connect nodes 
at distance 1 [BhCLR], [BhI], [Hav], [Ne]. To see this observe that the double 
rooted binary tree DRB(n) is a subgraph of Q(n). This can be seen by a simple 
inductive argument. Observe that DRB(1) is a subgraph of Q(2). Now assume that 
DRB(n) is embedded in Q(n + 1) by a dilation 1 embeddingf Consider the positions 
assigned in the hypercube for the root e, the alternate root e', and the neighbors of 
these two nodes: 0 and 1. These four nodes form a chain of length 4, say 0, e, e', 1. 
As it is a dilation 1 embedding the successive positions they are mapped to must 
differ in exactly one bit position, say the first differ in the i-th bit, the next differ in 
the j-th bit, and the last differ in the k-th bit, where 1 s i, j, k s n + 1. Then consider 
the embedding I' illustrated in Figure 10(a), where f'(e) = f(O), f'(e') = f(e), and 
1'(1) = f(e'). A dilation 1 embedding g of DRB(n + 1) into Q(n + 2) is obtained 
from the embeddings f and 1'. That is, one views f as embedding the left subtree 
of DRB(n + 1), which is a copy of DRB(n), into the left half of Q(n + 2), i.e. the copy 
of Q(n + 1) which consists of all nodes whose bit string begins with 0, and, similarly, 
viewsI' as embedding the right subtree of DRB(n + 1) into the right half ofQ(n + 2). 
The embedding g is illustrated in Figure 10(b). 

Note that an inorder numbering of the nodes of a complete binary tree of height n 
also describes a dilation 2 embedding [BhCLR]. This is illustrated in Figure 11. 
Dilation 1 is not possible, as it is known that the complete binary tree B(n) is not 

(a) 
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b- - - - -1 e' 
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Figure 10 
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a subgraph of Q(n + 1), for all n > 1. The argument is straightforward. Both binary 
trees and hypercubes are bipartite graphs, i.e. their nodes can be assigned two colors, 
say black and white, so that adjacent nodes do not receive the same color. Such a 
two coloring of B(n), for n > 1, must result in 2n + 2n- 2 + ... > 2n nodes receiving 
the same color, as all nodes at the same level must receive the same color and so 
must all nodes at odd (even) levels. Similarly, Q(n + 1) is bipartite and any two 
coloration of its nodes results in all nodes with an even number of occurrences of 
the bit 1 getting the same color and similarly with those with an odd number of 
occurrences of the bit 1. Thus any two coloration of Q(n + 1) has exactly 2n nodes 
in each color class. So, B(n) cannot be a subgraph of Q(n + 1), as it has too many 
nodes in the same color class. Note that dilation 2 embeddings are possible, as we've 
seen, as they allow nodes in the same color class of B(n) to change color classes in 
Q(n + 1). 

Embeddings of arbitrary binary trees into hypercubes with small dilation have 
also been described. The principal technique is the use of an appropriate bisection 
theorem, i.e. a result describing a set of edges in the tree whose deletion results in 
two collections of subtrees, each having half of the total number of nodes. Bhatt, 
Chung, Leighton, and Rosenberg [BhCLR] described a dilation 10 embedding with 
small expansion (small here means roughly 4). An alternative construction was 
described by Monien and Sudborough [MoSu2], giving a dilation 5 embedding 
without expansion and a dilation three embedding with constant expansion. 

Other embeddings of trees into hypercubes include results about caterpillars and 
refinements of caterpillars. A caterpillar is a tree in which there is a simple path P 
such that every vertex is either included in P or is adjacent to a node in P. (The 
edges connecting nodes in P to nodes not in P are called legs.) A tree T is a refinement 
of a caterpillar if it is possible to obtain T from some caterpillar by the addition of 
degree two nodes into some number of the caterpillar's legs. For example, cater
pillars and certain refinements of caterpillars are known to be subgraphs of hyper
cubes [MoSpUW], [HavL]. 

