

Computing Supplementum 7

G. Tinhofer, E. Mayr, H. Noltemeier,
M. M. Syslo (eds.)
in cooperation with R. Albrecht

Computational Graph Theory

Springer-Verlag Wien New York

Prof. Dr. G. Tinhofer
Institut flir Mathematik
Technische Universitiit Miinchen
Federal Republic of Germany

Prof. Dr. E. Mayr
Department of Computer Science
Stanford University
Calif., U.S.A.

Prof. Dr. H. Noltemeier
lnstitut flir Informatik
Universitiit Wiirzburg
Federal Republic of Germany

This work is subject to copyright.

Prof. Dr. M. M. Syslo
Institute of Computer Science
University ofWroclaw
Poland

Prof. Dr. Rudolf Albrecht
Institut flir Informatik
Universitiit Innsbruck
Austria

All rights are reserved, whether the whole or part ofthe material is concerned, specifically those oftransiation,
reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and
storage in data banks.
© 1990 by Springer-Verlag/Wien

With 68 Figures

ISSN 0344-8029
ISBN·13:978-3-211-82177-0 e-ISBN-13 :978-3-7091-9076-0
DOl: 10.1007/978-3-7091-9076-0

Printed on acid-free paper

Preface

One ofthe most important aspects in research fields where mathematics is "applied is the
construction of a formal model of a real system. As for structural relations, graphs have
turned out to provide the most appropriate tool for setting up the mathematical model.
This is certainly one of the reasons for the rapid expansion in graph theory during the
last decades. Furthermore, in recent years it also became clear that the two disciplines of
graph theory and computer science have very much in common, and that each one has
been capable of assisting significantly in the development of the other. On one hand,
graph theorists have found that many of their problems can be solved by the use of com
puting techniques, and on the other hand, computer scientists have realized that many of
their concepts, with which they have to deal, may be conveniently expressed in the lan
guage of graph theory, and that standard results in graph theory are often very relevant to
the solution of problems concerning them. As a consequence, a tremendous number of
publications has appeared, dealing with graphtheoretical problems from a computational
point of view or treating computational problems using graph theoretical concepts. Due
to these facts, graph theory and computer science have become so strongly connected
that it seems no overstatement to say that in our days a good deal of modern graph
theory is part of computer science or, on the other hand again, to say that computer
science is at least partially based on graph theory.

The purpose ofthis supplementary volume is to draw attention to problems and applica
tions which represent the strong connection between the two disciplines. It contains a
collection of invited papers, each devoted to a particular class of graphtheoretical prob
lems and their solution by computational techniques. Although the papers are all
written on an expert and not on a teaching level they are supposed to be suitable for a
first contact with the contents. The collected papers cover a broad spectrum of graph
theoretical topics. Techniques for hard graph problems, problems on planar graphs, path
problems, coloring problems, graphs and orders and several other topics are discussed, as
well as computational aspects like data structures, the probabilistic behaviour of algo
rithms, the design and analysis of parallel algorithms and VLSI-structures. No claim for
completeness is made, however, we believe that the collection is representative in the
sense that all the main topics of "computational graph theory" are included.

February 1990 The Editors

Contents

Proskurowski, A., Syslo, Mo Mo: Efficient Computations in Tree-Like Graphs 1
Mohring, R. Ho: Graph Problems Related to Gate Matrix Layout and PLA

Folding 0 0 0 0 0 0 0 0 0 0 0 • 0 17
Nishizeki, To: Planar Graph Problems 0 53
Mayr, Eo Wo: Basic Parallel Algorithms in Graph Theory 0 0 0 0 0 0 0 0 0 0 0 0 0 69
Helmbold, Do, Mayr, Eo Wo: Applications of Parallel Scheduling Algorithms to

Families of Perfect Graphs 0 93
Faigle, u., Schrader, R.: Orders and Graphs 0 109
Noltemeier, Ho: Dynamic Partial Orders and Generalized Heaps 0 0 0 0 0 0 0 0 125
Faigle, u., Turan, Go: Communication Complexity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 141
Rote, Go: Path Problems in Graphs 0 155
Werra, Do de: Heuristics for Graph Coloring 0 191
Frieze, A. Mo: Probabilistic Analysis of Graph Algorithms 0 0 0 0 0 0 0 0 0 0 0 0 209
Tinhofer, Go: Generating Graphs Uniformly at Random 0 0 0 0 0 0 0 0 0 0 0 0 0 235
Monien, B., Sudborough, Ho: Embedding one Interconnection Network in

Another 0 257

Computing Suppl. 7,1-15 (1990)
Computing
© by Springer-Verlag 1990

Efficient Computations in Tree-Like Graphs

Andrzej Proskurowski*, Eugene, Oregon, and Madej M. Syslot, Berlin

AlJstrac:t - Zusammerfassung

Efficient Computations in Tree-Like Gupbs. Many discrete optimization problems are both very difficult
and important in a range of applications in engineering, computer science and operations research. In
recent years, a generally accepted measure of a problem's difficulty became a worst-case, asymptotic
growth complexity characterization. Because of the anticipated at least exponential complexity of any
solution algorithm for members in the class of .K9'-hard problems, restricted domains of problems'
instances are being studied, with hopes that some such modified problems would admit efficient
(polynomially bounded) solution algorithms. We survey investigations of the complexity behavior of
.K9'-hard discrete optimization problems on graphs restricted to different genera1izations of trees
(cycle-free, connected graphs.) The scope of this survey includes definitions and algorithmic charac
terization of families of graphs with tree-like structures that may guide the development of efficient
solution algorithms for difficult optimization problems and the development of such solution algorithms.

AMS Subject Classifications: 05C; 68B, C, E, F; 9OB, C.

Key words: tree-like graphs, decomposable graphs, k-trees, tree-width

Efftziente Algorithmen fiir Guphen mit Banm-iiImIicbeo Graphen. Viele diskrete Optimierungsprobleme
sind einerseits schwer zu lasen, haben andererseits aber viele Anwendungen in den Ingenieurwissen
scharten, in der Informatik oder in Operations Research. Ein allgemein akzeptiertes MaB fUr die
Schwierigkeit eines Problems ist die asymptotische worst-case Komplexitiit. Fiir NP-schwere Probleme
ergibt sich danach fUr jeden Algorithmus eine exponentielle Laufzeit. Schrankt man sich jedoch auf
Tell-klassen der zugrunde liegenden Strukturen ein, so lassen diese oft effiziente (polynomial beschrankte)
Algorithmen zu. Wir geben einen Oberblick iiber die Komplexitiit NP-schwerer Probleme auf Graphen
mit verallgemeinerter Baumstruktur (z.B. zykelfrei, zusammenhiingend). Es werden Definitionen und
algorithmische Charakterisierungen von Familien solcher Graphen gegeben, die bei der Entwicklung
von effizienten Uisungsalgorithmen hilfreich sein kannen.

1. Motivation

The framework in which we are interested in tree-like graphs consists of finding
restricted classes of graphs for which many generally difficult decision and optimiza
tion problems are efficiently solvable (in the worst case). These graphs often exhibit

• Department of Computer and Information Science, University of Oregon, Eugene, Oregon 97403,
USA. Research supported in part by the Office of Naval Research Contract NOOOI4-86-K-0419.

t FB 3-Mathematik, TU Berlin. On leave from the Institute of Computer Science, University of
Wroclaw, Przesmyckiego 20, 51151 Wroclaw, Poland. Research supported by the grant RP.I.09 from
the Institute of Informatics, University of Warsaw and by a grant from the Alexander von Humboldt
Stiftung.

2 Andrzej Proskurowski and Maciej M. Syslo

some decomposability properties. Our own research has concentrated recently
on algorithmic aspects of graph representations of orders and on partial k
trees, also known as graphs with tree-width k. Those graphs are all partial sub
graphs of chordal graphs with the maximum clique size bounded by k. We will
discuss alternative views of these and other families of graphs, classes of prob
lems efficiently solvable on these graphs, and the relevant algorithm design
paradigms.

Application domain problems often translate into optimization problems on the
graphs representing the application; these combinatorial problems are often very
difficult. A measure of complexity of a combinatorial problem is the worst-case,
asymptotic behavior of the time to compute a solution as a function ofthe problem
size. A class of problems notorious for their difficulty is that of .¥{J)-complete
problems.

Let us first state our vocabulary for discussing discrete optimization problems defined
on combinatorial graphs. A (combinatorial) graph G = (V, E) consists of the set Vof
vertices and the set E of edges, each edge incident with its two end-vertices (which
are thus adjacent). A subgraph of a given graph G = (V, E) induced by a subset of
vertices V' c: V consists of all edges from E that are not adjacent to any vertex from
V - V'. A partial subgraph on the same set of vertices involves a subset of edges. A
sequence of different vertices va' Vi' ... , Vn such that Vi-i and Vi (0 < i :::;; n) are
adjacent is called a path oflength n; if Vo and Vn are identical (n ~ 2), we have a cycle.
A graph with n vertices and edges between all pairs of distinct vertices is called
complete and denoted by Kn. A graph in which there exists a path between any two
of its vertices is said to be connected; a set S c: V such that the subgraph of a graph
G = (V, E) induced by V - S is not connected is called a separator of G. A tree is a
connected graph without any cycles (it is easy to see that any minimal separator in
a tree consists of exactly one vertex).

2. Definitions of Some Tree-Like Graphs

We first present definitions of several classes of graphs by their generative descrip
tions. Often they also have analytical descriptions based on a process of decomposi
tion. Such a description gives a parse tree in which each node corresponds to a
subgraph of the original graph.

2.1. Generative Definitions of Classes of Graphs

Many families of graphs admiting recursive descriptions that invoke some kind of
decomposability can be described by their iterative construction, often expressible
by a recursive (hierarchical) construction rules as well. The former consists of
primitive graphs and composition rules, the latter takes often a formal linguistic
form.

Efficient Computations in Tree-Like Graphs 3

The grammatical approach to defining families of graphs is exemplified by context
free hyper edge replacement grammars [76], [41], [39], [40], [49], [50], [51]. A
grammar consists of a finite set of non-terminal labels N with a distinguished start
label SEN and a finite set of rules, each having the left-hand side, a hyperedge with
a label a E N, and the right-hand side, a labeled hypergraph H. During an application
of the rille, a hyperedge labeled a is replaced by the hypergraph H in such a way
that some distinguished nodes of H ('terminals', 'sources') are identified with the
corresponding nodes of the replaced hyperedge. The right-hand side of a terminal
rule has only unlabeled two-edges, so that the language of such grammar contains
only combinatorial graphs. Below, we list some other formalisms following this
approach in defining tree-like classes of graphs.

k-trees are defined recursively as either Kk+l' the completely connected graph on
k + 1 vertices, or two k-trees 'glued' along Kk subgraphs. Iterative definition
includes Kk+1 as the primitive graph and defines an n + 1-vertex k-tree (n > k)
as an n-vertex k-tree T augmented by an extra vertex adjacent to all vertices of
a Kk subgraph of T (see [11]).

hook-up graphs generalize k-trees by allowing any base graph A and any subgraph
B ofa Hook-up (A, B) graph to which a new vertex is made adjacent. (Thus, k-trees
are Hook-up (Kk+1,Kd graphs, see [47].)

k-terminal graphs are closed with' respect to a finite number of composition opera
tions, where two graphs G1 and G2 with terminal label sets {1. .. k} each are
composed either by identifying terminals in G1 and G2 that induce isomorphic
subgraphs, or by adding edges between terminals in G1 and terminals in G2 . The
composition is completed by determination ofterminal vertices in the new graph.
A k-terminal family contains also basis graphs with all vertices terminal [82],
[83], [84].

k-terminal recursive family involves recursive operations on graphs with at most k
terminal vertices labeled 1 ... 1 TI. An operation is determined by a connection
matrix that indicates which of the input graphs' terminal vertices are identified
to create a vertex of the resulting graph; some of these vertices are labeled
terminals of the new graph. There is also a set of k-terminal base graphs with no
non-terminal vertices, and a set (,{ operations [18].

Any graph family defined by a context-free hyperedge replacement grammar (or an
equivalent formalism) has bounded tree-width. For any given k, there is a context
free hyperedge replacement grarr.mar generating all partial k-trees. Specifically, such
a grammar would have N = {a}, the only label of a hyperedge with k vertices and
the replacement rule set that consists of (terminal) rules substituting each of the
2m edge combinations for the hyperedge and of the rule replacing such a hyper
edge with a hypergraph consisting of k + 1 hyperedges spanned on k + 1 vertices
(including the k original vertices). Similarly, all graphs generated by any k-terminal
recursive family of graphs have bounded tree-width. It is also possible to generate
all partial k-trees using that formalism but we will not show it here for the large size
of rules. Actually, the formalisms of hyperedge replacement and that of k-terminal
recursive family are equivalent.

4 Andrzej Proskurowski and Maciej M. Syslo

2.2. Decomposability

2.2.1. Undirected Graphs

k-trees are alternatively defined as connected graphs with no Kk+2 subgraphs and
with all minimal separators inducing Kk [68]. This property ofthe existence of small
(constantly bounded) separators is inherited by their subgraphs, partial k-trees.
Namely, partial subgraphs of k-trees are exactly the k-decomposable graphs: a graph
G is k-decomposable if and only if it either has at most k + 1 vertices, or has a
separator S with at most k vertices (G - S has m ~ 2 connected components Cl ,

C2 , ••• , Cm) such that each graph Gi obtained from the component Ci (1 ::;; i ::;; m)
extended by S with its vertices completely connected is k-decomposable (Arnborg
and Proskurowski [5]). This motivates a closer look at partial k-trees, their recogni
tion and embedding algorithms, as well as efficient algorithms solving .!V&'-hard
optimization problems restricted to partial k-trees (for fixed k).

The tree-width of a graph G ([67]) is defined as one less than the maximum size of
vertex sets Vi' V2 , •.• , Vm into which one can pack vertices of G (one vertex belonging
possibly to more than one set) such that

• Vi U ... U Vm = V(G),
• edges are only between vertices in the same sets,
• G is representable by a tree T which has 11; as nodes and, for 11;, J.j, Vi E V(T), if

there is a path in T between 11; and Vi containing J.j then 11; (") Vi £; J.j.

It is not too difficult to see that partial k-trees are exactly graphs with tree-width k
(assuming that the definition calls for the minimum value of the parameter k): In
one direction, given a partial k-tree, take an embedding k-tree and its (k + I)-cliques
as 1I;'s. In the other direction, since 1I;'s intersect on at most k vertices, complete
each 11; by adding edges between all pairs of its vertices, and then increase the cliques'
sizes to k + 1 by adding edges between some vertices of neighboring cliques.

Bya similar construction, one can see that graphs generated by the other formalisms
mentioned above have bounded tree-width, as well.

Hochberg and Reischuk, [43], define (k,,u)-decomposable graphs for which any
decomposition into k-connected components yields ,u as the maximum size of a
component. It is again easy to see that these graphs have constantly bounded
tree-width.

Lauteman [49,50] defines s-decomposition trees similarly to the parse trees of the
above k-terminal graphs. He gives a finite set of rewrite rules, where left-hand-side
graphs have distinguished terminal vertices to be identified with the corresponding
terminal vertices of the right-hand-side graphs. The constant bound s is equal to
the maximal size of the right-hand-side graphs of the rewrite rules.

2.2.2. Directed decomposable graphs

In the past decade, there has been very active research in the area of a general theory
of set decomposition and in particular directed graph (digraph) decomposition.

Efficient Computations in Tree-Like Graphs 5

Cunningham and Edmonds, [29], discuss general decomposition of sets, followed
by [2S] who discusses digraph decomposition. A composition of two diagraphs Gl

and G2 is defined as the digraph with the vertex set equal to union of their vertices
(with the exception of a special vertex v repeated in both). The arcs of the resulting
digraph reflect transitivity of arcs through v (i.e., (U1o U2) E E if and only if
«u1o v) E El /\ (v, U2) E E2) v «U1o v) E E2 /\ (v, U2) EEl). Each strongly connected
digraph has a unique minimal decomposition into components that can be 'prime'
(non-decomposable), 'brittle' (every partition is a split), or 'semi-brittle' (circular
splits). Furthermore, the decomposition of semibrittle digraphs can proceed into
distars and 'circles of transitive tournaments'.

A special case of the composition operation is the substitution, when G2 = vG; is a
pointed graph, with vertex v adjacent to all the remaining vertices of G2. Graphs
obtained by substitution can be described using the notion of autonomous sets: A
subgraph G2 of G is autonomous if and only if for every vertex u in V(G) - V(G2)

either "Iv E V(G2): (u, v) E E(G) or "Iv E V(G2): (u, v) ¢ E(G). This treatment allows to
include in the consideration graphs with disconnected components. There is also a
unique decomposition theorem for autonomous sets: Each graph has the composi
tion tree whose nodes are blocks of partitions into autonomous sets of the graph,
each denoted by D (degenerate, disconnected, 'parallel'), C (complete, 'series'), or P
(prime, decomposable arbitrarily into C and D components). Fast algorithms for
finding decomposition of directed graphs into such subgraphs are presented in [19].

Decomposition often allows efficient solution algorithms for some discrete op
timization problems. However, the range of those problems is severely limited in
the split case requiring strong connectivity. Decomposition by substitution allows
using the divide and conquer algorithms parallelling a natural factorization of
objective functions in many discrete optimization problems. An excellent survey is
given in [62]. A subsequent work ([42]) treat problems on posets and uses decom
position with prime elements of bounded size.

2.3. Other Combinatorial Structures with Parse Trees

Chordal graphs can be defined by a similar recursive construction (or decomposi
tion) description as the graph families from section 2.1: Starting with a single vertex,
any chordal graph (and only such graphs) can be constructed by adding a new vertex
adjacent to all vertices of any complete subgraph of a chordal graph ([30, [36],
[75]). Here, the generic definition of an infinite set of primitive graphs (Kk for any
value of k) makes the major difference. Nevertheless, chordal graphs can be repre
sented by their parse trees (clique trees) with help of which some algorithmic
problems can be solved efficiently. Chordal graphs constitute an example of graphs
decomposable by clique separators, however of unbounded size ([37, SO]).

Chordal graphs can be interpreted as intersection graphs of subtrees in trees, see
for instance Golumbic [3S]. An important subfamily of chordal graphs consists of
interval graphs, the intersection graphs of intervals of a line. On the other hand, a

6 Andrzej Proskurowski and Maciej M. Syslo

class of intersection graphs not properly contined in chordal graphs is the class of
circular-arc graphs, the intersection graphs of intervals of a circle.

The existence of the unique parse tree (corresponding to the constructive definition
of this class of graphs) contributes to the design of many efficient algorithms for
complement reducible graphs. These are the graphs that can be reduced to single
vertices by recursively complementing all connected subgraphs (Comeil et al. [23]).

3. Complexity of Parsing of Tree-Like Grapbs

The problem of recognition and embedding of a partial k-tree for a fixed value of
k is polynomially solvable, see Amborg, Comeil and Proskurowski [2]. The al
gorithm recognizing a partial k-tree with n vertices has complexity lD(nk+2); any
lower bounds result on the complexity of the problem might help to explain
difficulties with finding a system of confluent rewrite rules recognizing partial k-trees
for k > 3. A related-and very important from the applications point of view
problem is that of fmding the minimum value of k for which a given graph is
k-decomposable (or, equivalently, is a partial k-tree). This problem is %&'-hard, as
shown by Amborg et al. [2].

Any sequence of applications of rewrite rules that reduce a given partial 2-tree to
the empty graph determines also an embedding of the graph in a full 2-tree. This is
so, because the reduction 'reverses' a feasible generation process of the full 2-tree.
An application of a reduction rule can be thought of as 'pruning' of a 2-leaf (vertex
of degree 2) which is deleted, leaving as a trace an edge connecting its two neighbors.
A similar pruning of 3-leaves (completion of a triangle spanned on neighbors of a
vertex of degree 3, in a 'star-triangle substitution' process) in recognition of partial
3-trees must be done with care, since not all vertices of degree 3 in a partial 3-tree
can be 3-leaves of an embedding in a full 3-tree, and an indiscriminate pruning may
lead to irreducible graphs (Amborg and Proskurowski [8]).

The system of confluent rewrite rules reducing any partial 3-tree (and only a graph
from this class) to the empty graph allows for a linear recognition of a partial3-tree
and construction of its embedding in a full 3-tree (Matousek and Thomas [57]).
One could describe those rules reduc;iJ:tg vertices of degree 3 as based on a combina
tion of , strength' of their Reighborhood (existing edges between their neighbors), and
of 'relation' to other vertices of degree 3 (the nature of shared neighborhoods with
those vertices). The rewrite rules are given in Amborg and Proskurowski [8]. Thus,
one could suspect that for a safe reduction of vertex v of degree k in a partial k-tree
G, there seems to be required certain trade-off between the amount of mutual
connection among the k neighbors of v, the number of other vertices of degree k
sharing their neighborhood with v, and the strength of this sharing. For some
general rules see Amborg and Proskurowski [6].

Attempts to generalize this approach to higher values of k have not brought any
success, so far. A reason might be that while the two abovementioned rules of thumb

Efficient Computations in Tree-Like.Grapbs 7

are straightforward enough for k = 3 the sheer number of combinations to consider
for k > 3 is difficult to handle. Another reason might be that such a complete system
of confluent rewrite rules does not exist for higher values of k.

4. Problems with Efficient Solution Algorithms on Tree-Like Graphs

Discrete optimization problems that do not involve counting and that are defined
on graphs, can be viewed simply as graph properties that a given graph has or does
not have. Typical examples are 2-colorability ('Is a given graph 2-colorable?') and
Hamiltonicity ('Does a given graph have a Hamilton cycle?'). These properties can
be expressed as well-formed formulea in some formalism utilizing variable symbols,
relational symbols (over some domains), logical connectives, and quantifiers. De
pending on the restrictions on the use of these symbols, one defines languages of
varying descriptive power. For instance, one could restrict relations to a single
domain or use many-sorted structures, allow only existential quantification, restrict
the domains of quantifiers, and so on. It is important to find formalisms that balance
their power of expression and the ease of analysis (the complexity of property
recognition).

In [24], Courcelle presents an excellent survey of the interaction between logic
languages and graph properties, defining and analyzing the power of First Order
Logic, Second Order Logic, Monadic Second Order Logic, and their extensions.

First Order Logic: The domain: graph elements (vertices and edges).
Basic relations: V(x), E(x), R(x,y,z) denoting vertex set, edge set, and edge with
incident vertices, respectively.
Quantification: over domain variables.
Examples: A given graph labeling is a proper coloration. All vertices have degree
bounded by a given integer.

Second Order Logic: Variables: graph elements, relations over graph elements.
Quantification: over binary relation variables (and, consequently, over relational
variables of any arity).
Example: Two given graphs are isomorphic.

Monadic Second Order ~c: Restriction: relational variables denoting sets only
(relations on one variable).
Examples: A given graph is Hamiltonian. A given graph is m-colorable.

Although First Order Logic is a rather weak formalism as far as the expressive
power is concerned, it is in general undecidable whether a general graph has a
property described in this language. Thus, an interesting avenue of investigations
is to consider the status of problems defined in these formalisms but restricted to
some narrower classes of graphs. For instance, when applied to context-free hyper
edge replacement graphs, even Monadic Second Order Logic (MSOL) is decidable.
When the class of graphs is restricted to confluent Node Label Controled graphs,
(NLC [70]), Monadic Second Order Logic with quantification only over vertex sets

8 Andrzej Proskurowski and Maciej M. Syslo

(MSOL,,) is decidable. Thus, it makes sense to inquire about the computational
complexity of such problems on those graphs. An important connection between
investigations of decidability of logical theories and the tree-like graphs is estab
lished by the following statement: 'For a property described by a Monadic Second
Order Logic expression, one can decide in polynomial time whether a given partial
k-tree has this property.' ([27], [3].) Similarly, if the property is expressed in MSOL"
and the graph belongs to the class of confluent NLC languages, then there exist
efficient decision algorithms, as well.

To be able to deal with discrete problems optimizing over some objective functions,
the MSOL formalism has been extended by Courcelle [26] and by Amborg et al.
[3] allowing counting set cardinalities, and evaluating sums of functions of sets,
respectively. Thus, the properties in the above statement have to be extended to
those described by CMSOL and EMSOL expression, respectively.

The importance of the bounded tree-width is shown by the following theorem of
Seese [73]: Any class of graphs that has a decidable MSOL property has bounded
tree-width.

Amborg et al. [3] present a detailed description of applications of MSOL to partial
k-trees. The authors' main result is the efficient solvability of a number of problems
%&'-hard for general graphs. They prove it constructively by reducing decidability
of an EMSOL property for a partial k-tree G to the problem of deciding the
corresponding, linearly definable property of a binary tree representing parsing of
G (its 'tree decomposition'). For the latter problem, they construct a tree automaton
that computes a solution in linear time. This tree automaton is found using results
about Decision Problems in SOL, obtained in the 1960's (Doner [31], Thatcher and
Wright [81]). Since the transformation itself (the derived property) is linear and the
parse tree is assumed to be given with the input graph, a linear time solution
algorithm for the original problem is obtained.

An interesting exception to the spirit ofthe recent results on efficient algorithms for
problems on partial k-trees is the polynomial-time algorithm for the graph iso
morphism problem (Bodlaender [16]), since that problem is not expressible by the
proposed extensions to MSOL.

We should mention other recent attempts to characterize problems solvable effi
ciently on partial k-trees, notably Bodlaender's [17] and ScheIDer's [71]. Each of
those authors dermes languages for some 'locally verifiable' properties, extends them
by conjuctions with some 'non-local' statements (designed mainly to deal with the
notion of connectivity), and designs a paradigm for constructing a solution al
gorithm for a given property and a given bound k on the tree-width of the problem
instance.

ScheIDer [71] considers optimization problems that can be described by formulea
involving predicates expressing properties of a bounded neighborhood of a vertex.
These are existentially quantified over a fixed set of subgraphs and universally
quantified over all vertices of a graph. (The author follows the approach introduced
by Seese [73].) She extends the class of properties by allowing conjunction with

Efficient Computations in Tree-Like Graphs 9

connectedness and acyclicity, and presents algorithm paradigms for deciding the
above properties for a partial k-tree given together with an ordering of vertices
corresponding to a perfect elimination of an embedding chordal graph. These
algorithms use the given ordering of vertices and combine the properties of indi
vidual vertices (expressed by values ofthe objective function) into the global answer.
Assuming an additive objective function, the corresponding optimization problem
is solved following the general dynamic programming strategy.

The time complexity of these algorithms, while linear in the size of the input graph,
depends exponentially on the problem (the number of subgraphs defining the
property) and on the parameter k defining the class of input graphs.

Borie et al. [18] derme regular properties of graphs based on the existence of a
homomorphism between members of a given k-terminal, recursive family of graphs
and some rmite set. These properties are preserved under the homomorphism and
the integrity of composition operators is maintained. (Their definition follows that
of Bern et al. [12].) They prove constructively that the recognition, optimization,
and enumeration of solutions for a given regular property are linearly solvable on
recursively constructed graph families.

Monien et al. [60] use the notion of tree-width to investigate completeness for the
class of languages that are acceptable by non-deterministic auxiliary push-down
automata in polynomial time and logarithmic space (equal to LOGCF L complexity
class). They define the tree-width of a conjunctive form of a propositional formula
as the tree-width of the corresponding hypergraph and show that many algorithms
reducing 3-SA T with bounded tree-width preserve this bound for the instances of
problems to which 3-SAT is reduced. This allows them to show these problems to
be LOGCFL-complete when restricted to instances with tree-width bounded by
logn.

5. Algorithm Design Paradigm

Already 19th century physicists knew that certain difficult problems, hopeless in
general can be solved in some 'tree-like graphs': the series-parallel reduction com
puting the equivalent resistance of a ladder circuit, or the star-triangle replacement
in other electrical networks. However, the theory of these operations had to wait
until 1980's. Slisenko [76] observed that the Hamilton cycle problem can be
efficiently (in time polynomial in the size of the graph) solved on graphs obtained
by the context-free replacement of hyperedges by hypergraphs, with terminal re
placements of a hyperedges by edges between some of its vertices. Takamizawa et
al. [79] developed a methodology for solving many such hard problems (.¥&'-hard)
in linear time on series-parallel graphs. Intuitively, this 'good' algorithmic behavior
of partial 2-trees can be explained by their bounded decomposability property that
follows from a separation property of ('full') 2-trees: every minimal separator con
sists of both end-vertices of an edge.

The approach taken by Arnborg and Proskurowski in [5] to attack hard discrete
optimization problems restricted to partial k-trees given with their embedding

10 Andrzej Proskurowski and Maciej M. Syslo

follows the general dynamic programming strategy. In a k-decomposable graph,
the decomposability structure (an embedding in a full k-tree) is followed in solving
pertinent subproblems. Solutions to these subproblems mutually interact only
through the bounded interface of a minimal separator. Assuming that many in
stances of discrete optimization problems of interest are partial k-trees for relatively
small values of k (say, about 10), the following algorithm paradigm for solving
optimization problems on partial k-trees is of practical interest (Amborg and
Proskurowski [5]):

Depending on the problem being solved for partial k-tree G, each minimal separator
S of a full k-tree embedding G is assigned a number of 'states' .. Each such state
represents constraints on a subproblem of optimization on the graph Gi (cf the
definition of decomposability), where feasible solutions agree on the subgraph
induced in G by S. A solution to the problem corresponding to a state of S associates
with the state the optimal value of the objective function. The algorithm requires
successive 'pruning' of the k-Ieaves of the embedding k-tree (and of the resulting
k-trees). In each pruning step, it solves the corresponding subproblems and updates
the values of states of the corresponding minimal separator. When pruning a k-Ieaf
v, this state update of the separator S (the remaining neighbors of v) involves com
bination of solutions to k subproblems (represented by the k separators of G
consisting of v and k - 1 vertices of S). To find a solution to the overall problem,
the eventual 'root optimization' is necessary, whereby the states of up to k + 1
minimal separators constituting the definitional K"+1 root of the embedding full
k-tree are combined to yield the solution. If the problem being solved admits
constant time pruning steps and a constant time 'root optimization', the resulting
algorithm is linear in the size of the input graph. (So do for instance, Independent Set,
Vertex Cover, Chromatic Number, Graph Reliability, cf Amborg and Proskurowski
[5].) This follows from the fact that the number of states is independent of the size
of the graph (although it can grow quite rapidly with k), and the number of minimal
separators to consider is only linear with the size of the graph. It is important to
realize, that the low order polynomial time complexity of the algorithm is achieved
when the input consists of a suitable embedding of the given graph in a full k-tree.
Otherwise, the complexity of the exact optimization algorithm is likely to be
dominated by the complexity of an embedding algorithm.

A similar idea of combining states of components of a k-terminal graph according
to its parse tree has been expressed by Wimer et al. [84] who list a score of families
of k-terminal graphs and several dozens of problems to which their methodology
applies.

Although the approach of [5] was the first attempt to describe efficient algorithms
on partial k-trees by a common paradigm, it did not address the question of
mechanical derivation of an efficient algorithm solving a difficult problem on those
graphs from the problem description. It took several more years for some of those
problems to be identified.

The important results of Amborg et al. [3] have been mentioned in the preceding
section. The efficient algorithm solving a given EMSOL problem is constructed

Efficient Computations in Tree-Like Graphs 11

as a tree automaton following the formal description of the corresponding
property.

Borie et al. [18] describe an algorithm design paradigm based on their definition
of k-terminal, recursive family of graphs and of regular properties. Following the
decomposition tree of the graph in the problem's instance and using the "states"
indicated by the homomorphism classes (by definition, there is only a fmite number
of those), the dynamic programming technique is used to compute a solution to the
problem in linear time.

6. Graph Minors and Existence of Polynomial Time Algorithms

Major progress has been made possible by the results of Robertson and Seymour
[67]. Their results on minor containment gave rise to a new non-constructive tools
for establishing polynomial-time solvability [67] and a new interest in forbidden
substructures characterization of classes of graphs [4], [33].

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by
contracting edges (contracting an edge introduces a new vertex replacing the two
end vertices of the contracted edge and inheriting their adjacencies). Robertson and
Seymour proved that every class of graphs closed under minor-taking has a finite
number of minimal forbidden minors (graphs not in the class with all minors belong
ing to the class). Because every such class of graphs has constantly bounded
tree-width, the membership of a graph in the class can be decided in time growing
at most with the cube of the graph size, but with astronomical multiplicative
constants. Similarly, many problems are now known to be decidable in low-degree
polynomial time, based on the knowledge of the finite set of forbidden minors for
a given class of graphs. However, but for a very few exceptions, there is no indication
of how those graphs can be efficiently found, and even if they are known, the
complexity of solution algorithms exhibit multiplicative constants of astronomical
magnitude.

The cla3s of graphs with path-width 2 has been characterized in [33] by 110 minimal
forbidden minors. The class of partial 3-trees has a small set of minimal forbidden
minors characterizing it [4]. The completeness of this set was proved using the
knowledge of a small complete set of confluent reduction rules for this class of
graphs. For higher values of k, this approach will not yield results as long as such
rules are not known.

7. ParaDel computation

Recent research on parallel algorithms shows that trees are amenable to the com
bination of the dynamic programming techniques (pruning of tree leaves) and the
standard parallel techniques of contraction of long branches resulting in efficient
parallel algorithms [58]. This discovery seems to generalize to graphs of tree-like

12 Andrzej Proskurowski and Maciej M. Syslo

structure, prime example of which are the partial k-trees. Bodlaender [15] uses it
arguing the existence of poly-log algorithms for partial k-trees. Very recently, first
efficient parallel algorithms for chordal graphs have been designed (Chandra
sekhran and Iyengar [22], Naor et al. [63], Kleim [48]). Chandrasekhran and
Hedetniemi [20] describe an efficient parallel algorithm for the partial k-tree
embedding problem.

References

[1] S. Amborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposa
bility-a survey, BIT 25 (1985), 2-23.

[2] S. Amborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in k-trees,
SIAM Journal of Algebraic and Discrete Methods 8 (1987), 277-284.

[3] S. Amborg, J. Lagergren, and D. Seese, Problems easy for decomposable graphs, Proceedings of
ICALP 88, Springer-Verlag Lecture Notes in Computer Science 317 (1988), 38-51.

[4] S. Amborg, A. Proskurowski, and D. G. Corneil, Forbidden minors characterization of partial
3-trees, UO-CIS-TR-86-07, University of Oregon (1986), to appear in Discrete Mathematics (1990).

[5] S. Amborg and A. Proskurowski, Linear time algorithms for NP-hard problems restricted to
partial k-trees, TRITA-NA-8404, The Royal Institute of Technology (1984), Discrete Applied
Mathematics 23 (1989), 11-24.

[6] S. Arnborg and A. Proskurowski, Recognition of partial k-trees, Proceedings of the 16th South
Eastern International Conference on Combinatorics, Graph Theory and Computing, Utilitas
Mathematica, Winnipeg, Congressus Numerantium 47 (1985), 69-75.

[7] S. Amborg and A. Proskurowski, Problems on graphs with bounded decomposability, Bull.
EATCS (1985).

[8] S. Arnborg and A. Proskurowski, Characterization and recognition of partial 3-trees, SIAM
Journal of Algebraic and Discrete Methods 7 (1986),305-314.

[9] B. Baker, Approximation algorithms for NP-complete problems on planar graphs, Proceedings
FOCS 24 (1983),105-118.

[10] M. Bauderon and B. Courcelle, Graph expressions and graph rewritings, Mathematical Systems
Theory 20 (1987), 83-127.

[11] L. W. Bineke and R. E. Pippert, Properties and characterizations of k-trees, Mathematica 18 (1971),
141-151.

[12] M. W. Bern, E. L. Lawler, and A. L. Wong, Linear Time Computation of Optimal Subgraphs of
Decomposable Graphs, Journal of Algorithms 8 (1987), 216-235.

[13] H. L. Bodlaender, Classes of graphs with bounded tree-width, RUU-CS-86-22 (1986).
[14] H. L. Bodlaender, Planar graphs with bounded tree-width, Bull. EATCS (1988).
[15] H. L. Bodlaender, NC-algorithms for graphs with small tree-width, Proceedings of the Workshop

on Graph-Theoretic Concepts in Computer Science WG-88, Springer-Verlag Lecture Notes in
Computer Science 344 (1988),1-10.

[16] H. L. Bod1aender, Polynomial algorithms for graph isomorphism and chromatic index on partial
k-trees, Proceedings of the Scandinavian Workshop on Algorithm Theory, Spring-Verlag, Lecture
Notes in Computer Science 318 (1988),223-232.

[17] H. L. Bodlaender, Dynamic programming on graphs with bounded tree-width, RUU-CS-87-22,
Proceedings of ICALP'88, Springer-Verlag Lecture Notes in Computer Science 317 (1988),
105-118.

[18] R. B. Borie, R. G. Parker, and C. A. Tovey, Automatic generation of linear algorithms from
predicate calculus descriptions of problems on recursively constructed graph families, manuscript
(July 1988).

[19] H. Buer and R. H. Mohring, A fast algorithm for decomposition of graphs and posets, Math. Oper.
Res. 8 (1983), 170-184.

[20] N. Chandrasekharan and S. T. Hedetniemi, Fast parallel algorithms for tree decomposing and
parsing partial k-trees, Proceedings of 26 Annual Allerton Conference in Communications, Con
trol, and Computing (1988).

[21] N. Chandrasekharan, S. T. Hedetniemi, and T. V. Wimer, A method for obtaining difference
equations for the number of vertex subsets having a given property in restricted k-terminal families
of graphs, manuscript (October 1988).

[22] N. Chandrasekharan and S. S. Iyengar, NC algorithms fr recognizing chordal graphs and k-trees,
IEEE Trans. on Computers 37 (1988),1170-1183.

Efficient Computations in Tree-Like Graphs 13

[23] D. G. Corneil, H. Urchs, and L. Stewart Burlingham, Complement reducible graphs, Discrete
Applied Mathematics 3 (1981), 163-174.

[24] B. Courcelle, Some applications of logic of universal algebra, and of category theory to the theory
of graph transformations, Bull EATCS (1988), 161-213.

[25] B. Courcelle, Recognizabilty and second-order defmabilty for sets offmite graphs, 1-8634, Univer
site de Bordeaus, (1987).

[26] B. Courcelle, The monadic second order logic of graphs I: recognizable sets offmite graphs, 1-8837,
Universite de Bordeaux (1988).

[27] B. Courcelle, The monadic second order logic of graphs III: tree-width, forbidden minors and
complexity issues, 1-8852, Universite de Bordeaux (1988).

[28] W. M. Cunningham, Decomposition of directed graphs, SIAM Journal of Algebraic and Discrete
Methods 3 (1982), 214-228.

[29] W. M. Cunningham and J. Edmonds, A combinatorial decomposition theory, Canadian J. Mathe
matics 32 (1980), 734-765.

[30] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71-76.
[31] J. E. Doner, Decidability of the weak second-order theory of two successors, Notices of the

American Mathematical Society 12 (1966), 513.
[32] E. S. EIMallah, Decomposition and Embedding Problems for Restricted Networks, PhD. Thesis,

University of Waterloo (1987).
[33] M. R. Fellows, N. G. Kinnersley, and M. A. Langston, Finite-basis theorems and a computational

integrated approach to obstruction set isolation, Proceedings of Computers and Mathematics
Conference (1989).

[34] M. R. Fellows and M. A. Langston, Non-constructive advances in polynomial-time complexity,
Information Processing Letters 26 (1987),157-162.

[35] M. R. Fellows and M. A. Langston, Non-constructive tools for proving polynomial-time decida
bility, Journal of the ACM 35 (1988), 727-739.

[36] D. R. Fulkerson and o. A. Gross, Incidence matrices and interval graphs, Pacific Journal of
Mathematics 15 (1965), 835-855.

[37] F. Gavril, Algorithms on clique separable graphs, Discrete Math. 19 (1977),159-165.
[38] M. C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press (1980).
[39] A. Habel, Graph-theoretic properties compatible with graph derivations, Proceedings of WG-88,

Springer-Verlag Lecture Notes in Computer Science 344 (1988).
[40] A. Habel, Hyperedge replacement: grammars and languages, Phd Dissertation, Bremen 1989.
[41] A. Habel and H. J. K.reowski, May we introduce to you: hyperedge replacement, Proceedings of

the 3rd International Workshop on Graph Grammars and their Applications to Computer Science,
Springer-Verlag Lecture Notes in Computer Science 291 (1987), 15-26.

[42] M. Habib and R. H. Mohring, On some complexity properties of N-free posets and posets with
bounded decomposition diameter, Discrete Mathematics 63 (1987), 157-182.

[43] W. Hochberg and R. Reischuk, Decomposition graphs-a uniform approach for the design of fast
sequential and parallel algorithms on graphs, manuscript (1989).

[44] D. S. Johnson, The NP-Completeness column: an ongoing guide, Journal of Algorithms 6 (1985),
434-451.

[45] D. S. Johnson, The NP-completeness column: an ongoing guide; Journal of Algorithms 8 (1987),
285-303.

[46] Y. Kajitani, A. Ishizuka, and S. Ueno, A Characterization of the Partial k-tree in Terms of Certain
Structures, Proceedings oflSCAS'85 (1985),1179-1182.

[47] M. Klawe, D. G. Corneil, and A. Proskurowski, Isomorphism testing in hook-up graphs, SIAM
Journal of Algebraic and Discrete Methods 3 (1982), 260-274.

[48] P. N. Klein, Efficient parallel algorithms for chordal graphs, Proceedings of the 29th Symposium
on FoCS (1988),150-161.

[49] C. Lauteman, Decomposition trees: structured graph representation and efficient algorithms,
Proceedings of CAAP'88, Springer-Verlag Lecture Notes in Computer Science 299 (1988), 217-
244.

[50] C. Lauteman, Efficient algorithms on context-free graph languages, Proceedings of ICALP'88,
Springer-Verlag Lecture Notes in Computer Science 317 (1988), 362-378.

[51] T. Lengauer and E. Wanke, Efficient analysis of graph properties on context free graph languages,
Proceeding of ICALP'88, Springer-Verlag Lecture Notes in Computer Science 317 (1988),379-
393.

[52] A. Lingas and A. Proskurowski, Fast parallel algorithms for the subgraph homeomorphism and
the subgraph isomorphism problems for classes of planar graphs, Theoretical Computer Science
68,2 (1989), 155-174.

14 Andrzej Proskurowsld and Maciej M. Syslo

[53] A. Lingas and M. M. Syslo, A polynomial-time algorithm for subgraph isomorphism of two
connected series-parallel graphs, Proceedings of ICALP'88, Springer-Verlag Lecture Notes in
Computer Science 317 (1988), 394-409.

[54] G. S. Lueker and K. S. Booth, A linear time algorithm for deciding interval graphs isomorphism,
Journal of the ACM 26 (1979), 183-195.

[55] S. Mahajan and J. G. Peters, Algorithms for regular properties in recursive graphs, Proceedings
of 25 Annual Allerton Conference in Communications, Control, and Computing (1987), 14-
23.

[56] J. Matousek and R. Thomas, On the complexity of finding iso- and other morphisms for partial
k-trees, manuscript, (May 1988).

[57] J. Matousek and R. Thomas, Algorithms finding tree decompositions of graphs, manuscript (May
1988).

[58] G. L. Miller and J. H. Reif, Parallel Tree Contraction and its Applications, Proceedings ofthe 26th
FoCS (1985), 478-489.

[59] B. Monien and I. H. Sudborough, Bandwidth constrained NP-complete problems, Proceedings of
the 13th STOC (1981), 207-217.

[60] B. Monien, I. H. Sudborough, and M. Wiegers, Complexity results for graphs with treewidth
O(1ogn), manuscript (1989).

[61] J. H. Muller and J. Spinrad, Incremental modular decomposition, Journal of the ACM 36 (1989),
1-19.

[62] R. H. Mohring and F. J. Radermacher, Substitution decomposition for discrete structures and
connections with combinatorial optimization, Annals of Discrete Mathematics 19 (1984), 257-356.

[63] J. Naor, M. Naor, and A. A. SchlitTer, Fast parallel algorithms for chordal graphs, SIAM Journal
on Computing 18 (1989), 327-349.

[64] T. Politof, .1-Y Reducible Graphs, Concordia University, Montreal, manuscript (1985).
[23] A. Proskurowski, Centers of 2-Trees, Proceeding of the 2nd Combinatorial Conference France

Canada, Annals of Discrete Mathematics 9 (1980), 1-5.
[66] A. Proskurowski, Separating subgraphs in k-trees: cables and caterpillars, Discrete Mathematics

49 (1984), 275-285.
[67] N. Robertson and P. D. Seymour, Graph Minors, (series of 23 papers in varying stages of editorial

process, 1983-1988).
[68] D. J. Rose, On simple characterization of k-trees, Discrete Mathematics 7 (1974),317-322.
[69] A. Rosenthal and J. A. Pino, A genera1ized algorithm for centrality problems on trees, Journal of

the ACM 36 (1989),349-361.
[70] G. Rozenberg and E .. Welzl, Boundary NLC grammars: basic definitions, normal forms, and

complexity, Information and Control 69 (1986),136-167.
[71] P. Scheffler, Linear time algorithms for NP-complete problems for partial k-trees, R-MA TH-03/87

(1987).
[72] P. Scheffler and D. Seese, Tree-width and polynomial-time solvable graph problems, manuscript

(1986).
[73] D. Seese, The structure of the models of decidable monadic theories of graphs, to appear in Journal

of Pure and Applied Logic.
[74] D. Seese, Tree-partite graphs and the complexity of algorithms, Proceedings of FCT -85, Springer

Verlag Lecture Notes in Computer Science 199 (1985), 412-421.
[75] Y. Shibata, On the tree representation of chordal graphs, Journal of Graph Theory 12 (1988),

421-428.
[76] A. O. Slisenko, Context-free grammars as a tool for describing polynomial subclasses of hard

problems, Information Processing Letters 14 (1982),52-56.
[77] M. M. Syslo, NP-complete problems on some tree-structured graphs: a review, Proceedings of

WG-83, Trauer Verlag (1984), 342-353.
[78] M. M. Syslo, A graph-theoretic approach to the jump number problem, in: I. Rival(ed.), Graphs

and Order, Reidel, Dodrecht 1985, 185-215.
[79] K. Takamizawa, T. Nishizeki, and N. Saito, Linear-time Computability of Combinatorial Prob

lems on Series-parallel Graphs, Journal of the ACM 29 (1982), 623-641.
[80] R. E. Tarjan, Decomposition by clique separators, Discrete Mathematics 55 (1985), 221-232.
[81] J. W. Thatcher and J. B. Wright, Genera1ized finite automata theory with an application to a

decision problem in second-order logic, Mathematical Systems Theory 2 (1968),57-81.
[82] T. V. Wimer, Linear algorithms on k-terminal graphs, PhD. Dissertation, Clemson University

(August 1988).
[83] T. V. Wimer and S. T. Hedetniemi, k-terrninal recursive families of graphs, Proceedings of 25th

Annual Conference on Graph Theory, Utilitas Ma thematica, Winnipeg, Congressus Numerantium
63 (1988), 161-176.

Efficient Computations in Tree-Like Graphs 15

[84] T. V. Wimer, S. T. Fiedetniemi, and R. Laskar, A methodology for constructing linear graph
algorithms, Qemson University, TR-85-SEP-ll, (September 1985).

[85] P. Winter, Steiner problem in networks: a survey, Networks 17 (1987),129-167.

Andrzej Proskurowski
Department of Computer
and Information Science
University of Oregon
Eugene, Oregon 97403,
U.S.A.

Computing Suppl. 7,17-51 (1990)
Computing
© by Springer-Verlag 1990

Graph Problems Related to Gate Matrix Layout and PLA Folding

Rolf H. Mohring*, Berlin

Ahstract - Zusammerfassung

Grapb Problems Related to Gate Matrix Layout and PLA Folding. This paper gives a survey on graph
problems occuring in linear VLSI layout architectures such as gate matrix layout, folding of pro
grammable logic arrays, and Weinberger arrays. These include a variety of mostly independently
investigated graph problems such as augmentation of a given graph to an interval graph with small
clique size, node search of graphs, matching problems with side constraints, and other. We discuss
implications of graph theoretic results for the VLSI layout problems and survey new research directions.
New results presented include NP-hardness of gate matrix layout on chordal graphs, efficient algorithms
for trees, cographs, and certain chordal graphs, Lagrangean relaxation and approximation algorithms
based on on-line interval graph augmentation.

Key words: linear VLSI layout architectures, gate matrix layout, PLA folding, interval graph augmen
tation, graph search, path width, vertex separation, complexity, approximation algorithms, matching
with side constraints.

Grapbentheoretisehe Probleme beim Gate Matrix Layout unci PLA Folding. Der Artikel behandelt
graphentheoretische Probeme, die bei linearen VLSI-Layout Architekturen wie Gate-Matrix-Layout,
Programmierbaren Logischen Arrays und Weinberger Arrays auftreten. Zu diesen gehoren u.a. die
Einbettung von Graphen in Intervallgraphen mit kleiner Cliquengro.Be, Suchspiele auf Graphen, und
Zuordnungsprobleme mit Nebenbedingungen. Wlr diskutieren Folgerungen aus graphentheoretischen
Ergebnissen fUr das VLSI Layout und geben eine Obersicht fiber neue Forschungsergebnisse. Hierzu
gehoren u.a.: die NP-Vollstiindigkeit des Gate-Matrix-Layout auf chordalen Graphen, eftiziente
Algorithmen fUr Biiume, Cographen sowie gewisse chordale Graphen, Langrange Relaxation und
approximierende Algorithmen, die auf der On-line Konstruktion von Intervallgrapheinbettungen
basieren.

1. Introduction

We study a class of graph-theoretic problems that arise in certain linear VLSI layout
problems such as Weinberger arrays, gate matrix layout and PLA-folding.

The term linear refers to the fact that the most important degrees of freedom in the
underlying VLSI architecture consist of linear (i.e. one-dimensional) arrangements
of the relevant physical objects, the gates.

* Technical University of Berlin, Fachbereich Mathematik, StraBe des 17. Juni 136, 1000 Berlin 12 This
work was supported by the Deutsche Forschungsgemeinschaft (DFG).

18 Rolf H. Mohring

In the most general form, an instance of such a linear layout problem consists of a
m x n 1-0 matrix M = (m(j) (the net-gate matrix), whose rows and columns represent
the nets N1 , ••• , Nm and the gates G1> •.. , Gn of the circuit, respectively.

The gates may be thought of as the basic electronic devices that are arranged linearly
in a row, and the nets as realizing connections between them (details are given in
Section 2). Net Ni must connect all gates Gj with mij = 1. Connections are realized
rowwise by reserving for a given permutation of the gates (columns) for every net
Ni the part of the row from the leftmost to the rightmost gate to which a connection
must be established.

This can be expressed more formally by considering for a permutation n of the gates
the augmented net-gate matrix MK = (m(j) with

{
1 if there are Gates G" G. with }

mij := n(r) ~ j ~ n(s) and mil' = mis = 1

o otherwise

Nets of the augmented net-gate matrix may share the same row (called track) if they
have no gate in common. An assignment of augmented nets to tracks preserving
this property is called a feasible track assignment.

The additional ones in M (with respect to the same column permutation of M) are
called fill-ins. They are represented by a "*" to distinguish them from the given ones
in M (see Figure 1.1 below).

The result of a permutation of the gates (gate arrangement) and an associated
feasible track assignment is called a layout. Its area is proportional to (# gates)·
(#tracks) = n·(#tracks).

So constructing an area-minimal layout (optimal layout) is equivalent to finding a
gate arrangement and an associated feasible track assignment such that the number
of tracks is minimum.

In matrix terminology, this leads to the following matrix permutation problem
(MPP):

Given: A 0-1 matrix (net-gate matrix) M.

Problem: Find a permutation of the columns and an assignment of the augmented
rows (nets) to tracks such that the number of tracks is minimum.

An example is given in Figure 1.1. We denote the minimum number of tracks by
t(M) and call a layout with t(M) tracks an optimal layout. Due to the mentioned
origin of this problem in VLSI-applications, there is an enormous body of papers
on it. This article gives an overview on available results and new developments.

Section 2 deals with the VLSI background and models the linear VLSI layout
technologies "Weinberger arrays", "gate matrix layout" and "PLA folding" as
instances of the general MPP. Some of these applications lead to restricted MPP's
in the sense that either the permutation ofthe gates (e.g. fixed first and last gate) or
the assignment of nets to tracks (e.g. at most two per track) are restricted.

Graph Problems Related to Gate Matrix Layout and PLA Folding

net - gate matrix

G, G2 G4 G3

N,
G, G2 G4 G3

N2 * * N, II N4 I
N3

N2 I
N4

Ns N3 IGJ

augmented net - gate matrix
for n = (1,2,4,3)

associated feasible
track assignment

Figure 1.1. An example MPP

19

Section 3 gives several equivalent graph theoretic problems with different and partly
independent background. Among them are: augmentation of a graph to an interval
graph with small clique size, a node search problem, determining the path-width of
a graph, matching problems with side constraints and others.

Section 4 is devoted to the complexity of the problem, and to reductions between
some of the specialized versions. The general problem is already NP-hard on
chordal graphs, but solvable in polynomial time on trees and cographs and if the
number of tracks is fixed. Sharper version of NP-completeness results are also
obtained for certain variants of PLA folding.

Finally, Section 5 deals with exact and approximation algorithms for solving
MPP's. Due to the practical relevance of the problem, many heuristics have been
proposed in the literature. Nevertheless, the problem of the existence of an approxi
mation algorithm with constant relative performance bound has remained open.
We present a class of on-line algorithms based on incremental interval graph
generation that may be promising in this respect.

Our graph-theoretic notation is usually standard. For all notions and definitions
not explicitly stated here, we refer to [G080] or [Ev79].

20 Rolf H. Mohring

2. The VLSI Background

The matrix permutation problem is typical for a number of "regular" layout styles
for the generation of random logic modules in VLSI.

Such a random logic module may be seen as an irregular structure of basic compo
nents such as transistors, gates, flip-flops etc. It is given by some input description,
e.g., by a transistor scheme, a logic scheme, or a set of Boolean functions. From this
description, a concrete layout (a physical module) must be constructed according
to some layout architecture style. A regular layout style is a style in which basic
topological relationships between the physical components on the chip area are
known in advance (e.g. restricted placement, predefmed locations for the arrange
ments of gates etc.).

Typical such layout styles are Weinberger arrays, gate matrix layout and pro
grammable logic arrays discussed below, see also [GL88] and [BMHS84].

Weinberger Array. Weinberger arrays were introduced in [Wei67] as a layout
architecture for Boolean functions that are given by a circuit consisting only of
NOR-gates (see Figure 2.1). Each NOR-gate is converted into an nMOS gate (i.e.
a gate in the nMOS VLSI technology, see e.g. [Me80] for details); and these gates
are arranged in a linear array that constitute the columns of an associated MPP
(see Figure 2.2).

Each column of this MPP consists of two vertical wires. One wire is connected to
the pull-up transistor and serves as the output port, while the other wire is connected
with the ground power line. (Usually, two neighboring gates share a common
ground wire.) The input signals to the gates are obtained from horizontal polysilicon
intervals on a row. A transistor is formed by the intersection of an extension of such
a polysilicon interval with a diffusion segment between the output the ground lines.
For example, transistors a and b are formed by connecting row 1 and 2 to diffusion
segments in gate A. The output of gate A is connected to the last row which serves
as input to gate F, etc.

1
2

1
3

2
4

5

Figure 2.1. A circuit of NOR gates

Graph Problems Related to Gate Matrix Layout and PLA Folding

--,--------,---,-------,----,--------,--- VDD

.+a. r ;. ...
I I I

. .. ;

Pull- up
transistors

21

1 _____ -.1.-- I 7 ---- - _J
I
I

10 ---- - -"
.... ;1:>. ... , ····r···

I I

2 ---- -~- - ----- ----- -~ 8
I
I 11

3 ----

... ,
I
I --- - _ ...

. ... ;
I

4 ----- --- - ----- ----- -..! ---metal

"'T'" ----- polysilicon
I

5 ----- ----
____ _____ __J

......... diffusion

9

"'T'"
I

6 ----- --- - -.!

... ~.
I
I

--- - ----- ----- ---- - ---- ----- ---- - - ...

• contact

GND

Figure 2.2. A Weinberger array layout of the circuit of Figure 2.1

Note that connections (i.e. polysilicon intervals) may be placed on the same line if
they do not overlap. Since the number of gates is fixed, minimization of the layout
area is equivalent to reducing the number of rows, i.e. by finding a suitable per
mutation of the gates (which defines the length of the polysilicon intervals) and
an associated row assignment of the intervals such that the number of rows is
minimum.

So we obtain the following Weinberger MPP (WMPP):

Given: -A collection Go, Gl , ... , Gn , Gn+1 of gates, where Gl , ... , Gn represent
the NOR gates of the circuit, and where Go and Gn+l represent the
input (on the left) and output signals (on the right) of the circuit,
respectively.

-A collection of nets Nl , .. _, Nm • Each net Ni consists of those gates
Gj , to which it is output or input.

-The net-gate matrix M.

Problem: Find a permutation of Gl , ... , Gn (i.e. the positions of Go and Gn+l are
fixed) and an associated feasible track assignment (layout) such that the
number of tracks is minimum.

Figure 2.3 shows the matrix M, a layout corresponding to Figure 2.2 and an optimal
layout for the above example.

22

Go A B C o E F
1 1 1 1

2 1

3 1

4 1

5 1

6

7 1 1

8 1 1

9

10 1 1

11

net - gate matrix

Rolf H. Mohring

68 60 ABC 0 E F 68

IW[iQJ
~2==~I[i]lliJ

3

4

5

9

layout corresponding to Fig 2.2

60 BCD E A F 68

11 I[!!]
1 2 1

[LJWDLJ
14 1[i]1IJ
1 5 1

[LJ
optimal layout

Figure 2.3. Net-gate matrix and two layouts for the WMPP of Figure 2.1

Gate Matrix Layout. This architecture was introduced by [LLa80] as a regular
layout style for large scale transistor circuits in the CMOS technology. In such a
layout, a vertical polysilicon wire corresponding to an input, internal or output
signal is placed in every column (columns A, B, C, D, E, F, G and Z in Figure 2.4).
All transistors using the same signal are constructed along the same column (e.g.
transistors 1 and 7 in column A of Figure 2.4). Connections among transistors are
made by horizontal metal lines, while connections to VddjVss are in a second metal
layer (and irrelevant to the underlying MPP). They are indicated by up and
downward arrows in Figure 2.4.

A net is a collection of metal lines and transistors to which it must be connected.
Net Nl in row A of Figure 2.4 spans from column A to G and is connected to three
transistors (1, 2, and 3) and one metal line (G). The (slightly simplified) assumption
about the realization of nets is that the series-parallel transistor circuit of each net
and its output signals can be realized in a row regardless the permutation of the
metal lines and transistors.

As with Weinberger arrays, minimizing the layout area leads to the following gate
matrix permutation problem (GMPP).

a

b

c

d

Given:

Graph Problems Related to Gate Matrix Layout and PLA Folding

Vdd Vdd
N, N2

I' , ,- ,
" A-j

, / \ ,
,'~ \ I

I \
I B-j ,

I ,
\

,D-j I , I
3 I , , .-

" '" " - Z

..... ... -N3.- '"
..... , N4

I \

, A-i
I I
\ I , , / I

" " I " ...
/

Vss Vss

A B c o E F G Z

~~I-_rl_-+;c.~ ! i N, ! Vdd
~I~ I I I

P,l
, , , , , , ,
:

I I I I I

~~_rl_-+~-+~~5-;~.;.+6 __ -+1 ____ -.~ N2
I I I t I
I • I I •

j ~! 1 N3 !
! n=! ! !

P:J'I-'_-r! __ -+:_~.: 10 : 9 :
! ! E!3Ff3 tN4
I I I I I
I I I I I

: : : : : : Vss

N, ... N4: nets A ... Z : signals
1 ... 11 : transistors a ... d : rows

Figure 2.4. A transistor circuit and an associated gate matrix layout

23

--A collection Gl , G2 , ••• , G" of gates representing metal lines or tran
sistors of a gate matrix.

--A collection Nl , ... , Nm of nets, where each N; is a subset of {Gl , ... , G,,}.
--The net-gate matrix M.

24 Rolf H. Mohring

A ,B C 0 E F G Z ABC 0 E F G Z

Nl 1 1 I Nl '--'-'-'--;:::::::====-' I N2 1 1

1 1 1

net - gate matrix layout corresponding to Figure 2.4

o B AGe E F 1

Nl II N2

N~

I N4

optimal layout

Figure 2.S. Net-gate matrix and two layouts for the GAMP of Figure 2.4

Problem: Find a permutation of G1 , ... , Gn and an associated feasible track assign-
ment (layout) such that the number is tracks is minimum.

Figure 2.5 displays the net-gate matrix and two layouts for the above example.

The GMMP is the combinatorial core ofthe problem to construct an area minimal
gate matrix layout. Additional (and usually neglected) features are 1) that one may
distinguish two collections of rows (p-devices and n-devices) that permit indepen
dent column permutations, and 2) that a net may require more than one row
depending on the permutation of its gates. While this second feature can be modeled
within the M P P formulation by appropriate net splitting, incorporation of the first
feature may lead to better layouts [NFKY86]. For further technical information
we refer to [SM83], [WHW85].

Programmable Logic Array. A programmable logic array (PLA) realizes a collec
tion of Boolean functions given in disjunctive form (two-level sum of product form)
on a two-dimensional array (see Figure 2.6).

This array consists of an AND-plane and an OR-plane. For every variable Xi of the
Boolean functions, there is an input signal to the AND-plane (in fact, both inputs
Xi and Xi are generated). Each row of the AND-plane produces a term that is an
input to the OR-plane. The columns of the OR-plane correspond to the different
Boolean functions and combine the appropriate product terms by an OR operation.
By adding storage elements and simple feedback connections, a PLA can very easily
be used to implement a sequential circuit. This application of PLA's is popular
in the design of microcontrollers. For further technical information, we refer to
[FM75].

!

Graph Problems Related to Gate Matrix Layout and PLA Folding

Xl

t
X2 ! X3

t t

y

AND- plane

Xs

!)(4 ! XS

t t

fl = B + D. f2 = A + C. f3 = C + E + F

Figure 2.6. A PLA layout of 3 Boolean functions

A = X1X3

B = Xl x2X3

C = i3 X4 XS

0= X3X4X5

E = X1X4X5

F=XiX4

25

For reducing the area of a PLA, two techniques can be applied. Logic minimization
for reducing the number of rows (= product terms) and PLA folding for reducing
the number of columns. The first technique is the same as finding the minimum
number of prime implicants for a set of Boolean functions (see e.g. [BMHS84J). It
is usually applied before the folding.

The folding allows two (sometimes also more) signals to share a row (in the
AND-plane) or a column (in the OR-plane). This leads to the same class of MPP's
in both the AND and the OR-plane.

PLAMPP

Given: -A collection of gates G1 , •.• , Gn that correspond to the signals in one
plane of a PLA.

-A collection of nets Nl , ... , Nm, where each net is a set of signals that
have to be combined by AND (in the AND-plane) or OR (in the
OR-plane).

-The net-gate matrix M.

Problem: Find a permutation of the gates Gl , ... , Gn and a feasible assignment of
at most two nets to a track (P LA layout) such that the number of tracks
is minimum.

Figure 2.7 displays the net-gate matrix and several layouts for the example of Figure
2.6.

There are several more restrictive versions of the PLA folding problem. If gates
occuring in the second net of a track may not occur in the first net of a track with
two nets, one speaks of block folding. In that case, any folding defines a partition

26 Rolf H. Mohring

A B C D E F

X1

2 X1

3 X2

4 X2

5 X3

6 X3
7 X4

8 X4 1 1

9 Xs

10 Xs 1 ,
net - gate matrix

ABC D E F

ITJITJ
[]][2]

A

1 6 i[iQJ B

COw C
[]~

an optimal solution
with 5 tracks

D

E

F

I

an associated PLA - folding

Figure 2.7. The net-gate matrix and an optimal layout for the AND-plane of Figure 2.6

G1 , G 2 of the gates such that if net N; is before N.i in the same track, then N; ~ G1

and N.i ~ G 2 ·

If the nets are pre-assigned to the two sides of the layout, one speaks of constrained
folding. In that case, a partition N 1 , N2 of the nets is given as input to the problem,
and any restricted folding may only assign net N; before N.i on the same track if
N; E Nl and N.i E N 2 ·

The combination of block folding and restricted folding is called constrained block
folding. Figure 2.8 shows optimal layouts for these different folding problems for
the example of Figure 2.7.

Graph Problems Related to Gate Matrix Layout and PLA Folding

A B ClD E F ,
OJ i

[lJ;
[LJi [LJ

[iJi[ili]
5 ' I
[0

A

B

C

D

E

F

a) optimal block folding and associated PLA with 6 tracks

BACDEF

[LJ [1J B 1
[lJeTI A

I 5 1m
[TI[O C

[iJ[!QJ D

E

F 1
T T

b) optimal constrained folding and associated PLA for the net
partition {1.3.5.7.9}. {2.4.6.8.10} with 5 tracks

ABC D: E F , ,
A [LJ i[1J

[lJ : m B

C01CIJ C
,

01 D

m , , E ,

I J
6 ,

F ,
[JIJ I r r I I

c) optimal constrained block folding and associated PLA forthe
partition from b) with 7 tracks

Figure 2.S. Restricted PLA-foldings

27

28 Rolf H. Mohring

3. Graph-Theoretic Formulations and Related Problems

We will now consider several graph theoretic problems that are equivalent to the
VLSI layout problems discussed in the previous sections. These problems have their
own graph theoretic background and have to a large extent been investigated
inependently of each other.

Interval graph augmentation. This formulation occurs already in the first papers on
gate matrix layout [Win82], [Win83]. For Weinberger arrays, similar considera
tions are made in [OMKK79].

Let V be a finite set and (IV)VE v be a collection of (not necessarily distinct) intervals
Iv of a linearly ordered universe (such as the real line or a permutation of the gates).
Such a collection of intervals (IV)VEV defines a partial order P = (V, <) on V
by putting

(3.1) u < u <::- Iu is entirely to the left of Iv .

It also defines an undirected graph G = (V, E) on V by putting

(3.2) (u, v) E E <::- Iu and Iv intersect (i.e. Iu n Iv f= 0)

A partial order P and a graph G obtained in that way are called an interval
order and an interval graph, respectively, and an associated collection of intervals
(IV)VEV is called an interval representation of P or G. An example is given in
Figure 3.1.

Interval orders and interval graphs model the sequential and intersection structure
of a set of intervals of the real line. This is why they have many applications dealing
with intersection and consecutiveness such as the gene structure in molecular
biology, seriation in archeology, preference and indifference relations in measure
ment theory, and consecutive retrieval, VLSI channel routing, and gate matrix
layout in computer science. For more information on these applications, see
[G080], [G08S], [Mo8S], [Mo89].

Note that different interval representations with the same intersection behavior
define the same interval graph but possibly different interval orders. We call all
interval orders related in this way to a fixed interval graph G the interval orders
associated with G.

v = {1, ... ,6} 3

P1
4

11 = [1,2['~S 12 = [OAr
2 S 13 = [3A[

14 = [3A[
15 = [2,S[

4 6 16 = [4,6[2 6

(iv)v E v P G

Figure 3.1. A collecting of intervals with associated interval order P (as transitively reduced directed
acyclic graph) and interval graph G

Graph Problems Related to Gate Matrix Layout and PLA Folding 29

Consider now an MPP with net-gate matrix M. This matrix M defines a graph
G = «V(G), E(G» by taking the intersection graph ofthe rows, i.e., V(G) is the set of
nets (rows), and two nets are connected by an edge if they share a gate (i.e. there is
a column with l's in both rows). G is called the net adjacency graph [DKL87], or
incompatibility graph [ALN88] since its edges (u, v) express that the nets u, v cannot
be assigned the same track in a feasible layout.

For any gate permutation 1t of M, the associated augmented matrix M" defines a
collection of intervals (the augmented nets) of the linear order Gil' ... , Gin defined
by 1t on the gates. This collection of intervals defines an interval graph H =
(V(H),E(H» that contains G in the sense that V(G) = V(H) and E(G) ~E(H), i.e. by
augmenting the edge set of G. (This follows directly from the fact that two nets that
share a gate in M share also a gate in M".) A feasible track assignment for M"
corresponds then obviously to a coloring of H, in which tracks correspond to color
classes.

This shows that every feasible layout for M induces a coloring of an interval graph
augmentation of G, the incompatibility graph of M. The converse is also true as the
following lemma shows.

3.1 Lemma: Let G = (V(G), E(G» be the incompatibility graph of a net-gate matrix
M. Let H = (V(H),E(H» be an interval graph augmentation of G and let P =
(V(H), <) be any interval order associated with H. Then:

a) P induces a partial order on the gates G1 , • •• , Gn of M by putting

(3.3) Gr < G. if there are nets Ni =1= ~ incident to Gr and Gs,

respectively (i.e. mir = mj. = 1), and Ni < ~ in P.

b) Any linear extension Gil' ... , Gin of the gate order of a) induces a permutation 1t

such that the augmented net-gate matrix M" is an interval representation of H
andP.

c) Any coloring of H induces a track assignment of M" by taking each color class as
a track and ordering the nets of the color class according to P.

The proof is straightforward and left to the reader. An example of these construc
tions is presented in Figure 3.2. An immediate consequence of these consideration is:

3.2 Theorem: The minimum number of tracks of a feasible layout for a net-gate
matrix M is equal to the smallest chromatic number of an interval graph augmentation
H of the incompatibility graph G of M, i.e.

(3.4) t(M) = min{x(H)IH is an interval graph with E(G) ~ E(H)}

We briefly discuss the computational complexity of the constructions of Lemma
3.1. An adjacency matrix of G can be constructed from M in O(n' m2) time by
looking at each column separately and inserting the corresponding edge entries in
the adjacency matrix.

An interval representation of an interval graph H and an associated interval order
P (in interval representation) can be constructed in 0(1 V(H)I + IE(H)I) time by

30

incompatibility graph G

an interval order P associated with H

a" linear extension L of the gate
ordering

a coloring of H

Rolf H. Mohring

2

3

an interval graph augmentation H

the gate ordering induced by P

1 * 1

*

the augmented gate matrix
Mn inducedbyL

an associated feasible
track assignment

Figure 3.2. An illustration of Lemma 3.1 on the example of Figure 1.1

PQ-tree techniques [BL 76, KM89]. The gate order induced by P can be obtained
efficiently by scanning an interval representation of P from left to right and con
structing an ordered partition of the gates as follows:

For the i-th right endpoint encountered in the scan, let the set G; consist of all gates
that are incident to nets ending (as intervals) at the current endpoint and do not
belong to any previously constructed Gj . The partition G 1, ... , Gk thus constructed
defines the gate ordering: all gates from G; are incomparable among each other and
precede all gates from Gi+l (i = 1, ... , k - 1). This follows from the fact that all gates
not yet considered at the current endpoint must belong to nets that come later in

Graph Problems Related to Gate Matrix Layout and PLA Folding 31

the interval represenfation and are thus successors in P of the currently ending nets.
So linear extensions of the gate ordering are just permutations within the classes G;
of the partition. It follows that the partition and a linear extension (gate permutation)
can be constructed in O(n' m) time.

An optimal coloring of an interval graph H can be obtained in 0(1 V(H)I) time from
an interval representation by scanning the interval representation from left to right
[GLL82]. When the left endpoint of an interval is encountered in the scan, the
corresponding vertex of H is assigned the smallest color from the set {t, 2, ... , n} of
colors that has not been assigned to intervals containing the current endpoint.

Obviously, the number of colors thus required is equal to the maximum number of
intervals that intersect in a common point, i.e. the maximum size w(H) of a clique
of H. Since any coloring requires at least w(H) colors, if follows that the coloring
is optimal and X(H) = w(H).

These arguments show that the hard core of the MPP is the construction of the
right gate permutation, or, in terms ofthe interval graph augmentation, to find the
right augmentation of the incompatibility graph to an interval graph. The track
assignment problem or interval graph coloring problem can then be solved opti
mally by a simple linear-time algorithm.

Note that the interval graph coloring algorithm described here can of course
also be directly carried out on augmented net-gate matrices (remember that they
represent interval graphs). In this context, it is known as the left-edge algorithm
(starting from the left edge of the rectangle described by the matrix) and it already
occurs in channel routing applications of interval graphs [HS71]. It shows in
particular that the minimum number of tracks for an augmented net-gate matrix
M" is equal to the maximum column sum of M".

Because of the easy solvability of a track assignment/interval graph coloring prob
lem, we can rephrase our original problems as follows:

(MPP):
Given a 0-1 matrix M, find a permutation 1t of the columns of M such that the
maximum column sum of the augmented matrix M" is as small as possible.

Interval graph augmentation (IGA): .
Given a graph G, find an augmentation of G to an interval graph H whose clique
size w(H) is as small as possible.

The smallest clique size w(H) of an interval graph augmentation of G is also called
the interval thickness of G. Because of its equivalence with MPP, we will denote it
also by t(G), and call it the track number of G.

So far, we have seen that every MPP can be transformed to an instance of IGA.
The converse is, of course, also true, since very graph can be represented as the
incompatibility graph of some MPP (e.g. by introducing a column for every edge
of G with two I-entries for the vertices joined by this edge).

This gives:

32 Rolf H. Mohring

3.3 Theorem: MPP and IGA are polynomially equivalent.

The interpretation of MPP as IGA makes available the large body of algorithmic
techniques for interval graphs, see e.g. [GoSO], [MoSS], [MoS9]. Most of them are
based on the following characterization of [FG65] of interval graphs.

3.4 Theorem: A graph G is an interval graph iff its maximal cliques can be
linearly ordered such that, for every vertex v, the maximal cliques containing v occur
consecutively.

Any such arrangement is called a consecutive clique arrangement. Such arrange
ments can be constructed and maintained by PQ-trees [BL 76] or their specialized
versions for interval graphs, the MPQ-trees [KMS9]. These data structures will be
useful for approximation algorithms discussed in Section 5.

Loosely speaking, the general idea of the interval graph augmentation approach to
the MPP can be expressed as making the cliques of G consecutive (in the sense of
Theorem 3.4) by extending or joining them to cliques of an interval graph while
keeping the size of the new cliques small.

Path width. The path width of a graph was considered by Robertson and Seymour
[RSS3] in the first part of their series of papers on graph minors.

They define a path decomposition of a graph G as a sequence X I, ... , X, of subsets
of V(G) such that

(3.5) for every edge e of G, some Xi contains both ends of e

and

(3.6) for 1 ~ i ~ j ~ I ~ r,

hold. The path width of G (denoted by pw(G)) is the minimum value of k ~ 0 such
that G has a path decomposition Xl' ... ' X, with IX;! ~ k + 1 (i = 1, ... ,r).

This notion is almost identical to interval graph augmentation. In fact, if G has a
path decomposition Xl' ... , X, with IX;! ~ k + 1, then the graph H defmed by
lett!ng X I, ... , X, be its maximal cliques is an interval graph because of (3.6) and
Theorem 3.4, and fulfills E(G) £; E(H) because of (3.5), and w(H) = maxi IX;! ~
k + 1. Conversely, if H is an interval graph augmentation of G, then any consecutive
clique arrangement CI , ... , C, of H defmes a path partition ofG because of Theorem
3.4, and IC;! ~ k + 1 with k = w(G) - 1. This gives:

3.5 Proposition: Determining the path width of a graph G is polynomially equivalent
to !GA. In particular, pw(G) = t(G) - 1.

This equivalence permits a direct translation of deep results from the Robertson
Seymour theory to gate matrix layout. The most important of these is related to
the notion of the minor of a graph.

H is a minor of G if H can be obtained from G by deleting some vertices and/or
edges, and/or contracting some edges. It is easy to see that

Graph Problems Related to Gate Matrix Layout and PLA Folding 33

(3.7) t(H) :s: t(G) if H is a minor of G.

This implies directly that for any fixed k, the class of graphs G with t(G) :s: k is closed
under taking minors (i.e., if G belongs to this class and H is a minor of G then H
belongs also to this class). This is the starting point for the application of the
following results of Robertson and Seymour.

3.6 Theorem [RS87]: Let F be any set of graphs closed under minors. Then there are
finitely many graphs H l' ... , Hr such that

G E F-G does not contain Hi as a minor, i = 1, ... , r.

This is a direct consequence of the proof of the Wagner Conjecture (no class of
graphs has infinite antichains under the minor ordering) in [RS87] and the closed
ness property under taking minors.

3.7 Theorem [RS86]: For any fixed graph H, it can be tested in polynomial time
whether a graph G contains a minor isomorphic to H.

The combination of these theorems yields the existence of a polynomial time
algorithm for testing membership for any minor-closed family of graphs, thus in
particular for the class of graphs with bounded path width.

However, since no proof of Wagner's conjecture can be entirely constructive
[FRS87], Theorem 3.6 is a pure existence result for the finite family of forbidden
minors. Moreover, though the algorithms for minor recognition have low degree
polynomials as worst case bounds, their constants of proportionality are enormous,
rendering them impractical for practical problems (see e.g. [J087a]). The general
bound is O(n3) for a graph with n vertices, and even O(n2) if the family F excludes
a planar graph. This is the case for the path width (see [RS83] and Proposition 3.12
below), and thus:

3.8 Theorem: Within the class of graphs with bounded pathwidth k, k fixed, the interval
graph augmentation problem can be solved in O(n2) time for a graph with n vertices.

This result is interesting in view of the NP-hardness of the general problem when
k is part of the input (see S'!ction 4). A polynomial dynamic optimization algorithm
for fixed k of order O(n2k2+4k+8) has also been obtained in the context of graph
searching [EST87] (see also below). It is, however, open how to design a practical
O(n2) algorithm.

The application ot the Robertson-Seymour theory to gate matrix layout is discussed
(among other problems) in a series of papers [FL87] [FL88a] [FL88b]. For a
survey about computational implications of the Robertson-Seymour theory, we
refer to [J087a].

Node searching. This problem formulation refers to a searching game on graphs
introduced in [KP86] as a variant of the more investigated edge searching [Pa76].

In node searching, the edges of a graph represent a system of pipes or tunnels that
are considered contaminated by a gas. The object of node searching is to clear all
edges by a search. A search is a sequence of moves where a player places a searcher

34 Rolf H. Mohring

(also called guard) on a node of the graph that carries no searcher or deletes the
searcher from a guarded node.

An edge is cleared if both its endpoints simultaneously carry a searcher. A cleared
edge may be recontaminated if, at a later stage of the search, there is a path from an
uncleared edge to the cleared edge without any searchers on it. So in order to avoid
recontamination of cleared edges, the guarded nodes must after each move form a
separating set that separates the still unsearched part of the graph (the not yet visited
vertices) from the already searched part (all vertices that carried a searcher in the
past).

A search is called optimal if the maximum number of searchers on the graph at any
point is as small as possible. This number is called the node-search number of G, and
denoted by ns(G).

It was shown in [KP86] that there always is an optimal search without recontami
nation of cleared edges. This was used in [KP85] to show the following unexpected
relationships to interval graph augmentation:

3.9 Theorem: For any graph G, ns(G) = t(G).

The proof of this theorem is based on the following ideas. If H is an interval graph
augmentation of G, then any consecutive arrangement C1, ••• , Ck of the maximum
cliques of H defines a search by letting the searchers move in this order through
C1, ••• , Ck • If Ci is guarded, then searchers from C; - Ci+1 and possibly new search
ers may be moved to Ci+1 - C; until Ci+1 is guarded. It is easy to see that this
defines a search without recontamination with w(H) searchers.

In the converse direction, any recontamination-free search of G assigns to every
node v of G the interval [i,j] whose endpoints are the first and last step in the search
at which v is occupied by a searcher. (Note that this definition makes sense since
the search is recontamination-free.) Since every edge is searched, the intervals
assigned to its endpoints intersect. So the interval repre<!entation induces an interval
graph H with E(G)!;; E(H). The maximum number k of searchers in this search
is obviously just the maximum number of pairwise intersecting intervals, i.e.
w(H).

Node searching is also closely related to other linear graph layout problems and to
pebbing games on graphs [KP86]. In particular, the interpretation as progressive
pebbling game gives the following useful result [KP86] for investigating or generat
ing searches.

Consider an acyclic orientation of the edges of G and a dynamic assignment of
searchers to vertices that observes the rules

(3.8) A vertex may accept a searcher only when all its immediate
predecessors carry a searcher.

(3.9) Every vertex is assigned a searcher exactly once.

Then:

Graph Problems Related to Gate Matrix Layout and PLA Folding

G with acyclic
orientation

1 IN1 11N4 I~

2 1-1 N_2 _-,I~EJ
3 I N3 II N6 I

The associated search in
interval representation

Figure 3.3. An illustration of a search

35

3.10 Proposition: Every assignment observing (3.8) and (3.9) defines a recontamination
free search of G, and every recontamination-free search of G can be obtained in that
way.

The first part follows easily by induction and the observation that the ''foremost''
searchers (those that have an unvisited immediate successor) form a separating set
in G that separates the searched part from the unsearched part. The other direction
is obtained by considering the orientation of G defined by u < v if u is visited by a
searcher before v. An example is given in Figure 3.3.

We call such a search a directed search.

Another useful application is the combination of the search interpretation with a
structural decomposition of graphs, the split decomposition [Cu82].

A split in an undirected graph G is a partition V(G) = VI U V2 of the vertex set of
G such that I "II ;;:: 2 (i = 1,2) and

(3.10) The edges of of G going from VI to V2 induce a com!)lete bipartite graph.

3.11 Lemma: Let V(G) == VI U V2 be a split of G and let AI !;;; V; (i = 1,2) be the
vertices of the associated complete bipartite graph. Then every recontamination-free
search of G has a step at which all vertices from Al or all vertices from A2 simulta
neously carry a searcher. So in particular, ns(G) ;;:: min{IAII, IA2 1}.

This can be seen as follows. If the statement is not true, then there is a first step of
the search at which a searcher is deleted from the endpoint (u, say) of an already
cleared edge (u, v) E Al X A2. Since neither Al nor A2 are completely visited at that
step, there is an uncleared edge (x,y) E Al X A 2. But then (u,v) is recontaminated
via the path (x, y), (y, u).

Still another application is the following argument from [KP86], which, in the
context of edge. searching, is due to [Pa76]. It also shows that the search number
is unbounded on the class of trees. This gives also the missing argument for the
O(n2) algorithm for bounded tree width (the class of graphs with bounded tree width
excludes some trees and thus a planar graph).

36 Rolf H. Mohring

3.12 Lemma: Let G contain a vertex v of degree 3 whose deletion separates G into
three connected components G1 , G2 , G3 , each of which has node search number
ns(G;) = t. Then ns(G) = t + 1.

It is easy to see that t + 1 searchers suffice. (Put a searcher on v and search G1 , G2 ,

G3 with the remaining t searchers). To show that they are also necessary, assume
that t searchers suffice for G.

Since t searchers are already required for each of the subgraphs G1 , G2 , G3 , there
is a moment at which one of them (G1 , say) has already been searched, all searchers
are on the second one (G2 , say), and the last of them is still unvisited. But then
recontamination takes place between G3 and G1 , a contradiction;

As a consequence, one obtains [KP86]:

3.13 Proposition: The search number of a complete ternary tree T is equal to its height
plus one.

It was already mentioned that node searching is a variant of the more investigated
edge searching. In edge searching, an edge is cleared by letting a searcher go through
it (instead of by occupying both endpoints as in node searching). It is therefore
possible [KP86] to obtain (optimal) node searchers on G from (optimal) edge
searches on a slight modification of G (replace each edge of G by three parallel
edges). Exploitation of this transformation and known results for edge searching on
trees [MHGJP88] and dynamic programming formulations [EST87] yield a linear
time search algorithm for trees (see also Section 4) and a polynomial time algorithm
of order O(n2k2+4k+8) for graphs with search number at most k, k fixed.

Alternating paths. This final equivalence is considered in many papers on PLA
folding. It views tracks in a layout of M as directed paths in the complement G of
the incompatibility graph G of M. The directed edges of these paths may be
considered as being added to G. This gives the following formulation.

Let G be the incompatibility graph of a MPP, and consIder the edges of G as colored
red. A path partition (or multiple folding) of G is a set of directed green edges F such
that the following two conditions are satisfied.

(3.11) The subgraph defined by the green edges is a collection of directed paths
(i.e., indegree and outdegree of every vertex is at most 1). This constraint is
called the degree constraint.

(3.12) There exists no cycle of alternating directed green path segments and red
edges (alternating cycle). This constraint is called the cycle constraint.

The size of a path partition is the number of green paths.

3.14 Theorem: Determining a minimum size path partition is polynomially equivalent
to interval graph augmentation.

This can be seen as follows. From a path partition with t paths, one can construct
an interval representation of an interval augmentation H of G with w(H) = t by a
left to right scan through the t paths. Initially, the intervals corresponding to the

Graph Problems Related to Gate Matrix Layout and PLA Folding

N, ___ Ns --- Ns

N2 -- N3 -- N6 -- N7

L-____ ~----~ Ns Ns ~

G A path partition of G

I N, II Ns II Ns I
BJI N3 II N6 IE]
I N4

The associated interval representation
of Theorem 3.15

I

Figure 3.4. An illustration of a path partition

37

minimal vertices in the t paths are "opened". When an interval is closed, the interval
of the next vertex in the corresponding path is opened etc. Given a collection of t
opened intervals, the next interval to close corresponds to a vertex u such that there
are no red edges (u, w) to a vertex w that occurs after a currently open interval v on
a green path containing v. Note that there is such a vertex u because of (3.12).

Since exactly t intervals are open at any moment, w(H) = t. To see that H augments
G, let (u, v) E E(G) and, w.l.o.g., let u be opened before v(as intervals). Then the choice
defined above ensures that u is only closed after v is opened. Hence the correspond
ing intervals overlap. An example of this construction is given in Figure 3.4.

The converse direction is obvious since every optimal coloring of an optimal interval
graph augmentation H of G defines a path partition of size X(H) = w(H). This
interpretation is particularly useful for the special cases of the MPP dealing with
PLA folding.

There are several other equivalent or related graph theoretic notions. We just
mention vertex separation, min cut linear arrangement, bandwidth and several
modifications of these problems. While vertex separation is equivalent to node
search [KP86], the other notions define bounds on t(G) [KP86] [B088].

Restrictions of the MPP. The restrictions discussed in Section 2 have natural
formulations within several of the different representations of this section.

38 Rolf H. Mohring

For instance, the WMPP can be modeled by fixing two cliques of G as belonging
to the first and last maximal clique of the interval augmentation to construct, or
by requiring the searchers to start and finish their search on specified cliques of
G.

For PLA folding problems, at most two vertices may share a common track. This
means in the path partition formulation that the directed green paths reduce to
directed green edges. This gives the most common formulation of PLA-folding,
which is due to [HNS82].

3.15 Proposition: Let G be the incompatibility graph of a P LA folding prob
lem. Then the minimum number of tracks for a PLA folding is equal to I V(G)I - s,
where s is the maximum number of green directed arcs that can be added to G such
that

(3.13) The green arcs form a matching in the complement ofG (degree constraint),

(3.14) There is no alternating cycle of directed green edges and undirected red
edges ofG (cycle constraint).

Such a set F of green arcs is called a folding set or simply folding. So Proposition
3.15 states that the PLA-folding problem is equivalent to finding a folding set of
maximum size.

Another characterization can be obtained from the observation that, in an optimal
layout of the associated augmented matrix M", the rows can be permuted in such
a way that the rows with two nets appear on top and that the rightmost 1's of the
first nets in these rows define a "decreasing staircase".

This staircase pattern corresponds to the special subgraph Zm.m of G defined below.

A Zm.m (also called a triangular clique in [HK87]) is a bipartite graph G = (U, V, E)
with U = {al, ... ,am }, V = {b1 , ••• ,bm }, and E = {(ai' bj)1 1 ~ i ~j ~ m}.

This gives [HK87]:

3.16 Proposition: Finding a maximum folding set in G is equivalent to finding a
maximum size Zm,m as (partial, not induced) subgraph ofG.

Both conditions can easily be sharpened for block folding and constrained folding
problems. Call a folding set F resulting in a block folding a block folding set. Then
one obtains the following characterization of block folding, see e.g. [RL88].

3.17 Proposition: Let G be the incompatibility graph of a P LA folding problem. Then:
(1) A set F of directed green arcs added to G is a block folding set iff F satisfies the
degree constraint (3.13) and

(3.15) There is no red edge (u, v) from the head of green edge to the tail of another
green edge.

(2) Finding a maximum block folding set in G is equivalent to finding a maximum size
K m•m (the complete bipartite graph on 2m vertices) as (partial, not induced) subgraph
ofG.

Graph Problems Related to Gate Matrix Layout and PLA Folding 39

Remember that in constrained PLA folding, the nets are preassigned to the two
sides of the layout. Thus only incompatibility relations between these two sides are
of importance, i.e., the incompatibility graph G can be assumed to be bipartite.
Therefore, constrained PLA-folding is sometimes also called bipartite folding
[EL84], [HK87].

The above conditions then specialize further for block folding.

3.18 Proposition: Finding a maximum block folding in a bipartite graph G is equiva
lent to finding a maximum size Km,m as induced subgraph of the (bipartite) complement
ofG.

4. Complexity Results

It was already mentioned several times that the general MPP is NP-hard. In fact,
this has been obtained independently in many of the equivalent formulations, e.g.
for interval graph augmentation in [KF79], for nQde search in [KP86], for directed
node search in [Le82], and for path width in [ACP87].

The NP-hardness of the PLA folding problems (including the general MPP, but
excluding block folding) is shown in [L VVS82] by a series of reductions from matrix
upper triangulation (given an n x n 0-1 matrix A, is there a permutation of the rows
and another of the columns such that resulting matrix is upper triangular?).

We will here sketch a different series of reductions that starts from constrained block
folding and contains block folding and a sharper version for interval graph aug
mentation (i.e. the general MPP), which turns out to be NP-hard already on chordal
graphs. Our starting point is (see e.g. [EL84]):

4.1 Theorem: Constrained block folding is N P-hard.

This follows in fact directly from Proposition 3.19 that gi-:es the equivalence to
"balanced complete bipartite subgraph" which is stated to be NP-complete in
[GJ79] (the proof has appeared in [Jo87b]).

Preassignment of nets to sides can easily be enforced by adding two gates Go, Gn+1

that are connected to the nets from the left and right side, respectively. Then any
(block) folding of the augmented problem can only fold nets incident to Go with
nets incident to Gn+1 , and the sides are (up to reversal of the layout) fixed by the
position of Go and Gn+1 • In view of Theorem 4.1, this gives:

4.2 Theorem: Block folding is N P-hard.

This result has been sharpened in [MW89] by a different reduction from GRAPH
BISECTION. Exploiting techniques from [BCLS87], [WW89] they obtain:

4.3 Theorem: Block folding is N P-hard even for graphs with degree at most k for any
fixed k;;::: 3.

The reduction from block folding to IGA on chordal graphs is based on the
following equivalent formulation of block folding.

40 Rolf H. Mohring

Given: A graph G and an integer k.

Question: Is there a partition of V(G) into three sets Vi> V2 , V3 such that
(i) every path from VI to V3 goes through a vertex of V2 ,

(ii) min {lVII, 1V3 J} 2': k?

The answer to such an instance is obviously yes iff there exists a block folding set
of G with k green edges (viz. from vertices to VI to vertices of V3). Based on this
formulation, the following result is obtained in [Gu89].

4.4 Theorem: Gate matrix layout and pathwidth are already NP-hard on the class of
chordal graphs.

Recall that a graph is chordal (or triangulated) if every elementary cycle VI' v2 , ••. ,

Vk' VI oflength k 2': 4 possesses a chord, i.e. an edge (Vi' v) with 1 ::;;; i < j + 1 ::;;; k + 1.

Chordal graphs form a natural generalization of interval graphs, see e.g. [G080]
for more information about chordal graphs. The chordal graphs needed in the proof
are quite special. They consist of a set of maximal cliques that overlap in a central
clique.

In more detail, let G, k be an instance of the above formulation of block folding
such that G is w.l.o.g. connected. From G we construct such a special chordal graph
H as follows. H contains a maximal clique Co (called the central clique) with vertex
set V(G). For each edge (u, v) E E(G), a maximal clique Cuv is added that consists of
the vertices u, v E Co and I V(G)I additional vertices that are incident only to vertices
in Cuv • Clearly, this graph is of the desired type.

From H one can construct a net-gate matrix M with incompatibility graph H by
introducing a gate for each of the maximal cliques of H. Consider an augmented
matrix M" of M and let C+ and C- be the cliques (gates) before and after the central
clique (gate) Co in M". Since every net corresponding to an original vertex of G that
is incident to some gate from C+ or C- is also incident to Co, the order of the gates
in C+ or C- does not influence the number of tracks.

Let V+ and V- denote the nets of Co (vertices of G) incident to a gate from C+
and C- , respectively, and let VI := V+ - V-, V2 := V+ n V- and V3 := V- - V+.
It can then be shown that VI' V2 , V3 form a partition of V(G) with the sbove
disconnecting property, and that min {lVII, 1V31} 2': k is equivalent to t(M) ::;;; 2·
IV(G) I - k.

Conversely, every partition VI' V2 , V3 of G with the above properties can be
transformed into an augmented matrix M" by first taking all gates (cliques) Cuv with
u, v E VI U V2 (in any order), followed by Co and all cliques Cuv with u, v E V2 U V3.
This proves the theorem. An example of this construction is given in Figure 4.1.

Note that if all maximal cliques that intersect the central clique are mutually disjoint,
then the problem can be solved in 0(1 V(GW) time by a dynamic programming
algorithm [Gu89]. This confirms that the borderline between easy and hard pro
blems for subclasses of chordal graphs G depends essentially on the overlapping
behavior of the maximal cliques of G (see also [ACP87]).

1

2
3
4

5
6
7
8

9
10
11
12

13
14
15
16

17
18
19
20

Graph Problems Related to Gate Matrix Layout and PLA Folding

.0:
G

v, = {1}

V2 = {2,4}

V3 = {3}

An associated partition
V" V2, V3 with k = 1

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16

17
18
19
20

*

*

The net gate-matrix of H The augmented matrix corresponding
to V" V2, V3

Figure 4.1. An illustration of the proof of Theorem 4.4

41

A reduction from gate matrix layout to constrained PLA-folding can be obtained
by turning an arbitrary graph G into a bipartite graph H = (U, V, E) as follows:

U:= V(G), V:= {v'lv E V(G)}(acopyofV(G»,and(u, v') E E(withu E U and v' E V)
iff (u, v) E E(G) or u = v.

Then any constrained folding set F for H corresponds uniquely to a collection
of tracks for G by combining the edges of F to paths (tracks) (xt>x;), (X2,X;),
(X3,X:a.), . •. , (kk' Xl)' Then t(G) = IV(G)I- IFI, i.e. maximizing IFI in H corresponds
to minimizing t(G) in G, Hence:

4.5. Theorem: Constrained PLA folding is NP-hard.

42 Rolf H. Mohring

Finally, the reduction from constrained PLA folding to PLA folding is achieved in
the same way as from constrained block folding to block folding.

4.6. Theorem: P LA folding is N P-hard.

There are several other NP-hardness results related to gate matrix layout and PLA
folding. We mentioned already the directed search problem [Le82]. Another such
problem is

Orderability:

Given: A graph G of red edges, a set F of green edges of G.
Question: Is there an orientation of the edges of F such that F is a folding?

Orderability is shown to be NP-complete in [HNS82]. It is solvable in polynomial
time for constrained PLA folding [Ra88].

Other variants of the PLA-folding problem not discussed here are shown to be
NP-hard in [ALN88].

We consider now some special classes of graphs on which the gate matrix layout
problem can be solved in polynomial time. Most of the arguments leading to
polynomial algorithms come from node searching (in particular Lemma 3.11 and
Lemma 3.12) and demonstrate again the usefullness of this interpretation.

We will start with the class of trees. As mentioned before, the polynomial algorithm
for edge searching on trees [MHGJP88] can be transformed by the principles of
[KP86] to a polynomial algorithm for node searching on trees. This requires O(n)
time for determining ns(G), and O(nlogn) time for finding the associated search. We
sketch here a different, equally fast algorithm with a much simpler correctness proof.

The algorithm peels the tree, i.e. it starts with the leaves and works its way towards
the "center" of the tree. So at a typical step of the algorithm, certain subtrees T1 ,

... , T,. of the tree T have already been investigated. Each of these trees T; has a vertex
Vi connecting it to the still unsearched part of T.

The peeling is done in phases t = 1,2, ... , ns(T). At the beginning of phase t, the
vertices Vi are the leaves of the remaining tree, and every T; requires t searchers,
while every T; - Vi can be searched with t - 1 searchers. We then peel the remaining
tree starting from the Vi until we reach new vertices uj in which the search number
must go up to t + I, (or T has been searched completely). The current phase is
completed when all Vi have been processed and are connected to some uj in the
already searched part of the tree.

All vertices investigated in phase t (expect the uj which are the starting vertices for
the next phase) receive the label label (v) = t, t = 1, ... , ns(T). These labels have the
following important property:

Let, for a vertex with label t, T" be the connected component in the subgraph of all
vertices with label at most t that contains v. Then:

(4.1) ns(T,,) = label(v}.

An example of the peeling and the different phases is given in Figure 4.2.

Graph Problems Related to Gate Matrix Layout and PLA Folding 43

2 3 4 5 6 25 26 27 28 29 30

16 17 18

57

58
19 107 97 111 98
20

108
106 112

115 116 119 123 122
121

117 118

110 9 114

22 113

94 103

7 8 9 10 11 1213 1415 31 32 33 34 35 36 37 38 39

a) Processing order ofthe vertices

1 1 1 1 1 1 1 1

2 2 J-H 2 2 2

2(1) 2(1) 2(1) 2(1)

3 3 3 2 2 3

2
4 3 3 4

4 4
3

4
4(1) 4(2) 5 4(1) 4

4(2) 4(2)
4 2 4

3

4 4
2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

b) Pase labels with respect to the processing order of a)

Figure 4.2. An example tree for the algorithm

44 RolfH. Mohring

The essential part of the algorithm consists in identifying the new vertices u) in
which the search number must go up. There are several special cases for small t
(e.g. the transition from vertex 80 to 91 in Figure 4.2), but the general procedure is as
follows.

We first explore from every Vi the path (in the remaining tree) connecting it to the
still unexplored part of T until we reach a vertex V (where v = Vi is possible) with 2
unexplored neighbors or another neighbor u with label(u) = label(vj). In Figure 4.2,
such paths are e.g. 109, 110 or 111, 112. Mter this path exploration, they are three
cases.

We reach a vertex v with two unexplored neighbors. Due to the algorithm, these
neighbors are conected to other subtrees with search number t, and so the search
number must go up to t + 1 because of Lemma 3.12. Then v will be considered in
a later phase. In Figure 4.2, v = 99 is such a vertex.

Three or more paths meet in a vertex u. Then the search number goes up in u to
t + 1 because of Lemma 3.12. In Figure 4.2, this is e.g. the case for u = 107 (from
91,92,93) and u = 111 (from 100, 101, 102).

Exactly two path next meet in a vertex u. Then the search can be carried over with
t searchers from one path to the other with u in the "interior" of the corresponding
layout (i.e. there is no search with t searchers that ends in u). It may, however, still
be possible to search part of the tree starting in u with at most t - 1 searchers while
a searcher guards the vertex u. To this end, we consider the unexplored neighbor
of u as a leaf and start a search from it to the unexplored part until we reach the
first vertex where t searchers are required. This vertex is then a leaf for the next
phase. We call this situation a fork.

In Figure 4.2, such forks are given by u = 106, u = 115, and u = 121. In u = 106,
the search stops immediately because 117 has two unexplored neighbors. In u =
115, we start a search along the path 116, 117, etc., where 116 is treated as a leaf.
The new phase labels of this search are given in brackets. Note that the fork in 106
influences this search since a guard must remain on 106, thus implying that only
two searchers are available along the path 117, 118, etc. This is why the search stops
in 120. The formal stopping argument is that the subtree induced by {116, 117, ... ,
120, 123} requires 4 searchers, which together with the fork at 115 and Lemma 3.12
increases the search number to 5.

The fork of 121 then meets the fork of 115 in 123 and brings the search number
up to 5 because of Lemma 3.12 (every fork contributes two subgraphs of search
numbert).

These are the main ingredients of the algorithm. There are several additional
remarks to be made.

The argument for an increase of the search number is always Lemma 3.12. This is
in fact due to the "converse" of Lemma 3.12 [Pa76] stating that, for any tree T,
ns(T) ~ t + 1 iff there is a vertex v at which there are three or more subtrees with
search number t or more.

Graph Problems Related to Gate Matrix Layout and PLA Folding 45

The path exploration'in forks depends of course on the processing order of the
vertices. For instance, exploring the fork in 121 first would explore the path until
vertex 117.

The phrase labels and the information about forks (i.e. which paths are joined) can
be directly used to obtain an optimal search. This is demonstrated in Figure 4.3 for
the example of Figure 4.2.

Altogether, this gives:

4.7 Theorem: The track number t(T) of a tree T and an optimal layout can be obtained
in 0(1 V(T) I) time.

123

107 I 115

91 192 93 108 197

40 180 141 142 182 I 43 44 184145 ~
1 I 79 2 I 3 181 I 4 I 5 183

123

115

97 1117 1119 98 110

1 56 \ 57 1106 158 I 59 160 1

\17 118 1 11161 118 1120 I 119 120 121 I
123

109 111

951 96 100 101

I 51 I 52 1 53 I 54 64 1861 65 66 1881

112 113 114 115 251 85 126127 1 87

123

111 121 113

1021 112 \1221 99 114 103

I 6 1 [Ji]

109

67

I 94 95

I 46 I 47 I 48 I 49 I 50 1

I 7 I 8 I 9 I 10 111 1

102

68 190 1 69

128129 I 89

104 105

~ 161 162 163

UQJ 122123124

I 70 I 71 I 72 I 73 1 74 1 75 1 76 1 77 I 78

131 1 32 133 1 34135 136 137 I 38 139

Figure 4.3. The layout corresponding to the search of Figure 4.2

46 Rolf H. Mohring

The techniques Qnderlying the tree search algorithm seem to be valid also for other
"tree-structured" graphs such as (2-connected) outerpanar graphs, k-trees, and
possibly partial k-trees. This is currently being investigated together with J. Gustedt
and R. Miiller from the TV Berlin.

Lemma 3.11 can be used to obtain a polynomial algorithm for cographs. Recall that
a cograph (or complement reducible graph, see [CLSS1] for details) can be defined
recursively by

(4.2) The one-vertex graph is a cograph

(4.3) IfGi = (Vi' Ed and G2 = (V2,E2) are cographs on disjoint sets Vi' V2, then

Gi + G2 := (Vi U V2 ,Ei U E2) and

Gi * G2 := (Vi U V2,Ei U E2 U (Vi X V2»

are also cographs.

Then Lemma 3.11 gives:

(4.4) ns(Gi + G2) = max{ns(Gd, ns(G2)}

(4.5) ns(Gi * G2) = min{lVtI + ns(G2),1V21 + ns(Gd}

An associated interval representation of an optimal search can be dermed similarly
as in the tree algorithm by defining offsets in each operation. So if a sequence of
operations "*" and" +" producing the whole graph is given (a parse tree defining
such a sequence for G can be obtained in 0(1 V(G)I + IE(G)I) time [CPSS5]) one
obtains:

4.8 Theorem: The track number of a cograph G (given in "decomposed" form or by
its parse tree) and an optimal layout can be obtained in 0(1 V(G)I) time.

The operation "*" can be seen as a special split in which (with the terminology of
Lemma 3.11) A = Vi and B = V2.1t is still open whether there is a polynomial time
search algorithm for the larger class of graphs that can be recursively decomposed
by splits. They are known as distance-hereditary graphs [BMS6] or completely
separable graphs [HMS7], and contain both the class of trees and the class of
cographs.

Finally, we mention the class of chordal graphs discussed in connection with
Theorem 4.4. By using a dynamic programming approach similar to that for
PARTITION in [GJ79], [GuS9] obtains:

4.9 Theorem: If the maximal cliques Co, Ci , ... , Cm of G fulfill

(4.6)

then t(G) and an optimal layout can be obtained in 0(1 V(GW) time.

Condition (4.6) means that the cliques C i , ... , Cn have a special overlap structure
with the "central" clique Co. Similar arguments yield also a polynomial algorithm
for split graphs [GoSO], i.e. those chordal graphs whose complement is also chordal.

Graph Problems Related to Gate Matrix Layout and PLA Folding 47

For PLA-folding problems, much less is known about polynomially solvable cases.
An algorithm for constrained PLA-folding on trees has been obtained in [HKS7].
Results of [BoS7] on the balanced complete bipartite subgraph problem (in par
ticular the transformation applied there) show, when combined with Propositions
3.16 and 3.1S, the polynomial solvability of constrained block folding and block
folding on partial k-trees. It is easy to also obtain polynomial time dynamic
programming algorithms for these cases.

5. Algorithms

Due to the VLSI-background, many algorithms have been proposed and studied
in the literature. The majority of them can be classified as (sometimes a combination
of) heuristics, branch-and-bound algorithms, or dynamic programming algorithms.

Representatives for the different technologies discussed here are [YKK75], [AsS2]
for Weinberger arrays, [LVVSS2], [LiS3], [WHWS5], [LeoS6], [NFKYS6],
[DKLS7] for gate matrix layout, and [LLS4], [HDBS6], [HKS7], [KHS7],
[ALNSS] for PLA folding (see [GLSS] for additional references). The problems
studied in these papers are usually not larger than 50 x 60 (in terms of the net-gate
matrix), with the exception of 100 x SO in [ALNSS].

Only little is known about the performance of heuristics for these problems. By
using standard arguments from [GJ79], the existence of an approximation algo
rithm for gate matrix layout with a constant absolute performance guarantee is
ruled out in [DKLS7]:

5.1 Theorem: Unless P = N P, there is no approximation algorithm A for gate matrix
layout with

(5.1) A(n:::;; OPT<n + K, K E Nfixed

for all instances I.

It is well known [GJ79] that this also rules out the existence of a fully polynomial
approximation scheme for gate matrix layout.

The existence of approximation algorithms with a constant relative performance
guarantee is open. There are, however, some indications that they might not exist.

For PLA-folding problems, such an indication is given in [RLSS]. Call two prob
lems equivalent with respect to approximation if both or none are approximable with
constant relative performance guarantee in polynomial time. Then [RL8S]:

5.2 Theorem: PLA-folding, block folding, and constrained block folding are equiva
lent with respect to approximation, when viewed as maximization problems (maximize
the size of a folding).

The proof is based on transforming feasible solutions of one problem to feasible
solutions of the other while preserving a constant relative performance guarantee.
For instance, let algorithm A produce, for an instance I of PLA-floding, a solution

48 Rolf H. Mohring

with A(I) folded pairs such that A(I) :5: K· OPT(I), where OPT(I) denotes the size
of an optimal folding. Then we can transform this solution to a solution of block
folding, with size A'(I) by taking, in a decreasing staircase arrangement ofthe layout
(cf. the remarks preceeding Proposition 3.17), the first nets of rows 1,2, ... , lA(I)j2J
and fold them with the last nets of rows lA(I)j2J + 1, ... , A(I). Clearly, this gives a
block-folding with A'(I) = A(I)j2 folded nets, and so the maximum size OPT'(I) of
a block folding fulfills OPT'(I) :5: OPT(I) :5: K· A (I) = 2K· A'(I).

This equivalence result is combined in [RL88] with the following, unexpected result
that provides the indication for non-approximatibility.

5.3 Theorem: If there is an approximation algorithm A for block folding (in the
maximization version) with relative performance guarantee K, KEN fixed, then
there is also one with relative performance guarantee 1 + e for every fixed e > O.

Note, however, that these results carry only through for the mximization version
of the PLA-folding problems (maximize the size of a folding set). Both proofs fail
for the-perhaps more natural-minimization of the number of tracks required in
a layout.

Current work at the TU Berlin applies Lagrangean relaxation and subgradient
methods combined with branch-and-bound techniques to the constrained block
folding problem [Mii89]. Starting point is the formulation as a matching problem
on a bipartite graph with side constraints (Proposition 3.17). Relaxation of the side
constraints (3.15) and an appropriate reformulation then leads to a special well
solved min-cost flow problem whose use in branch-and-bound schemes seems to
be promising.

For gate matrix layout, an indication for the non-existence of approximation
algorithms with constant relative performance guarantee is obtained in [DKL87]
by considering algorithms that are on-line with respect to the nets. This means that
the nets are processed in an incremental fashion according to the following rules:

(1) A partial layout for the nets processed so far has already been constructed and
may not be changed when the next net is processed.

(2) The next net Ni to be processed is chosen such that its addition to the partial
layout causes the least increase in the number of tracks.

By designing a class of examples, [DKL87] show that such on-line algorithms
cannot guarantee a· constant relative performance error.

This definition of on-line seems, however, to be very restrictive, since the algorithms
even fail to construct an optimal layout for interval graphs. (In fact, the class of
examples of [DKL87] consists entirely of interval graphs.) The reason for this
behavior is the rigidity of the already constructed partial layout.

We suggest here a less rigid approach that is still on-line and equally fast, but allows
more flexibility in modifying the partial layout. The basic idea is to maintain not a
partial layout, but the corresponding interval graph (see Section 3), and to represent
it by its MPQ-tree.

Graph Problems Related to Gate Matrix Layout and PLA Folding 49

The MPQ-tree (see [KM89] for details) is a data structure that represents an
interval graph H and all associated interval orders (cf. Lemma 3.1) in 0(1 V(H)I)
space. It permits also fast updating when a vertex is added to H. Such an update
will always recognize when H + v is again an interval graph and modify the
MPQ-tree accordingly. (So the examples from [DKL87] are solved optimally.) If
H + v is not an interval graph, then there are several possibilities to augment H + v
to an interval graph H* by considering different interval orders associated with H.
So keeping the maximum clique size small then means to permute or invert the
nodes of the MPQ-tree representing H in such a way that adding v increases co(H)
as little as possible. This "local" optimization can be done in polynomial time.

Altogether, this leads to a class of on-line algorithms based on incremental interval
graph generation by means of MPQ-trees. Current work at the TV Berlin in this
direction seems to be quite promising.

Acknowledgement

I would like to thank H. L. Bodliinder, A. Proskurowski, and M. M. Syslo for various discussions and
many helpful remarks.

Referenees

[ALN88] C. Arbib, M Lucertini, and N. Nicoloso (1988). Optimal design of programmed logic
arrays, preprint, Universita degli Studi di Roma "La Sapienza".

[ACP87] S. Arnborg, D. G. Corneil, and A. Proskurowski (1987). Complexity of finding embed
dings in a k-tree, SIAM J. Alg. Disc. Meth. 8, 277-284.

[As82] Asano, T. (1982). An optimum gate placement algorithm for MOS one-dimensional
arrays, Journal of Digital Systems,I-27.

[Bo87] H. L. Bodliinder (1987). Dynamic programming on graphs with bounded tree width.
Report RUU-CS-87-22, University of Utrecht.

[BM86] H. J. Bandelt and H. M. Mulder (1986). Distance-hereditary graphs, J. Comb. Th. B 41,
182-208.

[Bo88] H. L. Bodliinder (1988). Some classes of graphs with bounded treewidth, Bulletin EATCS
36,116-125.

[BL76] S. Booth and S. Lueker (1976). Testing for the consecutive ones property, interval graphs,
and planarity using PQ-tree algorithms, J. Comput. Syst. Sci. 13,335-379.

[BMHS84] R. K. Brayton, C. McMullen, G. D. Hachtel, and A. Sangiovanni-Vincentelli (1984). Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston, MA.

[BCLS87] T. N. Bui, S. Chaudhuri, F. T. Leighton and M. Sipser (1987). Graph bisection algorithms
with good average case behavior, Combinatorica 7, 171-191.

[CLS81] D. G. Corneil, H. Lerchs, and L. Stewart Burlingham (1981). Complement reducible
graphs, Discrete A"ppl. Math. 3, 163-174.

[CPS85] D. G. Corneil, Y. Pearl, and L. Stewart (1985). A linear recognition algorithm for cographs,
SIAM J. Computing 14, 926-934.

[Cu82] W. H. Cunningham (1982). Decomposition of directed graphs, SIAM J. Alg. Diser.
Methods 3, 214-228.

[DKL87] N. Deo, M. S. Krishnamoorty and M. A. Langston (1987). Exact and approximate
solutions for the gate matrix layout problem, IEEE Trans. on Computer-Aided Design
6,79-84.

[EL84] J. R. Egan and C. L. Liu (1984). Bipartite folding and partitioning of a PLA, IEEE Trans.
CAD 3,191-199.

[EST87] J. Ellis, I. Sudborough and J. Turner (1987~ Graph separation and search number, Report
DCS-66-IR, University of Victoria

50

[Ev79]
[FL87]

[FL88a]

[FL88b]

[FM75]

[FRS87]

[FG65]

[GL88]

[G179]

[G080]

[G085]

[GLL82]

[Gu89]
[HNS82]

[HM87]

[HS71]

[HK87]

[HDB86]

[J087a]

[J087b]

[KF79]

[KP85]

[KPlSb]

[KM89]

[KH87]

[Le82]
[Le086]

[LL84]

[Li83]

[LLa80]

Rolf H. Mohring

S. Even (1979). Graph Algorithms, Computer Science Press, Potomac, MD.
M:R. Fellows and M. A. Langston (1987). Nonconstructive advances in polynomial-time
complexity. Infor. Proc. Letters 26,157-162.
M. R. Fellows and M. A. Langston (1988~ Nonconstructive tools for proving polynomial
time decidability, J. ACM 35, 727-739.
M. R. Fellows and M. A. Langston (1988). Layout permutation problems and well
partially-ordered sets. Proc. 5th MIT Conf. on Advanced Research in VLSI, 315-327.
H. Fleisher and L. I. Maissel (1975). An introduction to array logic, IBM J. Res. and
Developm.19,98-109.
H. Friedman, N. Robertson and P. D. Seymour (1987). The methamathematics of the
graph minor theorem, in "Applications of Logic to Combinatorics", AMS Contemporary
Mathematics Series, Amer. Math. Soc. Providence, R. I., to appear.
D. R. Fulkerson and O. A. Gross (1965). Incidence matrices and interval graphs, Pacific
J. Math. 15, 835-855.
D. G. Gajski and YoLo S. Lin (1988). Module generation and "silicon compilation, in
B. Preas and M. Lorenzetti (eds.) Physical Design Automation of VLSI Systems,
Benjamin/Cummings, Menlo Park, CA, 283-345.
M. R. Garey and D. S. Johnson (1979). Computers and Intractibility: A Guide to the
Theory of NP-Completeness, Freemann, San Francisco.
M. C. Golumbic (1980). Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York.
M. C. Golumbic (1985). Interval graphs and related topics, Discrete Math. 55, 113-
121.
U. I. Gupta, D. T. Lee and I. Y.-T. Leung (1982). Efficient algorithms for interval graphs
and circular arc graphs, Networks 12, 459-467.
J. Gustedt (1989). Path width for chordal graphs is NP-complete, preprint, TU Berlin.
G. D. Hachtel, A. R. Newton, and A. L. Sangiovanni-Vincentelli (1982). An algorithm for
optimal PLA folding, IEEE Trans. on CAD of Integrated Circuits and Systems, CAD
I (2), 63-77.
P. L. Hammer and F. Maffray (1987). Completely separable graphs, preprint, Rutgers
University.
A. Hashimoto, and J. Stevens (1971). Wire routing by optimizing channel assignment
within large apertures, Proc. of 8th Desigri Automation Conf., 155-169.
T. C. Hu and Y. S. Kuo (1987). Graph folding and programmable logic array, Networks
17,19-37.
S. Y. Hwang, R. W. Dutton, and T. Blank (1986). A best-first search algorithm for optimal
PLA folding, lEE Trans. on CAD, CAD-5 (3), 433-442.
D. S. Johnson (1987). The NP-completeness column: An ongoing guide, J. Algorithms 8,
285-203.
D. S. Johnson (1987). The NP-completeness column: An ongoing guide, J. Algorithms 8,
438-448.
T. Kashiwabara and T. Fujisawa (1979). NP-completeness of the problem of finding a
minimum-clique-number interval graph containing a given graph as a subgraph, Proc.
1979 Intern. Symposium on Circuits and Systems, 657-660.
L. M. Kirousis and C. H. Papadimitriou (1985). Interval graphs and searching, Discrete
Math.55,181-184.
L. M. Kirousis and C. H. Papadimitriou (1986). Searching and pebbling, Th. Compo
Science 47, 205-218.
N. Korte and R. H. Mohring (1989). An incremental linear-time algorithm to recognize
interval graphs, SIAM J. Computing 18, 68-81.
Y. S. Kuo and T. C. Hu (1987). An effective algorithm for optimal PLA column folding
INTEGRATION, the VLSljournai 5, 217-230.
T. Lengauer (1981). Black-white pebbles and graph separation, Acta Inf. 16,465-475.
H. W. Leong (1986). A new algorithm for gate matrix layout. Digest, Inti. Conf. on
Computer-Aided Design, 316-319.
J. L. Lewandowski and C. L. Liu (1984). A branch and bound algorithm for optimal PLA
folding. Proc. of the 21st Design Automation Conf., 425-433.
J. T. Li (1983). Algorithms for gate matrix layout, Proc. 1983 IEEE Int. Symp. Circuits
and Systems,1013-1016.
A. Lopez and H. Law (1980). A dense gate matrix layout method for MOS VLSI, IEEE
Trans. on Electronic Devices, ED-27 (8),1671-1675.

Graph Problems Related to Gate Matrix Layout and PLA Folding 51

[L VVS82] M. Luby, U: Vazirani, V. Vazirani, and A. 1. Sangiovanni-Vincentelli (1982). Some

[MS89]

[MC80]

theoretical results on the optimal PLA folding problem, IEEE Internat. Confer. Circuits
and Systems, 165-170.
F. Makedon and I. H. Sudborough (1989). On minimizing width in linear layouts, Discrete
Appl. Math. 23, 201-298.
C. Mead and 1. Conway (1980). Introduction ofVLSI Systems, Addison Wesley, Reading
MA.

[MHGJP88] N. Megiddo, S. 1. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou (1988).

[Mo85]

[Mo89]

[Mii89]
[MW89]

The complexity of searching a graph, J. ACM 35, 18-44.
R. H. Mohring (1985). Algorithmic aspects of comparability graphs and interval graphs,
in I. Rival (ed.) Graphs and Order, Reidel, Dordrecht, 41-101.
R. H. Mohring (1989). Computationally tractable classes of ordered sets, in I. Rival (ed.)
Algorithms and Order, Kluwer Acad. Publ., Dordrecht, 105-194.
R. Miiller (1989), in preparation.
R. Miiller and D. Wagner (1989). a-vertex separation is NP-complete for 3-regular graphs,
preprint, TU Berlin.

[NFKY86] K. Nakatani, T. Fujii, T. Kikuno, and N. Yoshita (1986). A heuristic algorithm for gate
matrix layout, Digest IntI. Conf. on Computer-Aided Design, 324-327.

[OMKK79] T. Ohtsuki, H. Mori, E. S. Kuh, T. Kashiwabara, and T. Fujisawa (1979). One-dimensional

[Pa76]

[Ra88]

[RL88]

[RS83]

[RS86]

[RS87]

[SM83]

[WW89]

[Wei67]

[Win82]

logic gate assignment and interval graphs, IEEE Trans. on Circuits and Systems, 675-684.
T. D. Parsons (1976). Pursuit-evasion in a graph, in Y. Alavi and D. Lick (eds.), Theory
and Applications of Graphs, Springer Verlag, Berlin, 426-441.
S. S. Ravi (1988). A note on the orderability problem for PLA folding, to appear in Discrete
Appl. Math.
S. S. Ravi and E. 1. Loyd (1988). The complexity of near-optimal progrmmable logic array
folding, SIAM J. Computing 17, 696-710.
N. Robertson and P. D. Seymour (1983). Graph minors I. Excluding a forest, J. Comb.
Th. B. 35, 39-61.
N. Robertson and P. D. Seymour (1986). Graph minors XIII. The disjoint paths problem,
preprint.
N. Robertson and P. D. Seymour (1987). Graph Minors XVI. Wagner's conjecture,
preprint.
K. H. Schmidt and K. D. Mueller-Glaser (1983). NMOS dense gate matrix VLSI Design,
IEEE J. of Solid-State Circuits, SC-18, 157-159.
D. Wagner and F. Wagner (1989). Graph separation is NP-hard even for graphs with
bounded degree, preprint TU Berlin.
A. Weinberger (1967). Large scale integration of MOS complex logic: a layout method,
IEEE Journal of Solid-State Circuits, SC-2 (4), 182-190.
O. Wing (1982). Automated gate matrix layout, IntI. Symposium on Circuits and Systems,
681-685.

[Win83] O. Wing (1983). Interval-graph-based circuit layout, Proc. IEEE 1983, Int. Conf. on CAD,
84-85.

[WHW85] O. Wing, S. Huang, and R. Wang (1985) Gate matrix layout, IEEE Trans. on CAD,CAD-4
(3), 220-231.

[YKK75] H. Yoshizawa, H. Kawanishi, and K. Kami (1975). A heuristic procedure for ordering
MOS arrays, Proc. 12th Design Automation Conference, 384-389.

Rolf H. Mohring
Technical University of Berlin
Fachbereich Mathematik
Strasse des 17. J uni 136
D-1000 Berlin

Computing, Supp. 7, 53-68 (1990)

Planar Graph Problems

Takao Nishizeki, Sendai

Abstract - ZusammeDfassung

Computing
© by Springer-Verlag 1990

Planar Graph Problems. Classical and recent results are surveyed in the development of efficient
algorithms for the following eleven famous problems on planar graphs: planarity testing, embedding,
drawing, separators, vertex-coloring, independent vertex set, listing subgraphs, Hamiltonian cycle,
network flows, and Steiner trees and forests. Also typical methods and techniques useful for computa
tional problems on planar graphs are discussed. Furthermore open questions on planar graphs are
mentioned.

AMS Subject Classification: 05.

Key words: Planar graphs, planarity testing, embedding and drawing, separators, vertex-coloring,
edge-coloring, independent vertex sets, listing subgraphs, Hamiltonian cycles, network flows, Steiner
trees.

Probleme anf planaren Graphen. In dieser Arbeit wird iiber klassische und jiingste Ergebnisse bei der
Entwicklung efficienter Algorithmen fiir die folgenden elf wohlbekannten Probleme an planaren Graphen
berichtet: Planaritatstests, Einbettung und Zeichnen, Separation, Knotenfarbung, Kantenfarbung,
Unabhangige Knotenmengen, Auflisten von Untergraphen, Harniltonsche Kreise, Netzwerkfiiisse,
Steiner Baume und Walder. Ferner werden typische Methoden und Techniken zur Behandlung planarer
Graphen diskutiert. Einige offene Fragen beziiglich planarer Graphen werden erwiihnt.

1. Introduction

Recent research efforts in computational graph theory have concentrated on design
ing efficient algorithms for solving combinatorial problems on graphs, and many
efficient algorithms have been obtained for various problems, such as planarity
testing, maximum matchings, and network flows. On the other hand many problems
of practical importance have been shown NP-complete and appear to be intractable.

Planar graphs are those that can be drawn in the plane in such a way that vertices
are represented by points, edges by lines connecting their endpoints, and no two
such lines intersect except at common endpoints. Since planar graphs often appear
in practical areas such as traffic networks and electrical circuits, it would be useful
to design efficient algorithms for planar graphs. However most of NP-complete
problems for general graphs remain NP-complete even for planar graphs, but some
become tractable in a sense that there are efficient exact or approximate algorithms
at least for a large class of planar graphs.

54 Takao Nishizeki

This paper surveys classical and recent results in the development of efficient
algorithms for planar graph problems. In this paper a graph G = (V, E) means an
undirected simple graph with vertex set V and edge set E unless otherwise specified.
We denote by n the number ofvertices in G and by m the number of edges. We deal
only with sequential algorithms for the following eleven famous problems: planarity
testing, embedding, drawing, planar separators, vertex-coloring, edge-coloring, in
dependent vertex set, listing subgraphs, Hamiltonian cycle, network flows, and
Steiner trees and forests. Also typical methods and techniques useful for planar
graph problems such as dualization, divide-and-conquer using planar separators,
dynamic programming using planar embeddings, etc. are discussed. Furthermore,
significant open questions on planar graphs are mentioned. We refer to [NCSS] for
more details on the planar graph problems.

2. Planarity Testing and Embedding

There are many practical situations in which one wishes to determine whether a
given graph is planar, and if so, to find a planar embedding (drawing) of the graph.
For example, in the layout of printed or VLSI circuits, one is interested in knowing
whether a graph G representing a circuit is planar and if so, also in finding a planar
embedding of G.

An input graph G in the planarity testing problem is represented by a set of n lists,
called adjacency lists. The list Adj(v) for vertex v E V contains all the neighbours of
v. For each v E Van actual drawing of a planar graph G determines, within a cyclic
permutation, the order of v's neighbours embedded around v. Embedding a planar
graph G means constructing adjacency lists of G such that, in each Adj(v), all the
neighbours of v appear in clockwise order with respect to an actual drawing. Such
a set of adjacency lists is called an embedding of G.

Two planarity testing algorithms which run in linear time are well-known: one by
Hopcroft and Tarjan [HT74], and the other by Booth and Lueker [BL76]. The
former called the "path addition algorithm" starts by finding a simple cycle and
adding to it one simple path at a time. Each such new path connects two old vertices
via new edges and yertices. Whole pieces are sometimes flipped over. The algorithm
is the first one that tests the planarity of a given graph in linear time.

The latter called the "vertex addition algorithm" is conceptually simpler than the
former. It was first presented by Lempel, Even and Cederbaum [LEC67], and
improved later to a linear algorithm by Booth and Lueker [BL 76] employing an
"st-numbering" algorithm and a data structure called a "PQ-tree". The algorithm
adds one vertex at each step. Previously embedded edges incident with this vertex
are connected to it, and new edges incident with it are embedded and their ends are
left unconnected. Sometimes whole pieces have to be reversed (flipped) around or
permuted so that some ends occupy consecutive positions. If the representation of
the embedded subgraph is updated with each alteration of the embedding, then the
final representation will be an actual embedding of a given whole graph.

Planar Graph Problems 55

The "st-numbering" plays a crucial role in the testing algorithm. A numbering of
the vertices of G by 1, 2, ... , n is called an st-numbering if the two vertices 1 and n
are necessarily adjacent and each other vertex j is adjacent to two vertices i and k
such that i < j < k. Every 2-connected graph G has an st-numbering, and an
algorithm given by Even and Tarjan [ET76] finds an st-numbering in linear time.

A data structure called a PQ-tree is used in the vertex addition algorithm. A PQ-tree
represents the permutations of a set S in which various subsets of S occur consecu
tively. Booth and Luekker gave a linear algorithm for manipulating PQ-trees
[BL76].

Another linear-time planarity testing algorithm appeared in [DR82].

The aforementioned planarity testing algorithms can be modified to construct an
embedding of a planar graph. Such a linear algorithm using PQ-trees appeared in
[CNA85].

3. Drawing

The problem of drawing a planar graph often arises in applications, including the
Design Automation ofVLSI circuits. Wagner [Wag36] and Fary [Far48] indepen
dently showed that every planar graph can be drawn in the plane in such a way
that the edges are straight line segments and the vertices are points.

A convex drawing of a planar graph is a straight-line drawing in which all the face
boundaries are convex polygons. Clearly the complete bipartite graph K 2 ,n-2'

n Z 6, has no convex drawing. Thus not every planar graph has a convex drawing.
Tutte [Tut60] proved that every 3-connected planar graph has a convex drawing,
and established a necessary and sufficient condition for a planar graph to have a
convex drawing. Furthermore he gave a "barycentric mapping" method for finding
a convex drawing, which requires solving a system of O(n) linear equations [Tut63].
The system of equations can be solved in O(n3) time and O(n2) space using the
ordinary Gaussian elimination method, orin O(n1.5) time and O(nlog n) space using
the sparse Gaussian elimination method which relies on the planar separator
algorithms [LRT79]. Thus the barycentric mapping leads to an O(n1.5) time convex
drawing algorithm.

Chiba, Yamanouchi and Nishizeki [CYN84] gave two linear algorithms for the
convex drawing problem: drawing and testing algorithms. The former, based on a
short proof of Tutte's result given by Thomassen [Th080], draws a given planar
graph G convex if possible: it extends a given convex polygonal drawing of an outer
facial cycle of G into a convex drawing of G. The latter algorithm tests the possibility:
it determines whether a given planar graph has a convex drawing or not. Chiba et
al. [CYN84] showed that the convexity testing of a graph G can be reduced to the
planarity testing of a certain graph constructed from G.

Every planar graph can be augmented to a maximal planar graph by adding new
edges; the resulting graph necessarily has a convex drawing. Thus all the convex
drawing algorithms above immediately yield straight-line drawing algorithms.

56 Takao Nisbizeki

Some papers study the problem of producing aesthetically desirable drawings of
planar graphs or trees [SRS3, CONS5]. Obviously there are no absolute criteria
that accurately capture our intuitive notion of a nice drawing of planar graphs. The
linear algorithm of Chiba, Onoguchi and Nishizeki [CONS5] obtains a pleasing
drawing that satisfies the following property as far as possible: the complement of
3-connected components, together with inner faces and the complement of the outer
face, are convex polygons.

All the drawing algorithms of planar graphs above have a drawback: vertices tend
to bunch together and they require high precision real arithmetic relative to the size
n of a graph. In fact it had been an open question whether or not every planar graph
has a straight-line drawing on a grid of side length bounded by W' for some fixed k.
Recently de Fraysseix, Pach and Pollack [DPPSS] solved this open problem
affirmatively, and gave an O(n log n) algorithm which draws any given planar graph
on the 2n-4 by n-2 grid. Chrobak [CPSS] improved the time complexity to O(n).

Eades and Tamassia have extensively surveyed graph drawing algorithms [ETS7].

4. Planar Separator Algorithm

The "divide-and-conquer" is one of the efficient approaches for solving computa
tional problems on graphs. In this method, the original graph is divided into two
or more smaller graphs. The problems for subgraphs are solved by applying the
same method recursively, and then the solutions for the subgraphs are combined
to give the solution to the original problem. The planar separator theorem of Lipton
and Tarjan provides a basis for this approach [LT79]. The theorem asserts that
any planar graph of n vertices can be divided into components of roughly equal size
by removing only O(Jn) vertices. They also gave a linear algorithm for finding such
a separator. Miller [MilS6] generalized the planar separator theorem to that for a
cycle separator. The latter separator can be used to f!mplify algorithms for some
applications [JV82, RicS6].

Lipton and Tarjan obtained the following form of their separator theorem: every

planar graph of n vertices contains a set C of 0 (A) vertices whose removal leaves

no connected component with more than en vertices, where e is any constant such
that 0 < e < 1. Furthermore they showed that the set C can be found in O(n log n)
time. Using this theorem, one can obtain approximation algorithms with time
complexity O(nlogn) and worst-case ratio 1 - O(I/Jloglogn) for the maximum
induced subgraph problem with respect to the following properties (among others):
(1) independent, (2) bipartite, (3) forest, and (4) outerplanar [LTSO,CNS81b].

The planar separator theorem has many applications. The layout of graphs, such
as trees, X -trees and k-dimensional meshes, for VLSI are discussed in [LeiSO].
Generalization of the "nested dissection" method for carrying out sparse Gaussian
elimination on a system oflinear equations is discussed in [LRT79]. Applications

Planar Graph Problems 57

to the problems of nonserial dynamic programming, pebbling, lower bounds on
Boolean circuit size and embedding of data structures can be found in [L TSO].

Using the planar separator theorem, Frederickson obtained algorithms which solve
the single-source shortest path problem for planar graphs in O(nJlog n) time and
the all pair shortest path problem in O(n2) time [FreS7].

5. Vertex-Coloring

A (vertex-)coloring of a graph is an assignment of colors to the vertices so that
adjacent vertices get distinct colors. A k-coloring of a graph uses at most k colors.
The smallest integer k such that a graph G has a k-coloring is called the chromatic
number of G and is denoted by x(G).

The vertex-coloring problem, i.e., coloring a graph G with x(G) colors, has practical
applications in production scheduling, construction of time tables, etc. Since the
problem is NP-hard [GJ79], it is unlikely that it admits a polynomial algorithm.
One might expect that there would be an efficient approximate algorithm which
uses a number of colors, not necessarily X(G) but close to X(G). However a poly
nomial algorithm that guarantees to color a graph with at most axe G) + b colors,
a < 2, will imply a polynomial algorithm to color every graph G with x(G) colors
[GJ76]. In other words, getting close within a factor of two to the optimum is as
hard as achieving it.

The situation for planar graphs is much more favorable. The famous four-color
theorem proved by Appel and Haken says that every planar graph is 4-colorable
[AH77]. We now sketch the outline of the proof. A graph is k-chromatic if it is not
(k - i)-colorable but k-colorable. A configuration is an induced subgraph of a
planar graph. A configuration is reducible if no minimal 5-chromatic planar graph
can contain it. A set of configurations is unavoidable if every planar graph contains
at least one of them. In order to prove that every planar graph is 4-colorable, one
has to find an unavoidable set of reducible configurations. Making use of the so-called
discharging method and fast electronic computers, Appel and Haken eventually
found an unavoidable set of over 1900 reducible configurations.

The proof of the four-color theorem leads to an algorithm of 4-coloring a planar
graph. The algorithm runs in O(n) recursive steps; at each step the algorithm detects
in a graph one of over 1900 reducible configurations belonging to the unavoidable
set, and recurses to a smaller graph. Since all the configurations contain at most 13
vertices, one recursive step can be done in time proportional to n, but the coefficient
is no less than 1900. Thus the 4-coloring algorithm runs in O(n2) time, although it
does not seem practical. The problem of finding a linear-time 4-coloring algorithm
remains open.

In contrast, one can easily prove the five-color theorem that every planar graph has
a 5-coloring, and there are linear algorithms which color every planar graph with
at most five colors [MSTSO, CNSS1a, FreS4, WillS5]. Although most of the stan-

58 Takao Nishizeki

dard texts on graph theory use the Kempe-chain argument in proving the theorem,
the proof on which the linear algorithms are based uses an argument of "identifica
tion of vertices" [Wils85]. The proof is by induction on n and goes as follows. The
Euler's formula implies that every planar graph has a vertex of degree at most five.
Consider first the case when there is a vertex v of degree at most four. The deletion
of v leaves a planar graph G - v having n - I vertices, which is 5-colorable by the
inductive hypothesis. Then v can be colored with any color not used by the (at most
four) neighbours, completing the proof of this case. In the remaining case there is
a vertex v of degree five. Since the subgraph of G induced by the five neighbours of
v is not K s, v has two nonadjacent neighbours x and y. Delete vertex v from G,
identify vertices x and y, and let G' be the resulting graph. Since. G is planar, so is
G'. Furthermore no loop is produced in G' since x and yare nonadjacent in G. Since
G' has n - 2 vertices, the hypothesis implies that G' has a 5-coloring, which naturally
induces a 5-coloring of G - v in which x and yare colored with the same color.
Assigning to v any color other than the (at most four) colors of the neighbours, we
get a 5-coloring of G, completing the proof.

The proof have immediately yields a recursive algorithm which colors every planar
graph G with at most five colors. Clearly the time required by vertex-identifications
dominates the running time of the algorithm. One can easily identify two vertices
in time proportional to the sum of their degrees. However the same vertex may
appear in identifications O(n) times, so a direct implementation of the algorithm
would require O(n2) time. There are essentially two types of linear algorithms. The
first one given by Chiba, Nishizeki and Saito [CNS8Ia] runs in several stages, in
each of which a set ofvertex-identifications are performed in linear time but at least
some fixed percentage of the vertices are eliminated. The second one given by
Matula, Shiloach and Tarjan [MST80] and later simplified by Frederickson
[Fre84] is to recurse after each identification, choosing identification that requires
constant time to perform. Both approaches involve a clever exploitation of proper
ties of planar graphs.

We add one more remark on the vertex-coloring problem. The problem remains
NP-complete even for planar graphs [GJS76]. However every planar graph is
4-colorable, and it is easy to check whether a graph is 2-colorable, i.e., bipartite or
not. Thus the problem of deciding whether a given planar graph is 3-chromatic or
4-chromatic is indeed NP-complete.

6. Edge-Coloring

In this section we survey the edge-coloring problem for planar graphs. The problem
is to color the edges of a given graph G using as few colors as possible, so that no
two adjacent edges receive the same color. The minimum number of colors is called
the chromatic index of G and denoted by X' (G). Holyer showed that the edge-coloring
problem is NP-hard [HoI81], and therefore it seems unlikely that a polynomial
algorithm exists for the problem.

Planar Graph Problems 59

Let A denote the maximum degree of a graph G, then trivially A ::; X'(G). On the
other hand, by the Vizing's classical result, x'(G) ::; A + 1 for every simple graph G
[FW77, Viz64]. Special cases which can be colored with A colors are bipartite
graphs, cubic bridgeless planar graphs (whose edge-coloring in three colors is
equivalent to the four-color problem), and planar graphs with A ~ 8 [CH82, FW77,
GK82, Viz65].

The fastest known algorithm Jor edge-coloring a simple graph with A + 1 colors
runs in O(Amlogn) or O(m nlogn) time [GNK84]. One of the algorithms in
[GNK84] edge-colors with A colors a planar simple graph with A ~ 8 in O(n2)
time. For planar simple graphs with A ~ 9 the time complexity can be improved to
O(nlogn) [CNi89].

It is not known whether the edge-coloring problem remains NP-complete for planar
graphs.

Concerning multigraphs, Goldberg and Seymour have a conjecture that the bound

x'(G) ::; max {r(G), A + 1}

would hold for any multigraph G [G0173, Sey79b]. Here r(G) is a trivial lower
bound on X' (G):

[m(H)]
r(G) = ~:~ L n(H)j2 J '

where H runs over all subgraphs of G having at least three vertices, m(H) is the
number of edges in H, and n(H) the number of vertices in H. This is one of the most
important open problems in the area of edge-coloring. The conjecture was verified
for the case of outerplanar graphs [Mar86]. The best upper bound known for
multigraphs [NK85] is:

X'(G)::; max {r(G), Ll.lA + O.8J}.

7. Independent Set

A set of vertices in a graph is independent if no two vertices in the set are adjacent.
The maximum independent set problem, in which one would like to find a maximum
independent set in a given graph, is NP-hard, and remains so even for the class of
planar graphs. There are however efficient approximation algorithms for planar
graphs, which find large independent set.

An approximation algorithm is often evaluated by the worst-case ratio: the smallest
ratio of the size of an approximation solution to the size of an optimal solution,
taken over all problem instances. If a polynomial time algorithm existed with any
constant worst-case ratio> 0 for the maximum independent set problem on graphs,
then one could design a polynomial time algorithm with any constant worst-case
ratio < 1 [HU79]. This fact does not imply that there exists no polynomial time
approximation algorithm with a constant worst-case ratio> 0 for the problem on

60 Takao Nishizeki

a special class of graphs, such as planar graphs. In fact, Lipton and Tarjan's
O(n log n) time approximation algorithm [LTSO] mentioned in Section 4 has a
worst-ratio 1 - O(lIJloglog n), asymptotically tending to 1 as n --+ 00. Such a ratio
is called an "asymptotic worst-case ratio". On the other hand, some approximation
algorithms have an "absolute worst-case ratio", which does not dependent on the
size n of a graph. For example, the 4-coloring algorithm, derived from the proof of
the four-color theorem, immediately yields an approximation algorithm for the
problem with the worst-case ratio i: Simply output the largest class of vertices
colored with the same color. On the hand the 5-coloring algorithm achieves the
absolute worst-case ratio ~. Moreover the algorithm of Albertson or Chiba et al.
guarantees the worst-case ratio ~ for the problem [Alb74, CNSS3]. It is still open
to prove, without use of the four-color theorem, the fact that every planar graph
contains an independent set of size ~ ±n[Alb76].

Chiba, Nishizeki and Saito [CNSS2] gave an O(n log n) time approximation algo
rithm with absolute worst-case ratio !. For a given planar graph of any number n
of vertices, the algorithm finds, in O(n log n) time, an independent vertex set that is
necessarily larger than half a maximum independent set. The idea of the algorithm
is to reduce a given planar graph to a planar graph of minimum degree /j = 5 by
modifying the graph around vertices of minimum degree. A planar graph of /j = 5
cannot have a large independent set: the size is necessarily less than tn. It is easy
to find in such a graph an independent vertex set that is necessarily larger than
half a maximum independent set. For example one may use the 5-coloring algo
rithm. Recently Chrobak and Naor improved the time complexity of the approxi
mation algorithm to O(n) [CNaSS]. The algorithm of Lipton and Tarjan [L TSO]
can also guarantee the absolute worst-case ratio!. but the number n of vertices
must be huge, say 22400.

Baker [BakS3] gave an elegant approximation algorithm which works for various
computational problems on planar graphs, including the maximum independent

set problem. The algorithm attains the worst-case ratb k ~ 1 and runs in O(Skkn)

time for any positive integer k. Thus her algorithm realizes the worst-case ratio of
both types; absolute and asymptotic. For example, letting k = lone can get a linear
time algorithm having the absolute worst-case ratio !, while letting k = log log n
one can get an o (n(log n)310g log n) time algorithm with the asymptotic worst-case
ratio of (loglognV(l + log log n) tending to 1. Her algorithm uses the dynamic
programming approach based on planar embedding.

8. Listing Subgraphs

Listing certain kind of subgraphs of a graph such as cliques, triangles, cycles et al.
arises in many applications. Itai and Rodeh were the first to give a linear-time
algorithm for listing all triangles in a planar graph [IR 7S]. They used depth-first
search.

Planar Graph Problems 61

Chiba and Nishizeki [CN85b] found a simple strategy for edge-searching a graph,
which is useful for various subgraph listing problems. The algorithm chooses a
vertex v in a graph and scans the edges of the subgraph induced by the v's neighbours
to find the pattern subgraphs containing v. The main feature of the strategy is to
repeat the searching above for each vertex v in decreasing order of degree and to
delete v after v is processed so that no duplication occurs. The procedure above
requires O(a(G)m) time for a graph G, where a(G) is the arboricity of G, that is, the
minimum number of edge-disjoint spanning forests into which G can be decom
posed. Using the strategy, they presented algorithms which list in O(a(G)m) time all
the triangles C3 or all the quadrangles C4 in G. Since every planar graph satisfies
a(G) :::;; 3, the algorithms run in linear time for such graphs. Based on this approach,
they also gave an O(la(G)I-2m) time algorithm for listing all the cliques Kl in a graph
G. The algorithm lists all K4 contained in a planar graph in linear time. Since a
planar graph contains no K l , I ;:::: 5, the problem for finding all the cliques in a planar
graph can be solved in linear time. Papadimitriou and Yannakakis [PY81] reported
another linear algorithm for the problem, based on breadth-first search. Their
algorithm however does not work correctly but can be corrected easily. Matula and
Beck [MB83] obtained another linear algorithm for detecting a triangles in a planar
graph, based on what they call "smallest-last ordering".

Richards [Ric86] gave O(n log n) algorithms for detecting both a Cs or a C6 in a
planar graph. The algorithm uses a divide-and-conquer approach which relies on
the Lipton-Tarjan separator algorithm [L T79]. It is open whether there exists a
linear algorithm for detecting Cs or C6 and whether there exists an O(n log n)
algorithm for detecting a Cl , I;:::: 7. Another important open problem is whether
there is a linear algorithm to detect a triangle in a graph.

Syslo gave a cycle vector space algorithm for listing all cycles of a planar graph
[Sys81].

9. Hamiltonian Cycle

A Hamiltonian cycle of a graph G is a cycle which contains all the vertices of G. The
Hamiltonian cycle problem asks whether a given graph contains a Hamiltonian
cycle. It is NP-complete even for 3-connected cubic planar graphs [GJT76, Kar72],
2-connected cubic bipartite planar graphs [ANS80], or maximal planar graphs
[Chv85]. However the problem becomes polynomial-time solvable for 4-connected
planar graphs: Tutte proved that such a graph contains a Hamiltonian cycle
[Tut56, Tut77]. Based on Tutte's proof, Gouyou-Beauchamps obtained an O(n3)
algorithm which finds a Hamiltonian cycle in such a graph [Gou82]. Asano,
Kikuchi and Saito presented a linear algorithm for the problem on 4-connected
maximal planar graphs [AKS84]. Chiba and Nishizeki [CN89] constructed a linear
algorithm for 4-connected planar graphs, based on Thomassen's short proof of
Tutte's theorem [Th083, CN85a].

A Hamiltonian walk in a connected graph is a shortest closed walk that passes
through every vertex at least once, and the length is the total number of edges

62 Takao Nishizeki

traversed by the walk. A Hamiltonian cycle is obviously a Hamiltonian walk. A
trivial lower bound and a trivial upper bound are known on the length, h(G), of a
Hamiltonian walk of a connected graph G: n ::;; h(G) ::;; 2(n - 1). A nontrivial upper
bound on the length of a Hamiltonian walk for maximal planar graphs was obtained
[ANWSO]:

h(G){::;; t(n - 3) ifn ~ 1.1;
= n otherwIse.

Since the proof in [ANWSO] is constructive, it immediately yields an O(n2) algo
rithm for finding a closed spanning walk of length::;; t(n - 3) in maximal planar
graphs [NA WS3]. The algorithm uses a divide-and-conquer approach involving a
partition of a graph at a separation triple, which forms a triangle in a maximal
planar graph. One can improve the time complexity to O(n) by using two linear-time
algorithms: the algorithm for finding a Hamiltonian cycle in 4-connected planar
graphs, and the traingle listing algorithm [NCSS]. The upper bound on h(G) is
conjectured to be improved to h(G) ::;; !(n - 2) if n ~ 11.

10. Network Flows

The network flow problem and its variants have been extensively studied. The
original and most classical problem is that of finding a maximum flow of a single
commodity in an arbitrary graph. The key theorem in flow theory is the Max Flow
Min Cut theorem ofFord and Fulkerson [FF56], which holds for single commodity
and two commodity flows [Hu69]. There are efficient algorithms for finding
a maximum single commodity flow; an O(mnlog(n2Im)) time algorithm is the
best known one for sparse graphs [STS3]. Two commodity flows in undirected
graphs can be found by solving two single-commodity flow problems, hence in
O(mn log(n2Im)) time [Ita 78, Sak73, Sey79a].

The so-called uppermost path algorithm can find a maximum single commodity flow
in a planar graph with source s and sink t both on the outer boundary B [FF56,
IS79]. The algorithm starts with zero flow and pushes flow as much as possible
through the "uppermost path" on B connecting sand t. Thereby, at least one edge
becomes saturated. Such an edge is deleted, and the process is repeated using the
uppermost path of the resulting graph. One can observe that the algorithm merely
executes the shortest path computation on the dual of G [HasSI]. Thus the maxi
mum single-commodity flow can be found in O(T(n)) time, where T(n) denotes the
time required for finding the single-source shortest paths in a planar undirected
graph with nonnegative edge weights having n vertices. If the usual Dijkstra's
algorithm [AHU74, Joh77] is used, then T(n) = O(n log n). If Frederickson's algo
rithm which relies on the planar separator theorem [Fre87] is used, then T(n) =
O(nJlog n). The uppermost path algorithm does not work when sand t are not on
the same face boundary, but an O(n log n) algorithm for such a planar undirected
graph and an O(n1.S logn) algorithm for such a planar directed graph are known
[Rei83, HJ85, JV82, Fre87].

Planar Graph Problems 63

The situation is different with regard to flows of more than two commodities. In
general the multicommodity integral flow problem is NP-complete. No simple
polynominal-time algorithm is known even for the muiticommodity (real-valued)
flow problem on graphs. Recently Tardos obtained a strongly polynomial-time
algorithm to solve combinatorial linear programs including the multicommodity
flow problem [Tar86]. However, it employs a polynomial-time linear programming
algorithm, and hence neither has a polynomial-time bound of lower order nor is
easy to implement. Therefore simple efficient algorithms are useful in practice even
if they are valid only for planar graphs.

It has been established that the Max Flow-Min Cut theorem of multicommodity
type holds for the following five classes of planar undirected graphs [OS81, Oka83,
Sey81, Sch88b]:

Cl : all sources and sinks are located on a specified face boundary [OS81];
C12: all sources and sinks are located on two specified face boundaries with each

source-sink pair on the same boundary [Oka83];
COl: some source-sink pairs are located on a specified face boundary, and all the

other pairs share a common sink located on the boundary (their sources
may be located anywhere) [Oka83];

Ca : All the sources can be joined with the corresponding sinks without violating
planarity [Sey81]; and

C12,: All the sources Sl, S2, ••• , Sk appears on the boundary of the outer face in
clockwise order, and all the sinks t l , t2 , ••• , tk appear on some other face
boundary in counterclockwise order [Sch88b].

Efficient algorithms for the first four classes were obtained [MNS85, MNS86,
SNS88, Has84]. All the algorithms reduce the flow problem on a planar undirected
graph to the shortest path or cycle problem on an undirected or directed graph
obtained from the dual of the given undirected graph. Multicommodity flows for
Cl , C12, COl can be found by solving O(n) times the single-source shortest path
problem for a planar graph. Hence one can find flows in O(kn + nT(n)) time, where
k is the number of source-sink pairs. On the other hand, multicommodity flows for
Ca can be found by solving O(n) times a weighted matching problem on a certain
graph. Using the planar separator algorithm, one can solve the matching problem
in O(n1.Slog n) time. Thus the flows for Ca can be found in O(n2 ,s log n) time
[MNS86]. Recently Barahona showed that flows for Ca can be found in O(n1.Slog n)
time by solving once the Chinese postman problem in the dual planar graph
[Bar87]. Using the same idea, he showed that the max cut problem can be solved
in O(n1.Slog n) time for planar graphs.

The Max Flow-Min Cut theorem was shown to hold for certain kinds of planar
directed graphs [NI88].

The edge-disjoint path problem is to find edge-disjoint paths connecting specified
pairs of vertices in a graph. The problem can be formulated as a multicommodity
integral flow problem. Recently many results have been obtained for the edge
disjoint path problem on planar graphs or plane grids [Fra85, KM86, MNS85,
MP86, SNS88].

64 Takao Nishizeki

11. Steiner Tree and Forests

The Steiner minimum tree problem on a weighted graph G = (V, E) with a set N of
special vertices called terminals is to fmd a tree of minimum weight which intercon
nects the terminals of N (possibly using some vertices in V - N). The Steiner
minimum tree problem is known to be strongly NP-hard for planar graphs [GJ79],
and polynomially-solvable for planar graphs if the terminals lie on a fixed number
of faces [EMV87]. See [Win87] for an extensive survey of works on this problem.

The Steiner forest problem on an unweighted graph with sets (called nets) of termi
nals is to find a forest, that is, vertex-disjoint trees, each of which interconnects all
the terminals of a net. The problem does not require to minimize the number of
used edges, and hence is a generalization of the vertex-disjoint path problem. Since
the vertex-disjoint path problem is NP-hard even for planar graphs [Lyn7S] or
plane grids [KL82], so is the Steiner forest problem for planar graphs. Robertson
and Seymour showed that the problem is solvable in polynomial time if all the
terminals lie on only two faces of a planar graph [RS86]. Suzuki, Akama and
Nishizeki improved the time complexity to O(n log n) [SAN88]. They also give an
O(nlogn) algorithm for finding a maximum number of internally vertex-disjoint
paths connecting two specified vertices in a planar graph [SAN88]. The internally
disjoint path algorithm employs a divide-and-conquer approach without using the
plannar separator algorithm, and plays a crucial role in their Steiner forest algo
rithm. Schrijver showed that the Steiner forest problem is solvable in polynomial
time if all the terminals lie on a fixed number of faces in a planar graph [Sch88a].

Acknowledgement

This work was partly supported by Grant in Aid for Scientific Research of the Ministry of Education,
Science, and Culture, under grant number: General Research (q 01550275 (1989).

References

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algo
rithms, Addison-Wesley, Reading, Mass., 1974.

[ANS80] T. Akiyama, T. Nishizeki and N. Saito, NP-completeness of the Hamiltonian cycle problem
for bipartite graphs, J. Information Processing, 3, 2, pp. 73-76, 1980.

[Alb76] M. O. Albertson, A. lower bound for the independence number of a planar graph,
J. Combinatorial Theory, Series B, 20, pp. 84-93, 1976.

[Alb74] M. O. Albertson, Finding an independent set in a planar graph, in "Graphs and Combina
tories," ed., R. A Bari and F. Harary, Springer-Verlag, Berlin-Heidelberg-New York:
pp. 173-179, 1974.

[AR77] K. Appel and W. Haken, Every planar map is four colourable, Part I: discharging, Illinois
J. Math. 21, pp. 429-490,1977.

[AKS84] A. Asano, S. Kikuchi and N. Saito, A linear algorithm for finding Hamiltonian cycles in
4-connected maximal planar graphs, Discrete Appl. Math., 7, pp. I-IS, 1984.

[ANW80] T. Asano, T. Nishizeki and T. Watanabe, An upper bound on the length of a Hamiltonian
walk of a maximal planar graph, J. Graph Theory, 4, 3, pp. 315-336, 1980.

[Bak83] B. S. Baker, Approximation algorithms for NP-complete problems on planar graphs, 24th
Ann. Symp. on Found. of€ompt. Sci., pp. 265-273,1983.

Planar Graph Problems 65

[Bar87] F. Barahona, Planar muIticommodity flows, maximum cut and the Chinese postman prob
lem, Rept. 87454-0R, Institut fUr Operations Research, Universitat Bonn, 1987.

[BL 76] K. S. Booth and G. S. Lueker, Testing the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms, J. Comput. Syst. Sci., 13, pp. 335-379, 1976.

[CN85a] N. Chiba and T. Nishizeki, A theorem on paths in planar graphs, J. Graph Theory, 10,
pp. 449-450, 1985.

[CN85b] N. Chiba and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput.,
14,1, pp. 210-223,1985.

[CN89] N. Chiba and T. Nishizeki, The Hamiltonian cycle problem is linear-time solvable for
4-connected planar graphs, J. Algorithms, 10, pp. 187-211, 1989.

[CNA85] N. Chiba, T. Nishizeki, S. Abe and T. Ozawa, A linear algorithm for embedding planar graphs
using PQ-trees, 1. Comput. Syst. Sci., 30, 1, pp. 54-76, 1985.

[CNS81a] N. Chiba, T. Nishizeki and N. Saito, A linear 5-coloring algorithm of planar graphs,
J. Algorithms, 2, pp. 317-327, 1981.

[CNS82] N. Chiba, T. Nishizeki and N. Saito, An approximation algorithm for the maximum indepen
dent set problem on planar graphs, SIAM J. Comput., 11,4, pp. 663-675, 1982.

[CNS83] N. Chiba, T. Nishizeki and N. Saito, An efficient algorithm for finding an independent set
in planar graphs, Networks, 13, pp. 247-252,1983.

[CNS81 b] N. Chiba, T. Nishizeki and N. Saito, Applications ofthe Lipton and Tarjan's planar separator
theorem, J. Information Processing, 4, 4, pp. 203-207,1981.

[CON85] N. Chiba, K. Onoguchi and T. Nishizeki, Drawing plane graphs nicely, Acta Informatica,22,
pp. 187-201,1985.

[CYN84] N. Chiba, T. Yamanouchi and T. Nishizeki, Linear algorithms for convex drawings of planar
graphs, in "Progress in Graph Theory", eds., J. A. Bondy and U. S. R. Murty, Academic
Press, Toronto, pp. 153-173, 1984.

[CNa88] M. Chrobak and J. Naor, Sequential and parallel algorithms for computing a large indepen
dent set in planar graphs, manuscript, 1988.

[CNi89] M. Chrobak and T. Nishizeki, Improved edge-coloring algorithms for planar graphs,
1. Algorithms, to appear.

[CP88] M. Chrobak and T. Payne, A linear-time algorithm for drawing graphs on a grid, submitted
for publication, 1988.

[Chv85] v. Chvatal, Hamiltonian cycles, in "The Travelling Salesman Problem", eds. E. L. Lawler,
1. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, John Wiley & Sons, pp. 403-429,
1985.

[CH82]

[DPP88]

[DR82]

[ET87]

[EMV87]

[ET76]

[Far48]

[FFS6]

[Fra85]

[Fre87]

[Fre84]

[FW77]
[GK82]

[GNK84]

R. Cole and J. Hopcroft, On edge coloring bipartite graphs, SIAM J. Compu!., 11, 3,
pp. 540-546,1982.
H. de Fraysseix, 1. Pach and R. Pollack, Small sets supporting Fary embeddings of planar
graphs, Proc. 20th ACM Symp. on Theory of Computing, pp. 426-433,1988.
H. de Fraysseix and P. Rosenstiehl, A depth-first search characterization of planarity, Annals
of Discrete Mathematics, 13, pp. 75-80,1982.
P. Eades and R. Tamassia, Algorithms for drawing graphs: An annotated bibliography,
manuscript, 1987.
R. E. Erickson, C. L. Monma and A. F. Veinott, Jr., Send-and-split method for nlinimum
concave-cost network flows, Math. of Operations Research, 12, 4, pp. 634-664, 1987.
S. Even and R. E. Tarjan, Computing an st-numbering, Theor. Compu!. Sci., 2, pp. 339~344,
1976.
I. Fary, On straight lines representations of planar graphs, Acta Sci., Math. Szeged, 11,
pp. 229-233, 1948.
L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Canad. J. Math., 8,
pp. 399-404, 1956.
A. Frank, Edge-disjoint paths in planar graphs, J. Combinat. Theory, Series B, 39, 2,
pp. 164-178, 1985.
G. N. Frederickson, Fast algorithms for shortest paths in planar graphs, with applications,
SIAM J. Comput., 16,6, pp. 1004-1022, 1987.
G. N. Frederickson, On linear-time algorithms for five-coloring planar graphs, Information
Processing Letters, 19, pp. 219-224, 1984.
S. Fiorini and R. 1. Wilson, Edge-Colourings of Graphs, Pitman, London, 1977.
H. N. Gabow and O. Kariv, Algorithms for edge coloring bipartite graphs and multigraphs,
SIAM J. Comput., 11, 1, pp. 117-129, 1982.
H. N. Gabow, T. Nishizeki, O. Kariv, D. Leven, and O. Terada, Algorithms for edge-coloring
graphs, submitted to a journal, 1984.

66

[GJ79]

[GJ74]

[GJS76]

[GJT76]

[Go 173]

[Gou82]

[Has81]
[Has84]
[HJ85]

[H0181]

[HT74]

[HU79]

[Hu69]
[Ita78]
[IR78]

[IS79]

[Joh77]

[JV82]

[Kar72]

[KM86]

[KL82]

[Lei80]

[LEC67]

[LRT79]

[LT79]

[LT80]

[Lyn75]

[Mar86]

[MNS85]

[MNS86]

[MB83]

Takao Nishizeki

M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman and Com
pany, San Francisco, 1979.
M. R. Garey and D. S. Johnson, The complexity of near-optimal graph coloring J. Assoc.
Comput. Mach., 23, pp. 43-49, 1974.
M. R. Garey, D. S. Johnson and L. Stockmeyer, Some simplified NP-complete graph
problems, Theor. Comput. Sci., pp. 237-267,1976.
M. R. Garey, D. S. Johnson and R. E. Tarjan, The planar Hamiltonian circuit problem is
NP-complete, SIAM 1. Com put., 5, pp. 704-714, 1976.
M. K. Goldberg, On multigraphs with almost maximal chromatic class (in Russian), Diskret
Analiz, 23, pp. 3-7, 1973.
D. Gouyou-Beauchamps, The Hamiltonian circuit problem is polynomial for 4-connected
planar graphs, SIAM J. Comput., 11, pp. 529-539, 1982.
R. Hassin, Maximum flow in (s, t) planar networks, Inf. Proc. Lett., 13,3, p. 107, 1981.
R. Hassin, On multicommodity flows in planar graphs, Networks, 14, pp. 225-235,1984.
R. Hassin and D. B. Johnson, An O(n log2 n) algorithm for maximuin flow in undirected
planar networks, SIAM J. Comput., 14, 3, pp. 612-624, 1985.
I. J. Holyer, The NP-completeness of edge colourings, SIAM J. Comput., 10, pp. 718-720,
1981.
J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach., 21,
pp. 549-568, 1974.
J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, Reading, Mass., 1979.
T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, Mass., 1969.
A.Hai, Two-commodity flow, J. Assoc. Comput. Mach., 25, 4, pp. 596-611, 1978.
A. Itai and M. Rodeh, Finding a minimum circuit in a graph, SIAM J. Com put., 7, 4,
pp. 413-423,1978.
A. Itai and Y. Shiloach, Maximum flows in planar networks, SIAM J. Comput., 8, 2,
pp. 135-150,1979.
D. B. Johnson, Efficient algorithms for shortest paths in sparse networks, J. Assoc. Comput.
Mach., 24, pp. 1-13, 1977.
D. B. Johnson and S. M. Venkatesan, Using divide and conquer to find flows in directed
planar networks in O(n3/210g n) time, Proc. 20th Ann. Allerton Conf. on Communication,
Control, and Computing, Univ. of Illinois, pp. 898-905,1982.
R. M. Karp, Reducibility among combinatorial problems, in "Complexity of Computer
Computations", eds. R. E. Miller and J. W. Thacher, Plenum Press, New York, pp. 85-104,
1972.
M. Kaufmann and K. Mehlhorn, Routing through a generalized switchbox, J. Algorithms,
7, pp. 510-531, 1986.
M. R. Kramer and J. van Leeuwen, Wire-routing is NP-complete, Report No. RUU-CS-82-4,
Department of Computer Science, University of Utrecht, Utrecht, the Netherlands, 1982.
C. E. Leiserson, Area-efficient graph layout (for VLSI), Carnegie-Mellon University, CMU
CS-80-138, 1978.
A. Lempel, S. Even and I. Cederbaum, An algorithm for planarity testing of graphs, in
"Theory of Graphs," Int. Symp. Rome, July 1966, ed. P. Rosenstiehl, Gordon and Breach,
New York, pp. 215-232, 1967.
R. J. Lipton D. 1. Rose and R. E. Tarjan, Generalized nested dissection, SIAM J. Numer.
Anal., 16, 2, pp. 346-358, 1979.
R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math.,
35,pp. 177~189,1979.
R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM J. Comput.,
9,3, pp. 615-627, 1980.
J. F. Lynch, The equivalence of theorem proving and the interconnection problem, ACM
SIGDA Newsletter 5 : 3, p. 31-65, 1975.
O. Marcotte, On the chromatic index of multigraphs and a conjecture of Seymour (I),
1. Combinat. Theory, Series B, 41,3, pp. 306-331, 1986.
K. Matsumoto, T. Nishizeki and N. Saito, An efficient algorithm for finding multicommodity
flows in planar networks, SIAM J. Comput., 14, pp. 289-301,1985.
K. Matsumoto, T. Nishizeki and N. Saito, Planar multicommodity flows, maximum match
ings and negative cycles, SIAM J. Comput., 15, 2, pp. 495-510,1986.
D. W. Matula and L. L. Beck, Smallest-last ordering and clustering and graph coloring
algorithms, J. Assoc. Comput. Mach., 30, pp. 417-427, 1983.