Embeddings of binary trees into hypercubes by many-to-one maps have not re
ceived much attention. Presumably the dilation can be lowered when the em
beddings are many-to-one (not one-to-one), even when small load factor is required. 
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It is known that the complete binary tree of height k, for all k > 0, can be embedded 
into the hypercube with half as many points, namely Q(k), with dilation 1 and load 
factor 2 [M03]. The embedding to achieve this is a straightforward application of 
the one-to-one embedding described earlier for double rooted binary trees. That is, 
let DRB(k) be embedded into Q(k + 1) by a dilation 1 embedding f Without loss 
of generality, let the root be assigned to <Y'+1 and the alternate root be assigned to 
()i 1<Y'-i, i.e. the two nodes are mapped to hypercube nodes that differ in the (j + 1)-th 
position. Then, consider the mapping f' of the nodes of DRB(k) to the nodes of 
Q(k) which maps each node x to the string obtained from f(x) by deleting the 
(j + 1)-th position in the string. Now remove the alternate root and view f' as a 
two-to-one mapping from B(k) to Q(k). Clearly, as the mapping has not increased 
the distance between the images of any nodes and it has decreased by one the 
distance between the root and the image of its child that was at distance 2, the new 
embedding has dilation 1. Furthermore, every node of Q(k) hosts two guest pro
cesses except the one that hosts the root (it has only one assigned process). Thus, 
this embedding is optimum. 

B. Meshes 

Any mesh whose dimensions are a power of 2 is a subgraph of its. optimum 
hypercube. That is, for all n > 0, if n = n l + n2 + ... nk' then [n1 x n2 x ... x nk] 
is a subgraph of Q(n). This is easily seen by induction on n. For example, this means 
that Q(4) contains as a subgraph the meshes [2 x 8], [4 x 4], [4 x 2 x 2] and Q(4) 
is, of course, identical to the mesh [2 x 2 x 2 x 2]. It follows from this that many 
meshes whose dimensions are not all a power of two are also subgraphs of their 
optimum hypercubes. For example, the mesh [7 x 7] with 49 points is a subgraph 
of the mesh [8 x 8] and, therefore, of its optimum hypercube Q(6). The general 
statement is that a d-dimensional mesh [a1 x a2 x ... ad] is a subgraph of 
its optimum hypercube if and only if ceiling(log2 a1) + ceiling(log2 a2) + .. , + 
ceiling(log2 ad) = ceiling(log2 a l + log2 a2 + ... + log2 ad) [BrS], [ChC], [Gr]. 

That this condition is necessary is easily seen. For example, suppose we have a 
dilation 1 embeddingf of a 2-dimensional mesh [m x n] in its optimum hypercube, 
i.e. the hypercube Q(t), for t = ceiling(log2 (m x n». Call, for any s, nodes (i, s) and 
(i + 1, s) column-adjacent nodes in the i-th row and (s, i) and (s, i + 1) row-adjacent 
nodes in the i-th column. First, observe that any dilation 1 embedding must map all 
column-adjacent nodes in the same row and all row-adjacent nodes in the same 
column to hypercube nodes that differ in the same bit position. For instance, let f 
map (i, s) to ot and (i + 1, s) to <Y'-110t - k, i.e. hypercube nodes that differ in just the 
k-th bit. Let f map (i, s + 1) to ()P-l1or-p, for some p, which (without any loss 
of generality) we assume is greater than k. Then, the mesh node (i + 1, s + 1), 
which is a neighbor of both (i + 1,s) and (i,s + 1) must map to the hypercube 
node Ok-l 1()P-k-l lOt - p , as f is a dilation 1 embedding. Therefore, (i, s + 1) and 
(i + 1, s + 1) also map to hypercube nodes that differ in just the k-th bit. The general 
statement follows. Secondly, observe that row-adjacent nodes in the same column 
and column-adjacent nodes in the same row cannot be mapped to hypercube nodes 



Embedding one Interconnection Network in Another 267 

that differ in the same position, as each row and column intersect and this would 
result in mesh nodes being mapped to the same hypercube node. So, if f is a dilation 
1 embedding ofthe mesh [m x n] into its optimum hypercube Q(t), then there must 
be (a) at least ceiling(log2 m) bits in the binary strings denoting hypercube posi
tions that are altered for column-adjacent nodes in the m rows and (b) at least 
ceiling(log2 n) bits, distinct from those described in (a), for the row-adjacent nodes 
in the n columns. This is only possible, if t ~ ceiling(log2 m) + ceiling(log2 n). 