[MST80]

[MP86]

[Mil86]

[NI88]

[NAW83]

[NC88]

[NK85]

[Oka83]
[OS81]

[PY81]

[Rei83]

[Ric86]

[RS86]

[Sak73]

[Sch88a]
[Sch88b]
[Sey79a]

[Sey79b]

[Sey81]

[ST83]

[SR83]

[SAN88]

[SNS88]

[Sys81]

[Tar86]

[Th080]

[Th083]

[Tut56]
[Tut77]

[Tut60]

[Tut63]
[Viz65]

Planar Graph Problems 67

D. W. Matula, Y. Shiloach and R. E. Tarjan, Two linear-time algorithms for five-coloring a
planar graph, Manuscript, 1980.
K. Mehlhorn and F. P. Preparata, Routing through a rectangle, J. Assoc. Comput. Mach.,
33,1, pp. 60-85, 1986.
G. Miller, Finding small simple cycle separators for 2-connected planar graphs, J. Comput.
Syst. Sci., 32, pp. 265-279, 1986.
H. Nagamochi and T. Ibaraki, Max-Flow Min-Cut theorem for the multi-commodity flows
in certain planar directed networks (in Japanese), Trans. Inst. Elect. Inf. Comm. Eng., Japan,
171-A, 1, pp. 71-82, 1988.
T. Nishizeki, T. Asano and T. Watanabe, An approximation algorithm for the Hamiltonian
walk problem on a maximum planar graph, Discrete Applied Math., 5, pp. 211-222,1983.
T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, North-Holland, Am
sterdam, 1988.
T. Nishizeki and K. Kashiwagi, An upper bound on the chromatic index of inultigraphs, in
"Graph Theory with Applications to Algorithms and Computer Science", eds. Y. Alavi
et al., John Wiley & Sons, New York, pp. 595-604,1985.
H. Okamura, Multicommodity flows in graphs, Discrete Appl. Math., 6, pp. 55-62, 1983.
H. Okamura and P. D. Seymour, Multicommodity flows in planar graphs, J. Combinat.
Theory, Series B, 31, pp. 75-81, 1981.
C. H. Papadimitriou and M. Yannakakis, The clique problem for planar graphs, Information
Processing Letters, 13,4,5, pp. 131-133, 1981.
J. H. Reif, Minimum s-t cut of a planar undirected network in O(nlog2(n» time, SIAM
J. Compt., 12, pp. 71-81,1983.
D. Richards, Finding short cycles in planar graphs using separators, J. Algorithms, 7,
pp. 382-394, 1986.
N. Robertson and P. D. Seymour, Graph minors. VI. Disjoint paths across a disc, Journal
of Combinatorial Theory, Series B, 41, pp. 115-138, 1986.
M. Sakarovitch, Two commodity network flows and linear programming, Math. Prog., 4,
pp. 1-20, 1973.
A. Schrijver, Disjoint homotopic trees in a planar graph, Manuscript, 1988.
A. Schrijver, The Klein bottle and multicommodity flows, Manuscript, 1988.
P. D. Seymour, A short proof of the two-commodity flow theorem, J. Comb. Theory, Series
B, 26, pp. 370-371, 1979.
P. D. Seymour, On multi-colorings of cubic graphs, and conjectures of Fulkerson and Tutte,
Proc. London Math. Soc., 3, 38, pp. 423-460, 1979.
P. D. Seymour, On odd cuts and planar multicommodity flows, Proc. London Math. Soc.,
(3),42, pp. 178-192, 1981.
D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. Syst. Sci., 26,
pp. 362-390, 1983.
K. J. Supowit and E. M. Reingold, The complexity of drawing trees nicely, Acta Informatica,
18,pp.377-392,1983.
H. Suzuki, T. Akama and T. Nishizeki, Finding Steiner forests in planar graphs, submitted
to a journal, 1988.
H. Suzuki, T. Nishizeki, and N. Saito, Algorithms for multicommodity flows in planar graphs,
Algorithmica, 4, pp. 471-501,1989.
M. M. Syslo, An efficient cycle vector space algorithm for listing all cycles of a planar graph,
SIAM J. Comput., 10,4, pp. 797-808, 1981.
E. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Oper.
Res., 34, pp. 250-256, 1986.
C. Thomassen, Planarity and duality of finite and infinite graphs, J. Combinat. Theory, Series
B, 29, pp. 244-271,1980.
C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory, 7, pp. 169-176,
1983.
W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc., 82, pp. 99-116,1956.
W. T. Tutte, Bridges and Hamiltonian circuits in planar graphs, Aequationes Mathematica,
15, pp.I-33, 1977.
W. T. Tutte, Convex representations of graphs, Proc. London Math. Soc. (3), 10, pp. 304-320,
1960.
W. T. Tutte, How to draw a graph, Proc. London Math. Soc., 13, pp. 743-768,1963.
V. G. Vizing, Critical graphs with a given chromatic class (in Russian), Discret Analiz, 5,
pp. 9-17, 1965.

68

[Viz64]

[Wag36]

[Will85]

[WiIs85]
[Win87]

Takao Nishizeld: Planar Graph Problems

V. O. Viring, On an estimate of the chromatic class of a p-graph (in Russian), Discret Analiz,
3, pp. 23-30, 1964.
K. Wagner, Bemerkungen zum Vierfarbenproblem, Jber. Deutsch. Math.-Verein., 46,
pp. 26-32, 1936.
M. H. Williams, A linear algorithm for coloring planar graphs with five colours, The
Computer J., 28, I, pp. 78-81, 1985.
R. J. Wilson, Introduction to Graph Theory, 3rd ed., Longman, London, 1985.
P. Winter, Steiner problem in networks: A survey, Networks, 17, pp. 129-167, 1987.

Takao Nishizeld
Department of Electrical
Communications
Faculty of Engineering
Tohoku University
Sendai 980
Japan

Computing Suppl. 7,69-91 (1990) Computing
© by Springer-Verlag 1990

Basic Parallel Algorithms in Graph Theory

Ernst W. Mayr, Frankfurt a. M.

Abstract - Zusammenf_g

Basic: PanUel Algorithms in Grapb Theory. We discuss some of the more common machine models for
paraDel computation and their variants, as well as some relevant basic results from parallel complexity
theory. We then describe a few of the very basic and fundamental "tricks" and techniques to obtain
efficient parallel algorithms. Finally, we survey work on parallel algorithms for a number of graph
theoretic problems.

AMS Subject Classifications: 68EI0, 68QI0.

Key words: parallel computation, parallel machine model, fundamental programming techniques, paral
lel graph theoretic algorithms

Fundamentale ParaDelalgorithmen in der Grapbentbeorie. Wir diskutieren einige der gebriiuchlicheren
Maschinenmodelle und ihre Varianten fiir Parallelrechnung, sowie einige wichtige und grundlegende
Resultate aus der parallelen Komplexitiitstheorie. Anschliel3end beschreiben wir eine Auswahl von
elementaren und wichtigen "Tricks" und Methoden fUr efflZiente parallele Algorithmen. Znm SchluB
geben wir einen Oberblick iiber paraIIele A1gorithmen fUr eine Reihe graphentheoretischer Probleme.

1. Introduction

Advances in VLSI technology have made it possible to build (and buy) computers
with a large number of processors and blocks of memory. Using parallel computa
tion, one hopes to circumvent or avoid many of the problems caused by the so
called von-Neumann bottleneck of one serial CPU. First experiences with parallel
machines and algorithms have also shown that in order to achieve efficient parallel
computation and make optimal use of the available hardware, many careful deci
sions have to be made when designing the parallel architecture as well as the parallel
algorithms supposed to run on it.

While the apparent potential of parallel computation is certainly large and promis
ing, there are also obvious problems to utilize this potential. One reason for this
frustration may lie in the fact that there is no "standard" parallel architecture for
which to design efficient algorithms. This is in contrast to the sit.uation in the
sequential world where there is a (more or less) unique model (called Random Access
Machine by theoreticians) for which most algorithms are designed, at least as a first
stage.

70 Emst W. Mayr

Another difficulty stems from the fact that many fundamental sequential program
ming techniques or algorithms, most of them considered by now probably as
straightforward, are rather difficult if not impossible to parallelize.

In this paper, we first discuss some of the more common models for parallel
computation and their variants, in particular the Parallel Random Access machine
model which though theoretical and somewhat idealistic, is a good model to express
parallel algorithms in. It separates the issue of finding parallelism in problems or
developing highly parallel algorithms from more implementation dependent prob
lems like inter-processor communication and network congestion. We also present
some of the complexity theoretic background relevant to parallel computation. It
provides some means to characterize those problems that are efficiently paralleliza
ble on the one hand, and problems that in all likelihood have no efficient parallel
solutions on the other.

Then we present a number of very basic and fundamental programming techniques
and little routines that are tools for the development of many efficient parallel
algorithms and applications. Where possible, we state such simple parallel proce
dures in a pseudoformal parallel programming language. Finally, we survey some
classes of graph theoretic problems and parallel algorithms for them. We conclude
by discussing some of the limits of our current knowledge on efficient parallel
computation.

2. Machine Models, Basic Complexity Results

2.1. Models of Parallel Computation

As we have already mentioned there is a large number of parallel machine models,
varying considerably in power and programmability. In Table 1 we give a short list
of such models. The list is not intended to be exhaustive, and it also gives pointers
for more detailed descriptions of the models.

We shall base most of our discussions onto a theoretical machine model for parallel
computation called the Parallel Random Access Machine, or PRAM (s~, e.g., [31]
[43]). In this model, there is an unbounded number of identical processors which
are basically Random Access Machines (or RAM's), as defined in [4], and an
unbounded number of global, shared memory cells. Each processor can execute its
own program (though, in most cases, all processors will have the same program),
and the processors work synchronously, controlled by a global clock. Each pro
cessor can access any memory cell in one step.

Depending on whether simultaneous access to the same memory cell by more than
one processor is permitted or not, several variants of the PRAM model have been
defined. We do not consider conflicts between read and write operations since we
always assume that the read operations are performed in the first half of a memory
access cycle and the write operations in the second. The concurrent read exclusive
write variant of the basic model (CREW-PRAM) allows that more than one pro
cessor read the same memory cell in one step, but it disallows concurrent writes to

Basic Parallel Algorithms in Graph Theory

Table 1. Models of Parallel Computation

1. dataflow
2. actors
3. vector machines
4. local area networks
5. fixed (multistage) interconnection networks
6. VLSI
7. Parallel Random Access Machine
S. Boolean circuits
9. unbounded fan-in circuits

10. alternating Turning machines

[S] [2S] [45]
[52]
[SS]
[77]
[99] [104]
[71] [76]
[31] [43]
[S7] [94] [lOS]
[17] [101]
[16] [93] [94]

71

the same memory cell. The exclusive read exclusive write variant (EREW -PRAM),
on the other hand, forbids concurrent access completely.

While there are no (logical problems with simultaneous read access to the same
memory cell by more than one processor, some precautions have to be taken for
simultaneous write access. Depending on the method used to resolve such conflicts,
we further distinguish the following variants of the concurrent read concurrent write
PRAM (CREW-PRAM):

1. in the COMMON CREW-PRAM, all processors writing concurrently to the
same memory cell have to write the same value;

2. in the ARBITRARY CRCW-PRAM, if several processors write concurrently to
a memory cell, some arbitrary processor succeeds;

3. in the PRIORITY CRCW-PRAM, if several processors write concurrently to a
memory cell, the processor with the highest index succeeds.

It should be clear that the sequence of machine models given by

EREW-CREW-COMMON CRCW-ARBITRARY CRCW-PRIORITY CRCW

forms a hierarchy of machine models of increasing power in the sense that any model
in the list can be (trivially) emulated by any other model further down in the list,
without incurring any time loss.

It is also not too hard to see that a PRIORITY CRCW-PRAM using n processors
can be simulated by an n processor EREW -PRAM in such a way that the simulation
of every step of the CRCW-PRAM requires O(logn) steps of the EREW-PRAM.
The simulation is based on the following idea: Instead of directly accessing their
desired memory cells, the n processors instead write a description of their request as
well as their own index to some appropriate array of length.n. This array can then
be lexicographically sorted by an EREW-PRAM algorithm in O(logn) time [21]
by memory address and processor index. A simple computation then determines
the outcome of the memory access by every processor and writes it into the
corresponding array element from which it can be read by the processor. For a more
detailed description, we refer the reader to [29], [68], and [107].

The shared memory feature of the PRAM model is somewhat idealistic. A more
realistic machine model consists of a network of (identical) processors with memory

72 EmstW.Mayr

modules attached to them. The processors are connected via point-to-point com
munication channels. Each processor can directly access only cells in its own
memory module, and it has to send messages to other processors in order to access
data in their modules. To respect technological constraints, the number of channels
per processor is usually bounded or a very slowly growing function of the num
ber of processors. Examples for such networks of processors are the Hypercube
[98] or Connection Machine [53], the Cube-Connected-Cycles network [89],
or the Ultracomputer (RP3) [86] [97]. The latter is an example for a multistage
interconnection network, where an array of processors is connected to an array
of memory modules by a switching network consisting of several stages of small
switches.

2.2. Basic Complexity Theoretic Concepts

There are at least two goals one wishes to achieve with parallel computation:
speedup and efficiency. Speedup is the ratio between the sequential running time
T.(n) and the parallel running time Tp(n), measured for problem instances of size n.
Efficiency is the ratio between the work performed by the sequential algorithm
(which is, of course, equal to its running time) and the work performed by the parallel
algorithm, which is given by its number of processors times its running time. We
are interested in problems for which we can find parallel algorithms with large
speedup using a reasonable number of processors.

One way of formalizing this approach is given by the complexity class %~ [87].
It is the class of all those problems that a PRAM with a polynomial number of
processors can solve in polylogarithmic time. More formally, for every problem in
%~, there are constants c and k and a PRAM algorithm that requires O(nC)
processors and O(lot n) time on instances of size n. Note that since the most
powerful PRAM model we have listed (the PRIORITY CRCW-PRAM) can be
simulated by the least powerful model (the EREW-PRAM) with an O(logn) slow
down, the definition of %~ is independent of the specific PRAM model. It even
turns out that some fixed interconnection networks (including all those mentioned
above) can simulate %~ algorithm with only a polylogarithmic slowdown, thus
making the definition of %~ even more robust.

It has also become customary to call problems in %~ "efficiently parallelizable",
in the same manner as problems in [JJ (polynomial time) are called "feasible."
We should note, however, that parallel algorithms requiring a number of proces
sors which is a high degree polynomial, or running in time O(logk n), for some
large constant k, are certainly impractical, even though formally they are in
%~.

This leads us to also put some emphasis on the efficiency of parallel algorithms, as
defined above. We call a parallel algorithm optimal if it runs in polylogarithmic time
and with efficiency .0(1), and we call it efficient if it runs in polylogarithmic time
with efficiency .Q(log-k n), for some constant k.

Basic Parallel Algorithms in Graph Theory 73

2.3. &'-completeness

While many problems are efficiently parallelizable and have optimal or efficient
parallel solutions, other problems and algorithmic techniques seem harder or
impossible to parallelize. The complexity theoretic concept of a problem being
&'-complete may be useful in characterizing such cases. &' is the well-known class
of problems solvable in polynomial time on a sequential machine, like a Turing
machine or Random Access Machine. To study hardest problems in &', we look at
those problems in &' to which all other problems in &' can be reduced in an efficient
manor. Formally, we call some problem C E &' &'-complete if for every other prob
lem A E &', there is a function f computable by a Turing machine hi logarithmic
space such that

X E A ifff(x) E C.

It is quite easy to see that .!Vii&' is a subset of &'. The reason is that a (sequential)
Turing machine can simulate an .!Vii&' computation by first simulating the first step
of the polynomially many processors, then the second step, and so on. The simula
tion overhead per step is at most a polynomial in the number of simulated proces
sors, as long as all operands used by the parallel algorithm remain reasonably small.
This is certainly the case for .!Vii&' algorithms which can run only for a poly
logarithmic number of steps.

A somewhat more difficult construction can be used to show that, by a different
type of simulation, .!Vii&' algorithms can be simulated by space efficient Turning
machines. More precisely, if the running time of the .!Vii&' algorithm is oOot n), then
O(log2k n) space suffices. For details of this construction, we refer the interested
reader to [31] and [14].

The space efficient simulation of parallel algorithms implies in particular that .!Vii&'
is a subset of POLYLOGSPACE, where the latter is the class of all problems
solvable by a Turing machine whose workspace is bounded by a polylogarithmic
function of the input size. If we now assume that some &'-complete problem A is in
.!Vii&' then &' is equal to.!V1i&' and, in addition, &' s;; POLYLOGSPACE. This would
mean that every problem in &' could be solved using very little space (but not
necessarily, of course, simultaneously polynomial time). Though there is no kn.own
proof ruling out this situation, it is widely agreed to be highly unlikely. We therefore
take the fact that a given problem has been shown &'-complete as strong evidence
that it is not in .!Vii&', not efficiently parallelizable. A fortiori, it won't admit efficient
or optimal parallel algorithms as we have defined them.

Finally, we discuss the generic &'-complete problem. It is the so-called circuit value
problem (CVP). Define a circuit to be a directed acyclic graph whose nodes have
indegree at most two. The indegree zero nodes are the inputs to the circuit, they are
labelled with values in {O, 1}, representing the input to the circuit. Indegree one
nodes are labelled with NOT, they represent NOT-gates, and indegree two nodes
are each labelled AND or OR, representing the corresponding Boolean gates. The
nodes of the graph with outdegree zero are called outputs of the circuit. The circuit
value problem requires to determine, given a circuit together with a designated

74 EmstW.Mayr

output node, ~hether the value of this designated output as "computed by the
circuit" usng the obvious rules is 1. It has been shown [69] that CVP is &'-complete,
as are some important special cases [42].

3. Some Fundamental Techniques

In this section, we present some of the more fundamental programming techniques
and procedures. They are used in many applications dealing with combinatorial or
graph theoretic problems. Table 2 contains a (not necessarily complete) list of some
of these techniques.

In the following, we shall describe some of these fundamental techniques in more
detail.

3.1. Doubling

The job at hand is to compute the sum (or some other associative function) of n
numbers, ao through all-t. Suppose initially that n processors are available. Then
we could first compute the sum of all even-odd pairs and store it at the even
positions, then add up pairs of these sums, and so on. The scheme of this type of
computation is depicted in Figure 1. Note that all operations on one level of the

Table 2. Fundamental Parallel
Algorithms

1. doubling
2. pointer jumping or path doubling
3. parallel prefix
4. list ranking
5. Euler contour path
6. numbering of trees

Figure 1. Summation by Doubling

Basic Parallel Algorithms in Graph Theory

procedure census_fimction(n, s, res, 0);
int n; gmemptr s, res; binop 0;

75

co n is the number of elements in the input array starting at position s in global memory; res is the index
of the global memory cell receiving the result; 0 is an associative binary operator oc
begin

local type_oLS: save, int: mask, gmemptr myindex;
if PROC_NUM < n then

Ii;

mask := 1; myindex := s + PROC_NUM; save := Mm• ill4ex,

while mask < n do
if (PROC_NUM AND (2 * mask - 1) = 0) and PROC_NUM + mask < n then

Mmyindex := MmYi'lldex 0 Mmyindex+mask
Ii;
mask := 2 * mask

od;
if PROC_NUM = 0 then Mr •• := M. Ii;
if myindex '# res then Mmyill4e;c := save Ii

return
end census-jUnction.

Figure 2. PRAM Algorithm for Census Functions

tree can be performed in parallel since they access disjoint sets of variables. What
we double in every iteration is the number of inputs whose sum we have already
collected in a single variable.

Another name used with regard to this doubling technique is census functions. In
Figure 2, we give a detailed PRAM program to compute a census function. The
program works as follows. Every processor uses a local variable save which is needed
in order to make the procedure free of side-effects. All processors participating in
the computation have indices less than n. The variable mask serves to select those
processors that perform nontrivial computations in any given step. The algorithm
starts with mask set to 1. The processor with index PROC_NUM takes care of the
variable with index s + PROC_NUM. We just call this index myindex, and the
processor initially saves away whatever there is in cell myindex. The variable mask
is used to do the doubling. The expression (PROC_NUM AND (2 * mask - 1) = 0)
i~ just a way of saying: What do the last few bits of PROC_NUM look like? In the
first step, only those processors are active whose PROC_NUM is even, i.e. the last
bit oftheir PROC_NUM is zero. Every such processor combines its value with that
of the next processor. We also assume that all processors for which the if-condition
does not hold perform an appropriate number of no-op steps such as to stay
synchronized with the active processors. Then we double mask. Thus, mask will be
two in the next it~ration of the loop, and we will collect the pairs into sums over 4
elements each. Then we'll double mask again, to collect pieces of 4 into pieces of 8,
and so on. In the end, we just have to do some cleanup. The first processor takes
care of storing the whole sum into the result position, and then all other processors
restore the global memory cell that they initially saved away.

The algorithm as just presented is not optimal, however, since it uses n processors.
To obtain an optimal solution, we first group the items to be summed into con
tiguous groups oflength log n. We then assign one of nflog n processors to each of
these groups. Each processor first sums up sequentially the elements in its own

76 Ernst W. Mayr

group. On the resulting sums, we perform a census-function computation with
n/log n processors as described above. The total time requirement is still o (log n),
thus providing an optimal solution.

3.2. Pointer Jumping and Path Doubling

The next technique, pointer jumping or path doubling, is useful for finding paths
from vertices to their respective roots in in-forests. An in-forest is a collection of
in-trees which in turn are trees with all edges oriented towards the root. We assume
that by some preceding computation the in-forest is stored in the global memory of
the PRAM in such a way that for every node in the forest there is a pointer to its
immediate ancestor in its tree. The pointer for the root just points to the root itself.
We also assume that there is a unique processor associated with every node in the
forest. The problem consists of finding, for every node in the in-forest, the root of
the tree to which it belongs.

To simplify the following description, we shall identify each processor with the node
it is associated with. In the first step, every node fmds its grandparent by reading
the location pointed to by its own parent pointer. It then replaces the parent pointer
by a pointer to the grandparent. In the second step, every processor again reads the
location given by its pointer, and substitutes the value found there. Thus, after two

(a) (b)

(c) (d)

Figure 3. Example for Path Doubling

Basic Parallel Algorithms in Graph Theory 77

steps, every node knows its ancestor four generations away, after three steps its
ancestor eight generations away, and so on. H there are n nodes in the forest, then
log n steps suffice and every node will know the root of the tree to which it belongs.
Figure 3 gives a simple example consisting of a single path with eight nodes.

We note that in the path doubing algorithm no write conflicts will occur since only
the processor associated with a node will update the pointer belonging to that node.
However, in general, there will be read conflicts since several pointers can point to
the same node, as becomes immediately clear if we consider in-trees which are not
just paths as in the example.

We should also like to emphasize that for the path doubling algorithm the pointers
need not be stored in contiguous positions, and, of course, not in order as they are
shown in Figure 3 for clarity only.

3.3. Parallel Prefix

Parallel prefix computation is a very essential technique, representing a generaliza
tion ofthe doubling technique considered earlier [70]. Again, we are given an array
of quantities ao, a1 ... , an-1' and we are required to compute the partial sums
~]=o ai' for j = 0, ... , n - 1. And again, the connective could be any binary associa
tive operator. Figure 4 shows an EREW program for the parallel prefIX problem.

The inputs for the procedure are the length of the array and the starting location
for the array of results. Also, 0 stands for the binary operator. We need a few local
variables, save and save2, to save away values. The variable span serves the same
purpose as mask in the previous program, i.e. it denotes the distance spanned in a
given step.

procedure paral/eLprej'vc(n, start, result, 0);
int n; gmemptr start, result; binop 0;
co n is the length of the input list, start indicates the place in memory where the input list begins and
result where the list of results ao 0 ••• 0 ai is to be put; 0 is an associative binary operator DC

begin
local type_oLS: save, save2; int: span, gmemptr myindex;
ifPROC_NUM < n then

fi

span:= 1;
myindex := start + PROC_NUM;
save := M .. ,irule" co save global cell M""lmIeJe since it may get changed during the computation oc;
while span s; PROC_NUM do

M .. 1ImIe" := M .. ,lmIeJe-._ 0 M .. ,lmIeJe;
span := 2 * span

od;
save2 := M"'1ImI""';
M""lmIe" := save co restore the original input values oc;
myindex := result + PROC_NUM;
M""lIoIu := save2

end paralleLprefix.

Figure 4. Parallel Prefix Algorithm

78 Emst W. Mayr

Again, the algorithm as given is not optimal. A similar technique as above, grouping
the input elements into segments of length log n, can also be used here to achieve
an optimal implementation. We leave the rather straightforward details to the
reader.

3.4. List Ranking

The list ranking problem is: given an array of n pointers which form a simply linked
list, determine, for each element in the array, its distance from the end of the list.

Typically, the list ranking problem oc«urs as a subproblem in other algorithms. We
want to point out that generally, of course, the list is not stored in a monotone
fashion in contiguous memory cells. Obviously, the problem becomes trivial in this
case. We may, however, assume that all list pointers are stored in a contiguous array.
Should this not be the case initially, we can use the parallel prefix routine to
"compactify" the representation of the list in memory. We leave the details of this
operation to the reader.

As a possible application, think of the following (we shall see something similar
when we discuss the contour path technique below): some parallel computation
produces a simply linked list of numbers, and we wish to compute the sum of these
numbers for all initial segments ofthe list. This looks like a parallel prefix problem.
To apply our algorithm presented above, however, we first have to arrange the
numbers in list order in a contiguous array in memory. It should be clear that this
is a straightforward task once we have solved the list ranking problem since the
rank of an element in the list can be used to easily determine its position in the
array.

We should like to mention that for sequential computation, list ranking is a rather
trivial problem. We just go through the list, push every element onto a stack, and
after arriving at the end the list, we pop the elements from the stack and just count.

For parallel computation, there is also no problem if we are given n processors. We
can simply apply the path doubling routine, keeping a count of th~ distance each
pointer covers.

Theorem 1 The list ranking problem can be solved in O(log n) time on an EREW
PRAM using n/log n processors.

To actually prove this theorem would exceed the limits of this presentation. For
two different solutions, both optimal, we refer the reader to [7] [23] [25]. Here, we
give a brief sketch of one of the algorithms.

Sketch of Optimal List Ranking Algorithm:

1. break array into stacks of height rtog n 1;
2. select top remaining element in each stack;
3. determine chains formed by selected elements;
4. splice out distinguished elements in singleton chains;

Basic Parallel Algorithms in Graph Theory 79

5. have processor at tail of non-singleton chain splice out all elements in chain, one
per step;

6. if there are elements left, go to step 2; otherwise stop.

First, we break the array into roughly nj10g n segments. The list could be completely
disintegrated at this point since the list pointers are completely independent of the
segments. There are nj10g n stacks and the basic idea is to assign one processor to
each stack. Each processor selects the top element of its stack. H the (generally two)
neighbors of a selected element are not also selected, the processor removes the
element from the list, leaving appropriate information with the neighbors. The bad
case occurs if some of the selected top elements form a subchain of the list. Then
the simple splicing technique does not work. Instead, each of the chains is handled
by the processor at the tail of the chain. It will work on the chain sequentially, one
element per step. The other processors will go on and select the next element in their
stack. The problem with this method is that the first processor which gets a long
chain is busy for a long time dealing with this chain. Since, in the worst case, the
length of such a chain could be Q(nj1og n) we have to make sure that no long chains
are created. The technique used for this purpose is called deterministic coin tossing,
and is described in detail in [22] (see also [40]). It is of independent interest.

3.5. Euler Contour Path

The Euler contour path technique is useful for many computations on trees. We
assume here that the (rooted) tree is given in form of a list of children for every node
in the tree. The contour path technique replaces each arc of the tree by a pair of
pointers. Intuitively, the first pointer will correspond to an arc pointing in the same
direction as the tree edge, the second pointer to an arc in the opposite direction.
The second pointer of each edge is made to point to the first pointer of the next
edge in each adjacency list, except for the last edge in the list whose second pointer
points to the second pointer of its parent edge. Also, the first pointer of each edge
points to the first pointer of the first edge of the child's adjacency list, unless the
child is a leaf in which case the first pointer of the edge is hooked to its second
pointer. Pictorially, the path generated by the pointers follows the contour of the
tree when drawn in the plane in the canonical way. It is called the Euler contour path.

Since all computations necessary to construct the pointer structure for the contour
path are local it is very straightforward to obtain an optimal EREW-PRAM
algorithm for this problem. It runs in o (log n) time on nj10g n processors.

3.6. Numbering of Trees

There are several important numbering schemes for trees which are useful for
many computational problems. Examples are the pre-order, in-order, and post-order
numberings. While pre- and post-order numberings can be defined for any rooted

80 EmstW.Mayr

tree, the in-or~er numbering only applies to binary trees. As an example, we describe
an optimal EREW-PRAM routine to obtain a post-order numbering. The other
problems are quite similar and left as an exercise.

In the post-order numbering of an n-node tree, the vertices of the tree receive unique
labels from 0 to n - 1. The labels in the first subtree of a node are all smaller than
the labels of the second subtree, these are all smaller than the labels in the third
subtree, and so on, and finally the labels in the last subtree of the node are smaller
than the label of the node itself.

One optimal algorithm for post-order numbering trees works as follows. It first
constructs the Euler contour path for the tree. Using list ranking, it "flattens" out
the path into a linear array. It then associates 1 with edges on the contour path
pointing towards the root (second pointers of the corresponding tree edge), and 0
with the other edges. Then it performs a prefix computation on this array ofO's and
1 'so The post-order number of a vertex x of the tree is then the prefix sum up to the
last edge on the contour path entering x.

The pre-order numbering can be computed similarly, interchanging O's and 1 'so
Given these two numberings, it is possible, for instance, to compute the number of
descendents for every node in the tree.

Methods for other types of tree computations, like the height of the vertices, are
discussed further below.

3.7. Other Techniques

There are quite a few more fundamental parallel programming techniques which
we cannot present here in detail. One is the computation of lowest common ancestors
in (rooted) trees, a routine used for many other applications. There is an optimal
(njIogn processors and O(logn) time) EREW-PRAM algorithm that performs the
following task: Given an n-vertex tree (in form of adjacency lists for every interior
vertex), it performs some O(log n) time precomputation using njIog n processors
such that after this precomputation every query of the form "what is the lowest
common ancestor of vertices x and y?" can be answered by one processor in constant
time. For a detailed description of this alogirthm see [96].

Another basic problem, of extreme significance in sequential as well as parallel
computation, is sorting: Given n keys from some ordered universe, arrange them in
an array in ascending order of their value. We shall be interested here only in
comparison based algorithms, for which the only operations allowed on keys are
pairwise comparisons. The sequential complexity of sorting is well-known to be
8(nlogn) [64]. Sorting can also be performed optimally on an EREW-PRAM, due
to an n processor O(logn) time algorithm given in [21].

Tree contraction is another very powerful programming technique, applicable to a
large number of combinatorial problems on trees. We shall describe it in more detail
in the next section.

Basic Parallel Algorithms in Graph Theory 81

4. Some Graph Theoretic Applications

So far, we have seen basic programming techniques which are all optimal. In this
section, we shall first study some more optimal techniques which are a bit more
involved. We shall then present a selection of fundamental graph theoretic problems
for which currently no optimal solutions are known.

4.1. Tree Contraction

The probably simplest example for tree contraction is the evaluation of a parse tree
for some arithmetic expression. The leaves of such a tree correspond to variables
(with values) or constants, the interior nodes to arithmetic operators like +, -, x,
/. The structure of the tree is determined by the precedence of the operators and the
parenthesis structure in the arithmetic expression. Also, each vertex in the tree can
be associated with the subexpression given by its subtree, and with the value of this
subexpression.

As another application, we could reduce the problem of computing the size of the
subtrees of a given tree to a tree evaluation problem. We associate the value 1 with
each leaf and the operation "sum up the values of your children and add 1 to this
sum" to each internal vertex. It should be clear that the values obtained for the
vertices are just the size of their respective subtrees.

A similar example is computing the height of the vertices in a tree, i.e. for each vertex
the longest distance to a leaf. It corresponds to a tree evaluation problem with 0
associated with the leaves and the operation "add 1 to the maximum value of your
children" with the interior vertices.

It should be obvious that such a tree can be evaluated in parallel proceeding level
by level. We first evaluate all those internal vertices which have only leaves as
children. We then remove the leaves and iterate. The number of iterations for this
algorithm is given by the height of the tree. Unfortunately, there are trees with n
vertices and height .Q(n).

The first efficient parallel algorithm for tree contraction was presented in [80].
Later, quite a host of optimal EREW -PRAM algorithms for the problem were given,
e.g. in [1] [24] [38] [35], and [65]. One of the simplest methods is that presented
in [65].

We assume that we are given a binary tree such that every non-leaf has exactly two
children. For the purpose of simplicity, we also assume that the algebraic domain
under consideration are the rationals with +, -, x, and /. Intuitively, the algorithm
proceeds as follows in stages: In every stage, it selects half of the leaves in such a
way that the two children of a vertex are never selected at the same time. It then
deletes the selected leaves, replaces the parent of each selected leave by the subtree
rooted at the other child, and updates the operation to be performed at the root
of this subtree appropriately. To keep track of the operations that have to be

82 EmstW.Mayr

performed at .every node, it turns out for our case that it suffices to associate a
quadruple qx = (ax, bx, cx , dx) with every node x in the tree, with the following
intuitive understanding, where we also use qx to denote the rational function

axz+bx
qx: Zf-+ d .

CxZ + x

1. Let a be the value associated with some leave x in the original tree. Then
qx = (a, 0,0, 1).

2. Every node x in a tree will have a value v(x). If x is a leaf then

v(x) = qx(l);

if x is an interior vertex with children y and z and operation 0 attached to it, then
its value is

v(x) = qx(v(y) 0 v(z».

Let x be a parent in the tree whose left child y becomes selected, and whose right
child is z. Then the subtree rooted at z replaces the subtree rooted at x, and we
rename z to z'. We want to have v(z') = v(x). An easy computation shows that since
y is a leaf with a known value, and since rational functions are closed under
composition, there is a quadruple qz. = (az·, bz., Cz" dz.) computable with a constant
number of arithmetic operations from qx, qy, and qz such that

v(x) = qz.(v(r) Oz, v(s»

where rand s are the two children of z (or z') and Oz, is its associated operation, if
z is an interior vertex, and

v(x) = qA1)

if z (or z') is a leaf.

Thus, whenever a leaf gets selected and removed by the algorithm, the quadruple
of its sibling, which replaces its parent, can be updated in a constant number of
arithmetic operations. It turns out that in order to avoid memory access conflicts,
the subdivision of every stage in the following algorithm works (it guarantees that
if x, y, and z are as above then no processor removing some selected leaf other than
y will touch z).

Sketch of Optimal Tree Contraction Algorithm:

1. use Euler contour path technique to label the leaves from left to right by °
through n - 1;

2. assign quadruples qx to all leaves x and quadruples (1, 0, 0,1) to all interior nodes;
3. perform rIog n 1 stages consisting of

(a) remove all even numbered leaves that are a left child, replace their parent by
their sibling and update the quadruple of the sibling;

(b) perform the same operations on all even numbered leaves that are a right
child;

(c) divide the label of every remaining leaf by 2, without remainder.

Basic Parallel Algorithms in Graph Theory 83

If there are n/log n processors, the first two steps require time O(log n). The time for
stage i is

max {o (n;~~ n). 0(1)}

and the time for all rtog n 1 stages is therefore O(log n).

When the algorithm terminates it has reduced the original tree to a singleton node
whose associated quadruple gives the value belonging to the root of the original
tree. The algorithm can also be modified to compute the value of all subtrees of the
original tree, using the same number of processors and the same asymptotic running
time.

4.2. Connected Components, Spanning Trees

A basic task for graph theoretic algorithms is often the computation of the con
nected components of a given graph. Sequentially, various graph traversal techniques
like breadth first or depth first search can be used to obtain linear time algorithms.
Since no .K~ algorithms are currently known for depth first search in general
graphs, and since all current .K~ algorithms for breadth first search in general
graphs employ transitive closure techniques requiring basically M(n) processors
(where M(n) is the sequential time needed to multiply two n x n matrices), we have
to use other techniques to obtain efficient parallel algorithms for the connected
components problem, or the closely related problem of computing a spanning forest.

One such approach is based on the following idea. Given an arbitrary graph G, we
first put each vertex of G into a singleton set. The algorithm then proceeds in stages.
In each stage, a set of edges is selected whose two endpoints are in different sets.
For each edge, the two sets belonging to its endpoints are merged into one set. To
facilitate the edge selection and merging routines, for each set il pointer structure is
maintained. The pointer structure forms an in-tree, with the root representing the
whole set. Each node can find the set it is currently in by following the path in the
in-tree up to the root. It is advantageous for the algorithm if it can keep the trees
shallow by occasionally redirecting pointers like in well-known sequential UNION
FIND structures (see, e.g., [102]).

By a careful implementation of these ideas, an EREW-PRAM algorithm using
n2/log n processors and 0(log2 n) time can be obtained [54] [85] [19] [66]. Ifwe use
instead the more powerful ARBITRARY CRCW-PRAM model then a running
time of O(log n) can be achieved using m + n processors, where n is the number of
vertices and m the number of edges in the graph. By our simulation result for variants
of the PRAM model, we thus obtain another EREW-PRAM algorithm running in
o (log2 n) time, using m + n processors. Using a more sophisticated approach [23]
[11] the ARBITRARY CRCW-PRAM algorithm can be improved to run on
O«m + n)O!(m, n)/log n) processors where O!(m, n) is the inverse of Ackermann's func
tion, well-known from the sequential UNION-FIND problem [102].

84 Ernst W. Mayr

There is also an optimal ARBITRARY CRCW -PRAM algorithm for the connected
components problem that runs in time O(log n). However, this algorithm is not
deterministic, it is randomizing and uses internal coin-flipping [34].

All the algorithms for the connected components problem can be modified in a very
straightforward manner to construct a spanning forest for the given graph, within
the same processor and time bounds.

There is also a nice extension of a connected components/spanning tree algorithm
to find the biconnected components of a graph [103]. The complexity of this
algorithm is dominated by the part that finds connected components.

4.3. (Open) Ear Decomposition

We have already remarked above that some efficient sequential graph traversal
techniques don't seem to be efficiently parallelizable, like depth first search. Hence,
other methods to decompose a given graph into simpler parts had to be developed.
One such method is the ear decomposition technique proposed in [73].

Definition 4.1 An (open) ear decomposition of a graph G = (V, E) is a sequence Po,
PI' ... , P, of simple, edge-disjoint paths, with Po a cycle and only the endpoints of
p;, i > 0, on earlier paths. In an open ear decomposition, the endpoints of each Pi'
i ~ 1, have to be distinct.

It turns out that a graph has an ear decomposition iff it is 2-edge-connected, and it
has an open ear decomposition iff it is biconnected.

The notion of an ear decomposition can also be defined for digraphs.

An (open) ear decomposition can be found by an efficient algorithm along the
following lines [75] [78], where the input is an arbitrary (undirected) 2-edge
connected graph G = (V, E):

Sketcb of Ear Decomposition A1goritbm

1. find spanning tree for G;
2. root the spanning tree, number it in preorder;
3. label each non-tree edge with the (preorder number of the) least common ances

tor of its endpQints;
4. assign consecutive numbers to the non-tree edges in non-decreasing order of their

labels;
5. number each tree edge with the minimal number of a non-tree edge whose

fundamental cycle it is contained in.

The running time of this algorithm is dominated by the requirements of the first
step for finding a spanning tree. The remaining steps can be implemented using a
number of the optimal fundamental techniques described in the previous section
and earlier in this section. The algorithm, as given above, finds an ear decomposition
but not necessarily an open ear decomposition even when it exists. The algorithm

Basic Parallel Algorithms in Graph Theory 85

can, however, be slightly modified by using a somewhat more elaborate numbering
scheme for the non-tree edges to obtain open ear decompositions for biconnected
graphs. For more details, see the references given above.

Ear decomposition and open ear decomposition have found a number of applica
tions. As an example, it is quite easy to construct an st-numbering for a graph, given
an open ear decomposition. Let G be a biconnected graph with n vertices, and let
sand t be two vertices of G connected by an edge. In an st-numbering, the vertices
of G have distinct labels, s being labelled 1, t being labelled n, such that every vertex
other than sand t has both a neighbor with a larger and a neighbor with a smaller
label. For the details of an efficient parallel st-numbering algorithm, see [75].

st-numberings have in turn been used in [63] as a subroutine in an efficient parallel
algorithm for testing planarity and finding planar embeddings.

Ear decomposition techniques also play an important part in some %C6 algorithms
for testing k-vertex-connectivity of (undirected) graphs, for k = 3 [79] [91] [32] and
k = 4 [57].

4.4. More Graph Problems and Algorithms

In this subsection, we are going to mention briefly a number of other graph problems
and subclasses of graphs for which %C6 or random %C6 (~%C6) algorithms have
been developed.

Euler tours for general graphs: We have discussed the Euler contour path technique
for trees. There are also parallel algorithms for Euler tours in general undirected or
directed graphs (of course, not all graphs have Euler tours). Two efficient parallel
algorithms are given in [9] and [10].

Maximal independent sets: An independent (or stable) set in a graph is a subset of
the vertices such that no two of them are connected by an edge of the graph. Such
a set is maximal if no other independent set properly contains it. The first %C6
algorithm for the maximal independent set problem was given in [61]. Other,
more efficient algorithms appear in [74], [41], and [5]. The latter algorithm uses
randomization.

Matching problems: There are various types of matching problems: determining
whether a graph has a perfect matching, constructing a maximum matching (i.e., a
matching of maximal cardinality), and constructing a maximal matching (i.e., a
matching that is not properly contained in any other matching). There is an efficient
%C6 algorithm for the maximal matching problem [56] (also see [55] for a fast and
simple randomizing algorithm for the same problem). For the general maximum
matching problem, only ~%C6 algorithms are known [60] [82] [58] [33]. These
algorithms strongly rely on methods for determining the rank of certain matrices
related to the Tutte matrix, with polynomial entries. All currently known efficient
methods for these rank tests use randomization. In certain cases, and for certain
subproblems, however, the randomization can be avoided [44]. There are also

86 Ernst W. Mayr

subclasses of ,graphs for which deterministic %~ algorithms for the maximum
matching problem have been found, e.g. for regular bipartite graphs [72], for
strongly chordal graphs [26], for dense graphs [27], for K 3• 3-free graphs [106]
(more precisely, for computing the number of perfect matchings in such graphs),
and for co-comparability graphs (complements of partial orders) [50]. Matching
algorithms are also used as subroutines for some flow problems, as in [60] and [2].

Depth first search: Assume a (connected) graph is given by a standard adjacency
list representation. Then the canonical sequential depth first search algorithm finds
a uniquely determined DFS tree for the graph. To construct the same tree in parallel
seems to be hard since it is &I-complete to determine whether a given edge is
contained in this tree, or even in its first branch [92] [6]. There are, however, 9f%~
algorithms for constructing DFS trees in general undirected graphs [2] and directed
graphs [3]. There are also %~ algorithms for the DFS problem for planar graphs
[100] [40].

Graph coloring problems: Of course, optimal graph coloring in %&I-complete in
general. However, planar graphs can always be colored using at most four colors,
and for many special cases or relaxed problems (which do not necessarily require
that the coloring be optimal) efficient parallel algorithms have been found. For a
selection, see, e.g., [12] [15] [20] [36] 139] [40] [46] [47] [59] [83].

Chordal graphs: The recognition, representation, and many combinatorial prob
lems for chordal and strongly chordal graphs can be solved by %~ algorithms, as
e.g. in [18] [26] [30] [62] [84].

(Co-)comparability graphs: The maximum matching problem can be solved for the
complements of partial orders by an %~ algorithm derived from an %~ algorithm
for the 2-processor scheduling problem [49] [50] [51], as can some combinatorial
problems for such graphs which are %&I-complete for general graphs [51] [67].

Interval graphs, series-parallel graphs, reducible flow graphs, outerplanar graphs: A
number of %~ and efficient parallel algorithms have been shown for graphs in these
families. They include [13] [67] [81] [48][90] [37].

Finally, [95] and [105] contain some more %~ and efficient parallel algorithms
for various graph problems.

5. Conclusion

In the preceding sections, we have seen a number of very efficient or even optimal
algorithms for the PRAM model of parallel computation. To be able to use the
potential of parallelism more and on a wider range, currently some of the most
important shortcomings seem to be:

• we need an efficient method replacing sequential graph traversal schemes like
breadth first and depth first search; all current schemes are bound to require a
large number of processors since they basically compute transitive closures; as we

Basic Parallel Algorithms in Graph Theory 87

have seen, there are even some attempts to parallelize depth first search, though
there is also evidence that this might be impossible.

• the only fast parallel algorithms for matching (and related problems like certain
flow problems) which are currently known rely heavily on randomization; it is
very desirable to find efficient deterministic parallel algorithms for these problems;
it seems, however, that some new approach is necessary.

• the machine model for parallel computation has to become more standardized;
real parallel architectures have to be developed and real parallel programming
systems for them that are highly independent to free the programmer from
idiosyncrasies of the underlying architecture and let him concentrate on extract
ing and specifying the parallelism in an algorithm instead.

• efficient and optimal algorithms need to be developed for more realistic parallel
machine models, like certain fixed (multistage) interconnection networks or ar
chitectures like the binary hypercube. We are very confident that progress is
happening here since a number of such machines is available in practice.

Finally, we'd like to say that this paper is intended as a survey of very basic issues
in parall~l computation for graph th~or~tic, combinatorial problem. By our own
admission, it is incomplete. However, we hope that we could show what potential
parallelism carries, and where some of the important current problems lie.

References

[1] K. Abrahamson and N. Dadoun and D. G. Kirkpatrick and T. Przytycka. A simple parallel tree
contraction algorithm. Technical Report 87-30, Department of Computer Science, University of
British Columbia, Vancouver; August 1987.

[2] A. Aggarwal and R. J. Anderson. A random %~ algorithm for depth first search. Combinatorica,
8(1): 1-12, 1988.

[3] A. Aggarwal and R. J. Anderson and M.-Y. Kao. Parallel depth-first search in general directed
graphs. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (Seattle,
Washington, May 15-17, 1989), pages 297-308,1989.

[4] A. V.Aho and J. E. Hopcroft and J. D. Ullman. The design and analysis of computer algorithms.
Addison-Wesley 1974.

[5] N. Alon and L. Babai and A.ltai. A fast and simple randomized parallel algorithm for the maximal
independent set problem. J. Algorithms, 7(4):567-583,1986.

[6] R. Anderson and E. W. Mayr. Parallelism and the maximal path problem. Inf. Process. Lett.,
24(2): 121-126,1987.

[7] R. J. Anderson and G. L. Miller. Deterministic parallel list ranking. In Proceedings of the 3rd
Aegean Worksh9P on Computing: VLSI Algorithms and Architectures, A WOC 88. Corfu,
Greece, June/July 1988, pages 81-90, 1988.

[8] Arvind, et al. The Tagged Token Date Flow Architecture. Technical Memo 229, Laboratory of
Computer Science, MIT, 1983.

[9] M. Atallah and U. Vishkin. Finding Euler tours in parallel. J. Compu!. Syst. Sci., 29(3):330-337,
1984.

[10] B. Awerbuch and A. Israeli and Y. Shiloach. Finding Euler circuits in logarithmic parallel time.
In Proceedings of the 16th Ann. ACM Symposium on Theory of Computing (Washington,
D. C), pages 249-257, 1984.

[11] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for shuffle-exchange
network and PRAM. IEEE Trans. Comput., C-36(1O): 1158-1163, 1987.

[12] F. Bauernoppel and H. Jung. Fast parallel vertex colouring. In L. Budach, editor, Proceedings
of the International Conference on Fundamentals of Computation Theory (Cottbus, GDR),
pages 28-35. LNCS 199, Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1985.

88 ErnstW.Mayr

[13] A. A. BertQssi and M. A. Bonucelli. Some parallel algorithms on interval graphs. Discrete Appl.
Math., 16: 101-111,1987.

[14] A. Borodin. On relating time and space to size and depth. SIAM J. Comput., 6(4):733-744,1977.
[15] J. F. Boyar and H. J. Karloff. Coloring planar graphs in parallel. J. Algorithms, 8(4):470-479,

1987.
[16] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J. ACM, 28(1): 114-133,1981.
[17] A. K. Chandra and L. J. Stockmeyer and U. Vishkin. A complexity theory for unbounded fan-in

parallelism. In Proceedings of the 23rd Aun. IEEE Symposium on Foundations of Computer
Science (Chicago, IL), pages 1-13, 1982.

[18]. N. Chandrasekharan and S. S. Iyengar . .;V~ algorithms for recognizing chordal graphs and
k-trees. Technical Report 86-020, Department of Computer Science, Louisiana State University,
1986.

[19] F. Y. Chin and J. Lam and I. Chen. Efficient parallel algorithms for some graph problems.
Commun. ACM, 25(9):659-665,1982.

[20] M. Chrobak and M. Yung. Fast parallel and sequential algorithms for edge-coloring planar
graphs (extended abstract). In J. H. Reit: editor, Proceedings of the 3rd Aegean Workshop on
Computing: VLSI Algorithms and Architectures, A WOC 88. Corfu, Greece, June/July 1988, pages
11-23. LNCS 319, New York, Berlin, Heidelberg: Springer-Verlag, 1988.

[21] R. Cole. Parallel merge sort. In Proceedings of the 27th Ann. IEEE Symposium on Foundations
of Computer Science (Toronto, Canada), pages 511-516, 1986.

[22] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel list
ranking. Inf. Control, 70(1):32-53, 1986.

[23] R. Cole and U. Vishkin. Approximate and exact parallel scheduling with applications to list, tree,
and graph problems. In Proceedings of the 27th Ann. IEEE Symposium on Foundations of
Computer Science (Toronto, Canada), pages 478-491,1986.

[24] R. Cole and U. Vishkin. Optimal parallel algorithms for expression tree evaluation and list
ranking. In Proceedings of the 3rd Aegean Workshop on ~omputing: VLSI Algorithms and
Architectures, AWOC 88. Corfu, Greece, June/July 1988, pages 91-100 1988.

[25] R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking. Inf. Comput., 81(3):
334-352,1989.

[26] E. Dahlhaus and M. Karpinski. The matching problem for strongly chordal graphs is in .;V~.
Technical Report 855, Institut fiir Informatik, Universitat Bonn, 1986.

[27] E. Dahlhaus and M. Karpinski. Parallel construction of perfect matchings and Hamiltonian cycles
on dense graphs. Technical Report. Institut fiir Informatik, Universitat Bonn, 1987.

[28] J. Dennis. Data Flow Supercomputers. Computer, 18 :42-56, 1980.
[29] D. M. Eckstein. Simultaneous memory access. Technical Report TR-79-6, Computer Science

Department, Iowa State University, Ames, Iowa, 1979. .
[30] A. Edenbrandt. Chordal graph recognition is in .;V~. Inf. Process. Lett., 24:239-241,1987.
[31] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings ofthe 10th Ann.

ACM Symposium on Theory of Computing (San Diego, CAl, pages 114-118, 1978.
[32] D. Fussel and V. Ramachandran and R. Thurimella. Finding triconnected components by local

replacements. In G. Ausiello, M. Dezani-Ciancaglimi, S. Ronchi Della Rocca, editors, Proceedings
of the 16th International Colloquium on Automata, Languages and Programming (Stresa, Italy,
July 1989), pages 379-393. LNCS 372, Berlin Heidelberg New York: Springer-Verlag, 1989.

[33] Z. Galil. Sequential and parallel algorithms for finding maximum matchings in graphs. Ann. Rev.
Comput. Sci., 1: 197-224, 1986.

[34] H. Gazit. An optimal randomized parallel algorithm for rmding connected components in a graph.
In Processings ofthe 27th Ann. IEEE Symposium on Foundations of Computer Science (Toronto,
Canada), pages 492-501, 1986.

[35] H. Gazit and G. L. Miller and S.-H. Teng. Optimal tree contraction in the EREW model. In
Tewksbury, Stuart K. and Bradley W. Dickinson and Stuart C. Schwartz, editors, Concurrent
Computations: Algorithms, Architecture, and Technology, pages 139-156, Plenum Press, 1988.

[36] A. M. Gibbons and A. Israeli and W. Rytter. Parallel O(1og n) time edge-colouring of trees and
Halin graphs. Inf. Process. Lett., 27(1):43-51,1988.

[37] A. Gibbons and W. Rytter. A fast parallel algorithm for optimal edge-colouring of outerplanar
graphs. Research Report RR80, Department of Computer Science, University ofWarwick,1986.

[38] A. Gibbons and W. Rytter. An optimal parallel algorithm for dynamic expression evaluation and
its applications. In Proceedings ofthe Symposium on Foundations of Software Technology and
Theoretical Computer Science, pages 453-469, 1986.

[39] A. V. Goldberg and S. A. Plotkin. Parallel (Delta + I)-coloring of constant-degree graphs. Inf.
Process. Lett., 25(4):241-245,1987.

Basic Parallel Algorithms in Graph Theory 89

[40] A. Goldberg and S. Plotkin and G. Shannon. Parallel symmetry-breaking in sparse graphs. In
Proceedings ofthe 19th Annual ACM Symposium on Theory of Computing (New York City,
May 25-27, 1987), pages 315-324, 1987.

[41] M. Goldberg and T. Spencer. A new parallel algorithm for the maximal independent set problem.
SIAM J. Comput., 18(2):4-19-427,1989.

[42] L. Goldschlager. The monotone and planar circuit value problems are log-space complete for f?J.
SIGACT News, 9(2):25-29, 1977.

[43] L. Goldschlager. A unified approach to models of synchronous parallel machines. In Proceed
ings of the 10th Ann. ACM Symposium on Theory of Computing (San Diego, CA), pages 89-94,
1978.

[44] D. Y. Grigoriev and M. Karpinski. The matching problem for bipartite graphs with polynomially
bounded permanents is in .¥'if. In Proceedings of the 28th Ann. IEEE Symposium on Founda
tions of Computer Science (Los Angeles, CA, October 12-14, 1987), pages 166-172, 1987.

[45] J. R. Guard and I. Watson and J. R. W. Glauert. A multi-layered data flow computer architecture.
Technical Report, Univ. Manchester, 1978.

[46] T. Hagerup and M. Chrobak and K. Diks. Optimal parallel 5-colouring of planar graphs. SIAM
J. Comput., 18(2):288-300, 1989.

[47] X. He. Efficient parallel and sequential algorithms for 4-coloring perfect planar graphs. Technical
Report 87-14, Department of Computer Science, State University of New York at Buffalo, 1987.

[48] X. He and Y. Yesha. Parallel recognition and decomposition of two terminal series parallel graphs.
Inf. Comput., 75(1): 15-38,1987.

[49] D. Helmbold and E. Mayr. Two processor scheduling is in .¥'if. SIAM J. Comput., 16(4): 747-759,
1987.

[50] D. Helmbold and E. Mayr. Applications of parallel scheduling to perfect graphs. In Tinhofer, G.,
Schmidt, G., editors, Proceedings of the Interuational Workshop WG '86, Bemried, FRG,
June 1986. Graph-Theoretic Concepts in Computer Science, pages 188-203. LNCS 246, Berlin
Heidelberg: Springer-Verlag, 1987.

[51] D. Helmbold and E. Mayr. Applications of parallel scheduling algorithms to families of perfect
graphs. This issue

[52] C. Hewitt and H. Baker. Laws for communicating parallel processes. AI Working Paper 134A,
A.I. Laboratory, MIT, May 1977.

[53] W. D. Hillis. The Connection Machine. MIT Press, Cambridge MA, 1985.
[54] D. S. Hirschberg and A. K. Chandra and D. V. Sarwate. Computing connected components on

parallel computers. Commun. ACM 22:461-464,1979.
[55] A. Israeli and A.ltai. A fast and simple randomized parallel algorithm for maximal matching. Inf.

Process. Lett., 22(2):77-80,1986.
[56] A. Israeli and Y. Shiloach. An improved parallel algorithm for maximal matching. Inf. Process.

Lett. 22(2):57-60,1986.
[57] A. Kanevsky and V. Ramachandran. Improved algorithms for graph four-connectivity. In Pro

ceedings of the 28th Ann. IEEE Symposium on Foundations ofC<;mputer Science (Los Angeles,
CA, October 12-14, 1987), pages 252-259,1987.

[58] H. J. Karlotr. A Las Vegas fJI'¥'if algorithm for maximum matching. Combinatorica, 6(4):
387-392, 1986.

[59] H. J. Karlotr and D. B. Shmoys. Efficient parallel algorithms for edge coloring problems. J.
Algorithms, 8(1):39-52, 1987.

[60] R. M. Karp and E. Upfal and A. Wigderson. Constructing a perfect matching is in random .¥'if.
Combinatorica, 6(1): 35-48, 1986.

[61] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set problem.
J. ACM, 32(4):762-773,1985.

[62] P. N. Klein. Efficient parallel algorithms for chordal graphs. In Proceedings of the 29th Ann.
IEEE Symposium on Foundations of Computer Science (White Plains, NY, October 24-26,1988),
pages 150-161, 1988.

[63] P. N. Klein and J. H. Reif. An efficient parallel algorithm for planarity. In Proceedings of the 27th
Ann. IEEE Symposium on Foundations of Computer Science (Toronto, Canada), pages 465-477,
1986.

[64] D. E. Knuth. The art of computer programming, Vol. 3: Sorting and searching. Addison-Wesley,
Reading, MA, 1973.

[65] S. R. Kosaraju and A. L. Deicher. Optimal parallel evaluation of tree-structured computations
by ranking (extended abstract). In J. H. Reif, editor, Proceedings of the 3rd Aegean Workshop
on Computing: VLSI Algorithms and Architectures, A WOC 88. Corfu, Greece, June/July 1988,
pages 101-110. LNCS 319, New York, Berlin, Heidelberg: Springer-Verlag, 1988.

90 Ernst W. Mayr

[66] V. Koubek and J. Krsn3.kova. Parallel algorithms for connected components in a graph. In
L. Budach, editor, Proceedings of the International Conference on Fundamentals of Computa
tion Theory (Cottbus, GDR), pages 208-217. LNCS 199, Berlin, Heidelberg, New York, Tokyo:
Springer-Verlag, 1985.

[67] D. Kozen and U. V. Vazirani and V. V. Vazirani. %'C algorithms for comparability graphs,
interval graphs and testing for unique perfect matching. In Proceedings Fifth Conference on
Foundations of Software Technology and Theoretical Computer Science, pages 496-503. LNCS
206, Berlin-Heidelberg-New York: Springer-Verlag,1985.

[68] L. Kucera. Parallel computation and conflicts in memory access. Inf. Process. Lett., 14(2):93-96,
1982.

[69] R. Ladner. The circuit value problem is log-space complete for fJ'. SIGACT News, 7(1): 583-590,
1975.

[70] R. Ladner and M. Fischer. Parallel prefix computation. J. ACM, 27(4):831-838,1980.
[71] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proceedings of the 21st Ann. IEEE

Symposium on Foundations of Computer Science, pages 270-281, 1980 ..
[72] G. Lev and N. Pippenger and L. G. Valiant. A fast parallel algorithm for routing in permutation

networks. IEEE Trans. Comput., C-30(2):93-100, 1981.
[73] L. Lovasz. Computing ears and branchings in parallel. In Proceedings of the 26th Ann. IEEE

Symposium on Foundations of Computer Science (Portland, OR), pages 464-467, 1985.
[74] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput.,

5(4): 1036-1042, 1986.
[75] Y. Maon and B. Schieber and U. Vishkin. Parallel ear decomposition search (EDS) and st

numbering in graphs. Theor. Comput. Sci., 47(3):277-298,1986.
[76] C. A. Mead and L. A. Conway. Introduction to VLSI systems. Reading, Mass.: Addison-Wesley,

1980.
[77] R. Metcalfe and D. Boggs. Ethernet: Distributed packet switching for local computer networks.

Commun. ACM, 19:395-404. 1976.
[78] G. L.Miller and V. Ramachandran. Efficient parallel ear decomposition with applications. Manu

script, MSRI, Berkeley, 1986.
[79] G. L. Miller and V. Ramachandran. A new graph triconnectivity algorithm and its paralle1ization.

In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (New York City,
May 25-27, 1987), pages 335-344, 1987.

[80] G. Miller and J. Reif. Parallel tree contraction and its application. In Proceedings of the 26th
Ann. IEEE Symposium on Foundations of Computer Science (Portland, OR), pages 478-489.
1985.

[81] A. Moitra and R. Johnson. Parallel algorithms for maximum matching and other problems on
interval graphs. Techuical Report 88-927, Department of Computer Science, Cornell University,
1988.

[82] K. Mulmuley and U. V. Vazirani and V. V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1): 105-120,1987.

[83] J. Naor. A fast parallel coloring of planar graphs with five colors. Inf. Process. Lett., 25(1): 51-53,
1987.

[84] J. Naor and M. Naor and A. A. Schiiffer. Fast parallel algorithms for chordal graphs. SIAM J.
Comput., 18(2):327-349, 1989.

[85] D. Nath and S. N. Maheshwari. Parallel algorithms for the connected components and minimal
spanning tree problems. Inf. Process. Lett., 14(1):7-11, 1982.

[86] G. Pfister. The architecture of the IBM research parallel processor prototype (RP3). Technical
Report RC 11210 Computer Science, IBM Yorktown Heights, 1985.

[81] N. Pippenger. On simultaneous resource bounds. In Proceedings of the 20th Ann. IEEE Sympo
sium on Foundations of Computer Science (San Juan, PR), pages 307-311,1979.

[88] V. Pratt and L. Stockmeyer. A characterization of the power ofvector machines. J. Comput. Syst.
Sci., 12: 198-221, 1976.

[89] F. Preparata and J. Vuillemin. The cube-connected-cyc1es: A versatile network for parallel
computation. In Proceedings of the 20th Ann. IEEE Symposium on Foundations of Computer
Science (San Juan, PR), pages 140-147, 1979.

[90] V. Ramachandran. Fast parallel algorithms for reducible flow graphs. In Tewksbury, Stuart
K. and Bradley W. Dickinson and Stuart C. Schwartz, editors, Concurrent Computations:
Algorithms, Architecture, and Technology, pages 117-138, Plenum Press, 1988.

[91] V. Ramachandran and U. Vishkin. Efficient parallel triconnectivity in logarithmic time (extended
abstract). In J. H. Reif, editor, Proceedings of the 3rd Aegean Workshop on Computing: VLSI
Algorithms and Architectures, A WOC 88. Corfu, Greece, June/July 1988, pages 33-42. LNCS
319, New York, Berlin, Heidelberg: Springer-Verlag, 1988.

Basic Parallel Algorithms in Graph Theory

[92] J. H. Reif. Depth-first search is inherently sequential. Inf. Process. Lett., 20(5):229-234,1985.
[93] W. L. Ruzzo. Tree-size bounded alternation. J. Comput. Syst. Sci., 21(2):218-235,1980.
[94] W. L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22(3):365-383,1981.

91

[95] C. Savage and J. Ja'Ja. Fast efficient parallel algorithms for some graph problems. SIAM J.
Comput., 10(4):682-691, 1981.

[96] B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplification and paralleliza
tion (extended abstract). In J. H. Reif, editor, Proceedings of the 3rd Aegean Workshop on
Computing: VLSI Algorithms and Architectures, A WOC 88. Corfu, Greece, June/July 1988, pages
111-123. LNCS 319, New York, Berlin, Heidelberg: Springer Verlag, 1988.

[97] J. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and Systems, 2(4):
484-521, 1980.

[98] C. Seitz. The cosmic cube. CACM, 28(1):22-33,1985.
[99] H. J. Siegel. A model of SIMD machines and a comparison ofvarious interconnection networks.

IEEE Trans. Comput. C-28:907-917, 1979.
[100] J. R. Smith. Parallel algorithms for depth-first searches. I Planar graphs. SIAM J. Comput., 15(3):

814-830,1986.
[101] L. J. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by circuits.

SIAM J. Comput., 13(2):409-422, 1984.
[102] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22: 215-225, 1975.
[103] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM J. Comput.,

14(4):862-874,1985.
[104] C. D. Thompson. Generalized connection networks for parallel processor interconnection. IEEE

Trans. Comput., C-27: 1119-1125,1978.
[105] Y. H. Tsin and F. Y. Chin. Efficient parallel algorithms for a class of graph theoretic problems.

SIAM J. Comput., 13(3):580-599, 1984.
[106] V. V. Vazirani. %'C algorithms for computing the number of perfect matchings in K 3• 3-free graphs

and related problems. Technical Report, Computer Science Department, Cornell University,
1987.

[107] U. Vishkin. Implementation of simultaneous memory address access in models that forbid it. J.
Algorithms, 4(1):45-50, 1983.

[108] I. Wegener. The complexity of Boolean functions. Stuttgart: B. G. Teubner; New York: Wiley,
1987.

ErnstW.Mayr
Fachbereich Informatik
Johann Wolfgang Goethe-Univ.
D-6000 Frankfurt a. M.
Federal Republic of Germany

Computing Suppl. 7,93-107 (1990)
Computing
© by Springer.Verlag 1990

Applications of Parallel Scheduling Algorithms
to Families of Perfect Graphs*

David Helmbold, Santa Cruz, Calif., and Ernst W. Mayr, Frankfurt a. M.

Allstract - Zusammerfllllllllllg

ApplicatiollS of ParaUeI Sehedu6ng Algorithms to Families of Perfect Graphs. We combine a parallel
algorithm for the two processor scheduling problem, which runs in polylog time on a polynomial number
of processors, with an algorithm to frod transitive orientations of graphs where they exist. Both
algorithms together solve the maximum clique problem and the minimum coloring problem for com
parability graphs, and the maximum matching problem for co-comparability graphs. The transitive
orientation algorithm can also be used to identify permutation graphs, another important subclass of
perfect graphs.

AMS Subject Classifications: 68C15, 68ElO, 68QI0.

Key words: Two processor scheduling, maximum clique, maximum matching, transitive orientation

Anwendungen parallelen Schedulingalgoritlunen in Famllien von perfekten GrapheD. Wir kombinieren
einen parallelen Algorithmus fUr das Zwei-Prozessor-Scheduling-Problem, der in polylogarithmischer
Zeit und mit einer polynomialen Anzahl von Prozessoren liiuft, mit einem AIgorithmus flir die transitive
Orientierung von Graphen, faIls eine solche existiert. Durch diese Kombination kannen wir das Clique
Problem und das Fiirbungsproblem flir Vergleichbarkeitsgraphen und das Maximum-Matching
Problem flir ihre Komplemente lasen. Der AIgorithmus fUr die transitive Orientierung kann auch dazu
benutzt werden, um Permutationsgraphen zu erkennen, eine weitere wichtige Unterklasse der perfekten
Graphen.

1. Introduction

We present parallel algorithms for graph problems, in particular for several interest
ing subclasses of perfect graphs. Our main result is a deterministic ~ algorithm
for solving the two processor unit execution time scheduling problem, answering
an important open problem posed in [27]. We also present an ~ algorithm for
transitively orienting comparability graphs. By combining these two results, we
obtain an ~ algorithm for the maximum cardinality matching problem on co
comparability graphs (the complements of comparability graphs) and nearly co
comparability graphs. Known fast parallel algorithms for general graphs rely heavily
on randomization [16]. Our transitive orientation algorithm also gives us ~
algorithms for several additional problems, such as identifying permutation graphs

* This work was supported in part by a grant from the AT&T Foundation, and NSF grant DCR-
8351757.

94 David Helmbold and Ernst W. Mayr

and finding the. maximum weighted clique and optimal colorings in comparability
graphs. Comparability, co-comparability, and permutation graphs are all impor
tant subclasses of perfect graphs.

The most fundamental scheduling problems involve unit time execution tasks with
precedence constraints restricting the order of execution [2]. When the number of
processors varies, the scheduling problem is JVPJ-complete [26] [20]. At present
there are no published polynomial time algorithms for a fixed number of processors
greater than two. The first polynomial time algorithm for the two processor case
was published in [6]. Faster algorithms for the same problem were obtained by
Coffman and Graham [3], and later, Gabow [7, 8] found an asymptotically optimal
algorithm. Recently, Vazirani and Vazirani have published a randomized parallel
solution [27]. Like Fujii et al. [6] they use the connection between matching and
two processor scheduling, so their algorithm relies on an ~JV1ti' matching subroutine
such as [16] or [21].

In contrast, our scheduling algorithm [14] is deterministic and does not require the
aid of a matching subroutine. Therefore we are able to exploit the relationship
between matching and two processor scheduling in the other direction, obtaining a
deterministic parallel maximum matching algorithm for co-comparability graphs.

The only ingredient required to convert our scheduling algorithm into a matching
result is an JV1ti' transitive orientation subroutine. This routine takes an undirected
graph and directs the edges so that the resulting digraph is transitively closed. The
graphs with transitive orientations are called comparability graphs. The comple
ments of comparability graphs are co-comparability graphs. Kozen, Vazirani and
Vazirani, in independent work [18], coupled a different transitive orientation routine
with our two processor scheduling algorithm to achieve an JV1ti' matching algorithm
on co-comparability graphs. Our transitive orientation subroutine is also the key
element in algorithms presented in this paper which test for permutation graphs
and find maximum weighted cliques or optimal (minimal) colorings of comparability
graphs.

The remainder of the paper is organized as follows. Section 2 discusses some
fundamental concepts of parallel computation and states our main results. In
Section 3, we present our JV1ti' algorithm for the general two processor unit execution
time scheduling problem. Section 4 contains the parallel algorithm for recognizing
transitively orientable graphs, and constructing such orientations whenever they
exist. Then, in Section 5, we show how to combine the results of the two previous
sections to obtain our JV1ti' algorithm for the maximum cardinality matching prob
lem on co-comparability graphs. The final section mentions some conclusions and
open problems. A preliminary version of our results appeared in [13].

2. Main Theorems and Applications

In this section we give some definitions, state our main results, and prove several
important consequences.

Applications of Parallel Scheduling Algorithms to Families of Perfect Graphs 95

As our model ofparaflel computation, we use the Parallel Random Access Machine
or PRAM as defined in [5]. A PRAM consists of an unbounded number of identical
processors running synchronously, stepped by a global clock. Each processor can
be thought of, for the purpose of this paper, as an ordinary RAM [1], with local
memory. A PRAM also contains an unbounded number of global memory cells
which every processor can access in one timestep. We allow that several processors
read the same memory cell simultaneously. However, several processors must not
write simultaneously to the same memory cell, i.e. we use the so-called concurrent
read-exclusive-write model. Every processor has stored, in one of its registers, its
unique processor index. All processors execute the same program. Since the instruc
tions may depend on the processor index, the effect of an instruction will in general
vary from processor to processor.
When measuring the complexity of parallel algorithms (for the PRAM model), we
are mainly interested in the amount of time an algorithm uses, and the number of
processors it employs. Time will be the number of parallel steps taken by the PRAM,
and the number of processors will be the highest index of a processor active during
the computation.

The class of parallel algorithms running in time which is bounded by a polynomial
in the logarithm of the size of the input, and using a number of processors poly
nomial in the input size, has experienced considerable interest. One reason is that
the algorithms in this class are considered very fast (the "speedup" over their
sequential counterparts is exponential), and they use a "reasonable" amount of
hardware, i.e. processors. Another reason is that this class is very robust under
(reasonable) variations in the definitions ofthe underlying machine model. The class
is commonly referred to as ..;vii&', owing to its original definition for the boolean
circuit model of parallel computation in [23].

A perfect graph is an undirected graph where the chromatic number and maximum
clique size of every vertex induced subgraph coincide. A precedence graph is an
acyclic, transitively closed digraph, or equivalently, a partia~ order. We use (a, b) to
denote an undirected edge, and (a, b> to denote a directed edge or arc from vertex
a to vertex b. Thus if arcs (a, b> and (b, c> are in a precedence graph, then so is the
arc (a, c >. A comparability graph is an undirected graph with the property that every
edge c,an be assigned a direction such that the resulting graph is a precedence graph.
The complement of a comparability graph is a co-comparability graph. Some graphs,
such as a simple three-cycle, are both comparability and co-comparability graphs.

The undirected graph G = (V, E) is a permutation graph if there exists a pair of
permutations on the vertices such the edge (v, Vi) E E if and only if v precedes Vi (or
Vi precedes v) in both permutations. Permutation graphs are equivalent to the
comparability graphs of partial orders with dimension two. A graph is both a
comparability graph and a co-comparability graph if and only if it is a permuta
tion graph [24]. Permutation graphs, comparability graphs and co-comparability
graphs are all non-trivial subclasses of perfect graphs [10].

An instance of the two processor scheduling problem is given by a precedence graph
G = (V, E\ Each vertex represents a task whose execution requires unit time on

96 David Helmbold and Ernst W. Mayr

either of two identical processors. If there is an arc from task t to task t', then task
t must be completed before task t' can be started. A schedule is a mapping from
tasks to integer time steps such that at most two tasks are mapped to any timestep
and for all tasks t and t' if t must precede t' (t -< t') then t is mapped to an earlier
timestep than t'. The length of a schedule is the number of timesteps used. An
optimal schedule is one of shortest length.

The maximum matching problem on co-comparability graphs and the two pro~ssor
scheduling problem are closely related. If G is a co-comparability graph and G is a
transitive orientation of G's complement, then the paig; oftasks mapped to the same
timestep in an optimal two processor schedule of G correspond to a maximum
cardinality matching in G. Furthermore, there is a sequential algorithm for convert
ing any maxi!¥um cardinality matching for G into an optimal two processor
schedule for G [6]. In [27J it was conjectured that this process is inherently
sequential, but with our two processor scheduling algorithm it can be solved quickly
in parallel.

Theorem 1 Two processor scheduling is in .Afli&:

Proof: We outline an O(log2 n) time algorithm in Section 3. Further details can be
found in [14]. 0

Theorem 2 There is an .A«6' algorithm which detects whether an undirected graph is
transitively orientable, and if so finds a transitive orientation.

Proof: We present such an algorithm in Section 4. See also [18]. 0

Corollary 2.1 There is an .A«6' algorithm which detects whether or not a graph is a
permutation graph.

Proof: Graph G is a permutation graph if and only if both G and G are compara
bility graphs [24]. Therefore, by running our transitive orientation algorithm on
both G and G, we can determine whether G is a permutation graph. 0

Corollary 2.2 There is an.A«6' algorithm which finds a maximum node-weighted clique
in comparability graphs.

Proof: Given a comparability graph G, we find a transitive orientation, G. Examine
any k-path in G. A k-path is a directed path containing exactly k vertices. Because
G is transitively closed, the nodes on the k-path form a k-clique in G. Similarly, every
k-clique in q is a k-path in G. Thus the problem of finding a maximum node
weighted clique in G reduces to finding a maximum weight path in G. Since G is a
DAG, standard parallel techniques (i.e., max-plus closure) can be used to find a
heaviest path in G. 0

Corollary 2.3 There is an .A«6' algorithm which finds a minimal node-coloring of
comparability graphs.

Proof: Given a comparability graph G, we find a transitive orientation, G. We say
that a vertex v is on level i in G if the longest (directed) path from v to a sink contains
exactly i vertices. Clearly any pair of nodes on the same level are not adjacent in G,

Applications of Parallel Scheduling Algorithms to families of Perfect Graphs 97

so they can be assigned the same color. Every node on level i > 1 is a predecessor
of at least one node on level i - 1. Therefore, if G has k levels then G has a path of
length k and G has a k-clique. Since no coloring can use fewer colors than the size
of the largest clique, using a distinct color for every level yields an optimal coloring.
o
Theorem 3 Finding maximum matchings on co-comparability graphs is in .JiIrc.

Proof: One such algorithm is given in section 5. 0

This theorem is extended to nearly co-comparability graphs in section 5.

Corollary 3.1 Maximum matchings on permutation graphs and partial orders of
dimension 2 can be constructed in ~.

Proof: As stated above, these graphs are co-comparability graphs. 0

Corollary 3.2 Maximum matchings on interval graphs can be found in .JiIrc.

Proof: Interval graphs are a (true) subclass of co-comparability graphs [9J. 0

3. Two Processor Scheduling

In this section, we consider the scheduling problem for task systems with arbitrary
precedence constraints, unit execution time per task, and two identical processors.
Our scheduling algorithm for this problem is built around a routine that, for any
precedence graph, computes the length of the graph's optimal schedule(s). This
length routine is applied repeatedly in order to actually find an optimal schedule
for the input graph.

Let G = (V, -<) be the precedence graph we are interested in. If t -< t' then t is a
predecessor of t' and t' is a successor of t. For any pair of tasks, t, t' E V, define V;!
to be the set of tasks which are both successors of t and predecessors of t', and let
GJ, be the subgraph of G induced by V;!. The schedule distance between tasks t and
t', SD(t, t'), is defined to be the length of any optimal schedule for GJ,. If t -f.. t' then
SD(t, t') = O.

Lemma 3.1 Let t, t' E V, and let S be a set of tasks such that for all i E S:

i. t -< i -< t';
ii. SD(t, f) ~ k; and

iii. SD(i, t') ~ l.

Then SD(t, t') ~ k + 1+ rISI/2l-
Proof: Count the number of timesteps required to schedule those tasks between t
and t'. There must be at least k timesteps before the first task in S is scheduled. It
takes at least r1SI/21 timesteps to complete the tasks in S. After the last task in S
has been completed, at least I additional timesteps are required. Therefore SD(t, t') ~

k + 1+ rISI/21 0

98 David Helmbold and Ernst W. Mayr

level jump

7 3

6

5 o

4 3

3 6 10 2

2 1

1

Figure 1. This is a precedence graph containing fifteen tasks (transitive arcs have been omitted). The
special tasks ttop and tbot are added when computing the length of optimal schedules for G. The levels of
the original graph are on the left and the jump sequence is on the right.

The distance algorithm (see Figure 2) uses a doubling method similar to the standard
transitive closure routine in order to compute the schedule distances between all
pairs of tasks in a precedence graph G = (V, -<).It initially guesses that the schedul
ing distance between each pair of tasks is at least zero. By repeatedly applying
Lemma 3.1 to each pair of tasks in parallel the algorithm refines its guesses. Below
we prove that after log I VI iterations, the algorithm's guess for each pair of tasks
has converged to the schedule distance. The distance algorithm has a straight
forward implementation on an n5 processor PRAM taking O(log2 n) time.

Lemma 3.2 The schedule distance algorithm always computes the schedule distance
between every pair of tasks.

Proof: Lemma 3.1 guarantees that the distances computed by the algorithm are
never greater than the schedule distances.

In [3] it is shown how to construct sets of tasks Xo, Xl' ..• , Xk for any precedence
graph such that:

• those tasks in any Xi are predecessors of all tasks in Xi-I; and
• the length of any optimal schedule for G is Ii rlxd/21 (See Figure 3).

Our algorithm does not compute the X/s directly, we simply use their existence to
prove that the distances the algorithm does compute converge to the schedule
distance.

Applications of Parallel Scheduling Algorithms to Families of Perfect Graphs 99

do(*, *):= 0;
for i:= 1 to nognl do

for all t, t' with t -< t' do in paraDel
for all 0 s; k, I < n - 1 do in parallel

St.t'.k., := {s : t -< s -< t', di- 1 (t, s) ~ k, di - 1 (s, t') ~ I};
dirt, t'):= maxs,., 0 {d'-l (t, n, k + I + rlSt.t'.k.,1/2l};

SD(*, *):= d,.o •• ,(*, *)

Figure 2. The Schedule Distance Algorithm.

Xs X4

Pl tlop 15 14 12

P2 - 10 13 -

time 1 2 3 4 5 6 7 8 9 10

Figure 3. This is an LMJ schedule for the graph in Figure 1; each Xi is boxed.

Examine how the schedule distance algorithm determines the schedule distance
between an arbitrary pair of tasks, t and t', Let Xl' X2' ... , Xh be a set of X/s for GJ"
Xh+l = {t}, and XO = {t'}. After the first iteration of the outer loop, the distance
computed between any task in Xi and one in Xi-2 is at least rIXi-ll/2l- After the
second iteration, the distance computed between any task in Xi and any task in Xi-4
is at least rlxi-ll/21 + rlxi-21/21 + rlXi-31/21- This is an easy consequence of Lemma
3.1 with S = Xi-2, k = rlxi-lI/21, and I = rlXi-31/2l- In each iteration we double the
number of x/s accounted for. After log h iterations, the computed distance between
t and t' is at least the length of any optimal schedule for GJ" and thus at least SD(t, t').
Also note that the estimates computed by the schedule distance algorithm are never
too big as can be seen from an easy induction on i, the index of the outer loop in
the algorithm.

Since G contains n tasks, each GJ, has at most n - 2 X/so Therefore, after rtog n 1
iterations the algorithm has converged to the schedule distances for each pair of
tasks. D

The distance algorithm can be used to compute the length of optimal schedules for
a graph. Augment the graph with two dummy tasks, ttop and toot> which are a
predecessor and successor (respectively) of all other tasks in G. Now SD(ttop, toot)
is the length of G's optimal schedules, and can be found using the schedule distance
algorithm.

The method for converting the schedule distance algorithm into one which finds an
optimal schedule involves several constructions. For the sake of brevity this paper
contains only an outline of our method. Interested readers may consult [14] for a
more detailed presentation.

The search for an optimal schedule can be restricted to the class of Lexico
graphically Maximal Jump (LMJ) schedules. Each task t in the precedence graph is
assigned a level equal to the number of tasks in a longest path from t to a sink. A

100 David Helmbold and Ernst W. Mayr

level schedule gives preference to tasks on higher levels. More precisely, suppose
levels L, ... , I + 1 have already been scheduled and there are k unscheduled tasks
remaining on level I. If k is even a level schedule puts the k tasks in pairs, and there
is no jump from level I. If k is odd, a level schedule pairs k - 1 of the tasks with each
other and pairs the remaining task with a task from a lower levell' < I. In this case,
level I jumps to level I'. We assume that there is a sufficiently large number of dummy
tasks on level 0 which can be paired with any other task. The jump sequence of a
level schedule is the sequence oflevels jumped to, listed in the order in which the
jumps occur (see Figure 1). The Lexicographically Maximum Jump (LMJ) sequence
is the jump sequence (resulting from some level schedule) that is lexicographi
cally greater than any other jump sequence resulting from a level schedule. An
LMJ schedule is a level schedule whose jump sequence is the LMJ sequence.
Note that our definition of LMJ is similar to the definition of highest level
first in [7] and [27]. The following theorem establishes the importance of LMJ
schedules.

Theorem 4 [7] Every LMJ schedule is optimal. D

Our two processor algorithm uses the schedule distance algorithm to find the LMJ
sequence and which jump (if any) a pair of tasks can be used for. In general, there
will be many possible pairs for each jump. A path doubling computation finds a
consistent set of task pairs for the jumps. The remaining tasks are paired up within
levels. Since there are never precedence constraints between any two tasks on the
same level, this pairing can be done arbitrarily. An LMJ schedule is obtained by
sorting the resulting set of task pairs (both for jumps and within levels). We refer
the reader to [14] for a complete description ofthe technically more involved parts
of this construction.

4. Transitive Orientation

The transitive orientation problem is nontrivial because some edges cannot be
oriented independently. If the edges (a, b) and (b, c) are in the graph to be oriented,
but the edge (a, c) is not, then the edges (a, b), (b, c) cannot be oriented independently.
If we choose the arc <a, b) then we are forced to include the arc < c, b) in the
transitive orientation (see Figure 4). The binary relation r reflects this simple kind
of forcing [24]. Given G = (V, E), we say that <a,b)r<a,c) and <b,a)r<c,a)
whenever (a, b) E E, (a, c) E E and (b, c) ¢ E.

The reflexive, transitive closure r* of r is an equivalence relation on the possible
orientations of edges in E. For obvious reasons, we call these equivalence classes
implication classes. If A is a set of arcs (e.g. an implication class) then A denotes the
set of undirected edges {(a, b): <a, b) E A v <b, a) E A}, and A-1 is the set of arcs
{<b,a): <a,b) E A}. A set of arcs A is consistent if An A-1 = 0, and is inconsistent
when An A-1 "# 0.

Implication classes have been studied by M. C. Golumbic and many of the lemmas
in this section have originally been shown in [10] or [11].

Applications of Parallel Scheduling Algorithms to Families of Perfect Graphs 101

a ----..---- c e

dO! b
a ----..---- c

b h 9

(a, b)r(c, b) e

dO!
a ----..---- c

b h 9
(b, a)r(b, c) (d, e)r(j, e)r ... r{e, d)r ... r(e, f)

Figure 4. Graphs and Implication Qasses

Lemma 4.1 If A oF ii are implication classes of G then either A = ii-1 or A (') B = 0.
Proof: ~sume .Q1at J.a, b) E A (') B. Without loss of generality, let (a, b) E A. If
(a, b) E B then B = A since implication classes are equivalence classes. Therefore
(b,a) E B. and (b,a) ¢ A. By definition, if (a,b)r(a',b') then (b,a)r(b',a'). Thus
some (c,d)r*(a,b) if and only if (d, c)r*(b, a), so A = ii-1• D

Given an undirected graph G1 = (V, E) pick any implication class ii1, delete B1 from
G1> forming G2 = (V, E - B1). Next form G3 by removing the underlying set B2 of
some implication class ii2 of G2. Continue the process until removing B,. from Gt

results in a graph with no edges. The sequence of implication classes removed, ii1 ,

ii2 , ••• ,.8;" is called a r-decomposition of G. The following theorem points out the
usefulness of r-decompositions.

Theorem 5 (TRO Theorem [10]) Let ii1, ii2, ... , .8;, be a r-decomposition of an
undirected graph G. The following statements are equivalent:

i. G is a comparability graph.
ii. Every implication class of G is consistent.
iii. Each Ii; in the r-decomposition is consistent.

Furthermore, when these conditions hold, ii1 u ii2 U ••• u.8;, is a transitive orientation
ofG.

Proof: The proof of this theorem requires several technical lemmas, and thus is
beyond the scope ofthis paper. The interested reader is referred to [10, 11]. D

Let A be any implication class of the graph G. Then we call the underlying set
of edges A its color class. The TRO theorem suggests a sequential algorithm for
finding transitive orientations of comparability graphs. One can take any edge,
orient it arbitrarily, find the associated implication class, add the implication
class to the transitive orientation and remove its color class from the compara
bility graph. Repeating this procedure yields a r-decomposition of the comparabil
ity graph and therefore a transitive orientation. This is essentially the algorithm in
[24].

102 David Helmbold and Ernst W. Mayr

If we are dealing with a comparability graph it is sufficient to consider color classes
instead of implication classes, since every color class A represents an implication
class A and its inverse A-1• When talking about color classes we always assume
that the corresponding implication classes are consistent.

In order to parallelize the sequential algorithm above it is necessary to understand
how color classes change during a r-decomposition. We will see below that the
changes are very simple: color classes are either merged with other color classes or
remain unchanged.

Lemma 4.2 Let B be a color class of G = (V, E). Every implication class of G' =
(V, E - B) is the union of color classes of G.

Proof: The r relation for G', restricted to E - B, contains the corresponding
restriction of the r relation for G. 0

The three edges of a triangle in the undirected graph G form a tricolored triangle if
they belong to three distinct color classes. We say that two color classes A and B
are triangle related, written ALl B, if there is a tricolored triangle in G with one edge
in A and another edge in B.

Lemma 4.3 Let A and B be two distinct color classes in G = (V, E). A is not an
implication class of G' = (V, E - B) iff A LJ B.

Proof: The proof is a simple consequence of the definition of the r relation. It will
be omitted here. 0

An immediate implication of Lemma 4.3 is

Lemma 4.4 Let the color classes B1 , •.• , Bk of G = (V, E) be an independent set under
the Ll relation. Then in G' = (V, E - Bd, the collection {B2, ... , Bk} is an independent
set under Ll.

Corollary 4.4.1 If color classes B1, ... , Bk of G form an independent set under the Ll

relation, then they are the first k color classes for some r-decomposition of G.

Proof: Follows from the definition of independent set. D

Lemma 4.5 Let B1, ... , Bk be a maximal independent set under the Ll relation for
some graph G1 = (V, E). Every color class of Gk+1 = (V, E - B1 - B2 - ... - Bd is
the union of at ~east two color classes of G1 •

Corollary 4.5.1 The number of color classes for Gk+1 is at most half the number of
color classes for G.

Proof: Since the Bi form a maximal independent set under LJ every color class of G
which is not one of the Bi must be adjacent to one of the Bi. Because of Lemma 4.3
it will be merged with some other color class. 0

The input to our algorithm is an undirected graph G = (V, E). The ouptut is either
G, a transitive orientation of G, or an indication that G has no transitive orientation.
With G1 initialized to be G, and G initially equal to (V, 0), if no inconsistent

Applications of Parallel Scheduling Algorithms to Families of Perfect Graphs 103

implication class is found in the first iteration, the algorithm proceeds in iterations
as long as the set of color classes is non-empty.

Each iteration consists of the following four steps:

1. Determine the color classes of G;. This can be done using standard parallel
techniques such as solving 2-SAT formulae or finding connected components
[25].

2. Determine the L1 relation on color classes.
3. Use a maximal independent set subroutine [17, 19] to obtain a maximal inde-

pendent set M of color classes.
4. In parallel, for each BJ in M, delete Bj from Gb and add ~ or ~-1 tei if.
Step 3 is the most expensive of these steps, requiring 0(1og2 n) time and n4 pro
cessors. The log n iterations can therefore be done in 0(1og3 n) time on n4 processors.

5. Maximum Matching

The two processor scheduling and transitive orientation algorithms can be used to
find maximum matchings on co-comparability graphs. To find a maximum match
ing on the co-comparability graph G = (V, E), first create the comparability graph
G, the complement of G. Applying the transitive orientation routine converts G into
a precedence graph. An optimal two processor schedule can be found for the
precedence graph using our scheduling algorithm. We will see below that the pairs
of tasks scheduled together form a maximum cardinality matching of G.

Let S be any optimal two processor schedule for G. A task-pair of S is a pair oftasks
mapped to the same timestep by S. Since there are no precedence relationships
between tasks in a task-pair, the set of task-pairs of S forms a matching in G. Because
S is an optimal schedule, no schedule has more task-pairs.

A task is available at some time step in a schedule if it could be executed in the next
step without violating the precedence constraints.

Lemma 5.1 If a co-comparability graph G has a perfect matching then G has a
schedule where every task is in a task-pair.

Proof: We say a pair of tasks is mated if the pair is in the perfect matching.
Construct a schedule (anq modify the "mated" relationship) iteratively as follows:

If two mated tasks are both available, schedule one such mated pair. Otherwise
find two mated pairs, (t, t') and (s, s'), such that t and s are available and there
is no precedence relationship between t' and s'. Schedule t with s and mate t'
with s'.

Note that there are never precedence constraints between a pair of mated tasks.
This method clearly takes two tasks each timestep and does not violate the prece
dence constraints. What we want to show is that it always constructs an optimal
schedule for G. For this it suffices to prove that every time step contains two tasks.

104 David Helmbold and Ernst W. Mayr

Assume to the ,contrary that at some point the above routine does not find a pair
of tasks to schedule. Let U be the set of available tasks and U' be the set of tasks
which are mated to tasks in U. Since the method fails, U n U' = 0 and, by assump
tion, there is a precedence relationship between every pair of tasks in U' (i.e. U' is
totally ordered). Let t' be the task in U' which precedes all other tasks in U'. Since
t' ¢: U, there must be some t E U such that t -< t'. However, by the transitivity of
precedence, t also precedes its mate-contradiction. 0

Lem.!!Ia 5.2 Let G = (V; -<) be a precedence graph and S a two processor schedule
for G' = (V - {t}, -<). A single timestep containing t can be inserted into S yielding
a schedule for G.

Proof: Let t' be the last predecessor of tin S. Insert task t immediately after the
timestep containing t'. Obviously there are no precedence conflicts between t and
its predecessors. Since S is a valid schedule, there are no precedence conflicts
between tasks in V - {t}. Therefore any precedence conflict would be of the form
t -< f. By transitivity t' also precedes t, so t comes strictly after t' in S. Since t is
inserted in the step immediately after t', task t appears before t in the modified
schedule. 0

Let M be the tasks in a maxim~m matching on G. The above Lemmas suggest a
way to obtain a schedule, S, for G = (V, -<) where the paired tasks of S are precise~
the tasks in M. Start by finding an optimal schedule, S' for the subgraph of G
induced by M and add the tasks in V - M one at a time. One ~ implementation
of this algorithm involves bucket sorting the tasks in V - M based on which
task-pair of S' they follow. By topologically sorting the tasks within each bucket we
can quickly determine where each task should be inserted.

Theorem 6 The task-pairs of any optimal schedule for G form a maximum cardinality
matching on G.

Proof: Let M be the tasks in some maximl!91 cardinality matching of G. Let S be
an optimal schedule for the subgraph of G induced by M. By Lemma 5.1, the
tasle-pairs of S form a maximum cardinality matching on G. By Lemma 5.2 we can
insert the other tasks of G one at a time with.out disturbing the task-pairs. Therefore,
the task-pairs of the resulting schedule for G form a maximum matching on G. Since
every optimal schedule has the same number of task-pairs and the task-PAirs of
every schedule form a matching, the task-pairs of any optimal schedule for G form
a maximum matching on G. D

If G is not transitively orientable it may still be possible to find a maximum matching
in G = (V, E). Assume we are given a set U, consisting of O(log n) edges, such that
G u U is transitively orientable. The following method finds a maximum matching
in G.

For each S' £; U such that S' is a matching find (in parallel) a maximum matching
in G' = (V - {v: (v, v') E S'}, E - U). Since G' is a vertex induced subgraph of the
graph G" = (V, E - U), G' is transitively orientable since Gil is. A maximum cardinal-

Applications of Parallel Scheduling Algorithms to Families of Perfect Graphs 105

ity matching for G occurs whenever the cardinality of the maximum matching for
G' plus 18'1 is maximal.

A graph G is a k-nearly comparability graph when:

-G has at most k log n inconsistent implication classes and
-each inconsistent implication class of G is split into consistent implication classes

by the addition of at most kedges.

A k-nearly co-comparability graph is the complement of a k-nearly comparability
graph.

Theorem 7 Let G be a k-nearly co-comparability graph, for some constant k. Then
there is an .;v~ algorithm to find a maximum cardinality matching for G.

Proof: In parallel examine each set, T, of at most k edges not in G. Determine
which inconsistent implication classes are split when T is added to G. For each
inconsistent implication class A, pick any set of at most k edges which splits X into
consistent implication classes. At most k2 10g n edges are picked, so the method
described above can now be used to find a maximum cardinality matching for
G. 0

6. Conclusion

Although the algebraic approach was used to obtain the first parallel matching
algorithms [16,21], these are randomized algorithms. It is interesting to note that
we can obtain deterministic matching algorithms for some wide classes of graphs
using a purely combinatorial approach. We may speculate whether the combina
torial approach will yield deterministic algorithms for matching on other classes of
graphs as well.

With regard to the two processor scheduling algorithm it was surprising to us how
much more difficult computing the actual schedule was than simply computing its
length (the details are given in [14]). In higher complexity classes such as f!lJ and
';vf!lJ it is often easy to go from the decision problem to computing an actual
solution, because of self-reducibility. However this does not necessarily seem to be
the case for parallel complexity classes. To support this observation we note that
the random .;V~ algorithm for finding the cardinality of a maximum matching is
much simpler than the random .;V~ algorithm for determining an actual maximum
cardinality matching [15].
There are several open problems related to parallel scheduling algorithms. We are
attempting to extend our two processor result to the case when the tasks have
nonuniform start times and/or deadlines. When the precedence constraints are
restricted to in-trees or out-trees there are parallel algorithms for generating sched
ules on an arbitrary number of processors [4,12]. It is an open problem whether
interval-ordered tasks [22] can be scheduled quickly in parallel.

One variant of the two processor problem that we know to be ';v&J-complete (by
reduction from the clique problem) allows incompatibility edges as well as prece-

106 David Helmbold and Ernst W. Mavr

dence constraints. When there is an incompatibility constraint between two tasks
they can be executed in either order, but not concurrently. Incompatibility con
straints arise naturally when two or more tasks need the same resource, such as
special purpose hardware or a database file. An interesting question is to find
restricted versions with feasible (parallel) solutions.

References

[1] A. Abo, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms. Addison
Wesley, New York, 1974.

[2] E. CotTman, editor. Computer and Job/Shop Scheduling Theory. Wiley, 1976.
[3] E. Coffman, Jr., and R. Graham. Optimal scheduling for two processor systems. Acta Informatica,

1: 200-213, 1972.
[4] D. Dolev, E. Upfal, and M. Warmuth. Scheduling trees in parallel. In 8ertolazzi, P., Luccio, F.

(eds.): VLSI: Algorithms and Architectures. Proceedings of the International Workshop on Parallel
Computing and VLSI, pages 1-30, North-Hoiland, 1985.

[5] S. Fortune andJ. Wyllie. Parallelism in random access machines. In Proceedings of the 10th Ann.
ACM Symp. on Theory of Computing (San Diego, CA), pages 114-118, 1978.

[6] M. Fujii, T. Kasami, and K. Ninamiya. Optimal sequencing of two equivalent processors. SIAM
J. Appl. Math., 17(4): 784-789, 1969.

[7] H. Gabow. An almost-linear algorithm for two-processor scheduling. JACM, 29(3): 766-780, 1982.
[8] H. Gabow and R. Tarjan. A linear time algorithm for a special case of disjoint set union. JCSS,

30: 209-221, 1985.
[9] P. Gilmore and A. Hoffman. A characterization of comparability graphs and of interval graphs.

Canad. J. Math, 16, 1964.
[10] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
[11] M. Golumbic. Comparability graphs and a new matroid. J. Combinatorial Theory (8), 22(1): 68-

90,1977.
[12] D. Helmbold and E. Mayr. Fast scheduling algorithms on parallel computers. In Preparata, F. P.

(ed): Advances in Computing Research 4: Parallel and Distributed Computing, pages 39-68, JAI
Press, 1987.

[13] D. Helmbold and E. Mayr. Perfect graphs and parallel algorithms. In Proceedings of the IEEE
1986 International Conference on Parallel Processing, pages 853-860, August 1986.

[14] D. Helmbold and E. Mayr. Two processor scheduling is in .¥'if. SIAM J. on Comput., 16 : 747-759,
1987.

[15] R. Karp, E. UpfaI, and A. Wigderson. Are search and decision problems computationally equiva
lent? In Proceedings of the 17th Ann. ACM Symp. on Theory of Computing (Providence, RI),
pages 465-475, 1985.

[16] R. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random .¥'if.
Combinatorica, 6 : 35-48, 1986.

[17] R. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set problem.
J. ACM, 32(4): 762-773, 1985.

[18] D. Kozen, U. Vazirani, and V. Vazirani . .¥'if algorithms for comparability graphs, interval graphs,
and testing for unique perfect matching. In 5th Conf. Found. of Software Tech. and Theor. Compo
Sci. (New Dehli), 1985.

[19] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput.,
15: 1036-1042, 1986.

[20] E. Mayr. Well Structured Programs Are Not Easier to Schedule. Technical Report STAN-CS-81-
880, Department of Computer Science, Stanford University, September 1981.

[21] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion. Combina
torica, 7: 105-120, 1987.

[22] C. Papadimitriou and M. Yannakakis. Scheduling interval-ordered tasks. SIAM J. Computing,
8(3): 405-409, 1979.

[23] N. Pippenger. On simultaneous resource bounds. In Proceedings of the 20th IEEE Symp. on
Foundations of Computer Science, pages 307-311, 1979.

[24] A. Pnueli, A. Lempel, and S. Even. Transitive orientation of graphs and identification of permuta
tion graphs. Can. J. Math., 23(1): 160-175, 1971.

Applications of Parallel Scheduling Algorithms to Families of Perfect Graphs 107

[25] Y. Shiloach and U. Vi"shkin. An O(logn) parallel connectivity algorithm. J. Algorithms, 3(1): 57-63,
1982.

[26] J. Ullman . .Af"&'-complete scheduling problems. JCSS 10(3): 384-393, 1975.
[27] U. Vazirani and V. Vazirani. The two-processor scheduling problem is in al.Af"<t. In Proceedings

of the 17th Ann. ACM Symp. on Theory of Computing (providence, RI), pages 11-21, 1985.

David Relmbold
University of California
Santa Cruz, California
U.S.A.

ErnstW.Mayr
Fachbereich Informatik
Johann Wolfgang Goethe Universitat
0-6000 Frankfurt a. M.
Federal Republic of Germany

Computing Suppl. 7, 109-124 (1990)
Computing
© by Springer-Verlag 1990

Orders and Graphs

Ulrich Faigle** and Rainer Schrader*, Bonn

Abstract - ZusammerfaSSUDg

Onlers and Graphs. This paper surveys the relationship between graphtheoretic and ordertheoretic
questions. In the first part, we discuss recent results which answer ordertheoretic questions in a more
general graphtheoretic framework. In the second part we address ordertheoretic approaches to graph
theoretic problems.

AMS Subject Classifkations: 05C20, 05C25, 06AIO.

Key words: partial orders, graphs, order invariants, monotone graph properties, polyhedral combinatorics,
antimatroids.

Orclnungen unci GrapheD. Die Arbeit gibt einen Oberblick iiber die Beziehungen zwischen ordnungs- und
graphentheoretischen Fragestellungen. 1m ersten Tei1 werden neuere Resultate vorgestellt, die ordnungs
theoretische Fragestellungen in einema1lgemeinerengraphentheoretischenRa1tmenbeantworten.1m
zweiten Teil werden umgekehrt Probleme auf Graphen diskutiert, die mit ordnungstheoretischen An
satzen erfolgreich gelost werden konnen.

Introduction

Orders and graphs may be viewed as two faces of the same coin. While undirected
graphs may be analyzed within the context of directed gra('hs (replace each edge
by a pair of oppositely directed arcs), also (partially) ordered sets fit into this
framework in the sense that they correspond to transitively oriented graphs. On the
other hand, we may associate with each directed graph D an ordered set P(D) in a
standard way: we replace each vertex by two vertices v, v' and impose an order on
the augmented set of vertices by letting v < w' if (v, w) is an arc in D. Thus, D may
be studied in terms of P(D).

Often, however, ordertheoretic aspects of graphtheoretic problems come up in a
more direct way. Similarly, many ordertheoretic problems allow a more general
approach within an appropriate graphtheoretic formulation.

This survey addresses such relationships between graphtheoretic and ordertheoretic
problems. It is not intended as an exhaustive and comprehensive treatment of the

* Institut fUr Operations Research, Universitat Bonn. Supported by Sonderforschungsbereich 303
(DFG)

** Faculty of Applied Mathematics, University of Twente

110 Ulrich Faigle and Rainer Schrader

subject. Gene~ally, our approach is more ordertheoretic. It concentrates on recent
developments and reflects to large extent also the research interests of the authors.

The survey consists of two sections. The first section emphasizes graph theoretic
techniques for ordertheoretic problems while in the second section ordertheoretic
techniques are in the foreground.

1. Graphtheoretic Approaches to Ordertheoretic Problems

Throughout this paper we are concerned with structures defined on finite ground
sets. Recall that the pair P = (E, ~) is a (partially) ordered set if for all x, y, Z E E

(1.1) x ~ x
(1.2) x ~ y, y ~ x implies x = y
(1.3) x ~ y, y ~ Z implies x ~ z.

Note that P = (E, ~) can also be interpreted as a directed graph D = D(P) defmed
on the set E of vertices and with edges of the form (x, y) whenever x ~ y. The
comparability graph G = G(P) is the undirected version of D(P), i.e. has vertex set
E and edges {x,y} whenever x ~ y. (We remark that sometimes D(P) and G(P) are
defined without loops, i.e., relative to the strict order relation.)

We say that y covers x if x < y and there is no Z E E with x < Z < y. Hence the
complete information about P is contained in the Hasse diagram H = H(P), namely
the subgraph of D(P) retaining just the covering edges. (Usually H(P) is drawn as
an undirected graph with the understanding that the orientation is from "bottom"
to "top".) Comparability graphs of ordered sets are, in particular, perfect. Let us
quickly review some basic properties of perfect graphs.

In an arbitrary graph G on the vertex set V we consider two types of subsets of
vertices. C s; V is a clique if there is an edge between every pair of vertices in C.
S s; V is a stable set if no pair is linked by an edge. The clique covering number
K(G) is the smallest number of cliques needed to cover V. The stability number oc(G)
is the size of the largest stable set of G. G is called perfect if for each vertex induced
subgraph G' of G, the following equality is true

oc(G') = K(G').

Lovasz [1972] proved the weak perfect graph conjecture: G is perfect if and only if
its complement G is perfect. There is also a strong perfect graph conjecture, which
has been found to be true for many classes of graphs (for example planar graphs
(Tucker [1973]) or claw-free graphs (Parthasarathy and Ravindra [1976]» but
generally is open: the graph G is perfect if and only if neither G nor G contain an
induced odd cycle of size at least five.

Computing oc(G) and K(G) is generally NP-complete (cf. Garey and Johnson [1979]).
In the case of perfect graphs, however, polynomial algorithms are available via the
ellipsoid method (see Grotschel, Lovasz, Schrijver [1988]). Let us take a look at
comparability graphs. A clique in a comparability graph G(P) corresponds to a

Orders and Graphs III

chain in P, i.e. a set of pairwise comparable elements, while a stable set of G(P) is
an antichain in P. Dilworth [1950] proved for ordered sets P:

a(G(P)) = lC(G(P)).

Since vertex induced subgraphs of comparability graphs are comparability graphs,
Dilworth's theorem implies that comparability graphs are perfect. Hence the result
of Lovasz [1972] yields a special case of Greene's theorem [1976]: the size of the
longest chain of an order P equals the smallest number of antichains needed to
cover P.

Fulkerson [1956] reduced Dilworth's theorem to Konig's matching theorem: the
maximal number of pairwise disjoint edges in a bipartite graph G equals the
minimum number of vertices needed to cover all edges of G. (Here an edge cover
means a set of vertices which contains from each edge at least one endpoint). This
reduction allows to determine a maximal antichain efficiently using matching
algorithms (see Lovasz and Plummer [1986]) or network flow techniques (cf. Lawler
[1976]).

Greene and Kleitman have achieved a substantial generalization of Dilworth's
result. A k-antichain in an ordered set P is a subset A such that I A (\ q :::;; k for
every chain C. (Thus, the 1-antichains are exactly the antichains in Dilworth's
theorem.) The k-weight of a chain C is

w(C) = min{k, ICI}.

Greene and Kleitman proved that the maximum size of a k-antichain equals the
minimum k-weight of a chain covering.

Also in the situation considered by Greene and Kleitman it is possible to efficiently
determine the numerical quantities involved by formulating the problem as a
weighted matching problem (Hoffman [1982]) or min-cost flow problem (Frank
[1980]). Standard duality results for network flows then yield the equality statement
in the Greene-Kleitman theorem.

Frank's [1980] graph theoretic setting yields a constructive approach for the general
form of Greene's [1976] theorem. One is interested in the size of a largest subset of P
containing no antichain of size k + 1 (or equivalently, by Dilworth's theorem, being
coverable by at most k chains). Weighting antichains A with w(A) = min{k,IAI},
Greene's theorem says that the largest size achievable equals the minimum k-weight
of an antichain cover of P.

An interesting point, however, should be raised. Although the constructive
approaches to the theorems of Greene and Greene-Kleitman are graph theoretic
and involve only comparability graphs, the analogous statements are false for
general perfect graphs.

Greene's theorem has a direct application for a machine scheduling problem within
the context of so-called loss systems. n jobs arrive at known points in time t1 , ••• ,

tn. k identical machines are available, each requiring processing time Pi for job i.
Assuming that ajob i is lost if it is not processed at time t;, the problem consists in

112 Ulrich Faigle and Rainer Schrader

processing as. many jobs as possible. Note that the set of jobs carries an interval
order P in a natural way:

i < j iff ti + Pi < tj for all i, j.

Clearly, the problem now is equivalent to finding a largest subset of P that can be
covered by at most k chains of P.

Nawijn [1989] extends this model to the case where job i may have different
processing times on different machines. This yields the following ordertheoretic
problem: given orders PI' ... , P" on the same ground set, find subsets CI , ... , C"
such that Ci is a chain in Pi and I CI U ••. U C"I is as large as po~sible.

Assuming that the orders PI' ... , PI< are compatible in the sense that x < y in Pi and
y < x in ~ cannot occur simultaneously, Nawijn's solution associates with the
problem an acyclic directed graph in which an optimal solution corresponds to a
longest path. Since this graph has n" vertices the problem can be solved in poly
nomial time for fixed k.

A different type of k-machine scheduling problem is notorious (see, e.g., Poguntke
[1986]). n jobs with unit processing times are ordered by precedence constraints P
and have to be processed on at most k machines so that job i cannot be processed
while one of its predecessors is still unfinished. The aim is a feasible schedule with
the last job finishing as early as possible.

While an efficient solution is not known for k = 3, the first polynomial algorithm
for k = 2 by Fujii et al. [1969] was based on graphtheoretic concepts. Noting that
each feasible schedule corresponds to a matching in the complement G(P) of the
comparability graph G(P), they show that, in fact, every maximal matching can be
arranged into an optimal schedule.

Observe that two non-isomorphic ordered sets may have the same comparability
graph. We call a function f defined on ordered sets a comparability invariant if

f(P) = f(Q) whenever G(P) = G(Q).

Obviously, the width and the size of a longest chain only depend on the compar
ability graph. The aforementioned result by Fujii et al. in particular shows that the
optimal value for the 2-machine scheduling is also a comparability invariant.

A further, nontrivial example of a 'comparability invariant was independently
described by Gysin [1976] and Trotter et al. [1976]: The intersection of two ordered
sets P and Q defined on the same ground set is the ordered set P n Q with Vi < Vj
in P n Q if and only if Vi < Vj both in P and in Q. A linear extension of P is a linear
order VI' ... , Vn ofthe vertices such that Vi < Vj in P implies i <j. The (linear) order
dimension dimP of P now is the minimum number of linear extensions whose
intersection is P. Equivalently, dimP may be thought of as the smallest number k
such that P can be embedded in IRk with the componentwise ordering.

Computing the dimension of an ordered set is NP:-hard in general. More precisely,
testing whether dimP = k is NP-complete for any fixed k ~ 3. The case k :S 2 is

Orders and Graphs 113

well-solved: The 2-dimensional orders (a.k.a permutation orden) are the orders
P for which both the comparability graph G(P) and its complement G(P) are
transitively orientable. So checking if dimP = 2 can easily be done by applying a
transitive orientation routine. For more details on the order dimension we refer the
interested reader to the survey article by Kelly and Trotter [1982].

Faigle and Schrader [1986] derive a proof that the order dimension is a compar
ability invariant by constructing a canonical bijection between the sets of linear
extensions of two orders with the same comparability graph. In addition, this
bijection preserves the setups of a linear extension, i.e. pairs (Vi> Vi+i) in the linear
order L = Vi' •• Vn such that Vi $, Vi+1 in P. This approach unifies and ext~nds earlier
results that the number of linear extensions and the setup number (the minimum
number of setups in a linear extension) are comparability invariants (see also Habib
[1984] and Faigle and Schrader [1985] for more comparability invariants).

The notion of order dimension can be extended in several ways. Instead of viewing
P as the intersection of linear orders, we may allow more general classes of
orders to form the intersection. One such class, which has been investigated in the
literature, is the class of interval orders. Recall that P is an interval order if the
elements of P can be represented by closed intervals Ii' ... , In on the real line with
the ordering

Ii < Ik if Ii is completely to the left of Ik .

(Equivalently, P is an interval order if and only if its cocomparability graph G(P)
is chordal, see Section 2). The interval dimension idimP of P is the minimum number
of interval orders whose intersection is P.

The interval dimension also turns out to be a comparability invariant (Habib et al.
[1988]). As is the case for linear orders, testing whether idimP ~ 3 is NP-complete
(Yannakakis [1982]). Orders with interval dimension at most two can be recognized
in polynomial time (cf. Habib and Mohring [1988]). The recognition algorithm is
based on the following equivalent characterization of ordered sets P with idimP ~ 2.
Given two parallel lines and a set Ti , ... , T" of trapezoids with vertices on the two
lines. In the trapezoid graph we associate with every vertex Vi a trapezoid 'Ii
and introduce an edge between Vi and Vi if 'Ii n 1j =F 0. An order P has inter
val dimension at most two if and only if its cocomparability graph is a trapezoid
graph.

The concept of order dimension and interval dimension has a natural extension to
directed graphs. Since interval orders are complements of chordal graphs, they are
characterized by the fact that the successor sets (and similarly the predecessor sets)
of the elements are linearly ordered by inclusion. A directed graph with this property
is called a Ferren digraph.

Observe that the complete symmetric directed graph with one arc left out is a Ferrers
digraph. Hence we may obtain any directed graph as a suitable intersection of
Ferrers digraphs. We can therefore speak of the Ferren dimension fdimD of a
directed graph D as the minimum number of Ferrers digraphs whose intersection
is D.

114 Ulrich Faigle and Rainer Schrader

The Ferrers dimension has an interesting relation to the order dimension. Cogis
[1982] proved that if D = D(P) is the directed comparability graph of an ordered
set P, then the Ferrers digraphs whose intersection is D may be taken to be reflexive,
antisymmetric, transitive and complete. So fdimD(P) = dimP. In particular, testing
if fdim ::;;; 3 is NP-complete, the case k = 2 being well-characterized and poly
nomially solvable. For a rather comprehensive survey on order invariants, see West
[1985].

Recently, antimatroids have received a lot of attention in connection with the
investigation of greedy-type algorithms (see, e.g., Korte, Lovasz and Schrader [1989].)
An antimatroid is a collection d of subsets of the set E such that

(1.4) E E d
(1.5) A u BEd for all A, BEd
(1.6) A\x E d for all A Ed and some x E A.

(Equivalently, antimatroids may be defined as the collection of complements of
closed sets relative to a closure operator enjoying a matroid-like antiexchange
property, see also below).

Special examples of antimatroids arise as poset antimatroids from ordered sets by
taking their systems of order ideals. (Recall that an order ideal of P is a subset I £ E
so that x E I implies Y E I for all y ::;;; x in P.)

Poset antimatroids are in many respects the simplest antimatroids. Yet they may
serve as a canonical representation of all antimatroids in the following way. A path
with endpoint x is a set A E d such that x E A is the only element with A \x E d.
(For example, the paths in poset antimatroids correspond to principal ideals).

We construct a (labeled) poset by ordering the paths by inclusion and labeling the
elements of this path poset with their endpoints. It turns out that any antimatroid
can be considered to be the poset antimatroid of its path poset (for more details,
see, e.g., Korte et al. [1989]).

Antimatroids allow a meaningful extension of Dilworth's theorem. For our pur
poses it is now useful to think of an antimatroid as a collection !?J' of permutations
of some ground set for which the following is true. If we define the language 2(!?J')
as the set of all initial segments of members of ~ then 2(&') has the augmentation
property for all a, p E 2(!?J'):

If not all letters of p occur in a, then there is a letter x in P such that ax E 2(&').

The collection of all linear extensions of an order, for instance, is an antimatroid;
but also the collection of all simplicial decomposition sequences of a chordal graph
(see Section 2) has this property (cf., e.g., Korte et al. [1989]). It should not be difficult
to see that sets underlying 2(!?J') indeed satisfy the condition (1.4)-(1.6) and that
conversely the elements of any antimatroid can be ordered as described above.

Given a permutation L = VI .•• Vn E ~ we can consider the poset antimatroid d L

on the linear order VI < V2 < ... < Vn • Then, clearly,

d = U {dL : L E !?J'}.

Orders and Grapbs 115

Let the convex dimenSion cdimd of d be the minimum number of permutations
L E ~ whose union U d L is d. Edelman and Saks [1988] show that cdimd has a
direct combbatorial interpretation in the spirit of a chain covering. The convex
dimension of an antimatroid is equal to the width of its path poset.

Given weights c(e) on the elements of the ground set E the intersection problem for
matroids is to find a subset of E of largest weight which is independent in both
of two given matroids. This problem, which generalizes the bipartite matching
problem, is well-solved (cf., e.g. Lawler [1976]). The corresponding problem for
antimatroids is NP-hard in general.

It is, however, easy to see that the problem of finding a maximum weighted subset
which is an ideal relative to two given orders P and Q on E, is polynomially solvable.

Associating with each i E E a variable Xi consider the linear programm

max L CiXi
ieE

(LP) s.t. xl - Xi ~ 0 if i < j in P or i < j in Q

O~xi~1

Observe that the feasible 0 - 1 solutions of (LP) correspond exactly to the ideals
common to P and Q. Because linear programming is polynomial it therefore suffices
to show that (LP) has an integral optimum solution. The constraint matrix of (LP)
is the transpose of the vertex-edge incidence matrix of the directed graph D(P u Q).
As it is well-known that incidence matrices of directed graphs are totally uni
modular, also the constraint matrix of (LP) is totally unimodular, which yields the
desired result.

The previous proof is one of the few results in order theory which are based on a
polyhedral approach. Linear programming and polyhedral combinatorics seem to
have been neglected in this field for a long time. Before closing this section we
mention two more recent results making use of polyhedral arguments, both model
ling machine scheduling problems.

Consider two ordered sets PI = (EI' ~d, P2 = (E2' ~2) and a cost function cij for
assigning element i E EI to elementj E E2. The order preserving matching problem
consists in finding a strict order preserving injection of minimum weight, i.e. a
mapping h: El -+ E2 such that

i <1 j in El implies h(i) <2 h(j) in E2

and LieEl Ci.h(i) is minimal.

This problem, which models the optimal assignment of jobs to machines, is NP
complete in general, while special cases are polynomially solvable (see Chang and
Edmonds [1985]). For the case where PI is linear and P2 is arbitrary, Margot et al.
[1988] present a dynamic programming algorithm and a polyhedral characteri
zation of the set of strict order preserving injections.

For an antichain A let

116 Ulrich Faigle and Rainer Schrader

leA) = {x: x ~ y for some YEA}

be the ideal generated by A and I'(A) = I(A)\A be the corresponding open ideal.
Margot et al. show that if Pi is a linear order, the incidence vectors Xu of strict order
preserving injections are the extreme points of the following polytope:

L xu= 1
jeE2

L Xu - L X;-l,j ~ 0 i EEl' A antichain in E2
jeI(A) jeI'(A)

xu;;::: O.

For the second result we associate with every linear extension n of P an incidence
vector x(n) = (n(I), ... , n(n)) E IRft. The permutahedron Perm(P) is the convex hull of
all incidence vectors of linear extensions, i.e.

Perm(p) = conv{x(n): n a linear extension of Pl.

The linear programming problem

max {cx: x E Perm(p)}

is equivalent to the following I-machine scheduling problem: given processing times
c;, the completion time of job i is c; plus the sum of all processing times of jobs
processed before i. The mean finish time problem is to find a schedule of the jobs so
that the average completion time is minimal. This scheduling problem is treated in
Sidney [1975], where a polynomial algorithm for series-parallel orders but no
polyhedral description is given.

Rado [1952] considered the case where P is an antichain and gave a linear descrip
tion of Perm(p) via the following inequalities

x(S);;::: (iSI; 1) for all S s; E

x(P) = n(n + 1)/2.

In fact, this linear description is irredundant since all of the inequalities are facets
(cf, e.g. Gaiha and Gupta [1977]).

In v. Arnim et al. [1989] this result is extended to the case where P is a series-parallel
order. Recall that an ordered set is series-parallel if it does not contain the following
order as induced suborder

N
Figure 1

We call a pair (A, B) of subsets series-reducible if a < b for all a E A and b E B. If P
is series-parallel then the permutahedron Perro(p) is given by

Orders and Graphs 117

x(I) ~ ell; 1) for all ideals I s;; E

IAlx(B) - IBlx(A) ~ ~ IAIIBI(IAI + IBI) for all series-reducible pairs (A, B)

x(P) = n(n + 1)/2.

Not all of these inequalities induce facets. However, the facets among them are
well-characterized and violated inequalities can be detected efficiently by a poly
nomial separation algorithm.

Closing this section, let us mention a combinatorial object which so far has received
surprisingly little attention in general. It is well-known, for example, that the set
of permutations can be generated via adjacent transpositions starting from one
specified permutation (see, e.g., Chap. I of Even [1973]). In other words, the
graph having as vertices all permutations and the neighboring relation defined via
adjacent transpositions admits a hamiltonian path and, in particular, is connected.
Note that this graph can be viewed as the skeleton of the unrestricted perm uta
hedron (cf. Rado [1952], see also above).

As before, let us think of the maximal feasible sets of an antimatroid as a collection
& of permutations. The basis graph BI(&) of the antimatroid & has & as its set of
vertices with the neighboring relation as in the general permutation graph defined
above. We will simply write BI(P) if & consists of the linear extensions of the
order P.

It is not hard to prove by induction that BI(&) always is connected. Even for
orders P, however, BI(P) need not be hamiltonian. An interesting unsolved case, for
example, is given by the question whether BI(P) has a hamiltonian path whenever
P is an interval order (cf. Ruskey [1988]). .

Note that also the setup number problem can be formulated for basis graphs.
Indeed, the setup number of the order P is exactly the minimal vertex degree of the
graph BI(P). This formulation suggests that it might be meaningful to explore the
setup number for other classes of antimatroids as well.

2. Ordertheoretic Techniques

Many combinatorial optimization problems require to determine an "independent"
set which is maximal relative to some weight function. Here the notion of
"independence" implies that subsets of independent sets are also independent.
Algorithms to solve such problems often impose a linear order on the elements of
the ground set in question and then scan through the set in that order before
building up the desired object.

A well-known example is Kruskal's algorithm to find a maximal edge-weighted
spanning tree in a graph. The linear order on the edge set here lists the edges

118 Ulrich Faigle and Rainer Schrader

according to decreasing weights. Scanning through the edge set, one then builds up
a tree "greedily" (see Welsh [1976] for matroid-theoretic ramifications).

The maximum stable set problem in a vertex-weighted graph G asks for a maximum
weight set of vertices that are pairwise non-incident. The problem is known to the
NP-complete in general (see Garey and Johnson [1979]). Frank [1976] gives an
efficient algorithm provided that the vertices of G can be linearly ordered v I, V2' ••• ,

Vn such that Vi+l is simplicial in the induced graph Gi = G\ {VI" •• , v;} (i = 1, ... , n),
i.e. such that the neighbors of Vi+l form a clique in Gi • The graphs which admit such
an ordering are exactly the chordal graphs (a.k.a triangulated) graphs, where, by
definition, each circuit of size at least 4 has a chord (see Golumbic [1980]).

Hoffman et al. [1985] consider a class of linear programs with (0,1)-constraint
matrices that can be solved by a certain greedy algorithm. The crucial point of their
algorithm consists in the observation that each constraint matrix in the class gives
rise to a strongly chordal graph G, whose vertices can be ordered Vl , ••• , Vn such that
Vj+l is simple in the induced graph Gj = G\ {V1"'" v;} (see Anstee and Farber
[1984]). To explain this terminology, we denote by N(v) the (open) set of neighbors
of the vertex v in a graph G and let N[v] = N(v)u {v} be the closed neighborhood
set. The vertex v is then said to be simple in G if the collection {N[u]: u E N(v)} is
linearly ordered by set-inclusion. (Note that, in particular, each simple vertex is
simplicial).

Let us turn to a standard heuristic algorithm for the graph coloring problem, where
the vertices of a graph G are to be colored with as few colors as possible such that
adjacent vertices carry different colors. The heuristic scans the vertices Vl' V2 , ••. ,

Vn in some linear order and assigns colors by a "first fit" method: give the vertex Vj

the smallest positive integer assigned to no neighbor Vi (i < j) of Vj' Chvatal [1984]
calls a graph G perfectly orderable if G admits an ordering which makes the heuristic
produce an optimal coloring when applied to G or any induced subgraph F of G.
Chvatal shows that a perfectly orderable graph is, in particular, strongly perfect
(and hence perfect), i.e. each induced subgraph F has a stable set that meets
all maximal cliques of F. Moreover, he characterizes perfect orderings as those
orderings which admit no induced chordless path P4 on four vertices abed with
a < bande > d. .

Taking the simplicial ordering, one sees that chordal graphs are perfectly orderable.
Another class of examples is formed by comparability graphs. To see this, we orient
a comparability graph according to a partial order P and choose a linear extension
of P. (For more examples, see Chvatal [1989] and the references cited there). It is,
however, interesting for our purposes that also graphs with Dilworth number at
most three are perfectly orderable (Chviltal et a1. [1987]).

The Dilworth number of a graph G was introduced by Foldes and Hammer [1978],
who define the vicinal preorder on the vertices of G as follows:

x ~ y if and only if N(x) s;; N[y].

The vicinal preorder is reflexive and transitive (though not necessarily anti-

Orders and Graphs 119

symmetric). The Dilworth number of G now is the minimal number of chains with
respect to this preorder needed to cover all vertices of G.

The graphs with Dilworth number 1 are exactly the threshold graphs (Chvlital and
Hammer [1977]). Recall that such graphs are characterized by the possibility to
assign real numbers ai' a2' ... ' an to the vertices so that a number S exists with the
property

i and j are adjacent if and only if aj + aj ~ S.

Graphs with Dilworth number 2 correspond to so-called threshold signed graphs.
They can be thought of as being constructed from pairs of disjoint threshold graphs
by inserting new edges according to Galois connections relative to the respective
vicinal preorders (Benzaken et aL [1985]).

Since the concept of a Galois connection, which goes back to Ore [1944], is also of
importance in other contexts, we give a formal definition:

A Galois connection between two (partially) ordered sets P and Q is a pair (a, -r) of
maps a: P -+ Q and -r: Q -+ P such that

(2.1) a(p) ~ a(p') for all p ~ p' in P
(2.2) -r(q) ~ -r(q') for all q ~ q' in Q
(2.3) p ~ -r(a(p» for all PEP
(2.4) q ~ a(-r(q» for all q E Q.

To illustrate this concept, consider a bipartite graph G with a partition S u T of its
vertex set such that each edge has one endpoint in S and the other endpoint in T.
We choose P and Q to be the collections of all subsets of Sand T respectively,
ordered by inclusion. For each A s;; Sand B s;; T, we define a Galois connection via

a(A) = n N(s)
seA

-r(B) = n N(t)
teB

(with the understanding that the intersection of the empty set equals the ground set).

Wille [1985J suggests the following interpretation in the language of data analysis.
S is a set of "objects" and T a set of "properties". An edge between t and s in G
signifies that s has property t. In this sense, the bipartite graph G can be viewed as
a context. A concept in this context is determined as a collection of all those objects
that have a set B s;; T of properties in common. In other words, concepts correspond
to sets of objects of the form -r(B). (Since the role of objects and properties is
completely symmetric, one may equivalently view concepts as sets of properties of
the form a(A». Hence the concept lattice

2(G;S) = {-r(B): B s;; T}

(or equivalently 2(G; T» contains the complete information about the concepts
that can be distinguished within the data structure G (see also Section 9 in Bock
[1988].)

120 Ulrich Faigle and Rainer Schrader

Orders that are induced via set inclusion are also central in the study of monotone
graph properties. We consider the class r of all simple graphs on the vertices
1, 2, ... , n. For x, y E r, we write x :::;; y if the edge set of x is contained in the edge
set of y. A monotone property of r is a subset F £; r such that for all x, y E r,

x E F and x :::;; y implies y E F.

(Usually, monotone graph properties are additionally assumed to be isomorphism
invariant). One fundamental fact is that any two monotone properties F1 and F2
are positively correlated, i.e.

(This means that F1 , say, is at least as likely to hold if F2 is known to hold than it
is if nothing is known about F2)'

The proof of this fact is an application of the so-called FKG-inequality for distri
butive lattices. To formulate it, we consider a finite family f!} of sets which is closed
under union and intersection. We assume to be given two monotone functions J,
g: f!} --+ III and a nonnegative function J.l: f!} --+ 1Il+ satisfying

J.l(x n Y)J.l(x U y) ~ J.l(x)J.l(y) for all x, y E f!} .

The FKG-inequality then concludes

L f(x)g(x)J.l(x)· L J.l(x) ~ L f(x)J.l(x)· L g(x)J.l(x).
xe!» xe!» xe!» xe!»

In our application above we take f!} = r, J.l == 1 and let f and g be the indicator
functions of F1 and F2 • We just remark that the FKG-inequality in tum is a
consequence ofthe even deeper Ahlswede-Daykin inequality for nonnegative func
tions on distributive lattices. We will omit the details and refer instead to the
comprehensive introduction into the subject by Graham [1982].

One of the most outstanding problems about r is the question whether there exists
a monotone isomorphism-invariant graph property F ::/= rwhich is non-evasive. The
question refers to the following setting. We want to determine whether the graph
x E r, which is unknown to us at the outset, belongs to F. We may query an oracle
to find out if a given edge belongs to x. The minimal number c(F) needed to settle
the problem is the complexity of F. F is evasive if

c(F) = (~),
i.e. if we have to ask all possible edges. Rivest and Vuillemin [1976] proved the
Anderaa-Rosenberg conjecture: If F is a non-trivial isomorphism-invariant mono
tone graph property in r, then

n2

c(F) > 16'

Currently still open is the Karp conjecture: Each non-trivial isomorphism-invariant
monotone graph property is evasive.

Orders and Graphs 121

Many interesting partial results towards the Karp conjecture have been obtained
so far. A very readable account therof can be found in Aigner [1988].

An analogue of the recognition complexity of graph properties for ordered struc
tures is investigated in Faigle and Turan [1988]. Here an ordered set property is
taken to be a class F of orders which is isomorphism-invariant. The oracle model
gives as answers to queries the comparability status of two elements x and y
presented ("x < y" or "x > y" or "xlly"). There is an obviously evasive ordered set
property, namely, the property of being an antichain. Equally, the property of
having exactly one comparable pair is evasive. Are there more evasive properties?

In view of the Karp conjecture for graphs, it is curious that evasive. ordered set
properties seem to be hard to find. In contrast, there are many "easy" ordered set
properties (for example: having a unique maximal element or being a linear order).

Clearly related to the recognition problem for linear orders is the sorting problem,
which in its classical formulation consists in identifying an a priori unknown linear
order on the ground set by repeatedly asking the comparability status of pairs of
elements. It is not the place here to discuss the various sorting techniques, which
can be found in the standard literature (e.g. Knuth [1973], see also Bollobas and
Hell [1985] for a more graphtheoretically oriented survey).

Let us look at a natural generalization of the sorting problem, which is due to
Schonhage [1976]. Suppose we only want to identify the 3rd-Iargest element of
the unknown linear order. Then it clearly suffices to stop asking comparability
questions when the answers sofar have produced a partially ordered set P of Figure
2 into which the order can be embedded in an order-preserving manner.

n-3

Figure 2

Generally, the order production problem is based on a linear order, which is only
known to a "comparison oracle", and on a partial order P on the same ground set,
which is known to us. We are to identify a partial order Q into which P can be
embedded with as few calls to the oracle as possible.

Equivalently, we want to fmd a permutation q of the ground set such that x < y in
P implies q(x) < q(y) in the underlying order. From this, Schonhage [1976] deduced
by an information-theoretic argument the lower bound

c(P) ~ log2 (e~~»)

122 Ulrich Faigle and Rainer Schrader

for the numbc;r of oracle calls, where e(P) is the number of linear extensions of P.
Saks [1985] conjectured that this lower bound can be achieved asymptotically in
the sense that

c(P) = 0 (IOg2 (e~~) + n)).
In a remarkable paper, Yao [1988] recently proved the conjecture to be correct.

Another generalization of the sorting problem goes back to Fredman [1976]:
Suppose that some of the relations of the unknown linear order have been deter
mined and give rise to the partial order P. How many comparisons are still needed
for completely identifying the underlying linear order? Or, equivalently: How many
comparisons are needed in order to determine a fixed (but a priori unknown) linear
extension of a given partial order P?

The complexity c(P) in this case can be bounded from below by the information
theoretic bound

c(P) ~ log2 e(P).

A standard application of the binary search principle would establish c(P) =
0(10g2 e(P» if there existed a universal constant 0 < fJ < t with the property:
Each ordered set P which is not a linear order contains two elements x and y
such that the fraction P(x < y) of linear extensions where x precedes y satisfies
fJ < P(x < y) < 1 - fJ.

Denote by fJ(P) the best such fJ relative to the fixed order P. Kahn and Saks [1984]
have shown

3
fJ(P) ~ 11 for all non-linear orders P,

which yields c(P) ~ 2.210g2 e(P). The 3-element order P3 with exactly one nontrivial
comparability has fJ(P3) = l Nevertheless, a challer..ging conjecture of Kahn and
Saks claims

lim [)(P) = -21 ,
w(P)-+oo

where w(P) is the width of P.

4. References

M. Aigner [1988]: Combinatorial Search. Chichester: Wiley-Stuttgart: Teubner, 1988.
R. P. Anstee and M. Farber [1984]: Characterization oftotally balanced matrices. Journal of Algorithms

5215-230, (1984).
A. v. Amim, U. Faigle, and R. Schrader [1989]: The permutahedron of series-parallel posets. to appear

in: Discr. AppJ. Math ..
C. Benzaken, P. L. Hammer and D. de Werra [1985]: Threshold characterization of graphs with

Dilworth number two. Journ. of Graph Theory 9, 245-267, (1985).
H. H. Bock (ed.) [1988]: Oassification and Related Methods of Data Analysis. Amsterdam: North

Holland, 1988.

Orders and Graphs 123

B. Bollobas and P. Hell [1985]: Sorting and graphs. In: Graphs and Order (I. Rival, ed.), Reidel, 169-184,
1985.

G. J. Chang and J. Edmonds [1985]: The poset scheduling problem. Order 2,113-118, (1985).
V. Chvatal [1984]: Perfectly orderable graphs. In: Topics on Perfect Graphs (c. Berge and V. Chvatal

eds.), North Holland, Amsterdam, 63-65,1984.
V. Chvatal [1989]: A class of perfectly orderable graphs. Report No. 89573-0R, Institute of Operations

Research, Universitiit Bonn.
V. Chvatal and P. 1. Hammer [1977]: Aggregation of inequalities in integer programming. Ann. Discr.

Math 1, 145-162, (1977).
V. Chvatal, C. T. Hoang, N. V. R. Mahadev and D. de Werra [1987]: Four classes of perfectly orderable

graphs. Journ. of Graph Theory 11, 481-495, (1987).
O. Cogis [1982]: On the Ferrers dimension ofa digraph. Discr. Math. 38,47-52, (1982).
P. H. Edelman and M. Saks [1988]: A combinatorial representation and convex dimension of convex

geometries. Order 5, 23-32, (1988).
S. Even [1973]: Algorithmic Combinatorics. Macmillan, New York, 1973.
U. Faigle and R. Schrader [1985]: Comparability graphs and order invariants. In: U. Pape (ed.):

Graptheoretic Concepts in Computer Science, Trauner Verlag, Linz, 136-145, 1985.
U. Faigle and R. Schrader [1986]: A combinatorial bijection between linear extensions of equivalent

orders. Discr. Math. 58, 295-301, (1986).
U. Faigle and Gy. Turan [1988]: Sorting and recognition problems for ordered sets. SIAM Journ

Comput. 17, 100-113, (1988).
S. Foldes and P. 1. Hammer [1978]: The Dilworth number of a graph. Ann. Discr. Math. 2, 211-219,

(1978).
A. Frank [1976]: Some polynomial algorithms for certain graphs and hypergraphs. In: C.StJ.A. Nash

Williams (ed.): Proceedings of the 5th British Combinatorial Conference (1975), Congressus
Numerantium 15, Utilitas Mathematica 211-226, (1976).

A. Frank [1980]: On chain and antichain families of a partially ordered set. J. Comb. Th. B 29, 176-184,
(1980).

M. Fredman [1976]: How good is the information theory bound for sorting. Theoretical Compo Sci. 1,
355-361, (1976).

M. Fujii, T. Kasami and K. Ninomiya [1969]: Optimal sequencing of two equivalent processors. SIAM
Journ. Appl. Math. 17 (1969), 784-789 (Erratum 20, 141, (1977)).

D. R. Fulkerson [1956]: Note on Dilworth's decomposition theorem for partially ordered sets. Proc.
Amer. Math. Soc. 7,701-702, (1956).

P. Gaiha and S. K. Gupta [1977]: Adjacent vertices on a permutabedron. SIAM J. Appl. Math. 32,
323-327, (1977).

M. R. Garey and D. S. Johnson [1979]: Computers and Intractability. Freeman and Co., San Francisco,
1979.

M. C. Golumbic [1980]: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York,
London, San Francisco, 1980.

R. 1. Graham [1982]: Applications of the FKG-inequality and its relatives. In: Mathematical
Programming-The State of the Art (A. Bachem et al. (eds.), Heidelberg-New York-Berlin: Springer,
115-131, (1982).

C. Greene [1976]: Some partitions associated with a partially ordered sets Journ. Comb. Th. A 20, 69-79,
(1976).

C. Greene and D. J. Kleitman [1976]: Strong versions of Sperner's theorem. Journ. Comb. Th. A 20,
80-88, (1976).

M. Grotschel, 1. Lovasz and A. Schrijver [1988]: Geometric Algorithms and Combinatorial Optimi
zation. Heidelberg-New York-Berlin: Springer, 1988.

R. Gysin [1977]: Dimension transitiv orientierbarer Graphen. Acta Math. Acad. Sci Hungar. 29,
313-316, (1977).

M. Habib [1984]: Comparability invariants. Ann. Discr. Math 23, 371-386, (1984).
M. Habib, D. Kelly and R. H. Mohring [1988]: Interval dimension is a comparability invariant. Preprint,

Technische Universitiit Berlin.
M. Habib and R. H. Mohring [1988]: A fast algorithm for recognizing trapezoid graphs and partial

orders of interval dimension 2. Preprint, Technische Universitiit Berlin.
A. J. Hoffman [1982]: Ordered sets and linear programming. In: Ordered Sets (I. Rival, ed.), Reidel,

Dordrecht, 619-654, 1982.
A. J. Hoffman, A. W. J. Kolen and M. Sakarovitch [1985]: Totally balanced and greedy matrices. SIAM

Journ. Alg. Disc. Meth. 6, 721-730, (1985).
1. Kahn and M. Saks [1984]: Balancing poset extensions. Order 1, 113-126, (1984).

124 Ulrich Faigle and Rainer Schrader: Orders and Graphs

D. Kelly and W. T. Trotter [1982]: Dimension Theory for ordered sets. In: Ordered Sets (I. Rival, ed.),
Reidel, Dordrecht, 171-212, 1982.

D. E. Knuth [1973]: The Art of Computer Programming, Vol. 3, Sorting and Searching. Addison-Wesley,
Reading, 1973.

B. Korte, L. Lovasz and R. Schrader [1989]: Greedoid Theory. Berlin-Heidelberg-New York-Tokyo
Hong Kong: Springer, 1989.

E. L. Lawler [1976]: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and New
York; Winston, 1976.

L. Lov8sz [1972]: Normal hypergraphs and the perfect graph conjecture. Discr. Math. 2, 253-267, (1972).
L. Lov3sz and M. Plummer [1986]: Matching Theory. North-Holland Mathematics Studies Vol. 121,

1986:
F. Margot, A. Prodon and Th.M. Liebling [1988]: A note on order preseving matchings. Preprint, Ecole

Poly technique Federale de Lausanne.
W. Nawijn [1989]: Minimum loss scheduling. In: U. Faigle and C. Hoede, eds.: Twente Workshop on

Graphs and Combinatorial Optimization, Research Memorandum No. 787, Universiteit Twente.
O. Ore [1944]: Galois connexions. Trans. Am. Math. Soc. 55,493-513, (1944).
K. R. Parthasarathy and G. Ravindra [1976]: The strong perfect graph conjecture is true for K,,3-free

graphs. Joum. Comb. Th. B 21, 212-233, (1976).
W. Poguntke [1986]: Order-theoretic aspects of scheduling. Contemporary Mathematics (Amer. Math.

Soc.) 57, 1-32, (1986).
R. Rado [1952]: An inequality, Joum. London Math. Soc. 27, (1952).
R. L. Rivest and J. Vuillemin [1976]: On recognizing graph properties from adjacency matrices. Theor.

Compo Sci. 3 371-382, (1976).
F. Ruskey [1988]: Research Problem 90/91 Diser. Math. 70, 111-112, (1988).
M. Saks [1985]: The information-theoretic bound for problems on ordered sets and graphs. In: Graphs

and Order (I. Rival, ed.), Reidel, Dordrecht, 137-168, 1985.
A. SchOnhage [1976]: The production ofpartia1 orders. Asterisque 38-39, 229-246, (1976).
J. B. Sidney [1975]: Decomposition algorithms for single-machine sequencing with precedence relations

and deferral costs. Oper. Res. 23, 283-298, (1975).
W. T. Trotter, J. I. Moore and D. P. Sumner [1976]: The dimension of a comparability graph. Proc.

Amer. Math. Soc. 60, 35-38, (1976).
A. Tucker [1973]: The strong perfect graph conjecture for planar graphs. Canad. Joum. Math. 25,

103-114, (1973).
D. Welsh [1976]: Matroid Theory. Academic Press, London, 1976.
D. West [1985]: Parameters of partial orders and graphs: packing, covering and representation. In:

Graphs and Order (I. Rival, ed.), Reidel, Dordrecht, 267-350, 1985.
R. Wille [1985]: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Graphs

and Order (I. Rival, ed.), Reidel, Dordrecht, 445-470, 1985.
M. Yannakakis [1982]: The complexity of the partial order dimension problem. SIAM J. Ald. Discr.

Meth. 3, 351-358, (1982).
A. C. Yao [1988]: On the complexity of partial order productions. Preprint, Dept. of Computer Science,

Princeton University.

Rainer Schrader
Forschungsinstitut fiir Diskrete Mathematik,
Rhein.
Friedrich-Wilhelms-Universitat Bonn,
Nassestrasse 2
D-5300Bonn
West-Germany

Ulrich Faigle
Department of Applied Mathematics
Universiteit Twente
Postbus 217
NL-7500 AE Enschede
The Netherlands

Computing Suppl. 7,125-139 (1990)
Computing
© by Springer-Verlag 1990

Dynamic Partial Orders and Generalized Heaps

Hartmut Noltemeier, Wiirzburg

Abstract - Zusammerfassung

Dynamic Partial Orders and Generalized Heaps. Classical and recent results are surveyed in the develop
ment of efficient representations of dynamic partial orders by heaps and their generalizations.

AMS Subject Classifications: 68B15, 06AIO.

Key words: partial order, heap, implicit data structure, double-ended priority queue, interval heap, heap
ordered tree, Fibonacci heap, binomial queue, priority search tree.

Dynamiscbe Partialordnungen und verallgemeinerte Heaps. Die M6glichkeiten und Probleme der
Reprasentation von dynamischen Partialordnungen durch Heaps und ihrer Verallgemeinerungen
werden diskutiert; klassische und neueste Resultate werden iiberblicksmaBig vorgestellt.

1. Introduction

1.1. Basic notations

Let V be a finite set of objects, drawn from a possibly infi'1ite set U (universe), on
which a partial order" --<" is given.

A partial order is a binary relation PO c U x U on U (resp. V)-an element
(VI' V2) E PO is denoted by VI --< V2-, which is

V --< V for all V E U (resp. V), reflexive:
antisymmetric:
and transitive:

(VI --< V2 and V2 --< vd => (VI = v2)

(VI --< V2 and V2 --< v3) => (VI --< v3)-

An element 12. E V is minimal in V iff

an element v E V is maximal in V iff

v --< V => V = v.
A chain is a nonempty sequence of pairwise different elements of V

(k ~ 1),

126 Hartmut Noltemeier

which are totally ordered:

(j = 1, ... ,k - 1).

k is the length l(w) of the chain w; a chain of length 1 is called a trivial chain. Any
partial order PO can be represented by a directed acyclic graph (DAG) G = (V, E)
with E:= {(v, v/)/v =F v' and v -< v'}; its (unique) transitively irreducible kernel
(transitive reduction) is called the Hasse diagram of PO.

But notice:

The number of arcs of the Hasse diagram may have at most l ~ J arcs, where n

denotes the cardinality of V; this O(n2)-upper bound is sharp (f.e. in the complete
bipartite graph Kn/2•n/2) ([18], [19]).

1.2. Basic problems

As V ("the actual set") may change in time we are concerned with the following
problems:

(1) represent V with respect to some given objectives (f.e. support special questions
on V efficiently: report all maximal elements, give the Dilworth number of PO,
etc.)

(2) maintain the representation when V changes in time, especially
(a) if a "new element" v E U - V has to be inserted
(b) if an element v E V has to be deleted
(b/) if a minimal (maximal) element has to be deleted
(b") if a minimal (maximal) element has to be deleted and a new element to be

inserted
(3) divide V:= Vi U V2 , that means split the representation of V into two represen

tations of Vi and V2 respectively (Vi (') V2 = .0)
(4) merge V:= Vi U V2 , that means given representations of Vi resp. V2 construct a

representation of Vi U V2 (especially if Vi (') V2 = 0).

Some more'special operations are given in forthcoQ1ing chapters.

2. Heaps

2.1. The classical min-Heap

Originally the concept of a heap (Williams [27]) was as follows: A real-valued array
A[l. .. n] is a heap iff

Dynamic Partial Orders and Generalized Heaps 127

A[li/2J] ~ A[i] for i = 2, ... , n.

These n - 1 conditions pose a special partial order on the components of array A
illustrated in figure 1 (for simplicity let ai denote A[i]):

Figure 1

A heap was designed as a data structure for the following situation: let k: U -+ IR be
a real-valued function (not necessarily an injective one); k(v) is called the key of
object v.

A heap A[l. .. n] represents a set of objects V endogenously, if A has pairwise
different components and V is the set of keys itself; it represents a set of objects V
exogenously, if there is a further array P[I ... n], where P[i] points to the object
associated with key A [i].

For simplicity let us restrict ourselves to the endogenous case.

It is worthwhile to mention that the original concept of an endogenous heap
is a pointerless implementation (implicit data structure) of the binary tree given in
figure 1.

To be more independent from implementation techniques let us define a heap in a
more general way.

Definition: A (min-)Heap is an ordered· binary tree H with the following properties:

(1) H is heap-ordered, i.e. a key in any node is not less than the key of its father (if
there is a father)

(2) H has a heap-shape, i.e. is a left complete binary tree (that means: all levels except
the last one are complete; the leaves in the last level are as far to the left as
possible; see figure 2).

* ordered means: every son is uniquely characterized as a left son resp. right son

128

Heap-shape of H:

Heap-shape ot H:

Hartmut Noltemeier

level 0

level 1

level 2

-r-II-r-----~- - ----
last level

Figure 2

Remarks:

1.) The root contains the minimal element.
2.) The height of His h(H) = L log2 n J.
3.) A breadth-first-search of H (starting at the root and respecting the order of the

sons: left son before right son) results in a heap as defined originally. The rank
of an element in this order is called its position.

(min-)Heaps support the following basic operations, measured in the number of
comparisons as well as data movements:

Operation

FindMin
Insert
DeleteMin
Create
Sort

Description

find element with minimum key
insert a new element and restore the heap-property
remove element with minimum key and restore the heap-property
construct a heap with n elements
sort all keys (in decreasing order)

Complexity

0(1)
O(logn)
O(logn)
O(n)
O(n log n)

To give a rough idea how these operations can work, let us first look at Insert:

1.) place the new element (the (n + 1)th) "just behind" the last one (the n-th element),
where the shortest binary coding of the number n + 1 (dikdik_, ... di, dio) immedi
ately gives us the path from the root to the correct position: read 0 as "go left"
and 1 as "go right" and start at the root with dik_" continue with dik_2 etc.

2.) if father (new) ~ new then STOP else

bubble up (new) {exchange father (new) and new recursively as long as the
if-condition is not satisfied}

Notice: The place-routine is independent of the value of the new element. In a
pointerless implementation using consecutive addresses (1,2, ... , n, n + 1, ...) the

Dynamic Partial Orders and Generalized Heaps 129

father of i is given by li/2j, which can be realized by shifting one bit in the binary
coding of i; to find the k-th ancestor one has to shift just k bits! This allows to reduce
the number of comparisions even to O(log{logn» by binary search on the path of
ancestors of the (n + l)-th position (Gonnet, Munro [10J). Although the number
of data movements again may be of order O(log n) this idea leads to an o (log {log n»
time INSERT -algorithms on an O(log njIog log n)-processor parallel CREW -RAM.

To delete the minimal element and to restore the remaining n - 1 elements in a heap,
put the old n-th element in position 1 (root) and

trickle_down (v) {exchange the actual element v and the smaller of its
sons as long as this son is smaller than the
actual father recursively}, starting with the root v.

To create a heap with n elements, at first place the elements arbitrarily in positions
1, ... , n; then (iteratively) trickle_down (In/2j), trickle_down (In/2j - 1), ... ,
trickle_down (I).

To sort all elements first create a heap, then (iteratively) exchange the first (minimal)
element and the element on position k and trickle_down (I) in the remaining set of
the k - 1 first positions (k = n, n - 1, ... ,2) ("Heapsort", Williams [27J; Floyd [6J;
for an improved version using the remark above see Carlsson [3J).

2.2. Variants of Heaps

The restriction to ordered binary trees is not essential. We can take ordered d-ary
trees as well (d ~ 2).

A d-heap is an ordered d-ary tree, which is left complete and heap-ordered. Analogous
to the case d = 2, the d-heap operations have running time 0(1) for FindMin,
o (lOgd n) for Insert and O{d logd n) for DeleteMin, since a left complete d-ary tree has
height at most llogd n j + 1.

The parameter d can be chosen adequately with respect to the relative frequencies
of the operations DeleteMin and Insert in a given application (for example to speed
up shortest-path-algorithms): as the proportion of deletions decreases, one can
increase d, saving time on insertions (see Tarjan [24J).

Again we do not need any pointer: if we search the tree in breadth-first-search
manner (and left to right), the resulting positions are as follows:

father (i) = r{i - l)/dl and

sons (i) = [d' i - d + 2, min {d' i + 1, n}].

The concept of (min-) Heap can easily turned to max-Heaps.

A max-Heap is an ordered binary tree, which has the heap-shape and is max-heap
ordered, i.e. a key in any node is not greater than the key of its father. max-Heaps
obviously can be reduced to min-Heaps: any max-Heap is a min-Heap with respect
to the inverse order of keys and vice versa.

130 Hartmut Noltemeier

Thus max-Heaps support FindMax, Insert, DeleteMax, Create and SORT, in a
similar way with analogous complexities.

Sometimes it is desirable, to support

FindMin, DeleteMin, Insert and Create as well as
FindMax, DeleteMax simultaneously.

Any data structure, which supports these operations, is called a double-ended
priority queue (DEPQ).

A simple collection of a min-Heap and a max-Heap (for the same set V) doesn't give
a reasonable solution: besides the doubling of space requirement it implies some
bad worst-case-time complexities: a DeleteMin need O(n) time in a max-Heap, a
Deletemax similarly O(n) time in min-Heaps.

Some more sophisticated solutions were given in [1], where the elements are divided
into even levels (which form a min-Heap) and odd levels (which form two max
Heaps) in the following way:

a min-max-Heap is an ordered binary tree, which has the Heap-shape and addi
tionaly is minmax-ordered, i.e. all elements on even levels are less than or equal to
all of their descendants, while elements on odd levels are greater than or equal to
their descendants (if any).

This concept even can be enlarged to minmaxMedian-Heaps, which support

FindMin, FindMax, FindMedian
DeleteMin, DeleteMax, DeleteMedian
Insert
Create

using only n storage cells for data ([1]).

in 0(1) time
in O(log n) time
in O(log n) time
in O(n) time

The most interesting and elegant approach to get an efficient implementation of a
DEPQ is the

INTERVAL-HEAP, due to J. v. Leeuwen and D. Wood [13].

Let U = IR (real numbers) with the total order "~" on it,

0:= {[a,b]/a,b E U and a ~ b} the set of closed intervals on IR and
[a,b] -< [c,d] iff [a,b] c [c,d]
the partial order on 0 induced by inclusion.

Definition: An I nterval-Heap I H is an ordered binary tree, which obeys the follow
ing properties:

1) IH has the heap-sheap, i.e. is left complete
2) for each node v E V (except the last node I) I(v) is an interval from 0, assigned to

v; to the last node I there is assigned either an interval or a single value a E IR
(which of course can be interpreted as [a, a]).

3) IH is max-heap-ordered, i.e.

Dynamic Partial Orders and Generali?;ed Heaps

I(v) -< I (father (v»

Figure 3 gives an example of an interval-heap.

[3,12]

[3,9J

[6,7] [4,5] [6,9] [5,6] 7

Figure 3. Interval-Heap

[5,1~

As an immediate consequence of 3) we have the following:

131

[5,7]

let IH be an interval-heap and P(IH) =: P the multiset of endpoints of intervals
represented by IH, and let [a,b] be the interval assigned to the root, then a =

min{p/p E P} and b = max {p/p E P}.

The question arises: given a finite set P c ~; is there an interval-heap IH such that
P(IH) = P and-if any-how much effort is needed to construct IH?

Lemma: Interval-heaps allow Insert (in P) in O(logl VI) time.

The idea, to solve this problem, is very similar to the Insert in ordinary max-heaps.
Roughly we look for the last node 1:

(X) if 1(1) = a is a single value, then do 1(1):= [a,new_p] if a is less than the new
point new_p (and [new-p, a] in the other case);

Bubble up (1) {the actual interval I(v) = [a, x] which was enlarged just
before, is compared with
I (father (v» = [b, c] : if c < x then do begin
I(v) := [a, c]; I (father (v» := [b,x] end
and continue with father (v) until the tree is max-heap
ordered (all other, but similar cases are omitted)};

/3) if 1(/) = [a, b], store new_p in the next (new last) position /' and compare new_p
with I (father (1') = [a, b]:

ifnew_p E [a,b] then STOP
else begin 1(/') := Median {a, b, new_p};

I (father (1'):= [min{a,b, new_p}, max {a, b, new-p}J;
Bubble up (father (I'»
end.

A more detailed analysis yields the following ([13])

132 Hartmut Noltemeier

Theorem: For 'any finite set V c ~ (with n elements) an interval-heap IH with
P(IH) = V can be constructed in O(n) time using only n storage cells for data, which
allows the following operations

FindMin
FindMax
DeleteMix
DeleteMax

in 0(1) time
in 0(1) time
in O(logn) time
in O(log n) time.

Interval heap find applications in the field of intersection and vision problems in
computational geometry very well ([13]).

An interesting question remains: can this technique be adapted to other sets of
"complex objects", where the partial order is induced in a simple way from a total
order on the "basic constituents''?

In chapter 4 we will give a partial answer to this question.

3. Heap-ordered trees

The "heap-shaped" -condition of heaps is very disadvantageous to support further
basic operations (f.e. Divide and Merge).

To represent arbitrary partial orders we have to omit this condition too. Thus we
introduce the following concept.

Definition: A heap-ordered tree T is an ordered finite rooted tree (not necessarily a
binary tree) containing a set of items, one item in each node, with the items arranged
in heap order:

if v is any node, then the key of the item in v is no less than the key of the item in
its father, provided v has a father.

Consequently the root of T contains an item with minimal key. Now to merge two
item-disjoint heap-ordered trees T1 (with root r1) and T2 (with root r2) into one
heap-ordered tree T, we compare the roots:

if the item in r1 has a smaller key, we make r2 a new child ofr1> otherwise we make
r1 a child or r2 (see figure 4):

Merge ..
key (r,)<key (rz)

Figure 4. Merging two item-disjoint heap-ordered trees

Thus this basic operation takes 0(1) time ifwe use an appropriate tree representation.

Dynamic Partial Orders and Generalized Heaps 133

There are two commonly used representations of heap-ordered trees:

A) "Child sibling" representation or "binary tree" representation: each node has a
left pointer to its first child and a right pointer to its next sibling (or null).

The effect of the representation is to convert a heap-ordered tree T into a
half-ordered binary tree T' with empty right subtree, where by half-ordered we
mean that the key of any node is at least as small as the key of any node in its
left subtree (see figure 5).

In order to support further operations it sometimes appears to be useful, to store
with each node a third pointer to its father in the binary tree T'.

T'

9

Figure 5

3

" " '8

Remark: It is easy to realize that merging two item-disjoint heap-ordered trees using
this representation can be implemented in 0(1) time.

Insert (x) by making x into a one-node tree and merge it with the actual tree yields
an 0(1)-Insert-algorithm too. The same holds for FindMin and for an important
operation, which frequently appears in solving shortest path problems, assignment
problems and minimum spanning tree problems:

DecreaseKey (Lt, v, h): decrease the key of the item, associated to node v by
subtracting the non-negative real number Lt.

This operation can be reduced to "merge" in the following sense:

Subtract Lt from the key in v. If v is not the root of the tree, cut the arc joining v to
its father and merge the two trees as usually (figure 4).

The "child sibling" representation obviously guarantees 0(1)-worst-case running
time for DecreaseKey too.

It turns out that the crucial operation is 1 DeleteMin I, where we have to merge
possibly a large number of subtrees (see figure 6).

134 Hartmut Noltemeier

Delete Min ..

Figure 6

collect in one tree

rAn arbitrary Delete (v), where we know the position of v, reduces to DeleteMin by
cutting the arc joining v and its father, performing a DeleteMin on the subtree with
root v and merging the resulting tree with the other tree formed by the cut. j

Fredman, Sedgewick, Sleator, Tarjan [9] proposed a pairing procedure: order the
children of each node in the order they were attached by merge operations, with
the first (youngest) child being the one most recently attached. Then merge the first
and second, the third and fourth, and so on. Afterwards merge each remaining tree
to the last one, working from the next-to-Iast back to the first. The resulting tree is
called a pairing heap. The authors can show the following (see also [25])

Theorem: On pairing heaps the operation FindMin has 0(1) amortized time, the
DeleteMin runs in O(logn) amortized time.

But the authors conjecture O(1)-amortized time bounds for the operations Insert,
Merge, DecreaseKey too. Jones [12] has given some experimental results which
may indicate that pairing heaps are competitive in practice with all known
alternatives.

The best known alternative is the Fibonacci-Heap (F-heap), which is a finite col
lection of item-disjoint heap-ordered trees (Fredman, Tarjan [7]). The standard
representation of Fibonacci-Heaps is as follows.

B) "F-Heap" representation:
Each node contains a pointer to its father (or null, if it is a root), and a pointer
to one of its children (if any). The children of each node are doubly linked in a
circular list. Each node also contains its degree and a bit for marking purposes.
The roots of all trees, which constitutes the F-Heap, are doubly linked in a
circular list, access to the heap is done by a pointer pointing to a root with
minimal key ("minimal node" of F-Heap).

To carry out Insert (new), one creates a new F-Heap consisting of one node and
merges two F-Heaps.

The merge in general can be performed by combining the root lists into a single list
and pointing to the minimal of the two minimal elements.

These operations can be implemented in 0(1) time.

The 1 DeleteMin I, can be done as follows:

Dynamic Partial Orders and Generalized Heaps 135

remove the minimum node v from F-Heap H, then concatenate the list of children
of v with the list of roots of H other than v, and repeat the following Linking Step:
find any two trees, whose root have the same degree, and merge them as usually
(figure 4).

The new tree root has degree one greater than the degrees of the old tree roots.
Once there are no two trees with root of the same degree, we form a list of the
remaining roots.

The authors could prove the following ([7J)

Theorem: If we start with an empty F-Heap and perform an arbitrary sequence of
F-Heap operations FindMin, DecreaseKey, Insert, Merge and DeleteMin or Delete
(v), then the total sequence takes at most O(m + nlogn) time, where n denotes the
number of DeleteM in and Delete-operations and m denotes the number of all remaining
operations.

Using F-Heaps the authors could improve running times for several network
optimization problem like shortest path problems, assignment problems and mini
mum spanning tree problems, where the set of "candidates" (like in Dijkstra's
shortest path algorithm) can be best represented by data structures which support
the F-Heap operations efficiently [7J.

The F -Heap is a "lazy merging" version of the wellknown structure, the binomial
tree (binomial queue) ([26], [23J).

A binomial tree is defined inductively as follows:

a binomial tree of rank 0 consists of a single node; a binomial tree of rank k > 0 is
formed by merging two binomial trees of rank k - 1 (see figure 7).

Figure 7. Binomial tree

If additionally Bk is heap-ordered, we call Bk a binomial heap.

A forest of binomial heaps is called a binomial queue.

A binomial tree Bk of rank k contains exactly 2k nodes and its root has exactly degree
k. Thus every node in an n-item binomial tree has degree at most log n.1f n is binary
coded as (dkdk - 1 ••• d1 do), the set of n items can be represented by the collection of
binomial trees Bi (where di #- 0). There are obviously strong connections to dynamic
decomposition techniques related to number systems ([2J, [21J).

136 Hartmut Noltemeier

Based on these techniques the following recent results can be summarized.

Theorem: There is an implicit implementation of a binomial queue (IBQ), which
allows Insert in constant time and DeleteMin in O(logn) worst-case running time
(Carlsson, Munro, Poblete [4], using the redundant binary number system).

Another recent result is due to Driscoll, Gabow, Shrairman and Tarjan [5]. The
authors use relaxed heaps, a type of binomial queue that allows heap order to be
violated on "small" parts.

Theorem: The relaxed heap achieves worst-case-time bounds 0(1) for DecreaseKey
and O(log n) for DeleteM in.

Especially relaxed heaps give a processor-efficient parallel implementation of
Dijkstra's shortest path algorithm and hence of a lot of other algorithms in network
optimization (see for more details [5]).

4. Priority search trees-the concept of symbiosis

The last question of chapter 2 can be partially answered by another approach, the
symbiosis of two dissimilar data structures. We will demonstrate the idea by the
well known priority search tree (McCreight [14]).

Let E be the set of points P = (x, y) in the (real) plane, where -< denotes the
lexicographic partial order induced by

P l = (x1>yd -< P 2 = (X2,Y2) iff (Xl < X2) or (Xl = X 2 and (Yl ~ Yl».
Let V be a finite subset of E,

V = {P; = (x;.y,)/i = 1, ... ,n} and Vx := {x;/(x"y,) E V}.

For simplicity let us assume furthermore

1) Xi E Ux (a finite universe of x-coordinates)
2) Xi :F Xj for i :F j

Definition: A priority search tree (PST) is a binary tree representing a finite set of
points V of the plane with the following properties:

AI) PST is a leaf-oriented search tree for the x-coordinates, especially
a) for each x-coordinate of V exists a leaf with "splitvalue" x and
b) every non-leaf v lias a splitvalue s(v) E Ux which is the maximum of split

values of all nodes in the left subtree of v.
A2) Each node v can store besides the splitvalue s(v) a point P(v) E V (eventually

unused)
Bl) Every point Pi = (Xi' Yi) E V is located on the x-search path from the root to

the leaf with splitvalue Xi.

B2) If node v stores a point P E V then its father does it too (v :F root (PST)
of course).

B3) PST is (min-)heap-ordered with respect to y-coordinates.

Dynamic Partial Orders and Generalized Heaps

Example: V = {(4, 1);(9,4), (15,18), (20,3), (19, 9), (12, 4), (1, 2), (5, 6)},

Ux = {1,4,5,9,12,15,19,20}.

Legend; node v ~SPlitvalue s(v)

(eventually) point Pj = (Xj,Yj)

Figure 8. Priority search tree

137

If we assume for simplicity that a left complete skeleton tree with exactly all
splitvalues from Ux was preprocessed (the "upper part" of all nodes),

Insert a new point P = (x, y) is easy and runs as follows:
if v is the "current node" (at first the root) with splitvalue v.s and (eventually)
a point v.point, then do

if v.point is undefmed, then store P in v
else if v.point.y ~ y then {follow P.x}

begin if v.s ~ x then Insert P in leftson (v)
else Insert P in rightson (v)

end
else {heap-order has to be guaranteed}

store P in v and continue insertion with the old point v.point.

Moreover priority search trees can be balanced by rotations, where indeed each
rotation may cause O(h) time (h: height of the relevant PS-subtree).

Thus taking any class of balanced trees, which only needs a constant number of
rotations for any balancing step

- f.e. take "half balanced trees" (Olivie [20J), "red-black trees" (Guibas, Sedgewick
[l1J) or more general (a,b)-trees with b ~ 2a + 2, which additionally allow
(parallel) top-down-balancing (Mehlhorn [15J)-

138 Hartmut Noltemeier

we get the following results (McCreight [14]).