It is known that every 2-dimensional mesh can be embedded into its optimum 
hypercube with dilation 2 [Ch]. This is optimum, as the preceding paragraph shows 
many 2-dimensional meshes are not subgraphs of their optimum hypercubes. An 
earlier technique [BeMS] for embedding a [m x n] mesh into its optimum hyper
cube actually did so by embedding with dilation 2 it into the mesh [2m' X p], where 
m' = ceiling(log2 m) and p is determined by the technique. (As the latter mesh has 
a power of two rows, it is a subgraph of a hypercube.) For example, the mesh 
[5 x 50] by this technique is embedded with dilation 2 in the mesh [8 x 32]. The 
latter mesh is a subgraph of the optimum hypercube Q(8) for the [5 x 50] mesh. 
Theembeddingofa[m x n] mesh into a mesh [2m' x p],wherem' = ceiling(log2m) 
is done via the construction of tiles. A (m,2i )-tile, for any i > 0 and any m 
(2i-1 :s; m :s; 2i), is an embedding of a [m, 2i] mesh into a [2i, m] mesh such that rows 
of the original mesh are embedded as horizontal chains, i.e. the nodes in the first 
(last) column of the original [m,21] mesh are embedded into the first (last, respec
tively) column of the host [2i,m] mesh. (In particular, the embedding that simply 
rotates the original mesh and maps rows to columns with dilation 1 is not satis
factory.) A recursive construction of (m, 21) tiles, for all i > 0, is described and it is 
shown that each constructed tile describes a dilation 2 embedding. (An example of 
the (5, 8)-tile constructed is shown in Figure 12.) 

For a mesh [m x n] one performs the embedding into [2m' X p], for some p, by 
taking the (m,2m')-tile T and chaining it together in the form T-TR - T-TR-formed 
by a vertical reflection of T [BeMS]. Although this technique falls short of em
bedding every 2-dimensional mesh into its optimum hypercube, it does describe a 
dilation 2 embedding for a large number. As indicated, moreover, it is now known 
that all 2-dimensional meshes can 'Je embedded with dilation 2 into their opti
mum hypercubes [Ch]. The techniques is similar, but does not embed meshes into 
meshes. Instead it embeds a mesh into the optimum hypercube directly (using 

(a) (b) 

Figure 12 
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binary reflected gray codes) and thereby uses the additional edges available in a 
hypercube. 

These techniques have also been investigated for their ability to embed multi
dimensional meshes into their optimum hypercubes. The technique of embedding 
meshes into meshes (using explicitly constructed dilation 2 tiles) results in a method 
to embed d-dimensional tiles with dilation at most d into hypercubes. Under certain 
conditions (described in [BeMS]) the technique is guaranteed to embed a d
dimensional mesh into its optimum hypercube. As this condition is not satisfied by 
a large number of d-dimensional meshes, the general question of embedding multi
dimensional meshes into their optimum hypercubes is still open. The technique used 
to show that all 2-dimensional meshes can be embedded with dilation 2 into their 
optimum hypercube has also been extended to the multi-dimensional case [Ch]. 

Results are also known about many-to-one embeddings of meshes into hypercubes 
[EMS]. For an arbitrary mesh M and positive integer i,let M's 1/21-size hypercube 
be the hypercube with 1/21 as many processors as M's optimum size hypercube. For 
example, if M is a [5 x 5] mesh (it has 25 nodes), then M's optimum size hypercube 
is Q(5) with 32 nodes, its 1/2-size hypercube is Q(4) with 16 nodes, its 1/4-size 
hypercube is Q(3) with 8 nodes, etc. In [EMS] it is shown that, for all i, every 
2-dimensional mesh can be embedded into its 1/21-size hypercube with dilation 1 
and load factor 1 + 21. For example, each 2D mesh can be embedded into its 1/2-size 
hypercube with load factor 3 and dilation 1 and into its 1/4-size hypercube with 
load factor 5 and dilation 1. In many cases better results are known. For example, 
it is known that every mesh which has a number of rows which can be expressed 
as either 2/ or 2/(1 + 2i ), for some nonnegative integers i and j, can be embedded 
into its 1/21-size hypercube with dilation 1 and 10ad factor 2/. For example, every 
mesh with 2, 3, 4,5,6,8,9,10,12,16,17,18,20,24,32, or 33 rows can be embedded 
with dilation 1 and load factor 2 into its 1/2 size ;hypercube. We illustrate an 
embedding of the [5 x 5] mesh into the 16 point binary hypercube in Figure 13. 

The technique used to obtain these embeddings of meshes into smaller hypercubes 
is called braiding. To illustrate, we describe in Figure 14 a braiding of 5 rows of a 
mesh to yield load factor 2 and dilation 1, and in Figure 15 a braiding of 9 rows of 
a mesh to yield load factor 2 and dilation 1. It should be noted that we say that r 
rows can be braided on 28 rods with load factor f and dilation 1, when there is an 
embedding of the points of an r row mesh onto the points of a 2" row mesh type 
structure with extra column edges (to be described) that assigns the points column 
by column from left to right across the guest and host mesh structures and assigns 
uniformly f points of the r row mesh to each point in a given column of the 28 row 
mesh structure before assigning points to the next column. (The extra column edges 
of the 2" row mesh structure are the same as in a hypercube. In particular, let the 
28 rows be labeled by binary strings of length s and in the order given by a binary 
reflected Gray code. There are edges between points in the same column whose row 
labels differ in one position, as well as between corresponding row positions in 
adjacent columns.) Clearly, such a 2" mesh structure is a subgraph of a hypercube. 
In fact, it is a subgraph of the hypercube formed by increasing, if necessary, the 
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number of columns to the next power of 2 and then, after labeling, say the result
ing 2" columns with successive strings in a binary reflected Gray code of all 
binary strings of length t, adding edges between columns whose labels differ in one 
position. 

There are various theorems about braidings that help to fmd efficient embeddings 
of meshes into smaller hypercubes. For instance, in [EMS] a product theorem 
states: Ifr1 rows can be braided on Sl rods with uniform load factor 11 and dilation 
1 and r 2 rows can be braided on S2 rods with uniform load factor 12 and dilation 1, 
then r 1 x r 2 rows can be braided on Sl x S2 rods with uniform load factor 11 x 12 
and dilation 1. For example, as 5 rows can be braided onto 4 rods with uniform 
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Figure 15 

load factor 2 and dilation 1, it follows that 25 rows can be braided on 16 rods with 
uniform load factor 4 and dilation 1. 

These techniques and other similar results are used in [EMS] to embed multi
dimensional meshes into smaller hypercubes with small dilation and optimum or 
nearly optimum load factor. For example, a 3D [5 x 5 x 9] mesh can be embedded 
into its 1/2-sizehypercube, Q(7), with dilation 2 and load factor 2. 

C. Pyramids 

The pyramid P(k), for all k > 0, can be embedded into its optimum hypercube, 
Q(2k + 1), with dilation 2 and edge congestion 2 ESt]. (Stout did not consider edge 
congestion, but it can be seen that the embedding he describes does indeed have 
edge congestion 2.) We describe a different embedding here with the same bounds 
on dilation and edge congestion. Our embedding is described recursively. To begin 
with, a dilation 2, edge congestion 2 embedding of P(I) into Q(3) is shown in Figure 
16. Define the following invariant property, for the sake of induction: P(k) can be 
embedded into Q(2k + 1) by an embedding h which: 

(a) has dilation 2 and edge congestion 2, 
(b) maps the apex of the pyramid P(k) to a hypercube node, called the standard 

apex position, which has an unassigned neighbor, called the alternate apex 
position such that at most one edge is routed through the edge connecting the 
standard and alternate apex positions, and 
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(c) the embedding g" that agrees with h on every node of P(k) except the apex and 
maps the apex to the alternate instead of the standard apex position also satisfies 
conditions (a)-(b), where the role of the standard and alternate apex positions 
are reversed. 

Embed the nodes and edges of P(k + 1) into Q(2k + 3) by the embeddingh+l which 
is defined as follows: 

(1) View Q(2k + 3) as partitioned into four copies of Q(2k + 1), which we refer 
to as the quadrants of Q(2k + 3). The four quadrants are defined by the sets of 
nodes in Q(2k + 3) that begin with the prefixes 00, 01,10, and 11, respectively, 

(2) Embed a copy of P(k) into each of the four quadrants, where the copies 
embedded in the 10 and 11 quadrants are mapped by h and the copies embedded 
in the 00 and 01 quadrants are mapped by gk' i.e. the apexes of the copies of 
P(k) embedded in the 00 and 01 quadrants are placed at the alternate apex 
positions, and 

(3) Place the apex of P(k + 1) in the apex position of the 00 quadrant and then 
route the edges of P(k + 1) as shown in Figure 17. 

It is easily seen that conditions (a)-(c) are satisfied by h+l. Note that the edges 
connecting corresponding nodes in the four copies of the pyramid P(k), while not 
explicitly shown in Figure 17, connect nodes assigned to corresponding hypercube 
positions (hence are neighb<:>rs in the embedding). Furthermore these edges connect 
nodes assigned to distinct quadrants and are not used for other edges in the 
embedding. Thus h+l is a dilation 2, edge congestion 2 embedding of the pyramid 
P(k + 1) into its optimum hypercube. 

Dilation 3, edge congestion 2 and dilation 2, edge congestion 3 embeddings of 
pyramids into their optimum hypercubes have also been described [LaW], [La W2]. 
These authors conjectured earlier that no embedding could achieve dilation 2 and 
edge congestion 2 simultaneously, apparently unaware of the earlier result of Stout 
[St]. In fact, this conjecture has also been disproved in another direction. 
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In [DS2] a dilation 3, edge congestion 1 embedding of P(k) into Q(2k + 5) has been 
described. This embedding can again be described by induction on k. To begin 
consider the following dilation 3 and edge congestion 1 embedding of P(I) and Q(7). 