Theorem: Let V be a dynamic set of points of the (real) plane, v" a subset of a finite
universe Ux and let n denote the cardinality of the actual set V. The following
operations

(1) Insert (Delete) a point into (from) V
(2) given Xo E Ux, Xl E Ux and YI E ~,find among all points P = (x, y) of V such that

Xo ~ x ~ Xl and y ~ YI

a point whose x is minimal (or maximal)
(3) given Xo E Ux, Xl E Uxfind among all points P = (x,y) of V such that Xo ~ x ~ Xl

a point whose y is minimal
(4) given Xo E Ux, Xl E Ux and YI E ~,enumerate all points P = (x,y) of V such that

Xo ~ X ~ Xl and y ~ Y1

can be implemented by a balanced priority search tree efficiently, using O(n) space
and

O(log n) worst-case time for operations (1), (2), (3),

and at most O(k + log n) time for operation (4), where k denotes the number of points
to be reported.

The last statement can be best illustrated by the following figure:

solution space for a
3-sided range query (4)

Figure 9

Remark: The efficient implementation of operations (1), (2), (3), (4) by balanced
priority search trees yields important results in a wide range of applications, f.e.
detecting all overlapping rectangles in a large set of axis-parallel rectangles etc.

5. Conclusion

Dynamic partial orders frequently can be represented efficiently by heaps or their
generalizations, supporting a lot of important operations. These also includes some
decomposition techniques, we did not mention here in detail.

Some effort was done with respect to lower bounds, too.

Dynamic Partial Orders and Generalized Heaps 139

We finally refer to results of Fredman [8], Gonnet, Munro [10] and Noltemeier
[17]: in the article mentioned last, lower complexity bounds for Find-operations as
well as Delete-Find-operations in generalized heaps are given based on the well
known theorem of Dilworth.

References

[1] M. D. Atkinson, J. R. Sack, N. Santoro, Th. Strothotte An efficient implicit double-ended priority
queue. SCS-TR 55, Carleton Univ., Ottawa 1984.

[2] J: L. Bentley, Decomposable searching problems. Inform. Proc. Lett., 8, 244-251 (1979).
[3] S. Carlsson, A variant of heapsort with almost optimal number of comparisons. Informat. Proc.

Lett., 24, 247-250 (1987).
[4] S. Carlsson, J.1. Munro, P. V. Poblete, An Implicit Binomial Queue with Constant ·Insertion Time

in: LNCS, vol. 318, Springer: Berlin-Heidelberg-New York-Tokyo, 1-13 (1988).
[5] J. R. Driscoll, H. N. Gabow, R. Shrairman, R. E. Tarjan, Relaxed Heaps: An Alternative to

Fibonacci Heaps with Applications to Parallel Computation. Comm. ACM, 31, no. 11, 1343-1354
(1988).

[6] R. W. Floyd, Algorithm 245: Treesort 3. Comm. ACM, 7, 701 (1964).
[7] M. L. Fredman, R. E. Tarjan, Fibonacci Heaps and their Uses in improved Network Optimization

Algorithms. Journal ACM, 34, no. 3, 596-615 (1987).
[8] M. L. Fredman, Refined Complexity Analysis for Heap Operations. Journal of Computer and

System Sciences, 35, 269-284 (1987).
[9] M. L. Fredman, R. Sedgewick, D. D. Sleator, R. E. Tarjan, The pairing Heap: A New Form of

Self-Adjusting Heap. Algorithmica, 1,111-119 (1986).
[10] G. H. Gonnet, J. I. Munro, Heaps on Heaps. SIAM J. Comput., IS, no. 4, 964-971 (1986).
[11] L. J. Guibas, R. Sedgewick, A dichromatic framework for balanced trees. Proc. 19th IEEE-FOCS,

8-21 (1978).
[12] D. W. Jones, An empirical comparison of priority queues and event set algorithms. Comm. ACM,

29, no. 4, 300-311 (1986).
[13] J. v. Leeuwen, D. Wood, Interval Heaps. Techn. Report, Dec. 1987.
[14] E. M. McCreight, Priority Search Trees. SIAM J. Comput., 14, no. 2, 257-276 (1985).
[15] K. Mehlhorn, Datenstrukturen und eifIZiente Algorithmen, Band 1: Sortieren und Suchen

Stuttgart: Teubner, 1986.
[16] H. Noltemeier, Informatik III-Einftihrung in Datenstrukturen. 2. edit., Miinchen-Wien: Carl

Hanser, 1988.
[17] H. Noltemeier, On a generalization of heaps, in: Graphtheoretic Concepts in Computer Science

(WG'80), (ed. H. Noltemeier) LNCS, vol. 100, Berlin-Heidelberg-New York: Springer, 127-136
(1981).

[18] H. Noltemeier, Reduction of directed graphs to irreducible kernels.lechn. Rep., Gottingen 1974.
[19] H. Noltemeier, Graphentheorie mit Algorithmen und Anwendungen. Berlin-New York: de

Gruyter, 1976.
[20] H. J. Olivie, A new class of balanced search trees: half-balanced binary search trees. RAIRO Theor.

Inform., 16, 51-71 (1982).
[21] M. H. Overmars, J. v. Leeuwen, Two general methods for dynamizing decomposable searching

problems. Computing, 26,155-166 (1981).
[22] D. D. Sleator, R. E. Tarjan, Self-adjusting heaps, SIAM J. Comput~ IS, I, 52-69 (1986).
[23] Th. Strothotte, J. R. Sack, Heaps in heaps. SCS-TR-67, Carleton Univ., Ottawa 1985.
[24] R. E. Tarjan, Data Structures and Network Algorithms. SIAM, Reg. Conf. Series in Appl. Math.,

Philadelphia, 1983.
[25] R. E. Tarjan, Amortized computational complexity. SIAM, J. Algebraic Discrete Methods 6, 2,

306-318 (1985).
[26] J. Vuillemin, A data structure for manipulating priority queues. Comm. ACM, 21, 4, 309-315

(1978).
[27] J. W. J. Williams, Algorithm 232-Heapsort. Comm. ACM, 7, 347-348 (1964).

Prof. Dr. Hartmut Noltemeier,
Institut f1ir Informatik I,
University of Wiirzburg, Am Hubland,
D-8700 Wiirzburg, Federal Republic of Germany
email: noltemei @ uniwue.uucp

Computing Suppl. 7,141-153 (1990) Computing
© by Springer-Verlag 1990

Communication Complexity

Ulrich Faigle, Enschedel and Gyorgy Turan, Chicago, Ill.

Abstract - Zuammenfassung

Communication Complexity. In this introductory survey, the general communication complexity prob
lem is discussed from an ordertheoretic point of view. In particular, results about special classes
of ordered sets are reported. Furthermore, open problems and related ordertheoretic questions are
mentioned.

AMS Subject Classification: 68C25.

Key words: communication complexity, communication protocol, order, linear extension, rank.

Daskommunikationskomplexititsproblem. In dieser einruhrenden Obersicht wird das Kommunikations
komplexitiitsproblem von einem ordnungstheoretischen Standpunkt aus diskutiert. Insbesondere werden
Resultate iiber spezielle Klassen geordneter Mengen vorgestellt. Au6erdem wird auf otTene Probleme
und verwandte ordnungstheoretische Fragen eingegangen.

1. Introduction

A basic technique for proving lower bounds on the complexity of VLSI layouts
relates the size of a cut through a prospective chip with the information flow across
it (Thompson [1979], see also Lipton and Sedgewick [1981]). Roughly, the argu
ment goes as follows. Suppose a chip of area A is to compute the value ofthe Boolean
function f(z 1" •• , Zk) in T time units. Also suppose we can separate the input
variables into two ,groups x = (z 1" •• , zm) and y = (zm+1, ... , Zk) via a cut through
the chip that cuts through fl horizontal wires (Fig. 1).

During the computation of f(x,y) then a total of not more than T· fl bits are
exchanged between part I and part II of the processor. Hence, if the computation
off requires the exchange of a least J bits of information, we obtain the lower bound

J2 ~ AT2

on the layout complexity of the proposed chip. The communication complexity tries
to obtain a bound on this number J.

A mathematical model for the communication complexity is due to Yao [1979].
There are two finite sets El and E2 associated with two players (or "processors") I

142 Ulrich Faigle and Gyorgy Turan

x y
,.------, ,.------,

1 1 ... 1 1 1 ... 1
i
~

i --r-
I ! II

-L
i

+-->-

!

Figure 1

and II respectively and a function

f:E 1 x E2 -+{0,1}.

We assume that f is completely known to both players. Now I chooses an "input"
x E El and II an "input" y E E2. In a cooperative effort, I and II try to answer the
query

? f(x,y) = 1 ?

by exchanging as few bits of information as possible. The communication between
I and II goes in "rounds" and is governed by a "protocol" (for a formal defInition,
see Section 2): one player sends some bits of information to the other player. Based
on the information available to him so far, the other player responds by sending
some bits of information back etc .. The game continues until at least one player
has sufficient information to answer the query.

Thus, for example, the communication exchange can be done using at most
flog I E21l bits via the trivial protocol: II sends the "name" of his element y E E2 to
I. Since I has complete knowledge of J, he can then determine f(x, y).

There are different interpretations of the Boolean function f possible. We may think
of f as the indicator function of some binary relation between El and E2 • Equiva
lently, we may associate with f its incidence matrix M = M(f) with (0, I)-entries so
that El and E2 represent the rows and columns respectively of M. In this sense,
each (0, I)-matrix can be viewed as arising from some communication problem and
hence is a communication matrix.

Another aspect of the communication problem takes the columns of the (0, 1)-matrix
M as incidence vectors of subsets of rows. Thus one could formulate the game
relative to a fInite set E and a family IF of subsets of E : player I chooses an element
x E E and player II a subset Y E IF. The relevant query is

?XE Y?

Communication Complexity 143

Finally, players I and II may select elements x, YEP, where P is a (partially) ordered
set completely known to both players, and ask the query

? x <y?

(Note that we consider here the strict order relation of P as the "interesting" binary
relation because the trivial protocol turns out to be already optimal for the query
? x :s; y? (see Section 3». This seemingly special case contains the original model:
we may order E1 u E2 via the only non-trivial relations for e1 E Elo e2 E E2,

e1 < e2 if f(e1,e2) = 1.

Relative to this order, we then have

f(x,y) = 1 if and only if x < y.

In this introductory survey on the communication complexity problem, we take the
ordertheoretic point of view (for a comprehensive general survey see Lovasz [1988]).
In Section 2, we defme the deterministic and the nondeterministic complexity of the
communication problem for Boolean functions (or, equivalently, for binary rela
tions). Lower and upper bounds are presented in Sections 3 and 4. We then look
at the comunication problem for special classes of ordered sets and fmally discuss
further ordertheoretic ramifications and open problems.

2. Communication Complexity

We will now describe the model for communication complexity as formulated by
Lovasz and Saks [1988].

Givenf: E1 x E2 -+ {O, 1}, weconsiderthebinaryrelationQ = f-1(1). The decision
problem to solve is whether a given input (x, y) satisfies f(x, y) = 1, i.e., (x, y) E Q.

A deterministic communication protocol for recognizing Q is a decision tree T
whose nodes are of two types. An internal node of type i (! = 1,2) is labeled by a
function from EI to the set of children of that node. A leaf of type i is labeled by a
function from EI to the set {YES, NO}. Each input (x, y) E E1 X E2 specifies a unique
path from the root to a leaf of T in such a way that Q consists exactly of those inputs
(x, y) y;.elding the outcome YES.

T is a one-way protocol if T has depth 1. The cost of an internal node in T equals
the logarithm (here always assumed relative to base 2) of the number of its children,
i.e., the number of bits needed to specify a child. The cost c(P) of a path P from the
root to a leaf in T is the sum of the costs of its internal nodes. Thus the complexity
c(T) of the protocol T can be defined as

c(T) = max {c(P) : P path in T}.

The deterministic (communication) complexity cc(Q) of the binary relation Q is
given by

cc(Q) = min {c(T) : T protocol for Q}.

We say that Q is one-way optimal if there exists an optimal one-way protocol for Q.

144 Ulrich Faigle and Gyorgy Turan

Let the (m x ,,)-matrix M be the (0, I)-incidence matrix of Q, and denote by m* and
n* the number of pairwise different rows and columns respectively. The clearly

cc(Q)::;;; min{nogm*l, nogn*l}.

In fact, Q is one-way optimal if and only if cc(Q) = min {nog m*l, nog n*l }. Another
general upper bound follows from the rank of the matrix M:

cc(Q)::;;; rkM.

To see this, assume that the first r rows M, of M form a row basis. Then Mr (and
hence M!) has at most 2'-different columns. Thus n* ::;;; 2'.

A proof scheme for the relation Q £:; El X E2 consists of a set # of proofs together
with two verification relations V1 £:; E1 X & and V2 £:; E2 X & such that (x,y) E Q
if and only if there exists a proof p E & with the property (x, p) E V1 and (y, p) E V2 •

The nondeterministic (communication) complexity cc*(Q) is the number

cc*(Q) = minUlogl&1l : & proof scheme for Q}.

Say that R £:; Q is a I-rectangle ofQ if there are subsets Fl £:; El and F2 £:; E2 such
that R = F1 X F2. With this terminology, Lipton and Sedgewick [1981] have
observed that a proof scheme of Q may equivalently be defined as a set of 1-
rectangles whose union equals Q. Indeed, for each proof p of the proof scheme &,
the set

R(p) = {(x,y) E Q: (x,p) E V1 and (y,p) E V2 }

is a I-rectangle in Q.

An important parameter, therefore, is the minimal number "1 = "1(Q) of 1-
rectangles needed to cover the relation Q. Introducing "1 = "1 (Q) as the minimal
number of disjoint I-rectangles needed to cover Q, we have

"1 ::;;; "1 .
Our original problem, of course, could also have been phrased relative to the query

? f(x,y) = O?

i.e., relative to the complementary relation rz = (El x E2)\Q. This leads to the
analogous parameters "0 = "1 (QC) and "0 = "1 (QC) associated with O-rectangles of
Q.
The equality cc(Q) = cc(QC) certainly holds. On the other hand, cc*(Q) and cc*(QC)
may differ greatly. Consider, for examle, the strict order relation P with the following
Hasse diagram:

Yl Yz Yn

I I···· I

Communication Complexity 145

Here we have "1 (P) = n while the O's of the associated incidence matrix can be
covered with O(log n) O-rectangles.

As outlined in the Introduction, we may associate with any (0, I)-matrix M an
ordered set, which we denote by P(M), via a natural construction. P(M) is bipartite
in the sense that its Hasse diagram is a bipartite graph. If M is the (strict) incidence
matrix of the order P, we write PP = P(M) for this bipartite reduction of P.

It is clear that the communication problem is the same for the order P and its
bipartite reduction P P. In particular, we have "1 (P) = "1 (P P) etc.

Let us interprete a O-rectangle of M in the order P(M). We have a subset X s; E1
and a subset Y s; E2 such that there are no order relations between X and Y. We
consider

fIl(X) = {e E E1 U E2 : e ~ x for some x E X}

id(Y) = {e E E 1 U E 2 : e :::;; y for some y E Y}.

Then fIl(X) n id(Y) = tfo. Moreover id(Y) is an ideal in P, i.e., closed with respect to
smaller elements, while fIl(X) is a filter, i.e., the settheoretic complement of some
ideal. In other words, the O-rectangles in M correspond to the pairs of disjoint ideals
and filters in P(M).

3. Lower Bounds

To prove lower bounds for the communication complexity, we consider the binary
relation under investigation to be given via its (0, I)-incidence matrix.

Let g(M) be some nonnegative integervalued function which is defined for (0,1)
matrices M and satisfies for all disjoint row (or column) partitions (Mo, M 1) of M
the inequality

g(Mo) + g(M1) ~ g(M).

Theorem 1: pog g(M)l :::;; cc(M). D

We sketch the proof of Theorem 1: Let T be an optimal protocol which starts with
player II, say, who has selected a column of M. Mo is the submatrix of M consisting
of those columns whose choice would lead to a message starting with "0". M1 is
defined analogously. By.hypothesis, we may assume g(Mo) ~ g(M)/2 or g(Md ~
g(M)/2. Observe now that cc(M) - 1 is an upper bound for both cc(Mo) and cc(M 1)'
Hence, by induction on the size of M, we have

log(g(M)/2) :::;; cc(M) - 1.

which yields the bound.

Examples for functions satisfying our hypothesis are the parameters "1(M), K1(M),
"o(M), and Ko(M). They are strong enough to demonstrate that for "almost all"
communication problems the trivial protocol is optimal. In fact, Yao [1979] proved

146 Ulrich Faigle and Gyorgy Turim

Theorem 2: Let M be a random (n x n)-matrix with (0, I)-entries. Then

cc(M) ~ logn - 2

with probability at least 1 - 2-n2/2. D

An interesting choice is g(M) = rk(M) (Mehlhorn and Schmidt [1982]). Interest in
this rank lower bound arises from the curious fact that many researchers feel this
bound to be possibly far from optimal. Yet, no class of examples is known for which
lower bounds of higher order than O(log(rk M)) could be proved.

The rank lower bound quickly exhibits communication problems for ordered sets
relative to the"::;;" -relation to be trivial: the corresponding incidence matrix is easily
seen to be of full rank, which implies that the trivial protocol is optimal.

A further example is the positive rank g(M) = rk+(M) (Yannakakis [1988]).
Formally, rk+(M) is the minimal number p such that there are nonnegative matrices
A (with p columns) and B (with p rows) with the property M = AB. From a
geometrical point of view is rk+(M) the smallest number of nonegative vectors
needed to generate a cone that contains all column vectors of M.

Obviously rk(M)::;; re(M) holds. But it is already not known whether re(M) =
O(rk M) is true. It is easy to see that

rk(M) ::;; K1 (M)

and one can also verify

The last inequality is a consequence of the observation that

M=Z1+ Z2+···+ Zp,

where Zi = ajbr with aj = i-th column of A and br = i-th row of B. The desired
cover of 1-rectangles is obtained from the supports cfthe matrices Zi.

Let us briefly discuss two lower bounds which are implied by the rank lower bound.
We consider the communication problem for the order P (as always,relative to the
strict order relation). A linear extension of P is an arrangement L = X1X2··· Xn of
the ground set underlying P such that Xi < Xj in P implies i < j in L. The lineality
of L is the number

i.e., the number of adjacent comparabilities in L. The lineality of P is

t(P) = max {t(L) : L linear extension of P}.

Gierz and Poguntke [1983] have observed that

t(P) ::;; rk(P) ::;; n - w(P) ,

where w(P) is the width of P, namely the maximal number of pairwise incomparable
elements of P. Since n - w(P) actually yields an upper bound on the communication

Communication Complexity,

complexity of P (see Section 4), we note

pogt(P)l ~ pogrk(P)l ~ cc(P) ~ rlog(n - w(P)l + l.
It is furthermore straightforward to see that

t(P) ~ K1(P),

147

One only has to write down the incidence matrix of P according to an optimal linear
extension. Then exactly t(P) l's will appear on the side-diagonal. We illustrate the
use of these inequalities for the Boolean algebra P = Bn with 2n elements. Fiiredi
and Reuter [1989] have shown that

t(Bn) = 2n - 1 •

Hence we obtain
n - 1 ~ cc*(Bn) ~ cc(Bn) ~ n.

Comparing the bounds obtained from P with those obtained from its bipartite
reduction, we have rk(P) = rk(PP), while t(P) < t(PP) may be possible. Such an
improvement, however, can never yield more than 1 bit as Reuter [1988] has
observed:

tt(PP) ~ t(P) ~ t(PP).

4. Upper Bounds

A general technique for proving upper bounds on the communication complexity
was exhibited by Lovasz and Saks (see Lovasz [1988]). We describe it in its
ordertheoretic setting.

Let h(P) be a nonnegative integer-valued function which is defined for all bipartite
orders P and satisfies the two properties:

(i) h(P) = 0 if and only if P is an antichain
(ii) h(A) + h(P\A) ~ h(P) for all ideals A s; P.

Denoting by P = P(M) the bipartite order associated with the communication
matrix M, we obtain

Theorem 4: cc(P) ~ pog h(P)l (1 + pogKo(P)l). D

We sketch the proof of Theorem 4 by describing an appropriate protocol recur
sively. Its validity can be established by induction on h(P).

The first thing to observe is that for each ideal A s; P, we have h(A) ~ h(P)/2 or
h(P\A) ~ h(P)/2. We now choose KO O-rectangles that cover all O's of M and let
A 1 , ... , A k , Ak +1' ... , AKQ be the associated ideals in P(M)(see Section 2). We may
assume that

h(Ai) ~ h(P)/2 if i ~ k

h(P\Ai) ~ h(P)/2 if i> k.

148 Ulrich Faigle and Gyorgy Turim

Player II now tries to find an ideal Ai (i :::;; k) containing his chosen element Y E E.
If he is successful, he sends "0" and the index i with a total of at most 1 + rtog Ko 1
bits. Otherwise he sends "I".

Player I in turn tries to find a filter P\Aj (j> k) containing his chosen element
x E E. If he is successful, he sends "0" and the indexj of that filter P\Aj •

If neither player is successful x < y must hold (because we started out with a O-cover)
and the game ends. Otherwise the game continues with either Ai or P\ Aj and h-value
at most h(P)/2.

Applying Theorem 4 with the lineality h(P) = t(P), one gets the original result of
Lovasz and Saks:

cc(M):::;; rtogt(P(M»l(1 + rtogKo(M)l)·

In view of the discussion in Section 3, this upper bound has a number of
consequences:

(a) cc(M):::;; rtogrk(M)l(1 + rtogKo(M)l)

(b) cc(M):::;; rtogK1(M)1(1 + rtogKo(M)l)

(c) cc(M):::;; rtOgK1(M)l rtogK1(M)1)

(d) cc(M):::;; rtogrk(M)l rtogrk+(M)l)

(b) is the well-known upper bound of Aho et al. [1983]. (c) and (d) are due to
Yannakakis [1988]. It is a challenging open problem to decide, for example, whether
rk+(M) can be replaced by rk(M) in (d).

Also note that for general ordered sets P, the Lovasz-Saks bound implies

cc(P) :::;; (1 + rtog t(P)l)(1 + rtog Ko(P)l).

As already mentioned in the previous section, for general ordered sets P on n
elements the bound

cc(P) :::;; 1 + rtog(n - w(P))l

is valid. This can be established with a two-way protocol as follows. To set up the
game, both players agree on a fixed antichain W s;;; P of size I WI = w(P). After the
choice of their elements x, YEP, the first player sends a "0" to the second player if
his element x lies in W. Otherwise he sends "I" and the name of his element. Ifplayer
II receives "0" and his element Y also lies in W, x < y cannot hold. If y does not lie
in W, player II sends the name of y to the other player with at most rtog(n - w(P» 1
bits.

An application of the width upper bound allows to determine the communication
complexity of cycle-free orders up to one bit. Recall that an order P is cycle-free if
the comparability graph G(P) of P is chordal, i.e., contains no vertex-induced circuits
of length 4 or more. Duffus et al. [1982] have shown that the equality

t(P) = n - w(P)

Communication Complexity 149

is valid for cycle-free orders P. Hence such an order P satisfies

Dog(n - w(P))l:::;; cc*(P) :::;; cc(P):::;; 1 + Dog(n - w(P))l

5. Some Classes of Orders

We will now briefly discuss results and problems concerning special classes of
orders. The details can be found in Faigle and Turan [1989].

Let us begin with a general result and consider a class f!J of orders which is closed
under taking suborders.

Theorem 5: If there exists at least one bipartite order Q such that Q ¢ &, then for all
P E &,

cc(P) = O(log(rkP)). 0

The idea of the proof consists in showing that each order P in the class f!J gives rise
to an incidence matrix M that has not more than (rk P)C different columns, where
.c = c(Q) is a constant depending on Q. Theorem 5 will then be implied by the trivial
protocol. The existence of such a constant c(Q), however, can be argued with the
help of "Sauer's Lemma" (see Lovasz [1979, Problem 13.10cJ):

Lemma: Let R be some finite set and f/l a family of distinct subsets of R such that

If/ll > C~I) + C~I) + ... + C~I) .
Then, there exists a subset R' £; R with IR'I = k + 1 such that {F (") R': F E f/l}
comprises all subsets of R'. 0

The Lemma is applied as follows. If the incidence matrix M had "too many" distinct
columns, M would contain the characteristic vectors of some power set large enough
to exhibit Q as an induced suborder of P.

Unfortunately, the requirement that the order Q in Theorem 5 be bipartite turns
out to be essential in the proof. Whether an analogous statement is true for,
say, Q equal to a 3-element chain, is not known (note that an affirmative answer
would imply the communication complexity for arbitrary (0, I)-matrices M to be
O(log(rk M)) since then f!J could be taken to be the class of all bipartite orders).

As examples for Theorem 5, we could choose f!J as the class of orders P not
containing

Q- I><I
as a suborder. In particular, f!J could be the class of all cycle-free orders. By taking

150 Ulrich Faigle and Gyorgy Tunin

Q - I I
we, furthermore, could select £? as the class of interval orders (see Fishburn [1970J).

We should make clear, however, that a direct analysis often yields a sharper bound
on the communication complexity. For cycle-free orders, we have seen this in the
previous section. For so-called generalized interval orders P,

cc*(P) = cc(P) = rlog(rk P)l

can be proved (cf. Faigle et al. [1988]).

What about classes of orders that cannot be characterized by forbidden induced
suborders? Recall that an order is said to be N -free if its Hasse diagram (!) does not
contain

N
as an induced subconfiguration. For each N-free order P, one can show

Dog(rkP)l = cc*(P) = cc(P).

Our proofs for the rank bound yielding the exact communication complexity relies
on the notion of rank optimality. Thereby an order P is said to be rank-optimal if

t(P) = rk(P).

N-free orders are rank-optimal. While non-bipartite generalized interval orders
need not be rank optimal, their bipartite reductions always are. We do not know
whether the rank bound is sharp for all rank-optimal orders. An unsolved test case
is presented by cycle-free orders, which are known to be rank optimal. The best we
can prove is that here the rank bound is "nearly optimal".

Similarly, no counterexample to the conjecture that

Kl (P) ~ rk(P)

be true for all rank-optimal orders is known to us. Again, already the case of
cycle-free orders is unsolved.

We finally mention a generalization of the notion of N-freeness. Say that an order
is M-free if its Hasse diagram does not admit

M

Communication Complexity. 151

as an induced subconfiguration. (Note that the class of M -free orders is not closed
under ordertheoretic duality). In general, an M -free order need not be rank-optimal.
Yet, one can prove that for each M-free order P,

cc(P) ~ 1 + nog(rkP)l,

where the upper bound can be achieved with a one-way protocol. The nondeter
ministic complexity cc*(P) for M-free orders is unclear.

6. Remarks

In our ordertheoretic formulation of the communication problem, we have con
sidered the query

(i) "Is x (strictly) smaller than yr'

We could similarly have investigated the query

(ii) "is x a lower neighbor of y?"

Within the framework of communication complexity, which of the two queries is
easier to decide? Are they equally difficult? (An affirmative answer to the last
question can be given for, e.g., N-free orders or interval orders).

Observe that the rank lower bounds for (i) and for (ii) may be different as shown by
the order with the following Hasse diagram (Lovasz and Zadori [1988]):

xx
Here (i) leads to rank = 5, while (ii) yields only rank = 4.

In view of the observed strength of the rank lower bound for the communication
complexity problem, it appears necessary to develop a better combinatorial under
standing of the rank parameter for binary relations. Determining the rank of types
of binary relations is geneX:ally a non-trivial problem. It might therefore be interest
ing to sketch a powerful technique due to Lovasz and Saks [1988] for computing
the rank of certain communication matrices.

The following communication problem is considered. Player I chooses an element
x and player II chooses an element y in a lattice L (i.e., an ordered set L with maximal
element 1 and minimal element 0 and the property that any two elements a, bEL
have a unique maximum a v bEL and a unique minimum a /\ bEL). The query
to be decided is now

(iii) "Is x /\ y = O?"

152 Ulrich Faigle and Gyorgy Turan

(Note that (iii) is different from (i)!). This problem is termed the meet problem. Let
C be the communication matrix for the meet problem relative to L. In order to
determine rk(C), one considers the matrix Z = «X)I) associated with L:

, = {1 if x::;; y
"l' 0 otherwise

The combinatorial identity of Wilf allows to express C = ZTD Z, where D is the
diagonal matrix defmed via the Moebius function:

(D)xx = J.L(O,x).

(Recall that the Moebius function J.L(x, y) of L, by definition, is given via the entries
of the inverse matrix Z-l (see Rota [1964]). Hence

Theorem 6: rkC = I{x E L: J.L(O,x):;6 O}l. D

Theorem 6 has far-reaching consequences. In HajnaI et aI. [1988], for example, it
is used to show that the communication complexity is Q(nlogn) for the following
problem: player I and II want to decide if a graph G on n vertices is connected. G
is unknown to I and II. But for one half of all possible edges player I knows which
one's belong to G. Player II similarly supervises the other half of he possible edges.
(For more examples, see Lovasz [1988]).

References

A. V. Aho, l. D. Ullman, and M. Yannakakis (1983): On notions of information transfer in VLSI circuits.
Proc. 15th ACM STOC, 133-139

D. Duffus, I. Rival, and P. Winkler (1982): Mimimizing setups for cycle-free ordered sets. Proc. Amer.
Math. Soc. 85,509-513

U. Faigle and Oy. Turan (1989): On the communication complexity of ordered sets. Working paper.
U. Faigle, R. Schrader, and Oy. Turan (1988): The communication complexity of generalized interval

orders. Memorandum No. 745, Fac. of Applied Math., Universiteit Twente
P. C. Fishburn (1970): Intransitive indifference with unequal indifference intervals. louro. Math. Psycho!.

7,144-149
Z. Fiiredi and K. Reuter (1989): The jump number of suborders of the power set order. In Memorandum

No. 787 (U. Faigle and C. Hoede cds.), Faculty of Applied Mathematics, Universiteit Twente, 57-59
To appear in: ORDER

O. Gierz and W. Poguntke (1983): Miminizing setups for ordered sets: a linear algebraic approach. SIAM
lourn. Algebr. Discr. Methods 4,132-144

A. Hajnal, W. Maass, and Oy. Turan (1988): On the communication complexity of graph properties.
Proc. 20th ACM STOC, 186-191

R. l. Lipton and R. Sedgewick (1981): Lower bounds for VLSI. Proc. 13th ACM STOC, 300-307
L. Lovasz and M. Saks (1988): Lattices, Mobius functions and communication complexity. Preprint,

Department of Computer Science, EotvOs Lorand University, Budapest, Hungary
L. Lovasz (1988): Communication complexity: A survey. Report No. 89555-0R, Institut flir Operations

Research, Universitat Bonn
L. Lovasz (1979): Combinatorial Problems and Exercises. North-Holland, Amsterdam
L. Lovasz and L. Zadori (1988): personal communication.
K. Mehlhorn and E. M. Schmidt (1982): Las Vegas is better than determimism in VLSI and distributed

computing. Proc. 14th ACM STOC, 330-337
K. Reuter (1988): The jump number and the lattice of maximal antichains. Preprint, FB Mathematik,

TH Darmstadt
O.-c. Rota (1964): On the foundations of combinatorial theory I. Theory of Mobius functions. Z.

Wahrscheinlichkeitstheorie 2, 340-368

Communication Complexity 153

C. D. Thompson (1979): Area-time complexity for VLSI. Proc. 11th ACM STOC, 81-88
M. Yannakakis (1988): Expressing combinatorial optimization problems by linear programs. Preprint
A. C.-c. Yao (1979): Some complexity questions related to distributive computing. Proc. 11th ACM

STOC, 209-213.

Ulrich Faigle, Faculty of Applied Mathematics,
Universiteit Twente, NL-7500 AE Enschede,
The Netherlands
Gyorgy Turin, Department of Mathematics and
Computer Science University of Illinois, Chicago,
III. 60637, U.S.A. and Automata Theory Research
Group, Hungarian Academy of Sciences, Szeged,
Hungary

Computing Suppl. 7, 155-189 Computing
© by Springer-Verlag 1990

Path Problems in Graphs*

Giioter Rote, Graz

Abstract - Zusammenfassung

Path Problems in Graphs. A large variety of problems in computer science can be viewed from a common
viewpoint as instances of "algebraic" path problems. Among them are of course path problems in graphs
such as the shortest path problem or problems offinding optimal paths with respect to more generally
defined objective functions; but also graph problems whose formulations do not directly involve the
concept of a path, such as finding all bridges and articulation points of a graph. Moreover, there are
even problems which seemingly have nothing to do with graphs, such as the solution -of systems of linear
equations, partial differentiation, or the determination of the regular expression describing the language
accepted by a finite automaton.
We describe the relation among these problems and their common algebraic foundation.
We survey algorithms for solving them: vertex elimination algorithms such as Gauf3..Jordan elimination;
and iterative algorithms such as the "classical" Jacobi and Gauf3..Seidel iteration.

AMS 1980 mathematics subject classifICation (1985 revision): 68-01, (68ElO, 68R10, 68Q, 05C, 65-01,
65F05, 65FlO, 16A78, 9OC35, 9OC50)
CR categories and subject descriptors (1987 version): F.2.1. [Analysis of algorithms]: Numerical
algorithms and problems-computations on matrices; G.1.0. [Numerical analysis]: Numerical algorithms;
G.1.3. [Numerical analysis]: Numerical linear algebra-linear systems (direct and iterative methods),
matrix inversion; G.2.2. [Discrete mathematics]: Graph theory-network problems, path and circuit
problems; 1.1.2. [Algebraic manipulatiou]: Algorithms-algebraic algorithms

Additional keywords and phrases: algebraic path problem, iteration equation, Gauf3..Jordan elimination,
block decomposition, shortest paths, optimal paths, automatic differentiation, finite automata, regular
expression
General terms: algorithms, theory
IAOR categories: computational analysis, graphs, networks, network programming.

Wegeprobleme in Grapheu. Es gibt eine Vielfalt von Problemen, die sich aJs "algebraische" Wege
Probleme interpretieren lassen. Dazu gehOren natiirlich Wege-Probleme auf Graphen wie das gewahn
liche kiirzeste-Wege-Problem oder das Bestimmen bester Wege unter allgemeineren Optimalitats
kriterien, aber auch Probleme, deren Definition nur indirekt mit Wegen zu tun hat, wie das Bestimmen
aller Briicken und Artikulationsknoten eines Graphen. Sogar einige Probleme, die anscheinend iiber
haupt nichts mit Graphen zu tun haben, lassen sich als algebraische Wege-Probleme behandeln:
Man kann z. B. lineare Gleichungssysteme lasen, auf schnellem Weg alle partiellen Ableitungen eines
Ausdrucks berechnen, oder einen reguliiren Ausdruck fiir die formale Sprache bestimmen, die ein
endlicher Automat akzeptiert.
In dieser Oberblicksarbeit wird einerseits dargestellt, wie man alle diese Problem unter einen Hut bringt,
indem man eine gemeinsame algebraische Formulierung fUr sie findet; andererseits werden verschiedene
Lasungsalgorithmen besprochen: Knoteneliminations-Algorithmen (z. B. GauB-Jordan-Elimination)
und iterative Algorithmen (wie die klassischen Iterationsverfahren von Jacobi und Gauf3..Seidel).

* This work was written while the author was at the Freie Universitat Berlin, Fachbereich Mathematik.
It was partially supported by the ESPRIT II Basic Research Action Program of the EC under contract
no. 3075 (project ALCOM).

156 Giinter Rote

Contents

1. Introduction

2. Two example problems
2.1. Example 1: The shortest path problem

2.1.1. Description of the problem-a numerical example
2.1.2. A system of equations

2.2. Example 2: The language accepted by a finite automaton
2.3. Summary

3. An algebraic framework
3.1. Semirings-the algebraic path problem
3.2. Types of semirings, ordered semirings
3.3. Matrices

4. Direct solution procedures (elimination algorithms)
4.1. An elimination procedure-GauB-Jordan elimination
4.2. Theorems about the solution of the elimination algorithm
4.3. An interpretation with sets of paths
4.4. Block decomposition methods
4.5. A graphical interpretation of vertex elimination

5. Iterative solution procedures
5.1. Matrix powers
5.2. Jacobi iteration and GauB-Seidel iteration
5.3. Acyclic graphs
5.4. The Dijkstra algorithm

6. Further applications
6.1. Inversion of matrices
6.2. Partial differentiation
6.3. Markov chains-the number of paths
6.4. Optimal paths

6.4.1. Best paths
6.4.2. Multicriteria problems-lexicographic optimal paths
6.4.3. k-best paths

6.5. Regular expressions
6.6. Flow analysis of computer programs
6.7. Some graph-theoretic problems

6.7.1. Testing whether a graph is bipartite
6.7.2. Finding the bridges and the cut vertices of a graph

7. Conclusion-comparison of different approaches

157

157
157
157
158
159
160

161
161
162
163

164
165
169
170
172
174

175
175
176
177
177

177
177
178
180
181
181
181
183
184
185
186
186
186

187

Path Problems in Graphs 157

1. Introduction

Path problems can be seen as a unified framework for a lot of problems from
different fields. Solution procedures for these problems were initially discovered
independently of each other. When the connection between these solution methods
became apparent, various attempts have been made to lay a common theoretical
basis for, them. Also, new applications of the method were explored.

It would be difficult to give a complete account of the area of path problems. A
complete bibliography including all applications would fill many pages. There have
been several good accounts in textbooks and treatises, like Gondran and Minoux
[6J, chapter 3; Zimmermann [17J, chapter 8; Carre [4J, chapters 3 and 4.

The purpose of this exposition is to give an introduction to this area and an overview
of some of the more interesting applications and interpretations of path problems,
and to give a relatively small glimpse of the theory which has been established in
this field. We shall do this in a very elementary way.

We shall not deal with specialized algorithms for the shortest path problem in
particular. Also, algorithms which use special properties of the underlying graphs
will only be mentioned.

The reader who wants to know more about path problems in general or about
specific applications should consult the above-mentioned references. References to
the literature about various applications are almost completely omitted from this
survey unless they appeared recently.

2. Two example problems

2.1. Example 1,' The shortest path problem

2.1.1. Description of the problem-a numerical example

Consider the directed graph shown in figure 1. It has n = 4 vertices and ten arcs,
which are labeled with weights. A path in a graph is a sequence of I + 1 vertices
(Vo, Vi"'" VI) such that (Vi' vi+d is an arc of the graph, for i = 0, 1, ... , I - 1. It is
called a path from Vo to VI' For example, p = (1,3,4,4,4,1,3,2) is a path from 1 to
2. Note that we allow repetition of vertices and of arcs in a path. With every path,
we may associate its weight, which is the sum of the weights of its arcs. The weight
of the example path p is thus 7 + 3 + 2 + 2 + (- 5) + 7 + (-1) = 15. Note that we
must distinguish between an empty path without arcs, like the path q = (1) from 1
to 1, and the path r = (1,1), which contains one arc (a loop). The weight ofthe empty
path is assumed to be zero.

The weights can be interpreted as lengths of the arcs, and then the weight of the
path is simply its total length. Or the weights could be the time taken to traverse
an ar..:; or the money that one has to pay (or that one gains) for traversing an arc.

158 Gunter Rote

2
3

4

1 2

Figure 1. A network

The last interpretation is one for which arcs of negative weight -as in the example
make sense.

The (all-pairs) shortest path problem is the following:

For each pair (i,j) of vertices, compute the weight Xii of the shortest path (i.e., the
path of smallest weight) from i to j.

2.1.2. A system of equations

With the graph G, we may associate its weighted adjacency matrix

A= (:1
-5

4 7

3 2
-1 00

00 6

:) 3 .

2

The element aij is the weight of the arc (i, j), if this arc exists. Artificial weights of 00

have been inserted in the places where no arc exists. These artificial arcs will do no
harm, because a path using such an arc has weight 00; thus it will certainly not affect
the shortest path.

Now we are going to set up a system of equations which the desired quantities xij

will fulfill. Consider a shortest path p from i to j. If i =I j, this path must contain at
least one arc, i.e., it is of the form (i = Vo, Vl' ..• , VI = j), with 1 ~ 1. If it is a shortest
path, then the subpath p' = (Vl' V2 , ••• , VI = j), must be a shortest path from V l to j.
Thus Xu = aik + X ki ' for some k = V l . On the other hand, the expression a ik + Xkj'

for any k, is the length of some path from i to j, namely the path starting with the
arc (i, k) and continuing along the shortest path from k to j. Thus, we have

Xii = min (a ik + x ki),
lSkSn

for i =I j. (1)

For i = j, the above considerations apply with one change: The empty path from i

Path Problems in Graphs 159

to i without arcs is an additional candidate for the shortest path, and thus we have
to extend the above equation:

In the above example,

xii = min { min (ajk + Xkj),o} .
l:S;k:S;n

x=(~ ~~~)
-2 -1 0 3
-5 -1 1 0

(I')

is the unique solution of this system, and it represents the lengths of the shortest
paths.

2.2. Example 2: The language accepted by a finite automaton

A finite automaton is a machine which reads words (sequences of symbols over some
alphabet 1:') and either accepts them or rejects them. It can be specified by its
transition diagram, which is a rmite directed graph (see figure 2). The vertices of the
graph are the states of the automaton. One of the vertices (vertex 1 in our case) is
designated as the start state, and a subset of the vertices is designated as the final
states. The arcs are labeled by subsets of letters from 1:'. (1:' = {f, g, h} in our
example.) The automaton starts in the designated start state and reads the symbols
of an input word one by one. A label z on an arc (i, j) means the following: If the
automaton is in state i and the next symbol which it reads is z, it may go to state j.
When the automaton is in state i and there is no arc labeled z which leaves i, the
automaton cannot continue and stops. When there is at most one choice of an
arc for each state and each input letter, the automaton is called a deterministic
automaton; otherwise it is a non-deterministic automaton, but this difference does
not concern us here.

1,h

h

Figure 2. The transition diagram of a finite automaton. The initial state is state 1. The final states are
marked by double circles.

160 Giinter Rote

We say that th~ automaton accepts a word, if there is a sequence of state transitions
leading from the start state to a final state while reading this word. To put it
differently, let p = (vo, Vl , . •• , VI) be a path from the start state Vo to some fmal state
VI' If Zi is a label of the edge (Vi-to Vi), for 1:s; i:S; I, then the word ZlZ2"'Zn

is accepted by the automaton. For example, the automaton shown in figure 2
accepts the word fgghhfhffJ because it leads from state 1 to state 3 via the path
(1,3,4,3,2,2,2,2,2, 1,3). Thus, the automaton defines a subset of words (a formal
language) which it accepts.

Thus our problem is now the following:

For each final state j, determine the set xl) of words which lead from the initial
state 1 to state j.

In order to solve this problem, we must introduce a few notations. We are working
with words (finite sequences) over some alphabet E, including the empty word e,
which contains no symbols. We write the concatenation of two words a and b as
a' b or simply as abo If A and B are sets of words, then A· B denotes the set
{abla E A,b E B}.

As above, we can set up a matrix (au), where au denotes the set of labels of the arc
(i, j). Let Xu denote the set of all words by which the automaton can be lead from
state i to state j. We shall solve the more general problem of computing XI} for all
pairs of states i and j.

As in the case of the shortest path problem, we shall set up a system of equations.
Consider the set xI}' When the automaton is started in state i, the first state transition
must lead to some state k. In order to go to k the automaton must read a symbol
from aik' Then it must eventually go to j. The possible words which lead from k to
j are collected in the set Xjk' Thus, the words which lead from i to j via k as the first
vertex are exactly the set aik • Xkj' This is also true if there is no arc from ito k, because
then aik = 0. Now we just have to take the union over all possible states k, and we
get an equation for Xij' Again, if i = j, we have to consider the additional possibility
that the automaton reads nothing and stays in state i, and thus we have to adjoin
the empty word.

n

xi} = U (alk' Xkj) , for i :1= j, and
k=l

(2)
n

Xjj = U (ajk ' Xkj) U {e}
. k=l

2.3. Summary

In this section, we have described two examples of path problems. In both cases,
we have stated the problem, and we have derived a set of equations which the
solutions have to fulfill. It is, however, not the case that every solution of the
equations is a solution of the respective problem that we started with. We will

Path Problems in Graphs 161

say more about the relation between the solution of equations and the original
formulation of path problems in sections 4.2 and 7.

In the next section we will exhibit the common algebraic structure of our two sample
problems.

3. An algebraic framework

3.1. Semirings-the algebraic path problem

The two systems of equations (1)-(1') and (2) have a similar structure:

n

Xi} = EB (ail ® Xli)' for i 1= j, and
k=l

(3)

In the case of the shortest path problem, EB denotes max, ® denotes +, and CD
denotes 0, and in the second example problem, EB denotes u, ® denotes product
(concatenation), and CD means {e}. "~=1" is a notation for the EB-sum of a sequence
of elements, analogous to L~=l.

The algebraic structure which is behind these two operations is a semiring (S, EB, ®),
i.e., a set S with two binary operations EB and ®, which fulfills the following axioms:

(Ad (S, EB) is a commutative semigroup with neutral element @:

aEB b = bEBa,

(a EB b) EB c = a EB (b EB c),

aEB@=a.

(A2) (S, ®) is a semigroup with neutral element CD, and @ as an absorbing
element:

(a ® b) ® c = a ® (b ® c)

a®CD = CD®a = a,

a®@=@®a=@.

(A3) ® is distributive over EB:

(a EB b) ® c = (a ® c) EB (b ® c),

a ® (b EB c) = (a ® b) EB (a ® c).

We shall now discuss why these axioms are natural assumptions for any path
problem. EB must be commutative and associative, because the sum ~=1 in
equation (3) must be independent of the order of the operands. ® is the operation
by which the weight of a path is computed from the weights of its arcs, and we

162 Giinter Rote

require the op6ration to be associative.

w«vo, Vi> ••• , v,» = aVovl ® aVIv, ® ... ® aVz_lvz·

CD is the weight of the empty path. What we want to compute is, in terms of the
semiring, the $-sum of the weights of all paths from ito j:

Xu = E9 w(p)
pisapath
fromitoj

(4)

In this formulation, the problem is called the algebraic path problem. However, this
formulation contains an infinite sum. This raises questions of "convergence", which
fall outside the realm of classical algebra. Thus, we shall mainly stick to the
formulation as a system of equations (3). Later, in section 4.3, we shall also work
with the interpretation of Xu as a sum of paths.

We have implicitly used (left) distributivity in the derivation of the equations (1),
(2), and (3), when we have expressed the sum of the paths from i to j whose first arc
is (i, k) as aile ® Xlj.

The axioms regarding @ are not essential, since a semiring without @ can always
be extended by adding a new zero element according to the axioms, like the element
00 in the shortest path problem. Thus, we shall not insist that there is always a zero
element. (The axioms regarding the existence of CD could also be omitted w. 1. o. g.,
but it requires a trickier construction to show this.) We shall denote the product of
an element with itself by the power notation

all = a ® a ® ... ® a (k times)

with the usual convention aO = CD. Also, for better readability, we shall often omit
the multiplication sign ®, from now on.

3.2. Types of semirings, ordered semirings

The examples of semirings which we will encounter belong mostly to three main
groups:

1. (S, ®, S;) is a linearly or partially ordered semigroup (with neutral element CD),
and $ is the supremum or infunum operation (the maximum or minimum
operation; in case of a linearly ordered semigroup).

An ordered semigroup is a semigroup with an order relation which is monotone
with respect to the semigroup multiplication:

a S; b and a' S; b' ::;. a ® a' S; b ® b' .

When $ is dermed in this way, it is clearly an associative and commutative
operation. The above monotonicity property translates into distributivity. If
necessary, we must add a smallest (or largest, resp.) element @.

In the example of shortest paths, the order S; was just the usual order for real
numbers, and $ was the minimum operation; in the second example, the order

Path Problems in Graphs < 163

relation is set inclusion, and EB is the supremum (least upper bound) with respect
to this order.

Another possibility to characterize this class of semirings is that the idempotent
law holds for EB:

aEB a = a.

For this class of idempotent semirings, the relation defined by

a~b<¢>a(jJb=b (5)

is a partial order. Thus, we can either start with an ordered semigroup and define
EB as the supremum operation (if the supremum exists always), or we can start
with an idempotent semiring and define the partial order by (5). In both cases
we get the same kind of algebraic structure.

2. (S, EB, ®) is a ring, or a subset of a ring. Examples are the field of real numbers
(IR, +, .) with ordinary addition and multiplication, or any subsemiring of the
reals, like the natural numbers. For these cases, equation (3) has a closer connec
tion to conventional linear algebra.

3. The elements of S are sets of paths, of path weights, or the like. An example which
we have already encountered is the set of words which leads a finite automaton
from one state to another. Here, what we deal with are not sets of paths, but sets
oflabel sequences that correspond to paths. Usually, EB is the union operation,
and thus these semirings fall also under the first category, since they are ordered
by the set inclusion relation.

A semiring (S, EB, ®) with a partial order relation ~ which is monotone with respect
to both operations is called an ordered semiring (S, EB, ®, ~):

(a ~ b and a' ~ b') => a EB a' ~ b EB b' and a ® a' ~ b ® b' .

All semirings of the first type are ordered semirings, but there are also several
examples from the second class, like the non-negative real., (IR+, +, ., ~) with the
usual order.

We say that (S, (jJ, ®, ~) is ordered by the difference relation, or naturally ordered,
if

for all a, b E S: (a ~ b<¢>there is a Z E S such that a EB Z = b). (6)

When EB is the min or inf operation of an ordered semigroup, the relation ~ must
simply be reversed in order that this definition makes sense. With this proviso, all
natural examples of ordered semirings that arise in applications are ordered by the
difference relation.

3.3. Matrices

The (n x n)-matrices over a semiring S form another semiring if matrix addition
and matrix multiplication are defined just as usual in linear algebra: If A = (aij) and
B = (bij) then A EB B = C and A ® B = D, where

164 Giinter Rote

and

(snxn, $, ®) is a semiring. The zero matrix is the matrix whose entries are all @,
and the unity element is the unit matrix I with (D's on the main diagonal and @'s
otherwise.

Thus, we may rewrite equation (3) in matrix form as follows:

X=I$AX. (7)

A symmetric variation of this equation can also be derived by splitting the possible
paths from i to j according to their last arc:

x = I$XA. (7')

4. Direct solution procedures (elimination algorithms)

We are looking for a solution to the matrix equation (7). If we hope to find a solution
for (n x n)-matrices we must surely be able to solve the case of (1 x I)-matrices, i.e.,
of scalars. Thus, we look at the following equation, the so-called iteration equation:

x=(D$ax. (8)

Let us consider what this equation amounts to in the two examples that we have
dealt with in the beginning.

x = min{O,a + x}

For a> 0, there is a unique solution x = O. For a = 0 the solution ofthis equation
is not unique: any x :::;; 0 is a solution. For a < 0, there is no solution.

Correspondingly, the system of equations (1)-(1') need not have a unique solution,
or it can have no solution at all. For example, if we add an arc (2,4) oflength 1,
then the column vector (X13,X23,X33,X43) of the updated matrix X of shortest
distances can be changed to (-100, -104, -105, -105), and we still get a solution.
It can be shown that this ambiguity of the solution occurs exactly if the graph
contains a cycle of weight O. In our case, this is the cycle (1,2,4, 1).

If we reduce the length of the new arc (2,4) to 0, then no solution fulfills (1)-(1')'
The reason is that the graph contains a cycle of negative weight, and hence the
shortest paths are undefined. We can remedy this situation by adding a new element
-00 to the semiring. This element solves (8) for a < O. The result xij = -00 means
then that there are arbitrarily short paths from i to j.

In the semiring of formal languages, we get

x = {s} ua·x.

Path Problems in Graphs 165

This equation always has a solution, namely the set

a* = {e} u a u a2 u a3 u ... ,

which consists of all words which are concatenations Wl W2 ••• WI of an arbitrary
number of words Wi E a.

In general, we denote the solution (or some solution) of (8) by a*, and correspond
ingly, we denote the solution of the matrix equation (7) by A*. Semirings in which
a* always exists are called closed semirings.

If we repeatedly substitute the expression for x in (8) into the rigl)t-hand side,
starting with (8), we get

x=CD@ax

= CD @ a(CD @ ax) = ... = CD @ a $ a2 $ a3 $ a4 @ ...

If this sequence remains stable after a finite number of iterations, then the sum is a
solution of (8).

By multiplying (8) from the right side with any element b E S, we obtain that if x = a*
solves (8) then y = a*b is a solution of the more general equation

y = b$ ay. (9)

4.1. An elimination procedure-Gau'p-Jordan elimination

In this section we shall derive a solution of (3) or (7) by purely algebraic means,
namely by successive elimination of variables, very much like in solving ordinary
systems of linear equations. Since the intuition for what is actually going on during
the solution process may get lost when we write the procedure in full generality, we
will first illustrate the method with a specific example. Later, in section 4.3, we will
see that the coefficients that arise in the elimination process can be interpreted in a
different way, namely as sums of certain subsets of path weights.

When we look at equation (3), we can see that the column indexj of the unknowns
Xij is the same for all variables which occur in one equation. This means that the
system (3) consists really of four decoupled systems of equations, one for each
column of X. A column of j represents the sums of paths from all vertices to the
vertex j. Similarly, an equation system for a row of X, i.e., for the paths starting
from a fixed vertex i (the single-source path problem), can be obtained from (7').

Let us take a closer look at one specific system, say, for the third column of a
(4 x 4)-matrix:

X l 3 = all x 13 @a12x 23 $ al3x 33 @ al4x 43

X23 = a2l x l3 @a22 x 23 $ a23 x 33 $ a24x43

X33 = a3l Xl3 $ a32x 23 $ a33 x 33 @ a34x43 $ CD
X43 = a4l x 13 $ a42x 23 $ a43 x 33 $ a44x 43

(10.0)

166 Giinter Rote

The quantities 'aij are the given data, and the Xi3 are the unknowns. This is very
much like an ordinary system of equations, except that the unknowns appear on
both sides: They appear explicitly on the left side, and implicitly on the right side.
The iteration equation (9) is the paradigm for handling this situation in the case of
one variable: Note that the first equation has the structure

X13 = aXl3 $ b,

with a = au and b = a12x23 $ a13x33 $ a14x43' If we assume that a* exists, then
we know that X l 3 = a*b is a solution of the above equation, and thus we get an
explicit expression for Xl3:

Xl3 = a! 1 (a12 X23 $ al3 x 33 $ al4X43)

= a!l a12 X23 $ a!lal3 X33 $ a!lal 4 x 43

Substituting this into the other equations and collecting terms, we get a new system:

Xl3 = aWx 23 $ aWx33 $ a\llx43

X23 = aWx 23 $ aWx 33 €a a~llx43

X33 = aWx 23 $ aWx 33 €a a~llx43 €a <D
X43 = aWx 23 $ a!ljx 33 €a a~1J.x43'

where the new coefficients a1J) are defined as follows:

aW = a!lalj , forj> 1,

a1J) = alj €a ail a! I alj' for i =F 1 ,j > 1.

(10.1)

Let us summarize what we have done in order to eliminate X13: First we have used
the equation where X l3 occurs on both sides for obtaining an explicit expression of
Xl3 in terms of the other variables. This was done by solving the iteration equation.
Then we have used this explicit expression for substituting X13 in all other places
where it occurred.

The four equations of the last system fall in two groups: The first equation is the
explicit expression for X13 ; the remaining three equations form an implicit system
for the other three variables X23' X33 ' and X43' which has the same structure as the
original system, but one variable less.

Thus we can repeat the elimination process in essentially the same way as we have
begun it: We eliminate X23 from the second equation, assuming that (aW)* exists,
and substitute this into the other three equations. We get a new system (10.2), which
looks like (10.1) except that X23 does not appear on the right-hand side and the
superscripts are (2) instead of (1). The elimination of X33 is a bit different, because of
the <D on the right-hand side. We get

X33 = (aW)*(a~2lx43 $ <D)
- (a(2»*a(2)x ~ (a(2»* - 33 34 43 Q7 33 •

When we substitute this into the other equations, we get a constant term in all
equations:

Path Problems in Graphs

X13 = aW 61 a\31x43

X23 = a~31 61 a~31x43

X33 = aW 61 a~31x43

X43 = a~l 61 a~lx43

The new coefficients are determined by the following recursions:

a!fl = (aW)* ,

aW = aW(a~l)* ,

aW = (aW)*aW,

a~J> = alP 61 aW(aW)*aW '

for i f= 3,

forj> 3,

for i f= 3, j > 3.

167

(10.3)

For reasons which will become clear later, we regard the constant terms as the third
column of the coefficient matrix. In the remaining elimination steps (there is only
one more to follow), this column will remain, whereas the remaining columns will
be successively eliminated.

So we finally eliminate X 4 3 from the last equation, and we are left with the explicit
solution

with

X13 = a\41

X23 = a~~

X33 = a~41

X43 = a~~

a~4J = (a~l)* ,

a\!> = all>(a~l)* ,

(10.4)

for i f= 4.

The purpose of this calculation has been to make it clear that the solution of the
matrix iteration X = AX 611 (equation (7)) can be reduced to n solutions of the
scalar iteration x = ax 61 <D for the pivot elements a = all' a~ld. aW, a~l. The
remaining steps in the derivation were merely substitutions of variables and appli
cations of the semiring axioms (distributivity, etc.) which pose no problems.

Let us summarize in a general way the equations that we have obtained. In the
above example, the column index of the solution was I = 3. The index k denotes the
step number. We denote the elements of the original coefficient matrix by a\J> = aij.

n

Xii = E9 aIJ>xj/,
j=k+l

n

Xu = E9 al,>xj, 61 <D,
j=k+l

n
_ ill (k> I'l"\ (k> Xi/- W aij Xj/~ail ,

j=k+l

for 0 ~ k < I, i f= I,

for 0 ~ k < I, (11)

for I ~ k ~ n,

168 Giinter Rote

The formulas for the coefficients a\~) were as follows:

ak~ = (akt- l »* ,

a\~) = a\~-l)(akt-l»* ,
ak~ = (a~t-l»*a~~-l),
al~) = alrl) ED al~-l)(a~t-l»*a~~-l) ,

for i =f. k,

for j =f. k,

for i =f. k,j =f. k.

(12)

When we compute only a column Xii of the solution, for fixed 1, as in our example,
we actually carry out the recursions for ak~ and a\~) only for k = 1, and the recursions
for ak~ and al~) only for j > k and for j = 1 < k. Observe, however, that the above
recursions are the same for all columns I, as far as they overlap for different columns.
Thus, when we want to determine the whole matrix X we get just the above
recursions, and the final result is

(13)

We get this by setting k = n in (11), whereas for k = 0 we get the original system (3)
or (10.0). The nice thing about all these equations is that they can all be interpreted
as equations between sets of paths. We will do this in section 4.3.

We can cast our recursion into an algorithm, in which we can omit the superscripts
(k) from the variables. We start with the given array aij and modify this array step
by step until the final solution alj) is obtained. This algorithm corresponds just to
the GauS-Jordan elimination algorithm of ordinary linear algebra, and hence it
carries this name.

GauS-Jordan elimination algorithm for
the solution of the equation X = AX + I
for k from 1 to n do begin

(* Transformation of the matrix A(k-l) into A(k): *)
akk := (akk)*;
for all i from 1 to n with i =f. k do
for all i from 1 to n with i =f. k do

for all j from 1 to n with j =f. k do
for all j from 1 to n with j =f. k do

end;

aij := aij ED aik ® akj ;

akj := akk ® akj ;

We get a variation of this algorithm if we do not substitute the explicit value for a
variable in the equations preceding the current one, only in the following ones. The
resulting system for our example would look as follows:

X13 = aWx 23 EB aWx33 EB aW x43

X 23 = a~21x33 EB a~lx43

a~31x43 EB a~31

a~41

Path Problems in Graphs 169

The system can now be solved in one backsubstitution pass, starting with the last
equation. This method corresponds to GauBian elimination in ordinary linear
algebra.

4.2. Theorems about the solution of the elimination algorithm

We can summarize the results of the preceding section as follows:

Theorem 1. If, for all pivot elements a = a}.'k-l) of the algorithm, a* is a solution of
x = CD $ ax, then A(n) is a solution of X = I $ AX. •

Note, however, that the converse of this statement is not true: The GauS-Jordan
elimination algorithm may fail although a solution exists. This situation is known
from ordinary matrix inversion. There, one cannot always take the next diagonal
element as pivot.

We may ask under what conditions the solution of the matrix equation is unique.
The following theorem, which follows readily from the elimination algorithm, gives
an answer:

Theorem 2. If, for each pivot element a = a~1-1) in the algorithm, a*b is the
unique solution of x = b $ ax, for all b E S, then A(n) is the unique solution of X =
I$AX.

Proof We have to review how the algorithm obtains the solution (10.4) from the
original system (10.0). It does so by a sequence of transformations. In going from
(lO.k - 1) to (lO.k), we solve one iteration equation Xk3 = a~1-1)xk3 $ b. Under the
assumption ofthe theorem, the resulting equation Xk3 = (a~1-1»*b is an implication
of the iteration equation. The remaining equations of (lO.k) are derived by sub
stitution and rearrangement of terms and are therefore also implied by the given
equations.

Thus, the final equations (lO.n) are implied by the original system, and therefore
they represent the unique solution. •

Note that we must require uniqueness of the solution of x = b $ ax for all b, since
whenever we solve an equation of this form during the elimination process, a is a
number that we have computed, whereas b is an expression which still involves
other unknowns.

For the case of shortest paths, this means that the solution is unique as long as no
a~1-1) is O. On the other hand, we have seen that, when the graph contains cycles of
zero length, a solution need not be unique. In those cases, it is nevertheless desirable
to get a specific solution. In the case of the shortest path problem, the greatest
solution is the desired solution, since it can be shown that it actually represents the
lengths of shortest paths. Thus, we may ask ourselves whether an analog of the
above theorem holds for this case, i.e., whether we actually get the greatest (or
smallest) solution of X = I $ AX, if we make sure that a*b is always the greatest
(or smallest) solution of x = b $ ax.

170 Giinter Rote

The following theorem shows that a somewhat weaker statement is true. We
formulate it in terms of the smallest solution. One gets an analogous theorem for
largest solutions by substituting "smallest" by "largest" and "2'::" by "=:;".

Theorem 3. Assume that we have an ordered semiring. If, for each pivot element
a = a~~-l) in the algorithm, y = a*b is the smallest solution of y 2':: b Ea ay, for all
be S, then A(n) is the smallest solution of X = I Ea AX.

Proof We write 2':: instead of = in all given equations (10.0) and in all equations
(10.k) that are derived during the elimination process. Then, as in the proof of
theorem 2, each derived inequality is an implication of the preceding inequalities:
For the solution of the iteration equation, this follows from the assumptions of the
theorem; for the substitution of the lower bound for this variable in the other
inequalities, this follows from the monotonicity of the Ea and ® operations. Since
the final inequalities read X 2':: A(n), we have the desired result. •

Hthe semiring is ordered by the difference relation (see (6» we get a result completely
analogous to theorem 2, where the" 2'::" in the preceding theorem is replaced by
"=". In fact, the following theorem strengthens theorem 2:

Theorem 4. Assume that we have a semiring which is ordered by the difference relation.
If, for each pivot element a = a~-1) in the algorithm, x = a*b is the smallest solution
of x = b Ea ax, for all b E S, then A(n) is the smallest solution of X = I Ea AX.

Proof Let a be one of the pivot elements of the algorithm. In order to reduce this
theorem to the preceding one, we only have to show that a*b is the smallest solution
of y 2':: b Ea ay, for any b.

Let y be a solution of the inequality y 2':: b Ea ay. Since the semiring is ordered by
the difference relation, we may write

y = (b Ea z) Ea ay,

for some z (see (6». By the assumption of the theorem, a*(b Ea z) is the smallest
solution of this equation, and hence

y 2':: a*(b Ea z) 2':: a*b Ea a*z 2':: a*b.

The last inequality follows again from the definition of the difference relation. •

Theorems 3 and 4 answer a question posed by Lehmann [9]. The requirement of
theorem 4 that the semiring be ordered by the difference relation cannot be omitted
completely, as can be shown by a suitable counter-example.

4.3. An interpretation with sets of paths

In this section, we shall give a different interpretation to the equations derived in
section 4.1: We shall interpret the coefficients as sums of path weights. These sums
are in general infinite. However, in order to avoid the technicalities which are
involved in dealing with infinite sums, we shall take a naive approach and assume

Path Problems in Graphs 171

that all infmite sums exist. In any case, the following considerations can at least be
taken as heuristic support for the equations ofsection 4.1.

The quantity Xii represents the sum of the weights of all paths from i to I. We can
partition the set of all paths into disjoint subclasses according to some criterion,
e.g., according to the first vertex j on the path whose number is greater than i. The
paths in one subclass can be split into two subpaths in a unique way, e.g., at this
vertexj. By considering all possibilities how this can be done, we get an expression
for Xii in terms of certain sums of subpaths.

To be more specific, we define a family of sets of paths as follows: We assume that
the vertices are numbered from 1 to n. For 1 ::;;; i,j::;;; nand 0::;;; k::;;; n, Pi~kl denotes
the set of paths from i to j whose intermediate vertices belong to the set {1, 2, ... ,k}.
The intermediate vertices of a path (i = VO, V l , ••• , VI = j) are all vertices except the
first and the last one. In the case of the empty path (i) we count i as an intermediate
vertex; thus, (i) is contained in PiVl but not in p;~i-1l.

We shall give the following interpretation of the coefficients a~l that arise in the
elimination algorithm:

a\Jl = E9. w(p).
peP1~)

For k = 0, we get the initial values a\Jl = au' which is correct because PbOl contains
only the arc (i, j), if it is part ofthe graph. Starting from k = 0, the truth of the above
expression for a\Jl can be verified by induction, using the recursions (12). We start
with the simplest formula in (12), a~~ = (a~-ll)*. A path in plJl must start at k and
end at k. In the meantime, it can pass arbitrarily many times through k. When we
cut the path into pieces at these intermediate vertices k, we get 1 ~ 0 partial paths
which are members of l1~-ll. The expression (a~t-ll)1 is the sum of all paths which
contain exactly 1 + 1 occurrences of k (including the first and the last occurrence).
Thus, the expression

(a~-l)* = CD €a a~-l) €a (a~-ll)2 €a ... €a (a~~-:»I €a ...

accounts for every path in P~~) in a unique way. On the other hand, it is easy to see
that every path weight contributing to the expression on the right-hand side
corresponds to the weight of some path in 11:).
Now, let us consider the second equation: a~l = a\~-ll(a~t-l»*, for i =F k. A path in
Pi~l can be split. in a unique way into the initial part from i to the first occurrence
of k (k must occur since it is the last vertex) and the remaining part. The first part
is in Pi~-l), and the remaining part is accounted for by (a~t-l»*. The third equation
follows by a symmetric argument (splitting at the last occurrence of k instead of the
first occurrence).

The last case a\J) = altll €a al:-l)(a~-l»*a~~-ll, for i,j =F k, is also straightforward.
The difference to the previous case is, that a path in Pbk) need not go through k at
all. This is taken into account by the term altl).

Using the previous arguments as inductive steps from k to k + 1, we finally arrive
at alj) = Xii' because Pbn) is the set of all paths from i to j (cf. (13».

172 Giinter Rote

Next, we shall consider the equations (11) containing the "unknowns" Xii and the
"coefficients" a!f). In this context, the difference between coefficients and unknowns
is immaterial, since we interpret both as sums of path weights.

Let us interpretthe first equation in (11): Xii = ffij=k+l a~)xj" for 0 ::;; k < I and i =F I.
The left side represents all paths from from i to I, for some i =F t. Such a path must
contain at least one intermediate vertex whose number is greater than k, because
the last vertex I is greater than k. Let j be the first intermediate vertex along the path
which is greater than k, and split the path into two parts at this vertex. The first
part of the path from i to k contains no intermediate vertex greater than k, which
is reflected in the superscript of the expression a~). The second part of the path can
be an arbitrary path from k to I. Thus the product a~)xj/ is the sum of the weights
of all paths from i to I whose first intermediate vertex which is greater than k is j.
The vertex j can be any vertex between k + 1 and n, and thus every path from i to
I is represented in a unique way on the right-hand side.

The second equation in (11) differs from the first one only by the additional <D on
the right-hand side, which accounts for the empty path in PAn). The third equation:
Xii = ffij=k+1 a!J)xj/ $ a!~), for k :2: I, differs from the first one in the additional term
a!~). This term accounts for the fact that a path from i to I need not certain an
intermediate vertexj whose number is greater than k: The paths which contain no
intermediate vertex greater than k are exactly the paths whose weights sum to a!¥).

4.4. Block decomposition methods

As in the case of real matrices, we can decompose a matrix into blocks and carry
out the computations blockwise, as with scalar matrices. For example, when we
decompose into 4 blocks, the equation X = AX $ I becomes

(~~: ~~:) = (~~: ~~:) ® (~~: ~~:) $ C~l I~J
We assume that all diagonal blocks Xii and Ali are square. 1u and 122 are unit
matrices of the appropriate size.

We can apply the elimination algorithm for this block equation without change.
The main difference is that the iteration equation X = AX $ B which is used to
eliminate a variable Xi} from the right-hand side is now itself a matrix equation'
instead of a scalar equation, and the problem of determining A * is of the same type
as the original problem, but of smaller size, however. This opens the possibility for
recursive divide-and-conquer solution strategies.

Let us look at the above decomposition into 2 x 2 blocks and apply the GauB
Jordan algorithm for n = 2.

1. AW:= (Au)*; 5. X22 = AW:= (AW)*;

2. AW:= A21 AW;

3. AW:= A22 $ AWA12 ;

4. AW:= AWA12 ;

6 X - A(2) .- A(lIX .
. 12 - 12·- 12 22,

7. Xu = AW := AW $ X 12AW;

8. X 21 = AW:= X 22 AW;

(14)

Path Problems in Graphs 173

We will consider two opposite possibilities for the partitioning strategy: decom
position into equal-size blocks of size approximately (nI2) x (nI2), and partitioning
into one block of size (n - 1) x (n - 1) and a scalar.

For the first choice, the above program shows that a *-operation for (n x n)
matrices can be reduced to six multiplications, two additions and two *-operations
on matrices of size (nI2) x (nI2). By using the reduction recursively, one can derive
the result that an O(nC)-time matrix multiplication algorithm for the semiring, with
any fixed exponent c ~ 2 leads to an algorithm for computing the *-operation with
the same asymptotic time complexity (cf. Abo, Hopcroft, and Ullman [2], section
5.9).

The other possibility, where All consists ofthe first n - 1 rows and columns of A
and A22 is just the element an", corresponds to the escalator method for inverting
a matrix, which adds one column and one row at a time until the whole matrix is
inverted. A21 is the last row and A12 is the last column of the matrix. (All)* is the
matrix (a~rl»l!>i,j!>n-l whose elements correspond to subsets of paths in the graph
with vertex n deleted. If we continue the above decomposition recursively, we get
the following algorithm for computing A*. Since the recursive step, the evaluation
of At I' comes right at the beginning of the algorithm, it is easy to write the algorithm
without recursion. For easier reference, we have numbered the steps as in the
algorithm above.

Escalator method for the solution of the equation X = AX ~ I

for k from 1 to n do begin
(* Transformation ofthe matrix (bij) = (a~tl»l!>i,j!>"-l *)
(* into the matrix (aIJ)h !>i,j!>'" *)
1. (* AW is already given. *)
2. for j from 1 to k - 1 do b,.j := ~.:-l a"ibij;
3. bkk := a"" ~ &'.:-l b,.zaz,,;
4. for i from 1 to k - 1 do bik := ~:l bljaj,,;
5. b",,:= (b,.,,)*;
6. for i from 1 to k - 1 do bik := bl"b,.,,;
7. for i from 1 to k - 1 do

for j from 1 to k - 1 do
8. for j from 1 to k - 1 do

end;

bi} := bi} ~ bik ® b,.j;
b,.j := b,."b,.j;

Note we have used a different array (bi}) for the result variables, because otherwise
the k-th row and column would be overwritten while they are being used in steps
2 and 4. Thus the final result is contained in (blj), whereas the original data (aij)
remain unchanged.

In the case of the shortest path problem, this algorithm is known as the algorithm
of Dantzig. There, steps 6 and 8 can be omitted because b"k is always zero, and step

174 Giinter Rote

5 reduces to a sign test. Moreover, since the semiring is idempotent, we do not have
to differentiate between the matrices (aij) and (bij), because it does not matter if
elements of A are overwritten.

The recursions of this algorithm can also be interpreted as equations between sets
of paths, like in section 4.3. In order to see this, we have to add the correct
superscripts. Expressions without superscripts, like aki denote the initial values of
these variables: aki = a~Y). Since we have the explicit superscripts, we write a again
instead of b:

2 a(k.-1) = ~-1 a .a(~-1) for]' < k' Since a path in p'(~-1) must contain at least one • k} 'CDi=1 k. Ii" k}

arc, we can partition this set of paths according to the first vertex i which comes
after the start vertex k.

4. al:-1) = ~:t a~-1)ajk' for i < k: This is symmetric to 2.
3 (k-1) .m ffi/c-1 (k-1) Thi' . it h' h . akk = akk Q7 'CD1=1 akl alk: s IS Slm ar to t e preVIous case, except t at we

have to take the single arc (k, k) into account.

The remaining recursions:

5. a~~ = (a~-1)*;
6. a~) = a~-1)a~~, for i < k;
7. alJ) = alt1) €a al:) ® a~~-1), for i,j < k; and
8 a(k) = a(k)a(k.-1) for]' < k' 'k} kkk} , ,

are the same as in GauS-Jordan elimination.

There is also a three-phase algorithm which is analogous to LV-decomposition of
ordinary linear algebra (cf. Rote [13]). The top-down pass computes the matrix
L €a V, where L is a strictly lower triangular matrix defined by lil = alP, for i > j,
and lij = @for i ~j, and V is an upper triangular matrix with UI} = alr1), for i ~j,
and uij = @for i > j. then L* and V* are computed, with (L*)lj = alr1), for i > j,
and (V*)i) = alP, for i ~j. Finally, V* is multiplied with L*, yielding the result
matrix X = A*. The matrices in this algorithm fulfill the following relations:

A €a LV = L €a V (LV-decomposition)

V*L* = A*

All of these equations can be interpreted as path equations as in section 4.3.

4.5. A graphical interpretation of vertex elimination

We can view the elimination of a variable from the right-hand side of the equations
as the elimination of the corresponding vertex from the graph. This is shown in
figure 3. When a vertex k is removed, we must somehow make up for the paths that
have gone lost by this removal. Thus, for each pair consisting of an ingoing arc (i, k)
and an outgoing arc (k, j), we add a new short-cut arc (i, j). The weight of this
additional arc, which is meant to replace the piece incident to vertex k in every path
passing through k, reflects the paths that were lost: alka:kak}' If the arc (i, j) is already
present in the graph, we simply add this expression to its old weight.

Path Problems in Graphs 175

~1

Figure 3. Elimination of the vertex k.

On certain types of sparse graphs (Le., graphs with few arcs), GauBian elimination
can be carried out more efficiently by using a special ordering in which the variables
are eliminated. For example, using a technique called generalized nested dissection
due to Lipton and Tarjan [11], single-source path problems on planar graphs can
be solved in O(n3/2) steps (see also Lipton, Rose, and Tarjan [10]). Flow graphs
from computer programs (cf. section 6.5) usually have a special structure: They are
reducible. There are specialized algorithms for solving path problems on these
graphs (cf. Tarjan [16]).

5. Iterative solution procedures

5.1. Matrix powers

Iterative algorithms are based on the connection between matrix powers and paths
of a certain length. In particular, if (AI)ij denotes the (i, j) entry of the l-th power
of the matrix A, then

and thus we get

(AI)ij = EB w(p),
pisapath
fromitoj
of length I

(1 E9 A EB A2 E9'" EB AI)ij = EB w(p).
pisapath
fromitoj

of length at most I

For many path problems, paths which are longer than some threshold play no role.
For example, in case of the shortest path problem, no path of length n or longer
can be a shortest path, and thus it suffices to compute 1 E9 A E9 A2 E9'" E9 An-i.
When the semiring is idempotent, such a sum can be evaluated by successively
squaring the matrix (I E9 A). By the idempotence law, we get

(I EBA)I = 1 E9 A E9 A2 E9 ... E9 AI.

Thus, if we square the matrix (I E9 A) rIog2(n - 1)1 times we get a matrix power
(/ E9 A)I with 1 ;;::: n - 1, and thus this is the matrix of shortest distances.

176 Giinter Rote

5.2. Jacobi iteration and Gauj-Seidel iteration

When we want to compute only one row or one column of the matrix X, (i.e., we
want to solve the single-source path problem), we can simply look at this row of
the system (7') or at this column of the system (7). For columnj the corresponding
system reads:

(15)

ej denotes the j-th column of I, i.e., the j-th unit vector. One can view this equa
tion, which defmes the vector x in terms of an expression involving x, as a
recursion which defines a sequence x[O], X[l], X[2], ••• of successive approximations
of x:

x[O]:= e.
J

XII] := ej E9 AX[/-l] , for I ~ 1.
(16)

Any fixed point of this iteration is a solution of (15). By induction one can show
that

i.e., XII] is the j-th column of the matrix on the right-hand side. In the case of the
shortest path problem, this means that the elements xii] are the lengths of shortest
paths among the paths which contain at most I arcs. By the results of the previous
subsection we conclude that, in case of the shortest path problem, x[n-l] is the j-th
column of the shortest path matrix X.

We can simply iterate the recursion (16) until it converges, i.e., until two successive
vectors are equal. If the iteration does not converge after n steps, we know that there
is a negative cycle. If the iteration converges and the semiring is ordered by the
difference relation, the resulting solution is the smaHest solution (the least fixed
point) of the iteration (cf. theorem 4).

This algorithm corresponds to the Jacobi iteration of numerical linear algebra.
GauS-Seidel iteration is a variation of this method. There, when the elements of the
vector X[/] are computed one after the other, they are not computed from the old
values of x[I-l], as in (16), but the new elements of xII] replace the corresponding
entries as soon as they are computed. It can be shown that, in the case of idempotent
semirings, this modification preserves correctness of the algorithm, and, more
over, the GauS-Seidel algorithm never needs more iterations than the Jacobi
algorithm.

In contrast to elimination algorithms, these iterative algorithms do not require both
(left and right) distributive laws. For example, for the column iteration (16) described
above, only the left distributive law a(b E9 c) = ab E9 ac is required. An example of
a semiring where only one of the distributive laws holds occurs in the computation
ofleast-cost paths in networks with losses and gains (cf. Gondran and Minoux [6],
section 3.7).

Path Problems in Grapbs 177

5.3. Acyclic graphs

When the graph G = ('v, A) on which we want to solve our path problem is acyclic,
one can order the vertices in such a way that an arc (i,j) can only exist if i < j. In
this case, the matrix entries, aij are zero for i ~ j and the matrix A is (strictly) upper
triangular. Then one can solve the system (3) in one pass by computing the solution
Xij in the order of decreasing row indices i. Thus, one column of X can be computed
in 0(1 VI + lAD time. Similarly, one can compute one row of X in linear time by
considering the system (7').

5.4. The Dijkstra algorithm

In some cases, specialized algorithms can solve path problems more efficiently. The
single-source shortest path problem in graphs with non-negative arc lengths can be
solved efficiently by the algorithm of Dijkstra. This algorithm can be generalized
to semirings which come from a linearly ordered semigroup in which <D is the largest
element (see the examples in section 6.4.1). The algorithm works by a clever choice
of the vertex to be eliminated next. This is somehow analogous to elimination
algorithms in linear algebra which use pivoting.

6. Further applications

In this last section, we shall present a selection of examples from different areas
which can be interpreted and solved as path problems.

In the first three parts of this section, we shall consider problems which involve the
field (IR, +, .) or a subset of it. Then we shall deal with optimization problems; and
we shall return to the discussion of finite automata from section 2.2. Finally, we
shall present some examples of "non-standard" semirings, which occur in data flow
analysis of programs and in two graph-theoretic problems.

6.1. 1 nversion of matrices

When the semiring is a field, equation (7) can be rewritten as (1 - A)X = 1, or
X = (1 - A)-l if the matrix 1 - A is invertible. Then the elimination algorithm
corresponds exactly to the GauS-Jordan algorithm of linear algebra (without pivo
ting). The only difference is that we get the inverse of 1 - A and not the inverse of
A. This is reflected in the pivoting operation, where we set a~'2 := (a~t-l»)* = 1/(1 -
a~t-l») and not a~'2 := 1/a~t-l).

This problem has originally nothing to do with path problems. We can just pose
the equation (7) without reference to a particular graph or to sums of path weights.
Nevertheless, the matrix A* = (1 - Ar1 has some significance for path problems,
as is exemplified in the following two subsections.

178 Giinter Rote

6.2. Partial dijferentiation

Many numerical problems, like finding the minimum of a function lover some
domain, can be solved more efficiently if the algorithm has access to the derivative
of f When the function I can be written as a simple expression of one variable,
computing the derivative is no problem, but when I(Zl""'Z,,) is a function of
several variables, which is computed by a complicated program involving loops and
conditional branches, the computation of all partial derivatives OI/OZl' OI/OZ2, .•. ,
ol/oz", seems to be a difficult task. Therefore, one used to resort to methods which
do not require the derivatives, or they differentiated numerically, which presents
new problems of numerical stability.

In this section, we show how the problem of computing the partial derivatives can
be solved efficiently as a path problem in a graph, by applying the chain rule.

The graph on which we will work is the computational graph of the function f I is
given by a program like the following two-line pr~am, which computes the real
root y = I(Zl,Z2,Z3) of the equation ziY = Z2Z3...!Y + z~:

y:= z2*Z3 + SQRT«zhz3),,2 + 4*Z1"2*Zr2);

Y := (y/(2 * z 1 "2»"2;

We can resolve this into a sequence of elementary operations, as follows:

1. a:=z2*z3; 5. e:= c*d; 9. y:= a + i;
2. b:=a"2; 6. g:= 4*t; 10. j:= 2*c;

3. c:= zl"2; 7. h:= b + g; 11. k:= y/j;

4. d:=zr2; 8. i := SQRT(h); 12. y:= k"2;

Imagine now that this sequence of elementary steps is executed. In the beginning,
the graph consists only of k isolated vertices which correspond to the input variables.
Each time a variable is assigned a new value, we add a new vertex to the graph, and
arcs from this vertex to the one or two operands of this elementary computation
(cf. figure 4). When one of the operands is a constant, we first gen~rate a vertex
corresponding to this constant. When a variable is assigned several values in
succession, we generate different vertices for each assignment (y and y in the
example).