Map the apex of P(I) to 07 and the four base nodes to 106, 105 1,102 103, and 110103• 

Then route the edges as follows. 

(1) edges from the apex of P(I) to the base nodes: 
(a) 07 -+ 106 

(b) 07 -+ 06 1 -+ 105 1 
(c) 07 -+ 03 103 -+ 102 103 

(d) 07 -+ 0105 -+ 010103 -+ 110103 

(2) edges between the base nodes: 
(a) 106 -+ 102 103 

(b) 102 103 -+ 110103 

(c) 110103 -+ 1105 -+ 1104 1 -+ 105 1 
(d) 105 1 -+ 106 

It is then easily verified that the edges of the pyramid are routed through unique 
hypercube edges (i.e. the embedding has edge congestion 1) and that the dilation is 
3. Furthermore, for the sake of our induction step, we observe that there is a copy 
of Q(5) as a subgraph of Q(7) in which only one node of the pyramid is assigned. 
This is, the set of nodes {OX 1 X20X3X4XS I for each i (1 ::;; i ::;; 5), Xi is in {O, I} } is a set 
of nodes that appropriately induces a copy of Q(5) with only the node 07 used as a 
host. In addition, only the nodes 06 1 and 0105 in this set are used for routing 
pyramid edges in the embedding of P(l) into Q(7). The inductive step is then 
accomplished by assuming a dilation 3, edge congestion 1 embedding of P(k) into 
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Q(2k + 5) in which there is a copy of Q(5) as a subgraph with only one of its points 
assigned (namely for the apex of P(k)) and only two other points (as indicated) used 
for routing edges. Then, P(k + 1) is embedded in Q(2k + 7) with dilation 3 and edge 
congestion 1 by viewing P(k + 1) as four copies of P(k) with an additional apex, 
using the points in the indicated copies of Q(5) in the hosts of the inductively given 
embeddings of each of the four P(k)'s to host the additional apex node of P(k + 1) 
and to route the edges, and finally to obtain a new copy of Q(5) as indicated for the 
inductive step. The details can be found in [DS2]. 

We note that edge congestion 1 is not possible into the smallest possible hypercubes, 
at least for small pyramids. For example, the pyramids P(l), P(2), and P(3) have 
maximum node degrees of 5,7, and 9, respectively, while their optimum'hypercubes, 
namely Q(3), Q(5), and Q(7), have maximum node degree 3, 5, and 7, respectively. 
Therefore, edge congestion 2 is necessary for any embedding of these pyramids into 
their optimum hypercubes. It is unknown, as yet, whether there exists a dilation 2, 
edge congestion 1 embedding of P(k) into Q(2k + 1), for k > 3. It is known that any 
embedding of a pyramid into a hypercube must have dilation at least 2, as pyramids 
have odd length cycles. Other work on embeddings of pyramids into hypercubes 
has been described recently by [HoJ2]. 

D. X-trees 

There is a dilation 2, edge congestion 2 embedding of X(k) into Q(k + 1), for all 
k > O. The embedding strategy is similar to that used for embedding complete 
binary trees and pyramids and is easily defined recursively. In particular, we assume 
for an inductive hypothesis that there is a dilation 2, edge congestion 2 embedding 
of X(k) into Q(k + 1) such that the root of the X-tree is assigned to a hypercube 
position that has an unassigned neighbor and that there is one edge routed through 
the edge connecting the position of the root and this neighbor. Such an embedding 
of X(1) into Q(2) is shown in Figure 18(a). Let h denote such a dilation 2, edge 
congestion 2 embedding of X(k) into Q(k + 1). An appropriate embedding fk+l of 
X(k + 1) into Q(k + 2) is defined by the following: 

(a) 

00 

10 11 

(b) 

new 
root 

root of 
x(k) 

Figure 18 

root of 
x(k) 
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(1) Embed a copy of X(k) into each of two copies ofQ(k + 1) by he, 
(2) Place a new node, the root of X(k + 1), into the unassigned position adjacent 

to the position of the root in the embedding he of one of the two copies, and 
(3) Route the edges as shown in Figure 18(b). 

Note that edges connecting nodes in copies of X(k) will connect nodes assigned to 
corresponding positions in each of the two copies of Q(k + 1). So, these edges 
connect nodes placed at distance 1 in the hypercube and they also have edge 
congestion 1. 

E. Mesh of Trees 

A dilation 2 embedding of MT(n) into Q(2n + 2) is easily described using a dilation 
2 embedding of the complete binary tree B(n) into Q(n + 1) and the observation 
that MT(n) is a product of two such trees. For example, take the dilation 2 
embeddingf" of B(n) into Q(n + 1) given by the inorder numbering of nodes (using 
binary notation). Then define the embedding gn of the mesh of trees MT(n) into 
Q(2n + 2) by gix,y) = f,,(x)f,,(y). The embedding g2 of MT(2) into Q(6) is shown 
in Figure 19. 

(e,OO) 011000 (e,Ol) 011010 (e,lO) 011100 (e,l1) 011110 
(0,0) 001000 (0,01) 001010 (0,10) 001100 (0,11) 001110 
(1,00) 1(11000 (1,01) 101010 (1,10) 101100 (1,11) 101110 
(00,00) 000000 (00,01) 000000 (00,10) 000100 (00,11) 000110 
(01,00) 010000 (01,01) 010010 (01,10) 010100 (01,11) 010110 
(10,00) 100000 (10,01) 100010 (10,10) -t 100100 (10,11) 100110 
( 11,00) 110000 (11,01) 110010 (11,10) 110100 (11,11) 110110 

(OO,e) 000011 (OI,e) 010011 (lO,e) 100011 (l1,e) 110011 
(00,0) 000001 (01,0) 010001 (10,0) 100001 (11,0) 110001 
(00,1) 000101 (01,1) 010101 (10,1) 100101 (11,1) 110101 

Figure 19 

F. Butterflies and Cube Connected Cycles 

The butterfly BF(n), for all even integers n > 0, can be embedded into its optimum 
hypercube Q(n + ceiling(1og2 n» with dilation 1 [Stoe]. That is, BF(n) is a subgraph 
of its optimum size hypercube, for even integers n > O. As there is a dilation 1 
embedding of CCC(n) into BF(n) [FU], i.e. CCC(n) is a subgraph of BF(n), it follows 
that CCC(n) is, of course,. also a subgraph of its optimum size hypercube for even 
integers n > o. 

G. Shuftle-Exchanges and DeBrujn Networks 

It remains open whether either of these networks can be embedded into a hypercube 
with 0(1) dilation and 0(1) expansion. As the Shuftle-Exchange network can be 
embedded with dilation 1 into the DeBrujn network [Fu], a positive resolution of 
both questions can be obtained by an appropriate embedding of the DeBrujn graph. 
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H. Complexity Issues 

Hypercube Embedding Problem 
Instance: A finite undirected graph G and positive integers k and n. 
Qestion: Does there exist a dilation k embedding of G into Q(n)? 
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This problem is known [KrVC] to be NP-complete even when k = 1 (by a reduction 
from the 3-partition problem [GaJ]). In fact, it is known to be NP-complete even 
to decide if a tree can be embedded with dilation 1 into its optimum size hypercube 
[CW]o 

IV. Embeddings into Binary Trees 

A simple path can be embedded into its optimum complete binary tree with dilation 
3 ESe]. An outerplanar graph with maximum vertex degree d can be embedded into 
a binary tree with dilation ceiling(1og22d) + ceiling(log210g2 2d) + 5 [Mo]. For 
any n > 0, the X-tree X(n) can be embedded in the complete binary tree B(n) with 
dilation O(1ogn) = O(loglogN), where N is the number of vertices in the X-tree 
[BhCHLR]. 

It is known to be NP-complete to decide, given a graph G and a positive integer k, 
whether G can be embedded into a binary tree with dilation k [Mo]. In fact, it is 
NP-complete even for trees. On the other hand, for each fixed k, there is a poly
nomial algorithm (using dynamic programming), which when given a graph G, 
decides if G can be embedded with dilation at most k in a binary tree [MaSS]. It is 
easily established, using the respective diameters of a guest graph and the intended 
binary tree host, that many graphs cannot be embedded into a complete binary tree 
with 0(1) dilation. For example, complete ternary trees require c(1oglog n) dilation 
[HoMR], for some c > 0, and a dilation O(1oglogn) embedding exists [Elll]. 

V. Embeddings into Meshes 

Embedding meshes into meshes is an interesting issue. Every 2-dimensional mesh 
can be embedded into either its optimum square 2-D mesh or the next-larger-size 
square 2-D mesh with dilation at most 3 [E1l2]. The technique uses squeezing and 
folding, which were described in [AIR]. Examples ofthese operations are shown in 
Figure 20. In fact, a similar squeezing operation was used, via the recursive construc
tion of tiles, as described earlier, to embed a mesh M into a mesh M' in which M' 
is a subgraph of M's optimum hypercube [BeMS]. A recent paper [MeH], in fact, 
shows that every rectangular grid can be embedded into a small square grid with 
dilation 2. Other related work was done in [FS]. 