In our case, the computational graph has a static structure, since it corresponds to
a straight-line prograni. However, we can also handle programs with loops and
conditional branches, since the computational graph is generated dynamically.

Now let us look at some vertex w with two outgoing arcs leading to vertices u and
v. Then we can determine OW/OZi by the chain rule:

ow ow ou ow OV
-=-'-+-'-
OZj OU OZj ov OZj

W is determined from u and v by some elementary operation, and hence ow/ou and

Path Problems in Graphs 179

c

Figure 4. A computational graph

iJw/iJu can be calculated directly from u, v, and w in a few elementary basic steps,
taking constant time. For example, if w = u/v, then iJw/iJ:: = l/v and iJw/iJv =
-u/v2 = -w/v. When we associate the value iJw/iJu with the arc (w, u) and the value
iJw/iJv with the arc (w, v), we can write the above equation as follows:

(17)

Here, awu and awv are numbers that can be calculated directly, and XWZ1 are the
unknowns representing iJw/iJzi • In figure 4, the arc weights are shown as small
numbers.

We can see that the problem of computing the unknowns is just an instance of the
path problem equation (3). In section 2, we have derived (3) starting from a path
problem (4). Now arguing in the reverse direction, we obtain:

Theorem 5. iJf/iJzi is the sum of the weights of all paths from f to Zi in the computa
tional graph, where the weight of a path is the product of its arc weights.

Since the computational graph is acyclic, we can compute iJu/iJv, for some fixed
vertex u and all other vertices v, or for some fixed vertex v and all other vertices u,

180 Giinter Rote

in time proportional to the number of arcs of the graph. Since each vertex has at
most two outgoing arcs, this is proportional to the number of vertices of the graph,
i.e., the number of steps of the algorithm for computing f Thus, in time which is
proportional to the time which the original program takes, we can

• compute of/oz;, for all input variables Zi, or
• compute ov/oz;, for all intermediate variables and output variables v, and for

some fixed Zi'

The second problem is solved by a bottom-up pass with a straightforward applica
tion of the chain rule (17). This case is interesting if we have a set of functions
fl(Zl"",Zk),f2(Zl"",Zk), .•. ,f,(Zl" ",Zk)' with 1 output variables of the program.

The first problem is solved by a top-down pass through the tree, starting from f A
drawback of this method is that the computational tree must be stored, and hence
storage requirement is also proportional to the time complexity of the original
program for computing f alone.

Computation ofthe Jacobi matrix (oii/oz) may take much longer than the original
program for computing only the 1 values ii, since kl values have to be computed. It
corresponds roughly to solving the all-pairs path problem.

We can also iterate the procedure for computing derivatives and compute second
order derivatives. Again, note that the time for the computation of the whole
Hessian matrix (o2f/oZiOZj) is also longer than the computation of f, by more than
a constant factor, since the Hessian has k2 entries. However, one can compute the
product of the Hessian matrix or the Jacobi matrix with a particular vector in time
proportional to the original number of steps of the program.

Note that, in the algorithm, we also determine partial derivatives of f with respect
to all intermediate variables. These values can be used to estimate the total rounding
error which has been accumulated during the computation of f. For more informa
tion, the reader is referred to the survey ofIri and Kubota [8], or to lri [7], Sawyer
[14], or Baur and Strassen [3].

6.3. Markov chains-the number of paths

When the matrix A is the (ordinary) adjacency matrix of a graph, i.e., aij is 1 if the
arc (i,j) exists and 0 otherwise, then the weight of every path is 1, if we use the ring
of integers (1:, + , '). Thus, xij represents the number of different paths from i to j.
Of course this makes sense only when the graph is acyclic, because otherwise there
will be infinitely many paths. On the other hand, from the considerations in section
5.1, we know that the power A' contains the number of paths of length I between
every pair of vertices.

A slight generalization of this is used in the theory of Markov chains. In a Markov
chain, there is a finite set {1,2, ... ,n} of states of a system, and the system changes
between states in a random way in discrete time intervals. The probability that the

Path Problems in Graphs 181

system is in state j at some step t depends only on the state of the machine at step
t - 1, and it is independent of t and of previous state transitions. Let au be the
probability that the system is in statej at step t if it was in state i at step t - 1. Then
the probability that a system passes through a sequence of states (Vo, VI"'" VI) is
the product avov, avl •vz ••• avl _Iv,' Thus the (i,j) entry of the matrix Al is the probability
that the system is in state j at step t if it was in state i at step t - I.

6.4. Optimal paths

6.4.1. Best paths

We have considered the shortest path problem as the first instance of a path
problem. There are several other problems, where the set S of path weights is linearly
ordered, and the weight of a best path is desired, i.e., Ee is the operation min or max.
Besides the shortest path problem, we have the following examples:

• Maximum capacity paths. The solution uses the semiring (~+ U { 00 }, max, min).
• Most reliable paths in networks with possible arc failures, where it is assumed

that arc failures of different arcs are independent. Here we use the semiring
([0,1], max, '). The entry a ij of the initial data matrix represents the probability
that the arc (i,j) is all right. We are looking for the path with the smallest failure
probability.

For the case of maximum-capacity paths, the all-pairs problem can be solved
more efficiently by constructing the maximum spanning tree.

The simplest kind of path problem arises when we only ask for the existence
of a path. Here we take the simplest non-trivial semiring, the Boolean semiring
with two elements ({O, 1}, max, min). aij is 1 if and only if the arc (i,j) exists, and xij
is 1 if j is reachable from i in the graph, i.e., the matrix X represents the transitive
closure.

In all cases mentioned above and in the following subsections, the algorithms can
be modified such that they will not only compute the weight of an optimal path,
but produce the optimal path itself. To achieve this, the algorithms must store how
the optimal path weight and each intermediate result was obtained. In some cases,
this can only be done at the expense of an increased storage requirement. We will
not discuss this in detail.

6.4.2. Multicriteria problems-lexicographic optimal paths

In many applications, paths are not selected according to one criterion, but accord
ing to several criteria. In the simplest case, we have a definite order of importance
between different criteria. This leads to lexicographic optimization problems.

Imagine that a traveler plans a car trip from one city to another. For each street
connecting two points i and j he knows the time tij to travel from i to j and the

182 Gunter Rote

amount of sprit Slj that his car needs for this distance. He wants to use as little fuel
as possible, but if there are several paths which are equal in this respect, he wants
to take the one which takes the shortest time.

Thus, he has a lexicographic preference relation :S on the set of vectors (s, t):

(Sl> td:s (S2, t2)<=>S1 < S2 or (S1 = S2 and tl :s; t2).

This is a linear order of the vectors (s, t) E R!. In the semiring, the operation $
is the lexicographic minimum, whereas ® is the ordinary elementwise vector
addition:

{
(S1' tl)' if S1 < S2

(Sl> td $ (S2, t2) = (S2, t2), if S2 < S1

(S1,min{t1,t2}), ifs l =S2·

(s1,td®(S2,t2) = (S1 + S2,t1 + t2)

One can even use a different ®-operation for the components. For example, imagine
that the trip goes through the desert. If several journeys have the same time and the
same fuel consumption; the traveler wants to select the safest trip among them, i.e.,
he wants his minimum safety reserve, below which his tank will never be emptied,
to be as high as possible. This means that the sprit requirement between any two
successive visits to filling stations on his journey should be as low as possible. Thus,
we have a different semiring, where ® is defined as

(S1,t1,sD®(S2,t2,S2) = (S1 + s2,t1 + t2,max{s~,s2}).

As before, $ is the lexicographic minimum operation (of three components, this
time).

Note however, that if the primary goal of our traveler is safety, whereas total fuel
consumption and time have second and third priority, the corresponding operation
®, in which the third component would come in the first place, would not yield a
semiring, because it violates the associative law. (The structure (R!, ®, :S) would
not be an ordered semigroup.)

If there is no clear preference between the objectives (offuel over time, or vice versa),
we can still eliminate from consideration a path which is worse than some other
path in both respects. What remains is the set of e.fJkient or Pareto-optimal
or minimal paths; i.e., we are looking for all path weights (s, t), for which there
is no other path with weight (s', t') such that s' :s; s and t' < t, or s' < sand
t' :s; t.

This problem can also be formulated as a path problem, with sets of pairs (s, t) as
elements of the semiring. The ® operation for sets is the elementwise ®-product
of the elements, and E9 is set union. However, after every operation, we can reduce
the resulting sets by throwing away pairs (s, t) which are not efficient. Since these
sets of efficient values can become very large, this approach is limited to small
problems.

Path Problems in Graphs 183

6.4.3. k-best paths

Another extension of the ordinary best path problem is the determination of the k
best different paths between every pair of vertices. We can solve this by a semiring
which operates on vectors of k elements. For simplicity we will assume that we want
to compute the k shortest paths in the ordinary sense, i.e., we are working with the
semiring (~oo, min, +). However, the underlying semiring for the corresponding best
path problem can be any semiring in which EB is the min or the max operation (cf.
the examples in the previous subsections). We are going to create a semiring
(sk, EB, ®), whose elements are k-tuples of S. The vector (a1 ,a2, ... ,ak) is meant to
represent the lengths of the best, the second-best, ... , the k-best path -in a certain
set of paths. The operations for the semiring are defined as follows:

• (al' a2,··., ak) EB (bl , b2, ... , bk) is the sequence of the k smallest values in the
combination (union) of the two given sequences.

• (al,a2, ... ,ak)®(bl ,b2, ... ,b,.) is the sequence of the k smallest values in the
(multi-)set of k2 elements {ai + bjli = 1, . .. ,k;j = 1, ... ,k}.

Note that a sequence (a l , a2, ... , ak) can contain repeated elements, which corre
spond to different paths with the same length. Moreover, addition in this semiring
is not idempotent. However, the order ofthe elements in the sequence is immaterial,
and thus we might just as well assume that they are sorted. Thus, by the way we
treat the sequences in sk, they are in fact multisets.

• CD = (0, 00, ... , 00) and @ = (00, ... ,00). The initial entries of the matrix are
(aij, 00, ... , 00), where aij is the weight of the arc (i,j). (Initially, the path (i,j) is the
only path from i to j that we know of. The second-, third-best, etc., paths do not
exist.)

• We have to define the *-operation, i.e., the solution of

x = (0,00, ... ,00) Et> a ® x. (18)

Let us assume that a = (a l , a2, ... ,ak) with al :$; a2 :$; ..• :$; ak. When we write x
as CD EB a EB a2 Et> ... , we see the following:

- If a l < 0, there is no solution, except perhaps (- 00, - 00, ... , - 00).
- If al = 0, we get x = (0,0, ... ,0) as the largest solution. However, any constant

vector x = (c, c, ... ,c) with c :$; ° is also a solution of (18). (These are not the only
solutions.)

- If a l > 0, there is a unique solution, which can be determined by looking at
equation (18): x = (X l ,X2' •.• ,xk) consists of the k smallest values in the (multi-)
set

{O}u{ai+xjli= 1, ... ,k;j= 1, ... ,k}. (19)

We see that the smallest element in this set is Xl = 0, since the elements of the
right-hand set of the union are all positive. Let us assume that we have deter
mined the I smallest elements of the set (19). X Z+l , the (I + I)-smallest element
of this set is the I-smallest element of the right-hand set. However, in order to
determine the I-smallest element of a ® x, we need only know the I smallest

184 Giinter Rote

elements o~ x, which we know already. Thus, we can successively determine
Xl' X2' ••• , Xk·

Let us discuss the complexity of these operations. $ can clearly be carried out in
O(k) time. The operation ® can also be carried out in (theoretical) O(k) time, using
a sophisticated algorithm of Frederickson and Johnson [5]. The determination of
a* as described above, which occurs only n times during the elimination algo
rithm, can be carried out in O(k log k) steps, using priority queues.

Note that we do not get the k best elementary paths by this approach; i.e., the paths
that we get can contain repeated vertices and arcs. The problem of finding the
k best elementary paths is considerably more difficult, but II1so for this prob
lem, algorithms which use the algebraic framework of path problems have been
proposed.

The k-best path problem is an example of a path problem where non-elementary
paths can have an influence on the solution. However, in case there are no negative
cycles, the longest path that has to be taken into account has kn - 1 arcs. (For a
longer path, one can construct at least k different shorter paths by successively
eliminating elementary cycles from the path.)

Thus, the iterative algorithms of section 5 should converge after at most kn - 1
iterations, unless there are negative cycles.

6.5. Regular expressions

For our second example from the beginning, the determination of the language
accepted by a finite automaton (cf. section 2.2), the elimination algorithm seems to
be useless, since the *-operation will probably very soon lead to infinite sets.
However, the algorithms provides us with a way to describe the language. In
order to explain this, we need one more definition: A regular language is a set of
words which is built starting from finite sets of words using only the operations
. (concatenation), u, and *. For example, e(fh*(fu {g, h}*»* u {e,ggg} is a regular
language. (Here, single words denote singleton sets.) Now the GauS-Jordan elimina
tion algorithm successively constructs a regular expression for each pair of states i
and j, which describes the language xij leading from i to j: It starts from the finite
sets aii' and as it proceeds, it uses only the operations·, u, and *.

Since the language accepted by the automaton is just the union of several Xii' we
have proved the following theorem:

Theorem 6. The language accepted by a finite automaton is regular. •
This is one half of Kleene's theorem about the equivalence of finite automata and
regular expressions. The other direction, the construction of a finite automaton
which accepts a given regular language, is even easier. Our proof by GauS-Jordan
elimination is in fact the standard proof of this result.

Path Problems in Graphs 185

6.6. Flow analysis of computer programs

When a compiler wants to optimize the code for a computer program, for example
by detecting common subexpressions or by moving invariant expressions out of
loops, it needs to know whether the value of an expression remains unchanged
between two uses of this expression. If this is the case, the expression need not be
evaluated the se~nd time.

In order to investigate this problem, for one particular expression f(z 1, ••• ,Zk) which
occurs in the program, we represent the program by its flow graph. The vertices
correspond to basic blocks of the program, i.e., blocks of consecutive state
ments with one entry point at the beginning and one exit point at the end. The arcs
indicate possible transfers of control between basic blocks. (This is similar to a
flowchart.)

The execution of a basic block may have one of the following effects on the value
off:

• It may generate J, i.e., the value of f is computed in the block and is available on
exit from this block.

• It may kill J, for example by assigning a new value to one of the input variables
Zh ... , Zk of f.

• It may leave f unchanged.

We give an arc (i,j) the label G, K, or U, depending on whether the value of f is
generated, killed, or left unchanged between the entry to block i and the entry to
block j, (i.e., during the execution of block i). In addition, we need an element @
for the arcs which are not present.

Now we can use the following semiring on the set {@,G, U,K}.

$ @ G U K ® @ G U K a a*

@ @ G U K @ @ @ @ @ @ U
G G G U K G @ G G K G U
U U U U K U @ G U K U U
K K K K K K @ G K K K K

U is the (D-element of this semiring. All semiring axioms hold. Note that in this
semiring the operation ® is not commutative. The operation ED is just the min
operation for the order K < U < G < @. This is typical of data flow problems,
because when we unite two sets of possible paths from i to j, we can only keep the
weaker information of the information that the two sets give about f.
To solve our original problem, let 1 be the start vertex of the program. We can
eliminate an evaluation of the expression f in block j if and only if x 1j is G.

Further examples of data flow problems and references can be found in Tarjan
[15].

186 Giinter Rote

0.7. Some graph-theoretic problems

The following examples are mentioned mainly as curiosities, in order to illustrate
the broad range of applicability of the path problem formulation. For each of the
problems, there are in fact linear-time algorithms to solve them directly.

The transitive closure of a graph, which also falls into this category, has already
been mentioned briefly in section 6.4.1.

Path problem formulations have also been proposed for problems of enumerating
elementary paths or cutsets of a graph. Such problems are exponential by their
output size alone. There the solution procedures by elimination algorithms can be
applied only to graphs of moderate size.

6.7.1. Testing whether a graph is bipartite

An undirected graph is bipartite ifit contains no odd cycle (i.e., no cycle containing
an odd number of edges). Since a cycle is just a special case of a path from a vertex
to itself, we can formulate this as a path problem. Let the weight of a path be E or ° according to whether its length is even or odd, and let the weight of a set of paths
be 0, E, 0, or EO, according to whether the set is empty, contains only even paths,
only odd paths, or paths of both types. Then we get the following semiring on the
four-element set S = {0,E,0,EO}:

ED 0 E 0 EO ® 0 E 0 EO a a*

0 0 E 0 EO 0 0 0 0 0 0 E
E E E EO EO E 0 E 0 EO E E
0 0 EO 0 EO 0 0 0 E EO 0 EO

EO EO EO EO EO EO 0 EO EO EO EO EO

We initialize the data matrix by setting aij = ° if the edge {i,j} exists and aij = °
otherwise. Then, if any Xii = ° or EO when the algorithm stops, the graph is not
bipartite; otherwise it is. (Of course, as soon as the element EO appears somewhere
in the matrix, we know already that the graph is not bipartite.)

We can also apply this algorithm to directed graphs and test for the existence of
paths of given parity. Using a generalization of this idea, one can find shortest
even paths or shortest odd paths, if one does not insist that the paths should be
elementary. One could even find a shortest path whose number of arcs is, for
example, congruent to 4 modulo 7, if one wishes to do so.

6.7.2. Finding the bridges and the cut vertices of a graph

A bridge in an undirected graph G = (V, E) is an edge whose removal causes some
connected component of G to break into two components. Similarly, a cut vertex

Path Problems in Graphs 187

or articulation point is a vertex whose removal causes some connected component
of G to become disconnected.

For finding bridges, we use the semiring (2E u {@},n,u), which operates on the
set of subsets of edges augmented by a zero element. n and u are the ordinary set
intersection and set union operations, except that their interaction with @ is
specified by the semiring axioms. As unity element we have <D = ~, and thus the
*-operation presents no problem: x = <D EEl ax = ~ n (a u x) always has the same
unique solution x = ~, even when a = @.

As the weight of an arc (i,j) we take simply the singleton set {e}, if. e E E is the
(undirected) edge corresponding to the (directed) arc (i,j), and we take @ifno such
edge exists. The weight of a path is then just the set of its edges. Using the
formulation (4) of the algebraic path problem, we get:

xij = n w(p).
pisapath
fromitoj

In other words, xij is the set of edges which belong to every path from i to j. Such
edges are clearly bridges, since their removal causes i to become disconnected from
j. Conversely, every bridge must appear in some set xij'

Note that the semiring axioms would allow us to take the set E as the zero element
instead of @. But then we could not distinguish the case where all edges are bridges
(xij = E) from the case when i andj are not connected (Xii = @).

The determination of cut vertices proceeds in essentially the same way. We use the
semiring(2V u {@},n, u), and the weight of (i,j) is {i}, if {i,j} E E, and@otherwise.
All elements of the set Xii' except for i, are cut vertices.

7. Conclusion-comparison of different approaches

The general path problem can be approached in several different ways. They are
characterized by different formulations and by different assumptions about the
underlying algebraic structure.

We have taken a purely algebraic approach: Solve the system of equations (3).

The usual approach is more direct. It involves the formulation of the problem as
an infinite sum (4) of path weights and building up this sum by computing sums alJ>
oflarger and larger path s.ets, using the equations (12). We have seen this approach
in section 4.3. With suitable axiomatic assumptions for infinite sums this derivation
of the solution can be made precise. In some semirings infinite sums do not always
exist, although they can be defined for some sequences. These semirings include the
important case of the real numbers (~, +, .) with their rich structure of convergence.
Such semirings can also be dealt with quite satisfactorily. This approach has for
example been taken in Rote [13].

A variation of this method specifies the solution in the free semiring generated
by the arc set. This is the semiring of multisets of paths with set union and

188 Giinter Rote

concatenation·as addition and multiplication operations. The solution for a specific
semiring is then obtained by applying a homomorphism from the free semiring to
the specific semiring. An approach like this is taken by Tarjan [15].

Lehmann [9] has taken the 2 x 2 block decomposition algorithm (14) as the
recursive definition of A * for matrices in terms of the operation a* for scalars.
He shows that the result is independent of how the matrix is decomposed into
blocks. A similar approach is taken by Abdali and Saunders [1] who introduce the
concept of eliminants to define A *. Their definition corresponds to a particular way
of computing A * in terms of the a* operation, very similar to our elimination
algorithm.

A comparison of different approaches can be found in Mahr [12J.

For some applications, like shortest paths, the formulation (4) involving sums
of path weights is more natural, whereas the algebraic formulation (3) is more
convenient for other applications such as the inversion of matrices. However, the
relationship between the two formulations is not so close: The system (3) may have
a solution although the infinite sum (4) makes no sense (consider the case of matrix
inversion), or it may have several solutions (cf. the discussion of the shortest path
example at the beginning of section 4). However, the desired solution of (3) can often
be characterized as the smallest (or largest) solution. Theorems 3 and 4 of section
4.2 show that this desired solution can be obtained by defining a* appropriately.

We hope that the broad range of applications from which we could draw our
examples has convinced the reader of the importance and the general usefulness of
path problems.

References

[1] S. K. Abdali and B. D. Saunders, Transitive closure and relat.,J semiring properties via eliminants,
Theoret. Comput. Sci. 40 (1985), 257-274.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading (Mass.) etc. 1974.

[3] W. Baur and V. Strassen, The complexity of partial derivatives, Theoret. Comput. Sci. 22 (1983),
317-330.

[4] B. A. Carre, Graphs and Networks, The Clarendon Press, Oxford University Press, Oxford
1979.

[5] G. N. Frederickson and D. B. Johnson, The complexity of selection and ranking in X + Yand
matrices with sorted columns, J. Comput. Syst. Sci. 24 (1982),197-208.

[6] M. Gondran and M. Minoux, Graphes et algorithmes, Editions Eyrolles, Paris 1979; English
translation: Graphs and Algorithms, Wiley, Chichester etc. 1984.

[7] M. Iri, Simultaneous computation of functions, partial derivatives, and estimates of rounding
errors, Japan J. Appl. Math. 1 (1984), 223-252.

[8] M. Iri and K. Kubota, Methods of fast automatic differentiation and applications, Research
Memorandum RMI 87-02, University of Tokyo, Faculty of Engineering, Hongo 7-3-1, Bunkyo-ku,
Tokyo, July 1987.

[9] D. J. Lehmann, Algebraic structures for transitive closure, Theoret. Comput. Sci. 4 (1977), 59-66.
[10] R. J. Lipton, D. J. Rose, and R. E. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal.

16 (1979),346-358.
[11] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36

(1979), 177-189.

Path Problems in Graphs 189

[12] B. Mahr, Iteration and summability in sernirings, in: R. E. Burkard, R. A. Cuninghame-Green,
U. Zimmermann (eds.), Algebraic and Combinatorial Methods in Operations Research (Proc.
Workshop on Algebraic Structures in Operations Research, Bad Honner, Germany, April 1982),
Annals of Discrete Mathematics 19, North-Holland, Amsterdam 1984, pp. 229-256.

[13] G. Rote, A systolic array for the algebraic path problem, Computing 34 (1985),191-219.
[14] J. W. Sawyer,jr., Fast partial ditTerentiation by computer with an application to categorical data

analysis, The American Statistician 38 (1984),300-308.
[15] R. E. Tarjan, A unified approach to path problems, J. Assoc. Comput. Mach. 28 (1981), 577-593.
[16] R. E. Tarjan, Fast algorithms for solving path problems, J. Assoc. Comput. Mach. 28 (1981),

594-614.
[17] U. Zimmermann, Linear and combinatorial optimization in order algebraic structures, Annals of

Discrete Mathematics 10, North-Holland, Amsterdam 1981.

Giinter Rote
Technische Universitat Graz
Institut fUr Mathematik
Kopernikusgasse 24
A-801O Graz, Austria

Computing Suppl. 7,191-208 (1990)
Computing
© by Springer· Verlag 1990

Heuristics for Graph Coloring

D. de Werra, Lausanne

Abstract - Zusammerfassung

Heuristics for Graph Coloring. Some sequential coloring techniques are reviewed. A few general prin
ciples for designing heuristics are outlined and recent coloring techniques baaed on tabu search are
discussed.

AMS Subject Classification: 05/90.

Key words: Graph coloring, chromatic scheduling, heuristics, combinatorial optimization, tabu search.

Heuristiken fUr Graphenfarbungen. In dieser Arbeit wird eine Obersicht iiber einige sequentielle Flir
bungstechniken gegeben. Ferner werden einige allgemeine Prinzipien zur Erstellung von Heuristiken
aufgefiihrt und eine jiingst entwickelte Flirbungstechnik auf der Basis von Tabu-Suchlisten diskutiert.

1. Introduction

As it happened for almost all graph-theoretical problems, interest in coloring was
initially motivated by a kind of puzzle: is it possible to color the regions of a
geographical map with at most four colors? This is by fa: not the most exciting
application of graph coloring models. To-day many other situations are known
where it is needed to color the nodes (or the edges) of a graph with a number of
colors which is as small as possible.

We shall just mention a few: course scheduling [28,31] school timetabling [24, 29],
cluster analysis [13], group technology in production [4], tests of electronic circuits
[9], VLSI (minimization ofthe number oflayers in channels), transportation (opti
mization of a fleet of aircrafts), etc.

Besides these practical aspects, node coloring problems are also known to be
NP-complete [10]; therefore many attempts have been made to attack these prob
lems; as a by-product of this intensive research many heuristic procedures have
been proposed for getting reasonable good colorings in general graphs.

In this paper we shall present a collection of heuristic methods (or shortly heuristics);
we will try to give a sketch of classification as well as general observations about
heuristics. The purpose of this review is not to compare heuristics from a computa
tional point of view but to examine the basic ideas of the various techniques. Some

192 D.de Werra

experiences with the famous tabu search technique will be reported and extensions
of colorings will be presented. All graph-theoretical concepts not defined here can
be found in Berge [1].

2. Formulation and some basic ideas

A graph G = (V, E) consists of a finite set V of nodes and a family E of edges
(unordered pairs [x,y] of distinct nodes). A k-coloring is a partition of the set V into
k independent sets Sl, S2' ... , Sk' Here a set S of nodes is independent if no two nodes
in S are linked by an edge. The smallest k for which there exists a k-coloring of G
is the chromatic number of G; it is denoted by X(G).

As mentioned above finding whether an arbitrary graph has a k-coloring for a
given k is generally an NP-complete problem. Moreover the determination of a
(2 - e)x(G)-coloring of an arbitrary graph for any e > 0 is NP-complete [10]. On
the other hand there is a simple method which gives in almost all cases a (2 + e) X(G)
coloring [12].

If w(G) is the maximum size of a clique (a set of nodes which are all linked pairwise)
in G, then clearly X(G) ;::: w(G). But w(G) can be a poor lower bound as can be seen
from various classical constructions; in fact one can construct graphs G containing
no triangles (hence w(G) :s; 2) and having an arbitrarily large value of X(G). Other
lower bounds can be found in Berge [1].

In order to derive upper bounds on the chromatic number, we simply have to find
feasible colorings; this is precisely what heuristics will do.

For some heuristics, an analytical formula can be derived for obtaining an explicit
form of the corresponding upper bound; for some others the derivation of such a
formula is not as easy. We shall see methods of both types.

An idea which has been fruitful for developing heuristics in various contexts is the
study of special cases which are solvable. More precisely when a problem type P
for which no exact procedure is known has to be solved, we may consider a simpler
problem type P (generally a special case of P); depending on the choice of a suitable
P an exact procedure A(P) can be found. Then an adaptation A of A(P) may be
developed for handling the general problem P. A will then be a heuristic method
for P; we expect that its "quality" will be good if the special case P is sufficiently
close to the initial problem P.

In our case, we may consider as a simplified problem P the coloring of the nodes
of a special graph (for instance a bipartite graph or a special class of perfect graphs).

Then an exact coloring algorithm can be "generalized" in some sense in order to
be able to deal with the case of arbitrary graphs. Several examples of this situation
will be presented below.

Notice that on the other hand when a heuristic procedure is known, it may be useful
to determine the simplified problem type P for which the procedure is an exact one.

Heuristics for Graph Coloring 193

For us, this amounts' to finding the largest possible class of graphs G for which the
procedure gives a coloring in a minimum number of colors (i.e. in X(G) colors).
The identification of such a class may give an idea of how far we are from the
general case and also make explicit the situations where the heuristic will be
efficient.

Along this line, perfect graphs will be appearing several times; these are defined as
the graphs G for which the equality X(G') = w(G') is satisfied in any induced
subgraph G' of G.

A special type of coloring will be considered later; it is in some sense a concept
corresponding to a schedule at the earliest dates. A k-coloring (S1,' .. , Sk) is canonical
if for every color h ::;; k any node x in Sh belongs to some clique K with K n Si *- 0
(i = 1, ... , h). In other words we are using for each node a color (i.e. a positive integer)
which is as small as possible: if x has received color h (x E Sh), it is because it belongs
to some clique K which contains for each color i ::;; h a node of color i.

Not all graphs have a canonical coloring; in fact we have the following:

Property 1.1 [26] A graph G and all its subgraphs have a canonical coloring if and
only if G is perfect.

For an arbitrary graph we say that a k-coloring is pseudo canonical if for any color
h ::;; k the following holds: let X h E Sh, then the subgraph induced by S1 U ... U Sh-1 U

{x} has chromatic number h (see [27]).

For perfect graphs, the notions of pseudocanonical and canonical colorings coincide.

Finally let us define strongly canonical k-colorings as k-colorings such that for any
clique K the following holds: if h is the smallest color occurring in K, there exists a
clique K' => K such that K' n Si *- 0 for i = 1, ... , h.

Notice that if K is restricted to be a single node, then we simply get canonical
colorings. Not all perfect graphs have strongly canonical co!vrings. For instance C6

(the complement of the cycle C6 on 6 nodes) has no strongly canonical k-coloring;
it can be shown that the existence of strongly canonical k-colorings characterizes
the subclass of perfect graphs called strongly perfect graphs [26]. They are defined
as graphs for which in any subgraph there exists an independent set which meets
all (inclusionwise) maximal cliques.

3. Exact procedures

Although our purpose here is to deal mainly with heuristic procedures, we shall just
mention a few exact methods for obtaining the chromatic number and an optimal
coloring of a graph.

All these procedures work by implicit enumeration of all colorings of a given graph.
An efficient enumeration scheme has been described by J. Randall Brown [3] who
has been among the first ones to use the term "chromatic scheduling".

194 D.de Werra

These enumeration procedures use systematically lower bounds of the chromatic
number of specific subgraphs of the graph G to be colored. Such bounds can be
obtained by finding a clique in G; such a clique is easily determined by some heuristic
coloring algorithm (see [2]).

In order to increase the efficiency of the enumeration, several tricks have been
proposed: for instance when a color i is introduced in the coloring process, all nodes
x with degree smaller than i can be repeatedly removed from the graph.

Furthermore some "look-ahead" features are also worth being implemented; as an
example when a node x requires a new color, one chooses the color which is already
forbidden for the largest possible number of nodes which are uncolored yet [2].

A generalized implicit enumeration algorithm based on the version of J. Randall
Brown [3] has been devised by Kubale et al [20]; it was used for implementations
of several exact algorithms. Computational experiments for random graphs having
up to 60 nodes and edge density up to 0.9 are reported in [20].

These experiments include the method of BreIaz [3], its corrected version given in
[25] and the procedure of Korman [19].

In the next sections we shall examine some types of heuristic methods adapted to
graph coloring.

4. Sequential colorings

We shall first consider a general type of coloring procedure which can be specialized
in many ways. It proceeds as follows

a) determine an order 0: V1 < V2 < ... Vn ofthe nodes of G
b) color node V 1 with color 1; generally if v1, .•. , Vi - 1 have been colored, give node

Vi the smallest color which has not been used on any node Vj (j < i) linked to Vi.

This general procedure is called a sequential coloring procedure based on order 0
(or shortly SC(0». Needless to say that the coloring obtained with an SC will depend
on the order chosen in a). The use of such a procedure is justified by the following:

Proposition 4.1: For any graph G, there exists an order 0 of the nodes for which
SC(O) produces a coloring in X(G) colors.

This can be seen easily by taking any coloring S1' ... Sk of G in X(G) = k colors and
ordering the nodes in such a way that whenever i < j the nodes in Si come in the
order before the nodes in Sj.

More generally we shall say that a (heuristic) procedure H(p) characterized by a
family p of parameters is acceptable for solving a problem P if the set of solutions
S(H) obtained by varying the parameters in all possible ways contains some optimal
solution of P.

In the case of SC(O) we have p = 0; for solving the coloring problem P, the method
SC(O) is acceptable from Proposition 4.1.

Heuristics for Graph Coloring 195

We may now ask what are the graphs G for which with any order 0 the procedure
SC(O) will give a coloring in X(G) colors. We notice that no nice characterization
can be found since for any graph G with n nodes we can hang a clique Kn at some
node of G and for the resulting graph (i any order 0 will produce with SC(O) a
coloring with X«(i) = n colors.

Howeever, if we require the above property to hold for G and for all its induced
subgraphs we have the following (a P4 is a chordless path on four nodes):

Proposition 4.2: The following statements are equivalent for an arbitrary graph G:

a) for all induced subgraphs G' of G (including G itself) SC(O) based on any order
o gives a coloring in X(G') colors

b) G has no induced P4

Proof A) Qearly if G' is a P4 with edges [a, b], [b, c], [c, d], with 0 = a < d < b < c
we get a coloring with 3 > 2 = X(G') colors.

B) Conversely assume that G has no induced P4 , we use induction on k = X(G) to
show that a) holds. In fact, we show that SC(O) gives a strongly canonical coloring;
this is clearly true for k $; 2. So assume that we have a graph G with X(G) = k ~ 3.
Consider an order 0 and a coloring S1' S2' ..• , Sh given by SC(O) with h ~ k. If the
coloring obtained is not strongly canonical, there exists some node Xr E Sr (r $; h)
for which there is no clique K 3 xr such that K n Sj =1= 0 (i = 1, ... r). Let i(r) be the
smallest color for which there is a clique K 3 Xr with K n Sj =1= 0 (i = i(r), i(r) + 1,
... ,r). We may choose the node Xr by taking the smallest r for which i(r) > 1. Let
x" Xr-1, ..• , xI(r) be the nodes forming K; by the minimality ofr and by the induction
hypothesis, Xr-l> Xr-2' ... , xi(r) belong to some clique K' with K' n Si(r)-1 =1= 0. Let
xi(r)-1 = K' n Si(r)-1. Clearly xi(r)-1 is not linked to Xr (by the minimality of i(r».
Since we used an SC(O) procedure Xr must have a neighbor X;(r)-1 in SI(r)-1. Then
there is at least one node Xi (i(r) $; i $; r - 1) in K to which X;(r)-1 is not linked (by
the minimality of i(r». So xi(r)-1' Xi> X" X;(r)-1 induce a P4 ; this is a contradiction.
So the coloring obtained by SC(O) is strongly canonical (and hence it uses h = X(G)
colors). 0

A graph is complete k-partite if there exists a partition A 1 , ••• , At of the node set
such that X E Ai, Y E AJ are linked if and only if i =1= j.

As a consequence of Proposition 4.2 we have:

Corollary 4.2: For a complete k-partite G SC(O) gives a coloring in X(G) colors with
any order O.

Remark 4.3 The proof of proposition 4.2 gives in fact a stronger result of Chv:hal
[5] on perfectly orderable graphs; an order 0: V1 < V2 < ... Vn of the nodes of G is
perfect if for all induced subgraphs G' the procedure SC(O') based on the order 0'
induced by 0 on G' gives a coloring in X(G') colors. Chvatal has shown that an
order of the nodes of G is perfect if and only if there is no induced P4 with edges
[a,b], [b,c], [c,d] with a < b, d < c [5]. Since in the proof of proposition 4.2 we
have xi(r)-1 < Xi and X;(r)-1 < X" we have in fact shown that SC(0) based on a perfect

196 D.de Werra

order gives a st,rongly canonical coloring. Graphs with a perfect order will be called
perfectly orderable; they form a subclass of strongly perfect graphs. Some classes of
perfectly orderable graphs are characterized in [6]. D

For any order 0: Vl < V2 < ... < Vn ofthe nodes of G we can get an upper bound
on the number of colors used by SC(O). Let dG(v) be the degree of node v in G. If
G, is the subgraph of G induced by nodes VI> V2, ... , v" one gets with SC(0) a coloring
in at most

B(O) = 1 + maxl~i~n (min{i - 1,dG,(Vi)})

= 1 + maxl~i~n dG,(Vi)

From this we deduce an upper bound for X(G):

WP(O) = 1 + maxl~i~n (min{i - 1,dG(Vi)})

(4.1)

(4.2)

It is easy to see that WP(O) is minimized when an order Owp: Vl < ... < Vn such that
dG(vd ~ ... ~ dG(vn) is chosen (see Welsh and Powell [28]).

By analogy in order to minimize B(O) in (4.1) one should try to find an order
Vl < ... < Vn such that

(4.3)

Here however the values dG,(Vi) are not known beforehand and in fact there may
exist no order V1 < ... < Vn satisfying (4.3).

An order OSL (smallest last) can be constructed as follows (see Matula [22]).

1) Let Vn be a node with minimum degree in G = Gn

2) for i = n - 1, n - 2, ... , llet Vi be a node with minimum degree in Gi (the graph
generated by all yet unnumbered nodes when Vn, Vn-1, ... , Vi+1 have been chosen).

So from (4.1) we have

(4.4)

Let us now define the following function which is independent of the order 0 in G.

(4.5)

where the maximum is taken over all induced subgraphs H of G; clearly A(G) ~
B(Osd since in (4.4) only subgraphs G1 , G2 , ••• , Gn are considered.

On the other hand, let F be a subgraph of G for which the maximum is obtained
in (4.5) and let i be the last node of F in the order 0SL; then

dG,(v i) ~ dF(Vi) ~ minveF dF(v) so B(Osd ~ A(G)

Hence we have B(OSL) = A(G) and SC(OSL) gives a coloring in at most A(G) colors.

Matula and Beck have shown that SC(Osd can be implemented in O(m + n) time
(where m is the number of edges) [23] (see also [27a]).

It was observed that SC(Osd gives a coloring in at most 2 colors if G is a forest, at
most 5 colors if G is planar and at most 3 colors if G is outerplanar (i.e. G can be

Heuristics for Gnph Coloring 197

embedded in the plane in such a way that all nodes are on the outer face) [23]. This
means that the algorithm SC(Osd is an exact procedue for forests; it gives a coloring
in at most X(G) + 1 colors for planar graphs. This brings us back to the discussion
in section 2: SC(OSL) is exact for the special case P = "coloring of forest" of the
general problem P = "coloring of an arbitrary graph".

In the next section we shall review some heuristics which are exact for a more general
problem than the above P.

5. Some sequential coloring techniques

In order to develop heuristic procedures which are hopefully efficient for general
graphs, we may try to extend some SC methods which are exact for a simplified
problem type P. It is reasonable to concentrate on the bipartite graph coloring
problem P since for such graphs finding the chromatic number is easy.

A simple labeling technique for checking whether a graph is bipartite will give us
directly a bicoloring:

1) label an arbitrary node x with +; x is then labelled, all remaining nodes are
unlabeled

2) apply as long as possible the folowing rule: if a node is labelled with + (resp. -)
then label its neighbors with - (resp. +).

If all nodes receive a unique label, the graph is bipartite; otherwise it contains
an odd cycle.

The nodes will be labelled one after the other and if the graph is bipartite, there will
be some order 0 in which the nodes are labelled. The procedure can be extended
to an SC(0) procedure for an arbitrary graph as follows: at each step i of the coloring
procedure we define for each node x the degree of saturatinn dsi(x) as the number
of different colors already used for the neighbors of node x when nodes VI' V2' ••• ,

Vi-l have been colored. Initially (i.e. when no node is colored yet we take dso(x) = 0).

Consider now an order 0: VI < V2 < ... < Vn and apply the SC(O) procedure. We
will get a coloring of G with at most

DS(O) = 1 + maxl:>;i:>;n dSi(Vi) (5.1)

colors. Clearly DS(O):::; B(O). Furthermore DS(O) depends on the order O. For
getting a value of DS(O) which is small, a reasonable procedure consists in choosing
at each step i of the SC(O) procedure a node Vi such that

dsi(vi) = maxxuncolored dsi(x)

This is precisely the DSA TUR algorithm described in Brelaz [2]. It differs from the
previous SC(O) techniques by the fact that the order is constructed dynamically
during the coloring process.

Proposition 5.1 [2] The SC(O) procedure DSATUR is exact for bipartite graphs.

198 D.de Werra

Proof If G is a. nontrivial connected bipartite graph, DSA TUR will first give color
1 to an arbitrary node VI. Then as long as there are uncolored nodes a node Vj with
dsj(vj) = 1 can be given color 1 or 2. We have for each i dsj(vj) :s; 1, otherwise G
would contain an odd cycle. So we obtain a bicoloring of G. 0

Remark 5.2 Brelaz [2] suggests to start from a node VI of maximum degree when
using DSATUR for an arbitrary graph. Comparisons of DSATUR with other SC(O)
procedures are reported in [2,20,25]. Refinements such as recursive DSATUR
procedures are discussed in [18]. 0

The above described method DSATUR is a special case of a more general SC(O)
procedure. Essentially what happens in a connected graph G when DSA TUR is
used is the following: for each i, the subgraph Gj induced by nodes VI' V2' ... , Vj is
connected. We shall say that for an arbitrary graph G the order 0: VI < V2 < ... <
Vn is connected if for each i, the set of colored nodes {v 1> ••• ,Vj} induces a connected
subgraph (possibly empty) in each connected component of G.

We may now ask what are the graphs G such that for any connected order 0
and for any induced subgraph G', the SC(O) procedure gives a coloring in X(G')
colors.

For instance we notice that for any odd cycle C2k+l the procedure will give a
3-coloring, i.e. a X(C2k+l)-coloring. The procedure will also give an optimum color
ing for any induced subgraph of C2k+l. Hence there are nonperfect graphs which
belong to this class. On the other hand the graphs of Fig. 1 (Tent and Fish) are
perfect, but with the given connected orders 0 the SC(O) procedure does not give
an optimum coloring.

Before considering graphs where any connected order will give a X(G)-coloring, we
make a simple observation which will give the following consequence of Proposition
4.1.

Proposition 5.3 For any bipartite graph G there is a connected order 0 such that the
SC(O) procedure gives a coloring in X(G) colors.

G. Tinhofer has constructed a graph with 18 nodes for which any SC(O) based on
a connected order does not give an optimum coloring.

This shows in fact that if 0 is restricted to be a connected order of G, the heuristic
SC(O) procedure is generally not acceptable for the graph coloring problem.

1

2~'
5 4

Tent Fish

Figure 1

Heuristics for Graph Coloring 199

It follows however from Proposition 4.2 that if G has no induced P4 then any SC(0)
based on a connected order 0 will produce an optimum coloring.

Characterizing graphs for which any connected order gives a X(G)-coloring seems
more difficult. We can however characterize a subclass of these. For this purpose
we need a few definitions.

A graph G will be called (strongly) SCORE-perfect if the SC(O) based on a Con
nected ORdEr gives for any i a (strongly) canonical coloring of Gi •

We recall the definition of a special class of perfect graphs; the parity graphs are
graphs where every odd cycle oflength at least five has at least two cro!?sing chords.
We can then state

Proposition 5.4 [17]: For a graph G the following statements are equivalent:

a) G is SCORE-perfect
b) G is strongly SCORE-perfect
c) G is a parity graph without any induced Fish

This result is an extension of proposition 5.1 since bipartite graphs satisfy c). We
shall not give here the proof of proposition 5.3, it can be found in [17].

Remark 5.5 One should observe that for the various heuristic procedures described
here, bounds on the number of colors used have been derived. These represent the
worst cases that can happen. There are relations between these bounds; but if a
bound of a method M is better than a bound of method N, it does not mean that
M will in general use less colors than N. 0

A variation ofthe SC(Owp) technique is described by Leighton [21]. Given a graph
G = (V, E) let VI be a node with maximum degree and assign color 1 to VI' The order
VI < ... < Vn is constructed dynamically (as in the DSATUR algorithm).

Assume i nodes (Le. VI"" ,Vi) have been given color 1. Let No (resp Nd be the set
of uncolored nodes not adjacent to any (resp. adjacent to at least one) colored node.
In other words No contains nodes which are possible candidates for color 1 and NI
nodes which cannot get color 1. Let d(v, Nd be the number of edges between node
V in No and nodes in NI.

Node Vi+1 is chosen in No in such a way that

d(vi+l>NI) = max"eNo d(v,NI)

Ties are broken by choosing a node with minimum degree in the subgraph generated
by No.

This is repeated until No = 0. Then the process is iterated with color 2 on the graph
generated by the uncolored nodes and so on.

The above procedure is called RLF (Recursive Largest First); it can be implemented
in 0(n3) time for general graphs. Experiments are described in [21] and in [27a].

The RLF procedure is a sequential coloring algorithm based on a dynamic order;
it does not use a connected order. It is nevertheless exact for bipartite graphs. The

200 D.de Werra

reasons for th~ is that RLF tries to choose for Vl+l (next node to get color 1) a node
which has many neighbors in common with nodes having already received color 1.
This idea will be exploited in the algorithm to be described next.

6. Additional methods

There are many different algorithms which can be devised as extensions of exact
procedures for bipartite graphs. Some may not be in a straightforward way based
on the idea of sequential colorings. We first review the technique of Dutton and
Brigham [7] which runs as follows:

As long as there are nonadjacent nodes in G, repeat the following steps:

a) compute for each pair of nonadjacent nodes Vi> Vj the number cij of common
neighbors

b) determine the pair V" V. for which Cr. is maximum
c) merge Vr and V.

SO the procedure finds at each step a pair of nodes Vr , V. which will have the same
color in the coloring which is constructed. The algorithm stops when the graph is
reduced to a clique Kp- Then a p-coloring is obtained for the initial graph by
assigning each node Vi of G the color of the node of Kp which represents it.

The above procedure is exact for bipartite graphs as can be seen easily: two
nonadjacent nodes x, y which are in different sets of a connected bipartite graph
G = (X, Y, E) have no common neighbor; hence these will not be chosen for merging.
So after each merging operation the graph will still be bipartite and it will be reduced
to K2 at the end.

A variation of the merging algorithm has been suggested by Hertz [16]; it consists
in using the same node Vr as long as possible (i.e. until it is linked to all remaining
nodes) in the merging operation. The COSINE algorithm obtained in this way has
the following property:

Proposition 6.1 [16]: The COSINE algorithm gives a X(G)-coloring for any Meyniel
graph G.

We recall the defintion of Meyniel graphs: these are characterized by the existence
of at least two chords in each odd cycle (of length at least five).

Remark 6.1: Hertz shows that a slightly more general class of graphs can be colored
in X(G) colors by COSINE. These are the graphs containing one node adjacent to
all edges which are the unique chord of some odd cycle of length at least five
[16]. 0

A coloring procedure based on the similarity of neighborhoods of nodes was
suggested by Wood [31]. It runs as follows: a pair of nodes i, j with maximum
similarity cij is given color 1. Then the pairs are considered in order of nonincreasing
similarities. (Observe that the pairs are generally not disjoint). For pair Vi> Vj we
have the three cases (assume k colors have been used).

Heuristics for Graph Coloring

Table 1. The BIPCOL technique

Input: a graph G Output: a coloring of G

Initialization: k = 1; C = 0(C = set of colored nodes)

While there are some uncolored nodes in G, do
begin
construct a bipartite induced graph fj in G-C;
color the nodes of Ii with colors k and k + 1
(or k only if fj has no edges);
C = C u {nodes of fj};
replace k by k + 2

end

a) if both Vi and Vj are colored, go to the next pair
b) if Vi has color 9 :.,;; k and Vj is uncolored then

1) if dG(vj) < k, then Vj can be colored without problem; ignore it.
2) if Vj can be colored with g, give Vj color g.

c) if neither Vi nor Vj is colored then
1. if dG(vi) < k, dG(vj) < k, ignore them

201

2. find the smallest color 9 such that both Vj and Vj can get color 9 (introduce a
new color if needed)

This procedure has been applied to construct examination schedules (with about
500 exams) [31].

Let us now briefly sketch another procedure which is by nature an exact method
for bipartite graphs. It runs in the following way (see Table 1): in the set of uncolored
nodes we construct a bipartite graph by applying the simple labeling technique given
in section 5. We repeat the labeling procedure until no more (uncolored) node can
be labelled. We have then a bipartite induced graph B; we color it with colors 1 and
2 and we repeat the whole process in the graph generated by the uncolored nodes;
the bipartite graph obtained is colored with colors 3 and 4. This is repeated until
all nodes are colored.

This method (which we may call BIPCOL is a sequential coloring procedure; the
order 0 is determined dynamically.

We shall now describe another technique which is again an exact procedure for
bipartite graphs; it is closely related to the previous procedure where a bipartite
graph B is constructed at each step (see Table 2). The procedure is called CANABIS
(Coloring Algorithm for Networks Acting on Bipartite Induced Subgraphs). The
difference with BIPCOL lies in the fact that we choose in each connected component
B of the bipartite subgraph B one of the two node sets and we color its nodes with
color k; the other node set of B is uncolored. meA, B) is the number of edges between
node sets A and B.

In each connected component B = (V, W, EB) of B with node sets V, Wand edge set
EB we color with color k the set among V, W which has the largest cardinality. The
other set is then considered as uncolored. These simple procedures are faster then

202

Normal
random
graphs

euclidian
graphs

D. de Werra

Table 2. The CANABIS Technique

Input: a graph G Output: a coloring of G

Initialization: k = 1; C = 0(C = set of colored nodes)

while there are some uncolored nodes in G, do
begin
construct a bipartite induced graph 1J in G-C;
for each connected component B = (V, W,EB) of 1J
do if meW, C) > m(V, C) then C := C u W

color the nodes in W with color k

elseC: Cu V
color the nodes in V with color k;

replace k by k + 1

end

Table 3

DSATUR BIPCOL

18.9 19.6

31.9 30.25

CANABIS

20.0

33.25

Average number of colors
(100 samples with 100 nodes)

edge
density
0,5

nodes in (1 x 1)-
square; linked
if distance S; 0.5

DSA TUR and the colorings produced are almost as good. Table 3 shows a few
computational results on random graphs with 100 nodes (euclidean graphs are
obtained by generating random nodes in a square of size 1 and linking two nodes
by an edge if their distance is at most 0.5; the normal random graphs are obtained
by introducing each possible edge with probability 0.5).

7. Tabu Search

In an entirely different direction we may view the coloring problem as an instance
of minimization of a certain function.

Let us first describe briefly the general form of the optimization techniques that we
will use later. Suppose we have a (finite) set X of feasible solutions; we are given a
function f: X -+ Z+ and we have to find some solution s in X for which f(s) is
minimum.

Now X generally has some structure; we shall assume that for each feasible solution
s a neighborhood N(s) can be defmed. This amounts to representing the elements
s of X as the nodes of a graph and if s' E N(s) we introduce an arc (s, s'). Notice that
we may have s' E N(s), but s ~ N(s').

Heuristics for Graph Coloring 203

Many minimization procedures work as follows: they start from an initial solution
s; then as long as a better solution s' (i.e, a solution with /(s') < /(s» can be found
in N(s), one moves to s', i.e, s is replaced by s' and one repeats the step. In general
such a technique will reach a local minimum of / and will be trapped there.

In order to avoid such troubles, some refinements have been proposed; among other
techniques the famous simulated annealing technique has been constructed by
exploiting analogy with some physical systems. When a solutions s' in N(s} is found,
the move to s' is accepted if /(s') < /(s) and if /(s') > /(s) the move is accepted with
a probability p(A, t} = exp(- Aft} where A = /(s') - /(s) and t is a parameter corre
sponding to temperature; t is decreased as the iterations are performed. This
amounts to reducing the probability of accepting a solution s' which is worse
than s.

The general procedure is described in Table 4. References on the technique can be
found in [4] where an application to graph coloring is described. Although this
technique has appeared as extremely appealing for getting almost optimal solutions
in various types of large size combinatorial optimization problems, it is no longer
used as much as earlier; the main reason is that there is a procedure which keeps
some of the basic ideas of simulated annealing but which is much more simple and,
as numerous experiences have shown, much more efficient.

It is the Tabu Search procedure; the basic ideas of the technique are developed in
Glover [11].

Tahle 4. The Simulated Annealing procedure

Set t to a suitably high value;
choose a feasible solution 8 in X;
compute /(8);
change := true;
while change do
begin

change := false
repeat rep times
begin
choose an s'sN(s);
.1 = /(s') - /(s);
p(.1) = exp(- .1/t);
generate random variable x (uniform on [0,1]);
if x < p(.1) then go to accept

else go to exit;

accept: s:= s';
/(s) = /(s) + .1;
if .1 '# 0 then change:= true;

exit:

end;

t := t*a (0 < a < 1)

end

204 D.de Werra

Before going into the details of the procedure, let us mention briefly how coloring
problems were'transformed into a minimization of a function /: X ~ Z in order to
apply simulated annealing.

Suppose we are interested in finding a k-coloring of a graph G for a given k. So for
this purpose a feasible solution s is simply a partition s = (Sl' S2,"" Sd of the node
set of G into k subsets. Such a partition will be a coloring if each Si is an independent
set of nodes, i.e. if each set E(S;) of edges of G with both endpoints in Si is empty. It
is therefore natural to consider as a function / to be minimized the function given
by /(s) = L~=lIE(Si)l. This is precisely what was used in [4J for simulated annealing
and in [15J for tabu search. We shall have a k-coloring if and only if /(s) = O. Now
the neighborhood N(s) of a solution s = (Sl' S2,' .. Sk) contains every solution s'
obtained from s by moving some node x in some Si (where x is adjacent to at least
one other node in S;) to some other subset Sj of the partition.

For tabu search (TS) we used the same formulation as above. The TS procedure
starts again from an initial solution. Whenever we are at some solution s, we
generate a sample of rep (rep is a parameter) solutions Si in N(s). We move to the
bestsi , say s' (even if/(s') > /(s)). As in simulated annealing we will so have a chance
to escape from local minima. But such a procedure may now cycle. Therefore in
order to prevent the process from cycling, we give a value k and we do not allow
the algorithm to go back to a solution which has been visited in the last k steps.
This could be done by introducing a so-called tabu list T of size I TI = k which would
contain the last k solutions visited. But since keeping track of these solutions would
be extremely space consuming, it is simpler to store a move [s' ~ sJ from a solution
s' to a solution s. More precisely when we move from s to s' E N(s), we just take a
node x in G with color i and we give color j to x; so what we will do with the list
T is simply to forbid node x to get back to color i during the next k iterations. The
list T will then contain k forbidden "moves"; each one consists of a node x and a
forbidden color i.

Usually the length k of T is kept constant. So, whenever it is needed, the oldest
element of T is dropped.

By introducing a tabu list, we reduce the risk of cycling (in fact we eliminate the
possibility of going through cycles of length at most k).

The existence oftabu moves may sometimes be an obstacle in the search for a global
minimum.

A move [s' -- sJ may be a tabu move and so be forbidden. However applying this
move to the current solution s" may not bring us back to a solution visited in the
last k iterations (simply because between the step where we visited s and moved to
s' and the present step many other moves were made; this caused many local changes
in the current solution).

So we may wish to allow a tabu move to be made in some circumstances; recognizing
whether it would bring us back to an already visited solution is difficult. But we can
simply say that we accept a tabu move if the value /(s) of the resulting solution s is

Heuristics for Graph Coloring

Table 5. The tabu search procedure

Choose a feasible solution s in X;
compute f(8);
take an arbitrary tabu list T;
nbiter:= 0;

while f(s) > 0 and nbiter < nbmax do begin

generate rep solutions Sl E N(s)
withEs -+ sa ¢ Tor f(sl) :s; A(f(s»;

(as soon as an Sl with f(sl) < f(s)
is found, stop the generation)

Let s' be the best Sl generated
update tabu list T, update A(f(s»

(remove oldest tabu move and
introduce move s' -+ s)

S:= 8';
nbiter := nbiter + 1

endwhile

205

small enough. More precisely, if we suppose that f takes integral values, we may
define an aspiration A(z) for each integral z; initially we set A(z) = z - 1 for all z.
Then a tabu move leading from s to s' will be accepted if f(s') < A(f(s)); after this
acceptance we update the aspiration function by setting A(f(s)) = f(s') - 1. So the
next time we will be at some solution giving a value z = f(s), a tabu move will be
accepted only if it gives a larger improvement than the last time we left s by accepting
a tabu move. The idea behind this computation is again to avoid cycling.

The whole process is then repeated (see Table 5) until we get f(s) = 0 (i.e, we have
a k-coloring or no improvement of the best value of f has occurred during a given
number of steps or simply until a fixed number of iterations have been performed).

The TS method was applied to coloring of random graphs !1aving up to 1000 nodes;
computational results are reported in [15]. It is worth mentioning that with some
refinements, TS was the only procedure which could give k-colorings for large
graphs with a value of k very close to the estimated chromatic number (values of
these estimations are given in [18J.

Experiments have also shown that TS gives colorings which are as good as the ones
produced by any known heuristic procedure in the same computational time.

No general convergence properties are known at the moment; further research
should be carried out for understanding better the apparent efficiency of TS. This
is the more needed because for many of the difficult combinatorial optimization
problems, TS seems to beat simulated annealing by far ...

Remark 7.1 Among the many heuristics which have been described here, only a few
are not exact procedures for bipartite graphs. It is not known whether TS will always
give a X(G)-coloring of a bipartite G. It is easy to find examples where f = IE(Sl)1 +
IE(S2)1 has some local minima for the neighborhood structure described above. The

206 D.de Werra

Figure 2

graph in fig. 2 is bipartite and the partition S = (Sl, S2) shown gives a value f(s) = 2;
it is a local minimum. 0

The efficiency of TS for graph coloring was increased by combining it with some
other techniques (see [15]); improvements will depend on the efficiency of proce
dures for constructing large independent sets. TS has been adapted to this case and
computational results are reported in [8].

8. More on sequential colorings

For application purposes many other types of colorings have been considered by
various authors (see [14] for some examples). Among these variations we mention
the interval colorings. We shall just show how the SC(O) techniques can be adapted
to deal with this extension.

Let G = (X, E, c) be a finite graph in which each node i is associated with a positive
integer Ci' An interval k-coloring is an assignment of a set S(i) of Ci consecutive colors
(chosen in {I, 2, ... , k}) to each node i such that S(i) n S(j) = 0 for any two adjacent
nodes i, j [30].

Such colorings may be needed in scheduling a collection of jobs i with processing
times Ci in such a way that incompatible jobs (i.e. jobs represented by nodes which
are all linked together) are not processed simultaneously and that no preemption
occurs.

If we take an order 0: 1 < 2 < ... < n, then by applying an obvious adaptation of
SC(O) we get a k-coloring with k ::;; IB(O) where

IB(O) = ~~:n (min ttl Ck , Ci + (Ci - l)dG,(i) + I (cj:j E NG,(i))})
Here NG,(i) is the set of neighbors of node i in Gi • If Xint(G) is the smallest k for which
G = (X, E, c) has an interval k-coloring, then IB(O) is an upper bound on Xint(G).

By analogy with the SC(OSL) procedure, we may construct an order OSL by starting
from the end as follows:

Heuristics for Graph Coloring 207

assume we have already numbered nodes Vn, Vn- 1 , ••• , Vi+1 then we call Gi the
graph generated by the remaining nodes. We take for Vi a node P for which

L/(GioP) = (dGi(p) + 1)(cp - 1) + L (cj:j E NGi(p))

is minimum. Then one gets another upper bound for Xint(G) [30]:

IM(OSL) = 1 + max min [(dG(i) + 1)(Ci - 1) + L Cj]
G'£G ieG' jeNG,(i)

As in the case of classical k-colorings (where Ci = 1 for each node i), IB(Osd is
independent of the order OSLo

It is worth mentioning that in the general case of interval colorings the bounds
IB(O) and IM(OSL) are unrelated; examples can be constructed where one of those
is better than the other.

A lower bound for Xint(G) can be obtained by considering the cliques K in G and
computing

Wint(G) = min (L Ci)
K ieK

It would be interesting to characterize graphs G for which Xint(G) = wint(G) for any
choice of values Ci ~ O.

Observe that if Ci E {O, 1} for each i, the above graphs are precisely the perfect graphs.

References

[1 J c. Berge, Graphes, Gauthier-Villars, Paris, 1983.
[2] D. Brelaz, New Methods to Color the Vertices of a Graph, Communications of the Association

for Computing Machinery 22 (1979) 251-256.
[3] 1. Randall Brown, Chromatic scheduling and the chromatic number problem, Management

Science 19 (1972) 456-463.
[4] M. Chams, A. Hertz, D. de Werra, Some experiments with simnlated annealing for coloring

graphs, European J. of Operational Research 32 (1987) 260-266.
[5J V. Chvatal, Perfectly ordered graphs in: Topics on Perfect Graphs (c. Berge, V. Chvatal, eds)

Annals of Discrete Mathematics 21 (1984) 253-277.
[6] V. Chvatal, C. T. Hoang, N. V. R. Mahadev, D. de Werra, Four classes of perfectly orderable

graphs, J. of Graph Theory 11 (1987) 481-495.
[7] R. D. Dutton, R. C. Brigham, A new graph coloring algorithm, Computer J. 24 (1981) 85-86.
[8J C. Friden, A. Hertz, D. de Werra, Stabulus: a technique for finding stable sets in large graphs with

tabu search, Computing 42 (1989) 35-44.
[9] M. R. Garey, D. S. Johnson, H. G. So, An Application of Graph Coloring to Printed Circuit

Testing, IEEE Transactions on circuits and systems 23 (1976) 591-598.
[10] M. R. Garey, D. S. Johnson, Computers and Intractability: a Guide to the Theory of NP

Completeness, W. H. Freemann, San Francisco, 1978.
[11] F. Glover, Tabu Search, CAAI Report 88-3, University of Colorado, Boulder 1988.
[12] G. R. Grimmett, C.J.H. Mc Diarmid, On Coloring Random Graphs, Mathematical Proceedings

of the Cambridge Philosophical Society 77 (1975) 313-324.
[13J P. Hansen, M. Delattre, Complete-Link Cluster Analysis by Graph Coloring, 1. of the American

Statistical Association 73 (1978) 397-403.
[14J A. Hertz, D. de Werra, eds., Graph Coloring and Variations, Annals of Discrete Mathematics 39

(North Holland, Amsterdam, 1989).
[15J A. Hertz, D. de Werra, Using Tabu Search Techniques for Graph Coloring, Computing 39 (1987)

345-351.

208 D.de Werra

[16] A. Hertz, A fast algorithm for coloring Meyniel graphs, to appear in J. of Combinatorial Theory
[17] A. Hertz, D: de Werra, Connected sequential colorings, in [14], pp. 51-59.
[18] A. Johri, D. W. Matula, Probabilistic bounds and heuristic algorithms for coloring large random

graphs, Southern Methodist University, Dallas, Texas, 1975.
[19] S. Korman, The Graph-Coloring Problem, in: N. Christofides et ai, ed. Combinatorial Optimiza

tion, (J. Wiley, New-York, 1979) pp. 211-235.
[20] M. Kubale, B. Jackowski, A Generalized Implicit Enumeration Algorithm for Graph Coloring,

Communications of the Association for Computing Machinery 28 (1985) 412-418.
[21] F. T. Leighton, A graph Coloring Algorithm for Large Scheduling Problems, J. of research of the

National Bureau of Standards 84 (1979) 489-503.
[22] D. W. Matula, G. Marble, J. D. Isaacson, Graph Coloring algorithms, in: R. C. Read, ed. Graph

Theory and Computing (Academic Press, New-York, 1972) pp. 108-122.
[23] D. W. Matula, L. L. Beck, Smallest-Last Ordering and Oustering and Graph Coloring Algo

rithms, J. of the Association for Computing Machinery 30 (1983) 417-427.
[24] N. Mehta, The application of a graph coloring method to an examination scheduling problem,

Interfaces 11 (1981) 57-64.
[25] J. Peemoller, A correction to Brelaz's modification of Brown's coloring algorithm, Communica

tions of the Association for Computing Machinery 26 (1983) 595-597.
[26] M. Preissmann, D. de Werra, A note on strong perfectness of graphs, Mathematical Programming

31 (1985) 321-326.
[27] B. Roy, Nombre chromatique et plus longs chemins d'un graphe. Revue fran~se d'informatique

et de Recherche O¢fationnelle 5 (1967) 129-132.
[27a] M. M. Syslo, N. Deo, 1. S. Kowalik, Discrete Optimization Algorithms with Pascal Programs

(Prentice-Hall, Englewood OitTs, N. J. 1983).
[28] D. J. A. Welsh, M. B. Powell, An upper bound on the chromatic number of a graph and its

application to timetabling problems, Computer 1.10 (1967) 85-87.
[29] D. de Werra, An introduction to timetabling, European Journal of Operational Research 19 (1985)

151-162.
[30] D. de Werra, A. Hertz, Consecutive colorings of graphs, Zeitschrift f1ir Operations Research 32

(1988) 1-8.
[31] D. C. Wood, A technique for coloring a graph applicable to large scale timetabling problems,

Computer J. 12 (1969) 317-319.
A. Gyarfas, J. Lehel, Outline and FF colorings of graphs, J. of Graph Theory 12 (1988) 217-227.

D.deWerra
Ecole Polytechnique Federale de Lausanne
oepartement de Mathematiques
Chaire de Recherche Operationnelle
CH-1015 Lausanne

Computing, Supp. 7, 209-233 (1990)
Computing
© by Springer·Verlag 1990

Probabilistic Analysis of Graph Algorithms

A. M. Frieze, Pittsburgh, Pa.

Abstract - Zusammenfassung

Probabilistic Analysis of Graph Algorithms. We review some of the known results on the average case
performance of graph algorithms. The analysis assumes that the problem instances are randomly selected
from some reasonable distribution of problems. We consider two types of problem. The first sort is
polynomially solvable in the worst case but there are algorithms with better average case performance.
In particular we consider the all-pairs shortest path problem, the minimum spanning tree problem, the
assignment problem and the cardinality matching problem in sparse graphs. Our second category of
problems consists of problems which seem hard in the worst-case but still have algorithms with good
average case performance. In particular we consider three NP-Complete problems; the Hamilton
cycle problem, the graph bisection problem and graph colouring. In addition we consider the graph
isomorphism problem whose exact complexity is still undetermined.

AMS Subject Classifications: 68Q2S, OSC80.

Key words: Graph Algorithms, Probabilistic Analysis.

Probabilistische Analyse von Graphenalgorithmen. Die Arbeit bietet einen Uberblick iiber Ergebnisse
zur durchschnittlichen Leistungsflihigkeit von Graphenalogrithmen, wobei stets vorausgesetzt wird, daB
die Problembeispiele zufli1lig gemiiJ3 einer 'vemiinftigen' Wahrscheinlichkeitsverteilung gewahlt werden.
Wir betrachten zwei Problemtypen. Der erste Typ ist polynomiallosbar im schlechtesten Fall, jedoch
existieren nicht-polynomiale Losungsalgorithmen mit besserer durchschnittlicher Leistungs-flihigkeit.
Insbesondere betrachten wir das Problem der kiirzesten Wege zwischen allen Knotenpaaren, das
Problem der Minimalbiiume, das Zuordnungsproblem und das ungewichtete Matchingproblem in diinn
belegten Graphen. Der zweite Problemtyp besteht aus Problemen, die i1ll schlechtesten Fall auBerst
schwer zu losen erscheinen, wofiir es aber weiterhin LOsungsalgorithmen mit guter durch-schnittlicher
.Leistungsfahigkeit gibt. Insbesondere betrachten wir drei NP-vollstandige Probleme: das Problem der
Hamiltonkreise, das Bisektionsproblem fUr Graphen und das Farbungsproblem. Dariiber hinaus wird
das Graphenisomorphie-problem behandelt, dessen exakte Komplexitat noch unbestimmt ist.

1. Introduction

Graph theory is an important source of computational problems and as such has
played a significant part in the development of a theory of algorithms and their
analysis. We find here as elsewhere that the analysis of the execution times of
algorithms has concentrated in the main on that of their worst-case. There is
nevertheless a sizeable literature on the average case performance of algorithms.

The analysis assumes that the problem instances are randomly selected from some
reasonable distribution of problems and an attempt is made to estimate the expected
running time of algorithms for these problems. The analytical difficulties are com
pounded by the fact that algorithms condition their data quickly. Consequently,

210 A. M. Frieze

the statistical independence which is required by most common forms of probabi
listic analysis is hard to come by. Probabilistic algorithm analysis has therefore
necessitated the development of its own, often indirect, techniques.

In this paper we will try to review some cases where probabilistic analysis has
something positive to say about the performance of algorithms. We will look in
some detail at eight problems. The first four: the all pairs shortest path problem,
the assignment problem, the matching problem in general graphs and the minimum
spanning tree problem are all solvable in polynomial time in the worst-case. Never
theless we will find that algorithms can be constructed whose average performance
on natural distributions is significantly better than the worst-case of any known
algorithm. The next three: the Hamilton cycle problem, the graph colouring prob
lem and the graph bisection problem are all known to be NP-hard. We will, in
spite of this, be able to describe polynomial time algorithms which have a high
probability of finding solutions to these problems. Our final example will be that
of graph isomorphism whose exact complexity is at present unknown. Here we will
fmd that a simple algorithm works with high probability. Thus, in these examples
and many others, the average case is a long way from the worst-case.

In the next section we introduce some notation and state some basic results needed
from probability theory. The next eight sections cover the problems we have
mentioned above. Following this we will mention some results with a different
flavour.

2. Notation and Basic Probabilistic Inequalities

We first define what we mean by a random graph. Let v,. = {1, 2, ... , n} and suppose

1 ::s;; m = m(n)::s;; N = (~). The random graph Gn•m has vertex set v,. and its edge

set En,m is a randomly chosen subset of m edges. Thus if G is a graph with vertex

(N)-l set v,. and m edges then Pr(Gn,m = G) = m

There is a closely related model Gn,p where 0 ::s;; p = p(n) ::s;; 1. This has vertex set v,.
and edge set En,p where each of the N possible edges is independently included
with probability p. Hence if G is a graph with vertex set v,. and m edges then
Pr(Gn,p = G) = pm(1 - pt-m. Observe that if p = ! then Pr(Gn•1/2 = G) = 2-N and
so each graph with vertex set v,. is equally likely.

These models have been studied extensively since the pioneering work or Erdos
and Renyi [ER1] - [ER4]. The book of Bollobits [B01] gives a systematic and
extensive account of this subject. A gentler introduction is provided by Palmer [P].

When m ~ Np (i.e. !~~ I ;;p - 11 = 0) the graphs Gn,m and Gn,p have similar

properties. Indeed for any graph property d we have

Probabilistic Analysis of Graph Algorithms 211

N

Pr(Gn,p E d) = L Pr(Gn,p E dllEn,pl = m)Pr(IEn,pl = m)
m=O

N

= L Pr(Gn,m E d)Pr(IEn,pl = m), (Ll)
m=O

since Gn,p, given IEn,pl = m, is precisely Gn,m. Now IEn,pl is distributed as the
binomial random variable B(N,p). So for example, ifm = rNpl

Pr(Gn,p E d) ~ Pr(Gn,m E d) (:)pm(l -pt-m

~ Pr(Gn,m E d)(2np(1 - p)N)-1/2 (1.2)

on using Stirling's inequalities for factorials. (1.2) can often be used to show that
Pr(Gn,m E d) is small when Pr(Gn,p E d) is small.

We are mainly concerned with asymptotic results in this paper and in all cases we
will be concerned with what happens as n --+ 00. So let Iffn be some event (dependent
on n). We say that Iffn occurs with high probability (whp) if

lim Pr(lffn) = 1.

Finally we will note the following bounds on the tails of the binomial

Pr(IB(n, p) - npl ~ enp) ::; 2e-·~p/3. (1.3)

(See e.g. [B01]).

Thus if np --+ 00 and we take e = (npr1/4 then we see that B(n, p) ~ np whp. By using
this in (Ll) we can see that Gn,p and Gn,rNPl are "similar". We will refer to (1.3) as the
Chernoff bound.

3. Shortest Path Problem

In this section we consider the problem of finding a shortest path between all pairs
of nodes in a digraph D = (V, A) with non-negative arc lengths t(u) for u E A. For
notational convenience we assume that D is the complete digraph on v". The
arc lengths are random and satisfy an "endpoint independence" condition. More
precisely the lengths of arcs with different start vertices are independent and if for
a given v E v" we have t(vwd ::; t(VW2 ::; ... ::; t(vwn- 1) (ties broken randomly) then
w1 , W2' ... , Wn- 1 is a random permutation of v" - {v}.

We present here an algorithm of Moffat and Takaoka [MT1] which solves the
problem in O(n2log n) time. This is to be contrasted with O(n3) for the best worst-case
performance. (See for example Lawler [La] or Papadimitrion and Steiglitz [PS]).
The algorithm in [MTl] proceeds as follows:

A: sort the arcs incident with each v E v" into increasing order to create list L(v).
B: for each S E v" find a shortest path from s to every other vertex.

212 A. M. Frieze

Since A requires 0(n210gn) time we need only prove an O(n logn) expected time
bound for each single source problem in B. The algorithm used is based on one
originally attributable to Dantzig [D] and improved and analysed in the average
case by Spira ESp]. We first describe this version and then given the contribution
of Moffat and Tokakoa.

The algorithm works with a set S. Initially S = {s}, finally S = v" and at any stage
v E S means that a shortest path oflength D(v) has been found from s to v. If v ¢ S
then D(v) is an estimate of the shortest path length.

Suppose now that for v E S, W ¢ S we let .,1,(vw) = D(v) + t(vw) and D(w) =
min{.,1,(vw): v E S}. It is easy to show that if D(x) = min{D(w): w ¢ S} then D(x) is
the length of a shortest path from s to x.

In the algorithm that follows we keep a priority queue AQ of items (xy, .,1,(xy», one
for each XES, ordered by increasing value of .,1,.

Algorithm SHORTPATH(s)

begin
Initialise AQ with (st, .,1,(st» where st is the first arc on L(s); D(s) := 0;
S:= {s};

Ll: while S # v" do
begin

L2: remove the first item (xy, .,1,(xy» of AQ; add the item (xy', .,1,(xy'»
to AQ where xy' succeeds xy on L(x);

L3: if y ¢ S then do
begin

S:= S u {y}; D(y):= D(x) + t(xy)
L4: add (yz,.,1,(yz» to AQ where yz is the first arc on L(y) with head not in

S
end

end
end

The above algorithm spends too much time at L3 with YES. Building on an idea
of Fredman (Fd) (rediscovered independently later by Frieze and Grimmett [FG])

Moffat and Takaoka [MTl] "clean up" AQ at line Ll when lSI reaches n - ;k for

k = 1,2, ... , L = LlgIgnJ. We shall use 19 to denote log2 and reserve log for loge.

Procedure CLEANUP

begin
E:= r/J;
for each xy E AQ do
begin
if y ¢ S then E:= E u {xy}

Probabilistic Analysis of Graph Algorithms

Cl: else E:= E u {xy'} where xy' is the first arc after xy on L(x)
with head not in S.

end
C2: rebuild AQ out of the arcs in E.
end

Analysis

213

n n
Let Stage k run from lSI = n - 2k-1 to lSI = n - 2k for 1 ::;; k ::;; L = 1l0glognJ and

let Stage L + 1 denote the final part of the algorithm.

l::;;k::;;L

Let T" denote v" - S at the start of Stage k. The probability that y ¢ S at L2 of

SHORTPATH is always at least ~ since YET", I v" - SI ~ ~ I T"I throughout Stage

k and Y is equally likely to be any member of T".

Since ; vertices are added to S in Stage k we expect to execute L3 and hence L2

at most 2:-1 times. Since L2 requires O(logn) time we have

E(time spent at L2 in Stage k) = 0 (2k~110gn) 1 ::;; k ::;; L. (3.1)

To choose z in L4 we expect to examine at most 2k entries in the list of arcs leaving

y. This is beacuse I v" - SI ~ ; throughout Stage k and the next vertex of y's list is

equally likely to be any vertex not encountered so far on this list. Hence

E(time spent at L4 in Stage k) = 0 (; 2k) 1 ::;; k::;; L (3.2)

Now consider CLEANUP. At line Cl we expect to examine at most 2k arcs before
Y' is found (same argument as for L4) and so

E(time spent at Cl in Stage k) = O(n2k) 1 ::;; k ::;; L (3.3)

It takes O(n) time to rebuild AQ at C2 and so from (3.1), (3.2), (3.3) we obtain

E(time spent in first L stages)

= oCt 2':-110gn + Jl n + ktl n2k + ktl n)

= O(nlogn).

Let us now consider Stage L + 1.

First consider L2. Vertex Y E TL+1 and is equally likely to be any member of TL+1
that has not yet been examined on x's list. Suppose lSI = n - S at some point. Then

214 A.M. Frieze

we expect to repeat L2 at most I TL +1 1 ~ -In times before finding Y ¢ S. Hence
s s gn

E(time spent at L2 in Stage L + 1)

= 0 (_n_ nr ! 10gn)
logn 0=1 s

= O(nlogn)

(the finallogn factor is the time to delete the first element of AQ). Now consider L4

and suppose again that lSI = n - s. This time we expect to examine at most ~ edges
before finding z. Hence s

E(time spent at L4 in Stage L + 1)

= o(n n~n!)
.=1 S

= O(nlogn)

We have thus shown that algorithm SHORTPATH runs in O(n210gn) expected time.
In [MT2] Moffat and Takaoka gave another O(n210gn) expected time algorithm
for the same problem. It is not known whether o(n210gn) expected time is achievable
for this problem.

4. Assignment Problem

In this section we discuss the result of Karp [Ka1] that the m x n assignment
problem (m ::;; n) can be solved in O(mn logn) expected time. The analysis can be
applied when the matrix of costs II c(i,j) II is such that (i) the costs in different rows
are independent and (ii) for each i, if c(i,jd::;; C(i,j2)::;; ... ::;; c(i,jn) thenjl,j2, ... ,
jn is a random permutation of {1,2, ... ,n}. (This is the endpoint independence
condition of § 3). The proposed algorithm starts with an empty matching and then
uses shortest augmenting paths to increase it to size m. The idea of Edmonds and
Karp [EK] and Tomizawa [To] is used to ensure that the shortest path problems
that need to be solved have non-negative arc lengths.

Let G be the bipartite graph with vertex set V = Xu Ywhere X = {Xt>X2, ••• ,xm},

Y = {Yl'Y2' ... ,Yn} and the cost ofedgexiyjis c(i,j). We are looking for a minimum
cost matching that covers X. If M is any matching of G let D(M) be the digraph
with vertex set V and arcs

xiYj whenever edge xiYj ¢ M forward arc

YjXi whenever edge XtYj E M backward arc.

Let A = A(M) (resp. B = B(M» denote the vertices of X (resp. Y) not covered by M.

The following algorithm can be implemented to solve the assignment problem in
O(m2 n) worst-case time (for a proof see [EK] or [To]).

Algorithm ASSIGN

begin
M:=r/J

Probabilistic Analysis of Graph Algorithms

for v E V do IX(V) = 0 {IX is the potential function used to keep arc
lengths ~ O}
while IMI < m do
begin

A. Find a shortest path P from A to B in D(M) where the arc-lengths are
given by

t(XiYj) = c(i,j) + IX(Xi) - lX(Yj) XiYj f: M

l(Yjxi) = -c(i,j) + lX(Yj) - IX(Xi) XtYj E M

{update M}

215

Use the alternating path P to alternately add and delete edges to and from
M in the normal way.
for v E V do IX(V) := IX(V) + y(v)
where y(v) is the minimum of t(P) and the length of a shortest 1
path from s to v

end
end

To ftnd the shortest paths in A we use a modiftcation of algorithm SHORTPATH
of§ 3

Changes to SHORTPATH

We create adjacency lists L(Xi), Xi E X, sorted by increasing c(i, .). (For Y E Yeither
L(y) = r/J(y E B) or L(y) consists of the unique vertex of X matched with y by M).
We only have time to do the sorting once for each X E X but on the other hand, at
Statement A we need them sorted according to 1 and not c. Karp's solution to this
problem is rather nice. Deftne

t*(xtYj) = c(i,j) + IX(Xi) - IX* xiYj f: M

where IX* = max{lX(v): v E V}.

Observe that

(4.1)

and

YjE B(M). (4.2)

When an item (uv,D(u) + l(uv» is added to AQ in L2 or L4 we also add a special
item (uv,D(u) + t*(uv» unless v E B(M) or uv is a backward arc of D(M). Also, if
the item removed from AQ is special, then it is ignored and the next item of AQ is
removed. The point is that we are not necessarily examining the arcs leaving a vertex
x E X in increasing lorder. We want to be sure that the "real" items get to the front

216 A. M. Frieze

of AQ in the order they would in the unmodified SHORTPATH algorithm. Thus
we want to be sure that when an item (xy, D(x) + 1(xy» gets to the front it has a
lower value than all competing arcs. But this follows from the fact that if this item
precedes (uv,D(u) + t*(uv» then

D(x) + t(xy) ::s; D(u) + t*(uv) ::s; D(u) + t(uw)

for all w rJ S.

We can also make the simplification that yz in L4 is now to be the first item on
L(y). Finally, we will of course start each execution of SHORT PATH with S = A
and AQ made from the first items of L(a), a E A and terminate when S n B =F rP.

Analysis

We say that xy is a virgin edge if it has not been selected in L2 in any execution of
SHORTPATH. The key observation is that if the selection xy in L2 is a virgin edge
then

(4.3)

This is because the virgin edges with start node x come to the head of AQ in their
(original random) order on L(x) and none of the non-virgin edges with start node
x have an end node in B. For when y E B an augmentation is triggered which means
that y gets covered by the new M.

Let Stage k denote the k'th execution of SHORT PATH and Uk denote the number
of virgin edge selections at L2 in Stage k. Then by (4.3) we have

n
E(Uk) ::s; k 1 n- +

If an edge ceases to be virgin in Stage k then it can be selected at most 2(m - k + 1)
times altogether. Hence the expected number of executions of L2 overall is bounded
above by

m m-k+l
2n2: k 1::S;2mn

k=l n - +
(since m::s; n)

Each such selection requires O(logn) time. The cost of L2 selections and initial
sorting dominates the execution time and Karp's result follows.

5. Matchings in Sparse Random Graphs

Karp and Sipser [KSp] analysed a simple heuristic algorithm for finding a large
c

matching in Gn,p, p = n for a constant c > O. The algorithm runs in O(n) time

and produces a near optimal matching whp. This is to be compared with the
asymptotically most efficient O(n1.S) algorithm of Micali and Vazirani [MV] which

Probabilistic Analysis of Graph AlgoRthms 217

is much more compleX. The analysis is difficult and we will only be able to outline
what is going on. (Even so, our treatment is technically at variance in some places
with what is said in [KSp]).

First the algorithm: here 15(G) is the minimum degree of graph G.

Algorithm MATCH

(i) Remove isolated vertices-if G is now empty, stop.
(ii) if 15(G) = 1 choose a random degree 1 vertex v and let vw be its incident edge.

Otherwise (15(G) ~ 2) let vw be a random edge of G.
(iii) add edge vw to the output matching M and then remove vertices, v; w from G.

Goto (i).

Phase 1 of the algorithm lasts until the first time that 15 ~ 2 in Step (ii) and Phase
2 constitutes the remainder of the algorithm.

Let a vertex be lost by the algorithm if it is deleted in Step (i) and so is not covered
by M. Let Li(n, c) denote the number of vertices lost in Phase i, i = 1, 2. Let R(n, c)
denote the number of vertices remaining after Phase 1.

Karp and Sipser prove the following:

Theorem 5.1
For every e > 0

I. (ILl(n,C) I) (a) ,,~~ Pr --n- - a(c) > e = 0

for some a(c) > O.

(b) lim Pr(L2 (n, c) ~ en) = 0

(c) pr(IR(:,c) - p(c) I > e) = 0

for some p(c) ~ O.

Also p(c) = 0 iff c :::;; e = 2.71828 ...
D

Now any maximum matching must leave at least Ll (n, c) vertices isolated and so
(b) above shows that M is usually of almost optimum size. The final property that
p(c) = 0 iff c :::;; e (the e-phenemenom) is remarkable.

Analysis

Let ~(nl' n2 , m) denote the set of graphs (i) with vertex set V£; v", (ii) with n l vertices
of degree 1, (iii) n2 vertices of degree ~ 2 and (iv) m edges. Suppose that after first
removing the isolated vertices of G = G",p we have a graph in ~(nl' n2 , m). It is easy
to see that each graph in ~(nl' n2 ,m) is equally likely. (Each such graph arises from
a unique G",p with m edges). More importantly, if we stop the algorithm at the end
of any Step (i) and observe the values of nl, n2 , m then the graph we have is still

218 A.M. Frieze

equally likely to be any of ~(nl' n2, m). This is proved inductively by showing that
each G E ~(nl' n2, m) can arise from the same number of graphs in ~(n~, n;, m') via
a single execution of Steps (i)-(iii).

Knowing this, we examine the Markov chain with state space {(n l ,n2 ,m): nl +

n2 :::; n,nl + 2n2 :::; m:::; G).n l ,n2 ~ o} with transition probabilities defined by

the algorithm. Using this we can, for example, examine the length of Phase 1 by
seeing how long it is before nl becomes zero.

Consider Phase 1. Let nl (t), n2(t), met) denote the values of nl , n2, m at the start of
the tth iteration of the algorithm. If in Step (ii) w has degree k and ki neighbours of
degree i, i = 1,2 then we have

nl(t) - nl(t + 1) = kl - k2 + bk,l

n2(t) - n2(t + 1) = k2 + 1 - bk ,1

met) - met + 1) = k + 1

[Kronecker delta]

(5.1)

Now consider a period of time t E [tn,(r + br)n]. If br is small one imagines that
whp the values (n1 (t), n2(t), met»~ will be close to some values nY1 (r), nY2(r), nY3(r)
where Y1, Y2, Y3 are functions of r only. It would also be reasonable to assume that
whp.

(t+<lt)n

~ L (k i - k2 + bk.1) ~ nbrE(k l - k2 + bk,d·
t=tn

In summary we expect that whp the Markov chain (n 1 , n2 , m) closely follows a path
n(YI(r),Y2(r),Y3(r» for 0:::; r :::; T = inf(r: YI(r) = 0), where y(r) satisfies

i=1,2,3, (5.2)

and the Ui are the expected values of the RHS of (5.1) at t = m. Furthermore

yeO) = (ee- C, 1 - e-c, - ee-c, e12) (5.3)

since the degree of a given vertex in Gn•c/n is asymptotically Poisson with mean e.

The formal justification for (5.2) can be obtained by applying a theorem of Kurtz
[Kz].

The next question is how to compute the U i • Consider a graph G chosen randomly
from ~(nl' n2 , m). Suppose we know that whp G has approximately Vi vertices of
degree i, for i = 1, 2, ... (thus VI = n1 and LVi = 2m). The study of random graphs
with a fixed degree sequence is most easily handled by the configuration model of
Bollobas (see [Bol]: if vertex i is of degree di then it gives rise to a set Wi of
cardinality di . W = U Wi. A configuration F is a random partition of W into
2-element sets. From F we obtain a multi graph Jl(F) by mapping {ex, {3} E F to uv
where ex E w,., (3 E w,.. Conditional on Jl(F) being simple each such graph with
the given degree sequence is equally likely. Also if I Wi/(n i + n2) = 0(1) then the

Probabilistic Analysis of Graph Algorithms 219

probability of being simple is bounded away from zero by a constant and so we can
study random F in place of random G E ~(nl' n2,m).

Returning to the evaluation of U 1 , U2' U3 in (5.2), we take any i such that d; = 1 and
pair the unique x E W; with a random element in W - W;. This yields

By similar reasoning we obtain

vt
Pr(k = t ~ 2) = 2~ . (5.4)

E(kllk) = 1 + (k - 1)2v1 => E(k 1) = 1 + ~(E(k) - 1) (5.5)
m m

E(k2Ik) = (k - 1) 22v2 => E(k2) = V2 (E(k) - 1) (5.6)
m m

II 00 vt2
E(k) = _1"'1 + L _t_. (5.7)

2m t=22m

Thus we can compute U 1 , U2' u3 once we have a handle on VI' v2 , .•. . Now it is well
known that in a random graph with n vertices and average degree d constant that
the degree of vertex 1, say, is asymptotically Poisson with mean d. We should not
be surprised that if we condition on minimum degree at least do:::;; d then the degree
of vertex 1 is asymptotically truncated Poisson with parameter 0, i.e.

e-Ow/(00 Ok) Pr(the degree of vertex 1 is t ~ do) ~ no.do(t) = -,- e-o ~ -k' . (5.8)
t. k-do •

o must be chosen so that the average degree is still d (to get the number of edges
correct) i.e.

00

JiO.do = L tnO.do(t) = d. (5.9)
t=do

(The proof of (5.8), (5.9) is rather long).

Now in our case we can show that, ignoring vertices of degree 1, the degree sequence
of what remains is precisely that of a graph with 2m-nl edges, n2 vertices and
minimum degree at least 2. So we now have enough to compute the U; for (2).
Unfortunately, these equations have not been solved explicitly, but at least Part (a)
of Theorem 5.1 follows.

The analysis of Phase 2 is more complicated. There we define clean states to be those
with Yl = 0 and consider transitions from clean state to clean state so that each
such transition corresponds to a sequence of iterations of MATCH in which all but
the first iteration deletes vertices of degree 1. It is possible to establish differential
equations as in (2), (3) which describe the process with high probability. We will not
try to establish them here but instead aim to give the barest justification of part (b)
of the Theorem.

This will be quite easy if we accept that whp a random graph in ~(O, n2 , m), m :::;; cn
satisfies

220 A. M. Frieze

no two (small) .cycles of length ::;; jlogn are within distance jlogn of each other.
(5.l0a)

The number of vertices within distance jlogn of a small cycle is o(n). (5.l0b)

It then follows that whp the number oflost vertices in a transition from a clean state

I . 0 (# matching edges found) h' . . f h' to a c ean state IS ~ . We leave t e JuStIficatIOn 0 t IS
v'logn

last remark to the reader and note that it implies part (b) of the theorem. We will
not attempt to justify the e-phenomenon.

6. Minimum Spanning Forests

In this section we consider the problem of finding a minimum weight spanning forest
of a graph. Our model of randomness is Gn,m with edge weights which when ordered
define a random permutation of the edge-set. Remember that it is the edge weight
order that defines the minimum weight forest.

Karp and Tarjan [KT] gave an O(m + n) expected time algorithm for this problem
based on an algorithm of Cheriton and Tarjan [CT]. This should be compared with
the best deterministic algorithm which runs in O(mw(m, n)) time ([FT] and [GGS]).
Here w is a very slowly growing function of m and n which nevertheless tends to
infinity with n. McDiarmid [M2] gave an alternative treatment of a key lemma.
The algorithm of [KT] is in two stages:

Stage 1

Step la: construct a queue Q of n trees each consisting of a single vertex.

Step I b: if the queue has at most In trees go to Stage 2, otherwise delete the first
tree T from Q.

Step lc: 4. let vw be the unexamined (by Step lc) edge of least weight with one
endpoint, v say, in T. (If there are no such edges, go to Step lb). If WET

then delete vw and restart Step lc. Otherwise add vw to the minimum
forest Fo and go to Step ld.

Step ld: Let tree T' be t4e tree containing w. If T' is small (::;;In vertices) then
delete it from Q. Merge T, T' into a single tree T". If T" is small then add
it to the rear of Q and go to Step lb.

At the end of Stage I there are at most 2Jn subtrees. In O(m + n) time we can
contract each such tree to a single vertex and reduce the problem to that of finding
a minimum forest on ::;;2Jn vertices. This requires O«Jnf) = O(n) time. The
validity of the algorithm follows, for example, from Lemma 5.2 of Aho, Hopcroft
and Ullman [AHU]. The most interesting question from the view of probabilistic
analysis is answered by

Probabilistic Analysis of Graph Algorithms 221

Lemma 6.1

Pr(w E T in Step lc) ::; ~ .

Proof
Suppose Q contains trees T1 , T2, ... , Ik. A vertex vET; is virgin if it has never belong
to a tree T in Step lc.1t is simple to show by induction that each tree T; in Q contains
exactly one virgin vertex Vi. Now if v, wET =1= T; and vw < VV i then interchanging
their order in the permutation of edges will not affect the course of the algorithm
to this point. On the other hand k > In ;:::.: I TI and the result follows with a little
work. 0

The remainder ofthe analysis is mainly nonprobabilistic. The sets of vertices of the
trees of Q are treated as the sets in the UNION-FIND problem in [AHU]. Each
set is represented by a tree so that given edge xy say, where x E T, YET' it takes
O(height(T'» to find out that YET' and 0(1) time to merge T, T' if T =1= T'. When
merging, if height (T) ;:::.: height (T') we make the root of T' a child of the root of T
and vice-versa. The sets of unexamined edges incident with trees in Q are represented
as priority queues. Karp and Tarjan used binomial queues (Vuillemin [V]), but the
analysis will be easier, if we use bottom up skew heaps from Sleator andTarjan
EST]. Then if there are k unexamined edges indident with T then it takes O(log k)
(amortized) time to remove the one of minimum weight and 0(1) time to merge two
queues.

The final concept is that of level. Initially imagine a marker placed at the back of
Q. All trees (single vertices) are level zero. The marker continually moves to the front
and then is placed at the back. If the marker has reached the front t times then we
say the trees behind it in Q are at level t + 1 and those in front are at level t. The
following are easy to justify inductively:

(a) A tree of level t contains at least 2t vertices.

(b) Trees of same level are disjoint (-+ at most ; trees of level t).
(c) height (T) ::; level (T) for T E Q.

Let us now bound the (expected amortized) running time of Phase 1

(i) Total time of find the tree containing w in Step lc and merge trees in Step Id.

O(~o ;t(t + 1)) = O(n)

(ii) Total time to find vw in Step lc

O(~o leVe~)=t 10ge(T»)
(where e(T) = I {unexamined edges incident with Twhen it reaches front of Q} I)

= O(~o ;tIOg(m~t)) by concavity of log

= O(m).

222 A. M. Frieze

(iii) Total time'to merge priority queues in Step Id
= O(n).

One can show that it takes O(m) time to initialize the data structures and that
amortized time (with a suitable potential function) is within O(m) of actual time. This
completes the analysis of the algorithm.

7. Hamilton Cycles

Komlos and Szemeredi [KSz] prove the following

Theorem 7.1
111

Let m = 2nlogn + 2nloglogn + 2cnn. Then

lim Pr(Gn.m is Hamiltonian) =
n-+oo

lim Pr(8(Gn.m) ~ 2) = {:-e-c
n-+oo

1

C-+-oo

o
The aim of this section is to prove the result of Bollobas, Fenner and Frieze [BFF]
that there exists an O(n3+0(1» time algorithm HAM satisfying

lim Pr(HAM finds a Hamilton cycle in Gn•m)
n-+oo

= lim Pr(Gn.m is Hamiltonian). (7.1)
n-+oo

The most interesting case is where Cn -+ c. For this we can reformulate (7.1) as

lim Pr(HAM finds a Hamilton cycle 18(Gn•m) ~ 2) = 1. (7.2)
n-+oo

The following idea has been used extensively: given a path P = (VI' V2 , ... , v k) plus
an edge e = VkVi where 1 ~ i ~ k - 2, we can create another path of length k - 1
by deleting edge ViVi+1 and adding e. Thus let

ROTATE(P,e) = (VI,V2, ... ,Vi,Vk>Vk-I, ... ,vi+d.

HAM proceeds in a sequence of stages. At the beginning of the k'th stage we have
a path Pk of length k, with endpoints Wo and WI' Stage k ends when we have
constructed a path of length k + 1 or created a Hamilton cycle. We try to extend
Pk from either Wo or WI' If we fail, but WOWI E E(Gn,m) then, assuming Gn,m is
connected, as it is whp, we can find a longer path than Pk • Failing this, we can
create a set of paths of length k by constructing all possible paths of the form
ROT ATE(Pk , e). These paths at rotation depth 1 from Pk are then tested for extension
or closure. If none of these yield a path of length k + 1 or form a Hamilton cycle

Probabilistic Analysis of Graph Algerithms 223

then we create all possible paths at rotation depth 2 and so on. The algorithm only
gives up trying to find a path of length k + 1 or close a Hamilton path (and fails)
when it has created all paths at rotation depth 2T where T = pogn/(loglogn
loglogn)l.

Now it can be shown that wbp the number of distinct pairs of endpoints of the paths
created grows by a factor of at least logn/l000 as we create each set of paths at a
given rotation depth. Thus if HAM fails at any stage there will be a set of IXn2(1X > 0
constant) pairs of vertices Z (the distinct pairs of endpoints of the paths created)
which depends on the execution of the algorithm, such that if (v, w) E Z then
vw ¢ E(Gn•m).

The final part of the proof is rather unintuitive. It is based on a counting argument
of Fenner and Frieze [FF]. In order to get the main idea across we will omit to
mention certain technical conditions which hold wbp and are required for the proof.

Suppose now that HAM fails on Gn•m during Stage k. Now Pk is derived from Po
(= vertex 1) by a sequence of at most 2nT rotations and extensions. Let W = W(Gn•m)

denote the set of at most 2nT + n edges which are involved in these operations.

Now consider the deletion of OJ = pog n 1 random edges X from Gn•m and the
following events which are all made conditional on J(Gn•m) ;;:: 2.

80 = {HAM fails to find a Hamilton cycle}

8 1 = {HAM fails on Gn•m - X in the same stage as on Gn•m }.

Observe first that

(7.3)

Since if X avoids W(Gn•m} then 81 will occur. But on the other hand, for any fixed
graph H with In - OJ edges

Pr(8dGn•m - X = H) ~ (1 - IX)'" (7.4)

This is because given H, X is a random OJ-subset of E(H) and in order that 81 occur,
X must avoid Z(H} which will be of size IXn2• (7.3) and (7.4) together show Pr(80 } =
0(1} which yields (7.2).

Modifications of these ideas have been used to find Hamilton cycles in sparse
random graphs [Fl], random directed graphs [F2] and to solve travelling salesman
problems [F3].

8. Grapb Colouring

In this section we discuss an algorithm which tries to 3-colour graphs. If a graph is
chosen uniformly at random from the set of 3-colourable graphs with vertex set v"
then it succeeds wbp. Our discussion is based on work of Dyer and Frieze [DF]
and Turner [Tu].

224 A. M. Frieze

Before getting into this discussion it is as well to briefly state what is known about
colouring random graphs in general, say for GR,.s where each graph with vertex set
v,. is equally likely. Now it has been shown by Bollobas [B02] that

n
X(Gn 5) ~ -21-- whp ,. og2n

(See also Luczak [L] for the sparse graph case). In spite of a great deal of effort the
best polynomial time algorithms tend to use roughly twice as many colours as are
really needed (see e.g. Grimmett and McDiarmid [GM], Bollobas and Erdos [BE],
Shamir and Upfal [SU]).

Having explained this sorry situation we can turn to 3-colourable graphs. (Actually,
the proposed methods extend to k-colourable graphs, k fixed-see [DF] or [Tu]
for details). It is not obvious how to deal with the probability space ~(n: X = 3) =
the set of 3-colourable graphs with vertex set v,.. We must deal with it indirectly.

First consider a simple way of constructing a random 3-colourable graph. Suppose

B1 , B2, B3 is a random partition of v,. into sets of size ~i. For each e E (Bl x B2) U

(Bl x B3) U (B2 x B3) independently put in the coresponding edge with probability

p ~ ~. (We need to allow p close to ~ as well as = ~). Call the resulting random

graph G1 . Clearly GI is 3-colourable. Can we 3-colour G1 whp without knowing BI ,

B2, B3? The answer is yes. In the following algorithm Xl' X 2, X3 will (hopefully)
denote a 3-colouring of GI . We use the notation ds(v) to denote the number of
neighbours of a vertex v in a set S.

Algorithm COLOUR

begin

end

for i := 1 to 2 do
b~n

X i := tfo; Y;:= v,. - U Xi
j<i

repeat
choose v E Y; such that dy,(v) is minimal;
X i := Xi U {v}; Y;:= Y; - {v} - r(v)

until Y; = tfo
end

2

if X3 = v,. - U Xi is independent then Xl' X 2 , X3 is a 3-colouring
}=1

else COLOUR has failed.

(Replace 2 by k - 1 and 3 by k to get an algorithm for colouring k-colourable
graphs.)

LemmaS.1
Pr(COLOUR fails) = 0(1).

Probabilistic Analysis of Graph Algorithms 225

Proof
It is only necessary to show that the first repetition of the for-loop in COLOUR
terminates with X I = BI or Bz or B3 • If this is the case then we are effectively
re-applying the algorithm having replaced 3 by 2.

Without loss of generality assume that the first v E YI is in BI . Suppose inductively
that r ~ 1 vertices have been selected in Xl and suppose Xl ~ BI . Note that
YI = v,. - r(X I) - Xl· If r s; 3 then we can show using the Chernoff bound that

for any r-subset X of BI , IBj - r(X)1 ~ _n_,j = 2,3, whp and if v E Bi then it has
3 x 2'

n n
degree ~ 3 x 2'+1 in Bj - r(X), j i= 1, Similarly v E Bi , i i= 1 has degree ~6 in BI ·

Hence under these assumptions

and so the next choice is also in BI. For r > 3 we use the fact that whp I(Bz U B3) (\

YII ;:5 1~ while v rt BI retains ~~ neighbours in BI· D

Now we have not yet proved that COLOUR works with high probability on graphs
chosen uniformly at random from ~(n: X = 3) and we do not have the space here
to give all the details of how to "translate" the result of Lemma 8.1 to obtain this
result. On the other hand it is easy to show that whp GI is uniquely 3-colourable, a
fact which is of interest in its own right and vital to the "translation".

Lemma 8.2
Pr(GI is not uniquely 3-colourable) = 0(1).

Proof(Outline)
Consider a vertex v E BI . Whp it has ~ ~ neighbours Ni ~ Bi, i = 1, 2. Whp NI u Nz

induces a connected, and hence uniquely 2-colourable, bipartite graph. But then
whp each WE BI - {v} is adjacent to a vertex in both Nl and Nz and so BI is
determined as one colour class. Finally, whp Bz U B3 induces a connected bipartite
graph which then determines Bz, B3 uniquely. D

We can now discuss the "translation" of Lemma 8.1 Let Gz be the random graph
z

in which we randomly choose m ~ ~ edges from (BI x Bz) U (BI x B3) U (B2 x B3)

3m 1
where BI , Bz, B3 are as for GI · If we let p = -;:;z ~ 2: then we have

Pr(COLOUR fails on Gd

~ Pr(COLOUR fails on GIIIE(GI)I = m)Pr(jE(G1)1 = m)

= Pr(COLOUR fails on Gz)Pr(IE(GI)1 = m).

226 A. M. Frieze

Now ifthe calcl1lations are made explicit in Lemma S.1 then we can prove that, say,

Pr(COLOUR fails on Gd ~ e-";;'

and it is easy to see that
Pr(IE(Gdl = m) = Q(l/n) (8.1)

1 n2
for p, m close enough to 2' "6 respectively. Hence, with these caveats, one sees
immediately that

Pr(COLOUR fails on G2) = 0(1).

Similarly
Pr(G2 is not uniquely 3-colourable) = 0(1). (8.2)

Now some rather tedious calculations show that almost all graphs in ~(n: X = 3)
2

have ~ ~ edges and have 3 colour classes of size ~j only, (the approximations here

are good enough for (S.2) to hold). Thus we really only have to show that Lemma
S.l can be translated to G3 chosen uniformly from ~' = the set of 3-colourable

2

graphs with m ~ ~ edges and a set of colour classes of size n1 , n2' n3 ~ j.
Now while G3 is chosen uniformly from ~', G2 is chosen from ~' with probability
proportional to the number, v(G2) of different (unordered) 3-colourings G2 (with
colour-classes ofthe appropriate size).

Now for any d s;;; ~'

V(G) Idl I~'I
Pr(G2 E d) = Gf", v(~') ;;:: I~'I' v(~')' . v(~') = G~~ v(G)

;;:: (1 - 0(1»Pr(G3 E d)

since the result of Lemma 8.2 can be expressed as

v(G)
L (rA') = 0(1).

v(G)2:2 v ";7

Thus
Pr(G3 E d) ~ (1 + 0(1»Pr(G2 Ed).

We obtain the result we want by taking d = {G E ~': COLOUR fails on G}.

The failure probability of COLOUR is not quite small enough so that one has a
polynomial expected time algorithm if one handles exceptional cases by enumera
tion. In [DF] we construct another algorithm COLOUR1 to handle the excep
tional cases of COLOUR. It has polynomial running time and failure prob
ability O(e-!.I(1l10gn». Thus if both COLOUR and COLOUR1 fail we can then
resort to enumeration of all possible 3-colourings and we will have a polynomial
expected time algorithm for colouring 3-colourable graphs.

Probabilistic Analysis of Graph Algorithms 227

9. Graph Isomorphism

In this section we give the earliest and simplest result concerning the graph isomor
phism problem for random graphs. It is due to Babai, Erdos and Selkow [BES].
Suppose we are given graphs Gj = (v,., E j), i = 1,2, where G1 is the random graph
Gn •• 5 and G2 is any graph. Can we quickly tell whether or not G1 ~ G2 i.e. whether
there exists a bijection f: v,. -+ v,. such that vw E El ifff(v)f(w) E E2 • The answer in
[BES] is that whp we can check this in O(n2) time.

The method is based on the fact that whp G1 has the properties (9.1) and (9.2) below.
Let the vertices of G1 be relabelled so that d(i) ~ d(i + 1), i = 1,2, .. '., n - 1. Let
r = r310g2 nl. Then whp

d(i) > d(i + 1) for 1 ~ i < r. (9.1)

Next, for j > r let Xj = {i: 1 ~ i < rand ij EEl}' then whp

for j, k > r.

Thus we can relabel the vertices r + 1, " ., n so that

X j is lexicographically larger than Xl+l , i = r + 1, ... , n - 1.

Given (9.1) and (9.2) it is easy to check if G1 and G2 are isomorphic.

(9.2)

(9.3)

1. Compute the degree sequence of G2 • If the largest r degrees do not coincide with
those of G1 then G1 and G2 are not isomorphic.
If they are then by (9.1) we can identify f(I), ... ,f(r) in any possible isomorphism.
By relabelling vertices of G2 we can assume f(i) = i for 1 ~ i ~ r.

2. For each vertex v > rof G2 compute y" = {i: 1 ~ i ~ rand iv E E(G2)}. Sortthese
n-r sets into lexicographic order. If these exists i > r such that Yi oF X j then by
(9.2) and (9.3) G1 and G2 are not isomorphic. Otherwise the only possible
isomorphism is now f(i) = i.

3. Finally, check if f(i) = i is an isomorphism i.e. check if now G1 = G2 •

The proof of (9.1) requires a lot of calculation. Babai, Erdos and Selkow proved
considerably more than this. They showed that

d(i) - d(i + 1) ~ n·03 for 1 ~ i < n·15 . (9.4)

For an even stronger result see Theorem 111.15 of Bollobas [Bol]. Given (9.4) it is
quite easy to prove (9.2). If (9.4) holds and X j = Xj for some i,j > r then i and j have
the same set of neighbours among the r largest vertices in Hi} = G1 - {i,j}. Denote
the this event by Si]' Now since the graph Hi} is independent of i,j the probability

of Sjj is G), . Hence

n-l n (1)'
Pr(3i,j > r: Xj = Xj) ~ j~ j~ Pr(Sjj) + Pr«9.4) fails) ~ n2 • '2 + 0(1) = 0(1).

The result of [BES] has been strengthened by Karp [Ka2], Lipton [Li] and Babai
and Kucera [BK]. In particular Babai and Kucera handle exceptional graphs in

228 A. M. Frieze

such a way that graph isomorphism can be tested in linear expected time on Gn •. s.
For regular graphs, the above algorithm(s) would be particularly ineffective. How
ever, Kucera [Ku] has recently devised an algorithm for regular graphs which runs
in linear expected time, i.e. O(nd), assuming the degree d does not grow with n.

10. Graph Bisection

Here we are given a graph G = (V, E) with n vertices, n even, and the problem is to
find the partition of V into two equal sized subsets Sl, S2 so that the number of
Sl: S2 edges is minimised. The minimum such number of edges is called the bisection
width of G. The problem is useful in VLSI design problems (see Bhatt and Leighton
[BL]), but is NP-hard (Garey, Johnson and Stockmeyer [GJS]).

If we take the graph Gn•m as a model of random input then we find that all relevant

cuts have ~I edges whp provided m is sufficiently large e.g. m = Q(n logn). Finding

the bisection width in these circumstances is still open.

Positive results can be obtained if we consider sampling uniformly from t§(n, m, b),
the set of graphs with vertex set v,., m edges and bisection width b. Basically, the

idea is to have b significantly smaller than I and then whp there will be a unique

cut of size b which will be easy to find. Bui, Chaudhuri, Leighton and Sipser [BCLS]
considered this approach for regular graphs, Dyer and Frieze [DF] considered
t§(n,m,b) with m = Q(n2) and Boppana [Bp] considered the case m = Q(nlogn).
We will outline Boppana's approach here.

First of all we remark that it is not easy to work directly with t§(n, m, b). Instead one
chooses a random partition of v,. into Sl' S2 of equal size, and then add edges
between Sl and S2 with probability q = 4b/n2 and within each Si with probability

p = 4(m - b) I (~). Results are proved for this "independent" model and then

translated to t§(n, m, b)-see § 8 on colouring.

For S £; v,. we define x = x(S) E IRn by Xi = 1, i E Sand = -1 otherwise. Given
d E IRn we let B = B(d) = A + D where A is the adjacency matrix of G and D =
diag(d). Also let sum (B) = 21EI + L~=l di = the sum of the entries of B. Next let

1 - x·x· 1 n 1
f(G,D,x) = L 2 I J - -4 L di(xf - 1) = -4 (surn(B) - xTBx).

(i.JJeE i=l

The significance of this function is that

f(G,d,x(S)) = I(S: v,. - S)I for (10.1)

. 1
Observe that Ii x(S) II = In (EuclIdean norm) and eT x(S) = 0 when lSI = In. (e T =

(1,1, ... ,1)). So from (10.1) it is natural to consider

Probabilistic Analysis of Graph Algorithms 229

g(G,d) = min f(G,d,x) = min -41 (sum(B) - xTBx)
eTx=O Ilxll=j;;

IIxll=j;;

where B = B(d) = (1 -~eeT) B. (Observe that the matrix 1 -~eeT projects [Rn

onto {x E [Rn: eTx = OJ.

Bopanna's idea is that one can find d for which the x minimising f(G, d, x) is xeS)
for a minimum bisection S.

Note that

1
g(G,d) = 4 (sum (B) - nA(E) (10.2)

where A(E) is the largest eigenvalue of B.

Now g(G,d) being the infimum of a collection oflinear functions is concave in d
and so

h(G) = max g(G,d)
dE~n

can be computed in polynomial time. (Grotschel, Lovasz and Schrijver (GLS».

Since g(G, d) s f(G,d,x(S» for S s; v.. we see that

h(G) s bisection width of G.

The nice probabilistic result of Boppana is that if G is sampled uniformly from
rg(n, m, b) and

1
Os b s 2m - 5Jmnlogn (10.3)

then whp the bisection width of G is b = h(G) = g(G,d*) and the eigenvector
corresponding to A(B(d*» yields the minimum bisection. The proof of this result
is as follows. First of all it is straightforward to show given (10.3), that in the
independent model there is whp a unique minimum bisection of size b. Next let Sl,
S2 be a minimum bisection. For i E Sl let d[= dei, S2) - dei, Sd and for i E S2 let
d[= d(i,Sl) - d(i,S2) where d(v,S) = I{w E S: vw E E}I. Now sum (B(d*» = 4band
so by (10.2) g(G, d*) = b iff A(B(d*» = O. Observe also that B(d*)x(Sd = 0 and so
Boppana's result is reduced to showing that whp B(d*) has a unique eigenvalue of
zero and every other eigenvalue is negative.

1 ~
Now we have E(B) = M - 2(P - q)n1 where M = E(A). Also MX(Sl) = 0,

x(SlfM = 0 and so if e(B - M)~ s 0 always then ~TB~ sO always, which is
what we need. This follows a fortiori if B - M has non-positive eigenvalues or

1
~~;alues or equivalently if B - E(B) has eigenvalues bounded above by 2 (p - q)n.

230 A. M.Frieze

l(B - E(B» ~ l(A - E(A» + l(D - E(D».

The eigenvalues of D - E(D) are precisely its diagonal entries and using Chernofi's
bound we fmd that l(D - E(D» ~ SJpnlogn.

Extimating l(A - E(A» is more difficult, but the eigenvalues of random matrices
have been intensively studied. By modifying a result due to Furedi and Koml6s
[FuK] Boppana shows that l(A - E(A» ~ 3..jJmwbp and so l(B - E(B» ~
6J pn logn wbp. The reader can now check that if (10.3) holds then 6J pn logn <

~(P - q)n as required.

The probability that Boppana's algorithm fails to work is not sufficiently small that
exceptional cases can be dealt with more crudely and still yield a polynomial
expected time algorithm which handles all graphs. For m = Q(n2) however, there
is a polynomial expected time algorithm, [DFJ.

11. Otber Aspects

We have concentrated here on positive results that arise in probabististic analysis.
This field also has its share of negative results. We mention three: Chvatal [C]
showed that a certain class of approaches to finding the largest independent set in
a graph took exponential time wbp; McDiarmid [M1] proved a similar result for
graph colouring as did Ahn, Cooper, Cornuejols and Frieze [ACCF] for finding a
small dominating set.

There is an increasing interest in finding fast parallel algorithms. There are a few
results here of interest to us: Frieze and Rudolph [FR] gave an O(loglogn) expected
time parallel algorithm for the shortest path problem of § 3; Frieze [F4] gave an
0«loglogn)2) expected time parallel algorithm for the Hamilton cycle problem in
Gn,p, p constant; Frieze and Kucera [FrK] give a polylog expected time algorithm
for colouring graphs; Coppersmith, Raghavan and Tompa [CRT] give polylog
expected time algorithms for graph colouring, finding maximal independent sets
and finding Hamilton cycles: Calkin and Frieze [CF] deals with maximal indepen
dent sets.

Finally we mention an area of particular interest to probabilists. Given a weighted
optimisation problem, determine the properties of the (random) optimal value. We
first mention two similar results: consider the n x n assignment problem in which
the costs c(i,j) are independent uniform [0, 1] random variables. Let w" denote the
minimal value of an assignment. Walkup [W] showed that, rather surprisingly,
E(w,,) < 3 for all n. Karp [K] improved this to E(w,,) < 2 (see also Dyer, Frieze
and McDiarmid [DFM]). A lower bound of 1 + e-1 was proved by Lazarus [LzJ.

Consider next the minimum spanning tree problem where the edge weights are also
independent uniform [0,1] random variables. Let Ln denote the minimum length
of a spanning tree. We showed [FS] that

Probabilistic Analysis of Graph Algorithms 231

00

lim E(Ln) = '(3) = L k-3 ,
.. -+00 k=l

(see also Steele [Stl] and Frieze and McDiarmid [FM]).

Probabilists have found Euclidean problems even more interesting. For example,
suppose Xl' X 2, ••• , Xn are independently chosen uniformly at random in the unit
square [0,1]2. In a very important paper Beardwood, Halton and Hammersley
[BHH] showed that if T,. is the minimum length of a travelling salesman tour
through these points then there exists a constant P > 0 such that

pr(lim 7: = p) = 1.
,,-+oov n

Steele [St2] has generalised this result considerably and the paper by Karp [Ka4]
was very influential in generating interest in the probabilistic analysis of algorithms.

For a bibliography on topics related to this paper see Karp, Lenstra, McDiarmid
and Rinnooy Kan [KLMR].

Acknowledgement

I would like to thank Colin McDiarmid for a thorough reading of this paper.

[ACCF]

[AHU]

[BES]

[BHH]

[Bol]
[B02]
[BE]

[BFF]

[Bp]

[BK]

[BL]

[BCLS]

[CF]

[C]

[Cf]

[CRT]

References

S. Ahn, C. Cooper, G. Cornuejols and A. M. Frieze, 'Probabilistic analysis of a relaxation for
the k-median problem', Mathematics of Operations Research 13 (1988) 1-31.
A. Aho, J. E. Hopcroft and J. D. Ullman, 'The design and analysis of computer algorithms',
Addison-Wesley, Reading MA, 1974.
L. Babai, P. Erdos and S. M. Selkow, 'Random graph isomorphisms', SIAM Journal on
Computing 9 (1980) 628-635.
J. Beardwood, J. H. halton and J. M. Hammersley, 'The shortest path through many points',
Proceedings of the Cambridge Philosophical Society 55 (1959) 299-327.
B. Bollobas, Random graphs, Academic Press, 1985.
B. Bollobas, 'The chromatic number of random graphs', Combinatorica 8 (1988) 49-55.
B. Bollobas and P. Erdos, 'Cliques in random graphs', Mathematical Proceedings of the
Cambridge Philosophical Society 80 (1976) 419-427.
B. Bollobas, T. I. Fenner and A. M. Frieze, 'An algorithm for finding Hamilton paths and
cycles in random graphs', Combinatorica 7 (1987) 327-342.
R. Boppana, 'Eigenvalues and graph bisection: an average case analysis', Proceedings of the
28th Annual IEEE Symposium on the Foundations of Computer Science (1987) 280-285.
L. Babai and L. Kucera, 'Canonical labelling of graphs in linear average time', Proceedings
of the 20th Annual IEEE Symposium on the Foundations of Computer Science (1979) 39-46.
S. Bhatt and T. Leighton, 'A framework for solving VLSI graph problems', Journal of
Computer and System Sciences 28 (1984) 300-343.
T. Bui, S. Chaudhuri, T. Leighton and M. Sipser, 'Graph bisection algorithms with good
average case behaviour', Combinatorica 6.
N. Calkin and A. M. Frieze, 'Probabilistic analysis of a parallel algorithm for finding a
maximal independent set', to appear.
V. Chvatal, 'Determining the stability number of a graph', SIAM Journal on Computing 6
(1977) 643-662.
D. Cheriton and R. E. Tarjan, 'Finding minimum spanning trees', SIAM Journal on Com
puting 5 (1976) 724-742.
D. Coppersmith, P. Raghavan and M. Tompa, 'Parallel graph algorithms that are efficient

232

[0]

[DF]

[DFM]

[EK]

[ER1]
[ER2]

[ER3]

[ER4]

[FF]

[Fd]

[FT]

[Fl]

[F2]

[F3]

[F4]

[F5]

[FG]

[FrK]

[FM]

[FR]

[FuK]

[GGS]

[GIS]

[GM]

[Kal]

[Ka2]

[Ka3]

A. M. Frieze

on average', Proceedings of the 28th Annual IEEE Symposium on the Foundations of
Computer Science (1987) 260-270.
G. B. Dantzig, 'On the shortest route through a network', Management Science 6 (1960)
187-190.
M. E. Dyer and A. M. Frieze, The solution of some random NP-hard problems in polynomial
expected time' to appear in Journal of Algorithms.
M. E. Dyer, A. M. Frieze and C. J. H. McDiarmid, 'On linear programs with random costs',
Mathematical Programming 35 (1986) 3-16.
J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network
flow problems', Journal of the ACM 19 (1972) 248-264.
P. Erdos and A. Renyi, 'On random graphs 1', Publ. Math. Debrecen 6 (1959) 290-297.
P. Erdos and A. Renyi, 'The evolution of a random graphs', Publ. Math. Inst. Hungar. Acad.
Sci. 5 (1960) 17-61.
P. Erdos and A. Renyi, 'On the strength of connectedness of a random graph', Acta Math.
Acad. Sci. Hungar.12 (1961) 261-267.
P. Erdos and A. Renyi, 'On the existence of a factor of degree one of a connected random
graph', Acta Math. Inst. Acad. Sci. Hungar. 17 (1966) 359-368.
T. I. Fenner and A. M. Frieze, 'On the existence of Hamilton cycles in a class of random
graphs', Discrete Mathematics 45 (1983) 301-305.
M. L. Fredman, 'On the decision tree complexity of the shorest path problem', Proceedings
of the 16th Annual IEEE Symposium on the Foundations of Computer Science «1985)
101-105.
M. L. Fredman and R. E. Tarjan, 'Fibonnacci heaps and their uses in network optimisation
problems', Proceedings of the 25th Annual IEEE Symposium on the Foundations of Com
puter Science (1984) 338-346.
A. M. Frieze, 'Finding Hamilton cycles in sparse random graphs', Journal of Combinatorial
Theory B44 (1988) 230-250.
A. M. Frieze, 'An algorithm for finding Hamilton cycles in random digraphs', Journal of
Algorithms 9 (1988) 181-204.
A. M. Frieze, 'On the exact solution of random travelling salesman problems with medium
sized integer costs', SIAM Journal on Computing 16 (1987) 1052-1072.
A. M. Frieze, 'Parallel algorithms for finding Hamilton cycles in random graphs', Information
Proceesing Letters 25 (1987) 111-117.
A. M. Frieze, 'On the value of a random minimum spanning tree problem', Discrete Applied
Mathematics 10 (1985) 47-56.
A. M. Frieze and G. R. Grimmett, 'The shorest path problem for graphs with random
arc-lengths', Discrete Applied Mathematics 10 (1985) 57-77.
A. M. Frieze and L. Kucera, 'Parallel colouring of random graphs', to appear in Annals of
Discrete Mathematics.
A. M. Frieze and C. l. H. McDiarmid, 'On random minimum length spanning trees', to appear
in Combinatorica.
A. M. Frieze and L. Rudolph, 'A parallel algorithm for all-pairs shortest paths in a random
graph', Proceedings of the 22nd Allerton Conference on Communication, Control and
Computing (1985) 663-670.
Z. Furedi and M. Komlos, The eigenvalues of random symmetric matrices' Combinatorica
1 (1981) 233-241.
H. N. Gabow, Z. Galil and T. Spencer, 'Efficient implementation of graph algrithms using
contraction', Proceedings of the 25th Annual IEEE Symposium on the Foundations of
Computer Science (1984) 347-357.
M. R. Garey, D. S. Johnson and L. Stockmeyer. 'Some simplified NP-complete graph
problems', Theoretical Computer Science 1 (1976) 237-267.
G. R. Grimmett and C. J. H. McDiarmid, 'On colouring random graphs' Mathematical
Proceedings of the Cambridge Philosophical Society 77 (1975) 313-324.
R. M. Karp, 'An algorithm to solve the m x n assignment problem in expected time
O(mnlogn)', Networks 10 (1980) 143-152.
R. M. Karp, 'Probabilistic analysis of a canonical numbering algorithm for graphs', Proceed
ings of Symposia in Pure Mathematics, Volume 34, 1979, American Mathematical Society,
Providence, RI, 365-378.
R. M. Karp, 'An upper bound on the expected cost of an optimal assignment', Discrete
Algorithms and Complexity: Proceedings of the Japan-US loint Seminar (D. Johnson et
ai, eds.), 1-4, Academic Press, New York, 1987.

[Ka4]

[KLMR]

[KSp]

[KT]

[KSz]

[Ku]

[Kz]

[La]

[Lz]

[Li]
[Lu]
[Ml]

[M2]

[MY]

[MTl]

[MT2]

[P]
CPS]

[SU]

ESp]

,[St2]

[St2]

EST]

[To]

[Tu]

[V]

[W]

Probabilistic Analysis of Graph Algorithms 233

R. M. Karp, 'Probabilistic analysis of partitioning algorithms for the traveling salesman
problem in the plane', Mathematics of Operations Research 2 (1977) 209-224.
M. Karp, J. K. Lenstra, C. J. H. McDiarmid and A. H. G. Rinnooy Kan', Probabilistic analysis
of combinatorial algorithms: an annotated bibligoraphy', in Comminatorial Optimisation:
Annotated Bibliographies, (M. O'Heigeartaigh, J. K. Lenstra and A. H. G. Rinnooy Kan,
eds.), John Wiley and Sons, New York, 1984.
R. M. Karp and M. Sipser, 'Maximum matchings in sparse random graphs', Proceedings of
the 22nd Annual IEEE Symposium on Foundations of Computer Science (1981) 364-375.
R. M. Karp and R. E. Taljan, 'Linear expected time algorithms for connectivity problems',
Journal of Algorithms 1 (1980) 374-393.
M. Komlos and E. Szemeredi, 'Limit distributions for the existence of Hamilton cycles in a
random graph', Discrete Mathematics 43 (1983) 55-63.
L. Kucera, 'Canonical labeling of regular graphs in linear expected time' Proceedings of the
28th Annual IEEE Symposium on the Foundations of Computer Science (1987) 271-279.
T. G. Kurtz, 'Solutions of ordinary differential equations as limits of pure jump Markov
processes', Journal of Applied Probability 7 (1970) 49-58.
E. L. Lawler, Combinatorial optimization: networks and matroids, Holt, Rinehart and
Winston, New York 1976.
A. J. Lazarus, 'The assignment problem with uniform (0,1) cost matrix', B. A. Thesis, Depart
ment of Mathematics, Princeton University, Princton, N. J.
R. J. Lipton, 'The beacon set approach to graph isomorphism', Yale University, pre-print.
T. Luczak, 'The chromatic number ofrandom graphs', Combinatorica to appear.
C. J. H. McDiarmid, 'Determining the chromatic number of a graph', SIAM Journal on
Computing 8 (1979) 1-14.
C. J. H. McDiarmid, 'On some conditioning results in the analysis of algorithms', Discrete
Applied Mathematics 10 (1985) 197-201.
S. Micali and V. V. Vazirani, 'An O(JIVI'IEI) algorithm for finding maximum matching in
general graphs', Proceedings of the 21st Annual IEEE Symposium on Foundations of Com
puter Science (1980) 17-27.
A. Moffat and T. Takaoka, 'An all pairs shortest path algorithm with expected running time
O(n2 10gn)', Proceedings of the 26th Annual IEEE Symposium on the Foundations of Com
puter Science (1985) 101-105.
A. Moffat and T. Takaoka, 'An all pairs shortest path algorithm with expected time
O(n2 10gn)', SIAM Journal on Computing 16 (1987) 1023-1031.
E. M. Palmer, Graphical evolution, Wiley-Interscience, 1985.
C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complex
ity, Prentice-Hall, 1982.
E. Shamir and E. Upfal, 'Sequential and distributed graph colouring algorithms with perfor
mance analysis in random graph spaces', Journal of Algorithms 5 (1984) 488-501.
P. M. Spira, 'A new algorithm for finding all shortest paths in a graph of positive arcs in
average time O(n log n)' SIAM Journal on Computing 2 (1973) 28-32.
J. M. Steele, 'On Frieze's '(3) limit for lengths of minimal spanning trees', Discrete Applied
Mathematics.
J. M. Steele, 'Subadditive Euclidean functionals and non-linear growth in geometric probabil
ity', Annals of Probability 9 (1981) 365-376.
D. D. Sleator and R. E. Taljan, 'Self-adjusting heaps', SIAM Journal on Computing 15 (1986)
52-69.
N. Tomizawa, 'On some techniques useful for solution of transportation problems', Networks
1 (1972) 173-194.
J. S. Turner, 'Almost all k-colorable graphs are easy to color', Journal of Algorithms 9 (1988)
63-82.
J. Vuillemin, 'A data structure for manipulating priority queses', Communications of the
ACM 21 (1978) 309-315.
D. Walkup, 'On the expected value of a random assignment problem', SIAM Journal o~
Computing 8 (1979) 440-442.

Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213
U.S.A.

Computing, Supp. 7, 235-255 (1990)
Computing
© by Springer-Verlag 1990

Generating Graphs Uniformly at Random

G. Tinhofer, Miinchen

Abstract - Zusammenfassung

Generating Graphs Uniformly at Random. This paper deals with the problem of sampling from a uniform
distribution on various classes of graphs of given size. We consider algorithms and restarting procedures
for uniform generation of several kinds oftrees, arbitrary unlabel1ed graphs and various kinds oflabel1ed
graphs. Most of the material discussed in this paper has been developed during the last decade by several
authors. In section 4.3 some recent results on the generation of outerplanar graphs and maximal planar
graphs are presented.

AMS Subject Classification: OSc.

Key words: uniform sampling, unlabel1ed graphs, label1ed graphs, counting problems.

Erzeugung von gleichverteilten ZufaUsgraphen. Diese Arbeit gibt einen Oberblick iiber bekannte Ver
fahren zur Erzeugung von Zufal1sgraphen gemiiJ3 einer Gleichverteilung iiber einer gegebenen Klasse
von Graphen mit fester Knotenzahl. Wir betrachten Algorithmen und 'Restarting Procedures' fiir die
Erzeugung verschiedener Arten von Biiumen, fiir al1gemeine unlabel1ed Graphen und fiir diverse Arten
von labelled Graphen. Der GroJ3teil des behandelten Materials wurde von verschiedenen Autoren im
letzten lahrzehnt entwickelt. In Abschnitt 4.3 wird iiber jungste Ergebnisse bei der Erzeugung von
outerplanaren und von maximal planaren Graphen berichtet.

1. Introduction

One of the most important aspects in research fields where mathematics is applied
(physics, chemistry, computer science, operations research, social science, biology,
and so on) is to construct a model of a concrete situation in order to understand
it better and, possibly, to influence it. As for structural relations, in numerous
situations, graphs have turned out to provide the most appropriate tool for setting
up the mathematical model. This is certainly one reason why graph theory has
expanded so rapidly during the last decades.

Having a mathematical model for a real world structure at hand it seems natural
(and has been successfully performed) to look for variations of the model (by
changing structural parameters) which possibly are abstract pictures of other still
unknown real world structures. In this way it is sometimes possible to discover new
structures by inspecting what models are available for them. A different aspect is
the optimality of some structure with respect to various criteria. Again, often

236 G. Tinbofer

optimality caq be studied best by inspecting all suitable models bearing the same
typical features.

For the just mentioned reasons, in graph theory and its applications, there have
been early attempts for listing and cataloguing graphs of a given size and type.
Catalogues of graphs can be of great use for a variety of purposes. They provide
stores of graphs which can be sampled whenever there is a need for a graph theorist
to play with a set of graphs, or they can be exhaustively studied to settle some
question by turning up a counterexample or to come up with plausible conjectures.
Results on cataloguing graphs can be found for example in [5], [12], [17], [24] and
[25].

However, when the size of the graphs which are to be considered is large then
exhaustive listing is impossible. In such situations, to study typical graphical con
figurations or to evaluate the performence of an algorithm on such configurations,
it is desirable to be able to generate these configurations uniformly at random (u.a.r.
for short). For labelled graphs on n vertices, for instance, this is very simple to do,
just choose the edges independently with probability 1/2 for each. However, the
situation changes drastically when unlabelled graphs are wanted or when a certain
graph property has to be forced (such as regularity, hamiltonicity, chordality, etc.).
In such cases the problem of random generation quickly becomes non-trivial.

Generating problems are strongly connected to counting problems. This will become
clear in the following sections. Counting problems have a long and distinguished
history. A standard text for graph counting problems is [10]. The study of counting
problems as a class from a computational point of view, however, was initiated by
Valiant in the late 1970's [32,33]. A parallel approach to generation problems was
proposed more recently in [13]. As one of the results algorithms for generating
graphs of certain types approximately u.a.r. have been established [27, 28].

This paper presents a short review on the problem of generating graphs u.a.r. Most
of the material has been developed during the last decade and can be found in the
original papers only, with the exception of sections 2.1 and 2.2 which are included
for completeness and the content of which can also be found in [22].

In what follows we use the standard notations found in [3] or [9]. Throughout
the paper, unless otherwise stated, any graph G = (V, E) under consideration is
understood to be undirected, loopless and without parallel edges. V is the vertex
set, E the edge set. The vertex number n = I VI is also called the size of G, m = lEI
is the edge number.

We distinguish between labelled and unlabelled graphs. For simplicity, a labelled
graph of size n is one whose vertex set is V = {1,2, ... ,n}, and two labelled graphs
G = (V, E) and G' = (V, E') are considered the same iff E = E'. G and G' are called
isomorphic iff there is a permutation p: V -+ V such that (i,j) E Eiff(p(i),p(j» E E',
for all i,j E V. An unlabelled graph G is an isomorphism class oflabelled graphs and
may be represented by any element of this class.

Generating Graphs Uniformly at Random 237

2. Trees

A tree is a connected graph without cycles. Because of their importance as combina
torial models in chemistry, social science, computer science, operations research and
many other areas of applied mathematics and because of their relative structural
simplicity trees are one of the most extensively studied classes of graphs. Therefore,
generating trees is an important computational problem.

Trees have many equivalent characterizations. One of them involves the notion of
an endpoint. An endpoint of a graph G is a vertex of degree 1. It is well known that
every tree with more than one vertices has at least two endpoints. A 'recursive'
characterization of trees is: A graph G of size n > 1 having the endpoint v is a tree
iff after removing v and the unique edge incident with v the remaining graph is a
tree of size n - 1.

A rooted tree is a tree in which one vertex, the root, has been distinguished from
the others. Two rooted trees are considered isomorphic iff there is a 1 - 1 adjacency
preserving correspondence between them which maps the root of one onto the root
of the other. A tree for which no root is distinguished is sometimes called a free tree.
These definitions are used for both labelled and unlabelled trees.

In this section we deal with the generation of labelled trees, rooted unlabelled trees
and free trees.

2.1. Labelled trees

There are exactly nn-2 labelled trees with n vertices. This result, due to Cayley, is
one of the most celebrated counting results in graph theory. There are several proofs
for it, one is due to Priifer [23] who used a particular code for representing labelled
trees, the so-called Prilfer-code.

The Priifer-code of the smallest non-trivial tree, an edge connecting two vertices 1
and 2, is the empty string. For n ~ 3, the Priifer-code is a string of n - 2 integers
from v. It is found by the following algorithm.

Algorithm PRCODE(T)

(0) Define L to be the empty list;
(1) Find the endpoint v of T with the smallest label and its unique neighbour u;
(2) Put u at the end of the List L, remove v and the edge < u, v) from T; If T has still

more than 2 vertices then goto (1);
(3) Output the list L;

As an example take the labelled tree in Fig. 1. Its Priifer-code is (1, 1,3,2). Priifer's
construction goes both ways. Using the recursive characterization of trees men
tioned above it is immediately seen how the procedure PRCODE can be inversed
to find the labelled tree from its code string. Thus the set of labelled trees on
V = {I, 2, ... , n} is in 1 - 1 correspondence with the set of n - 2-tuples of natural

238 G. Tinhofer

4

Figure 1

numbers not exceeding n. This is one way to prove Cayley's counting result. From
this discussion we see that the following algorithm will generate labelled trees of
size n u.a.r.

Algorithm LABTREE(n)

(1) For 1 :::;;; i :::;;; n - 2 do
select a number ai from V u.a.r.;

(2) Construct the tree corresponding with the Priifer-code (a 1, ... , an- 2) and output
it;

Both steps 1 and 2 of this algorithm can be implemented to run in time O(n). Hence,
Algorithm LABTREE is optimal with respect to time-complexity. The Priifer-code
may be used also to generate labelled trees with prescribed degree vector (d(i)li E V)
or labelled trees with prescribed number of endpoints u.a.r. For more details see
[22].

2.2. Rooted Unlabelled Trees

The situation for rooted unlabelled trees (ru-trees for short) is substantially more
complicated than for (free) labelled trees. The basic observation here is that any
ru-tree of size n may be constructed in the following way: Take j copies of an ru-tree
Til of size d(jd < n) and an ru-tree T' of size n - jd and join the root ofT' to the
roots of each of the copies of Til (see Fig. 2). This operation is indicated by
T:= T' + j X Til.

One consequence of this o.bservation is the following recurrence formula for tno the
number of ru-trees of size n, namely

where dim means that d is a divisor of m, or equivalently

L d· tn-jd· td = 1
d,j~ 1 (n - l)tn

(2.2.1)

(2.2.2)

Generating Graphs Uniformly at Random 239

T' T" T" T"
\ 1\ II I \ I, I \ I
\ I \ I \ I
\ I \ J \ I
\1 \1 II
\1 \I \I

Fignre 2

In [22J the following recursive algorithm for generating ru-trees u.a.r. is presented.
The algorithm is based on formula (2.2.2) where the left side is interpreted as a sum
of probabilities. The unique rooted unlabelled trees on 1 or 2 vertices are denoted
by Tl or T2 , respectively.

Algoritbm RUTREE(n)

(1) Cboose a pair (j,d),j ~ 1, d ~ 1, with probability

P b(· d) = d· t n- jd • td .
ro j, (n - l)tn '

(2) If n - dj > 2 tben T' := RUTREE (n - dj) else T' := T,,-jd;
If d > 2 tben T":= RUTREE(d) else T":= 1d;

(3) Output T:= T' + j x Til;

Algorithm RUTREE requires preprocessing for calculating the numbers tj , 1 ::;; j ::;;
n. On the base of (2.2.1) this can be done in time O(n2).

2.3. Free Unlabelled Trees

In this section a tree is a free unlabelled tree. The presentation of the generating
process is based on [36].

Let W1' ..• , Wk be the neighbours of a vertex v in a tree T. For each Wj there is a
uniquely defined subtree 1j of T induced by the set of vertices which can be reached
from v via the edge <v, Wj). The maximum size of a 1j is called the weight of v. A
vertex v in T with minimum weight is called a centroid of T. It is well known that
the number of centroids of a tree T may be 1 or 2. If T has two centroids then they
are linked by an edge. Removing this edge leaves two ru-trees of equal size, the roots
being the corresponding centroids.

The latter remark shows how one can reduce the problem of generating bicentroidal
trees to the problem of generating ru-trees u.a.r. As before, let tn be the number of
ru-trees of size n. The following algorithm produces bicentroidal trees u.a.r. Clearly,
the algorithm works for even n > 0 only.

240 G. Tinhofer

Algorithm BIGENTREE(n)

With probability (tn/2 + Ifl do step (1) else do step (2)
(1) T':= RUTREE(n/2); T:= T' + 1 X T';
(2) T':= RUTREE(n/2); T":= RUTREE(n/2); T:= T' + 1 X Til;
(3) Output T;

A vertex v is the unique centroid of a tree Tiff its weight is at most (n - 1)/2, or
with other words, iff none of the subtrees 1) corresponding to the neighbours Wj has
size larger than (n - 1)/2. Thus there is a bijection between the set oftrees with one
centroid and the set of ru-trees for which all subtrees defined by the neighbours of
the root are of size (n - 1)/2 at most.

A collection of disjoint ru-trees is called an ru-forest. Let a(m, q) denote the number
of ru-forests of size m whose trees are of size at most q. These numbers can be
calculated using the formula

d .
a(m,q) = L L -·td·a(m-Jd,q)

i:i!1 1 !>d!>q m

(m ~ l,a(O,q) = l,a(k,q) = 0 for k < 0). (2.3.1)

According to this recurrence equation an ru-forest of the type considered can be
selected u.a.r. using the following algorithm.

Algorithm RUFOREST(m, q)

If m = 0 then exit with the empty forest else do
(1) Choose a pair of integers (j,d) with probability

P b(' d) - d· a(m - jd, q) . lid
ro J, - () td , ~ j, ~ ~ q;

m'a m,q
(2) F:= RUFOREST(m - jd,q); T:= RUTREE(d);
(3) Exit withj copies of T adjoint to F;

Choosing a tree u.a.r. is now done by the following algorithm which combines the
above two procedures into a single one.

Algorithm TREE(n)

(1) If n is odd then do_p:= 0 elso do p := C +2tn/2). t;;l;

(2) With probability p do T:= BICENTREE(n) and output T
else do

F:= RUFOREST(n - 1, n; 2} T:= (a new vertex v,jointtoall roots ofF);

Output T;

The algorithms RUTREE and RUFOREST are based on the recurrence relations
(2.2.1) and (2.3.1), respectively, which in a sense solve the associate counting prob
lems. It was pointed out in [22] that any similar recurrency relation for the
numbers of combinatorial configurations of a given type and size possibly leads to

Generating Graphs Uniformly at RaJldom 241

an efficient uniform generation algorithm. We will outline the idea behind in some
detail in section 4.3.

3. Unlabelled Graphs

3.1. The Method of Dixon and Wilf

In their pioneering paper [6] Dixon and Wilf presented a method for generating
unlabelled graphs of SIZe n u.a.r. The method is applicable also to subclasses of
graphs of a given type provided the corresponding counting problem can be solved.
It is based on basic group-theoretical concepts, we outline it briefly in this section.

Let (/J be a finite group acting on a finite non-empty set r. The equivalence classes
of r according to the relation oc ~ P(oc, P E F) iff oc = ({Jp for some ({J E (/J are usually
called orbits of runder (/J. For each ({J E (/J define Fix«({J) = {oc E rl({Joc = oc} (the set
of elements fixed by the action of ({J). Two group elements ({J and ({J' are called
conjugate iff ({J' = t/I({Jt/I-l for some t/I E (/J.

The starting point in [6] is an algorithm which, given rand (/J, generates an orbit
o of runder (/J u.a.r. The algorithm is based on the observation that if the elements
in the sets Fix«({J), ({J E (/J are listed then the combined list contains exactly I(/JI
representatives of each orbit o. Furthermore, if ({J and ({J' are conjugate then for any
orbit 0 we have lFix«({J) (') 01 = lFix«({J') (') 01, and therefore, it is sufficient to list the
elements in the sets Fix«({Ji), 1 :s.; i :s.; r, where the ({J/s are arbitrary elements in C;,
and C1 , .•. , Cr are the conjugacy classes of (/J. Put Ci = ICil and let t be the number
of orbits. Then, using the well-known 'Frobenius-Burnside lemma' which states that
t ·1 (/J I = L<p e tP I Fix(({J) I, one easily proves that the following algorithm selects an
orbit 0 of r under (/J u.a.r.

Algorithm RANDORB(r, (/J)

(1) Choose a number i from the set {1, 2, ... , r} with probability
Prob(i) = ciIFix«({Ji)l/tl(/Jl, 1 :s.; i:s.; r;

(2) If i was chosen in step (1) then choose u.a.r. an element Y E Fix«({Ji);
(3) Return the orbit 0 which contains y;

Now, specialize this algorithm to generate unlabelled graphs. Let n, the number of
vertices, be fixed and let r be the set of all labelled graphs on n vertices. According
to our convention, this is "the set of all graphs with vertex set V = {1, 2, .. " ,n}. Let
S be the full symmetric group acting on V. For each permutation n E S there is a
corresponding bijective mapping ({J(n): r -+ r defined by

({J(n)(G) = (V, nE),

nE = {(ni,nj)l(i,j) E E}, where G = (V, E) E r.
Let (/J be the group of all these mappings. (/J acts on r, and the set of orbits of r
under (/J is, by definition, the set of unlabelled graphs of size n. Therefore, we may

242 G. Tinhofer

use Algorithm. RANDORB to generate unlabelled graphs of given size. To do so
one first has to solve some counting problems.

Let P be the set of all unordered pairs (i,j), 1 ::s;; i,j ::s;; n. For each n E S there is a
permutation n* of P defined by n*(i,j) = (ni, nj). Write q> for the corresponding
group element q>(n) E,p. Fix(IP) consists of all those graphs for which n is an
automorphism, i.e. maps their edge sets onto themselves. Thus G = (V, E) E Fix(q»
iff for each cycle q of n* either all pairs in q are edges of G or none of them are. This
implies \Fix(IP)1 = 20("), where c(n) is the number of cycles of n*.

Let us use the notation k = (k1 , ••• , kn) to denote the partition of n with kj parts of
size i, 1 ::s;; i ::s;; n. Write [k] to denote the corresponding conjugacy class of S
consisting of all permutations that have exaktly k i cycles of length i, 1 ::s;; i ::s;; n. The
number of elements in [k] is known to be n!jd(k) where

d(k) = n (ik·ki!)·
1in

Furthermore, in [26] it has been proved that for n E [k]

c(n) = -21 • { L kikJ• ucd(i,j) - L k2i+1}.
1$~J$n 1$/$n

Now we are prepared to adapt Algorithm RANDORB for generating unlabelled
graphs of size n. The number of orbits in our particular case is Un' the number of
unlabelled graphs of size n. We get the following algorithm.

Algorithm RANDGRAPH(n) (Dixon and Wilt)

(1) Choose a partition k = (k1 , ••• , kn) of n with probability
Prob(k) = 2o(n) I(Un . d(k» where n is any permutation in [k];

(2) Let IP = q>(n) and choose u.a.r. a graph G = (V, E) E Fix(IP);
(3) Output the unlabelled graph G* underlying G;

The method outlined here is not restricted to our particular specification of r as
the set of all unlabelled graphs on n vertices. We could deal also with smaller sets
of unlabelled graphs, for instance with connected graphs, with graphs of a prescribed
edge number, with regular graphs of some degree r, and so on. However, the
corresponding counting problem (we need to know the numbers IFix(IP)1 and the
number of orbits t) often becomes an invincible obstacle in such cases, which means
that the resulting algorithm allows no implementation that runs in polynomial
average time.

The crucial point for an implementation of Algorithm RANDGRAPH is step (1).
In general, suppose you have to generate the elements of a finite set K according
to a given probability distribution Prob(k), kE K. For this aim we may use the
following well-known standard procedure which is based on a linear ordering of K,
i.e. on an arrangement (k 1, k 2, ••• , k1K1) of the elements of K.

Algorithm RANDELEM(K)

(1) Choose a random number x E (0, 1) and initialize i := 1 and S1 := Prob(k1);

Generating Graphs Uniformly at Random

(2) While x > Si do i := i + 1 and Si := Si-1 + Prob(ki);

(3) Output ki;

243

Let I be the random variable whose values are the actual values of i when the
algorithm terminates, j.e. I is the number oftimes minus 1 RANDELEM performs
step (2). We have

Exp(I) = L i· ProbW)·
1SiSIKI

Obviously, this term depends on the ordering of K and reaches its minimum for an
ordering (kl, P, ... , k1K1) satisfying Prob(k1) ~ Prob(k2) ~ ••• ~ Prob(kIK1). In our
case K is the set of all partitions k = (k h ••• , kn) of n, and IKI = p(n), the number
ofthese partitions. Write In instead of I to indicate the dependence on n. Dixon and
Wilf propose to use an ordering (k1, •. . , kP(n» of K satisfying k~ ~ k~+1 for all i = 1,
2, ... , p(n) - 1. They show that under this condition Exp(In) ~ 3. Furthermore
limn '" Exp(In) = 1. This latter result is substantially based on the well-known fact
that for 'almost all' graphs G the automorphism group Aut(G) is trivial.

Now for implementing step (1) of RAND GRAPH there is still the question how to
calculate gn' the number of unlabelled graphs of size n. While the numbers p(n) are
rapidely computable due to a simple recurrence relation, it is not known if there is
a polynomial-time algorithm for the calculation of gn. The best method known so
far requires time propertional to eJn.
Step (2) ofthe algorithm does not present difficulties. Once given (k1, ••. , kn) we may
find a permutation n E [k] by writing down the symbols 1,2, ... , n and then inserting
brackets so as to obtain successively k1 cycles oflength 1, k2 cycles oflength 2, and
so on. For example, the representative ofthe conjugacy class [3,0,1,1,0,0,0,0,0,0]
is (1) (2) (3) (4,5,6) (7,8,9,10). Next we have to find the cycles of n* and to assign
edges or non-edges to them with equal probability 1/2. This procedure will finally
determine the output graph G*.

~ummarizing we may state the following theorem.

Theorem. Assume that the universal number gn has been precomputed. Then there is
an implementation of Algorithm RANDGRAPH which runs in expected time O(ri2).

The method of Dixon and Wilf is in fact very fast. One may use this result for
cataloguing graphs by generating them u.a.r. In case one aims a complete catalogue
listing and checking for isomorphism is unavoidable, however, with small vertex
numbers this does not present difficulties. In [17] Kerber et al. report on a successful
effort for cataloguing all g10 = 12005169 unlabelled graphs of size 10 by generating
them u.a.r. They used the method of Dixon and Wilf applied successively to sets of
graphs of size 10 having prescribed edge number. The corresponding counting
problem is solved by Polya's method. This approach, which is in contrast with the
recursive methods used by Cameron et al. in [5] who have produced the same list
of graphs earlier, however, does not seem to be efficient enough for listing graphs
of larger size.

244 G. Tinhofer

3.2. Restarting Procedures-Wormald's Method

All known algorithmic methods for selecting u.a.r. an element from a set S use the
numerical value of the cardinality lSI of S-at least implicitely (for example via a
valid recurrence formula). It is often the case, however, that sufficient knowledge
about lSI is not available or is such that evaluation of lSI can not be done efficiently
(as in the case ofthe parameter gn in section 3.1). This is certainly true if 'algorithmic'
is understood in the very classical sense. The situation changes when we use a
so-called restarting procedure, i.e. a procedure which accepts a result and outputs
it only with some specified probability and which in the case of non-acceptance
restarts the whole probabilistic process again. Let us consider such restarting
procedures in more detail.

Let S be the set under consideration from which we want to select elements u.a.r.
Assume that

aeA

is a partition of S into non-empty and mutually disjoint sets Sa where A is some set
of indices. Let P(a), a E A, be a probability function on A, and for a E A let Pis) be
a probability function on Sa. Let aa be an arbitrary number satisfying

aa :::;; P(a)' Min {Pa(s)ls E Sa}.

The following procedure is a restarting procedure selecting elements from S.

Algorithm RRANDELEM(S)

(1) Choose an element a in A with probability P(a);
(2) If a was chosen in step (1) then choose s E Sa with probability Pa(s);
(3) Accept s with probability Pacc(s) = aaIP(a)· Pa(s) else goto (1);

Obviously, this is not an algorithm in the classical sense since there may be
indefinitely many steps before normal termination occurs. Let E. be the event
'RRANDELEM(S) selects s' and let T be the random variable which counts the
number of starts before termination. We have for s E Sa

Prob(E.) = aa' (L aa 'ISal)-l
aeA

Hence, RRANDELEM(S) selects elements in S u.a.r. iff aa is independent of a, say
aa = a for all a E A. In this case

Exp(T) = (a 'ISI}-l .

According to this and a :::;; Min {P(a)' Pis) I a E A, s E Sa} the best result is obtained
when P(a) = ISal/lSI and Pis) = I/ISal, s E Sa, a E A, such that a = ISrl. In this case
the procedure restarts with probability O. We may consider Algorithm RAND
GRAPH in section 3.1 as such a degenerate case of RRANDELEM where

S = U {tp x Fix(tp)}, lSI = n!'gn, A = CPo (3.2.1)
<pel[>

Generating Graphs Uniformly at Random 245

However, if we want to avoid evaluation of lSI this case is not obtainable. What we
can do instead is to evaluate the numbers IS"I approximately as well as it is possible
(with low effort). To be concrete, assume that we have found approximations
u" ~ IS"I, oc E A. Put U = LU" and define

P(oc) = u"lu. Pis) = IS"I-1, oc EA.

Using these probability functions Algorithm RRANDELEM reduces the problem
of generating u.a.r. an element from a 'large' set S to a series of generating tasks
involving the 'small' sets SIX' This is advantageous at least in all those situations
where the calculation of the numbers IS"I is easy while the calculation of lSI is
difficult (for instance, because it is difficult to enumerate all sets SIX)' Furthermore,
since step (2) is again u.a.r. generation step we may use RRANDELEM recursively
(after having specified a suitable partionning rule). Finally, we may use any (proba
bilistic) algorithm which produces elements s of S not necessarily u.a.r. but with
Prob(s) that is computable at least a posteriori to build up a restarting procedure
for u.a.r. generation, provided we can evaluate a ~ Mins Prob(s).

Based on the ideas outlined here Wormald has found generation procedures for
several classes of unlabelled graphs [35]. In the case of arbitrary unlabelled graphs
of size n he proposes a restarting procedure defined in the following way.

Let S and A be as in (3.2.1). To implement step (1) of RRANDELEM(S) Wormald
uses a partition

oftPwhere

tPi = {id} (id . .. the identity permutation)

tPi = the set of all permutations q>(n) where n has exactly n - i fixed points

(cycles oflength 1)

Furthermore he introduces upper bounds

Pi = 2N = ItPd,

Pi = 2N - H(n,i)[n]i ~ ItPil,

P=LPi
2 ~ i ~ n,

where N = (;). [n]i = n'(n - 1)· ... '(n - i + 1) and H(n,i) = i' (~_ i ~ 2), and

replaces step (1) ofRRANDELEM by

(1a) Choose a number i from {1, 2, ... ,n} with probability PiP-i ;
(lb) Choose q> E tPi with probability ItPil-i ;

In step (2) a graph G in Fix(q» is generated u.a.r. as in RANDGRAPH (section 3.1).
The parameter oc used in determining the probability for acceptance Pace has the
value P-i, hence

Exp(T) = Plgn'

246 G. Tinhofer

It can be sho~n that this value is bounded by a constant. The following theorem
summarizes the results.

Theorem. Wormald's restarting procedure generates unlabelled graphs of size n u.a.r.,
each graph being produced in expected time O(n2). No preprocessing for finding the
number gIl is necessary.

4. Labelled Graphs

In this section we deal with labelled graphs G = (V, E) exclusively. In the first
subsection we report on a general framework for the generation of a large variety
of graphs of different types u.a.r. The next subsection is devoted to graphs with
prescribed degree vector, and in the last part of this section we review some recent
results concerning the generation of some types of planar graphs.

4.1. A Framework For Generating Labelled Graphs

Let r,. be the set of all labelled graphs of size n. Sampling from r,. u.a.r. can be done
by constructing a list E of edges (i,j), 1 ::;; i <j::;; n, where the edges (i,j) are
drawn independently, each with probability 1/2. The resulting graph G = (V, E) has

probability 2-N, where N = (;).

Compared with the situation with unlabelled graphs (section 3.1), generating labell
ed graphs u.a.r. from r,. is a trivial problem. However, difficulties soon appear when
r,. is replaced by a subset of graphs having some specified additional properties. To
handle these cases successfully we introduce a particularly convenient representa
tion for labelled graphs.

A widely used tool for representing graphs are adjacency lists. For i E V let Ni be
the list of vertices adjacent to i. The combined list (Nl , ... , N,,), however, is a
redundant representation of G, since any <i,j) E E is noted twice, due to i E ~ and
j E Ni. To avoid this redundancy we can use a list of irredundant adjacency lists
(A l , ... , A,,-l) defined in the following way.

AJ C V - {xl, ... ,Xj}, 1 ::;;j::;; n - 1, (4.1.1)

xl=l, xj=Min{iliE~_d (4.1.2)

U Ai - {Xl,· .. ,Xj} if this set is non-empty
B. = 1 :S.i:S.j

J V - {Xl'''' ,Xj} otherwise

l::;;j::;;n-l, Bo=V

Now, again, (A l , ... , A,,-l) represents a graph G = (V,E) uniquely. A sublist (A l ,. .. ,
Ai), i < n - 1, may be considered as the subgraph containing Xl"'" Xi' the edges
<xk,j),j E Ak, 1 ::;; k ::;; i, and the isolated vertices

Generating Graphs Uniformly at Random 247

5

Figure 3

j E V - U A" - {Xl"",Xi}'
lSkSi

When using irredundant adjacency lists we shortly speak of the graph (or subgraph)
(Al,···,A;).

The representation of graphs by irredundant adjacency lists has been introduced
in [30] in order to facilitate the solution of counting problems and to avoid
stochastic dependencies.

For an example see the graph in Fig. 3 which is represented by «2, 3, 4,5), (4, 5), -, -)
where' -' means the empty list.

We will introduce now an algorithm scheme, called PROTOGRAPH, which by
specialization yields several efficient generation algorithms for labelled graphs of
various kinds. Assume that we want to determine the sequence Xl' ... , X,,-l and the
adjacency lists A l , ... , A,,-l according to (4.1.1) and (4.1.2) for a random graph G.
Assume '1'" is a subclass of r,. and, given (Al , ... , ..4;), I/I(Al ; ... ,..4;) is the number of
graphs (A l , .. . , A,,-l) E '1'" with AJ = ~ for 1 ::s;; j ::s;; i. Define

~ = U A" - {Xl, ... ,Xj}, lJ = V - U A" - {xl, ... ,xJ,
lSkSJ lS"SJ

uJ=I~I,

Vo = {I},

1 ::S;;j::S;; n - 1.

Vo = {2,3, ... ,n}, Uo = 1,

The algorithm scheme is as follows.

Algorithm PROTOGRAPH

(1) Vo:= {1}; Vo:={2,3, ... ,n};j:= 1;

Vo = n - 1.

(2) If ~-l = 0 then xJ:= Min{ili E lJ-d else xJ:= Min{ili E ~-d;
(3) Select Y c ~-l U lJ-l - {xJ with probability

Prob(y) =I/I(Al, ... ,Aj-l,Y), (.11 () I'l'.l ~ 1)
'f' A1> ... ,AJ- l = " lor j = ,

I/I(Al, .. ·,Aj-d

(4) Aj:= Y;

(4.1.3)

248 G. Tinhofer

(5) ~:= ~-l y Aj - {Xj}; J):= J)-l - Aj - {Xj};j:= j + 1;
H j < n then goto (2);

(6) Output (Al, ... ,An- l);

It is evident that this algorithm scheme after specification of a subroutine for
calculating ",(A l , ... , Ai)' 1 5, j 5, n - 1, yields an algorithm for generating the
elements of 'Pn u.a.r. By the way, ",(Al, ... ,Aj) counts the number of ways one
can extend the subgraph (Ai>"" Ai) to a graph in 'Pn. Again, the problem of
constructing an efficient algorithm for generating u.a.r. graphs of a given type has
been reduced to efficiently solving a corresponding counting problem. In general,
it will not be known how to compute ",(A I' ... , Ai} efficiently. However, there is
some reasonable chance to find an efficient counting method ir",(Ai>" ., Ai) does
not depend on the 'structure' of (Ai>' .. , AJ) but depends only on the parameters Uj

and vi defined in (4.1.3) and/or some additional easily handled parameters. We give
a list of examples where algorithm PROTOGRAPH can be adapted successfully.

Example 1. 'Pn = F,,(the trivial case mentioned at the begin of this subsection).

Obviously, ",(At, ... , Ai} = 2NUJ where N(j) = (n ~ j).
Example 2. 'Pn = F".m, the set of all labelled graphs of size n with m edges. Here we
find

. (n- j) where N(j} = 2 ' mo = m and mJ = m - Li;S;i IAA·

Example 3. 'Pn = Cn, the set of all connected labelled graphs of size n. It is well
known that Cn = ICnl satisfies the recurrency equation

1 (n) (n-k)
Cn = 2N - -' L k· ·2 2 • Ck

n l;S;k;S;n-1 k
(4.1.4)

(see [10]). Furthermore, one can easily show that ",(A1, ... ,Aj) depends on uj and
Vj only. Write c(Uj, VJ) = ",(AI,'" , Aj). These numbers satisfy the following general
ization of (4.1.4) (u = Uj,V = Vj for abreviation):

c(u,v) = 2("1V
) - L (V). 2U>c(u, V - t). (4.1.5)

I ;S;t;S;v t

However, even (4.1.5) is still too monstruous for practical purposes. We better
establish a table ofthe numbers c(u, v), 1 5, U 5, it, 1 5, v 5, v (once forever) for some

("+V)
it, v and use 2 2 as an approximation for c(u, v) in the range outside [1, it] x [1, v].
(In practice it = v = 12 suffices). With these ideas behind it is possible to implement
an appropriate version of PROTOGRAPH which generates connected labelled
graphs u.a.r. within any a > 0, which means that a graph G E Cn is produced with
probability Prob(G) satisfying

(1 - a)c;l 5, Prob(G) 5, (1 + a)c;l.

Generating Graphs Uniformly at Random 249

This result is of some theoretical interest. In practice, at least for vertex numbers
n ;e:: 12, it is even better and easier to use a restarting procedure (see section 3.2)
which generates u.a.r. graphs in r" and accepts them if they are connected. Such a
restarting procedure has been mentioned first in [30].

Example 4. 'Pn = Cn.m, the set of connected graphs of size n with m edges. Here
l/I(A 1" •. , Aj) depends on uj, Vj and mj only, where mj is defined in Example 2. An
appropriate treatment is found by a combination of Example 2 and Example 3.

Example 5. 'Pn = T,., the set of free labelled trees of size n. This is a special case of
Example 4 with m = n - 1 and Vj = mj,j ;e:: 1. With Uj = U, Vj = v and again putting
l/I(A 1 , ••• , Aj) = c(u, v) we get .

c(u, v) = L (v) (t + l)t-1c(u - 1, v - t)
o::;;t::;;v t

with solution c(u, v) = u(u + v)V-l, U ;e:: 0, v ;e:: O.

Example 6. 'Pn = r",even, the set of labeled graphs with all degrees d(i), i E V, even.
Here l/I(A 1 , ••• , A) depends on uj and Vj only, and with the same notation as above
we have

(u+v-1)
c(u, v) = 2 2 •

Example 7. 'Pn = r",eul, the set of Eulerian graphs of size n (connected graphs with
all vertex degrees even). As above l/I(A 1, ... , Aj) depends only on uj and Vj' Use again
c(u, v) = l/I(A 1 , ... , Aj) to get

(u+v-1) (v) (t-2) c(u, v) = 2 '2 - L 2 2 c(u, V - t),
1 ::;;t::;; v t

a formula which may be used in an analoguous way to Example 3.

Example 8. 'Pn = r",bp, the set of bipartite graphs. Let lj, Zj be a bipartition of
(A 1 , ••• ,Aj).l/I(A 1 , ••• ,Aj) depends on 0(= I £!in ljl, P = l~nZjl and}' = Iljl. We
find

Example 9. 'Pn = r",d, the set of graphs with degree vector d = (d1, ... ,dn). Here
l/I(A 1 , • •• ,Aj) depends highly on the structure of (A 1, ... , Aj). [30] contains a discus
sion of this case.

Example 10. Digraphs
In the case of digraphs we have to replace the lists Aj in the representation of a
graph by a pair of lists (Aj, AJ) containing predecessors and successors of Xj'

respectively, being defined analoguously to (4.1.1) and (4.1.2). In [30] algorithms of
type PROTO GRAPH are given for arbitrary digraphs, weakly connected digraphs,
strongly connected digraphs, tournaments, and other types of digraphs.

All details concerning the particular graph classes addressed in Examples 1-10 are
found in [29, 30].

250 G. Tinhofer

4.2. Graphs With Prescribed Degree Vectors

The problem of generating random graphs with given degree vectors was already
addressed in [30] (see Example 9 in section 4.1) where it was shown how to generate
such graphs and how to compute a posteriori the probability that the particular
output graph was produced. Although the probabilities associated with the different
graphs may vary considerably this method can be used for constructing a restarting
procedure (see section 3.2) which finally generates graphs of the prescribed type
u.a.r. The expected time needed for generating a single graph depends on the
minimum probability which may occur, therefore, since the algorithm presented in
[30] is not very complicated, there is some chance for getting a -complete analysis
of the expected time consumed by the restarting procedure. However, as yet this
subject has not been investigated sufficiently.

The special case in which the graphs to be generated are regular is of particular
interest. Wormald [34] gives an efficient algorithm for generating labelled cubic
graphs of size n. However, his method is based on a specific recurrence equation
(see the remark at the end of section 2.3) for the associated counting problem, and
it is not to see how to generalize it successfully to higher degrees. A simple method
proposed by Wormald [34], which is based on an idea of Bollobas and Thomasson
[4], generates regular graphs of arbitrary degree r u.a.r., but the algorithm fails
to produce an output with some probability which remains bounded only for
r = O((log n)1/2).