Embeddings into meshes of complete binary trees, meshes of trees, planar graphs, 
~hume-exchange networks, and other network structures have also been described 
in work on VLSI [Ull]. For example, complete binary trees are embedded into 
meshes by the well known H-tree construction and with better dilation by a 
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modified H -tree. construction, as described in [Ull]. Embeddings of general network 
structures into meshes are described by separator theorems, such as the 0(nl/2) 
planar separator theorem, and the recursive construction of a network layout based 
on separator results [Ull]. 

The problem of, given a finite undirected graph G and positive integers k and d, 
deciding whether G can be embedded with dilation at most k into ad-dimensional 
mesh is known [BhCo] to be NP-complete (by a reduction from l-in-3 3SA T) even 
when the graph G is a binary tree, k = 1, and d = 2. There are also interesting 
upper and lower bound results on embeddings of meshes into meshes of a different 
number of dimensions, the routing of messages between the processors in such a 
simulation [KoA], [KRT], and results about embeddings of meshes with "wrap 
around edges" (called toruses) [MaT]. 

Results are also known about many-to-one embeddings of meshes into meshes [SS]. 
This work describes how to embed meshes into smaller meshes with optimum load 
factor and dilation 1. These techniques do not work for all possible host meshes 
though; it is easily seen that for some host meshes large dilation and/or large load 
factor is required. For example, if the host mesh is a 1 x k mesh, for some k, i.e. a 
linear chain, then it is straightforward to show that large dilation and/or large load 
factor is necessary. Other work has been described in [EMS] to embed multidimen
sional meshes into smaller meshes with small dilation and optimum or neady 
optimum load factor. Similarly results are known about many-to-one embeddings 
of torus networks into smaller torus networks [PS] 

VI. Embeddings into Butterfly and Cube Connected Cycle Networks 

The complete binary tree B(n + floor(log2 n» can be. embedded into the butterfly 
network BF(n + 3) with dilation 4 [BhCHLR]. This shows that an n-vertex X-tree, 
for example, can be embedded into a butterfly network with dilation O(loglogn) 
and 0(1) expansion, as the paper also describes an embedding of X-trees into 
complete binary trees, as described earlier. The paper also shows that, there is a 
constant c > 0, such that for any nontree planar graph G whose smallest 1/3:2/3 
separator is of size S(n) and in which F(G) is the largest number of vertices in any 
internal face (of a planar embedding), any embedding of G into a butterfly must 
have dilation at least [c·logS(n)]/F(G). In particular, as a 2-dimensional mesh is 
planar, has an n1/2 separator, and has 4 nodes per face, any embedding of 2-D meshes 
into a butterfly must have dilation at least c . log n, for some constant c > 0. This is 
proportional to the butterfly's diameter and hence a random placement of the mesh 
nodes achieves this order of magnitude dilation. 

VII. Embeddings into Pyramids 

In [DS1] it is shown that, for any k ~ 0, the complete binary tree of height 2k + 1 
is a subgraph of its optimum size pyramid, namely P(k + 1). This dilation 1 em-
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bedding of B(2k + 1)jnto P(k + 1) can perhaps best be described by induction on 
k :2: 0. For the basis step, we map B(1) into P(1) by the embedding f, where 
f(e) = (1,0, 0),j(0) = (1,0,1), andf(1) = (1,1,0). For the inductive step, assume that 
one is given already an embedding of B(2k + 1) into P(k + 1) with the leaves 
occupying all of the points in the odd diagonal positions of level k + 1 (the bottom 
level) of P(k + 1). Then, the embedding can be extended to a dilation 1 embedding 
of B(2k + 3) into P(k + 2) by: (a) assigning the points in level2k + 2 ofthe complete 
binary tree to points in even diagonal positions of level k + 2 of the host pyramid 
that are adjacent in the pyramid to where their parent (in the tree) has been assigned, 
(b) assigning the points in level2k + 3 of the complete binary tree to points in odd 
diagonal points of level k + 2 of the host pyramid that are adjacent in the host to 
where their parent (in the tree) has been assigned. Details can be found in [DS1]. 
Such a dilation 1 embedding of B(3) into P(2) is shown in Figure 20. 
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01 101 
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100 
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111 11 110 

Figure 20 

Furthermore, for any k :2: 0, the X -tree of height 2k + 1 can be embedded into its 
optimum size pyramid, P(k + 1), with dilation 2 and edge congestion 2 [DSl]. The 
embedding is again described by induction on k. The embedding has greater depth 
technically than the one just described, however, as the X-tree has edges than the 
complete binary tree does not (namely, those connecting points in the same level) 
and additional care must be taken to assign points of the X-tree and route its edges 
to achieve dilation 2 and edge congestion 2. However, such an efficient embedding 
of X-trees yields an important corollary. Namely, using the efficient embedding of 
arbitrary binary trees into X-trees [M02], it shows that arbitrary binary trees can 
be efficiently embedded into pyramids. That is, one first embeds an arbitrary binary 
tree into a X-tree and then embeds the host X-tree into an appropriate pyramid. 

Many-to-one embeddings into pyramids have also been considered. In [DS2] it is 
shown that pyramids can be embedded into smaller pyramids with dilation 1 and 
optimum load factor. For example, it is shown that, for all k > 0, a pyramid of height 
k + 1 can be embedded into a pyramid of height k with dilation 1 and load factor 
5 in such a way that only one node of the host pyramid receives 5 guests, namely 
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the apex of the host. As P(k + 1) has one more than 4 times the nodes of P(k), this 
is an optimum embedding. Furthermore, this has been extended to yield a dilation 
1, optimum load factor embedding of P(k + j) into P(k), for all k, j > O. For 
example, [DS2] describes, for all k > 0, an embedding of P(k + 2) into P(k) with 
dilation 1 and load factor 17 in which 5 nodes host 17 guests, namely those at levels 
o and 1, and all other nodes host 16 guests. This is optimum, as P(k + 2) has 5 more 
than 16 times the nodes of P(k). These compression embeddings mean that one can 
compute rather efficient embeddings of large structures into small pyramids by first 
embedding into the structure's optimum size pyramid and then compressing the 
optimum size pyramid into a smaller size pyramid. In [DS2] optimum dilation and 
load factor embeddings of binary trees and X-trees into small pyramids have 
explicitly been described. (These embeddings of complete binary trees and X-trees 
into small pyramids are better than what one would obtain by the process men
tioned of (1) embedding into the optimum size pyramid and then (2) compressing 
the optimum size pyramid into a smaller one. 

VIII. Embeddings into X-trees 

Using bisection lemmas for arbitrary binary trees, as described in [MoSu2], Monien 
[M02] has described techniques for embedding arbitrary binary trees into X -trees 
with dilation 10 and 0(1) expansion. As indicated earlier, this result enables one to 
describe efficient embeddings of arbitrary binary trees into other networks by simply 
describing an embedding of an appropriate X -tree. 

IX. Concluding Remarks 

Not much is known about embeddings into shuffle-exchange or DeBrujn networks. 
For example, can arbitrary binary trees be embedded with 0(1) dilation and 0(1) 
expansion in shuffle-exchange graphs? Clearly, the complete binary tree B(n - 1) is 
a subgraph of the DeBrujn network DB(n), as the DeBrujn graph DB(n) can be 
viewed as a complete binary tree (with an added node adjacent to the r00t) together 
with edges forming another complete binary tree added on. (See Figure 9.) The 
DeBrujn graph DB(n) can also be embedded with dilation 2 in the shuffle-exchange 
SE(n), as the shufflexchange edge of the DedBrujn can be simulated by a shuffle 
edge followed by an exchange edge of the shuffle-exchange graph. Thus, the com
pletebinary tree B(n - 1) can be embedded with dilation 2 in the shuffle-exchange 
network SE(n). 

There is a wealth of results about embedding graphs into simple paths, i.e. linear 
layouts. There dilation is customarily called bandwidth and edge congestion is 
usually called cutwidth. The interested reader should consult some of the literature 
sources [ChiCDG], [Chu], [ChuLR], [ChuMST], [ElST], [FeL], [GuS], [MaPS], 
[MaS], [MaS2], [Mi], [MiS], [MoSu1], [MoSu3], [MoSu4], [Si], [Su], [Va], 
[Ya2]. In particular, many early papers on the subject of embedding graphs with 
small dilation or small average dilation were written by A. Rosenberg, and co-
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authors, for example, in [Ro], [R02], [R03], [RS]. We are guilty of a possibly 
unavoidable (certainly unintentional) sin of not including all relevant references 
about embedding problems. Hopefully, some of these omissions will be forgiven by 
referring interested readers to the following valuable sources for additional work: 
[AnBR], [BeS], [Bi], [ChS], [CyKVC], [Gr], [HeR], [HasLN], [HoJ], [HoB], 
[Ne], [SaS], [Wu]. 
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