More recently, the problem of this subsection has received a considerably amount
of attention, caused partially by some very attractive results of Jerrum and Sinclair
[15], [16], [27], [28], and others. By an indirect method based on approximate
counting Jerrum and Sinclair [16] give an almost uniform generation algorithm
which runs in polynomial time for regular graphs up to degree ~ n12. The method
is based on a Markov chain simulation technique which has turned out to be a
powerful tool for the random generation of various combinatorial configurations
[14,15,16]. To sketch the idea, let F(d) denote the set of all labelled graphs with
degree vector d = (d1, ••• , dn). With F(d) a Markov chain MC(d) is associated whose
states include the elements of F(d) together with some auxiliary structures, and
whose transitions correspond to simple random perturbations such as edge addi
tions or deletions. This process turns out to converge asymptotically to a stationary
distribution which is uniform over the states. Moreover, under some restrictions on
the values of d, the convergence is fast in the sense that the distribution gets very
close to uniform after a polynomial number of steps. This property of Markov
chains is called rapidly mixing [1,7.14]. Thus one can generate elements of F(d)
almost u.a.r. by simulating the evolution of MC(d) for some small number of steps
and outputting the final state.

Finally, two very recent papers [8,20] deal with regular graphs of degree o(n1!5)
and o(nl/3), respectively, using more direct methods.

Generating Graphs Uniformly at Random 251

4.3. Two Classes of Planar Graphs

4.3.1. Preliminaries

The counting problem for general planar graphs is still unresolved. However, there
are several subclasses of planar graphs whose cardinalities depending on the size n
are known or are efficiently computable (see [18]). In this section we present two
recent results in this direction concerning 2-connected outerplanar graphs and
maximal planar graphs and describe the corresponding generation algorithms.

As already mentioned at the end of section 2.3 the existence of a recurrence relation
for the numbers of certain combinatorial configurations of variable size may lead
to a generation algorithm for these configurations in a straightforward way. This
was already pointed out in [22]. Here, we will pick up this idea and outline it briefly,
giving a slightly modified presentation.

As before, let 'P be a certain class of labelled graphs defined by some graph
property, 'P(n) the set of all such graphs of size n, and "'n = I 'P(n)l, n E 1\1. Let
1 = Min{nl 'P(n) # o}. Assume that for n E 1\1 the set 'P(n) is a union

'P(n) = U Mk
l!5:k!5:k(n)

where each Mk c: 'P(n) is an image

Mk = (}k('P(j(k, 1» x 'P(j(k,2» x ... x 'P(j(k, i(n») , 1::; j(k, i) < n, 1::; i ::; i(n)

under some injective mapping (}k from some product of sets 'P(j(k, i» of graphs
of smaller size into 'P(n). This means that each element G E Mk can be constructed
in a unique way using elements G1 E 'P(j(k, i» and applying some well-defined
construction rule to them. It is not necessary that the sets Mk are disjoint. If not,
however, assume in addition that there exist non-negative numbers Pn,l' Pn,2' ... ,
Pn,k(n) such that

and

I 'P(n) I = L Pn,k 'IMkl = L Pn,k' n I 'P(j(k, i»1
l!5:k!5:k(n) l!5:k!5:k(n) l!5:I!5:I(n)

L Pn,k = 1.
l!5:k!5:k(n)

In the case where the Pn,k'S are known we get the recurrence equations

n> 1. (4.3.1)

which like (2.2.1) after dividing both sides by "'n may be interpreted as a sum of
probabilities

~ "'i(k, l) ••••• "'i(k,l(n)) - 1
L. Pn,k ./, - .

1 !5:k!5:k(n) 'I'n
(4.3.2)

Obviously, the formulas (2.2.1) and (2.3.1) are special cases of (4.3.1).

252 G. Tinhofer

Assume that RAND'PL is an algorithm which generates elements of 'l'(l) u.a.r. The
following algorithm which is based on (4.3.2) and the 'start'-procedure RAND'PL
generates elements from an arbitrary 'l'(n) u.a.r.

Algorithm RAND'l'(n)

(1) Choose k from the set {1,2, ... ,k(n)} with probability

Prob(k) = Pn,kl/lj(k, 1) .~~., I/IJ(k, i(n» ;

(2) For 1 ::;;; i ::;;; i(n) do
if j(k, i) > I then Gi := RAND'l'(j(k, i» else Gi := RAND'l'L;

(3) Output G := (M G1,· •• , Gi(n»;

This algorithm requires preprocessing for calculating the sequence 1/11'" ., I/In. With
these numbers given, the time-complexity of RAND 'l'is O(n2), provided step (3) can
be done in time O(n2).

4.3.2. Two-connected Outerplanar Graphs and Maximal Planar Graphs

A planar graph is called outerplanar if it can be embedded in the plane so that all
vertices lie on the same face. A 2-connected outerplanar graph possesses a unique
Hamiltonian cycle C, and we may assume that this cycle is the boundary of the
exterior face. All the remaining edges of such a graph are chords of C. Hence, two
2-connected outerplanar graphs are distinguished firstly by the arrangement of the
vertices on the cycle C and, secondly, by the number and arrangement of their
chords. Let op(n) be the number of Oabelled) 2-connected graphs on n vertices.

Obviously, op(3) = 1. Furthermore, op(n) = (n ~ 1)1 . ch(n) where ch(n) is the num

ber of different ways one can draw pairwise non-crossing chords in the cycle
(1,2, ... , n). In [11] the following recurrence relation for the sequence ch(n) has been
derived

ch(n) = 3'ch(n -1) + 2· L ch(j -1)·ch(n - j + 2).
4~j~n-1

This implies

op(n) = 3(n - 1)'op(n - 1)

C-1) +4 L . 2 ·op(j-1)'op(n-j+2),
4~j~n-1 -

n~4, (4.3.3)

which, clearly, is a special case of (4.3.1).

A maximal planar graph is one to which no edge can be added without loosing
planarity, or equivalently, for which every face is a triangle. The counting problem
for such graphs has been solved in [31].

Generating Graphs Uniformly at Random 253

(I) (b)

2

Figure 4

Let mp(n) be the number of maximal planar graphs of size n. Based on the results
in [31J in [I1J a recurrence relation for the sequence mp(n) is established. Any
maximal planar graph G can be constructed by first choosing the exterior triangle
and the triangulating then 'inner part' of this triangle by inserting n - 3 additional

vertices and 3n - 6 additional edges. H we choose the exterior triangle in the (;)

possible ways, since any triangle of G can be made the exterior one, by this method
method we get any particular graph in exactly 2n - 4 different ways. Therefore, we
have

mp(n) = 2n ~ 4 (;).ins(n,n - 3) (4.3.4)

where for arbitrary k and j ins(k, j) denotes the number of different ways one can
triangulate the closed polygon (1, 2, ... ,k - j) by inserting the vertices k - j + 1, ... ,
k and 2k - 6 appropriate edges. There are two possible types of triangulations
distinguished by the shape of the neighbourhood of the vertex 1 (see Fig. 4).

Fig. 4a shows the first type where no edge (I, i), 3 :s;; i :s;; k - j - 1, exists. Fig. 4b
shows the second type where such an edge is drawn. Let ins'(k,j) and ins"(k,j)
denote the numbers of triangulations of these two types, respectively. The following
equations are valid:

ins(k,j) = ins'(k,j) + ins"(k,j)

ins'(k,j) = L (j). t!· ins(k - l,j - t)
OS;t~j t

(4.3.5)

ins"(k,j) = L L (j).inS'(S + t,t)·ins(k - S - t + 2,j - t)
3~.~k-j-l O~t~j t

with obvious initial conditions. This together with (4.3.4) yields a recurrence relation
for mp(n) which is of the form (4.3.1).

Implementations of RAND IJ1 for generating u.a.r. outerplanar graphs and maximal
planar graphs, respectively, which are based on the results presented in this section
can be found in [11].

254 G. Tinhofer

References

[IJ Aldous, D.: Random walks on finite groups and rapidly mixing Markov chains. Seminare de
Probabilite XVII, 1981/82, Springer Lecture Notes in Mathematics 986, pp. 243-297.

[2J Baudon, 0.: Generating random graphs, connected with the editor of graphs CABRI. Preprint,
1989.

[3J Berge, C.: Graphes et hypergraphes, Pairs: Dunod 1970.
[4J Bollobas, 8.: The asymptotic number of unlabelled regular graphs. 1. London Math. Soc. 26,

201-206 (1982).
[5J Cameron, R. D., Colboum, C. J., Read, R. c., and Wormald, N. c.: Cataloguing the graphs on 10

vertices. Journal of Graph Theory 9, 551-562 (1985).
[6J Dixon, J. D., and Wilf, H. S.: The random selection of unlabelled graphs. Journal of Algorithms 4,

205-213 (1983).
[7J Dyer, M., Frieze, A., and Kannan, R.: A random polynomial time algorithm for approximating

the volume of convex bodies. Preprint (1988) .
[8J Frieze, A.: On random regnlar graphs with non-constant degree. Preprint (1988).
[9J Harary, F.: Graph Theory, Reading: Addison Wesley 1969.

[10] Harary, F., and Palmer, E.M.: Graphical Enumeration, New York: Academic Press 1973.
[11J Hofmann, Ch.: trber Erzeugungsverfahren fiir Graphen, insbesondere planare Graphen, Diplo

marbeit an der Technischen Universitat Miinchen, 1989.
[12J James, K. R., and Riha, W.: Algorithm for generating graphs of a given partition. Computing 16,

153-161 (1976).
[13J Jerrum, M. R., Valiant, L. G., and Vazirani, V. V.: Random generation of combinatorial structures

from a uniform distribution. Theoretical Computer Science 43,169-188 (1986).
[14] Jerrum, M. R., and Sinclair, A. J.: Conductance and the rapid mixing property for Markov chains.

Proc. 20th ACM Symposium on Theory of Computing (1988).
[l5J Jerrum, M. R., and Sinclair, A. J.: Approximating the permanent. Internal report CSR-275-88,

Department of Computer Science, University of Edinburgh, 1988.
[16J Jerrum, M. R., and Sinclair, A. J.: Fast uniform generation of regular graphs. Preprint CSR-281-88,

University of Edinburgh, 1988.
[17J Kerber, A., Laue, R., Hager, R., and Weber, W.: Cataloguing graphs by generating them uniformly

at random, Preprint, 1989.
[18J Liskovets, Y. A.: Ten steps to counting planar graphs. Congressus Numerantium 60, 269-277

(1987).
[19] McKay, 8. D., and Wormald, N. c.: Asymptotic enumeration by degree sequence of graphs with

degrees o(n'/2). Preprint (1988).
[20] McKay, B. D., and Wormald, N. C.: Asymptotic enumeration by degree sequence of graphs of high

degree. Preprint (1988).
[21] McKay, 8. D., and Wormald, N. c.: Uniform generation of random regular graphs of moderate

degree. Preprint (1988).
[22J Nijenhuis, A., and Wilf, H. S.: Combinatorial Algorithms (2nd edition). Orlando: Academic Press

(1978).
[23J Priifer, H.: Neuer Beweis eines Satzes iiber Permutationen. Arch. Math. Phys. 27, 742-744 (1918).
[24J Read, R. c.: A snrvey of graph generation techniques. Combinatorial Mathematics VIII (K. L.

McAvaney ed.), Lecture Notes in Mathematics 884, p. 77-89,1980.
[25] Read, R. c.: Everyone a winner or How to avoid isomorphism search when cataloguing combina

torial configurations. Annals of Discrete Mathematics 2, 107-120 (1978).
[26] Robinson, R. W.: Enumeration of Euler Graphs, in "Proof Techniques in Graph Theory" (F.

Harary, ed.), pp. 147-153, New York: Academic Press, 1969.
[27] Sinclair, A. J.: Randomised algorithms for counting and generating combinatorial structures. PhD

Thesis, University of Edinburgh, June 1988.
[28] Sinclair, A. J. and Jerrum, M. R.: Approximate counting, uniform generation and rapidly mixing

Markov chains, Lecture Notes in Computer Science 246, 134-148 (1987).
[29] Tinhofer, G.: On the generation of random graphs with given properties and known distribution.

Appl. Compo Sci. 13, 265-297 (1979).
[30] Tinhofer, G.: Zufallsgraphen (in German). Appl. Compo Sci. 17 (1980).
[31] Tutte, W. T.: A census of planar triangulations. Canad. J. Math. 14, 21-38 (1962).
[32J Valiant, L. G.: The complexity of computing the permanent. Theoretical Computer Science 8,

189-201 (1979).
[33J Valiant, L. G.: The complexity of enumeration and reliability problems. SIAM Journal on Com

puting 8, 410-421 (1979).

Generating Graphs Uniformly at Random 255

[34] Wormald. N. c.: Generating random regular graphs. Journal of Algorithms 5, 247-280 (1984).
[35] Wormald, N. c.: Generating random unlabelled graphs. SIAM Journal on Computing 16, 717-727

(1987).
[36] Wilf, H. S.: The uniform selection of free trees. Journal of Algorithms 2, 204-207 (1981).

Prof. Dr. G. Tinhofer
Institut fiir Mathematik
Technische Universitat Miinchen
Postfach 202420
D-8000 Miinchen 2
West-Germany

Computing Suppl. 7, 257-282 (1990)
Computing
© by Springer-Verlag 1990

Embedding one Interconnection Network in Another

B. Monien, Paderbom, and H. Sudborough, Dallas, Tex.

Abstract - Zusammenfassung

Embedding one Interconnection Network in Another. We review results on embedding network and
program structures into popular parallel computer architectures. Such embeddings can be viewed
as high level descriptions of efficient methods to simulate an algorithm designed for one type of parallel
machine on a different network structure and/or techniques to distribute data/program variables to
achieve optimum use of all available prooessors.

AMS Subject Classifications: 68QI0, 94-02, 94C15.

Key words: Embedding, simulation, interconnection network

Vergleich von Rechuerverbindungsnetzen. Wir rezensieren Ergebnisse liber die Einbettung von Netz
werken und Programmstrukturen in popuHire Rechnerarchitekturen. Solche Einbettungen konnen als
hochsprachliche Beschreibungen effizienter Methoden angesehen werden mit deren Hilfe Algorithmen,
die fUr eine parallele Maschine entwickelt wurden, auf einer anderen Netzwerkstruktur simuliert
werden k6nnen. Auf der anderen Seite werden auf diese Weise Techniken zur Verteilung von Daten
bzw. Programmvariablen beschrieben, die eine optimale Ausnutzung aller verfugbaren Prozessoren
sicherstellen.

I. Common Network and Algorithm Structures

Various parallel computer architectures have gained favor and are in use today.
Other structures included here are often used as program/data structures. The
techniques we survey compare networks by considering the ability of one to simulate
other network structures. Such simulations are studied by embeddings. A good
simulation is said to exist when adjacent processors in the guest network are mapped
to reasonably close processors in the host network, when the messages between
processors in the guest can be routed in the host without incurring significantly
larger delay, when the host network is not too much larger than the guest network,
and, in the case of mapping guest networks into smaller hosts, when the processors
of the host have been assigned a reasonably similar number of processes from
the guest. The quality of a network as an interconnection structure is often dis
cussed by other measurements. Typical measurements include a network's diameter,
namely the maximum distance between any pair of nodes, and its maximum node
degree, i.e. the maximum number of edges incident to a node. These properties are
important, as (a) a network's diameter measures how much distance exists be-

258 B. Monien and H. Sudborough

tween processors and hence gives a lower bound on communication time and (b) a
network's maximum node degree describes the largest number of connections made
to an individual processor.

Binary Hypercubes The binary hypercube of dimension n, denoted by Q(n), is the
graph whose nodes are aU binary strings of length n and whose edges connect those
binary strings which differ in exactly one position.

Clearly, a binary hypercube Q(n) has 2" nodes and, as each node is connected to n
edges, a total ofn2,,-1 edges. It is also easily seen that the diameter of the hypercube
Q(n) is n, which is the logarithm of the number of its nodes. An illustration of Q(4)
is shown in FigUre 1.

Binary Trees The complete binary tree of height n, denoted by B(n), is the graph
whose nodes are all binary strings oflength at most n and whose edges connect each
string x of length i (0 S; i S; n) with the strings xa, a in {O, I}, of length i + 1. The
node e, where e is the empty string, is the root of B(n) and a node x is at level i,
i ~ 0, in B(n) if x is a string of length i. A binary tree is a connected subgraph of
B(n), for some n ~ O. A variation of a complete binary tree allows for double roots,
denoted by DRB(n), i.e. its nodes are aU binary strings oflength at most n plus one
new node e' (called the alternate root), where e represents the empty string, obtained
from B(n) by simply inserting e' into the edge connecting e with the node 1. (The
new node e' thus has two neighbors: the root e and the node 1.) See Figure 2 for an
illustration of DRB(2).

Figure 1

e.~

/\
00 01 10 11

Figure 2

Embedding one Interconnection Network in Another 259

Clearly, B(n) has 2,,+1. - 1 nodes and 2"+1 - 2 edges. It is also easily seen that the
diameter of B(n) is 2n, which is O(log N), where N is the number of its nodes, and
the maximum node degr~e is 3.

Meshes The d-dimensional mesh of dimensions at> a2, .•. , ad' denoted by
[al x a2 x ... x ad], is the graph whose nodes are all d-tuples of positive integers
(Zl,Z2, ... ,Zd), where 1 ::;;;zl::;;;aj, for all i (O::;;;i::;;;d), and whose edges connect
d-tuples which differ in exactly one coordinate by one.

Clearly, [al x a2 x ... x ad] has al x a2 x ... x ad nodes. Its diameter is
(a1 - 1) + (a2 - 1) + ... + (ad - 1) and maximum node degree is 2d, if each al is at
least three.

Pyramids The pyramid of height n, denoted by P(n), is the graph whose nodes are
all triples of nonnegative integers (i,x,y), where 0 S; i S; nand 1 S; x, y ::;;; 21, and
whose edges connect (i,x,y) with the vertices in Hi + 1,u,v)lu in {2x,2x - 1} and
v in {2y,2y + 1}} as well as with all vertices (i, u, v) such that (x, y) and (u, v) are
adjacent nodes in the mesh [2i x 2i], for all i (0 S; i < n) and all x, y (1 ::;;; x, y S; 21).

P(n) has 1 + 4 + 42 + ... + 4" nodes. Its diameter is 2n - 1 and it has maximum
node degree 9. An illustration of P(2) is shown in Figure 3.

X-trees The X-tree of height n, denoted by X(n), is the graph whose nodes are all
binary strings of length at most n and whose edges connect each string x of length
i (0 S; i < n) with the strings xa, a in {O, 1}, of length i + 1 and, when binary(x) <
2i - 1, connects x with successor(x), where binary(x) is the integer x represents in
binary notation and successor(x) denotes the unique binary string of length i such
that binary(successor(x» = binary(x) + 1. (For completeness let binary(e) = 0,
where e is the empty string.)

Figure 3

260 B. Monien and H. Sudborough

Figure 4

(OO.e)

(11.e)

Figure 5

X(n) has 2n+l - 1 nodes and 2n+2 - n - 4 edges. Its diameter is 2n - 1 and it has
maximum node degree 5. An illustration of X(2) is shown in Figure 4.

M esh-of-Trees The mesh-of-trees of dimension n, denoted by MT(n), is the graph
whose nodes are all pairs (x, y), where x and yare binary strings of length at most
n, with at least one of x, y of length exactly n, and whose edges connect, when x is
oflength less than n, (x, y) with (xa, y), and, when y is oflength less than n, (x, y) with
(x,ya), where a is in {0,1}.

MT(n) has 2n+l(2n+l - 2n- 1 - 1) nodes and 2n+2(2n - 1) edges. Its diameter is 4n
and it has maximum node degree 3. An illustration of MT(2) is shown in Figure 5.

Butterflies The butterfly network of dimension n, denoted by BF(n), is the graph
whose nodes are all pairs (i, x), where i is a nonnegative integer (0 ::;; i < n) and x is
a binary string oflength n and whose edges connect (i, x) with both (i + 1 (mod n), x)

o
o 0
o 0

o

2

Embedding one Interconnection Network in Another

o
o

0

2

0
0
0

.....
o

-0
0

Figure 6

0 -- -0 0

Figure 7

0 - 0 -0 0 -- - - -

.....

261

and with (i + 1(modn),xli + 1), where xli + 1 denotes the binary string which is
identical to x except in the «i + 1) modn)-th bit.

BF(n) has n2R nodes and n2R+1 edges, for all n > 2. Its diameter is n + floor(n/2)
and it has maximum node degree 4. An illustration of BF(3) is shown in Figure 6.

Cube connected cycles The cube connected cycle network of dimension n, denoted
by CCC(n), is the graph whose nodes are all pairs (i, x), where i is a nonnegative
integer (0 ::s; i < n) and x is a binary string oflength n and whose edges connect (t, x)
with both (i + 1(modn),x) and with (i,xli), where xli denotes the binary string
which is identical to x except in the i-th bit.

CCC(n) has n2R nodes and 3n2R - 1 edges, for all n > 2. Its diameter is 2n + floor(n/2)
and it has maximum node degree 3. An illustration of CCC(3) is shown in Fig
ure 7.

Shu.fJle-Exchange Networks The shuffie-exchange network of dimension n, de
noted by SE(n), is the graph whose nodes are all binary strings oflength n and whose
edges connect each string xa, where x is a binary string of length n - 1 and a is in
{O, 1}, with the string xb, where b =1= a is a symbol in {O, I}, and with the string ax.
(An edge connecting xa with xb, a =1= b, is called an exchange edge and an edge
connecting ax with xa is called a shu.fJle edge.)

262 B. Monien and H. Sudborough

010 011

100 101

Figure 8

Figure 9

SE(n) has 2n nodes and 2n+1 edges. (Actually, the latter is a count of the directed
edges, namely two from each node. The number of undirected edges will be smaller,
as some of the connections are identical). Its diameter is 2n - 1 and it has maximum
node degree 3. An illustration of SE(3) is shown in Figure 8.

DeBrujn Networks The DeBrujn network of dimension n, denoted by DB(n), is the
graph whose nodes are all binary strings of length n and whose edges connect each
string xa, where x is a binary string oflength n - 1 and a is in {O, 1}, with the string
bx, where b # a is a symbol in {O, 1}, and with the string ax. (An edge connecting
xa with bx, a # b, is called a shujjlexchange edge and an edge connecting xa with
ax is called a shujjle edge.)

DB(n) has 2n nodes and 2(2n - 1) edges. Its diameter is n and it has maximum node
degree 4. An illustration of DB(3) is shown in Figure 9.

II. Measuring the Quality of Embeddings

Let G and H be finite undirected graphs. An embedding of G into H is a mapping f
from the nodes of G to the nodes of H. G is called the guest graph and H is called

Embedding one Interconnection Network in Another 263

the host graph of the embedding f Most of the results we describe here are for
one-to-one mappings, where each processor in the host network is assigned at most
one process (represented by an assigned guest node). However, we shall also con
sider many-to-one embeddings, where each processor in the host can have many
assigned processes. This has been done before in several places, for instance [FF],
[BovL], [EMS], [GuH], [GuH2], [DSl], [DS2]. When considering many-to-one
embeddings load factor is an important issue. That is, the load factor of an em
bedding f is the maximum, over all host graph nodes x, of the number of guest
nodes assigned to x. Clearly it is advantageous to minimize the load factor in a
simulation of one network by another, as the distinct processes assigned to the same
processor will be run sequentially. Thus, the amount oftime needed to simulate one
step of the guest network is proportional to the maximum number of processes
assigned to the same host processor. The dilation of an embedding f is the maxi
mum distance in the host between the images of adjacent guest nodes, i.e.
max{distanceH(f(x),f(y»I(x,y) is an edge in G}, where distanceH(a,b) denotes the
length of the shortest path in H between the nodes a and b. Clearly one wishes to
minimize dilation in a simulation of one network by another, as the amount of time
to communicate between formerly adjacent processors is proportional to the dis
tance between the host nodes to which they have been assigned. The expansion of
the embedding f is the ratio of the number of nodes in the host graph to the number
of nodes in the guest graph, i.e. I nodes (H) III nodes(G)I· When hosts are chosen from
a collection C and no graph K in C satisfies I nodes(G) I ~ I nodes(K) I < Inodes(H)I,
then H is called an optimal host in C for G. If there is a unique optimal host graph
H in C for G, then H is called the optimum host in C for G. We also want to minimize
expansion, as we want to use the smallest possible host network. (In fact, we may
only have a fixed size host network and, consequently, we may have to consider
many-to-one embeddings for large source structures.) We shall sometimes augment
an embedding of G in H by a routing of G's edges, i.e. a mapping r of G's edges to
paths in H. The edge congestion of such a routing r of G's edges, is the maximum,
over all edges e in H, of the number of edges in G mapped to a path in H which
includes e. That is, it is the maximum over all edges e in H of the number of edges
of G routed through e. Clearly we also would like to minimize edge congestion, as
it measures the amount of possible contention in the host for the same network link.
If too many messages need to be passed through the same link, then some will need
to be stored temporarily at the bottleneck and sent later. This will also add extra
time to the communication between processors.

III. Embedding into Binary Hypercubes

As a binary hypercube has a regular structure and its diameter and number of
connections at each node is logarithmic in its size, it is a popular architecture in the
design of parallel computer networks. Several papers discuss the ability of binary
hypercubes to simulate other network and algorithm structures. The following is a
survey of some of this work:

264 B. Monien and H. SudlWrough

A. Binary Trees

The complete binary tree B(n), which has 2"+1 - 1 nodes, can be embedded into the
hypercube Q(n + 1), which has 2"+1 nodes, with dilation 2. In fact, B(n) can be
embedded into Q(n) in such a way that exactly one of its edges connects nodes
assigned to positions at distance 2 in the hypercube and all others connect nodes
at distance 1 [BhCLR], [BhI], [Hav], [Ne]. To see this observe that the double
rooted binary tree DRB(n) is a subgraph of Q(n). This can be seen by a simple
inductive argument. Observe that DRB(1) is a subgraph of Q(2). Now assume that
DRB(n) is embedded in Q(n + 1) by a dilation 1 embeddingf Consider the positions
assigned in the hypercube for the root e, the alternate root e', and the neighbors of
these two nodes: 0 and 1. These four nodes form a chain of length 4, say 0, e, e', 1.
As it is a dilation 1 embedding the successive positions they are mapped to must
differ in exactly one bit position, say the first differ in the i-th bit, the next differ in
the j-th bit, and the last differ in the k-th bit, where 1 s i, j, k s n + 1. Then consider
the embedding I' illustrated in Figure 10(a), where f'(e) = f(O), f'(e') = f(e), and
1'(1) = f(e'). A dilation 1 embedding g of DRB(n + 1) into Q(n + 2) is obtained
from the embeddings f and 1'. That is, one views f as embedding the left subtree
of DRB(n + 1), which is a copy of DRB(n), into the left half of Q(n + 2), i.e. the copy
of Q(n + 1) which consists of all nodes whose bit string begins with 0, and, similarly,
viewsI' as embedding the right subtree of DRB(n + 1) into the right half ofQ(n + 2).
The embedding g is illustrated in Figure 10(b).

Note that an inorder numbering of the nodes of a complete binary tree of height n
also describes a dilation 2 embedding [BhCLR]. This is illustrated in Figure 11.
Dilation 1 is not possible, as it is known that the complete binary tree B(n) is not

(a)

0 I-e - -] 0

e' b- e
b- - - - -1 e'

(b)

0

e
I e'

b 1

Figure 10

Embedding one Interconnection Network in Another 265

0111

0000 0100 0110 1000 1010 1100 1110

Figure 11

a subgraph of Q(n + 1), for all n > 1. The argument is straightforward. Both binary
trees and hypercubes are bipartite graphs, i.e. their nodes can be assigned two colors,
say black and white, so that adjacent nodes do not receive the same color. Such a
two coloring of B(n), for n > 1, must result in 2n + 2n- 2 + ... > 2n nodes receiving
the same color, as all nodes at the same level must receive the same color and so
must all nodes at odd (even) levels. Similarly, Q(n + 1) is bipartite and any two
coloration of its nodes results in all nodes with an even number of occurrences of
the bit 1 getting the same color and similarly with those with an odd number of
occurrences of the bit 1. Thus any two coloration of Q(n + 1) has exactly 2n nodes
in each color class. So, B(n) cannot be a subgraph of Q(n + 1), as it has too many
nodes in the same color class. Note that dilation 2 embeddings are possible, as we've
seen, as they allow nodes in the same color class of B(n) to change color classes in
Q(n + 1).

Embeddings of arbitrary binary trees into hypercubes with small dilation have
also been described. The principal technique is the use of an appropriate bisection
theorem, i.e. a result describing a set of edges in the tree whose deletion results in
two collections of subtrees, each having half of the total number of nodes. Bhatt,
Chung, Leighton, and Rosenberg [BhCLR] described a dilation 10 embedding with
small expansion (small here means roughly 4). An alternative construction was
described by Monien and Sudborough [MoSu2], giving a dilation 5 embedding
without expansion and a dilation three embedding with constant expansion.

Other embeddings of trees into hypercubes include results about caterpillars and
refinements of caterpillars. A caterpillar is a tree in which there is a simple path P
such that every vertex is either included in P or is adjacent to a node in P. (The
edges connecting nodes in P to nodes not in P are called legs.) A tree T is a refinement
of a caterpillar if it is possible to obtain T from some caterpillar by the addition of
degree two nodes into some number of the caterpillar's legs. For example, cater
pillars and certain refinements of caterpillars are known to be subgraphs of hyper
cubes [MoSpUW], [HavL].

Embeddings of binary trees into hypercubes by many-to-one maps have not re
ceived much attention. Presumably the dilation can be lowered when the em
beddings are many-to-one (not one-to-one), even when small load factor is required.

266 B. Monien and H. Sudborough

It is known that the complete binary tree of height k, for all k > 0, can be embedded
into the hypercube with half as many points, namely Q(k), with dilation 1 and load
factor 2 [M03]. The embedding to achieve this is a straightforward application of
the one-to-one embedding described earlier for double rooted binary trees. That is,
let DRB(k) be embedded into Q(k + 1) by a dilation 1 embedding f Without loss
of generality, let the root be assigned to <Y'+1 and the alternate root be assigned to
()i 1<Y'-i, i.e. the two nodes are mapped to hypercube nodes that differ in the (j + 1)-th
position. Then, consider the mapping f' of the nodes of DRB(k) to the nodes of
Q(k) which maps each node x to the string obtained from f(x) by deleting the
(j + 1)-th position in the string. Now remove the alternate root and view f' as a
two-to-one mapping from B(k) to Q(k). Clearly, as the mapping has not increased
the distance between the images of any nodes and it has decreased by one the
distance between the root and the image of its child that was at distance 2, the new
embedding has dilation 1. Furthermore, every node of Q(k) hosts two guest pro
cesses except the one that hosts the root (it has only one assigned process). Thus,
this embedding is optimum.

B. Meshes

Any mesh whose dimensions are a power of 2 is a subgraph of its. optimum
hypercube. That is, for all n > 0, if n = n l + n2 + ... nk' then [n1 x n2 x ... x nk]
is a subgraph of Q(n). This is easily seen by induction on n. For example, this means
that Q(4) contains as a subgraph the meshes [2 x 8], [4 x 4], [4 x 2 x 2] and Q(4)
is, of course, identical to the mesh [2 x 2 x 2 x 2]. It follows from this that many
meshes whose dimensions are not all a power of two are also subgraphs of their
optimum hypercubes. For example, the mesh [7 x 7] with 49 points is a subgraph
of the mesh [8 x 8] and, therefore, of its optimum hypercube Q(6). The general
statement is that a d-dimensional mesh [a1 x a2 x ... ad] is a subgraph of
its optimum hypercube if and only if ceiling(log2 a1) + ceiling(log2 a2) + .. , +
ceiling(log2 ad) = ceiling(log2 a l + log2 a2 + ... + log2 ad) [BrS], [ChC], [Gr].

That this condition is necessary is easily seen. For example, suppose we have a
dilation 1 embeddingf of a 2-dimensional mesh [m x n] in its optimum hypercube,
i.e. the hypercube Q(t), for t = ceiling(log2 (m x n». Call, for any s, nodes (i, s) and
(i + 1, s) column-adjacent nodes in the i-th row and (s, i) and (s, i + 1) row-adjacent
nodes in the i-th column. First, observe that any dilation 1 embedding must map all
column-adjacent nodes in the same row and all row-adjacent nodes in the same
column to hypercube nodes that differ in the same bit position. For instance, let f
map (i, s) to ot and (i + 1, s) to <Y'-110t - k, i.e. hypercube nodes that differ in just the
k-th bit. Let f map (i, s + 1) to ()P-l1or-p, for some p, which (without any loss
of generality) we assume is greater than k. Then, the mesh node (i + 1, s + 1),
which is a neighbor of both (i + 1,s) and (i,s + 1) must map to the hypercube
node Ok-l 1()P-k-l lOt - p , as f is a dilation 1 embedding. Therefore, (i, s + 1) and
(i + 1, s + 1) also map to hypercube nodes that differ in just the k-th bit. The general
statement follows. Secondly, observe that row-adjacent nodes in the same column
and column-adjacent nodes in the same row cannot be mapped to hypercube nodes

Embedding one Interconnection Network in Another 267

that differ in the same position, as each row and column intersect and this would
result in mesh nodes being mapped to the same hypercube node. So, if f is a dilation
1 embedding ofthe mesh [m x n] into its optimum hypercube Q(t), then there must
be (a) at least ceiling(log2 m) bits in the binary strings denoting hypercube posi
tions that are altered for column-adjacent nodes in the m rows and (b) at least
ceiling(log2 n) bits, distinct from those described in (a), for the row-adjacent nodes
in the n columns. This is only possible, if t ~ ceiling(log2 m) + ceiling(log2 n).

It is known that every 2-dimensional mesh can be embedded into its optimum
hypercube with dilation 2 [Ch]. This is optimum, as the preceding paragraph shows
many 2-dimensional meshes are not subgraphs of their optimum hypercubes. An
earlier technique [BeMS] for embedding a [m x n] mesh into its optimum hyper
cube actually did so by embedding with dilation 2 it into the mesh [2m' X p], where
m' = ceiling(log2 m) and p is determined by the technique. (As the latter mesh has
a power of two rows, it is a subgraph of a hypercube.) For example, the mesh
[5 x 50] by this technique is embedded with dilation 2 in the mesh [8 x 32]. The
latter mesh is a subgraph of the optimum hypercube Q(8) for the [5 x 50] mesh.
Theembeddingofa[m x n] mesh into a mesh [2m' x p],wherem' = ceiling(log2m)
is done via the construction of tiles. A (m,2i)-tile, for any i > 0 and any m
(2i-1 :s; m :s; 2i), is an embedding of a [m, 2i] mesh into a [2i, m] mesh such that rows
of the original mesh are embedded as horizontal chains, i.e. the nodes in the first
(last) column of the original [m,21] mesh are embedded into the first (last, respec
tively) column of the host [2i,m] mesh. (In particular, the embedding that simply
rotates the original mesh and maps rows to columns with dilation 1 is not satis
factory.) A recursive construction of (m, 21) tiles, for all i > 0, is described and it is
shown that each constructed tile describes a dilation 2 embedding. (An example of
the (5, 8)-tile constructed is shown in Figure 12.)

For a mesh [m x n] one performs the embedding into [2m' X p], for some p, by
taking the (m,2m')-tile T and chaining it together in the form T-TR - T-TR-formed
by a vertical reflection of T [BeMS]. Although this technique falls short of em
bedding every 2-dimensional mesh into its optimum hypercube, it does describe a
dilation 2 embedding for a large number. As indicated, moreover, it is now known
that all 2-dimensional meshes can 'Je embedded with dilation 2 into their opti
mum hypercubes [Ch]. The techniques is similar, but does not embed meshes into
meshes. Instead it embeds a mesh into the optimum hypercube directly (using

(a) (b)

Figure 12

268 B. Monien and H. Sudborough

binary reflected gray codes) and thereby uses the additional edges available in a
hypercube.

These techniques have also been investigated for their ability to embed multi
dimensional meshes into their optimum hypercubes. The technique of embedding
meshes into meshes (using explicitly constructed dilation 2 tiles) results in a method
to embed d-dimensional tiles with dilation at most d into hypercubes. Under certain
conditions (described in [BeMS]) the technique is guaranteed to embed a d
dimensional mesh into its optimum hypercube. As this condition is not satisfied by
a large number of d-dimensional meshes, the general question of embedding multi
dimensional meshes into their optimum hypercubes is still open. The technique used
to show that all 2-dimensional meshes can be embedded with dilation 2 into their
optimum hypercube has also been extended to the multi-dimensional case [Ch].

Results are also known about many-to-one embeddings of meshes into hypercubes
[EMS]. For an arbitrary mesh M and positive integer i,let M's 1/21-size hypercube
be the hypercube with 1/21 as many processors as M's optimum size hypercube. For
example, if M is a [5 x 5] mesh (it has 25 nodes), then M's optimum size hypercube
is Q(5) with 32 nodes, its 1/2-size hypercube is Q(4) with 16 nodes, its 1/4-size
hypercube is Q(3) with 8 nodes, etc. In [EMS] it is shown that, for all i, every
2-dimensional mesh can be embedded into its 1/21-size hypercube with dilation 1
and load factor 1 + 21. For example, each 2D mesh can be embedded into its 1/2-size
hypercube with load factor 3 and dilation 1 and into its 1/4-size hypercube with
load factor 5 and dilation 1. In many cases better results are known. For example,
it is known that every mesh which has a number of rows which can be expressed
as either 2/ or 2/(1 + 2i), for some nonnegative integers i and j, can be embedded
into its 1/21-size hypercube with dilation 1 and 10ad factor 2/. For example, every
mesh with 2, 3, 4,5,6,8,9,10,12,16,17,18,20,24,32, or 33 rows can be embedded
with dilation 1 and load factor 2 into its 1/2 size ;hypercube. We illustrate an
embedding of the [5 x 5] mesh into the 16 point binary hypercube in Figure 13.

The technique used to obtain these embeddings of meshes into smaller hypercubes
is called braiding. To illustrate, we describe in Figure 14 a braiding of 5 rows of a
mesh to yield load factor 2 and dilation 1, and in Figure 15 a braiding of 9 rows of
a mesh to yield load factor 2 and dilation 1. It should be noted that we say that r
rows can be braided on 28 rods with load factor f and dilation 1, when there is an
embedding of the points of an r row mesh onto the points of a 2" row mesh type
structure with extra column edges (to be described) that assigns the points column
by column from left to right across the guest and host mesh structures and assigns
uniformly f points of the r row mesh to each point in a given column of the 28 row
mesh structure before assigning points to the next column. (The extra column edges
of the 2" row mesh structure are the same as in a hypercube. In particular, let the
28 rows be labeled by binary strings of length s and in the order given by a binary
reflected Gray code. There are edges between points in the same column whose row
labels differ in one position, as well as between corresponding row positions in
adjacent columns.) Clearly, such a 2" mesh structure is a subgraph of a hypercube.
In fact, it is a subgraph of the hypercube formed by increasing, if necessary, the

Embedding one Interconnection Network in Another 269

0000 0100 0101 1101 1111 ,....

0100 1100 1101 1111 1011

1100 1000 1001 1011 0011
~ ,)

1000 1001 0001 0011 0111
()

0000 0001 0101 0111 1100
(... ...

Figure 13

00

01

11

10

000 001 011 010 110 111 101 100

Figure 14

number of columns to the next power of 2 and then, after labeling, say the result
ing 2" columns with successive strings in a binary reflected Gray code of all
binary strings of length t, adding edges between columns whose labels differ in one
position.

There are various theorems about braidings that help to fmd efficient embeddings
of meshes into smaller hypercubes. For instance, in [EMS] a product theorem
states: Ifr1 rows can be braided on Sl rods with uniform load factor 11 and dilation
1 and r 2 rows can be braided on S2 rods with uniform load factor 12 and dilation 1,
then r 1 x r 2 rows can be braided on Sl x S2 rods with uniform load factor 11 x 12
and dilation 1. For example, as 5 rows can be braided onto 4 rods with uniform

270 B. Monien and H. Sudborough

Figure 15

load factor 2 and dilation 1, it follows that 25 rows can be braided on 16 rods with
uniform load factor 4 and dilation 1.

These techniques and other similar results are used in [EMS] to embed multi
dimensional meshes into smaller hypercubes with small dilation and optimum or
nearly optimum load factor. For example, a 3D [5 x 5 x 9] mesh can be embedded
into its 1/2-sizehypercube, Q(7), with dilation 2 and load factor 2.

C. Pyramids

The pyramid P(k), for all k > 0, can be embedded into its optimum hypercube,
Q(2k + 1), with dilation 2 and edge congestion 2 ESt]. (Stout did not consider edge
congestion, but it can be seen that the embedding he describes does indeed have
edge congestion 2.) We describe a different embedding here with the same bounds
on dilation and edge congestion. Our embedding is described recursively. To begin
with, a dilation 2, edge congestion 2 embedding of P(I) into Q(3) is shown in Figure
16. Define the following invariant property, for the sake of induction: P(k) can be
embedded into Q(2k + 1) by an embedding h which:

(a) has dilation 2 and edge congestion 2,
(b) maps the apex of the pyramid P(k) to a hypercube node, called the standard

apex position, which has an unassigned neighbor, called the alternate apex
position such that at most one edge is routed through the edge connecting the
standard and alternate apex positions, and

Embedding one Interconnection Network in Another 271

010 110

011 111

Fignre 16

(c) the embedding g" that agrees with h on every node of P(k) except the apex and
maps the apex to the alternate instead of the standard apex position also satisfies
conditions (a)-(b), where the role of the standard and alternate apex positions
are reversed.

Embed the nodes and edges of P(k + 1) into Q(2k + 3) by the embeddingh+l which
is defined as follows:

(1) View Q(2k + 3) as partitioned into four copies of Q(2k + 1), which we refer
to as the quadrants of Q(2k + 3). The four quadrants are defined by the sets of
nodes in Q(2k + 3) that begin with the prefixes 00, 01,10, and 11, respectively,

(2) Embed a copy of P(k) into each of the four quadrants, where the copies
embedded in the 10 and 11 quadrants are mapped by h and the copies embedded
in the 00 and 01 quadrants are mapped by gk' i.e. the apexes of the copies of
P(k) embedded in the 00 and 01 quadrants are placed at the alternate apex
positions, and

(3) Place the apex of P(k + 1) in the apex position of the 00 quadrant and then
route the edges of P(k + 1) as shown in Figure 17.

It is easily seen that conditions (a)-(c) are satisfied by h+l. Note that the edges
connecting corresponding nodes in the four copies of the pyramid P(k), while not
explicitly shown in Figure 17, connect nodes assigned to corresponding hypercube
positions (hence are neighb<:>rs in the embedding). Furthermore these edges connect
nodes assigned to distinct quadrants and are not used for other edges in the
embedding. Thus h+l is a dilation 2, edge congestion 2 embedding of the pyramid
P(k + 1) into its optimum hypercube.

Dilation 3, edge congestion 2 and dilation 2, edge congestion 3 embeddings of
pyramids into their optimum hypercubes have also been described [LaW], [La W2].
These authors conjectured earlier that no embedding could achieve dilation 2 and
edge congestion 2 simultaneously, apparently unaware of the earlier result of Stout
[St]. In fact, this conjecture has also been disproved in another direction.

272 B. Monien and H. Sudborough

00.---____ ---. ,--____ ----, 10

or-------' 11

Figure 17

In [DS2] a dilation 3, edge congestion 1 embedding of P(k) into Q(2k + 5) has been
described. This embedding can again be described by induction on k. To begin
consider the following dilation 3 and edge congestion 1 embedding of P(I) and Q(7).

Map the apex of P(I) to 07 and the four base nodes to 106, 105 1,102 103, and 110103•

Then route the edges as follows.

(1) edges from the apex of P(I) to the base nodes:
(a) 07 -+ 106

(b) 07 -+ 06 1 -+ 105 1
(c) 07 -+ 03 103 -+ 102 103

(d) 07 -+ 0105 -+ 010103 -+ 110103

(2) edges between the base nodes:
(a) 106 -+ 102 103

(b) 102 103 -+ 110103

(c) 110103 -+ 1105 -+ 1104 1 -+ 105 1
(d) 105 1 -+ 106

It is then easily verified that the edges of the pyramid are routed through unique
hypercube edges (i.e. the embedding has edge congestion 1) and that the dilation is
3. Furthermore, for the sake of our induction step, we observe that there is a copy
of Q(5) as a subgraph of Q(7) in which only one node of the pyramid is assigned.
This is, the set of nodes {OX 1 X20X3X4XS I for each i (1 ::;; i ::;; 5), Xi is in {O, I} } is a set
of nodes that appropriately induces a copy of Q(5) with only the node 07 used as a
host. In addition, only the nodes 06 1 and 0105 in this set are used for routing
pyramid edges in the embedding of P(l) into Q(7). The inductive step is then
accomplished by assuming a dilation 3, edge congestion 1 embedding of P(k) into

Embedding one Interconnection Network in Another 273

Q(2k + 5) in which there is a copy of Q(5) as a subgraph with only one of its points
assigned (namely for the apex of P(k)) and only two other points (as indicated) used
for routing edges. Then, P(k + 1) is embedded in Q(2k + 7) with dilation 3 and edge
congestion 1 by viewing P(k + 1) as four copies of P(k) with an additional apex,
using the points in the indicated copies of Q(5) in the hosts of the inductively given
embeddings of each of the four P(k)'s to host the additional apex node of P(k + 1)
and to route the edges, and finally to obtain a new copy of Q(5) as indicated for the
inductive step. The details can be found in [DS2].

We note that edge congestion 1 is not possible into the smallest possible hypercubes,
at least for small pyramids. For example, the pyramids P(l), P(2), and P(3) have
maximum node degrees of 5,7, and 9, respectively, while their optimum'hypercubes,
namely Q(3), Q(5), and Q(7), have maximum node degree 3, 5, and 7, respectively.
Therefore, edge congestion 2 is necessary for any embedding of these pyramids into
their optimum hypercubes. It is unknown, as yet, whether there exists a dilation 2,
edge congestion 1 embedding of P(k) into Q(2k + 1), for k > 3. It is known that any
embedding of a pyramid into a hypercube must have dilation at least 2, as pyramids
have odd length cycles. Other work on embeddings of pyramids into hypercubes
has been described recently by [HoJ2].

D. X-trees

There is a dilation 2, edge congestion 2 embedding of X(k) into Q(k + 1), for all
k > O. The embedding strategy is similar to that used for embedding complete
binary trees and pyramids and is easily defined recursively. In particular, we assume
for an inductive hypothesis that there is a dilation 2, edge congestion 2 embedding
of X(k) into Q(k + 1) such that the root of the X-tree is assigned to a hypercube
position that has an unassigned neighbor and that there is one edge routed through
the edge connecting the position of the root and this neighbor. Such an embedding
of X(1) into Q(2) is shown in Figure 18(a). Let h denote such a dilation 2, edge
congestion 2 embedding of X(k) into Q(k + 1). An appropriate embedding fk+l of
X(k + 1) into Q(k + 2) is defined by the following:

(a)

00

10 11

(b)

new
root

root of
x(k)

Figure 18

root of
x(k)

274 B. Monien and H. Sudborough

(1) Embed a copy of X(k) into each of two copies ofQ(k + 1) by he,
(2) Place a new node, the root of X(k + 1), into the unassigned position adjacent

to the position of the root in the embedding he of one of the two copies, and
(3) Route the edges as shown in Figure 18(b).

Note that edges connecting nodes in copies of X(k) will connect nodes assigned to
corresponding positions in each of the two copies of Q(k + 1). So, these edges
connect nodes placed at distance 1 in the hypercube and they also have edge
congestion 1.

E. Mesh of Trees

A dilation 2 embedding of MT(n) into Q(2n + 2) is easily described using a dilation
2 embedding of the complete binary tree B(n) into Q(n + 1) and the observation
that MT(n) is a product of two such trees. For example, take the dilation 2
embeddingf" of B(n) into Q(n + 1) given by the inorder numbering of nodes (using
binary notation). Then define the embedding gn of the mesh of trees MT(n) into
Q(2n + 2) by gix,y) = f,,(x)f,,(y). The embedding g2 of MT(2) into Q(6) is shown
in Figure 19.

(e,OO) 011000 (e,Ol) 011010 (e,lO) 011100 (e,l1) 011110
(0,0) 001000 (0,01) 001010 (0,10) 001100 (0,11) 001110
(1,00) 1(11000 (1,01) 101010 (1,10) 101100 (1,11) 101110
(00,00) 000000 (00,01) 000000 (00,10) 000100 (00,11) 000110
(01,00) 010000 (01,01) 010010 (01,10) 010100 (01,11) 010110
(10,00) 100000 (10,01) 100010 (10,10) -t 100100 (10,11) 100110
(11,00) 110000 (11,01) 110010 (11,10) 110100 (11,11) 110110

(OO,e) 000011 (OI,e) 010011 (lO,e) 100011 (l1,e) 110011
(00,0) 000001 (01,0) 010001 (10,0) 100001 (11,0) 110001
(00,1) 000101 (01,1) 010101 (10,1) 100101 (11,1) 110101

Figure 19

F. Butterflies and Cube Connected Cycles

The butterfly BF(n), for all even integers n > 0, can be embedded into its optimum
hypercube Q(n + ceiling(1og2 n» with dilation 1 [Stoe]. That is, BF(n) is a subgraph
of its optimum size hypercube, for even integers n > O. As there is a dilation 1
embedding of CCC(n) into BF(n) [FU], i.e. CCC(n) is a subgraph of BF(n), it follows
that CCC(n) is, of course,. also a subgraph of its optimum size hypercube for even
integers n > o.

G. Shuftle-Exchanges and DeBrujn Networks

It remains open whether either of these networks can be embedded into a hypercube
with 0(1) dilation and 0(1) expansion. As the Shuftle-Exchange network can be
embedded with dilation 1 into the DeBrujn network [Fu], a positive resolution of
both questions can be obtained by an appropriate embedding of the DeBrujn graph.

Embedding one Interconnection Network in Another

H. Complexity Issues

Hypercube Embedding Problem
Instance: A finite undirected graph G and positive integers k and n.
Qestion: Does there exist a dilation k embedding of G into Q(n)?

275

This problem is known [KrVC] to be NP-complete even when k = 1 (by a reduction
from the 3-partition problem [GaJ]). In fact, it is known to be NP-complete even
to decide if a tree can be embedded with dilation 1 into its optimum size hypercube
[CW]o

IV. Embeddings into Binary Trees

A simple path can be embedded into its optimum complete binary tree with dilation
3 ESe]. An outerplanar graph with maximum vertex degree d can be embedded into
a binary tree with dilation ceiling(1og22d) + ceiling(log210g2 2d) + 5 [Mo]. For
any n > 0, the X-tree X(n) can be embedded in the complete binary tree B(n) with
dilation O(1ogn) = O(loglogN), where N is the number of vertices in the X-tree
[BhCHLR].

It is known to be NP-complete to decide, given a graph G and a positive integer k,
whether G can be embedded into a binary tree with dilation k [Mo]. In fact, it is
NP-complete even for trees. On the other hand, for each fixed k, there is a poly
nomial algorithm (using dynamic programming), which when given a graph G,
decides if G can be embedded with dilation at most k in a binary tree [MaSS]. It is
easily established, using the respective diameters of a guest graph and the intended
binary tree host, that many graphs cannot be embedded into a complete binary tree
with 0(1) dilation. For example, complete ternary trees require c(1oglog n) dilation
[HoMR], for some c > 0, and a dilation O(1oglogn) embedding exists [Elll].

V. Embeddings into Meshes

Embedding meshes into meshes is an interesting issue. Every 2-dimensional mesh
can be embedded into either its optimum square 2-D mesh or the next-larger-size
square 2-D mesh with dilation at most 3 [E1l2]. The technique uses squeezing and
folding, which were described in [AIR]. Examples ofthese operations are shown in
Figure 20. In fact, a similar squeezing operation was used, via the recursive construc
tion of tiles, as described earlier, to embed a mesh M into a mesh M' in which M'
is a subgraph of M's optimum hypercube [BeMS]. A recent paper [MeH], in fact,
shows that every rectangular grid can be embedded into a small square grid with
dilation 2. Other related work was done in [FS].

Embeddings into meshes of complete binary trees, meshes of trees, planar graphs,
~hume-exchange networks, and other network structures have also been described
in work on VLSI [Ull]. For example, complete binary trees are embedded into
meshes by the well known H-tree construction and with better dilation by a

276 B. Monien and H. Sudborough

modified H -tree. construction, as described in [Ull]. Embeddings of general network
structures into meshes are described by separator theorems, such as the 0(nl/2)
planar separator theorem, and the recursive construction of a network layout based
on separator results [Ull].

The problem of, given a finite undirected graph G and positive integers k and d,
deciding whether G can be embedded with dilation at most k into ad-dimensional
mesh is known [BhCo] to be NP-complete (by a reduction from l-in-3 3SA T) even
when the graph G is a binary tree, k = 1, and d = 2. There are also interesting
upper and lower bound results on embeddings of meshes into meshes of a different
number of dimensions, the routing of messages between the processors in such a
simulation [KoA], [KRT], and results about embeddings of meshes with "wrap
around edges" (called toruses) [MaT].

Results are also known about many-to-one embeddings of meshes into meshes [SS].
This work describes how to embed meshes into smaller meshes with optimum load
factor and dilation 1. These techniques do not work for all possible host meshes
though; it is easily seen that for some host meshes large dilation and/or large load
factor is required. For example, if the host mesh is a 1 x k mesh, for some k, i.e. a
linear chain, then it is straightforward to show that large dilation and/or large load
factor is necessary. Other work has been described in [EMS] to embed multidimen
sional meshes into smaller meshes with small dilation and optimum or neady
optimum load factor. Similarly results are known about many-to-one embeddings
of torus networks into smaller torus networks [PS]

VI. Embeddings into Butterfly and Cube Connected Cycle Networks

The complete binary tree B(n + floor(log2 n» can be. embedded into the butterfly
network BF(n + 3) with dilation 4 [BhCHLR]. This shows that an n-vertex X-tree,
for example, can be embedded into a butterfly network with dilation O(loglogn)
and 0(1) expansion, as the paper also describes an embedding of X-trees into
complete binary trees, as described earlier. The paper also shows that, there is a
constant c > 0, such that for any nontree planar graph G whose smallest 1/3:2/3
separator is of size S(n) and in which F(G) is the largest number of vertices in any
internal face (of a planar embedding), any embedding of G into a butterfly must
have dilation at least [c·logS(n)]/F(G). In particular, as a 2-dimensional mesh is
planar, has an n1/2 separator, and has 4 nodes per face, any embedding of 2-D meshes
into a butterfly must have dilation at least c . log n, for some constant c > 0. This is
proportional to the butterfly's diameter and hence a random placement of the mesh
nodes achieves this order of magnitude dilation.

VII. Embeddings into Pyramids

In [DS1] it is shown that, for any k ~ 0, the complete binary tree of height 2k + 1
is a subgraph of its optimum size pyramid, namely P(k + 1). This dilation 1 em-

Embedding one Interconnection Network in Another 277

bedding of B(2k + 1)jnto P(k + 1) can perhaps best be described by induction on
k :2: 0. For the basis step, we map B(1) into P(1) by the embedding f, where
f(e) = (1,0, 0),j(0) = (1,0,1), andf(1) = (1,1,0). For the inductive step, assume that
one is given already an embedding of B(2k + 1) into P(k + 1) with the leaves
occupying all of the points in the odd diagonal positions of level k + 1 (the bottom
level) of P(k + 1). Then, the embedding can be extended to a dilation 1 embedding
of B(2k + 3) into P(k + 2) by: (a) assigning the points in level2k + 2 ofthe complete
binary tree to points in even diagonal positions of level k + 2 of the host pyramid
that are adjacent in the pyramid to where their parent (in the tree) has been assigned,
(b) assigning the points in level2k + 3 of the complete binary tree to points in odd
diagonal points of level k + 2 of the host pyramid that are adjacent in the host to
where their parent (in the tree) has been assigned. Details can be found in [DS1].
Such a dilation 1 embedding of B(3) into P(2) is shown in Figure 20.

o e

000 .-1--""'--"0'-::-0-:-11 !----,

01 101

010 ._--+---,:;-;:;;:;:._-1--.
100

10

111 11 110

Figure 20

Furthermore, for any k :2: 0, the X -tree of height 2k + 1 can be embedded into its
optimum size pyramid, P(k + 1), with dilation 2 and edge congestion 2 [DSl]. The
embedding is again described by induction on k. The embedding has greater depth
technically than the one just described, however, as the X-tree has edges than the
complete binary tree does not (namely, those connecting points in the same level)
and additional care must be taken to assign points of the X-tree and route its edges
to achieve dilation 2 and edge congestion 2. However, such an efficient embedding
of X-trees yields an important corollary. Namely, using the efficient embedding of
arbitrary binary trees into X-trees [M02], it shows that arbitrary binary trees can
be efficiently embedded into pyramids. That is, one first embeds an arbitrary binary
tree into a X-tree and then embeds the host X-tree into an appropriate pyramid.

Many-to-one embeddings into pyramids have also been considered. In [DS2] it is
shown that pyramids can be embedded into smaller pyramids with dilation 1 and
optimum load factor. For example, it is shown that, for all k > 0, a pyramid of height
k + 1 can be embedded into a pyramid of height k with dilation 1 and load factor
5 in such a way that only one node of the host pyramid receives 5 guests, namely

278 B. Monien and H. Sudborough

the apex of the host. As P(k + 1) has one more than 4 times the nodes of P(k), this
is an optimum embedding. Furthermore, this has been extended to yield a dilation
1, optimum load factor embedding of P(k + j) into P(k), for all k, j > O. For
example, [DS2] describes, for all k > 0, an embedding of P(k + 2) into P(k) with
dilation 1 and load factor 17 in which 5 nodes host 17 guests, namely those at levels
o and 1, and all other nodes host 16 guests. This is optimum, as P(k + 2) has 5 more
than 16 times the nodes of P(k). These compression embeddings mean that one can
compute rather efficient embeddings of large structures into small pyramids by first
embedding into the structure's optimum size pyramid and then compressing the
optimum size pyramid into a smaller size pyramid. In [DS2] optimum dilation and
load factor embeddings of binary trees and X-trees into small pyramids have
explicitly been described. (These embeddings of complete binary trees and X-trees
into small pyramids are better than what one would obtain by the process men
tioned of (1) embedding into the optimum size pyramid and then (2) compressing
the optimum size pyramid into a smaller one.

VIII. Embeddings into X-trees

Using bisection lemmas for arbitrary binary trees, as described in [MoSu2], Monien
[M02] has described techniques for embedding arbitrary binary trees into X -trees
with dilation 10 and 0(1) expansion. As indicated earlier, this result enables one to
describe efficient embeddings of arbitrary binary trees into other networks by simply
describing an embedding of an appropriate X -tree.

IX. Concluding Remarks

Not much is known about embeddings into shuffle-exchange or DeBrujn networks.
For example, can arbitrary binary trees be embedded with 0(1) dilation and 0(1)
expansion in shuffle-exchange graphs? Clearly, the complete binary tree B(n - 1) is
a subgraph of the DeBrujn network DB(n), as the DeBrujn graph DB(n) can be
viewed as a complete binary tree (with an added node adjacent to the r00t) together
with edges forming another complete binary tree added on. (See Figure 9.) The
DeBrujn graph DB(n) can also be embedded with dilation 2 in the shuffle-exchange
SE(n), as the shufflexchange edge of the DedBrujn can be simulated by a shuffle
edge followed by an exchange edge of the shuffle-exchange graph. Thus, the com
pletebinary tree B(n - 1) can be embedded with dilation 2 in the shuffle-exchange
network SE(n).

There is a wealth of results about embedding graphs into simple paths, i.e. linear
layouts. There dilation is customarily called bandwidth and edge congestion is
usually called cutwidth. The interested reader should consult some of the literature
sources [ChiCDG], [Chu], [ChuLR], [ChuMST], [ElST], [FeL], [GuS], [MaPS],
[MaS], [MaS2], [Mi], [MiS], [MoSu1], [MoSu3], [MoSu4], [Si], [Su], [Va],
[Ya2]. In particular, many early papers on the subject of embedding graphs with
small dilation or small average dilation were written by A. Rosenberg, and co-

Embedding one Interconnection Network in Another 279

authors, for example, in [Ro], [R02], [R03], [RS]. We are guilty of a possibly
unavoidable (certainly unintentional) sin of not including all relevant references
about embedding problems. Hopefully, some of these omissions will be forgiven by
referring interested readers to the following valuable sources for additional work:
[AnBR], [BeS], [Bi], [ChS], [CyKVC], [Gr], [HeR], [HasLN], [HoJ], [HoB],
[Ne], [SaS], [Wu].

References

[AIR] R. Aleliunas, A L. Rosenberg, "On Embedding Rectangular Grids in Square Grids", IEEE
Trans. on Computers, C-31, 9 (1982), pp. 907-913.

[AnBR] F. N. Annexstein, M. Baumslag, A. L. Rosenberg, "Group Action Graphs and Parallel
Architectures", manuscript, Computer and Info. Sci., University of Massachusetts,
Amherst, Massachussets 01003, U.S.A, 1987.

[BeS] B. Becker, H. U. Simon, "How Robust is the n-Cube?" Information and Computation, 77,
(1988), pp. 162-178.

[BeMS] S. Bettayeb, Z. Miller, I. H. Sudborough, "Embedding Grids into Hypercubes", Proc. of
Aegean Workshop on Computing, Springer Verlag's Lecture Notes in Computer Science,
Vol. 319 (1988), pp. 201-211.

[BhCLR] S. Bhatt, F. Chung, T. Leighton, A. Rosenberg, "Optimal Simulation of Tree Machines",
Proc. 27th Annual IEEE Symp. Foundations of Computer Sci., Oct. 1986, pp. 274-282.

[BhCHLR] S. Bhatt, F. Chung, J.-W. Hong, T. Leighton, A. Rosenberg, "Optimal Simulations by
Butterfly Networks", Proc. 20th Annual ACM Theory of Computing Symp., 1988, pp. 192-
204.

[BhCo] S. Bhatt, S. S. Cosmadakis, "The Complexity of Minimizing Wire Lengths for VLSI
Layouts", Info. Processing Letters 25 (1987).

[BhI] S. N. Bhatt, I. C. F. Ipsen, "How to Embed Trees in Hypercubes", Research Report
YALEUjDCSjRR-443, Yale University, Dept. of Computer Science, 1985.

[Bi] D. Bienstock, "On Embedding Graphs in Trees", manuscript, Bell Communications Re
search, Morristown, New Jersey 07060, U.S.A., 1988.

[BovL] H. L. Bodlaender and J. van Leeuwen, "Simulation of Large Networks on Smaller
Networks", Iriformation and Control 71 (1986), pp. 143-180.

[BrS] J. E. Brandenburg, D. S. Scott, "Embeddings of Communication Trees and Grids into
Hypercubes", Intel ScientifIC Computers Report, #280182-001, 1985.

[Ch] M. Y. Chan, "Dilation 2 Embedding of Grids into Hypercubes", Tech. Report, Computer
Science Program, Univ. Texas at Dallas, 1988.

[ChC] M. Y. Chan, F. Y. L. Chin, "On Embedding Rectangular Grids in Hypercubes", IEEE
'Jrans. on Computers, 37 (1988), pp. 1285-1288.

'[ChS] T. F. Chan, Y. Saad, "Multigrid Algorithms on the Hypercube Multiprocessor", IEEE
'Jrans. on Comp., Vol c-35, No. 11, Nov. 1986, pp. 969-977.

[ChiCDG] P. Z. Chinn, J. Chvatalova, A. K. Dewdney, N. E. Gibbs, ''The Bandwidth Problem- for
Graphs and Matrices-A Survey", J. Graph Theory, 6 (1982), pp. 223-254.

[Chu] F. P. K. Chung, "Labelings of Graphs", A chapter in Selected Topics in Graph Theory, III,
(eds. L. Beinike and R. Wilson).

[ChuLR] F. R. K. Chung, F. T. Leighton, A. L. Rosenberg, "A Graph Layout Problem with
Applications to VLSI Design", manuscript, 1985.

[ChuMST] M.-J. Chung, F. Makedon, I. H. Sudborough, J. Turner, "Polynomial Algorithms for the
Min-Cut Linear Arrangement Problem on Degree Restricted Trees", SIAM J. Computing
14,1 (1985), pp. 158-177.

[CW] D. Corneil and A. Wagner, manuscript, Department of Computer Science, University of
British Columbia, Vancouver, B.C., Canada, 1988.

[CyKVC] G. Cybenko, D. W. Krumme, K. N. Venkataraman, A. Couch, "Heterogeneous Processes
on Homogeneous Processors", manuscript, Dept. of Computer Sci., Tufts University,
Medford, Massachusetts 02155 U.S.A., 1986.

[OSI] A. Dingle, I. H. Sudborough, "Simulation of Binary Trees and X-trees on Pyramid
Networks", Proc. of the 1st Annual IEEE Symp. on Parallel and Distributed Processing,
1989, pp. 210-219.

280

[DS2]

[EI11]

[E1l2]

[ElST]

[EMS]

[FeL]

[FF]
[FS]

[FU]

[GaJJ

[Gr]

[GuHl]

[GuH2]

[GuS]

[HasLN]

[Hav]

[HavL]

[HeR]

[HoJJ

[HoJ2]

[HoJ3]

[HoR]

[HoMR]

[KoA]

[KRT]

[KrVC]

B. Monien and H. Sudborough

A. Dingle, I. H. Sudborough, "Efficient Uses of Pyramid Networks", Proc. of the 1 st Annual
IEEE Symp. on Parallel and Distributed Processing, 1989, pp. 220-229.
J. A. Ellis, "Embedding Graphs in Lines, Trees, and Grids", Ph.D. Thesis, Northwestern
Univ., Evanston, Illinois, U.S.A. (1984).
I. A. Ellis, "Embedding Rectangular Grids into Square Grids", Proc. of Aegean Workshop
on Computing, Springer Verlag's Lecture Notes in Computer Science, Vol. 319 (1988),
pp.181-190.
1. A. Ellis, I. H. Sudborough, J. Turner, "Graph Separation and Searching", manuscript,
Computer Science Program, University of Victoria, P. O. Box 1700, Victoria, B.C. V8W
2Y2, Canada (1987).
J. A. Ellis, Z. Miller, I. H. Sudborough, "Embedding Large Meshes into Small Hypercubes",
manuscript, Computer Science Program, M.P. 31, University of Texas at Dallas, Richard
son, Texas, 75083-0688 (1989).
M. R. Fellows, M. A. Langston, "Layout Permutation Problems and Well-Partially
Ordered Sets", manuscript, Department of Computer Science, Washington State Univer
sity, Pullman, Washington, 99164-1210 U.S.A., 1988.
J. P. Fishburn and R. A. Finkel, "Quotient Networks", IEEE TC, 31,1982, pp. 288-295.
A. Fiat, A. Shamir, "Polymorphic Arrays: A Novel VLSI Layout for Systolic Computa
tion", Proc. of IEEE Foundations of Computer Sci. Coni, 1984, pp. 37-45.
R. Feldmann, W. Unger, ''The Cube Connected Cycle network is a subgraph of the
Butterfly network", submitted for publication
M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Co., San Francisco, 1979.
D. S. Greenberg, "Optimum Expansion Embeddings of Meshes in Hypercube", Technical
Report YALEU/CSD/RR-535, Yale University, Dept. of Computer Science.
A. K. Gupta, S. E. Hambrusch, "A Lower Bound on Embedding Tree Machines with
Balanced Processor Utilization", manuscript, Dept. of Computer Sciences, Purdue Univer
sity, West Lafayette, IN 47907,1988.
A. K. Gupta, S. E. Hambrusch, "New Cost Measures in the Embedding of Tree Machines",
manuscript, Dept. of Computer Sciences, Purdue University, West Lafayette, IN 47907,
1988.
E. Gurari, I. H. Sudborough, "Improved dynamic programming algorithms for bandwidth
minimization and the min cut linear arrangement problem" J. Algorithms, 5 (1984),
pp.531-546.
J. Hastad, T. Leighton, M. Newman, "Reconfiguring a Hypercube in the Presence of
Faults", Proc. 19th Annual ACM Symp. Theory of Computing, May 25-27, 1987.
I. Havel, "On Hamiltonian Circuits and Spanning Trees of Hypercubes", Cas. Pest. Mat.
(in Czech.), 109 (1984), pp. 135-152.
I. Havel, P. Liebl, "One Legged Caterpillars Span Hypercubes", J. Graph Theory, 10 (1986),
pp.69-76.
L. S. Heath, A. L. Rosenberg, "An Optimal Mapping of the FFT Algorithm onto the
Hypercube Architecture", COINS Tech. Report 87-19, Computer and Info. Sci., Univer
sity of Massachusetts, Amherst, Massachussets 01003, U.S.A., 1987.
c.-T. Ho, S. L. Johnson, "On the Embedding of Arbitrary Meshes in Boolean Cubes with
Expansion Two Dilation Two", Proc.1987 International Conferer.ce on Parallel Processing,
pp. 188-191.
C.-T. Ho, S. L. Johnson, "Embedding Hyper-Pyramids into Hypercubes" Dept. of Com
puter Science, Yale University, New Haven, CT 06520 (1988).
C.-T. Ho, S. L. Johnson, "Embedding Meshes in Boolean Cubes by Graph Decomposi
tion", Dept. of Computer Science, Yale University, New Haven, CT 06520 (1989).
J. W. Hong, A. L. Rosenberg, "Graphs that are Almost Binary Trees", SIAM J. Computing
11,2 (1982), pp. 227-242.
J. W. Hong, K. Mehlhorn, A. Rosenberg, "Cost Trade-ofTs in Graph Embeddings with
Applications", J. ACM, 30, 4 (1983), pp. 709-728.
S. R. Kosaraju, M. J. Atallah, "Optimal Simulations Between Mesh-Connected Arrays of
Processors", Proc. 1986 ACM Theory of Computing Symp., pp. 264-272.
D. Krisanc, S. Rajasekaran, T. Tsantilas, "Optimal Routing Algorithms for Mesh
Connected Processor Arrays", Proc. of Aegean Workshop on Computing, Springers Lecture
Notes in Computer Science, Vol. 319 (1988), pp. 411-422.
D. W. Krumme, K. N. Venkataraman, G. Cybenko, "Hypercube Embedding is NP
complete", Proc. of Hypercube Con[, SIAM, Knoxville, Tennessee, Sept., 1985.

[LaW]

[LaW2]

[MaT]

[MaPS]

[MaS]

[MaS2]

[MaSS]

[MeH]

[Mi]

[MiS]

[Mo]

[Mo2]
[Mo3]
[MoSpUW]

[MoSu1]

[MoSu2]

[MoSu3]

[MoSu4]

[Ne]

[PS]

[Ro]

[Ro2]

[Ro3]

[RS]

[SaS]

[Se]

[Si]

Embedding one Interconnection Network in Another 281

T.-H. Lai, W. White, "Embedding Pyramids into Hypercubes", OSU-CISRC-ll/87-TR41,
Dept. of Computer and Info. Sci, The Ohio State Univ., Columbus, Ohio, 43210, U.S.A.,
1988.
T.-H. Lai, W. White, "Mapping Multiple Pyramids into Hypercubes Using Unit Expan
sion", manuscript, Dept. of Computer and Info. Sci., The Ohio State Univ., Columbus,
Ohio, 43210, U.S.A., 1988.
Y. E. Ma, L. Tao, "Embeddings among Toruses and Meshes", Proc. of the 1987 Int. Conf.
on Parallel Processing, August, 1987, pp. 178-187.
F. Makedon, C. H. Papadimitriou, I. H. Sudborough, "Topological Bandwidth", SIAM
J. Alg. and Discrete Meth. 6 (1985), pp. 418-444.
F. Makedon, I. H. Sudborough, "Minimizing Width in Linear Layouts", Discrete Applied
Math., 23 (1989), pp. 243-265.
F. Makedon, L H. Sudborough, "Graph Layout Problems", Surveys in Computer Science
(ed. H. Maurer), Bibliographisches Insitut, Zurich, 1984, pp. 145-192
F. Makedon, C. G. Simonson, I. H. Sudborough, "On the complexity of tree embedding
problems", manuscript, Computer Science Program, University of Texas at Dallas,
Richardson, Texas, 75083-0688, U.S.A., 1988.
R. Melhem, G.-Y. Hwang, "Embedding Rectangular Grids into Square Grids with Dila
tion 2", manuscript, Dept. of Computer Science, Univ. of Pittsburgh, Pittsburgh, PA,
15260, 1989.
Z. Miller, "A Linear Algorithm for Topological Bandwidth in Degree 3 Trees", SIAM J.
Computing, 17 (1988), pp.l018-1035.
Z. Miller, I. H. Sudborough, "A Polynomial Algorithm for Recognizing Small Cutwidth
in Hypergraphs", Proc. of Aegean Workshop On Computing, Springer Verlag's Lecture
Notes in Computer Science, vol. 227 (1986), pp. 252-260.
B. Monien, "The Problem of Embedding Trees into Binary Trees is NP-Complete", Proc.
FCT '85, Springers Lecture Notes in Computer Science, vol. 199, pp. 300-309.
B. Monien, "Simulating Binary Trees on X-Trees", manuscript, 1988
B. Monien, personal communication, 1989
B. Monien, G. Spenner, W. Unger, and G. Wechsung, "On the Edge Length of Embedding
Caterpillars into Various Networks", manuscript, Dept. of Math. and Computer Science,
Univ. Paderbom, Paderborn, W. Germany, 1988.
B. Monien, I. H. Sudborough, "Min Cut is NP-complete for Edge Weighted Trees",
Theoretical Computer Science, 58 (1988), pp. 209-229.
B. Monien, I. H. Sudborough, "Simulating Binary Trees on Hypercubes", Proc. of Aegean
Workshop on Computing, Springer Verlag's Lecture Notes ,in Computer Science, Vol. 319
(1988), pp. 170-180.
B. Monien, I. H. Sudborough, "Bandwidth constrained NP complete problems", Theore
tical Computer Science 41 (1985), pp. 141-167.
B. Monien, I. H. Sudborough, "On eliminating nondeterminism from Turing machines
that use less than logarithm worktape space", Theoretical Computer Science 21 (1982),
pp.237-253.
L. Nebesky, "On Cubes and Dichotomic Trees", Cas. Pest. Mat. (in Czech.), 99 (1974),
pp.I64-167.
T. Peng, I. H. Sudborough, "Embedding Large Torus Networks into Small Meshes,
Toruses, and Hypercubes", manuscript, Computer Science Program, M.P. 31, University
of Texas at Dallas, Richardson, Texas, 75083-0688 (1989).
A. L. Rosenberg, "Preserving Proximity in Arrays", SIAM J. Computing 1979, pp. 443-
460.
A. L. Rosenberg, "Data Graphs and Addressing Schemes", J.C.S.S., 5, 1971, pp. 193-
238.
A. L. Rosenberg, "An extrinsic characterization of addressable data graphs", Discrete
Math., 9, 1974, pp. 61-70.
A. L. Rosenberg, L. Snyder, "Bounds on the Costs of Data Encodings", Math. Systems
Theory, 12, 1978, pp. 9-39.
Y. Saad and M. H. Schultz, "Data Communication in Hypercubes", Yale University
Research Report RR-428, October 1985.
M. Sekanina, "On an Ordering of the Set of Vertices of a Connected Graph", Publications
Faculty Science, Univ. Bmo 412 (1960), pp. 137-142.
C. G. Simonson, "A Variation on the Min Cut Linear Arrangement Problem", Math.
Systems Theory, 20 (1987), pp. 235-252.

282

[SS]

ESt]

[Stoe]

[Su]

[UII]

[Wu]

[Va]

[Ya2]

B. Monien and H. Sudborough

D. Sang, I. H. Sudborough, "Embedding Large Meshes into Small Ones", manuscript,
Computer Science Program, M.P. 31, University of Texas at Dallas, Richardon, Texas,
75083-0688 (1989).
Q. Stout, "Hypercubes and Pyramids", Pyramidal Systems for Computer Vision, V. Cantoni
and S. Levialdi, eds., Springer, 1986, pp. 75-89.
E. Stoehr, "An optimum embedding of the butterfly network in the hypercube",
manuscript, Akadamie der Wissenschaften der DDR, Karl Weierstrass-Institut-fuer
Mathematik, Mohrenstr. 39, Berlin, DDR-1086, German Democratic Republic (1989).
I. H. Sudborough, "Bandwidth constraints on problems complete for polynomial time",
Theoretical Computer Science, 26 (1983), pp. 25-52.
J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, 11 Taft Court,
Rockville, Maryland 20850, U.S.A., 1984.
A. Y. Wu, "Embedding of Tree Networks into Hypercubes", J. of Parallel and Distributed
Computing, 2, 3 (1985), pp. 238-249.
M. Yannakakis, "A Polynomial Algorithm for the Min Cut Linear Arrangement of Trees",
J. ACM, 32, 4 (1985), pp. 950-959.
M. A. Yannakakis, "Linear and Book Embeddings of Graphs", Proc. of Aegean Workshop
On Computing, Springers Lecture Notes in Computer Science, vol. 227 (1986), pp. 226-235.

B. Monien
Fachbereich MathematikjInformatik
Universitat Paderborn
D-4790 Paderborn
Federal Republic of Germany

H. Sud borough
Computer Science Program, MP 31
University of Texas at Dallas
Richardson, TX 75083-0688
U.S.A.

Scientific Computation
with Automatic
Result Verification
Edited by U. Kullsch and H. J. Stetter

1988.22 figures. VIII, 244 pages.
Soft cover OM 128,-, 05 900,-
Reduced price for subscribers to "Computing":
Soft cover OM 115,20, 05 810,
ISBN 3-211-82063-9

(Computing, Supplementum 6)

This Computing Supplementum collects a number of original contributions which
are all aiming to compute rigorous and reliable error bounds for the solution of
numerical problems. An introductory article of the editors about the meaning and
diverse methods of automatic result verification is followed by160riginal contribu
tions. The first chapter deals with automatic result verification for standard mathe
matical problems like enclosing the solution of ordinary boundary value problems,
linear programming problems, linear systems of equations and eigenvalue
problems. The second chapter deals with applications of result verification
methods to problems ofthe technical sciences. The contributions consider critical
bending vibrations stability tests for periodic differential equations, geometric
algorithms in the plane, and the periodic solution of the oregonator, a mathe
~atical model in chemical kinetics. The contributions of the third chapter are
concerned with extending and developing the tools required in scientific compu
tation with automatic result verification: evaluation of arithmetic expressions of
polynomials in several variables and of standard functions for real and complex
point and interval arguments with dynamic accuracy. As an appendix, a short
account of the Fortran-SC language was added which permits the programming
of algorithms with result verification in a natural manner.

Springer-Verlag Wien New York
Moelkerbastei 5, A-101O Wien . Heidelberger Platz 3, 0-1000 Berlin 33·
175 Fifth Avenue, New York, NY 10010, USA·
37-3, Hongo 3-chome, Bunkyo-ku, Tokyo 113, Japan

Computer Algebra
Symbolic and Algebraic Computation
Edited by
B. Buchberger, G. E. Collins, and R. Loos,
in cooperation with R. Albrecht

Second Edition
1983. 5 figures. VII, 283 pages.
Soft cover OM 64,-, oS 448,
ISBN 3-211-81776-X

Contents: Laos, R.: Introduction. - Buchberger, B., Laos, R.: Algebraic Simplifica
tion. - Neubuser, J.: Computing with Groups and Their Character Tables. -
Norman,A. C.: Integration in Finite Terms. - Lafon,J. C.: Summation in Finite Terms.
Collins, G. E.: Quantifier Elimination for Real Closed Fields: A Guide to the
Literature. - Collins, G. E., Loos, R: Real Zeros of Polynomials. - Kaltofen, E.:
Factorization of Polynomials. - Laos, R: Generalized Polynomial Remainder
Sequences. - Lauer, M.: Computing by Homomorphic Images. - Norman, A C.:
Computing in Transcendental Extensions. - Laos, R: Computing in Algebraic
Extensions. - Collins, G. E., Mignotte, M., Winkler, F.: Arithmetic in Basic Algebraic
Domains. - van Hulzen, J. A, Calmet, J.: Computer Algebra Systems. - Cal met, J.,
van Hulzen, J. A.: Computer Algebra Applications. - Mignotte, M.: Some Useful
Bounds. - Author Index. - Subject Index.

Computer algebra is an alternative and complement to numerical mathematics.
Its importance is steadily increasing. This volume is the first systematic and
complete treatment of computer algebra. It presents the basic problems of
computer algebra and the best algorithms now known for their solution with their
mathematical foundations, and complete references to the original literature. The
volume follows a top-down structure proceeding from very high-level problems
which will be well-motivated for most readers to problems whose solution is
needed for solving the problems at the higher level. The volume is written as a
supplementary text for a traditional algebra course or for a general algorithms
course. It also provides the basis for an independent computer algebra course.

Springer-Verlag Wien New York
Moelkerbastei 5, A-1010 Wien . Heidelberger Platz 3, D-1000 Berlin 33·
175 Fifth Avenue, New York, NY 10010, USA·
37-3, Hongo 3-chome, Bunkyo-ku, Tokyo 113, Japan

Defect Correction
Methods
Theory and Applications
Edited by K. Bohmer and H. J. Stetter

1984. 32 figures. IX, 243 pages.
Soft cover DM 72,-, oS 504,-
Reduced price for subscribers to "Computing":
Soft cover DM 64,80, oS 453,60
ISBN 3-211-81832-4

(Computing, Supplementum 5)

Defect Correction Methods comprise an important class of constructive mathe
matical methods, many of which have been developed within the past 10 years.
This volume contains a collection of papers from the major areas where defect
correction methods have been devised and applied, and an introductory survey. It
originated from an Oberwolfach meeting in July 1983; the articles were written by
an international group of scientists who are active in this field.The volume contains
the first comprehensive presentation of this important area of numerical and
applied mathematics, an area whose results have so far only been published in
journals and reports.
The reader will get acquainted with the ideas of defect correction through major
theoretical results and through a variety of applications. The articles relate defect
,correction with discretization methods of many kinds (e. g. the novel multigrid
technique), with algorithms for the computation of guaranteed high-accuracy
results, and with design techniques in numerical software. The lists of references of
the individual articles provide an easy access to the current literature on the
subject.

Springer-Verlag Wien New York
Moelkerbastei 5, A-101O Wien . Heidelberger Platz 3, D-1000 Berlin 33·
175 Fifth Avenue, New York, NY 10010, USA·
37-3, Hongo 3-chome, Bunkyo-ku, Tokyo 113, Japan

